jackkuo commited on
Commit
7dcba50
·
verified ·
1 Parent(s): 6be8655

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +5 -0
  2. 0tE5T4oBgHgl3EQfOg6n/content/tmp_files/2301.05498v1.pdf.txt +722 -0
  3. 0tE5T4oBgHgl3EQfOg6n/content/tmp_files/load_file.txt +0 -0
  4. 19AyT4oBgHgl3EQfPvYS/content/tmp_files/2301.00028v1.pdf.txt +1463 -0
  5. 19AyT4oBgHgl3EQfPvYS/content/tmp_files/load_file.txt +0 -0
  6. 1dE0T4oBgHgl3EQf_wJK/content/tmp_files/2301.02830v1.pdf.txt +0 -0
  7. 1dE0T4oBgHgl3EQf_wJK/content/tmp_files/load_file.txt +0 -0
  8. 39E4T4oBgHgl3EQf0g2Q/content/tmp_files/2301.05283v1.pdf.txt +1397 -0
  9. 39E4T4oBgHgl3EQf0g2Q/content/tmp_files/load_file.txt +352 -0
  10. 6NAyT4oBgHgl3EQfcffh/content/tmp_files/2301.00286v1.pdf.txt +469 -0
  11. 6NAyT4oBgHgl3EQfcffh/content/tmp_files/load_file.txt +226 -0
  12. 6dAyT4oBgHgl3EQfpfjS/vector_store/index.faiss +3 -0
  13. 8tE4T4oBgHgl3EQf3A1I/content/tmp_files/2301.05302v1.pdf.txt +2324 -0
  14. 8tE4T4oBgHgl3EQf3A1I/content/tmp_files/load_file.txt +0 -0
  15. 9dFAT4oBgHgl3EQfpx0O/content/tmp_files/2301.08641v1.pdf.txt +2032 -0
  16. 9dFAT4oBgHgl3EQfpx0O/content/tmp_files/load_file.txt +0 -0
  17. AtAyT4oBgHgl3EQfq_mZ/content/tmp_files/2301.00553v1.pdf.txt +1085 -0
  18. AtAyT4oBgHgl3EQfq_mZ/content/tmp_files/load_file.txt +0 -0
  19. BNE1T4oBgHgl3EQf9Qa6/content/tmp_files/2301.03555v1.pdf.txt +1729 -0
  20. BNE1T4oBgHgl3EQf9Qa6/content/tmp_files/load_file.txt +0 -0
  21. HdAyT4oBgHgl3EQf5frD/content/tmp_files/2301.00807v1.pdf.txt +1552 -0
  22. HdAyT4oBgHgl3EQf5frD/content/tmp_files/load_file.txt +0 -0
  23. HtE2T4oBgHgl3EQfTwfs/content/tmp_files/2301.03807v1.pdf.txt +2092 -0
  24. HtE2T4oBgHgl3EQfTwfs/content/tmp_files/load_file.txt +0 -0
  25. I9E4T4oBgHgl3EQfhQ2p/content/tmp_files/2301.05124v1.pdf.txt +1904 -0
  26. I9E4T4oBgHgl3EQfhQ2p/content/tmp_files/load_file.txt +0 -0
  27. INFJT4oBgHgl3EQfFiwP/content/tmp_files/2301.11443v1.pdf.txt +0 -0
  28. INFJT4oBgHgl3EQfFiwP/content/tmp_files/load_file.txt +0 -0
  29. KdE3T4oBgHgl3EQfAQmY/content/tmp_files/2301.04256v1.pdf.txt +792 -0
  30. KdE3T4oBgHgl3EQfAQmY/content/tmp_files/load_file.txt +360 -0
  31. L9E4T4oBgHgl3EQfiw1J/content/tmp_files/2301.05136v1.pdf.txt +675 -0
  32. L9E4T4oBgHgl3EQfiw1J/content/tmp_files/load_file.txt +468 -0
  33. LNAyT4oBgHgl3EQfTve8/content/tmp_files/2301.00113v1.pdf.txt +2273 -0
  34. LNAyT4oBgHgl3EQfTve8/content/tmp_files/load_file.txt +0 -0
  35. MtE3T4oBgHgl3EQfYwqL/content/tmp_files/2301.04491v1.pdf.txt +0 -0
  36. MtE3T4oBgHgl3EQfYwqL/content/tmp_files/load_file.txt +0 -0
  37. NtFLT4oBgHgl3EQfOS8u/content/tmp_files/2301.12023v1.pdf.txt +1533 -0
  38. NtFLT4oBgHgl3EQfOS8u/content/tmp_files/load_file.txt +0 -0
  39. QdAzT4oBgHgl3EQfW_xa/content/2301.01310v1.pdf +3 -0
  40. RdE2T4oBgHgl3EQfBwYp/content/tmp_files/2301.03605v1.pdf.txt +1793 -0
  41. RdE2T4oBgHgl3EQfBwYp/content/tmp_files/load_file.txt +0 -0
  42. SNAzT4oBgHgl3EQf0f5U/content/tmp_files/2301.01784v1.pdf.txt +1934 -0
  43. SNAzT4oBgHgl3EQf0f5U/content/tmp_files/load_file.txt +0 -0
  44. UtAyT4oBgHgl3EQfhfhI/content/tmp_files/2301.00377v1.pdf.txt +748 -0
  45. UtAyT4oBgHgl3EQfhfhI/content/tmp_files/load_file.txt +0 -0
  46. VdE3T4oBgHgl3EQf0Qv6/content/tmp_files/2301.04737v1.pdf.txt +0 -0
  47. VdE3T4oBgHgl3EQf0Qv6/content/tmp_files/load_file.txt +0 -0
  48. XtE1T4oBgHgl3EQfcAQQ/content/tmp_files/2301.03178v1.pdf.txt +1364 -0
  49. XtE1T4oBgHgl3EQfcAQQ/content/tmp_files/load_file.txt +0 -0
  50. YdFJT4oBgHgl3EQf6i0m/content/tmp_files/2301.11674v1.pdf.txt +2239 -0
.gitattributes CHANGED
@@ -245,3 +245,8 @@ x9FJT4oBgHgl3EQfhSy6/content/2301.11565v1.pdf filter=lfs diff=lfs merge=lfs -tex
245
  M9E0T4oBgHgl3EQfTABv/content/2301.02230v1.pdf filter=lfs diff=lfs merge=lfs -text
246
  6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf filter=lfs diff=lfs merge=lfs -text
247
  h9E0T4oBgHgl3EQfpgF0/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
245
  M9E0T4oBgHgl3EQfTABv/content/2301.02230v1.pdf filter=lfs diff=lfs merge=lfs -text
246
  6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf filter=lfs diff=lfs merge=lfs -text
247
  h9E0T4oBgHgl3EQfpgF0/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
248
+ rdE1T4oBgHgl3EQfjAQ8/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
249
+ QdAzT4oBgHgl3EQfW_xa/content/2301.01310v1.pdf filter=lfs diff=lfs merge=lfs -text
250
+ ptAyT4oBgHgl3EQfl_gG/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
251
+ 6dAyT4oBgHgl3EQfpfjS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
252
+ m9AyT4oBgHgl3EQflPjP/content/2301.00450v1.pdf filter=lfs diff=lfs merge=lfs -text
0tE5T4oBgHgl3EQfOg6n/content/tmp_files/2301.05498v1.pdf.txt ADDED
@@ -0,0 +1,722 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Inertial to viscous coalescence of liquid lenses: a lattice Boltzmann investigation
2
+ Thomas Scheel,1, 2, ∗ Qingguang Xie,1 Marcello Sega,3, 1, † and Jens Harting4, 5, ‡
3
+ 1Helmholtz Institute Erlangen-N¨urnberg for Renewable Energy (IEK-11),
4
+ Forschungszentrum J¨ulich, Cauerstr. 1, D-91058 Erlangen, Germany
5
+ 2Department of Physics, Friedrich-Alexander-Universit¨at Erlangen-N¨urnberg, Cauerstr. 1, D-91058 Erlangen, Germany
6
+ 3Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
7
+ 4Helmholtz Institute Erlangen-N¨urnberg for Renewable Energy (IEK-11),
8
+ Forschungszentrum J¨ulich, Cauerstr. 1, D-91058 Erlangen, Germany
9
+ 5Department of Chemical and Biological Engineering and Department of Physics,
10
+ Friedrich-Alexander-Universit¨at Erlangen-N¨urnberg, Cauerstr. 1, D-91058 Erlangen, Germany
11
+ (Dated: January 16, 2023)
12
+ Liquid lens coalescence is an important mechanism involved in many industrial and scientific ap-
13
+ plications. It has been investigated both theoretically and experimentally, yet it is numerically very
14
+ challenging to obtain consistent results over the wide ranges of surface tension and viscosity values
15
+ that are necessary to capture the asymptotic temporal behavior in the viscous and inertial limits.
16
+ We report results of massively parallel simulations based on the color gradient lattice Boltzmann
17
+ method, which overcome these limitations, and investigate the scaling laws of both regimes. For the
18
+ two-dimensional case we find good agreement with the similarity solution of the thin-sheet equation,
19
+ where in the viscous regime the connecting bridge grows linearly with time and in the inertial regime
20
+ proportionally to t2/3. In three dimensions, the viscous growth of the bridge also exhibits a linear
21
+ time dependence, while in the inertial regime the growth of both the bridge height and the bridge
22
+ width is proportional to t1/2.
23
+ I.
24
+ INTRODUCTION
25
+ From the formation of raindrops [1] to biomolecular condensates during liquid-liquid phase separation [2], drop
26
+ coalescence plays an important role in many natural phenomena, but finds also broad industrial applications. The
27
+ latter include, for instance, sintering [3, 4], filtration [5, 6], and ink-jet printing of a variety of materials [7–9] ranging
28
+ from solar cells [10–13] to bioengineered tissues [14, 15] and cells [16]. Future improvements in these technologies rely
29
+ strongly on the ability to advance the understanding of the wetting behavior of droplets on liquid substrates as well
30
+ as an accurate knowledge of the interaction between the liquid phases and the dynamics of their coalescence [17, 18].
31
+ Previous research has primarily been focused on the coalescence of freely suspended droplets [4, 19–24] and droplets
32
+ on solid substrates [25–30], while droplets on liquid substrates [31–33] have received less attention.
33
+ The theoretical analysis of the coalescence of liquid lenses, i.e. droplets attached to a fluid-fluid interface, has
34
+ identified two distinct dynamic regimes, which depend on the relative importance of viscous and inertial forces [20].
35
+ Immediately after two droplets get in contact, inertial forces are still small compared to viscous ones, and the con-
36
+ necting meniscus height h0(t) is reported to grow proportionally to the elapsed time t [21, 29, 31, 32]. This linear
37
+ dependence marks the so-called viscous regime. At longer times (or for larger surface tension to viscosity ratios), coa-
38
+ lescence enters the inertial regime where viscous forces become negligible, and h0(t) is reported to grow like h0(t) ∼ t2/3
39
+ for low contact angles θ ≪ 90◦ [29, 32, 34]. The case of contact angles close to 90◦ (as encountered in freely suspended
40
+ droplets) turned out to be a particular one [29], where a scaling h0(t) ∼ t1/2 is often reported [19–21, 29, 31, 35].
41
+ From an experimental point of view it is very challenging to resolve the coalescence process in sufficient detail at
42
+ least for low viscosity liquids such as water. Here, it is practically impossible to observe the viscous regime, because
43
+ inertial effects become dominant at the scale of hc ≈ 15 nm and for times larger than tc ≈ 10−10 s [20]. On the
44
+ other hand, analytical approaches rely on assumptions such as a reduced dimensionality (thin-sheet equation) or
45
+ infinite bridge growth. The difficulties involved in the experimental measurements and the approximations used in
46
+ the analytical treatments have prevented an unambiguous understanding of the scaling laws of three-dimensional
47
+ liquid lenses with arbitrary wetting properties.
48
+ In order to describe the growth dynamics of top-down symmetric liquid lenses (see Fig. 1) it has to be taken into
49
+ account that they involve two principal radii of curvature. As a result, the bridge is characterized not only by its
50
+ height h0, but also by its width w0. Heuristically, one can imagine the evolution of the bridge width w0 in the same
51
52
53
54
+ arXiv:2301.05498v1 [physics.flu-dyn] 13 Jan 2023
55
+
56
+ 2
57
+ Figure 1. Simulation snapshots of 3D liquid lens coalescence in the y − z plane (top row: side-view) and in the y − x plane
58
+ (bottom row: top-view) at different simulation times t with contact angle θ, lens height h(y, t), minimal bridge height h0 and
59
+ minimal bridge width w0. Lengths and times are provided in lattice Boltzmann units ∆x and ∆t.
60
+ terms as that of its height h0. If the problem was perfectly decoupled into independently evolving height and width,
61
+ one might expect inertial growth rates h0 ∼ t2/3 and w0 ∼ t1/2, the latter because in the y − z-plane projection the
62
+ droplets form initially an angle of 90◦.
63
+ In reality, however, a complex coupling between the two directions is to be expected, which is difficult to model
64
+ with analytical approaches. The impact of their mutual influence on the bridge growth dynamics is an open question
65
+ and one of the main topics addressed in this investigation.
66
+ Computer simulations are in principle a formidable tool to overcome experimental and analytical limitations, but
67
+ accessing both regimes is not an easy task due to the wide range of surface tension and viscosity required [36–38].
68
+ Furthermore, due to the intrinsic multiscale nature of coalescence, one has to resolve orders of magnitude in length
69
+ scales to describe the system from the small initial bridge height to the full droplet size and beyond, including the
70
+ surrounding hydrodynamic flow field [39, 40].
71
+ In this article, we investigate the coalescence dynamics of liquid lenses using the color gradient lattice Boltzmann
72
+ simulation method [41–44]. This method overcomes some of the limitations of the pseudopotential lattice Boltzmann
73
+ approach of Shan and Chen used in previous works [36, 38, 45–47], which was not able to attain the viscous regime.
74
+ The color gradient method allows us to cover both regimes by spanning more than four orders of magnitude in surface
75
+ tension and more than two orders of magnitude in viscosity.
76
+ The remainder of the paper is organized as follows. In section II we introduce the color gradient lattice Boltzmann
77
+ method, while section III summarizes our simulations of two coalescing top-down symmetric liquid lenses. The final
78
+ section provides conclusions and a short outlook on future work.
79
+ II.
80
+ LATTICE BOLTZMANN COLOR GRADIENT METHOD
81
+ Our simulations are conducted with the lattice Boltzmann method on a three-dimensional lattice with 19 discrete
82
+ velocities (D3Q19) [48]. The evolution of the discrete distribution function f k
83
+ i (⃗x, t) for each fluid component k is
84
+ described by the lattice Boltzmann equation
85
+ f k
86
+ i (⃗x + ⃗ci∆t, t + ∆t) = f k
87
+ i (⃗x, t) + Ωk
88
+ i (⃗x, t),
89
+ (1)
90
+ where Ωk
91
+ i is the collision operator, i = 1, ..., 19 specifies the lattice direction and k ∈ {1, 2, 3} the fluid component.
92
+ In the following, we set the time step ∆t = 1 and the lattice constant ∆x = 1 for the sake of clarity without loss of
93
+ generality. The fluid density ρk is obtained from the zeroth moment of the distribution function
94
+ ρk(⃗x, t) =
95
+
96
+ i
97
+ f k
98
+ i (⃗x, t),
99
+ (2)
100
+
101
+ 3
102
+ and (in absence of external forces) the macroscopic fluid velocity ⃗uk(⃗x, t) from the first moment of the distribution
103
+ function
104
+ ⃗uk(⃗x, t) =
105
+
106
+ i f k
107
+ i (⃗x, t)⃗ci
108
+ ρk(⃗x, t)
109
+ .
110
+ (3)
111
+ To model phase separation we employ the color gradient method (CG) which introduces a coupling between the fluid
112
+ components and performs the phase separation in three steps: first, the color gradient, i.e. the direction of steepest
113
+ increase in the density of the respective fluid component, is calculated
114
+ ⃗F k(⃗x, t) = ∇
115
+ �ρζ(⃗x, t) − ρξ(⃗x, t)
116
+ ρζ(⃗x, t) + ρξ(⃗x, t)
117
+
118
+ ,
119
+ (4)
120
+ where ζ, ξ ∈ {1, 2, 3} and ζ > ξ.
121
+ In the next step, also known as perturbation step, the populations that are collinear to the gradient of the color
122
+ field are increased, while those perpendicular to it are decreased, resulting in the appearance of a surface tension term:
123
+
124
+ Ωk
125
+ i
126
+ �pert f k
127
+ i (⃗x, t) = f k
128
+ i (⃗x, t) + Ak
129
+ 2 |⃗F k(⃗x, t)|
130
+
131
+ wi cos2(φk
132
+ i ) − Bi
133
+
134
+ .
135
+ (5)
136
+ Here, wi are the lattice weights
137
+ wi =
138
+
139
+
140
+
141
+ 1/3
142
+ i = 1
143
+ 1/18 i = 2, ... , 7
144
+ 1/36 i = 8, ... , 19
145
+ (6)
146
+ and φk
147
+ i is the angle between the color gradient ⃗F k and the lattice direction ⃗ci. Ak is a free parameter determining
148
+ the surface tension and Bi is chosen as to ensure mass conservation:
149
+ Bi =
150
+
151
+
152
+
153
+ −2/9 i = 1
154
+ 1/54
155
+ i = 2, ... , 7
156
+ 1/27
157
+ i = 8, ... , 19
158
+ (7)
159
+ Finally, the recoloring step separates two phases by distributing the two components to opposite directions
160
+
161
+ Ωζ
162
+ i
163
+ �recol
164
+ fi(⃗x, t) = ρζ
165
+ ρ fi(⃗x, t) + β ρζρξ
166
+ ρ2
167
+ cos(φi)
168
+
169
+ k=ζ,ξ
170
+ f k,eq
171
+ i
172
+ (⃗x, t)(ρk, 0),
173
+ (8)
174
+ where β is a free parameter controlling the interface thickness (β = 0.99 in all our simulations), fi = �
175
+ k f k
176
+ i and f k,eq
177
+ i
178
+ is the local equilibrium distribution derived from a Taylor expansion of the Maxwell-Boltzmann distribution to the
179
+ second order
180
+ f k,eq
181
+ i
182
+ (⃗x, t) = ρk
183
+
184
+ φk
185
+ i + wi
186
+ �⃗ci · ⃗u
187
+ c2s
188
+ + (⃗ci · ⃗u)2
189
+ 2c4s
190
+ − ⃗u2
191
+ 2c2s
192
+ ��
193
+ ,
194
+ (9)
195
+ with cs being the lattice speed of sound. The total collision operator of the CG method Ωk
196
+ i is an extension of the
197
+ standard Bhatnagar-Gross-Krook (BGK) collision operator [49]
198
+
199
+ Ωk
200
+ i
201
+ �BGK f k
202
+ i (⃗x, t) = f k
203
+ i (⃗x, t) − ωk
204
+
205
+ f k
206
+ i (⃗x, t) − f k,eq
207
+ i
208
+ (⃗x, t)
209
+
210
+ ,
211
+ (10)
212
+ which relaxes the population f k
213
+ i to its local equilibrium with a relaxation rate ωk = 1/τk. From the Chapman-Enskog
214
+ expansion to second order one can derive the relation between relaxation time τk and kinematic viscosity νk of fluid
215
+ k as
216
+ νk = c2
217
+ s
218
+
219
+ τk − 1
220
+ 2
221
+
222
+ .
223
+ (11)
224
+ Finally, the BGK operator is extended by the perturbation and recoloring operators to yield the CG collision operator
225
+ Ωk
226
+ i ,
227
+ Ωk
228
+ i =
229
+
230
+ Ωk
231
+ i
232
+ �recol ◦
233
+
234
+ Ωk
235
+ i
236
+ �pert ◦
237
+
238
+ Ωk
239
+ i
240
+ �BGK ,
241
+ (12)
242
+ which applies in a chain the BGK, perturbation and recoloring operators, in this order, and conserves all collisional
243
+ invariants like mass and total momentum for each fluid component.
244
+
245
+ 4
246
+ III.
247
+ LIQUID LENS COALESCENCE
248
+ Our study focuses on the coalescence of two identical, top-down symmetric liquid lenses. We begin our investiga-
249
+ tion with the quasi two-dimensional case (cylindrical symmetry), before later turning to the fully three-dimensional
250
+ simulations. The droplets are initialized side by side and connected via a contact point (resolved by approximately
251
+ 5 lattice nodes). Over time, surface tension drives the interface to minimize the surface area, and a bridge develops,
252
+ which grows until the two droplets have merged into a single larger one.
253
+ The dynamics of the coalescence process is determined by the initial geometry of the droplets [29] and the combined
254
+ effect of inertia, surface tension σ, and dynamic viscosity µ = ρν, where ν is the kinematic viscosity. These quantities
255
+ determine a characteristic velocity scale, also known as capillary velocity, given by the ratio vc = σ/µ. The Reynolds
256
+ number of the coalescing droplets can thus be expressed as Re = ρ σ h0/µ2 [4]. At early times the system is dominated
257
+ by viscous forces, since the bridge height h0 is much smaller than the viscous characteristic length lv = µ2/(σρ) [28].
258
+ In this regime Re ≪ 1 and the flow is described by the Stokes equation. The crossover between the viscous and
259
+ inertial regime occurs at Re ≈ 1. From then on, viscous dissipation becomes increasingly negligible and the dynamics
260
+ of the system is determined by inertial forces.
261
+ For small contact angles, the drop height is much smaller than its lateral extension which allows to apply the
262
+ lubrication approximation, under which the Navier-Stokes equations simplify to yield the thin-sheet equation [50]
263
+ ht + (uh)y =
264
+ 0
265
+ (13)
266
+ ρ(ut + uuy) =σ hyyy + 4µ (uyh)y
267
+ h
268
+ .
269
+ (14)
270
+ By solving the thin-sheet equation with the similarity ansatz
271
+ h(y, t) = ktαU(ξ),
272
+ u(y, t) = αk
273
+ θ tβ,
274
+ ξ = θy
275
+ ktα ,
276
+ (15)
277
+ it has been shown that the growth of the bridge between two coalescing lenses exhibits a power-law behavior with
278
+ two asymptotic regimes [32]. In the viscous regime, where viscous forces dominate inertial forces (ρ ≈ 0), the bridge
279
+ height grows linearly in time, h0(t) ∼ t, whereas in the inertial limit h0(t) ∼ t2/3. The two asymptotic regimes as well
280
+ as the crossover region can be described by the universal curve
281
+ h0/hc =
282
+ � 1
283
+ t/tc
284
+ +
285
+ 1
286
+ (t/tc)n
287
+ �−1
288
+ ,
289
+ (16)
290
+ where, in this case, n = 2/3 and tc and hc are the crossover time and height that provide a universal scaling law [32].
291
+ The large viscosity and surface tension range required to reach the viscous as well as inertial regime is a major
292
+ challenge for numerical approaches [51]. So far, the viscous regime was not amenable to the very popular pseudopo-
293
+ tential lattice Boltzmann method of Shan and Chen due to its numerical instabilities at low values of the surface
294
+ tensions [38]. The color gradient lattice Boltzmann method, on the contrary, is stable over a much wider range of
295
+ surface tension values [36].
296
+ For the quasi two-dimensional case we perform simulations of a domain consisting of 4 × 2048 × 768 lattice points
297
+ in x,y and z direction (pseudo 2d) with periodic boundary conditions. The droplets are initialized with a radius of
298
+ 282 lattice nodes and a contact angle θ = 30◦. The distance of the droplet edges to the periodic domain boundaries
299
+ are chosen sufficiently large such that their mutual influence across the periodic boundaries can be neglected. Each
300
+ lens was previously equilibrated separately in its surrounding fluid, making sure that the lenses are initially at rest
301
+ and have no initial velocity of approach. To be able to compare our simulation results to the similarity solution of
302
+ thin-sheet theory we ensured that the coalescence process is dominated by the flow inside the liquid lenses by choosing
303
+ the fluid viscosity of the outside fluid to be at least one order of magnitude smaller than that of the lenses.
304
+ We performed a series of simulations by varying the droplet viscosity and surface tension over several orders of
305
+ magnitude to yield low and high capillary velocities, respectively, which allow us to investigate the viscous as well as
306
+ the inertial regime. Furthermore, to collapse the bridge growth for different capillary velocities on a single master
307
+ curve, we use tc = 288Ki
308
+ K3v
309
+ µ3
310
+ ρσ2θ2 and hc = 72Ki
311
+ K2v
312
+ µ2
313
+ ρσ with Ki = 0.106 and Kv = 2.21 as previously obtained from similarity
314
+ solutions of the thin-sheet equation [32]. Since we are only interested in the initial phase of the coalescence to limit
315
+ finite size effects, we stop our simulations when h0 has reached 2/3 of the height of the lenses.
316
+ In the viscous regime our simulations yield a linear bridge growth h0 ∼ t, followed by a crossover region that
317
+ provides a smooth transition towards the h0 ∼ t2/3 dependence of the inertial regime (see Fig. 2). All simulations
318
+ show very good agreement with the analytical solution of the thin-sheet equations. Noticeably, the numerical constants
319
+ Ki and Kv from [32] yield an excellent collapse of the data sets, confirming that the thin-sheet equation is a good
320
+ approximation to describe the coalescence dynamics in the case of small contact angles.
321
+
322
+ 5
323
+ 10
324
+ 3
325
+ 10
326
+ 1
327
+ 101
328
+ 103
329
+ 105
330
+ 107
331
+ t/tc
332
+ 10
333
+ 3
334
+ 10
335
+ 1
336
+ 101
337
+ 103
338
+ 105
339
+ h0/hc
340
+ / =11.6
341
+ / =5.8
342
+ / =0.696
343
+ / =0.348
344
+ / =1.16
345
+ / =2.9
346
+ / =0.0348
347
+ / =0.0116
348
+ / =0.00116
349
+ / =0.000116
350
+ h0/hc = t/tc
351
+ h0/hc = (t/tc)2/3
352
+ theory
353
+ Figure 2. Power law relation for the bridge growth in 2d covering the viscous as well as inertial regime (solid line: interpolation
354
+ according to Eq. (16), dashed line: viscous theory, dotted-dashed line: inertial theory).
355
+ 0
356
+ 250
357
+ 500
358
+ 750
359
+ 1000
360
+ 1250
361
+ 1500
362
+ 1750
363
+ 2000
364
+ y [Δx]
365
+ 0
366
+ 200
367
+ 400
368
+ 600
369
+ z [Δx]
370
+ 0.5
371
+ 1.0
372
+ 1.5
373
+ 10-5 [Δx/Δt]
374
+ 0
375
+ 250
376
+ 500
377
+ 750
378
+ 1000
379
+ 1250
380
+ 1500
381
+ 1750
382
+ 2000
383
+ y [ x]
384
+ 0
385
+ 200
386
+ 400
387
+ 600
388
+ z [ x]
389
+ 10-3 [Δx/Δt]
390
+ 1.0
391
+ 3.0
392
+ 5.0
393
+ Figure 3. Flow field of viscous (σ/µ = 0.000116, left) and inertial (σ/µ = 0.348, right) liquid lens coalescence, where the grey
394
+ scale of the velocity vectors represents the magnitude of the velocity vectors.
395
+ The velocity field in the viscous regime is inherently dipolar and approaches a plug flow inside the liquid lens phase
396
+ over time – see Fig. 3 (left panel) for a representative velocity field obtained from the simulations. While in the
397
+ vicinity of the bridge minimum the flow field of the inertial regime is still dipolar (Fig. 3, right panel), two additional
398
+ dipolar flow structures arise approximately at the center of each of the two initial liquid lenses. Furthermore, at larger
399
+ distances from the bridge center fluid inertia causes the appearance of circulations in the wake of the retracting tips
400
+ of the liquid lenses.
401
+ In analogy to the assumptions of the thin sheet equation, Fig. 4 shows the profile uy(y, t) of the y-component of the
402
+ velocity, averaged over the droplet extension along the z axis. Close to the bridge center (|ξ| < 1) the velocity profile
403
+ is in good agreement with the prediction of the thin-sheet equation for the viscous as well as the inertial case. At
404
+ larger distances to h0 (|ξ| > 1), however, the simulated velocity profile starts deviating from the thin-sheet solution.
405
+ This effect can be attributed to the finite size of the lens as well as the difference in the treatment of the outer fluids:
406
+ In contrast to the thin-sheet equation, our simulations include the full dynamics of the surrounding fluids with a finite
407
+ viscosity. Thus, viscous damping in the surrounding fluids influences the velocity field inside the droplets.
408
+ Next, we extend our simulations to the fully three-dimensional case (Fig. 5), where we use a system size of 768 ×
409
+ 2096 × 768 lattice nodes in x, y and z direction with periodic boundary conditions. The update of 1.2 · 109 lattice
410
+ sites requires a considerable amount of computational resources. Therefore, the simulations were conducted on the
411
+ JURECA Booster machine with 32, 768 Intel KNL cores using up to 3.4 million core-hours to generate a single data
412
+ set.
413
+ In analogy to the pseudo two-dimensional case, we initialize two equilibrated lenses with a contact angle of θ = 30◦
414
+ (see Fig. 1) and adequate spacing to the domain boundaries. The growth of the bridge width reported in the left
415
+ panel of Fig. 6 scales as w0 ∼ t1/2, which agrees with experiments [20, 21, 29, 31], analytical [4, 35] and numerical
416
+ studies [52, 53] for freely suspended, respectively spherical droplets. The evolution of the bridge height h0, on the
417
+ contrary, does not behave as in the quasi two-dimensional case (t2/3 scaling), but follows again the scaling h0 ∼ t1/2
418
+ found for the width, as reported in the right panel of Fig. 6. This indicates that the thin-sheet equation for the
419
+ 2d case fails to describe the dynamics of the three-dimensional bridge growth. The scaling law is however not in
420
+
421
+ 6
422
+ 15
423
+ 10
424
+ 5
425
+ 0
426
+ 5
427
+ 10
428
+ 15
429
+ = y
430
+ h0
431
+ 0.75
432
+ 0.50
433
+ 0.25
434
+ 0.00
435
+ 0.25
436
+ 0.50
437
+ 0.75
438
+ U = uy
439
+ /kv
440
+ t/tc=1.6 ⋅ 10-3
441
+ t/tc=3.2 ⋅ 10-3
442
+ t/tc=4.8 ⋅ 10-3
443
+ t/tc=6.4 ⋅ 10-3
444
+ theory
445
+ 10
446
+ 5
447
+ 0
448
+ 5
449
+ 10
450
+ = y
451
+ h0
452
+ 1.0
453
+ 0.5
454
+ 0.0
455
+ 0.5
456
+ 1.0
457
+ U = uy 3 t1/3/(2ki)
458
+ t/tc=6.5 ⋅ 102
459
+ t/tc=1.3 ⋅ 103
460
+ t/tc=2.0 ⋅ 103
461
+ t/tc=2.6 ⋅ 103
462
+ theory
463
+ Figure 4. Average profile of the y component of the velocity at different times in the viscous (left) and inertial (right) regimes
464
+ compared to thin-sheet theory.
465
+ 1500
466
+ 1400
467
+ 300
468
+ 350
469
+ x [Δx]
470
+ 400
471
+ 450
472
+ 600
473
+ 1300
474
+ 1200
475
+ 1100
476
+ y [Δx]
477
+ 1000
478
+ 400
479
+ z [Δx]
480
+ 900
481
+ 800
482
+ 700
483
+ 200
484
+ 600
485
+ Figure 5.
486
+ Snapshot of two coalescing liquid lenses in 3d.
487
+ The snapshot is taken at t/tc = 285.8 (12,000 ∆t), where the
488
+ connecting bridge has already developed for a capillary velocity σ/µ = 2.9 (inertial regime).
489
+ contradiction to the experimental data shown in Ref. [32], where reasonably the transition region between the viscous
490
+ and the inertial regime was observed. In the three-dimensional case the naive assumption of a decoupled width and
491
+ height growth is clearly not satisfied. Since the two directions are strongly coupled, it is reasonable to expect that
492
+ w0, which entails a larger amount of fluid than h0, is dominating the dynamics of the inertial regime for the whole
493
+ bridge.
494
+ In this case, we could not use hc as predicted by the analytical solution of the thin-sheet equation, and we settled
495
+ for finding the best fitting value of hc for each data set. To check that the solution is not arbitrary, we plot the values
496
+ of hc as a function of the ratio σ/µ of each data set, as reported in Fig. 7. The dependence is clearly of the type
497
+ hc ∼ µ/σ. However, since hc can be expressed dimensionally in terms of surface tension and viscosity as hc ∼ µ2/(σρ),
498
+ it is clear that this relation incorporates a (constant) prefactor with the dimensions of a kinematic viscosity.
499
+ IV.
500
+ CONCLUSION
501
+ Liquid lens coalescence is an intrinsically multiscale problem and studying its scaling laws involves investigating
502
+ surface tensions and viscosities that cover several orders of magnitude. Our simulation method - the color-gradient
503
+ lattice Boltzmann method - has proven to deliver hydrodynamically consistent results for the required wide parameter
504
+ ranges. This allows us to investigate the coalescence dynamics from the viscous to the inertial regime. For the pseudo
505
+ two-dimensional case we find good agreement with the similarity solutions of the thin-sheet equation. In the viscous
506
+ regime the bridge grows linearly with time and in the inertial regime, the bridge growth is proportional to t2/3.
507
+
508
+ 7
509
+ 10
510
+ 3
511
+ 10
512
+ 1
513
+ 101
514
+ 103
515
+ 105
516
+ 107
517
+ t/tc
518
+ 10
519
+ 3
520
+ 10
521
+ 1
522
+ 101
523
+ 103
524
+ 105
525
+ w0/wc
526
+ / =2.9
527
+ / =1.16
528
+ / =0.696
529
+ / =0.348
530
+ / =0.0348
531
+ / =0.0116
532
+ / =0.00116
533
+ w0/wc = t/tc
534
+ w0/wc = (t/tc)1/2
535
+ w0/wc = (
536
+ 1
537
+ t/tc +
538
+ 1
539
+ (t/tc)1/2 )
540
+ 1
541
+ 10
542
+ 3
543
+ 10
544
+ 1
545
+ 101
546
+ 103
547
+ 105
548
+ 107
549
+ t/tc
550
+ 10
551
+ 3
552
+ 10
553
+ 1
554
+ 101
555
+ 103
556
+ 105
557
+ h0/hc
558
+ / =2.9
559
+ / =1.16
560
+ / =0.696
561
+ / =0.348
562
+ / =0.0348
563
+ / =0.0116
564
+ / =0.00116
565
+ h0/hc = t/tc
566
+ h0/hc = (t/tc)1/2
567
+ h0/hc = (
568
+ 1
569
+ t/tc +
570
+ 1
571
+ (t/tc)1/2 )
572
+ 1
573
+ Figure 6. Power law relation for the bridge growth in 3d covering the viscous as well as inertial limit (solid line: interpolation
574
+ according to Eq. (16), dashed line: t, dotted-dashed line: t1/2). Left panel: bridge width w0(t); right panel: bridge height
575
+ h0(t).
576
+ 10
577
+ 3
578
+ 10
579
+ 2
580
+ 10
581
+ 1
582
+ 100
583
+ /
584
+ 10
585
+ 1
586
+ 100
587
+ 101
588
+ 102
589
+ hc
590
+ hfit
591
+ c ( ,
592
+ )
593
+ hc
594
+ ( / )
595
+ 1.00
596
+ Figure 7. Dependence of the best-fit hc on the capillary velocity in 3d. The dashed line represents the linear relation obtained
597
+ by fitting the exponent of capillary velocity (σ/µ) to the data points.
598
+ The three-dimensional coalescence simulations, on the contrary, deviate from the similarity solution of the thin-
599
+ sheet equation exhibiting a t1/2 dependence. This can be explained by a strong coupling between the two directions
600
+ and the involvement of a larger mass of fluid in the bridge width as compared to the bridge height. This makes the
601
+ dynamics of the bridge width the dominant process.
602
+ These results underline the necessity of a more generic theoretical framework for a more accurate understanding of
603
+ the general coalescence process. In future studies, the influence of asymmetric properties of the liquid lenses on the
604
+ coalescence dynamics could be investigated, for instance by extending the simulations to top-down asymmetric lenses
605
+ or lenses with different viscosities or even non-Newtonian properties.
606
+ ACKNOWLEDGMENTS
607
+ We acknowledge Jacco Snoeijer and Michiel Hack for fruitful discussions. This work has received financial sup-
608
+ port from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), within the priority program
609
+ SPP2171 “Dynamic Wetting of Flexible, Adaptive, and Switchable Substrates”, projects HA-4382/11-1 and SE-
610
+ 3019/1-1 as well as SFB 1452 “Catalysis at liquid interfaces”, Project-ID 431791331.
611
+ We also thank the J¨ulich
612
+
613
+ 8
614
+ Supercomputing Centre for providing the necessary computing time.
615
+ [1] Z. Hu and R. C. Srivastava, Evolution of raindrop size distribution by coalescence, breakup, and evaporation: Theory and
616
+ observations, J. Atmospheric Sci. 52, 1761 (1995).
617
+ [2] A. Garaizar, J. R. Espinosa, J. A. Joseph, and R. Collepardo-Guevara, Kinetic interplay between droplet maturation and
618
+ coalescence modulates shape of aged protein condensates, Sci. Rep. 12, 4390 (2022).
619
+ [3] J. I. Mart´ınez-Herrera and J. J. Derby, Viscous sintering of spherical particles via finite element analysis, J. Am. Ceram.
620
+ Soc. 78, 645 (1995).
621
+ [4] J. Eggers, J. R. Lister, and H. A. Stone, Coalescence of liquid drops, J. Fluid Mech. 401, 293 (1999).
622
+ [5] A. L. Yarin, G. G. Chase, W. Liu, S. V. Doiphode, and D. H. Reneker, Liquid drop growth on a fiber, AIChE J. 52, 217
623
+ (2006).
624
+ [6] S. Bansal, V. von Arnim, T. Stegmaier, and H. Planck, Effect of fibrous filter properties on the oil-in-water-emulsion
625
+ separation and filtration performance, J. Hazard. Mater. 190, 45 (2011).
626
+ [7] H. Wijshoff, Drop dynamics in the inkjet printing process, Current Opinion in Colloid & Interface Science 36, 20 (2018).
627
+ [8] M. A. Hack, M. Costalonga, T. Segers, S. Karpitschka, H. Wijshoff, and J. H. Snoeijer, Printing wet-on-wet: Attraction
628
+ and repulsion of drops on a viscous film, Applied Physics Letters 113, 183701 (2018).
629
+ [9] J. Sun, B. Bao, M. He, H. Zhou, and Y. Song, Recent advances in controlling the depositing morphologies of inkjet droplets,
630
+ ACS Applied Materials & Interfaces 7, 28086 (2015).
631
+ [10] T. M. Eggenhuisen, Y. Galagan, A. F. K. V. Biezemans, T. M. W. L. Slaats, W. P. Voorthuijzen, S. Kommeren, S. Shan-
632
+ mugam, J. P. Teunissen, A. Hadipour, W. J. H. Verhees, S. C. Veenstra, M. J. J. Coenen, J. Gilot, R. Andriessen, and
633
+ W. A. Groen, High efficiency, fully inkjet printed organic solar cells with freedom of design, J. Mater. Chem. A 3, 7255
634
+ (2015).
635
+ [11] H. Eggers, F. Schackmar, T. Abzieher, Q. Sun, U. Lemmer, Y. Vaynzof, B. S. Richards, G. Hernandez-Sosa, and U. W.
636
+ Paetzold, Inkjet-printed micrometer-thick perovskite solar cells with large columnar grains, Adv. Energy Mater. 10, 1903184
637
+ (2020).
638
+ [12] P. Maisch, K. C. Tam, D. Jang, M. Steinberger, F. Yang, C. J. Brabec, and H.-J. Egelhaaf, Inkjet printed organic
639
+ and perovskite photovoltaics—review and perspectives, in Organic Flexible Electronics, Woodhead Publishing Series in
640
+ Electronic and Optical Materials, edited by P. Cosseddu and M. Caironi (Woodhead Publishing, 2021) p. 305.
641
+ [13] O. Ronsin and J. Harting, Formation of crystalline bulk heterojunctions in organic solar cells: insights from phase-field
642
+ simulations, ACS Appl. Mat. Int. 14, 49785 (2022).
643
+ [14] R. Detsch, S. Blob, T. Zehnder, and A. R. Boccaccini, Evaluation of cell inkjet printing technique for biofabrication,
644
+ BioNanoMaterials 17, 185 (2016).
645
+ [15] S. Ruiz-Alonso, I. Villate-Beitia, I. Gallego, M. Lafuente-Merchan, G. Puras, L. Saenz-Del-Burgo, and J. L. Pedraz, Current
646
+ insights into 3D bioprinting: An advanced approach for eye tissue regeneration, Pharmaceutics 13, 308 (2021).
647
+ [16] P. Kumar, S. Ebbens, and X. Zhao, Inkjet printing of mammalian cells – theory and applications, Bioprinting 23, e00157
648
+ (2021).
649
+ [17] D. Lohse, Fundamental fluid dynamics challenges in inkjet printing, Annu. Rev. Fluid Mech. 54, 349 (2022).
650
+ [18] M. Kuang, J. Wang, B. Bao, F. Li, L. Wang, L. Jiang, and Y. Song, Inkjet printing patterned photonic crystal domes for
651
+ wide viewing-angle displays by controlling the sliding three phase contact line, Adv. Opt. Mater. 2, 34 (2014).
652
+ [19] L. Duchemin, J. Eggers, and C. Josserand, Inviscid coalescence of drops, J. Fluid Mech. 487, 167 (2003).
653
+ [20] D. G. A. L. Aarts, H. N. W. Lekkerkerker, H. Guo, G. H. Wegdam, and D. Bonn, Hydrodynamics of droplet coalescence,
654
+ Phys. Rev. Lett. 95, 164503 (2005).
655
+ [21] J. D. Paulsen, J. C. Burton, and S. R. Nagel, Viscous to inertial crossover in liquid drop coalescence, Phys. Rev. Lett.
656
+ 106, 114501 (2011).
657
+ [22] J. D. Paulsen, J. C. Burton, S. R. Nagel, S. Appathurai, M. T. Harris, and O. A. Basaran, The inexorable resistance of
658
+ inertia determines the initial regime of drop coalescence, Proc. Natl. Acad. Sci. 109, 6857 (2012).
659
+ [23] J. E. Sprittles and Y. D. Shikhmurzaev, A parametric study of the coalescence of liquid drops in a viscous gas, J. Fluid
660
+ Mech. 753, 279 (2014).
661
+ [24] P. Zimmermann, A. Mawbey, and T. Zeiner, Calculation of droplet coalescence in binary Liquid–Liquid systems: An
662
+ incompressible Cahn–Hilliard/Navier–Stokes approach using the non-random two-liquid model, J. Chem. Eng. Data 65,
663
+ 1083 (2020).
664
+ [25] A. Menchaca-Rocha, A. Mart´ınez-D´avalos, R. N´u˜nez, S. Popinet, and S. Zaleski, Coalescence of liquid drops by surface
665
+ tension, Phys. Rev. E 63, 046309 (2001).
666
+ [26] W. D. Ristenpart, P. M. McCalla, R. V. Roy, and H. A. Stone, Coalescence of spreading droplets on a wettable substrate,
667
+ Phys. Rev. Lett. 97, 064501 (2006).
668
+ [27] R. D. Narhe, D. A. Beysens, and Y. Pomeau, Dynamic drying in the early-stage coalescence of droplets sitting on a plate,
669
+ EPL Europhys. Lett. 81, 46002 (2008).
670
+ [28] M. W. Lee, D. K. Kang, S. S. Yoon, and A. L. Yarin, Coalescence of two drops on partially wettable substrates, Langmuir
671
+ 28, 3791 (2012).
672
+ [29] A. Eddi, K. G. Winkels, and J. H. Snoeijer, Influence of droplet geometry on the coalescence of low viscosity drops, Phys.
673
+
674
+ 9
675
+ Rev. Lett. 111, 144502 (2013).
676
+ [30] P. R. Kaneelil, A. A. Pahlavan, N. Xue, and H. A. Stone, Three-dimensional self-similarity of coalescing viscous drops in
677
+ the thin-film regime, Phys. Rev. Lett. 129, 144501 (2022).
678
+ [31] J. C. Burton and P. Taborek, Role of dimensionality and axisymmetry in fluid pinch-off and coalescence, Phys. Rev. Lett.
679
+ 98, 224502 (2007).
680
+ [32] M. A. Hack, W. Tewes, Q. Xie, C. Datt, K. Harth, J. Harting, and J. H. Snoeijer, Self-similar liquid lens coalescence, Phys.
681
+ Rev. Lett. 124, 194502 (2020).
682
+ [33] H. Chen, X. Pan, Q. Nie, Q. Ma, H. Fang, and Z. Yin, Probing the coalescence of non-Newtonian droplets on a substrate,
683
+ Phys. Fluids 34, 032109 (2022).
684
+ [34] C. Klopp and A. Eremin, On droplet coalescence in quasi-two-dimensional fluids, Langmuir 36, 10615 (2020).
685
+ [35] X. Xia, C. He, and P. Zhang, Universality in the viscous-to-inertial coalescence of liquid droplets, Proc. Natl. Acad. Sci.
686
+ 116, 23467 (2019).
687
+ [36] K. P. N. Datadien, G. Di Staso, H. M. A. Wijshoff, and F. Toschi, A quantitative comparison of physical accuracy
688
+ and numerical stability of lattice Boltzmann color gradient and pseudopotential multicomponent models for microfluidic
689
+ applications, Commun. Comput. Phys. 32, 450 (2022).
690
+ [37] P. Espa˜nol and P. B. Warren, Perspective: Dissipative particle dynamics, J. Chem. Phys. 146, 150901 (2017).
691
+ [38] H. Liu, Q. Kang, C. R. Leonardi, S. Schmieschek, A. Narv´aez, B. D. Jones, J. R. Williams, A. J. Valocchi, and J. Harting,
692
+ Multiphase lattice Boltzmann simulations for porous media applications, Comput. Geosci. 20, 777 (2016).
693
+ [39] P. J. A. Janssen and P. D. Anderson, Modeling film drainage and coalescence of drops in a viscous fluid, Macromol. Mater.
694
+ Eng. 296, 238 (2011).
695
+ [40] J. Kamp, J. Villwock, and M. Kraume, Drop coalescence in technical liquid/liquid applications: A review on experimental
696
+ techniques and modeling approaches, Rev. Chem. Eng. 33, 1 (2017).
697
+ [41] M. Latva-Kokko and D. H. Rothman, Diffusion properties of gradient-based lattice Boltzmann models of immiscible fluids,
698
+ Phys. Rev. E 71, 056702 (2005).
699
+ [42] T. Reis and T. N. Phillips, Lattice Boltzmann model for simulating immiscible two-phase flows, J. Phys. Math. Theor. 40,
700
+ 4033 (2007).
701
+ [43] S. Leclaire, M. Reggio, and J.-Y. Tr´epanier, Progress and investigation on lattice Boltzmann modeling of multiple immiscible
702
+ fluids or components with variable density and viscosity ratios, J. Comput. Phys. 246, 318 (2013).
703
+ [44] A. Montessori, M. Lauricella, M. La Rocca, S. Succi, E. Stolovicki, R. Ziblat, and D. Weitz, Regularized lattice Boltzmann
704
+ multicomponent models for low capillary and Reynolds microfluidics flows, Comput. Fluids 167, 33 (2018).
705
+ [45] X. Shan and G. Doolen, Multicomponent lattice-Boltzmann model with interparticle interaction, Journal of Statistical
706
+ Physics 81, 379 (1995).
707
+ [46] Q. Xie and J. Harting, From dot to ring: the role of friction on the deposition pattern of a drying colloidal suspension
708
+ droplet, Langmuir 34, 5303 (2018).
709
+ [47] D. Hessling, Q. Xie, and J. Harting, Diffusion dominated evaporation in multicomponent lattice Boltzmann simulations,
710
+ J. Chem. Phys. 146, 054111 (2017).
711
+ [48] R. Benzi, S. Succi, and M. Vergassola, The lattice Boltzmann equation: theory and applications, Physics Reports 222,
712
+ 145 (1992).
713
+ [49] P. L. Bhatnagar, E. P. Gross, and M. Krook, A model for collision processes in gases. I. Small amplitude processes in
714
+ charged and neutral one-component systems, Phys. Rev. 94, 511 (1954).
715
+ [50] T. Erneux and S. H. Davis, Nonlinear rupture of free films, Phys. Fluids Fluid Dyn. 5, 1117 (1993).
716
+ [51] C. Coreixas, B. Chopard, and J. Latt, Comprehensive comparison of collision models in the lattice Boltzmann framework:
717
+ Theoretical investigations, Phys. Rev. E 100, 033305 (2019).
718
+ [52] L. Wang and J. Sun, Lattice Boltzmann modeling for the coalescence between a free droplet in gases and a sessile droplet
719
+ on wettable substrate with contact angle hysteresis, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 232, 431 (2018).
720
+ [53] A. Montessori, M. Lauricella, N. Tirelli, and S. Succi, Mesoscale modelling of near-contact interactions for complex flowing
721
+ interfaces, J. Fluid Mech. 872, 327 (2019).
722
+
0tE5T4oBgHgl3EQfOg6n/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
19AyT4oBgHgl3EQfPvYS/content/tmp_files/2301.00028v1.pdf.txt ADDED
@@ -0,0 +1,1463 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics
2
+ 1
3
+ The effective diffusivity of ordered and freely
4
+ evolving bubbly suspensions
5
+ Aurore Loisy†‡, Aurore Naso and Peter D. M. Spelt
6
+ Laboratoire de M´ecanique des Fluides et d’Acoustique,
7
+ CNRS, Universit´e Claude Bernard Lyon 1, ´Ecole Centrale de Lyon, INSA de Lyon
8
+ 36 avenue Guy de Collongue, 69134 ´Ecully cedex, France
9
+ (Received xx; revised xx; accepted xx)
10
+ We investigate the dispersion of a passive scalar such as the concentration of a chemical
11
+ species, or temperature, in homogeneous bubbly suspensions, by determining an effective
12
+ diffusivity tensor. Defining the longitudinal and transverse components of this tensor with
13
+ respect to the direction of averaged bubble rise velocity in a zero mixture velocity frame
14
+ of reference, we focus on the convective contribution thereof, this being expected to be
15
+ dominant in commonly encountered bubbly flows. We first extend the theory of Koch
16
+ et al. (1989) (which is for dispersion in fixed beds of solid particles under Stokes flow) to
17
+ account for weak inertial effects in the case of ordered suspensions. In the limits of low
18
+ and of high P´eclet number, including inertial effect of the flow does not affect the scaling
19
+ of the effective diffusivity with respect to the P´eclet number. These results are confirmed
20
+ by direct numerical simulations performed in different flow regimes, for spherical or very
21
+ deformed bubbles and from vanishingly small to moderate values of the Reynolds number.
22
+ Scalar transport in arrays of freely rising bubbles is considered by us subsequently, using
23
+ numerical simulations. In this case, the dispersion is found to be convectively enhanced at
24
+ low P´eclet number, like in ordered arrays. At high P´eclet number, the Taylor dispersion
25
+ scaling obtained for ordered configurations is replaced by the one characterizing a purely
26
+ mechanical dispersion, like in random media, even if the level of disorder is very low.
27
+ 1. Introduction
28
+ Bubble columns are commonly used in a broad range of technologies, notably in the
29
+ chemical and biochemical industry. Simple bubble columns do not require active stirring
30
+ and can therefore operate without interior moving parts. The large surface area between
31
+ gas and liquid is useful for mass and species transfer, possibly involving chemical reactions
32
+ (e.g., Deckwer 1992) such as in air-lift bioreactors, an example of which is in the treatment
33
+ of wastewater. Bubble columns are also used for this reason in direct contact heat transfer
34
+ (e.g., Hewitt et al. 1994). Besides offering a large surface area, rising bubbles agitate the
35
+ liquid flow, which results in enhanced mixing that usually is desired, but this also poses
36
+ a modelling difficulty. Similar mixing arises also in the diffusion through porous media in
37
+ the presence of flow, which has been well studied previously, but mostly for fixed beds of
38
+ particulates, often under creeping flow (e.g., Batchelor 1974; Koch & Brady 1985). Mixing
39
+ in bubble columns is complicated further by the fact that liquid velocity fluctuations are
40
+ coupled with the dynamics of (deformable) bubbles, usually beyond creeping flow (e.g.,
41
+ Alm´eras et al. 2015).
42
+ In the present study, we consider transport of a scalar (such as the concentration of
43
+ † Present address: School of Mathematics, University of Bristol, University Walk, Bristol BS8
44
+ 1TW, United Kingdom.
45
+ ‡ Email address for correspondence: [email protected]
46
+ arXiv:2301.00028v1 [physics.flu-dyn] 30 Dec 2022
47
+
48
+ 2
49
+ A. Loisy, A. Naso, P. D. M. Spelt
50
+ a chemical species, or the temperature) through incompressible bubbly flows. Gradients
51
+ of temperature and concentration may, in general, induce fluid motion and influence the
52
+ velocity field through changes in density and viscosity, or through the interface rheology.
53
+ If these effects are small, as assumed herein, temperature and solute concentration can
54
+ be considered as passive scalars. Although the arbitrary choice was made in this study
55
+ to use the terminology of the mass transfer problem, the results carry over to thermal
56
+ applications (upon assuming that effects of viscous heating can be ignored).
57
+ Our present main interest is the formulation and closure of conservation equations and
58
+ constitutive relations governing the dispersion of such a scalar in a bubbly suspension over
59
+ scales (termed hereinafter the “macroscale”) that are much larger than the bubble size
60
+ (termed hereinafter the “microscale”). Under the assumption of macroscale homogeneity
61
+ and stationarity, scalar dispersion in multiphase systems can be described by a macroscale
62
+ version of Fick’s (or Fourier’s) law which relates the macroscale scalar flux to the
63
+ macroscale scalar gradient through an effective diffusivity tensor (or effective conductivity
64
+ tensor in thermal applications) (Batchelor 1974; Koch & Brady 1985, 1987). This effective
65
+ diffusivity is defined from an Eulerian perspective. Experimentally, scalar dispersion is
66
+ usually investigated from a Lagrangian point of view. In the Lagrangian framework,
67
+ the effective diffusivity is defined as the long-time limit of the time rate of change of a
68
+ fluid tracer’s mean-square displacement, that is, as a measure of spread about the mean
69
+ position. Koch & Brady (1987) demonstrated that the Lagrangian effective diffusivity
70
+ is equivalent to the symmetric part of the Eulerian effective diffusivity, and that the
71
+ antisymmetric part of the Eulerian effective diffusivity is associated with anisotropic
72
+ microstructures.
73
+ Scalar dispersion in a suspension of particulates (bubbles, drops, or rigid particles)
74
+ results from two processes of very different nature: the diffusion by Brownian motion
75
+ of the molecules, and the convection by the fluid velocity disturbances induced by the
76
+ particulate motion. The relative importance of these two processes is measured by the
77
+ P´eclet number Pe = Udb/D, where U is the characteristic velocity of the particulates
78
+ relative to that of the system (defined in section 2), db is the characteristic size of the
79
+ particulates, and D is the diffusivity of the bulk. In the limit Pe = 0, the effective
80
+ diffusivity is purely diffusive and depends only on the particulate-to-bulk diffusivity ratio,
81
+ possible discontinuity of the scalar at the interface, particulate volume fraction, and
82
+ suspension microstructure (i.e., the positions, shapes, and orientations of the inclusions).
83
+ This particular situation is essentially relevant to heat and electricity conduction in
84
+ composite materials. When Pe ≫ 1, the dominant contribution to the effective diffusivity
85
+ is due to convective mixing. This last regime is that generally encountered in bubbly flows.
86
+ Recently Alm´eras et al. (2015) investigated experimentally the dispersion of a low-
87
+ diffusive dye within a homogeneous swarm of high-Reynolds-number rising bubbles at
88
+ Pe = O(106); herein we define the Reynolds number as Re = Udb/νc where νc is the
89
+ kinematic viscosity of the liquid. They showed that scalar mixing primarily results from
90
+ pseudo-turbulence, i.e., from the liquid agitation produced by bubble wake interactions,
91
+ and can be modeled in a manner analogous to dispersion in shear-induced turbulence
92
+ (Taylor 1921). Apart from the work of Alm´eras et al. (2015), the only other experimental
93
+ investigation of mixing in homogeneous bubbly flows reported in the literature is the
94
+ preliminary study of Mareuge & Lance (1995) which consists in a single data point.
95
+ To the best of our knowledge, neither theoretical nor numerical investigations of scalar
96
+ mixing in homogeneous bubbly flows have been reported thus far. Theoretical work is,
97
+ however, available for other types of multiphase systems, and we shall review these now.
98
+ The determination of such an effective diffusivity, at the macroscale, necessitates
99
+ consideration of the conditions at the microscale. One class of analytical work is devoted
100
+
101
+ The effective diffusivity of ordered and freely evolving bubbly suspensions
102
+ 3
103
+ to the study of dilute systems with fixed random microstructure, for instance, as a model
104
+ of a porous medium. In the absence of convection (Pe = 0), the analytical expression of
105
+ the effective diffusivity is available in the dilute limit from analysis of the corresponding
106
+ problem in conduction of heat or electricity through a dispersed medium (e.g., Maxwell
107
+ (1873), Jeffrey (1973)). The problem of scalar dispersion in the presence of a bulk
108
+ convective motion (Pe > 0) has been analyzed by Koch & Brady (1985) for Stokes
109
+ flow through a random bed of fixed solid spheres. Using the method of conditional
110
+ averaging pursued earlier by Hinch (1977), they carried out an asymptotic analysis
111
+ in low volume fraction of the effective diffusivity for all values of the P´eclet number.
112
+ Three mechanisms causing dispersion at high P´eclet number were identified: mechanical
113
+ dispersion resulting from the stochastic velocity field in the bulk, which is independent
114
+ of Brownian diffusion and grows as Udb, holdup dispersion in stagnant and recirculating
115
+ regions which is proportional to U 2d2
116
+ b/D, and boundary-layer dispersion which grows as
117
+ Udb ln(Udb/D) near the solid particle surfaces.
118
+ Another class of analytical studies assumes a periodic microstructure. For the pure dif-
119
+ fusion problem (Pe = 0), analytical solutions have been derived for a composite material
120
+ consisting of regularly arranged spheres embedded in a homogeneous matrix (Rayleigh
121
+ 1892; Sangani & Acrivos 1983), and the effect of anisotropy has been investigated by
122
+ considering periodic arrangements of spheroidal inclusions (Kushch 1997; Harfield 1999).
123
+ In the presence of convection (Pe > 0), the general theory of dispersion developed
124
+ by Brenner (1980) and Brenner & Adler (1982) provides a consistent framework for
125
+ determining the effective diffusivity in spatially periodic media. Koch et al. (1989) carried
126
+ out explicit calculations for a periodic porous medium consisting of fixed solid particles
127
+ arranged in a cubic lattice and embedded in a continuous phase under Stokes flow
128
+ conditions. They showed that in ordered systems, the mechanical dispersion encountered
129
+ in random media is absent, and that at high P´eclet number, either Taylor dispersion,
130
+ growing as U 2d2
131
+ b/D, or enhanced diffusion, which is proportional to D, is obtained
132
+ depending on the direction of the mean flow relative to the lattice structure.
133
+ In bubbly flows, the spatial arrangement of the inclusions evolves in time, the mi-
134
+ crostructure of the suspension is unknown a priori, and Stokes flow is usually not
135
+ applicable. For these reasons, prior analyses are, a priori, not applicable to bubbly
136
+ suspensions. Nevertheless, we showed in prior work (Loisy et al. 2017) that the dy-
137
+ namics of freely evolving bubbly suspensions at moderate Reynolds number shares some
138
+ common features with that of ordered arrays of bubbles. It is therefore of fundamental
139
+ interest to investigate, contrast and compare the mixing properties of ordered and freely
140
+ evolving bubbly suspensions in light of prior asymptotic analyses for ordered and random
141
+ arrangements of rigid particles.
142
+ In this paper we investigate scalar dispersion, by determining the effective diffusivity in
143
+ ordered and freely evolving bubbly suspensions, specifically, the contribution of bubble-
144
+ induced velocity disturbances thereof. The prior work outlined above has established
145
+ that in the systems studied therein, the effective diffusivity can be much larger than that
146
+ in each of the fluids involved, even if the diffusivity in the two media is the same and
147
+ the scalar is continuous at the surface of particulates. In view of the already significant
148
+ number of parameters involved, we shall therefore adopt this restriction here. Such a
149
+ simplified approach will not provide an accurate description of real bubbly flows, but
150
+ should shed some light on the fundamental mechanisms of mixing in these systems.
151
+ The paper is organised as follows. The theoretical framework and problem statement
152
+ are provided in section 2. Our numerical approach to compute the effective diffusivity
153
+ is presented, and followed by a description of the regimes and the range of parameter
154
+ values that are investigated herein, in section 3. The first objective (in section 4) is to
155
+
156
+ 4
157
+ A. Loisy, A. Naso, P. D. M. Spelt
158
+ elucidate the role played by liquid inertia in ordered suspensions, using direct numerical
159
+ simulation and analysis. The second objective (in section 5) is to investigate the effective
160
+ diffusivity of freely evolving suspensions for a wide range of P´eclet numbers, to compare
161
+ it with that obtained for ordered suspensions, and to evaluate the effect of introducing
162
+ additional degrees of freedom in the system. Finally, the main results and perspectives
163
+ of this work are provided in section 6.
164
+ 2. Problem statement
165
+ The local evolution of the passive scalar c in each fluid is governed by
166
+ ∂c
167
+ ∂t + ∇ · q = 0
168
+ (2.1a)
169
+ where q is the flux of scalar given by
170
+ q = uc − D∇c
171
+ (2.1b)
172
+ with u the fluid velocity and D the constant scalar diffusivity. We assume that the scalar
173
+ and its gradient are continuous across the interface, and phase change is not considered
174
+ in this study. Under these assumptions, no distinction between the phases is needed for
175
+ the scalar transport, which is described by (2.1) in the entire system. We return to these
176
+ restrictions in section 2.1 and in the Conclusions section; the objective here is to study
177
+ this key basic reference problem.
178
+ In the context of heat transfer, (2.1) derives from the energy balance upon neglecting
179
+ viscous heating, in this case c would represent the temperature, continuous at the
180
+ interface, and D the thermal diffusivity as defined by Fourier’s law, assumed to be equal
181
+ in both gas and liquid. In the context of mass transfer, (2.1) describes the transport of
182
+ a chemical species present at very low concentration c so that Fick’s law describes the
183
+ conservation of mass, neglecting any difference in molecular diffusivity D and solubility
184
+ of the species in the two phases. While the assumption of equal molecular diffusivities is
185
+ never satisfied in real systems, the assumption of a unit dimensionless Henry’s constant
186
+ is reasonably applicable to, e.g., carbon dioxide dispersion in the air-water system.
187
+ The fluid motion in the gas and liquid is governed by the incompressible Navier-Stokes
188
+ equations, which are coupled at the interface by the appropriate jump conditions, namely
189
+ the continuity of velocity and of tangential traction across the interface, and a jump in
190
+ normal traction due to surface tension.
191
+ 2.1. Macroscale description
192
+ The problem we are concerned with here is the modeling of scalar transport at a
193
+ macroscale, that is, at the scale whereat the suspension may be seen as a homogeneous
194
+ continuum, without distinction between the two phases. In order to obtain such a
195
+ macroscopic description, we consider an ensemble of realizations of the suspension,
196
+ these realizations having the same macroscopic conditions (e.g., fluid properties, gas vol-
197
+ ume fraction) but different microscopic configurations (e.g., bubble individual positions,
198
+ shapes and velocities), and average over those realizations. In concrete terms, ensemble
199
+ averaging would be realized by averaging over a large number of experiments run under
200
+ identical macroscopic conditions. The ensemble-averaged transport equation is obtained
201
+ from ensemble averaging the local transport equation (2.1). It reads
202
+ ∂⟨c⟩
203
+ ∂t
204
+ + ∇ · ⟨q⟩ = 0,
205
+ (2.2)
206
+
207
+ The effective diffusivity of ordered and freely evolving bubbly suspensions
208
+ 5
209
+ where ⟨ ⟩ denotes the ensemble average operator, and where the ensemble-averaged flux
210
+ is given by
211
+ ⟨q⟩ = ⟨u⟩⟨c⟩ − D∇⟨c⟩ + ⟨u′c′⟩
212
+ (2.3)
213
+ where the velocity fluctuations are defined by u′ = u − ⟨u⟩ and the scalar fluctuations
214
+ by c′ = c − ⟨c⟩. Under the restrictions set out above, the average flux consists of three
215
+ contributions: (i) ⟨u⟩⟨c⟩ is the advection of the average scalar field at the average system
216
+ velocity; (ii) −D∇⟨c⟩ is the diffusion of the average scalar field directly by the average
217
+ scalar gradient; (iii) ⟨u′c′⟩ corresponds to the advection of the scalar fluctuations by the
218
+ velocity fluctuations induced by bubble motion.
219
+ When the suspension is statistically homogeneous and in a statistically stationary
220
+ state, the linearity in c of the local flux (2.1b) results, in the presence of an imposed
221
+ constant average scalar gradient, in a macroscale constitutive relation of the form (Koch
222
+ & Brady 1985, 1987):
223
+ ⟨q⟩ = ⟨u⟩⟨c⟩ − Deff · ∇⟨c⟩
224
+ (2.4)
225
+ where Deff is a constant effective diffusivity tensor. Comparison of the effective diffusivity
226
+ definition (2.4) with the average flux expression (2.3) yields the expression of the effective
227
+ diffusivity. In order to reflect the contributions to the scalar flux identified above, it is
228
+ customary to write the effective diffusivity as
229
+ Deff = DI + Dconv
230
+ (2.5)
231
+ where
232
+ Dconv · ∇⟨c⟩ = −⟨u′c′⟩
233
+ (2.6)
234
+ is the convective contribution arising from bubble-induced velocity fluctuations. For
235
+ this model to be complete, one must find a closure relation for Dconv only in terms of
236
+ macroscopic quantities appearing in the problem statement. We recall here that further
237
+ contributions to the average flux (2.3) and hence to the effective diffusivity (2.5) arise
238
+ if the diffusivity in the fluids are not the same, or if the concentration is discontinuous
239
+ at fluid/fluid interfaces (e.g., Batchelor & O’Brien (1977); Koch & Brady (1985)). We
240
+ return to the significance of this in section 6 below.
241
+ 2.2. Effective transport properties
242
+ To determine the effective diffusivity for (unbounded) homogeneous bubbly suspen-
243
+ sions, we represent such flows by the periodic repetition of a cubic unit cell containing a
244
+ finite number Nb of freely moving bubbles of equal volume, building on our prior work on
245
+ the dynamics of bubbles for this model system (Loisy et al. 2017). In the limit Nb = 1,
246
+ one obtains a simple cubic array of bubbles, which is of interest as a model of perfectly
247
+ ordered suspensions. The opposite limit of large Nb is of interest as a model of real
248
+ suspensions, although convergence with the number of bubbles would have to be verified.
249
+ We shall refer hereinafter to this setup with one bubble in the cell as an ordered array,
250
+ and to that with more than one bubble in the unit cell as a free array.
251
+ The bubbles rise under the sole effect of buoyancy. Herein, an upward-pointing primary
252
+ axis e3 of the periodic arrangement is taken to be aligned with gravity (with the exception
253
+ of the more general analysis presented in section 4.1). From symmetry arguments, and
254
+ adopting a Cartesian coordinate system,
255
+ Dconv =
256
+
257
+
258
+ Dconv
259
+
260
+ Dconv
261
+ 12
262
+ Dconv
263
+ 13
264
+ Dconv
265
+ 12
266
+ Dconv
267
+
268
+ Dconv
269
+ 13
270
+ Dconv
271
+ 31
272
+ Dconv
273
+ 31
274
+ Dconv
275
+
276
+
277
+
278
+ (2.7)
279
+
280
+ 6
281
+ A. Loisy, A. Naso, P. D. M. Spelt
282
+ where we have introduced the longitudinal and transverse components of the convective
283
+ contribution to the effective diffusivity, denoted Dconv
284
+
285
+ and Dconv
286
+
287
+ , respectively, and defined
288
+ by
289
+ Dconv
290
+
291
+ = Dconv
292
+ 33
293
+ and
294
+ Dconv
295
+
296
+ = Dconv
297
+ 11
298
+ = Dconv
299
+ 22 .
300
+ (2.8)
301
+ Our first goal is to characterize the effects of liquid inertia (through Re) on the
302
+ dependence of Dconv on Pe for ordered suspensions (Nb = 1), thereby extending prior
303
+ work on dilute ordered arrays of rigid spheres in Stokes flow conditions (Koch et al.
304
+ 1989). Our second goal is to evaluate the effect of introducing additional degrees of
305
+ freedom in the system (through increasing Nb), and to investigate the dependence of
306
+ Dconv on Pe in freely evolving suspensions (sufficiently large Nb). As we found the off-
307
+ diagonal components to be zero in all configurations that we investigated, only results
308
+ for the longitudinal and the transverse components of Dconv will be presented.
309
+ In dimensionless groups, we shall use as characteristic length scale the bubble size db,
310
+ which is defined, since bubbles are deformable, as the (equivalent) diameter of a sphere of
311
+ the same volume. The characteristic velocity U is taken here as the bubble rise velocity
312
+ in the frame of the suspension (the so-called drift velocity ⟨U⟩ = ⟨u⟩d − ⟨u⟩, where the
313
+ first term is the volume average of velocity on the disperse phase only and the second
314
+ one is the same average in the entire system). As already mentioned, a key dimensionless
315
+ group appearing in the scalar transport problem is the P´eclet number Pe = Udb/D which
316
+ compares advective and diffusive transport. Our main objective is to elucidate the effect
317
+ of the value of Pe on the effective diffusivity using analytical and numerical methods.
318
+ The effective diffusivity necessarily also depends on the gas volume fraction φ =
319
+ (Nbπd3
320
+ b)/(6h3) (h is the linear size of the unit cell); the analytical and computational
321
+ methods used here pose some restrictions on the range of φ values that can be studied
322
+ herein, we postpone discussion of that to the pertinent sections below. We also consider
323
+ the effects of the number of bubbles in the periodic cell, Nb, which affects the order in
324
+ the suspension: Nb = 1 corresponds to a cubic array, whereas more bubbles results in
325
+ a different microstructure (the latter term encompasses all the information about the
326
+ statistical distribution of the bubble positions, shapes, orientations, etc.). Since scalar
327
+ transport is coupled to momentum transport, the bubble Reynolds number Re = Udb/νc
328
+ may also play a significant role that will be investigated here as well. The ranges of φ,
329
+ Nb and Re studied here are summarized in table 1.
330
+ As the bubbly flows we consider are buoyancy-driven, a difficulty arises from the fact
331
+ that U is a priori unknown, and depends in a complex manner on Nb, φ, the density
332
+ and viscosity ratios between both phases, the Archimedes (or Galileo) number Ar =
333
+
334
+ ρc|ρd − ρc|gd3
335
+ b/µc, and the Bond (or E¨otv¨os) number Bo = |ρd − ρc|gd2
336
+ b/γ, where the
337
+ subscripts d and c refer to the disperse (gas) and continuous (liquid) phases, respectively,
338
+ g is the magnitude of the gravitational acceleration, ρ denotes density, µ is the dynamic
339
+ viscosity, and γ is the surface tension. In most bubbly flows of practical relevance, the
340
+ gas-to-liquid density and viscosity ratios are vanishingly small. Their precise values are
341
+ not important from a physical point of view as long as they are small enough; in the
342
+ simulations, the gas-to-liquid density and viscosity ratios were set to ρd/ρc = 10−3 and
343
+ µd/µc = 10−2, respectively. The dependence of U on (Ar, Bo, φ, Nb) has been addressed
344
+ in Loisy et al. (2017) and is not further discussed here. In the present study, we shall
345
+ therefore assume that U is known.
346
+
347
+ The effective diffusivity of ordered and freely evolving bubbly suspensions
348
+ 7
349
+ 3. Methodology
350
+ For convenience of numerical implementation, we reorganise the problem formulation by
351
+ introducing the decomposition
352
+ c = ¯c + ˜c
353
+ (3.1)
354
+ where ¯c is the imposed constant linear scalar field
355
+ ¯c = ∇⟨c⟩ · x.
356
+ (3.2)
357
+ The advantage of this decomposition is that the disturbance field ˜c is then spatially
358
+ periodic. The governing equation for this disturbance field is
359
+ ∂˜c
360
+ ∂t + ∇ · (u˜c) − ∇ · (D∇˜c) = −u · ∇⟨c⟩
361
+ (3.3)
362
+ which is the equation we integrate numerically. The convective contribution to the
363
+ effective diffusivity is then calculated from
364
+ Dconv · ∇⟨c⟩ = −⟨u′˜c⟩
365
+ (3.4)
366
+ which can be shown to be equivalent to (2.6). In this expression, ⟨ ⟩ is defined as
367
+ an ensemble average operator, as above. For statistically homogeneous and stationary
368
+ systems, as considered here, it is inferred from ergodicity that ensemble averaging is
369
+ identical to volume and time averaging. As a consequence, Dconv is computed from (3.4)
370
+ with the ensemble average being replaced in practice by a volume average combined with
371
+ a time average over an appropriate time period.
372
+ 3.1. Numerical method
373
+ Thus, the components of Dconv are obtained from direct numerical simulations (DNS)
374
+ by imposing a constant linear scalar field ¯c and determining the resulting periodic
375
+ disturbance scalar field. Two distinct simulations are required to fully determine the
376
+ five independent components of Dconv: in one simulation, ∇¯c = e3, which yields Dconv
377
+ 13
378
+ and Dconv
379
+
380
+ , in the other simulation, ∇¯c = e1, which yields Dconv
381
+
382
+ , Dconv
383
+ 12 , and Dconv
384
+ 31 . The
385
+ off-diagonal components of Dconv were found to be zero (up to computer accuracy for
386
+ ordered arrays, and statistical uncertainty for free arrays) for all the sets of parameters
387
+ we considered, and therefore will not be shown.
388
+ The numerical methods employed to solve the two-phase flow have been described in
389
+ detail in Loisy et al. (2017). In short, we employ a standard projection method (Chorin
390
+ 1968) to integrate the incompressible Navier-Stokes equations, a level-set method (e.g.,
391
+ (Sussman et al. 1994)) to capture the moving gas-liquid interface, and surface tension is
392
+ accounted for using the continuum surface force model (Brackbill et al. 1992).
393
+ Our algorithm proceeds iteratively through the following steps:
394
+ (i) The position of the interface is first advanced in time according to the modi-
395
+ fied level-set method of Sabelnikov et al. (2014) using a third-order total-variation-
396
+ diminishing (TVD) Runge-Kutta scheme. The level-set function is then reinitialized using
397
+ the procedure of Russo & Smereka (2000), and a correction is finally applied to enforce
398
+ volume conservation.
399
+ (ii) The scalar transport equation (3.3) is advanced by using a mixed Crank-
400
+ Nicolson/third-order Adams-Bashforth time-stepping scheme.
401
+ (iii) The time integration of the incompressible Navier-Stokes equations is then carried
402
+ out using a mixed Crank-Nicolson/third-order Adams-Bashforth scheme and consists
403
+ in the combination of a predictor step, where a temporary velocity field is estimated by
404
+
405
+ 8
406
+ A. Loisy, A. Naso, P. D. M. Spelt
407
+ case Bo
408
+ Ar
409
+ Nb
410
+ φ
411
+ Re
412
+ bubble shape
413
+ S0
414
+ 0.38 0.15 1
415
+ 0.002 0.00164 spherical
416
+ S1
417
+ 0.38 5.03 1
418
+ 0.002 1.72
419
+ spherical
420
+ C
421
+ 243
422
+ 15.2 1
423
+ 0.002 9.44
424
+ skirted
425
+ E1
426
+ 2.0
427
+ 29.9 1
428
+ 0.002 39.9
429
+ ellipsoidal
430
+ E1
431
+ 2.0
432
+ 29.9 [1, 12] 0.024 ≈ 30
433
+ ellipsoidal
434
+ Table 1. Simulated flow configurations: Bo and Ar define the flow regime, Nb is the number
435
+ of free bubbles in the unit cell, φ is the gas volume fraction. The resulting bubble Reynolds
436
+ number (Re) and shape are also provided.
437
+ ignoring the effect of pressure, and of a corrector step, where the velocity field is corrected
438
+ by the pressure gradient term computed from the divergence-free condition.
439
+ Spatial discretization relies on a mixed finite difference/finite volume approach on a
440
+ fixed, staggered, Cartesian grid. Second-order centered schemes are generally employed,
441
+ except for advective terms which are discretized using fifth-order weighted-essentially-
442
+ nonoscillatory (WENO) schemes.
443
+ Results of numerical tests are presented in the Appendix.
444
+ 3.2. Parametric study
445
+ Four different flow regimes, as defined by the set (Ar, Bo), are considered here. These
446
+ are described in table 1, and have been studied in Loisy et al. (2017) (the same case
447
+ code names are used). In case S0, the bubbles are spherical and the Reynolds number is
448
+ vanishingly small, which approaches Stokes flow conditions. In case S1, the bubbles are
449
+ (nearly) spherical and Re ≳ 1. In case C, the bubbles are skirted, and Re ≈ 8. In case
450
+ E1, the bubbles are ellipsoidal, and Re ≈ 30 − 40.
451
+ Ordered arrays of bubbles in these four flow regimes have been considered for the
452
+ smallest volume fraction numerically accessible (value provided in table 1). After a
453
+ transient regime, all ordered suspensions considered here are in a strictly steady state (for
454
+ the flow and the scalar) during which the results presented in section 4 were obtained.
455
+ Simulations of scalar transport in free arrays have been performed for 2 ⩽ Nb ⩽ 12 in
456
+ case E1 at φ = 2.4 %. In these conditions, coalescence is indeed absent (it does occur at
457
+ larger φ), whereas simulations at lower φ for free arrays are excessively expensive for the
458
+ method and facilities used. In this regime, the system is in an unsteady but statistically
459
+ stationary state (for the flow and the scalar), during which the statistics presented in
460
+ section 5 have been measured. For each of these configurations (Ar, Bo, φ, Nb), the
461
+ drift velocity (and thereby the Reynolds number) is known from Loisy et al. (2017). This
462
+ allowed us to impose the P´eclet number a priori.
463
+ The numerical simulation results for ordered arrays are compared with the results of
464
+ analysis at small (but possibly finite) Reynolds number and small volume fraction.
465
+ 4. Ordered suspensions
466
+ We examine in this section the dispersion of a passive scalar in ordered suspensions of
467
+ deformable bubbles. Our main objective here is to elucidate the effects of inertia on
468
+ dispersion, using theoretical analysis and numerical simulation.
469
+
470
+ The effective diffusivity of ordered and freely evolving bubbly suspensions
471
+ 9
472
+ 4.1. Asymptotic analysis
473
+ We first determine analytically the convective contribution to the effective diffusivity
474
+ of ordered suspensions of spherical fluid particulates (bubbles or drops). The Reynolds
475
+ number of the particulates is assumed to be small so that the Navier-Stokes equations
476
+ can be approximated by the Oseen equations.
477
+ 4.1.1. General solution
478
+ An ordered array of particulates translating at a drift velocity U is equivalent to an
479
+ ordered array of fixed particulates immersed in a viscous fluid moving with an average
480
+ system velocity ⟨u⟩ = −U. The centers of the particulates are located on the nodes of a
481
+ simple cubic lattice:
482
+ rn = h (n1e1 + n2e2 + n3e3)
483
+ n1, n2, n3 = 0, ±1, ±2, . . .
484
+ (4.1)
485
+ where h is the lattice spacing and ei are the unit vectors aligned with the primitive axes
486
+ of the cubic lattice. In the dilute limit (db/h ≪ 1), the action of these particulates on the
487
+ fluid can be represented by point forces −f. The convective contribution to the effective
488
+ diffusivity arising from the far field has been derived by Koch et al. (1989) for an ordered
489
+ array of rigid spheres in the Stokes flow regime. In what follows we extend their result
490
+ to the case of spherical fluid particulates at small but finite Re.
491
+ When Pe ≪ 1, the convective contribution to the effective diffusivity arising from the
492
+ far field can be approximated by (Koch et al. 1989):
493
+ Dconv
494
+ D
495
+ =
496
+
497
+ k̸=0
498
+ k2ˆu′(k)ˆu′(−k)
499
+ (2π)2k4D2 + (U · k)2 ,
500
+ (4.2)
501
+ where the summation is over all vectors k in the reciprocal lattice
502
+ k = 1
503
+ h (n1e1 + n2e2 + n3e3)
504
+ (4.3)
505
+ and where ˆu′ is the three-dimensional Fourier transform of the velocity disturbance
506
+ u′ = u − ⟨u⟩. In Oseen flow past an ordered array of point particulates, ˆu′ is given by
507
+ ˆu′(k) =
508
+ f · (kk/k2 − I)
509
+ (2πk)2h3µc + i2πh3ρcU · k
510
+ k ̸= 0,
511
+ (4.4)
512
+ where f is the hydrodynamic force exerted by the ambient fluid on a particulate. In the
513
+ dilute limit, f can be approximated by the Oseen drag exerted on a single spherical fluid
514
+ particulate:
515
+ f = Ff 0,Stokes
516
+ (4.5)
517
+ where f 0,Stokes is the Stokes drag on that particulate (Hadamard 1911; Rybczynski 1911):
518
+ f 0,Stokes = −2πµ∗µcdbU,
519
+ with µ∗ = µc + 3µd/2
520
+ µc + µd
521
+ ,
522
+ (4.6)
523
+ and where F accounts for the finite-Re correction to the Stokes drag (Brenner & Cox
524
+ 1963):
525
+ F = 1 + 1
526
+ 8µ∗Re.
527
+ (4.7)
528
+ The convective contribution to the effective diffusivity of a dilute ordered array of fluid
529
+ particulates in Oseen-flow conditions is therefore:
530
+ Dconv
531
+ D
532
+ =
533
+ µ∗2
534
+ (2π)2
535
+ d2
536
+ b
537
+ h2 F 2C,
538
+ (4.8a)
539
+
540
+ 10
541
+ A. Loisy, A. Naso, P. D. M. Spelt
542
+ regime
543
+ ∥Dconv∥/(DF 2d2
544
+ b/h2)
545
+ Peh = Uh/D Reh = ρcUh/µc
546
+ if ∃rn | U ⊥ rn if ∄rn | U ⊥ rn
547
+ Peh ≪ 1
548
+ Reh ≪ 1
549
+ Pe2
550
+ h
551
+ Pe2
552
+ h
553
+ Reh ≫ 1
554
+ Pe2
555
+ h
556
+ Pe2
557
+ h/Re2
558
+ h
559
+ Peh ≫ 1
560
+ Reh ≪ 1
561
+ Pe2
562
+ h
563
+ 1
564
+ Reh ≫ 1
565
+ Pe2
566
+ h
567
+ 1/Re2
568
+ h
569
+ Table 2. Asymptotic order of ∥Dconv∥ depending on Peh, Reh, and on the orientation of the
570
+ mean flow relative to the real lattice, based on the solution (4.8), derived for an ordered array
571
+ of point particulates in Oseen flow conditions (F is the Oseen drag divided by the Stokes drag).
572
+ where C is the dimensionless tensor:
573
+ C =
574
+
575
+ k∗̸=0
576
+
577
+ U ∗ ·
578
+ �k∗k∗
579
+ k∗2 − I
580
+ ��2
581
+ k∗2
582
+
583
+ (2π)2k∗4
584
+ Pe2
585
+ h
586
+ + (U ∗ · k∗)2
587
+ ��
588
+ 1 + Re2
589
+ h(U ∗ · k∗)2
590
+ (2π)2k∗4
591
+
592
+ (4.8b)
593
+ with U ∗ = U/U, k∗ = kh, Reh = ρcUh/µc, and Peh = Uh/D. The solution given by
594
+ Koch et al. (1989) (equation (4.5) therein) for rigid spheres and Stokes flow is recovered
595
+ in the limit Re → 0 and µd/µc → ∞.
596
+ The tensor C only depends on Peh, Reh, and on the orientation of U relative to the
597
+ reciprocal lattice (which structure is, for cubic arrays, identical to that of the direct
598
+ lattice). As highlighted by Koch et al. (1989), the asymptotic behavior of C, and hence
599
+ of Dconv, depends on whether there exists any k such that U · k = 0, that is, on whether
600
+ there exists any separation vector rn in the real space which is perpendicular to U.
601
+ The asymptotic behavior of ∥Dconv∥, where ∥ ∥ denotes the tensorial Frobenius norm, is
602
+ provided in table 2. The results show that the dependence of ∥Dconv∥ on Pe in the limits
603
+ Peh ≪ 1 and Peh ≫ 1 is, qualitatively, not affected by (weak) inertial effects.
604
+ 4.1.2. Application to ordered arrays rising vertically
605
+ Let us now come back to our original problem of an ordered array of particulates rising
606
+ under the effect of buoyancy. The gravitational acceleration is oriented along a primary
607
+ axis of the array, g = −ge3, and although this is not the only possible solution (see,
608
+ e.g., Loisy et al. (2017)), we restrict the analysis to the simplest case of bubbles rising
609
+ vertically. In this case the hydrodynamic force exerted by the fluid on a particulate is
610
+ parallel to the drift velocity, and, since this force balances the buoyancy force at steady
611
+ state, F is related to U through
612
+ F = U0,Stokes
613
+ U
614
+ (4.9)
615
+ where U0,Stokes is the terminal velocity of an isolated spherical fluid particulate in Stokes
616
+ flow:
617
+ U0,Stokes = 1
618
+ 12
619
+ |ρc − ρd|gd2
620
+ b
621
+ µ∗µc
622
+ ,
623
+ with µ∗ = µc + 3µd/2
624
+ µc + µd
625
+ .
626
+ (4.10)
627
+ Note that F can also be expressed in terms of commonly employed dimensionless groups:
628
+ F =
629
+ 1
630
+ 12µ∗
631
+ Ar 2
632
+ Re .
633
+ (4.11)
634
+
635
+ The effective diffusivity of ordered and freely evolving bubbly suspensions
636
+ 11
637
+ Peh
638
+ D||
639
+ conv (D F2 Pe2) x103
640
+ (a)
641
+ 10−1
642
+ 100
643
+ 101
644
+ 102
645
+ 103
646
+ 104
647
+ 105
648
+ 3
649
+ 3.1
650
+ 3.2
651
+ 3.3
652
+ 3.4
653
+ Re = 10−8
654
+ Re = 10−6
655
+ Re = 10−4
656
+ Re = 10−2
657
+ Peh
658
+ D⊥
659
+ conv (D F2 db
660
+ 2 h2)
661
+ (b)
662
+ 10−1
663
+ 100
664
+ 101
665
+ 102
666
+ 103
667
+ 104
668
+ 105
669
+ 10−12
670
+ 10−10
671
+ 10−8
672
+ 10−6
673
+ 10−4
674
+ 10−2
675
+ 100
676
+ ∝ Pe2
677
+ Re = 10−8
678
+ Re = 10−6
679
+ Re = 10−4
680
+ Re = 10−2
681
+ Figure 1. Longitudinal (a) and transverse (b) components of Dconv as a function of the P´eclet
682
+ number based on the lattice spacing (Peh = Uh/D) for ordered arrays of point particulates at
683
+ various small but finite Reynolds numbers (U = Ue3, db/h = 10−6, and F is given by (4.9)).
684
+ Note that in (a), Dconv
685
+
686
+ is compensated by Pe2.
687
+ In the “sedimentation” problem considered here, F is generally not known (as U is
688
+ generally not known): it is a non-trivial function of the flow regime and volume fraction
689
+ which reduces to (4.7) when φ → 0 and when Oseen-flow approximation is applicable.
690
+ The longitudinal and transverse components of the convective contribution, Dconv
691
+
692
+ and
693
+ Dconv
694
+
695
+ respectively, have been calculated from (4.8) for db/h = 10−6 as a function of Peh
696
+ for various Re < 1. This very low value of db/h is required to allow Peh ≫ 1 while
697
+ satisfying the condition Pe = Peh db/h ≪ 1 under which the analytical solution has
698
+ been derived. The results, shown in figure 1, indicate that the asymptotic dependences
699
+ of Dconv
700
+
701
+ and Dconv
702
+
703
+ on Pe are independent of Re. The sole effect of inertia is to modify
704
+ the proportionality constants (by a substantial amount for the transverse component
705
+ though).
706
+ In the limit of low Peh (say, Peh < 101), both the transverse and the longitudinal com-
707
+ ponents of Dconv exhibit a quadratic dependence on the P´eclet number (Dconv
708
+ ⊥,∥ ∝ DPe2).
709
+ In this regime, diffusion is much faster than convection. As the scalar is advected by
710
+ velocity disturbances, it rapidly spreads out owing to diffusion, and convective dispersion
711
+ (measured through Dconv) is influenced by both mechanisms. This regime corresponds to
712
+ the “convectively enhanced dispersion” regime in Koch et al. (1989).
713
+ In the limit of high Peh (say, Peh > 103), the transverse component of Dconv is
714
+ independent of the P´eclet number (Dconv
715
+
716
+ ∝ D) whereas its longitudinal component
717
+ grows quadratically with the P´eclet number (Dconv
718
+
719
+ ∝ DPe2). In this regime, convection
720
+ dominates, but owing to the spatial periodicity of the flow, convective dispersion is
721
+ obtained only if molecular diffusion across streamlines is considered (Koch et al. 1989).
722
+ This regime is termed “Taylor dispersion” owing to the formal analogy, pointed out by
723
+ Brenner (1980), with one-dimensional shear-induced Taylor dispersion in a capillary tube.
724
+ We emphasize that the expression (4.8) has been derived from the approximation (4.2),
725
+ the validity of which is established only for Pe ≪ 1 (which is, in practice, of limited use).
726
+ Using symmetry arguments, Koch et al. (1989) (section 4.2 therein) showed that in the
727
+ limit Pe ≫ 1, Taylor dispersion is obtained if the average flow is perpendicular to a set of
728
+ planes of both translational and reflectional symmetry, such as Stokes flows parallel to the
729
+ primary axis of an ordered array of spheres. Taylor dispersion is then easily understood
730
+ by remarking that, owing to the symmetries of the flow, a fluid tracer particle entering the
731
+ unit cell at one point, say x, exits the cell at the equivalent point in the next cell, that is,
732
+
733
+ 12
734
+ A. Loisy, A. Naso, P. D. M. Spelt
735
+ Peh
736
+ D||
737
+ conv (D F2 Pe2) x103
738
+ 100
739
+ 101
740
+ 102
741
+ 103
742
+ 104
743
+ 2.8
744
+ 3
745
+ 3.2
746
+ 3.4
747
+ 3.6
748
+ (a)
749
+ Re = 0.0, spherical (S0)
750
+ Re = 1.7, spherical (S1)
751
+ Re = 9.4, skirted (C)
752
+ Re = 40 , ellipsoidal (E1)
753
+ Peh
754
+ D⊥
755
+ conv (D F2 db
756
+ 2 h2)
757
+ 100
758
+ 101
759
+ 102
760
+ 103
761
+ 104
762
+ 10−6
763
+ 10−5
764
+ 10−4
765
+ 10−3
766
+ 10−2
767
+ 10−1
768
+ 100
769
+ (b)
770
+ ∝ Pe2
771
+ Figure 2. Longitudinal (a) and transverse (b) components of Dconv as a function of the P´eclet
772
+ number based on the lattice spacing (Peh = Uh/D) for ordered arrays in various flow regimes
773
+ at small volume fraction (φ = 0.2 %). The normalizations of Dconv
774
+ ∥,⊥ are those suggested by the
775
+ asymptotic analysis (identical to those used in figure 1), and F is given by (4.9). The lines are
776
+ drawn to guide the eyes. Note that in (a), Dconv
777
+
778
+ is compensated by Pe2.
779
+ x+he3, so that dispersion can only occur if diffusion across streamlines is present (Koch
780
+ et al. 1989). In the presence of inertial effects, the reflectional symmetry is lost, hence
781
+ this argument does not hold. Koch et al. (1989) also demonstrated that, for Stokes flow,
782
+ the solution for Pe ≪ h/db is identical, at lowest order, to that obtained for Pe ≪ 1
783
+ (section 4.3 therein, note that their Pe corresponds to Peh in our notations). Such a
784
+ demonstration for Oseen flow will not be attempted here. Instead, the range Pe ⩾ 1 will
785
+ be explored using direct numerical simulations.
786
+ 4.2. Numerical results
787
+ The above analysis provides explicit expressions of Dconv
788
+
789
+ and Dconv
790
+
791
+ . These are valid for
792
+ spherical bubbles rising at Re < 1 (strictly speaking, at a Reynolds number sufficiently
793
+ small to assume Oseen flow, in terms of Archimedes and Bond numbers this regime would
794
+ be reached for Bo < 1 and Ar ≲ 1), and in the limits φ → 0 and Pe ≪ 1. We shall now
795
+ determine using numerical simulations whether these restrictions can be relaxed, and if
796
+ so, to which extent.
797
+ We examine the case of suspensions at low (but not vanishing) volume fraction
798
+ in order to approach the dilute limit assumption, and to focus on the sole effect of
799
+ inertia. The longitudinal and transverse components of the convective contribution to
800
+ the effective diffusivity have been computed for h/db = 6.4, which corresponds to a
801
+ gas volume fraction of φ = 0.2 % (the smallest volume fraction accessible with the
802
+ method and facilities used), for each of the four flow regimes listed in table 1, and Pe
803
+ has been varied from 10−1 to 103. The results are shown in figure 2 as a function of
804
+ Peh, the P´eclet number based on the lattice spacing, which is the parameter governing
805
+ the transition between the two asymptotic limits (see section 4.1 and figure 1). The
806
+ different colors, symbols and line styles depict the different flow regimes (the lines are
807
+ drawn to guide the eyes). Qualitatively, figure 2 bears a striking resemblance to figure 1,
808
+ even for case C (skirted bubbles): analysis and simulations yield similar dependences
809
+ of Dconv
810
+ ∥,⊥ on Pe and qualitatively comparable effects of increasing Re. At low P´eclet
811
+ number (Peh ≲ 101), dispersion occurs primarily by molecular diffusion and convective
812
+ mixing grows quadratically with Pe in both the longitudinal and the transverse directions
813
+
814
+ The effective diffusivity of ordered and freely evolving bubbly suspensions
815
+ 13
816
+ Pe
817
+ D||
818
+ conv D||
819
+ conv,anal
820
+ 10−1
821
+ 100
822
+ 101
823
+ 102
824
+ 103
825
+ 0.9
826
+ 0.95
827
+ 1
828
+ 1.05
829
+ 1.1
830
+ 1.15
831
+ 1.2
832
+ (a)
833
+ Re = 0.0, spherical (S0)
834
+ Re = 1.7, spherical (S1)
835
+ Re = 9.4, skirted (C)
836
+ Re = 40 , ellipsoidal (E1)
837
+ Pe
838
+ D⊥
839
+ conv D⊥
840
+ conv,anal
841
+ 10−1
842
+ 100
843
+ 101
844
+ 102
845
+ 103
846
+ 0
847
+ 2
848
+ 4
849
+ 6
850
+ 8
851
+ (b)
852
+ Figure 3. Numerical solution Dconv divided by the analytical solution Dconv,anal as a function of
853
+ the P´eclet number based on the bubble diameter (Pe = Udb/D) for ordered arrays in various flow
854
+ regimes at small volume fraction (φ = 0.2 %): longitudinal (a) and transverse (b) components.
855
+ Dconv,anal is given by (4.8).
856
+ (Dconv
857
+ ∥,⊥ ∝ DPe2). At high P´eclet number (Peh ≳ 103), Taylor dispersion is the dominant
858
+ process, with very efficient mixing in the flow direction (Dconv
859
+
860
+ ∝ DPe2) and negligible
861
+ mixing in the transverse one (Dconv
862
+
863
+ ∝ D). Inertial effects and bubble deformation only
864
+ affect the proportionality constants, rather weakly for Dconv
865
+
866
+ but substantially for Dconv
867
+
868
+ .
869
+ To allow a quantitative comparison between the DNS and the analysis, we present in
870
+ figure 3 the ratio of Dconv
871
+ ∥,⊥ to Dconv,anal
872
+ ∥,⊥
873
+ where Dconv,anal
874
+ ∥,⊥
875
+ is given by (4.8) with F computed
876
+ directly from its definition (4.9). As the range of validity of the analysis is defined in terms
877
+ of Pe (Pe ≪ 1, with Pe the P´eclet number based on the bubble diameter), the data are
878
+ presented here as a function of Pe rather than Peh. For the longitudinal component, the
879
+ numerical solution does not deviate by more than 5 % from the theoretical prediction,
880
+ as can be seen from figure 3(a). The fact that the low-Pe, Oseen-flow analysis yields
881
+ accurate predictions for Dconv
882
+
883
+ at Pe = 103 and Re = O(10) is not surprising, as the
884
+ behavior of Dconv
885
+
886
+ /(DF 2Pe2) is rather insensitive to both the flow regime and the P´eclet
887
+ number (as shown in Fig. 1(a) and 2(a), this quantity does not vary more than 15% for
888
+ the cases studied). We conclude that, at small volume fraction, Dconv
889
+
890
+ can be predicted
891
+ within ±5 % from (4.8) at any P´eclet number up to 103 and any Reynolds number up
892
+ to 40, even when the bubbles are strongly deformed. For the transverse component, the
893
+ asymptotic analysis underpredicts the value of Dconv
894
+
895
+ at high P´eclet number, even for
896
+ Re ≲ 1. As a consequence, Dconv
897
+
898
+ cannot be accurately estimated from our analytical
899
+ solution when the assumptions underlying its derivation are not satisfied. It must be
900
+ kept in mind though that this component varies much more than the longitudinal one
901
+ between the regimes of small and large P´eclet numbers, and is much more sensitive to
902
+ the flow regime (Re, shape), which means that its value is more difficult to predict. In all,
903
+ it is worth stressing that the asymptotic analysis yields the correct qualitative behavior
904
+ and order of magnitude for Dconv
905
+
906
+ at least up to Pe = 103 and Re ≈ 10, even for strongly
907
+ deformed bubbles. Finally, we emphasize that we found Dconv
908
+
909
+ /Dconv
910
+
911
+ ≳ 102, so the most
912
+ important component of the effective diffusivity tensor is the longitudinal one, except in
913
+ situations where there is no longitudinal component of the gradient of the scalar on the
914
+ macroscale.
915
+ To illustrate the dispersion regimes at low and high P´eclet number, we present in
916
+ figure 4 and figure 5 visualizations of the scalar fluctuation field c′ used to compute
917
+
918
+ 14
919
+ A. Loisy, A. Naso, P. D. M. Spelt
920
+ Re = 0.0 (S0)
921
+ Pe = 10−1
922
+ Re = 1.7 (S1)
923
+ Re = 9.4 (C)
924
+ Re = 40 (E1)
925
+ −0.04
926
+ −0.03
927
+ −0.02
928
+ −0.01
929
+ 0.00
930
+ c’
931
+ Pe = 103
932
+ −300
933
+ −200
934
+ −100
935
+ 0
936
+ c’
937
+ Figure 4. Scalar fluctuation field c′ associated with Dconv
938
+
939
+ , shown in a vertical symmetry plane
940
+ passing through the center of a bubble, for ordered arrays in various flow regimes at Pe = 10−1
941
+ (left) and Pe = 103 (right). The imposed scalar field ¯c increases linearly within the cell from
942
+ bottom to top (φ = 0.2 %, the entire cell is shown, and gravity is pointing downward).
943
+
944
+ The effective diffusivity of ordered and freely evolving bubbly suspensions
945
+ 15
946
+ Re = 0.0 (S0)
947
+ Pe = 10−1
948
+ Re = 1.7 (S1)
949
+ Re = 9.4 (C)
950
+ Re = 40 (E1)
951
+ −0.002
952
+ 0.000
953
+ 0.002
954
+ c’
955
+ Pe = 103
956
+ −0.4
957
+ −0.2
958
+ 0.0
959
+ 0.2
960
+ 0.4
961
+ c’
962
+ Figure 5. Scalar fluctuation field c′ associated with Dconv
963
+
964
+ , shown in a vertical symmetry plane
965
+ passing through the center of a bubble, for ordered arrays in various flow regimes at Pe = 10−1
966
+ (left) and Pe = 103 (right). The imposed scalar field ¯c increases linearly within the cell from
967
+ left to right (φ = 0.2 %, the entire cell is shown, and gravity is pointing downward).
968
+
969
+ 16
970
+ A. Loisy, A. Naso, P. D. M. Spelt
971
+ Pe
972
+ D||
973
+ conv D
974
+ (a)
975
+ 10−1 100
976
+ 101
977
+ 102
978
+ 103
979
+ 104
980
+ 105
981
+ 106
982
+ 10−4
983
+ 10−2
984
+ 100
985
+ 102
986
+ 104
987
+ 106
988
+ 108
989
+ 1010
990
+ ∝ Pe2
991
+ ∝ Pe
992
+ Nb=
993
+ 1
994
+ 2
995
+ 3
996
+ 5
997
+ 8
998
+ 12
999
+ Pe
1000
+ D⊥
1001
+ conv D
1002
+ (b)
1003
+ 10−1 100
1004
+ 101
1005
+ 102
1006
+ 103
1007
+ 104
1008
+ 105
1009
+ 106
1010
+ 10−6
1011
+ 10−4
1012
+ 10−2
1013
+ 100
1014
+ 102
1015
+ 104
1016
+ 106
1017
+ 108
1018
+ ∝ Pe2
1019
+ ∝ Pe
1020
+ Figure 6. Longitudinal (a) and transverse (b) components of Dconv as a function of the P´eclet
1021
+ number for various numbers of free bubbles Nb in the unit cell (Nb = 1 corresponds to an ordered
1022
+ array). Symbols other than purple stars: DNS (Re ≈ 30, φ = 2.4 %); purple stars: experimental
1023
+ data of Alm´eras et al. (2015) (Re ≈ 700, φ ≈ 2.4 %). A spatial resolution of db/∆x = 20 was
1024
+ used for Nb > 1, the effect of increasing resolution to db/∆x = 30 is illustrated by the filled red
1025
+ squares for Nb = 8 and Pe ≈ 103 (db is the bubble volume-equivalent diameter and ∆x is the
1026
+ grid spacing).
1027
+ Dconv
1028
+
1029
+ and Dconv
1030
+
1031
+ , respectively. In each of these figures, the field of c′ is represented for
1032
+ each flow regime in a vertical symmetry plane passing through the center of a bubble
1033
+ for Pe = 10−1 (left) and Pe = 103 (right), and the Reynolds number increases from
1034
+ top to bottom. The field of c′ associated with Dconv
1035
+
1036
+ , shown in figure 4, exhibits similar
1037
+ features at low and high Pe. In contrast, the field of c′ associated with Dconv
1038
+
1039
+ , represented
1040
+ in figure 5, is qualitatively different in these two limits. This illustrates qualitatively
1041
+ why the regimes at low and high Pe are similar for Dconv
1042
+
1043
+ (Dconv
1044
+
1045
+ ∝ Pe2), whereas the
1046
+ scaling laws identified for Dconv
1047
+
1048
+ are different in both limits (see figure 2). In addition, the
1049
+ Reynolds number and the bubble shape affect the fore-and-aft symmetry and the details
1050
+ of c′, but not its essential features, which results in quantitative but not qualitative effects
1051
+ on Dconv
1052
+
1053
+ and Dconv
1054
+
1055
+ .
1056
+ 5. Freely evolving suspensions
1057
+ We examine in this section scalar mixing in freely evolving suspensions as represented
1058
+ by the periodic repetition of a unit cell containing several independent bubbles (“free
1059
+ arrays”). Our objective here is threefold: (i) to investigate the effective diffusivity of
1060
+ freely evolving suspensions at small and high P´eclet numbers, (ii) to compare and contrast
1061
+ these results with those obtained in ordered systems, and (iii) to evaluate the effect of
1062
+ the system size (number of bubbles in a unit cell, Nb).
1063
+ For that purpose, we considered a single flow regime (ellipsoidal bubbles at Re = O(10),
1064
+ corresponding to case E1 in table 1) at intermediate volume fraction (φ = 2.4 %) and
1065
+ explored the effect of varying the number of free bubbles Nb on the dependence of Dconv on
1066
+ the P´eclet number. Due to the multiplicity of simulations involved and to their duration
1067
+ (typically several months on 64 cores), only a few different values of Nb belonging to a
1068
+ rather limited range have been considered (namely Nb = {2, 3, 5, 8, 12} in the simulations
1069
+ for the determination of Dconv
1070
+
1071
+ , and Nb = {2, 8} in those for Dconv
1072
+
1073
+ ). For the same reason,
1074
+ investigations of the effects of volume fraction and flow regime could not be undertaken.
1075
+ The longitudinal and transverse components of Dconv are plotted in figure 6 as a
1076
+
1077
+ The effective diffusivity of ordered and freely evolving bubbly suspensions
1078
+ 17
1079
+ Figure 7. Instantaneous scalar fluctuation field c′ associated with Dconv
1080
+
1081
+ for a free array of 8
1082
+ bubbles, at Pe = 10−1 (left) and Pe = 106 (right). The gradient of ¯c is vertical (the entire cell
1083
+ is shown, and gravity is pointing downward).
1084
+ Figure 8. Instantaneous scalar fluctuation field c′ associated with Dconv
1085
+
1086
+ for a free array of 8
1087
+ bubbles, at Pe = 10−1 (left) and Pe = 106 (right). The gradient of ¯c is horizontal (the entire
1088
+ cell is shown, and gravity is pointing downward).
1089
+ function of the P´eclet number for various values of Nb. Note that a very wide range of
1090
+ P´eclet numbers is considered. Convergence of Dconv
1091
+
1092
+ with the system size is very fast: the
1093
+ values of Dconv
1094
+
1095
+ are essentially independent of the number of free bubbles for 2 ⩽ Nb ⩽ 12
1096
+ at all P´eclet numbers. This suggests that Dconv
1097
+
1098
+ is independent of the system size Nb,
1099
+ although this would need to be confirmed by considering larger values of this parameter.
1100
+ Our data for Dconv
1101
+
1102
+ suggest that convergence with Nb is slower for this quantity, especially
1103
+ at high P´eclet number, although conclusions can hardly be drawn on this point due to
1104
+ the few values of Nb considered.
1105
+ We first examine the dependence of Dconv on the P´eclet number in free arrays of
1106
+ bubbles (Nb > 1). At small Pe, Dconv
1107
+ ∥,⊥ ∝ DPe2, whereas at high Pe, Dconv
1108
+ ∥,⊥ ∝ DPe = Udb.
1109
+ Note that the scaling at high Pe is expected from a simple dimensional analysis in a
1110
+ convection-dominated regime where diffusion plays no role. This regime corresponds to
1111
+ the “mechanical dispersion” regime in Koch & Brady (1985). The different dispersion
1112
+ regimes at low and high Pe can also be identified from the features of the scalar
1113
+ fluctuation field c′. Instantaneous snapshots of c′ associated with Dconv
1114
+
1115
+ and Dconv
1116
+
1117
+ are
1118
+
1119
+ 18
1120
+ A. Loisy, A. Naso, P. D. M. Spelt
1121
+ shown in figure 7 and figure 8, respectively, for an array of 8 free bubbles at Pe = 10−1
1122
+ (left) and at Pe = 106 (right). For a given component, the isocontours of c′ follow
1123
+ markedly different patterns at low and high Pe.
1124
+ We now compare these results with those obtained for ordered arrays (black crosses in
1125
+ figure 6) and discuss the effect of the microstructure. At small Pe, Dconv
1126
+
1127
+ and Dconv
1128
+
1129
+ grow
1130
+ quadratically with Pe in both free and ordered arrays. This scaling was also obtained by
1131
+ Koch & Brady (1985) for low-Pe dispersion in porous media with random microstructure
1132
+ (albeit in the Stokes flow limit). Since in the low-Pe regime, diffusion by the random
1133
+ motion of molecules is much faster than convection by the flow, the microstructure has
1134
+ only a quantitative incidence on Dconv, and dispersion is qualitatively identical in ordered
1135
+ and freely evolving suspensions. Note that similar features in the spatial distribution of
1136
+ c′ can be identified in ordered and free arrays at low Pe (see tubular structures in the
1137
+ left side of figures 4 and 7 for Dconv
1138
+
1139
+ , and quadrupolar ones in the left side of figures 5
1140
+ and 8 for Dconv
1141
+
1142
+ ). We however emphasize that precise quantitative agreement between the
1143
+ results for one and for many bubbles at low P´eclet number in figure 6 is not expected, as
1144
+ the flows and the microstructures in the two systems are different (Bunner & Tryggvason
1145
+ 2002; Loisy et al. 2017).
1146
+ At high Pe, the Taylor dispersion scaling obtained in ordered arrays is replaced, in both
1147
+ directions, by a scaling similar to the one characterizing mechanical dispersion, as soon as
1148
+ the relative motion between bubbles is allowed. In this regime, the transverse dispersion
1149
+ is indeed governed by mechanical dispersion. Irrespective of the value of Pe, any Taylor
1150
+ dispersion in the vertical direction is limited by transverse diffusion or dispersion, the
1151
+ latter becoming more significant at large Pe. This results in a scaling similar to that
1152
+ of mechanical dispersion in the longitudinal direction as well, such that a distinction
1153
+ between these two mechanisms (pure mechanical dispersion, or Taylor dispersion limited
1154
+ by transverse mechanical one) cannot be made. Incidentally, mechanical dispersion is also
1155
+ obtained at high Pe in random media in Stokes flow conditions (Koch & Brady 1985).
1156
+ Although the microstructure of the present bubbly suspensions has not been evaluated
1157
+ quantitatively, visual inspection and prior results on their dynamics (Loisy et al. 2017)
1158
+ showed that it is not random, but rather characterized by a certain “organization”.
1159
+ Despite the fact that freely evolving suspensions resemble ordered ones with respect to
1160
+ their dynamics, scalar dispersion is extremely sensitive to the presence of disorder, and is
1161
+ fundamentally different in perfectly ordered and weakly disordered suspensions at high
1162
+ P´eclet number. It does not, however, seem to be sensitive to the degree of disorder, as
1163
+ suggested by the fact that the same scalings with Pe are obtained for random porous
1164
+ media and weakly disordered suspensions. We stress that this last statement is purely
1165
+ speculative, and would require a quantitative study of the effect of the microstructure to
1166
+ be confirmed.
1167
+ We finally attempt a comparison of our results with the experimental data of Alm´eras
1168
+ et al. (2015), who measured the effective diffusivity of a homogeneous swarm of high-
1169
+ Reynolds-number rising bubbles at Pe ≈ 1.75×106 for gas volume fractions ranging from
1170
+ 1 % to 13 %. It is important to stress that in these experiments, Re ≈ 700, whereas in the
1171
+ simulations, Re ≈ 30, so the comparison is only indicative. Interpolation (by eye) of their
1172
+ data at φ ≈ 2.4 % (figure 10 in their paper) yields Deff
1173
+ ∥ /D = 1×106 and Deff
1174
+ ⊥ /D = 5×105.
1175
+ These experimental values are represented by purple stars in figure 6. Note that at
1176
+ such high P´eclet number, the dominant contribution to Deff is due to Dconv, so it seems
1177
+ reasonable to assume that these are equivalent. The order of magnitude of Deff
1178
+ ∥ /D is
1179
+ comparable in the experiment and in the simulation, whereas Deff
1180
+ ⊥ /D is much higher
1181
+ in the experiment. This difference can be explained from the different properties of the
1182
+
1183
+ The effective diffusivity of ordered and freely evolving bubbly suspensions
1184
+ 19
1185
+ numerical and experimental flows considered: partition coefficient (the dye concentration
1186
+ in the gas is presumably zero in the experiments from Alm´eras et al. (2015)), diffusivity
1187
+ ratio, and bubble-induced liquid agitation in the horizontal direction. In our simulations
1188
+ of free arrays at moderate Re, the bubbles were indeed observed to rise along nearly
1189
+ straight vertical lines, and the anisotropy ratio characterizing the liquid velocity variance,
1190
+ 2⟨u′
1191
+ 3u′
1192
+ 3⟩/⟨u′
1193
+ 1u′
1194
+ 1 + u′
1195
+ 2u′
1196
+ 2⟩, is approximately 8 (for Nb = 8), whereas in the experiment
1197
+ at high Re, the bubble motion is fully three-dimensional, and the anisotropy ratio is
1198
+ approximately 2. Finally, as only one value of the P´eclet number was considered in the
1199
+ experiments of Alm´eras et al. (2015), no comparison of their data with our results can
1200
+ be offered regarding the dependence of the effective diffusivity on the P´eclet number.
1201
+ 6. Conclusions
1202
+ In this study we investigated scalar dispersion in homogeneous bubbly suspensions as
1203
+ described by an effective diffusivity tensor. The longitudinal and transverse components
1204
+ of the convective contribution to the effective diffusivity, denoted Dconv
1205
+
1206
+ and Dconv
1207
+
1208
+ ,
1209
+ respectively, have been computed for bubbly suspensions in various flow regimes. This
1210
+ convective contribution is that associated with bubble-induced agitation, and is the
1211
+ dominant contribution to the effective diffusivity in commonly encountered bubbly flows.
1212
+ The dispersion theory of Koch et al. (1989) indicates that convective mixing mech-
1213
+ anisms in ordered suspensions in Stokes-flow conditions differ at low and high P´eclet
1214
+ numbers. According to this theory, when the bulk flow is aligned with a primary axis
1215
+ of a simple cubic lattice of spheres, convectively enhanced dispersion is expected at low
1216
+ P´eclet number, whereas Taylor dispersion should dominate at high P´eclet number. In
1217
+ the present study, we have extended this theory to account for weak inertial effects,
1218
+ and we have shown that these two dispersion regimes are qualitatively unchanged in the
1219
+ presence of (weak) inertia. This result has been confirmed by direct numerical simulations
1220
+ for values of the Reynolds number ranging from vanishingly small to moderate. In all
1221
+ investigated cases, Dconv
1222
+
1223
+ was found to be significantly larger than Dconv
1224
+
1225
+ , and theoretical
1226
+ predictions have been shown to yield the correct qualitative behaviour and order of
1227
+ magnitude of both Dconv
1228
+
1229
+ and Dconv
1230
+
1231
+ in a variety of flow regimes (spherical to strongly
1232
+ deformed bubbles with Reynolds numbers up to 10) at small volume fraction.
1233
+ Direct numerical simulations of scalar transport in freely evolving bubbly suspensions,
1234
+ as represented by free arrays of bubbles, have been carried out for a wide range of P´eclet
1235
+ numbers, and the effect of introducing additional degrees of freedom in the system has
1236
+ been evaluated. At low P´eclet number, dispersion in free arrays is convectively enhanced,
1237
+ as in ordered ones. At high P´eclet number, in freely evolving suspensions wherein at
1238
+ least two bubbles are present in a unit cell, the longitudinal component of the effective
1239
+ diffusivity exhibits a scaling that is similar to that characterizing mechanical dispersion.
1240
+ This suggests that the limiting role of molecular diffusion to Taylor dispersion is taken
1241
+ over by mechanical dispersion, or that mechanical dispersion itself dominates. Besides,
1242
+ the effective diffusivity seems to be weakly sensitive to the number of bubbles present in
1243
+ a unit cell. This last assertion requires more thorough investigations to be confirmed,
1244
+ but is encouraging regarding the possibility of computing the effective diffusivity of
1245
+ homogeneous bubbly flows from direct numerical simulations of systems of relatively
1246
+ small size. This would allow in particular a thorough investigation of the roles played by
1247
+ the volume fraction and the flow regime, which could not be undertaken as part of the
1248
+ present study.
1249
+ The results presented in this paper are restricted to bubbles having the same diffusivity
1250
+ as that of the surrounding liquid, and to scalar fields that are continuous across the
1251
+
1252
+ 20
1253
+ A. Loisy, A. Naso, P. D. M. Spelt
1254
+ interface, and therefore cannot be straightforwardly compared to those obtained in real
1255
+ bubbly flows. A jump in the scalar field, which represents the difference in solubilities
1256
+ given by Henry’s law in the context of chemical species transport, as well as a difference
1257
+ in diffusivities, would introduce a diffusive contribution to the effective diffusivity tensor
1258
+ (2.5) in addition to the convective one considered in this study. The present results
1259
+ show the convective contribution at large P´eclet numbers and modest volume fraction
1260
+ to be substantially larger than the diffusive contribution from nonequal diffusivities or
1261
+ solubilities (Maxwell 1873; Jeffrey 1973; Koch & Brady 1985). A difference in diffusivities
1262
+ or solubilities would however also have some indirect effect on the convective contribution,
1263
+ which magnitude should be investigated in the future.
1264
+ Besides the effective diffusivity, another quantity of practical importance is the rate
1265
+ of interfacial scalar transport in the presence of an average scalar gradient between the
1266
+ disperse phase and the bulk. Heat and mass exchanges across phase boundaries are
1267
+ traditionally expressed as dimensionless transfer coefficients called the Nusselt and the
1268
+ Sherwood numbers, respectively. Their functional dependences on suspension properties,
1269
+ in particular the volume fraction, have been the subject of analytical (Acrivos et al.
1270
+ 1980), numerical (Aboulhasanzadeh & Tryggvason 2014), and experimental (Colombet
1271
+ et al. 2011, 2015) studies. Formally, the Nusselt and the Sherwood numbers are closure
1272
+ coefficients for the conditionally averaged scalar transport equation, where the conditional
1273
+ average is defined as an ensemble average over the subset of realizations wherein a
1274
+ particulate is present at a given position. Less formally, the Nusselt and Sherwood
1275
+ numbers are related to a “mesoscale” description of scalar transfer between the two
1276
+ phases, whereas the effective diffusivity is associated with a “macroscale” description of
1277
+ scalar transport through a two-phase mixture seen as a continuum. They correspond to
1278
+ different closure problems, and one cannot be inferred from the other. Nevertheless, the
1279
+ present work will be primarily important for mass transfer processes in bubbly flows that
1280
+ are liquid-phase controlled. This is because then the mixture concentration distribution
1281
+ is key, whereas if it is gas-phase controlled, the concentration in the liquid will be almost
1282
+ uniform and one is primarily concerned by the circumstances inside each bubble.
1283
+ This work benefited from the financial support of the French research agency (grant
1284
+ ANR-12-BS09-0011), and was performed using the HPC resources provided by GENCI-
1285
+ CINES and GENCI-IDRIS (grant x20162b6893), PSMN (´Ecole Normale Sup´erieure de
1286
+ Lyon), P2CHPD (Universit´e Claude Bernard Lyon 1) and PMCS2I (´Ecole Centrale de
1287
+ Lyon).
1288
+ Appendix: Spatial convergence tests
1289
+ We present the results of some spatial convergence tests of the algorithm solving the
1290
+ scalar transport equation. The results of similar tests for the algorithm solving the flow
1291
+ are shown in Loisy et al. (2017); Loisy (2016).
1292
+ The effect of the grid spacing on Dconv
1293
+
1294
+ and Dconv
1295
+
1296
+ has been assessed for case E1 at
1297
+ Pe = 103 for one value of the volume fraction (φ = 2.4 %), in both ordered and
1298
+ free configurations. For ordered arrays, three different resolutions were tested, namely
1299
+ db/∆x = {20, 40, 60} with ∆x the grid spacing. The results are shown in figure 9. The
1300
+ error in the values of Dconv
1301
+
1302
+ and Dconv
1303
+
1304
+ arising from spatial discretization is less than 1 %
1305
+ when a resolution of 40 grid cells per bubble diameter is used. This resolution is the same
1306
+ as that used for the simulation of the corresponding bubbly flow in Loisy et al. (2017).
1307
+ In practice, we used for each configuration the same resolution as that selected for the
1308
+ simulation of the corresponding ordered bubbly suspensions (see Loisy et al. (2017)),
1309
+
1310
+ The effective diffusivity of ordered and freely evolving bubbly suspensions
1311
+ 21
1312
+ log10 (∆x db)
1313
+ −2
1314
+ −1.8
1315
+ −1.6
1316
+ −1.4
1317
+ −1.2
1318
+ −1
1319
+ −4
1320
+ −3
1321
+ −2
1322
+ −1
1323
+ 0
1324
+ log10
1325
+
1326
+
1327
+
1328
+ Dconv − D∆x=0
1329
+ conv
1330
+ D∆x=0
1331
+ conv
1332
+
1333
+
1334
+
1335
+ n = 3
1336
+ n = 4
1337
+ longitudinal component
1338
+ transverse component
1339
+ Figure 9. Spatial convergence for an ordered array of bubbles in case E1 at Pe = 103: relative
1340
+ error in Dconv
1341
+
1342
+ and Dconv
1343
+
1344
+ as a function of the grid spacing ∆x (db is the bubble volume-equivalent
1345
+ diameter; Dconv
1346
+ ∆x=0 is extrapolated assuming Dconv = Dconv
1347
+ ∆x=0 − k∆xn, where the values of the
1348
+ three parameters Dconv
1349
+ ∆x=0, k and n are fitted from numerical data).
1350
+ namely 60 grid cells per diameter for case C and 40 grid cells per diameter for the other
1351
+ cases.
1352
+ For free arrays, due to the computational cost of the simulations, only two different
1353
+ resolutions were tested, namely 20 and 30 grid cells per bubble diameter, for an array
1354
+ of 8 bubbles. Simulations at higher resolution were too expensive to be continued over
1355
+ sufficiently long times to allow a quantitative estimate of the uncertainty. However the
1356
+ values of Dconv
1357
+
1358
+ and Dconv
1359
+
1360
+ obtained with the finer grid, depicted by filled red squares
1361
+ in figure 6, are nearly indistinguishable from those obtained with the coarser grid. A
1362
+ resolution of 20 grid cells per diameter was therefore concluded to be sufficient for free
1363
+ arrays in view of the present purposes.
1364
+ For a given case, the same resolution was used for all P´eclet numbers. Note that when
1365
+ the gas diffusivity differs from that of the liquid (a situation not considered here but
1366
+ frequently encountered in practice), finer resolutions may be required, as thin scalar
1367
+ boundary layers around the bubbles would then need to be resolved.
1368
+ REFERENCES
1369
+ Aboulhasanzadeh, B. & Tryggvason, G. 2014 Effect of bubble interactions on mass transfer
1370
+ in bubbly flow. International Journal of Heat and Mass Transfer 79, 390–396.
1371
+ Acrivos, A., Hinch, E. J. & Jeffrey, D. J. 1980 Heat transfer to a slowly moving fluid from
1372
+ a dilute fixed bed of heated spheres. Journal of Fluid Mechanics 101, 403–421.
1373
+ Alm´eras, E., Risso, F., Roig, V., Cazin, S., Plais, C. & Augier, F. 2015 Mixing by
1374
+ bubble-induced turbulence. Journal of Fluid Mechanics 776, 458–474.
1375
+ Batchelor, G. K. 1974 Transport properties of two-phase materials with random structure.
1376
+ Annual Review of Fluid Mechanics 6, 227–255.
1377
+ Batchelor, G. K. & O’Brien, R.W. 1977 Thermal or electrical conduction through a granular
1378
+ material. Proceedings of the Royal Society of London A 355, 313–333.
1379
+ Brackbill, J. U., Kothe, D. B. & Zemach, C. 1992 A continuum method for modeling
1380
+ surface tension. Journal of Computational Physics 100 (2), 335–354.
1381
+ Brenner,
1382
+ H.
1383
+ 1980
1384
+ Dispersion
1385
+ resulting
1386
+ from
1387
+ flow
1388
+ through
1389
+ spatially
1390
+ periodic
1391
+ porous
1392
+ media. Philosophical Transactions of the Royal Society A: Mathematical, Physical and
1393
+ Engineering Sciences 297 (1430), 81–133.
1394
+ Brenner, H. & Adler, P. M. 1982 Dispersion resulting from flow through spatially periodic
1395
+ porous media II. Surface and intraparticle transport. Philosophical Transactions of the
1396
+ Royal Society A: Mathematical, Physical and Engineering Sciences 307 (1498), 149–200.
1397
+
1398
+ 22
1399
+ A. Loisy, A. Naso, P. D. M. Spelt
1400
+ Brenner, H. & Cox, R. G. 1963 The resistance to a particle of arbitrary shape in translational
1401
+ motion at small Reynolds numbers. Journal of Fluid Mechanics 17 (04), 561–595.
1402
+ Bunner, B. & Tryggvason, G. 2002 Dynamics of homogeneous bubbly flows Part 1. Rise
1403
+ velocity and microstructure of the bubbles. Journal of Fluid Mechanics 466, 17–52.
1404
+ Chorin,
1405
+ A
1406
+ 1968
1407
+ Numerical
1408
+ solution
1409
+ of
1410
+ the
1411
+ Navier-Stokes
1412
+ equations.
1413
+ Mathematics
1414
+ of
1415
+ Computation 22, 745 – 762.
1416
+ Colombet, D., Legendre, D., Cockx, A., Guiraud, P., Risso, F., Daniel, C. & Galinat,
1417
+ S. 2011 Experimental study of mass transfer in a dense bubble swarm. Chemical
1418
+ Engineering Science 66 (14), 3432–3440.
1419
+ Colombet, D., Legendre, D., Risso, F., Cockx, A. & Guiraud, P. 2015 Dynamics and
1420
+ mass transfer of rising bubbles in a homogenous swarm at large gas volume fraction.
1421
+ Journal of Fluid Mechanics 763, 254–285.
1422
+ Deckwer, W.-D. 1992 Bubble column reactors. John Wiley.
1423
+ Hadamard, J. 1911 Mouvement permanent lent d’une sphere liquide et visqueuse dans un
1424
+ liquide visqueux. Comptes Rendus de l’Acad´emie des Sciences 152 (25), 1735–1738.
1425
+ Harfield, N. 1999 Conductivity calculation for a two-phase composite with spheroidal
1426
+ inclusions. Journal of Physics D: Applied Physics 32 (10), 1104–1113.
1427
+ Hewitt, G. F., Shires, G. L. & Bott, T. R. 1994 Process heat transfer. CRC Press.
1428
+ Hinch, E. J. 1977 An averaged-equation approach to particle interactions in a fluid suspension.
1429
+ Journal of Fluid Mechanics 83 (04), 695–720.
1430
+ Jeffrey, D. J. 1973 Conduction through a random suspension of spheres. Proceedings of the
1431
+ Royal Society A: Mathematical, Physical and Engineering Sciences 335 (1602), 355–367.
1432
+ Koch, D. L. & Brady, J. F. 1985 Dispersion in fixed beds. Journal of Fluid Mechanics 154,
1433
+ 399–427.
1434
+ Koch, D. L. & Brady, J. F. 1987 The symmetry properties of the effective diffusivity tensor
1435
+ in anisotropic porous media. Physics of Fluids 30 (3), 642.
1436
+ Koch, D. L., Cox, R. G., Brenner, H. & Brady, J. F. 1989 The effect of order on dispersion
1437
+ in porous media. Journal of Fluid Mechanics 200, 173–188.
1438
+ Kushch, V. I. 1997 Conductivity of a periodic particle composite with transversely isotropic
1439
+ phases. Proceedings of the Royal Society A: Mathematical, Physical and Engineering
1440
+ Sciences 453 (1956), 65–76.
1441
+ Loisy, A. 2016 Direct numerical simulation of bubbly flows: coupling with scalar transport and
1442
+ turbulence. PhD thesis, Universit´e de Lyon.
1443
+ Loisy, A., Naso, A. & Spelt, P.D.M. 2017 Buoyancy-driven bubbly flows: ordered and free
1444
+ rise at small and intermediate volume fraction. Journal of Fluid Mechanics 816, 94–141.
1445
+ Mareuge, I. & Lance, M. 1995 Bubble induced dispersion of a passive scalar in bubbly flows.
1446
+ In Proceedings of the 2nd International Conference on Multiphase Flow, pp. PT1–3–8.
1447
+ Maxwell, J. C. 1873 A treatise on electricity and magnetism. Oxford: Clarendon Press.
1448
+ Rayleigh, R. S. 1892 LVI. On the influence of obstacles arranged in rectangular order upon
1449
+ the properties of a medium. Philosophical Magazine Series 5 34 (211), 481–502.
1450
+ Russo, G. & Smereka, P. 2000 A remark on computing distance functions. Journal of
1451
+ Computational Physics 163 (1), 51–67.
1452
+ Rybczynski, W. 1911 Uber die fortschreitende Bewegung einer flussigen Kugel in einem zahen
1453
+ Medium. Bulletin International de l’Academie des Sciences de Cracovie Serie A 1, 40–46.
1454
+ Sabelnikov, V., Ovsyannikov, A. Y. & Gorokhovski, M. 2014 Modified level set equation
1455
+ and its numerical assessment. Journal of Computational Physics 278, 1–30.
1456
+ Sangani, A. S. & Acrivos, A. 1983 The effective conductivity of a periodic array of spheres.
1457
+ Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
1458
+ 386 (1791), 263–275.
1459
+ Sussman, M., Smereka, P. & Osher, S. 1994 A level set approach for computing solutions
1460
+ to incompressible two-phase flow. Journal of Computational Physics 114 (1), 146–159.
1461
+ Taylor, G. I. 1921 Diffusion by continuous movements. Proceedings of the London Mathematical
1462
+ Society s2-20 (1), 196–212.
1463
+
19AyT4oBgHgl3EQfPvYS/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
1dE0T4oBgHgl3EQf_wJK/content/tmp_files/2301.02830v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
1dE0T4oBgHgl3EQf_wJK/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
39E4T4oBgHgl3EQf0g2Q/content/tmp_files/2301.05283v1.pdf.txt ADDED
@@ -0,0 +1,1397 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Integrable systems with linear periodic integral
2
+ for the Lie algebra e(3)
3
+ I. K. Kozlov∗
4
+ and
5
+ A. A. Oshemkov†
6
+ Abstract
7
+ Integrable systems with a linear periodic integral for the Lie algebra e(3) are
8
+ considered. One investigates singulariries of the Liouville foliation, bifurcation
9
+ diagram of the momentum mapping, transformations of Liouville tori, topology
10
+ of isoenergy surfaces and other topological properties of such systems.
11
+ Keywords and phrases: Integrable Hamiltonian system, periodic integral,
12
+ bifurcation diagram, momentum mapping, Liouville tori
13
+ 1
14
+ Introduction
15
+ In this paper we study some topological properties of integrable Hamiltonian
16
+ systems with an 𝑆1-symmetry given by the Euler equations for the Lie algebra
17
+ e(3). Probably, the most well-known example of such a system is the classical
18
+ Lagrange top. Roughly speaking, we consider a “generalized” Lagrange top which
19
+ Hamiltonian has an arbitrary potential function and linear terms in momenta,
20
+ but possesses the same 𝑆1-symmetry.
21
+ We are interested in local and global topological properties of the Liouville
22
+ foliation defined by the system under consideration, namely, the structure of bi-
23
+ furcation diagram and transformations of Liouville tori for critical values of the
24
+ momentum mapping, non-degeneracy of equilibria and other singular points, the
25
+ topology of isoenergy surfaces.
26
+ Note that there is a number of integrable systems with periodic linear inte-
27
+ gral which are well known in mechanics and mathematical physics, which phase
28
+ topology were studied by various authors. In particular, there are Lagrange and
29
+ Kirchhoff integrable cases in rigid body dynamics (for the description of their
30
+ topology see [1–3]), the integrable case of Leggett equations describing dynamics
31
+ of spin in the superfluid 3He (the bifurcation diagram and Fomenko invariants
32
+ for this system are described in [6]), the integrable case of the motion of heavy
33
+ ellipsoid on a smooth horizontal plane (topological invariants for this system were
34
+ found in [7]).
35
+ ∗No Affiliation, E-mail: [email protected]
36
+ †Faculty of Mechanics and Mathematics, Moscow State University, Moscow, 119991 Russia, E-mail:
37
38
+ 3
39
+ arXiv:2301.05283v1 [math.DG] 12 Jan 2023
40
+
41
+ Topological properties of all these systems are quite similar because of an 𝑆1-
42
+ symmetry which imposes strong restrictions on the structure of their singularities.
43
+ Therefore, they can be studied under a uniform scheme. In this paper we perform
44
+ such an investigation for an example of Hamiltonian possessing a periodic linear
45
+ integral on e(3)*. Note that the problem of topological investigation of integrable
46
+ systems with S1-action is discussed in paper [4], which contains a list of various
47
+ open problems in the theory of integrable systems.
48
+ Apart from the systems on e(3)* considered in this paper there are other
49
+ integrable systems with 𝑆1-symmetry, which were also studied by various authors.
50
+ For instance, natural mechanical systems on surfaces of revolution homeomorphic
51
+ to the sphere were studied recently in [5] (see also [1]). Another example is the
52
+ classical Euler case in the rigid body dynamics, where the 𝑆1-action is given not
53
+ by a linear, but by a quadratic integral. The results obtained in this paper show
54
+ in particular that there are some differences between the topological properties
55
+ of the systems under consideration and other cases with an 𝑆1-symmetry (for
56
+ example, the one investigated in [5] or the Euler case).
57
+ The article is organized as follows. In Section 2 we describe the systems under
58
+ consideration. We start the analysis with the study of non-deneracy and types of
59
+ singular points of rank 0 in Section 3 (Corollary 1 ). In Section 4 we find singular
60
+ points of rank 1 (Theorem 3) and describe the bifurcation diagrams of the system
61
+ (Theorems 4 and 5). In Section 5 we determine types of non-degenerate points
62
+ of rank 1 (Theorem 6) and specify the corresponding Liouville tori bifurcations
63
+ (Theorem 7). Finally, in Section 6 we list all possible isoenergy surfaces for the
64
+ system (Theorem 8).
65
+ 2
66
+ Description of the system
67
+ Let us recall that the Lie–Poisson bracket for the Lie algebra e(3) is given by the
68
+ formulas
69
+ {𝑆𝑖, 𝑆𝑗} = 𝜀𝑖𝑗𝑘𝑆𝑘,
70
+ {𝑆𝑖, 𝑅𝑗} = 𝜀𝑖𝑗𝑘𝑅𝑘,
71
+ {𝑅𝑖, 𝑅𝑗} = 0,
72
+ (1)
73
+ where 𝑆1, 𝑆2, 𝑆3, 𝑅1, 𝑅2, 𝑅3 are linear coordinates on the dual space e(3)* for the
74
+ Lie algebra e(3). We will use the notation S = (𝑆1, 𝑆2, 𝑆3) and R = (𝑅1, 𝑅2, 𝑅3)
75
+ and also ⟨·,·⟩ and × for the scalar and vector product of 3-dimensional vectors.
76
+ A Hamiltonian system with Hamiltonian 𝐻 is given by the Euler equations
77
+ ˙𝑥𝑖 = {𝑥𝑖, 𝐻},
78
+ which for the Lie algebra e(3) take the form
79
+ ˙S = 𝜕𝐻
80
+ 𝜕S × S + 𝜕𝐻
81
+ 𝜕R × R,
82
+ ˙R = 𝜕𝐻
83
+ 𝜕S × R.
84
+ Bracket (1) has two Casimir functions:
85
+ 𝐹1 = ⟨R, R⟩,
86
+ 𝐹2 = ⟨S, R⟩.
87
+ Their regular common level surfaces
88
+ 𝑀4
89
+ 𝑎,𝑔 = {(S, R) | 𝐹1(S, R) = 𝑎, 𝐹2(S, R) = 𝑔, },
90
+ 𝑎 > 0,
91
+ (2)
92
+ 4
93
+
94
+ are the sympectic leaves of bracket (1) and are the orbits of the coadjoint repsre-
95
+ sentation for the Lie algebra e(3). We are interested in integrable Hamiltonian
96
+ systems on the orbits 𝑀4
97
+ 𝑎,𝑔 for which some linear function on e(3)* is a first integral
98
+ defining an 𝑆1-action.
99
+ Let us describe several examples of such systems from mechanics and math-
100
+ ematical physics, which are integrable cases of the Euler equations for the Lie
101
+ algebra e(3) with Hamiltonian 𝐻 and integral 𝐾 (an explanation of physical sense
102
+ for parameters and variables of these systems can be found in [1,2,6,7]).
103
+ 1) The Lagrange case. This is a symmetric top with two equal moments of
104
+ inertia which center of gravity lies on the symmetry axis:
105
+ 𝐻 = 𝑆2
106
+ 1
107
+ 𝐴 + 𝑆2
108
+ 2
109
+ 𝐴 + 𝑆2
110
+ 3
111
+ 𝐵 − 𝑝𝑅3,
112
+ 𝐾 = 𝑆3,
113
+ where 𝐴, 𝐵, 𝑝 = const.
114
+ 2) The Kirchhoff case. This system describes the motion of a dynamically
115
+ symmetric rigid body in an ideal fluid:
116
+ 𝐻 = 𝐴𝑆2
117
+ 1 + 𝐴𝑆2
118
+ 2 + 𝑎𝑆2
119
+ 3 + 2(𝐵𝑆1𝑅1 + 2𝐵𝑆2𝑅2 + 𝑏𝑆3𝑅3)+
120
+ + 𝐶𝑅2
121
+ 1 + 𝐶𝑅2
122
+ 2 + 𝑐𝑅2
123
+ 3,
124
+ 𝐾 = 𝑆3,
125
+ where 𝐴, 𝑎, 𝐵, 𝑏, 𝐶, 𝑐 = const.
126
+ 3) The following integrable case for the Leggett system describing the dynamics
127
+ of spin in the superfluid 3He:
128
+ 𝐻 = 𝑆2
129
+ 1 + 𝑆2
130
+ 2 + 𝑆2
131
+ 3 − 𝛾𝑆3 − 𝑅2
132
+ 3,
133
+ 𝐾 = 𝑆3,
134
+ where 𝛾 = const.
135
+ 4) Integrable system describing the motion of a dynamically and geometrically
136
+ symmetric heavy ellipsoid on a smooth horizontal plane:
137
+ 𝐻 = 𝑆2
138
+ 1 + 𝑆2
139
+ 2 + 𝐴(𝑆1𝑅1 + 𝑆2𝑅2)2
140
+ 2𝑏(1 + 𝐴(𝑅2
141
+ 1 + 𝑅2
142
+ 2))
143
+ + 𝑆2
144
+ 3
145
+ 2𝐽 +
146
+ √︁
147
+ 1 + 𝑐𝑅2
148
+ 3 + 𝑠𝑅3,
149
+ 𝐾 = 𝑆3
150
+ where 𝐴 =
151
+ 𝑐𝑅2
152
+ 3
153
+ 1 + 𝑐𝑅2
154
+ 3
155
+ ,
156
+ 𝑏, 𝑐, 𝐽, 𝑠 = const.
157
+ In all these examples the additional integral is the function 𝑆3 on e(3)*. Let
158
+ us explain that this is a general case if we require that the integral is linear and
159
+ periodic.
160
+ Assertion 1. Let 𝐾 be a linear functions on e(3)* which Hamiltonian flow sgrad 𝐾
161
+ defined by bracket (1) is periodic. Then there is a linear change of variables pre-
162
+ serving the bracket (1) taking the function 𝐾 to 𝑐𝑆3, where 𝑐 is some constant.
163
+ Proof. Let 𝐾 = 𝛼1𝑆1 + 𝛼2𝑆2 + 𝛼3𝑆3 + 𝛽1𝑅1 + 𝛽2𝑅2 + 𝛽3𝑅3. For an arbitrary or-
164
+ thogonal matrix 𝐴 the transformation Φ𝐴 : (S, R) → (𝐴S, 𝐴R) preserves bracket
165
+ (1).
166
+ If 𝛼1 = 𝛼2 = 𝛼3 = 0, then we can choose a matrix 𝐴 such that Φ𝐴
167
+ takes the function 𝐾 to 𝜆𝑅3, where 𝜆 = const. It is clear that the Hamilto-
168
+ nian flow of the function 𝜆𝑅3 is not periodic, since the trajectories of the field
169
+ sgrad 𝑅3 = (−𝑅2, 𝑅1, 0, 0, 0, 0) are straight lines in e(3)*.
170
+ If there are non-zero 𝛼𝑖, then applying an appropriate transformation Φ𝐴 we
171
+ can transform 𝐾 to a function of the form 𝑐𝑆3 + 𝛽′
172
+ 1𝑅1 + 𝛽′
173
+ 2𝑅2 + 𝛽′
174
+ 3𝑅3. It is easy
175
+ to check that for any vector v the transformations Ψv : (S, R) → (S + v × R, R)
176
+ 5
177
+
178
+ also preserve bracket (1). This allows one to transform the function 𝐾 to the form
179
+ 𝑐𝑆3 + 𝜆𝑅3, where 𝑐 ̸= 0.
180
+ Now consider the function 𝐾 = 𝑆3 + 𝜆𝑅3 and determine for which 𝜆 the
181
+ Hamiltonian flow of 𝐾 is periodic. Integral trajectories for the field sgrad 𝐾 =
182
+ (−𝑆2 − 𝜆𝑅2, 𝑆1 + 𝜆𝑅1, 0, −𝑅2, 𝑅1, 0) can be explicitly written:
183
+ 𝛾(𝑡) = ((𝑠1−𝜆𝑟2𝑡) cos 𝑡−(𝑠2+𝜆𝑟1𝑡) sin 𝑡, (𝑠2+𝜆𝑟1𝑡) cos 𝑡+(𝑠1−𝜆𝑟2𝑡) sin 𝑡,
184
+ 𝑠3, 𝑟1 cos 𝑡 − 𝑟2 sin 𝑡, 𝑟2 cos 𝑡 + 𝑟1 sin 𝑡, 𝑟3),
185
+ where 𝑠1, 𝑠2, 𝑠3, 𝑟1, 𝑟2, 𝑟3 are constants.
186
+ It is clear from this formula that the
187
+ trajectories are periodic only for 𝜆 = 0.
188
+ Remark 1. It is well known that an action of any compact group can be linearized
189
+ at a fixed point and that for an action of the circle 𝑆1 the corresponding tangent
190
+ space can be represented as a sum of invariant two-dimensional subspaces. Thus
191
+ among all linear functions on e(3)* the periodic integrals are distiguished by the
192
+ property that their linearization at any singular point is a unitary operator with
193
+ respect to a complex structure on the tangent space. It also follows that up to
194
+ the choice of the coordinate system and multipltication by a constant any periodic
195
+ linear integral on e(3)* is 𝑆3.
196
+ Further we will consider Hamiltonian systems for the Lie algebra e(3) which
197
+ possess the first integral 𝐾 = 𝑆3 and which Hamiltonian 𝐻 is quadratic in 𝑆, i.e.,
198
+ 𝐻 = 𝐴1𝑆2
199
+ 1 + 𝐴2𝑆2
200
+ 2 + 𝐴3𝑆2
201
+ 3 + 𝑓1(R)𝑆1 + 𝑓2(R)𝑆2 + 𝑓3(R)𝑆3 + 𝑓4(R),
202
+ (3)
203
+ where 𝐴1, 𝐴2, 𝐴3 are arbitrary positive constants and 𝑓1, 𝑓2, 𝑓3, 𝑓4 are smooth
204
+ functions of 𝑅1, 𝑅2, 𝑅3.
205
+ First of all, let us rewrite Hamiltonian (3) in a more convient way using its
206
+ commutativity with the function 𝑆3.
207
+ Assertion 2. Up to multiplication by a constant any Hamiltonian of the form (3)
208
+ commuting with the function 𝐾 = 𝑆3 has the form
209
+ 𝐻 = 1
210
+ 2
211
+ (︁
212
+ 𝑆2
213
+ 1 + 𝑆2
214
+ 2 + 𝑆2
215
+ 3
216
+ 𝛽
217
+ )︁
218
+ + 𝑔1(R2, 𝑅3)(𝑆1𝑅2 − 𝑆2𝑅1)+
219
+ + 𝑔2(R2, 𝑅3)⟨S, R⟩ + 𝑔3(R2, 𝑅3)𝑆3 + 𝑉 (R2, 𝑅3),
220
+ (4)
221
+ where 𝛽 > 0 and the functions 𝑔1, 𝑔2, 𝑔3, 𝑉 depend only on R2 and 𝑅3 and are
222
+ smooth if R2 ̸= 0.
223
+ Proof. The Hamiltonian vector field for the function 𝐾 is equal to
224
+ sgrad 𝐾 = −𝑅2
225
+ 𝜕
226
+ 𝜕𝑅1
227
+ + 𝑅1
228
+ 𝜕
229
+ 𝜕𝑅2
230
+ − 𝑆2
231
+ 𝜕
232
+ 𝜕𝑆1
233
+ + 𝑆1
234
+ 𝜕
235
+ 𝜕𝑆2
236
+ .
237
+ Since {𝐻, 𝐾} = (sgrad 𝐾)𝐻 = 0, we get
238
+ (sgrad 𝐾)𝐻 = 2(𝐴2 − 𝐴1)𝑆1𝑆2+
239
+ +
240
+ (︁
241
+ −𝑅2
242
+ 𝜕𝑓1
243
+ 𝜕𝑅1
244
+ +𝑅1
245
+ 𝜕𝑓1
246
+ 𝜕𝑅2
247
+ +𝑓2(R)
248
+ )︁
249
+ 𝑆1 +
250
+ (︁
251
+ −𝑅2
252
+ 𝜕𝑓2
253
+ 𝜕𝑅1
254
+ +𝑅1
255
+ 𝜕𝑓2
256
+ 𝜕𝑅2
257
+ −𝑓1(R)
258
+ )︁
259
+ 𝑆2+
260
+ +
261
+ (︁
262
+ −𝑅2
263
+ 𝜕𝑓3
264
+ 𝜕𝑅1
265
+ + 𝑅1
266
+ 𝜕𝑓3
267
+ 𝜕𝑅2
268
+ )︁
269
+ 𝑆3 +
270
+ (︁
271
+ −𝑅2
272
+ 𝜕𝑓4
273
+ 𝜕𝑅1
274
+ + 𝑅1
275
+ 𝜕𝑓4
276
+ 𝜕𝑅2
277
+ )︁
278
+ = 0.
279
+ 6
280
+
281
+ Hence, 𝐴1 = 𝐴2 (multiplying by a constant we can make both these constants
282
+ equal to 1
283
+ 2) and the four expressions in the brackets are equal to zero.
284
+ In polar coordinates (𝜌, 𝜙) on the plane (𝑅1, 𝑅2) the vector field
285
+ 𝜕
286
+ 𝜕𝜙 is exactly
287
+ −𝑅2
288
+ 𝜕
289
+ 𝜕𝑅1 + 𝑅1
290
+ 𝜕
291
+ 𝜕𝑅2 . Therefore,
292
+ 𝜕𝑓3
293
+ 𝜕𝜙 = 0,
294
+ 𝜕𝑓4
295
+ 𝜕𝜙 = 0,
296
+ 𝜕𝑓1
297
+ 𝜕𝜙 = −𝑓2,
298
+ 𝜕𝑓2
299
+ 𝜕𝜙 = 𝑓1.
300
+ The first two of these equations imply that 𝑓3 and 𝑓4 depend only on 𝜌 and
301
+ 𝑅3 or, equivalently, 𝑓3(R) = 𝑔3(R2, 𝑅3) and 𝑓4(R) = 𝑉 (R2, 𝑅3). The latter two
302
+ equations can be cosidered as a system of ODE with parameters 𝜌 and 𝑅3. Solving
303
+ it, we obtain
304
+ 𝑓1 = 𝑓11(𝜌, 𝑅3) cos 𝜙 + 𝑓12(𝜌, 𝑅3) sin 𝜙 = 𝑓11(𝜌, 𝑅3)
305
+ 𝜌
306
+ 𝑅1 + 𝑓12(𝜌, 𝑅3)
307
+ 𝜌
308
+ 𝑅2,
309
+ 𝑓2 = −𝑓12(𝜌, 𝑅3) cos 𝜙+𝑓11(𝜌, 𝑅3) sin 𝜙 = −𝑓12(𝜌, 𝑅3)
310
+ 𝜌
311
+ 𝑅1+𝑓11(𝜌, 𝑅3)
312
+ 𝜌
313
+ 𝑅2.
314
+ Since 𝜌 =
315
+ √︀
316
+ 𝑅2
317
+ 1 + 𝑅2
318
+ 2 we get the desired form for the Hamiltonian 𝐻.
319
+ 3
320
+ Singularities of rank 0
321
+ It turns out that equilibria points for a Hamiltonian system on e(3)* possessing
322
+ a linear periodic integral 𝐾 are exactly the points where sgrad 𝐾 = 0.
323
+ This
324
+ gives the following simple description for singularities of rank 0 of such integrable
325
+ Hamiltonian systems (not necessarily with Hamiltonian of the form (3)).
326
+ Theorem 1. The set of singular points of rank 0 for an integrable Hamiltonian
327
+ system on e(3)* with arbitrary Hamiltonian 𝐻 possessing the integral 𝐾 = 𝑆3 is
328
+ the two-dimensional subspace
329
+ {(0, 0, 𝑆3, 0, 0, 𝑅3)}
330
+ (5)
331
+ in e(3)*. In particular, for each orbit 𝑀4
332
+ 𝑎,𝑔 there are precisely two singular points
333
+ of rank 0:
334
+ (︁
335
+ 0, 0, ± 𝑔
336
+ √𝑎, 0, 0, ±√𝑎
337
+ )︁
338
+ .
339
+ Proof. The Hamiltonian vector field of a function 𝑓 on e(3)* has the form
340
+ sgrad 𝑓 =
341
+ (︁𝜕𝑓
342
+ 𝜕S × S + 𝜕𝑓
343
+ 𝜕R × R, 𝜕𝑓
344
+ 𝜕S × R
345
+ )︁
346
+ ,
347
+ (6)
348
+ and for the function 𝐾 = 𝑆3 we have sgrad 𝐾 = (−𝑆2, 𝑆1, 0, −𝑅2, 𝑅1, 0). There-
349
+ fore, sgrad 𝐾 = 0 exactly at points (5). Thus, points other than (5) can not be
350
+ singular points of rank 0.
351
+ Let us prove that sgrad 𝐻 vanishes at points (5). The functions 𝐻 and 𝐾
352
+ commute with respect to bracket (1), i.e., 𝑑𝑦𝐻(sgrad𝑦 𝐾) = 0 for any point 𝑦 ∈
353
+ e(3)* (the index 𝑦 in 𝑑𝑦𝑓 or sgrad𝑦 𝑓 denotes the point at which the differential
354
+ 7
355
+
356
+ or, respectively, skew-gradient of the function 𝑓 is taken). Taking the differential
357
+ of the function 𝑑𝑦𝐻(sgrad𝑦 𝐾) at any point 𝑦 = (0, 0, 𝑆3, 0, 0, 𝑅3), we get
358
+ 𝐴*
359
+ 𝐾(𝑑𝑦𝐻) = 0,
360
+ (7)
361
+ where 𝐴𝐾 is the linearization operator for the vector field sgrad 𝐾 at the point 𝑦,
362
+ since sgrad𝑦 𝐾 = 0. The matrix of the operator 𝐴𝐾 : e(3)* → e(3)* has the form
363
+
364
+
365
+
366
+
367
+
368
+
369
+
370
+
371
+ 0
372
+ −1
373
+ 0
374
+ 0
375
+ 0
376
+ 0
377
+ 1
378
+ 0
379
+ 0
380
+ 0
381
+ 0
382
+ 0
383
+ 0
384
+ 0
385
+ 0
386
+ 0
387
+ 0
388
+ 0
389
+ 0
390
+ 0
391
+ 0
392
+ 0
393
+ −1
394
+ 0
395
+ 0
396
+ 0
397
+ 0
398
+ 1
399
+ 0
400
+ 0
401
+ 0
402
+ 0
403
+ 0
404
+ 0
405
+ 0
406
+ 0
407
+
408
+
409
+
410
+
411
+
412
+
413
+
414
+
415
+ and therefore condition (7) implies that 𝜕𝐻
416
+ 𝜕𝑆1 = 𝜕𝐻
417
+ 𝜕𝑆2 = 𝜕𝐻
418
+ 𝜕𝑅1 = 𝜕𝐻
419
+ 𝜕𝑅2 = 0 at any point
420
+ 𝑦 = (0, 0, 𝑆3, 0, 0, 𝑅3).
421
+ Hence sgrad 𝐻 vanishes at points (5), since at a point
422
+ 𝑦 = (0, 0, 𝑆3, 0, 0, 𝑅3) formula (6) becomes
423
+ sgrad𝑦 𝑓 =
424
+ (︁
425
+ 𝑆3
426
+ 𝜕𝑓
427
+ 𝜕𝑆2
428
+ + 𝑅3
429
+ 𝜕𝑓
430
+ 𝜕𝑅2
431
+ , −𝑆3
432
+ 𝜕𝑓
433
+ 𝜕𝑆1
434
+ − 𝑅3
435
+ 𝜕𝑓
436
+ 𝜕𝑅1
437
+ , 0, 𝑅3
438
+ 𝜕𝑓
439
+ 𝜕𝑆2
440
+ , −𝑅3
441
+ 𝜕𝑓
442
+ 𝜕𝑆1
443
+ , 0
444
+ )︁
445
+ .
446
+ Theorem 1 is proved.
447
+ Now, let us state when these zero-rank points are non-degenerate and deter-
448
+ mine their type (for more information about non-degeneracy of singular points of
449
+ a momentum mapping see [1]).
450
+ Theorem 2. For an integrable Hamiltonian system on e(3)* with arbitrary Hamil-
451
+ tonian 𝐻 possessing the integral 𝐾 = 𝑆3, the singular point of rank 0
452
+ 𝑃± =
453
+ (︁
454
+ 0, 0, ± 𝑔
455
+ √𝑎, 0, 0, ±√𝑎
456
+ )︁
457
+ on the orbit 𝑀4
458
+ 𝑎,𝑔 is non-degenerate iff 𝑞 ̸= 0, where
459
+ 𝑞 = 𝑝2 + 𝑅2
460
+ 3(𝐻11𝐻22 − |𝐻12|2),
461
+ (8)
462
+ 𝑝 =
463
+ 𝑔
464
+ 2𝑅3
465
+ 𝜕2𝐻
466
+ 𝜕𝑆2
467
+ 1
468
+ + 𝑅3
469
+ 𝜕2𝐻
470
+ 𝜕𝑆1𝜕𝑅1
471
+ − 𝜕𝐻
472
+ 𝜕𝑆3
473
+ ,
474
+ (9)
475
+ and
476
+ 𝐻11 = 𝜕2𝐻
477
+ 𝜕𝑆2
478
+ 1
479
+ ,
480
+ 𝐻12 =
481
+ (︁
482
+ 𝜕2𝐻
483
+ 𝜕𝑆1𝜕𝑅1
484
+ − 1
485
+ 𝑅3
486
+ 𝜕𝐻
487
+ 𝜕𝑆3
488
+ )︁
489
+ + 𝑖
490
+ 𝜕2𝐻
491
+ 𝜕𝑆2𝜕𝑅1
492
+ ,
493
+ 𝐻22 = 𝜕2𝐻
494
+ 𝜕𝑅2
495
+ 1
496
+ + 𝑔
497
+ 𝑅3
498
+ 3
499
+ 𝜕𝐻
500
+ 𝜕𝑆3
501
+ − 1
502
+ 𝑅3
503
+ 𝜕𝐻
504
+ 𝜕𝑅3
505
+ .
506
+ Also, if the point 𝑃± is non-degenerate, then its type is
507
+ 1. center-center if 𝑞 > 0,
508
+ 2. focus-focus if 𝑞 < 0.
509
+ Theorem 2 holds for any Hamiltonian 𝐻 that commutes (and is functionally
510
+ independent) with 𝐾 = 𝑆3. For the Hamiltonian 𝐻 quadratic in S the condition
511
+ of non-degeneracy and types of singular points of rank 0 are as follows.
512
+ 8
513
+
514
+ Corollary 1. For Hamiltonian (4) the type of singular points of rank 0 is com-
515
+ pletely determined as in Theorem 2 by
516
+ 𝑞 = 𝑔2
517
+ 4𝑅2
518
+ 3
519
+ − 𝑅2
520
+ 3𝑔2
521
+ 1(𝑎, 𝑅3) + 𝑔𝑅3
522
+ 𝜕𝑔2
523
+ 𝜕𝑅3
524
+ (𝑎, 𝑅3) − 𝑔 𝜕𝑔3
525
+ 𝜕𝑅3
526
+ (𝑎, 𝑅3) − 𝑅3
527
+ 𝜕𝑉
528
+ 𝜕𝑅3
529
+ (𝑎, 𝑅3).
530
+ Proof. Calculating all expressions from Theorem 2, we have
531
+ 𝐻11 = 1,
532
+ 𝐻12 = − 1
533
+ 𝑅3
534
+ (︁ 𝑔
535
+ 𝛽𝑅3
536
+ + 𝑔3(𝑎, 𝑅3)
537
+ )︁
538
+ − 𝑖𝑔1(𝑎, 𝑅3),
539
+ 𝐻22 = 𝑔
540
+ 𝑅3
541
+ 3
542
+ (︁ 𝑔
543
+ 𝛽𝑅3
544
+ + 𝑔3(𝑎, 𝑅3)
545
+ )︁
546
+
547
+ − 1
548
+ 𝑅3
549
+ (︁
550
+ 𝑔 𝜕𝑔2
551
+ 𝜕𝑅3
552
+ (𝑎, 𝑅3) + 𝑔
553
+ 𝑅3
554
+ 𝜕𝑔3
555
+ 𝜕𝑅3
556
+ (𝑎, 𝑅3) + 𝜕𝑉
557
+ 𝜕𝑅3
558
+ (𝑎, 𝑅3)
559
+ )︁
560
+ ,
561
+ (10)
562
+ and
563
+ 𝑝 = 𝑔
564
+ 𝑅3
565
+ (︁1
566
+ 2 − 1
567
+ 𝛽
568
+ )︁
569
+ − 𝑔3(𝑎, 𝑅3).
570
+ Substituting them into (8), one obtains the required formula for 𝑞.
571
+ In order to prove Theorem 2 we use the following criteria of non-degeneracy
572
+ (see [1]), which can be regarded as a definition.
573
+ Definition 1. A point 𝑃 of rank 0 for an integrable Hamiltonian system with
574
+ Hamiltonian 𝐻 and integral 𝐾 on a symplectic manifold 𝑀4 is non-degenerate iff
575
+ the following two conditions hold:
576
+ • the linearizations 𝐴𝐻 and 𝐴𝐾 of the Hamiltonian vector fields sgrad 𝐻 and
577
+ sgrad 𝐾 at the point 𝑃 are linear independent,
578
+ • there exists a linear combination 𝜆𝐴𝐻 + 𝜇𝐴𝐾 with four different non-zero
579
+ eigenvalues.
580
+ Let us study the spectrum of linearization of sgrad 𝐻 at the points of rank 0.
581
+ Taking functions 𝑆1, 𝑆2, 𝑅1, 𝑅2 as local coordinates in a neighbourhood of 0-rank
582
+ point 𝑃± on an orbit 𝑀4
583
+ 𝑎,𝑔 we have
584
+ 𝑅3 = ±
585
+ √︁
586
+ 𝑎 − 𝑅2
587
+ 1 − 𝑅2
588
+ 2,
589
+ 𝑆3 = 1
590
+ 𝑅3
591
+ (𝑔 − 𝑆1𝑅1 − 𝑆2𝑅2).
592
+ Denote by ̂︀𝐻(𝑆1, 𝑆2, 𝑅1, 𝑅2) the restriction of the fucntion 𝐻 onto 𝑀4
593
+ 𝑎,𝑔.
594
+ Lemma 1. For any function 𝐻 commuting with 𝐾 = 𝑆3 the spectrum of the
595
+ linearization operator 𝐴 ̂︀
596
+ 𝐻 = Lin(sgrad ̂︀𝐻) at the singular points 𝑃± of rank 0 has
597
+ the form 𝜎(𝐴 ̂︀
598
+ 𝐻) = {±𝑖(𝑝 + √𝑞), ±𝑖(𝑝 − √𝑞)}, where 𝑝 and 𝑞 are given by (9) and
599
+ (8).
600
+ Proof. In the coordinates 𝑆1, 𝑆2, 𝑅1, 𝑅2 the Poisson bracket on the symplectic leaf
601
+ 𝑀4
602
+ 𝑎,𝑔 has the form
603
+ 𝒜 =
604
+
605
+
606
+
607
+
608
+ 0
609
+ 𝑆3
610
+ 0
611
+ 𝑅3
612
+ −𝑆3
613
+ 0
614
+ −𝑅3
615
+ 0
616
+ 0
617
+ 𝑅3
618
+ 0
619
+ 0
620
+ −𝑅3
621
+ 0
622
+ 0
623
+ 0
624
+
625
+
626
+
627
+ ⎠ .
628
+ 9
629
+
630
+ It is easy to check that the linearization of sgrad 𝐾 defines a complex structure
631
+ on the tangent space:
632
+ 𝐴 ̂︀
633
+ 𝐾 = Lin(sgrad ̂︀𝐾) =
634
+
635
+
636
+
637
+
638
+ 0
639
+ −1
640
+ 0
641
+ 0
642
+ 1
643
+ 0
644
+ 0
645
+ 0
646
+ 0
647
+ 0
648
+ 0
649
+ −1
650
+ 0
651
+ 0
652
+ 1
653
+ 0
654
+
655
+
656
+
657
+ ⎠ .
658
+ (11)
659
+ Since [𝐴 ̂︀
660
+ 𝐻, 𝐴 ̂︀
661
+ 𝐾] = 0, the operator 𝐴 ̂︀
662
+ 𝐻 can be complexified. The matrix of
663
+ the Poisson structure can also be complexified, i.e., we can identify (2 × 2)-blocks
664
+ (︁
665
+ 𝛼 −𝛽
666
+ 𝛽
667
+ 𝛼
668
+ )︁
669
+ in matrices with complex numbers 𝛼 + 𝑖𝛽. Thus, in the complex coordi-
670
+ nates 𝑆1 + 𝑖𝑆2, 𝑅1 + 𝑖𝑅2 the matrix 𝒜 of the Poisson structure has the form
671
+ 𝒜 =
672
+ (︂−𝑖𝑆3
673
+ −𝑖𝑅3
674
+ −𝑖𝑅3
675
+ 0
676
+ )︂
677
+ .
678
+ On a symplectic manifold we have 𝐴 ̂︀
679
+ 𝐻 = 𝒜 𝑑2 ̂︀𝐻, and therefore 𝑑2 ̂︀𝐻 can also be
680
+ complexified. By direct calculation we get
681
+ 𝑑2 ̂︀𝐻 =
682
+ (︂𝐻11
683
+ 𝐻12
684
+ 𝐻12
685
+ 𝐻22
686
+ )︂
687
+ ,
688
+ where 𝐻𝑙𝑗 are given by formulas (10). The imaginary parts of 𝐻11 and 𝐻22 vanish
689
+ because 𝐻 commutes with 𝐾.
690
+ Using the fact that if 𝜇1, 𝜇2 are eigenvalues of a matrix (𝐴 + 𝑖𝐵) for real ma-
691
+ trices 𝐴, 𝐵, then the matrix
692
+ (︀ 𝐴
693
+ 𝐵
694
+ −𝐵 𝐴
695
+ )︀
696
+ has the eigenvalues 𝜇1, 𝜇2, 𝜇1, 𝜇2, we obtain
697
+ that the specturm of the (real) operator 𝐴 ̂︀
698
+ 𝐻 is given by the equation
699
+ 𝜇2 − 𝑖(𝑆3𝐻11 + 𝑅3𝐻12 + 𝑅3𝐻12)𝜇 + 𝑅2
700
+ 3(𝐻11𝐻22 − |𝐻12|2) = 0,
701
+ which solutions give the desired spectrum. Lemma 1 is proved.
702
+ Remark 2. It is clear from (11) that for the integral 𝐾 = 𝑆3 the spectrum of the
703
+ corresponding operator 𝐴 ̂︀
704
+ 𝐾 is 𝜎(𝐴 ̂︀
705
+ 𝐾) = {𝑖, −𝑖, 𝑖, −𝑖}. This doesn’t immediately
706
+ prove non-deneracy of points but shows that non-degenerate points can be only of
707
+ center-center or focus-focus type.
708
+ Proof of Theorem 2. Using Lemma 1 and Definition 1 of non-degeneracy we get
709
+ the condition of the theorem in all cases except for 𝑞 = 0 or 𝑝2 = 𝑞.
710
+ If 𝑞 = 0, then the spectra of 𝐴 ̂︀
711
+ 𝐻 and 𝐴 ̂︀
712
+ 𝐾 are proportional, thus the point is
713
+ degenerate (this is precisely the moment when the image of a focus-focus point
714
+ meets an arc of the bifurcation diagram while transforming into a center-center
715
+ point).
716
+ If 𝑝2 = 𝑞, then the point is non-degenerate, and one should just take another
717
+ linear combination with different eigenvalues (such a linear combination exists
718
+ since the spectra of 𝐴 ̂︀
719
+ 𝐻 and 𝐴 ̂︀
720
+ 𝐾 are non-proportional).
721
+ 10
722
+
723
+ 4
724
+ Bifurcation diagrams
725
+ In order to construct the bifurcation diagram let us describe all critical points of
726
+ the momentum mapping. The singular points of rank 0 are found in Section 3.
727
+ Thus, it remains to describe only singular points of rank 1. The next two lemmas
728
+ show that we can use some convenient coordinates for investigating them.
729
+ Lemma 2. For a Hamiltonian system with Hamiltonian 𝐻 of the form (4) and
730
+ integral 𝐾 = 𝑆3, the subspace {(S, R) | 𝑅1 = 𝑅2 = 0} in e(3)* does not contain
731
+ points of rank 1.
732
+ Proof. Since we know all singular points of rank 0 (they are points with 𝑅1 = 𝑅2 =
733
+ 𝑆1 = 𝑆2 = 0; see Theorem 1), it suffices to prove that if 𝑦 = (𝑆1, 𝑆2, 𝑆3, 0, 0, 𝑅3) ∈
734
+ e(3)* is a singular point, then its coordinates 𝑆1 and 𝑆2 vanish. Suppose that
735
+ this is not the case.
736
+ Then sgrad𝑦 𝐾 = (−𝑆2, 𝑆1, 0, 0, 0, 0) ̸= 0 and, therefore,
737
+ sgrad𝑦 𝐻 = 𝜆 sgrad𝑦 𝐾 for a certain 𝜆. Hence, by formula (6) (taking into account
738
+ that 𝑅3 ̸= 0), we have 𝜕𝐻
739
+ 𝜕𝑆1 = 𝜕𝐻
740
+ 𝜕𝑆2 = 0 at the point 𝑦. But for a Hamiltonian of
741
+ the form (4) this is possible only if 𝑆1 = 𝑆2 = 0 for the point 𝑦.
742
+ Now, since we can assume that 𝑅2
743
+ 1 + 𝑅2
744
+ 2 ̸= 0, we choose new coordinates on
745
+ the remaining set of points 𝑈 = R6(S, R) ∖ {𝑅1 = 𝑅2 = 0}. Note that the set 𝑈
746
+ is homeomorphic to R5 × 𝑆1.
747
+ Lemma 3. Formulas
748
+ 𝑆1 = (𝑔 − 𝑘𝑥) cos 𝜙 + 𝑚 sin 𝜙
749
+
750
+ 𝑎 − 𝑥2
751
+ ,
752
+ 𝑆2 = (𝑔 − 𝑘𝑥) sin 𝜙 − 𝑚 cos 𝜙
753
+
754
+ 𝑎 − 𝑥2
755
+ ,
756
+ 𝑆3 = 𝑘,
757
+ 𝑅1 =
758
+ √︀
759
+ 𝑎 − 𝑥2 cos 𝜙,
760
+ 𝑅2 =
761
+ √︀
762
+ 𝑎 − 𝑥2 sin 𝜙,
763
+ 𝑅3 = 𝑥
764
+ (12)
765
+ define regular coordinates (𝑥, 𝑚, 𝜙, 𝑘, 𝑎, 𝑔) on the set 𝑈, where 𝑥2 < 𝑎 and 𝜙 is an
766
+ angular coordinate, i.e., is defined modulo 2𝜋.
767
+ The inverse change of variables on the set 𝑈, i.e., the expression of (𝑥, 𝑚, 𝜙, 𝑘, 𝑎, 𝑔)
768
+ through (S, R) is as follows:
769
+ 𝑥 = 𝑅3,
770
+ 𝑚 = 𝑀(S, R) = 𝑆1𝑅2 − 𝑆2𝑅1,
771
+ 𝜙 = arg(𝑅1 + 𝑖𝑅2),
772
+ 𝑘 = 𝑆3,
773
+ 𝑎 = 𝐹1(S, R) = ⟨R, R⟩,
774
+ 𝑔 = 𝐹2(S, R) = ⟨S, R⟩.
775
+ Proof. By direct calculation, it is easy to check that given formulas define a bi-
776
+ jection and that the Jacobian does not vanish on 𝑈:
777
+ det
778
+ 𝜕(𝑥, 𝑚, 𝜙, 𝑘, 𝑎, 𝑔)
779
+ 𝜕(𝑆1, 𝑆2, 𝑆3, 𝑅1, 𝑅2, 𝑅3) = 2(𝑅2
780
+ 1 + 𝑅2
781
+ 2) ̸= 0.
782
+ Substituting expressions (12) into (4), we obtain that the Hamiltonian in the
783
+ coordinates (𝑥, 𝑚, 𝜙, 𝑘, 𝑎, 𝑔) on the set 𝑈 has the form
784
+ 𝐻 = (𝑔−𝑘𝑥)2+𝑚2
785
+ 2(𝑎 − 𝑥2)
786
+ + 𝑘2
787
+ 2𝛽 + 𝑔1(𝑎, 𝑥)𝑚 + 𝑔2(𝑎, 𝑥)𝑔 + 𝑔3(𝑎, 𝑥)𝑘 + 𝑉 (𝑎, 𝑥).
788
+ (13)
789
+ Futher we will often write 𝑔1, 𝑔2, 𝑔3, 𝑉 without arguments assuming that they
790
+ are functions of 𝑎 and 𝑥.
791
+ The next statement describes the set of singular points of rank 1.
792
+ 11
793
+
794
+ Theorem 3. The set of all singular points of rank 1 for the system with Hamil-
795
+ tonian (4) and integral 𝐾 = 𝑆3 on e(3)* is given by the following two equations
796
+ in the coordinates (𝑥, 𝑚, 𝜙, 𝑘, 𝑎, 𝑔):
797
+ 𝑚 = −(𝑎 − 𝑥2)𝑔1,
798
+ (14)
799
+ (𝑘𝑥−𝑔)(𝑘𝑎−𝑔𝑥)
800
+ (𝑎 − 𝑥2)2
801
+ + 𝑥𝑔2
802
+ 1 − (𝑎−𝑥2)𝑔1
803
+ 𝜕𝑔1
804
+ 𝜕𝑥 + 𝑔𝜕𝑔2
805
+ 𝜕𝑥 + 𝑘𝜕𝑔3
806
+ 𝜕𝑥 + 𝜕𝑉
807
+ 𝜕𝑥 = 0.
808
+ (15)
809
+ Proof. Calculating the matrix of the Poisson bracket in the coordinates (𝑥, 𝑚, 𝜙, 𝑘, 𝑎, 𝑔),
810
+ one obtains
811
+
812
+
813
+
814
+
815
+
816
+
817
+
818
+
819
+ 0
820
+ 𝑎 − 𝑥2
821
+ 0
822
+ 0
823
+ 0
824
+ 0
825
+ 𝑥2 − 𝑎
826
+ 0
827
+ 0
828
+ 0
829
+ 0
830
+ 0
831
+ 0
832
+ 0
833
+ 0
834
+ 1
835
+ 0
836
+ 0
837
+ 0
838
+ 0
839
+ −1
840
+ 0
841
+ 0
842
+ 0
843
+ 0
844
+ 0
845
+ 0
846
+ 0
847
+ 0
848
+ 0
849
+ 0
850
+ 0
851
+ 0
852
+ 0
853
+ 0
854
+ 0
855
+
856
+
857
+
858
+
859
+
860
+
861
+
862
+
863
+ .
864
+ Therefore, in these coordinates the skew-gradients of 𝐻 and 𝐾 are
865
+ sgrad 𝐻 =
866
+ (︁
867
+ (𝑎 − 𝑥2)𝜕𝐻
868
+ 𝜕𝑚, (𝑥2 − 𝑎)𝜕𝐻
869
+ 𝜕𝑥 , 𝜕𝐻
870
+ 𝜕𝑘 , 0, 0, 0
871
+ )︁
872
+ ,
873
+ sgrad 𝐾 = (0, 0, 1, 0, 0, 0).
874
+ (16)
875
+ Here we take into account that 𝜕𝐻
876
+ 𝜕𝜙 = {𝐻, 𝐾} ≡ 0.
877
+ Thus the condition of linear dependence of sgrad 𝐻 and sgrad 𝐾 at a point
878
+ 𝑦 ∈ e(3)*
879
+ sgrad 𝐻 = 𝜆 sgrad 𝐾
880
+ is equivalent to the conditions
881
+ 𝜕𝐻
882
+ 𝜕𝑚 = 0,
883
+ 𝜕𝐻
884
+ 𝜕𝑥 = 0,
885
+ 𝜕𝐻
886
+ 𝜕𝑘 = 𝜆
887
+ (17)
888
+ at the point 𝑦. Differentiating Hamiltonian (13) with respect to 𝑚 and 𝑥, we
889
+ see that 𝜕𝐻
890
+ 𝜕𝑚 = 0 is equivalent to (14) and 𝜕𝐻
891
+ 𝜕𝑥 = 0 is equivalent to (15) after the
892
+ substitution of 𝑚 from (14).
893
+ Corollary 2. On each orbit 𝑀4
894
+ 𝑎,𝑔 the set of singular points of rank 1 form a one-
895
+ parameter family of critical circles, which is parametrized by points (𝑘, 𝑥) of curves
896
+ defined by equation (15). For each point (𝑘, 𝑥) satisfying (15) the corresponding
897
+ critical circle in 𝑀4
898
+ 𝑎,𝑔 is given by the formulas
899
+ 𝑆1=(𝑔−𝑘𝑥) cos 𝜙−(𝑎−𝑥2)𝑔1 sin 𝜙
900
+
901
+ 𝑎 − 𝑥2
902
+ ,
903
+ 𝑆2=(𝑔−𝑘𝑥) sin 𝜙+(𝑎−𝑥2)𝑔1 cos 𝜙
904
+
905
+ 𝑎 − 𝑥2
906
+ ,
907
+ 𝑆3 = 𝑘,
908
+ 𝑅1 =
909
+ √︀
910
+ 𝑎 − 𝑥2 cos 𝜙,
911
+ 𝑅2 =
912
+ √︀
913
+ 𝑎 − 𝑥2 sin 𝜙,
914
+ 𝑅3 = 𝑥,
915
+ where 𝜙 is a parameter on the circle.
916
+ Proof. As it is shown in the proof of Theorem 3, sgrad 𝐾 =
917
+ 𝜕
918
+ 𝜕𝜙 in the coordi-
919
+ nates (𝑥, 𝑚, 𝜙, 𝑘, 𝑎, 𝑔). Therefore, each critical circle is a coordinate line of the
920
+ coordinate 𝜙.
921
+ Substituting (14) into expressions (12), we obtain the required
922
+ formulas.
923
+ 12
924
+
925
+ Now we can describe the bifurcation diagram. For each pair of parameters
926
+ 𝑎, 𝑔, where 𝑎 > 0, consider the function
927
+ 𝑊𝑎,𝑔(𝑘, 𝑥) = (𝑔 − 𝑘𝑥)2
928
+ 2(𝑎 − 𝑥2) + 𝑘2
929
+ 2𝛽 − 𝑔2
930
+ 1
931
+ 2 (𝑎 − 𝑥2) + 𝑔2𝑔 + 𝑔3𝑘 + 𝑉,
932
+ (18)
933
+ which is an analogue of a reduced potential. Recall that 𝑔1, 𝑔2, 𝑔3, 𝑉 are functions
934
+ of 𝑎 and 𝑥.
935
+ Theorem 4. The bifurcation diagram of the integrable Hamiltonian system with
936
+ Hamiltonian (4) and the integral 𝐾 = 𝑆3 on orbit (2) consists of the following
937
+ subsets on the plane R2(ℎ, 𝑘):
938
+ 1) two points 𝑍± (they can coinside if 𝑔 = 0) with coordinates
939
+ ℎ = 𝑔2
940
+ 2𝛽𝑎 + 𝑔 𝑔2(𝑎, ±√𝑎) ± 𝑔
941
+ √𝑎 𝑔3(𝑎, ±√𝑎) + 𝑉 (𝑎, ±√𝑎),
942
+ 𝑘 = ± 𝑔
943
+ √𝑎,
944
+ which are the images of two singular points of rank 0;
945
+ 2) the points (ℎ(𝑥), 𝑘(𝑥)) which are the images of singular points of rank 1 and
946
+ are parametrized by the parameter 𝑥, where the function 𝑘(𝑥) is implicitly defined
947
+ by the quadratic (or linear) equation 𝜕𝑊𝑎,𝑔
948
+ 𝜕𝑥 (𝑘, 𝑥) = 0, and ℎ(𝑥) = 𝑊𝑎,𝑔(𝑘(𝑥), 𝑥).
949
+ Proof. The first statement immediately follows from Theorem 1 describing singu-
950
+ lar points of rank 0. Similarly, the second one follows from Theorem 3 describing
951
+ singular points of rank 1 by taking into account expression (13) for the Hamilto-
952
+ nian 𝐻 and definition (18) of the function 𝑊𝑎,𝑔.
953
+ Remark 3. For each fixed 𝑎, 𝑔 the equations from Theorem 4
954
+ ℎ = 𝑊𝑎,𝑔(𝑘, 𝑥),
955
+ 𝜕𝑊𝑎,𝑔
956
+ 𝜕𝑥
957
+ (𝑘, 𝑥) = 0
958
+ (19)
959
+ describing the image of the set of singular points of rank 1 belonging to the orbit
960
+ 𝑀4
961
+ 𝑎,𝑔 are exactly the equations for the envelope of the family of parabolas
962
+ ℎ =
963
+ (︁
964
+ 𝑥2
965
+ 2(𝑎 − 𝑥2) + 1
966
+ 2𝛽
967
+ )︁
968
+ 𝑘2 + 𝐵𝑎,𝑔(𝑥)𝑘 + 𝐶𝑎,𝑔(𝑥)
969
+ on the plane R2(ℎ, 𝑘) depending on the parameter 𝑥, where
970
+ 𝐵𝑎,𝑔(𝑥) = 𝑔3(𝑎, 𝑥) −
971
+ 𝑔𝑥
972
+ 𝑎 − 𝑥2 ,
973
+ 𝐶𝑎,𝑔(𝑥) =
974
+ 𝑔2
975
+ 2(𝑎 − 𝑥2) − 𝑔2
976
+ 1(𝑎, 𝑥)
977
+ 2
978
+ (𝑎 − 𝑥2) + 𝑔2(𝑎, 𝑥)𝑔 + 𝑉 (𝑎, 𝑥)
979
+ (20)
980
+ (see formula (18)). In other words, the bifurcation diagram (without points 𝑍±)
981
+ can be regarded as the envelope of this family of parabolas.
982
+ The bifurcation diagram Σ is the union of Σ0 = {𝑍±} and Σ1 which consists of
983
+ the images of singular points of rank 1. Let us rewrite conditions (19) describing
984
+ Σ1 in a more explicit parametric form.
985
+ 13
986
+
987
+ The relation 𝜕𝑊𝑎,𝑔
988
+ 𝜕𝑥 (𝑘, 𝑥) = 0 from Theorem 4 is exactly equation (15). In
989
+ notation (20) it can be written as
990
+ 𝑎𝑥
991
+ (𝑎 − 𝑥2)2 𝑘2 + 𝐵′
992
+ 𝑎,𝑔(𝑥)𝑘 + 𝐶′
993
+ 𝑎,𝑔(𝑥) = 0,
994
+ (21)
995
+ where
996
+ 𝐵′
997
+ 𝑎,𝑔(𝑥) = 𝜕𝑔3
998
+ 𝜕𝑥 − 𝑔(𝑎 + 𝑥2)
999
+ (𝑎 − 𝑥2)2 ,
1000
+ 𝐶′
1001
+ 𝑎,𝑔(𝑥) =
1002
+ 𝑔2𝑥
1003
+ (𝑎 − 𝑥2)2 + 𝑥𝑔2
1004
+ 1 − (𝑎 − 𝑥2)𝑔1
1005
+ 𝜕𝑔1
1006
+ 𝜕𝑥 + 𝑔𝜕𝑔2
1007
+ 𝜕𝑥 + 𝜕𝑉
1008
+ 𝜕𝑥 .
1009
+ Equation (21) is quadratic with respect to 𝑘 for 𝑥 ̸= 0 (it is reduced to linear
1010
+ equation for 𝑥 = 0). Its discriminant equals
1011
+ 𝐷𝑎,𝑔(𝑥) = (𝐵′
1012
+ 𝑎,𝑔(𝑥))2 −
1013
+ 4𝑎𝑥
1014
+ (𝑎−𝑥2)2 𝐶′
1015
+ 𝑎,𝑔(𝑥) =
1016
+ 1
1017
+ (𝑎−𝑥2)2
1018
+ (︁
1019
+ 𝑔 − (𝑎+𝑥2)𝜕𝑔3
1020
+ 𝜕𝑥
1021
+ )︁2
1022
+
1023
+
1024
+ 4𝑎𝑥
1025
+ (𝑎 − 𝑥2)2
1026
+ (︁
1027
+ 𝑥𝑔2
1028
+ 1 − (𝑎 − 𝑥2)𝑔1
1029
+ 𝜕𝑔1
1030
+ 𝜕𝑥 + 𝑔𝜕𝑔2
1031
+ 𝜕𝑥 + 𝑥
1032
+ (︁𝜕𝑔3
1033
+ 𝜕𝑥
1034
+ )︁2
1035
+ + 𝜕𝑉
1036
+ 𝜕𝑥
1037
+ )︁
1038
+ .
1039
+ In order to describe a parametrization of bifurcational curves consider the set
1040
+ Θ𝑎,𝑔 = {𝑥 ∈ R | 𝑥2 < 𝑎, 𝑥 ̸= 0, 𝐷𝑎,𝑔(𝑥) ≥ 0}.
1041
+ Each its (arcwise) connected component is an interval, which is either non-dege-
1042
+ nerate (i.e., has a non-zero length) or degenerate (i.e., is a point). Denote the set
1043
+ of all non-degenerate intervals by ℐ𝑎,𝑔 and denote the set of degenerate intervals
1044
+ by Θ0
1045
+ 𝑎,𝑔. Clearly, Θ𝑎,𝑔 ∖ Θ0
1046
+ 𝑎,𝑔 = ⋃︀
1047
+ 𝐼∈ℐ𝑎,𝑔 𝐼.
1048
+ Since Θ𝑎,𝑔 is, evidently, a closed subset of (−√𝑎, 0) ∪ (0, √𝑎), intervals from
1049
+ ℐ𝑎,𝑔 contain their endpoints except for the case when an endpoint is ±√𝑎 or 0.
1050
+ Thus, the set Σ1 in the plane R2(ℎ, 𝑘) contains curves defined on intervals
1051
+ from ℐ𝑎,𝑔, “separate” points corresponding to points from Θ0
1052
+ 𝑎,𝑔, and, possibly,
1053
+ something else corresponding to 𝑥 = 0. An explicite description of Σ1 is given in
1054
+ the following statement.
1055
+ Theorem 5. The set Σ1 for the integrable Hamiltonian system with Hamiltonian
1056
+ (4) and the integral 𝐾 = 𝑆3 on orbit (2) is the union of the following parametric
1057
+ curves and points on the plane R2(ℎ, 𝑘):
1058
+ 1) the pairs of curves (ℎ±(𝑥), 𝑘±(𝑥)), 𝑥 ∈ 𝐼, for each 𝐼 ∈ ℐ𝑎,𝑔, where
1059
+ ℎ±(𝑥) = (𝑔−𝑘±(𝑥)𝑥)2
1060
+ 2(𝑎 − 𝑥2)
1061
+ +𝑘2
1062
+ ±(𝑥)
1063
+ 2𝛽
1064
+ − (𝑎−𝑥2)𝑔2
1065
+ 1
1066
+ 2
1067
+ + 𝑔2𝑔 + 𝑔3𝑘±(𝑥) + 𝑉,
1068
+ 𝑘±(𝑥) = 𝑔(𝑎 + 𝑥2)
1069
+ 2𝑎𝑥
1070
+ − (𝑎 − 𝑥2)2
1071
+ 2𝑎𝑥
1072
+ 𝜕𝑔3
1073
+ 𝜕𝑥 ± (𝑎 − 𝑥2)
1074
+ 2𝑎𝑥
1075
+ ×
1076
+ ×
1077
+ √︂(︁
1078
+ 𝑔−(𝑎+𝑥2)𝜕𝑔3
1079
+ 𝜕𝑥
1080
+ )︁2
1081
+ −4𝑎𝑥
1082
+ (︁
1083
+ 𝑥𝑔2
1084
+ 1−(𝑎−𝑥2)𝑔1
1085
+ 𝜕𝑔1
1086
+ 𝜕𝑥 +𝑔𝜕𝑔2
1087
+ 𝜕𝑥 +𝑥
1088
+ (︁𝜕𝑔3
1089
+ 𝜕𝑥
1090
+ )︁2
1091
+ +𝜕𝑉
1092
+ 𝜕𝑥
1093
+ )︁
1094
+ ;
1095
+ (22)
1096
+ 2) the points (ℎ(𝑥0), 𝑘(𝑥0)) for each 𝑥0 ∈ Θ0
1097
+ 𝑎,𝑔, where
1098
+ ℎ(𝑥0) = (𝑔−𝑘(𝑥0)𝑥0)2
1099
+ 2(𝑎 − 𝑥2
1100
+ 0)
1101
+ + 𝑘2(𝑥0)
1102
+ 2𝛽
1103
+ − (𝑎−𝑥2
1104
+ 0)𝑔2
1105
+ 1
1106
+ 2
1107
+ + 𝑔2𝑔 + 𝑔3𝑘(𝑥0) + 𝑉,
1108
+ 𝑘(𝑥0) = 𝑔(𝑎 + 𝑥2
1109
+ 0)
1110
+ 2𝑎𝑥0
1111
+ − (𝑎 − 𝑥2
1112
+ 0)2
1113
+ 2𝑎𝑥0
1114
+ 𝜕𝑔3
1115
+ 𝜕𝑥 (𝑎, 𝑥0),
1116
+ 14
1117
+
1118
+ and 𝑔1, 𝑔2, 𝑔3, 𝑉 in these formulas mean the values of the corresponding functions
1119
+ at the point (𝑎, 𝑥0);
1120
+ 3) for the orbits 𝑀4
1121
+ 𝑎,𝑔, where 𝑔 ̸= 𝑎 𝜕𝑔3
1122
+ 𝜕𝑥 (𝑎, 0), the point (ℎ0, 𝑘0), where
1123
+ ℎ0 = 𝑔2
1124
+ 2𝑎 + 𝑘2
1125
+ 0
1126
+ 2𝛽 − 𝑎𝑔2
1127
+ 1(𝑎, 0)
1128
+ 2
1129
+ + 𝑔2(𝑎, 0)𝑔 + 𝑔3(𝑎, 0)𝑘0 + 𝑉 (𝑎, 0),
1130
+ 𝑘0 = 𝑎𝑔1(𝑎, 0) 𝜕𝑔1
1131
+ 𝜕𝑥 (𝑎, 0) − 𝑔 𝜕𝑔2
1132
+ 𝜕𝑥 (𝑎, 0) − 𝜕𝑉
1133
+ 𝜕𝑥 (𝑎, 0)
1134
+ 𝜕𝑔3
1135
+ 𝜕𝑥 (𝑎, 0) − 𝑔
1136
+ 𝑎
1137
+ ;
1138
+ 4) for the orbits 𝑀4
1139
+ 𝑎,𝑔, where 𝑔 = 𝑎 𝜕𝑔3
1140
+ 𝜕𝑥 (𝑎, 0) and 𝑎 satisfies the relation
1141
+ 𝑎𝑔1(𝑎, 0)𝜕𝑔1
1142
+ 𝜕𝑥 (𝑎, 0) − 𝑎𝜕𝑔3
1143
+ 𝜕𝑥 (𝑎, 0)𝜕𝑔2
1144
+ 𝜕𝑥 (𝑎, 0) − 𝜕𝑉
1145
+ 𝜕𝑥 (𝑎, 0) = 0,
1146
+ the parabola
1147
+ ℎ = 𝑘2
1148
+ 2𝛽 +𝑔3(𝑎, 0)𝑘+𝑎
1149
+ 2
1150
+ (︁𝜕𝑔3
1151
+ 𝜕𝑥 (𝑎, 0)
1152
+ )︁2
1153
+ −𝑎
1154
+ 2𝑔1(𝑎, 0)+𝑎𝜕𝑔3
1155
+ 𝜕𝑥 (𝑎, 0)𝑔2(𝑎, 0)+𝑉 (𝑎, 0).
1156
+ Proof. All formulas in cases 1)–4) follow from equations (19) and expression (18).
1157
+ The cases 1) and 2) correspond to solutions of quadratic equation (21) for each
1158
+ parameters 𝑥 from Θ𝑎,𝑔, but in the case 2), when 𝑥 ∈ Θ0
1159
+ 𝑎,𝑔, the corresponding
1160
+ discriminant 𝐷𝑎,𝑔(𝑥) vanishes, since 𝐷𝑎,𝑔 is a continuous function on (−√𝑎, √𝑎).
1161
+ The case 3) corresponds to 𝑥 = 0 in equation (21). If 𝐵′
1162
+ 𝑎,𝑔(0) = 𝜕𝑔3
1163
+ 𝜕𝑥 (𝑎, 0)− 𝑔
1164
+ 𝑎 ̸=
1165
+ 0, then −𝐶′
1166
+ 𝑎,𝑔(0)/𝐵′
1167
+ 𝑎,𝑔(0) is the unique solution 𝑘0 of linear equation (21) for 𝑥 = 0,
1168
+ and we obtain the point (ℎ0, 𝑘0) in the case 3). Note that if 𝐵′
1169
+ 𝑎,𝑔(0) ̸= 0, then
1170
+ the discriminant 𝐷𝑎,𝑔(𝑥) is positive on some interval (−𝜀, 𝜀) and there are two
1171
+ bifurcational curves (22) defined on (−𝜀, 0) and (0, 𝜀) which tend to the point
1172
+ (ℎ0, 𝑘0) as 𝑥 → 0 and form one smooth bifurcational curve glued from two curves
1173
+ at this point.
1174
+ The case 4) also corresponds to 𝑥 = 0, but the conditions on 𝑔 and 𝑎 in the
1175
+ case 4) are equivalent to the conditions 𝐵′
1176
+ 𝑎,𝑔(0) = 𝐶′
1177
+ 𝑎,𝑔(0) = 0, which imply that
1178
+ an arbitrary 𝑘 is a solution of (21) for 𝑥 = 0.
1179
+ Thus, we obtain the required
1180
+ parabola in the case 4).
1181
+ Note that for arbitrary functions 𝑔1, 𝑔2, 𝑔3, 𝑉 the behavior of bifurcational
1182
+ curves described in Theorem 5 by explicit formulas can be fairly complicated.
1183
+ They can have many cusps, intersect one another or coincide on some their arcs.
1184
+ Some general properties concerning the behavior of bifurcational curves are de-
1185
+ scribed in the following statement.
1186
+ Corollary 3. 1) If 𝐽 ⊂ Θ𝑎,𝑔 is an open interval such that 𝐷𝑎,𝑔|𝐽 > 0, then
1187
+ the bifurcational curve (ℎ±(𝑥), 𝑘±(𝑥)) defined on 𝐽 by formulas (22) is a smooth
1188
+ parametric curve which is regular for all 𝑥, where ���𝑘±
1189
+ 𝑑𝑥 (𝑥) ̸= 0.
1190
+ 2) Exactly two arcs of the bifurcational curves described in the items 1) and 4)
1191
+ of Theorem 5 tend to infinity such that ℎ(𝑘) ∼ 𝑘2
1192
+ 2𝛽 (one arc for 𝑘 → +∞ and one
1193
+ arc for 𝑘 → −∞). For the curves defined by formulas (22) these arcs correspond
1194
+ to 𝑥 → 0.
1195
+ 3) For each singular point 𝑃± of rank 0 which is of center-center type (by
1196
+ Theorem 2 there can be 0, 1, or 2 such points) there are exactly two arcs of the
1197
+ bifurcational curves described by formulas (22) which tend to the corresponding
1198
+ point 𝑍± described in Theorem 4 as 𝑥 → ±√𝑎.
1199
+ 15
1200
+
1201
+ Proof. Since ℎ = ℎ±(𝑥), 𝑘 = 𝑘±(𝑥) satisfy equations (19), we have
1202
+ 𝑑ℎ±
1203
+ 𝑑𝑥 (𝑥) = 𝜕𝑊𝑎,𝑔
1204
+ 𝜕𝑘
1205
+ (𝑘±(𝑥), 𝑥)𝑑𝑘±
1206
+ 𝑑𝑥 (𝑥).
1207
+ Therefore, the parametric curve (22) is regular iff 𝑑𝑘±
1208
+ 𝑑𝑥 (𝑥) ̸= 0 and can have sin-
1209
+ gularities (for example, cusps) only at points, where 𝑑𝑘±
1210
+ 𝑑𝑥 = 0.
1211
+ Items 2) and 3) follow from formulas (22) by investigating the behavior of
1212
+ the parametric curves (ℎ±(𝑥), 𝑘±(𝑥)) as 𝑥 tends to 0 or ±√𝑎. Note that 𝐷𝑎,𝑔 is
1213
+ positive in a neighborhood of the points ±√𝑎 iff 𝑞 from Corollary 1 is positive for
1214
+ 𝑅3 = ±√𝑎.
1215
+ 5
1216
+ Liouville tori bifurcations
1217
+ All basic definitions and facts about Liouville tori bifurcations can be found in [1].
1218
+ Theorem 6. A singular point of rank 1 (described in Theorem 3 and Corollary 2)
1219
+ is non-degenerate iff 𝜕2𝑊𝑎,𝑔(𝑘,𝑥)
1220
+ 𝜕𝑥2
1221
+ ̸= 0, where 𝑊𝑎,𝑔(𝑘, 𝑥) is given by (18). Moreover,
1222
+ • if 𝜕2𝑊𝑎,𝑔(𝑘,𝑥)
1223
+ 𝜕𝑥2
1224
+ > 0, then the type of the point is elliptic;
1225
+ • if 𝜕2𝑊𝑎,𝑔(𝑘,𝑥)
1226
+ 𝜕𝑥2
1227
+ < 0, then the type of the point is hyperbolic.
1228
+ The non-degeneracy and the type of a singular point 𝑦 of rank 1 are completely
1229
+ determined by the spectrum of linearization of the Hamiltonian vector field which
1230
+ is a (non-trivial) linear combination of sgrad 𝐻 and sgrad 𝐾 vanishing at 𝑦. Thus,
1231
+ Theorem 6 follows from the following statement.
1232
+ Lemma 4. Each point 𝑦 of rank 1 (described in Theorem 3 and Corollary 2) is
1233
+ a singular point for the vector field sgrad 𝐹𝑦, where 𝐹𝑦 = 𝐻 − 𝜆𝐾 and 𝜆 = 𝜕𝐻
1234
+ 𝜕𝑘
1235
+ ⃒⃒
1236
+ 𝑦.
1237
+ The spectrum of the linearization 𝐴𝐹𝑦 = Lin(sgrad 𝐹𝑦) at the point 𝑦 consists of
1238
+ 4 zeroes and
1239
+ 𝜇± = ±𝑖
1240
+ √︂
1241
+ 𝜕2𝑊𝑎,𝑔(𝑘, 𝑥)
1242
+ 𝜕𝑥2
1243
+ .
1244
+ Proof. The proof is by direct calculation. The Hamiltonian vector fields sgrad 𝐻
1245
+ and sgrad 𝐾 in the coordinates (𝑥, 𝑚, 𝜙, 𝑘, 𝑎, 𝑔) from Lemma 3 are given by (16),
1246
+ and at a point 𝑦 ∈ e(3)* of rank 1 conditions (17) are fulfilled. Hence for the
1247
+ function 𝐹𝑦 = 𝐻 − 𝜆𝐾, where 𝜆 = 𝜕𝐻
1248
+ 𝜕𝑘
1249
+ ⃒⃒
1250
+ 𝑦, we have sgrad𝑦 𝐹𝑦 = 0, and therefore
1251
+ the linearization 𝐴𝐹𝑦 of the field
1252
+ sgrad 𝐹𝑦 =
1253
+ (︁
1254
+ (𝑎 − 𝑥2)𝜕𝐻
1255
+ 𝜕𝑚, −(𝑎 − 𝑥2)𝜕𝐻
1256
+ 𝜕𝑥 , 𝜕𝐻
1257
+ 𝜕𝑘 − 𝜆, 0, 0, 0
1258
+ )︁
1259
+ at the point 𝑦 is well-defined. Taking into account conditions (17), we get the
1260
+ following equation for the spectrum of 𝐴𝐹𝑦:
1261
+ det(𝐴𝐹𝑦 − 𝜇 Id) = 𝜇4(𝑎 − 𝑥2)2 det
1262
+ (︃
1263
+ 𝜕2𝐻
1264
+ 𝜕𝑚𝜕𝑥 − 𝜇
1265
+ 𝜕2𝐻
1266
+ 𝜕𝑚2
1267
+ − 𝜕2𝐻
1268
+ 𝜕𝑥2
1269
+ − 𝜕2𝐻
1270
+ 𝜕𝑥𝜕𝑚 − 𝜇
1271
+ )︃
1272
+ = 0.
1273
+ 16
1274
+
1275
+ Thus the non-zero eigenvalues of 𝐴𝐹𝑦 are
1276
+ 𝜇± = ±
1277
+ √︂(︁ 𝜕2𝐻
1278
+ 𝜕𝑥𝜕𝑚
1279
+ )︁2
1280
+ − 𝜕2𝐻
1281
+ 𝜕𝑥2
1282
+ 𝜕2𝐻
1283
+ 𝜕𝑚2 .
1284
+ (23)
1285
+ For the function 𝐻 given by (13) we have
1286
+ 𝜕2𝐻
1287
+ 𝜕𝑚2 =
1288
+ 1
1289
+ 𝑎 − 𝑥2 ,
1290
+ 𝜕2𝐻
1291
+ 𝜕𝑥𝜕𝑚 = 𝜕𝑔1
1292
+ 𝜕𝑥 (𝑎, 𝑥) +
1293
+ 2𝑚𝑥
1294
+ (𝑎 − 𝑥2)2 ,
1295
+ 𝜕2𝐻
1296
+ 𝜕𝑥2 = (𝑔2 + 𝑎𝑘2 + 𝑚2)(𝑎 + 3𝑥2) − 2𝑔𝑘𝑥(𝑥2 + 3𝑎)
1297
+ (𝑎 − 𝑥2)3
1298
+ +
1299
+ +𝑚𝜕2𝑔1
1300
+ 𝜕𝑥2 (𝑎, 𝑥) + 𝑔𝜕2𝑔2
1301
+ 𝜕𝑥2 (𝑎, 𝑥) + 𝑘𝜕2𝑔3
1302
+ 𝜕𝑥2 (𝑎, 𝑥) + 𝜕2𝑉
1303
+ 𝜕𝑥2 (𝑎, 𝑥).
1304
+ (24)
1305
+ Since, by Theorem 3, at a singular point we have 𝑚 = −(𝑎−𝑥2)𝑔1(𝑎, 𝑥), equalities
1306
+ (24) can be rewritten as
1307
+ 𝜕2𝐻
1308
+ 𝜕𝑚2 =
1309
+ 1
1310
+ 𝑎 − 𝑥2 ,
1311
+ 𝜕2𝐻
1312
+ 𝜕𝑥𝜕𝑚 = 𝜕𝑔1
1313
+ 𝜕𝑥 (𝑎, 𝑥) − 2𝑥𝑔1(𝑎, 𝑥)
1314
+ 𝑎 − 𝑥2
1315
+ ,
1316
+ 𝜕2𝐻
1317
+ 𝜕𝑥2 = 𝜕2𝑊𝑎,𝑔(𝑘, 𝑥)
1318
+ 𝜕𝑥2
1319
+ + (𝑎 − 𝑥2)
1320
+ (︁𝜕𝑔1
1321
+ 𝜕𝑥 (𝑎, 𝑥) − 2𝑥𝑔1(𝑎, 𝑥)
1322
+ 𝑎 − 𝑥2
1323
+ )︁2
1324
+ ,
1325
+ (25)
1326
+ where 𝑊𝑎,𝑔(𝑘, 𝑥) is given by (18). Substituting expressions (25) into formula (23)
1327
+ we get the desired expression for 𝜇±.
1328
+ Lemma 4 and, consequently, Theorem 6 are proved.
1329
+ Theorem 7. The only possible non-degenerate Liouville tori bifurcations for the
1330
+ isoenergy surfaces 𝑄3 of the integrable Hamiltonian system with Hamiltonian (4)
1331
+ and the integral 𝐾 = 𝑆3 on orbit (2) are the so-called 𝐴 and 𝑉𝑘 bifurcations. In
1332
+ particular, if there is only one singular circle in a fiber, then the bifurcation is
1333
+ either 𝐴 or 𝐵.
1334
+ Proof. There is only one elliptic bifurcation (of type 𝐴), thus we consider hy-
1335
+ perbolic bifurcations.
1336
+ Since all critical points of rank 1 satisfy the condition
1337
+ 𝑅2
1338
+ 1 + 𝑅2
1339
+ 2 ̸= 0, we can work in the coordinates (𝑥, 𝑚, 𝜙, 𝑘, 𝑎, 𝑔).
1340
+ Consider the inverse image of a point (ℎ0, 𝑘0) under the momentum mapping
1341
+ 𝑀4
1342
+ 𝑎,𝑔 → R2(ℎ, 𝑘). Then 𝜙 is arbitrary and 𝑚 is given by
1343
+ (𝑚 + (𝑎 − 𝑥2)𝑔1(𝑎, 𝑥))2
1344
+ 2(𝑎 − 𝑥2)
1345
+ = ℎ0 − 𝑊𝑎,𝑔(𝑘0, 𝑥),
1346
+ (26)
1347
+ where 𝑥 satisfies the condition ℎ0 ≥ 𝑊𝑎,𝑔(𝑘0, 𝑥).
1348
+ Thus any connected component of a singular fiber for a non-degenerate sin-
1349
+ gularity is a product of 𝑆1 and a wedge sum of 𝑘 circles as in Figure 1. More
1350
+ precisely, the set in the plane (𝑚, 𝑥) given by equation (26) is homeomorphic to
1351
+ the union of circles that are joined at the points ℎ0 = 𝑊𝑎,𝑔(𝑘0, 𝑥).
1352
+ Since the singularity is non-degenerate, this is precisely the bifurcation for the
1353
+ 𝑉𝑘 atom. Theorem 7 is proved.
1354
+ 17
1355
+
1356
+ Figure 1: Atom 𝑉𝑘.
1357
+ 6
1358
+ Isoenergy surfaces
1359
+ For a Hamiltonian function 𝐻 on e(3)* which is a positive definite quadratic
1360
+ form in S, the topology of isoenergy surfaces is completely determined by their
1361
+ projections on the Poisson shere (for details see [1]). By Theorem 2, the projection
1362
+ is invariant under rotation around the 𝑅3-axis. As a direct consequence we get
1363
+ the following statement.
1364
+ Theorem 8. Any isoenergy surface 𝑄3 of the integrable Hamiltonian system with
1365
+ Hamiltonian (4) and the integral 𝐾 = 𝑆3 on orbit (2) is either RP3 or a disjoint
1366
+ union of 𝑘 products 𝑆1 × 𝑆2 and not more than two spheres 𝑆3.
1367
+ Proof. If the projection of 𝑄3 on the Poisson sphere is surjective, then 𝑄3 = RP3.
1368
+ Otherwise the image of the projection is the unioun of 𝑙 rings and not more than
1369
+ two disks with centers in the poles R = (0, 0, 𝑅3).
1370
+ Each ring corresponds to
1371
+ 𝑆1 × 𝑆2 and each disk to 𝑆3.
1372
+ ACKNOWLEDGMENTS
1373
+ This work was supported by the Russian Sci-
1374
+ ence Foundation, project no. 17-11-01303.
1375
+ References
1376
+ [1] A.V. Bolsinov and A.T. Fomenko, Integrable Hamiltonian Systems: Geometry,
1377
+ Topology, Classification (CRC, Boca Raton, FL, 2004).
1378
+ [2] A.V. Borisov and I.S. Mamaev, Rigid body dynamics (NIC Regular Chaotic
1379
+ Dynamics,Moscow, Izhevsk, 2001) [in Russian].
1380
+ [3] A. A. Oshemkov, “Fomenko invariants for the main integrable cases of the rigid
1381
+ body motion equations”, in Topological Classification of Integrable Systems,
1382
+ Adv. Sov. Math. 6, 67–146 (1991).
1383
+ [4] A. V. Bolsinov, A. M. Izosimov, A. Yu. Konjaev, and A. A. Oshemkov, “Algebra
1384
+ and topology of integrable systems. Research problems”, Tr. Sem. Vektor.
1385
+ Tenzor. Anal. 28, 119–191 (2012).
1386
+ [5] E.O. Kantonistova, “Topological classification of integrable Hamiltonian sys-
1387
+ tems in a potential field on surfaces of revolution”, Mathematics, 207, 358–399
1388
+ (2016).
1389
+ 18
1390
+
1391
+ 11/1
1392
+ OXOX .X.[6] B.S. Kruglikov, Topological classification of Leggett systems in an integrable
1393
+ case for 3He-A, Uspekhi Mat. Nauk, 46: 179–181 (1991).
1394
+ [7] M.Yu. Ivochkin, Mat. Sb., 199:6 (2008), 85–104 Topological analysis of the
1395
+ motion of an ellipsoid on a smooth plane, Mat. Sb., 199, 871–890 (2008).
1396
+ 19
1397
+
39E4T4oBgHgl3EQf0g2Q/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,352 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf,len=351
2
+ page_content='Integrable systems with linear periodic integral for the Lie algebra e(3) I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
3
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
4
+ page_content=' Kozlov∗ and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
5
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
6
+ page_content=' Oshemkov† Abstract Integrable systems with a linear periodic integral for the Lie algebra e(3) are considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
7
+ page_content=' One investigates singulariries of the Liouville foliation, bifurcation diagram of the momentum mapping, transformations of Liouville tori, topology of isoenergy surfaces and other topological properties of such systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
8
+ page_content=' Keywords and phrases: Integrable Hamiltonian system, periodic integral, bifurcation diagram, momentum mapping, Liouville tori 1 Introduction In this paper we study some topological properties of integrable Hamiltonian systems with an 𝑆1-symmetry given by the Euler equations for the Lie algebra e(3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
9
+ page_content=' Probably, the most well-known example of such a system is the classical Lagrange top.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
10
+ page_content=' Roughly speaking, we consider a “generalized” Lagrange top which Hamiltonian has an arbitrary potential function and linear terms in momenta, but possesses the same 𝑆1-symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
11
+ page_content=' We are interested in local and global topological properties of the Liouville foliation defined by the system under consideration, namely, the structure of bi- furcation diagram and transformations of Liouville tori for critical values of the momentum mapping, non-degeneracy of equilibria and other singular points, the topology of isoenergy surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
12
+ page_content=' Note that there is a number of integrable systems with periodic linear inte- gral which are well known in mechanics and mathematical physics, which phase topology were studied by various authors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
13
+ page_content=' In particular, there are Lagrange and Kirchhoff integrable cases in rigid body dynamics (for the description of their topology see [1–3]), the integrable case of Leggett equations describing dynamics of spin in the superfluid 3He (the bifurcation diagram and Fomenko invariants for this system are described in [6]), the integrable case of the motion of heavy ellipsoid on a smooth horizontal plane (topological invariants for this system were found in [7]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
14
+ page_content=' ∗No Affiliation, E-mail: ikozlov90@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
15
+ page_content='com †Faculty of Mechanics and Mathematics, Moscow State University, Moscow, 119991 Russia, E-mail: a@oshemkov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
16
+ page_content='ru 3 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
17
+ page_content='05283v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
18
+ page_content='DG] 12 Jan 2023 Topological properties of all these systems are quite similar because of an 𝑆1- symmetry which imposes strong restrictions on the structure of their singularities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
19
+ page_content=' Therefore, they can be studied under a uniform scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
20
+ page_content=' In this paper we perform such an investigation for an example of Hamiltonian possessing a periodic linear integral on e(3)*.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
21
+ page_content=' Note that the problem of topological investigation of integrable systems with S1-action is discussed in paper [4], which contains a list of various open problems in the theory of integrable systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
22
+ page_content=' Apart from the systems on e(3)* considered in this paper there are other integrable systems with 𝑆1-symmetry, which were also studied by various authors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
23
+ page_content=' For instance, natural mechanical systems on surfaces of revolution homeomorphic to the sphere were studied recently in [5] (see also [1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
24
+ page_content=' Another example is the classical Euler case in the rigid body dynamics, where the 𝑆1-action is given not by a linear, but by a quadratic integral.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
25
+ page_content=' The results obtained in this paper show in particular that there are some differences between the topological properties of the systems under consideration and other cases with an 𝑆1-symmetry (for example, the one investigated in [5] or the Euler case).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
26
+ page_content=' The article is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
27
+ page_content=' In Section 2 we describe the systems under consideration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
28
+ page_content=' We start the analysis with the study of non-deneracy and types of singular points of rank 0 in Section 3 (Corollary 1 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
29
+ page_content=' In Section 4 we find singular points of rank 1 (Theorem 3) and describe the bifurcation diagrams of the system (Theorems 4 and 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
30
+ page_content=' In Section 5 we determine types of non-degenerate points of rank 1 (Theorem 6) and specify the corresponding Liouville tori bifurcations (Theorem 7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
31
+ page_content=' Finally, in Section 6 we list all possible isoenergy surfaces for the system (Theorem 8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
32
+ page_content=' 2 Description of the system Let us recall that the Lie–Poisson bracket for the Lie algebra e(3) is given by the formulas {𝑆𝑖, 𝑆𝑗} = 𝜀𝑖𝑗𝑘𝑆𝑘, {𝑆𝑖, 𝑅𝑗} = 𝜀𝑖𝑗𝑘𝑅𝑘, {𝑅𝑖, 𝑅𝑗} = 0, (1) where 𝑆1, 𝑆2, 𝑆3, 𝑅1, 𝑅2, 𝑅3 are linear coordinates on the dual space e(3)* for the Lie algebra e(3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
33
+ page_content=' We will use the notation S = (𝑆1, 𝑆2, 𝑆3) and R = (𝑅1, 𝑅2, 𝑅3) and also ⟨·,·⟩ and × for the scalar and vector product of 3-dimensional vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
34
+ page_content=' A Hamiltonian system with Hamiltonian 𝐻 is given by the Euler equations ˙𝑥𝑖 = {𝑥𝑖, 𝐻}, which for the Lie algebra e(3) take the form ˙S = 𝜕𝐻 𝜕S × S + 𝜕𝐻 𝜕R × R, ˙R = 𝜕𝐻 𝜕S × R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
35
+ page_content=' Bracket (1) has two Casimir functions: 𝐹1 = ⟨R, R⟩, 𝐹2 = ⟨S, R⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
36
+ page_content=' Their regular common level surfaces 𝑀4 𝑎,𝑔 = {(S, R) | 𝐹1(S, R) = 𝑎, 𝐹2(S, R) = 𝑔, }, 𝑎 > 0, (2) 4 are the sympectic leaves of bracket (1) and are the orbits of the coadjoint repsre- sentation for the Lie algebra e(3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
37
+ page_content=' We are interested in integrable Hamiltonian systems on the orbits 𝑀4 𝑎,𝑔 for which some linear function on e(3)* is a first integral defining an 𝑆1-action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
38
+ page_content=' Let us describe several examples of such systems from mechanics and math- ematical physics, which are integrable cases of the Euler equations for the Lie algebra e(3) with Hamiltonian 𝐻 and integral 𝐾 (an explanation of physical sense for parameters and variables of these systems can be found in [1,2,6,7]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
39
+ page_content=' 1) The Lagrange case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
40
+ page_content=' This is a symmetric top with two equal moments of inertia which center of gravity lies on the symmetry axis: 𝐻 = 𝑆2 1 𝐴 + 𝑆2 2 𝐴 + 𝑆2 3 𝐵 − 𝑝𝑅3, 𝐾 = 𝑆3, where 𝐴, 𝐵, 𝑝 = const.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
41
+ page_content=' 2) The Kirchhoff case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
42
+ page_content=' This system describes the motion of a dynamically symmetric rigid body in an ideal fluid: 𝐻 = 𝐴𝑆2 1 + 𝐴𝑆2 2 + 𝑎𝑆2 3 + 2(𝐵𝑆1𝑅1 + 2𝐵𝑆2𝑅2 + 𝑏𝑆3𝑅3)+ + 𝐶𝑅2 1 + 𝐶𝑅2 2 + 𝑐𝑅2 3, 𝐾 = 𝑆3, where 𝐴, 𝑎, 𝐵, 𝑏, 𝐶, 𝑐 = const.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
43
+ page_content=' 3) The following integrable case for the Leggett system describing the dynamics of spin in the superfluid 3He: 𝐻 = 𝑆2 1 + 𝑆2 2 + 𝑆2 3 − 𝛾𝑆3 − 𝑅2 3, 𝐾 = 𝑆3, where 𝛾 = const.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
44
+ page_content=' 4) Integrable system describing the motion of a dynamically and geometrically symmetric heavy ellipsoid on a smooth horizontal plane: 𝐻 = 𝑆2 1 + 𝑆2 2 + 𝐴(𝑆1𝑅1 + 𝑆2𝑅2)2 2𝑏(1 + 𝐴(𝑅2 1 + 𝑅2 2)) + 𝑆2 3 2𝐽 + √︁ 1 + 𝑐𝑅2 3 + 𝑠𝑅3, 𝐾 = 𝑆3 where 𝐴 = 𝑐𝑅2 3 1 + 𝑐𝑅2 3 , 𝑏, 𝑐, 𝐽, 𝑠 = const.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
45
+ page_content=' In all these examples the additional integral is the function 𝑆3 on e(3)*.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
46
+ page_content=' Let us explain that this is a general case if we require that the integral is linear and periodic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
47
+ page_content=' Assertion 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
48
+ page_content=' Let 𝐾 be a linear functions on e(3)* which Hamiltonian flow sgrad 𝐾 defined by bracket (1) is periodic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
49
+ page_content=' Then there is a linear change of variables pre- serving the bracket (1) taking the function 𝐾 to 𝑐𝑆3, where 𝑐 is some constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
50
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
51
+ page_content=' Let 𝐾 = 𝛼1𝑆1 + 𝛼2𝑆2 + 𝛼3𝑆3 + 𝛽1𝑅1 + 𝛽2𝑅2 + 𝛽3𝑅3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
52
+ page_content=' For an arbitrary or- thogonal matrix 𝐴 the transformation Φ𝐴 : (S, R) → (𝐴S, 𝐴R) preserves bracket (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
53
+ page_content=' If 𝛼1 = 𝛼2 = 𝛼3 = 0, then we can choose a matrix 𝐴 such that Φ𝐴 takes the function 𝐾 to 𝜆𝑅3, where 𝜆 = const.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
54
+ page_content=' It is clear that the Hamilto- nian flow of the function 𝜆𝑅3 is not periodic, since the trajectories of the field sgrad 𝑅3 = (−𝑅2, 𝑅1, 0, 0, 0, 0) are straight lines in e(3)*.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
55
+ page_content=' If there are non-zero 𝛼𝑖, then applying an appropriate transformation Φ𝐴 we can transform 𝐾 to a function of the form 𝑐𝑆3 + 𝛽′ 1𝑅1 + 𝛽′ 2𝑅2 + 𝛽′ 3���3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
56
+ page_content=' It is easy to check that for any vector v the transformations Ψv : (S, R) → (S + v × R, R) 5 also preserve bracket (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
57
+ page_content=' This allows one to transform the function 𝐾 to the form 𝑐𝑆3 + 𝜆𝑅3, where 𝑐 ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
58
+ page_content=' Now consider the function 𝐾 = 𝑆3 + 𝜆𝑅3 and determine for which 𝜆 the Hamiltonian flow of 𝐾 is periodic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
59
+ page_content=' Integral trajectories for the field sgrad 𝐾 = (−𝑆2 − 𝜆𝑅2, 𝑆1 + 𝜆𝑅1, 0, −𝑅2, 𝑅1, 0) can be explicitly written: 𝛾(𝑡) = ((𝑠1−𝜆𝑟2𝑡) cos 𝑡−(𝑠2+𝜆𝑟1𝑡) sin 𝑡, (𝑠2+𝜆𝑟1𝑡) cos 𝑡+(𝑠1−𝜆𝑟2𝑡) sin 𝑡, 𝑠3, 𝑟1 cos 𝑡 − 𝑟2 sin 𝑡, 𝑟2 cos 𝑡 + 𝑟1 sin 𝑡, 𝑟3), where 𝑠1, 𝑠2, 𝑠3, 𝑟1, 𝑟2, 𝑟3 are constants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
60
+ page_content=' It is clear from this formula that the trajectories are periodic only for 𝜆 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
61
+ page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
62
+ page_content=' It is well known that an action of any compact group can be linearized at a fixed point and that for an action of the circle 𝑆1 the corresponding tangent space can be represented as a sum of invariant two-dimensional subspaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
63
+ page_content=' Thus among all linear functions on e(3)* the periodic integrals are distiguished by the property that their linearization at any singular point is a unitary operator with respect to a complex structure on the tangent space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
64
+ page_content=' It also follows that up to the choice of the coordinate system and multipltication by a constant any periodic linear integral on e(3)* is 𝑆3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
65
+ page_content=' Further we will consider Hamiltonian systems for the Lie algebra e(3) which possess the first integral 𝐾 = 𝑆3 and which Hamiltonian 𝐻 is quadratic in 𝑆, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
66
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
67
+ page_content=', 𝐻 = 𝐴1𝑆2 1 + 𝐴2𝑆2 2 + 𝐴3𝑆2 3 + 𝑓1(R)𝑆1 + 𝑓2(R)𝑆2 + 𝑓3(R)𝑆3 + 𝑓4(R), (3) where 𝐴1, 𝐴2, 𝐴3 are arbitrary positive constants and 𝑓1, 𝑓2, 𝑓3, 𝑓4 are smooth functions of 𝑅1, 𝑅2, 𝑅3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
68
+ page_content=' First of all, let us rewrite Hamiltonian (3) in a more convient way using its commutativity with the function 𝑆3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
69
+ page_content=' Assertion 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
70
+ page_content=' Up to multiplication by a constant any Hamiltonian of the form (3) commuting with the function 𝐾 = 𝑆3 has the form 𝐻 = 1 2 (︁ 𝑆2 1 + 𝑆2 2 + 𝑆2 3 𝛽 )︁ + 𝑔1(R2, 𝑅3)(𝑆1𝑅2 − 𝑆2𝑅1)+ + 𝑔2(R2, 𝑅3)⟨S, R⟩ + 𝑔3(R2, 𝑅3)𝑆3 + 𝑉 (R2, 𝑅3), (4) where 𝛽 > 0 and the functions 𝑔1, 𝑔2, 𝑔3, 𝑉 depend only on R2 and 𝑅3 and are smooth if R2 ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
71
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
72
+ page_content=' The Hamiltonian vector field for the function 𝐾 is equal to sgrad 𝐾 = −𝑅2 𝜕 𝜕𝑅1 + 𝑅1 𝜕 𝜕𝑅2 − 𝑆2 𝜕 𝜕𝑆1 + 𝑆1 𝜕 𝜕𝑆2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
73
+ page_content=' Since {𝐻, 𝐾} = (sgrad 𝐾)𝐻 = 0, we get (sgrad 𝐾)𝐻 = 2(𝐴2 − 𝐴1)𝑆1𝑆2+ + (︁ −𝑅2 𝜕𝑓1 𝜕𝑅1 +𝑅1 𝜕𝑓1 𝜕𝑅2 +𝑓2(R) )︁ 𝑆1 + (︁ −𝑅2 𝜕𝑓2 𝜕𝑅1 +𝑅1 𝜕𝑓2 𝜕𝑅2 −𝑓1(R) )︁ 𝑆2+ + (︁ −𝑅2 𝜕𝑓3 𝜕𝑅1 + 𝑅1 𝜕𝑓3 𝜕𝑅2 )︁ 𝑆3 + (︁ −𝑅2 𝜕𝑓4 𝜕𝑅1 + 𝑅1 𝜕𝑓4 𝜕𝑅2 )︁ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
74
+ page_content=' 6 Hence, 𝐴1 = 𝐴2 (multiplying by a constant we can make both these constants equal to 1 2) and the four expressions in the brackets are equal to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
75
+ page_content=' In polar coordinates (𝜌, 𝜙) on the plane (𝑅1, 𝑅2) the vector field 𝜕 𝜕𝜙 is exactly −𝑅2 𝜕 𝜕𝑅1 + 𝑅1 𝜕 𝜕𝑅2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
76
+ page_content=' Therefore, 𝜕𝑓3 𝜕𝜙 = 0, 𝜕𝑓4 𝜕𝜙 = 0, 𝜕𝑓1 𝜕𝜙 = −𝑓2, 𝜕𝑓2 𝜕𝜙 = 𝑓1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
77
+ page_content=' The first two of these equations imply that 𝑓3 and 𝑓4 depend only on 𝜌 and 𝑅3 or, equivalently, 𝑓3(R) = 𝑔3(R2, 𝑅3) and 𝑓4(R) = 𝑉 (R2, 𝑅3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
78
+ page_content=' The latter two equations can be cosidered as a system of ODE with parameters 𝜌 and 𝑅3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
79
+ page_content=' Solving it, we obtain 𝑓1 = 𝑓11(𝜌, 𝑅3) cos 𝜙 + 𝑓12(𝜌, 𝑅3) sin 𝜙 = 𝑓11(𝜌, 𝑅3) 𝜌 𝑅1 + 𝑓12(𝜌, 𝑅3) 𝜌 𝑅2, 𝑓2 = −𝑓12(𝜌, 𝑅3) cos 𝜙+𝑓11(𝜌, 𝑅3) sin 𝜙 = −𝑓12(𝜌, 𝑅3) 𝜌 𝑅1+𝑓11(𝜌, 𝑅3) 𝜌 𝑅2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
80
+ page_content=' Since 𝜌 = √︀ 𝑅2 1 + 𝑅2 2 we get the desired form for the Hamiltonian 𝐻.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
81
+ page_content=' 3 Singularities of rank 0 It turns out that equilibria points for a Hamiltonian system on e(3)* possessing a linear periodic integral 𝐾 are exactly the points where sgrad 𝐾 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
82
+ page_content=' This gives the following simple description for singularities of rank 0 of such integrable Hamiltonian systems (not necessarily with Hamiltonian of the form (3)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
83
+ page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
84
+ page_content=' The set of singular points of rank 0 for an integrable Hamiltonian system on e(3)* with arbitrary Hamiltonian 𝐻 possessing the integral 𝐾 = 𝑆3 is the two-dimensional subspace {(0, 0, 𝑆3, 0, 0, 𝑅3)} (5) in e(3)*.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
85
+ page_content=' In particular, for each orbit 𝑀4 𝑎,𝑔 there are precisely two singular points of rank 0: (︁ 0, 0, ± 𝑔 √𝑎, 0, 0, ±√𝑎 )︁ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
86
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
87
+ page_content=' The Hamiltonian vector field of a function 𝑓 on e(3)* has the form sgrad 𝑓 = (︁𝜕𝑓 𝜕S × S + 𝜕𝑓 𝜕R × R, 𝜕𝑓 𝜕S × R )︁ , (6) and for the function 𝐾 = 𝑆3 we have sgrad 𝐾 = (−𝑆2, 𝑆1, 0, −𝑅2, 𝑅1, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
88
+ page_content=' There- fore, sgrad 𝐾 = 0 exactly at points (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
89
+ page_content=' Thus, points other than (5) can not be singular points of rank 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
90
+ page_content=' Let us prove that sgrad 𝐻 vanishes at points (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
91
+ page_content=' The functions 𝐻 and 𝐾 commute with respect to bracket (1), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
92
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
93
+ page_content=', 𝑑𝑦𝐻(sgrad𝑦 𝐾) = 0 for any point 𝑦 ∈ e(3)* (the index 𝑦 in 𝑑𝑦𝑓 or sgrad𝑦 𝑓 denotes the point at which the differential 7 or, respectively, skew-gradient of the function 𝑓 is taken).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
94
+ page_content=' Taking the differential of the function 𝑑𝑦𝐻(sgrad𝑦 𝐾) at any point 𝑦 = (0, 0, 𝑆3, 0, 0, 𝑅3), we get 𝐴* 𝐾(𝑑𝑦𝐻) = 0, (7) where 𝐴𝐾 is the linearization operator for the vector field sgrad 𝐾 at the point 𝑦, since sgrad𝑦 𝐾 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
95
+ page_content=' The matrix of the operator 𝐴𝐾 : e(3)* → e(3)* has the form ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ and therefore condition (7) implies that 𝜕𝐻 𝜕𝑆1 = 𝜕𝐻 𝜕𝑆2 = 𝜕𝐻 𝜕𝑅1 = 𝜕𝐻 𝜕𝑅2 = 0 at any point 𝑦 = (0, 0, 𝑆3, 0, 0, 𝑅3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
96
+ page_content=' Hence sgrad 𝐻 vanishes at points (5), since at a point 𝑦 = (0, 0, 𝑆3, 0, 0, 𝑅3) formula (6) becomes sgrad𝑦 𝑓 = (︁ 𝑆3 𝜕𝑓 𝜕𝑆2 + 𝑅3 𝜕𝑓 𝜕𝑅2 , −𝑆3 𝜕𝑓 𝜕𝑆1 − 𝑅3 𝜕𝑓 𝜕𝑅1 , 0, 𝑅3 𝜕𝑓 𝜕𝑆2 , −𝑅3 𝜕𝑓 𝜕𝑆1 , 0 )︁ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
97
+ page_content=' Theorem 1 is proved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
98
+ page_content=' Now, let us state when these zero-rank points are non-degenerate and deter- mine their type (for more information about non-degeneracy of singular points of a momentum mapping see [1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
99
+ page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
100
+ page_content=' For an integrable Hamiltonian system on e(3)* with arbitrary Hamil- tonian 𝐻 possessing the integral 𝐾 = 𝑆3, the singular point of rank 0 𝑃± = (︁ 0, 0, ± 𝑔 √𝑎, 0, 0, ±√𝑎 )︁ on the orbit 𝑀4 𝑎,𝑔 is non-degenerate iff 𝑞 ̸= 0, where 𝑞 = 𝑝2 + 𝑅2 3(𝐻11𝐻22 − |𝐻12|2), (8) 𝑝 = 𝑔 2𝑅3 𝜕2𝐻 𝜕𝑆2 1 + 𝑅3 𝜕2𝐻 𝜕𝑆1𝜕𝑅1 − 𝜕𝐻 𝜕𝑆3 , (9) and 𝐻11 = 𝜕2𝐻 𝜕𝑆2 1 , 𝐻12 = (︁ 𝜕2𝐻 𝜕𝑆1𝜕𝑅1 − 1 𝑅3 𝜕𝐻 𝜕𝑆3 )︁ + 𝑖 𝜕2𝐻 𝜕𝑆2𝜕𝑅1 , 𝐻22 = 𝜕2𝐻 𝜕𝑅2 1 + 𝑔 𝑅3 3 𝜕𝐻 𝜕𝑆3 − 1 𝑅3 𝜕𝐻 𝜕𝑅3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
101
+ page_content=' Also, if the point 𝑃± is non-degenerate, then its type is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
102
+ page_content=' center-center if 𝑞 > 0, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
103
+ page_content=' focus-focus if 𝑞 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
104
+ page_content=' Theorem 2 holds for any Hamiltonian 𝐻 that commutes (and is functionally independent) with 𝐾 = 𝑆3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
105
+ page_content=' For the Hamiltonian 𝐻 quadratic in S the condition of non-degeneracy and types of singular points of rank 0 are as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
106
+ page_content=' 8 Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
107
+ page_content=' For Hamiltonian (4) the type of singular points of rank 0 is com- pletely determined as in Theorem 2 by 𝑞 = 𝑔2 4𝑅2 3 − 𝑅2 3𝑔2 1(𝑎, 𝑅3) + 𝑔𝑅3 𝜕𝑔2 𝜕𝑅3 (𝑎, 𝑅3) − 𝑔 ����𝑔3 𝜕𝑅3 (𝑎, 𝑅3) − 𝑅3 𝜕𝑉 𝜕𝑅3 (𝑎, 𝑅3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
108
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
109
+ page_content=' Calculating all expressions from Theorem 2, we have 𝐻11 = 1, 𝐻12 = − 1 𝑅3 (︁ 𝑔 𝛽𝑅3 + 𝑔3(𝑎, 𝑅3) )︁ − 𝑖𝑔1(𝑎, 𝑅3), 𝐻22 = 𝑔 𝑅3 3 (︁ 𝑔 𝛽𝑅3 + 𝑔3(𝑎, 𝑅3) )︁ − − 1 𝑅3 (︁ 𝑔 𝜕𝑔2 𝜕𝑅3 (𝑎, 𝑅3) + 𝑔 𝑅3 𝜕𝑔3 𝜕𝑅3 (𝑎, 𝑅3) + 𝜕𝑉 𝜕𝑅3 (𝑎, 𝑅3) )︁ , (10) and 𝑝 = 𝑔 𝑅3 (︁1 2 − 1 𝛽 )︁ − 𝑔3(𝑎, 𝑅3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
110
+ page_content=' Substituting them into (8), one obtains the required formula for 𝑞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
111
+ page_content=' In order to prove Theorem 2 we use the following criteria of non-degeneracy (see [1]), which can be regarded as a definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
112
+ page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
113
+ page_content=' A point 𝑃 of rank 0 for an integrable Hamiltonian system with Hamiltonian 𝐻 and integral 𝐾 on a symplectic manifold 𝑀4 is non-degenerate iff the following two conditions hold: the linearizations 𝐴𝐻 and 𝐴𝐾 of the Hamiltonian vector fields sgrad 𝐻 and sgrad 𝐾 at the point 𝑃 are linear independent, there exists a linear combination 𝜆𝐴𝐻 + 𝜇𝐴𝐾 with four different non-zero eigenvalues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
114
+ page_content=' Let us study the spectrum of linearization of sgrad 𝐻 at the points of rank 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
115
+ page_content=' Taking functions 𝑆1, 𝑆2, 𝑅1, 𝑅2 as local coordinates in a neighbourhood of 0-rank point 𝑃± on an orbit 𝑀4 𝑎,𝑔 we have 𝑅3 = ± √︁ 𝑎 − 𝑅2 1 − 𝑅2 2, 𝑆3 = 1 𝑅3 (𝑔 − 𝑆1𝑅1 − 𝑆2𝑅2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
116
+ page_content=' Denote by ̂︀𝐻(𝑆1, 𝑆2, 𝑅1, 𝑅2) the restriction of the fucntion 𝐻 onto 𝑀4 𝑎,𝑔.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
117
+ page_content=' Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
118
+ page_content=' For any function 𝐻 commuting with 𝐾 = 𝑆3 the spectrum of the linearization operator 𝐴 ̂︀ 𝐻 = Lin(sgrad ̂︀𝐻) at the singular points 𝑃± of rank 0 has the form 𝜎(𝐴 ̂︀ 𝐻) = {±𝑖(𝑝 + √𝑞), ±𝑖(𝑝 − √𝑞)}, where 𝑝 and 𝑞 are given by (9) and (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
119
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
120
+ page_content=' In the coordinates 𝑆1, 𝑆2, 𝑅1, 𝑅2 the Poisson bracket on the symplectic leaf 𝑀4 𝑎,𝑔 has the form 𝒜 = ⎛ ⎜ ⎜ ⎝ 0 𝑆3 0 𝑅3 −𝑆3 0 −𝑅3 0 0 𝑅3 0 0 −𝑅3 0 0 0 ⎞ ⎟ ⎟ ⎠ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
121
+ page_content=' 9 It is easy to check that the linearization of sgrad 𝐾 defines a complex structure on the tangent space: 𝐴 ̂︀ 𝐾 = Lin(sgrad ̂︀𝐾) = ⎛ ⎜ ⎜ ⎝ 0 −1 0 0 1 0 0 0 0 0 0 −1 0 0 1 0 ⎞ ⎟ ⎟ ⎠ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
122
+ page_content=' (11) Since [𝐴 ̂︀ 𝐻, 𝐴 ̂︀ 𝐾] = 0, the operator 𝐴 ̂︀ 𝐻 can be complexified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
123
+ page_content=' The matrix of the Poisson structure can also be complexified, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
124
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
125
+ page_content=', we can identify (2 × 2)-blocks (︁ 𝛼 −𝛽 𝛽 𝛼 )︁ in matrices with complex numbers 𝛼 + 𝑖𝛽.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
126
+ page_content=' Thus, in the complex coordi- nates 𝑆1 + 𝑖𝑆2, 𝑅1 + 𝑖𝑅2 the matrix 𝒜 of the Poisson structure has the form 𝒜 = (︂−𝑖𝑆3 −𝑖𝑅3 −𝑖𝑅3 0 )︂ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
127
+ page_content=' On a symplectic manifold we have 𝐴 ̂︀ 𝐻 = 𝒜 𝑑2 ̂︀𝐻, and therefore 𝑑2 ̂︀𝐻 can also be complexified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
128
+ page_content=' By direct calculation we get 𝑑2 ̂︀𝐻 = (︂𝐻11 𝐻12 𝐻12 𝐻22 )︂ , where 𝐻𝑙𝑗 are given by formulas (10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
129
+ page_content=' The imaginary parts of 𝐻11 and 𝐻22 vanish because 𝐻 commutes with 𝐾.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
130
+ page_content=' Using the fact that if 𝜇1, 𝜇2 are eigenvalues of a matrix (𝐴 + 𝑖𝐵) for real ma- trices 𝐴, 𝐵, then the matrix (︀ 𝐴 𝐵 −𝐵 𝐴 )︀ has the eigenvalues 𝜇1, 𝜇2, 𝜇1, 𝜇2, we obtain that the specturm of the (real) operator 𝐴 ̂︀ 𝐻 is given by the equation 𝜇2 − 𝑖(𝑆3𝐻11 + 𝑅3𝐻12 + 𝑅3𝐻12)𝜇 + 𝑅2 3(𝐻11𝐻22 − |𝐻12|2) = 0, which solutions give the desired spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
131
+ page_content=' Lemma 1 is proved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
132
+ page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
133
+ page_content=' It is clear from (11) that for the integral 𝐾 = 𝑆3 the spectrum of the corresponding operator 𝐴 ̂︀ 𝐾 is 𝜎(𝐴 ̂︀ 𝐾) = {𝑖, −𝑖, 𝑖, −𝑖}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
134
+ page_content=' This doesn’t immediately prove non-deneracy of points but shows that non-degenerate points can be only of center-center or focus-focus type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
135
+ page_content=' Proof of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
136
+ page_content=' Using Lemma 1 and Definition 1 of non-degeneracy we get the condition of the theorem in all cases except for 𝑞 = 0 or 𝑝2 = 𝑞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
137
+ page_content=' If 𝑞 = 0, then the spectra of 𝐴 ̂︀ 𝐻 and 𝐴 ̂︀ 𝐾 are proportional, thus the point is degenerate (this is precisely the moment when the image of a focus-focus point meets an arc of the bifurcation diagram while transforming into a center-center point).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
138
+ page_content=' If 𝑝2 = 𝑞, then the point is non-degenerate, and one should just take another linear combination with different eigenvalues (such a linear combination exists since the spectra of 𝐴 ̂︀ 𝐻 and 𝐴 ̂︀ 𝐾 are non-proportional).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
139
+ page_content=' 10 4 Bifurcation diagrams In order to construct the bifurcation diagram let us describe all critical points of the momentum mapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
140
+ page_content=' The singular points of rank 0 are found in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
141
+ page_content=' Thus, it remains to describe only singular points of rank 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
142
+ page_content=' The next two lemmas show that we can use some convenient coordinates for investigating them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
143
+ page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
144
+ page_content=' For a Hamiltonian system with Hamiltonian 𝐻 of the form (4) and integral 𝐾 = 𝑆3, the subspace {(S, R) | 𝑅1 = 𝑅2 = 0} in e(3)* does not contain points of rank 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
145
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
146
+ page_content=' Since we know all singular points of rank 0 (they are points with 𝑅1 = 𝑅2 = 𝑆1 = 𝑆2 = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
147
+ page_content=' see Theorem 1), it suffices to prove that if 𝑦 = (𝑆1, 𝑆2, 𝑆3, 0, 0, 𝑅3) ∈ e(3)* is a singular point, then its coordinates 𝑆1 and 𝑆2 vanish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
148
+ page_content=' Suppose that this is not the case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
149
+ page_content=' Then sgrad𝑦 𝐾 = (−𝑆2, 𝑆1, 0, 0, 0, 0) ̸= 0 and, therefore, sgrad𝑦 𝐻 = 𝜆 sgrad𝑦 𝐾 for a certain 𝜆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
150
+ page_content=' Hence, by formula (6) (taking into account that 𝑅3 ̸= 0), we have 𝜕𝐻 𝜕𝑆1 = 𝜕𝐻 𝜕𝑆2 = 0 at the point 𝑦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
151
+ page_content=' But for a Hamiltonian of the form (4) this is possible only if 𝑆1 = 𝑆2 = 0 for the point 𝑦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
152
+ page_content=' Now, since we can assume that 𝑅2 1 + 𝑅2 2 ̸= 0, we choose new coordinates on the remaining set of points 𝑈 = R6(S, R) ∖ {𝑅1 = 𝑅2 = 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
153
+ page_content=' Note that the set 𝑈 is homeomorphic to R5 × 𝑆1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
154
+ page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
155
+ page_content=' Formulas 𝑆1 = (𝑔 − 𝑘𝑥) cos 𝜙 + 𝑚 sin 𝜙 √ 𝑎 − 𝑥2 , 𝑆2 = (𝑔 − 𝑘𝑥) sin 𝜙 − 𝑚 cos 𝜙 √ 𝑎 − 𝑥2 , 𝑆3 = 𝑘, 𝑅1 = √︀ 𝑎 − 𝑥2 cos 𝜙, 𝑅2 = √︀ 𝑎 − 𝑥2 sin 𝜙, 𝑅3 = 𝑥 (12) define regular coordinates (𝑥, 𝑚, 𝜙, 𝑘, 𝑎, 𝑔) on the set 𝑈, where 𝑥2 < 𝑎 and 𝜙 is an angular coordinate, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
156
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
157
+ page_content=', is defined modulo 2𝜋.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
158
+ page_content=' The inverse change of variables on the set 𝑈, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
159
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
160
+ page_content=', the expression of (𝑥, 𝑚, 𝜙, 𝑘, 𝑎, 𝑔) through (S, R) is as follows: 𝑥 = 𝑅3, 𝑚 = 𝑀(S, R) = 𝑆1𝑅2 − 𝑆2𝑅1, 𝜙 = arg(𝑅1 + 𝑖𝑅2), 𝑘 = 𝑆3, 𝑎 = 𝐹1(S, R) = ⟨R, R⟩, 𝑔 = 𝐹2(S, R) = ⟨S, R⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
161
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
162
+ page_content=' By direct calculation, it is easy to check that given formulas define a bi- jection and that the Jacobian does not vanish on 𝑈: det 𝜕(𝑥, 𝑚, 𝜙, 𝑘, 𝑎, 𝑔) 𝜕(𝑆1, 𝑆2, 𝑆3, 𝑅1, 𝑅2, 𝑅3) = 2(𝑅2 1 + 𝑅2 2) ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
163
+ page_content=' Substituting expressions (12) into (4), we obtain that the Hamiltonian in the coordinates (𝑥, 𝑚, 𝜙, 𝑘, 𝑎, 𝑔) on the set 𝑈 has the form 𝐻 = (𝑔−𝑘𝑥)2+𝑚2 2(𝑎 − 𝑥2) + 𝑘2 2𝛽 + 𝑔1(𝑎, 𝑥)𝑚 + 𝑔2(𝑎, 𝑥)𝑔 + 𝑔3(𝑎, 𝑥)𝑘 + 𝑉 (𝑎, 𝑥).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
164
+ page_content=' (13) Futher we will often write 𝑔1, 𝑔2, 𝑔3, 𝑉 without arguments assuming that they are functions of 𝑎 and 𝑥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
165
+ page_content=' The next statement describes the set of singular points of rank 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
166
+ page_content=' 11 Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
167
+ page_content=' The set of all singular points of rank 1 for the system with Hamil- tonian (4) and integral 𝐾 = 𝑆3 on e(3)* is given by the following two equations in the coordinates (𝑥, 𝑚, 𝜙, 𝑘, 𝑎, 𝑔): 𝑚 = −(𝑎 − 𝑥2)𝑔1, (14) (𝑘𝑥−𝑔)(𝑘𝑎−𝑔𝑥) (𝑎 − 𝑥2)2 + 𝑥𝑔2 1 − (𝑎−𝑥2)𝑔1 𝜕𝑔1 𝜕𝑥 + 𝑔𝜕𝑔2 𝜕𝑥 + 𝑘𝜕𝑔3 𝜕𝑥 + 𝜕𝑉 𝜕𝑥 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
168
+ page_content=' (15) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
169
+ page_content=' Calculating the matrix of the Poisson bracket in the coordinates (𝑥, 𝑚, 𝜙, 𝑘, 𝑎, 𝑔), one obtains ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 0 𝑎 − 𝑥2 0 0 0 0 𝑥2 − 𝑎 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
170
+ page_content=' Therefore, in these coordinates the skew-gradients of 𝐻 and 𝐾 are sgrad 𝐻 = (︁ (𝑎 − 𝑥2)𝜕𝐻 𝜕𝑚, (𝑥2 − 𝑎)𝜕𝐻 𝜕𝑥 , 𝜕𝐻 𝜕𝑘 , 0, 0, 0 )︁ , sgrad 𝐾 = (0, 0, 1, 0, 0, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
171
+ page_content=' (16) Here we take into account that 𝜕𝐻 𝜕𝜙 = {𝐻, 𝐾} ≡ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
172
+ page_content=' Thus the condition of linear dependence of sgrad 𝐻 and sgrad 𝐾 at a point 𝑦 ∈ e(3)* sgrad 𝐻 = 𝜆 sgrad 𝐾 is equivalent to the conditions 𝜕𝐻 𝜕𝑚 = 0, 𝜕𝐻 𝜕𝑥 = 0, 𝜕𝐻 𝜕𝑘 = 𝜆 (17) at the point 𝑦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
173
+ page_content=' Differentiating Hamiltonian (13) with respect to 𝑚 and 𝑥, we see that 𝜕𝐻 𝜕𝑚 = 0 is equivalent to (14) and 𝜕𝐻 𝜕𝑥 = 0 is equivalent to (15) after the substitution of 𝑚 from (14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
174
+ page_content=' Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
175
+ page_content=' On each orbit 𝑀4 𝑎,𝑔 the set of singular points of rank 1 form a one- parameter family of critical circles, which is parametrized by points (𝑘, 𝑥) of curves defined by equation (15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
176
+ page_content=' For each point (𝑘, 𝑥) satisfying (15) the corresponding critical circle in 𝑀4 𝑎,𝑔 is given by the formulas 𝑆1=(𝑔−𝑘𝑥) cos 𝜙−(𝑎−𝑥2)𝑔1 sin 𝜙 √ 𝑎 − 𝑥2 , 𝑆2=(𝑔−𝑘𝑥) sin 𝜙+(𝑎−𝑥2)𝑔1 cos 𝜙 √ 𝑎 − 𝑥2 , 𝑆3 = 𝑘, 𝑅1 = √︀ 𝑎 − 𝑥2 cos 𝜙, 𝑅2 = √︀ 𝑎 − 𝑥2 sin 𝜙, 𝑅3 = 𝑥, where 𝜙 is a parameter on the circle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
177
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
178
+ page_content=' As it is shown in the proof of Theorem 3, sgrad 𝐾 = 𝜕 𝜕𝜙 in the coordi- nates (𝑥, 𝑚, 𝜙, 𝑘, 𝑎, 𝑔).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
179
+ page_content=' Therefore, each critical circle is a coordinate line of the coordinate 𝜙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
180
+ page_content=' Substituting (14) into expressions (12), we obtain the required formulas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
181
+ page_content=' 12 Now we can describe the bifurcation diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
182
+ page_content=' For each pair of parameters 𝑎, 𝑔, where 𝑎 > 0, consider the function 𝑊𝑎,𝑔(𝑘, 𝑥) = (𝑔 − 𝑘𝑥)2 2(𝑎 − 𝑥2) + 𝑘2 2𝛽 − 𝑔2 1 2 (𝑎 − 𝑥2) + 𝑔2𝑔 + 𝑔3𝑘 + 𝑉, (18) which is an analogue of a reduced potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
183
+ page_content=' Recall that 𝑔1, 𝑔2, 𝑔3, 𝑉 are functions of 𝑎 and 𝑥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
184
+ page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
185
+ page_content=' The bifurcation diagram of the integrable Hamiltonian system with Hamiltonian (4) and the integral 𝐾 = 𝑆3 on orbit (2) consists of the following subsets on the plane R2(ℎ, 𝑘): 1) two points 𝑍± (they can coinside if 𝑔 = 0) with coordinates ℎ = 𝑔2 2𝛽𝑎 + 𝑔 𝑔2(𝑎, ±√𝑎) ± 𝑔 √𝑎 𝑔3(𝑎, ±√𝑎) + 𝑉 (𝑎, ±√𝑎), 𝑘 = ± 𝑔 √𝑎, which are the images of two singular points of rank 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
186
+ page_content=' 2) the points (ℎ(𝑥), 𝑘(𝑥)) which are the images of singular points of rank 1 and are parametrized by the parameter 𝑥, where the function 𝑘(𝑥) is implicitly defined by the quadratic (or linear) equation 𝜕𝑊𝑎,𝑔 𝜕𝑥 (𝑘, 𝑥) = 0, and ℎ(𝑥) = 𝑊𝑎,𝑔(𝑘(𝑥), 𝑥).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
187
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
188
+ page_content=' The first statement immediately follows from Theorem 1 describing singu- lar points of rank 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
189
+ page_content=' Similarly, the second one follows from Theorem 3 describing singular points of rank 1 by taking into account expression (13) for the Hamilto- nian 𝐻 and definition (18) of the function 𝑊𝑎,𝑔.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
190
+ page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
191
+ page_content=' For each fixed 𝑎,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
192
+ page_content=' 𝑔 the equations from Theorem 4 ℎ = 𝑊𝑎,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
193
+ page_content='𝑔(𝑘,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
194
+ page_content=' 𝑥),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
195
+ page_content=' 𝜕𝑊𝑎,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
196
+ page_content='𝑔 𝜕𝑥 (𝑘,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
197
+ page_content=' 𝑥) = 0 (19) describing the image of the set of singular points of rank 1 belonging to the orbit 𝑀4 𝑎,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
198
+ page_content='𝑔 are exactly the equations for the envelope of the family of parabolas ℎ = (︁ 𝑥2 2(𝑎 − 𝑥2) + 1 2𝛽 )︁ 𝑘2 + 𝐵𝑎,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
199
+ page_content='𝑔(𝑥)𝑘 + 𝐶𝑎,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
200
+ page_content='𝑔(𝑥) on the plane R2(ℎ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
201
+ page_content=' 𝑘) depending on the parameter 𝑥,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
202
+ page_content=' where 𝐵𝑎,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
203
+ page_content='𝑔(𝑥) = 𝑔3(𝑎,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
204
+ page_content=' 𝑥) − 𝑔𝑥 𝑎 − 𝑥2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
205
+ page_content=' 𝐶𝑎,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
206
+ page_content='𝑔(𝑥) = 𝑔2 2(𝑎 − 𝑥2) − 𝑔2 1(𝑎,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
207
+ page_content=' 𝑥) 2 (𝑎 − 𝑥2) + 𝑔2(𝑎,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
208
+ page_content=' 𝑥)𝑔 + 𝑉 (𝑎,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
209
+ page_content=' 𝑥) (20) (see formula (18)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
210
+ page_content=' In other words, the bifurcation diagram (without points 𝑍±) can be regarded as the envelope of this family of parabolas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
211
+ page_content=' The bifurcation diagram Σ is the union of Σ0 = {𝑍±} and Σ1 which consists of the images of singular points of rank 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
212
+ page_content=' Let us rewrite conditions (19) describing Σ1 in a more explicit parametric form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
213
+ page_content=' 13 The relation 𝜕𝑊𝑎,𝑔 𝜕𝑥 (𝑘, 𝑥) = 0 from Theorem 4 is exactly equation (15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
214
+ page_content=' In notation (20) it can be written as 𝑎𝑥 (𝑎 − 𝑥2)2 𝑘2 + 𝐵′ 𝑎,𝑔(𝑥)𝑘 + 𝐶′ 𝑎,𝑔(𝑥) = 0, (21) where 𝐵′ 𝑎,𝑔(𝑥) = 𝜕𝑔3 𝜕𝑥 − 𝑔(𝑎 + 𝑥2) (𝑎 − 𝑥2)2 , 𝐶′ 𝑎,𝑔(𝑥) = 𝑔2𝑥 (𝑎 − 𝑥2)2 + 𝑥𝑔2 1 − (𝑎 − 𝑥2)𝑔1 𝜕𝑔1 𝜕𝑥 + 𝑔𝜕𝑔2 𝜕𝑥 + 𝜕𝑉 𝜕𝑥 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
215
+ page_content=' Equation (21) is quadratic with respect to 𝑘 for 𝑥 ̸= 0 (it is reduced to linear equation for 𝑥 = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
216
+ page_content=' Its discriminant equals 𝐷𝑎,𝑔(𝑥) = (𝐵′ 𝑎,𝑔(𝑥))2 − 4𝑎𝑥 (𝑎−𝑥2)2 𝐶′ 𝑎,𝑔(𝑥) = 1 (𝑎−𝑥2)2 (︁ 𝑔 − (𝑎+𝑥2)𝜕𝑔3 𝜕𝑥 )︁2 − − 4𝑎𝑥 (𝑎 − 𝑥2)2 (︁ 𝑥𝑔2 1 − (𝑎 − 𝑥2)𝑔1 𝜕𝑔1 𝜕𝑥 + 𝑔𝜕𝑔2 𝜕𝑥 + 𝑥 (︁𝜕𝑔3 𝜕𝑥 )︁2 + 𝜕𝑉 𝜕𝑥 )︁ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
217
+ page_content=' In order to describe a parametrization of bifurcational curves consider the set Θ𝑎,𝑔 = {𝑥 ∈ R | 𝑥2 < 𝑎, 𝑥 ̸= 0, 𝐷𝑎,𝑔(𝑥) ≥ 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
218
+ page_content=' Each its (arcwise) connected component is an interval, which is either non-dege- nerate (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
219
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
220
+ page_content=', has a non-zero length) or degenerate (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
221
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
222
+ page_content=', is a point).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
223
+ page_content=' Denote the set of all non-degenerate intervals by ℐ𝑎,𝑔 and denote the set of degenerate intervals by Θ0 𝑎,𝑔.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
224
+ page_content=' Clearly, Θ𝑎,𝑔 ∖ Θ0 𝑎,𝑔 = ⋃︀ 𝐼∈ℐ𝑎,𝑔 𝐼.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
225
+ page_content=' Since Θ𝑎,𝑔 is, evidently, a closed subset of (−√𝑎, 0) ∪ (0, √𝑎), intervals from ℐ𝑎,𝑔 contain their endpoints except for the case when an endpoint is ±√𝑎 or 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
226
+ page_content=' Thus, the set Σ1 in the plane R2(ℎ, 𝑘) contains curves defined on intervals from ℐ𝑎,𝑔, “separate” points corresponding to points from Θ0 𝑎,𝑔, and, possibly, something else corresponding to 𝑥 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
227
+ page_content=' An explicite description of Σ1 is given in the following statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
228
+ page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
229
+ page_content=' The set Σ1 for the integrable Hamiltonian system with Hamiltonian (4) and the integral 𝐾 = 𝑆3 on orbit (2) is the union of the following parametric curves and points on the plane R2(ℎ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
230
+ page_content=' 𝑘): 1) the pairs of curves (ℎ±(𝑥),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
231
+ page_content=' 𝑘±(𝑥)),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
232
+ page_content=' 𝑥 ∈ 𝐼,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
233
+ page_content=' for each 𝐼 ∈ ℐ𝑎,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
234
+ page_content='𝑔,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
235
+ page_content=' where ℎ±(𝑥) = (𝑔−𝑘±(𝑥)𝑥)2 2(𝑎 − 𝑥2) +𝑘2 ±(𝑥) 2𝛽 − (𝑎−𝑥2)𝑔2 1 2 + 𝑔2𝑔 + 𝑔3𝑘±(𝑥) + 𝑉,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
236
+ page_content=' 𝑘±(𝑥) = 𝑔(𝑎 + 𝑥2) 2𝑎𝑥 − (𝑎 − 𝑥2)2 2𝑎𝑥 𝜕𝑔3 𝜕𝑥 ± (𝑎 − 𝑥2) 2𝑎𝑥 × × √︂(︁ 𝑔−(𝑎+𝑥2)𝜕𝑔3 𝜕𝑥 )︁2 −4𝑎𝑥 (︁ 𝑥𝑔2 1−(𝑎−𝑥2)𝑔1 𝜕𝑔1 𝜕𝑥 +𝑔𝜕𝑔2 𝜕𝑥 +𝑥 (︁𝜕𝑔3 𝜕𝑥 )︁2 +𝜕𝑉 𝜕𝑥 )︁ ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
237
+ page_content=' (22) 2) the points (ℎ(𝑥0), 𝑘(𝑥0)) for each 𝑥0 ∈ Θ0 𝑎,𝑔, where ℎ(𝑥0) = (𝑔−𝑘(𝑥0)𝑥0)2 2(𝑎 − 𝑥2 0) + 𝑘2(𝑥0) 2𝛽 − (𝑎−𝑥2 0)𝑔2 1 2 + 𝑔2𝑔 + 𝑔3𝑘(𝑥0) + 𝑉, 𝑘(𝑥0) = 𝑔(𝑎 + 𝑥2 0) 2𝑎𝑥0 − (𝑎 − 𝑥2 0)2 2𝑎𝑥0 𝜕𝑔3 𝜕𝑥 (𝑎, 𝑥0), 14 and 𝑔1, 𝑔2, 𝑔3, 𝑉 in these formulas mean the values of the corresponding functions at the point (𝑎, 𝑥0);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
238
+ page_content=' 3) for the orbits 𝑀4 𝑎,𝑔, where 𝑔 ̸= 𝑎 𝜕𝑔3 𝜕𝑥 (𝑎, 0), the point (ℎ0, 𝑘0), where ℎ0 = 𝑔2 2𝑎 + 𝑘2 0 2𝛽 − 𝑎𝑔2 1(𝑎, 0) 2 + 𝑔2(𝑎, 0)𝑔 + 𝑔3(𝑎, 0)𝑘0 + 𝑉 (𝑎, 0), 𝑘0 = 𝑎𝑔1(𝑎, 0) 𝜕𝑔1 𝜕𝑥 (𝑎, 0) − 𝑔 𝜕𝑔2 𝜕𝑥 (𝑎, 0) − 𝜕𝑉 𝜕𝑥 (𝑎, 0) 𝜕𝑔3 𝜕𝑥 (𝑎, 0) − 𝑔 𝑎 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
239
+ page_content=' 4) for the orbits 𝑀4 𝑎,𝑔, where 𝑔 = 𝑎 𝜕𝑔3 𝜕𝑥 (𝑎, 0) and 𝑎 satisfies the relation 𝑎𝑔1(𝑎, 0)𝜕𝑔1 𝜕𝑥 (𝑎, 0) − 𝑎𝜕𝑔3 𝜕𝑥 (𝑎, 0)𝜕𝑔2 𝜕𝑥 (𝑎, 0) − 𝜕𝑉 𝜕𝑥 (𝑎, 0) = 0, the parabola ℎ = 𝑘2 2𝛽 +𝑔3(𝑎, 0)𝑘+𝑎 2 (︁𝜕𝑔3 𝜕𝑥 (𝑎, 0) )︁2 −𝑎 2𝑔1(𝑎, 0)+𝑎𝜕𝑔3 𝜕𝑥 (𝑎, 0)𝑔2(𝑎, 0)+𝑉 (𝑎, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
240
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
241
+ page_content=' All formulas in cases 1)–4) follow from equations (19) and expression (18).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
242
+ page_content=' The cases 1) and 2) correspond to solutions of quadratic equation (21) for each parameters 𝑥 from Θ𝑎,𝑔, but in the case 2), when 𝑥 ∈ Θ0 𝑎,𝑔, the corresponding discriminant 𝐷𝑎,𝑔(𝑥) vanishes, since 𝐷𝑎,𝑔 is a continuous function on (−√𝑎, √𝑎).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
243
+ page_content=' The case 3) corresponds to 𝑥 = 0 in equation (21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
244
+ page_content=' If 𝐵′ 𝑎,𝑔(0) = 𝜕𝑔3 𝜕𝑥 (𝑎, 0)− 𝑔 𝑎 ̸= 0, then −𝐶′ 𝑎,𝑔(0)/𝐵′ 𝑎,𝑔(0) is the unique solution 𝑘0 of linear equation (21) for 𝑥 = 0, and we obtain the point (ℎ0, 𝑘0) in the case 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
245
+ page_content=' Note that if 𝐵′ 𝑎,𝑔(0) ̸= 0, then the discriminant 𝐷𝑎,𝑔(𝑥) is positive on some interval (−𝜀, 𝜀) and there are two bifurcational curves (22) defined on (−𝜀, 0) and (0, 𝜀) which tend to the point (ℎ0, 𝑘0) as 𝑥 → 0 and form one smooth bifurcational curve glued from two curves at this point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
246
+ page_content=' The case 4) also corresponds to 𝑥 = 0, but the conditions on 𝑔 and 𝑎 in the case 4) are equivalent to the conditions 𝐵′ 𝑎,𝑔(0) = 𝐶′ 𝑎,𝑔(0) = 0, which imply that an arbitrary 𝑘 is a solution of (21) for 𝑥 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
247
+ page_content=' Thus, we obtain the required parabola in the case 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
248
+ page_content=' Note that for arbitrary functions 𝑔1, 𝑔2, 𝑔3, 𝑉 the behavior of bifurcational curves described in Theorem 5 by explicit formulas can be fairly complicated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
249
+ page_content=' They can have many cusps, intersect one another or coincide on some their arcs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
250
+ page_content=' Some general properties concerning the behavior of bifurcational curves are de- scribed in the following statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
251
+ page_content=' Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
252
+ page_content=' 1) If 𝐽 ⊂ Θ𝑎,𝑔 is an open interval such that 𝐷𝑎,𝑔|𝐽 > 0, then the bifurcational curve (ℎ±(𝑥), 𝑘±(𝑥)) defined on 𝐽 by formulas (22) is a smooth parametric curve which is regular for all 𝑥, where 𝑑𝑘± 𝑑𝑥 (𝑥) ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
253
+ page_content=' 2) Exactly two arcs of the bifurcational curves described in the items 1) and 4) of Theorem 5 tend to infinity such that ℎ(𝑘) ∼ 𝑘2 2𝛽 (one arc for 𝑘 → +∞ and one arc for 𝑘 → −∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
254
+ page_content=' For the curves defined by formulas (22) these arcs correspond to 𝑥 → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
255
+ page_content=' 3) For each singular point 𝑃± of rank 0 which is of center-center type (by Theorem 2 there can be 0, 1, or 2 such points) there are exactly two arcs of the bifurcational curves described by formulas (22) which tend to the corresponding point 𝑍± described in Theorem 4 as 𝑥 → ±√𝑎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
256
+ page_content=' 15 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
257
+ page_content=' Since ℎ = ℎ±(𝑥), 𝑘 = 𝑘±(𝑥) satisfy equations (19), we have 𝑑ℎ± 𝑑𝑥 (𝑥) = 𝜕𝑊𝑎,𝑔 𝜕𝑘 (𝑘±(𝑥), 𝑥)𝑑𝑘± 𝑑𝑥 (𝑥).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
258
+ page_content=' Therefore, the parametric curve (22) is regular iff 𝑑𝑘± 𝑑𝑥 (𝑥) ̸= 0 and can have sin- gularities (for example, cusps) only at points, where 𝑑𝑘± 𝑑𝑥 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
259
+ page_content=' Items 2) and 3) follow from formulas (22) by investigating the behavior of the parametric curves (ℎ±(𝑥), 𝑘±(𝑥)) as 𝑥 tends to 0 or ±√𝑎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
260
+ page_content=' Note that 𝐷𝑎,𝑔 is positive in a neighborhood of the points ±√𝑎 iff 𝑞 from Corollary 1 is positive for 𝑅3 = ±√𝑎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
261
+ page_content=' 5 Liouville tori bifurcations All basic definitions and facts about Liouville tori bifurcations can be found in [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
262
+ page_content=' Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
263
+ page_content=' A singular point of rank 1 (described in Theorem 3 and Corollary 2) is non-degenerate iff 𝜕2𝑊𝑎,𝑔(𝑘,𝑥) 𝜕𝑥2 ̸= 0, where 𝑊𝑎,𝑔(𝑘, 𝑥) is given by (18).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
264
+ page_content=' Moreover, if 𝜕2𝑊𝑎,𝑔(𝑘,𝑥) 𝜕𝑥2 > 0, then the type of the point is elliptic;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
265
+ page_content=' if 𝜕2𝑊𝑎,𝑔(𝑘,𝑥) 𝜕𝑥2 < 0, then the type of the point is hyperbolic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
266
+ page_content=' The non-degeneracy and the type of a singular point 𝑦 of rank 1 are completely determined by the spectrum of linearization of the Hamiltonian vector field which is a (non-trivial) linear combination of sgrad 𝐻 and sgrad 𝐾 vanishing at 𝑦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
267
+ page_content=' Thus, Theorem 6 follows from the following statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
268
+ page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
269
+ page_content=' Each point 𝑦 of rank 1 (described in Theorem 3 and Corollary 2) is a singular point for the vector field sgrad 𝐹𝑦, where 𝐹𝑦 = 𝐻 − 𝜆𝐾 and 𝜆 = 𝜕𝐻 𝜕𝑘 ⃒⃒ 𝑦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
270
+ page_content=' The spectrum of the linearization 𝐴𝐹𝑦 = Lin(sgrad 𝐹𝑦) at the point 𝑦 consists of 4 zeroes and 𝜇± = ±𝑖 √︂ 𝜕2𝑊𝑎,𝑔(𝑘, 𝑥) 𝜕𝑥2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
271
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
272
+ page_content=' The proof is by direct calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
273
+ page_content=' The Hamiltonian vector fields sgrad 𝐻 and sgrad 𝐾 in the coordinates (𝑥, 𝑚, 𝜙, 𝑘, 𝑎, 𝑔) from Lemma 3 are given by (16), and at a point 𝑦 ∈ e(3)* of rank 1 conditions (17) are fulfilled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
274
+ page_content=' Hence for the function 𝐹𝑦 = 𝐻 − 𝜆𝐾, where 𝜆 = 𝜕𝐻 𝜕𝑘 ⃒⃒ 𝑦, we have sgrad𝑦 𝐹𝑦 = 0, and therefore the linearization 𝐴𝐹𝑦 of the field sgrad 𝐹𝑦 = (︁ (𝑎 − 𝑥2)𝜕𝐻 𝜕𝑚, −(𝑎 − 𝑥2)𝜕𝐻 𝜕𝑥 , 𝜕𝐻 𝜕𝑘 − 𝜆, 0, 0, 0 )︁ at the point 𝑦 is well-defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
275
+ page_content=' Taking into account conditions (17), we get the following equation for the spectrum of 𝐴𝐹𝑦: det(𝐴𝐹𝑦 − 𝜇 Id) = 𝜇4(𝑎 − 𝑥2)2 det (︃ 𝜕2𝐻 𝜕𝑚𝜕𝑥 − 𝜇 𝜕2𝐻 𝜕𝑚2 − 𝜕2𝐻 𝜕𝑥2 − 𝜕2𝐻 𝜕𝑥𝜕𝑚 − 𝜇 )︃ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
276
+ page_content=' 16 Thus the non-zero eigenvalues of 𝐴𝐹𝑦 are 𝜇± = ± √︂(︁ 𝜕2𝐻 𝜕𝑥𝜕𝑚 )︁2 − 𝜕2𝐻 𝜕𝑥2 𝜕2𝐻 𝜕𝑚2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
277
+ page_content=' (23) For the function 𝐻 given by (13) we have 𝜕2𝐻 𝜕𝑚2 = 1 𝑎 − 𝑥2 , 𝜕2𝐻 𝜕𝑥𝜕𝑚 = 𝜕𝑔1 𝜕𝑥 (𝑎, 𝑥) + 2𝑚𝑥 (𝑎 − 𝑥2)2 , 𝜕2𝐻 𝜕𝑥2 = (𝑔2 + 𝑎𝑘2 + 𝑚2)(𝑎 + 3𝑥2) − 2𝑔𝑘𝑥(𝑥2 + 3𝑎) (𝑎 − 𝑥2)3 + +𝑚𝜕2𝑔1 𝜕𝑥2 (𝑎, 𝑥) + 𝑔𝜕2𝑔2 ���𝑥2 (𝑎, 𝑥) + 𝑘𝜕2𝑔3 𝜕𝑥2 (𝑎, 𝑥) + 𝜕2𝑉 𝜕𝑥2 (𝑎, 𝑥).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
278
+ page_content=' (24) Since, by Theorem 3, at a singular point we have 𝑚 = −(𝑎−𝑥2)𝑔1(𝑎, 𝑥), equalities (24) can be rewritten as 𝜕2𝐻 𝜕𝑚2 = 1 𝑎 − 𝑥2 , 𝜕2𝐻 𝜕𝑥𝜕𝑚 = 𝜕𝑔1 𝜕𝑥 (𝑎, 𝑥) − 2𝑥𝑔1(𝑎, 𝑥) 𝑎 − 𝑥2 , 𝜕2𝐻 𝜕𝑥2 = 𝜕2𝑊𝑎,𝑔(𝑘, 𝑥) 𝜕𝑥2 + (𝑎 − 𝑥2) (︁𝜕𝑔1 𝜕𝑥 (𝑎, 𝑥) − 2𝑥𝑔1(𝑎, 𝑥) 𝑎 − 𝑥2 )︁2 , (25) where 𝑊𝑎,𝑔(𝑘, 𝑥) is given by (18).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
279
+ page_content=' Substituting expressions (25) into formula (23) we get the desired expression for 𝜇±.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
280
+ page_content=' Lemma 4 and, consequently, Theorem 6 are proved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
281
+ page_content=' Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
282
+ page_content=' The only possible non-degenerate Liouville tori bifurcations for the isoenergy surfaces 𝑄3 of the integrable Hamiltonian system with Hamiltonian (4) and the integral 𝐾 = 𝑆3 on orbit (2) are the so-called 𝐴 and 𝑉𝑘 bifurcations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
283
+ page_content=' In particular, if there is only one singular circle in a fiber, then the bifurcation is either 𝐴 or 𝐵.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
284
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
285
+ page_content=' There is only one elliptic bifurcation (of type 𝐴), thus we consider hy- perbolic bifurcations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
286
+ page_content=' Since all critical points of rank 1 satisfy the condition 𝑅2 1 + 𝑅2 2 ̸= 0, we can work in the coordinates (𝑥, 𝑚, 𝜙, 𝑘, 𝑎, 𝑔).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
287
+ page_content=' Consider the inverse image of a point (ℎ0, 𝑘0) under the momentum mapping 𝑀4 𝑎,𝑔 → R2(ℎ, 𝑘).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
288
+ page_content=' Then 𝜙 is arbitrary and 𝑚 is given by (𝑚 + (𝑎 − 𝑥2)𝑔1(𝑎, 𝑥))2 2(𝑎 − 𝑥2) = ℎ0 − 𝑊𝑎,𝑔(𝑘0, 𝑥), (26) where 𝑥 satisfies the condition ℎ0 ≥ 𝑊𝑎,𝑔(𝑘0, 𝑥).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
289
+ page_content=' Thus any connected component of a singular fiber for a non-degenerate sin- gularity is a product of 𝑆1 and a wedge sum of 𝑘 circles as in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
290
+ page_content=' More precisely, the set in the plane (𝑚, 𝑥) given by equation (26) is homeomorphic to the union of circles that are joined at the points ℎ0 = 𝑊𝑎,𝑔(𝑘0, 𝑥).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
291
+ page_content=' Since the singularity is non-degenerate, this is precisely the bifurcation for the 𝑉𝑘 atom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
292
+ page_content=' Theorem 7 is proved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
293
+ page_content=' 17 Figure 1: Atom 𝑉𝑘.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
294
+ page_content=' 6 Isoenergy surfaces For a Hamiltonian function 𝐻 on e(3)* which is a positive definite quadratic form in S, the topology of isoenergy surfaces is completely determined by their projections on the Poisson shere (for details see [1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
295
+ page_content=' By Theorem 2, the projection is invariant under rotation around the 𝑅3-axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
296
+ page_content=' As a direct consequence we get the following statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
297
+ page_content=' Theorem 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
298
+ page_content=' Any isoenergy surface 𝑄3 of the integrable Hamiltonian system with Hamiltonian (4) and the integral 𝐾 = 𝑆3 on orbit (2) is either RP3 or a disjoint union of 𝑘 products 𝑆1 × 𝑆2 and not more than two spheres 𝑆3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
299
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
300
+ page_content=' If the projection of 𝑄3 on the Poisson sphere is surjective, then 𝑄3 = RP3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
301
+ page_content=' Otherwise the image of the projection is the unioun of 𝑙 rings and not more than two disks with centers in the poles R = (0, 0, 𝑅3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
302
+ page_content=' Each ring corresponds to 𝑆1 × 𝑆2 and each disk to 𝑆3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
303
+ page_content=' ACKNOWLEDGMENTS This work was supported by the Russian Sci- ence Foundation, project no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
304
+ page_content=' 17-11-01303.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
305
+ page_content=' References [1] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
306
+ page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
307
+ page_content=' Bolsinov and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
308
+ page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
309
+ page_content=' Fomenko, Integrable Hamiltonian Systems: Geometry, Topology, Classification (CRC, Boca Raton, FL, 2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
310
+ page_content=' [2] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
311
+ page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
312
+ page_content=' Borisov and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
313
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
314
+ page_content=' Mamaev, Rigid body dynamics (NIC Regular Chaotic Dynamics,Moscow, Izhevsk, 2001) [in Russian].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
315
+ page_content=' [3] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
316
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
317
+ page_content=' Oshemkov, “Fomenko invariants for the main integrable cases of the rigid body motion equations”, in Topological Classification of Integrable Systems, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
318
+ page_content=' Sov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
319
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
320
+ page_content=' 6, 67–146 (1991).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
321
+ page_content=' [4] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
322
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
323
+ page_content=' Bolsinov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
324
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
325
+ page_content=' Izosimov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
326
+ page_content=' Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
327
+ page_content=' Konjaev, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
328
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
329
+ page_content=' Oshemkov, “Algebra and topology of integrable systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
330
+ page_content=' Research problems”, Tr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
331
+ page_content=' Sem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
332
+ page_content=' Vektor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
333
+ page_content=' Tenzor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
334
+ page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
335
+ page_content=' 28, 119–191 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
336
+ page_content=' [5] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
337
+ page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
338
+ page_content=' Kantonistova, “Topological classification of integrable Hamiltonian sys- tems in a potential field on surfaces of revolution”, Mathematics, 207, 358–399 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
339
+ page_content=' 18 11/1 OXOX .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
340
+ page_content='X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
341
+ page_content=' [6] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
342
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
343
+ page_content=' Kruglikov, Topological classification of Leggett systems in an integrable case for 3He-A, Uspekhi Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
344
+ page_content=' Nauk, 46: 179–181 (1991).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
345
+ page_content=' [7] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
346
+ page_content='Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
347
+ page_content=' Ivochkin, Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
348
+ page_content=' Sb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
349
+ page_content=', 199:6 (2008), 85–104 Topological analysis of the motion of an ellipsoid on a smooth plane, Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
350
+ page_content=' Sb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
351
+ page_content=', 199, 871–890 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
352
+ page_content=' 19' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf'}
6NAyT4oBgHgl3EQfcffh/content/tmp_files/2301.00286v1.pdf.txt ADDED
@@ -0,0 +1,469 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Index 3 biembeddings of the complete graphs
2
+ Juvenal F. Barajas and Timothy Sun
3
+ Department of Computer Science
4
+ San Francisco State University
5
+ Abstract
6
+ We show that the complete graphs on 24s + 21 vertices have decompositions into
7
+ two edge-disjoint subgraphs, each of which triangulates an orientable surface.
8
+ The
9
+ special case where the two surfaces are homeomorphic solves a generalized Earth-
10
+ Moon problem for that surface. Unlike previous constructions, these pairs of triangular
11
+ embeddings are derived from index 3 current graphs.
12
+ 1
13
+ Introduction
14
+ There are many graph parameters that generalize the notion of planarity. Perhaps the most
15
+ well-known of such parameters is the genus of the graph, which is the smallest value g such
16
+ that the graph has an embedding in Sg, the orientable surface of genus g. A less-studied
17
+ parameter is the thickness of a graph, which is the size of the smallest partition of the edges
18
+ into planar subgraphs. A graph is said to be biembeddable in surfaces S and S′ if it can
19
+ be decomposed into two edge-disjoint subgraphs, one of which embeds in S and the other
20
+ embeds in S′. When S is homeomorphic to S′, we simply say that the graph is biembeddable
21
+ in S. We consider a variant of both genus and thickness, the bigenus of a graph β(G), which
22
+ is defined to be the smallest value g such that the graph G is biembeddable in Sg.
23
+ The Earth-Moon problem is a longstanding open problem on the maximum possible
24
+ chromatic number of a graph with thickness 2, or equivalently, bigenus 0. At present, it is
25
+ known that this value is 9, 10, 11, or 12 (see [Get18]). The upper bound is derived from a
26
+ standard coloring argument based on average degree, which Heawood [Hea90] also uses to
27
+ color graphs embedded in arbitrary orientable surfaces. Heawood’s conjecture that his upper
28
+ bound is tight is now called the Map Color Theorem [Rin74], proven by Ringel, Youngs, et
29
+ al.
30
+ Jackson and Ringel [JR00] conjecture a similar result for graphs biembeddable in higher-
31
+ genus orientable surfaces. The maximum chromatic number over all graphs biembeddable
32
+ in the surface Sg is called the bichromatic number of Sg and is denoted by χ2(Sg). The same
33
+ coloring argument is used to prove the following Heawood-like inequality:
34
+ Proposition 1.1 (Jackson and Ringel [JR00]). The bichromatic number of the orientable
35
+ surface Sg, where g ≥ 1, is at most
36
+ χ2(Sg) ≤
37
+ �13 + √73 + 96g
38
+ 2
39
+
40
+ .
41
+ 1
42
+ arXiv:2301.00286v1 [math.CO] 31 Dec 2022
43
+
44
+ Conjecture 1.2 (Jackson and Ringel [JR00]). For all g ≥ 1, the bound in Proposition 1.1
45
+ is tight.
46
+ Just like the Map Color Theorem, this generalization of the Earth-Moon problem hardly
47
+ resembles the original problem on the sphere: for all other surfaces, one might expect that
48
+ the upper bound is always matched by a biembedding of a complete graph on the same
49
+ number of vertices. Conjecture 1.2 thus has a stronger “graph-centric” formulation in terms
50
+ of bigenus:
51
+ Proposition 1.3 (Cabaniss and Jackson [CJ90]). The bigenus of the complete graph Kn is
52
+ at least
53
+ β(Kn) ≥
54
+ �n2 − 13n + 24
55
+ 24
56
+
57
+ .
58
+ Conjecture 1.4 (Cabaniss and Jackson [CJ90]). For all n ≥ 11,
59
+ β(Kn) =
60
+ �n2 − 13n + 24
61
+ 24
62
+
63
+ .
64
+ The bigenus of the complete graph Kn can equal exactly n2 − 13n + 24/24 only when
65
+ both embeddings of the biembedding are triangular. These so-called triangular biembeddings
66
+ are only possible when n ≡ 0, 13, 16, 21 (mod 24), otherwise the expression is not an integer.
67
+ With the exception of some small cases (β(Kn) is known for all n ≤ 14 [Rin59, BHK62,
68
+ Tut63, Rin65, Bei69]), all other known constructions of minimum genus biembeddings of Kn
69
+ have been triangular biembeddings. The second author [Sun22] found triangular embeddings
70
+ of self-complementary graphs on 16, 21, and 24 vertices through computer search. One of the
71
+ aforementioned residues, n ≡ 13 (mod 24), has been solved using current graphs, a covering
72
+ space construction that has proven to be effective for finding triangular embeddings of dense
73
+ graphs. The application of current graphs to biembeddings was initiated by Anderson and
74
+ White [AW78], who found a pair of current graphs that produce a triangular biembedding
75
+ of K37. Cabaniss and Jackson [CJ90] then solved the bigenus of K61 and K85. Finally, the
76
+ second author [Sun22] completed this line of work by finding an infinite family of current
77
+ graphs that produce triangular biembeddings of the complete graphs on n = 24s+13 vertices,
78
+ for all s ≥ 1.
79
+ The aforementioned current graphs are all of index 1, i.e., they are all 1-face embeddings.
80
+ We solve another one of the residues by constructing triangular biembeddings of the complete
81
+ graphs K24s+21, for all s ≥ 0, using index 3 current graphs.
82
+ 2
83
+ Graph embeddings
84
+ We assume prior knowledge of topological graph theory and the theory of current graphs. For
85
+ background on these topics, see Gross and Tucker [GT87] and Ringel [Rin74]. In particular,
86
+ 2
87
+
88
+ Section 9 of Ringel [Rin74] describes current graph constructions similar to the ones we will
89
+ present here. For more information on the thickness parameter and its variants, see Beineke
90
+ [Bei97].
91
+ A cellular embedding of a graph G = (V, E) in the surface Sg is an injective mapping
92
+ φ: G → Sg, where the components of Sg \ φ(G) are open disks. We call these disks faces. In
93
+ this paper, all graph embeddings are cellular and in orientable surfaces. If the set of faces is
94
+ denoted by F(φ), then its size is determined by the Euler polyhedral equation
95
+ |V | − |E| + |F(φ)| = 2 − 2g.
96
+ When G is simple, the Euler polyhedral equation implies a well-known inequality on the
97
+ number of edges in G:
98
+ Proposition 2.1. If G = (V, E) is a simple graph embedded in the orientable surface Sg,
99
+ then
100
+ |E| ≤ 3|V | − 6 + 6g,
101
+ with equality if and only if the embedding is triangular.
102
+ For biembeddings, a graph can have twice as many edges, and one can use this inequality
103
+ to prove Propositions 1.1 and 1.3.
104
+ To describe a cellular embedding combinatorially, each edge e ∈ E induces two arcs e+
105
+ and e− with the same endpoints, each representing the two different directions in which
106
+ e can be traversed. The set of such arcs is denoted E+. A rotation of a vertex is a cyclic
107
+ permutation of the arcs leaving that vertex, and a rotation system of a graph is an assignment
108
+ of a rotation to each vertex. When a graph is simple, it is sufficient to describe a rotation as
109
+ a cyclic permutation of the vertex’s neighbors. The Heffter-Edmonds principle states that
110
+ rotation systems are in one-to-one correspondence with cellular embeddings in orientable
111
+ surfaces (see Section 3.2 of Gross and Tucker [GT87]). From a rotation system, a cellular
112
+ embedding can be found through face-tracing, where each face-boundary walk corresponds
113
+ to a cyclic sequence of arcs (e±
114
+ 1 , e±
115
+ 2 , . . . , e±
116
+ i ).
117
+ 3
118
+ Current graphs
119
+ A current graph is an arc-labeled, embedded graph where the arc-labeling α : E+ → Zn \{0}
120
+ satisfies α(e+) = −α(e−) for each edge e. We call Zn the current group and the arc labels
121
+ currents. The index of a current graph is the number of faces in the embedding. Our current
122
+ graphs are of index 3, and its face-boundary walks, which we call circuits, are labeled [0], [1],
123
+ and [2]. Given a circuit, the log of the circuit replaces each arc with its current. We require
124
+ that our current graphs satisfy a standard set of properties:
125
+ (E1) The current graph has index 3.
126
+ (E2) Each vertex has degree 3 and satisfies KCL.
127
+ (E3) Each nonzero element of the current group Z3m appears at most once in the log of each
128
+ circuit.
129
+ 3
130
+
131
+ [0]
132
+ [0]
133
+ [1]
134
+ [2]
135
+ 1
136
+ 1
137
+ 10
138
+ 19
139
+ 9
140
+ 9
141
+ 10
142
+ 10
143
+ 16
144
+ 13
145
+ 3
146
+ 3
147
+ 7
148
+ 7
149
+ 6
150
+ 1
151
+ 1
152
+ A
153
+ B
154
+ A
155
+ B
156
+ [0]
157
+ [0]
158
+ [2]
159
+ [1]
160
+ 4
161
+ 4
162
+ 9
163
+ 5
164
+ 5
165
+ 3
166
+ 2
167
+ 2
168
+ 7
169
+ 1
170
+ 6
171
+ 6
172
+ 8
173
+ 8
174
+ 4
175
+ 4
176
+ 4
177
+ C
178
+ D
179
+ D
180
+ C
181
+ Figure 1: A pair of current graphs over Z21.
182
+ (E4) If circuit [a] traverses arc e+ and circuit [b] traverses arc e−, then α(e+) ≡ b − a
183
+ (mod 3).
184
+ The derived embedding of a current graph satisfying the above properties is constructed
185
+ in the following way: the vertex set is the current group Z3m, and the rotation at any vertex
186
+ i ∈ Z3m (and hence its set of neighbors) is found by taking the log of circuit [i mod 3] and
187
+ adding i (modulo Z3m) to each element. A vertex i is called a [k]-vertex if i mod 3 = k, i.e.,
188
+ it is a vertex whose rotation is determined by circuit [k].
189
+ Since every vertex has degree 3 and satisfies KCL, the derived embedding is triangular.
190
+ Its genus thus has a simple formula:
191
+ Proposition 3.1. Given an index 3 current graph, if the number of vertices is v, the current
192
+ group is Z3m, and the derived embedding is connected, then its genus is (v − 6)m/4 + 1.
193
+ Proof. Since there are three circuits and every vertex has degree 3, the average length of
194
+ a circuit, and hence the average degree of the graph, is v. The above formula results from
195
+ substituting E = 3mv/2 and V = 3m into Proposition 2.1.
196
+ Our current graphs come in pairs, and each pair satisfies two additional properties:
197
+ (E5) For each k = 0, 1, 2, each nonzero element of Z3m appears in the log of circuit [k] in
198
+ exactly one of the two current graphs.
199
+ (E6) Both current graphs have the same number of vertices.
200
+ When these properties are satisfied, each possible edge between distinct vertices appears
201
+ in exactly one of the two derived embeddings and by Proposition 3.1, the derived embeddings
202
+ are on surfaces of the same genus. Consequently, we have a triangular biembedding of the
203
+ complete graph K3m.
204
+ 4
205
+
206
+ [0]
207
+ [0]
208
+ [1]
209
+ [2]
210
+ 1
211
+ 1
212
+ 12s+9
213
+ 12s+9
214
+ 12s+10
215
+ 12s+10
216
+ 12s+6
217
+ 4
218
+ 4
219
+ ...
220
+ ...
221
+ 3s+1
222
+ 3s+1
223
+ 6s+9
224
+ 6s+9
225
+ 9s+10
226
+ 9s+10
227
+ 3
228
+ 3
229
+ 9s+7
230
+ 9s+7
231
+ 6s+3
232
+ 6s+3
233
+ 3s+4
234
+ 3s+4
235
+ 6s
236
+ 9s+4
237
+ 9s+4
238
+ . ..
239
+ . ..
240
+ 6s+1
241
+ 6s+1
242
+ 6
243
+ 6s+7
244
+ 6s+7
245
+ 6s+6
246
+ 1
247
+ 1
248
+ A
249
+ B
250
+ A
251
+ B
252
+ [0]
253
+ [0]
254
+ [2]
255
+ [1]
256
+ 6s+4
257
+ 6s+4
258
+ 12s+9
259
+ 6s+5
260
+ 6s+5
261
+ 3
262
+ 6s+2
263
+ 6s+2
264
+ 6
265
+ 6
266
+ 6s+8
267
+ 6s+8
268
+ ...
269
+ ...
270
+ 2
271
+ 2
272
+ 12s+6
273
+ 12s+6
274
+ 12s+8
275
+ 12s+8
276
+ 6s+4
277
+ 6s+4
278
+ 6s+4
279
+ C
280
+ D
281
+ D
282
+ C
283
+ arithmetic
284
+ arithmetic
285
+ arithmetic
286
+ Figure 2: Pairs of current graphs for all s ≥ 0 with current group Z24s+21.
287
+ 18s−3j+13
288
+ 18s+3j+16
289
+ 6j+3
290
+ 6j+3
291
+ 18s+3j+16
292
+ 18s−3j+13
293
+ 6j+3
294
+ 6j+3
295
+ 6s+3k+7
296
+ 6s−3k+1
297
+ 6k+6
298
+ 6k+6
299
+ Figure 3: Current assignments on circular arcs.
300
+ The two current graphs in Figure 1 satisfy properties (E1)–(E6). Hence, their derived
301
+ embeddings form a triangular biembedding of K21. These current graphs contain frequently
302
+ used elements in index 3 constructions that were first described in detail by Youngs [You70].
303
+ The underlying graphs are (circular or M¨obius) ladders containing rungs. The rungs come
304
+ in two varieties: simple rungs that are just vertical edges, and ring-shaped rungs, which have
305
+ two more vertices connected by two parallel edges.
306
+ 4
307
+ The main construction
308
+ The current graphs in Figure 1 constitute the smallest instance of an infinite family:
309
+ Theorem 4.1. The complete graph K24s+21 has a triangular biembedding for all s ≥ 0.
310
+ Proof. The current graphs described in Figure 2 satisfy properties (E1)–(E6) and thus gen-
311
+ erate triangular biembeddings of the complete graphs K24s+21, for all s ≥ 0. The sections
312
+ labeled “arithmetic” describe part of the ladder where:
313
+ • the rungs alternate between simple and ring-shaped,
314
+ 5
315
+
316
+ • the vertical arcs alternate in direction, and
317
+ • the currents on those vertical arcs form an arithmetic sequence with step size 3.
318
+ In the interest of space, the labels on the circular arcs are given separately in Figure 3, where
319
+ the variables have the ranges j = 0, . . . , 2s + 1 and k = 0, . . . , 2s. To check that the derived
320
+ embeddings partition the edges of K24s+21, we categorize the edges based on their incident
321
+ circuits. The horizontal edges are where circuit [0] meets with either circuit [1] or [2]; the
322
+ simple rungs are where circuit [0] meets with itself; the vertical edges of ring-shaped rungs
323
+ are where circuits [1] and [2] meet with themselves; and the circular arcs are where circuits
324
+ [1] and [2] meet. One can use this information to check that property (E5) is satisfied.
325
+ In both current graphs, there is at least one edge incident with circuits [0] and [1], and
326
+ at least one edge incident with circuits [0] and [2]. Because of the presence of an arc with
327
+ current 3, the derived embeddings of the first and second current graphs have a cycle passing
328
+ through all the [1]-vertices and [0]-vertices, respectively. These two properties imply that
329
+ the derived embeddings are connected.
330
+ 5
331
+ Biembeddings on different surfaces
332
+ Rearranging parts of the above infinite families of current graphs results in biembeddings
333
+ into two surfaces of different genus. Cabaniss and Jackson [CJ90] say that a graph is (g, h)-
334
+ biembeddable if it has an edge decomposition into two subgraphs, one of which is embeddable
335
+ in the surface Sg, and the other in Sh.
336
+ For each pair of current graphs in our main construction, each multiple of 3 corresponds
337
+ to two rungs: in one graph, it appears as a current on a simple rung, and in the other
338
+ graph, it appears twice on the vertical arcs of a ring-shaped rung. These two rungs can be
339
+ swapped (possibly with some changes in arc directions) while preserving properties (E2)–
340
+ (E5). Such exchanges have appeared in other constructions of index 3 current graphs (see,
341
+ e.g., [JR80, Sun20]), except in those cases, they were rungs in the same current graph. In our
342
+ situation, two pairs of rungs need to be swapped at the same time to ensure property (E1),
343
+ that the indices of both current graphs stay at 3. Property (E6) is violated intentionally to
344
+ get derived embeddings on different surfaces.
345
+ Theorem 5.1. The complete graph K24s+21 is
346
+ (b(s) − (8s + 7)k, b(s) + (8s + 7)k)-biembeddable,
347
+ where b(s) = β(K24s+21) = 24s2 + 29s + 8 and k = 0, . . . , s + 1.
348
+ Proof. Switching two normal rungs with two ring-shaped rungs changes the total number
349
+ of vertices in both current graphs by 4. From Proposition 3.1, the genus must increase or
350
+ decrease by 8s + 7. The first current graph has 2s + 2 ring-shaped rungs (the second current
351
+ graph has one fewer), so up to s+1 pairs of rungs can be exchanged. Finally, the connectivity
352
+ argument at the end of the proof of Theorem 4.1 is still valid even if the rungs with current
353
+ 3 are swapped.
354
+ 6
355
+
356
+ [0]
357
+ [0]
358
+ [1]
359
+ [2]
360
+ 1
361
+ 1
362
+ 9
363
+ 10
364
+ 10
365
+ 3
366
+ 7
367
+ 7
368
+ 6
369
+ 1
370
+ 1
371
+ A
372
+ B
373
+ A
374
+ B
375
+ [0]
376
+ [0]
377
+ [2]
378
+ [1]
379
+ 4
380
+ 4
381
+ 19
382
+ 10
383
+ 9
384
+ 9
385
+ 5
386
+ 5
387
+ 13
388
+ 16
389
+ 3
390
+ 3
391
+ 2
392
+ 2
393
+ 7
394
+ 1
395
+ 6
396
+ 6
397
+ 8
398
+ 8
399
+ 4
400
+ 4
401
+ 4
402
+ C
403
+ D
404
+ D
405
+ C
406
+ Figure 4: K21 is (1, 15)-biembeddable.
407
+ Figure 4 shows a swap on the two current graphs that originally appeared in Figure 1.
408
+ Plugging in s = 0 and k = 1 into Theorem 5.1 shows that the derived embeddings of the
409
+ graphs are on the torus and the genus 15 surface.
410
+ References
411
+ [AW78]
412
+ Ian Anderson and Arthur T White. Current graphs and bi-embeddings. Journal
413
+ of Graph Theory, 2(3):231–239, 1978.
414
+ [Bei69]
415
+ Lowell W. Beineke. Minimal decompositions of complete graphs into subgraphs
416
+ with embeddability properties. Canadian Journal of Mathematics, 21:992–1000,
417
+ 1969.
418
+ [Bei97]
419
+ Lowell W. Beineke. Biplanar graphs: A survey. Computers & Mathematics with
420
+ Applications, 34(11):1–8, 1997.
421
+ [BHK62] Joseph Battle, Frank Harary, and Yukihiro Kodama. Every planar graph with
422
+ nine points has a nonplanar complement. Bulletin of the American Mathematical
423
+ Society, 68(6):569–571, 1962.
424
+ [CJ90]
425
+ Sharon Cabaniss and Bradley W. Jackson.
426
+ Infinite families of bi-embeddings.
427
+ Discrete Mathematics, 82(2):127–141, 1990.
428
+ [Get18]
429
+ Ellen Gethner. To the Moon and Beyond. In Graph Theory—Favorite Conjectures
430
+ and Open Problems – 2, pages 115–133. Springer, 2018.
431
+ [GT87]
432
+ Jonathan L. Gross and Thomas W. Tucker. Topological Graph Theory. Wiley &
433
+ Sons, 1987.
434
+ 7
435
+
436
+ [Hea90]
437
+ Percy John Heawood. Map Colour Theorem. Quarterly Journal of Mathematics,
438
+ 24:332–338, 1890.
439
+ [JR80]
440
+ Mark Jungerman and Gerhard Ringel. Minimal triangulations on orientable sur-
441
+ faces. Acta Mathematica, 145(1):121–154, 1980.
442
+ [JR00]
443
+ Brad Jackson and Gerhard Ringel. Variations on Ringel’s earth-moon problem.
444
+ Discrete Mathematics, 211(1-3):233–242, 2000.
445
+ [Rin59]
446
+ Gerhard Ringel. F¨arbungsprobleme auf fl¨achen und graphen. Deutscher Verlag der
447
+ Wissenschaften, 1959.
448
+ [Rin65]
449
+ Gerhard Ringel. Die toroidale dicke des vollst¨andigen graphen. Mathematische
450
+ Zeitschrift, 87(1):19–26, 1965.
451
+ [Rin74]
452
+ Gerhard Ringel. Map Color Theorem. Springer Science & Business Media, 1974.
453
+ [Sun20]
454
+ Timothy Sun.
455
+ Simultaneous current graph constructions for minimum trian-
456
+ gulations and complete graph embeddings.
457
+ Ars Mathematica Contemporanea,
458
+ 18(2):309–337, 2020.
459
+ [Sun22]
460
+ Timothy Sun. On the bigenus of the complete graphs. Australasian Journal of
461
+ Combinatorics, 81(1):212–219, 2022.
462
+ [Tut63]
463
+ William T. Tutte. The non-biplanar character of the complete 9-graph. Canadian
464
+ Mathematical Bulletin, 6(3):319–330, 1963.
465
+ [You70]
466
+ J.W.T. Youngs. Solution of the Heawood map-coloring problem — Cases 3, 5, 6,
467
+ and 9. Journal of Combinatorial Theory, 8(2):175–219, 1970.
468
+ 8
469
+
6NAyT4oBgHgl3EQfcffh/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf,len=225
2
+ page_content='Index 3 biembeddings of the complete graphs Juvenal F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
3
+ page_content=' Barajas and Timothy Sun Department of Computer Science San Francisco State University Abstract We show that the complete graphs on 24s + 21 vertices have decompositions into two edge-disjoint subgraphs, each of which triangulates an orientable surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
4
+ page_content=' The special case where the two surfaces are homeomorphic solves a generalized Earth- Moon problem for that surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
5
+ page_content=' Unlike previous constructions, these pairs of triangular embeddings are derived from index 3 current graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
6
+ page_content=' 1 Introduction There are many graph parameters that generalize the notion of planarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
7
+ page_content=' Perhaps the most well-known of such parameters is the genus of the graph, which is the smallest value g such that the graph has an embedding in Sg, the orientable surface of genus g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
8
+ page_content=' A less-studied parameter is the thickness of a graph, which is the size of the smallest partition of the edges into planar subgraphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
9
+ page_content=' A graph is said to be biembeddable in surfaces S and S′ if it can be decomposed into two edge-disjoint subgraphs, one of which embeds in S and the other embeds in S′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
10
+ page_content=' When S is homeomorphic to S′, we simply say that the graph is biembeddable in S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
11
+ page_content=' We consider a variant of both genus and thickness, the bigenus of a graph β(G), which is defined to be the smallest value g such that the graph G is biembeddable in Sg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
12
+ page_content=' The Earth-Moon problem is a longstanding open problem on the maximum possible chromatic number of a graph with thickness 2, or equivalently, bigenus 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
13
+ page_content=' At present, it is known that this value is 9, 10, 11, or 12 (see [Get18]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
14
+ page_content=' The upper bound is derived from a standard coloring argument based on average degree, which Heawood [Hea90] also uses to color graphs embedded in arbitrary orientable surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
15
+ page_content=' Heawood’s conjecture that his upper bound is tight is now called the Map Color Theorem [Rin74], proven by Ringel, Youngs, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
16
+ page_content=' Jackson and Ringel [JR00] conjecture a similar result for graphs biembeddable in higher- genus orientable surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
17
+ page_content=' The maximum chromatic number over all graphs biembeddable in the surface Sg is called the bichromatic number of Sg and is denoted by χ2(Sg).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
18
+ page_content=' The same coloring argument is used to prove the following Heawood-like inequality: Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
19
+ page_content='1 (Jackson and Ringel [JR00]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
20
+ page_content=' The bichromatic number of the orientable surface Sg, where g ≥ 1, is at most χ2(Sg) ≤ �13 + √73 + 96g 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
21
+ page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
22
+ page_content='00286v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
23
+ page_content='CO] 31 Dec 2022 Conjecture 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
24
+ page_content='2 (Jackson and Ringel [JR00]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
25
+ page_content=' For all g ≥ 1, the bound in Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
26
+ page_content='1 is tight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
27
+ page_content=' Just like the Map Color Theorem, this generalization of the Earth-Moon problem hardly resembles the original problem on the sphere: for all other surfaces, one might expect that the upper bound is always matched by a biembedding of a complete graph on the same number of vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
28
+ page_content=' Conjecture 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
29
+ page_content='2 thus has a stronger “graph-centric” formulation in terms of bigenus: Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
30
+ page_content='3 (Cabaniss and Jackson [CJ90]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
31
+ page_content=' The bigenus of the complete graph Kn is at least β(Kn) ≥ �n2 − 13n + 24 24 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
32
+ page_content=' Conjecture 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
33
+ page_content='4 (Cabaniss and Jackson [CJ90]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
34
+ page_content=' For all n ≥ 11, β(Kn) = �n2 − 13n + 24 24 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
35
+ page_content=' The bigenus of the complete graph Kn can equal exactly n2 − 13n + 24/24 only when both embeddings of the biembedding are triangular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
36
+ page_content=' These so-called triangular biembeddings are only possible when n ≡ 0, 13, 16, 21 (mod 24), otherwise the expression is not an integer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
37
+ page_content=' With the exception of some small cases (β(Kn) is known for all n ≤ 14 [Rin59, BHK62, Tut63, Rin65, Bei69]), all other known constructions of minimum genus biembeddings of Kn have been triangular biembeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
38
+ page_content=' The second author [Sun22] found triangular embeddings of self-complementary graphs on 16, 21, and 24 vertices through computer search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
39
+ page_content=' One of the aforementioned residues, n ≡ 13 (mod 24), has been solved using current graphs, a covering space construction that has proven to be effective for finding triangular embeddings of dense graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
40
+ page_content=' The application of current graphs to biembeddings was initiated by Anderson and White [AW78], who found a pair of current graphs that produce a triangular biembedding of K37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
41
+ page_content=' Cabaniss and Jackson [CJ90] then solved the bigenus of K61 and K85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
42
+ page_content=' Finally, the second author [Sun22] completed this line of work by finding an infinite family of current graphs that produce triangular biembeddings of the complete graphs on n = 24s+13 vertices, for all s ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
43
+ page_content=' The aforementioned current graphs are all of index 1, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
44
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
45
+ page_content=', they are all 1-face embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
46
+ page_content=' We solve another one of the residues by constructing triangular biembeddings of the complete graphs K24s+21, for all s ≥ 0, using index 3 current graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
47
+ page_content=' 2 Graph embeddings We assume prior knowledge of topological graph theory and the theory of current graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
48
+ page_content=' For background on these topics, see Gross and Tucker [GT87] and Ringel [Rin74].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
49
+ page_content=' In particular, 2 Section 9 of Ringel [Rin74] describes current graph constructions similar to the ones we will present here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
50
+ page_content=' For more information on the thickness parameter and its variants, see Beineke [Bei97].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
51
+ page_content=' A cellular embedding of a graph G = (V, E) in the surface Sg is an injective mapping φ: G → Sg, where the components of Sg \\ φ(G) are open disks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
52
+ page_content=' We call these disks faces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
53
+ page_content=' In this paper, all graph embeddings are cellular and in orientable surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
54
+ page_content=' If the set of faces is denoted by F(φ), then its size is determined by the Euler polyhedral equation |V | − |E| + |F(φ)| = 2 − 2g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
55
+ page_content=' When G is simple, the Euler polyhedral equation implies a well-known inequality on the number of edges in G: Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
56
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
57
+ page_content=' If G = (V, E) is a simple graph embedded in the orientable surface Sg, then |E| ≤ 3|V | − 6 + 6g, with equality if and only if the embedding is triangular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
58
+ page_content=' For biembeddings, a graph can have twice as many edges, and one can use this inequality to prove Propositions 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
59
+ page_content='1 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
60
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
61
+ page_content=' To describe a cellular embedding combinatorially, each edge e ∈ E induces two arcs e+ and e− with the same endpoints, each representing the two different directions in which e can be traversed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
62
+ page_content=' The set of such arcs is denoted E+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
63
+ page_content=' A rotation of a vertex is a cyclic permutation of the arcs leaving that vertex, and a rotation system of a graph is an assignment of a rotation to each vertex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
64
+ page_content=' When a graph is simple, it is sufficient to describe a rotation as a cyclic permutation of the vertex’s neighbors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
65
+ page_content=' The Heffter-Edmonds principle states that rotation systems are in one-to-one correspondence with cellular embeddings in orientable surfaces (see Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
66
+ page_content='2 of Gross and Tucker [GT87]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
67
+ page_content=' From a rotation system, a cellular embedding can be found through face-tracing, where each face-boundary walk corresponds to a cyclic sequence of arcs (e± 1 , e± 2 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
68
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
69
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
70
+ page_content=' , e± i ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
71
+ page_content=' 3 Current graphs A current graph is an arc-labeled, embedded graph where the arc-labeling α : E+ → Zn \\{0} satisfies α(e+) = −α(e−) for each edge e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
72
+ page_content=' We call Zn the current group and the arc labels currents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
73
+ page_content=' The index of a current graph is the number of faces in the embedding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
74
+ page_content=' Our current graphs are of index 3, and its face-boundary walks, which we call circuits, are labeled [0], [1], and [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
75
+ page_content=' Given a circuit, the log of the circuit replaces each arc with its current.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
76
+ page_content=' We require that our current graphs satisfy a standard set of properties: (E1) The current graph has index 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
77
+ page_content=' (E2) Each vertex has degree 3 and satisfies KCL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
78
+ page_content=' (E3) Each nonzero element of the current group Z3m appears at most once in the log of each circuit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
79
+ page_content=' 3 [0] [0] [1] [2] 1 1 10 19 9 9 10 10 16 13 3 3 7 7 6 1 1 A B A B [0] [0] [2] [1] 4 4 9 5 5 3 2 2 7 1 6 6 8 8 4 4 4 C D D C Figure 1: A pair of current graphs over Z21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
80
+ page_content=' (E4) If circuit [a] traverses arc e+ and circuit [b] traverses arc e−, then α(e+) ≡ b − a (mod 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
81
+ page_content=' The derived embedding of a current graph satisfying the above properties is constructed in the following way: the vertex set is the current group Z3m, and the rotation at any vertex i ∈ Z3m (and hence its set of neighbors) is found by taking the log of circuit [i mod 3] and adding i (modulo Z3m) to each element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
82
+ page_content=' A vertex i is called a [k]-vertex if i mod 3 = k, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
83
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
84
+ page_content=', it is a vertex whose rotation is determined by circuit [k].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
85
+ page_content=' Since every vertex has degree 3 and satisfies KCL, the derived embedding is triangular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
86
+ page_content=' Its genus thus has a simple formula: Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
87
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
88
+ page_content=' Given an index 3 current graph, if the number of vertices is v, the current group is Z3m, and the derived embedding is connected, then its genus is (v − 6)m/4 + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
89
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
90
+ page_content=' Since there are three circuits and every vertex has degree 3, the average length of a circuit, and hence the average degree of the graph, is v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
91
+ page_content=' The above formula results from substituting E = 3mv/2 and V = 3m into Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
92
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
93
+ page_content=' Our current graphs come in pairs, and each pair satisfies two additional properties: (E5) For each k = 0, 1, 2, each nonzero element of Z3m appears in the log of circuit [k] in exactly one of the two current graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
94
+ page_content=' (E6) Both current graphs have the same number of vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
95
+ page_content=' When these properties are satisfied, each possible edge between distinct vertices appears in exactly one of the two derived embeddings and by Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
96
+ page_content='1, the derived embeddings are on surfaces of the same genus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
97
+ page_content=' Consequently, we have a triangular biembedding of the complete graph K3m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
98
+ page_content=' 4 [0] [0] [1] [2] 1 1 12s+9 12s+9 12s+10 12s+10 12s+6 4 4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
99
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
100
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
101
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
102
+ page_content=' 3s+1 3s+1 6s+9 6s+9 9s+10 9s+10 3 3 9s+7 9s+7 6s+3 6s+3 3s+4 3s+4 6s 9s+4 9s+4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
103
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
104
+ page_content='. .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
105
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
106
+ page_content='. 6s+1 6s+1 6 6s+7 6s+7 6s+6 1 1 A B A B [0] [0] [2] [1] 6s+4 6s+4 12s+9 6s+5 6s+5 3 6s+2 6s+2 6 6 6s+8 6s+8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
107
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
108
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
109
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
110
+ page_content=' 2 2 12s+6 12s+6 12s+8 12s+8 6s+4 6s+4 6s+4 C D D C arithmetic arithmetic arithmetic Figure 2: Pairs of current graphs for all s ≥ 0 with current group Z24s+21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
111
+ page_content=' 18s−3j+13 18s+3j+16 6j+3 6j+3 18s+3j+16 18s−3j+13 6j+3 6j+3 6s+3k+7 6s−3k+1 6k+6 6k+6 Figure 3: Current assignments on circular arcs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
112
+ page_content=' The two current graphs in Figure 1 satisfy properties (E1)–(E6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
113
+ page_content=' Hence, their derived embeddings form a triangular biembedding of K21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
114
+ page_content=' These current graphs contain frequently used elements in index 3 constructions that were first described in detail by Youngs [You70].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
115
+ page_content=' The underlying graphs are (circular or M¨obius) ladders containing rungs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
116
+ page_content=' The rungs come in two varieties: simple rungs that are just vertical edges, and ring-shaped rungs, which have two more vertices connected by two parallel edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
117
+ page_content=' 4 The main construction The current graphs in Figure 1 constitute the smallest instance of an infinite family: Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
118
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
119
+ page_content=' The complete graph K24s+21 has a triangular biembedding for all s ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
120
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
121
+ page_content=' The current graphs described in Figure 2 satisfy properties (E1)–(E6) and thus gen- erate triangular biembeddings of the complete graphs K24s+21, for all s ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
122
+ page_content=' The sections labeled “arithmetic” describe part of the ladder where: the rungs alternate between simple and ring-shaped, 5 the vertical arcs alternate in direction, and the currents on those vertical arcs form an arithmetic sequence with step size 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
123
+ page_content=' In the interest of space, the labels on the circular arcs are given separately in Figure 3, where the variables have the ranges j = 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
124
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
125
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
126
+ page_content=' , 2s + 1 and k = 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
127
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
128
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
129
+ page_content=' , 2s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
130
+ page_content=' To check that the derived embeddings partition the edges of K24s+21, we categorize the edges based on their incident circuits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
131
+ page_content=' The horizontal edges are where circuit [0] meets with either circuit [1] or [2];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
132
+ page_content=' the simple rungs are where circuit [0] meets with itself;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
133
+ page_content=' the vertical edges of ring-shaped rungs are where circuits [1] and [2] meet with themselves;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
134
+ page_content=' and the circular arcs are where circuits [1] and [2] meet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
135
+ page_content=' One can use this information to check that property (E5) is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
136
+ page_content=' In both current graphs, there is at least one edge incident with circuits [0] and [1], and at least one edge incident with circuits [0] and [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
137
+ page_content=' Because of the presence of an arc with current 3, the derived embeddings of the first and second current graphs have a cycle passing through all the [1]-vertices and [0]-vertices, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
138
+ page_content=' These two properties imply that the derived embeddings are connected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
139
+ page_content=' 5 Biembeddings on different surfaces Rearranging parts of the above infinite families of current graphs results in biembeddings into two surfaces of different genus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
140
+ page_content=' Cabaniss and Jackson [CJ90] say that a graph is (g, h)- biembeddable if it has an edge decomposition into two subgraphs, one of which is embeddable in the surface Sg, and the other in Sh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
141
+ page_content=' For each pair of current graphs in our main construction, each multiple of 3 corresponds to two rungs: in one graph, it appears as a current on a simple rung, and in the other graph, it appears twice on the vertical arcs of a ring-shaped rung.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
142
+ page_content=' These two rungs can be swapped (possibly with some changes in arc directions) while preserving properties (E2)– (E5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
143
+ page_content=' Such exchanges have appeared in other constructions of index 3 current graphs (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
144
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
145
+ page_content=', [JR80, Sun20]), except in those cases, they were rungs in the same current graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
146
+ page_content=' In our situation, two pairs of rungs need to be swapped at the same time to ensure property (E1), that the indices of both current graphs stay at 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
147
+ page_content=' Property (E6) is violated intentionally to get derived embeddings on different surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
148
+ page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
149
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
150
+ page_content=' The complete graph K24s+21 is (b(s) − (8s + 7)k, b(s) + (8s + 7)k)-biembeddable, where b(s) = β(K24s+21) = 24s2 + 29s + 8 and k = 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
151
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
152
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
153
+ page_content=' , s + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
154
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
155
+ page_content=' Switching two normal rungs with two ring-shaped rungs changes the total number of vertices in both current graphs by 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
156
+ page_content=' From Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
157
+ page_content='1, the genus must increase or decrease by 8s + 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
158
+ page_content=' The first current graph has 2s + 2 ring-shaped rungs (the second current graph has one fewer), so up to s+1 pairs of rungs can be exchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
159
+ page_content=' Finally, the connectivity argument at the end of the proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
160
+ page_content='1 is still valid even if the rungs with current 3 are swapped.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
161
+ page_content=' 6 [0] [0] [1] [2] 1 1 9 10 10 3 7 7 6 1 1 A B A B [0] [0] [2] [1] 4 4 19 10 9 9 5 5 13 16 3 3 2 2 7 1 6 6 8 8 4 4 4 C D D C Figure 4: K21 is (1, 15)-biembeddable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
162
+ page_content=' Figure 4 shows a swap on the two current graphs that originally appeared in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
163
+ page_content=' Plugging in s = 0 and k = 1 into Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
164
+ page_content='1 shows that the derived embeddings of the graphs are on the torus and the genus 15 surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
165
+ page_content=' References [AW78] Ian Anderson and Arthur T White.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
166
+ page_content=' Current graphs and bi-embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
167
+ page_content=' Journal of Graph Theory, 2(3):231–239, 1978.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
168
+ page_content=' [Bei69] Lowell W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
169
+ page_content=' Beineke.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
170
+ page_content=' Minimal decompositions of complete graphs into subgraphs with embeddability properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
171
+ page_content=' Canadian Journal of Mathematics, 21:992–1000, 1969.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
172
+ page_content=' [Bei97] Lowell W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
173
+ page_content=' Beineke.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
174
+ page_content=' Biplanar graphs: A survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
175
+ page_content=' Computers & Mathematics with Applications, 34(11):1–8, 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
176
+ page_content=' [BHK62] Joseph Battle, Frank Harary, and Yukihiro Kodama.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
177
+ page_content=' Every planar graph with nine points has a nonplanar complement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
178
+ page_content=' Bulletin of the American Mathematical Society, 68(6):569–571, 1962.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
179
+ page_content=' [CJ90] Sharon Cabaniss and Bradley W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
180
+ page_content=' Jackson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
181
+ page_content=' Infinite families of bi-embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
182
+ page_content=' Discrete Mathematics, 82(2):127–141, 1990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
183
+ page_content=' [Get18] Ellen Gethner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
184
+ page_content=' To the Moon and Beyond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
185
+ page_content=' In Graph Theory—Favorite Conjectures and Open Problems – 2, pages 115–133.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
186
+ page_content=' Springer, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
187
+ page_content=' [GT87] Jonathan L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
188
+ page_content=' Gross and Thomas W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
189
+ page_content=' Tucker.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
190
+ page_content=' Topological Graph Theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
191
+ page_content=' Wiley & Sons, 1987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
192
+ page_content=' 7 [Hea90] Percy John Heawood.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
193
+ page_content=' Map Colour Theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
194
+ page_content=' Quarterly Journal of Mathematics, 24:332–338, 1890.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
195
+ page_content=' [JR80] Mark Jungerman and Gerhard Ringel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
196
+ page_content=' Minimal triangulations on orientable sur- faces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
197
+ page_content=' Acta Mathematica, 145(1):121–154, 1980.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
198
+ page_content=' [JR00] Brad Jackson and Gerhard Ringel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
199
+ page_content=' Variations on Ringel’s earth-moon problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
200
+ page_content=' Discrete Mathematics, 211(1-3):233–242, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
201
+ page_content=' [Rin59] Gerhard Ringel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
202
+ page_content=' F¨arbungsprobleme auf fl¨achen und graphen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
203
+ page_content=' Deutscher Verlag der Wissenschaften, 1959.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
204
+ page_content=' [Rin65] Gerhard Ringel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
205
+ page_content=' Die toroidale dicke des vollst¨andigen graphen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
206
+ page_content=' Mathematische Zeitschrift, 87(1):19–26, 1965.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
207
+ page_content=' [Rin74] Gerhard Ringel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
208
+ page_content=' Map Color Theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
209
+ page_content=' Springer Science & Business Media, 1974.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
210
+ page_content=' [Sun20] Timothy Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
211
+ page_content=' Simultaneous current graph constructions for minimum trian- gulations and complete graph embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
212
+ page_content=' Ars Mathematica Contemporanea, 18(2):309–337, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
213
+ page_content=' [Sun22] Timothy Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
214
+ page_content=' On the bigenus of the complete graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
215
+ page_content=' Australasian Journal of Combinatorics, 81(1):212–219, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
216
+ page_content=' [Tut63] William T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
217
+ page_content=' Tutte.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
218
+ page_content=' The non-biplanar character of the complete 9-graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
219
+ page_content=' Canadian Mathematical Bulletin, 6(3):319–330, 1963.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
220
+ page_content=' [You70] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
221
+ page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
222
+ page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
223
+ page_content=' Youngs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
224
+ page_content=' Solution of the Heawood map-coloring problem — Cases 3, 5, 6, and 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
225
+ page_content=' Journal of Combinatorial Theory, 8(2):175–219, 1970.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
226
+ page_content=' 8' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf'}
6dAyT4oBgHgl3EQfpfjS/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db49099937469309d8d1f3c84ec806c4de4d684017105688117b85ee8f6d2795
3
+ size 1441837
8tE4T4oBgHgl3EQf3A1I/content/tmp_files/2301.05302v1.pdf.txt ADDED
@@ -0,0 +1,2324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wavenumber Scattering and Inter-band Targeted Energy Transfer in Phononic
2
+ Lattices with Local Vibro-Impact Nonlinearities
3
+ Joshua R. Tempelman, Alexander F. Vakakis, and Kathryn H. Matlack
4
+ Department of Mechanical Science and Engineering,
5
+ University of Illinois at Urbana-Champaign, 1206 W Green St, Urbana, IL 61801
6
+ We propose a method for manipulating wave propagation in phononic lattices by employing local
7
+ vibro-impact (VI) nonlinearities to scatter energy across the underling linear band structure of the
8
+ lattice, and transfer energy from lower to higher optical bands. Inspired by recent developments
9
+ in the field of nonlinear targeted energy transfer (TET) using non-resonant energy exchanges, we
10
+ achieve this using spatially localized VI forces that redistribute energy across the linear spectrum
11
+ of the lattice in a non-resonant fashion. First, a 1-dimensional (1D), 2-band phononic lattice with
12
+ embedded VI unit cells is computationally studied to demonstrate that energy is scattered in the
13
+ wavenumber domain, and this nonlinear scattering mechanism depends on the energy of the propa-
14
+ gating wave. Next, a 4-band lattice is studied with a similar technique to demonstrate the concept
15
+ of inter-band targeted energy transfer (IBTET) and to establish analogous scaling relations with
16
+ respect to energy. To interpret the results of IBTET, we study the nonlinear normal modes (NNMs)
17
+ of a reduced order model (ROM) of the VI unit cell in the 4-band lattice, using the method of
18
+ numerical continuation. Interestingly, the slope of the frequency-energy branches of the ROM cor-
19
+ responding to the 1:1 resonance NNM matches remarkably well with the dependence of IBTET
20
+ to input energy in the 4-band lattice. In both phononic lattices, it is shown that there exists a
21
+ maximum energy transfer at moderate input energies, followed by a power law decay of relative
22
+ energy transfer either to the wavenumber domain or between bands on input energy; this power law
23
+ dependence is additionally validated by the ROM. Moreover, relations between the dynamics of the
24
+ VI lattice and the NNMs of the underlying Hamiltonian system provide physical interpretations for
25
+ the relative energy transfers. Hence, we present a predictive framework to computationally explore
26
+ non-resonant energy transfers across the linear band structure of phononic lattices with local strong
27
+ non-smooth nonlinearities and provide a comprehensive physics-based interpretation of these energy
28
+ transfers based on the nonlinear dynamics of the lower-dimensional ROM.
29
+ I.
30
+ INTRODUCTION
31
+ Periodicity has been leveraged to control acoustic and
32
+ elastic energy propagation in linear time-invariant (LTI)
33
+ phononic metamaterials [1–3]. Such systems are typically
34
+ designed on a unit cell level whereby the application of
35
+ the Bloch theorem allows one to engineer a linear band
36
+ structure which can enable or augment specified wave
37
+ phenomena with diverse applications such as lensing [4],
38
+ energy harvesting [5–7], vibration isolation [8–10], wave
39
+ steering [11], mechanical logic circuits [12], mechanical
40
+ signal processing [13], and topological insulation [14–16].
41
+ For LTI phononic systems, a propagating wave remains
42
+ stationary on a prescribed subset of its band structure,
43
+ and is invariant to amplitude (or energy) as the dynam-
44
+ ics are completely described by the superposition prin-
45
+ ciple [3]. However, it is often desirable to predictively
46
+ tune wave propagation in phononic materials such that
47
+ the propagating wave shifts to a different subset of its
48
+ band structure. To this end, one must either manipu-
49
+ late the underlying band structure altogether by utiliz-
50
+ ing external forces or nonlinearity [3, 17], or find methods
51
+ to modify the distribution of (or, equivalently, passively
52
+ manage) energy across a fixed underlying band structure.
53
+ Whereas band manipulation has been achieved by in-
54
+ troducing e.g., electromagnetic, magnetic, mechanical, or
55
+ thermal fields [18–23], nonlinear mechanisms offer the key
56
+ advantage of being passive and tunable (self-adaptive)
57
+ to energy, frequency and wavenumber content [17, 24].
58
+ For instance, the effective dispersion relations of granular
59
+ chains with Hertzian contact laws are tunable by locally
60
+ linearizing about various pre-compression states [25–27].
61
+ Moreover, passive nonlinear mechanisms posses intrinsic
62
+ frequency-amplitude dependencies, and the correspond-
63
+ ing shifts to the band structures can be described by
64
+ perturbations of the underlying linearized band struc-
65
+ ture [28] for low energy or by the nonlinear normal modes
66
+ (NNMs) at high energy [29–32]. Aside from band struc-
67
+ ture manipulation, distributed nonlinearity in periodic
68
+ chains has enabled exotic wave behavior in lattices with
69
+ no properly defined band structure such as stegetons [33],
70
+ solitons [34], and breathers [35, 36].
71
+ Herein, we aim to develop mechanisms to manipulate
72
+ propagating energy in phononic metamaterials using lo-
73
+ calized nonlinearities to transfer energy across the un-
74
+ derlying linear band structure. In the absence of external
75
+ actions, the transfer of energy across an underlying linear
76
+ spectrum requires a nonlinear mechanism which has the
77
+ capability to transfer energy form one modal subspace
78
+ to another. Such a mechanism is fundamental to achiev-
79
+ ing targeted energy transfer (TET), a concept which has
80
+ been rigorously studied by the nonlinear dynamics com-
81
+ munity from the point of view of nonlinear modal dynam-
82
+ ics [37]. TET is most commonly achieved by employing
83
+ localized nonlinear energy sinks (NESs) which alter the
84
+ global dynamics of a primary linear structure to which
85
+ they are attached, with typical applications in vibration
86
+ arXiv:2301.05302v1 [physics.app-ph] 12 Jan 2023
87
+
88
+ 2
89
+ mitigation [38–52]. The TET phenomenon relies on res-
90
+ onance capture of the NES to a resonance manifold, and
91
+ thus traditional TET is intrinsically suited for systems
92
+ with smooth nonlinearities and periodic excitations [37].
93
+ However, theoretical and numerical support has recently
94
+ been extended to systems with non-stationary dynam-
95
+ ics [53] and systems with non-smooth nonlinearities such
96
+ as idealized vibro-impact (VI) laws [54–56].
97
+ The use of nonlinear attachments in acoustic wave
98
+ guides (either bulk or periodic) have demonstrated un-
99
+ precedented properties in acoustical systems [57].
100
+ For
101
+ instance, a small mass supported by an essential (non-
102
+ linearizable) stiffness nonlinearity in parallel to a viscous
103
+ damper attached to a periodic array of oscillators has
104
+ been shown to host a rich variety of nonlinear dynamics
105
+ when interacting with traveling waves [58], and are even
106
+ capable of arresting incoming pulses [59]. Moreover, with
107
+ the incorporation of hierarchical mass scales and asym-
108
+ metry, similar systems have achieved nonreciprocity [60–
109
+ 62]. These effects have been extended for systems with lo-
110
+ cal nonlinear gates that enable global non-reciprocity and
111
+ effective diode-type features in both continuous waveg-
112
+ uides [63] and discrete oscillator chains [64, 65]. In addi-
113
+ tion to reciprocity, the concept of local gates in waveg-
114
+ uides has recently been extended to produce effective
115
+ mechanical filters for layered metamaterials with inter-
116
+ faces [66] and for discrete periodic chains [67].
117
+ Recently, new ideas have emerged in the area of TET
118
+ which explore non-resonant energy exchanges in a di-
119
+ rectly forced primary linear structure using VI nonlinear-
120
+ ity to redistribute modal energy within its modal space,
121
+ termed inter modal targeted energy transfer [68]. This
122
+ methodology was studied computationally in [69] for a
123
+ discrete mulit-DoF structure, and was later experimen-
124
+ tally verified in [70] for the case of a cantilever beam un-
125
+ dergoing VIs. Unlike resonant mechanisms, non-resonant
126
+ mechanisms aim to scatter energy across the underlying
127
+ linear modal basis in a low-to-high frequency fashion. In
128
+ a similar fashion, Theurich et al. studied the directed
129
+ scattering of energy to higher modes in a harmonically
130
+ excited beam, and found that the effectiveness of the en-
131
+ ergy scatter is dependent on the dynamic regimes of the
132
+ VI system considered [71].
133
+ To date, non-resonant energy scattering concepts have
134
+ not been extended to periodic phononic metamaterials
135
+ from a wave propagation perspective. The most notable
136
+ differences between modal and periodic acoustical sys-
137
+ tems is that the first employs a modal basis to describe
138
+ stationary vibrations (and is suitable for systems of fi-
139
+ nite extent whose dynamics are governed by slow time
140
+ scales), while the latter a continuous band structure to
141
+ describe propagating waves (and applies to unbounded /
142
+ large-scale systems whose acoustics are governed by fast
143
+ time scales). Hence, several natural questions arise when
144
+ considering non-resonant TET phenomena in a phononic
145
+ material. Namely, to what extent can the linear wave
146
+ propagation be scattered in the wave number domain
147
+ across a dispersion branch, and to what capacity can
148
+ energy be irreversibly transferred from one band to an-
149
+ other by use of localized VI nonlinearities. This paper
150
+ addresses these questions with extensive computational
151
+ probing, new post-processing techniques, and physics-
152
+ based reasoning of the resulting nonlinear acoustic phe-
153
+ nomena.
154
+ We begin by studying the effects of VI nonlinearity in
155
+ a 2-band phononic lattice of diatomic resonators by ex-
156
+ tensive simulation and numerical post-processing of the
157
+ acoustics. For this, we focus on the energy scattered of
158
+ energy across the frequency/wavenumber domain of the
159
+ single optical band of this lattice as a function of the
160
+ number of local VI unit cells and as a function of the
161
+ incident wave energy grows. Next, we consider a 4-band
162
+ phononic lattice, which has one acoustic and three opti-
163
+ cal bands over a relatively broad frequency/wavenumber
164
+ range.
165
+ This band structure, coupled with the strong
166
+ VI nonlinearities, allows for low-to-high frequency en-
167
+ ergy generation of the impacts, as well as targeted energy
168
+ transfers across bands. This brings about the new non-
169
+ linear acoustic phenomenon of inter-band targeted energy
170
+ transfer (IBTET).
171
+ Accordingly, the organization of this paper is as fol-
172
+ lows.
173
+ Section II provides a system description of the
174
+ unit cell of the 2-band phononic lattice, a computational
175
+ framework for studying wavenumber scattering within
176
+ the single optical band induced by the VIs, and quan-
177
+ tification of the spectral disorder generated by the VIs
178
+ with respect to energy. Section III extends the study to a
179
+ 4-band phononic lattice and presents a method for trans-
180
+ ferring energy from lower-to-higher optical bands via VIs,
181
+ together with relationships between these transfers and
182
+ the total system energy. Section IV presents a 2 DoF re-
183
+ duced order model (ROM) which is studied through the
184
+ from the perspective of NNM analysis in order to provide
185
+ a physics-based understanding of the results of Sections II
186
+ and III, and relate the nonlinear dynamics of the ROM to
187
+ the IBTET occurring in the lattice. Lastly, Section V of-
188
+ fers concluding remarks and some suggestions for further
189
+ extension of this work.
190
+ II.
191
+ WAVENUMBER ENERGY SCATTERING
192
+ We begin by studying a 1D phononic lattice in the form
193
+ of a diatomic resonator chain and embed VI contact laws
194
+ in select (local) resonators while preserving the global
195
+ linear structure of the lattice.
196
+ The system is compu-
197
+ tationally explored by performing numerical simulations
198
+ with wave packet excitations over an array of excitation
199
+ amplitudes and wave numbers. The resulting data sets
200
+ were next post-processed with a suite of discrete signal
201
+ processing methods in the spatial-temporal domain to
202
+ uncover the underlying trends of energy scattering in the
203
+ wavenumber domain as the excitation level (input en-
204
+ ergy) changes.
205
+
206
+ 3
207
+ 1 VI
208
+ 3 VI
209
+ 5 VI
210
+ 10 VI
211
+ 15 VI
212
+ 20 VI
213
+ Configurations
214
+ Unit Cell with VI
215
+ Unit Cell Without VI
216
+ Cell 1
217
+ Cell 150
218
+ Cell 300
219
+ Cell 600
220
+ Underlying Linear System
221
+ Unit Cell With VI
222
+ Unit Cell Without VI
223
+ (c)
224
+ `
225
+ (a)
226
+ (b)
227
+ (d)
228
+ FIG. 1.
229
+ The linear phononic lattice composed of coupled
230
+ (host) masses with embedded internal resonators which may
231
+ or may not undergo vibro-impacts: (a) The primary linear pe-
232
+ riodic system with the underlying linear dispersion relation.
233
+ The nominal unit cell (b) without a VI nonlinearity and (c)
234
+ with the VI nonlinearity; (d) schematics of finite lattice con-
235
+ figurations which are comprised of the linear phononic lattice
236
+ with various number of embedded VI unit cells.
237
+ A.
238
+ System Description and Simulations
239
+ We consider a linear diatomic lattice constructed by
240
+ the periodic tessellation of 1-D unit cells in the x-
241
+ direction (Fig. 1(a)).
242
+ Each unit cell is composed of a
243
+ host mass and within it a resonator, which depending on
244
+ the existence (absence) of rigid barriers it may (may not)
245
+ experience vibro-impacts (see Fig. 1). The equations of
246
+ motion for the k-th cell in the infinite phononic lattice
247
+ are written as:
248
+ m1¨uk
249
+ 1 = k1(uk−1
250
+ 1
251
+ + uk+1
252
+ 1
253
+ − 2xk
254
+ 1) + k2(uk
255
+ 2 − uk
256
+ 1),
257
+ m2¨uk
258
+ 2 = k2(uk
259
+ 1 − uk
260
+ 2).
261
+ (1)
262
+ Imposing the Bloch ansatz, u(x) = ˜u exp(iκx − iωt), re-
263
+ covers the linear dispersion derived from the underlying
264
+ Bloch eigenvalue problem, ˜u( ˜Mω2− ˜K(κ)) = 0, where ˜M
265
+ and ˜K are the Bloch-periodic mass and stiffness matrices
266
+ of a unit cell. This yields two pass bands for this lattice,
267
+ namely a lower-frequency acoustic band and a higher-
268
+ frequency optical band. To computationally probe the
269
+ effects of impact dynamics on the linear wave propaga-
270
+ tion, we consider six different lattice configurations, each
271
+ corresponding to a unique arrangement of VI unit cells
272
+ embedded in the linear lattice with the number of VIs
273
+ ranging between 1 and 20. To study the scattering of
274
+ the input wave energy in the wavenumber domain accu-
275
+ rately, a large finite system should be used for sufficient
276
+ wavenumber resolution. To this end, we consider a finite
277
+ configuration of 600 unit cells (1200 DoF) governed by
278
+ M¨u + Ku + FNL(u, ˙u) = Fext(t)
279
+ (2)
280
+ where M and K are the finite mass and stiffness matri-
281
+ ces, FNL(u, ˙u) the vector of nonlinear stiffness and vis-
282
+ cous damping terms, and Fext(t) the vector of excita-
283
+ tions. Excitation is provided in the form of a windowed
284
+ harmonic function,
285
+ Fk(t) =
286
+
287
+ W(t) sin(Ωt)
288
+ k = 1
289
+ 0,
290
+ otherwise
291
+ (3)
292
+ where W(t) = A
293
+
294
+ H(t) − H
295
+
296
+ t − 2πNcyc
297
+
298
+ �� �
299
+ 1 − cos
300
+
301
+ Ωt
302
+ Ncyc
303
+ ��
304
+ is a windowing function, H(t) the Heaviside function, A
305
+ the forcing amplitude, Ncyc the number of cycles in the
306
+ window, and Ω the center frequency of excitation. The
307
+ nonlinear VI cells that are locally distributed through
308
+ the lattice provide the following VI forces,
309
+ FNL(wk) = kc
310
+
311
+ (wk − ∆i)n
312
+ + − (−wk − ∆k)n
313
+ +
314
+
315
+ g( ˙wk, ˙w−
316
+ k )
317
+ (4)
318
+ where wk(t) = uk
319
+ 2(t) − uk
320
+ 1(t) is the relative deflection be-
321
+ tween the resonator and its host mass, n the nonlinearity
322
+ coefficient which is set to n = 3/2 to emulate Hertzian
323
+ contact unless otherwise stated, ∆k the clearance of the
324
+ k-th VI in the lattice, and kc = 2EVI
325
+ √RVI
326
+ 3(1−ν2)
327
+ the stiffness
328
+ parameter for Hertzian contacts, with EVI, RVI, and ν
329
+ being the modulus, radius, and Poisson ratio of the VI,
330
+ respectively. The notation ( )+ indicates that only pos-
331
+ itive arguments are to be considered. We assume an in-
332
+ elastic contact law as derived by Hunt and Crossly [72]
333
+ which provides a hysteresis dissipation function derived
334
+ from the work-energy principal in terms of the indenta-
335
+ tion depth, g( ˙wk, ˙w−
336
+ k ) =
337
+
338
+ 1 − 3(1−r)
339
+ 2 ˙w−
340
+ k
341
+ ˙wk
342
+
343
+ , where ˙w−
344
+ k is
345
+ the velocity ˙wk immediately before impact and r the co-
346
+ efficient of restitution. Note that Eq (4) does not modify
347
+ the underling linear band structure of the extended lat-
348
+ tice. Moreover, for amplitudes such that wk < ∆k for
349
+ each VI, the wave propagation remains completely linear
350
+ as no VI experiences contact.
351
+ Numerical simulations of equations (2) were carried
352
+ out using the ODE78 routine in MATLAB. The center
353
+ frequency of the excitation was selected based on the de-
354
+ sired excitation wavenumbers, which were considered in
355
+ the range between 2π/9 ≤ κ⋆ ≤ 7π/9 to ensure con-
356
+ sistency in observations across the optical band struc-
357
+ ture; however we focus only on κ⋆ = 5π/9 and refer the
358
+ reader to supplemental material for additional results.
359
+ The excitation frequencies were chosen within the op-
360
+ tical band to ensure out-of-phase motion between each
361
+ resonator and host mass and thus excite the VI (note
362
+ in-phase motion, characteristic of the acoustic branch,
363
+ will not excite the VI). Clearances were nominally set to
364
+ range between 0.0002 and 0.0001 m with a logarithmic
365
+ dependence on position from the leading VI unit cell to
366
+ account for the momentum loss of the wave as it passes
367
+ successively through VI cells in the lattice.
368
+ The mass
369
+ and stiffness of the linear resonator (i.e., in the absence
370
+ of rigid barriers and VIs - cf. Fig. 1) were selected to em-
371
+ ulate realistic resonator systems considered in the liter-
372
+ ature [73]. Table I lists nominal parameters for stiffness,
373
+ mass, and VI stiffness parameters. Within this frame-
374
+ work, an ensemble of simulation data was constructed for
375
+ 25 logarithmically increasing forcing amplitudes for each
376
+
377
+ 4
378
+ FIG. 2. Simulation results for a 5-VI configuration at excita-
379
+ tion wavenumber k⋆ = 5π/9 (in the optical band of the linear
380
+ lattice) with columns corresponding to (a) low, (b) medium,
381
+ and (c) high amplitude excitations. For each amplitude, the
382
+ rows depict (i)the spatio-temporal evolution of the kinetic en-
383
+ ergy of the propagating wave, (ii) the temporal variation of
384
+ the wavenumber distribution in the lattice, and (iii) the nu-
385
+ merically computed dispersion computed using the entirety of
386
+ the simulation with a gray dashed line superimposed to depict
387
+ the analytical dispersion of the infinite liner lattice.
388
+ configuration and excitation wavenumber considered.
389
+ TABLE I. Parameters used for the di-atomic resonator chain
390
+ m1
391
+ [kg]
392
+ m2
393
+ [kg]
394
+ k1
395
+ [kN/m]
396
+ k2
397
+ [kN/m]
398
+ ν
399
+ r
400
+ RVI
401
+ [m]
402
+ EVI
403
+ [MPa]
404
+ 0.01
405
+ 0.08
406
+ 90
407
+ 90
408
+ 0.3
409
+ 0.7
410
+ 0.005 200
411
+ B.
412
+ Influence of VIs on Wave Propagation
413
+ A suite of numerical post-processing tools were devel-
414
+ oped to study the influence of the VIs on wave prop-
415
+ agation in the lattice.
416
+ The focus of the post pro-
417
+ cessing was to uncover spectral content in the spatial
418
+ and spatial-temporal domains with an emphasis on fre-
419
+ quency/wavenumber scattering of the energy. This was
420
+ achieved using Fourier and Wavelet transformations to
421
+ study the energy content across the band structure in
422
+ various domains including time, space, frequency, and
423
+ wavenumber. In this section, we focus on a narrow sub-
424
+ set of three simulations conducted at low, medium and
425
+ high forcing amplitudes in order to build intuition on the
426
+ post-processing analysis procedures and a qualitative de-
427
+ pendence on system energy. Quantitative results across
428
+ FIG. 3. The spatial wavelet transformations of the propagat-
429
+ ing waves considered in Fig. 2 for (a) low, (b) medium, and (c)
430
+ high excitation amplitude; four time snap-shots are depicted
431
+ as (i)-(iv), and the center black line depicts the wavenum-
432
+ ber corresponding to the excitation frequency as given by the
433
+ linear dispersion relation.
434
+ all simulations will be given subsequently.
435
+ Fig. 2 depicts the results for a representative simu-
436
+ lation with a 5-VI configuration (cf. Fig. 1) for low,
437
+ medium, and high forcing amplitude (equivalently low,
438
+ medium, and high energy simulations) corresponding
439
+ A = 0.1, 1, and 10 N, respectively.
440
+ The resulting en-
441
+ ergy measures are computed directly by considering only
442
+ the kinetic energies of the oscillators, which is a reason-
443
+ ably sufficient measure of the total energy distribution
444
+ as elastic systems undergo continuous transfers from ki-
445
+ netic to potential energy. At low amplitude, the acoustics
446
+ are entirely linear as the wave does not create deflections
447
+ greater than the VI clearance (Fig. 2(ai)). The interac-
448
+ tions of the VI mechanisms come about in the medium
449
+ and high amplitude simulations, whereby the energy of
450
+ the propagating wave wave scatters profoundly in the
451
+ space/time domain (Figs. 2 (bi,ci)).
452
+ In the following exposition we provide the results of
453
+ post processing analysis of the measured responses of
454
+ the lattices, with the aim to understand of how the VIs
455
+ scatter the energy of the propagating wave in the fre-
456
+ quency/wavenumber domain. To this end, we utilize a set
457
+ of signal processing procedures which are briefly detailed
458
+ in Appendix A. Figs. 2(aii)-(cii) depict the wavenumber
459
+ distributions across the lattice computed over progres-
460
+ sions of time snap shots for each simulation. Given the
461
+ total collection of simulation data over time and space to
462
+ be the matrix u(x, t), the wavenumber domain at a given
463
+
464
+ 5
465
+ time snap shot, tj, is given as K(κ) = Fx{u(x, t)|t=tj}
466
+ where Fx{ } denotes the Fourier transformation with re-
467
+ spect to the variable x. It is clear from Figs. 2(aii)-(cii)
468
+ that the linear system (corresponding to low excitation
469
+ amplitude) does not affect the wavenumber distribution
470
+ after excitation ends, as expected for a LTI system. In
471
+ contrast, new wave numbers emerge for medium and high
472
+ excitation amplitudes. However, for the case of high en-
473
+ ergy level, the wavenumber generation is not nearly as
474
+ pronounced compared to medium energy level, indicat-
475
+ ing that the wave reflections of Fig. 2(ci) do not generate
476
+ substantial wavenumber components beyond that of the
477
+ incident wave.
478
+ Taking the Fourier transformation across both time
479
+ and space provides the numerically resolved dispersion
480
+ D(κ, ω) = Fx,t{u(x, t)} which is given in Figs. 2(aiii)-
481
+ (ciii).
482
+ Note that Figs. 2(aiii)-(ciii) consider the en-
483
+ tire time record of the simulation from start to finish.
484
+ Fig. 2(aiii) may serve as a reference since no VIs engage
485
+ in the low amplitude simulations, and it is seen that
486
+ only a narrow subset of the dispersion branch is ener-
487
+ getic, corresponding directly to the excitation wavenum-
488
+ ber.
489
+ In the nonlinear regimes, the scattering of the
490
+ energy in the ω-κ domain is much more profound for
491
+ medium energy cases, corroborating the trends estab-
492
+ lished by Figs. 2(i,ii).
493
+ Note that the spectral content
494
+ generated by scattering in Fig. 2(biii) remains bound to
495
+ the underlying linear dispersion relation. Given that the
496
+ VI nonlinearity represents a nonresonant energy scatter-
497
+ ing mechanism, this indicates that the VIs ”redistribute”
498
+ (scatter) wave energy across the dispersion relation of the
499
+ underlying linear lattice rather than modify the disper-
500
+ sion altogether; this acoustical nonlinear scattering effect
501
+ is directly equivalent to the nonresonant scattering mech-
502
+ anisms studied in modal dynamics [70].
503
+ Information regarding the spatial evolution of the gen-
504
+ erated wavenumber components over space and time re-
505
+ quires a space-frequency analysis routine. To this end, we
506
+ employed the continuous wavelet transformation (CWT)
507
+ using the Morelet wavelet in the spatial dimension to
508
+ resolve at each time snap-shot, tj, a 2-D map of the
509
+ wavenumber spectrum with respect to space, X(κ, x) =
510
+ W{u(x, tj)}.
511
+ Fig. 3 depicts the evolution of the spa-
512
+ tial wavenumber distribution tracking X(κ, x) through
513
+ four time snap-shots (t1-t4) for low, medium, and high
514
+ amplitude simulations.
515
+ From this, it is clear that the
516
+ scattering of energy is relatively uniform with respect
517
+ to wavenumber, and that the spectral energy scatters to
518
+ both higher and lower wave numbers (as is also confirmed
519
+ in Fig. 2(ii)). Moreover, the VI-generated wavenumber
520
+ components arise for both the transmitting and reflect-
521
+ ing waves at the VI interface for medium amplitude ex-
522
+ citations, whereas high-energy waves seemingly reflect a
523
+ majority of the incident energy off the VI unit cell at
524
+ the incident wavenumber.
525
+ Lastly, it is apparent from
526
+ Fig. 3(b) that certain wavenumber components propa-
527
+ gate much faster than others and all follow behind the
528
+ incident wavenumber; this is a direct consequence of
529
+ FIG. 4. Propagation of wave energy at different wavenumber
530
+ bands: (a) The kinetic energy versus time at each wavenum-
531
+ ber partition for a mid-energy simulation with sub-panels
532
+ (i)-(vii) plotted to the same color-scale to compare relative
533
+ energies; (b) superimposition of wave propagation at each
534
+ wavenumber partition depicted by contours for (i) low, (ii)
535
+ medium, and (iii) high energy simulation; (c) the optical band
536
+ of the linear lattice plotted with corresponding colors to the
537
+ wavenumber-based energy contours of (b).
538
+ the dispersion relation of the underlying linear system
539
+ (cf. Fig. 1) which is steepest towards the center of the
540
+ optical band and therefore corresponds to larger group
541
+ velocity at the incident wavenumber. Note that this is
542
+ of course not the case when the excitation wavenumber
543
+ is low or high on the band, as the group velocity of the
544
+ incident wave would invariably be smaller for these ex-
545
+ citations. However, the general trends of spectral gener-
546
+ ation with respect to energy are consistent nevertheless
547
+ (see supplemental information).
548
+ The spectral content of Fig. 3 can be mapped-back
549
+ into the spatial-temporal domain by considering a spec-
550
+ tral partitioning scheme similar to that presented in [74].
551
+ The goal is to visualize the propagation of the wave spe-
552
+ cific to different partitions of the optical band, and thus
553
+ confirm that wave propagation at new wavenumbers oc-
554
+ curs due to VI interactions. To achieve this, the instan-
555
+ taneous velocities and positions over various regions of
556
+ the band structure can be resolved by partitioning the
557
+ wavelet space into 12 wavenumber bins and taking the
558
+ inverse wavelet transform of each bin independently. If
559
+ the spatial wavelet-transformed data at a time instant tj
560
+ is denoted as X(κ, x)
561
+ ��
562
+ t=tj, and the inverse wavelet trans-
563
+ formation is denoted as W−1, then the dynamics of each
564
+ of the optical band, K1-K12, are computed as the collec-
565
+
566
+ 6
567
+ tion of binned inverse transformations of binned wavelet
568
+ data over time:
569
+ K1(x, t) =
570
+
571
+ j
572
+ W−1(X(κ, x))
573
+ ��
574
+ t=tj,
575
+ 0 ≤ κ ≤ π
576
+ 12
577
+ ...
578
+ ...
579
+ ...
580
+ K12(x, t) =
581
+
582
+ j
583
+ W−1(X(κ, x))
584
+ ��
585
+ t=tj,
586
+ 11π
587
+ 12 ≤ κ ≤ π.
588
+ (5)
589
+ The kinetic energy can subsequently be computed for
590
+ each spatial-spectral partition, which cannot be achieved
591
+ directly in the frequency domain due to the mass depen-
592
+ dency of the kinetic energy. Summing the energy compo-
593
+ nents of each of the spectral partitions results in negligi-
594
+ ble error (1% or less) compared to the energy computed
595
+ directly from physical coordinates with no numerical in-
596
+ tegral transformations (see supplemental material), thus
597
+ verifying the efficacy of the post-processing technique.
598
+ More importantly, as discussed below, the described nu-
599
+ merical partition of the optical band enables us to study
600
+ in detail the transmission of wave energy at different
601
+ wavenumber bands, and, hence, can shed insight into the
602
+ nonlinear physics of the scattering of the incident wave
603
+ at the VI sites.
604
+ Fig. 4 depicts the results of the wavenumber parti-
605
+ tioning scheme. The propagation of energy across each
606
+ wavenumber partition are given by subplots 4(ai)-a(vii)
607
+ and plotted to the same color scale in order to com-
608
+ pare the relative energies of each wavenumber partition.
609
+ The wave initiates in K7 and K8 as these posses energy
610
+ from the onset of propagation while all other wavenumber
611
+ partitions are dormant during the start of propagation.
612
+ However, after the VIs are engaged midway through the
613
+ lattice, energy begins to propagation through all parti-
614
+ tions, and this is clear indication that the VI nonlinear-
615
+ ity in fact generates wave propagation at wavenumbers
616
+ not native to the excitation profile. To demonstrate the
617
+ dependency on energy, Fig. 4(b) shows the wave propa-
618
+ gation through each wavenumber band superimposed by
619
+ contours for low, medium, and high profile wavenumber
620
+ from which it is apparent again that wavenumber genera-
621
+ tion is far more potent at medium amplitude simulations
622
+ than for high ones. Fig. 4(c) provides a colored depiction
623
+ of the optical band to make the contours of Fig. 4(b) more
624
+ obvious with respect to which wavenumber components
625
+ are generated; the of group velocities in Fig. 4(c) corre-
626
+ sponds directly to the variable wave speeds of Fig. 4(b),
627
+ and this can be used to interpret the variation in spatial-
628
+ spectral propagation of Fig. 3 as well.
629
+ C.
630
+ Quantifying Wavenumber Spectrum Disorder
631
+ Section II B established that (i) the VIs generate prop-
632
+ agating waves at new wavenumbers as they interact with
633
+ the incident wave, and (ii) that this phenomenon is de-
634
+ pendent on amplitude. To this point, the results have
635
+ FIG. 5.
636
+ Mean spectral entropy in the lattice with VIs for
637
+ system configurations ranging between 1 VI to 20 VI (see
638
+ Fig. 1) over an array of excitation amplitudes logarithimcally
639
+ spaced from 0.1 to 20: Top and bottom plots are for the same
640
+ data with the bottom plots depicting the log-log scaling; a
641
+ fitted power law is denoted as a thick black line, and the
642
+ adjusted R-squared value is listed for each configuration in
643
+ the bottom plots.
644
+ been presented in a largely qualitative manner with an
645
+ emphasis on graphical interpretations (cf. Figs. 2,3,4).
646
+ We now aim to quantify the wavenumber scattering in-
647
+ duced by the VIs for wave transmission over the entire
648
+ domain of the lattice, based on an ensemble of simula-
649
+ tions, in order to establish the dependence of VI induced
650
+ wavenumber scattering on input amplitude.
651
+ To this end, we make use of information theory by
652
+ considering the spectral entropy of the nonlinear acous-
653
+ tics in the wavenumber domain. Spectral entropy is the
654
+ extension of classical Shannon entropy to the frequency
655
+ domain [75] and is a standard metric for quantifying sig-
656
+ nal complexity.
657
+ We consider the wavenumber entropy
658
+ generated over space at a given time snap shot as
659
+ H(x) = −
660
+
661
+ κ
662
+ P(x, κ) log2 P(x, κ),
663
+ (6)
664
+ where P(x, κ)
665
+ =
666
+ S(x, κ)
667
+ ��
668
+ ξ S(x, ξ) is the space-
669
+ dependent probability distribution over wavenumber
670
+ computed with the space-frequency power spectrogram
671
+ S(x, κ).
672
+ By computing P(x, κ) over a progression of
673
+ time snapshots, tj, for each simulation, a matrix of
674
+ entropy-versus-time, H(x, t), captures the time-evolution
675
+ of wavenumber entropy as the wave propagates through
676
+ the lattice.
677
+ We compute a statistical summary of the
678
+ wavenumber entropy by considering the elements of
679
+ H(x, t) for time intervals after the incident wave has al-
680
+ ready reached the first VI unit cell at t = ˆt. Fig. 5 depicts
681
+ the normalized average entropy quantity with respect to
682
+ forcing amplitude for all configurations depicted in Fig. 1.
683
+ Normalization was performed so that the minimum and
684
+ maximum entropy for each VI configuration range be-
685
+ tween 0.01 and 1. To this effect, we are capturing the
686
+
687
+ 7
688
+ relative scattering of wavenumbers as compared to an op-
689
+ timal excitation amplitude (specific to our selected con-
690
+ figuration). At the lowest forcing excitation level (with
691
+ no VI engagement) the wave propagation remains lin-
692
+ ear, and so the entropy remains nearly zero as the only
693
+ variation in the wavenumber comes from the intrinsic dis-
694
+ persive characteristics of the lattice. However, once the
695
+ VIs are engaged at medium and high excitation levels,
696
+ the entropy rapids rises and reaches a maximum before
697
+ rapidly falling again with respect to forcing amplitude.
698
+ The log-log plots of Fig. 5 reveal that after the maximum
699
+ entropy is reached, the remainder of the data fits remark-
700
+ ably well with a power law with adjusted R-squared co-
701
+ efficients above 0.95 being recovered for the majority of
702
+ configurations studied. Error bars in Fig. 5 measure the
703
+ standard deviation of entropy across the spatial extent of
704
+ the lattice. This can be interpreted as a measure of how
705
+ uniform the wavenumber complexity is. Hence, the larger
706
+ error bounds at high excitation amplitudes indicate that
707
+ novel wavenumber components are localized rather than
708
+ distributed (or propagated) throughout the spatial ex-
709
+ tent of the lattice, and this is in direct agreement with
710
+ the qualitative results of Figs. 2, 3, and 4. Note that the
711
+ excitation wavenumber is κ = 5π/9 for all results shown
712
+ in Fig. 5; additional results given in the supplemental
713
+ material confirms that the same trends hold across all
714
+ incident wavenumbers.
715
+ III.
716
+ INTER-BAND TARGETED ENERGY
717
+ TRANSFERS (IBTET)
718
+ With section II establishing that the VI nonlineari-
719
+ ties can scatter energy about the optical band of a di-
720
+ atomic lattice, a natural next question is to what effect
721
+ VI mechanisms can induce targeted energy across dif-
722
+ ferent bands.
723
+ This can be considered as an acoustics-
724
+ equivalent to the IMTET nonlinear mechanism estab-
725
+ lished in dynamics [68]. Hence, the aim of this section is
726
+ to achieve inter-band targeted energy transfers (IBTET)
727
+ by irreversibly transferring energy from a lower optical
728
+ band to a higher band. Moreover, we aim to demonstrate
729
+ that this phenomenon is achievable for multiple classes of
730
+ VI contact laws, and introduce a bilinear version of the
731
+ VI law considered previously, to be studied alongside the
732
+ Hertzian model of Section II. This is considered in order
733
+ to demonstrate that the subsequent IBTET results are
734
+ reproducible for different classes of contact nonlinearity
735
+ and are not particular to the Hertzian contact law utilized
736
+ in section II, hence opening a broader design space to re-
737
+ alize the phenomenon in practice.
738
+ To achieve IBTET
739
+ requires a system with more than 2 DoF per unit cell,
740
+ since the number of optical bands amenable to out-of-
741
+ phase motion, and thus with the ability to interact with
742
+ the VI, is dictated by Noptical = NDoF −D where NDoF is
743
+ the degrees of freedom in the unit cell and D is the unit
744
+ cell dimension. Hence, to maintain the simplicity of 1D,
745
+ we proceed with a 4-DoF model of the unit cell, offering
746
+ (a)
747
+ (b)
748
+ UNIT CELL
749
+ FIG. 6. Increasing the bands of the lattice: (a) Schematic of
750
+ the unit cell, and (b) the corresponding dispersion diagram
751
+ for parameters λ = 0.1 and η = 0.5.
752
+ two additional bands to transfer energy towards.
753
+ A.
754
+ The 4-band Lattice
755
+ The 4-band model emulates closely the resonator
756
+ model of Fig. 1. The main difference is that masses have
757
+ been added in-series in between resonators as shown in
758
+ Fig. 6(a). The equations of motion for a unit cell of the
759
+ infinite 4-band phononic lattice read,
760
+ m1¨uk
761
+ 1 + k4
762
+
763
+ uk
764
+ 1 − ui−1
765
+ 4
766
+
767
+ + k1
768
+
769
+ uk
770
+ 1 − uk
771
+ 2
772
+
773
+ = 0
774
+ m2¨uk
775
+ 2 + k2
776
+
777
+ uk
778
+ 2 − uk
779
+ 1
780
+
781
+ + k3
782
+
783
+ uk
784
+ 2 − uk
785
+ 3
786
+
787
+ + k4
788
+
789
+ uk
790
+ 2 − uk
791
+ 4
792
+
793
+ + fNL(wk) = 0
794
+ m3¨uk
795
+ 3 + k3(uk
796
+ 3 − uk
797
+ 2) − fNL(wk) = 0
798
+ m4¨uk
799
+ 4 + k1
800
+
801
+ uk
802
+ 4 − ui+1
803
+ 1
804
+
805
+ + k4
806
+
807
+ uk
808
+ 4 − uk
809
+ 2
810
+
811
+ = 0
812
+ (7)
813
+ which produces a 4-band dispersion relation upon appli-
814
+ cation of the Bloch theorem. To maximize the potential
815
+ for IBTET, the parameters of system (7) should be se-
816
+ lected to satisfy the following criteria:
817
+ • The displacements of the host-mass and resonator
818
+ of the VI oscillator (u2 and u3) should be out-of-
819
+ phase on the second band so that strong engage-
820
+ ment of the VI nonlinearity can occur beneath the
821
+ 2nd and 3rd optical bands (since VIs transfer en-
822
+ ergy from low-to-high frequencies [70]).
823
+ • The quantity | ˆw| = |ˆu3(κ) − ˆu2(κ)| describing
824
+ the resonator deflection across the second Bloch-
825
+ eigenmode should be maximized over κ on the sec-
826
+ ond band.
827
+ • The group velocity corresponding to the second
828
+ band should be as high as possible in order to mini-
829
+ mize the dispersive effects originating from the lin-
830
+ ear band structure.
831
+ • The group velocities of the third and fourth bands
832
+ should be maximized so as to maximize the cor-
833
+ responding band slopes and equivalently broaden
834
+ the bandwidth that is amenable for TET from the
835
+ second band.
836
+
837
+ 8
838
+ FIG. 7. IBTET in the 4-band lattice with 5 VI sites: (a) shows the evolution of the propagating wave energy; (b-e) propagation
839
+ of the wave energy corresponding to each band of the lattice based on the numerically recovered dispersion of the full simulation;
840
+ (f,g) dispersion of the input and output segments (labeled in (a)) demonstrating the targeted energy transfer to the higher
841
+ bands; (h,i) Fourier spectra corresponding to the velocity of the four unit cell DoFs selected before (5-th unit cell) and after
842
+ (150-th unit cell) VI engagement, with the four band-pass regions depicted with shading and insets depicting the corresponding
843
+ velocity time histories.
844
+ System (7) is parameterized by η and λ which relate
845
+ the mass and stiffness of the resonator cell to the nominal
846
+ parameters of m1 = m4 = m = 0.005 kg and k1 = k4 =
847
+ k = 2 × 104 N/m by m2 = m(1 − η), m3 = mη, and k3 =
848
+ kλ while we fix k2 = 104 N/m. With these variables, the
849
+ desired dispersion characteristics can be readily achieved
850
+ by considering a cost-function of the form
851
+ max
852
+ η,λ
853
+ � 4
854
+
855
+ k=2
856
+ |vk
857
+ g|
858
+
859
+ w,
860
+ s.t. ˜u2(κ)˜u3(κ) < 0 ∀κ.
861
+ (8)
862
+ We confine this search for 0.1 < λ < 1 and 0.1 < η < 1.
863
+ With this constraint, minimizing the cost function over
864
+ (λ, η) is trivial and returns λ = 0.1 and η = 0.5. The
865
+ resulting band structure is shown in Fig. 6(b).
866
+ To simulate the system, a finite lattice of 300 unit cells
867
+ (1200 DoF) was constructed, which is one half of the
868
+ total DoFs of the resonator chain studied in section II.
869
+ Accordingly, we consider only a 5-VI lattice configura-
870
+ tion (as depicted in Fig. 1(d)) herein and refer the reader
871
+ to supplemental material for the results of a 1-VI lattice
872
+ configuration. Simulations were performed similarly to
873
+ section II with excitation provided by a windowed tone
874
+ burst (Eq (3)). An input signal of 30 periods was con-
875
+ sidered, and the excitation frequency is selected based on
876
+ the maximum group velocity of the optical band. Simu-
877
+ lations were performed for 50 selections of the excitation
878
+ amplitude between 1 and 104 N.
879
+ We employ the same Hertzian contact law described
880
+ by Eq (4) for n = 3/2, and also a bilinear contact law
881
+ which takes the same form as Eq (4) but for n = 1. This
882
+ is performed to ensure that the subsequent results are
883
+ not particular to nonlinear Hertzian contact laws but are
884
+ rather a product of the contact nonlinearity. For the 4-
885
+ band system considered, the contact stiffness parameters
886
+ (kc) were computed based on E = 100 MPa, ν = 0.3,
887
+ and RVI = 0.005 m, and the clearances are now varied
888
+ between 10−2.65 and 10−2.75 m.
889
+ B.
890
+ Low-to-high band targeted energy transfer
891
+ Fig. 7 depicts an example of a wave propagating
892
+ through the 4-band system with five Herzian VIs en-
893
+ gaged.
894
+ Energy clearly cascades from the main wave
895
+ packet as it propagates through the lattice (Fig. 7(a)),
896
+ similar to the diatomic chain (Fig. 2). Computing the
897
+ numerical dispersion at the beginning and end of the sim-
898
+ ulation clearly shows that energy in fact transfers from
899
+ the lowest optical band to the higher two optical bands
900
+ (Figs. 7(f,g)). This is further confirmed by Figs. 7(h,i)
901
+ which shows the difference in the temporal frequency
902
+ of the wave at the start versus end of the lattice and
903
+
904
+ 9
905
+ FIG. 8. IBTET depicted in terms of the dispersion of the wave
906
+ in the frequency/wavenumber domain for the 4-band lattice
907
+ with 5 VI sites over the entire duration of the simulation for
908
+ (a) Hertzian and (b) bilinear VI laws, and for (i) low, (ii)
909
+ medium, and (iii) high excitation amplitudes.
910
+ hence the low-to-high frequency targeted transfer of en-
911
+ ergy from the second band to the higher bands.
912
+ Energy transfer between bands can be quantified by
913
+ first converting the numerically measured data into the
914
+ ω-κ domain with the 2-D Fourier transformation. There-
915
+ after, the 2-D spectrum is partitioned band-by-band and
916
+ also into band-gap regions. For each partition, the re-
917
+ mainder of the spectrum is zero-padded before the inverse
918
+ Fourier Transformation returns the spectral content into
919
+ the spatio-temporal domain for that specific partition.
920
+ This results in the propagation depicted in Figs. 7(b-e)
921
+ where it can be seen that the content of the upper bands
922
+ indeed corresponds to propagating waves generated by
923
+ the VIs, and thereafter kinetic energy calculations over
924
+ each band can be conveniently performed.
925
+ Fig. 8 depicts the numerical dispersion of both the
926
+ Hertzian and bilinear systems for low, medium, and high
927
+ excitation amplitudes, which shows that the most pro-
928
+ found energy transfer occurs in the medium amplitude
929
+ range, much like what was seen in section II. Note that
930
+ these low, medium, and high excitation amplitudes now
931
+ refer to order 1, order 10, and order 100 N. To verify and
932
+ quantify the efficacy of the VIs to induce TET from low-
933
+ to-high bands (i.e., to induce IBTET) with respect to
934
+ excitation amplitude, the energy stored within the up-
935
+ per two optical bands is recovered and normalized per
936
+ the total system energy. This normalized energy is time-
937
+ averaged taking into account only the time window after
938
+ the propagating wavefront encounters the first VI site in
939
+ the lattice.
940
+ FIG. 9. The portion of input energy transferred to the upper
941
+ two optical bands versus forcing amplitude of the incident
942
+ wave for (a) Hertzian VIs and (b) bilinear VIs in (i) depicting
943
+ linear-linear and (ii) log-log scales.
944
+ Fig. 9 depicts the results of the IBTET analysis over
945
+ the ranges of forcing amplitudes considered for both
946
+ Hertzian and bilinear VI laws. The log-log plots depict
947
+ a very similar trend to what was observed in section II:
948
+ a sudden spike in energy transfer once the amplitude is
949
+ sufficient enough to engage the VI, and a sudden decline
950
+ in energy transfer as the excitation amplitudes rise there-
951
+ after. The portion of the energy transferred to the higher
952
+ bands continues to fall until it reaches a minimum defined
953
+ by the relative energy obtained by the higher bands for a
954
+ completely linear system. This is on the order of 0.01 %
955
+ of the total system energy, and is of course explainable
956
+ by the fact that the windowed tone burst used to excite
957
+ the system assumes a Gaussian distribution in the fre-
958
+ quency domain which invariably provides trace amounts
959
+ of energy across the entirety of the spectrum due to the
960
+ Fourier uncertainty principle.
961
+ Interestingly, the same trends in IBTET are observed
962
+ for both Hertzian and bilinear contacts, indicating that
963
+ the nature of the contact law does not play a critical
964
+ role in the energy transfer, but rather the discontinu-
965
+ ous potential is the driving mechanism for the energy
966
+ exchanges. This is further verified in the linearly-scaled
967
+ plots of Figs. 9(aii,bii) which show that the maximum
968
+ energy transferred to the higher optical bands is roughly
969
+ 0.3-0.35 (30-35%) for both the Hertzian and bilinear VIs.
970
+ Not only does this demonstrate that a substantial portion
971
+ of energy may be irreversibly transferred to higher bands,
972
+ but that this is achievable for a variety of VI designs,
973
+ opening broader designs avenues for practical acoustic
974
+
975
+ 4523232222810
976
+ FIG. 10. A 2-DoF model emulating a VI resonator cell.
977
+ metamaterials that could exhibit IBTET.
978
+ IV.
979
+ PHYSICAL INTERPRETATION OF IBTET
980
+ MECHANISM
981
+ We now seek to connect the trends established in Sec-
982
+ tions II and III to physics-informed arguments in order
983
+ to shed physical insight into IBTET in a consistent and
984
+ comprehensive way. We do so by considering a reduced
985
+ order model (ROM) of a VI-oscillator to emulate the VI
986
+ unit cells embedded in the finite lattices, and then in-
987
+ terpret IBTET by studying the nonlinear normal modes
988
+ (NNMs) of the ROM. NNMs have proven a useful tool
989
+ for interpreting the responses of nonlinear dynamical sys-
990
+ tems and their passive tunability with respect to energy
991
+ through either analytical or computational tools [76–79].
992
+ The uses and interpretations of NNMs are quite exten-
993
+ sive, however a direct and intelligible way of interpret-
994
+ ing the evolution of the system’s dynamics with respect
995
+ to energy is with the frequency energy plot (FEP) of a
996
+ given dynamical system and its bifurcating branches [76].
997
+ Such methodology has been employed already for under-
998
+ standing the dynamical evolution of VI systems of various
999
+ forms [71, 80, 81].
1000
+ A.
1001
+ Reduced Order Model (ROM)
1002
+ We consider a 2-DoF ROM that is designed to emulate
1003
+ the individual VI-resonators embedded within the 4-band
1004
+ lattice of section III. Fig. 10 provides a schematic of the
1005
+ ROM whereby the parameters ¯k1 = k = 2 × 104 N/m,
1006
+ ¯k2 = 2 × 103 N/m, and ¯m2 = ¯m2 = 0.0025 kg, which
1007
+ parameterize the set of equations
1008
+ ¯m1¨¯u1 + ¯k1¯u1 + k2(¯u1 − ¯u2) + fNL( ¯w) = 0,
1009
+ ¯m2¨¯u2 + ¯k2(¯u2 − ¯u1) − fNL( ¯w) = 0.
1010
+ (9)
1011
+ where an overbar denotes that the variable is associated
1012
+ with the ROM and not the full phononic lattice. The
1013
+ nonlinear force fNL( ¯w) in Eq (9) is taken with respect to
1014
+ ¯w = ¯u1 − ¯u2, where VI nonlinearity is considered as both
1015
+ Hertzian and bilinear form with a contact stiffness and
1016
+ clearance of 10−2.75 m.
1017
+ A key difference to note is that the ROM has fixed
1018
+ boundaries, whereas the resonator embedded within VI
1019
+ unit cells of the full phononic lattice does not. However,
1020
+ we assume that the stiffness between masses in the lat-
1021
+ tice is distributed between the two mass elements, and
1022
+ thus the total stiffness of the ROM host mass with re-
1023
+ spect to its equilibrium position can be approximated by
1024
+ considering that fixed boundaries with one-half the total
1025
+ stiffness of the flexible boundaries of the full phononic
1026
+ lattice.
1027
+ Moreover, the most critical component of the
1028
+ ROM is the internal stiffness and nonlinear VI compo-
1029
+ nent, which matches identically to the VI cells consid-
1030
+ ered in Section III. Hence, the ROM provides reasonable
1031
+ resemblance to the VI cells in the full lattice system al-
1032
+ lowing it to capture the trends of the full system with
1033
+ surprisingly good accuracy, as we will show.
1034
+ B.
1035
+ Nonlinear Normal Modes as a Measure of
1036
+ Nonlinearity
1037
+ The energy dependencies of Figs. 5 and 9 make an
1038
+ NNM approach a natural avenue since continuation re-
1039
+ turns an overview of the dynamics across energy scales.
1040
+ To this end, we compute the NNMs of the ROM by em-
1041
+ ploying a continuation scheme described in [79] with mi-
1042
+ nor modifications listed (see Appendix B). We provide a
1043
+ grossly condensed description herein and refer the reader
1044
+ to [79] for full algorithmic details. The state form of sys-
1045
+ tem (9) is ˙z = g(z) where g(z) is a nonlinear function
1046
+ of the state variables. A periodic orbit (or NNM) will
1047
+ satisfy the two-point boundary value problem defined by
1048
+ the shooting function, H(zp0, T) = z(zp0, T) − zp0 = 0.
1049
+ Newton’s method can be used to recover periodic solu-
1050
+ tions at low energy in the shooting stage. We define the
1051
+ phase condition such that the two DoFs of the ROM
1052
+ have zero initial velocities. After shooting is completed,
1053
+ a pseudo-arclength method is used to trace out the NNM
1054
+ branch in the 2n + 1 dimensional parameter space. In
1055
+ brief, this works by computing predictor steps using the
1056
+ tangent vector at the most recently converged solution,
1057
+ and then making corrector steps in an orthogonal direc-
1058
+ tion to the tangent until convergence is achieved. This is
1059
+ a critical step for resolving the NNMs of the VI system
1060
+ since the NNM branches may have turning points that
1061
+ the standard Newton-Raphson algorithm cannot solve.
1062
+ The result of numerical continuation is a frequency
1063
+ energy plot (FEP) which describes the evolution of the
1064
+ NNM branch for 1:1 resonance (the so called “backbone”
1065
+ branches) in the frequency-energy space. Fig. 11 depicts
1066
+ the FEPs computed for system described by equation (9)
1067
+ for both Hertzian and bilinear contact laws. It is inter-
1068
+ esting to emphasize that the degree (strength) of non-
1069
+ linearity of the ROM can be qualitatively interpreted by
1070
+ the slope of a given NNM branch [71]. The steeper the
1071
+ slope is of the branch is, the more sensitive the frequency-
1072
+ amplitude dependency of the NNM becomes, and the
1073
+ more intense the nonlinearity in the ROM when it re-
1074
+ sponds on that NNM is.
1075
+ The FEP results reveal similar trends for both Hertzian
1076
+
1077
+ 11
1078
+ FIG. 11. The FEPs of the ROMs with (a) Hertzian and (b)
1079
+ bilinear nonlinearity with insets zooming in on the transi-
1080
+ tion from region I to II with instability denoted by orange
1081
+ for regions with Floquet multipliers |α| ≫ 1; (c,d) slopes of
1082
+ the FEPs of of (a,b) with respect to energy; (e) and (f) cor-
1083
+ responding phase trajectories of the NNMs for (a) and (b),
1084
+ respectively, for regions I, II, III, and IV of the FEPs.
1085
+ and bilinear VI ROMS, possessing four dynamical region
1086
+ labeled (I)-(IV) in Fig. 11. The corresponding phase tra-
1087
+ jectories of the periodic orbits in each region are given
1088
+ in Fig. 11(e) and 11(f) for Hertzian and Bilinaer mod-
1089
+ els, respectively. In the low energy region (I), the VIs
1090
+ do not engage, and the dynamics are completely linear;
1091
+ this is confirmed by zero slope of the FEP. In region
1092
+ (II), there is a grazing of the VI contacts, causing a sud-
1093
+ den change in the dynamics and a rapid increase of FEP
1094
+ slope. In fact, the corresponding NNM branch folds back
1095
+ on itself and goes backwards in energy before re-directing
1096
+ again towards higher energies, with this effect being more
1097
+ prevalent in the bilinear model (the Hertzian nonlinear-
1098
+ ity being less prominent in the small deflection amplitude
1099
+ limit). This in turn yields a small neighborhood of the
1100
+ NNM branch where the FEP slope is theoretically infi-
1101
+ nite, and the subplots of Figs. 11(c,d) confirm that this
1102
+ is where to maximum is reached. The phase trajectories
1103
+ indicate that region II represents a transition where the
1104
+ dynamics are most sensitive to nonlinear effects. Despite
1105
+ the apparent smoothness of Figs. 11(eII,fII) the volatile
1106
+ VI-grazing dynamics in region II are unstable, and hence,
1107
+ not physically realizable. Computation of NNMs in this
1108
+ regions requires Newton predictions on a similar order of
1109
+ machine tolerance and results in strongly unstable NNMs
1110
+ as depicted in Fig. 11 for portions of the NNM branch
1111
+ with Floquet multiplier, α, far exceeding 1.
1112
+ After the grazing VI region in region II is surpassed
1113
+ with increasing energy, the FEP gradually increases in
1114
+ frequency towards region III. Region III is character-
1115
+ ized by strong VI oscillations which is apparent by the
1116
+ box-like phase trajectories indicating non-smooth tem-
1117
+ poral dynamics. In this region, the linear dynamics of
1118
+ ˆk1 are negligible and the VI dynamics dominant. Note
1119
+ that it is in region III that the slopes of the FEPs de-
1120
+ crease in a power-law like fashion as the ROM asymp-
1121
+ totically reaches the limiting region IV. Region IV mani-
1122
+ fests smooth dynamics characterized by in-phase dynam-
1123
+ ics predominantly dictated the contact stiffness. In this
1124
+ region, the clearance is negligible and the VI contacts be-
1125
+ have as an extremely stiff elastic spring. Hence, the dy-
1126
+ namics of the ROM with Hertzian contacts approaches a
1127
+ smoothly nonlinear system with a 3/2 nonlinear coupling,
1128
+ whereas the dynamics of the bilinear ROM approaches a
1129
+ linear system at high energy, as is confirmed by the phase
1130
+ portraits of Figs. 11(eIV,fIV). Moreover, for the bilinear
1131
+ system, the FEP clearly levels off as the high-energy (al-
1132
+ most) linear limiting behavior is reached.
1133
+ C.
1134
+ Relating the Dynamics of the ROM to the
1135
+ Acoustics of the Lattice
1136
+ The evolution of the FEP slope with respect to energy
1137
+ of the ROM (Figs. 11(b,c)) posses a remarkable similar-
1138
+ ity to the observed trends of nonlinear IBTET in the
1139
+ full phononic lattice (Fig. 9). The two measures can be
1140
+ related to one another by replotting the energy trans-
1141
+ fers of Fig. 9 with respect to system energy (to match
1142
+ the energy-dependent nature of the FEP) and superim-
1143
+ posing the FEP slopes to compare similarities in their
1144
+ evolution with energy. To do this requires a normaliza-
1145
+ tion, as the maximum and minimum values of the FEP
1146
+ slope can be arbitrarily large or small, whereas the rela-
1147
+ tive energy of the upper optical bands is lower-bounded
1148
+ by the amount provided by the excitation source (from
1149
+ the Fourier uncertainty principal), and upper-bounded
1150
+ by unity (since the energy in the upper bands cannot
1151
+ exceed the total energy of the system). Moreover, the
1152
+ wave propagation in the 1200 DoF phononic lattice car-
1153
+ ries the energy of 30 cycles of the windowed excitation,
1154
+ whereas the FEP energy is parameterized by the periodic
1155
+ orbits of the 2 DoF ROM. Thus, the energy of the finite
1156
+ lattice must be normalized in order to be commensurate
1157
+ with the energy of the ROM used to generated the FEP.
1158
+ These normalizations are performed as follows. The FEP
1159
+
1160
+ 12
1161
+ FIG. 12. The relative inter-band energy transfer, with the
1162
+ normalized slope from the ROM-FEP superimposed for (a)
1163
+ Hertzian and (b) bilinear contact models; the dashed lines
1164
+ depict the normalized FEP slopes, the gray lines depict the
1165
+ normalized FEP slopes lower-bounded by the initial (linear)
1166
+ energy of the higher bands, and green lines depict a power
1167
+ law fit to red dots, with the adjusted R-squared value shown
1168
+ with the inset.
1169
+ slope is divided by a scalar as to quantitatively align with
1170
+ the relative energy transfer in quantity so that a direct
1171
+ comparison can be made with respect to decay rate ver-
1172
+ sus energy. A scalar quantity defined by the low-bound
1173
+ of IBTET (dashed lines of Fig. 9) is then added to the
1174
+ FEP slope account for the lower threshold of the energy
1175
+ transfer in the VI lattice. The energy of the finite lattice
1176
+ is normalized so that the initiation energy, that is, the
1177
+ energy required to engage the first VI site encountered
1178
+ by the propagating wavefront, aligns with the transition
1179
+ between regions I and II of the FEP. These normaliza-
1180
+ tions preserve the slopes of both quantities since scalar
1181
+ multiplication results only in translations in log scaling.
1182
+ Hence, the previous measures can be directly compared
1183
+ with respect to their decrease in value with respect to
1184
+ increasing normalized energy.
1185
+ Fig. 12 displays the described superposition where a
1186
+ remarkable agreement is found between the trends in the
1187
+ slope of the FEP of the ROM and the energy transfer be-
1188
+ tween bands in the lattice. Hence, the underlying FEP
1189
+ of the ROM, along with the evolution of the dynamical
1190
+ regimes of Fig. 11, clearly have a direct implication of
1191
+ the IBTET in the lattice. Moreover, by fitting a slope
1192
+ to the measured energy transfer versus normalized sys-
1193
+ tem energy for data points falling in region III, a near-
1194
+ perfect power law is recovered as indicated by the ad-
1195
+ justed R-squared values close to 1 (see Fig. 12). Finally,
1196
+ these results are in agreement with the trends observed
1197
+ for wavenumber spreading within the optical band of the
1198
+ 2-band system considered in section II. Hence, the nu-
1199
+ merical results presented for the finite lattices can be
1200
+ understood based in terms of the underlying nonlinear
1201
+ dynamics of the ROM based on the single VI unit cell as
1202
+ it transitions between various dynamical regimes with re-
1203
+ spect to energy. With this, a predictive tool is presented
1204
+ to assess the capacity for IBTET in full phononic sys-
1205
+ tems based on the simplified VI ROMs which, being of
1206
+ low-dimensionality, are much more amenable to analysis
1207
+ compared to the extended nonlinear lattices considered
1208
+ herein.
1209
+ V.
1210
+ CONCLUSIONS
1211
+ In this work, we have investigated the effect of local
1212
+ VI nonlinearities on the propagation of traveling waves
1213
+ in 1-D phononic lattices. Specifically, first a di-atomic
1214
+ 2-band lattice was numerically studied over a wide range
1215
+ of forcing amplitudes and embedded VI configurations
1216
+ (section II). It was demonstrated that wavenumber scat-
1217
+ tering in the optical band of this lattice is most pro-
1218
+ found for moderate excitation amplitudes, and decreases
1219
+ in effectiveness as the energy rises (Fig. 2).
1220
+ This was
1221
+ quantified by considering the spatial-spectral entropy (or
1222
+ wavenumber entropy), for various systems which all fol-
1223
+ lowed very closely to power-law decays with respect to
1224
+ excitation amplitude after the peak value was reached
1225
+ (Fig. 5). Attention then turned to inter-band targeted
1226
+ energy transfer (IBTET) in a 4-band system which was
1227
+ parameterized in order to provide dispersion curves re-
1228
+ ceptive to such energy transfers (Section III). Simula-
1229
+ tions were carried out over a range of excitation ampli-
1230
+ tudes with both Hertzian and bilinear contact laws. Nu-
1231
+ merical post-processing reconstructed the energy of each
1232
+ band, and it was shown that IBTET is indeed possible.
1233
+ Moreover, this phenomenon was proven effective for both
1234
+ Hertzian and bilinear VIs, and the trends in IBTET with
1235
+ respect to excitation amplitude followed closely to those
1236
+ observed for wavenumber scattering in the 2-band lattice
1237
+ (Fig. 9).
1238
+ In an attempt to shed some physical insight into the
1239
+ effect of the VIs on the acoustics of the lattice, a low-
1240
+ dimensional ROM was constructed based on the unit
1241
+ VI cell. The underlying FEP of the 2 DoF ROM was
1242
+ computed for the NNM family of 1:1 resonance branches
1243
+ which revealed four dynamic regimes that the ROM as-
1244
+ sumes with respect to energy. Namely, a linear low en-
1245
+ ergy region, a grazing region initiated when the VI non-
1246
+ linearity first enters the dynamics, a full VI-oscillator
1247
+ with nonsmooth temporal dynamics, and an effectively
1248
+ linear or smoothly nonlinear high-energy regime, depend-
1249
+ ing on the contact law (Hertzian or bilinear). This, in
1250
+ turn, produced a frequency-energy slope that directly
1251
+ scales to the trends of IBTET in the lattice with respect
1252
+ to system energy, providing the physical interpretation of
1253
+ the spectral scattering of sections II and III. Moreover,
1254
+ the FEP presents a means for accurately predicting en-
1255
+
1256
+ 13
1257
+ ergy transfer capacity of the full phononic lattice based
1258
+ on the low-dimensional ROM.
1259
+ Although this work focused primarily on fundamental
1260
+ understanding of the physics at play, the implications and
1261
+ potential for future developments are rather extensive.
1262
+ The low-to-high energy transfers directly correspond to
1263
+ a reduction in magnitude, since the energy must be pre-
1264
+ served in the frequency transfer. Moreover, the evolution
1265
+ of the VI dynamics with respect to energy corresponds
1266
+ to an effective filter that can greatly alter transmissibil-
1267
+ ity of incident waves (cf. Fig. 3). These attributes alone
1268
+ make VI-based methods attractive for wave transmission
1269
+ tuning (or tailoring) with respect to amplitude. More-
1270
+ over, while we have targeted low-to-high energy transfers
1271
+ between bands, future works could explore the potential
1272
+ for targeting specific bands and specific sub-regions of
1273
+ bands of phononic lattices by optimizing the distribution
1274
+ and parameters of local VIs in lattices through methods
1275
+ such as genetic programming or machine learning.
1276
+ ACKNOWLEDGMENTS
1277
+ This work was supported in part by the National Sci-
1278
+ ence Foundation Graduate Research Fellowship Program
1279
+ under Grant No. DGE – 1746047. Any opinions, find-
1280
+ ings, and conclusions or recommendations expressed in
1281
+ this material are those of the authors and do not neces-
1282
+ sarily reflect the views of the National Science Founda-
1283
+ tion.
1284
+ A.
1285
+ DETAILS ON SIGNAL PROCESSING
1286
+ PROCEDURES
1287
+ 1.
1288
+ Continuous Wavelet Transformation (CWT)
1289
+ In this section, we provide a brief discussion of the
1290
+ wavelet transformation algorithm employed in this work
1291
+ in order to clarify the mathematical details pertinent
1292
+ for performing the wavelet-based wavenumber partition
1293
+ analysis of section II (cf. Fig. 4). A similar discourse
1294
+ may be found in [74]. The CWT is traditionally used as
1295
+ a time-frequency analysis tool by transforming the signal
1296
+ from the time domain to the time-frequency domain. To
1297
+ the same effect, one can consider the space-wavenumber
1298
+ domain. For 1D systems the standard definition of the
1299
+ CWT with respect to the spatial variable x is,
1300
+ X(x, κ) =
1301
+ � κ
1302
+ κc
1303
+ � ∞
1304
+ −∞
1305
+ u(ξ)ψ∗
1306
+ �ξ − x
1307
+ κc
1308
+
1309
+
1310
+ (10)
1311
+ where ψ∗(ξ) is the complex conjugate of the mother
1312
+ wavelet function and κc the center frequency,
1313
+ κc =
1314
+ �� ∞
1315
+ 0
1316
+ κ2|Ψ(κ)|2dκ
1317
+ � ∞
1318
+ 0
1319
+ Ψ(κ)|2dκ
1320
+ �1/2
1321
+ .
1322
+ (11)
1323
+ FIG. 13. The reconstructed kinetic energy and correspond-
1324
+ ing reconstruction error for the described wavelet partition
1325
+ scheme; red dashed line indicates 1 percent error.
1326
+ We consider the Morelet wavelet for all transformations
1327
+ in this work:
1328
+ ψ(x) =
1329
+ 1
1330
+ π1/4
1331
+
1332
+ eiκcx − e−κ2
1333
+ c/2�
1334
+ e−x2/2.
1335
+ (12)
1336
+ For the scale and quantities of datasets considered in this
1337
+ work, computational efficiency is a requirement. To this
1338
+ end, the Fast Fourier Transform is employed to speed
1339
+ up wavelet computations. Taking Ψ(κ) as the analytical
1340
+ Fourier Transform of the mother wavelet,
1341
+ Ψ(κ) = e−(κ−κc)2/2,
1342
+ (13)
1343
+ and ˜x(κ) the FFT of the signal, the wavelet transforma-
1344
+ tion can be written equivalently as:
1345
+ X(κ, x) =
1346
+ �κc
1347
+ κ
1348
+ � ∞
1349
+ −∞
1350
+ ˜x(η)Ψ∗(ηκ/κc)eiηxdη.
1351
+ (14)
1352
+ Each wavelet transformation can be partitioned over
1353
+ space and wavenumber. The spectral partitions are de-
1354
+ fined over 12 regions spanning between κ = 0 and κ = π
1355
+ to account for 12 different wavelet-domain representa-
1356
+ tions of the spatial signal at each time instant. The k-th
1357
+ wavenumber partition is defined as:
1358
+ Xk(κ, x) = X(κ, x)hk(κ),
1359
+ hk(κ) = H
1360
+
1361
+ κ − (k − 1)π
1362
+ 12
1363
+
1364
+ − H
1365
+
1366
+ κ − kπ
1367
+ 12
1368
+
1369
+ .
1370
+ (15)
1371
+ The inverse wavelet transformation can be applied
1372
+ at each time snap shot to each wavenumber partition,
1373
+ uk(x) = W−1 {Xk(κ, x)}, which is computed as:
1374
+ uk(x) =
1375
+ √κ
1376
+ κ3/2
1377
+ c
1378
+ C
1379
+ � ∞
1380
+ 0
1381
+ � ∞
1382
+ −∞
1383
+ ˆXk(κ, ξ)Ψ
1384
+ �ξκ
1385
+ κc
1386
+
1387
+ dξdκ.
1388
+ (16)
1389
+ where ˆXk(κ, ξ) is the Fourier transformation of Xk(κ, x)
1390
+ with respect to x. Fig. 13 depicts the reconstructed ki-
1391
+ netic energy of the lattice, KErec, as well as the directly
1392
+ computed (exact) kinetic energy from the numerical sim-
1393
+ ulations KEphys, with the error between the two quanti-
1394
+ ties computed by:
1395
+ e(t) = ||KErec(t) − KEphys(T)||
1396
+ ||KEphys(t)||
1397
+ .
1398
+ (17)
1399
+
1400
+ 14
1401
+ FIG. 14. Contours of the instantaneous wavenumber entropy
1402
+ across the time-entropy domain for low, medium, and high
1403
+ amplitude simulations(top), and the summary contours of the
1404
+ instantaneous entropy H(t) (bottom).
1405
+ 2.
1406
+ Spectral Entropy
1407
+ Here, we provide more details pertaining to the spec-
1408
+ tral entropy plots displayed in Fig. 5.
1409
+ Fig. 14 depicts
1410
+ the distribution of entropy using Eq (6) to recover H(x)
1411
+ for each t. The resulting matrix H(x, t) is plotted as an
1412
+ image for low, medium, and high excitation amplitudes.
1413
+ The distribution of high-entropy regions is clearly seen in
1414
+ the medium and high excitation amplitude simulations
1415
+ as the VIs engage the incoming wave. Superimposed on
1416
+ each image is the instantaneous spectral entropy, which
1417
+ summarizes H(x, t) over space to render time-dependent
1418
+ measures H(t).
1419
+ A data set storing H(t) for each excitation ampli-
1420
+ tude in the simulation ensemble can then be generated
1421
+ and plotted in the form of an image to study how the
1422
+ wavenumber entropy varies in time with respect to the
1423
+ forcing amplitude for a given lattice configuration. This
1424
+ is depicted in the bottom plot of Fig. 14. In the low-
1425
+ amplitude region with no VI engagement, no entropy is
1426
+ generated after excitation (as expected).
1427
+ For medium
1428
+ amplitudes, regions of sustained high wavenumber en-
1429
+ tropy are realized after the VIs engage the incident wave.
1430
+ In contrast, only localized patches of high entropy are
1431
+ seen for high-amplitude simulations, indicating that the
1432
+ VIs do not affect the global wavenumber of the lattice
1433
+ after the incident wave passes through (or reflects off of)
1434
+ the unit cells with embedded VIs.
1435
+ FIG. 15. Energy Reconstruction of band-partitioning decom-
1436
+ position.
1437
+ 3.
1438
+ Computing energy on each band
1439
+ The computation of wave energy over each band in
1440
+ section III is performed as follows. The data matrix for a
1441
+ given simulation is mapped to the Fourier domain using
1442
+ the 2D FFT algorithm D(κ, ω) = Fx,t{u(x, t)}. Next,
1443
+ frequency filters are constructed as follows,
1444
+ Gk(κ, ω) =
1445
+
1446
+ 1
1447
+ ω ∈ Bk, −π ≤ κ ≤ π
1448
+ 0
1449
+ otherwise
1450
+ (18)
1451
+ were the first four ranges of frequencies Bk are defined
1452
+ over the temporal frequency limits of the four pass-bands
1453
+ (PB),
1454
+ B1 = min(PB1) ≤ ω ≤ max(PB1)
1455
+ B2 = min(PB2) ≤ ω ≤ max(PB2)
1456
+ B3 = min(PB3) ≤ ω ≤ max(PB3)
1457
+ B4 = min(PB4) ≤ ω ≤ max(PB4)
1458
+ (19)
1459
+ A remaining two filter banks are constructed for the band
1460
+ gap between the acoustic band and first optical band
1461
+ (BG1), and of for the band gap between the upper two
1462
+ optical bands (BG2),
1463
+ B5 = min(BG1) ≤ ω ≤ max(BG1)
1464
+ B6 = min(BG2) ≤ ω ≤ max(BG2).
1465
+ (20)
1466
+ The spatial-temporal dynamics corresponding to each
1467
+ pass band and band gap regions are then given as,
1468
+ uk(x, t) = F−x,−t{Gk(κ, ω) · D(κ, ω)}
1469
+ where F−x,−t{ } indicates the 2D inverse FFT with re-
1470
+ spect to x and t. The rigid boundaries of the filters in
1471
+ Fourier space inevitably results in minute numerical ar-
1472
+ tifacts in the inverse transformation for each partition
1473
+
1474
+ 15
1475
+ taking the form of ripples along the space-time bound-
1476
+ aries. However, the reconstruction of energies computed
1477
+ by summing the energy over each band matched nearly
1478
+ identically to the energies computed for the direct nu-
1479
+ merical simulations, and hence these numerical artifacts
1480
+ are negligible.
1481
+ B.
1482
+ NONLINEAR NORMAL MODE
1483
+ COMPUTATIONS
1484
+ The recipe for NNM calculations follows very closely
1485
+ to the procedure outlined in [79].
1486
+ For all FEP calcu-
1487
+ lations, the shooting method used a prescribed initial
1488
+ step size of 1−5 and a tolerance of ε = 1 × 10−6. For
1489
+ low energy orbits, Newmark integration was employed
1490
+ with 2000 steps per period, and Jacobian calculations of
1491
+ predictor-corrector steps were computed using the sensi-
1492
+ tivity analysis in [79]. In region II, the unstable dynamics
1493
+ proved to be challenging for the computation of the corre-
1494
+ sponding NNM branch. Hence, sufficiently small predic-
1495
+ tor steps were required for convergence, with the residual
1496
+ reduction being varied from 10−12 to 10−10. Sensitivity
1497
+ analysis was employed again to compute Jacobian terms
1498
+ in region II.
1499
+ Once the dynamics of the NNMs stabilized to that of
1500
+ a definitive VI oscillator in region III, and moreover to
1501
+ smoothly stable NNMs in region IV, the finite difference
1502
+ method sufficiently approximated Jacobian terms allow-
1503
+ ing for the implementation of fast and accurate Runge-
1504
+ Kutta based methods such as ODE78. The nonsmooth
1505
+ nature of dynamics in region III would require still a
1506
+ great number of Newmark iterations to achieve the same
1507
+ accuracy as the ODE78 routine, and therefore the transi-
1508
+ tion was made to a finite-difference Jacobian calculation
1509
+ scheme based on ODE78 for energies beyond region II to
1510
+ increase computational speed and reduce the number of
1511
+ steps required to resolve the high-energy regions of the
1512
+ FEP branch.
1513
+ [1] S. A. Cummer, J. Christensen, and A. Al`u, Controlling
1514
+ sound with acoustic metamaterials, Nature Reviews Ma-
1515
+ terials 1, 10.1038/natrevmats.2016.1 (2016).
1516
+ [2] J. U. Surjadi, L. Gao, H. Du, X. Li, X. Xiong, N. X.
1517
+ Fang, and Y. Lu, Mechanical metamaterials and their
1518
+ engineering applications, Advanced Engineering Materi-
1519
+ als 21, 1800864 (2019).
1520
+ [3] M. I. Hussein, M. J. Leamy, and M. Ruzzene, Dynamics
1521
+ of phononic materials and structures: Historical origins,
1522
+ recent progress, and future outlook, Applied Mechanics
1523
+ Reviews 66, 10.1115/1.4026911 (2014).
1524
+ [4] S. Tol, F. Degertekin, and A. Erturk, 3d-printed phononic
1525
+ crystal lens for elastic wave focusing and energy harvest-
1526
+ ing, Additive Manufacturing 29, 100780 (2019).
1527
+ [5] Z. Chen, B. Guo, Y. Yang, and C. Cheng, Metamaterials-
1528
+ based enhanced energy harvesting: A review, Physica B:
1529
+ Condensed Matter 438, 1 (2014).
1530
+ [6] S. Qi, M. Oudich, Y. Li, and B. Assouar, Acoustic en-
1531
+ ergy harvesting based on a planar acoustic metamaterial,
1532
+ Applied Physics Letters 108, 263501 (2016).
1533
+ [7] M. Carrara, M. R. Cacan, J. Toussaint, M. J. Leamy,
1534
+ M. Ruzzene, and A. Erturk, Metamaterial-inspired struc-
1535
+ tures and concepts for elastoacoustic wave energy har-
1536
+ vesting, Smart Materials and Structures 22, 065004
1537
+ (2013).
1538
+ [8] K. K. Reichl and D. J. Inman, Lumped mass model of a
1539
+ 1d metastructure for vibration suppression with no ad-
1540
+ ditional mass, Journal of Sound and Vibration 403, 75
1541
+ (2017).
1542
+ [9] K. H. Matlack, A. Bauhofer, S. Kr¨odel, A. Palermo,
1543
+ and C. Daraio, Composite 3d-printed metastructures for
1544
+ low-frequency and broadband vibration absorption, Pro-
1545
+ ceedings of the National Academy of Sciences 113, 8386
1546
+ (2016).
1547
+ [10] J. Mueller, K. H. Matlack, K. Shea, and C. Daraio, En-
1548
+ ergy absorption properties of periodic and stochastic 3d
1549
+ lattice materials, Advanced Theory and Simulations 2,
1550
+ 1900081 (2019).
1551
+ [11] L. Sirota, D. Sabsovich, Y. Lahini, R. Ilan, and Y. Shokef,
1552
+ Real-time steering of curved sound beams in a feedback-
1553
+ based topological acoustic metamaterial, Mechanical Sys-
1554
+ tems and Signal Processing 153, 107479 (2021).
1555
+ [12] J.-P. Xia, D. Jia, H.-X. Sun, S.-Q. Yuan, Y. Ge, Q.-R. Si,
1556
+ and X.-J. Liu, Programmable coding acoustic topological
1557
+ insulator, Advanced Materials 30, 1805002 (2018).
1558
+ [13] F. Zangeneh-Nejad and R. Fleury, Topological ana-
1559
+ log
1560
+ signal
1561
+ processing,
1562
+ Nature
1563
+ Communications
1564
+ 10,
1565
+ 10.1038/s41467-019-10086-3 (2019).
1566
+ [14] R. K. Pal and M. Ruzzene, Edge waves in plates with
1567
+ resonators: an elastic analogue of the quantum valley
1568
+ hall effect, New Journal of Physics 19, 025001 (2017).
1569
+ [15] H. Chen, H. Nassar, and G. Huang, A study of topological
1570
+ effects in 1d and 2d mechanical lattices, Journal of the
1571
+ Mechanics and Physics of Solids 117, 22 (2018).
1572
+ [16] J. R. Tempelman, A. F. Vakakis, and K. H. Matlack, A
1573
+ modal decomposition approach to topological wave prop-
1574
+ agation, (2022), arXiv:2210.11665 [physics.app-ph].
1575
+ [17] G. U. Patil and K. H. Matlack, Review of exploiting non-
1576
+ linearity in phononic materials to enable nonlinear wave
1577
+ responses, Acta Mechanica 233, 1 (2021).
1578
+ [18] J. O. Vasseur, O. B. Matar, J. F. Robillard, A.-C.
1579
+ Hladky-Hennion, and P. A. Deymier, Band structures
1580
+ tunability of bulk 2d phononic crystals made of magneto-
1581
+ elastic materials, AIP Advances 1, 041904 (2011).
1582
+ [19] F. Allein, V. Tournat, V. E. Gusev, and G. Theocharis,
1583
+ Tunable magneto-granular phononic crystals, Applied
1584
+ Physics Letters 108, 161903 (2016).
1585
+ [20] C. D. Pierce, C. L. Willey, V. W. Chen, J. O. Hardin,
1586
+ J. D. Berrigan, A. T. Juhl, and K. H. Matlack, Adaptive
1587
+ elastic metastructures from magneto-active elastomers,
1588
+ Smart Materials and Structures 29, 065004 (2020).
1589
+ [21] Y. Cheng, X. J. Liu, and D. J. Wu, Temperature effects
1590
+ on the band gaps of lamb waves in a one-dimensional
1591
+ phononic-crystal plate (l), The Journal of the Acoustical
1592
+
1593
+ 16
1594
+ Society of America 129, 1157 (2011).
1595
+ [22] Y. Yao, F. Wu, X. Zhang, and Z. Hou, Thermal tuning of
1596
+ lamb wave band structure in a two-dimensional phononic
1597
+ crystal plate, Journal of Applied Physics 110, 123503
1598
+ (2011).
1599
+ [23] Z. Zhao, X. Cui, Y. Yin, Y. Li, and M. Li, Thermal tun-
1600
+ ing of vibration band gaps in homogenous metamaterial
1601
+ plate, International Journal of Mechanical Sciences 225,
1602
+ 107374 (2022).
1603
+ [24] C. Denz, S. Flach, and Y. S. Kivshar, eds., Nonlineari-
1604
+ ties in Periodic Structures and Metamaterials (Springer
1605
+ Berlin Heidelberg, 2010).
1606
+ [25] F. Li, D. Ngo, J. Yang, and C. Daraio, Tunable phononic
1607
+ crystals based on cylindrical hertzian contact, Applied
1608
+ Physics Letters 101, 171903 (2012).
1609
+ [26] R. Chaunsali, F. Li, and J. Yang, Stress wave isolation
1610
+ by purely mechanical topological phononic crystals, Sci-
1611
+ entific Reports 6, 10.1038/srep30662 (2016).
1612
+ [27] R. Chaunsali, E. Kim, A. Thakkar, P. Kevrekidis, and
1613
+ J. Yang, Demonstrating an lessigreaterin situless/igreater
1614
+ topological band transition in cylindrical granular chains,
1615
+ Physical Review Letters 119, 024301 (2017).
1616
+ [28] R. K. Narisetti, M. J. Leamy, and M. Ruzzene, A per-
1617
+ turbation approach for predicting wave propagation in
1618
+ one-dimensional nonlinear periodic structures, Journal of
1619
+ Vibration and Acoustics 132, 10.1115/1.4000775 (2010).
1620
+ [29] J. R. Tempelman, K. H. Matlack, and A. F. Vakakis,
1621
+ Topological protection in a strongly nonlinear interface
1622
+ lattice, Physical Review B 104, 174306 (2021).
1623
+ [30] K. R. Jayaprakash, Y. Starosvetsky, A. F. Vakakis,
1624
+ M. Peeters, and G. Kerschen, Nonlinear normal modes
1625
+ and
1626
+ band
1627
+ zones
1628
+ in
1629
+ granular
1630
+ chains
1631
+ with
1632
+ no
1633
+ pre-
1634
+ compression, Nonlinear Dynamics 63, 359 (2010).
1635
+ [31] A. Mojahed and A. F. Vakakis, Certain aspects of the
1636
+ acoustics of a strongly nonlinear discrete lattice, Nonlin-
1637
+ ear Dynamics 99, 643 (2019).
1638
+ [32] A. Mojahed, O. V. Gendelman, and A. F. Vakakis,
1639
+ Breather
1640
+ arrest,
1641
+ localization,
1642
+ and
1643
+ acoustic
1644
+ non-
1645
+ reciprocity in dissipative nonlinear lattices, The Journal
1646
+ of the Acoustical Society of America 146, 826 (2019).
1647
+ [33] G. U. Patil and K. H. Matlack, Strongly nonlinear wave
1648
+ dynamics of continuum phononic materials with periodic
1649
+ rough contacts, Physical Review E 105, 024201 (2022).
1650
+ [34] R. Zaera, J. Vila, J. Fernandez-Saez, and M. Ruzzene,
1651
+ Propagation of solitons in a two-dimensional nonlinear
1652
+ square lattice, International Journal of Non-Linear Me-
1653
+ chanics 106, 188 (2018).
1654
+ [35] O. V. Gendelman and L. I. Manevitch, Discrete breathers
1655
+ in vibroimpact chains: Analytic solutions, Physical Re-
1656
+ view E 78, 026609 (2008).
1657
+ [36] O. V. Gendelman, Exact solutions for discrete breathers
1658
+ in a forced-damped chain, Physical Review E 87, 062911
1659
+ (2013).
1660
+ [37] A. F. Vakakis, O. V. Gendelman, L. A. Bergman, A. Mo-
1661
+ jahed, and M. Gzal, Nonlinear targeted energy transfer:
1662
+ state of the art and new perspectives, Nonlinear Dynam-
1663
+ ics 108, 711 (2022).
1664
+ [38] J. Wang, N. Wierschem, B. F. Spencer, and X. Lu, Nu-
1665
+ merical and experimental study of the performance of
1666
+ a single-sided vibro-impact track nonlinear energy sink,
1667
+ Earthquake Engineering & Structural Dynamics 45, 635
1668
+ (2015).
1669
+ [39] A. F. Vakakis and O. Gendelman, Energy pumping in
1670
+ nonlinear mechanical oscillators: Part II—resonance cap-
1671
+ ture, Journal of Applied Mechanics 68, 42 (2000).
1672
+ [40] A. F. Vakakis, Inducing passive nonlinear energy sinks
1673
+ in vibrating systems, Journal of Vibration and Acoustics
1674
+ 123, 324 (2001).
1675
+ [41] M. Taleshi, M. Dardel, and M. H. Pashaie, Passive tar-
1676
+ geted energy transfer in the steady state dynamics of a
1677
+ nonlinear plate with nonlinear absorber, Chaos, Solitons
1678
+ & Fractals 92, 56 (2016).
1679
+ [42] Y. Starosvetsky and O. V. Gendelman, Attractors of har-
1680
+ monically forced linear oscillator with attached nonlinear
1681
+ energy sink. II: Optimization of a nonlinear vibration ab-
1682
+ sorber, Nonlinear Dynamics 51, 47 (2007).
1683
+ [43] Y. Starosvetsky and O. Gendelman, Interaction of non-
1684
+ linear energy sink with a two degrees of freedom linear
1685
+ system: Internal resonance, Journal of Sound and Vibra-
1686
+ tion 329, 1836 (2010).
1687
+ [44] D. Qiu, S. Seguy, and M. Paredes, Tuned nonlinear
1688
+ energy sink with conical spring:
1689
+ Design theory and
1690
+ sensitivity analysis, Journal of Mechanical Design 140,
1691
+ 10.1115/1.4038304 (2017).
1692
+ [45] D. Huang, R. Li, and G. Yang, On the dynamic response
1693
+ regimes of a viscoelastic isolation system integrated with
1694
+ a nonlinear energy sink, Communications in Nonlinear
1695
+ Science and Numerical Simulation 79, 104916 (2019).
1696
+ [46] F. Georgiades and A. Vakakis, Dynamics of a linear beam
1697
+ with an attached local nonlinear energy sink, Communi-
1698
+ cations in Nonlinear Science and Numerical Simulation
1699
+ 12, 643 (2007).
1700
+ [47] O. Gendelman, L. I. Manevitch, A. F. Vakakis, and
1701
+ R. M’Closkey, Energy pumping in nonlinear mechanical
1702
+ oscillators: Part I—dynamics of the underlying hamil-
1703
+ tonian systems, Journal of Applied Mechanics 68, 34
1704
+ (2000).
1705
+ [48] O. V. Gendelman, Transition of energy to a nonlinear
1706
+ localized mode in a highly asymmetric system of two os-
1707
+ cillators, Nonlinear Dynamics 25, 237 (2001).
1708
+ [49] O. V. Gendelman, Y. Starosvetsky, and M. Feldman, At-
1709
+ tractors of harmonically forced linear oscillator with at-
1710
+ tached nonlinear energy sink I: Description of response
1711
+ regimes, Nonlinear Dynamics 51, 31 (2007).
1712
+ [50] A. Darabi and M. J. Leamy, Clearance-type nonlinear
1713
+ energy sinks for enhancing performance in electroacoustic
1714
+ wave energy harvesting, Nonlinear Dynamics 87, 2127
1715
+ (2016).
1716
+ [51] H. Dai, A. Abdelkefi, and L. Wang, Vortex-induced vi-
1717
+ brations mitigation through a nonlinear energy sink, 42,
1718
+ 22 (2017).
1719
+ [52] L. A. Bergman, O. V. Gendelman, G. Kerschen, Y. S.
1720
+ Lee, and D. M. McFarland, Nonlinear Targeted En-
1721
+ ergy Transfer in Mechanical and Structural Systems
1722
+ (Springer-Verlag GmbH, 2008).
1723
+ [53] L. I. Manevitch, A concept of limiting phase trajectories
1724
+ and description of highly non-stationary resonance pro-
1725
+ cesses, Applied Mathematical Sciences 9, 4269 (2015).
1726
+ [54] F. Nucera, A. F. Vakakis, D. M. McFarland, L. A.
1727
+ Bergman, and G. Kerschen, Targeted energy transfers in
1728
+ vibro-impact oscillators for seismic mitigation, Nonlinear
1729
+ Dynamics 50, 651 (2007).
1730
+ [55] O. Gendelman, Analytic treatment of a system with a
1731
+ vibro-impact nonlinear energy sink, Journal of Sound and
1732
+ Vibration 331, 4599 (2012).
1733
+ [56] T. Li, S. Seguy, and A. Berlioz, Optimization mechanism
1734
+ of targeted energy transfer with vibro-impact energy sink
1735
+ under periodic and transient excitation, Nonlinear Dy-
1736
+
1737
+ 17
1738
+ namics 87, 2415 (2016).
1739
+ [57] O. V. Gendelman and A. F. Vakakis, Introduction to
1740
+ a topical issue ‘nonlinear energy transfer in dynamical
1741
+ and acoustical systems', Philosophical Transactions of
1742
+ the Royal Society A: Mathematical, Physical and En-
1743
+ gineering Sciences 376, 20170129 (2018).
1744
+ [58] V. Rothos and A. Vakakis, Dynamic interactions of trav-
1745
+ eling waves propagating in a linear chain with an local
1746
+ essentially nonlinear attachment, Wave Motion 46, 174
1747
+ (2009).
1748
+ [59] A. F. Vakakis, M. A. AL-Shudeifat, and M. A. Hasan,
1749
+ Interactions of propagating waves in a one-dimensional
1750
+ chain of linear oscillators with a strongly nonlinear local
1751
+ attachment, Meccanica 49, 2375 (2014).
1752
+ [60] H. Nassar, B. Yousefzadeh, R. Fleury, M. Ruzzene,
1753
+ A. Al`u, C. Daraio, A. N. Norris, G. Huang, and M. R.
1754
+ Haberman, Nonreciprocity in acoustic and elastic mate-
1755
+ rials, Nature Reviews Materials 5, 667 (2020).
1756
+ [61] J. Bunyan, K. J. Moore, A. Mojahed, M. D. Fronk,
1757
+ M. Leamy, S. Tawfick, and A. F. Vakakis, Acoustic non-
1758
+ reciprocity in a lattice incorporating nonlinearity, asym-
1759
+ metry, and internal scale hierarchy: Experimental study,
1760
+ Physical Review E 97, 052211 (2018).
1761
+ [62] M. D. Fronk, S. Tawfick, C. Daraio, S. Li, A. Vakakis, and
1762
+ M. J. Leamy, Acoustic non-reciprocity in lattices with
1763
+ nonlinearity, internal hierarchy, and asymmetry: Compu-
1764
+ tational study, Journal of Vibration and Acoustics 141,
1765
+ 10.1115/1.4043783 (2019).
1766
+ [63] I. Grinberg, A. F. Vakakis, and O. V. Gendelman, Acous-
1767
+ tic diode: Wave non-reciprocity in nonlinearly coupled
1768
+ waveguides, Wave Motion 83, 49 (2018).
1769
+ [64] C. Fu, B. Wang, T. Zhao, and C. Q. Chen, High efficiency
1770
+ and broadband acoustic diodes, Applied Physics Letters
1771
+ 112, 051902 (2018).
1772
+ [65] A. Darabi, L. Fang, A. Mojahed, M. D. Fronk, A. F.
1773
+ Vakakis, and M. J. Leamy, Broadband passive nonlinear
1774
+ acoustic diode, Physical Review B 99, 214305 (2019).
1775
+ [66] T. Devaux, A. Cebrecos, O. Richoux, V. Pagneux, and
1776
+ V. Tournat, Acoustic radiation pressure for nonreciprocal
1777
+ transmission and switch effects, Nature Communications
1778
+ 10, 10.1038/s41467-019-11305-7 (2019).
1779
+ [67] N. Mork, M. D. Fronk, M. B. Sinclair, and M. J. Leamy,
1780
+ Nonlinear hierarchical unit cell for passive, amplitude-
1781
+ dependent filtering of acoustic waves, Extreme Mechanics
1782
+ Letters , 101915 (2022).
1783
+ [68] M. Gzal, B. Fang, A. F. Vakakis, L. A. Bergman, and
1784
+ O. V. Gendelman, Rapid non-resonant intermodal tar-
1785
+ geted energy transfer (IMTET) caused by vibro-impact
1786
+ nonlinearity, Nonlinear Dynamics 101, 2087 (2020).
1787
+ [69] M. Gzal, A. F. Vakakis, L. A. Bergman, and O. V. Gen-
1788
+ delman, Extreme intermodal energy transfers through
1789
+ vibro-impacts for highly effective and rapid blast miti-
1790
+ gation, Communications in Nonlinear Science and Nu-
1791
+ merical Simulation 103, 106012 (2021).
1792
+ [70] J. R. Tempelman, A. Mojahed, M. Gzal, K. H. Matlack,
1793
+ O. V. Gendelman, L. A. Bergman, and A. F. Vakakis, Ex-
1794
+ perimental inter-modal targeted energy transfer in a can-
1795
+ tilever beam undergoing vibro-impacts, Journal of Sound
1796
+ and Vibration 539, 117212 (2022).
1797
+ [71] Y. S. Lee, F. Nucera, A. F. Vakakis, D. M. McFarland,
1798
+ and L. A. Bergman, Periodic orbits, damped transitions
1799
+ and targeted energy transfers in oscillators with vibro-
1800
+ impact attachments, Physica D: Nonlinear Phenomena
1801
+ 238, 1868 (2009).
1802
+ [72] K. H. Hunt and F. R. E. Crossley, Coefficient of restitu-
1803
+ tion interpreted as damping in vibroimpact, Journal of
1804
+ Applied Mechanics 42, 440 (1975).
1805
+ [73] I. Arretche and K. H. Matlack, On the interrelation-
1806
+ ship between static and vibration mitigation properties
1807
+ of architected metastructures, Frontiers in Materials 5,
1808
+ 10.3389/fmats.2018.00068 (2018).
1809
+ [74] A. Mojahed, L. A. Bergman, and A. F. Vakakis, New
1810
+ inverse wavelet transform method with broad application
1811
+ in dynamics, Mechanical Systems and Signal Processing
1812
+ 156, 107691 (2021).
1813
+ [75] B. Boashash, Timefrequency Signal Analysis And Pro-
1814
+ cessing
1815
+ A
1816
+ Comprehensive
1817
+ Review
1818
+ (Academic
1819
+ Press,
1820
+ 2013).
1821
+ [76] A. F. Vakakis, L. I. Manevitch, Y. V. Mikhlin, V. N.
1822
+ Pilipchuk, and A. A. Zevin, Normal Modes and Localiza-
1823
+ tion in Nonlinear Systems (Wiley & Sons, Incorporated,
1824
+ John, 2008) p. 552.
1825
+ [77] G. Kerschen, M. Peeters, J. Golinval, and A. Vakakis,
1826
+ Nonlinear normal modes, part i: A useful framework for
1827
+ the structural dynamicist, Mechanical Systems and Sig-
1828
+ nal Processing 23, 170 (2009).
1829
+ [78] K. V. Avramov and Y. V. Mikhlin, Review of applications
1830
+ of nonlinear normal modes for vibrating mechanical sys-
1831
+ tems, Applied Mechanics Reviews 65, 10.1115/1.4023533
1832
+ (2013).
1833
+ [79] M. Peeters, R. Vigui´e, G. S´erandour, G. Kerschen, and
1834
+ J.-C. Golinval, Nonlinear normal modes, part II: To-
1835
+ ward a practical computation using numerical continu-
1836
+ ation techniques, Mechanical Systems and Signal Pro-
1837
+ cessing 23, 195 (2009).
1838
+ [80] H. Tao and J. Gibert, Periodic orbits of a conservative
1839
+ 2-DOF vibro-impact system by piecewise continuation:
1840
+ bifurcations and fractals, Nonlinear Dynamics 95, 2963
1841
+ (2019).
1842
+ [81] E. Moussi, S. Bellizzi, B. Cochelin, and I. Nistor, Nonlin-
1843
+ ear normal modes of a two degrees-of-freedom piecewise
1844
+ linear system, Mechanical Systems and Signal Processing
1845
+ 64-65, 266 (2015).
1846
+
1847
+ 1
1848
+ Supplemental Materials: Wavenumber Scattering and Inter-band Targeted Energy
1849
+ Transfer in Phononic Lattices with Local Vibro-Impact Nonlinearities
1850
+ Joshua R. Tempelman, Alexander F. Vakakis, Kathryn H. Matlack
1851
+ Department of Mechanical Science and Engineering, University of Illinois at Urbana Champaign
1852
+ 1.
1853
+ ADDITIONAL INFORMATION FOR WAVENUMBER SCATTERING
1854
+ Fig. S1 provides a graphical illustration of the signal processing processes described in section II and Appendix B.
1855
+ Starting in the spatio-temporal domain, snap-shots of the wave velocity are taken successively and converted into the
1856
+ wavelet domain. This domain is partitioned into 12 bands (Fig. S1(b)). The inverse transformation of the k-th band
1857
+ partition gives at a fixed point in time gives the velocity vector ˙uk(x). The instantaneous energy of the k-th band
1858
+ is then conveniently computed as KE = 1
1859
+ 2 ˙uT M ˙u or equivalently, KE = 1
1860
+ 2
1861
+
1862
+ n ˙u2
1863
+ nmn. The energies are contacted
1864
+ over time to deliver the energy corresponding to wave propagation on the k-th band; note that minimal is shown for
1865
+ wave energy reconstruction when the sum of energy over all 12 partitions is compared to exact corresponding energy
1866
+ computed by direct numerical integration of the governing equations of motion.
1867
+ FIG. S1. Graphical illustration of the wavelet-based wavenumber partitioning processes.
1868
+
1869
+ K12
1870
+ 3
1871
+ K11
1872
+ K
1873
+ 2.5
1874
+ K10
1875
+ Kg
1876
+ Wavenumber
1877
+ 2
1878
+ K:
1879
+ K7
1880
+ 1.5
1881
+ K6
1882
+ K5
1883
+ K4
1884
+ K10
1885
+ K4
1886
+ K:
1887
+ K5
1888
+ K11
1889
+ 0.5
1890
+ K2
1891
+ Ki
1892
+ 0
1893
+ K6
1894
+ K12
1895
+ 100
1896
+ 200
1897
+ 300
1898
+ 400
1899
+ 500
1900
+ 600
1901
+ Unit Cell No.Lotal3Energies Summary (Transformed Coords
1902
+ 2.5
1903
+ Reconstruced Kinetic Energy
1904
+ -Physical Kinetic Energy
1905
+ Energy of Individual Partitions
1906
+ 2
1907
+ 60
1908
+ nerg
1909
+ 1
1910
+ 0.5
1911
+ 0
1912
+ 0
1913
+ 20
1914
+ 40
1915
+ 60
1916
+ 80
1917
+ 100
1918
+ 20
1919
+ Error
1920
+ 0
1921
+ %
1922
+ -20
1923
+ 20
1924
+ 40
1925
+ 60
1926
+ 80
1927
+ 100
1928
+ Arbitrary TimeTime
1929
+ (ai)
1930
+ (aii)
1931
+ (aii)
1932
+ 10-6
1933
+ (aiv)
1934
+ (av)
1935
+ (avi)
1936
+ Ki
1937
+ K2
1938
+ K3
1939
+ K4
1940
+ K5
1941
+ K6
1942
+ 10-7
1943
+ 10-8
1944
+ Time
1945
+ 10-9
1946
+ (avii)
1947
+ aiix
1948
+ aix)
1949
+ (ax)
1950
+ (axi)
1951
+ (axii)
1952
+ K7
1953
+ K
1954
+ K10
1955
+ Kg
1956
+ K11
1957
+ 10-10
1958
+ Position
1959
+ Position
1960
+ Position
1961
+ Position
1962
+ Position
1963
+ PositionK12
1964
+ 3
1965
+ K11
1966
+ K
1967
+ 2.5
1968
+ K10
1969
+ Kg
1970
+ Wavenumber
1971
+ 2
1972
+ K:
1973
+ K7
1974
+ 1.5
1975
+ K6
1976
+ K5
1977
+ K4
1978
+ K10
1979
+ K4
1980
+ K:
1981
+ K5
1982
+ K11
1983
+ 0.5
1984
+ K2
1985
+ Ki
1986
+ 0
1987
+ K6
1988
+ K12
1989
+ 100
1990
+ 200
1991
+ 300
1992
+ 400
1993
+ 500
1994
+ 600
1995
+ Unit Cell No.K12
1996
+ 3
1997
+ K11
1998
+ K
1999
+ 2.5
2000
+ K10
2001
+ Kg
2002
+ Wavenumber
2003
+ 2
2004
+ K:
2005
+ K7
2006
+ 1.5
2007
+ K6
2008
+ K5
2009
+ K4
2010
+ K10
2011
+ K4
2012
+ K:
2013
+ K5
2014
+ K11
2015
+ 0.5
2016
+ K2
2017
+ Ki
2018
+ 0
2019
+ K6
2020
+ K12
2021
+ 100
2022
+ 200
2023
+ 300
2024
+ 400
2025
+ 500
2026
+ 600
2027
+ Unit Cell No.K12
2028
+ 3
2029
+ K11
2030
+ K
2031
+ 2.5
2032
+ K10
2033
+ Kg
2034
+ Wavenumber
2035
+ 2
2036
+ K:
2037
+ K7
2038
+ 1.5
2039
+ K6
2040
+ K5
2041
+ K4
2042
+ K10
2043
+ K4
2044
+ K:
2045
+ K5
2046
+ K11
2047
+ 0.5
2048
+ K2
2049
+ Ki
2050
+ 0
2051
+ K6
2052
+ K12
2053
+ 100
2054
+ 200
2055
+ 300
2056
+ 400
2057
+ 500
2058
+ 600
2059
+ Unit Cell No.K12
2060
+ 3
2061
+ K11
2062
+ K
2063
+ 2.5
2064
+ K10
2065
+ Kg
2066
+ Wavenumber
2067
+ 2
2068
+ K:
2069
+ K7
2070
+ 1.5
2071
+ K6
2072
+ K5
2073
+ K4
2074
+ K10
2075
+ K4
2076
+ K:
2077
+ K5
2078
+ K11
2079
+ 0.5
2080
+ K2
2081
+ Ki
2082
+ 0
2083
+ K6
2084
+ K12
2085
+ 100
2086
+ 200
2087
+ 300
2088
+ 400
2089
+ 500
2090
+ 600
2091
+ Unit Cell No.K12
2092
+ 3
2093
+ K11
2094
+ K
2095
+ 2.5
2096
+ K10
2097
+ Kg
2098
+ Wavenumber
2099
+ 2
2100
+ K:
2101
+ K7
2102
+ 1.5
2103
+ K6
2104
+ K5
2105
+ K4
2106
+ K10
2107
+ K4
2108
+ K:
2109
+ K5
2110
+ K11
2111
+ 0.5
2112
+ K2
2113
+ Ki
2114
+ 0
2115
+ K6
2116
+ K12
2117
+ 100
2118
+ 200
2119
+ 300
2120
+ 400
2121
+ 500
2122
+ 600
2123
+ Unit Cell No.K12
2124
+ 3
2125
+ K11
2126
+ K
2127
+ 2.5
2128
+ K10
2129
+ Kg
2130
+ Wavenumber
2131
+ 2
2132
+ K:
2133
+ K7
2134
+ 1.5
2135
+ K6
2136
+ K5
2137
+ K4
2138
+ K10
2139
+ K4
2140
+ K:
2141
+ K5
2142
+ K11
2143
+ 0.5
2144
+ K2
2145
+ Ki
2146
+ 0
2147
+ K6
2148
+ K12
2149
+ 100
2150
+ 200
2151
+ 300
2152
+ 400
2153
+ 500
2154
+ 600
2155
+ Unit Cell No.2
2156
+ 2.
2157
+ EXTENDED RESULTS FOR WAVENUMBER ENTROPY
2158
+ The results of Fig. 5 were recovered for the entire ensemble of simulations conducted for the diatomic (2-band)
2159
+ lattice of section II. The entire ensemble considered VI configurations depicted in Fig. 1 for excitation wavenumbers
2160
+ ranging from 2π/9 to 7π/9. The resulting normalized wavenumber entropy trends with respect to input forcing are
2161
+ given in Fig. S2 for all simulations, where it is seen that the trends presented in section II are agnostic to the excitation
2162
+ wavenumber. Power law fits are superimposed onto each subplot, and the adjusted R-squared values of the fits range
2163
+ between 0.9 and 0.99 for nearly every simulation.
2164
+ FIG. S2. Wavenumber entropy versus excitation amplitude for all datasets generated for the diatomic lattice system of section II.
2165
+
2166
+ 3
2167
+ 3.
2168
+ DISPERSION BAND SELECTION FOR THE 4-BAND LATTICE
2169
+ Details on the dispersion band selection for the 4-band lattice considered in section III are provided in Fig. S3. The
2170
+ deflections of the Bloch-eigenmodes of the lattice were computed by solving the Bloch-eigenproblem over a sweep of
2171
+ waveumbers in the Irreducible Brillouin Zone (IBZ). Within a unit cell, the deflection of the resonator is computed
2172
+ as, w = |˜u2 − ˜u3|, of the Bloch-eigenmode in terms if of λ and η as stated in the main text: m1 = m4 = m = 0.005 kg
2173
+ and k1 = k4 = k = 2 × 104 N/m by m2 = m(1 − η), m3 = mη, and k3 = kλ while we fix k2 = 104 N/m. Note that the
2174
+ notation ˜u indicates displacement defined over the Bloch-eigenmode, not to be confused with the notation u which
2175
+ FIG. S3. Top: The deflections of the Bloch-eigenmodes for oscillators ˜u1-˜u4 of the 4-band lattice for each band, as well as
2176
+ w = |˜u3 − ˜u2| depicting total deflection of the resonator; bottom: The cost-function with respect to maximum deflection of the
2177
+ resonator on the second band (w) subject to out-of-phase motions, maximum group velocity, and a weighed measure considering
2178
+ both the deflection w and the group velocity; the red squares the optimal pairing of the parameters (λ,η), and the insets depict
2179
+ the resulting dispersion relations.
2180
+
2181
+ 4
2182
+ corresponds to coordinate displacements of the finite lattice in the main text. The Bloch-eigenmodes thus satisfy the
2183
+ following eigenvalue problem:
2184
+
2185
+
2186
+ �mω2
2187
+
2188
+ ��
2189
+ 1
2190
+ 0
2191
+ 0 0
2192
+ 0 1 − η 0 0
2193
+ 0
2194
+ 0
2195
+ η 0
2196
+ 0
2197
+ 0
2198
+ 0 1
2199
+
2200
+ �� − k
2201
+
2202
+ ��
2203
+ 3/2
2204
+ 0
2205
+ 0
2206
+ −1e−iκ
2207
+ −1/2 1 + λ −λ
2208
+ −1/2
2209
+ 0
2210
+ −λ
2211
+ λ
2212
+ 0
2213
+ −eiκ −1/2
2214
+ 0
2215
+ 3/2
2216
+
2217
+ ��
2218
+
2219
+
2220
+
2221
+
2222
+
2223
+
2224
+ ˜u1
2225
+ ˜u2
2226
+ ˜u3
2227
+ ˜u4
2228
+
2229
+
2230
+ � = 0.
2231
+ (S1)
2232
+ This gives four Bloch-eigenmode solutions for x(κ) corresponding to the four bands of the lattice. The resonator of
2233
+ the 4 DoF model is described by ˜u2(κ) and ˜u3(κ). As explained in the main text, it is best that the second band
2234
+ corresponds to out-of-phase motion between these two coordinates, and that the deflection is maximized with respect
2235
+ to the system parameters. To maximize deflection subject to only out-of-plane motion, the signs of ˜u2 and ˜u3 are to be
2236
+ different, and hence this is recovered by maximizing |w|sign(−˜u2˜u3). The group velocities over the bands is considered
2237
+ as well by finding the maximum in the IBZ,yielding the use of the weighted measure, [max u]λ,η(vg|w|sign(−˜u2˜u3))
2238
+ where λ and η relate stiffnesses and masses in the unit cell.
2239
+ The cost-function recovered for deflection, group velocity, and the weighted measure between the two are graphically
2240
+ shown in S3, together with the dispersion that is recovered by selecting the optimal point in a parameter grid. The
2241
+ parameter pairing best suited for maximizing the previous weighted measure was taken as the ideal parameter settings
2242
+ to achieve inter-band energy transfers from low-to-high bands (section III). The grid approach was selected because
2243
+ the eigensolutions of Eq (S1) are too cumbersome to write-out analytically, and were not amenable for Newton-
2244
+ based straightforwardly. While a numerical scheme based on finite differences could resolve this, the search space
2245
+ was sufficiently confined and the problem was sufficiently small that direct grid search was not costly to perform.
2246
+ Moreover, the cost functions of Fig. S3 show trivial minimum and maximum solutions.
2247
+
2248
+ 5
2249
+ 4.
2250
+ ADDITIONAL RESULTS FOR IBTET
2251
+ A.
2252
+ Recovered phase trajectories in the full lattice system
2253
+ The phase trajectories on branches of NNMs in the FEPs of the ROM reported in the main text (Fig. 11) revealed
2254
+ that the VI oscillator undergoes various dynamic regimes with varying energy, ranging from a low-energy linear system
2255
+ to a high energy smooth system governed by the elastic vibro-impact potential. The phase trajectories across regions
2256
+ I-IV of Fig. 11 can be compared to the corresponding phase plots of the full lattice in order to confirm that this
2257
+ physical mechanism is indeed seen in the lattice. To do this, simulations were considered whereby only one VI unit
2258
+ cell is embedded in the lattice with either Hertzian or bilinear contact law. The time series of the oscillators comprising
2259
+ the VI unit cell of the lattice were then considered, and phase trajectories could be recovered in the u1- ˙u1 and u2- ˙u2
2260
+ planes, where u1 corresponds to the outer mass of the unit cell and u2 to the inner mass (the VI resonator).
2261
+ Figs. S4 and S5 show the resulting phase portraits recovered for simulations of the full phononic lattice excited
2262
+ at various energies for both Hertzian and bilinear contact models, respectively. Low energy orbits are smooth and
2263
+ circular, indicating a linear response. Responses in the low-energy VI region (phase trajectory 2) are nearly the same,
2264
+ but with clear modulation and irregularity shown towards to origin of the host mass orbit (red), directly corresponding
2265
+ to the grazing region II of the FEP of the unit cell ROM. Higher-energy excitations (plots 3-4) in the fully VI energy
2266
+ regimes reveal non-smooth temporal dynamics, as predicted by region III of the unit cell FEP. Finally, high energy
2267
+ simulations result in phase trajectories that are nearly regular again, with motions of the host mass and resonator
2268
+ being in-phase and nearly completely overlaying each other indicating that the clearance now has nearly no effect,
2269
+ directly in correspondence of region IV of the unit cell FEP of the ROM.
2270
+ FIG. S4. The phase trajectories of the masses of a single VI unit cell obeying the Hertzian contact law embedded in a full
2271
+ lattice masses of a single VI unit cell obeying the Hertzian contact law, plotted for various energies (right panels), and the
2272
+ corresponding normalized IBTET with respect to input energy (left panel - red dots).
2273
+
2274
+ 6
2275
+ FIG. S5. The phase trajectories of the masses of a single VI unit cell obeying the bilinear contact law embedded in a full
2276
+ lattice masses of a single VI unit cell obeying the bilinear contact law, plotted for various energies (right panels), and the
2277
+ corresponding normalized IBTET with respect to input energy (left panel - red dots).
2278
+
2279
+ 7
2280
+ B.
2281
+ Detailed simulation response for bilinear system
2282
+ Fig. 7 of the main text depicts a graphical summary of computational and post-processing results for the 4-band
2283
+ lattice with embedded Hertzian VI nonlinearities. For completeness, Fig. S6 depicts the same computational summary
2284
+ computed for a system with embedded bilinear VI nonlinearity. The same remarks stated for Fig. 7 in the main text
2285
+ apply to Fig. S6 as well, further corroborating the similarities in behavior between Hertzian VIs and bilinear VIs with
2286
+ respect to IBTET.
2287
+ FIG. S6. IBTET in the 4-band lattice with bilinear VI nonlinearity and 5 VI sites: (a) shows the evolution of the propagating
2288
+ wave energy; (b-e) propagation of the wave energy corresponding to each band of the lattice based on the numerically recovered
2289
+ dispersion of the full simulation; (f,g) dispersion of the input and output segments (labeled in (a)) demonstrating the targeted
2290
+ energy transfer to the higher bands; (h,i) Fourier spectra corresponding to the velocity of the four unit cell DoFs selected before
2291
+ (5-th unit cell) and after (150-th unit cell) VI engagement, with the four band-pass regions depicted with shading and insets
2292
+ depicting the corresponding velocity time histories.
2293
+
2294
+ 8
2295
+ C.
2296
+ Influence of input bandwidth and number of VI
2297
+ To understand the effect that the forcing profile has on the results presented in section III, an additional set of
2298
+ simulations was performed subject to 15 cycles of input forcing instead of 30. The results are given in Fig. S7 where
2299
+ very similar trends to Fig. 12 are recovered.
2300
+ This indicates that the mechanisms for energy transfer are indeed
2301
+ non-resonant, as the duration of the oscillations that the VIs are subject to does not modify overall performance.
2302
+ Moreover, the effect of having only a single VI unit cell configuration is was considered as well. To this end, another
2303
+ set of simulations was performed subject to the 30 cycle excitation as the case for Fig. 12 of the main text, but now
2304
+ for only 1 VI embedded within the finite lattice. The resulting IBTET are given in Fig. S8 with the normalized FEP
2305
+ slope superimposed. The same trends are recovered again, but with some minor differences. The total energy transfer
2306
+ achievable is unsurprisingly less (maxing out at approximate 10 percent). Hence, the normalization constants for
2307
+ the FEP slopes are slightly different, which is why the FEP slopes superimposed appear slightly different in Fig. S8.
2308
+ Moreover, there are more pronounced perturbations from the smooth decay trends as compared to the 5 VI case,
2309
+ and this is due to the volatility of the non-resonant VI dynamics which are smoothed-out by incorporating more VIs.
2310
+ In other words, the energy transfer is dependent on the momentum transfer of incident waves. With additional VIs,
2311
+ this momentum transfer is better averaged out across the system as compared to the single VI case. However, the
2312
+ agreement in the overall trends of Fig. S8 supports the arguments developed in section IV for the evolution of the
2313
+ BTET mechanism with respect to system energy.
2314
+ FIG. S7. The same as Fig. 12, but for 15 cycles of input excitation instead of 30. The relative energy inter-band energy transfer,
2315
+ with the normalized slope from the ROM-FEP superimposed for (a) Hertzian and (b) bilinear contact models; the dashed lines
2316
+ depict the normalized FEP slopes, the gray lines depict the normalized FEP slopes lower-bounded by the initial (linear) energy
2317
+ of the higher bands, and green lines depict a power law fit to red dots, with the adjusted R-squared value shown with the inset.
2318
+
2319
+ 9
2320
+ FIG. S8. The same as Fig. 12, but for 1 VI engaged instead of 5. The relative energy inter-band energy transfer, with the
2321
+ normalized slope from the ROM-FEP superimposed for (a) Hertzian and (b) bilinear contact models; the dashed lines depict
2322
+ the normalized FEP slopes, the gray lines depict the normalized FEP slopes lower-bounded by the initial (linear) energy of the
2323
+ higher bands, and green lines depict a power law fit to red dots, with the adjusted R-squared value shown with the inset.
2324
+
8tE4T4oBgHgl3EQf3A1I/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
9dFAT4oBgHgl3EQfpx0O/content/tmp_files/2301.08641v1.pdf.txt ADDED
@@ -0,0 +1,2032 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Lepton Flavor Specific Extended Higgs Model
2
+ B. L. Gon¸calves
3
+ Departamento de F´ısica and CFTP, Instituto Superior T´ecnico,
4
+ Universidade de Lisboa, Lisboa, Portugal and
5
+ Centro de F´ısica Te´orica e Computacional,
6
+ Faculdade de Ciˆencias, Universidade de Lisboa,
7
+ Campo Grande, Edif´ıcio C8, 1749-016 Lisboa, Portugal
8
+ Matthew Knauss and Marc Sher
9
+ High Energy Theory Group, William & Mary,
10
+ Williamsburg, VA 23187, USA
11
+ (Dated: January 23, 2023)
12
+ Abstract
13
+ In extended Higgs models, a discrete symmetry is needed in the quark sector to avoid tree-level
14
+ flavor-changing neutral currents. However, this is not necessary the case in the lepton sector. We
15
+ consider a model in which one Higgs couples to quarks and three others couple to the electron,
16
+ muon and tau, respectively. This four-doublet model is presented with the full scalar potential and
17
+ the gauge and Yukawa couplings. The constraints from boundedness, perturbativity and oblique
18
+ parameters are incorporated as well as constraints from meson-antimeson mixing, radiative B-
19
+ decays and the diphoton Higgs decay rate. We also consider bounds from searches for heavy neutral
20
+ and charged scalars at the LHC. Since the Standard Model Higgs couplings match predictions very
21
+ well, we focus on the alignment limit of the model. It is shown that for a wide range of parameters,
22
+ the lightest additional scalar, pseudoscalar and charged scalar can have substantial decays into
23
+ electrons and muons (in contrast to the usual leptonic decays into taus). An interesting signature
24
+ in the neutral sector would be the production, through vector boson fusion, of a pair of scalars,
25
+ each of which decays into an electron or muon pair.
26
+ 1
27
+ arXiv:2301.08641v1 [hep-ph] 20 Jan 2023
28
+
29
+ I.
30
+ INTRODUCTION
31
+ The Higgs boson was initially discovered [1, 2] through its decay into gauge
32
+ bosons. Since then, the coupling of the Higgs to third generation fermions
33
+ has also been determined with increasing accuracy [3–7].
34
+ However, while there is evidence [8] of the Higgs decay into muons, there
35
+ remain large uncertainties and the discovery has not yet been made. This
36
+ leads one to ask if there are viable models in which the muon and tau couple
37
+ to different Higgs bosons. It is often claimed that models in which fermions
38
+ of a given charge couple to different Higgs bosons contain tree-level flavor
39
+ changing neutral currents (FCNC). However, the seminal papers of Glashow
40
+ and Weinberg [9] and of Paschos [10] explicitly referred to the quark sector.
41
+ As we will see, FCNC can be avoided in the lepton sector even if different
42
+ leptons couple to different Higgs bosons.
43
+ The first such model, called the muon-specific Two Higgs Doublet (2HDM)
44
+ model, was developed by Abe, Sato and Yagyu [11] (ASY). They use a Z4
45
+ symmetry, under which the muon and tau have different quantum numbers,
46
+ and break this softly. The model has no tree-level FCNC and the Yukawa
47
+ couplings for the muon and tau are no longer simply proportional to their
48
+ masses with the proportionality coefficient being the same for all flavours:
49
+ rather, the ASY model can substantially enhance or suppress the muon in-
50
+ teractions of scalars relative to those with tau leptons. The purpose of their
51
+ model was to attempt an explanation of the muon g-2 anomaly, and for the
52
+ parameters they considered the dimuon coupling of the 125 GeV Higgs is not
53
+ suppressed. Their model can address the g-2 anomaly, but only for a very
54
+ 2
55
+
56
+ narrow region of parameter-space. A more detailed analysis was carried out
57
+ in Ref. [12] where the phenomenology of the model was studied.
58
+ The ASY muon specific 2HDM used a Z4 discrete symmetry in which the
59
+ left-handed muon doublet and right-handed singlet have charge i and Φ1 has
60
+ charge -1. All other fields have charge +1. This then has Φ1 coupling to
61
+ muons and Φ2 coupling to all other fermions. Ivanov and Nishi have pointed
62
+ out [13] that the actual symmetry group of the model is a softly broken Z2
63
+ in which Φ1 and µR are negative and with a U(1) corresponding to muon
64
+ number. This does not affect the ASY Lagrangian. In this model, the mass
65
+ matrix of the charged leptons breaks into a 2 × 2 submatrix, corresponding
66
+ to e − τ and a 1 × 1 corresponding to the muon. One might be concerned
67
+ about how the PMNS matrix is generated if the muon and muon neutrino
68
+ mass matrices decouple. However, even if the charged lepton and neutrino
69
+ mass matrices are diagonal, one will still obtain a PMNS matrix using the
70
+ see-saw (type 1) mechanism. The light neutrino mass matrix is then mij =
71
+ (MD)ik(MN)−1
72
+ kl (MD)lj where MD is the diagonal Dirac neutrino mass matrix
73
+ and MN is the superheavy Majorana right-handed neutrino mass matrix.
74
+ The latter is arbitrary and so the light neutrino mass matrix is not diagonal,
75
+ leading to a non-trivial PMNS matrix. Note that this will not work in the
76
+ quark sector.
77
+ In this paper, we take the ASY model one step further and suppose that
78
+ each of the charged leptons couples to a different Higgs doublet, which we
79
+ will label as Φe, Φµ and Φτ. This can be achieved with a (Z4)e×(Z4)µ×(Z4)τ
80
+ symmetry in which Lℓ and ℓR have quantum number under (Z4)ℓ of i and
81
+ the Φℓ has quantum number −1. Equivalently, one can replace the Z4 with
82
+ 3
83
+
84
+ Z2 × U(1) as discussed above - the Lagrangian in either case is identical. To
85
+ achieve a non-trivial PMNS matrix, the symmetry must be softly broken in
86
+ the superheavy Majorana neutrino mass matrix. The simplest implementa-
87
+ tion of this model would be a 4HDM in which the fourth Higgs Φq couples
88
+ to the quarks. This is similar to the lepton-specific model. Certainly one
89
+ could have one of Φℓ be the same as Φq, leading to a 3HDM. However, if the
90
+ Φq is Φτ, then the resulting model is very similar to the muon-specific model
91
+ - the only difference being the very small interaction of the Higgs with the
92
+ electron. For simplicity, we assume they are separate. One could also adopt
93
+ a type-II structure, with 5HDM, but that brings in additional complications
94
+ and the type-II parameter space is much narrower than the type-I. So, we
95
+ will focus on the 4HDM with Φq, Φe, Φµ and Φτ.
96
+ Although there are hundreds of papers that study models with three Higgs
97
+ doublets, very few look at models with four. A recent paper with 4HDM in
98
+ which each Higgs couples to sets of fermions with similar masses has been
99
+ proposed [14] and a special ansatz, “singular alignment”, is needed to sup-
100
+ press FCNC. A supersymmetric model [15] had one doublet each coupling
101
+ to up-quarks, down-quarks and leptons, with the fourth needed for anomaly
102
+ cancellation. A similar non-supersymmetric model was proposed [16](with
103
+ the fourth Higgs needed to relax some tight constraints). An early discus-
104
+ sion that mentions 4HDMs [17] studied Abelian symmetries in multidoublet
105
+ models. There are also many studies of symmetries and vacuum states of
106
+ N doublet models. An extremely extensive 2017 review of Ivanov [18], with
107
+ over 500 references, studied numerous extended scalar sectors (including two
108
+ doublet models, N doublet models, singlet and triplet extensions). Most rel-
109
+ 4
110
+
111
+ evant papers before that time are referred to in this review. A more recent
112
+ paper [19] looked at the interesting issue of non-decoupling in multiscalar
113
+ models. Related work [20] dealt with large discrete symmetry groups in N
114
+ doublet models. Additionally, the “Private Higgs” model of Porto and Zee
115
+ [21, 22] had one Higgs doublet for every fermion. In contrast to the model we
116
+ propose, their model had numerous discrete symmetries and included several
117
+ “darkon” scalars.
118
+ In section II, the model is presented, including the full scalar potential and
119
+ the gauge and Yukawa couplings. In section III, we discuss the constraints
120
+ on the potential from boundedness and constraints from oblique parameters.
121
+ In section IV, two benchmark models are presented. In the first model, the
122
+ potential is divided into two 2×2 subsections and in the second, the full 4×4
123
+ model is discussed in the experimentally indicated alignment limit. Section
124
+ V contains our results and conclusions.
125
+ II.
126
+ THE MODEL
127
+ A.
128
+ Scalar sector
129
+ The potential can be written as a sum of quadratic and quartic terms:
130
+ V = V2 + V4. We allow for soft breaking of the discrete symmetry in the
131
+ quadratic terms:
132
+ V2 = m2
133
+ qqֆ
134
+ qΦq + m2
135
+ eeֆ
136
+ eΦe + m2
137
+ µµΦ†
138
+ µΦµ + m2
139
+ ττΦ†
140
+ τΦτ
141
+ + [m2
142
+ qe(Φ†
143
+ qΦe) + m2
144
+ qµ(Φ†
145
+ qΦµ) + m2
146
+ qτ(Φ†
147
+ qΦτ)
148
+ + m2
149
+ eµ(Φ†
150
+ eΦµ) + m2
151
+ eτ(Φ†
152
+ eΦτ) + m2
153
+ µτ(Φ†
154
+ µΦτ)] + h.c.
155
+ (1)
156
+ 5
157
+
158
+ and
159
+ V4 = λq
160
+ 1(Φ†
161
+ qΦq)2 + λe
162
+ 1(Φ†
163
+ eΦe)2 + λµ
164
+ 1(Φ†
165
+ µΦµ)2 + λτ
166
+ 1(Φ†
167
+ τΦτ)2
168
+ + λqe
169
+ 3 (Φ†
170
+ qΦq)(Φ†
171
+ eΦe) + λqµ
172
+ 3 (Φ†
173
+ qΦq)(Φ†
174
+ µΦµ) + λqτ
175
+ 3 (Φ†
176
+ qΦq)(Φ†
177
+ τΦτ)
178
+ +λeµ
179
+ 3 (Φ†
180
+ eΦe)(Φ†
181
+ µΦµ) + λeτ
182
+ 3 (Φ†
183
+ eΦe)(Φ†
184
+ τΦτ) + λµτ
185
+ 3 (Φ†
186
+ µΦµ)(Φ†
187
+ τΦτ)
188
+ + λqe
189
+ 4 (Φ†
190
+ qΦe)(Φ†
191
+ eΦq) + λqµ
192
+ 4 (Φ†
193
+ qΦµ)(Φ†
194
+ µΦq) + λqτ
195
+ 4 (Φ†
196
+ qΦτ)(Φ†
197
+ τΦq)
198
+ + λeµ
199
+ 4 (Φ†
200
+ eΦµ)(Φ†
201
+ µΦe) + λeτ
202
+ 4 (Φ†
203
+ eΦτ)(Φ†
204
+ τΦe) + λµτ
205
+ 4 (Φ†
206
+ µΦτ)(Φ†
207
+ τΦµ)
208
+ + 1
209
+ 2
210
+
211
+ λqe
212
+ 5 (Φ†
213
+ qΦe)2 + λqµ
214
+ 5 (Φ†
215
+ qΦµ)2 + λqτ
216
+ 5 (Φ†
217
+ qΦτ)2
218
+ + λeµ
219
+ 5 (Φ†
220
+ eΦµ)2 + λeτ
221
+ 5 (Φ†
222
+ eΦτ)2 + λµτ
223
+ 5 (Φ†
224
+ µΦτ)2 + h.c.
225
+
226
+ (2)
227
+ Here, we have labeled the quartic couplings to be similar to the standard
228
+ 2HDM potential.
229
+ We can write the Higgs bosons as
230
+ Φi =
231
+
232
+
233
+ φ+
234
+ i
235
+ (vi + φi + iχi)/
236
+
237
+ 2
238
+
239
+ � , (i = q, e, µ, τ)
240
+ (3)
241
+ where the vi/
242
+
243
+ 2 are the vacuum values of the neutral components. To discuss
244
+ diagonalizing mass matrices and the various angles involved, we follow the
245
+ procedure of Boto, Rom˜ao and Silva [23] closely.
246
+ Without loss of generality, we can define the angles that rotate the fields
247
+ into the Higgs basis in which only one scalar field gets a vev by
248
+ vq = v cos β2 cos β3 cos β4
249
+ ve = v sin β2 cos β3 cos β4
250
+ vµ = v sin β3 cos β4
251
+ vτ = v sin β4
252
+ (4)
253
+ 6
254
+
255
+ giving
256
+
257
+
258
+
259
+
260
+
261
+
262
+
263
+
264
+ h0
265
+ H1
266
+ H2
267
+ H3
268
+
269
+
270
+
271
+
272
+
273
+
274
+
275
+
276
+ = Oβ
277
+
278
+
279
+
280
+ ��
281
+
282
+
283
+
284
+
285
+ φq
286
+ φe
287
+ φµ
288
+ φτ
289
+
290
+
291
+
292
+
293
+
294
+
295
+
296
+
297
+ (5)
298
+ where
299
+ Oβ =
300
+
301
+
302
+
303
+
304
+
305
+
306
+
307
+
308
+ cβ2cβ3cβ4
309
+ sβ2cβ3cβ4
310
+ sβ3cβ4
311
+ sβ4
312
+ −sβ2
313
+ cβ2
314
+ 0
315
+ 0
316
+ −cβ2cβ3
317
+ −sβ2sβ3
318
+ cβ3
319
+ 0
320
+ −cβ2cβ3sβ4 −sβ2cβ3sβ4 −sβ3sβ4 cβ4
321
+
322
+
323
+
324
+
325
+
326
+
327
+
328
+
329
+ (6)
330
+ Here, h0 is the field that gets the entire vev, v, and cθ (sθ) are cos θ (sin θ).
331
+ From this basis, we can now diagonalize the mass matrices of the various
332
+ scalars. In the neutral scalar sector, the physical neutral Higgs masses are
333
+ given by
334
+
335
+
336
+
337
+
338
+
339
+
340
+
341
+
342
+ h1
343
+ h2
344
+ h3
345
+ h4
346
+
347
+
348
+
349
+
350
+
351
+
352
+
353
+
354
+ = Oα
355
+
356
+
357
+
358
+
359
+
360
+
361
+
362
+
363
+ φq
364
+ φe
365
+ φµ
366
+ φτ
367
+
368
+
369
+
370
+
371
+
372
+
373
+
374
+
375
+ (7)
376
+ where h1 is the 125 GeV Higgs particle. For Oα, we use
377
+ Oα = R34R24R23R14R13R12
378
+ (8)
379
+ Here, for example, R24 is given by
380
+ R24 =
381
+
382
+
383
+
384
+
385
+
386
+
387
+
388
+
389
+ 1
390
+ 0
391
+ 0
392
+ 0
393
+ 0
394
+ cα24
395
+ 0 sα24
396
+ 0
397
+ 0
398
+ 1
399
+ 0
400
+ 0 −sα24 0 cα24
401
+
402
+
403
+
404
+
405
+
406
+
407
+
408
+
409
+ (9)
410
+ 7
411
+
412
+ and the other R matrices follow. We see that there are six rotation angles.
413
+ In the pseudoscalar sector, one has
414
+
415
+
416
+
417
+
418
+
419
+
420
+
421
+
422
+ G0
423
+ A1
424
+ A2
425
+ A3
426
+
427
+
428
+
429
+
430
+
431
+
432
+
433
+
434
+ = OγOβ
435
+
436
+
437
+
438
+
439
+
440
+
441
+
442
+
443
+ χq
444
+ χe
445
+ χµ
446
+ χτ
447
+
448
+
449
+
450
+
451
+
452
+
453
+
454
+
455
+ (10)
456
+ where Oγ = P34P24P23 and, as before, for example
457
+ P24 =
458
+
459
+
460
+
461
+
462
+
463
+
464
+
465
+
466
+ 1
467
+ 0
468
+ 0
469
+ 0
470
+ 0
471
+ cγ24
472
+ 0 sγ24
473
+ 0
474
+ 0
475
+ 1
476
+ 0
477
+ 0 −sγ24 0 cγ24
478
+
479
+
480
+
481
+
482
+
483
+
484
+
485
+
486
+ (11)
487
+ Note that there are only three matrices here, since the Goldstone boson
488
+ direction is fixed.
489
+ Finally, in the charged sector
490
+
491
+
492
+
493
+
494
+
495
+
496
+
497
+
498
+ G+
499
+ H+
500
+ 1
501
+ H+
502
+ 2
503
+ H+
504
+ 3
505
+
506
+
507
+
508
+
509
+
510
+
511
+
512
+
513
+ = OδOβ
514
+
515
+
516
+
517
+
518
+
519
+
520
+
521
+
522
+ φ+
523
+ q
524
+ φ+
525
+ e
526
+ φ+
527
+ µ
528
+ φ+
529
+ τ
530
+
531
+
532
+
533
+
534
+
535
+
536
+
537
+
538
+ (12)
539
+ where Oδ = Q34Q24Q23 and, as before, for example
540
+ Q24 =
541
+
542
+
543
+
544
+
545
+
546
+
547
+
548
+
549
+ 1
550
+ 0
551
+ 0
552
+ 0
553
+ 0
554
+ cδ24
555
+ 0 sδ24
556
+ 0
557
+ 0
558
+ 1
559
+ 0
560
+ 0 −sδ24 0 cδ24
561
+
562
+
563
+
564
+
565
+
566
+
567
+
568
+
569
+ (13)
570
+ 8
571
+
572
+ B.
573
+ Gauge and Yukawa couplings
574
+ 1.
575
+ Gauge couplings
576
+ The scalar kinetic Lagrangian, Lk, defined as
577
+ Lk =
578
+ 4
579
+
580
+ i=1
581
+ |DµΦi|2
582
+ (14)
583
+ with the usual expression for the covariant derivative Dµ, contains the terms
584
+ relevant to obtain the trilinear couplings of the scalars and gauge bosons.
585
+ The couplings ZZhi and W ±W ∓hi are written in the form
586
+ � 4
587
+
588
+ i=1
589
+ Cihi
590
+ � � g
591
+ 2cW
592
+ mZZµZµ + gmWW −
593
+ µ W +µ
594
+
595
+ .
596
+ (15)
597
+ The Ci factors are included in Appendix A. It is possible to check that, when
598
+ the set of conditions α1j = βj is verified (for j = 2, 3, 4), one gets C1 = 1
599
+ together with Ck = 0, for k ̸= 1, which defines the alignment limit in this
600
+ model.
601
+ 2.
602
+ Yukawa couplings
603
+ Following the notation of Branco, et al. [24], the couplings of the scalar
604
+ and pseudoscalar Higgs are defined through
605
+ LS
606
+ Y = −
607
+
608
+ f∈{q,e,µ,τ}
609
+ mf
610
+ v
611
+
612
+ ξf
613
+ h1 ¯ffh1 + ξf
614
+ h2 ¯ffh2 + ξf
615
+ h3 ¯ffh3 + ξf
616
+ h4 ¯ffh4
617
+
618
+ LP
619
+ Y = −
620
+
621
+ f∈{q,e,µ,τ}
622
+
623
+ −imf
624
+ v
625
+ � �
626
+ ξf
627
+ A1 ¯fγ5fA1 + ξf
628
+ A2 ¯fγ5fA2 + ξf
629
+ A3 ¯fγ5fA3
630
+
631
+ (16)
632
+ 9
633
+
634
+ where ξf
635
+ hj and ξf
636
+ Aj are given by
637
+ ξq
638
+ hj = Oαj,1
639
+ ˆv1
640
+ , ξe
641
+ hj = Oαj,2
642
+ ˆv2
643
+ , ξµ
644
+ hj = Oαj,3
645
+ ˆv3
646
+ , ξτ
647
+ hj = Oαj,4
648
+ ˆv4
649
+ ξq
650
+ Aj =
651
+ (OγOβ)j,1
652
+ ˆv1
653
+ , ξe
654
+ Aj =
655
+ (OγOβ)j,2
656
+ ˆv2
657
+ , ξµ
658
+ Aj =
659
+ (OγOβ)j,3
660
+ ˆv3
661
+ , ξτ
662
+ Aj =
663
+ (OγOβ)j,4
664
+ ˆv4
665
+ (17)
666
+ using ˆvi ≡ vi/v. Similarly, the couplings of the charged Higgs are defined
667
+ through
668
+ LC
669
+ Y = −
670
+
671
+ j
672
+ � �
673
+ u,d
674
+
675
+ 2Vud
676
+ v
677
+ ¯u
678
+
679
+ muξqL
680
+ H+
681
+ j PL + mdξqR
682
+ H+
683
+ j PR
684
+
685
+ dH+
686
+ j
687
+ +
688
+
689
+ l
690
+
691
+ 2ml
692
+ v
693
+ ξlL
694
+ H+
695
+ j ¯νLlRH+
696
+ j
697
+
698
+ (18)
699
+ where ξf
700
+ H+
701
+ j are given by
702
+ ξqLR
703
+ H+
704
+ j
705
+ =
706
+ (OδOβ)j,1
707
+ ˆv1
708
+ , ξeL
709
+ H+
710
+ j =
711
+ (OδOβ)j,2
712
+ ˆv2
713
+ , ξµL
714
+ H+
715
+ j =
716
+ (OδOβ)j,3
717
+ ˆv3
718
+ , ξτL
719
+ H+
720
+ j =
721
+ (OδOβ)j,4
722
+ ˆv4
723
+ (19)
724
+ A table of general Yukawa couplings are included in Appendix B.
725
+ III.
726
+ THEORETICAL CONSTRAINTS ON THE SCALAR POTENTIAL
727
+ A.
728
+ Bounded from below constraints
729
+ In extensions of the scalar sector, one needs to choose quartic parame-
730
+ ters such that the potential is bounded from below (BFB)1. While this is
731
+ straightforward in the 2HDM, it can be quite complicated in models with
732
+ 1 We require that the potential be bounded at scales where the quartic terms dominate. The case in which
733
+ the potential turns over at very high scales due to renormalization group running will not be considered.
734
+ In fact, the Standard Model itself would not satisfy that latter condition
735
+ 10
736
+
737
+ more than two doublets. An added complication in models with doublets is
738
+ that there can be an instability in the charged scalar direction even if there
739
+ is stability in the neutral scalar direction (see Ref. [25] for an example). A
740
+ recent discussion of these conditions for a three-doublet model can be found
741
+ in the work of Boto, Rom˜ao and Silva [26]. They showed that while necessary
742
+ and sufficient conditions are known for the neutral direction, only sufficient
743
+ conditions are known for stability in the charged direction, and they discuss
744
+ a general strategy. We will first discuss the neutral directions.
745
+ Looking at the neutral direction, the 2HDM potential can be written as
746
+ V4 = a11H4
747
+ 1 + a22H4
748
+ 2 + a12H2
749
+ 1H2
750
+ 2, where the matrix is symmetric. The con-
751
+ ditions for copositivity (where the potential is positive for all values of H2
752
+ 1
753
+ and H2
754
+ 2) are given by a11 ≥ 0, a22 ≥ 0, a12 + √a11a22 ≥ 0. As shown in
755
+ Refs. [27, 28], for the neutral sector of the 3HDM, the conditions are
756
+ a11 ≥ 0,
757
+ a22 ≥ 0,
758
+ a33 ≥ 0
759
+ (20)
760
+ a12 + √a11a22 ≥ 0
761
+ (21)
762
+ a13 + √a11a33 ≥ 0
763
+ (22)
764
+ a23 + √a22a33 ≥ 0
765
+ (23)
766
+ √a11a22a33 + a12
767
+ √a33 + a13
768
+ √a22 + a23
769
+ √a11 ≥ 0
770
+ (24)
771
+ det A ≥ 0
772
+ (25)
773
+ where A is the matrix with entries aij. Clearly, the first line is needed for
774
+ stability along the axes, the next three lines are needed for stability in the
775
+ three planes, and the last two lines ensure stability for all directions. For the
776
+ 4HDM that we consider, the corresponding conditions must be satisfied for
777
+ every three dimensional subspace. The remaining conditions are extremely
778
+ 11
779
+
780
+ complicated, but are given in full in Ref. [27]. We have incorporated the
781
+ conditions in that paper to ensure stability in the neutral directions.
782
+ As shown by Boto, Rom˜ao and Silva [26], even in the 3HDM there are no
783
+ straightforward necessary and sufficient conditions for stability in the charged
784
+ directions. In the 2HDM, with a quartic potential
785
+ V4 = λ1(Φ†
786
+ 1Φ1)2+λ2(Φ†
787
+ 2Φ2)2+λ3(Φ†
788
+ 1Φ1)(Φ†
789
+ 2Φ2)+λ4|Φ†
790
+ 1Φ2|2+1
791
+ 2λ5[(Φ†
792
+ 1Φ2)2+(Φ†
793
+ 2Φ1)2]
794
+ (26)
795
+ the condition for stability is [29, 30] λ3 + λ4 − |λ5| ≥ −2√λ1λ2. Rather than
796
+ attempt a detailed numerical study of stability in the 4HDM case, we will
797
+ require that this condition be satisfied for all 2 × 2 subspaces of the 4HDM.
798
+ This requirement is, of course, necessary but may not be sufficient.
799
+ B.
800
+ Oblique Parameters
801
+ To discuss the S, T, U oblique parameters, we follow the methods and
802
+ results in Grimus, et al [31]. To do this, we can write the matrices ˜U and
803
+ ˜V from Grimus, et al [31] using our notation in the previous section. ˜V is
804
+ defined through
805
+
806
+
807
+
808
+
809
+
810
+
811
+
812
+
813
+ φ1 + iχ1
814
+ φ2 + iχ2
815
+ φ3 + iχ3
816
+ φ4 + iχ4
817
+
818
+
819
+
820
+
821
+
822
+
823
+
824
+
825
+ = ˜V
826
+
827
+ h1 h2 h3 h4 G0 A1 A2 A3
828
+ �T
829
+ (27)
830
+ where
831
+ ˜V ≡
832
+
833
+
834
+ O−1
835
+ α
836
+ i (OγOβ)−1
837
+
838
+
839
+ (28)
840
+ 12
841
+
842
+ Notice in Eq. (27), our notation slightly differs from Grimus et al [31] by
843
+ keeping the Goldstone boson with the pseudoscalar mass eigenstates.
844
+ ˜U is defined as
845
+
846
+
847
+
848
+
849
+
850
+
851
+
852
+
853
+ φ+
854
+ 1
855
+ φ+
856
+ 2
857
+ φ+
858
+ 3
859
+ φ+
860
+ 4
861
+
862
+
863
+
864
+
865
+
866
+
867
+
868
+
869
+ = ˜U
870
+
871
+
872
+
873
+
874
+
875
+
876
+
877
+
878
+ G+
879
+ H+
880
+ 1
881
+ H+
882
+ 2
883
+ H+
884
+ 3
885
+
886
+
887
+
888
+
889
+
890
+
891
+
892
+
893
+ (29)
894
+ where
895
+ ˜U ≡
896
+
897
+ OδOβ
898
+
899
+ (30)
900
+ We take the values of S, T from [32] with
901
+ S = −0.02 ± 0.10
902
+ T =
903
+ 0.03 ± 0.12
904
+ (31)
905
+ We will not include the detailed calculation of the unitarity and perturba-
906
+ tivity bounds, due to the large number of scalar couplings. Rather, we will
907
+ simply require that all of the quartic scalar couplings be less than 4π.
908
+ IV.
909
+ BENCHMARK MODELS
910
+ As is clear from examining the scalar potential and the Appendices, the
911
+ model contains a large number of free parameters. To focus on the most
912
+ important aspects of the model, we will consider two benchmark models. In
913
+ the first, we will assume that the (qτ) sector of the Higgs potential decouples
914
+ from the (µe) sector. In that case, the 4 × 4 scalar mass matrices decouple
915
+ into two 2 × 2 matrices which can be trivially diagonalized analytically. In
916
+ the second benchmark model, we will take the alignment limit. In the con-
917
+ ventional 2HDMs, this is equivalent to cos(α − β) = 0, with tan β ≡ v2/v1
918
+ 13
919
+
920
+ and α diagonalizes the scalar mass matrix. This limit is often chosen since it
921
+ means that the couplings of the 125 GeV Higgs boson are identical to that
922
+ in the Standard Model (which seems to be preferred by LHC data). In this
923
+ case, it is easy to see from Appendices A and B that the alignment limit
924
+ corresponds to α1j = βj, as previously stated. Since the coupling of the 125
925
+ GeV Higgs is the same as the Standard Model, there is no need to study
926
+ Higgs production and tree-level decays in this case.
927
+ A.
928
+ The Model without (qτ)-(µe) mixing
929
+ In this model, the absence of (qτ)-(µe) mixing means that the matrix that
930
+ diagonalizes the scalar mass matrix, Oα, is broken into two 2 × 2 matrices.
931
+ The upper 2 × 2 matrix looks very similar to the lepton-specific 2HDM. The
932
+ only difference involves the coupling to the muon, which is not well-measured.
933
+ However in this case, unlike the lepton-specific model, the value of v2
934
+ q + v2
935
+ τ is
936
+ not v2 = (246 GeV)2 but will be smaller. As a result, all Yukawa couplings
937
+ will be increased. This will affect the decays of the 125 GeV Higgs boson as
938
+ well as the production.
939
+ We define the parameter µX as
940
+ µX ≡
941
+ σ(pp → H)BR(H → X)
942
+ σ(pp → H)SMBR(H → X)SM
943
+ (32)
944
+ and look at X = gg, µµ, ττ, ¯cc,¯bb, ¯tt, γγ, γZ, WW, ZZ. The results are in
945
+ Figure 1, where we have plotted, in the usual way for 2HDMs, the allowed
946
+ region in the tan β − cos(β − α) plane. We require all µX to be consistent
947
+ with unity within 20% at 95% CL, which is a rough approximation to the
948
+ 14
949
+
950
+ 100%
951
+ 95%
952
+ 90%
953
+ 85%
954
+ -0.2
955
+ 0.0
956
+ 0.2
957
+ 0.4
958
+ 0.6
959
+ 0.05
960
+ 0.10
961
+ 0.50
962
+ 1
963
+ 5
964
+ 10
965
+ 50
966
+ cos(β-α)
967
+ tan(β)
968
+ FIG. 1: Allowed regions in the tan β − cos (β − α) plane, in the model without (qτ)-(µe)
969
+ mixing, for different values of r ≡
970
+
971
+ v2
972
+ q + v2
973
+ τ
974
+ �1/2 /v, namely r = 1 in orange, r = 0.95 in
975
+ purple, r = 0.90 in blue and r = 0.85 in cyan.
976
+ precision of current data. 2
977
+ We see that if the ratio of (v2
978
+ q +v2
979
+ τ)1/2 to v is less than 0.85, that the entire
980
+ parameter space practically disappears. Thus much of the vev is saturated
981
+ by vq and vτ. Clearly the coupling here to the muon vanishes and thus in
982
+ the full model, the muonic decay of the Standard Model Higgs, if confirmed,
983
+ will be a strong constraint.
984
+ The shrinking of the parameter-space in the cos(β − α) < 0 allowed re-
985
+ gion occurs mainly due to the combination of g2
986
+ HV V , measured from Higgs
987
+ production, and g2
988
+ Hll, measured from Higgs decay.
989
+ The shrinking of the
990
+ parameter-space in the cos(β − α) > 0 allowed region mainly occurs due to
991
+ 2 We are looking in the context of the lepton-specific 2HDM - but now the combination of vacuum values,
992
+ (v2
993
+ q + v2
994
+ τ)1/2 no longer is equal to the Standard Model vacuum value, v.
995
+ 15
996
+
997
+ g2
998
+ HQQ, from Higgs production, now combined with both g2
999
+ Hqq and g2
1000
+ Hll.
1001
+ In itself, this benchmark model is phenomenologically unacceptable. Each
1002
+ 2 × 2 submatrix will have a zero eigenvalue in the pseudoscalar and in the
1003
+ charged scalar sectors, leading to two zero eigenvalues in each sector. Only
1004
+ one can be absorbed by the W and Z gauge bosons. The additional massless
1005
+ scalars arise due to an additional accidental SU(2) symmetry. Thus, there
1006
+ must be some off-diagonal terms. We can include these terms but assume
1007
+ they are small and do a perturbative expansion.
1008
+ For simplicity, let us add a single off-diagonal term, λqµ
1009
+ 5 . This will allow for
1010
+ nonzero masses for the lightest charged and pseudoscalar Higgs3. This term
1011
+ will modify the Yukawa couplings of the Standard Model 125 GeV Higgs.
1012
+ For the couplings of the quarks, for example, the Yukawa coupling gY ¯qqΦq
1013
+ is
1014
+
1015
+ 2mq/vq.
1016
+ Writing Φq = V11h1 + V12h2 + ..., where h1 is the 125 GeV
1017
+ Higgs, one sees that the coupling is modified by a factor of
1018
+ v
1019
+ vqV11. One can
1020
+ perturbatively calculate the eigenvalues and eigenvectors of the mass matrix
1021
+ and we find that
1022
+ V11 = 1 − 1
1023
+ 2ϵ2
1024
+ 1
1025
+ � �
1026
+ c34s12
1027
+ m2
1028
+ h1 − m2
1029
+ h3
1030
+ �2
1031
+ +
1032
+
1033
+ c12s34
1034
+ m2
1035
+ h1 − m2
1036
+ h4
1037
+ �2 �
1038
+ ,
1039
+ (33)
1040
+ where ϵ1 = λqµ
1041
+ 5 vqvµ, cij = cos αij (sij = sin αij) and the masses are the masses
1042
+ of the neutral scalars. The relevant point here is that V11 is reduced, which
1043
+ counters the effect of the smaller vq. In order for the lightest charged Higgs
1044
+ to have an acceptable mass, there is a minimum value of λqµ
1045
+ 5 , but the masses
1046
+ of the neutral scalars can be large enough that the reduction (proportional
1047
+ 3 One can decouple the masses of the charged and pseudoscalar Higgs by adding a λqµ
1048
+ 4
1049
+ term and can easily
1050
+ satisfy any BFB concerns with a λqµ
1051
+ 3
1052
+ term.
1053
+ 16
1054
+
1055
+ to (vµ/mh3)2) is quite small.
1056
+ B.
1057
+ The Aligned Model
1058
+ The full 4HDM has a large number of parameters in the scalar potential:
1059
+ 10 quadratic terms and 22 quartic terms. Not surprisingly, many of these
1060
+ parameters will have little effect on phenomenology. As noted earlier, the
1061
+ fact that the 125 GeV Higgs has decays consistent with the Standard Model
1062
+ implies that multi-doublet models must be near the alignment limit in which
1063
+ the Standard Model Higgs interactions are unaffected. From Appendix A,
1064
+ we see that this will occur if α1j = βj. Parameters that might be of phe-
1065
+ nomenological relevance are then the βj, α23,24,34, the three γ parameters, the
1066
+ three δ parameters, the four scalar masses, the three charged masses and the
1067
+ three pseudoscalar masses, in addition to the SM Higgs vev. Instead of the
1068
+ potential’s couplings, we can choose to describe the model in terms of the
1069
+ previously mentioned parameters and six additional parameters, namely the
1070
+ remaining six m2
1071
+ ij, giving a total of 29 parameters4. As we will see, many of
1072
+ these parameters will not be relevant for particular processes.
1073
+ Choosing values for the rotation angles and the squared masses, it is pos-
1074
+ sible to define the scalar, pseudoscalar, and charged squared-mass matrices
1075
+ as M 2
1076
+ s,p,c = R−1Ds,p,cR, considering the corresponding R matrix for each case
1077
+ and D as the diagonal matrix with the squared masses in its entries. The
1078
+ quartic parameters of the Lagrangian can be expressed in terms of elements
1079
+ 4 With the addition of the three α parameters which are defined through the alignment limit, we get 32
1080
+ parameters, just like the scalar potential.
1081
+ 17
1082
+
1083
+ of such matrices, the vevs and the m2
1084
+ ij parameters as the following:
1085
+ λi
1086
+ 1 = 1
1087
+ 2v3
1088
+ i
1089
+
1090
+ �viM 2
1091
+ s,ii +
1092
+
1093
+ j̸=i
1094
+ vjm2
1095
+ ij
1096
+
1097
+ � ,
1098
+ λij
1099
+ 3 = 1
1100
+ vivj
1101
+
1102
+ M 2
1103
+ s,ij − 2M 2
1104
+ c,ij + m2
1105
+ ij
1106
+
1107
+ ,
1108
+ λij
1109
+ 4 = 1
1110
+ vivj
1111
+
1112
+ 2M 2
1113
+ c,ij − M 2
1114
+ p,ij − m2
1115
+ ij
1116
+
1117
+ ,
1118
+ λij
1119
+ 5 = 1
1120
+ vivj
1121
+
1122
+ M 2
1123
+ p,ij − m2
1124
+ ij
1125
+
1126
+ ,
1127
+ (34)
1128
+ in which i, j = q, e, µ, τ. In the 2HDM limit, these equations give rise to
1129
+ the well-known expressions for the λ parameters in terms of masses, angles,
1130
+ the electroweak vev v and the soft-breaking terms m2
1131
+ ij [24, 33]. For every
1132
+ possible set of parameters, we require the following:
1133
+ • The bounded-from-below conditions are satisfied.
1134
+ • The perturbativity condition that the absolute values of λ parameters
1135
+ are less than 4π is maintained.
1136
+ • The previous condition also applies to Yukawa couplings.
1137
+ • The values of the S and T parameters are within the range given by
1138
+ Eq. (31).
1139
+ • Charged Higgs masses must exceed 80 GeV [34].
1140
+ • Contributions from the charged scalars to the loop-induced Higgs dipho-
1141
+ ton decay h → γγ are compatible with experimental bounds.
1142
+ This
1143
+ is achieved by checking the value of the diphoton signal strength
1144
+ µγγ [35, 36] for each set of parameters.
1145
+ 18
1146
+
1147
+ • Bounds coming from new physics contributions to B meson oscillations,
1148
+ ∆MBd,s, as well as K mesons, ∆MK, are within the experimental allowed
1149
+ range for each case [32, 37]. Such nonstandard contributions come from
1150
+ charged scalars through one-loop processes [38, 39].
1151
+ • Contributions to b → sγ [39], again from charged Higgs particles, are
1152
+ acceptable. In the Type II 2HDM, this gives the strongest constraint
1153
+ on charged Higgs bosons.
1154
+ • At the LHC, CMS [40] has searched for a heavy neutral Higgs decaying
1155
+ into τ pairs. Although done in the context of the MSSM, the results are
1156
+ very similar in this model (with adjusted Yukawa couplings, of course)
1157
+ and the production cross-section times branching ratio varies from 10
1158
+ pb to 10 fb over the range of masses from 150 GeV to 1000 GeV. More
1159
+ recently, ATLAS [41] has done a similar analysis. Note that one usually
1160
+ assumes that the decay into top quarks will dominate for masses above
1161
+ 350 GeV, but that might not be the case here due to the lepton-specific
1162
+ nature of the model.
1163
+ We impose these experimental bounds on our
1164
+ parameter-space, which, up to small differences due to form factors,
1165
+ apply to neutral scalars and pseudoscalars.
1166
+ • Finally, we can consider LHC direct searches for heavy charged Higgs
1167
+ bosons. Searches fall into two categories - those in which the charged
1168
+ Higgs mass is greater than mt + mb and those in which it is less.
1169
+ – If it is greater, then the predominant decay mode will be into t¯b, ex-
1170
+ cept for the narrow window of parameter-space in which the charged
1171
+ 19
1172
+
1173
+ Higgs in question has essentially zero overlap with Φq. The produc-
1174
+ tion cross-section for a charged Higgs mass of 200, 300, 600 GeV
1175
+ is [42] within a factor of 2 (scaling the Yukawa coupling appropri-
1176
+ ately to a lepton-specific or Type I model) of 0.4, 0.1, 0.01 picobarns.
1177
+ ATLAS [43] has found bounds from Run II on the product of the
1178
+ production rate and the H+ → t¯b branching ratio. Their result is
1179
+ below our production cross-section by a factor of a few, and thus the
1180
+ model is not yet constrained by the non-observation at the LHC.
1181
+ – If the charged Higgs is lighter, then a major decay mode is into τντ.
1182
+ In this case the predominant production mode is through t → bH+.
1183
+ Since top production is well understood, searches at ATLAS [44]
1184
+ and CMS [45] place bounds on BR(t → bH+)BR(H+ → τντ). This
1185
+ bound may not be too restrictive, since a charged Higgs that is
1186
+ either quarkphobic or leptophobic will not contribute and thus it
1187
+ will depend on mixing angles. Nonetheless, we have incorporated
1188
+ the results of these searches in bounding our parameter-space.
1189
+ We will primarily focus on the lightest neutral scalar (other than the 125
1190
+ GeV Higgs), the lightest pseudoscalar and the lightest charged scalar. Re-
1191
+ sults from these scalars will also apply to the heavier scalars by appropriate
1192
+ choice of mixing angles (with the exception of heavy scalar decays into lighter
1193
+ scalars, which we will not consider). The lepton-specific 2HDM has one scalar
1194
+ coupling to quarks and another to leptons. The primary difference between
1195
+ our model and the lepton-specific model is that different scalars couple to the
1196
+ muon and the electron (note that the muon-specific model [11, 12] has the
1197
+ 20
1198
+
1199
+ same scalar coupling to the quarks and the τ, which is more like an extension
1200
+ of the type I 2HDM). As a result, we will focus on decays involving muons
1201
+ and electrons.
1202
+ We first consider the decay of the lightest neutral scalar (other than the
1203
+ 125 GeV Higgs, which has Standard Model couplings in the alignment limit)
1204
+ into electrons, muons and taus.
1205
+ Since the heavier masses aren’t relevant
1206
+ in the analysis, the parameter-space is substantially reduced. We consider
1207
+ two mass regions, in which the scalar mass is below and above 350 GeV,
1208
+ respectively. In the latter case, decays to top quarks can be substantial, even
1209
+ if the mixing angles are small.
1210
+ As noted above, given the masses, soft-breaking mass parameters and mix-
1211
+ ing angles, the quartic couplings are determined. We scan the full parameter
1212
+ space and check each of the conditions above. Typically, we find several mil-
1213
+ lion parameter sets that are acceptable. The results are plotted in Figure 2.
1214
+ Note that in the Standard Model the branching ratio of the dimuon decay of
1215
+ the Higgs is 2 × 10−4 and this level (and somewhat below) is certainly exper-
1216
+ imentally accessible. One can see that for a scalar mass below 350 GeV, the
1217
+ dielectron decay branching ratio can be much, much larger than the Standard
1218
+ Model and the dimuon decay branching ratio can approach unity. Above 350
1219
+ GeV, the opening of the top decay channel, even if the mixing angle is very
1220
+ small, substantially reduces the leptonic branching ratios.
1221
+ It is not surprising that this can occur.
1222
+ If one chose parameters such
1223
+ that there was no mixing at all between Φee and the other scalars, then the
1224
+ only decay of the Φee would be into electrons. This would require extreme
1225
+ fine-tuning, since no symmetry will eliminate mixing in the quartic sector of
1226
+ 21
1227
+
1228
+ FIG. 2: These scatterplots show allowed points for h2 decays. Results are shown for h2
1229
+ masses below 350 GeV and above that mass scale (at which point the ¯tt channel opens
1230
+ up). The upper figures plot ee and µµ decays and the lower figures plot µµ and ττ decays.
1231
+ The decay branching ratio of the SM Higgs to µµ is approximately 2 × 10−4.
1232
+ the potential and even very small values of the quartic mixing terms would
1233
+ allow for other decays that could dominate. Nonetheless, we see many sets
1234
+ of parameters for which the dielectron and dimuon decays of this lightest
1235
+ neutral scalar (other than the Standard Model Higgs) can be substantial.
1236
+ In Figure 2, we also show the branching ratios to muons and to taus.
1237
+ Again, one can see that the absolute branching ratio to dimuons can be
1238
+ substantially more than that into two taus. Thus, we find that searches for
1239
+ heavy neutral Higgs bosons decaying into leptons, which generally focus on
1240
+ 22
1241
+
1242
+ 10-1
1243
+ 10-1
1244
+ mh² < 350 GeV
1245
+ mh, > 350 GeV
1246
+ 10-2.
1247
+ 10-2
1248
+ ee)
1249
+ BR(h2 →ee)
1250
+ 10-3.
1251
+ 10-3.
1252
+ BR(h2 →(
1253
+ 10-4
1254
+ 10-4.
1255
+ 10-5.
1256
+ 10-5.
1257
+ 10-6.
1258
+ 10-6
1259
+ 10-6
1260
+ 10-5
1261
+ 10-4
1262
+ 10-3
1263
+ 10-2
1264
+ 10-1
1265
+ 100
1266
+ 10-6
1267
+ 10-5
1268
+ 10-4
1269
+ 10-3
1270
+ 10-2
1271
+ 10-1
1272
+ 100
1273
+ BR(h2 →μμ)
1274
+ BR(h2 →μμ)100
1275
+ 100
1276
+ mh² < 350 GeV
1277
+ mh² > 350 GeV
1278
+ 10-1
1279
+ 10-1.
1280
+ 10-2
1281
+ 10-2.
1282
+ (nn
1283
+ (nn←
1284
+
1285
+ BR(h2)
1286
+ 10-3
1287
+ 10-4.
1288
+ 10-4
1289
+ 10-5,
1290
+ 10-5-
1291
+ 10-6.
1292
+ 10-6.
1293
+ 10-6
1294
+ 10-5
1295
+ 10-4
1296
+ 10-3
1297
+ 10-2
1298
+ 10-1
1299
+ 100
1300
+ 10-6
1301
+ 10-5
1302
+ 10-4
1303
+ 10-3
1304
+ 10-2
1305
+ 10-1
1306
+ 100
1307
+ BR(h2 → TT)
1308
+ BR(h2 → TT)FIG. 3: These scatterplots show allowed points for H± decays. Results are shown for H±
1309
+ masses below 180 GeV and above that mass scale (at which point the ¯tb channel opens
1310
+ up). The upper figures plot eν and µν decays and the lower figures plot µν and τν decays.
1311
+ tauonic decays, should also study muonic and electronic decays.
1312
+ Since we are in the alignment limit, there is no three-point coupling of
1313
+ these scalars to two gauge bosons. They could be produced in a collider
1314
+ through WW or ZZ fusion to two Φs. The signature would be two electron-
1315
+ positron or muon pairs each coming from a Φ. The electron-positron pair
1316
+ rate will be smaller, but more distinctive. While four lepton events have
1317
+ been searched for [46], we know of no analysis of this particular signature.
1318
+ An approximate production cross-section can be obtained by comparison
1319
+ with the inert doublet model[47] which has a similar production process.
1320
+ 23
1321
+
1322
+ 100
1323
+ 100
1324
+ mH < 180 GeV
1325
+ mH# > 180 GeV
1326
+ 10-1.
1327
+ 10-1.
1328
+ 10-2.
1329
+ e=
1330
+ et,
1331
+ 10-3.
1332
+
1333
+ 10-3
1334
+ R
1335
+ 10-4.
1336
+ 10-
1337
+ B
1338
+ 10-5.
1339
+ 10-5.
1340
+ 10-6.
1341
+ 10-6.
1342
+ 10-6
1343
+ 10-5
1344
+ 10-4
1345
+ 10-3
1346
+ 10-2
1347
+ 10-1
1348
+ 100
1349
+ 10-6
1350
+ 10-5
1351
+ 10-4
1352
+ 10-3
1353
+ 10-2
1354
+ 10-1
1355
+ 100
1356
+ BR(H→μvμ)
1357
+ BR(H→μvμ)100
1358
+ 100
1359
+ 10-1.
1360
+ 10-1.
1361
+ >10-2.
1362
+ 10-2.
1363
+
1364
+ 10-3.
1365
+ 10-3.
1366
+ +1
1367
+ BR
1368
+ 5 10-4.
1369
+ 10-4.
1370
+ 10-5.
1371
+ 10-5.
1372
+ mH# < 180 GeV
1373
+ mH± > 180 GeV
1374
+ 10-6.
1375
+ 10-6.
1376
+ 10-6
1377
+ 10-5
1378
+ 10-4
1379
+ 10-3
1380
+ 10-2
1381
+ 10-1
1382
+ 100
1383
+ 10-6
1384
+ 10-5
1385
+ 10-4
1386
+ 10-3
1387
+ 10-2
1388
+ 10-1
1389
+ 100
1390
+ BR(H→)
1391
+ BR(H→v)Typical production cross-sections at the LHC are approximately 0.5 fb. With
1392
+ an integrated luminosity of 3 ab−1, this means that branching fractions of
1393
+ O(10−3) or less will be difficult to detect until the next generation colliders.
1394
+ We have also studied the decays of the pseudoscalar into leptons and find
1395
+ very similar results. For the charged Higgs decays, we show the ratio of eν
1396
+ to µν decays as well as the individual branching ratios in Figure 3 as well as
1397
+ the µν to τν decays . Here, we consider mass ranges below and above 180
1398
+ GeV, at which point the t¯b opens up. Note that there are more points in
1399
+ the region above 180 GeV since below that mass a much higher proportion
1400
+ of points are experimentally excluded. There is a large number of points in
1401
+ which the electronic decays are substantial and the muonic decay branching
1402
+ ratios can approach unity.
1403
+ In Appendix C we show several benchmark points. These points satisfy
1404
+ all of the various constraints listed earlier in this section. For point S1, one
1405
+ can see that the h2 → µµ branching ratio is almost 47% and the electronic
1406
+ branching ratio is over 0.25%. Clearly, the signature would most likely be
1407
+ two muon pairs, each coming from a neutral scalar, most of the other decays
1408
+ being tau pairs or ¯bb, with an occasional electron-positron pair. In benchmark
1409
+ point S2, the dimuon decay of the scalar is smaller than that of the electron.
1410
+ Here, one would see the ditau decays dominate, but the electron-positron
1411
+ decays might be measurable.
1412
+ We also see some benchmark points for the lightest charged Higgs, looking
1413
+ at the region in which the mass is below 180 GeV so the top-bottom channel
1414
+ is not available. For point C1, the decay into muons is slightly bigger than
1415
+ the decay into taus, and the electronic decay is 0.2%. For C2, the muon
1416
+ 24
1417
+
1418
+ decay is the smallest and the electron decay is as high as 1.7%. Again, this
1419
+ shows that decays into muons and electrons might be much, much higher
1420
+ than in traditional 2HDMs.
1421
+ V.
1422
+ CONCLUSION
1423
+ It is often believed that all fermions of a given charge must couple to
1424
+ the same Higgs multiplet in order to avoid tree-level flavor-changing neutral
1425
+ currents. However this is only true in the quark sector and need not be true
1426
+ in the lepton sector. The quark mass matrix cannot be diagonal without
1427
+ eliminating CKM mixing, however the lepton mass matrix can be diagonal,
1428
+ since PMNS mixing can cover from the superheavy Majorana neutrino sector.
1429
+ We have studied a 4HDM in which one scalar doublet couples to quarks and
1430
+ the other three couple to the electron, muon and tau families, respectively.
1431
+ There are numerous constraints on such a model, including bounded from
1432
+ below constraints, perturbativity, S and T parameters, the diphoton decay
1433
+ of the Higgs, limits from meson-antimeson oscillations, radiative b decays
1434
+ and various LHC constraints from heavy scalar searches. Scanning the pa-
1435
+ rameter space, we find numerous acceptable points in which the dielectron
1436
+ and dimuon decays of the lightest neutral scalar (other than the 125 GeV
1437
+ Higgs) can be much, much larger than expected. The results for the lightest
1438
+ pseudoscalar and charged scalar are also presented.
1439
+ Generally, searches for heavier Higgs bosons focus (in the lepton sector)
1440
+ on decays into τs. However, this model shows that decays into electrons and
1441
+ muons can be substantial (and certainly easier to detect). An interesting
1442
+ signature at either a linear collider or a hadron collider arises from vector
1443
+ 25
1444
+
1445
+ boson fusion into two such Higgs bosons, each of which decays into an electron
1446
+ or muon pair. We know of no bounds on such a process and hope to see
1447
+ searches in the near future.
1448
+ Acknowledgments
1449
+ The work of MS and MK was supported by the National Science Foun-
1450
+ dation under Grant PHY-1819575.
1451
+ The work of BLG is supported by
1452
+ Funda¸c˜ao para a Ciˆencia e a Tecnologia (FCT, Portugal) through the
1453
+ PhD grant SFRH/BD/139165/2018 and the projects UIDB/00777/2020,
1454
+ UIDP/00777/2020,
1455
+ UIDB/00618/2020,
1456
+ UIDP/00618/2020,
1457
+ CERN/FIS-
1458
+ PAR/0019/2021 and CERN/FIS-PAR/0025/2021.
1459
+ BLG thanks the Ful-
1460
+ bright Commission in Portugal and William & Mary for support. MK thanks
1461
+ Pitt-PACC at the University of Pittsburgh for their hospitality. We thank
1462
+ Igor Ivanov for clarifying the symmetry group of the model, Arnab Dasgupta
1463
+ for coding help and suggestions and for useful discussions, and Pedro Ferreira
1464
+ for a helpful discussion of the lepton-specific 2HDM.
1465
+ 26
1466
+
1467
+ Appendix A: Gauge Couplings
1468
+ Trilinear Gauge Couplings ZZhi and W ±W ∓hi
1469
+ C1
1470
+ c12c13c14c2c3c4 + c13c14c3c4s12s2 + c14c4s13s3 + s14s4
1471
+ C2
1472
+ −c12c2c3c4(c24s13s23 + c13s14s24) − c23c24c3c4s12−2 − c24c3c4s12s13s23s2 −
1473
+ c13c3c4s12s14s24s2 + c13c24c4s23s3 − c4s13s14s24s3 + c14s24s4
1474
+ C3
1475
+ −c12c3c4[c13c24c2s14s34 + s23(−c2s13s24s34 + c34s2) + c23(c34c2s13 +
1476
+ s24s34s2)] + c34c4[c2c3s12s23 + c23(−c3s12s13s2 + c13s3)] +
1477
+ s34[c23c2c3c4s12s24 + c3c4s12s13s23s24s2 − c24c4s13s14s3 −
1478
+ c13c4(c24c3s12s14s2 + s23s24s3) + c14c24s4]
1479
+ C4
1480
+ −c2c3c4s12s23s34 − c13c24c34c3c4s12s14s2 + c34c3c4s12s13s23s24s2 +
1481
+ c12c3c4[−c13c24c34c2s14 + c34s24(c2s13s23 − c23s2) + s34(c23c2s13 +
1482
+ s23s2)] − c24c34c4s13s14s3 − c13c34c4s23s24s3 + c23c4[c34c2c3s12s24 +
1483
+ s34(c3s12s13s2 − c13s3)] + c14c24c34s4
1484
+ TABLE I: Ci-factors of the trilinear gauge couplings ZZhi and W ±W ∓hi as defined in
1485
+ Eq. (15) in the main text. Here cij = cos αij (sij = sin αij) and ci = cos βi (si = sin βi). In
1486
+ this notation, sij−k stands for sin(αij − βk).
1487
+ 27
1488
+
1489
+ Appendix B: General Yukawa Couplings
1490
+ General Yukawa Neutral Scalar
1491
+ ξud
1492
+ h
1493
+ c12c13c14 / c2c3c4
1494
+ ξe
1495
+ h
1496
+ s12c13c14 / s2c3c4
1497
+ ξµ
1498
+ h
1499
+ s13c14 / s3c4
1500
+ ξτ
1501
+ h
1502
+ s14 / s4
1503
+ ξud
1504
+ h2
1505
+ − (c23c24s12 + c12 (c24s13s23 + c13s14s24)) / c2c3c4
1506
+ ξe
1507
+ h2
1508
+ (c12c23c24 − s12 (c24s13s23 + c13s14s24)) / s2c3c4
1509
+ ξµ
1510
+ h2
1511
+ (c13c24s23 − s13s14s24) / s3c4
1512
+ ξτ
1513
+ h2
1514
+ c14s24 / s4
1515
+ ξud
1516
+ h3 (s12 (c34s23 + c23s24s34)−c12 (c13c24s14s34 + s13 (c23c34−s23s24s34))) /c2c3c4
1517
+ ξe
1518
+ h3 −(c12 (c34s23+c23s24s34)+s12 (c13c24s14s34+s13 (c23c34+s23s24s34)))/s2c3c4
1519
+ ξµ
1520
+ h3
1521
+ (−c24s13s14s34 + c13 (c23c34 − s23s24s34)) / s3c4
1522
+ ξτ
1523
+ h3
1524
+ c14c24s34 / s4
1525
+ ξud
1526
+ h4 (s12 (c23c34s24 − s23s34)−c12 (c13c24c34s14−s13 (c34s23s24 + c23s34))) /c2c3c4
1527
+ ξe
1528
+ h4 −(c12 (c23c34s24−s23s34)+s12 (c13c24c34s14−s13 (c34s23s24+c23s34)))/s2c3c4
1529
+ ξµ
1530
+ h4
1531
+ − (c24c34s13s14 + c13 (c34s23s24 + c23s34)) / s3c4
1532
+ ξτ
1533
+ h4
1534
+ c14c24c34 / s4
1535
+ TABLE II: General Yukawa couplings of the scalar Higgs particles to quarks and charged
1536
+ leptons, as defined in Eqs. (16) and (17) in the main text. Here cij = cos αij (sij = sin αij)
1537
+ and ci = cos βi (si = sin βi).
1538
+ 28
1539
+
1540
+ General Yukawa Pseudoscalar
1541
+ ξq
1542
+ A1
1543
+ − (c23c24s2 + c2 (c24s3s23 + c3s4s24)) / c2c3c4
1544
+ ξe
1545
+ A1
1546
+ (c2c23c24 − s2 (c24s3s23 + c3s4s24)) / s2c3c4
1547
+ ξµ
1548
+ A1
1549
+ (c3c24s23 − s3s4s24) / s3c4
1550
+ ξτ
1551
+ A1
1552
+ s24c4 / s4
1553
+ ξq
1554
+ A2
1555
+ (s2 (c34s23 + c23s24s34) − c2 (c3c24s4s34 + s3 (c23c34 − s23s24s34)))/c2c3c4
1556
+ ξe
1557
+ A2
1558
+ −(c2 (c34s23 + c23s24s34)+s2 (c3c24s4s34 + s3 (c23c34−s23s24s34)))/s2c3c4
1559
+ ξµ
1560
+ A2
1561
+ (−c24s3s4s34 + c3 (c23c34 − s23s24s34)) / s3c4
1562
+ ξτ
1563
+ A2
1564
+ c24s34c4 / s4
1565
+ ξq
1566
+ A3
1567
+ (s2 (c23c34s24 − s23s34) − c2 (c3c24c34s4 − s3 (c34s23s24 + c23s34)))/c2c3c4
1568
+ ξe
1569
+ A3
1570
+ −(c2 (c23c34s24 − s23s34)+s2 (c3c24c34s4−s3 (c34s23s24 + c23s34)))/s2c3c4
1571
+ ξµ
1572
+ A3
1573
+ − (c24c34s3s4 + c3 (c34s23s24 + c23s34)) / s3c4
1574
+ ξτ
1575
+ A3
1576
+ c24c34c4 / s4
1577
+ TABLE III: General Yukawa couplings of the pseudoscalar Higgs particles to quarks and
1578
+ charged leptons, as defined in Eqs. (16) and (17) in the main text. Here cij = cos γij
1579
+ (sij = sin γij) and ci = cos βi (si = sin βi).
1580
+ 29
1581
+
1582
+ General Yukawa Charged
1583
+ ξqLR
1584
+ H+
1585
+ 1
1586
+ − (c23c24s2 + c2 (c24s3s23 + c3s4s24)) / c2c3c4
1587
+ ξeL
1588
+ H+
1589
+ 1
1590
+ (c2c23c24 − s2 (c24s3s23 + c3s4s24)) / s2c3c4
1591
+ ξµL
1592
+ H+
1593
+ 1
1594
+ (c3c24s23 − s3s4s24) / s3c4
1595
+ ξτL
1596
+ H+
1597
+ 1
1598
+ s24c4 / s4
1599
+ ξqLR
1600
+ H+
1601
+ 2
1602
+ (s2 (c34s23 + c23s24s34) − c2 (c3c24s4s34 + s3 (c23c34 − s23s24s34)))/c2c3c4
1603
+ ξeL
1604
+ H+
1605
+ 2
1606
+ −(c2(c34s23 + c23s24s34)+s2 (c3c24s4s34 + s3 (c23c34 − s23s24s34)))/s2c3c4
1607
+ ξµL
1608
+ H+
1609
+ 2
1610
+ (−c24s3s4s34 + c3 (c23c34 − s23s24s34)) / s3c4
1611
+ ξτL
1612
+ H+
1613
+ 2
1614
+ c24s34c4 / s4
1615
+ ξqLR
1616
+ H+
1617
+ 3
1618
+ (s2 (c23c34s24 − s23s34) − c2 (c3c24c34s4 − s3 (c34s23s24 + c23s34)))/c2c3c4
1619
+ ξeL
1620
+ H+
1621
+ 3
1622
+ (c2 (s23s34 − c23c34s24) − s2 (c3c24c34s4 − s3 (c34s23s24 + c23s34)))/s2c3c4
1623
+ ξµL
1624
+ H+
1625
+ 3
1626
+ − (c24c34s3s4 + c3 (c34s23s24 + c23s34)) / s3c4
1627
+ ξτL
1628
+ H+
1629
+ 3
1630
+ c24c34c4 / s4
1631
+ TABLE IV: General Yukawa couplings of the charged Higgs particles to quarks and
1632
+ leptons, as defined in Eqs. (18) and (19) in the main text. Here cij = cos δij (sij = sin δij)
1633
+ and ci = cos βi (si = sin βi).
1634
+ 30
1635
+
1636
+ Appendix C: Benchmark Points
1637
+ Scalar benchmark points
1638
+ S1
1639
+ S2
1640
+ β2/π, β3/π, β4/π
1641
+ 0.05, 0.16, 0.18
1642
+ 0.04, 0.14, 0.21
1643
+ α23/π, α24/π, α34/π
1644
+ −0.09, −1.00, −0.70
1645
+ −0.02, −0.05, 0.10
1646
+ γ23/π, γ24/π, γ34/π
1647
+ 0.50, 0.59, 0.80
1648
+ 0.16, 0.52, 0.39
1649
+ δ23/π, δ24/π, δ34/π
1650
+ 0.08, −0.26, −0.96
1651
+ 0.62, −0.93, −0.95
1652
+ mh2, mh3, mh4 (GeV)
1653
+ 269, 396, 483
1654
+ 175, 359, 360
1655
+ mA1, mA2, mA3 (GeV)
1656
+ 439, 454, 484
1657
+ 265, 351, 369
1658
+ mH±
1659
+ 1 , mH±
1660
+ 2 , mH±
1661
+ 3 (GeV)
1662
+ 438, 441, 443
1663
+ 289, 352, 370
1664
+ m2
1665
+ qe, m2
1666
+ qµ, m2
1667
+ qτ (GeV2)
1668
+ −17700, 71700, −340000 16000, −34600, −168000
1669
+ m2
1670
+ eµ, m2
1671
+ eτ, m2
1672
+ µτ (GeV2)
1673
+ −18600, 20700, −53600
1674
+ 14000, −31200, −57400
1675
+ BR(h2 → ee)
1676
+ 2.72 × 10−3
1677
+ 1.63 × 10−4
1678
+ BR(h2 → µµ)
1679
+ 4.68 × 10−1
1680
+ 7.85 × 10−6
1681
+ BR(h2 → ττ)
1682
+ 1.22 × 10−1
1683
+ 7.42 × 10−1
1684
+ TABLE V: Benchmark points for the leptonic decays of the lightest neutral scalar (other
1685
+ than the Standard Model Higgs) from Figure 2, for a h2-mass range below 350 GeV.
1686
+ 31
1687
+
1688
+ Charged benchmark
1689
+ points
1690
+ C1
1691
+ C2
1692
+ β2/π, β3/π, β4/π
1693
+ 0.05, 0.05, 0.09
1694
+ 0.10, 0.16, 0.11
1695
+ α23/π, α24/π, α34/π
1696
+ 0.09, 0.54, 0.34
1697
+ 0.20, 0.88, 0.72
1698
+ γ23/π, γ24/π, γ34/π
1699
+ −0.04, 0.66, 0.60
1700
+ 0.68, 0.50, −0.52
1701
+ δ23/π, δ24/π, δ34/π
1702
+ −0.98, 0.00, −0.36
1703
+ 1.00, 0.00, 0.77
1704
+ mh2, mh3, mh4 (GeV)
1705
+ 127, 187, 208
1706
+ 180, 237, 240
1707
+ mA1, mA2, mA3 (GeV)
1708
+ 131, 179, 244
1709
+ 161, 172, 173
1710
+ mH±
1711
+ 1 , mH±
1712
+ 2 , mH±
1713
+ 3 (GeV)
1714
+ 164, 172, 229
1715
+ 158, 181, 234
1716
+ m2
1717
+ qe, m2
1718
+ qµ, m2
1719
+ qτ (GeV2)
1720
+ −14800, −17400, 6210 57000, −127000, −15100
1721
+ m2
1722
+ eµ, m2
1723
+ eτ, m2
1724
+ µτ (GeV2)
1725
+ 5880, 22100, 9060
1726
+ −75600, −9570, 81300
1727
+ BR(H±
1728
+ 1 → e±νe)
1729
+ 2.24 × 10−3
1730
+ 1.68 × 10−2
1731
+ BR(H±
1732
+ 1 → µ±νµ)
1733
+ 5.36 × 10−1
1734
+ 6.91 × 10−3
1735
+ BR(H±
1736
+ 1 → τ ±ντ)
1737
+ 4.55 × 10−1
1738
+ 5.23 × 10−1
1739
+ TABLE VI: Benchmark points for the leptonic decays of the lightest charged scalar from
1740
+ Figure 3, for a H±
1741
+ 1 -mass range below 180 GeV.
1742
+ 32
1743
+
1744
+ [1] G.
1745
+ Aad
1746
+ et
1747
+ al.
1748
+ [ATLAS
1749
+ Collaboration],
1750
+ Phys.
1751
+ Lett.
1752
+ B
1753
+ 716
1754
+ (2012)
1755
+ 1
1756
+ doi:10.1016/j.physletb.2012.08.020 [arXiv:1207.7214 [hep-ex]].
1757
+ [2] S.
1758
+ Chatrchyan
1759
+ et
1760
+ al.
1761
+ [CMS
1762
+ Collaboration],
1763
+ Phys.
1764
+ Lett.
1765
+ B
1766
+ 716
1767
+ (2012)
1768
+ 30
1769
+ doi:10.1016/j.physletb.2012.08.021 [arXiv:1207.7235 [hep-ex]].
1770
+ [3] G. Aad et al. [ATLAS Collaboration], JHEP 1504 (2015) 117 doi:10.1007/JHEP04(2015)117
1771
+ [arXiv:1501.04943 [hep-ex]].
1772
+ [4] S.
1773
+ Chatrchyan
1774
+ et
1775
+ al.
1776
+ [CMS
1777
+ Collaboration],
1778
+ JHEP
1779
+ 1405
1780
+ (2014
1781
+ )
1782
+ 104
1783
+ doi:10.1007/JHEP05(2014)104 [arXiv:1401.5041 [hep-ex]].
1784
+ [5] M.
1785
+ Aaboud
1786
+ et
1787
+ al.
1788
+ [ATLAS
1789
+ Collaboration],
1790
+ Phys.
1791
+ Lett.
1792
+ B
1793
+ 786
1794
+ (2018)
1795
+ 59
1796
+ doi:10.1016/j.physletb.2018.09.013 [arXiv:1808.08238 [hep-ex]].
1797
+ [6] A.
1798
+ M.
1799
+ Sirunyan
1800
+ et
1801
+ al.
1802
+ [CMS],
1803
+ Phys.
1804
+ Rev.
1805
+ Lett.
1806
+ 121,
1807
+ no.12,
1808
+ 121801
1809
+ (2018)
1810
+ doi:10.1103/PhysRevLett.121.121801 [arXiv:1808.08242 [hep-ex]].
1811
+ [7] A.
1812
+ M.
1813
+ Sirunyan
1814
+ et
1815
+ al.
1816
+ [CMS],
1817
+ Phys.
1818
+ Rev.
1819
+ Lett.
1820
+ 120,
1821
+ no.23,
1822
+ 231801
1823
+ (2018)
1824
+ doi:10.1103/PhysRevLett.120.231801 [arXiv:1804.02610 [hep-ex]].
1825
+ [8] A. M. Sirunyan et al. [CMS], JHEP 01,
1826
+ 148 (2021) doi:10.1007/JHEP01(2021)148
1827
+ [arXiv:2009.04363 [hep-ex]].
1828
+ [9] S. L. Glashow and S. Weinberg, Phys. Rev. D 15, 1958 (1977) doi:10.1103/PhysRevD.15.1958
1829
+ [10] E. A. Paschos, Phys. Rev. D 15, 1966 (1977) doi:10.1103/PhysRevD.15.1966
1830
+ [11] T. Abe, R. Sato and K. Yagyu, JHEP 1707, 012 (2017) doi:10.1007/JHEP07(2017)012
1831
+ [arXiv:1705.01469 [hep-ph]].
1832
+ [12] P.
1833
+ M.
1834
+ Ferreira
1835
+ and
1836
+ M.
1837
+ Sher,
1838
+ Phys.
1839
+ Rev.
1840
+ D
1841
+ 101,
1842
+ no.9,
1843
+ 095030
1844
+ (2020)
1845
+ doi:10.1103/PhysRevD.101.095030 [arXiv:2002.01000 [hep-ph]].
1846
+ [13] I. P. Ivanov and C. C. Nishi, JHEP 1311, 069 (2013) doi:10.1007/JHEP11(2013)069
1847
+ [arXiv:1309.3682 [hep-ph]].
1848
+ [14] W. Rodejohann and U. Salda˜na-Salazar, JHEP 07, 036 (2019) doi:10.1007/JHEP07(2019)036
1849
+ [arXiv:1903.00983 [hep-ph]].
1850
+ [15] M. A. Arroyo-Ure˜na, J. L. Diaz-Cruz, B. O. Larios-L´opez and M. A. P. de Le´on, Chin. Phys.
1851
+ C 45, no.2, 023118 (2021) doi:10.1088/1674-1137/abcfae [arXiv:1901.01304 [hep-ph]].
1852
+ [16] G. Cree and H. E. Logan, Phys. Rev. D 84, 055021 (2011) doi:10.1103/PhysRevD.84.055021
1853
+ 33
1854
+
1855
+ [arXiv:1106.4039 [hep-ph]].
1856
+ [17] I. P. Ivanov, V. Keus and E. Vdovin, J. Phys. A 45, 215201 (2012) doi:10.1088/1751-
1857
+ 8113/45/21/215201 [arXiv:1112.1660 [math-ph]].
1858
+ [18] I. P. Ivanov, Prog. Part. Nucl. Phys. 95, 160-208 (2017) doi:10.1016/j.ppnp.2017.03.001
1859
+ [arXiv:1702.03776 [hep-ph]].
1860
+ [19] F.
1861
+ Faro,
1862
+ J.
1863
+ C.
1864
+ Romao
1865
+ and
1866
+ J.
1867
+ P.
1868
+ Silva,
1869
+ Eur.
1870
+ Phys.
1871
+ J.
1872
+ C 80,
1873
+ no.7,
1874
+ 635
1875
+ (2020)
1876
+ doi:10.1140/epjc/s10052-020-8217-y [arXiv:2002.10518 [hep-ph]].
1877
+ [20] I. de Medeiros Varzielas, I. P. Ivanov and M. Levy, Eur. Phys. J. C 81, no.10, 918 (2021)
1878
+ doi:10.1140/epjc/s10052-021-09681-w [arXiv:2107.08227 [hep-ph]].
1879
+ [21] R. A. Porto and A. Zee, Phys. Lett. B 666, 491-495 (2008) doi:10.1016/j.physletb.2008.08.001
1880
+ [arXiv:0712.0448 [hep-ph]].
1881
+ [22] R. A. Porto and A. Zee, Phys. Rev. D 79, 013003 (2009) doi:10.1103/PhysRevD.79.013003
1882
+ [arXiv:0807.0612 [hep-ph]].
1883
+ [23] R. Boto,
1884
+ J. C. Rom˜ao and J. P. Silva,
1885
+ Phys. Rev. D 104,
1886
+ no.9,
1887
+ 095006 (2021)
1888
+ doi:10.1103/PhysRevD.104.095006 [arXiv:2106.11977 [hep-ph]].
1889
+ [24] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher and J. P. Silva, Phys. Rept.
1890
+ 516, 1-102 (2012) doi:10.1016/j.physrep.2012.02.002 [arXiv:1106.0034 [hep-ph]].
1891
+ [25] F.
1892
+ S.
1893
+ Faro
1894
+ and
1895
+ I.
1896
+ P.
1897
+ Ivanov,
1898
+ Phys.
1899
+ Rev.
1900
+ D
1901
+ 100,
1902
+ no.3,
1903
+ 035038
1904
+ (2019)
1905
+ doi:10.1103/PhysRevD.100.035038 [arXiv:1907.01963 [hep-ph]].
1906
+ [26] R. Boto, J. C. Rom˜ao and J. P. Silva, [arXiv:2208.01068 [hep-ph]].
1907
+ [27] K. G. Klimenko, Theor. Math. Phys. 62, 58-65 (1985) doi:10.1007/BF01034825
1908
+ [28] K.
1909
+ Kannike,
1910
+ Eur.
1911
+ Phys.
1912
+ J.
1913
+ C
1914
+ 72,
1915
+ 2093
1916
+ (2012)
1917
+ doi:10.1140/epjc/s10052-012-2093-z
1918
+ [arXiv:1205.3781 [hep-ph]].
1919
+ [29] I.
1920
+ P.
1921
+ Ivanov
1922
+ and
1923
+ J.
1924
+ P.
1925
+ Silva,
1926
+ Phys.
1927
+ Rev.
1928
+ D
1929
+ 93,
1930
+ no.9,
1931
+ 095014
1932
+ (2016)
1933
+ doi:10.1103/PhysRevD.93.095014 [arXiv:1512.09276 [hep-ph]].
1934
+ [30] Y. Song, [arXiv:2203.11462 [hep-ph]].
1935
+ [31] W. Grimus, L. Lavoura, O. M. Ogreid and P. Osland, Nucl. Phys. B 801, 81-96 (2008)
1936
+ doi:10.1016/j.nuclphysb.2008.04.019 [arXiv:0802.4353 [hep-ph]].
1937
+ [32] R.
1938
+ L.
1939
+ Workman
1940
+ et
1941
+ al.
1942
+ [Particle
1943
+ Data
1944
+ Group],
1945
+ PTEP
1946
+ 2022,
1947
+ 083C01
1948
+ (2022)
1949
+ doi:10.1093/ptep/ptac097
1950
+ [33] V.
1951
+ Branchina,
1952
+ F.
1953
+ Contino
1954
+ and
1955
+ P.
1956
+ M.
1957
+ Ferreira,
1958
+ JHEP
1959
+ 11,
1960
+ 107
1961
+ (2018)
1962
+ 34
1963
+
1964
+ doi:10.1007/JHEP11(2018)107 [arXiv:1807.10802 [hep-ph]].
1965
+ [34] G. Abbiendi et al. [ALEPH, DELPHI, L3, OPAL and LEP], Eur. Phys. J. C 73, 2463 (2013)
1966
+ doi:10.1140/epjc/s10052-013-2463-1 [arXiv:1301.6065 [hep-ex]].
1967
+ [35] G.
1968
+ Bhattacharyya
1969
+ and
1970
+ D.
1971
+ Das,
1972
+ Phys.
1973
+ Rev.
1974
+ D
1975
+ 91,
1976
+ 015005
1977
+ (2015)
1978
+ doi:10.1103/PhysRevD.91.015005 [arXiv:1408.6133 [hep-ph]].
1979
+ [36] A. Djouadi, Phys. Rept. 459, 1-241 (2008) doi:10.1016/j.physrep.2007.10.005 [arXiv:hep-
1980
+ ph/0503173 [hep-ph]].
1981
+ [37] Y. Aoki et al. [Flavour Lattice Averaging Group (FLAG)], Eur. Phys. J. C 82, no.10, 869
1982
+ (2022) doi:10.1140/epjc/s10052-022-10536-1 [arXiv:2111.09849 [hep-lat]].
1983
+ [38] M. Chakraborti, D. Das, M. Levy, S. Mukherjee and I. Saha, Phys. Rev. D 104, no.7, 075033
1984
+ (2021) doi:10.1103/PhysRevD.104.075033 [arXiv:2104.08146 [hep-ph]].
1985
+ [39] T. Enomoto and R. Watanabe,
1986
+ JHEP 05,
1987
+ 002 (2016) doi:10.1007/JHEP05(2016)002
1988
+ [arXiv:1511.05066 [hep-ph]].
1989
+ [40] A. M. Sirunyan et al. [CMS], JHEP 09,
1990
+ 007 (2018) doi:10.1007/JHEP09(2018)007
1991
+ [arXiv:1803.06553 [hep-ex]].
1992
+ [41] G.
1993
+ Aad
1994
+ et
1995
+ al.
1996
+ [ATLAS],
1997
+ Phys.
1998
+ Rev.
1999
+ Lett.
2000
+ 125,
2001
+ no.5,
2002
+ 051801
2003
+ (2020)
2004
+ doi:10.1103/PhysRevLett.125.051801 [arXiv:2002.12223 [hep-ex]].
2005
+ [42] E. L. Berger,
2006
+ T. Han,
2007
+ J. Jiang and T. Plehn,
2008
+ Phys. Rev. D 71,
2009
+ 115012 (2005)
2010
+ doi:10.1103/PhysRevD.71.115012 [arXiv:hep-ph/0312286 [hep-ph]].
2011
+ [43] G. Aad et al. [ATLAS], JHEP 06, 145 (2021) doi:10.1007/JHEP06(2021)145 [arXiv:2102.10076
2012
+ [hep-ex]].
2013
+ [44] M.
2014
+ Aaboud
2015
+ et
2016
+ al.
2017
+ [ATLAS],
2018
+ JHEP
2019
+ 09,
2020
+ 139
2021
+ (2018)
2022
+ doi:10.1007/JHEP09(2018)139
2023
+ [arXiv:1807.07915 [hep-ex]].
2024
+ [45] A. M. Sirunyan et al. [CMS], JHEP 07,
2025
+ 142 (2019) doi:10.1007/JHEP07(2019)142
2026
+ [arXiv:1903.04560 [hep-ex]].
2027
+ [46] G. Aad et al. [ATLAS], JHEP 07, 005 (2021) doi:10.1007/JHEP07(2021)005 [arXiv:2103.01918
2028
+ [hep-ex]].
2029
+ [47] F. X. Yang, Z. L. Han and Y. Jin, Chin. Phys. C 45, no.7, 073114 (2021) doi:10.1088/1674-
2030
+ 1137/abf828 [arXiv:2101.06862 [hep-ph]].
2031
+ 35
2032
+
9dFAT4oBgHgl3EQfpx0O/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
AtAyT4oBgHgl3EQfq_mZ/content/tmp_files/2301.00553v1.pdf.txt ADDED
@@ -0,0 +1,1085 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ LIGHTWEIGHT IMAGE INPAINTING BY STRIPE WINDOW TRANSFORMER WITH
2
+ JOINT ATTENTION TO CNN
3
+ Bo-Wei Chen⋆
4
+ Tsung-Jung Liu⋆
5
+ Kuan-Hsien Liu†
6
+ ⋆Department of Electrical Engineering and Graduate Institute of Communication Engineering, National Chung Hsing University, Taiwan
7
+ †Department of Computer Science and Information Engineering, National Taichung University of Science and Technology, Taiwan
8
+ ABSTRACT
9
+ Image inpainting is an important task in computer vision. As
10
+ admirable methods are presented, the inpainted image is get-
11
+ ting closer to reality. However, the result is still not good
12
+ enough in the reconstructed texture and structure based on
13
+ human vision. Although more and more larger models have
14
+ been proposed recently because of the advancement of com-
15
+ puter hardware, we would like to build a suitable model for
16
+ personal use or small-sized institution. Therefore, we propose
17
+ a lightweight model that combines the special transformer and
18
+ the traditional convolutional neural network (CNN). Further-
19
+ more, we noticed most researchers only consider three pri-
20
+ mary colors (RGB) in inpainted images, but we think this
21
+ is not enough so we propose a new loss function to inten-
22
+ sify color details. Extensive experiments on commonly seen
23
+ datasets (Places2 and CelebA) validate the efficacy of our pro-
24
+ posed model compared with other state-of-the-art methods.
25
+ Index Terms— HSV color space, image inpainting, joint
26
+ attention mechanism, stripe window, vision transformer
27
+ 1. INTRODUCTION
28
+ Image inpainting has been studied by many researchers for
29
+ several years. The main goal of image inpainting is to fill
30
+ up the realistic pixels in the missing region of the image and
31
+ this can be applied to object removal and photo restoration.
32
+ To achieve realistic results, we need to consider the follow-
33
+ ing two important points: 1) the continuity of adjacent tex-
34
+ tures; 2) visually reasonable structure. All the proposed meth-
35
+ ods target at the above two points to solve the problem, such
36
+ as the traditional diffusion method, patch matching method
37
+ and current methods (CNN and GAN). However, they still
38
+ face some difficulties because convolution-based CNN has
39
+ a narrow receptive field and hence it cannot get the global
40
+ information for the whole image. Without the global infor-
41
+ mation of the whole image, it is hard to repair the key edge
42
+ and lines of the scene. Some researchers proposed methods
43
+ that utilize auxiliary information for structure recovery, e.g.,
44
+ edges [1]. On the other hand, some researcher proposed an at-
45
+ tention mechanism-based model using attention scores com-
46
+ pared with each patch to get global information. Suvorov et
47
+ al. [2] utilize the Fast Fourier Convolution (FFC) to encode
48
+ features in the frequency domain with global receptive fields
49
+ for resolution-robust inpainting. Although these methods im-
50
+ prove the overall repair result but also causes a huge compu-
51
+ tational cost. Furthermore, in recent years, the transformer
52
+ has also been used in the inpainting field. It has the advantage
53
+ of wider receptive fields than CNNs and better inpainting at
54
+ low resolutions. Unfortunately, transformers require a lot of
55
+ computer memory.
56
+ Therefore, it inspires us to design a lightweight trans-
57
+ former block with stable repair effects. Specifically, we use
58
+ the CSWin transformer [3] which used stripe window self-
59
+ attention to replace the traditional full self-attention. Stripe
60
+ window self-attention mechanism computes self-attention
61
+ parallel to horizontal and vertical stripe cross-windows. Each
62
+ stripe is obtained by dividing the input feature into constant-
63
+ width stripes. In this way, we can achieve global attention
64
+ with limited computational cost and we redesign the trans-
65
+ former block to improve the repair performance.
66
+ The consistency of color is another important factor to
67
+ judge the quality of the image. It is easy to discern the differ-
68
+ ence between inpainted image and original image by human
69
+ vision if the color has deviation. Most researchers only deal
70
+ with basic primary colors but we think this is not enough. If
71
+ we can quickly improve color consistency in the early stage of
72
+ training, the repair performance can be improved. Therefore,
73
+ we transform the inpainted image to HSV color space and
74
+ compare it with the input image. In follow-up experiments,
75
+ our method is confirmed to be effective.
76
+ The rest of the paper is organized as follows. In Section
77
+ 2, we introduce the previous and state-of-the-art inpainting
78
+ methods.
79
+ Then we present our proposed method and loss
80
+ function in Section 3. In Section 4, we exhibit our training
81
+ details, experiment results, inpainting images, and ablation
82
+ studies. At last, the conclusions are drawn in Section 5. Due
83
+ to page limit, qualitative and quantitative results of CelebA
84
+ dataset, object removal experiments, and other inpainting im-
85
+ ages are provided in the Appendix (See Supplementary Ma-
86
+ terial).
87
+ arXiv:2301.00553v1 [eess.IV] 2 Jan 2023
88
+
89
+ 2. RELATED WORK
90
+ Traditional inpainting.
91
+ Traditional inpainting can gener-
92
+ ally be divided into two categories. The first one is the dif-
93
+ fusion method. Diffusion methods disseminate the texture
94
+ content by one or multi-curve information from the known
95
+ region to missing region.
96
+ The second one is the patch-
97
+ matching method.
98
+ Patch matching [4] used approximate
99
+ nearest-neighbor to find the nearest-neighbor region of the
100
+ specified region and then selected the most similar nearest-
101
+ neighbor region to fill in and complete image inpainting.
102
+ The former method is easy to blur inpainting results in large
103
+ masks, and the latter method will cost a lot of calculations.
104
+ Deep learning based inpainting.
105
+ With the advancement
106
+ of hardware technology, CNN based deep learning model has
107
+ become the mainstream. Gradually, more and more novel
108
+ CNN models based on different modules have been proposed,
109
+ e.g., some models utilize edge auxiliaries information, such as
110
+ Nazeri et al. proposed Edgeconnect [1], Yu et al. proposed
111
+ GateConv [5] which used Canny edge to generate edge im-
112
+ ages. These methods used additional auxiliaries information
113
+ to get more data to help the repair, which are really helpful
114
+ in inpainting images with complex structure, such as build-
115
+ ing and interior space, but inevitably they need more stages
116
+ or parameters in training these methods. We also used edge
117
+ information for the mask instead of the input in our proposed
118
+ approach to enhance the edge structure.
119
+ On the other hand, some researchers use contextual at-
120
+ tention to enhance the texture inpainting, such as Yu et al.’s
121
+ DeepFill [6], Zhu et al.’s MADF [7], Yi et al.’s HiFill [8].
122
+ They calculate complicated attention scores to find the most
123
+ similar texture that can be filled in the missing region. Gen-
124
+ erally speaking, this type of methods is better than others in
125
+ terms of texture. In our proposed method, we redesign the
126
+ attention module and combine wide attention to the local re-
127
+ ceptive field to achieve attention sharing.
128
+ Vision transformer.
129
+ Recently He et al. proposed a model
130
+ named Vision transformer (VIT) [9]. Transformer has been
131
+ long and widely used in the field of NLP. They made the trans-
132
+ former usable in computer vision by their proposed method.
133
+ As more novel transformers are proposed, e.g., Dong et al.’s
134
+ CSWin transformer [3], some of them have been seen in the
135
+ field of image inpainting, such as Zheng et al.’s TFill [10].
136
+ For huge mask, transformer can inpaint plausible textures by
137
+ their special attention. In addition, transformer has wider re-
138
+ ceptive field than traditional convolution but also needs more
139
+ computing costs than convolution. Therefore, we redesigned
140
+ the basic transformer, and then used the stripe window to di-
141
+ vide the feature map to reduce the amount of calculation and
142
+ obtain a better repair effects.
143
+ To summarize, this paper proposed a novel stripe-
144
+ window-based special transformer framework for image in-
145
+ painting, and enhanced it with joint attention local CNN lay-
146
+ ers. Our model focuses on the global CSWin transformer and
147
+ CNN-based local layer. We process the global and local layer
148
+ in parallel and then share the same attention information be-
149
+ tween them. In the end, we use four simple up-samples to get
150
+ the inpainting result. The major contributions of this work are
151
+ as follows:
152
+ • We propose a stripe window self-attention transformer
153
+ with an efficient local enhancement position encoding.
154
+ Then we redesign the transformer block to make the
155
+ result better than the original method.
156
+ • We suggest joint attention from global layers to local
157
+ layers, connecting the two layers to enhance the overall
158
+ consistency of repair results.
159
+ • We propose a new HSV loss focused on color consis-
160
+ tency in the early stage.
161
+ • In the common dataset including Places2, we conduct
162
+ extensive experiments to confirm that our proposed
163
+ model is better than other advanced methods.
164
+ 3. METHODOLOGY
165
+ Overview.
166
+ The whole model of our proposed approach is
167
+ shown in Fig. 1. Given a masked image Im, and a binary
168
+ mask M both in 256×256, we concatenate and input them
169
+ to the three downsample CNN layers. After we downsam-
170
+ ple input image, we split the channel to global layer (i.e.,
171
+ CSWin transformer) and local residual in residual dense block
172
+ (RRDB) [12] layer, where we use joint attention with differ-
173
+ ent receptive fields between two layers. Each RDB block in
174
+ RRDB has four consecutive Conv-ReLU. At last we concate-
175
+ nate the features from both channels and then go through three
176
+ upsample layers to get the inpainted image Iout.
177
+ 3.1. Special CSWin Transformer
178
+ The overall global layer special CSWin Transformer is shown
179
+ in Fig. 1. The input of the global layer is a feature map with
180
+ size of H×W×C, where H and W are 32 after downsam-
181
+ pling and the channel is 128 after the split. There are four
182
+ CSWin transformer blocks in our global layer. Each block
183
+ has its own multi-head and stripe window (sw) to reduce the
184
+ amount of calculation. We set multi-head to 2, 4, 8, 16 and
185
+ sw to 4, 8, 16, 32 for four blocks by default. The first three
186
+ blocks are our special CSWin transformer block. They will
187
+ split their channel into horizontal and vertical stripes, and
188
+ then split their channel with their own multi-head again. The
189
+ sw will split H or W chosen by horizontal stripes or vertical
190
+ stripes. Different from the general multi-head self-attention
191
+ (MHSA), our stripe window multi-head self-attention (SW-
192
+ MHSA) combines multi-head and sw to greatly reduce the
193
+ amount of calculation and achieve a better inpainting effect.
194
+ After we get the split low-resolution image, we can do the
195
+
196
+ Fig. 1: The overview of our proposed model. The whole model structure shows the framework of our proposed model and
197
+ the details of the joint attention between Global layer and Local layer. The input images only include Im and M, and the Iedge
198
+ will not be trained in the model and be generated by Canny [11] before training. Moreover, the right side shows the CSWin
199
+ Transformer Block. D is the normalization factor before softmax, which makes the similarity between pixels become more
200
+ stable. At last, the Residual Dense Block in the local layer is shown at the top right corner of the whole model.
201
+ self-attention through Q(query), K(keys), V (values) until
202
+ the last block. The last block of the CSWin transformer is the
203
+ full attention because the sw in the fourth block is 32, which
204
+ means the stripe window is the whole image.
205
+ Redesigned CSWin Block.
206
+ The structure of CSWin
207
+ Block is also shown in Fig. 1. We redesign the self-attention
208
+ wiring, moving it from the first feed-forward to the beginning
209
+ because we hope our self-attention block will not be influ-
210
+ enced by the SW-MHSA. Stripe Window Self-Attention and
211
+ Full Self-Attention will be trained from different receptive
212
+ fields and then connected together with the residual link. We
213
+ also add locally-enhanced positional encoding (LePE) in the
214
+ transformer block to augment the positional encoding and re-
215
+ fer to [3] to add the LePE at the end of the transformer block
216
+ but not the middle, shown on the right side of Fig. 1. We
217
+ found that self-attention needs to be calculated multiple times
218
+ to get better attention information. We set the Ni to denote
219
+ the number of repetitions.
220
+ 3.2. Joint attention
221
+ We concatenate global and local layers to jointly focus on
222
+ the information with different receptive fields.
223
+ We expect
224
+ our inpainting results to be the admixture of different recep-
225
+ tive fields, not only just global but also local receptive fields.
226
+ So we collect attention from the second and fourth CSWin
227
+ transformer blocks and multiply it by the corresponding RDB
228
+ blocks. The dimensionality of RDB features is not the same
229
+ as attention so we need to reshape the RDB feature to con-
230
+ form to attention, like values in Q, K, V . At last two mixed
231
+ receptive fields are added to the respective last block of the
232
+ two layers to achieve joint attention.
233
+ 3.3. Loss Function
234
+ Most loss functions we adopt are the same as [1,13,14]. And
235
+ we also use other losses including Edge loss and HSV loss
236
+ which we proposed in this work. First, the basic L1 func-
237
+ tion is described as L1 = |Iout − IGT |, where Iout, IGT
238
+ indicate predicted images and the ground truth, respectively.
239
+ In addition to this, we also enhance the edge of the inpainting
240
+ image by using Edge loss which is Ledge = 1
241
+ n
242
+ �n
243
+ i=1 ||(Iout ⊙
244
+ Medge − IGT ⊙ Medge)||2
245
+ 2. where n represents the number of
246
+ pixels in the image, and Medge = (1 − Iedge) + 10 ∗ Iedge,
247
+ which can be seen as an edge mask to accentuate the edge
248
+ structure. The Iedge is the image obtained from Canny edge
249
+ detection [11].
250
+ In order to improve the quality of the inpainting model, we
251
+ use Perceptual loss to measure the similarity between images.
252
+ We also use the mask on feature map to let our Perceptual
253
+ loss only focus on visible regions. The VGG-based perceptual
254
+ loss would force the model to generate images semantically
255
+ closer to the ground truth, but we notice our inpainting results
256
+ have checkerboard artifacts. According to [14], checkerboard
257
+ artifacts are usually caused by deconvolution and using Style
258
+ loss can remove this artifact. Therefore, we use the same Style
259
+ loss as [14] in our total loss.
260
+ Besides focusing on texture and structure, we believe that
261
+ color is as important as both. So we proposed the HSV loss to
262
+ measure the similarity between colors, which can be formu-
263
+
264
+ CSWin Transformer
265
+ MLP2
266
+ CNN
267
+ CNN
268
+ >SoftMax( -
269
+ 七.
270
+ RRDB
271
+ ★V
272
+ >LePE(V)
273
+ 4
274
+ Transformer bolck
275
+ LN
276
+ 4
277
+ MLP1
278
+ CsWin
279
+ CsWin
280
+ CsWin
281
+ CsWin
282
+ Tansformer
283
+ Tansformer
284
+ Tansformer
285
+ Tansformer
286
+ Block
287
+ Block
288
+ Block
289
+ Block
290
+ x Ni
291
+ x Ni
292
+ x Ni
293
+ x Ni
294
+ LN
295
+ X
296
+ Full
297
+ Stripe Window
298
+ Self-Attention
299
+ Self-Attention
300
+ RDB
301
+ RDB
302
+ RDB
303
+ RDB
304
+ Block
305
+ Block
306
+ Block
307
+ Block
308
+ LN
309
+ LNlated as follows:
310
+ LHSV = 1
311
+ n
312
+ n
313
+
314
+ i=1
315
+ ||(HSVout − HSVGT )||2
316
+ 2,
317
+ LHSV edge = 1
318
+ n
319
+ n
320
+
321
+ i=1
322
+ ||(HSVout ⊙ Medge − HSVGT ⊙ Medge)||2
323
+ 2,
324
+ LT otalHSV =λHSV ∗ LHSV + λHSV edge ∗ LHSV edge,
325
+ (1)
326
+ where λHSV = 10 and λHSV edge = 100 by default. Here,
327
+ HSV means Hue, Saturation, V alue in HSV color space
328
+ but we do not use V alue in the HSV loss because brightness
329
+ (intensity) can easily be included by other losses. If we still
330
+ use the V alue in HSV loss it will even affect our inpainting
331
+ results. We demonstrated this in ablation experiments.
332
+ The adversarial loss includes the discriminator loss LD
333
+ and the generator loss LG. The adversarial loss can be indi-
334
+ cated as
335
+ LD = −EIGT [logD(IGT )] − EIoutM [logD(Iout) ⊙ (1 − M)]
336
+ − EIoutM [log(1 − D(Iout)) ⊙ M],
337
+ LG = −EIout[logD(Iout)],
338
+ Ladv = LD + LG + λGP LGP ,
339
+ (2)
340
+ where the PatchGAN [15] based discriminator is written as D
341
+ and our proposed model can be seen as the generator G. The
342
+ LGP = EIGT || ▽IGT D(IGT )||2 is the gradient penalty and
343
+ λGP = 1e − 3. We include all losses above as the total loss
344
+ Ltotal:
345
+ Ltotal = λL1L1 + λedgeLedge + λpercLperc
346
+ + λstyleLstyle + λT otalHSV LT otalHSV + λadvLadv,
347
+ (3)
348
+ where λL1 = 10, λedge = 10, λperc = 0.1, λstyle = 250,
349
+ λT otalHSV = 1, and λadv = 10. The above loss weights are
350
+ empirically set by experiments.
351
+ 4. EXPERIMENTS
352
+ 4.1. Datasets
353
+ To show the inpainting effectiveness of our proposed model,
354
+ we conduct experiments on Places2 dataset. For Places2, we
355
+ randomly chose 20k images from the original dataset as the
356
+ training dataset, 5k images as the validation, and use about
357
+ 4k images as the test. we use less data and the lightweight
358
+ model to show our proposed approach has better robustness
359
+ than other state-of-the-art huge-parameters models. For all
360
+ of the images in Places2 dataset, we only train and test them
361
+ with image size 256×256. For other comparison methods, we
362
+ use their provided pretrained model to perform the test on the
363
+ same dataset as we did.
364
+ 4.2. Reference State-of-the-Art
365
+ We compare the proposed model with other state-of-the-art
366
+ methods, which include PatchMatch (PM) [4], Contextual At-
367
+ tention (CA) [6], Shift-net (SN) [16], Partial Convolutions
368
+ (PC) [14], Region-wise (RW) [17], Gated Convolution (Deep-
369
+ Fill v2) [5], Contextual Residual Aggregation (HiFill) [8], Im-
370
+ puted Convolution (Iconv) [18], Aggregated contextual trans-
371
+ formations (AOT-GAN) [19], Mask-Aware Dynamic Filter-
372
+ ing (MADF) [7], Auxiliary Contextual Reconstruction (CR-
373
+ Fill) [20], Bridging Global Context Interactions (TFill) [10] ,
374
+ Large Mask inpainting (LaMa) [2].
375
+ 4.3. Quantitative Comparisons
376
+ In Table 1, we utilize PSNR and SSIM [21] to assess the
377
+ performance of all compared methods and our proposed ap-
378
+ proach on the Places2 dataset in image size 256×256 with
379
+ irregular masks of different masking rates. The required pa-
380
+ rameters are also shown below each method, where the re-
381
+ sults are either tested by ourselves or can be referred to [2].
382
+ For Places2, our proposed method can defeat most of com-
383
+ pared methods in terms of these two evaluation metrics. On
384
+ the other hand, our training images and steps are also less than
385
+ most methods. Hence, our proposed model will surpass them
386
+ if we have similar resources as they do.
387
+ In Table 2, we utilize LPIPS [22] to assess the perceptual
388
+ similarity of the compared methods on the Places2 dataset in
389
+ image size 256×256 with irregular masks. We consider the
390
+ LPIPS metric is more fair in the inpainting field because the
391
+ main point of inpainting images is to reconstruct the image
392
+ close to the real one. The perceptual similarity is more like
393
+ what human vision sees. For Places2, our proposed model can
394
+ achieve the best results among all compared methods. This
395
+ means our inpainting images are closer to the real than other
396
+ compared methods.
397
+ 4.4. Qualitative Comparisons
398
+ We show the qualitative inpainting results of Places2 in Fig.
399
+ 2. Compared with other methods, our proposed model can
400
+ reconstruct similar or even more clear textures. We notice our
401
+ inpainting results are slightly blurred when we focus more on
402
+ the transformer and less on CNN. In the future, we will set
403
+ restrictions on the local layers so that local information will
404
+ not be ignored. Furthermore, our architecture is a lightweight
405
+ model, which means we do not need lots of parameters, but
406
+ still can achieve similar results compared to those larger mod-
407
+ els. Note that both our training data and steps are less than
408
+ other methods.
409
+ 4.5. Ablation Study
410
+ To confirm our proposed module and new loss function are
411
+ useful in the proposed architecture, we separately test them
412
+ in the ablation experiments.
413
+ We test the stability of the
414
+ CSWin transformer and the redesign in Table 3. We retrained
415
+ the CSWin transformer without redesign and original trans-
416
+ former [9] separately and compared them with our redesigned
417
+
418
+ Table 1: Quantitative evaluation of inpainting on Places2 dataset. We report Peak signal-to-noise ratio (PSNR) and structural
419
+ similarity (SSIM) metrics. The ▲ denotes larger, and ▼ denotes lesser of the parameters compared to our proposed model.
420
+ (Bold means the 1st best; Underline means the 2nd best; Italics means the 3rd best)
421
+ Places2
422
+ PSNR ↑
423
+ SSIM ↑
424
+ Parameters
425
+ x106
426
+ mask
427
+ 5%
428
+
429
+ 10%
430
+ 10%
431
+
432
+ 20%
433
+ 20%
434
+
435
+ 30%
436
+ 30%
437
+
438
+ 40%
439
+ 40%
440
+
441
+ 50%
442
+ 50%
443
+
444
+ 60%
445
+ 5%
446
+
447
+ 10%
448
+ 10%
449
+
450
+ 20%
451
+ 20%
452
+
453
+ 30%
454
+ 30%
455
+
456
+ 40%
457
+ 40%
458
+
459
+ 50%
460
+ 50%
461
+
462
+ 60%
463
+ PM [2009]
464
+ -
465
+ 22.8734
466
+ 21.5227
467
+ 19.7799
468
+ 17.2039
469
+ 17.3965
470
+ 14.9213
471
+ 0.9365
472
+ 0.8939
473
+ 0.8816
474
+ 0.7497
475
+ 0.7276
476
+ 0.5939
477
+ CA [2018]
478
+ 3 ▼
479
+ 30.6980
480
+ 26.5750
481
+ 26.3226
482
+ 22.6366
483
+ 21.8994
484
+ 20.3658
485
+ 0.9616
486
+ 0.9102
487
+ 0.9032
488
+ 0.8162
489
+ 0.7749
490
+ 0.7102
491
+ SN [2018]
492
+ 55 ▲
493
+ 24.4305
494
+ 23.0565
495
+ 22.9565
496
+ 22.6845
497
+ 20.5982
498
+ 18.3062
499
+ 0.8934
500
+ 0.8680
501
+ 0.8415
502
+ 0.8067
503
+ 0.7076
504
+ 0.5874
505
+ PC [2018]
506
+ 49 ▲
507
+ 25.5658
508
+ 23.4294
509
+ 23.4746
510
+ 24.2262
511
+ 23.2751
512
+ 22.6612
513
+ 0.8791
514
+ 0.8446
515
+ 0.8338
516
+ 0.8290
517
+ 0.8028
518
+ 0.7680
519
+ RW [2019]
520
+ 47 ▲
521
+ 33.6373
522
+ 29.1710
523
+ 28.7519
524
+ 25.1838
525
+ 24.3569
526
+ 22.8062
527
+ 0.9677
528
+ 0.9222
529
+ 0.9158
530
+ 0.8386
531
+ 0.8018
532
+ 0.7431
533
+ DeepFill v2 [2019]
534
+ 4 ▼
535
+ 32.7413
536
+ 28.3293
537
+ 27.0149
538
+ 24.1172
539
+ 23.3908
540
+ 21.7128
541
+ 0.9664
542
+ 0.9205
543
+ 0.9040
544
+ 0.8353
545
+ 0.7986
546
+ 0.7322
547
+ HiFill [2020]
548
+ 3 ▼
549
+ 27.1280
550
+ 22.3913
551
+ 21.9062
552
+ 18.2817
553
+ 17.2410
554
+ 15.7043
555
+ 0.9302
556
+ 0.8254
557
+ 0.8043
558
+ 0.6713
559
+ 0.5796
560
+ 0.4878
561
+ Iconv [2020]
562
+ 30 ▲
563
+ 27.6711
564
+ 23.6294
565
+ 23.1790
566
+ 20.3817
567
+ 19.3962
568
+ 18.3129
569
+ 0.9326
570
+ 0.8390
571
+ 0.8216
572
+ 0.7069
573
+ 0.6275
574
+ 0.5524
575
+ AOT-GAN [2020]
576
+ 15 ▲
577
+ 31.0784
578
+ 28.2309
579
+ 27.9468
580
+ 24.5996
581
+ 23.7414
582
+ 22.1844
583
+ 0.9495
584
+ 0.9127
585
+ 0.9067
586
+ 0.8316
587
+ 0.7905
588
+ 0.7284
589
+ CRFill [2021]
590
+ 4▼
591
+ 33.1914
592
+ 28.7165
593
+ 27.4195
594
+ 24.4297
595
+ 23.6835
596
+ 21.9153
597
+ 0.9684
598
+ 0.9223
599
+ 0.9107
600
+ 0.8421
601
+ 0.8033
602
+ 0.7277
603
+ TFill [2022]
604
+ 15 ▲
605
+ 32.6788
606
+ 27.8063
607
+ 27.3391
608
+ 23.8051
609
+ 22.9376
610
+ 21.4181
611
+ 0.9642
612
+ 0.9141
613
+ 0.9062
614
+ 0.8277
615
+ 0.7873
616
+ 0.7293
617
+ Ours [2023]
618
+ 6
619
+ 31.1749
620
+ 28.7178
621
+ 27.7527
622
+ 24.8424
623
+ 24.1266
624
+ 22.8663
625
+ 0.9443
626
+ 0.9232
627
+ 0.9117
628
+ 0.8493
629
+ 0.8036
630
+ 0.7343
631
+ Fig. 2: Qualitative results of Places2 dataset among all compared models. From left to right: Masked image, RW [17], DeepFill
632
+ v2 [5], HiFill [8], Iconv [18], AOT-GAN [19], CRFill [20], TFill [10], and Ours. Zoom-in for details.
633
+ Table 2: Quantitative comparisons of Learned perceptual im-
634
+ age patch similarity (LPIPS)
635
+ LPIPS ↓
636
+ RW [2019]
637
+ DeepFill v2 [2019]
638
+ HiFill [2020]
639
+ Iconv [2020]
640
+ AOT-GAN [2020]
641
+ 0.149
642
+ 0.155
643
+ 0.180
644
+ 0.161
645
+ 0.149
646
+ MADF [2021]
647
+ CRFill [2021]
648
+ TFill [2022]
649
+ LaMa [2022]
650
+ Ours [2023]
651
+ 0.139
652
+ 0.1217
653
+ 0.1331
654
+ 0.135
655
+ 0.1156
656
+ CSWin transformer. For the results shown in Table 3, our pro-
657
+ posed approach has the best PSNR and SSIM.
658
+ We also conduct experiments for HSV loss in Table 3.
659
+ We noticed the Value (V) of HSV can easily be learned in L1
660
+ and other losses. If we still consider V in LHSV , it will in-
661
+ fluence the balance of the inpainting result, as shown in the
662
+ table. We show the color deviation between with and with-
663
+ out LT otalHSV in early training steps in Fig.
664
+ 3.
665
+ We can
666
+ see the color of the inpainting results in the early 50 train-
667
+ ing steps, which shows the one with LT otalHSV is more close
668
+ to the ground truth than without LT otalHSV , and the known
669
+ region and the missing region are more consistent when using
670
+ Table 3: Ablation study of HSV loss and redesigned special
671
+ CSWin transformer with size 256×256 images on Places2
672
+ PSNR↑
673
+ SSIM ↑
674
+ LPIPS↓
675
+ original transformer
676
+ 25.7935
677
+ 0.8072
678
+ 0.1242
679
+ w/o redesigned CSWin
680
+ 26.1027
681
+ 0.8377
682
+ 0.1221
683
+ ours w/o HSV loss
684
+ 26.2786
685
+ 0.8459
686
+ 0.1212
687
+ ours w/ full HSV loss
688
+ 26.4757
689
+ 0.8541
690
+ 0.1184
691
+ ours w/ redesigned CSWin
692
+ and HSV loss (w/o V)
693
+ 26.5801
694
+ 0.8611
695
+ 0.1156
696
+ Fig. 3: Ablation study of color deviation on inpainted images.
697
+ From left to right: Masked images, w/o TotalHSV loss, and
698
+ TotalHSV loss (w/o V).
699
+
700
+ LT otalHSV .
701
+ 5. CONCLUSION
702
+ In this paper, we propose a lightweight joint attention trans-
703
+ former architecture. We use transformer-based architecture to
704
+ get wide receptive field information and cooperate with local
705
+ layers with RRDB by joint attention with each other. Our pro-
706
+ posed HSV loss can stabilize the colors in early training steps
707
+ and eventually further improve the inpainting performance.
708
+ We use the CSWin transformer and redesign the transformer
709
+ block to not confuse the two self-attentions and achieve sig-
710
+ nificant improvements. Our experiments demonstrate that our
711
+ proposed model using small amount of parameters can still
712
+ generate similar or even better inpainting results than other
713
+ state-of-the-art methods. Those large models do have an ad-
714
+ vantage in details but not every researcher has enough hard-
715
+ ware support. Therefore we propose this approach to demon-
716
+ strate small models are also able to compete with large mod-
717
+ els.
718
+ 6. REFERENCES
719
+ [1] K. Nazeri, E. Ng, T. Joseph, F. Z. Qureshi, and
720
+ M. Ebrahimi, “Edgeconnect:
721
+ Generative image in-
722
+ painting with adversarial edge learning,” arXiv preprint
723
+ arXiv:1901.00212, 2019.
724
+ [2] R. Suvorov, E. Logacheva, A. Mashikhin, A. Remi-
725
+ zova, A. Ashukha, A. Silvestrov, N. Kong, H. Goka,
726
+ K. Park, and V. Lempitsky, “Resolution-robust large
727
+ mask inpainting with fourier convolutions,” in Pro-
728
+ ceedings of the IEEE/CVF Winter Conference on Ap-
729
+ plications of Computer Vision, pp. 2149–2159, 2022.
730
+ [3] X. Dong, J. Bao, D. Chen, W. Zhang, N. Yu, L. Yuan,
731
+ D. Chen, and B. Guo, “Cswin transformer: A general
732
+ vision transformer backbone with cross-shaped win-
733
+ dows,” in Proceedings of the IEEE/CVF Conference on
734
+ Computer Vision and Pattern Recognition, pp. 12124–
735
+ 12134, 2022.
736
+ [4] C. Barnes, E. Shechtman, A. Finkelstein, and D. B.
737
+ Goldman, “Patchmatch:
738
+ A randomized correspon-
739
+ dence algorithm for structural image editing,” ACM
740
+ Trans. Graph., vol. 28, no. 3, p. 24, 2009.
741
+ [5] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang,
742
+ “Free-form image inpainting with gated convolution,”
743
+ in Proceedings of the IEEE/CVF international confer-
744
+ ence on computer vision, pp. 4471–4480, 2019.
745
+ [6] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang,
746
+ “Generative image inpainting with contextual atten-
747
+ tion,” in Proceedings of the IEEE conference on com-
748
+ puter vision and pattern recognition, pp. 5505–5514,
749
+ 2018.
750
+ [7] M. Zhu, D. He, X. Li, C. Li, F. Li, X. Liu, E. Ding, and
751
+ Z. Zhang, “Image inpainting by end-to-end cascaded
752
+ refinement with mask awareness,” IEEE Transactions
753
+ on Image Processing, vol. 30, pp. 4855–4866, 2021.
754
+ [8] Z. Yi, Q. Tang, S. Azizi, D. Jang, and Z. Xu, “Contex-
755
+ tual residual aggregation for ultra high-resolution im-
756
+ age inpainting,” in Proceedings of the IEEE/CVF Con-
757
+ ference on Computer Vision and Pattern Recognition,
758
+ pp. 7508–7517, 2020.
759
+ [9] K. He, X. Chen, S. Xie, Y. Li, P. Doll´ar, and R. Gir-
760
+ shick, “Masked autoencoders are scalable vision learn-
761
+ ers,” in Proceedings of the IEEE/CVF Conference on
762
+ Computer Vision and Pattern Recognition, pp. 16000–
763
+ 16009, 2022.
764
+ [10] C. Zheng, T.-J. Cham, J. Cai, and D. Phung, “Bridg-
765
+ ing global context interactions for high-fidelity image
766
+ completion,” in Proceedings of the IEEE/CVF Con-
767
+ ference on Computer Vision and Pattern Recognition,
768
+ pp. 11512–11522, 2022.
769
+ [11] L. Ding and A. Goshtasby, “On the canny edge detec-
770
+ tor,” Pattern recognition, vol. 34, no. 3, pp. 721–725,
771
+ 2001.
772
+ [12] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong,
773
+ Y. Qiao, and C. Change Loy, “Esrgan: Enhanced super-
774
+ resolution generative adversarial networks,” in Pro-
775
+ ceedings of the European conference on computer vi-
776
+ sion (ECCV) workshops, pp. 0–0, 2018.
777
+ [13] Q. Dong, C. Cao, and Y. Fu, “Incremental transformer
778
+ structure enhanced image inpainting with masking po-
779
+ sitional encoding,” in Proceedings of the IEEE/CVF
780
+ Conference on Computer Vision and Pattern Recogni-
781
+ tion, pp. 11358–11368, 2022.
782
+ [14] G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and
783
+ B. Catanzaro, “Image inpainting for irregular holes us-
784
+ ing partial convolutions,” in Proceedings of the Euro-
785
+ pean conference on computer vision (ECCV), pp. 85–
786
+ 100, 2018.
787
+ [15] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-
788
+ to-image translation with conditional adversarial net-
789
+ works,” in Proceedings of the IEEE conference on
790
+ computer vision and pattern recognition, pp. 1125–
791
+ 1134, 2017.
792
+ [16] Z. Yan, X. Li, M. Li, W. Zuo, and S. Shan, “Shift-net:
793
+ Image inpainting via deep feature rearrangement,” in
794
+ Proceedings of the European conference on computer
795
+ vision (ECCV), pp. 1–17, 2018.
796
+ [17] Y. Ma, X. Liu, S. Bai, L. Wang, A. Liu, D. Tao, and
797
+ E. R. Hancock, “Regionwise generative adversarial im-
798
+ age inpainting for large missing areas,” IEEE Transac-
799
+ tions on Cybernetics, 2022.
800
+ [18] H. Hukkel˚as, F. Lindseth, and R. Mester, “Image in-
801
+ painting with learnable feature imputation,” in DAGM
802
+ German Conference on Pattern Recognition, pp. 388–
803
+ 403, Springer, 2020.
804
+ [19] Y. Zeng, J. Fu, H. Chao, and B. Guo, “Aggregated
805
+ contextual transformations for high-resolution image
806
+ inpainting,” IEEE Transactions on Visualization and
807
+ Computer Graphics, 2022.
808
+ [20] Y. Zeng, Z. Lin, H. Lu, and V. M. Patel, “Cr-fill: Gen-
809
+ erative image inpainting with auxiliary contextual re-
810
+ construction,” in Proceedings of the IEEE/CVF Inter-
811
+ national Conference on Computer Vision, pp. 14164–
812
+ 14173, 2021.
813
+ [21] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simon-
814
+ celli, “Image quality assessment: from error visibility
815
+ to structural similarity,” IEEE transactions on image
816
+ processing, vol. 13, no. 4, pp. 600–612, 2004.
817
+ [22] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and
818
+ O. Wang, “The unreasonable effectiveness of deep
819
+ features as a perceptual metric,” in Proceedings of
820
+
821
+ the IEEE conference on computer vision and pattern
822
+ recognition, pp. 586–595, 2018.
823
+ 7. APPENDIX
824
+ 7.1. Qualitative and Quantitative Results in CelebA
825
+ Dataset
826
+ Datasets For the CelebA, we use the whole dataset of
827
+ CelebA and split them with the ratio of 8:1:1 for the train,
828
+ validation, and test datasets.
829
+ For all of the images in
830
+ CelebA dataset, we only train and test them with image
831
+ size 256×256. For other comparison methods, we use their
832
+ provided pretrained model to perform the test on the same
833
+ dataset as we did.
834
+ Reference State-of-the-Art We compare the proposed
835
+ model with other state-of-the-art methods, which include
836
+ PatchMatch (PM), Contextual Attention (CA) , Shift-net
837
+ (SN), Partial Convolutions (PC), Region-wise (RW), Gated
838
+ Convolution (DeepFill v2), Imputed Convolution (Iconv),
839
+ Aggregated contextual transformations (AOT-GAN), Aux-
840
+ iliary Contextual Reconstruction (CRFill), Bridging Global
841
+ Context Interactions (TFill).
842
+ Result We show the qualitative comparison in Table 4.
843
+ We utilize PSNR and SSIM to assess the performance of
844
+ all compared methods (including our proposed approach)
845
+ on the CelebA dataset in image size 256×256 with irregu-
846
+ lar masks of different masking rates. The required param-
847
+ eters are also shown below each method, where the results
848
+ are tested by ourselves. Although our proposed method lose
849
+ slightly in tiny masks (5% to 10%), we can defeat most of
850
+ compared methods in huge masks. On the other hand, our
851
+ training steps are also less than most methods. Hence, our
852
+ proposed model will surpass them if we have similar re-
853
+ sources as they do. We show the qualitative inpainting re-
854
+ sults of CelebA in Fig. 5. For CelebA, our inpainted results
855
+ are slightly different from the ground-truth image. This hap-
856
+ pens with too much focusing on global information and no
857
+ limitation on local information filling.
858
+ 7.2. Other inpainting images
859
+ We also exhibit more inpainting results in Fig. 6 (Places2)
860
+ and Fig. 7 (CelebA). From top to bottom is small masks to
861
+ the huge masks. Zoom-in for details.
862
+ 7.3. Object Removal
863
+ We additionally conduct object removal experiments in Fig.
864
+ 4.
865
+ Our proposed method did well in target removal and
866
+ background repair. If the background is relatively single, the
867
+ result will be better than the grid background. This means
868
+ our model needs to enhance structure in inpainting images,
869
+ which will be our future research. Our codes are released
870
+ in https://github.com/bobo0303/LIGHTWEIGHT-IMAGE-
871
+ INPAINTING-BY-STRIPE-WINDOW-TRANSFORMER-
872
+ WITH-JOINT-ATTENTION-TO-CNN.
873
+ Fig. 4: Object removal (size 256×256) results. From left to
874
+ right: Original image, mask, object removal result.
875
+
876
+ 3Fig. 5: Inpainting (size 256×256) results of all compared models in the CelebA dataset. From left to right: Masked image, RW,
877
+ DeepFill v2, Iconv, AOT-GAN, CRFill, TFill, and Ours. Zoom-in for details.
878
+ Table 4: Quantitative evaluation of inpainting on CelebA dataset. We report Peak signal-to-noise ratio (PSNR) and structural
879
+ similarity (SSIM) metrics. The ▲ denotes larger, and ▼ denotes lesser of the parameters compared to our proposed model.
880
+ (Bold means the 1st best; Underline means the 2nd best; Italics means the 3rd best)
881
+ CelebA
882
+ PSNR ↑
883
+ SSIM ↑
884
+ Parameters
885
+ x106
886
+ mask
887
+ 5%
888
+
889
+ 10%
890
+ 10%
891
+
892
+ 20%
893
+ 20%
894
+
895
+ 30%
896
+ 30%
897
+
898
+ 40%
899
+ 40%
900
+
901
+ 50%
902
+ 50%
903
+
904
+ 60%
905
+ 5%
906
+
907
+ 10%
908
+ 10%
909
+
910
+ 20%
911
+ 20%
912
+
913
+ 30%
914
+ 30%
915
+
916
+ 40%
917
+ 40%
918
+
919
+ 50%
920
+ 50%
921
+
922
+ 60%
923
+ PM [2009]
924
+ -
925
+ 21.4397
926
+ 21.4637
927
+ 20.5820
928
+ 18.3917
929
+ 17.5311
930
+ 14.1646
931
+ 0.9280
932
+ 0.9094
933
+ 0.8693
934
+ 0.8174
935
+ 0.7731
936
+ 0.6605
937
+ CA [2018]
938
+ 3 ▼
939
+ 34.5586
940
+ 29.5535
941
+ 29.2139
942
+ 25.1065
943
+ 24.3168
944
+ 22.4536
945
+ 0.9551
946
+ 0.9277
947
+ 0.9214
948
+ 0.8223
949
+ 0.8114
950
+ 0.7602
951
+ SN [2018]
952
+ 55 ▲
953
+ 20.7527
954
+ 19.3196
955
+ 18.7572
956
+ 17.1757
957
+ 15.7176
958
+ 15.4753
959
+ 0.8222
960
+ 0.8181
961
+ 0.7620
962
+ 0.6727
963
+ 0.5793
964
+ 0.5373
965
+ PC [2018]
966
+ 49 ▲
967
+ 24.9021
968
+ 23.2179
969
+ 23.3923
970
+ 22.3591
971
+ 21.0050
972
+ 22.4939
973
+ 0.8592
974
+ 0.8463
975
+ 0.8442
976
+ 0.8109
977
+ 0.7653
978
+ 0.7933
979
+ RW [2019]
980
+ 47 ▲
981
+ 33.0057
982
+ 28.5174
983
+ 28.1346
984
+ 24.7360
985
+ 23.9071
986
+ 22.4122
987
+ 0.9612
988
+ 0.9045
989
+ 0.8947
990
+ 0.8177
991
+ 0.7695
992
+ 0.7140
993
+ DeepFill v2 [2019]
994
+ 4 ▼
995
+ 33.2820
996
+ 28.6673
997
+ 28.6339
998
+ 25.1281
999
+ 24.5153
1000
+ 22.5632
1001
+ 0.9723
1002
+ 0.9239
1003
+ 0.8286
1004
+ 0.8651
1005
+ 0.8147
1006
+ 0.7757
1007
+ Iconv [2020]
1008
+ 30 ▲
1009
+ 27.1739
1010
+ 27.1739
1011
+ 26.7287
1012
+ 23.7124
1013
+ 22.8412
1014
+ 21.4760
1015
+ 0.8774
1016
+ 0.8774
1017
+ 0.8629
1018
+ 0.7820
1019
+ 0.7192
1020
+ 0.6660
1021
+ AOT-GAN [2020]
1022
+ 15 ▲
1023
+ 30.9702
1024
+ 28.5580
1025
+ 28.3887
1026
+ 25.1810
1027
+ 24.5387
1028
+ 22.8271
1029
+ 0.9461
1030
+ 0.9145
1031
+ 0.9094
1032
+ 0.8539
1033
+ 0.8214
1034
+ 0.7722
1035
+ CRFill [2021]
1036
+ 4▼
1037
+ 35.1434
1038
+ 29.2685
1039
+ 28.6638
1040
+ 25.6514
1041
+ 24.5170
1042
+ 22.8599
1043
+ 0.9745
1044
+ 0.9293
1045
+ 0.9148
1046
+ 0.8628
1047
+ 0.8160
1048
+ 0.7751
1049
+ TFill [2022]
1050
+ 15▲
1051
+ 32.5255
1052
+ 27.4428
1053
+ 27.0993
1054
+ 23.0947
1055
+ 22.3084
1056
+ 20.5222
1057
+ 0.9662
1058
+ 0.9156
1059
+ 0.9075
1060
+ 0.8316
1061
+ 0.7906
1062
+ 0.7333
1063
+ Ours [2023]
1064
+ 6
1065
+ 31.7816
1066
+ 28.8494
1067
+ 28.7076
1068
+ 25.9073
1069
+ 24.6157
1070
+ 22.9164
1071
+ 0.9466
1072
+ 0.9240
1073
+ 0.9226
1074
+ 0.8713
1075
+ 0.8222
1076
+ 0.7816
1077
+
1078
+ Fig. 6: Other inpainting (size 256×256) results in the Places2 dataset. From left to right: Masked image, RW, DeepFill v2,
1079
+ HiFill, Iconv, AOT-GAN, CRFill, TFill, and Ours. From top to bottom is 5% mask to 60% mask. Zoom-in for details.
1080
+
1081
+ Fig. 7: Other inpainting (size 256×256) results in the CelebA dataset. From left to right: Masked image, RW, DeepFill v2,
1082
+ Iconv, AOT-GAN, CRFill, TFill, and Ours. From top to bottom is 5% mask to 60% mask. Zoom-in for details.
1083
+
1084
+ nupre
1085
+ 50700光
AtAyT4oBgHgl3EQfq_mZ/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
BNE1T4oBgHgl3EQf9Qa6/content/tmp_files/2301.03555v1.pdf.txt ADDED
@@ -0,0 +1,1729 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ENERGY DISTRIBUTION FOR DIRICHLET EIGENFUNCTIONS
2
+ ON RIGHT TRIANGLES
3
+ HANS CHRISTIANSON AND DANIEL PEZZI
4
+ Abstract. In this paper, we continue the study of eigenfunctions on trian-
5
+ gles initiated by the first author in [Chr17] and [Chr19]. The Neumann data
6
+ of Dirichlet eigenfunctions on triangles enjoys an equidistribution law, being
7
+ equidistributed on each side. The proof of this result is remarkably simple,
8
+ using only the radial vector field and a Rellich type integrations by parts. The
9
+ equidistribution law, including on higher dimensional simplices, agrees with
10
+ what Quantum Ergodic Restriction would predict. However, distribution of
11
+ the Neumann data on subsets of a side is not well understood, and elementary
12
+ methods do not appear to give enough information to draw conclusions.
13
+ In the present note, we first show that an “obvious” conjecture fails even
14
+ for the simplest right isosceles triangle using only Fourier series. We then use
15
+ a result of Marklof-Rudnick [MR12] in which the authors show an interior
16
+ spatial equidistribution law for a density-one subsequence of eigenfunctions
17
+ to give an estimate on energy distribution of eigenfunctions on the interior.
18
+ Finally we present some numerical computations suggesting the behaviour of
19
+ eigenfunctions on almost isosceles triangles is quite complicated.
20
+ 1. Introduction
21
+ Eigenfunctions on bounded Euclidean domains are used to model many physical
22
+ and mechanical phenomena, and can be used to construct solutions to separable
23
+ partial differential equations such as wave and Schr¨odinger type equations. The
24
+ study of eigenfunctions and solutions to wave type equations are so closely related
25
+ that concepts like propagation and flow are often used to understand eigenfunctions.
26
+ Since waves propagate along straight lines, it is reasonable to expect eigenfunctions
27
+ to live along straight lines. Since waves meeting a smooth boundary transversally
28
+ reflect according to Snell’s law, eigenfunctions have incoming and outgoing com-
29
+ ponents as well.
30
+ And since waves are very complicated near corners and other
31
+ discontinuities, so are eigenfunctions.
32
+ In this note, we study the distribution of interior energy of eigenfunctions on right
33
+ triangles, which is a measure of phase space concentration. If the billiard flow on a
34
+ reasonable domain is ergodic, then quantum ergodicity [Shn74,Zel87,CdV85,ZZ96]
35
+ implies that a density one subsequence of the eigenfunctions equidistributes in both
36
+ space and phase space. This paper investigates similar properties on triangles, how-
37
+ ever no assumption about classical ergodicity is made, and instead the theoretical
38
+ components of this paper rely on several previous results concerning the distribu-
39
+ tion of Neumann data mass on sides proved by the first author in [Chr17] as well as
40
+ the spatial equidistribution result of Marklof-Rudnick [MR12] on rational polygons.
41
+ There are several results in this paper. First, we use integrations by parts to
42
+ connect interior energy to certain weighted boundary integrals. A comparison with
43
+ 1
44
+ arXiv:2301.03555v1 [math.AP] 9 Jan 2023
45
+
46
+ 2
47
+ H. CHRISTIANSON AND D. PEZZI
48
+ the results in [Chr17] suggests the eigenfunctions have nice phase space distribu-
49
+ tion properties, however this appears to be false. In fact, even on the right isosceles
50
+ triangle, the weighted boundary integrals are subtle, even though the phase space
51
+ distribution follows from symmetry. Second, using the spatial distribution for ratio-
52
+ nal polygons in [MR12], we prove that on rational right triangles there is a density
53
+ one subsequence that has frequency localization estimates, but an asymptotic is
54
+ unclear.
55
+ Finally, we provide some numerical data which suggests the weighted
56
+ boundary integrals do not have an asymptotic, or at least not for the whole se-
57
+ quence of eigenfunctions.
58
+ 2. Theoretical results on right triangles
59
+ Our first set of results is on the right isosceles triangle.
60
+ Theorem 1. Let T be the right isosceles triangle in the xy-plane, oriented as
61
+ T = {0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x}.
62
+ Consider the Dirichlet eigenfunction problem on T:
63
+ (1)
64
+
65
+
66
+
67
+
68
+
69
+ −h2∆u = u, on T,
70
+ u|∂T = 0,
71
+ ∥u∥L2(T ) = 1,
72
+ where ∆ = ∂2
73
+ x + ∂2
74
+ y and h−2 denotes the eigenvalues of −∆, taking discrete values.
75
+ Then there is an orthonormal basis for L2 of eigenfunctions satisfying
76
+ ∥h∂xu∥2
77
+ L2(T ) = ∥h∂yu∥2
78
+ L2(T ) = 1/2.
79
+ On the other hand, there exists a subsequence of these eigenfunctions whose Neu-
80
+ mann data satisfies
81
+ lim inf
82
+ h→0
83
+
84
+ 0≤x≤1/2
85
+ |h∂νu(x, 0)|2dx > lim sup
86
+ h→0
87
+
88
+ 1/2≤x≤1
89
+ |h∂νu(x, 0)|2dx.
90
+ Remark 2. This theorem shows that this sequence of eigenfunctions has a subse-
91
+ quence which is not quantum ergodic on the boundary, even though the eigenfunc-
92
+ tions are weakly equidistributed in phase space.
93
+ Our second main result is about phase space distribution on rational right trian-
94
+ gles. The result is heavily dependent on the choice of orientation for the triangle,
95
+ and rotating the triangle changes the result. This result is then meant merely as
96
+ an example of what one can prove with elementary techniques.
97
+ Let Ω ⊂ R2 be a right triangle, and consider the semiclassical Laplace eigenfunc-
98
+ tion problem (1).
99
+ After rescaling and rotating, assume Ω is oriented so that it can be written as
100
+ Ω = {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ 1 − x
101
+ a}. Let F1, F2, F3 be the sides as in Figure 1.
102
+ We further assume that Ω is rational, meaning that all angles are rational mul-
103
+ tiples of π. A result of Marklof-Rudnick [MR12] shows that in this case, there is a
104
+ density one subsequence of eigenfunctions uj such that
105
+
106
+ U
107
+ |uj|2dV → Area(U)
108
+ Area(Ω)
109
+ as h → 0. We will work with this subsequence, and prove the following Theorem:
110
+
111
+ ENERGY DISTRIBUTION
112
+ 3
113
+ F1
114
+ F2
115
+ F3 = {y = 1 − x
116
+ a}
117
+ 0
118
+ a
119
+ 1
120
+ Figure 1.
121
+ Setup for right triangles
122
+ Theorem 3. Suppose Ω is the right triangle oriented as in Figure 1. Let {uj} be
123
+ the sequence of orthonormal Dirichlet eigenfunctions on Ω. There exists a density
124
+ one subsequence {ujk} such that
125
+ lim sup
126
+ k→∞
127
+
128
+
129
+ |h∂xujk|2dV ≤ 7
130
+ 8.
131
+ Remark 4. We again emphasize that this estimate is highly dependent on the
132
+ orientation of the triangle. The same proof works for the y-derivatives, so that,
133
+ given ϵ > 0, there exists K such that k ≥ K implies
134
+ 1
135
+ 8 − ϵ ≤
136
+
137
+
138
+ |h∂xujk|2dV ≤ 7
139
+ 8 + ϵ.
140
+ A rotation of the triangle into different coordinates (s, t) is
141
+ h∂x = αh∂s + βh∂t, h∂y = −βh∂s + αh∂t,
142
+ where α2 + β2 = 1. Plugging in to our estimate gives
143
+ 1
144
+ 8 − ϵ ≤
145
+
146
+
147
+ |(αh∂s + βh∂t)ujk|2dV ≤ 7
148
+ 8 + ϵ
149
+ and similarly
150
+ 1
151
+ 8 − ϵ ≤
152
+
153
+
154
+ |(−βh∂s + αh∂t)ujk|2dV ≤ 7
155
+ 8 + ϵ.
156
+ Expanding these quantities does not give us much information unless one of α or
157
+ β is close to zero.
158
+ Remark 5. The main idea of the proof is to estimate the mass of h∂xu in strips
159
+ to that of u in strips. We then use this and the results from [Chr17] on Neumann
160
+ data on a whole side to get weak estimates on partial Neumann data.
161
+ 2.1. Quantum Ergodicity. Roughly speaking, quantum ergodicity (QE) for pla-
162
+ nar domains states that if the classical billiard flow is ergodic, then there is a
163
+ density one subsequence of eigenfunctions which equidistribute in phase space
164
+ [Shn74,Zel87,CdV85,ZZ96]. That is, this subsequence of eigenfunctions distributes
165
+ evenly both on the domain and in frequency. The work of Lindenstrauss [Lin06]
166
+ shows that quantum ergodicity can hold for the whole sequence of eigenfunctions,
167
+ called quantum unique ergodicity (QUE). The work of Hassell [Has10] shows that
168
+ QUE can fail, so the question of QUE versus non-QUE is very subtle.
169
+
170
+ 4
171
+ H. CHRISTIANSON AND D. PEZZI
172
+ In related work, Hassell-Zelditch [HZ04] show that the boundary Neumann
173
+ data of Dirichlet (and Dirichlet data of Neumann) eigenfunctions satisfy a nat-
174
+ ural quantum ergodic property, called quantum ergodicity of restrictions (QER).
175
+ Work of Toth-Zeldtich [TZ12,TZ13] extend these results to interior hypersurfaces,
176
+ again along a density one subsequence. The work of the first author and Toth-
177
+ Zelditch [CTZ12] proves that QUE implies quantum unique ergodicity for restric-
178
+ tions (QUER) to interior hypersurfaces, at the expense of needing both the (weighted)
179
+ Dirichlet and Neumann data for the equidistribution.
180
+ In [Chr17] (see also [Chr19] in higher dimensions), the first author proves that
181
+ for any planar triangle, the Neumann data of Dirichlet eigenfunctions satisfies an
182
+ equidistribution identity on each side:
183
+ Theorem 6 ( [Chr17, Chr19]). Let T be a planar triangle with sides A, B, C of
184
+ length a, b, c respectively.
185
+ Consider the (semi-classical) Dirichlet eigenfunction
186
+ problem (1) and assume the eigenfunctions are normalized (||u||2
187
+ L2(T ) = 1).
188
+ Then the (semi-classical) Neumann data on the boundary satisfies
189
+
190
+ A
191
+ |h∂νu|2dS =
192
+ a
193
+ Area(T)
194
+ (2)
195
+
196
+ B
197
+ |h∂νu|2dS =
198
+ b
199
+ Area(T)
200
+ (3)
201
+
202
+ C
203
+ |h∂νu|2dS =
204
+ c
205
+ Area(T)
206
+ (4)
207
+ where h∂ν is the semi-classical normal derivative on ∂T, dS is the arc-length mea-
208
+ sure, and Area(T) is the area of the triangle T.
209
+ Remark 7. This property is called ‘equidistribution’ as the Neumann data on each
210
+ side is proportional to the length of that side, and the quantities are exactly what
211
+ would be predicted if QUER was satisfied on the boundary. However, we stress that
212
+ the integrals need to be over the whole side. Distribution of Neumann data over
213
+ subsets of the sides is the topic of this paper, and indeed Theorem 1 shows this fails
214
+ in the simplest possible case of a right isosceles triangle.
215
+ There are several natural questions that arise based on this result. What can be
216
+ said about the Neumann data on subsets of sides? Can we get an analogous result
217
+ for subsets, even if we only consider results in a high energy limit or subsequences
218
+ of a specific density? What about volume integrals over the same domain?
219
+ To answer these questions in Euclidean space, we will begin by dealing with the
220
+ case of a right isosceles triangle as we have explicit solutions to work with. We will
221
+ then move on to numerical results which will allow us to get data from triangles to
222
+ properly set expectations for these tough analytical problems.
223
+ 2.2. Immediate Questions. Based on this result, this paper is concerned with
224
+ two immediate questions.
225
+ Question 1. Is it true that
226
+ (5)
227
+ ∀ω ⊂ ∂T, lim
228
+ h→0
229
+
230
+ ω
231
+ |h∂νu|2dS →
232
+ m(ω)
233
+ Area(T),
234
+ where m(ω) is the measure of the set ω?
235
+
236
+ ENERGY DISTRIBUTION
237
+ 5
238
+ This is just an extension of the equidistribution result to arbitrary subsets. A
239
+ second obvious question would be the following:
240
+ Question 2. Is it true that
241
+ (6)
242
+ ∀h > 0,
243
+
244
+ T
245
+ |h∂yu|2dV =
246
+
247
+ T
248
+ |h∂xu|2dV = 1
249
+ 2?
250
+ 2.3. Connecting boundary integrals to interior energy. Let us continue to
251
+ work with the right triangle given by Figure 1. We duplicate the argument from
252
+ [Chr17] but with the vector field X = x∂x. The point is that X = 0 on {x = 0}
253
+ and X is tangential on {y = 0}. Along the side F0 = {0 ≤ x ≤ a, 0 ≤ y ≤ 1−x/a}
254
+ we have the tangent derivative is ∂τ = γ−1(a∂x − ∂y) where γ = (1 + a2)1/2. The
255
+ normal derivative is then ∂ν = γ−1(∂x + a∂y). Since u = 0 along F0, we have
256
+ ∂τu = γ−1(a∂x − ∂y)u = 0, or ∂yu = a∂xu on F0. Hence
257
+ ∂νu = γ−1(∂x + a∂y)u = γ−1(1 + a2)∂xu = γ∂xu,
258
+ so that
259
+ ∂xu = γ−1∂νu
260
+ along F0.
261
+ Then using the same integrations by parts as in [Chr17], we have
262
+
263
+
264
+ ([−h2∆ − 1, X]u)¯udV = 2
265
+
266
+
267
+ (−h2∂2
268
+ xu)¯udV = 2
269
+
270
+
271
+ |h∂xu|2dV.
272
+ On the other hand, unpacking the commutator and applying Green’s formula just
273
+ like in [Chr17], we have
274
+
275
+
276
+ ([−h2∆ − 1, X]u)¯udV
277
+ (7)
278
+ =
279
+
280
+ ∂Ω
281
+ (hXu)h∂ν ¯udS
282
+ (8)
283
+ =
284
+
285
+ F0
286
+ x(h∂xu)h∂ν ¯udS
287
+ (9)
288
+ = γ−1
289
+
290
+ F0
291
+ x|h∂νu|2dS.
292
+ (10)
293
+ This shows that, if we knew that the Neumann data along F0 was equidistributed
294
+ on subsets of the side, we would have
295
+ γ−1
296
+
297
+ F0
298
+ x|h∂νu|2dS = 1
299
+ 2γ−1
300
+
301
+ F0
302
+ |h∂νu|2dS.
303
+ From [Chr17] we know the integral on the right is equal to 1. Rearranging, this
304
+ computation would tell us that
305
+
306
+
307
+ |h∂xu|2dV = 1/2,
308
+ however this “obvious” conjecture appears to be false.
309
+ Similar computations with vector fields like X = y∂x connects the quantity
310
+
311
+ Ω(h∂xu)(h∂y¯u)dV to other weighted boundary integrals, so weighted boundary
312
+ integrals are essential to understanding interior energy distribution of eigenfunc-
313
+ tions.
314
+
315
+ 6
316
+ H. CHRISTIANSON AND D. PEZZI
317
+ 3. Analytical Results for Right Isosceles Triangle
318
+ 3.1. Introducing the eigenfunctions on the Right Isosceles Triangle. As
319
+ we have explicit formulas for eigenfunctions of the Laplacian on a right isosceles
320
+ triangle, we will study these functions both to prove conclusively some results and as
321
+ a baseline for results we discuss later on almost isosceles triangles. For this section,
322
+ T will be a triangle in Euclidean space with vertices (0, 0), (1, 0), and (0, 1). For
323
+ the rest of this paper, we will deal with triangles with vertices at the origin and at
324
+ (0, 1). We will identify triangles by the x coordinate of the third vertex, which will
325
+ always be on the positive x-axis.
326
+ Theorem 8. Let T be as previously described. Then the following formula exhausts
327
+ all of the eigenfunctions of the Laplacian on T that satisfy Dirichlet boundary con-
328
+ ditions with m, n ∈ Z, m ̸= n.
329
+ (11)
330
+ umn = cmn sin(nπx) sin(mπy) + dmn sin(mπx) sin(nπy).
331
+ With the additional constraint that cmn = dmn if m and n are of opposite parity
332
+ and cmn = −dmn if m and n have the same parity. Additionally, by normalization,
333
+ c2
334
+ mn = d2
335
+ mn = 4.
336
+ Proof. We will show that these functions are exhaustive, satisfy the boundary con-
337
+ ditions, and satisfy the eigenfunction equation.
338
+ We achieve this expression by
339
+ noticing that reflecting T across the line y = 1 − x gives a square. The eigenfunc-
340
+ tions of the Laplacian on a square are well known, so we know immediately that
341
+ this list is exhaustive. We then just have to check all of the usual requirements to
342
+ verify these are indeed eigenfunctions on the isosceles triangle.
343
+ Clearly x = 0 =⇒ umn = 0 and y = 0 =⇒ umn = 0. Checking y = 1 − x gives
344
+ the following expression:
345
+ umn(x, 1 − x) = cmn sin(nπx) sin(mπ − mπx) + dmn sin(mπx) sin(nπ − nπx)
346
+ (12)
347
+ = (−1)m+1cmn sin(nπx) sin(mπx) + (−1)n+1dmn sin(mπx) sin(nπx)
348
+ (13)
349
+ That umn solves the eigenfunction equation carries over from the fact that these
350
+ are restricted eigenfunctions of the square. A simple computation gives the eigen-
351
+ value as h−2 = π2(n2 + m2) which is the same as in the square case.
352
+
353
+ 3.2. Calculating the Volume Integral for the Right Isosceles Triangle.
354
+ One of the metrics we are interested in is
355
+
356
+ T |h∂yumn|2dV . We will refer to this as
357
+ the “y volume integral” for expository convenience. The derivative integrals and
358
+ the function integrals are related by the equation
359
+
360
+ T |h∂xumn|2 + |h∂yumn|2dV =
361
+
362
+ T |umn|2dV = 1. This expression can be achieved by simple integration by parts,
363
+ as we have
364
+ (14) h2
365
+
366
+ T
367
+ ∂xumn∂xumn+∂yumn∂yumndV =
368
+
369
+ T
370
+ umn(−h2∆umn)dV =
371
+
372
+ T
373
+ u2
374
+ mndV,
375
+ where the boundary terms are zero as we assume Dirichlet boundary conditions
376
+ and the last substitution uses umn being an eigenfunction.
377
+ As quantum ergodicity can be interpreted as most of the eigenfunctions tending
378
+ towards equidistribution, and a consequence of this is the volume integrals of the
379
+
380
+ ENERGY DISTRIBUTION
381
+ 7
382
+ derivatives tending both tending to
383
+ 1
384
+ 2.
385
+ In the simple case of the right isosceles
386
+ triangle, we have equality in L2 norms of ∂xu and ∂yu by symmetry, so we in
387
+ fact have equality for every eigenvalue.
388
+ As the volume metrics are completely
389
+ understood in this case, it is natural to investigate the analogous metrics on the
390
+ boundary as well.
391
+ Later on, the y volume integral will be an important metric throughout this
392
+ paper as a way to test quantum ergodicity. We can calculate an integral over the
393
+ entire domain to test if our functions are quantum ergodic compliant, which is far
394
+ easier numerically than dealing with subsets of the domain.
395
+ 3.3. Showing Equidistribution fails for subsets of the boundary of the
396
+ Right Isosceles Triangle. To begin addressing the question of what happens on
397
+ subsets of sides, we will explore the amount of the Neumann data on one half of the
398
+ side on the x-axis compared to the other. As the sum of the data on both halves of
399
+ the bottom side is constant, we only consider the bottom left face. This calculation
400
+ is the same for the left face, as we have xy symmetry. As such we will define:
401
+ (15)
402
+ Il(m, n) = 1
403
+ 2
404
+ � 1/2
405
+ 0
406
+ |h∂νumn(x, 0)|2dx
407
+ (16)
408
+ Ir(m, n) = 1
409
+ 2
410
+ � 1
411
+ 1/2
412
+ |h∂νumn(x, 0)|2dx.
413
+ We always have Il(m, n) + Ir(m, n) = 1 by the result for Neumann data on the
414
+ entire side in [Chr17]. Il = Ir = 1
415
+ 2 represents equidistribution on the two halves.
416
+ This would not be enough to say the Neumann data is uniformly distributed, but
417
+ we will see almost immediately that equidistribution does not hold even in this
418
+ simple case.
419
+ Theorem 9. There exists m, n such that Il(m, n) ̸= 1
420
+ 2. Moreover, the subsequence
421
+ Il(k, k + 1) converges to a value other than 1/2.
422
+ Proof. On the bottom side the normal derivative is just −∂y. By direct calculation:
423
+ ���h∂νu|y=0
424
+ ���
425
+ 2
426
+ = h2�
427
+ c2
428
+ mnm2π2 sin2(nπx) + 2cmndmnπ2nm sin(nπx) sin(mπx)
429
+ + d2
430
+ mnn2π2 sin2(mπx)
431
+
432
+ ,
433
+ which has the following anti-derivative F (m ̸= n) using basic trig identities:
434
+ F(x) = h2c2
435
+ mnm2π2�1
436
+ 2x −
437
+ 1
438
+ 4nπ sin(2nπx)
439
+
440
+ + h2cmndmnπ2nm
441
+
442
+ 1
443
+ π(n − m) sin(π(n − m)x) −
444
+ 1
445
+ π(n + m) sin(π(n + m)x)
446
+
447
+ + h2d2
448
+ mnn2π2�1
449
+ 2x −
450
+ 1
451
+ 4mπ sin(2mπx)
452
+
453
+ + C
454
+ This lets us calculate explicitly:
455
+
456
+ 8
457
+ H. CHRISTIANSON AND D. PEZZI
458
+ F(0)
459
+ = 0,
460
+ F(1/2)
461
+ = h2π2(c2
462
+ mnm2 + d2
463
+ mnn2)
464
+ 4
465
+ + h2cmndmnπnm
466
+ �sin( 1
467
+ 2π(n − m)
468
+ (n − m)
469
+ − sin( 1
470
+ 2π(n + m))
471
+ (n + m)
472
+
473
+ = 1 + h2cmndmnπnm
474
+ �sin( 1
475
+ 2π(n − m)
476
+ (n − m)
477
+ − sin( 1
478
+ 2π(n + m))
479
+ (n + m)
480
+
481
+ , and
482
+ F(1)
483
+ = h2
484
+ 2 (c2
485
+ mnm2π2 + d2
486
+ mnn2π2) = 2.
487
+ This gives us the following:
488
+ 2Il(m, n) = F(1/2) − F(0)
489
+ = 1 + h2cmndmnπnm
490
+ �sin( 1
491
+ 2π(n − m))
492
+ (n − m)
493
+ − sin( 1
494
+ 2π(n + m))
495
+ (n + m)
496
+
497
+ .
498
+ Note that if m + n is even, then 2Il(m, n) = 1. We will then consider situations
499
+ where m + n is odd, which forces cmndmn = 4 as m + n is odd when m and n have
500
+ different parities. Furthermore, as we push m and n to infinity, the term multiplied
501
+ by
502
+ 1
503
+ n+m will go to 0 as h2 = (π2n2 + π2m2)−1. We will numerically show what
504
+ all of these values are later on, but to construct our subsequence consider mk = k
505
+ and nk = k + 1. This is a subsequence for which the terms multiplied by
506
+ 1
507
+ n−m will
508
+ have the largest magnitude. Restricting to this subsequence and plugging in exact
509
+ values for h2cmndmn gives us:
510
+ 2I1(mk, nk) = 1 + 4(π2(2k2 + 2k + 1))−1π(k2 + k)
511
+
512
+ sin(π
513
+ 2 ) − sin( π
514
+ 2 (2k + 1))
515
+ 2k + 1
516
+
517
+ ∼ 1 + 2
518
+ π + O(k−1)
519
+ This implies that, for this subsequence of proportions Il(k, k + 1), we have that
520
+ Il(k, k + 1) → 1
521
+ 2 + 1
522
+ π ≈ .8183. It is then immediately the case that Ir(k, k + 1) →≈
523
+ .1817.
524
+ This is our subsequence that does not equidistribute on subsets in the
525
+ limit.
526
+
527
+ The lack of equidistribution on subsets of the sides, even in the limit, is more sur-
528
+ prising than the y volume integral result. This contradicts the original conjecture
529
+ that there was a uniform distribution in the limit. In this case the long term behav-
530
+ ior of these proportions can be completely described. The following computation
531
+ is identical to the previous one but done in generality.
532
+ Corollary 10. Let m and n be integers such that n − m = j where j is an odd
533
+ integer. Then we have an explicit formula for Il(m, n).
534
+
535
+ ENERGY DISTRIBUTION
536
+ 9
537
+ Proof. We proceed in the same manner as the previous proof. By plugging in our
538
+ assumed values we have:
539
+ 2Il(m, m + j) = 1 + 4π−1(2m2 + 2mj + j2)−1(m2 + mj)(sin( π
540
+ 2 j)
541
+ j
542
+ − sin( π
543
+ 2 (2m + j))
544
+ 2m + j
545
+ )
546
+ ∼ 1 + δ(j) 2
547
+ jπ + O(m−1)
548
+ and therefore
549
+ Il(m, n) ∼ 1
550
+ 2(1 + δ(j) 2
551
+ jπ + O(k−1))
552
+ Ir(m, n) ∼ 1
553
+ 2(1 − δ(j) 2
554
+ jπ + O(k−1)),
555
+ where δ(j) = 1 if j ≡ 1 (mod 4) and δ(j) = −1 if j ≡ 3 (mod 4).
556
+ ���
557
+ This computation also shows that, in the limit, the running average of these two
558
+ values will both be 1/2. The subsequence of m, n such that they are separated by
559
+ a fixed integer is density 0 in the sequence of m, n. We can also see that the limit
560
+ of these subsequences, Il(m, m + j), Ir(m, m + j) goes to 1/2 when we take the
561
+ separation integer k to infinity. This ensures via a straightforward limit argument
562
+ that the running average of each piece also goes to 1/2.
563
+ The reason for this can clearly be seen in the explicit computations, as m, n values
564
+ that are close together produce disturbances whose magnitude is not changed when
565
+ m and n are pushed to infinity so long as that separation is maintained. However,
566
+ encountering m and n pairs with that separation becomes less and less likely as m
567
+ and n increase. Numerically we have verified all of this with our solver.
568
+ These two plots are not exactly the same as the direct calculation orders points
569
+ differently. Moreover, the accuracy of the boundary integrals, especially because
570
+ we are dividing them, is not enough to perfectly align these graphs.
571
+ This result establishes that equidistribution fails even on simple subsets of simple
572
+ triangles. In this next section we will expand this result to state these proportions
573
+ need not even be bounded.
574
+
575
+ 10
576
+ H. CHRISTIANSON AND D. PEZZI
577
+ (a) Computed Bottom Left Neumann Data
578
+ for the Right Isosceles
579
+ (b) Plot of Bottom Left Neumann Data using
580
+ Derived Formula
581
+ Figure 2. Bottom Bottom Left Neumann Data Plots: Computed
582
+ and Analytical
583
+ 4. Proof of Theorem 3
584
+ In this section, we use the result of Marklof-Rudnick [MR12] to prove Theorem
585
+ 3. The idea is to compare the integrals of |h∂xu|2 to those of |u|2 in strips in the
586
+ triangle, and then use the results from [Chr17] to compare the integrals of |h∂xu|2
587
+ to boundary integrals of Neumann data.
588
+ Proof. We drop the subscript and subsequence notation and simply write u for our
589
+ density one subsequence.
590
+ On side F1, the normal derivative is ∂ν = −∂x, and F2 the normal derivative
591
+ is ∂ν = −∂y, and on F3, the tangent derivative is ∂τ = γ−1(a∂x − ∂y) and the
592
+ normal derivative is ∂ν = γ−1(∂x + a∂y). Here γ = (1 + a2)
593
+ 1
594
+ 2 is the normalizing
595
+ constant. That means that on F1, ∂yu = 0, on F2 ∂xu = 0, and on F3, ∂xu = 1
596
+ γ ∂νu,
597
+ ∂yu = a
598
+ γ ∂ν as usual.
599
+ Fix 0 < β < a and δ > 0 independent of h, with δ sufficiently small that
600
+ 0 < β − δ2 < β + δ < β + δ + δ2 < a. Let χ(x) be a smooth function satisfying
601
+
602
+ 306090Triangle-BottomLeftNeumannData-200nodes
603
+ 6'0
604
+ 0.8
605
+ 0
606
+ Data
607
+ 0.7
608
+ ofNeumann[
609
+ 0.6
610
+ Fraction
611
+ 0.4
612
+ 0.3
613
+ 0.2
614
+ 0.1
615
+ 0
616
+ 0
617
+ 200
618
+ 400
619
+ 600
620
+ 800
621
+ 1000
622
+ 1200
623
+ EigenvalueNumberDirectCalculationofBottomLeftData
624
+ 6'0
625
+ 0.8
626
+ 1 of Neumann Data
627
+ 0.7
628
+ 0.6
629
+ 0.4
630
+ 000000000000
631
+ 0.3
632
+ 0.2
633
+ 0.1
634
+ 0
635
+ 0
636
+ 200
637
+ 400
638
+ 600
639
+ 800
640
+ 1000
641
+ 1200
642
+ EigenvalueNumberENERGY DISTRIBUTION
643
+ 11
644
+ 0
645
+ β − δ2
646
+ β
647
+ β + δ
648
+ β + δ + δ2
649
+ a
650
+ Figure 3.
651
+ The function χ.
652
+ • χ(x) ≡ 0 for 0 ≤ x ≤ β − δ2,
653
+ • χ(x) ≡ 1 for β + δ + δ2 ≤ x ≤ a,
654
+ • χ′(x) ≥ 0,
655
+ • χ′ = 1
656
+ δ + O(δ) for β ≤ x ≤ β + δ.
657
+ See Figure 3 for a sketch of such a function.
658
+ Let X = χ(x)∂x, and run the usual Rellich commutator argument as in [Chr17]:
659
+
660
+ ([−h2∆ − 1, X]u)¯udV = −2
661
+
662
+ (χ′h2∂2
663
+ xu)¯udV + O(h) = 2
664
+
665
+ χ′|h∂xu|2dV + O(h).
666
+ Let Ωβ = Ω ∩ {β − δ2 ≤ x ≤ β + δ + δ2} so that supp χ′ ⊂ Ωβ.
667
+ Further let
668
+ ˜Ωβ = Ω ∩ {β ≤ x ≤ β + δ} so that χ′ = δ−1 + O(δ) on ˜Ωβ.
669
+ We write
670
+ 2
671
+
672
+
673
+ χ′|h∂xu|2dV = 2
674
+
675
+ Ωβ
676
+ χ′|h∂xu|2dV
677
+ ≤ 2
678
+
679
+ Ωβ
680
+ χ′(|h∂xu|2 + |h∂yu|2)dV
681
+ = 2
682
+
683
+ Ωβ
684
+ χ′(−h2∆u)¯udV + O(h)
685
+ = 2
686
+
687
+ Ωβ
688
+ χ′|u|2dV + O(h)
689
+ ≤ 2(δ−1 + O(δ))
690
+
691
+ Ωβ
692
+ |u|2dV + O(h).
693
+ We have
694
+ Area(Ωβ) =
695
+
696
+ 1 − (β−δ2)
697
+ a
698
+ + 1 − (β+δ+δ2)
699
+ a
700
+ 2
701
+
702
+ (δ + 2δ2) = (1 − β
703
+ a )δ + O(δ2).
704
+ Hence
705
+ Area(Ωβ)
706
+ Area(Ω) = (1 − β
707
+ a)δ
708
+ a/2
709
+ + O(δ2).
710
+ Then the result of Marklof-Rudnick [MR12] implies
711
+ 2(δ−1 + O(δ))
712
+
713
+ Ωβ
714
+ |u|2dV = 4(1 − β
715
+ a)
716
+ a
717
+ + O(δ) + o(1),
718
+
719
+ 12
720
+ H. CHRISTIANSON AND D. PEZZI
721
+ so that
722
+ (17)
723
+
724
+ ([−h2∆ − 1, X]u)¯udV ≤ 4(1 − β
725
+ a)
726
+ a
727
+ + O(δ) + o(1).
728
+ On the other hand,
729
+
730
+ ([−h2∆ − 1, X]u)¯udV =
731
+
732
+ ∂Ω
733
+ χ(x)(h∂xu)h∂ν ¯udS.
734
+ On F1, χ(0) = 0 and on F2, ∂x is tangential, so ∂xu = 0. On F3, ∂xu = γ−1∂νu, so
735
+ that
736
+
737
+ ([−h2∆ − 1, X]u)¯udV = γ−1
738
+
739
+ F3
740
+ χ(x)|h∂νu|2dS.
741
+ Putting this together,
742
+ (18)
743
+ γ−1
744
+
745
+ F3
746
+ χ(x)|h∂νu|2dS ≤ 4
747
+ a(1 − β
748
+ a ) + O(δ) + o(1).
749
+ We will use (18) to estimate the Neumann data on part of F3. Since χ ≡ 1 on
750
+ {β + δ + δ2 ≤ x ≤ a}, we have
751
+ (19)
752
+ γ−1
753
+
754
+ F3∩{β+δ+δ2≤x≤a}
755
+ |h∂νu|2dS ≤ γ−1
756
+
757
+ F3
758
+ χ(x)|h∂νu|2dS ≤ 4
759
+ a(1−β
760
+ a )+O(δ)+o(1).
761
+ We now use another commutator type argument to compare the mass of h∂xu
762
+ on the whole triangle to the Neumann data on part of the boundary. To that end,
763
+ let X = (1 − x/a)∂x. Then [−h2∆ − 1, X] = 2a−1h2∂2
764
+ x so that
765
+
766
+
767
+ ([−h2∆ − 1, X]u)¯udV = 2
768
+ a
769
+
770
+
771
+ (h2∂2
772
+ xu)¯udV = −2
773
+ a
774
+
775
+
776
+ |h∂xu|2dV.
777
+ On the other hand,
778
+
779
+
780
+ ([−h2∆ − 1, X]u)¯udV =
781
+
782
+ ∂Ω
783
+ (1 − x/a)h∂xuh∂ν ¯udS.
784
+ On F1, x = 0 so X = ∂x = −∂ν. On F2, ∂x is tangential, so that Xu = 0 on F2.
785
+ On F3, we have ∂xu = γ−1∂νu as before. That means
786
+
787
+ ∂Ω
788
+ (1 − x/a)h∂xuh∂ν ¯udS = −
789
+
790
+ F1
791
+ |h∂νu|2dS + γ−1
792
+
793
+ F3
794
+ (1 − x/a)|h∂νu|2dS.
795
+ From [Chr17], we know
796
+
797
+ F1 |h∂νu|2dS = 2
798
+ a, so that
799
+
800
+ ∂Ω
801
+ (1 − x/a)h∂xuh∂ν ¯udS = −2
802
+ a + γ−1
803
+
804
+ F3
805
+ (1 − x/a)|h∂νu|2dS.
806
+ Rearranging, we have
807
+ (20)
808
+ 2
809
+ a
810
+
811
+
812
+ |h∂xu|2dV = 2
813
+ a − γ−1
814
+
815
+ F3
816
+ (1 − x/a)|h∂νu|2dS.
817
+ To get an upper bound on the left hand side, we need a lower bound on the
818
+ integral
819
+ γ−1
820
+
821
+ F3
822
+ (1 − x/a)|h∂νu|2dS,
823
+
824
+ ENERGY DISTRIBUTION
825
+ 13
826
+ which we do by comparing to the part of the boundary isolated by our cutoff
827
+ function χ. χ(x) ≡ 1 for x ≥ β + δ + δ2, and we have an upper bound on the
828
+ boundary data in this range, not a lower bound. We write
829
+ γ−1
830
+
831
+ F3
832
+ (1 − x/a)|h∂νu|2dS
833
+ (21)
834
+ = γ−1
835
+
836
+ F3∩{x≥β+δ+δ2}
837
+ (1 − x/a)|h∂νu|2dS
838
+ + γ−1
839
+
840
+ F3∩{x≤β+δ+δ2}
841
+ (1 − x/a)|h∂νu|2dS
842
+ ≥ (1 − (β + δ + δ2)/a)γ−1
843
+
844
+ F3∩{x≤β+δ+δ2}
845
+ |h∂νu|2dS.
846
+ We have
847
+ γ−1
848
+
849
+ F3∩{x≤β+δ+δ2}
850
+ |h∂νu|2dS
851
+ = γ−1
852
+
853
+ F3
854
+ |h∂νu|2dS − γ−1
855
+
856
+ F3∩{x≥β+δ+δ2}
857
+ |h∂νu|2
858
+ and now our upper bound (19) in the region x ≥ β + δ + δ2 is useful. Again using
859
+ the main result from [Chr17], we have
860
+ γ−1
861
+
862
+ F3
863
+ |h∂νu|2dS = 2
864
+ a,
865
+ so
866
+ γ−1
867
+
868
+ F3∩{x≤β+δ+δ2}
869
+ |h∂νu|2dS
870
+ = γ−1
871
+
872
+ F3
873
+ |h∂νu|2dS − γ−1
874
+
875
+ F3∩{x≥β+δ+δ2}
876
+ |h∂νu|2
877
+ ≥ 2
878
+ a − 4
879
+ a(1 − β
880
+ a ) + O(δ) + o(1).
881
+ Plugging into (21), we have
882
+ γ−1
883
+
884
+ F3
885
+ (1 − x/a)|h∂νu|2dS
886
+ ≥ (1 − (β + δ + δ2)/a)γ−1
887
+
888
+ F3∩{x≤β+δ+δ2}
889
+ |h∂νu|2dS
890
+ ≥ (1 − (β + δ + δ2)/a)
891
+ �2
892
+ a − 4
893
+ a(1 − β
894
+ a ) + O(δ) + o(1)
895
+
896
+ .
897
+ Combining with (20), we have
898
+ 2
899
+ a
900
+
901
+
902
+ |h∂xu|2dV = 2
903
+ a − γ−1
904
+
905
+ F3
906
+ (1 − x/a)|h∂νu|2dS
907
+ ≤ 2
908
+ a − (1 − (β + δ + δ2)/a)(2
909
+ a − 4
910
+ a(1 − β
911
+ a ) + O(δ) + o(1))
912
+
913
+ 14
914
+ H. CHRISTIANSON AND D. PEZZI
915
+ and rearranging,
916
+
917
+
918
+ |h∂xu|2dV ≤ 1 − (1 − (β + δ + δ2)/a)(1 − 2(1 − β
919
+ a ) + O(δ) + o(1)
920
+ = 1 − (1 − β/a)(1 − 2(1 − β/a)) + O(δ) − o(1).
921
+ (22)
922
+ Optimizing in the variable (1 − β/a) gives (1 − β/a) = 1/4, or
923
+
924
+
925
+ |h∂xu|2dV ≤ 1 − (1/4)(1/2) = 7/8 + O(δ) + o(1)
926
+ as asserted in the Theorem.
927
+
928
+ Remark 11. The biggest loss in the proof is from brutally estimating the integral of
929
+ |h∂xu|2 in strips by the integral of |u|2, which is clearly a very crude estimate. It is
930
+ nevertheless interesting to note that if we knew that the integral of |h∂xu|2 in strips
931
+ was half that of |u|2, which would be predicted by quantum ergodicity, the proof still
932
+ does not give the expected estimate on the whole triangle. Indeed, in (17), quantum
933
+ ergodicity would have given 2 (1− β
934
+ a )
935
+ a
936
+ + O(δ) + o(1) instead of 4 (1− β
937
+ a )
938
+ a
939
+ + O(δ) + o(1).
940
+ As in the end of the proof, this would give
941
+
942
+
943
+ |h∂xu|2dV ≤ 1 − (1 − β/a)(1 − (1 − β/a)) + O(δ) − o(1)
944
+ in place of (22). Optimizing again in the variable (1−β/a) yields (1−β/a) = 1/2,
945
+ for a bound of 3/4+O(δ)+o(1). So even if we knew more aboud energy distribution
946
+ compared to distribution, the techniques of proof in this paper give an unsatisfactory
947
+ answer.
948
+ Remark 12. Note this is particular to triangles. Indeed, if Ω = [0, π]2, a basis
949
+ of eigenfunctions consists of umn = cmn sin(mx) sin(ny), where cmn = 2/π is the
950
+ appropriate normalization constant. Let U ⊂ Ω be an open set. We have
951
+
952
+ U
953
+ |u|2dV =
954
+
955
+ U
956
+ |cmn|2(1/2 − 1/2 cos(2mx))(1/2 − 1/2 cos(2ny))dV
957
+ = π−2
958
+
959
+ U
960
+ (1 − cos(2mx) − cos(2nx) + cos(2mx) cos(2ny))dV
961
+ = Area(U)
962
+ Area(Ω) + O(m−1 + n−1).
963
+ On the other hand,
964
+
965
+
966
+ |h∂xu|2dV =
967
+
968
+
969
+ h2m2(4/π2)| cos(mx) sin(ny)|2dV = h2m2,
970
+ and similarly
971
+
972
+ Ω |h∂yu|2dV = h2n2.
973
+ Suppose we are interested in {n ≥ Mm} for large M. Then #{m2 + n2 ≤ R2 :
974
+ n ≥ Mm} ∼ R2/M, so has density ∼ 1/M > 0, but
975
+
976
+ Ω |h∂xu|2dV ≤ M −2.
977
+ This shows that these eigenfunctions with n ≥ Mm satisfy the spatial equidistri-
978
+ bution as in Marklof-Rudnick:
979
+
980
+ U
981
+ |u|2dV = Area(U)
982
+ Area(Ω) + O(Mh)
983
+ but do not have the frequency lower bound property
984
+
985
+ Ω |h∂xu|2dV ≥ 1/8.
986
+
987
+ ENERGY DISTRIBUTION
988
+ 15
989
+ 5. An Almost Right Isosceles Triangle
990
+ With the right isosceles case taken care of, it is natural to see what happens
991
+ when the domain is perturbed slightly. We will investigate the ’.99 triangle’, or,
992
+ the triangle with vertices {(0, 0), (0, 1), (.99, 0)}.
993
+ Analytical solutions cannot be
994
+ found, but we can use numerical techniques. Using FreeFEM, an online tool for
995
+ using the finite element method to solve PDEs, we have calculated the first 1250
996
+ eigenfunctions and plotted their relevant data.
997
+ Figure 4. .99 Triangle - 1250 Eigenvalues - Y Volume Integral
998
+ and and Bottom Left Neumann plots
999
+ By inspection, these plots have far more going on than the right isosceles case.
1000
+ The y volume integral plot is no longer constant, and in fact has some noticeable
1001
+ structure. There are at least two, and possibly a third, branches. These branches
1002
+ correspond to subsequences of eigenfunctions whose y volume integrals seem to not
1003
+ approach 1
1004
+ 2. There is also a large band with sizable separation from 1
1005
+ 2. As the energy
1006
+ increases, even the less unusual eigenfunctions that have y volume integrals seem
1007
+ to be spreading out from the value of 1
1008
+ 2. These behaviors are discussed numerically
1009
+ in the next section.
1010
+ The second plot shows the values of Il(m, n) for the .99 triangle, with the adjust-
1011
+ ment of the bounds of integration from (0, 1/2) to (0, .495). Some of the structure
1012
+
1013
+ 99Triangle-YVolumeIntegral-425nodes
1014
+ 7
1015
+ 0.9
1016
+ 0.8
1017
+ Calcuated Y Volume Integral
1018
+ 0.7
1019
+ 0.6
1020
+ 0.5
1021
+ 0.4
1022
+ 0.3
1023
+ 0.2
1024
+ 0.1
1025
+ 0
1026
+ 0
1027
+ 200
1028
+ 400
1029
+ 600
1030
+ 800
1031
+ 1000
1032
+ 1200
1033
+ EigenvalueNumber99Triangle-BottomLeftNeumannData-425nodes
1034
+ 0
1035
+ 00
1036
+ 0.9
1037
+
1038
+ 0.8
1039
+ Data
1040
+ 200
1041
+ 0.7
1042
+ O
1043
+ 0
1044
+ 0
1045
+ 0.6
1046
+ 0.4
1047
+ 0.3
1048
+ 0.2
1049
+ 0.1
1050
+ 0
1051
+ 0
1052
+ 200
1053
+ 400
1054
+ 600
1055
+ 800
1056
+ 1000
1057
+ 1200
1058
+ EigenvalueNumber16
1059
+ H. CHRISTIANSON AND D. PEZZI
1060
+ of the plots is carried over from the y volume integral case, but it is less coherent.
1061
+ Moreover, there seem to be subsequences whose bottom left side Neumann data
1062
+ integrals are approaching 1, which indicates that all of the Neumann data is con-
1063
+ gregating on one half of the bottom side. This suggests that even a lower bound
1064
+ for Neumann data on subsets of the boundary may not be possible, at least not for
1065
+ every sequence of eigenfunctions.
1066
+ We have verified that the two branches which are apparent in the y volume
1067
+ integral plot are comprised of the same eigenfunctions whose bottom left Neumann
1068
+ integrals approach 1. Similar pictures for other triangles mentioned throughout
1069
+ this paper are in an appendix.
1070
+ 6. Statistical Analysis of Eigenfunctions on Almost Isosceles Right
1071
+ Triangles
1072
+ In this section, we introduce several new metrics for measuring how far a sequence
1073
+ of eigenfunctions is from having QE or QER type properties.
1074
+ 6.1. Introducing Running Averages. Statements about quantum ergodicity al-
1075
+ low for exceptional zero density subsequences. For the y volume integral, we think
1076
+ of 1/2 as signifying quantum ergodicity but, if the domain was truly ergodic, it is
1077
+ more accurate to state that every positive density subsequence needs to have a run-
1078
+ ning average that converges to 1/2. Or mathematically, for density 1 subsequence
1079
+ uik:
1080
+ (23)
1081
+ aj = 1
1082
+ j
1083
+ j
1084
+
1085
+ k=1
1086
+
1087
+ T
1088
+ |h∂yuik|2dV → 1
1089
+ 2.
1090
+ We can also say something similar about the proportion of Neumann data on
1091
+ a given side.
1092
+ Here, if the domain was indeed ergodic, for every subsequence of
1093
+ proportions, Il(mj, nj), with positive density we have:
1094
+ (24)
1095
+ 1
1096
+ j
1097
+ j
1098
+
1099
+ k=1
1100
+ Il(mj, nj) → 1
1101
+ 2
1102
+ The same is of course true for any data defined similarly on subsets of the
1103
+ boundary.
1104
+ 6.2. Running Averages of Computed Runs. While numerics are never going
1105
+ to be able to answer questions like this definitively, they can more accurately set
1106
+ expectations. Here are the average values of different metrics from every run done
1107
+ throughout this project.
1108
+ The ’y volume integral’ and ’Proportion Bottom Left’
1109
+ metrics are the ones used throughout this paper. A larger node count represents an
1110
+ increase in accuracy, but we found diminishing returns in increasing node counts in
1111
+ our numerics. As such, we considered 200 to be sufficient. Values were computed
1112
+ for the first 1250 eigenfunctions.
1113
+
1114
+ ENERGY DISTRIBUTION
1115
+ 17
1116
+ Triangle
1117
+ Nodes
1118
+ y volume integral
1119
+ Proportion of Bottom Left
1120
+ .99
1121
+ 425
1122
+ .4998
1123
+ .5083
1124
+ .98
1125
+ 200
1126
+ .4996
1127
+ .5098
1128
+ .97
1129
+ 200
1130
+ .4996
1131
+ .5103
1132
+ .96
1133
+ 200
1134
+ .4993
1135
+ .5097
1136
+ .95
1137
+ 200
1138
+ .4992
1139
+ .5100
1140
+ The overall trend is consistent across metrics. The further we get from the right
1141
+ isosceles triangle, the farther the metrics get from the values quantum ergodicity
1142
+ would predict. This is not enough evidence to suggest that these averages converge
1143
+ to a value other than what would be expected if the domain was ergodic, but it does
1144
+ heavily suggest that convergence is at least slower the farther away from isosceles
1145
+ the triangle is.
1146
+ 6.3. Percentage of Eigenfunctions Approach. The issue with the methods
1147
+ previously described in this chapter is that they do not get to the heart of what
1148
+ we want. Running averages can be influenced, especially at these frequencies, by
1149
+ density zero subsequences which are interesting but not definitive evidence that
1150
+ the domain itself is not ergodic. In service of trying to determine whether these
1151
+ experiments would cause us to expect a positive density subsequence that converges
1152
+ to an unexpected value, we instead shift our focus to percentages of eigenfunctions.
1153
+ Statements about the density of sequences are extensions of the familiar discrete
1154
+ concept of percentages. They are statements about how common we would expect
1155
+ that particular subsequence to be. A density 1 subsequence, in the high-frequency
1156
+ limit, would be expected to appear for almost every value. As these are limits,
1157
+ there is substantial wiggle room.
1158
+ We can use this concept to develop metrics that could indicate whether posi-
1159
+ tive density subsequences of the desired properties exist. Suppose we thought the
1160
+ running average of the y volume integrals for the .99 triangle converged to a value
1161
+ less than .5. Then it would be sufficient to show for every finite N, some fixed
1162
+ ϵ > 0, and some other fixed δ > 0, that the percentage of the first N eigenfunctions
1163
+ which have an y volume integral less than .5 − ϵ is larger than δ for every N. If
1164
+ this condition was met, than the subsequence of all eigenfunctions whose y volume
1165
+ integral is less than .5 − ϵ would have a density greater than δ. This would show
1166
+ that the domain itself was not ergodic.
1167
+ Of course, there is nothing special about viewing the percentage of eigenfunctions
1168
+ below a certain threshold. Because we only need a subsequence of positive density,
1169
+ we can consider all eigenfunctions that have y volume integrals sufficiently far away
1170
+ from .5. In the interest of having a metric that is equally valid regardless of the
1171
+ distribution of y volume integral values, we consider the running percentage of
1172
+ eigenfunctions such that
1173
+ (25)
1174
+ ���
1175
+
1176
+ T
1177
+ |h∂yu|2 − .5
1178
+ ��� > ϵ
1179
+ for varying tolerances ϵ. The values for a selection of runs are in the following table.
1180
+
1181
+ 18
1182
+ H. CHRISTIANSON AND D. PEZZI
1183
+ Figure 5. Running Percentage Graph - Shows monotonic and
1184
+ asymptotic behavior
1185
+ Figure 6. Running Percentage Graph - Shows monotonic and
1186
+ asymptotic behavior
1187
+ Triangle
1188
+ ϵ = .01
1189
+ ϵ = .005
1190
+ ϵ = .001
1191
+ .99
1192
+ 80.32
1193
+ 84.64
1194
+ 98.8
1195
+ .98
1196
+ 82.9
1197
+ 93.0
1198
+ 99.3
1199
+ .97
1200
+ 89.1
1201
+ 95.7
1202
+ 99.6
1203
+ .96
1204
+ 91.0
1205
+ 95.6
1206
+ 99.04
1207
+ .95
1208
+ 92.7
1209
+ 96.6
1210
+ 99.52
1211
+ Perhaps more interesting than the exact numerical values are the trends. All of
1212
+ the graphs for all three thresholds for the .99, .98, .97, .96 and .95 triangles have
1213
+ the same fundamental shape: increasing with a vertical asymptote.
1214
+ 6.4. Establishing Triangles with Different Behavior. An interesting test case
1215
+ is the 30-60-90 triangle. Despite having the spatial equidistribution property from
1216
+ being a rational planar polygon, it is known to be integrable. This triangle has
1217
+
1218
+ pointNineNineTriangle: Percent of dy integrals outside 0.01 threshhold
1219
+ 100
1220
+ 90
1221
+ 80
1222
+ 70
1223
+ 09
1224
+ 50
1225
+ 40
1226
+ 30
1227
+ 20
1228
+ 10
1229
+ 0
1230
+ 0
1231
+ 200
1232
+ 400
1233
+ 600
1234
+ 800
1235
+ 1000
1236
+ 1200
1237
+ 1400pointNineNineTriangle: Percent of dy integrals outside 0.0o5 threshhold
1238
+ 100
1239
+ 90
1240
+ 80
1241
+ 70
1242
+ 09
1243
+ 50
1244
+ 40
1245
+ 30
1246
+ 20
1247
+ 10
1248
+ 0
1249
+ 0
1250
+ 200
1251
+ 400
1252
+ 600
1253
+ 800
1254
+ 1000
1255
+ 1200
1256
+ 1400ENERGY DISTRIBUTION
1257
+ 19
1258
+ Figure 7. Running Percentage Graph - Shows monotonic and
1259
+ asymptotic behavior
1260
+ a lot of symmetries, reflecting it over the y-axis gives the equilateral triangle for
1261
+ example, which is what leads to its integrability. By looking at triangles that are
1262
+ close to the 30-60-90, we can see how sensitive these numerics are.
1263
+ We ran two runs with a bottom length of .575 and .58. The bottom length of
1264
+ the 30-60-90 is
1265
+ 1
1266
+
1267
+ 3 ≈ .5774, so these other triangles are close the the 30-60-90 but
1268
+ do not enjoy the geometric symmetries that have such a profound effect on the
1269
+ eigenfunctions. They produced the following results:
1270
+ Triangle
1271
+ ϵ = .01
1272
+ ϵ = .005
1273
+ ϵ = .001
1274
+ .58
1275
+ 42.6
1276
+ 65.0
1277
+ 96.8
1278
+ 30-60-90
1279
+ 11.7
1280
+ 16.4
1281
+ 30.9
1282
+ .575
1283
+ 41.8
1284
+ 61.1
1285
+ 97.2
1286
+ Not only are the percentages noticeably lower than the other triangles, the shape
1287
+ of the running percentage scatter plot indicates that these numbers are decreasing
1288
+ significantly as the number of eigenvalues increases. This is the type of behavior
1289
+ that would be expected for an ergodic domain, but we see behaviors more in line
1290
+ with the previously discussed runs for the two triangles that are close to the 30-60-
1291
+ 90. This complicates our interpretation, as we have a non-ergodic triangle that is
1292
+ displaying behavior that would be expected of an ergodic domain.
1293
+ 7. Accuracy and Sanity Checks
1294
+
1295
+ pointNineNineTriangle: Percent of dy integrals outside 0.001 threshhold
1296
+ 100
1297
+ 90
1298
+ 80
1299
+ 70
1300
+ 09
1301
+ 50
1302
+ 40
1303
+ 30
1304
+ 20
1305
+ 10
1306
+ 0
1307
+ J
1308
+ 0
1309
+ 200
1310
+ 400
1311
+ 600
1312
+ 800
1313
+ 1000
1314
+ 1200
1315
+ 140020
1316
+ H. CHRISTIANSON AND D. PEZZI
1317
+ (a) 30-60-90 - 450 Nodes - 1000 Eigenvalues
1318
+ (b) .58 triangle - 200 Nodes - 1250 Eigenval-
1319
+ ues
1320
+ 7.1. Mesh Convergence Test. Confidence in our numerics increases if we can
1321
+ show convergence in accuracy metrics as our mesh is refined. To test this, we chose
1322
+ two metrics: one for the eigenvalue and one for the eigenfunctions.
1323
+ The maximum eigenvalue difference is simply the largest difference between
1324
+ eigenvalues computed on the different meshes. The L2 running average is the run-
1325
+ ning average of the L2 norm of the difference between the eigenfunctions computed
1326
+ on different meshes. To evaluate this difference, the higher accuracy function is
1327
+ interpolated on the coarser mesh. This adds another source of inaccuracy.
1328
+ We compared the 256 node calculations to the 128, 64, and 32 node calculations
1329
+ for the .99 triangle. The first 1000 eigenvalues and eigenfunctions were computed.
1330
+ The table below shows clear convergence on both metrics.
1331
+ Comparison
1332
+ Max Eval Diff.
1333
+ L2 Running Avg.
1334
+ 256 and 128
1335
+ 8.87
1336
+ .0091
1337
+ 256 and 64
1338
+ 122.23
1339
+ .0838
1340
+ 256 and 32
1341
+ 377.87
1342
+ .4762
1343
+ The 1000th Eigenvalue has a magnitude of around 30,000, so a maximum differ-
1344
+ ence of 8.87 corresponds to about a .03% difference. This shows we are not gaining
1345
+ a substantial amount of accuracy doubling the perimeter node count once we pass
1346
+
1347
+ 306090Triangle:Percentofdyintegralsoutside0.01threshhold
1348
+ 1 [
1349
+ 0.9
1350
+ 0.8
1351
+ 0.7
1352
+ 0.6
1353
+ 0.5
1354
+ 0.4
1355
+ 0.3
1356
+ 0.2
1357
+ 0.1
1358
+ 0
1359
+ 100
1360
+ 200
1361
+ 300
1362
+ 400
1363
+ 500
1364
+ 600
1365
+ 700
1366
+ 800
1367
+ 006
1368
+ 1000pointFiveEightTriangle: Percent of dy integrals outside 0.01 threshhold
1369
+ 0.9
1370
+ 0.8
1371
+ 0.7
1372
+ 0.6
1373
+ 0.5
1374
+ 0.4
1375
+ 0.3
1376
+ 0.2
1377
+ 0
1378
+ 200
1379
+ 400
1380
+ 600
1381
+ 800
1382
+ 1000
1383
+ 1200
1384
+ 140021
1385
+ a certain threshold. This gives us confidence that our numerical experiment is well
1386
+ behaved.
1387
+ 7.2. Reported Errors. FreeFEM itself can also report errors. It does this in 3
1388
+ types, the relative error, absolute error, the backward error. All of these errors are
1389
+ generally monotonically increasing, so we will just report the error on the 1250th
1390
+ eigenvalue.
1391
+ Error Type
1392
+ Value
1393
+ Absolute Error
1394
+ 8.77e-8
1395
+ Relative Error
1396
+ 3.04e-15
1397
+ Backwards Error
1398
+ 7.292e-12
1399
+ Appendices
1400
+ A. Volume and Boundary Data for Near Isosceles Triangles
1401
+ Figure 9. .99 Triangle - 1250 Eigenvalues - Y Volume Integral
1402
+ and Bottom Left Neumann plots
1403
+
1404
+ 99Triangle-YVolumeIntegral-425nodes
1405
+ 7
1406
+ 0.9
1407
+ 0.8
1408
+ Calcuated Y Volume Integral
1409
+ 0.7
1410
+ 0.6
1411
+ 0.5
1412
+ 0.4
1413
+ 0.3
1414
+ 0.2
1415
+ 0.1
1416
+ 0
1417
+ 0
1418
+ 200
1419
+ 400
1420
+ 600
1421
+ 800
1422
+ 1000
1423
+ 1200
1424
+ EigenvalueNumber99Triangle-BottomLeftNeumannData-425nodes
1425
+ 0
1426
+ 00
1427
+ 0.9
1428
+
1429
+ 0.8
1430
+ Data
1431
+ 200
1432
+ 0.7
1433
+ O
1434
+ 0
1435
+ 0
1436
+ 0.6
1437
+ 0.4
1438
+ 0.3
1439
+ 0.2
1440
+ 0.1
1441
+ 0
1442
+ 0
1443
+ 200
1444
+ 400
1445
+ 600
1446
+ 800
1447
+ 1000
1448
+ 1200
1449
+ EigenvalueNumber22
1450
+ Figure 10. .98 Triangle - 1250 Eigenvalues - Y Volume Integral
1451
+ and Bottom Left Neumann plots
1452
+ References
1453
+ [CdV85] Y. Colin de Verdi`ere. Ergodicit´e et fonctions propres du laplacien. Comm. Math. Phys.,
1454
+ 102(3):497–502, 1985.
1455
+ [Chr17] Hans Christianson. Equidistribution of Neumann data mass on triangles. Proc. Amer.
1456
+ Math. Soc., 145(12):5247–5255, 2017.
1457
+ [Chr19] Hans Christianson. Equidistribution of Neumann data mass on simplices and a simple
1458
+ inverse problem. Math. Res. Lett., 26(2):421–445, 2019.
1459
+ [CTZ12] Hans Christianson, John Toth, and Steve Zelditch. Quantum ergodic restriction for
1460
+ cauchy data: Interior QUE and restricted QUE. preprint, 2012.
1461
+ [Has10] Andrew Hassell. Ergodic billiards that are not quantum unique ergodic. Ann. of Math.
1462
+ (2), 171(1):605–618, 2010. With an appendix by the author and Luc Hillairet.
1463
+ [HZ04]
1464
+ Andrew Hassell and Steve Zelditch. Quantum ergodicity of boundary values of eigenfunc-
1465
+ tions. Comm. Math. Phys., 248(1):119–168, 2004.
1466
+ [Lin06] Elon Lindenstrauss. Invariant measures and arithmetic quantum unique ergodicity. Ann.
1467
+ of Math. (2), 163(1):165–219, 2006.
1468
+ [MR12] Jens Marklof and Ze´ev Rudnick. Almost all eigenfunctions of a rational polygon are
1469
+ uniformly distributed. J. Spectr. Theory, 2(1):107–113, 2012.
1470
+ [Shn74] A. I. Shnirelman. Ergodic properties of eigenfunctions. Uspehi Mat. Nauk, 29(6(180)):181–
1471
+ 182, 1974.
1472
+ [TZ12]
1473
+ J.A. Toth and S. Zelditch. Quantum ergodic restriction theorems, i: interior hypersurfaces
1474
+ in domains with ergodic billiards. Annales Henri Poincar´e, 13:599–670, 2012.
1475
+
1476
+ 98Triangle-YVolumeIntegral-200 nodes
1477
+ 0.9
1478
+ 0.8
1479
+ 0.7
1480
+ 0.6
1481
+ 00000000
1482
+ QQ0000000
1483
+ 0
1484
+ 0.5
1485
+ 0.4
1486
+ 0.3
1487
+ 0.2
1488
+ 0.1
1489
+ 0
1490
+ 0
1491
+ 200
1492
+ 400
1493
+ 600
1494
+ 800
1495
+ 1000
1496
+ 1200
1497
+ EigenvalueNumber98Triangle-BottomLeftNeumannData-200nodes
1498
+ 00
1499
+ 0.9
1500
+ 0000
1501
+ X
1502
+ 50.000000008
1503
+ oooooooooo
1504
+ 00000
1505
+ 0.8
1506
+ Data
1507
+ 0.7
1508
+ 0
1509
+ Q
1510
+ 0
1511
+ 0
1512
+ 0.6
1513
+ 0.5
1514
+ 0.4
1515
+ ee
1516
+ 0.3
1517
+ 0.2
1518
+ 0.1
1519
+ 0
1520
+ 0
1521
+ 200
1522
+ 400
1523
+ 600
1524
+ 800
1525
+ 1000
1526
+ 1200
1527
+ EigenvalueNumber23
1528
+ Figure 11. .97 Triangle - 1250 Eigenvalues - Y Volume Integral
1529
+ and Bottom Left Neumann plots
1530
+ [TZ13]
1531
+ John A. Toth and Steve Zelditch. Quantum ergodic restriction theorems: manifolds with-
1532
+ out boundary. Geom. Funct. Anal., 23(2):715–775, 2013.
1533
+ [Zel87]
1534
+ Steven Zelditch. Uniform distribution of eigenfunctions on compact hyperbolic surfaces.
1535
+ Duke Math. J., 55(4):919–941, 1987.
1536
+ [ZZ96]
1537
+ Steven Zelditch and Maciej Zworski. Ergodicity of eigenfunctions for ergodic billiards.
1538
+ Comm. Math. Phys., 175(3):673–682, 1996.
1539
+ (H. Christianson) Department of Mathematics, University of North Carolina.
1540
+ Email address: [email protected]
1541
+ (D. Pezzi) Department of Mathematics, Johns Hopkins.
1542
+ Email address: [email protected]
1543
+
1544
+ 97Triangle-YVolume Integral-200 nodes
1545
+ 7
1546
+ 0.9
1547
+ 0000.
1548
+ 00
1549
+ 000
1550
+ 0.8
1551
+ 0 00000
1552
+ 0.7
1553
+ 0
1554
+ 0
1555
+ 0.6
1556
+ 8
1557
+ 0.4
1558
+ 0.3
1559
+ 0.2
1560
+ 0.1
1561
+ 0
1562
+ 0
1563
+ 200
1564
+ 400
1565
+ 600
1566
+ 800
1567
+ 1000
1568
+ 1200
1569
+ EigenvalueNumber.97Triangle-BottomLeftNeumannData-200nodes
1570
+ Q
1571
+ 000&0
1572
+ 0.9
1573
+ 0
1574
+ 0.8
1575
+ 000
1576
+ 6
1577
+ 0
1578
+ Data
1579
+ 0
1580
+ 00
1581
+
1582
+ 0
1583
+ 0.7
1584
+ 0
1585
+ 00
1586
+ 0
1587
+ 0.6
1588
+ 0.5
1589
+ 0.4
1590
+ 0.3
1591
+ 0.2
1592
+ 0.1
1593
+ 0
1594
+ 0
1595
+ 200
1596
+ 400
1597
+ 600
1598
+ 800
1599
+ 1000
1600
+ 1200
1601
+ EigenvalueNumber24
1602
+ Figure 12. .96 Triangle - 1250 Eigenvalues - Y Volume Integral
1603
+ and Bottom Left Neumann plots
1604
+
1605
+ 96Triangle-YVolumeIntegral-200 nodes
1606
+ 0.9
1607
+ 0.8
1608
+ Integral
1609
+ 000000
1610
+ 0.7
1611
+ 0
1612
+ 000
1613
+ YVolume
1614
+ b
1615
+ 0.6
1616
+ 0.5
1617
+ Calcuated
1618
+ 0.4
1619
+ 0.3
1620
+ 0.2
1621
+ 0.1
1622
+ 0
1623
+ 0
1624
+ 200
1625
+ 400
1626
+ 600
1627
+ 800
1628
+ 1000
1629
+ 1200
1630
+ EigenvalueNumber96Triangle-BottomLeftNeumannData-200nodes
1631
+ 0000000
1632
+ 0
1633
+ 0
1634
+ 0.9
1635
+ 0
1636
+ 0
1637
+ 0.8
1638
+ 0
1639
+ 00
1640
+ 0
1641
+ Data
1642
+ 0
1643
+ 0
1644
+ 00
1645
+ 00
1646
+ 00
1647
+ 00080
1648
+ 0.7
1649
+ 00
1650
+ 000
1651
+ 0
1652
+ 00
1653
+ 0
1654
+ 8
1655
+ 0.6
1656
+ 000
1657
+ 00
1658
+ 0.5
1659
+ 0.4
1660
+ 0.3
1661
+ )
1662
+ 0.2
1663
+ 0.1
1664
+ 0
1665
+ 0
1666
+ 200
1667
+ 400
1668
+ 600
1669
+ 800
1670
+ 1000
1671
+ 1200
1672
+ EigenvalueNumber25
1673
+ Figure 13. .95 Triangle - 1250 Eigenvalues - Y Volume Integral
1674
+ and Bottom Left Neumann plots
1675
+
1676
+ 95Triangle-YVolumeIntegral-200nodes
1677
+ 0.9
1678
+ 0.8
1679
+ Integral
1680
+ 000000
1681
+ 0.7
1682
+ 0
1683
+ 000
1684
+ YVolume
1685
+ b
1686
+ 0.6
1687
+ 0.5
1688
+ Calcuated
1689
+ 0.4
1690
+ 0.3
1691
+ 0.2
1692
+ 0.1
1693
+ 0
1694
+ 0
1695
+ 200
1696
+ 400
1697
+ 600
1698
+ 800
1699
+ 1000
1700
+ 1200
1701
+ EigenvalueNumber.95Triangle-BottomLeftNeumannData-200nodes
1702
+ C
1703
+ QQ
1704
+ 0
1705
+ 0
1706
+ 0.9
1707
+ 0Q
1708
+ 0.8
1709
+ e
1710
+ Data
1711
+ 0
1712
+ 0.7
1713
+ 0)
1714
+ 00
1715
+ 0.6
1716
+ 0.5
1717
+ 0.4
1718
+ 0.3
1719
+ 0.2
1720
+ 0.1
1721
+ 0
1722
+ 0
1723
+ 200
1724
+ 400
1725
+ 600
1726
+ 800
1727
+ 1000
1728
+ 1200
1729
+ EigenvalueNumber
BNE1T4oBgHgl3EQf9Qa6/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
HdAyT4oBgHgl3EQf5frD/content/tmp_files/2301.00807v1.pdf.txt ADDED
@@ -0,0 +1,1552 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+
3
+ New Analytical Approach Based on Transfer Matrix Method (TMM) for
4
+ Study of Tunable Plasmonic Modes in Graphene-Based Heterostructures
5
+
6
+
7
+ Mohammad Bagher Heydari 1,*, Majid Karimipour 2, Morteza Mohammadi Shirkolaei 3
8
+
9
+ 1,* School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
10
+ 2 Department of Electrical Engineering, Arak University of Technology, Arak, Iran
11
+ 3 Department of Electrical Engineering, Shahid Sattari Aeronautical University of Science and Technology, Tehran,
12
+ Iran
13
+
14
+ *Corresponding author: [email protected]
15
+
16
+
17
+ Abstract: This paper aims to study the reflection characteristics of optical beams in a hybrid graphene-hexagonal
18
+ Boron Nitride (hBN)-graphene structure, which has been located on SiO2-Si layers. An analytical model is presented
19
+ to derive the reflection characteristics by using the transfer matrix method. The upper Reststrahlen band has been
20
+ chosen as the studied frequency range. It is shown that the characteristics of the reflected beam can be effectively
21
+ controlled by varying the chemical potential of graphene sheets. The obtained results represent a high value of the
22
+ reflected group delay (𝜏𝑟 = 15.3 𝑝𝑠) at the frequency of 24.9 THz. The presented investigation will be helpful to
23
+ control the group delays of reflected beams and can be utilized for the design of innovative graphene-hBN devices in
24
+ the mid-infrared wavelengths.
25
+
26
+ Key-words: Graphene, hBN, plasmon, phonon, analytical
27
+
28
+
29
+ 1. Introduction
30
+ Nowadays, graphene has attracted immense interest among scientists in nano-electronics and THz applications [1]. It
31
+ has exceptional features in the mid-infrared region, such as high thermal and optical conductivities, which can be
32
+ explored in many research areas of physics and chemistry. The optical conductivity of graphene opens the way to
33
+ flexibly control and adjust the propagation features of plasmonic components such as couplers [2-4], filters [5-7],
34
+ resonators [8-10], circulators [11-14], waveguides [15-24], sensing [25-30], and imaging [31, 32]. Graphene-based
35
+ waveguides have various structures such as planar [16, 24, 33-63], cylindrical [44, 64-69], and elliptical structures
36
+ [23, 70-72]. Combining graphene with other Van der Waals materials can be interesting because hybrid
37
+ heterostructures have compound properties of both materials. Hexagonal Boron Nitride (hBN) is one of the famous
38
+ van der Waals materials in the mid-infrared frequencies in which its permittivity function shows two kinds of phonon
39
+ modes [73-75]. The hybridization of graphene with this material can generate and support new types of propagating
40
+ modes called “coupled phonon-plasmon polaritons” [76-82].
41
+ Controlling the group delay of the optical beam is one of the debated topics in recent years and it has many
42
+ fascinating applications such as optical buffers and delay lines [83]. In optics, some methods have been introduced
43
+ and reported to achieve high levels of the group delays such as the spin Hall effect [84] and photonic crystal [85].
44
+ However, in the mid-infrared region, there is limited research related to obtaining large, tunable group delay [86]. One
45
+ of the interesting ways to flexibly obtain and vary the group delay in this band is the usage of hybrid heterostructures.
46
+ Here, we propose a hybrid heterostructure composed of graphene-hBN-graphene layers. Two graphene sheets
47
+ have been utilized in our system to increase the degree of freedom to adjust the reflection characteristics more flexibly.
48
+ The whole structure is illuminated by a TM-polarized beam with an incident angle of θ. The analytical expressions
49
+
50
+ 2
51
+
52
+ are derived for the calculation of the reflection characteristics of the structure by using the transfer matrix method. A
53
+ large value of reflected group delay, i.e. 𝜏𝑟 = 15.3 𝑝𝑠, is achievable at the frequency of 24.9 THz.
54
+ It is worthwhile to compare the proposed structure over similar configurations reported in the literature [87-92]
55
+ to give a better insight into the flexibility and superiority of the presented heterostructure. In [87], the authors have
56
+ studied phonon plasmon polariton modes in two Reststrahlen bands for multilayered graphene-hBN metamaterials
57
+ and have reported the dispersion diagrams for these modes. A similar study is done in [88], where hyperbolic plasmon-
58
+ phonon modes are examined by nano-infrared imaging. No value for reflected group delays is reported in [87, 88]
59
+ because their focus is on the existence of these modes and the investigation of the propagating features. In [89], an
60
+ electromagnetic absorber based on the graphene-hBN hyper crystal is proposed and authors have obtained a perfect
61
+ absorber near 750 cm-1 at the incident angle of θ=670. A new mechanism for the directed excitation of plasmon-phonon
62
+ modes is suggested in [90] and negative refraction of hybrid phonon modes is presented by the same research group
63
+ in [91]. In [92], the reflected group delay is reported as τ=13.97 ps for the chemical potential of 0.25 eV for their
64
+ structure while our obtained result is about 15.3 ps at the frequency of 24.9 THz. Therefore, our proposed structure is
65
+ tunable and can change effectively the characteristics of the reflected beam by varying the chemical potential of
66
+ graphene sheets.
67
+ The remainder of the paper is organized as follows. In section 2, after introducing the proposed structure,
68
+ mathematical expressions will be presented for the reflected group delay. Then, in section 3, the analytical results are
69
+ reported and investigated more precisely. It will be shown that the hybrid structure can flexibly control the reflected
70
+ beam by changing the chemical potential of graphene sheets. Finally, section 4 concludes the article.
71
+
72
+
73
+ 2. The Proposed Heterostructure and its Analytical Model
74
+ Fig. 1 shows the configuration of the studied heterostructure, where the hBN layer is sandwiched between two
75
+ graphene sheets and the composite structure is located on SiO2-Si layers. The whole structure is illuminated by a TM-
76
+ polarized beam with an incident angle of θ. There is no layer below the Si layer. The conductivity of each graphene
77
+ sheet can be modeled by the following relation [93]:
78
+
79
+
80
+
81
+
82
+ ,1,2
83
+ 2
84
+ 2
85
+ ,1,2
86
+ ,1,2
87
+ 1,2
88
+ 2
89
+ ,1,2
90
+ 2
91
+ (
92
+ j2 )
93
+ ,
94
+ , ,
95
+ 2
96
+ 1
97
+ 4
98
+ 2
99
+ (
100
+ j2 )
101
+ (
102
+ j2 )
103
+ B
104
+ c
105
+ c
106
+ c
107
+ B
108
+ c
109
+ B
110
+ c
111
+ K T
112
+ je K T
113
+ je
114
+ T
115
+ Ln
116
+ Ln
117
+ e
118
+ K T
119
+
120
+
121
+
122
+
123
+
124
+  
125
+
126
+
127
+
128
+
129
+
130
+
131
+
132
+
133
+
134
+
135
+
136
+
137
+
138
+
139
+
140
+
141
+
142
+
143
+
144
+
145
+
146
+
147
+
148
+
149
+
150
+
151
+
152
+
153
+
154
+
155
+
156
+
157
+
158
+
159
+
160
+ (1)
161
+ In (1), 𝛤 is the scattering rate, 𝑇 is the temperature, and 𝜇𝑐,1,2 is the chemical potential of each graphene. Furthermore,
162
+ ℎ is the reduced Planck’s constant, 𝐾𝐵 is Boltzmann’s constant, ω is radian frequency, and 𝑒 is the electron charge in
163
+ this relation.
164
+
165
+ Figure. 1. The schematic of the studied structure.
166
+ Graphene 1
167
+ 𝑑
168
+ 𝜎1
169
+ SiO2
170
+ ɛ𝑆𝑖𝑂2
171
+ Air
172
+ hBN
173
+ 𝑡
174
+ 𝑧
175
+ 𝑥
176
+ 𝑦
177
+ ɛ ℎ𝐵𝑁
178
+ ɛ𝑆𝑖
179
+ Si
180
+ Graphene 2
181
+ 𝜎2
182
+ 𝜃
183
+
184
+ 3
185
+
186
+
187
+ hBN is a polar dielectric, supporting two phonon modes related to hyperbolicity, with the following permittivity
188
+ tensor [74]:
189
+  
190
+
191
+
192
+
193
+
194
+
195
+
196
+ 2
197
+ 2
198
+ ,
199
+ ,
200
+ ,
201
+ ,
202
+ 2
203
+ 2
204
+ ,
205
+ .
206
+ LO m
207
+ TO m
208
+ m
209
+ m
210
+ m
211
+ TO m
212
+ m
213
+ j
214
+
215
+
216
+
217
+
218
+
219
+
220
+
221
+
222
+
223
+
224
+
225
+
226
+
227
+
228
+
229
+
230
+
231
+ (2)
232
+ In (2), 𝑚 = ‖ 𝑜𝑟 ⊥ is related to the transverse and z-axis, respectively. Moreover, 𝜔𝐿𝑂, 𝜔𝑇𝑂 show the LO and TO
233
+ phonon frequencies, respectively, in which each frequency has two values in the upper and lower Reststrahlen
234
+ bands: 𝜔𝐿𝑂,⊥ = 24.9 𝑇𝐻𝑧, 𝜔𝑇𝑂,⊥ = 23.4 𝑇𝐻𝑧, 𝜔𝐿𝑂,‖ = 48.3 𝑇𝐻𝑧, 𝜔𝑇𝑂,‖ = 41.1 𝑇𝐻𝑧. In (2), 𝛤𝑚 is a damping factor
235
+ (𝛤⊥ = 0.15 𝑇𝐻𝑧, 𝛤‖ = 0.12 𝑇𝐻𝑧) and ɛ𝑚 is related to the high-frequency permittivity (ɛ∞,⊥ = 4.87, ɛ∞,‖ = 2.95) [74].
236
+ In fig. 2, the dielectric function of hBN permittivity is depicted, which shows the lower and upper Reststrahlen bands.
237
+
238
+ Figure. 2. The permittivity of hBN versus frequency. The lower and upper Reststrahlen bands are shown in this
239
+ figure.
240
+
241
+ To calculate the reflection coefficient and the reflected group delay, the transfer matrix method can be utilized.
242
+ For various regions, TM-polarized waves (p-polarized waves) can be written as follows:
243
+
244
+
245
+
246
+
247
+
248
+
249
+
250
+
251
+ ,1
252
+ ,1
253
+ ,2
254
+ ,2
255
+ ,3
256
+ ,3
257
+ ,4
258
+ ,4
259
+ ,1
260
+ 1
261
+ 1
262
+ ,2
263
+ 2
264
+ 2
265
+ ,3
266
+ 3
267
+ 3
268
+ ,4
269
+ 4
270
+ 4
271
+ 0
272
+ 0
273
+ z
274
+ z
275
+ x
276
+ z
277
+ z
278
+ x
279
+ z
280
+ z
281
+ x
282
+ z
283
+ z
284
+ x
285
+ ik
286
+ z
287
+ ik
288
+ z
289
+ ik x
290
+ y
291
+ ik
292
+ z
293
+ ik
294
+ z
295
+ ik x
296
+ y
297
+ ik
298
+ z
299
+ ik
300
+ z
301
+ ik x
302
+ y
303
+ ik
304
+ z
305
+ ik
306
+ z
307
+ ik x
308
+ y
309
+ H
310
+ a e
311
+ b e
312
+ e
313
+ z
314
+ H
315
+ a e
316
+ b e
317
+ e
318
+ z
319
+ t
320
+ H
321
+ a e
322
+ b e
323
+ e
324
+ t
325
+ z
326
+ t
327
+ d
328
+ H
329
+ a e
330
+ b e
331
+ e
332
+ t
333
+ d
334
+ z
335
+
336
+
337
+
338
+
339
+
340
+
341
+
342
+
343
+
344
+
345
+
346
+
347
+
348
+
349
+  
350
+
351
+
352
+
353
+
354
+ (3)
355
+ Thus, the transfer matrix of the whole structure is obtained:
356
+ 1
357
+ 4
358
+ 1
359
+ 4
360
+ .
361
+ a
362
+ a
363
+ M
364
+ b
365
+ b
366
+
367
+  
368
+
369
+
370
+  
371
+
372
+
373
+  
374
+
375
+
376
+ (4)
377
+ Where
378
+ 1
379
+ 2
380
+ 2
381
+ 2
382
+ 3
383
+ 3
384
+ 3
385
+ 4
386
+ . .
387
+ .
388
+ .
389
+ M
390
+ D
391
+ P D
392
+ P D
393
+
394
+
395
+
396
+
397
+ (5)
398
+ From Air to hBN, the transmission matrix is written as follows:
399
+ 1
400
+ 2
401
+ 1
402
+ 1
403
+ 1
404
+ 1
405
+ 1
406
+ 2
407
+ TM
408
+ TM
409
+ TM
410
+ TM
411
+ TM
412
+ TM
413
+ TM
414
+ TM
415
+ D
416
+
417
+
418
+
419
+
420
+
421
+
422
+
423
+
424
+
425
+
426
+
427
+
428
+
429
+
430
+
431
+
432
+
433
+
434
+
435
+
436
+
437
+
438
+
439
+
440
+ (6)
441
+
442
+ In (6), the following parameters have been defined:
443
+
444
+ 4
445
+
446
+ 0
447
+ 2
448
+ 1
449
+ z
450
+ TM
451
+ z
452
+ k
453
+ k
454
+
455
+
456
+ 
457
+
458
+ (7)
459
+ 1
460
+ 2
461
+ 0
462
+ z
463
+ TM
464
+ k
465
+
466
+
467
+   
468
+
469
+
470
+ (8)
471
+ Moreover, the wave number component of the incident beam in the z-direction can be obtained by (it is supposed that
472
+ the direction of the incident angle is θ):
473
+ 1
474
+ 0 cos
475
+ z
476
+ k
477
+ k
478
+
479
+
480
+ (9)
481
+
482
+
483
+ 2
484
+ 2
485
+ 2
486
+ 0
487
+ sin
488
+ z
489
+ k
490
+ k
491
+
492
+
493
+
494
+
495
+
496
+
497
+
498
+
499
+ (10)
500
+ Now, the propagation matrix of the plasmonic wave inside the hBN layer is obtained by the following matrix (the
501
+ thickness of the hBN medium is assumed to be t):
502
+ 2
503
+ 2
504
+ 2
505
+ 0
506
+ 0
507
+ z
508
+ z
509
+ jk
510
+ t
511
+ jk
512
+ t
513
+ e
514
+ P
515
+ e
516
+
517
+
518
+
519
+
520
+
521
+  
522
+
523
+
524
+
525
+ (11)
526
+ When the beam inside the hBN medium reaches the surface of the second graphene sheet, the transmission matrix
527
+ from the hBN to the SiO2 layer is expressed as:
528
+ 2
529
+ 3
530
+ 1
531
+ 1
532
+ 1
533
+ 1
534
+ 1
535
+ 2
536
+ TM
537
+ TM
538
+ TM
539
+ TM
540
+ TM
541
+ TM
542
+ TM
543
+ TM
544
+ D
545
+
546
+
547
+
548
+
549
+
550
+
551
+
552
+
553
+
554
+
555
+
556
+
557
+
558
+
559
+
560
+
561
+
562
+
563
+
564
+
565
+
566
+
567
+
568
+
569
+
570
+
571
+
572
+
573
+
574
+
575
+
576
+
577
+ (12)
578
+ Where the following parameters have been utilized in (12):
579
+ 2
580
+ 3
581
+ 2
582
+ z
583
+ TM
584
+ SiO
585
+ z
586
+ k
587
+ k
588
+
589
+
590
+
591
+
592
+
593
+
594
+ (13)
595
+ 2
596
+ 2
597
+ 3
598
+ 0
599
+ z
600
+ TM
601
+ SiO
602
+ k
603
+
604
+
605
+  
606
+
607
+
608
+
609
+ (14)
610
+ Similar to the propagation matrix of the beam inside the hBN medium, the propagation matrix inside the SiO2 layer
611
+ can be written as (the thickness of the SiO2 layer is assumed to be d):
612
+ 3
613
+ 3
614
+ 3
615
+ 0
616
+ 0
617
+ z
618
+ z
619
+ jk d
620
+ jk d
621
+ e
622
+ P
623
+ e
624
+
625
+
626
+
627
+
628
+
629
+  
630
+
631
+
632
+
633
+ (15)
634
+ Finally, as the beam reaches the border of SiO2-Si layers, the transmission matrix can be expressed as:
635
+ 3
636
+ 4
637
+ 1
638
+ 1
639
+ 1
640
+ 1
641
+ 1
642
+ 2
643
+ TM
644
+ TM
645
+ TM
646
+ TM
647
+ D
648
+
649
+
650
+
651
+
652
+
653
+ 
654
+ 
655
+
656
+
657
+
658
+
659
+
660
+
661
+
662
+ 
663
+ 
664
+
665
+
666
+
667
+
668
+ (16)
669
+ In (16), the following parameters have been defined:
670
+ 2
671
+ 4
672
+ 3
673
+ SiO
674
+ z
675
+ TM
676
+ Si
677
+ z
678
+ k
679
+ k
680
+
681
+
682
+
683
+  
684
+ (17)
685
+ By calculating the elements of the transfer matrix, the reflection coefficient and the reflectance are derived by:
686
+  
687
+  
688
+
689
+
690
+ 21
691
+ 11
692
+ exp
693
+ r
694
+ M
695
+ r
696
+ r
697
+ j
698
+ M
699
+
700
+
701
+
702
+
703
+
704
+ (18)
705
+  
706
+ 2
707
+ R
708
+ r 
709
+
710
+ (19)
711
+ For the proposed structure, 𝑀21 and 𝑀11 are calculated:
712
+
713
+ 5
714
+
715
+
716
+  
717
+  
718
+
719
+
720
+  
721
+  
722
+
723
+
724
+  
725
+  
726
+
727
+
728
+  
729
+  
730
+
731
+ 11
732
+ 3
733
+ 2
734
+ 3
735
+ 2
736
+ 3
737
+ 2
738
+ 3
739
+ 2
740
+ 1
741
+ . 1
742
+ . 1
743
+ .
744
+ .
745
+ 1
746
+ . 1
747
+ . 1
748
+ .
749
+ .
750
+ 1
751
+ . 1
752
+ . 1
753
+ .
754
+ .
755
+ 1
756
+ . 1
757
+ . 1
758
+ .
759
+ .
760
+ TM
761
+ TM
762
+ TM
763
+ TM
764
+ TM
765
+ TM
766
+ TM
767
+ TM
768
+ TM
769
+ TM
770
+ TM
771
+ TM
772
+ TM
773
+ TM
774
+ TM
775
+ TM
776
+ TM
777
+ TM
778
+ TM
779
+ TM
780
+ z
781
+ z
782
+ z
783
+ z
784
+ z
785
+ z
786
+ z
787
+ z
788
+ jk d
789
+ jk
790
+ t
791
+ jk d
792
+ jk
793
+ t
794
+ jk d
795
+ jk
796
+ t
797
+ jk d
798
+ jk
799
+ t
800
+ M
801
+ e
802
+ e
803
+ e
804
+ e
805
+ e
806
+ e
807
+ e
808
+ e
809
+
810
+
811
+
812
+
813
+
814
+
815
+
816
+
817
+
818
+
819
+
820
+
821
+
822
+
823
+
824
+
825
+
826
+
827
+
828
+
829
+
830
+
831
+
832
+
833
+
834
+
835
+
836
+
837
+
838
+
839
+ 
840
+
841
+
842
+
843
+
844
+
845
+
846
+
847
+
848
+
849
+ 
850
+
851
+
852
+
853
+
854
+
855
+
856
+
857
+
858
+ 
859
+
860
+
861
+
862
+
863
+
864
+
865
+
866
+
867
+ 
868
+
869
+
870
+
871
+
872
+
873
+ (20)
874
+
875
+  
876
+  
877
+
878
+
879
+  
880
+  
881
+
882
+
883
+  
884
+  
885
+
886
+
887
+  
888
+  
889
+
890
+ 21
891
+ 3
892
+ 2
893
+ 3
894
+ 2
895
+ 3
896
+ 2
897
+ 3
898
+ 2
899
+ 1
900
+ . 1
901
+ . 1
902
+ .
903
+ .
904
+ 1
905
+ . 1
906
+ . 1
907
+ .
908
+ .
909
+ 1
910
+ . 1
911
+ . 1
912
+ .
913
+ .
914
+ 1
915
+ . 1
916
+ . 1
917
+ .
918
+ .
919
+ TM
920
+ TM
921
+ TM
922
+ TM
923
+ TM
924
+ TM
925
+ TM
926
+ TM
927
+ TM
928
+ TM
929
+ TM
930
+ TM
931
+ TM
932
+ TM
933
+ TM
934
+ TM
935
+ TM
936
+ TM
937
+ TM
938
+ TM
939
+ z
940
+ z
941
+ z
942
+ z
943
+ z
944
+ z
945
+ z
946
+ z
947
+ jk d
948
+ jk
949
+ t
950
+ jk d
951
+ jk
952
+ t
953
+ jk d
954
+ jk
955
+ t
956
+ jk d
957
+ jk
958
+ t
959
+ M
960
+ e
961
+ e
962
+ e
963
+ e
964
+ e
965
+ e
966
+ e
967
+ e
968
+
969
+
970
+
971
+
972
+
973
+
974
+
975
+
976
+
977
+
978
+
979
+
980
+
981
+
982
+
983
+
984
+
985
+
986
+
987
+
988
+
989
+
990
+
991
+
992
+
993
+
994
+
995
+
996
+
997
+
998
+ 
999
+
1000
+
1001
+
1002
+
1003
+
1004
+
1005
+
1006
+
1007
+
1008
+ 
1009
+
1010
+
1011
+
1012
+
1013
+
1014
+
1015
+
1016
+
1017
+ 
1018
+
1019
+
1020
+
1021
+
1022
+
1023
+
1024
+
1025
+
1026
+ 
1027
+
1028
+
1029
+
1030
+
1031
+
1032
+ (21)
1033
+ Here, if we suppose that the incident pulse is a Gaussian beam with the central and half-width of 𝜔0, 𝜏0, respectively:
1034
+
1035
+
1036
+
1037
+
1038
+
1039
+
1040
+ 2
1041
+ 2
1042
+ 0
1043
+ 0
1044
+ 0
1045
+ 0,
1046
+ exp
1047
+ 2
1048
+ exp
1049
+ iE
1050
+ t
1051
+ A
1052
+ t
1053
+ i
1054
+ t
1055
+
1056
+
1057
+
1058
+
1059
+
1060
+ (22)
1061
+ It should be noted that the corresponding Fourier spectrum of (22) is:
1062
+
1063
+
1064
+
1065
+
1066
+
1067
+
1068
+ 2
1069
+ 2
1070
+ 2
1071
+ 0
1072
+ 0
1073
+ 0
1074
+ 0
1075
+ 0,
1076
+ exp
1077
+ 2
1078
+ 2
1079
+ i
1080
+ A
1081
+ E
1082
+
1083
+
1084
+
1085
+
1086
+
1087
+
1088
+
1089
+
1090
+
1091
+ (23)
1092
+ and thus the group delay is not a function of time (t) because all relations are written in the Fourier space (ω). Then,
1093
+ the reflected group delay is obtained:
1094
+  
1095
+ r
1096
+ r
1097
+ c
1098
+  
1099
+
1100
+
1101
+
1102
+
1103
+
1104
+
1105
+
1106
+
1107
+  
1108
+
1109
+
1110
+
1111
+
1112
+ (24)
1113
+ In (24), 𝜔𝑐 is the carrier frequency. Now, our model is completed for the proposed heterostructure. In what follows,
1114
+ we will investigate the analytical results of the above mathematical relations.
1115
+
1116
+
1117
+ 3. Results and Discussions
1118
+ This section reports the analytical results of the proposed structure. In these results, the chemical potential of graphene
1119
+ sheets is supposed to be 𝜇𝑐,1 = 0.2 𝑒𝑣, 𝜇𝑐,2 = 0.3 𝑒𝑣, respectively. The temperature is 𝑇 = 300 𝐾 and the relaxation
1120
+ time is assumed to be 𝜏 = 0.45 𝑝𝑠. Both graphene layers have the similar thickness 𝛥1 = 𝛥2 = 𝛥 = 0.33 𝑛𝑚. The
1121
+ parameters of the hBN medium have been given in the previous section. Moreover, the geometrical parameters are 𝑡 =
1122
+ 100𝑛𝑚, 𝑑 = 150𝑛𝑚. The permittivity constant of SiO2 and Si layers are assumed to be 2.09 and 11.9, respectively.
1123
+ The incident angle is 𝜃 = 450.
1124
+ As explained before, there are two phonon modes in the hBN medium (see fig. 2) that are related to hyperbolicity:
1125
+ out-of-plane and in-plane phonon modes, which lead to two various Reststrahlen bands. First, let us consider the
1126
+ reflected group delays in three different frequency ranges: 24.75-25 THz (in the lower Reststrahlen band), 36.15-37.5
1127
+ THz (in the middle band, i.e. between the lower and upper Reststrahlen bands) and 41.1-41.6 THz (in the upper
1128
+ Reststrahlen band). It should be emphasized that the resonance frequency at 24.855 THz in fig. 3 (a) is not related to
1129
+ the lower TO phonon frequency (𝜔𝑇𝑂,⊥ = 23.4 𝑇𝐻𝑧). As observed in Fig. 3 (a), the group delay shows the metal-like
1130
+ behavior in the lower Reststrahlen band which can be enhanced. While the reflected group delay in other frequency
1131
+ ranges (fig. 3 (b), (c)) cannot be enhanced because it has negligible values which originate from the high values of
1132
+ hBN losses (imaginary part of hBN dielectric function). Therefore, we only focus on the first frequency window, i.e.
1133
+ 24.15-25 THz (the lower Reststrahlen band), in the following results. It should be noted that the reflected group delay
1134
+ in our structure originates from the Lorentz resonance mechanism.
1135
+
1136
+ 6
1137
+
1138
+
1139
+
1140
+
1141
+ Figure. 3. Reflected group delay versus frequency at three frequency windows: (a) 24.75 THz-25 THz (in the lower
1142
+ Reststrahlen band), (b) 36.15 THz-37.5 THz (in the middle band, i.e. between the lower and upper Reststrahlen
1143
+ bands), (c) 41.1 THz-41.6 THz (in the upper Reststrahlen band). The chemical potential of graphene layers is
1144
+ supposed to be 𝜇𝑐,1 = 0.2 𝑒𝑣, 𝜇𝑐,2 = 0.3 𝑒𝑣. The thickness of the hBN and SiO2 layers are 100 nm and 150 nm,
1145
+ respectively. The incident angle is 𝜃 = 450.
1146
+
1147
+ In the previous section, we analytically obtained the elements of the transfer matrix for the proposed
1148
+ heterostructure. The studied structure is a tunable device in which its reflection characteristics can be varied by
1149
+ changing the chemical potential. Fig. 4 represents the variations of reflectance, the group delay, and the reflected phase
1150
+ as a function of frequency for various values of chemical potential. As noted before, the frequency range is 24.75-25
1151
+ THz. The incident angle is chosen 𝜃 = 450. It can be found from fig. 4 (a) that the reflectance has a dip of around
1152
+ 24.88 THz and its place can be varied as the values of chemical potential change. Around 24.88 THz, the sign of
1153
+ reflected phase changes, as seen in fig. 4 (b). Meanwhile, the peak of the reflected group delay varies for various
1154
+ values of chemical potential. A large value of reflected group delay, i.e. 𝜏𝑟 = 12.2 𝑝𝑠, is reported for the chemical
1155
+ potentials of 𝜇𝑐,1 = 0.2 𝑒𝑣, 𝜇𝑐,2 = 0.8 𝑒𝑣 at the frequency of 24.85 THz.
1156
+ Fig. 5 shows the reflected group delay of the optical beam as a function of frequency for various values of
1157
+ graphene thickness. In this diagram, it is supposed that both graphene sheets have similar thicknesses (𝛥1 = 𝛥2 = 𝛥).
1158
+ The chemical potential of graphene layers are remained fixed: 𝜇𝑐,1 = 0.2 𝑒𝑣, 𝜇𝑐,2 = 0.3 𝑒𝑣. As the number of
1159
+ graphene layers increases (the thickness increases), the peak value of the group delay increases, as observed in fig. 5.
1160
+ Furthermore, one can see that the maximum peak shifts to the higher frequencies as the thickness increases. For thicker
1161
+ graphene sheets, a high value of group delay is achievable. For instance, the reflected group delay of 15.3ps is obtained
1162
+ for the thickness of 𝛥1 = 𝛥2 = 𝛥 = 1 𝑛𝑚 at the frequency of 24.9 THz.
1163
+ It is worth to be mentioned that the thickness of various layers in the proposed heterostructure can change the
1164
+ reflection characteristics of the reflected beam. One of these parameters is the thickness of the hBN layer, where its
1165
+ variations have been depicted in fig. 6. The chemical potential of graphene layers are 𝜇𝑐,1 = 0.2 𝑒𝑣, 𝜇𝑐,2 = 0.3 𝑒𝑣.
1166
+ Both graphene layers have the similar thickness 𝛥1 = 𝛥2 = 𝛥 = 0.33 𝑛𝑚. Other parameters have remained fixed. It
1167
+
1168
+ 7
1169
+
1170
+ can be seen from fig. 5 that the maximum point of the reflected group delay shifts to higher frequencies as the thickness
1171
+ of the hBN medium increases. However, the changes are slight because the thickness of the hBN layer varies from
1172
+ 100nm to 120 nm.
1173
+
1174
+
1175
+
1176
+
1177
+ Figure.4. The variations of reflectance, the reflected phase, and the reflected group delay as a function of frequency
1178
+ in the lower Reststrahlen band, for various values of the chemical potential of graphene layers. The thickness of the
1179
+ hBN and SiO2 layers are 100 nm and 150 nm, respectively. The incident angle is 𝜃 = 450.
1180
+
1181
+ Figure. 5. The reflected group delay versus frequency for different values of graphene thickness. It is supposed that
1182
+ both graphene layers have similar thicknesses (𝛥1 = 𝛥2 = 𝛥). The chemical potential of graphene layers is
1183
+ supposed to be 𝜇𝑐,1 = 0.2 𝑒𝑣, 𝜇𝑐,2 = 0.3 𝑒𝑣. The thickness of the hBN and SiO2 layers are 100 nm and 150 nm,
1184
+ respectively. The incident angle is 𝜃 = 450.
1185
+
1186
+ As a final point, we investigate the influence of SiO2 thickness on the reflected group delay. As derived in relations
1187
+ (16)-(21), the thickness of the SiO2 layer can change the characteristics of the reflected beam. One can observe from
1188
+ fig. 7 that as the SiO2 thickness varies from 150nm to 200 nm, the maximum peak changes, and its frequency shifts to
1189
+ higher frequencies. The presented study on the reflection characteristics of the reflected beam of the proposed
1190
+ heterostructure is useful for potential applications such as the design of optical delay lines and optical buffers.
1191
+
1192
+ 8
1193
+
1194
+
1195
+ Figure. 6. The reflected group delay versus frequency for different values of hBN thickness. It is supposed that both
1196
+ graphene layers have similar thicknesses (𝛥1 = 𝛥2 = 𝛥 = 0.33 𝑛𝑚). The chemical potential of graphene layers is
1197
+ supposed to be 𝜇𝑐,1 = 0.2 𝑒𝑣, 𝜇𝑐,2 = 0.3 𝑒𝑣. The thickness of the SiO2 layer is 150 nm. The incident angle is 𝜃 =
1198
+ 450.
1199
+
1200
+ Figure. 7. The reflected group delay versus frequency for different values of SiO2 thickness. It is supposed that both
1201
+ graphene layers have similar thicknesses (𝛥1 = 𝛥2 = 𝛥 = 0.33 𝑛𝑚). The chemical potential of graphene layers is
1202
+ supposed to be 𝜇𝑐,1 = 0.2 𝑒𝑣, 𝜇𝑐,2 = 0.3 𝑒𝑣. The thickness of the hBN layer is 100 nm. The incident angle is 𝜃 =
1203
+ 450.
1204
+
1205
+ 4. Conclusion
1206
+ In this article, we studied the characteristics of the reflected beam from graphene-based hBN heterostructure.
1207
+ Analytical expressions were obtained for calculating the reflection characteristics. A large value of the reflected group
1208
+ delay was seen in the lower Reststrahlen band; therefore, this frequency range was chosen to be studied. To show the
1209
+ tunability of the proposed structure, the variations of the reflected beam as a function of frequency were depicted and
1210
+ investigated for various values of chemical potential. Our results reported a large value of the reflected group delay,
1211
+ i.e. 𝜏𝑟 = 15.3 𝑝𝑠, at the frequency of 24.9 THz. Moreover, we showed that the thickness of graphene sheets, the hBN
1212
+ medium, and the SiO2 layer can change the quality of the reflected beam more effectively. The authors believe that
1213
+ the presented study can be utilized for the design of optical delay structures in the mid-infrared region.
1214
+
1215
+
1216
+ Declarations
1217
+ Ethics Approval: Not Applicable.
1218
+ Consent to Participate: Not Applicable.
1219
+ Consent for Publication: Not Applicable.
1220
+ Funding: The authors received no specific funding for this work.
1221
+ Conflicts of Interest/ Competing Interests: The authors declare no competing interests.
1222
+
1223
+ 9
1224
+
1225
+ Availability of Data and Materials: Not Applicable.
1226
+ Code availability: Not Applicable.
1227
+ Authors' Contributions: M. B. Heydari proposed the main idea of this work and performed the analytical modeling.
1228
+ M. Karimipour conducted the numerical simulations and wrote the manuscript. M. Mohammadi Shirkolaei analyzed
1229
+ the results and reviewed the paper.
1230
+
1231
+ References
1232
+ [1]
1233
+ P. Tassin, T. Koschny, and C. M. Soukoulis, "Graphene for terahertz applications," Science, vol. 341, pp.
1234
+ 620-621, 2013.
1235
+ [2]
1236
+ M. Zhai, H. Peng, X. Wang, X. Wang, Z. Chen, and W. Yin, "The Conformal HIE-FDTD Method for
1237
+ Simulating Tunable Graphene-Based Couplers for THz Applications," IEEE Transactions on Terahertz
1238
+ Science and Technology, vol. 5, pp. 368-376, 2015.
1239
+ [3]
1240
+ M. B. Heydari and M. H. V. Samiei, "Graphene-Based Couplers: A Brief Review," arXiv preprint
1241
+ arXiv:2010.09462, 2020.
1242
+ [4]
1243
+ F. Xu, H. Zhang, and Y. Sun, "Compact graphene directional couplers based on dielectric ridges for planar
1244
+ integration," Optik-International Journal for Light and Electron Optics, vol. 131, pp. 588-591, 2017.
1245
+ [5]
1246
+ D. Correas-Serrano, J. S. Gomez-Diaz, J. Perruisseau-Carrier, and A. Álvarez-Melcón, "Graphene-Based
1247
+ Plasmonic Tunable Low-Pass Filters in the Terahertz Band," IEEE Transactions on Nanotechnology, vol.
1248
+ 13, pp. 1145-1153, 2014.
1249
+ [6]
1250
+ M. B. Heydari and M. H. V. Samiei, "A Short Review on Graphene-Based Filters: Perspectives and
1251
+ Challenges," arXiv preprint arXiv:2010.07176, 2020.
1252
+ [7]
1253
+ H. Zhuang, F. Kong, K. Li, and S. Sheng, "Plasmonic bandpass filter based on graphene nanoribbon," Applied
1254
+ optics, vol. 54, pp. 2558-2564, 2015.
1255
+ [8]
1256
+ T. Christopoulos, O. Tsilipakos, N. Grivas, and E. E. Kriezis, "Coupled-mode-theory framework for
1257
+ nonlinear resonators comprising graphene," Physical Review E, vol. 94, p. 062219, 2016.
1258
+ [9]
1259
+ M. B. Heydari and M. H. V. Samiei, "A Short Review of Plasmonic Graphene-Based Resonators: Recent
1260
+ Advances and Prospects," arXiv preprint arXiv:2011.14767, 2020.
1261
+ [10]
1262
+ X. Zhou, T. Zhang, X. Yin, L. Chen, and X. Li, "Dynamically Tunable Electromagnetically Induced
1263
+ Transparency in Graphene-Based Coupled Micro-ring Resonators," IEEE Photonics Journal, vol. 9, pp. 1-9,
1264
+ 2017.
1265
+ [11]
1266
+ V. Dmitriev, S. L. M. da Silva, and W. Castro, "Ultrawideband graphene three-port circulator for THz
1267
+ region," Optics express, vol. 27, pp. 15982-15995, 2019.
1268
+ [12]
1269
+ M. B. Heydari and M. H. V. Samiei, "Three-port Terahertz Circulator with Multi-layer Triangular Graphene-
1270
+ Based Post," Optik, p. 166457, 2021.
1271
+ [13]
1272
+ V. Dmitriev and W. Castro, "Dynamically controllable terahertz graphene Y-circulator," IEEE Transactions
1273
+ on Magnetics, vol. 55, pp. 1-12, 2018.
1274
+ [14]
1275
+ M. B. Heydari and M. H. V. Samiei, "A Novel Graphene-Based Circulator with Multi-layer Triangular Post
1276
+ for THz Region," arXiv preprint arXiv:2102.02683, 2021.
1277
+ [15]
1278
+ J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, "Graphene
1279
+ plasmon waveguiding and hybridization in individual and paired nanoribbons," ACS nano, vol. 6, pp. 431-
1280
+ 440, 2012.
1281
+ [16]
1282
+ G. W. Hanson, "Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide,"
1283
+ Journal of Applied Physics, vol. 104, p. 084314, 2008.
1284
+ [17]
1285
+ K. Jamalpoor, A. Zarifkar, and M. Miri, "Application of graphene second-order nonlinearity in THz plasmons
1286
+ excitation," Photonics and Nanostructures - Fundamentals and Applications, vol. 26, pp. 80-84, 2017/09/01/
1287
+ 2017.
1288
+
1289
+ 10
1290
+
1291
+ [18]
1292
+ S. Khoubafarin Doust, V. Siahpoush, and A. Asgari, "The Tunability of Surface Plasmon Polaritons in
1293
+ Graphene Waveguide Structures," Plasmonics, vol. 12, pp. 1633-1639, 2017/10/01 2017.
1294
+ [19]
1295
+ A. Pitilakis, D. Chatzidimitriou, and E. E. Kriezis, "Theoretical and numerical modeling of linear and
1296
+ nonlinear propagation in graphene waveguides," Optical and Quantum Electronics, vol. 48, p. 243, 2016.
1297
+ [20]
1298
+ V. Khalili Sadaghiani, M. Zavvari, M. B. Tavakkoli, and A. Horri, "Design of graphene-based hybrid
1299
+ waveguides for nonlinear applications," Optical and Quantum Electronics, vol. 51, p. 49, 2019/02/04 2019.
1300
+ [21]
1301
+ B. Parvaei, H. Rasooli Saghai, and M. Eldlio, "Analysis and simulation of terahertz graphene-based
1302
+ plasmonic waveguide," Optical and Quantum Electronics, vol. 50, p. 303, 2018/07/18 2018.
1303
+ [22]
1304
+ M. B. Heydari, "Highly Confined Mid-infrared Plasmonics in Graphene-plasma Cylindrical Structures,"
1305
+ 2022.
1306
+ [23]
1307
+ M. B. Heydari and M. H. V. Samiei, "A Novel Analytical Study of Anisotropic Multi-Layer Elliptical
1308
+ Structures Containing Graphene Layers," IEEE Transactions on Magnetics, vol. 56, pp. 1-10, 2020.
1309
+ [24]
1310
+ M. B. Heydari and M. H. V. Samiei, "Analytical Study of Chiral Multi-Layer Structures Containing Graphene
1311
+ Sheets for THz Applications," IEEE Transactions on Nanotechnology, vol. 19, pp. 653-660, 2020.
1312
+ [25]
1313
+ C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, et al., "Surface-enhanced
1314
+ Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates," Nano letters, vol. 5,
1315
+ pp. 1569-1574, 2005.
1316
+ [26]
1317
+ M. Saifur Rahman, K. A. Rikta, L. F. Abdulrazak, and M. S. Anower, "Enhanced performance of SnSe-
1318
+ Graphene hybrid photonic surface plasmon refractive sensor for biosensing applications," Photonics and
1319
+ Nanostructures - Fundamentals and Applications, vol. 39, p. 100779, 2020/05/01/ 2020.
1320
+ [27]
1321
+ M. Uwais, A. Bijalwan, and V. Rastogi, "Surface Phonon Resonance Assisted Refractive Index Sensing in
1322
+ Mid-Infrared Wavelength Range," Plasmonics, 2022/03/28 2022.
1323
+ [28]
1324
+ D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, et al., "Mid-infrared plasmonic
1325
+ biosensing with graphene," Science, vol. 349, pp. 165-168, 2015.
1326
+ [29]
1327
+ H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, et al., "Far-field nanoscale infrared spectroscopy of
1328
+ vibrational fingerprints of molecules with graphene plasmons," Nature communications, vol. 7, pp. 1-8, 2016.
1329
+ [30]
1330
+ H. Hu, X. Yang, X. Guo, K. Khaliji, S. R. Biswas, F. J. García de Abajo, et al., "Gas identification with
1331
+ graphene plasmons," Nature communications, vol. 10, pp. 1-7, 2019.
1332
+ [31]
1333
+ N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens,"
1334
+ science, vol. 308, pp. 534-537, 2005.
1335
+ [32]
1336
+ R. E. da Silva, R. Macêdo, T. Dumelow, J. Da Costa, S. Honorato, and A. Ayala, "Far-infrared slab lensing
1337
+ and subwavelength imaging in crystal quartz," Physical Review B, vol. 86, p. 155152, 2012.
1338
+ [33]
1339
+ M. B. Heydari and M. H. V. Samiei, "Plasmonic graphene waveguides: A literature review," arXiv preprint
1340
+ arXiv:1809.09937, 2018.
1341
+ [34]
1342
+ W. Fuscaldo, P. Burghignoli, P. Baccarelli, and A. Galli, "Complex mode spectra of graphene-based planar
1343
+ structures for THz applications," Journal of Infrared, Millimeter, and Terahertz Waves, vol. 36, pp. 720-733,
1344
+ 2015.
1345
+ [35]
1346
+ M. B. Heydari and M. H. Vadjed Samiei, "An Analytical Study of Magneto-Plasmons in Anisotropic Multi-
1347
+ layer Structures Containing Magnetically Biased Graphene Sheets," Plasmonics, vol. 15, pp. 1183-1198,
1348
+ 2020/08/01 2020.
1349
+ [36]
1350
+ D. Correas-Serrano, J. S. Gomez-Diaz, J. Perruisseau-Carrier, and A. Álvarez-Melcón, "Spatially dispersive
1351
+ graphene single and parallel plate waveguides: Analysis and circuit model," IEEE Transactions on
1352
+ Microwave Theory and Techniques, vol. 61, pp. 4333-4344, 2013.
1353
+ [37]
1354
+ M. B. Heydari and M. H. Vadjed Samiei, "New analytical investigation of anisotropic graphene nano-
1355
+ waveguides with bi-gyrotropic cover and substrate backed by a PEMC layer," Optical and Quantum
1356
+ Electronics, vol. 52, p. 108, 2020/02/07 2020.
1357
+ [38]
1358
+ M. B. Heydari and M. H. V. Samiei, "Analytical Investigation of Magneto-Plasmons in Anisotropic Multi-
1359
+ layer Planar Waveguides Incorporating Magnetically Biased Graphene Sheets," arXiv preprint
1360
+ arXiv:2103.11452, 2021.
1361
+
1362
+ 11
1363
+
1364
+ [39]
1365
+ I. D. Koufogiannis, M. Mattes, and J. R. Mosig, "On the development and evaluation of spatial-domain
1366
+ Green’s functions for multilayered structures with conductive sheets," IEEE Transactions on Microwave
1367
+ Theory and Techniques, vol. 63, pp. 20-29, 2015.
1368
+ [40]
1369
+ M. B. Heydari and M. H. V. Samiei, "Magneto-Plasmons in Grounded Graphene-Based Structures with
1370
+ Anisotropic Cover and Substrate," arXiv preprint arXiv:2103.08557, 2021.
1371
+ [41]
1372
+ M. B. Heydari, "Hybrid Graphene-Gyroelectric Structures: A Novel Platform for THz Applications," arXiv
1373
+ preprint arXiv:2201.06538, 2022.
1374
+ [42]
1375
+ M. B. Heydari, "Tunable Plasmonic Modes in Graphene-loaded Plasma Media," 2022.
1376
+ [43]
1377
+ Y. T. Aladadi and M. A. Alkanhal, "Electromagnetic Characterization of Graphene-Plasma Formations,"
1378
+ IEEE Transactions on Plasma Science, vol. 48, pp. 852-857, 2020.
1379
+ [44]
1380
+ M. B. Heydari, "Tunable SPPs in graphene-based cylindrical structures with gyroelectric layers," Optik, vol.
1381
+ 254, p. 168651, 2022.
1382
+ [45]
1383
+ M. B. Heydari, "Tunable SPPs supported by hybrid graphene-gyroelectric waveguides: an analytical
1384
+ approach," Optical and Quantum Electronics, vol. 54, pp. 1-14, 2022.
1385
+ [46]
1386
+ M. Z. Yaqoob, A. Ghaffar, M. Alkanhal, and S. U. Rehman, "Characteristics of light–plasmon coupling on
1387
+ chiral–graphene interface," JOSA B, vol. 36, 2019// 2019.
1388
+ [47]
1389
+ M. Yaqoob, A. Ghaffar, M. Alkanhal, S. ur Rehman, and F. Razzaz, "Hybrid Surface Plasmon Polariton
1390
+ Wave Generation and Modulation by Chiral-Graphene-Metal (CGM) Structure," Scientific reports, vol. 8,
1391
+ pp. 1-9, 2018.
1392
+ [48]
1393
+ M. B. Heydari and M. H. V. Samiei, "Chiral Multi-layer Waveguides Incorporating Graphene Sheets: An
1394
+ Analytical Approach," arXiv preprint arXiv:2102.10135, 2021.
1395
+ [49]
1396
+ I. Toqeer, A. Ghaffar, M. Y. Naz, and B. Sultana, "Characteristics of dispersion modes supported by
1397
+ Graphene Chiral Graphene waveguide," Optik, vol. 186, 2019// 2019.
1398
+ [50]
1399
+ M. B. Heydari and M. H. Vadjed Samiei, "Analytical study of hybrid surface plasmon polaritons in a
1400
+ grounded chiral slab waveguide covered with graphene sheet," Optical and Quantum Electronics, vol. 52, p.
1401
+ 406, 2020/09/08 2020.
1402
+ [51]
1403
+ R. Zhao, J. Li, Q. Zhang, X. Liu, and Y. Zhang, "Behavior of SPPs in chiral–graphene–chiral structure,"
1404
+ Optics Letters, vol. 46, pp. 1975-1978, 2021.
1405
+ [52]
1406
+ M. B. Heydari and M. H. V. Samiei, "Grounded Graphene-Based Nano-Waveguide with Chiral Cover and
1407
+ Substrate: New Theoretical Investigation," arXiv preprint arXiv:2102.12465, 2021.
1408
+ [53]
1409
+ C. Bhagyaraj, R. Ajith, and M. Vincent, "Propagation characteristics of surface plasmon polariton modes in
1410
+ graphene layer with nonlinear magnetic cladding," Journal of Optics, vol. 19, p. 035002, 2017.
1411
+ [54]
1412
+ M. B. Heydari and M. H. V. Samiei, "Analytical study of TM-polarized surface plasmon polaritons in
1413
+ nonlinear multi-layer graphene-based waveguides," Plasmonics, vol. 16, pp. 841-848, 2021.
1414
+ [55]
1415
+ X. Jiang, J. Gao, and X. Sun, "Control of dispersion properties in a nonlinear dielectric-graphene plasmonic
1416
+ waveguide," Physica E: Low-dimensional Systems and Nanostructures, vol. 106, pp. 176-179, 2019.
1417
+ [56]
1418
+ M. B. Heydari and M. H. V. Samiei, "TM-polarized Surface Plasmon Polaritons in Nonlinear Multi-layer
1419
+ Graphene-Based Waveguides: An Analytical Study," arXiv preprint arXiv:2101.02536, 2021.
1420
+ [57]
1421
+ Y. V. Bludov, D. A. Smirnova, Y. S. Kivshar, N. Peres, and M. I. Vasilevskiy, "Nonlinear TE-polarized
1422
+ surface polaritons on graphene," Physical Review B, vol. 89, p. 035406, 2014.
1423
+ [58]
1424
+ M. B. Heydari, "Analytical Study of TE-Polarized SPPs in Nonlinear Multi-Layer Graphene-Based
1425
+ Structures," Plasmonics, vol. 16, pp. 2327-2334, 2021.
1426
+ [59]
1427
+ Y. Wu, X. Dai, Y. Xiang, and D. Fan, "Nonlinear TE-polarized SPPs on a graphene cladded parallel plate
1428
+ waveguide," Journal of Applied Physics, vol. 121, p. 103103, 2017.
1429
+ [60]
1430
+ M. B. Heydari, "TE-Polarized Surface Plasmon Polaritons (SPPs) in Nonlinear Multi-layer Graphene-Based
1431
+ Waveguides: An Analytical Model," arXiv preprint arXiv:2107.01684, 2021.
1432
+ [61]
1433
+ S. Baher and Z. Lorestaniweiss, "Propagation of surface plasmon polaritons in monolayer graphene
1434
+ surrounded by nonlinear dielectric media," Journal of Applied Physics, vol. 124, p. 073103, 2018.
1435
+ [62]
1436
+ M. B. Heydari, "TE-Polarized SPPs in Nonlinear Multi-layer Graphene-Based Structures," 2021.
1437
+
1438
+ 12
1439
+
1440
+ [63]
1441
+ W. Walasik, A. Rodriguez, and G. Renversez, "Symmetric plasmonic slot waveguides with a nonlinear
1442
+ dielectric core: Bifurcations, size effects, and higher order modes," Plasmonics, vol. 10, pp. 33-38, 2015.
1443
+ [64]
1444
+ Y. Gao, G. Ren, B. Zhu, J. Wang, and S. Jian, "Single-mode graphene-coated nanowire plasmonic
1445
+ waveguide," Optics letters, vol. 39, pp. 5909-5912, 2014.
1446
+ [65]
1447
+ Y. Gao, G. Ren, B. Zhu, H. Liu, Y. Lian, and S. Jian, "Analytical model for plasmon modes in graphene-
1448
+ coated nanowire," Optics express, vol. 22, pp. 24322-24331, 2014.
1449
+ [66]
1450
+ M. B. Heydari and M. H. V. Samiei, "Novel analytical model of anisotropic multi-layer cylindrical
1451
+ waveguides incorporating graphene layers," Photonics and Nanostructures-Fundamentals and Applications,
1452
+ vol. 42, p. 100834, 2020.
1453
+ [67]
1454
+ D. A. Kuzmin, I. V. Bychkov, V. G. Shavrov, and L. N. Kotov, "Transverse-electric plasmonic modes of
1455
+ cylindrical graphene-based waveguide at near-infrared and visible frequencies," Scientific reports, vol. 6, p.
1456
+ 26915, 2016.
1457
+ [68]
1458
+ M. B. Heydari and M. H. V. Samiei, "Anisotropic Multi-layer Cylindrical Structures Containing Graphene
1459
+ Layers: An Analytical Approach," arXiv preprint arXiv:2103.05594, 2021.
1460
+ [69]
1461
+ M. B. Heydari, "Novel Theoretical Study of Plasmonic Waves in Graphene-based Cylindrical Waveguides
1462
+ with Gyro-electric Layers," arXiv preprint arXiv:2201.10421, 2022.
1463
+ [70]
1464
+ D. Teng, K. Wang, Z. Li, Y. Zhao, G. Zhao, H. Li, et al., "Graphene-Coated Elliptical Nanowires for Low
1465
+ Loss Subwavelength Terahertz Transmission," Applied Sciences, vol. 9, p. 2351, 2019.
1466
+ [71]
1467
+ X. Cheng, W. Xue, Z. Wei, H. Dong, and C. Li, "Mode analysis of a confocal elliptical dielectric nanowire
1468
+ coated with double-layer graphene," Optics Communications, vol. 452, pp. 467-475, 2019.
1469
+ [72]
1470
+ M. B. Heydari and M. H. V. Samiei, "Anisotropic Multi-layer Elliptical Waveguides Incorporating Graphene
1471
+ Layers: A Novel Analytical Model," arXiv preprint arXiv:2103.01925, 2021.
1472
+ [73]
1473
+ R. Koch, T. Seyller, and J. Schaefer, "Strong phonon-plasmon coupled modes in the graphene/silicon carbide
1474
+ heterosystem," Physical Review B, vol. 82, p. 201413, 2010.
1475
+ [74]
1476
+ A. Kumar, T. Low, K. H. Fung, P. Avouris, and N. X. Fang, "Tunable light–matter interaction and the role
1477
+ of hyperbolicity in graphene–hBN system," Nano letters, vol. 15, pp. 3172-3180, 2015.
1478
+ [75]
1479
+ T. Marinković, I. Radović, D. Borka, and Z. L. Mišković, "Probing the Plasmon-Phonon Hybridization in
1480
+ Supported Graphene by Externally Moving Charged Particles," Plasmonics, vol. 10, pp. 1741-1749,
1481
+ 2015/12/01 2015.
1482
+ [76]
1483
+ V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, et al., "Hybrid surface-phonon-plasmon
1484
+ polariton modes in graphene/monolayer h-BN heterostructures," Nano letters, vol. 14, pp. 3876-3880, 2014.
1485
+ [77]
1486
+ M. B. Heydari, M. Karimipour, and M. M. Shirkolaei, "Highly Confined and Tunable Mid-IR Polaritonics
1487
+ in Symmetric Nonlinear-Graphene-hBN Heterostructures," Plasmonics, pp. 1-15, 2022.
1488
+ [78]
1489
+ M. B. Heydari, M. Karimipour, and M. M. Shirkolaei, "Tunable Plasmon-Phonon Modes in Nonlinear-
1490
+ Graphene-hBN Heterostructures," 2022.
1491
+ [79]
1492
+ M. B. Heydari, M. Karimipour, and M. M. Shirkolaei, "Analytical Study of Hybrid Surface Phonon-Plasmon-
1493
+ Polaritons
1494
+ (HSP3)
1495
+ in
1496
+ Symmetric
1497
+ Nonlinear-Graphene-hBN
1498
+ Heterostructures,"
1499
+ arXiv
1500
+ preprint
1501
+ arXiv:2210.10141, 2022.
1502
+ [80]
1503
+ M. B. Heydari, M. Karimipour, and M. Mohammadi Shirkolaei, "High-performance hyperbolic phonon-
1504
+ plasmon modes at mid-infrared frequencies in grounded graphene-hBN heterostructures: an analytical
1505
+ approach," Optical and Quantum Electronics, vol. 55, pp. 1-12, 2023.
1506
+ [81]
1507
+ M. B. Heydari, M. Karimipour, and M. M. Shirkolaei, "Strong Phonon-Plasmon Coupling in Grounded
1508
+ Graphene-Hexagonal Boron Nitride (hBN) Heterostructures," 2022.
1509
+ [82]
1510
+ M. B. Heydari, M. Karimipour, and M. M. Shirkolaei, "Hyperbolic Phonon-Plasmon Modes in Grounded
1511
+ Graphene-hBN Heterostructures for Mid-Infrared Applications," arXiv preprint arXiv:2211.03701, 2022.
1512
+ [83]
1513
+ D. Bortman-Arbiv, A. Wilson-Gordon, and H. Friedmann, "Phase control of group velocity: from subluminal
1514
+ to superluminal light propagation," Physical Review A, vol. 63, p. 043818, 2001.
1515
+ [84]
1516
+ X. Ling, X. Zhou, K. Huang, Y. Liu, C.-W. Qiu, H. Luo, et al., "Recent advances in the spin Hall effect of
1517
+ light," Reports on Progress in Physics, vol. 80, p. 066401, 2017.
1518
+
1519
+ 13
1520
+
1521
+ [85]
1522
+ J. Arias, A. Sánchez-Meroño, M. Sánchez-López, E. Ávila-Navarro, and I. Moreno, "Superluminal reflected
1523
+ pulses in microstrip slabs and photonic crystals," in Photonic Crystal Materials and Devices IX, 2010, pp.
1524
+ 165-174.
1525
+ [86]
1526
+ Y.-q. Kang, Y. Xiang, and C. Luo, "Tunable enhanced Goos–Hänchen shift of light beam reflected from
1527
+ graphene-based hyperbolic metamaterials," Applied Physics B, vol. 124, pp. 1-6, 2018.
1528
+ [87]
1529
+ H. Hajian, A. Ghobadi, S. A. Dereshgi, B. Butun, and E. Ozbay, "Hybrid plasmon–phonon polariton bands
1530
+ in graphene–hexagonal boron nitride metamaterials," JOSA B, vol. 34, pp. D29-D35, 2017.
1531
+ [88]
1532
+ S. Dai, Q. Ma, M. Liu, T. Andersen, Z. Fei, M. Goldflam, et al., "Graphene on hexagonal boron nitride as a
1533
+ tunable hyperbolic metamaterial," Nature nanotechnology, vol. 10, pp. 682-686, 2015.
1534
+ [89]
1535
+ J. Wu, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, "Tunable perfect absorption at infrared frequencies
1536
+ by a graphene-hBN hyper crystal," Optics Express, vol. 24, pp. 17103-17114, 2016.
1537
+ [90]
1538
+ Y. Jiang, X. Lin, T. Low, B. Zhang, and H. Chen, "Group‐Velocity‐Controlled and Gate‐Tunable Directional
1539
+ Excitation of Polaritons in Graphene‐Boron Nitride Heterostructures," Laser & Photonics Reviews, vol. 12,
1540
+ p. 1800049, 2018.
1541
+ [91]
1542
+ X. Lin, Y. Yang, N. Rivera, J. J. López, Y. Shen, I. Kaminer, et al., "All-angle negative refraction of highly
1543
+ squeezed plasmon and phonon polaritons in graphene–boron nitride heterostructures," Proceedings of the
1544
+ National Academy of Sciences, vol. 114, pp. 6717-6721, 2017.
1545
+ [92]
1546
+ Z. Zheng, F. Lu, and X. Dai, "Tunable reflected group delay from the graphene/hBN heterostructure at
1547
+ infrared frequencies," Results in Physics, vol. 15, p. 102681, 2019.
1548
+ [93]
1549
+ V. Gusynin, S. Sharapov, and J. Carbotte, "Magneto-optical conductivity in graphene," Journal of Physics:
1550
+ Condensed Matter, vol. 19, p. 026222, 2006.
1551
+
1552
+
HdAyT4oBgHgl3EQf5frD/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
HtE2T4oBgHgl3EQfTwfs/content/tmp_files/2301.03807v1.pdf.txt ADDED
@@ -0,0 +1,2092 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03807v1 [math.RA] 10 Jan 2023
2
+ UNIVERSAL CONSTRUCTIONS FOR POISSON ALGEBRAS.
3
+ APPLICATIONS
4
+ A. L. AGORE AND G. MILITARU
5
+ Abstract. We introduce the universal algebra of two Poisson algebras P and Q as
6
+ a commutative algebra A := P(P, Q) satisfying a certain universal property.
7
+ The
8
+ universal algebra is shown to exist for any finite dimensional Poisson algebra P and
9
+ several of its applications are highlighted. For any Poisson P-module U, we construct a
10
+ functor U⊗−: AM → QPM from the category of A-modules to the category of Poisson
11
+ Q-modules which has a left adjoint whenever U is finite dimensional. Similarly, if V is
12
+ an A-module, then there exists another functor −⊗V : P PM → QPM connecting the
13
+ categories of Poisson representations of P and Q and the latter functor also admits a
14
+ left adjoint if V is finite dimensional. If P is n-dimensional, then P(P) := P(P, P) is
15
+ the initial object in the category of all commutative bialgebras coacting on P. As an
16
+ algebra, P(P) can be deescribed as the quotient of the polynomial algebra k[Xij | i, j =
17
+ 1, · · · , n] through an ideal generated by 2n3 non-homogeneous polynomials of degree
18
+ ≤ 2. Two applications are provided. The first one describes the automorphisms group
19
+ AutPoiss(P) as the group of all invertible group-like elements of the finite dual P(P)o.
20
+ Secondly, we show that for an abelian group G, all G-gradings on P can be explicitly
21
+ described and classified in terms of the universal coacting bialgebra P(P).
22
+ Introduction
23
+ Introduced in Hamiltonian mechanics as the dual of the category of classical mechanical
24
+ systems, Poisson algebras play an important role in the study of quantum groups, dif-
25
+ ferential geometry, noncommutative geometry, integrable systems, quantum field theory
26
+ or vertex operator algebras (see [12, 13, 15, 18, 19, 20, 30]). Poisson algebras can be
27
+ thoughth of as the algebraic counterpart of Poisson manifolds which are smooth man-
28
+ ifolds M whose commutative algebra C∞(M, R) of real smooth functions is endowed
29
+ with a Lie bracket [−, −] satisfying the Leibniz rule, i.e. C∞(M, R) is a Poisson algebra.
30
+ In this paper we introduce and study some universal objects for Poisson algebras and
31
+ highlight their main applications having as sourse of inspiration the previous work of
32
+ Sweedler [28], Manin [22] and Tambara [25] for Hopf algebra (co)actions on associative
33
+ algebras. From a categorical point of view, the existence of universal objects with a
34
+ certain property, for a given category C can shed some light on the structure of the
35
+ category C itself. In particular, the existence and description of universal objects (groups
36
+ 2020 Mathematics Subject Classification. 17B63, 16T05, 16T10, 16W20, 16W50.
37
+ Key words and phrases. Poisson algebras, universal constructions, automorphisms group, gradings.
38
+ This work was supported by a grant of the Ministry of Research, Innovation and Digitization,
39
+ CNCS/CCCDI – UEFISCDI, project number PN-III-P4-ID-PCE-2020-0458, within PNCDI III.
40
+ 1
41
+
42
+ 2
43
+ A. L. AGORE AND G. MILITARU
44
+ or ”group like objects” such as Lie groups, algebraic groups, Hopf algebras, groupoids or
45
+ quantum groupoids, etc.) which act or coact on a fixed object O in a certain category
46
+ C has often various applications in many areas of mathematics.
47
+ An elementary but
48
+ illuminating example is the following: let O be a given object in a certain category
49
+ C and consider the category ActGrO of all groups that act on O, i.e. the objects in
50
+ ActGrO are pairs (G, ϕ) consisting of a discrete group G and a morphism of groups
51
+ ϕ : G → AutC(O), where AutC(O) denotes the automorphisms group of the object O
52
+ in C. Then the category ActGrO has a final object, namely
53
+
54
+ AutC(O), Id
55
+
56
+ . Now, if we
57
+ replace the discrete groups that act on the fixed object O in C, by some other ”groups like
58
+ objects” from a certain more sophisticated category D (for instance, Lie groups, algebraic
59
+ groups, Hopf algebras, etc.) which (co)act on O and if moreover we ask the (co)action
60
+ to preserve the algebraic, differential or topological structures which might exist on O,
61
+ then things become very complicated.
62
+ Indeed, the first obstacle we encounter is the
63
+ fact that AutC(O) might not be an object inside the category D anymore. However,
64
+ even in this complicated situation, it is possible for the above result to remain valid but,
65
+ however, the construction of the final object will be far more complicated. Furthermore,
66
+ it is to expect that, if it exists, this final object will contain important information on
67
+ the entire automorphisms group of the object O. To the best of our knowledge, the first
68
+ result in this direction was proved by Sweelder [28, Theorem 7.0.4] in the case where C
69
+ is the category of associative algebras and D is the category of bialgebras: if A is a fixed
70
+ associative algebra then the category of all bialgebras H that act on A (i.e. A is an
71
+ H-module algebra) has a final object M(A), called by Sweedler the universal measuring
72
+ bialgebra of A. The dual situation of coactions of bialgebras on a fixed algebra A, was first
73
+ considered in the case when C is the category of graded algebras by Manin [22] for reasons
74
+ related to non-commutative geometry, and in the general case by Tambara [25]. If A is an
75
+ associative algebra, necessarily finite dimensional this time around, then the category of
76
+ all bialgebras that coact on A (i.e. A is an H-comodule algebra) has an intial object a(A).
77
+ The results have been extended in recent years to the setting of bialgebroids coactions in
78
+ [7, 8]. Furthermore, the usual automorphisms group AutAlg(A) of A is indeed recovered
79
+ as the group of all invertible group-like elements of the finite dual a(A)o [23, Theorem
80
+ 2.1] and a(A)o is just Sweedler’s final object in the category of all bialgebras that act
81
+ on A [25, Remark 1.3]. The two results above remains valid if we take the category of
82
+ Hopf algebras instead of bialgebras: in particular, the Hopf envelope of a(A), denoted by
83
+ aut(A), is called in non-commutative geometry the non-commutative symmetry group of
84
+ A [27] and its description is a very complicated matter. The existence and description of
85
+ these universal (co)acting bialgebras/Hopf algebras has been considered recently in [2] in
86
+ the context of Ω-algebras. The duality between Sweedler’s and Manin-Tambara’s objects
87
+ has been extended to this general setting and necessary and sufficient conditions for the
88
+ existence of the universal coacting bialgebras/Hopf algebras, which roughly explains the
89
+ need for assuming finite-dimensionality in Manin-Tambara’s constructions, are given.
90
+ Furthermore, universal coacting objects for Poisson algebras have also been considered
91
+ in [3] but from a different perspective, leading to entirely different constructions. We
92
+ only point out that in [3], the universal coacting object considered is actually a Poisson
93
+ Hopf algebra. For more background on the importance and the applications of universal
94
+
95
+ UNIVERSAL CONSTRUCTIONS FOR POISSON ALGEBRAS
96
+ 3
97
+ bialgebras/Hopf algebras in various areas of mathematics we refer to [4, 7, 8, 10, 11, 16,
98
+ 17].
99
+ The paper is organized as follows. Definition 2.1 introduces the key object of our work,
100
+ namely the universal algebra of two Poisson algebras P and Q, as a pair
101
+
102
+ P(P, Q), η
103
+
104
+ consisting of a commutative algebra A := P(P, Q) and a Poisson algebra homomorphism
105
+ η: Q → P ⊗ P(P, Q) satisfying a certain universal property. Theorem 2.2 proves that
106
+ if P is finite dimensional, then the universal algebra P(P, Q) of P and Q exists and
107
+ its explicit construction is provided. This result has two important consequences: as
108
+ proved in Theorem 2.5, for a fixed Poisson P-module U there exists a canonical functor
109
+ U ⊗ −: AM → QPM from the category of usual A-modules (i.e. representations of
110
+ the associative algebra A) to the category of Poisson Q-modules (i.e. Poisson repre-
111
+ sentations of Q) and moreover, if U is finite dimensional this functor has a left adjoint
112
+ (Theorem 2.6). Secondly, if V is an A-module, then there exists a canonical functor
113
+ − ⊗ V : P PM → QPM connecting the categories of Poisson modules over P and Q
114
+ and, furthermore, if V is finite dimensional then the aforementioned functor has a left
115
+ adjoint (Theorem 2.7). These results provide answers, at the level of Poisson algebras,
116
+ to the following general question: if O1 and O2 are two mathematical objects (not nec-
117
+ essary in the same category), is it possible to construct ”canonical functors” between the
118
+ representation categories Rep(O1) and Rep(O2) of the two objects?
119
+ In Section 3 we consider three more applications of our constructions.
120
+ For an n-
121
+ dimensional Poisson algebra P, we denote P(P) := P(P, P) and we construct P(P)
122
+ as the quotient of the polynomial algebra k[Xij | i, j = 1, · · · , n] through an ideal gen-
123
+ erated by 2n3 non-homogeneous polynomials of degree ≤ 2. P(P) has a canonical bial-
124
+ gebra structure and Theorem 3.3 shows that P(P) is the initial object of the category
125
+ CoactBialgP of all commutative bialgebras coacting on P and, for this reason, we call it
126
+ the universal coacting bialgebra of P. As in the case of Lie [5] or associative algebras [23],
127
+ the universal bialgebra P(P) has two important applications, which provide the theoret-
128
+ ical answer for Poisson algebras, of the following open questions: (1) Describe explicitly
129
+ the automorphisms group of a given Poisson algebra P; (2) Describe and classify all
130
+ G-gradings on P for a given abelian group G. More precisely, Theorem 3.6 proves that
131
+ there exists an isomorphism of groups between the group of all Poisson automorphisms
132
+ of P and the group of all invertible group-like elements of the finite dual P(P)o. The
133
+ second application is given in Theorem 3.9: for an abelian group G, all G-gradings on
134
+ a finite dimensional Poisson algebra P are described and classified in terms of bialgebra
135
+ homomorphisms P(P) → k[G]. By taking Takeuchi’s commutative Hopf envelope of
136
+ P(P), we obtain that the category CoactHopfP of all commutative Hopf algebras coact-
137
+ ing on P has an initial object H(P) (Corollary 3.4). It is reasonable to hope that H(P)
138
+ will play the role of a non-commutative symmetry group of the Poisson algebra P. This
139
+ expectation is based on the fact that the concept of Poisson H-comodule algebra which
140
+ we are dealing with, is the algebraic counterpart of the action of an algebraic groups on
141
+ an affine Poisson variety [14, Example 2.20].
142
+
143
+ 4
144
+ A. L. AGORE AND G. MILITARU
145
+ 1. Preliminaries
146
+ All vector spaces, (bi)linear maps, unadorned tensor products, associative, Lie or Pois-
147
+ son algebras and so on are over an arbitrary field k. Throughout, δs,1 will stand for
148
+ Kronecker’s symbol. A Poisson algebra is a vector space P which admits both an (non-
149
+ necessarily unital) associative commutative algebra and a Lie algebra such that for all
150
+ x, y, z ∈ P we have:
151
+ [x, yz] = [x, y] z + y [x, z].
152
+ (1)
153
+ A morphism of two Poisson algebras P1 and P2 is a linear map f : P1 → P2 which is
154
+ both an algebra homomorphism as well as a Lie algebra homomorphism; if P1 and P2
155
+ are unital Poisson algebras then a Poisson homomorphism will be assumed to preserve
156
+ units. We denote by AutPoiss(P) the automorphisms group of a Poisson algebra P.
157
+ Let P be a Poisson algebra.
158
+ A (left) Poisson P-module [6, 29] is a vector space V
159
+ equipped with two bilinear maps ⊲: P × V → V and ⇀: P × V → V such that (V, ⊲) is
160
+ a left P-module, (V, ⇀) is a left Lie P-module satisfying the following two compatibility
161
+ conditions for all a, b ∈ P and x ∈ V :
162
+ (ab) ⇀ x = a ⊲ (b ⇀ x) + b ⊲ (a ⇀ x)
163
+ (2)
164
+ [a, b] ⊲ x = a ⇀ (b ⊲ x) − b ⇀ (a ⊲ x)
165
+ (3)
166
+ We denote by PPM the category of Poisson P-modules having as morphisms all linear
167
+ maps which are compatible with both actions.
168
+ Remarks 1.1. 1. The category PPM of Poisson P-modules is equivalent to the category
169
+ of usual left P e-modules ([29, Corollary 1]), where P e is the universal enveloping algebra
170
+ of P as constructed there. In particular, for any set S we denote by (P e)(S), the free
171
+ P e-module generated by S, which is the free Poisson P-module generated by S. Any
172
+ quotient (P e)(S)/N through a Poisson submodule N generated by a system of generators
173
+ R is called the free Poisson P-module generated by S and the relations R.
174
+ 2. A representation of a Poisson algebra P on a vector space V [6, Remarks 2.9] is a pair
175
+ (ψ, ϕ) consisting of an algebra map ψ : P → Endk(V ), a Lie algebra map ϕ : P → glk(V )
176
+ such that for any a, b ∈ P:
177
+ ϕ(ab) = ψ(a) ◦ ϕ(b) + ψ(b) ◦ ϕ(a),
178
+ ψ([a, b]) = ϕ(a) ◦ ψ(b) − ϕ(b) ◦ ψ(a).
179
+ The concepts of a Poisson P-module structure on V and a representation of P on V are
180
+ obviously equivalent.
181
+ We shall denote by Poissk, Poiss1
182
+ k and ComAlgk the categories of Poisson, unital Poisson
183
+ and respectively unital commutative associative algebras over k. Furthermore, the cat-
184
+ egory of commutative bialgebras (resp. Hopf algebras) is denoted by ComBiAlgk (resp.
185
+ ComHopfk). For a coalgebra C we denote by G(C) the set of group like elements of
186
+ C, i.e. G(C) := {x ∈ C | ∆(x) = x ⊗ x and ε(x) = 1}. If B is a bialgebra, then G(B)
187
+ is a monoid with respect to the multiplication on B. Throughout, for a bialgebra B,
188
+ we denote by Bo its finite dual. Recall that if H and L are two bialgebras then the
189
+ abelian group Homk (H, L) is an associative algebra under the convolution product [28]:
190
+ (θ1 ⋆ θ2)(h) := � θ1(h(1))θ2(h(2)), for all θ1, θ2 ∈ Homk (H, L) and h ∈ H.
191
+
192
+ UNIVERSAL CONSTRUCTIONS FOR POISSON ALGEBRAS
193
+ 5
194
+ If H is a commutative bialgebra (or a Hopf algebra), then a Poisson algebra P is called
195
+ a right Poisson H-comodule algebra [9] (we also say that H coacts on P) if there exists
196
+ ρP : P → P ⊗ H a Poisson algebra map (the Poisson algebra structures on P ⊗ H
197
+ are given by (4) below) that is also a right H-comodule stucture on P. If (P, ρP ) is a
198
+ right Poisson H-comodule algebra, then the subalgebra of coinvariants P co(H) := {p ∈
199
+ P | ρP (p) = p ⊗ 1H} is a Poisson subalgebra of P. For a fixed Poisson algebra P we
200
+ denote by CoactBialgP (resp. CoactHopfP ) the category of all commutative bialgebras
201
+ (resp. Hopf algebras) coacting on P. That is, the objects are all pairs (H, ρP ) consisting
202
+ of a commutative bialgebra (resp. Hopf algebra) H together with a structure of a right
203
+ Poisson H-comodule algebra ρP : P → P ⊗ H while morphisms f : (H, ρP ) → (H′, ρ′
204
+ P )
205
+ in CoactBialgP are bialgebra maps f : H → H′ such that (IdP ⊗ f) ◦ ρP = ρ′
206
+ P .
207
+ Examples 1.2. 1. The first basic example of a Poisson H-comodule algebra is the one
208
+ induced by G-graded Poisson algebras. Recall that, given an abelian group G and a
209
+ Poisson algebra P, a G-grading on P is a vector space decomposition P = ⊕σ∈G Pσ such
210
+ that PσPτ ⊆ Pστ and [Pσ, Pτ] ⊆ Pστ, for all σ, τ ∈ G. Two G-gradings P = ⊕σ∈G Pσ =
211
+ ⊕σ∈G P
212
+
213
+ σ on P are called isomorphic if there exists w ∈ AutPoiss(P) an automorphism
214
+ of P such that w(Pσ) = P
215
+
216
+ σ, for all σ ∈ G. Let k[G] be the group algebra of G. By
217
+ extending a well known result in Hopf algebra theory ([26, Excercise 3.2.21]) one can
218
+ easily see that there is a bijection between the set of all right Poisson k[G]-comodule
219
+ structures ρ: P → P ⊗ k[G] on the Poisson algebra P and the set of all G-gradings on
220
+ P = ⊕σ∈G Pσ. The bijection is given such that xσ ∈ Pσ if and only if ρ(xσ) = xσ ⊗ σ,
221
+ for all σ ∈ G.
222
+ 2. The second example of a Poisson comodule algebra comes from algebraic geometry
223
+ [14, Example 2.20]: if V is an affine Poisson variety (i.e. the coordinate ring k[V ] of
224
+ V is a Poisson algebra) and G is an algebraic group acting on V via automorphisms of
225
+ Poisson varieties, then k[V ] is a Poisson k[G]-comodule algebra.
226
+ For further details concerning the study of Poisson algebras see [12, 20] and the references
227
+ therein and for undefined concepts on category theory (resp. Hopf algebras) we refer the
228
+ reader to [21] (resp. [26, 28]).
229
+ 2. The universal algebra of two Poisson algebras
230
+ Before introducing the main characters of this paper we make the following key obser-
231
+ vation: if P is a Poisson algebra and A is a commutative associative algebra then P ⊗ A
232
+ is a Poisson algebra. The associative algebra structure and the Lie bracket are defined
233
+ as follows for all x, y ∈ P and a, b ∈ A:
234
+ (x ⊗ a) (y ⊗ b) = xy ⊗ ab,
235
+ [x ⊗ a, y ⊗ b] = [x, y] ⊗ ab.
236
+ (4)
237
+
238
+ 6
239
+ A. L. AGORE AND G. MILITARU
240
+ Indeed, having in mind that A is a commutative associative algebra, we have:
241
+
242
+ x ⊗ a, (y ⊗ b)(z ⊗ c)
243
+ � (4)
244
+ = [x ⊗ a, yz ⊗ bc]
245
+ (4)
246
+ = [x, yz] ⊗ abc
247
+ (1)
248
+ = [x, y] z ⊗ abc + y [x, z] ⊗ abc
249
+ (4)
250
+ = ([x, y] ⊗ ab)(z ⊗ c) + (y ⊗ b)([x, z] ⊗ ac)
251
+ (4)
252
+ = [x ⊗ a, y ⊗ b] (z ⊗ c) + (y ⊗ b) [x ⊗ a, z ⊗ c]
253
+ for all x, y, z ∈ P and a, b, c ∈ A, i.e. (1) holds for P ⊗ A. Furthermore, if f : A → B
254
+ is an algebra map then IdP ⊗ f : P ⊗ A → P ⊗ B is a morphism of Poisson algebras.
255
+ To conclude, given a Poisson algebra P, assigning A �→ P ⊗ A defines a functor P ⊗ − :
256
+ ComAlgk → Poissk from the category of commutative algebras to the category of Poisson
257
+ algebras. With this remark in hand we can now introduce the following concept:
258
+ Definition 2.1. Let P and Q be two Poisson algebras. The universal algebra of P and
259
+ Q is a pair
260
+
261
+ P(P, Q), η
262
+
263
+ consisting of a commutative algebra P(P, Q) ∈ ComAlgk and
264
+ a Poisson algebra homomorphism η: Q → P ⊗ P(P, Q) satisfying the following univer-
265
+ sal property: for any commutative algebra A and any Poisson algebra homomorphism
266
+ g: Q → P ⊗ A there exists a unique algebra homomorphism θ: P(P, Q) → A such that
267
+ the following diagram is commutative:
268
+ Q
269
+ η
270
+
271
+ g
272
+ �❑
273
+
274
+
275
+
276
+
277
+
278
+
279
+
280
+
281
+
282
+
283
+ P ⊗ P(P, Q)
284
+ IdP ⊗θ
285
+
286
+ P ⊗ A
287
+ i.e. g =
288
+
289
+ IdP ⊗ θ
290
+
291
+ ◦ η
292
+ (5)
293
+ If Q = P then P(P) := P(P, P) will be called the universal coacting bialgebra on P 1.
294
+ The universal algebra of two Poisson algebras P and Q, if exists, it is unique up to
295
+ an isomorphism of algebras. In what follows we prove that if P is a finite dimensional
296
+ Poisson algebra and Q an arbitrary Poisson algebra, then the universal algebra P(P, Q)
297
+ of P and Q exists and we will provide its explicit construction. We formulate this result
298
+ in terms of adjoint functors, as the Poisson algebra version of [25, Theorem 1.1].
299
+ Theorem 2.2. Let P be a finite dimensional Poisson algebra. Then the functor P ⊗
300
+ − : ComAlgk → Poissk has a left adjoint P(P, −) : Poissk → ComAlgk. Furthermore, if
301
+ Q is an arbitrary Poisson algebra, then P(P, Q) is the universal algebra of P and Q.
302
+ Proof. Let n ∈ N∗ be a positive integer and {e1, · · · , en} a basis of the Poisson algebra P.
303
+ We denote by {τ s
304
+ i,j | i, j, s = 1, · · · , n} and {µs
305
+ i,j | i, j, s = 1, · · · , n} the structure constants
306
+ of P with respect to the associative and Lie structures, i.e. for all i, j = 1, · · · , n we
307
+ have:
308
+ ei ej =
309
+ n
310
+
311
+ s=1
312
+ τ s
313
+ i,j es,
314
+ [ei, ej]P =
315
+ n
316
+
317
+ s=1
318
+ µs
319
+ i,j es.
320
+ (6)
321
+ We will construct explicitly a left adjoint P(P, −) : Poissk → ComAlgk for the tensor
322
+ product functor P ⊗ − : ComAlgk → Poissk. To this end, let Q be a Poisson algebra
323
+ 1The terminology is explained by Theorem 3.3 below.
324
+
325
+ UNIVERSAL CONSTRUCTIONS FOR POISSON ALGEBRAS
326
+ 7
327
+ and consider {fi | i ∈ I} to be its basis. Then, for all i, j ∈ I, we can find two finite
328
+ subsets Ui,j and Vi,j of I such that:
329
+ fi fj =
330
+
331
+ u∈Ui,j
332
+ αu
333
+ i,j fu,
334
+ [fi, fj]Q =
335
+
336
+ u∈Vi,j
337
+ βu
338
+ i,j fu
339
+ (7)
340
+ for some scalars αu
341
+ i,j, βu
342
+ i,j ∈ k. Consider now k[Xsi | s = 1, · · · , n, i ∈ I] to be the usual
343
+ polynomial algebra and let
344
+ P(P, Q) := k[Xsi |s = 1, · · · , n, i ∈ I]/J
345
+ where J is the ideal generated by all polynomials of the form:
346
+ Γ(P, Q)
347
+ (a,i,j) =
348
+
349
+ u∈Ui,j
350
+ αu
351
+ i,j Xau −
352
+ n
353
+
354
+ s,t=1
355
+ τ a
356
+ s,t XsiXtj
357
+ (8)
358
+ Ω(P, Q)
359
+ (a,i,j) =
360
+
361
+ u∈Vi,j
362
+ βu
363
+ i,j Xau −
364
+ n
365
+
366
+ s,t=1
367
+ µa
368
+ s,t XsiXtj
369
+ (9)
370
+ for all a = 1, · · · , n and i, j ∈ I.
371
+ Denoting xsi := �
372
+ Xsi, where �
373
+ Xsi stands for the
374
+ equivalence class of Xsi in the quotient algebra P(P, Q), it follows that the relations
375
+ below hold in P(P, Q):
376
+
377
+ u∈Ui,j
378
+ αu
379
+ i,j xau =
380
+ n
381
+
382
+ s,t=1
383
+ τ a
384
+ s,t xsixtj
385
+ (10)
386
+
387
+ u∈Vi,j
388
+ βu
389
+ i,j xau =
390
+ n
391
+
392
+ s,t=1
393
+ µa
394
+ s,t xsixtj
395
+ (11)
396
+ for all a = 1, · · · , n and i, j ∈ I. Next, we consider the following linear map:
397
+ ηQ : Q → P ⊗ P(P, Q),
398
+ ηQ(fi) :=
399
+ n
400
+
401
+ s=1
402
+ es ⊗ xsi,
403
+ for all i ∈ I.
404
+ (12)
405
+ We will see that ηQ is in fact a Poisson algebra map; indeed, for all i, j ∈ I we have:
406
+ [ηQ(fi), ηQ(fj)]P ⊗P(P, Q) =
407
+ � n
408
+
409
+ s=1
410
+ es ⊗ xsi,
411
+ n
412
+
413
+ t=1
414
+ et ⊗ xtj
415
+
416
+ P ⊗P(P, Q)
417
+ =
418
+ n
419
+
420
+ s,t=1
421
+ [es, et]P ⊗ xsixtj =
422
+ n
423
+
424
+ a=1
425
+ ea ⊗
426
+
427
+ n
428
+
429
+ s, t=1
430
+ µa
431
+ s,t xsixtj
432
+
433
+ (11)
434
+ =
435
+ n
436
+
437
+ a=1
438
+ ea ⊗
439
+ � �
440
+ u∈Vi,j
441
+ βu
442
+ i,j xau
443
+
444
+ =
445
+
446
+ u∈Vi,j
447
+ βu
448
+ i,j ηQ(fu) = ηQ([fi, fj]Q)
449
+
450
+ 8
451
+ A. L. AGORE AND G. MILITARU
452
+ and
453
+ ηQ(fi) ηQ(fj) =
454
+ � n
455
+
456
+ s=1
457
+ es ⊗ xsi
458
+ � � n
459
+
460
+ t=1
461
+ et ⊗ xtj
462
+
463
+ =
464
+ n
465
+
466
+ s,t=1
467
+ es et ⊗ xsixtj
468
+ =
469
+ n
470
+
471
+ a=1
472
+ ea ⊗
473
+
474
+ n
475
+
476
+ s, t=1
477
+ τ a
478
+ s,t xsixtj
479
+
480
+ (10)
481
+ =
482
+ n
483
+
484
+ a=1
485
+ ea ⊗
486
+ � �
487
+ u∈Ui,j
488
+ αu
489
+ i,j xau
490
+
491
+ =
492
+
493
+ u∈Ui,j
494
+ αu
495
+ i,j ηQ(fu)
496
+ = ηQ(fi fj)
497
+ This shows that ηQ is indeed a Poisson algebra homomorphism, as claimed. The next
498
+ step of the proof consists in showing that for any Poisson algebra Q and any commutative
499
+ algebra A the map defined below is bijective:
500
+ γQ, A : HomAlgk (P(P, Q), A) → HomPoissk (Q, P ⊗ A),
501
+ γQ, A(θ) =
502
+
503
+ IdP ⊗ θ
504
+
505
+ ◦ηQ (13)
506
+ To this end, let g: Q → P ⊗ A be a Poisson algebra homomorphism.
507
+ We have to
508
+ prove that there exists a unique algebra homomorphism θ: P(P, Q) → A such that
509
+ g =
510
+
511
+ IdP ⊗ θ
512
+
513
+ ◦ ηQ. Let {dsi | s = 1, · · · , n, i ∈ I} be a family of elements of A such that
514
+ for all i ∈ I we have:
515
+ g(fi) =
516
+ n
517
+
518
+ s=1
519
+ es ⊗ dsi
520
+ (14)
521
+ Furthermore, as g: Q → P ⊗ A is a Poisson algebra map, we can easily conclude that
522
+ the following compatibilities hold for all a = 1, · · · , n and i, j ∈ I:
523
+
524
+ u∈Ui,j
525
+ αu
526
+ i,j dau =
527
+ n
528
+
529
+ s,t=1
530
+ τ a
531
+ s,t dsidtj
532
+ (15)
533
+
534
+ u∈Vi,j
535
+ βu
536
+ i,j dau =
537
+ n
538
+
539
+ s,t=1
540
+ µa
541
+ s,t dsidtj
542
+ (16)
543
+ The universal property of the polynomial algebra yields a unique algebra homomorphism
544
+ v: k[Xsi |s = 1, · · · , n, i ∈ I] → A such that v(Xsi) = dsi, for all s = 1, · · · , n and i ∈ I.
545
+ Furthermore, we have J ⊆ Ker(v), where J is the ideal generated by all polynomials
546
+ listed in (8) and (9). Indeed, for all i, j ∈ I and a = 1, · · · , n we have:
547
+ v
548
+
549
+ Γ(P, Q)
550
+ (a,i,j)
551
+
552
+ = v
553
+ � �
554
+ u∈Ui,j
555
+ αu
556
+ i,j Xau −
557
+ n
558
+
559
+ s,t=1
560
+ τ a
561
+ s,t XsiXtj
562
+
563
+ =
564
+
565
+ u∈Ui,j
566
+ αu
567
+ i,j dau −
568
+ n
569
+
570
+ s,t=1
571
+ τ a
572
+ s,t dsidtj
573
+ (15)
574
+ = 0
575
+ v
576
+
577
+ Ω(P, Q)
578
+ (a,i,j)
579
+
580
+ = v
581
+ � �
582
+ u∈Vi,j
583
+ βu
584
+ i,j Xau −
585
+ n
586
+
587
+ s,t=1
588
+ µa
589
+ s,t XsiXtj
590
+
591
+ =
592
+
593
+ u∈Vi,j
594
+ βu
595
+ i,j dau −
596
+ n
597
+
598
+ s,t=1
599
+ µa
600
+ s,t dsidtj
601
+ (16)
602
+ = 0
603
+ Thus, there exists a unique algebra homomorphism θ: P(P, Q) → A such that θ(xsi) =
604
+ dsi, for all s = 1, · · · , n and i ∈ I. We are left to show that g =
605
+
606
+ IdP ⊗ θ
607
+
608
+ ◦ ηQ. To this
609
+ end, for all i ∈ I we have:
610
+
611
+ IdP ⊗ θ
612
+
613
+ ◦ ηQ(fi) =
614
+
615
+ IdP ⊗ θ
616
+ �� n
617
+
618
+ s=1
619
+ es ⊗ xsi
620
+
621
+ =
622
+ n
623
+
624
+ s=1
625
+ es ⊗ dsi
626
+ (30)
627
+ = g(fi),
628
+
629
+ UNIVERSAL CONSTRUCTIONS FOR POISSON ALGEBRAS
630
+ 9
631
+ as desired.
632
+ We are left to show that θ is the unique morphism with this property.
633
+ Indeed, consider ˜θ: P(P, Q) → A to be another algebra homomorphism such that
634
+
635
+ IdP ⊗
636
+ ˜θ
637
+
638
+ ◦ ηQ(fi) = g(fi), for all i ∈ I. Then, �n
639
+ s=1 es ⊗ ˜θ(xsi) = �n
640
+ s=1 es ⊗ dsi, and hence
641
+ ˜θ(xsi) = dsi = θ(xsi), for all s = 1, · · · , n and i ∈ I. As the set {xsi |s = 1, · · · , n, i ∈ I }
642
+ generates the algebra P(P, Q) we can conclude that ˜θ = θ. To summarize, we proved
643
+ that the map γQ, A given by (13) is bijective.
644
+ The only thing left to show is that given a finite dimensional Poisson algebra P, assigning
645
+ Q �→ P(P, Q) defines a functor P(P, −): Poissk → ComAlgk. Indeed, let u: Q1 → Q2
646
+ be a Poisson algebra homomorphism. Applying the bijectivity of the map defined by (13)
647
+ for the Poisson algebra homomorphism ηQ2 ◦ u, yields a unique algebra homomorphism
648
+ θ: P(P, Q1) → P(P, Q2) such that:
649
+
650
+ IdP ⊗ θ
651
+
652
+ ◦ ηQ1 = ηQ2 ◦ u
653
+ (17)
654
+ By considering P(P, u) to be this unique morphism θ, the functor P(P, −) is fully
655
+ defined. Moreover, it can now be easily checked that P(P, −) is indeed a functor and
656
+ that γQ, A is natural in both variables. Therefore, the functor P(P, −) is the left adjoint
657
+ of the functor P ⊗ −.
658
+ Finally, the bijectivity of the map (13) shows that the pair
659
+
660
+ P(P, Q), ηQ
661
+
662
+ is indeed the universal algebra of P and Q.
663
+
664
+ Remark 2.3. Theorem 2.2 remains valid if we replace Poissk by the category Poiss1
665
+ k
666
+ of unital Poisson algebras. If P is a unital finite dimensional Poisson algebra, then the
667
+ functor P ⊗ − : ComAlgk → Poiss1
668
+ k has a left adjoint P1(P, −): Poiss1
669
+ k → ComAlgk
670
+ which is constructed as follows. If {e1, · · · , en} is a basis of the Poisson algebra P such
671
+ that e1 := 1P and Q is a unital Poisson algebra with basis {fi | i ∈ I} such that fi0 := 1Q
672
+ then we define
673
+ P1(P, Q) := P(P, Q)/L
674
+ where L is the ideal of P(P, Q) generated by xsi0 − δs,1, for all s = 1, · · · , n. These new
675
+ relations are necessary and sufficient for the map ηQ: Q → P ⊗ P1(P, Q) defined in (12)
676
+ to be unital, i.e. ηQ(1Q) = 1P ⊗1. The rest of the proof goes exactly as for Theorem 2.2.
677
+ Furthermore, Theorem 2.2 can be generalized to the category of Jacobi algebras by
678
+ repeating verbatim the above proof.
679
+ Recall that a Jacobi algebra [6] is a quadruple
680
+ J = (J, mJ, 1J, [−, −]), where (J, mJ, 1J) is a unital commutative algebra, (A, [−, −])
681
+ is a Lie algebra such that for all a, b, c ∈ J we have:
682
+ [ab, c] = a [b, c] + [a, c] b − ab [1A, c]
683
+ (18)
684
+ We can prove that for any Jacobi algebra J and any commutative algebra A, the tensor
685
+ product J ⊗ A is a Jacobi algebra with the structures given by (4). If we denote by Jack
686
+ the category of Jacobi algebras, then for any finite diminesional Jacobi algebra J, the
687
+ functor J ⊗ − : ComAlgk → Jack has a left adjoint.
688
+ The universal algebra P(P, Q) of two Poisson algebras P and Q as constructed in Theo-
689
+ rem 2.2 is an important tool for comparing the two Poisson algebras: the first application
690
+ shows that the set of all usual algebra maps P(P, Q) → k parameterize the space of all
691
+ Poisson algebra maps Q → P. Indeed, by considering A := k, the bijection described in
692
+ (13) comes down to the following:
693
+
694
+ 10
695
+ A. L. AGORE AND G. MILITARU
696
+ Corollary 2.4. Let P and Q be two Poisson algebras such that P is finite dimensional.
697
+ Then the following map is bijective:
698
+ γ : HomAlgk (P(P, Q), k) → HomPoissk (Q, P),
699
+ γ(θ) :=
700
+
701
+ IdP ⊗ θ
702
+
703
+ ◦ηQ
704
+ (19)
705
+ The next applications of the universal algebra P(P, Q) are more nuanced and refer
706
+ to representations (i.e. Poisson modules) of the two Poisson algebras P and Q. In the
707
+ sequel, we will use the explicit description through generators and relations of the algebra
708
+ P(P, Q) provided in the proof of Theorem 2.2.
709
+ Theorem 2.5. Let P and Q be Poisson algebras such that P is finite dimensional,
710
+ A = P(P, Q) the corresponding universal algebra, (U, ◮, ↷) ∈ PPM a Poisson P-
711
+ module and (V, ·) ∈ AM an A-module.
712
+ Then (U ⊗ V, ⊲, ⇀) ∈ QPM is a Poisson Q-module where the actions of Q on U ⊗ V
713
+ are given for all i ∈ I, l ∈ U and t ∈ V by:
714
+ fi ⊲ (l ⊗ t) =
715
+ n
716
+
717
+ j=1
718
+ (ej ◮ l) ⊗ (xji · t)
719
+ (20)
720
+ fi ⇀ (l ⊗ t) =
721
+ n
722
+
723
+ j=1
724
+ (ej ↷ l) ⊗ (xji · t)
725
+ (21)
726
+ In particular, any fixed (U, ◮, ↷) ∈ P PM yields a functor U ⊗ −: AM → QPM from
727
+ the category of A-modules to the category of Poisson Q-modules; similarly, any fixed
728
+ (V, ·) ∈ AM gives rise to a functor − ⊗ V : PPM → QPM connecting the categories of
729
+ Poisson modules over P and Q.
730
+ Proof. We start by showing that (U ⊗ V, ⊲) is a left Q-module. To thie end, we have:
731
+ (fifj) ⊲ (l ⊗ t)
732
+ (7)
733
+ =
734
+
735
+ u∈Ui,j
736
+ αu
737
+ i,jfu ⊲ (l ⊗ t)
738
+ (20)
739
+ =
740
+
741
+ u∈Ui,j,r=1,n
742
+ (αu
743
+ i,jer ◮ l) ⊗ (xru · t)
744
+ =
745
+ n
746
+
747
+ r=1
748
+ (er ◮ l) ⊗
749
+ � �
750
+ u∈Ui,j
751
+ αu
752
+ i,jxru
753
+
754
+ · t
755
+ (10)
756
+ =
757
+ n
758
+
759
+ r,s,p=1
760
+ τ r
761
+ s,p (er ◮ l) ⊗ (xsixpj) · t
762
+ =
763
+ n
764
+
765
+ s,p=1
766
+ � n
767
+
768
+ r=1
769
+ τ r
770
+ s,p er
771
+
772
+ ◮ l ⊗ (xsixpj) · t
773
+ (6)
774
+ =
775
+ n
776
+
777
+ s,p=1
778
+ (esep) ◮ l ⊗ (xsixpj) · t
779
+ =
780
+ n
781
+
782
+ s,p=1
783
+ es ◮ (ep ◮ l) ⊗ (xsixpj) · t =
784
+ n
785
+
786
+ p=1
787
+ � n
788
+
789
+ s=1
790
+ es ◮ (ep ◮ l) ⊗ xsi · (xpj · t)
791
+
792
+ (20)
793
+ = fi ⊲
794
+ n
795
+
796
+ p=1
797
+ ep ◮ l ⊗ xpj · t
798
+ (20)
799
+ = fi ⊲
800
+
801
+ fj ⊲ (l ⊗ t)
802
+
803
+ We point out that (U ⊗V, ⇀) being a left Lie Q-module can be proved exactly as in (the
804
+ proof of) [1, Theorem 2.1]. The proof will be finished once we prove that compatibilities
805
+
806
+ UNIVERSAL CONSTRUCTIONS FOR POISSON ALGEBRAS
807
+ 11
808
+ (2) and (3) hold for (U ⊗ V, ⊲, ⇀).
809
+ Indeed, as compatibilities (2) and (3) hold for
810
+ (U, ◮, ↷) and A is a commutative algebra, for all i, j ∈ I and l ∈ U, t ∈ V , we have:
811
+ (fifj) ⇀ (l ⊗ t)
812
+ (7)
813
+ =
814
+
815
+ u∈Ui,j
816
+ αu
817
+ i,jfu ⇀ (l ⊗ t)
818
+ (21)
819
+ =
820
+
821
+ u∈Ui,j,r=1,n
822
+ (αu
823
+ i,jer ↷ l) ⊗ (xru · t)
824
+ =
825
+ n
826
+
827
+ r=1
828
+ (er ↷ l) ⊗
829
+ � �
830
+ u∈Ui,j
831
+ αu
832
+ i,jxru
833
+
834
+ · t
835
+ (10)
836
+ =
837
+ n
838
+
839
+ r,s,p=1
840
+ τ r
841
+ s,p (er ↷ l) ⊗ (xsixpj) · t
842
+ =
843
+ n
844
+
845
+ s,p=1
846
+ � n
847
+
848
+ r=1
849
+ τ r
850
+ s,p er
851
+
852
+ ↷ l ⊗ (xsixpj) · t
853
+ (6)
854
+ =
855
+ n
856
+
857
+ s,p=1
858
+ (esep) ↷ l ⊗ (xsixpj) · t
859
+ (2)
860
+ =
861
+ n
862
+
863
+ s,p=1
864
+
865
+ es ◮ (ep ↷ l) + ep ◮ (es ↷ l)
866
+
867
+ ⊗(xsixpj) · t
868
+ =
869
+ n
870
+
871
+ s,p=1
872
+ es ◮ (ep ↷ l) ⊗ xsi · (xpj · t) +
873
+ n
874
+
875
+ s,p=1
876
+ ep ◮ (es ↷ l) ⊗ xpj · (xsi · t)
877
+ (20)
878
+ = fi ⊲
879
+ n
880
+
881
+ p=1
882
+ (ep ↷ l) ⊗ (xpj · t) + fj ⊲
883
+ n
884
+
885
+ s=1
886
+ (es ↷ l) ⊗ (xsi · t)
887
+ (21)
888
+ = fi ⊲
889
+
890
+ fj ⇀ (l ⊗ t)
891
+
892
+ + fj ⊲
893
+
894
+ fi ⇀ (l ⊗ t)
895
+
896
+ and
897
+ [fi, fj] ⊲ (l ⊗ t)
898
+ (7)
899
+ =
900
+
901
+ v∈Vi,j
902
+ βu
903
+ i,j fu ⊲ (l ⊗ t)
904
+ (20)
905
+ =
906
+
907
+ u∈Vi,j,r=1,n
908
+ βu
909
+ i,j(er ◮ l) ⊗ (xru · t)
910
+ =
911
+ n
912
+
913
+ r=1
914
+ (er ◮ l) ⊗
915
+ � �
916
+ u∈Vi,j
917
+ βu
918
+ i,jxru
919
+
920
+ · t
921
+ (11)
922
+ =
923
+ n
924
+
925
+ r,s,p=1
926
+ µr
927
+ s,p (er ◮ l) ⊗ (xsixpj) · t
928
+ =
929
+ n
930
+
931
+ s,p=1
932
+ � n
933
+
934
+ r=1
935
+ µr
936
+ s,p er
937
+
938
+ ◮ l ⊗ (xsixpj) · t
939
+ (6)
940
+ =
941
+ n
942
+
943
+ s,p=1
944
+ [es, ep] ◮ l ⊗ (xsixpj) · t
945
+ (3)
946
+ =
947
+ n
948
+
949
+ s,p=1
950
+
951
+ es ↷ (ep ◮ l) − ep ↷ (es ◮ l)
952
+
953
+ ⊗ (xsixpj) · t
954
+ =
955
+ n
956
+
957
+ s,p=1
958
+
959
+ es ↷ (ep ◮ l)
960
+
961
+ ⊗ xsi · (xpj · t) −
962
+ n
963
+
964
+ s,p=1
965
+
966
+ ep ↷ (es ◮ l)
967
+
968
+ ⊗ xpj · (xsi · t)
969
+ (21)
970
+ = fi ⇀
971
+ n
972
+
973
+ p=1
974
+ (ep ◮ l) ⊗ (xpj · t) − fj ⇀
975
+ n
976
+
977
+ s=1
978
+ (es ◮ l) ⊗ (xsi · t)
979
+ (20)
980
+ = fi ⇀
981
+
982
+ fj ⊲ (l ⊗ t)
983
+
984
+ − fj ⇀
985
+
986
+ fi ⊲ (l ⊗ t)
987
+
988
+ which concludes the proof.
989
+
990
+
991
+ 12
992
+ A. L. AGORE AND G. MILITARU
993
+ Furhermore, if (U, ◮, ↷) ∈ PPM is finite dimensional then the first functor constructed
994
+ in Theorem 2.5 admits a left adjoint:
995
+ Theorem 2.6. Let P and Q be Poisson algebras such that P is finite dimensional,
996
+ A = P(P, Q) and (U, ◮, ↷) ∈ P PM a finite dimensional Poisson P-module. Then the
997
+ functor U ⊗ −: AM → QPM has a left adjoint U(U, −): QPM → AM.
998
+ Proof. Let {u1, · · · , um}, m ∈ N∗, be a k-basis of the Poisson P-module U and denote
999
+ by γt
1000
+ i,j, ωt
1001
+ i,j ∈ k the structure constants of U with respect the two module structures, i.e.
1002
+ for all i = 1, · · · , n, j = 1, · · · , m we have:
1003
+ ei ◮ uj =
1004
+ m
1005
+
1006
+ s=1
1007
+ γs
1008
+ i,j us,
1009
+ ei ↷ uj =
1010
+ n
1011
+
1012
+ s=1
1013
+ ωs
1014
+ i,j us
1015
+ (22)
1016
+ where {e1, · · · , en} is a k-basis of P. The left adjoint U(U, −): QPM → AM of the
1017
+ tensor product functor U ⊗ − will be constructed as follows. First, consider (V, ⊢, ↬) ∈
1018
+ QPM and {vr | r ∈ J} its k-basis. For all j ∈ I and r ∈ J we can find two finite subsets
1019
+ Wj,r and Tj,r of J such that:
1020
+ fj ⊢ vr =
1021
+
1022
+ t∈Wj,r
1023
+ σt
1024
+ j,r vt,
1025
+ fj ↬ vr =
1026
+
1027
+ l∈Tj,r
1028
+ ηl
1029
+ j,r vl
1030
+ (23)
1031
+ where σt
1032
+ j,r, ηl
1033
+ j,r ∈ k for all j ∈ I, r ∈ J, t ∈ Wj,r and l ∈ Tj,r (recall that {fi | i ∈ I}
1034
+ is a k-basis in Q). Consider now U(U, V ) to be the free A-module generated by the
1035
+ set {Yij | i = 1, · · · , m, j ∈ J} and denote by U(U, V ) the quotient of U(U, V ) by its
1036
+ A-submodule generated by the following elements:
1037
+
1038
+ p∈Wj,i
1039
+ σp
1040
+ j,i Ysp −
1041
+ m
1042
+
1043
+ t=1
1044
+ n
1045
+
1046
+ r=1
1047
+ γs
1048
+ r,t xrj ⋄ Yti
1049
+ (24)
1050
+
1051
+ p∈Tj,i
1052
+ ηp
1053
+ j,i Ysp −
1054
+ m
1055
+
1056
+ t=1
1057
+ n
1058
+
1059
+ r=1
1060
+ ωs
1061
+ r,t xrj ⋄ Yti
1062
+ (25)
1063
+ for all s = 1, · · · , m, i ∈ J and j ∈ I, where ⋄ denotes the A-module action on U(U, V ).
1064
+ Denoting ytj := �
1065
+ Ytj, where �
1066
+ Ytj stands for the equivalence class of Ytj in the quotient
1067
+ module U(U, V ), it follows that the relations below hold in the A-module U(U, V ):
1068
+
1069
+ p∈Wj,i
1070
+ σp
1071
+ j,i ysp =
1072
+ m
1073
+
1074
+ t=1
1075
+ n
1076
+
1077
+ r=1
1078
+ γs
1079
+ r,t xrj ⋄ yti
1080
+ (26)
1081
+
1082
+ p∈Tj,i
1083
+ ηp
1084
+ j,i ysp =
1085
+ m
1086
+
1087
+ t=1
1088
+ n
1089
+
1090
+ r=1
1091
+ ωs
1092
+ r,t xrj ⋄ yti
1093
+ (27)
1094
+ for all s = 1, · · · , m, i ∈ J and j ∈ I. Consider now the following linear map:
1095
+ ρV : V → U ⊗ U(U, V ),
1096
+ ρV (vr) :=
1097
+ m
1098
+
1099
+ s=1
1100
+ us ⊗ ysr,
1101
+ for all r ∈ J.
1102
+ (28)
1103
+
1104
+ UNIVERSAL CONSTRUCTIONS FOR POISSON ALGEBRAS
1105
+ 13
1106
+ Note that ρV is a Poisson Q-module map; indeed, for all j ∈ I and i ∈ J we have:
1107
+ ρV (fj ⊢ vi)
1108
+ (23)
1109
+ = ρV
1110
+ � �
1111
+ p∈Wj,i
1112
+ σp
1113
+ ji vp
1114
+
1115
+ =
1116
+
1117
+ p∈Wj,i
1118
+ m
1119
+
1120
+ s=1
1121
+ σp
1122
+ ji us ⊗ ysp =
1123
+ m
1124
+
1125
+ s=1
1126
+
1127
+ us ⊗
1128
+
1129
+ p∈Wj,i
1130
+ σp
1131
+ ji ysp
1132
+
1133
+ (26)
1134
+ =
1135
+ m
1136
+
1137
+ s,t=1
1138
+ n
1139
+
1140
+ r=1
1141
+ γs
1142
+ r,t us ⊗ xrj ⋄ yti =
1143
+ m
1144
+
1145
+ t=1
1146
+ n
1147
+
1148
+ r=1
1149
+ � m
1150
+
1151
+ s=1
1152
+ γs
1153
+ r,t us
1154
+
1155
+ ⊗ xrj ⋄ yti
1156
+ (22)
1157
+ =
1158
+ m
1159
+
1160
+ t=1
1161
+ n
1162
+
1163
+ r=1
1164
+ er ◮ ut ⊗ xrj ⋄ yti
1165
+ (20)
1166
+ =
1167
+ m
1168
+
1169
+ t=1
1170
+ fj ⊲ (ut ⊗ yti) = fj ⊲
1171
+ m
1172
+
1173
+ t=1
1174
+ ut ⊗ yti
1175
+ (28)
1176
+ = fj ⊲ ρV (vi)
1177
+ and
1178
+ ρV (fj ↬ vi)
1179
+ (23)
1180
+ = ρV
1181
+ � �
1182
+ p∈Tj,i
1183
+ ηp
1184
+ ji vp
1185
+
1186
+ =
1187
+
1188
+ p∈Tj,i
1189
+ m
1190
+
1191
+ s=1
1192
+ ηp
1193
+ ji us ⊗ ysp =
1194
+ m
1195
+
1196
+ s=1
1197
+
1198
+ us ⊗
1199
+
1200
+ p∈Tj,i
1201
+ ηp
1202
+ ji ysp
1203
+
1204
+ (27)
1205
+ =
1206
+ m
1207
+
1208
+ s,t=1
1209
+ n
1210
+
1211
+ r=1
1212
+ ωs
1213
+ r,t us ⊗ xrj ⋄ yti =
1214
+ m
1215
+
1216
+ t=1
1217
+ n
1218
+
1219
+ r=1
1220
+ � m
1221
+
1222
+ s=1
1223
+ ωs
1224
+ r,t us
1225
+
1226
+ ⊗ xrj ⋄ yti
1227
+ (22)
1228
+ =
1229
+ m
1230
+
1231
+ t=1
1232
+ n
1233
+
1234
+ r=1
1235
+ er ↷ ut ⊗ xrj ⋄ yti
1236
+ (21)
1237
+ =
1238
+ m
1239
+
1240
+ t=1
1241
+ fj ⇀ (ut ⊗ yti) = fj ⇀
1242
+ m
1243
+
1244
+ t=1
1245
+ ut ⊗ yti
1246
+ (28)
1247
+ = fj ⇀ ρV (vi)
1248
+ which concludes our last claim. We can now define for all Poisson Q-modules V and all
1249
+ A-modules X, a bijection between HomAM
1250
+
1251
+ U(U, V ), X
1252
+
1253
+ and HomQPM (V, U ⊗ X) as
1254
+ follows:
1255
+ ΓV,X : HomAM (U(U, V ), X) → HomQPM (V, U ⊗ X), ΓV,X(θ) := (IdU ⊗ θ) ◦ ρV
1256
+ (29)
1257
+ for all A-module morphisms θ: U(U, V ) → X. To this end, let g: V → U ⊗ X be a
1258
+ Poisson Q-module map; we need to find a unique A-module map θ: U(U, V ) → X such
1259
+ that g =
1260
+
1261
+ IdU ⊗θ
1262
+
1263
+ ◦ ρV . Let {zsr | s = 1, · · · , m, r ∈ J} be a family of elements of X such
1264
+ that for all r ∈ J we have:
1265
+ g(vr) =
1266
+ m
1267
+
1268
+ s=1
1269
+ us ⊗ zsr.
1270
+ (30)
1271
+ Furthermore, as g: V → U ⊗ X is a Poisson Q-modules map, we can easily prove that
1272
+ the following compatibilities hold for all s = 1, · · · , m, i ∈ J and j ∈ I:
1273
+
1274
+ p∈Wj,i
1275
+ σp
1276
+ j,i zsp =
1277
+ m
1278
+
1279
+ t=1
1280
+ n
1281
+
1282
+ r=1
1283
+ γs
1284
+ r,t xrj · zti
1285
+ (31)
1286
+
1287
+ p∈Tj,i
1288
+ ηp
1289
+ j,i zsp =
1290
+ m
1291
+
1292
+ t=1
1293
+ n
1294
+
1295
+ r=1
1296
+ ωs
1297
+ r,t xrj · zti
1298
+ (32)
1299
+ where · denotes the A-module action on X. The universal property of the free module
1300
+ yields a unique A-module map θ: U(U, V ) → X such that θ(Ysr) = zsr, for all s =
1301
+ 1, · · · , m and r ∈ J. Moreover, Ker(θ) contains the A-submodule of U(U, V ) generated
1302
+
1303
+ 14
1304
+ A. L. AGORE AND G. MILITARU
1305
+ by the elements listed in (24) and (25). Indeed, as θ: U(U, V ) → X is a morphism of
1306
+ A-modules we have:
1307
+ θ
1308
+ � �
1309
+ p∈Wj,i
1310
+ σp
1311
+ j,i Ysp −
1312
+ m
1313
+
1314
+ t=1
1315
+ n
1316
+
1317
+ r=1
1318
+ γs
1319
+ r,t xrj ⋄ Yti
1320
+
1321
+ =
1322
+
1323
+ p∈Wj,i
1324
+ σp
1325
+ j,i zsp −
1326
+ m
1327
+
1328
+ t=1
1329
+ n
1330
+
1331
+ r=1
1332
+ γs
1333
+ r,t xrj · zti
1334
+ (31)
1335
+ = 0
1336
+ θ
1337
+ � �
1338
+ p∈Tj,i
1339
+ ηp
1340
+ j,i Ysp −
1341
+ m
1342
+
1343
+ t=1
1344
+ n
1345
+
1346
+ r=1
1347
+ ωs
1348
+ r,t xrj ⋄ Yti
1349
+
1350
+ ) =
1351
+
1352
+ p∈Tj,i
1353
+ ηp
1354
+ j,i zsp −
1355
+ m
1356
+
1357
+ t=1
1358
+ n
1359
+
1360
+ r=1
1361
+ ωs
1362
+ r,t xrj · zti
1363
+ (32)
1364
+ = 0
1365
+ for all s = 1, · · · , m, i ∈ J and j ∈ I.
1366
+ This shows that there exists a unique A-
1367
+ module map θ: U(U, V ) → X such that θ(ysr) = zsr, for all s = 1, · · · , m and r ∈ J.
1368
+ Furthermore, this implies that for all r ∈ J we have:
1369
+
1370
+ IdU ⊗ θ
1371
+
1372
+ ◦ ρV (vr) =
1373
+
1374
+ IdU ⊗ θ
1375
+ �� m
1376
+
1377
+ s=1
1378
+ us ⊗ ysr
1379
+
1380
+ =
1381
+ m
1382
+
1383
+ s=1
1384
+ us ⊗ zsr
1385
+ (30)
1386
+ = g(vr)
1387
+ θ is obviously unique with this property and therefore the map ΓV,X is bijective.
1388
+ We are left to show that given a finite dimensional Poisson P-module U, assigning
1389
+ V �→ U(U, V ) defines a functor U(U, −): QPM → AM. Indeed, let h: V1 → V2 be a
1390
+ Poisson Q-modules map. The bijectivity of ΓV1, U(U, V2) applied for the Poisson Q-modules
1391
+ map ρV2 ◦h: V1 → U ⊗ U(U, V2), yields a unique A-module map h: U(U, V1) → U(U, V2)
1392
+ such that:
1393
+
1394
+ IdU ⊗ h
1395
+
1396
+ ◦ ρV1 = ρV2 ◦ h
1397
+ By setting U(U, h) to be this unique morphism h, the functor U(U, −) is fully defined.
1398
+ Moreover, it can now be easily checked that U(U, −) is indeed a functor and that ΓV, X is
1399
+ natural in both variables. Therefore, U(U, −) is the left adjoint of the functor U ⊗−.
1400
+
1401
+ Keeping the notations and the assumptions of Theorem 2.5 we can prove the following:
1402
+ Theorem 2.7. Let P and Q be two Poisson algebras such that P is finite dimensional,
1403
+ A = P(P, Q) and let V = (V, ·) be a finite dimensional A-module. Then the functor
1404
+ − ⊗ V : PPM → QPM has a left adjoint V(V, −): QPM → P PM.
1405
+ Proof. Since the proof goes in the same manner as the one of Theorem 2.6, we only
1406
+ indicate its main steps. Let {v1, · · · , vm}, m ∈ N∗, be a k-basis of the A-module V and
1407
+ denote by γt
1408
+ i,j,s ∈ k the structure constants of V , i.e. for all i = 1, · · · , n, j ∈ J and
1409
+ s = 1, · · · , m we have:
1410
+ xij · vs =
1411
+ m
1412
+
1413
+ t=1
1414
+ γt
1415
+ i,j,s vt
1416
+ Let (W, ⊢, ↬) ∈ QPM be a Poisson Q-module and {wr | r ∈ J} its k-basis. For all j ∈ I
1417
+ and r ∈ J we can find two finite subsets Sj,r and Tj,r of J such that:
1418
+ fj ⊢ wr =
1419
+
1420
+ t∈Sj,r
1421
+ σt
1422
+ j,r wt,
1423
+ fj ↬ wr =
1424
+
1425
+ s∈Tj,r
1426
+ ηs
1427
+ j,r ws
1428
+
1429
+ UNIVERSAL CONSTRUCTIONS FOR POISSON ALGEBRAS
1430
+ 15
1431
+ where σt
1432
+ j,r, ηs
1433
+ j,r ∈ k, for all j ∈ I, r ∈ J, t ∈ Sj,r and s ∈ Tj,r. Using Remark 1.1 we
1434
+ can now define V(V, W) =
1435
+
1436
+ V(V, W), ◮, ↷
1437
+
1438
+ as the free Poisson P-module generated
1439
+ by the set {yji | j ∈ J, i = 1, · · · , m} subject to the following relations:
1440
+
1441
+ t∈Sj,r
1442
+ σt
1443
+ j,r yra =
1444
+ n
1445
+
1446
+ i=1
1447
+ m
1448
+
1449
+ b=1
1450
+ γa
1451
+ i,j,b (ei ◮ yrb)
1452
+ (33)
1453
+
1454
+ s∈Tj,r
1455
+ ηs
1456
+ j,r ysa =
1457
+ m
1458
+
1459
+ b=1
1460
+ n
1461
+
1462
+ i=1
1463
+ γa
1464
+ i,j,b (ei ↷ yrb)
1465
+ (34)
1466
+ for all j ∈ I, r ∈ J and a = 1, · · · , m. Now relations (33) and (34) allow us to easily
1467
+ prove that the linear map defined for any r ∈ J by:
1468
+ ηW : W → V(V, W) ⊗ V,
1469
+ ηW (wr) :=
1470
+ m
1471
+
1472
+ s=1
1473
+ yrs ⊗ vs
1474
+ is a morphism of Poisson Q-modules and, analogous to the proof of Theorem 2.6, the
1475
+ canonical map
1476
+ HomP PM (V(V, W), U) → HomQPM (W, U ⊗ V ),
1477
+ θ �→ (θ ⊗ IdV ) ◦ ηW
1478
+ is a natural isomorphism for any Poisson Q-module W and any Poisson P-module U.
1479
+ The proof is now finished.
1480
+
1481
+ Before giving some examples, it will be useful to observe the following: since the bracket
1482
+ on the Lie algebras on P and Q is skew-symmetric we have µs
1483
+ i,i = βu
1484
+ i,i = 0, µs
1485
+ i,j = −µs
1486
+ j,i
1487
+ and βu
1488
+ i,j = −βu
1489
+ j,i. Consequently, relations (11) are automatically fulfilled for i = j.
1490
+ Examples 2.8. 1. Let P and Q be two Poisson algebras such that P is finite dimensional
1491
+ and the associative algebra structures on both P and Q are the trivial ones (i.e. xy := 0,
1492
+ for any x, y ∈ P (resp. Q)). Thus P and Q are just Lie algebras viewed as Poisson
1493
+ algebras. Then, P(P, Q) is exactly the universal algebra A(P, Q) of the two Lie algebras
1494
+ as constructed in [5, Theorem 2.1]. In particular, if the Lie algebras structures on P
1495
+ and Q are also the abelian ones, then P(P, Q) ∼= k[Xsi |s = 1, · · · , n, i ∈ I], where
1496
+ n = dimk(P) and |I| = dimk(Q).
1497
+ In general, P(P, Q) is the quotient of the universal algebra A(P, Q) of the two Lie
1498
+ algebras P and Q, through the ideal generated by the relations listed in (10).
1499
+ 2. Let P := k be the 1-dimensional Poisson algebra, i.e. the constant structures are
1500
+ τ 1
1501
+ 1,1 = 1 and µ1
1502
+ 1,1 = 0. For any Poisson algebra Q with a k-basis {fi | i ∈ I} and the
1503
+ constant structures αu
1504
+ i,j, βu
1505
+ i,j ∈ k given by (7), the universal algebra P(k, Q) is the algebra
1506
+ generated by the commuting variables xi, i ∈ I, subject to the relations for any i, j ∈ I:
1507
+
1508
+ u∈Ui,j
1509
+ αu
1510
+ i,j xu = xixj,
1511
+
1512
+ u∈Vi,j
1513
+ βu
1514
+ i,j xu = 0.
1515
+ The other way around, let Q := k and P an n-dimensional Poisson algebra with the
1516
+ constant structures {τ s
1517
+ i,j | i, j, s = 1, · · · , n} and {µs
1518
+ i,j | i, j, s = 1, · · · , n} given by (6).
1519
+
1520
+ 16
1521
+ A. L. AGORE AND G. MILITARU
1522
+ Then the universal algebra P(P, k) is the algebra generated by the commuting variables
1523
+ x1, · · · , xn subject to the relations:
1524
+ n
1525
+
1526
+ s,t=1
1527
+ τ a
1528
+ s,t xsxt = xa,
1529
+ n
1530
+
1531
+ s,t=1
1532
+ µa
1533
+ s,t xsxt = 0
1534
+ for all a = 1, · · · , n.
1535
+ 3. Let k be a field of characteristic ̸= 2, P := k[X]/(X2) viewed as a Poisson algebra
1536
+ with the abelian bracket and Q := aff(2, k) the affine 2-dimensional Lie algebra with
1537
+ basis {f1, f2} and bracket given by [f1, f2] = f2 viewed as a Poisson algebra with the
1538
+ trivial multiplication (xy := 0, for all x, y ∈ Q). Then:
1539
+ P
1540
+
1541
+ P, Q
1542
+
1543
+ ∼=
1544
+ k[X11, X12, X21, X22]/(X2
1545
+ 11, X12, X11X21, X22)
1546
+ ∼=
1547
+ k[X, Y ]/(X2, XY )
1548
+ Indeed, the only non-zero structure constants of P and Q are: τ 1
1549
+ 1,1 = τ 2
1550
+ 1,2 = τ 1
1551
+ 2,1 = 1
1552
+ and β2
1553
+ 1,2 = 1 = −β2
1554
+ 2,1. A direct computation shows that, among the sixteen compati-
1555
+ bilities resulting from the defining relations (10) and (11) of P
1556
+
1557
+ P, Q
1558
+
1559
+ , after eliminating
1560
+ the redundant relations the only remaining ones are the following: x2
1561
+ 11 = 0, x12 = 0,
1562
+ 2 x11x21 = 0 and x22 = 0. The conclusion now follows.
1563
+ 3. The universal coacting bialgebra on a finite dimensional Poisson
1564
+ algebra. Applications
1565
+ Let P be a finite dimensional Poisson algebra having {e1, · · · , en} as a k-basis. The
1566
+ description of the commutative algebra P(P) := P(P, P) given by Theorem 2.2 is the
1567
+ following: if {τ s
1568
+ i,j | i, j, s = 1, · · · , n} and {µs
1569
+ i,j | i, j, s = 1, · · · , n} are the structure con-
1570
+ stants of P with respect to the associative and Lie structures as given by (6), then P(P)
1571
+ is the free commutative algebra generated by {xsi | s, i = 1, · · · , n, } and the relations:
1572
+ n
1573
+
1574
+ u=1
1575
+ τ u
1576
+ i,j xau =
1577
+ n
1578
+
1579
+ s,t=1
1580
+ τ a
1581
+ s,t xsixtj,
1582
+ n
1583
+
1584
+ u=1
1585
+ µu
1586
+ i,j xau =
1587
+ n
1588
+
1589
+ s,t=1
1590
+ µa
1591
+ s,t xsixtj
1592
+ (35)
1593
+ for all a, i, j = 1, · · · , n. Furthermore, the map
1594
+ ηP : P → P ⊗ P(P),
1595
+ ηP(ei) :=
1596
+ n
1597
+
1598
+ s=1
1599
+ es ⊗ xsi,
1600
+ for all i = 1, · · · , n
1601
+ (36)
1602
+ is a Poisson algebra homomorphism. By considering Q := P in the bijection described
1603
+ in (13) we obtain:
1604
+ Corollary 3.1. Let P be a finite dimensional Poisson algebra. Then for any comutative
1605
+ algebra A and any Poisson algebra homomorphism f : P → P ⊗ A, there exists a unique
1606
+ algebra homomorphism θ : P(P) → A such that f = (IdP ⊗ θ) ◦ ηP .
1607
+ Next we show that the commutative algebra P(P) can be endowed with a bialgebra
1608
+ structure such that (P, ηP ) becomes a right Poisson P(P)-comodule algebra.
1609
+
1610
+ UNIVERSAL CONSTRUCTIONS FOR POISSON ALGEBRAS
1611
+ 17
1612
+ Proposition 3.2. Let P be a Poisson algebra of dimension n.
1613
+ Then there exists a
1614
+ unique bialgebra structure on P(P) such that the Poisson algebra homomorphism ηP :
1615
+ P → P ⊗ P(P) becomes a right P(P)-comodule structure on P. The comultiplication
1616
+ and the counit on P(P) are given by
1617
+ ∆(xij) =
1618
+ n
1619
+
1620
+ s=1
1621
+ xis ⊗ xsj
1622
+ and
1623
+ ε(xij) = δi,j
1624
+ (37)
1625
+ for all i, j = 1, · · · , n.
1626
+ Proof. Consider the Poisson algebra homomorphism (ηP ⊗IdP(P )) ◦ ηP : P → P ⊗P(P)⊗
1627
+ P(P). Corollary 3.1 yields a unique algebra homomorphism ∆ : P(P) → P(P) ⊗ P(P)
1628
+ such that the following holds:
1629
+ (IdP ⊗ ∆) ◦ ηP = (ηP ⊗ IdP(P )) ◦ ηP .
1630
+ (38)
1631
+ Applying (38) for each ei, i = 1, · · · , n and using (36) we obtain the following:
1632
+ n
1633
+
1634
+ t=1
1635
+ et ⊗ ∆(xti) = (ηP ⊗ Id)(
1636
+ n
1637
+
1638
+ s=1
1639
+ es ⊗ xsi) =
1640
+ n
1641
+
1642
+ s=1
1643
+ (
1644
+ n
1645
+
1646
+ t=1
1647
+ et ⊗ xts) ⊗ xsi
1648
+ =
1649
+ n
1650
+
1651
+ t=1
1652
+ et ⊗ (
1653
+ n
1654
+
1655
+ s=1
1656
+ xts ⊗ xsi)
1657
+ which comes down to ∆(xti) = �n
1658
+ s=1 xts ⊗ xsi, for all t, i = 1, · · · , n. Note that ∆
1659
+ is obviously coassociative. In a similar fashion, applying once again Corollary 3.1, we
1660
+ obtain a unique algebra homomorphism ε: P(P) → k such that the following holds:
1661
+ (IdP ⊗ ε) ◦ ηP = can
1662
+ (39)
1663
+ where can : P → P ⊗ k is the canonical isomorphism, can(x) = x ⊗ 1, for all x ∈ P.
1664
+ Applying (39) for each ei, i = 1, · · · , n, we obtain ε(xij) = δi,j, for all i, j = 1, · · · , n.
1665
+ It can be easily checked that ε is a counit for ∆, and therefore P(P) is a bialgebra.
1666
+ Furthermore, (38) and (39) imply that the canonical map ηP : P → P ⊗ P(P) defines a
1667
+ right P(P)-comodule structure on P.
1668
+
1669
+ The key property of P(P) is the following Poisson algebra version of [5, Theorem 2.11]:
1670
+ Theorem 3.3. Let P be a finite dimensional Poisson algebra. Then, (P(P), ηP ) is the
1671
+ initial object of the category CoactBialgP of all commutative bialgebras coacting on P
1672
+ and we call it the universal coacting bialgebra of P.
1673
+ Proof. The statement of the theorem comes down to showing that for any commutative
1674
+ bialgebra B and any Poisson algebra homomorphism f : P → P ⊗B which makes P into
1675
+ a right B-comodule there exists a unique bialgebra homomorphism θ: P(P) → B such
1676
+ that the following diagram is commutative:
1677
+ P
1678
+ ηP
1679
+
1680
+ f
1681
+ �■
1682
+
1683
+
1684
+
1685
+
1686
+
1687
+
1688
+
1689
+
1690
+
1691
+ P ⊗ P(P)
1692
+ IdP ⊗θ
1693
+
1694
+ P ⊗ B
1695
+ (40)
1696
+
1697
+ 18
1698
+ A. L. AGORE AND G. MILITARU
1699
+ To start with, using Corollary 3.1, we obtain a unique algebra homomorphism θ: P(P) →
1700
+ B such that diagram (40) commutes. The proof will be finished once we show that θ is
1701
+ a coalgebra homomorphism as well. This follows by using again Corollary 3.1. Indeed,
1702
+ we obtain a unique algebra homomorphism ψ: P(P) → B ⊗ B such that the following
1703
+ holds:
1704
+ (IdP ⊗ ψ) ◦ ηP =
1705
+
1706
+ IdP ⊗ ∆B ◦ θ
1707
+
1708
+ ◦ηP
1709
+ (41)
1710
+ Obviously the algebra homomorphism ∆B ◦θ: P(P) → B ⊗ B fulfills the above compat-
1711
+ ibility. The proof will be finished once we show that (θ ⊗ θ) ◦ ∆: P(P) → B ⊗ B fulfills
1712
+ the same compatibility. Indeed, as f : P → P ⊗ B is a right B-comodule structure, we
1713
+ have:
1714
+
1715
+ IdP ⊗ (θ ⊗ θ) ◦ ∆
1716
+
1717
+ ◦ ηP
1718
+ =
1719
+
1720
+ IdP ⊗ θ ⊗ θ
1721
+
1722
+
1723
+
1724
+ IdP ⊗ ∆
1725
+
1726
+ ◦ ηP
1727
+ (38)
1728
+ =
1729
+
1730
+ IdP ⊗ θ ⊗ θ
1731
+
1732
+ ◦(ηP ⊗ IdP(P )) ◦ ηP
1733
+ =
1734
+
1735
+ (IdP ⊗ θ) ◦ ηP ⊗ θ
1736
+
1737
+ ◦ ηP
1738
+ (40)
1739
+ =
1740
+
1741
+ f ⊗ θ
1742
+
1743
+ ◦ ηP
1744
+ =
1745
+ (f ⊗ IdB) ◦ (IdP ⊗ θ) ◦ ηP
1746
+ (40)
1747
+ =
1748
+ (f ⊗ IdB) ◦ f
1749
+ =
1750
+ (IdP ⊗ ∆B) ◦ f
1751
+ (40)
1752
+ =
1753
+ (IdP ⊗ ∆B) ◦ (IdP ⊗ θ) ◦ ηP
1754
+ =
1755
+ (IdP ⊗ ∆B ◦ θ) ◦ ηP
1756
+ as desired. Similarly, one can show that εB ◦ θ = ε and the proof is now finished.
1757
+
1758
+ By considering Takeuchi’s commutative Hopf envelope [24] of the bialgebra P(P) we
1759
+ obtain, using Theorem 3.3, the following:
1760
+ Corollary 3.4. Let P be a finite dimensional Poisson algebra.
1761
+ Then the category
1762
+ CoactHopfP consisting of all commutative Hopf algebras coacting on P has an initial
1763
+ object
1764
+
1765
+ H(P), λP
1766
+
1767
+ and we call it the universal coacting Hopf algebra of P.
1768
+ Proof. Indeed, the forgetful functor U : ComHopfk → ComBiAlgk from the category of
1769
+ commutative Hopf algebras to the category of commutative bialgebras has a left adjoint
1770
+ L: ComBiAlgk → ComHopfk ([24, Theorem 65, (2)]). If we denote by µ: 1ComBiAlgk →
1771
+ UL the unit of the adjunction L ⊣ U, then we can easily prove, in the spirit of [5,
1772
+ Theorem 2.13], that the pair
1773
+
1774
+ H(P) := L(P(P)), λP := (IdP ⊗µP(P )) ◦ ηP
1775
+
1776
+ is the initial
1777
+ object in the category CoactHopfP of all commutative Hopf algebras coacting on P.
1778
+
1779
+ Remark 3.5. The dual versions of Theorem 3.3 and Corollary 3.4 regarding the actions
1780
+ of commutative bialgebras (resp. Hopf algebras) on a Poisson algebra also hold. For
1781
+ a Poisson algebra P, we can define the category ActBialgP (resp.
1782
+ ActHopfP ) of all
1783
+ commutative bialgebras (respectively Hopf algebras) which act on P. More precisely, the
1784
+ objects of ActBialgP (resp. ActHopfP) are pairs (B, µP) consisting of a commutative
1785
+ bialgebra (resp. Hopf algebra) B and a linear map µP : P ⊗ B → P, such that (P, µP )
1786
+
1787
+ UNIVERSAL CONSTRUCTIONS FOR POISSON ALGEBRAS
1788
+ 19
1789
+ is a (right) Poisson B-module algebra, i.e. µP is a (right) B-module structure on P as
1790
+ well as a Poisson algebra map. Using the same arguments as in [2, Theorem 4.14], we
1791
+ can prove that ActBialgP (resp. ActHopfP ) has a final object.
1792
+ Next we will present two important applications of the bialgebra P(P).
1793
+ These are
1794
+ the Poisson algebra version of similar results obtained for Lie/associative algebras in
1795
+ [5, 23]. First, recall the well known fact that for any bialgebra H, we have G(Ho) =
1796
+ HomAlgk(H, k), the set of all algebra homomorphisms H → k (see ([26, pag. 62])).
1797
+ Theorem 3.6. Let P be a finite dimensional Poisson algebra with basis {e1, · · · , en} and
1798
+ U
1799
+
1800
+ G
1801
+
1802
+ P(P)o��
1803
+ the group of all invertible group-like elements of the finite dual P(P)o.
1804
+ Then the map defined for any θ ∈ U
1805
+
1806
+ G
1807
+
1808
+ P(P)o��
1809
+ and i = 1, · · · , n by:
1810
+ γ : U
1811
+
1812
+ G
1813
+
1814
+ P(P)o��
1815
+ → AutPoiss(P),
1816
+ γ(θ)(ei) :=
1817
+ n
1818
+
1819
+ s=1
1820
+ θ(xsi) es
1821
+ (42)
1822
+ is an isomorphism of groups.
1823
+ Proof. Using Corollary 2.4 for Q := P yields the bijective map
1824
+ γ : HomAlgk(P(P), k) → EndPoiss(P),
1825
+ γ(θ) =
1826
+
1827
+ IdP ⊗ θ
1828
+
1829
+ ◦ηP
1830
+ Furthermore, as discussed above we have HomAlgk(P(P), k) = G
1831
+
1832
+ P(P)o�
1833
+ and based
1834
+ on (36) it follows easily that γ takes the form given in (42).
1835
+ We denote by γ the
1836
+ restriction of γ to the invertible elements of the two monoids where the monoid structure
1837
+ on EndPoiss(P) is given by the usual composition of endomorphisms while G
1838
+
1839
+ P(P)o�
1840
+ is
1841
+ a monoid with respect to the convolution product, i.e.
1842
+ (θ1 ⋆ θ2)(xsj) =
1843
+ n
1844
+
1845
+ t=1
1846
+ θ1(xst)θ2(xtj)
1847
+ (43)
1848
+ for all θ1, θ2 ∈ G
1849
+
1850
+ P(P)o�
1851
+ and j, s = 1, · · · , n. Therefore, the proof will be finished by
1852
+ showing that γ is a monoid isomorphism and this can be shown exactly as in [5, Theorem
1853
+ 3.1].
1854
+
1855
+ Next, for a given abelian group G, we describe all G-gradings on a Poisson algebra P.
1856
+ Proposition 3.7. Let G be an abelian group and P a finite dimensional Poisson algebra.
1857
+ There exists a bijection between the set of all G-gradings on P and the set of all bial-
1858
+ gebra homomorphisms P(P) → k[G] given such that the G-grading on P = ⊕σ∈G P (θ)
1859
+ σ
1860
+ associated to a bialgebra map θ : P(P) → k[G] can be described as follows:
1861
+ P (θ)
1862
+ σ
1863
+ := {x ∈ P |
1864
+
1865
+ IdP ⊗ θ
1866
+
1867
+ ◦ ηP (x) = x ⊗ σ}
1868
+ (44)
1869
+ for all σ ∈ G.
1870
+ Proof. Theorem 3.3 applied for the commutative bialgebra B := k[G] yields a bijection
1871
+ between the set of all bialgebra homomorphisms P(P) → k[G] and the set of all Poisson
1872
+ algebra homomorphisms f : P → P ⊗ k[G] which make P into a right k[G]-comodule.
1873
+ The proof is now finished since we have shown in Example 1.2 that the latter set is in
1874
+ bijective correspondence with the set of all G-gradings on the Poisson algebra P.
1875
+
1876
+
1877
+ 20
1878
+ A. L. AGORE AND G. MILITARU
1879
+ Our next aim is to classify all G-gradings on a Poisson algebra P.
1880
+ To this end, we
1881
+ introduce the following:
1882
+ Definition 3.8. Let G be an abelian group and P a finite dimensional Poisson algebra.
1883
+ Two homomorphisms of bialgebras θ1, θ2 : P(P) → k[G] are called conjugate and denote
1884
+ this by θ1 ≈ θ2, if there exists g ∈ U
1885
+
1886
+ G
1887
+
1888
+ P(P)o��
1889
+ an invertible group-like element of the
1890
+ finite dual P(P)o such that θ2 = g⋆θ1⋆g−1, in the convolution algebra Hom
1891
+
1892
+ P(P), k[G]
1893
+
1894
+ .
1895
+ Throughout, HomBiAlg
1896
+
1897
+ P(P), k[G]
1898
+
1899
+ / ≈ will denote the quotient set of the set of all
1900
+ bialgebra homomorphisms P(P) → k[G] by the above equivalence relation and let ˆθ
1901
+ denote the equivalence class of θ ∈ HomBiAlg
1902
+
1903
+ P(P), k[G]
1904
+
1905
+ . The next theorem classifies
1906
+ all G-gradings on a Poisson algebra P.
1907
+ Theorem 3.9. Let G be an abelian group, P a finite dimensional Poisson algebra and
1908
+ G-gradings(P) the set of isomorphism classes of all G-gradings on P. Then the map
1909
+ HomBiAlg
1910
+
1911
+ P(P), k[G]
1912
+
1913
+ / ≈ �→ G−gradings(P),
1914
+ ˆθ �→ P (θ) := ⊕σ∈G P (θ)
1915
+ σ
1916
+ where P (θ)
1917
+ σ
1918
+ = {x ∈ P |
1919
+
1920
+ IdP ⊗ θ
1921
+
1922
+ ◦ ηP (x) = x ⊗ σ}, for all σ ∈ G, is bijective.
1923
+ Proof. Since the associative and Lie/Leibniz algebra counterparts of this result have been
1924
+ proved in detail in [23, Theorem 3.4] and [5, Theorem 3.5], respectively, we will be brief.
1925
+ First, note that by Proposition 3.7, for any G-grading P = ⊕σ∈G Pσ there exists a unique
1926
+ bialgebra homomorphism θ : P(P) → k[G] such that Pσ = P (θ)
1927
+ σ , for all σ ∈ G. The
1928
+ proof will be finished once we show that any two G-gradings on P, say P (θ1) and P (θ2),
1929
+ associated to two bialgebra homomorphisms θ1, θ2 : P(P) → k[G], are isomorphic if and
1930
+ only if θ1 ≈ θ2. Indeed, recall from Example 1.2 that defining a G-grading on P is in one-
1931
+ to-one correspondence to defining a right k[G]-comodule structure ρ: P → P ⊗k[G] on P
1932
+ which is also a Poisson algebra homomorphism. Now two G-gradings P (θ1) and P (θ2) are
1933
+ isomorphic if and only if (P, ρ(θ1)) and (P, ρ(θ2)) are isomorphic both as algebras and as
1934
+ right k[G]-comodules; this comes down to the existence of an automorphism w: P → P
1935
+ of the Poisson algebra P such that ρ(θ2) ◦ w =
1936
+
1937
+ w ⊗ Idk[G]
1938
+
1939
+ ◦ρ(θ1). By Theorem 3.6, for
1940
+ any Poisson algebra automorphism w : P → P there exists a unique invertible group-
1941
+ like element of the finite dual g ∈ U
1942
+
1943
+ G
1944
+
1945
+ P(P)o��
1946
+ such that w = wg is given for any
1947
+ i = 1, · · · , n by
1948
+ wg(ei) =
1949
+ n
1950
+
1951
+ s=1
1952
+ g(xsi) es
1953
+ (45)
1954
+ where {e1, · · · , en} is a basis in P. A straightforward computation shows that the Poisson
1955
+ algebra automorphism wg : P → P is also a right k[G]-comodule map if and only if the
1956
+ following holds:
1957
+ n
1958
+
1959
+ s=1
1960
+ g(xas)θ1(xsi) =
1961
+ n
1962
+
1963
+ s=1
1964
+ θ2(xas)g(xsi)
1965
+ (46)
1966
+ Having in mind that {xai}a,i=1,··· ,n is a system of generators of P(P)) we can easily
1967
+ conclude that (46) reduces to g ⋆ θ1 = θ2 ⋆ g. This finishes the proof as g: P(P) → k
1968
+ is an invertible element in the convolution algebra Hom
1969
+
1970
+ P(P), k[G]
1971
+
1972
+ which shows that
1973
+ θ1 ≈ θ2.
1974
+
1975
+
1976
+ UNIVERSAL CONSTRUCTIONS FOR POISSON ALGEBRAS
1977
+ 21
1978
+ We will give now an explicit example which describes the initial object in the category
1979
+ of all commutative bialgebras that coacts on a certain 3-dimensional Poisson algebra.
1980
+ Example 3.10. Let P be the 3-dimensional Poisson algebra with k-basis {e1, e2, e3}
1981
+ and Poisson algebra structure given by e2
1982
+ 1 := e2, [e1, e3] := e3 (undefined multiplications
1983
+ and brackets are all zero). Then, there exists an isomorphism of bialgebras
1984
+ P(P) ∼= k[X, Y, Z, T]/(T − XT)
1985
+ where the latter has the following bialgebra structure:
1986
+ ∆( �
1987
+ X) = �
1988
+ X ⊗ �
1989
+ X,
1990
+ ε( �
1991
+ X) = 1
1992
+ ∆(�Y ) = �Y ⊗ �
1993
+ X + �
1994
+ X2 ⊗ �Y ,
1995
+ ε(�Y ) = 0
1996
+ ∆( �Z) = �Z ⊗ �
1997
+ X + �T ⊗ �Z,
1998
+ ε( �Z) = 0
1999
+ ∆( �T) = �T ⊗ �T,
2000
+ ε( �T) = 1
2001
+ The canonical coaction ηP : P → P ⊗ k[X, Y, Z, T]/(T − XT) of this bialgebra on P is
2002
+ given by:
2003
+ ηP (e1) = e1 ⊗ �
2004
+ X + e2 ⊗ �Y + e3 ⊗ �Z
2005
+ ηP (e2) = e2 ⊗ �
2006
+ X2,
2007
+ ηP(e3) = e3 ⊗ �T.
2008
+ Indeed, note first that the only non-zero structure constants of P are: τ 2
2009
+ 1,1 = 1 and
2010
+ µ3
2011
+ 1,3 = 1 = −µ3
2012
+ 3,1. Now, a careful analysis of the 54 defining relations of P(P) arising
2013
+ from (35), leads to the conclusion that after eliminating the redundant ones, we are left
2014
+ with the following:
2015
+ x12 = 0,
2016
+ x13 = 0,
2017
+ x23 = 0,
2018
+ x32 = 0,
2019
+ x22 = x2
2020
+ 11,
2021
+ x33 = x11x33.
2022
+ The conclusion now follows by denoting �
2023
+ X = x11, �Y = x21, �Z = x31 and �T = x33.
2024
+ References
2025
+ [1] Agore, A.L. - Functors between representation categories. Universal modules, arXiv:2301.03051. 10
2026
+ [2] Agore, A.L., Gordienko, A.S., Vercruysse, J. - V -universal Hopf algebras (co)acting on Ω-algebras,
2027
+ Commun. Contemp. Math. 25 (2023), 2150095. 2, 19
2028
+ [3] Agore, A.L. - Universal coacting Poisson Hopf algebras, Manuscripta Math. 165 (2021), 255–268. 2
2029
+ [4] Agore, A.L., Gordienko, A.S., Vercruysse, J. - Equivalences of (co)module algebra structures over
2030
+ Hopf algebras, J. Noncommut. Geom. 15 (2021), 951–993. 3
2031
+ [5] Agore, A.L., Militaru, G. - A new invariant for finite dimensional Leibniz/Lie algebras, J. Algebra
2032
+ 562 (2020), 390–409. 3, 15, 17, 18, 19, 20
2033
+ [6] Agore, A.L., Militaru, G. - Jacobi and Poisson algebras, J. Noncommut. Geom., 9 (2015), 1295–1342.
2034
+ 4, 9
2035
+ [7] Ardizzoni, A., El Kaoutit, L., Menini, C. - Coendomorphism left bialgebroids, J. Algebra and Its
2036
+ App., 12 (2013), No. 03, 1250181. 2, 3
2037
+ [8] Ardizzoni, A., El Kaoutit, L., Menini, C. - Categories of comodules and chain complexes of modules,
2038
+ Intern. J. Math., 23 (2012), No. 10, 1250109. 2, 3
2039
+ [9] Ballesteros, A., Herranz, F.J., Musso, F., Ragnisco, O. - Superintegrable deformations of the
2040
+ Smorodinsky-Winternitz Hamiltonian, Superintegrability in classical and quantum systems, CRM
2041
+ Proc. Lecture Notes 37, Amer. Math. Soc., Providence, RI, 2004. 5
2042
+ [10] Bhattacharjee, S., Chirvˇasitu, A., Goswami, D. - Quantum Galois groups of subfactors, Internat. J.
2043
+ Math. 33 (2022), 2 (2022) 2250013. 3
2044
+
2045
+ 22
2046
+ A. L. AGORE AND G. MILITARU
2047
+ [11] Chirvˇasitu, A., Walton, C., Wang, X. - On quantum groups associated to a pair of preregular forms,
2048
+ J. Noncommut. Geom. bf 13 (2019), 115—159. 3
2049
+ [12] Crainic, M., Fernandes, R. L., Mˇarcut¸, I. – Lectures on Poisson geometry, Graduate Studies in
2050
+ Mathematics, 217 (2021), Amer. Math. Soc., Providence. 1, 5
2051
+ [13] Drinfeld, V. G. – Quantum groups, Proceedings of the 1986 International Congress of Mathematics,
2052
+ 1 (1987) 798–820. 1
2053
+ [14] Gu´ed´enon, T. - Fundamental Theorem of Poisson (A, H)-Hopf modules, J. Algebra, 595, (2022),
2054
+ 216–243. 3, 5
2055
+ [15] Grabowski, J. - Brackets, Int. J. Geom. Methods Mod. Phys., 10(8):1360001, 45, 2013. 1
2056
+ [16] Huang, H., Walton, C., Wicks, E., Won, R. - Universal quantum semigroupoids, J. Pure Appl.
2057
+ Algebra 227 (2023), 107193. 3
2058
+ [17] Huang, H., Van Nguyen, C., Ure, C., Vashaw, K.B., Veerapen, P., Wang, X. - Twisting Manin’s
2059
+ universal quantum groups and comodule algebras, arXiv:2209.11621 3
2060
+ [18] Huebschmann, J. - Poisson cohomology and quantization, J. Reine Angew. Math., 408 (1990),
2061
+ 57–113. 1
2062
+ [19] Kontsevich, M. - Deformation Quantization of Poisson Manifolds, Letters of Mathematical Physics,
2063
+ 66 (2003), 157–216. 1
2064
+ [20] Laurent-Gengoux, C., Pichereau, A., Vanhaecke, P. – Poisson Structures, Vol. 347, 2013, Springer.
2065
+ 1, 5
2066
+ [21] Mac Lane, S. - Categories for the Working Mathematician, Graduate Texts in Mathematics, 5
2067
+ (Second ed.), Springer, 1998, ISBN 0-387-98403-8. 5
2068
+ [22] Manin, Yu. I. - Quantum groups and noncommutative geometry, Universite de Montreal, Centre de
2069
+ Recherches Mathematiques, Montreal, QC, 1988. 1, 2
2070
+ [23] Militaru, G. - The automorphisms group and the classification of gradings of finite dimensional
2071
+ associative algebras, Results Math. 77 (2022). 2, 3, 19, 20
2072
+ [24] Takeuchi, M. - Free Hopf algebras generated by coalgebras, J. Math. Soc. Japan 23 (1971), 561–582.
2073
+ 18
2074
+ [25] Tambara, D. - The coendomorphism bialgebra of an algebra. J. Fac. Sci. Univ. Tokyo Math. 37
2075
+ (1990), 425–456. 1, 2, 6
2076
+ [26] Radford, D.E. - Hopf algebras, World Scientific, 2012. 5, 19
2077
+ [27] Raedschelders, T., Van den Bergh. M. - The Manin Hopf algebra of a Koszul Artin–Schelter regular
2078
+ algebra is quasi-hereditary, Adv. Math., 305 (2017), 601–660. 2
2079
+ [28] Sweedler, M.E. - Hopf Algebras, Benjamin New York, 1969. 1, 2, 4, 5
2080
+ [29] Umirbaev, U. - Universal enveloping algebras and universal derivations of Poisson algebras, J. Al-
2081
+ gebra, 354 (2012), 77–94. 4
2082
+ [30] Van den Bergh, M. - Double Poisson algebras, Trans. Amer. Math. Soc., 360 (2008), 5711–5769. 1
2083
+ Max Planck Institut f¨ur Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
2084
+ Simion Stoilow Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, 014700
2085
+ Bucharest, Romania
2086
+ Email address: [email protected]
2087
+ Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei
2088
+ 14, RO-010014 Bucharest 1, Romania
2089
+ Simion Stoilow Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, 014700
2090
+ Bucharest, Romania
2091
+ Email address: [email protected] and [email protected]
2092
+
HtE2T4oBgHgl3EQfTwfs/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
I9E4T4oBgHgl3EQfhQ2p/content/tmp_files/2301.05124v1.pdf.txt ADDED
@@ -0,0 +1,1904 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Poses of People in Art: A Data Set for Human Pose Estimation in
2
+ Digital Art History
3
+ STEFANIE SCHNEIDER and RICARDA VOLLMER, Ludwig Maximilian University of Munich, Germany
4
+ Throughout the history of art, the pose—as the holistic abstraction of the human body’s expression—has proven to be a
5
+ constant in numerous studies. However, due to the enormous amount of data that so far had to be processed by hand, its crucial
6
+ role to the formulaic recapitulation of art-historical motifs since antiquity could only be highlighted selectively. This is true
7
+ even for the now automated estimation of human poses, as domain-specific, sufficiently large data sets required for training
8
+ computational models are either not publicly available or not indexed at a fine enough granularity. With the Poses of People in
9
+ Art data set, we introduce the first openly licensed data set for estimating human poses in art and validating human pose
10
+ estimators. It consists of 2,454 images from 22 art-historical depiction styles, including those that have increasingly turned
11
+ away from lifelike representations of the body since the 19th century. A total of 10,749 human figures are precisely enclosed by
12
+ rectangular bounding boxes, with a maximum of four per image labeled by up to 17 keypoints; among these are mainly joints
13
+ such as elbows and knees. For machine learning purposes, the data set is divided into three subsets—training, validation, and
14
+ testing—, that follow the established JSON-based Microsoft Common Objects in Context (COCO) format, respectively. Each
15
+ image annotation, in addition to mandatory fields, provides metadata from the art-historical online encyclopedia WikiArt.
16
+ With this paper, we elaborate on the acquisition and constitution of the data set, address various application scenarios, and
17
+ discuss prospects for a digitally supported art history. We show that the data set enables the comprehensive investigation of
18
+ body phenomena in art, whether at the level of individual figures, which can thus be captured in their subtleties, or entire
19
+ figure constellations, whose position, distance, or proximity to one another is considered.
20
+ CCS Concepts: • Information systems → Recommender systems; Image search; • Computing methodologies →
21
+ Object detection; Interest point and salient region detections; • Applied computing → Fine arts.
22
+ Additional Key Words and Phrases: data set, human detection, human pose estimation, digital art history
23
+ 1
24
+ INTRODUCTION
25
+ The abstracted human body, into which measurements, proportions, and movements are inscribed, has played a
26
+ crucial role throughout the history of art. This particularly applies to the drawing apprenticeship [61], whose
27
+ best-known example is Leonardo da Vinci’s Vitruvian Man. As early as the 17th century, artists began to structure
28
+ the human pose1 into a ‘language’ of non-verbal communication [43], pursued with scientific meticulousness
29
+ into the 18th century, e.g., by the Physiognomist Johann Caspar Lavater [23]. Attempts to establish a kind of pose
30
+ vocabulary, however, have been made primarily in relation to hand gestures [1, 8], with references to antiquity
31
+ evident in most efforts [6]. It was the Finnish art historian Johan Jakob Tikkanen who, in the 19th century, then
32
+ sought to motivate a differentiated terminology of leg positions [77], drawing on perspectives from the natural
33
+ sciences, such as Darwin’s essays on the expression of humans and animals [19] as well as botanical classification
34
+ systems [37]. In contrast, the studies of the art historian and cultural theorist Aby Warburg at the beginning of
35
+ the 20th century should not be understood as standardized [57]: through his concept of ‘Pathosformeln,’ Warburg
36
+ rather loosely examined body phenomena recurring since antiquity [82, 83].
37
+ This high selectivity of art-historical research—especially when compared to other body-oriented disciplines
38
+ such as theater and dance studies [45, 62]—can be attributed to various reasons. We perceive two factors as pivotal:
39
+ (i) the enormous amount of data that for a comprehensive analysis so far had to be processed by hand, and (ii) the
40
+ lack of an approach that holistically and systematically assesses human pose through relevant keypoints, e.g.,
41
+ 1For reasons of simplicity, we hereinafter do not distinguish between the terms ‘posture’ and ‘pose.’ Instead, we use the term ‘pose’ for any
42
+ kind of bodily expression.
43
+ Authors’ address: Stefanie Schneider, [email protected]; Ricarda Vollmer, [email protected], Ludwig
44
+ Maximilian University of Munich, Geschwister-Scholl-Platz 1, Munich, Germany.
45
+ arXiv:2301.05124v1 [cs.CV] 12 Jan 2023
46
+
47
+ 2
48
+
49
+ S. Schneider and R. Vollmer
50
+ Fig. 1. We differentiate between two annotation modes: bounding box and keypoint annotation. First, as shown on the left
51
+ in Andrea del Sarto’s Pietà with Saints (1523–1524), human figures are marked with bounding boxes enclosing them. For a
52
+ maximum of four per image, up to 17 pose-relevant keypoints are then assigned, which are indicated with green circles in
53
+ the detail view on the right.
54
+ wrists or knees. With the ongoing digitization and online publication of historical objects, researchers could now
55
+ potentially draw on increasingly large collections of images to examine dominant pose types or time-dependent
56
+ body phenomena. To date, however, few approaches to automatically estimate human poses in art-historical
57
+ imagery have emerged [33–35, 48, 49], possibly due to the lack of domain-specific, sufficiently large data sets
58
+ required for training computational models, e.g., Convolutional Neural Networks (CNNs). Existing data sets fall
59
+ broadly into two categories. Either they do index keypoints but are not publicly available and are dedicated to a
60
+ comparatively narrow subset of art-historical representation practices [34, 48]. Or they are freely accessible to
61
+ the public but enclose human figures only by rectangular bounding boxes; their pose is then broadly categorized
62
+ without specifically delineating keypoints [64].
63
+ Our contributions are three-fold. (i) With Poses of People in Art, hereinafter abbreviated to PoPArt, we introduce
64
+ the first publicly available and openly licensed data set for estimating human poses in art. It is composed of
65
+ 10,749 bounding box and 56,154 keypoint annotations from 22 art-historical depiction styles, including those
66
+ that have emerged since the 19th century and have increasingly turned away from lifelike representations of
67
+ the body; Fig. 1 illustrates both annotation modes. (ii) We demonstrate that PoPArt enables the quantitatively
68
+ systematized exploration of human pose in visual art by capturing the body holistically and across different
69
+ stylistic periods. Pose may thus emerge as wholly elemental to the formulaic recapitulation of significant topoi
70
+ and motifs through computational assistance. (iii) As a by-product of PoPArt’s domain-specific curation, the sole
71
+ detection of figures in art-historical collections is decisively improved. In contrast to the similarly constituted
72
+
73
+ Poses of People in Art
74
+
75
+ 3
76
+ People-Art data set [84], which also exclusively labels human figures, PoPArt contains fewer training, validation,
77
+ and testing images. It, however, features nearly three times as many positive training samples with at least one
78
+ figure instance annotation.
79
+ The remainder of this paper is structured as follows. In Section 2, we first review art-historically relevant data
80
+ sets that can be leveraged for image classification and object detection tasks. Section 3 then elaborates on the
81
+ acquisition and constitution of the PoPArt data set. In this context, we also clarify the annotation guidelines we
82
+ adapted to the domain. In the course of Section 4, we address various application scenarios and discuss prospects
83
+ for a digitally supported art history. Lastly, Section 5 concludes the paper and outlines areas for potential future
84
+ research. The data set is available as a version-controlled repository on Zenodo.2
85
+ 2
86
+ RELATED WORK
87
+ With the advent of increasingly powerful deep-learning architectures in recent years, the range of domains
88
+ utilizing computational models has expanded decisively. In the field of Computer Vision, e.g., not only real-
89
+ world imagery is dealt with anymore, but also figurative representations of imagined phenomena, which are
90
+ prevalent in art, and across various phases of art history. However, due to those collections’ highly original
91
+ visuals, domain-specific, sufficiently large data sets are still required for training and fine-tuning models.
92
+ Prior to the creation of the PoPArt data set, we conducted an extensive study, aggregated in Table 1, reviewing
93
+ existing art-historical data sets that can be leveraged for image classification and object recognition tasks. Neither
94
+ did we consider data sets featuring solely contemporary or born-digital art [86], nor cultural institutions that,
95
+ while offering relevant data on their websites, do not explicitly make them available in downloadable form, but
96
+ require prior harvesting.3 We also excluded data sets that are exclusively applicable to other research areas like
97
+ aesthetic quality assessment [2], sentiment analysis [54, 88], or correspondence matching [35, 70]. While formal
98
+ attributes at the image-level are contained in a large number of data sets, enabling the classification of artists,
99
+ materials, or creation dates, among others [5, 41, 46, 50, 52, 55, 75, 76, 85, 90], content-based tags are less frequent.
100
+ This is due to the fact that labels referring to the image phenomena actually shown must be determined by
101
+ manual annotation, driven either by crowdsourcing approaches [4] or singular institutional efforts [16, 29, 59].
102
+ The latter rely on the iconographic classification system Iconclass, which is conceived for the Western motifs
103
+ of the visual arts [78]. As a result of the already time-consuming labeling process at image-level, few data sets
104
+ feature object-level annotations [3, 15, 29, 34, 48, 64, 84, 89]. When provided, they are usually marked with
105
+ bounding boxes, so that object instances are enclosed with rectangles and thus precisely located in the image. To
106
+ our work here of particular importance is the People-Art data set [84], in which human figures shown in nearly
107
+ 1,500 images are labeled with bounding boxes. Unlike the ten times larger DEArt data set [64], which identifies
108
+ figures in collections only from the 12th to 18th centuries, People-Art indicates depiction styles that encompass
109
+ Impressionist movements as well as Surrealist ones with rather artificial forms of body representation.
110
+ For the decoding of human poses, the rectangular framing of the entire body is not sufficient: individual limbs
111
+ cannot be identified and differentiated any more than joints, such as elbows and wrists. To obtain more accurate
112
+ information about the position of articulation points, three annotation practices have been used. Reshetnikov
113
+ et al. [64] roughly classify poses into 12 categories, e.g., by labeling human figures as sitting or kneeling. Carneiro
114
+ et al. [15], on the other hand, place additional bounding boxes around the torso and head to approximate the
115
+ specifics of the human body. Only Impett and Süsstrunk [34] and Madhu et al. [48], however, apply fine-grained
116
+ labels to faithfully represent bodily specifics by assigning keypoints on areas relevant to the figure’s pose, e.g.,
117
+ the hips, knees, or ears. In doing so, they adhere to labeling techniques common for real-world human pose
118
+ 2https://doi.org/10.5281/zenodo.7516230.
119
+ 3For institutions from the GLAM (Galleries, Libraries, Archives, and Museums) sector that have published open access data, see the following
120
+ survey: https://docs.google.com/spreadsheets/d/1WPS-KJptUJ-o8SXtg00llcxq0IKJu8eO6Ege_GrLaNc/edit.
121
+
122
+ 4
123
+
124
+ S. Schneider and R. Vollmer
125
+ Table 1. Art-historically relevant data sets for image classification and object detection tasks are compared. Grey check
126
+ marks specify information that is not directly stored in the respective data set, but has to be accessed via the referenced
127
+ content providers.
128
+ Name
129
+ Author(s)
130
+ Year
131
+ Annotation
132
+ Levels
133
+ Availability
134
+ Formal
135
+ Content
136
+ Image
137
+ Object
138
+ Public
139
+ Privat
140
+ Medieval Manuscripts [89]
141
+ Yarlagadda et al.
142
+ 2010
143
+
144
+
145
+
146
+ ✓1
147
+
148
+ WikiArt (f.k.a. WikiPaintings) [85]
149
+ Unknown
150
+ 2010
151
+
152
+
153
+
154
+ PrintART [15]
155
+ Carneiro et al.
156
+ 2012
157
+
158
+
159
+ ✓1
160
+
161
+ Paintings [18]
162
+ Crowley and Zisserman
163
+ 2014
164
+
165
+
166
+
167
+
168
+ Picasso [28]
169
+ Ginosar et al.
170
+ 2014
171
+
172
+
173
+
174
+
175
+ Painting-91 [41]
176
+ Khan et al.
177
+ 2014
178
+
179
+
180
+
181
+ Rijksmuseum Challenge [52]
182
+ Mensink and van Gemert
183
+ 2014
184
+
185
+
186
+
187
+ Pandora [24]
188
+ Florea et al.
189
+ 2016
190
+
191
+
192
+
193
+ Warburg’s Bilderatlas [34]
194
+ Impett and Süsstrunk
195
+ 2016
196
+
197
+
198
+
199
+ ✓1,2
200
+
201
+ Painter by Numbers [55]
202
+ Nichol
203
+ 2016
204
+
205
+
206
+
207
+ Visual Link [69]
208
+ Seguin et al.
209
+ 2016
210
+
211
+
212
+
213
+ People-Art [84]
214
+ Westlake et al.
215
+ 2016
216
+
217
+
218
+
219
+ ✓1
220
+
221
+ Art500k [50]
222
+ Mao et al.
223
+ 2017
224
+
225
+
226
+
227
+ BibleVSA [3]
228
+ Baraldi et al.
229
+ 2018
230
+
231
+
232
+
233
+ ✓1
234
+
235
+ ARTigo [4]
236
+ Becker et al.
237
+ 2018
238
+
239
+
240
+
241
+
242
+ SemArt [26]
243
+ Garcia and Vogiatzis
244
+ 2018
245
+
246
+
247
+
248
+
249
+ IconArt [29]
250
+ Gonthier et al.
251
+ 2018
252
+
253
+
254
+
255
+ ✓1
256
+
257
+ OmniArt [76]
258
+ Strezoski and Worring
259
+ 2018
260
+
261
+
262
+
263
+ MultitaskPainting100k [5]
264
+ Bianco et al.
265
+ 2019
266
+
267
+
268
+
269
+ Ancient Chinese Art [71]
270
+ Sheng and Moens
271
+ 2019
272
+
273
+
274
+
275
+
276
+ Ancient Egyptian Art [71]
277
+ Sheng and Moens
278
+ 2019
279
+
280
+
281
+
282
+
283
+ Artpedia [75]
284
+ Stefanini et al.
285
+ 2019
286
+
287
+
288
+
289
+
290
+ Iconclass Caption [16]
291
+ Cetinic
292
+ 2021
293
+
294
+
295
+
296
+ AQUA [27]
297
+ Garcia et al.
298
+ 2020
299
+
300
+
301
+
302
+
303
+ ClassArch [48]
304
+ Madhu et al.
305
+ 2020
306
+
307
+
308
+
309
+ ✓1,2
310
+
311
+ Iconclass AI Test Set [59]
312
+ Posthumus
313
+ 2020
314
+
315
+
316
+
317
+ Saints [66]
318
+ Schneider et al.
319
+ 2020
320
+
321
+
322
+
323
+
324
+ ArtDL [53]
325
+ Milani and Fraternali
326
+ 2021
327
+
328
+
329
+
330
+ The Met [90]
331
+ Ypsilantis et al.
332
+ 2021
333
+
334
+
335
+
336
+ ArtBench-10 [46]
337
+ Liao et al.
338
+ 2022
339
+
340
+
341
+
342
+ DEArt [64]
343
+ Reshetnikov et al.
344
+ 2022
345
+
346
+
347
+
348
+ ✓1
349
+
350
+ PoPArt
351
+ Schneider and Vollmer
352
+ 2023
353
+
354
+
355
+
356
+ ✓1,2
357
+
358
+ 1Object-level annotations include bounding boxes.
359
+ 2Object-level annotations include keypoints.
360
+ estimation. The Microsoft Common Objects in Context (COCO) format guidelines, for instance, require that
361
+ 17 keypoints be stored with their 𝑥𝑦-coordinates.4 Both data sets suffer from two issues: they are (i) not made
362
+ publicly available for further reuse, and (ii) devoted to only a comparatively narrow subset of art-historical modes
363
+ of depicting human figures; Impett and Süsstrunk [34] extracted panels from Warburg’s Bilderatlas Mnemosyne,
364
+ whereas Madhu et al. [48] focused on ancient Greek vase paintings. With PoPArt, we address this desideratum
365
+ and introduce the first publicly available data set for human pose estimation in art-historical figures, covering
366
+ 4https://cocodataset.org/#format-data.
367
+
368
+ Poses of People in Art
369
+
370
+ 5
371
+ Table 2. Figure detection results are reported for the People-Art test set [84]. For training and validation, People-Art is used
372
+ as well. In contrast to previous benchmarks by Kadish et al. [36] and Gonthier et al. [30], we include difficult-to-annotate
373
+ figures. The best performing approach is indicated in bold.
374
+ Model
375
+ Backbone
376
+ LR
377
+ AP
378
+ AP50
379
+ AP75
380
+ AP𝑆
381
+ AP𝑀
382
+ AP𝐿
383
+ AR
384
+ TOOD [22]
385
+ ResNet-50-FPN
386
+ 2e − 4
387
+ 0.461
388
+ 0.750
389
+ 0.490
390
+ 0.197
391
+ 0.296
392
+ 0.493
393
+ 0.635
394
+ PVT [81]
395
+ PVTv2-B2
396
+ 1e − 5
397
+ 0.465
398
+ 0.760
399
+ 0.484
400
+ 0.060
401
+ 0.263
402
+ 0.505
403
+ 0.601
404
+ Cascade R-CNN [11]
405
+ ResNet-50-FPN
406
+ 2e − 4
407
+ 0.444
408
+ 0.758
409
+ 0.468
410
+ 0.147
411
+ 0.297
412
+ 0.476
413
+ 0.593
414
+ SABL Cascade R-CNN [80]
415
+ ResNet-50-FPN
416
+ 2e − 4
417
+ 0.443
418
+ 0.741
419
+ 0.458
420
+ 0.139
421
+ 0.286
422
+ 0.476
423
+ 0.593
424
+ Faster R-CNN [63]
425
+ ResNet-50-FPN
426
+ 2e − 4
427
+ 0.423
428
+ 0.749
429
+ 0.421
430
+ 0.115
431
+ 0.298
432
+ 0.450
433
+ 0.568
434
+ SABL Faster R-CNN [80]
435
+ ResNet-50-FPN
436
+ 2e − 4
437
+ 0.441
438
+ 0.752
439
+ 0.466
440
+ 0.123
441
+ 0.284
442
+ 0.475
443
+ 0.596
444
+ PISA Faster R-CNN [13]
445
+ ResNet-50-FPN
446
+ 2e − 4
447
+ 0.434
448
+ 0.753
449
+ 0.451
450
+ 0.137
451
+ 0.290
452
+ 0.463
453
+ 0.568
454
+ Libra Faster R-CNN [56]
455
+ ResNet-50-FPN
456
+ 2e − 4
457
+ 0.417
458
+ 0.747
459
+ 0.416
460
+ 0.068
461
+ 0.290
462
+ 0.445
463
+ 0.569
464
+ impressionistic to neo-figurative and realistic depiction styles. Since our data set follows the Microsoft COCO
465
+ format [47], in addition to bounding boxes, up to 17 keypoints are stored per figure. Five keypoints are provided
466
+ for the head, indicating the nose, eyes, and ears; six for the upper body, indicating wrists, elbows, and shoulders;
467
+ and another six for the lower body, indicating ankles, knees, and hips.
468
+ 3
469
+ DATA SET
470
+ This section elaborates on the acquisition and constitution of the PoPArt data set. First, we outline the image
471
+ collection (Section 3.1) and annotation procedures (Section 3.2). We then provide an in-depth statistical analysis
472
+ of the data set (Section 3.3) and present its underlying data format (Section 3.4).
473
+ 3.1
474
+ Image Collection
475
+ Like many authors before, e.g., Westlake et al. [84] and Mao et al. [50], we exploit the art-historical online
476
+ encyclopedia WikiArt [85] as content provider. This decision is attributable to several factors: (i) reproductions
477
+ provided in WikiArt are mostly in the public domain and can thus be redistributed under free licenses; (ii) not only
478
+ does WikiArt embrace the widely received canon of Western art history, but does also include Eastern movements,
479
+ such as the early 20th-century Japanese Shin-hanga, albeit to a much lesser extent; (iii) because WikiArt stores
480
+ the depiction style of each object, fine-grained evaluations are facilitated, even if such classifications are to be
481
+ understood as loose, arbitrary, or possibly biased constructs [12, 20].
482
+ To further ensure that PoPArt is representative of both the projective and denotational styles prevalent in
483
+ the domain [87], a semi-automatic data collection procedure was preferred. In a preliminary step, we extracted
484
+ images from WikiArt that have a high probability of depicting human figures, i.e., images on which at least one
485
+ figure can be automatically detected with a probability of 𝑝 = 0.5. To this end, we benchmarked the suitability
486
+ of models commonly used for object detection and applied the best-performing one. The selection ranges from
487
+ multi-stage Region-based Convolutional Neural Networks (R-CNNs) [11, 13, 56, 63, 80] and Transformer-based
488
+ architectures [81] to task-aligned one-stage methods [22]. For evaluation, we use the metrics and tools provided
489
+ by the COCO API.5 All models were first pre-trained on the Microsoft COCO 2017 data set6 for 12 epochs.
490
+ As optimization algorithms, we employed Stochastic Gradient Descent (SGD) for ResNet-50 and Adam [42]
491
+ for Transformer backbones; momentum and weight decay were set to 0.9 and 1e − 4, respectively. The initial
492
+ 5https://github.com/cocodataset/cocoapi.
493
+ 6https://www.kaggle.com/datasets/awsaf49/coco-2017-dataset.
494
+
495
+ 6
496
+
497
+ S. Schneider and R. Vollmer
498
+ (a) Abstract Expressionism
499
+ (b) Art Nouveau
500
+ (c) Baroque
501
+ (d) Contemporary Realism
502
+ (e) Cubism
503
+ (f) Early Renaissance
504
+ (g) Expressionism
505
+ (h) Fauvism
506
+ (i) High Renaissance
507
+ (j) Impressionism
508
+ (k) Mannerism
509
+ (l) Naive Art
510
+ (m) New Realism
511
+ (n) Northern Renaissance
512
+ (o) Pointillism
513
+ (p) Pop Art
514
+ (q) Post Impressionism
515
+ (r) Realism
516
+ (s) Rococo
517
+ (t) Romanticism
518
+ (u) Symbolism
519
+ (v) Ukiyo-e
520
+ Fig. 2. The PoPArt data set contains 22 depiction styles, ranging from impressionistic to neo-figurative and realistic variants.
521
+ For each style, an exemplary image is shown. All images originate from the art-historical online encyclopedia WikiArt [85]
522
+ and are in the public domain.
523
+
524
+ Poses of People in Art
525
+
526
+ 7
527
+ (a) Data set view
528
+ (b) Annotation view
529
+ Fig. 3. The web-based open-source tool COCO Annotator [7] provides a light-weight interface that can be used collaboratively
530
+ for annotating bounding boxes and keypoints.
531
+ learning rate decays at the 8th and 11th epoch with 2e − 2 set for ResNet-50-backed and 1e − 4 for Transformer-
532
+ backed architectures. Models were then fine-tuned, with their classification head re-initialized, for another 12
533
+ epochs on People-Art [84]. The learning rate is decreased to 2e − 4 in case of ResNet-50 and 1e − 5 in case of
534
+ Transformer backbones. During training, we adopted the following data augmentation techniques from the
535
+ Albumentations library [9] to increase the models’ robustness: (i) either RandomBrightnessContrast or CLAHE
536
+ is applied with a probability of 𝑝 = 0.2; (ii) either RGBShift or HueSaturationValue is applied with 𝑝 = 0.1;
537
+ (iii) JpegCompression is applied with 𝑝 = 0.2; (iv) ChannelShuffle is applied with 𝑝 = 0.1; and (v) either Blur
538
+ or MedianBlur is applied with 𝑝 = 0.1. Images are reduced to a maximum scale of 1, 333 × 800 pixels without
539
+ changing the aspect ratio. In contrast to previous studies by Kadish et al. [36] and Gonthier et al. [30], we include
540
+ difficult-to-annotate figures. As evident by the benchmark results shown in Table 2, state-of-the-art models such
541
+ as TOOD [22] and PVT [81] outperform multistage R-CNNs to a nearly similar extent in Average Precision (AP)
542
+ between 1.7 and 4.8 %. At a more restrictive Intersection over Union (IoU) threshold of 0.75, the difference
543
+ increases further, rising to between 1.6 and 7.4 %. This effect also is noticeable with Average Recall (AR), which is
544
+ 0.5 to 6.8 % higher. Since TOOD surpasses PVT in AR by 3.4 %, with AP being almost equal, we assume that it is
545
+ generally suited best to the stylistic peculiarities of the art-historical domain.
546
+ After pre-filtering the data for images with human figures, we identified the 22 most frequently observed
547
+ depiction styles, covering impressionistic, neo-figurative, and realistic movements from the 14th to the 20th
548
+ century. The integration of data from the 19th and 20th centuries is of particular importance here, as formal
549
+ conventions of bodily phenomena were successively disrupted at the end of the 19th century [10]. We deemed
550
+ 22 styles to be adequate to both capture the wide diversity of art-historical image specifics in a time-efficient
551
+ manner, and to later sufficiently assess the validity of computational models for bounding box and keypoint
552
+ estimation depending on the depiction style. A maximum of 125 images per style were then selected for image
553
+ annotation, taking into account the sampling distribution. Exact-duplicate and near-duplicate reproductions were
554
+ removed. For each style, an example image is shown in Fig. 2.
555
+ 3.2
556
+ Image Annotation
557
+ The practice of image annotation is characterized by two modes of determinations: whether a human figure can
558
+ be recognized in an image (bounding box annotation) and how his or her pose can be abstracted in it (keypoint
559
+ annotation). Following Everingham et al. [21], we designed the annotation procedure to be as (i) exhaustive,
560
+ (ii) consistent, and (iii) accurate as possible, without omitting art-historical depiction specifics. With COCO
561
+
562
+ COCO ANNOTATOR
563
+ DATASETS
564
+ CATEGORIES
565
+ TASKS
566
+ SSCHNEIDER
567
+ POPART
568
+ (2454)IMAGES
569
+ MEMBERS
570
+ STATISTICS
571
+ EXPORTS
572
+ POPART
573
+ DATA
574
+ Identfier
575
+ 1148
576
+ 1149
577
+ piero-della-francesca_st-sigismund-and-sigismondo-pandolf...
578
+ O edward-hopper_new-york-restaurant.jpg
579
+ kuzma-petrov-vodkin_costume-design-for-the-tragedy-of-pu..
580
+ O marc-chagal_adam-and-eve-with-the-forbidden-fruit-1960.j..
581
+ 2 annotations
582
+ 34 keypoints
583
+ 7 annotations(12 keypoints
584
+ 1 annotation (17 keypoints
585
+ 2 annotations
586
+ 33 keypoints
587
+ 1154
588
+ oswaldo-guayasamin_from-la-edad-de-la-ternura-series-1.jpg
589
+ O titian_virgin-and-child.jpg
590
+ O paolo-veronese_venus-and-adonis.jpg
591
+ 1 annotation
592
+ (8 keypoints
593
+ 2 annotations(26 keypoints
594
+ 3 annotations
595
+ 46 keypoints
596
+ 1 annotation
597
+ )(13 keypoints
598
+ (159
599
+ 1160
600
+ (1161
601
+ O theophrastos-triantafyllidis_friends.jpg
602
+ O zinaida-serebriakova_portrait-of-aleksandr-serebriakov-stud... :
603
+ O vladimir-borovikovsky_portrait-of-a-and-v-gagarin-1802.jpg
604
+ O maurice-de-vlaminck_portrait-of-a-woman.jpg
605
+ 5 annotations(15 keypoints
606
+ 1 annotation(9 keypoints
607
+ 2 annotations(26 keypoints
608
+ 1 annotation(7 keypoints
609
+ 00..121314
610
+ (15 16 17)
611
+ 480COCO ANNOTATOR
612
+ DATASETSPOPARTCATEGORIES
613
+ U SSCHNEIDER
614
+
615
+ tintoret_the-birth-fjohn-the-baptist jpg
616
+ QPERSON(11)
617
+ tintoretto_the-birth-of-john-the-baptist.jpg
618
+ 2730x1821
619
+ 1(ID:9)
620
+ 2(ID: 10)
621
+ 7(ID: 15
622
+ Q9(ID:17)
623
+ Q10(ID: 18)
624
+ Q11(ID:19)
625
+ O NOSE
626
+ LEFT_EYE
627
+ RIGHT_EYE
628
+ LEFT_EAR
629
+ RIGHT_EAR
630
+ Mannerism Late Renaissance8
631
+
632
+ S. Schneider and R. Vollmer
633
+ Challenges
634
+ Variations of the size
635
+ of human figures
636
+ Large crowds
637
+ Small figures
638
+ Figures hard to separate
639
+ from each other
640
+ Figures difficult to
641
+ recognize as such
642
+ Image-extrinsic factors
643
+ Image-intrinsic factors
644
+ Figures in the
645
+ background
646
+ Relation of human
647
+ figures to each other
648
+ Referencing
649
+ Shadows
650
+ Reflections
651
+ In water
652
+ In the mirror
653
+ On other surfaces
654
+ (such as helmets)
655
+ Not referencing
656
+ Overlaps
657
+ Intersections
658
+ Symmetrically
659
+ arranged figures
660
+ Deviations from the
661
+ ‘ideal’ human body
662
+ Stylistic variance
663
+ Lack of differentiation
664
+ of the face
665
+ Lack of differentiation
666
+ of the body shape
667
+ Veiled body
668
+ Non-human bodies
669
+ and body parts
670
+ Human-like animals
671
+ Mythological figures
672
+ Biblical figures
673
+ Non-living bodies
674
+ and body parts
675
+ Fabricated bodies
676
+ Dolls
677
+ Masks
678
+ Crafts
679
+ Sculptures
680
+ Skeletons
681
+ Severed heads
682
+ Severed limbs
683
+ Image-extrinsic factors
684
+ Image-intrinsic factors
685
+ Positioning of the
686
+ human body
687
+ Back views
688
+ Profile views
689
+ Distortions
690
+ Twists and turns
691
+ Fig. 4. Four aspects pose challenges to the annotation of art-historical imagery: (i) the size of human figures, (ii) their relation
692
+ to each other, (iii) deviations from the ‘ideal’ human body, and (iv) the positioning of the body.
693
+ Annotator [7], we used a web-based open-source tool for bounding box and keypoint annotation that we minimally
694
+ adapted to our needs (Fig. 3).
695
+ 3.2.1
696
+ Exhaustiveness. We set the following guidelines to guarantee exhaustive annotation. (i) All human-
697
+ appearing figures are enclosed by bounding boxes; the distance to the outline of the human figure is to be
698
+ kept as small as possible. Only the visible area of the figure is labeled and not the estimated total extent of it.
699
+ Larger numbers of people, whose individual figures can no longer be sufficiently differentiated, are labeled as
700
+ ‘crowd.’ In contrast to the Microsoft COCO [47] and PASCAL Visual Object Classes (VOC) data sets [21], we
701
+
702
+ Poses of People in Art
703
+
704
+ 9
705
+ Variations of the size
706
+ of human figures
707
+ (a)
708
+ (b)
709
+ (c)
710
+ (d)
711
+ Relation of human
712
+ figures to each other
713
+ (e)
714
+ (f)
715
+ (g)
716
+ (h)
717
+ Deviation from the
718
+ ‘ideal’ human body
719
+ (i)
720
+ (j)
721
+ (k)
722
+ (l)
723
+ Positioning of
724
+ the human body
725
+ (m)
726
+ (n)
727
+ (o)
728
+ (p)
729
+ Fig. 5. Sample images of the PoPArt data set illustrate the four aspects that pose challenges to the annotation of art-historical
730
+ imagery: (i) the size of human figures, (ii) their relation to each other, (iii) deviations from the ‘ideal’ human body, and (iv) the
731
+ positioning of the body. All images are in the public domain.
732
+ do not indicate truncated or difficult-to-annotate figures as such. (ii) Up to four human figures per image are
733
+ fine-granularly labeled with keypoints, selecting those whose limbs can be captured best. We do not consider it
734
+ beneficial to label all figures with keypoints, as this would favor styles that feature an above-average number of
735
+ figures—and thus would introduce data bias. Keypoints are recorded in a ‘person-centric’ way, i.e., left points
736
+ refer to the figure’s left extremities. Since in many cases keypoints are not clearly visible or are occluded, we
737
+ establish three rules. (a) If an occluded body part can be approximated by another, it is denoted by a keypoint; e.g.,
738
+ an elbow obscured by a pillar is annotated if the hand and shoulder of the respective body half are visible. (b) Due
739
+ to the low variance of the body parts, eyes and ears are labeled in profile views on the non-visible side of the face
740
+ as well. (c) If several joints are not visible and cannot be approximated, the corresponding keypoints are not set.
741
+ 3.2.2
742
+ Consistency. To ensure consistency in the annotation, a fixed team of annotators was employed at the
743
+ Ludwig Maximilian University of Munich throughout the entire period. Annotation guidelines were discussed
744
+ with the annotators prior to annotation and iteratively modified during the annotation procedure, e.g., when
745
+ unusual figure constellations occurred more frequently. In the course of the process, recurring challenges arose
746
+ for both modes, bounding box and keypoint annotation; Fig. 4 visualizes them in taxonomic form. We identify
747
+ four major challenges: (i) those resulting from variations of the size of human figures, (ii) those emerging from
748
+
749
+
750
+ 2
751
+ 里10
752
+
753
+ S. Schneider and R. Vollmer
754
+ the relation of human figures to each other, (iii) those attributable to deviations from the ‘ideal’ human body, and
755
+ (iv) those originating from the body’s positioning in the image space.
756
+ Variations of the size of human figures. Large crowds and figures in the background complicate the annotation.
757
+ Both cases are dominated by very small figures (Fig. 5a; Fig. 5b), figures that are difficult to separate from each
758
+ other (Fig. 5c), or that are difficult to recognize as human (Fig. 5d). The latter is due not only to factors intrinsic
759
+ to the object, i.e., the analog original, but also to image-extrinsic factors, i.e., the original’s digital reproduction.
760
+ In particular, compression artifacts or low-quality and out-of-date resolutions hamper the process.
761
+ Relation of human figures to each other. We distinguish two kinds of figure relations, which are crucial for
762
+ annotation: non-referential and referential ones. Referential relations include constellations in which the body of
763
+ one and the same figure is represented several times but in different ways. In addition to shadows (Fig. 5e), these
764
+ mainly include reflections, e.g., in mirrors (Fig. 5f), in water (Fig. 5g), and on surfaces like metallic armor. We set
765
+ the corresponding bounding boxes whenever the referencing part, the reflection, can be recognized as human-like
766
+ even without the referenced part, i.e., the human reflected in some way. Non-referential relations are found
767
+ when figures overlap, intersect, or are symmetrically arranged (Fig. 5h). In case of overlaps and intersections, we
768
+ approximate occluded keypoints as far as possible.
769
+ Deviations from the ‘ideal’ human body. The ideal human body has been studied since antiquity [25, 62, 68, 72]:
770
+ from scholars like Vitruvius [92], to medieval draftsmen such as Villard de Honnecourt [31], Renaissance artists
771
+ Leonardo da Vinci [38, 39, 58] and Albrecht Dürer [32, 65], or even modernists like Oskar Schlemmer [45].
772
+ We declare bodies as deviating from this ideal whose depicted measurements or proportions do not adhere to
773
+ usual conventions. Three subcategories are discerned. (a) Often deviations are due to stylistic reasons expressed
774
+ regionally, epochally, or individually. The lack of differentiation of the entire body shape or individual body parts
775
+ is characteristic of Impressionism and Pointillism (Fig. 5i); figures veiled by robes that fundamentally obscure the
776
+ body are common in Art Nouveau as well as Japanese woodblock prints of the Ukiyo-e [91]. If the placement of
777
+ keypoints in an image is complicated by blurred contours, distorted proportions, or missing joints, as shown
778
+ in Fig. 5j, we approximate them, provided the figures can be recognized as human. (b) Another subcategory
779
+ comprises non-human bodies and body parts. These include mythological figures such as centaurs, harpies, and
780
+ mermaids (Fig. 5k), biblical figures, e.g., angels, and human-like animals like monkeys and lemurs. While animals
781
+ are excluded from annotation, we annotate human parts of mythological and biblical figures; consequently, the
782
+ animal limbs of centaurs are not annotated, nor are the wings and halo of angels. (c) The third subcategory
783
+ covers non-living bodies and body parts, with a considerable portion being severed heads (Fig. 5l)7 and limbs.
784
+ The latter may again result from the analog original itself, for instance, as part of the composition, but may also
785
+ be grounded in the digital reproduction, e.g., in particularly detailed views or images in need of restoration that
786
+ no longer permit keypoints to be fully labeled. While severed limbs are not annotated, severed heads are, since
787
+ they generally allow for more keypoints and constitute a more substantial part of the human body than hands
788
+ or legs. Also included are fabricated bodies, such as dolls, masks, crafts, sculptures, and images within images
789
+ depicting human bodies, e.g., in salon paintings.
790
+ Positioning of the human body. Of relevance is the body’s positioning in the image space especially for back
791
+ views, as in Dürer’s Hercules (1498; Fig. 5m), where the inversion of keypoints must be taken into account. For
792
+ profile views, it is crucial to set the eyes and ears on the non-visible side of the face as well. This applies, e.g., to
793
+ Florentine portraits (Fig. 5n), which refer to the strict profile of emperors on ancient coins [17]. In a considerable
794
+ number of images, perspective distortions are furthermore present, along with twists and turns. They are found
795
+ primarily in Baroque and Rococo works such as those by Tiepolo (Fig. 5o), but also in 20th-century avant-garde
796
+ 7See iconographies such as David and Goliath, Judith and Holofernes, and Salomé and John the Baptist.
797
+
798
+ Poses of People in Art
799
+
800
+ 11
801
+ Table 3. The People-Art [84] and PoPArt data sets are descriptively compared. Figures are indicated by bounding boxes
802
+ associated with them. Up to 17 keypoints are stored per figure. Difficult-to-annotate figures are included.
803
+ Data set
804
+ Split
805
+ Images
806
+ Images𝑃𝑜𝑠
807
+ Images𝑁𝑒𝑔
808
+ Figures
809
+ Crowds
810
+ Keypoints
811
+ Styles
812
+ People-Art
813
+ Training
814
+ 1,623
815
+ 525
816
+ 1,098
817
+ 1,512
818
+ 0
819
+ 0
820
+ 43
821
+ Validation
822
+ 1,383
823
+ 442
824
+ 941
825
+ 1,219
826
+ 0
827
+ 0
828
+ 43
829
+ Testing
830
+ 1,616
831
+ 522
832
+ 1,094
833
+ 1,137
834
+ 0
835
+ 0
836
+ 43
837
+ Total
838
+ 4,622
839
+ 1,489
840
+ 3,133
841
+ 3,868
842
+ 0
843
+ 0
844
+ 43
845
+ PoPArt
846
+ Training
847
+ 1,472
848
+ 1,472
849
+ 0
850
+ 6,457
851
+ 245
852
+ 33,582
853
+ 22
854
+ Validation
855
+ 491
856
+ 491
857
+ 0
858
+ 2,175
859
+ 114
860
+ 11,104
861
+ 22
862
+ Testing
863
+ 491
864
+ 491
865
+ 0
866
+ 2,117
867
+ 106
868
+ 11,468
869
+ 22
870
+ Total
871
+ 2,454
872
+ 2,454
873
+ 0
874
+ 10,749
875
+ 465
876
+ 56,154
877
+ 22
878
+ movements, as in the French surrealist André Masson (Fig. 5p). There, too, the possible inversion of keypoints
879
+ has to be considered. If a figure is twisted to such an extent that keypoints cannot be approximated, individual
880
+ limbs are omitted and annotated only up to the last keypoint visible or to be approximated.
881
+ 3.2.3
882
+ Accuracy. Figure instance annotations were checked in several test cycles according to formerly stated
883
+ guidelines. They were once again reviewed at the end of the annotation process. We verified, e.g., that each
884
+ keypoint referred to the correct body part, that body halves were properly labeled, especially for back views and
885
+ twisted figures, and that bounding boxes surrounded only the extent of the figure visible in the image.
886
+ 3.3
887
+ Descriptive Statistics
888
+ For machine learning purposes, the PoPArt data set is divided into three subsets: training, validation, and testing.
889
+ They contain 1,472, 491, and 491 images, respectively, so approximate split ratios of 60 %, 20 %, and 20 % are met.
890
+ In contrast to the People-Art data set [84], we do not reduce image sizes to a maximum scale of 500 × 500 pixels,
891
+ but directly redistribute the digital reproductions from WikiArt. The widest image measures 6,298 × 3,049 and the
892
+ highest 4,524 × 6,018 pixels. Figure instance annotations total 6,457 in PoPArt for training, 2,175 for validation,
893
+ and 2,117 for testing, with keypoint annotations of 33,582, 11,104, and 11,468, respectively. To maintain an equal
894
+ distribution of figure instances across data splits, we applied the following procedure: images were first grouped
895
+ by depiction style and then sorted in descending order based on the number of figure instance annotations.
896
+ Considering the split ratios, we then processed batches of five images and randomly assigned three of them as
897
+ training samples, one as validation, and one as testing.
898
+ Table 3 summarizes PoPArt in comparison to the similarly constituted People-Art data set. Both data sets
899
+ focus exclusively on human figures depicted in art-historical objects; other classes are not annotated. While
900
+ People-Art’s core application solely lies in the computer-aided detection of figures, PoPArt is designed to support
901
+ both their detection and that of their keypoints. Further structural differences arise. (i) People-Art contains more
902
+ training, validation, and testing images due to the integration of negative image samples that do not show human
903
+ figures. However, PoPArt features almost three times as many positive samples in the training set, which have
904
+ at least one instance annotation. This includes more small-area instances measuring between 0 and 162 pixels,
905
+ namely 0.9 %. In the People-Art data set, it amounts to only 0.5 % despite reduced image sizes. In addition, the
906
+ data set completely lacks crowd annotations. PoPArt thus decisively enables the automatic detection even of
907
+ figures that are displayed small. (ii) Moreover, PoPArt accounts for the broad spectrum of art-historical body
908
+ language in two ways. As shown in Fig. 6, the proportion of images with at least six figures is 8.52 % higher in
909
+
910
+ 12
911
+
912
+ S. Schneider and R. Vollmer
913
+ 0%
914
+ 25%
915
+ 50%
916
+ 75%
917
+ 100%
918
+ 1
919
+ 2
920
+ 3
921
+ 4
922
+ 5
923
+ > 5
924
+ Number of figures
925
+ Percentage of images
926
+ (a) People-Art
927
+ 0%
928
+ 25%
929
+ 50%
930
+ 75%
931
+ 100%
932
+ 1
933
+ 2
934
+ 3
935
+ 4
936
+ 5
937
+ > 5
938
+ Number of figures
939
+ Percentage of images
940
+ (b) PoPArt
941
+ Fig. 6. The proportion of images with at least six figures is 8.52 % higher in the PoPArt than in the People-Art data set [84].
942
+ This is also reflected in a larger maximum number of figures in an image: it is 28 for People-Art and 110 for PoPArt.
943
+ 0%
944
+ 10%
945
+ 20%
946
+ 30%
947
+ 40%
948
+ 50%
949
+ 0
950
+ 1
951
+ 2
952
+ 3
953
+ 4
954
+ 5
955
+ > 5
956
+ Number of overlaps
957
+ Percentage of instances
958
+ (a) People-Art
959
+ 0%
960
+ 10%
961
+ 20%
962
+ 30%
963
+ 40%
964
+ 50%
965
+ 0
966
+ 1
967
+ 2
968
+ 3
969
+ 4
970
+ 5
971
+ > 5
972
+ Number of overlaps
973
+ Percentage of instances
974
+ (b) PoPArt
975
+ Fig. 7. The PoPArt data set has a 14.22 % higher share of overlapping figure instances than the People-Art data set [84], with
976
+ the maximum number of overlaps in an image being 11 for People-Art and 23 for PoPArt.
977
+ the PoPArt than in the People-Art data set. This is reflected in a larger maximum number of figures in an image:
978
+ it is 28 for People-Art and 110 for PoPArt. As a result, the PoPArt data set also has a 14.22 % higher share of
979
+ overlapping figure instances than People-Art (Fig. 7), with the maximum number of overlaps in an image being
980
+ 11 for People-Art and 23 for PoPArt.
981
+ 3.4
982
+ Data Split Format
983
+ All data splits follow the JSON-based Microsoft COCO format [47]; Fig. 8 displays an exemplary figure instance
984
+ annotation with its referencing image annotation. For each image annotation, we provide metadata (wikiart_url,
985
+ wikiart_image_url, and wikiart_style) in addition to mandatory fields (id, license, width, height, and
986
+ file_name). Figure instance annotations contain task-agnostic information (id, image_id, and category_id),
987
+ supplemented by fields essential to the respective detection task. The fields bbox, segmentation, and iscrowd
988
+ are declared for both figure instance and keypoint detection, while keypoints and num_keypoints are noted for
989
+ keypoint detection only. Through a 53-dimensional array, each of the 17 keypoints is represented with three
990
+ values: its location, 𝑥 and 𝑦, and a visibility flag 𝑣 that indicates whether the respective keypoint is visible and
991
+ labeled, 𝑣 = 2, or not, 𝑣 = 0. In contrast to the Microsoft COCO format guidelines, we assign 𝑣 = 2 to index
992
+ occluded keypoints as well, rather than 𝑣 = 1. Keypoints are recorded in the order established by the COCO
993
+
994
+ Poses of People in Art
995
+
996
+ 13
997
+ {
998
+ · · ·
999
+ "images": [
1000
+ · · ·
1001
+ {
1002
+ "id": 58,
1003
+ "license": 1,
1004
+ "width": 2310,
1005
+ "height": 3000,
1006
+ "file_name": "albrecht -durer_death -of -orpheus -1498. jpg",
1007
+ "metadata": {
1008
+ "wikiart_url": "https ://www.wikiart.org/en/albrecht -durer/death -of -orpheus -1498" ,
1009
+ "wikiart_image_url": "https :// uploads.wikiart.org/images/albrecht -durer/death -of -orpheus
1010
+ -1498. jpg",
1011
+ "wikiart_style": "Northern Renaissance"
1012
+ }
1013
+ },
1014
+ · · ·
1015
+ ],
1016
+ "annotations": [
1017
+ · · ·
1018
+ {
1019
+ "id": 64,
1020
+ "image_id": 58,
1021
+ "category_id": 1,
1022
+ "area": 1319355,
1023
+ "bbox": [ 616.0, 1718.0, 1305.0, 1011.0 ],
1024
+ "segmentation": [ [ 1921.0, 1718.0, 1921.0, 2729.0, 616.0, 2729.0, 616.0, 1718.0 ] ],
1025
+ "keypoints": [ 950, 1872, 2, 945, 1848, 2, 904, 1870, 2, 924, 1873, 2, 864, 1918, 2, 1108,
1026
+ 1905, 2, 871, 2100, 2, 1279, 1778, 2, 790, 2339, 2, 1085, 1789, 2, 750, 2620, 2, 1313,
1027
+ 2311, 2, 1147, 2339, 2, 1600, 2567, 2, 902, 2629, 2, 1870, 2456, 2, 1200, 2431, 2 ],
1028
+ "num_keypoints": 17,
1029
+ "iscrowd": false
1030
+ },
1031
+ · · ·
1032
+ ]
1033
+ }
1034
+ Fig. 8. PoPArt follows the JSON-based Microsoft COCO format [47], for which a figure instance annotation with its
1035
+ referencing image annotation is displayed.
1036
+ format: nose, left and right eye, left and right ear, left and right shoulder, left and right elbow, left and right wrist,
1037
+ left and right hip, left and right knee, left and right ankle.
1038
+ 4
1039
+ APPLICATIONS
1040
+ In the course of this section, we consider application scenarios in which PoPArt can be usefully integrated and,
1041
+ building on these, discuss prospects for a digitally supported art history. Two scenarios are distinguished: those
1042
+ arising from human pose estimation (Section 4.1), and those from human figure detection (Section 4.2).
1043
+ 4.1
1044
+ Human Pose Estimation
1045
+ In a first application scenario, we demonstrate that PoPArt enables the quantitatively systematized exploration
1046
+ of human poses in visual art. For this purpose, we suggested in Springstein et al. [73] a two-stage approach
1047
+ based on two Transformer models [14, 79]: the first model detects bounding boxes of human figures, while the
1048
+ second one analyzes the individual boxes for keypoints (Fig. 9). We in this context adapted a semi-supervised
1049
+
1050
+ 14
1051
+
1052
+ S. Schneider and R. Vollmer
1053
+ Set of Query Embeddings
1054
+ Set of Query Embeddings
1055
+ Positional Encoding
1056
+ Positional Encoding
1057
+ Set of Keypoints
1058
+ Set of Boxes
1059
+ CNN Backbone
1060
+ Transformer Encoder
1061
+ Transformer Decoder
1062
+ Crop
1063
+ CNN Backbone
1064
+ Transformer Encoder
1065
+ Transformer Decoder
1066
+ Fig. 9. The two-stage human pose estimator from Springstein et al. [73] uses two Transformer models: the input of the first
1067
+ stage is the entire image, for which the first Transformer predicts a fixed set of bounding boxes. The individual boxes are
1068
+ cropped and serve as input for the second stage; the second Transformer model then computes a set of keypoints.
1069
+ (a) Default image grid
1070
+ (b) Two-dimensional canvas view
1071
+ Fig. 10. With the aid of the web platform iART [67, 74], the process of comparative vision is facilitated by various object
1072
+ views, as illustrated by the example of Fall of Man.
1073
+ learning technique to reduce the performance loss caused by the shift between existing real-world data sets and
1074
+ the art-historical domain, and to reduce the quantity of domain-specific annotation data. The basic principle is
1075
+ to use both labeled and unlabeled image material to train a student model. The teacher serves as a generator
1076
+ of pseudo-labels; to this end, unlabeled images are first weakly augmented and then used for the detection of
1077
+ human figures, just as figures enclosed by bounding boxes are weakly augmented and used to predict their
1078
+ keypoints. Three art-historical data sets are plugged into the routine: in addition to PoPArt, we also employ
1079
+ People-Art [84] for labeled and Art500k [50] for unlabeled data. Experiments performed on the PoPArt test set
1080
+ in comparison to more established approaches that apply pre-trained models [35, 48] or enrich real-world data
1081
+ sets with style transfer [49] indicated that the performance of human pose estimators is greatly enhanced by
1082
+ using semi-supervised methods with additional unlabeled data. Moreover, in a user study, we also confirmed the
1083
+ feasibility of the approach for retrieval tasks, enabling the search for resembling poses. The pose—as the holistic
1084
+
1085
+ @iART
1086
+ + adam and eve &
1087
+ XEN
1088
+ ① Global Weights
1089
+ 器 Result View@iART
1090
+ Q曾 +日 adam and eve α
1091
+ XEN
1092
+ ① Global Weights
1093
+ 品 Result View
1094
+ I Cluster DisplayPoses of People in Art
1095
+
1096
+ 15
1097
+ Table 4. Figure detection results are reported for the People-Art test set [84]. For training and validation, PoPArt was used
1098
+ in addition to People-Art. In contrast to previous benchmarks by Kadish et al. [36] and Gonthier et al. [30], we include
1099
+ difficult-to-annotate figures. The best performing approach is indicated in bold.
1100
+ Model
1101
+ Backbone
1102
+ LR
1103
+ AP
1104
+ AP50
1105
+ AP75
1106
+ AP𝑆
1107
+ AP𝑀
1108
+ AP𝐿
1109
+ AR
1110
+ TOOD [22]
1111
+ ResNet-50-FPN
1112
+ 2e − 4
1113
+ 0.478
1114
+ 0.780
1115
+ 0.499
1116
+ 0.162
1117
+ 0.311
1118
+ 0.511
1119
+ 0.654
1120
+ PVT [81]
1121
+ PVTv2-B2
1122
+ 1e − 5
1123
+ 0.497
1124
+ 0.805
1125
+ 0.518
1126
+ 0.076
1127
+ 0.315
1128
+ 0.532
1129
+ 0.625
1130
+ Cascade R-CNN [11]
1131
+ ResNet-50-FPN
1132
+ 2e − 4
1133
+ 0.464
1134
+ 0.761
1135
+ 0.490
1136
+ 0.152
1137
+ 0.307
1138
+ 0.495
1139
+ 0.606
1140
+ SABL Cascade R-CNN [80]
1141
+ ResNet-50-FPN
1142
+ 2e − 4
1143
+ 0.456
1144
+ 0.762
1145
+ 0.457
1146
+ 0.116
1147
+ 0.311
1148
+ 0.487
1149
+ 0.601
1150
+ Faster R-CNN [63]
1151
+ ResNet-50-FPN
1152
+ 2e − 4
1153
+ 0.439
1154
+ 0.770
1155
+ 0.447
1156
+ 0.128
1157
+ 0.312
1158
+ 0.465
1159
+ 0.580
1160
+ SABL Faster R-CNN [80]
1161
+ ResNet-50-FPN
1162
+ 2e − 4
1163
+ 0.453
1164
+ 0.756
1165
+ 0.463
1166
+ 0.129
1167
+ 0.308
1168
+ 0.483
1169
+ 0.604
1170
+ PISA Faster R-CNN [13]
1171
+ ResNet-50-FPN
1172
+ 2e − 4
1173
+ 0.447
1174
+ 0.767
1175
+ 0.464
1176
+ 0.133
1177
+ 0.306
1178
+ 0.475
1179
+ 0.582
1180
+ Libra Faster R-CNN [56]
1181
+ ResNet-50-FPN
1182
+ 2e − 4
1183
+ 0.442
1184
+ 0.769
1185
+ 0.451
1186
+ 0.084
1187
+ 0.312
1188
+ 0.471
1189
+ 0.583
1190
+ abstraction of bodily expression—can thus prove elemental to the formulaic recapitulation of significant motifs
1191
+ through computational assistance.
1192
+ This becomes particularly evident when machine-generated similarity arrangements are explored through
1193
+ web-based user interfaces. For instance, on the platform iART [67, 74],8 object retrieval is performed not only
1194
+ based on art-historical keywords generated by deep learning, but also by leveraging state-of-the-art multimodal
1195
+ embeddings such as the Transformer-backed neural network CLIP, which creates a unified feature space for image
1196
+ and text [60]. First, the retrieval of certain iconographies is thereby enabled. As illustrated in Fig. 10a, searching
1197
+ for “adam and eve” primarily returns the classical Renaissance depiction of the Fall of Man, in which Adam and
1198
+ Eve stand image-parallel, left and right under the Tree of Knowledge. The iconography can be examined more
1199
+ in-depth if, on top of CLIP-based pre-filtering, the pose embeddings of each figure are determined and then
1200
+ mapped onto a two-dimensional canvas using the dimensionality reduction technique UMAP [51]. Several cluster
1201
+ structures emerge in Fig. 10b: the one shown at the top left, e.g., reveals an image group of more dynamic poses
1202
+ that are conspicuous for their bent or flared legs; apart from the fact that here the apple is being handed to Adam
1203
+ in a rather prominent manner.
1204
+ 4.2
1205
+ Human Figure Detection
1206
+ We show in the second application scenario that as a by-product of PoPArt’s domain-specific curation, the
1207
+ sole detection of art-historical figures is decisively improved. For this purpose, we utilize the same models and
1208
+ pipeline as described in Section 3.1 for the preliminary step of our semi-automatic image collection procedure:
1209
+ models are first pre-trained on Microsoft COCO 2017 for 12 epochs and then fine-tuned, with their classification
1210
+ head re-initialized, for another 12 epochs—now on both the People-Art [84] and PoPArt data sets. Parameter
1211
+ settings remain unchanged; the learning rate is, again, set to 2e − 4 in case of ResNet-50 and 1e − 5 in case of
1212
+ Transformer backbones. Compared to those in Table 2, the benchmarks shown in Table 4 clearly demonstrate
1213
+ that AP and AR increase considerably for all models when PoPArt is integrated into the training routine. For the
1214
+ Transformer-based PVT model [81], e.g., AP and AR improve to the same extent, from 46.5 to 49.7 % and 60.1
1215
+ to 62.5 %, respectively. The leap is even more noticeable if we plug-in the PoPArt instead of the People-Art test
1216
+ set. AP then rises from 36.6 to 43.6 % and AR from 48.2 to 55.0 % for PVT. At the same time, this reconfirms the
1217
+ greater complexity of the figures contained in PoPArt, which are exhaustively marked in the images by bounding
1218
+ boxes, even if they are very small or appear in crowds, and hence overlap frequently. The additional integration
1219
+ 8https://www.iart.vision/.
1220
+
1221
+ 16
1222
+
1223
+ S. Schneider and R. Vollmer
1224
+ (a) Nicholas Poussin, The Deluge (1660–1664)
1225
+ (b) John Martin, The Deluge (1834)
1226
+ Fig. 11. Detail views of the crowds depicted in Nicholas Poussin’s and John Martin’s versions of The Deluge, respectively.
1227
+ Both images have been slightly lightened to emphasize depiction specifics. The images are in the public domain.
1228
+ of PoPArt into the training routine thus is particularly advantageous to movements that emphasize the depiction
1229
+ of a larger number of people, as in Mannerism and the regional expressions of the Renaissance; in Northern
1230
+ Renaissance works, e.g., AP improves from 27.1 to 33.5 % and AR from 37.5 to 43.4 % (Table 5 in Appendix).
1231
+ Indeed, this image of the crowd, from small gatherings in village squares to streams of passers-by in modern
1232
+ pedestrian zones, benefits especially from computer-aided methods of detection; even if these may initially only
1233
+ be used to pre-filter the (digitally available) image material. Namely, the crowd’s underlying constitution, which
1234
+ has been increasingly received since the 18th century [40], becomes strictly quantifiable: by the number of people
1235
+ in it, their proximity or distance from each other, the space they occupy in the image, and in relation to other
1236
+ subjects. John Martin’s emphatically apocalyptic Deluge (1834; Fig. 11b), for instance, focuses on the entirely
1237
+ de-individualized crowd—a multitude of people depicted in a confined space, who are “tossed back and forth like
1238
+ cue balls” [44]. In Nicholas Poussin’s Deluge (1660–1664; Fig. 11a), on the other hand, the majority of figures
1239
+ are still, because of the larger body size, differentiated in their moments of action. While a man clings to his
1240
+ horse in the foreground, a mother, slightly moved back, stretches her child upwards to the shore. It is precisely
1241
+ these iconographic traditions that first become easily decipherable in larger amounts of data through distant
1242
+ viewing and only then are examined in detail from a more art-historical perspective. Recommender systems like
1243
+ iART [67, 74] can ultimately point to research-worthy phenomena here as well.
1244
+ 5
1245
+ CONCLUSION
1246
+ In this paper, we introduced with Poses of People in Art the first publicly available and openly licensed data set for
1247
+ estimating human poses in visual art. It consists of 2,454 images from 22 art-historical depiction styles, including
1248
+ those that increasingly turned away from lifelike representations of the body and toward artificial forms. A
1249
+ total of 10,749 human figures are enclosed by rectangular bounding boxes, with a maximum of four per image
1250
+ labeled by up to 17 keypoints. For machine learning purposes, the data set is pre-split into three subsets—training,
1251
+ validation, and testing—, each following the JSON-based Microsoft COCO format. In addition to mandatory fields,
1252
+ image annotations provide metadata from the art-historical online encyclopedia WikiArt. As illustrated in two
1253
+ application scenarios, the data set not only validates the performance of deep-learning models, but in this way
1254
+ enables the comprehensive investigation of body phenomena in art—whether at the level of individual figures,
1255
+ whose bodily subtleties are captured, or entire figure constellations, whose position, distance, or proximity to
1256
+ one another is considered. With the further aid of readily accessible online platforms like the presented iART, we
1257
+ see the potential to reveal large-scale disruptions of formal conventions and make them interactively explorable.
1258
+
1259
+ Poses of People in Art
1260
+
1261
+ 17
1262
+ Since this would allow hitherto marginalized collections to be easily included in analyses, the discipline of art
1263
+ history would benefit from an increasingly de-canonized gaze that is no longer primarily devoted to European
1264
+ art. Intra- as well as inter-iconographic recurrent motifs, whose radically altered semantics are disconcerting,
1265
+ might be thoroughly discussed for the first time in this context.
1266
+ ACKNOWLEDGMENTS
1267
+ This work was funded in part by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG)
1268
+ under project no. 415796915. We thank Ursula Huber for her valuable support with the image annotation. We
1269
+ also thank Hubertus Kohle, Ralph Ewerth, and Matthias Springstein for fruitful discussions and useful comments
1270
+ on the subject matters.
1271
+ AUTHORS’ CONTRIBUTIONS
1272
+ S.S. conceived, designed, and performed the experiments, analyzed the data, oversaw image annotation, and
1273
+ ensured data quality; R.V. performed image annotation. S.S. and R.V. wrote the manuscript, and read, commented,
1274
+ and approved the final version.
1275
+ REFERENCES
1276
+ [1] Karl von Amira. 1905. Die Handgebärden in den Bilderhandschriften des Sachsenspiegels. Abhandlungen der Bayerischen Akademie
1277
+ der Wissenschaften. Philosophisch-Philologische und Historische Klasse, Vol. 23. Franz, München. Retrieved January 13, 2023 from
1278
+ https://publikationen.badw.de/de/007458332
1279
+ [2] Seyed Ali Amirshahi, Gregor Uwe Hayn-Leichsenring, Joachim Denzler, and Christoph Redies. 2014. JenAesthetics Subjective Dataset.
1280
+ Analyzing Paintings by Subjective Scores. In Computer Vision – ECCV 2014 Workshops (Lecture Notes in Computer Science, Vol. 8925),
1281
+ Lourdes Agapito, Michael M. Bronstein, and Carsten Rother (Eds.). Springer, Cham, 3–19. https://doi.org/10.1007/978-3-319-16178-5_1
1282
+ [3] Lorenzo Baraldi, Marcella Cornia, Costantino Grana, and Rita Cucchiara. 2018. Aligning Text and Document Illustrations. Towards
1283
+ Visually Explainable Digital Humanities. In 24th International Conference on Pattern Recognition, ICPR 2018. IEEE, New York, 1097–1102.
1284
+ https://doi.org/10.1109/ICPR.2018.8545064
1285
+ [4] Matthias Becker, Martin Bogner, Fabian Bross, François Bry, Caterina Campanella, Laura Commare, Silvia Cramerotti, Katharina Jakob,
1286
+ Martin Josko, Fabian Kneißl, Hubertus Kohle, Thomas Krefeld, Elena Levushkina, Stephan Lücke, Alessandra Puglisi, Anke Regner,
1287
+ Christian Riepl, Clemens Schefels, Corina Schemainda, Eva Schmidt, Stefanie Schneider, Gerhard Schön, Klaus Schulz, Franz Siglmüller,
1288
+ Bartholomäus Steinmayr, Florian Störkle, Iris Teske, and Christoph Wieser. 2018. ARTigo. Social Image Tagging. Dataset and Images.
1289
+ https://doi.org/10.5282/ubm/data.136
1290
+ [5] Simone Bianco, Davide Mazzini, Paolo Napoletano, and Raimondo Schettini. 2019. Multitask Painting Categorization by Deep Multibranch
1291
+ Neural Network. Expert Systems with Applications 135 (2019), 90–101. https://doi.org/10.1016/j.eswa.2019.05.036
1292
+ [6] Richard Brilliant. 1963. Gesture and Rank in Roman Art. The Use of Gestures to Denote Status in Roman Sculpture and Coinage. Connecticut
1293
+ Academy of Arts & Sciences, New Haven.
1294
+ [7] Justin Brooks. 2019. COCO Annotator. Retrieved January 13, 2023 from https://github.com/jsbroks/coco-annotator
1295
+ [8] John Bulwer. 1644. Chirologia, or, The naturall language of the hand c composed of the speaking motions, and discoursing gestures thereof :
1296
+ whereunto is added, Chironomia, or, The art of manual rhetoricke, consisting of the naturall expressions, digested by art in the hand ... : with
1297
+ types, or chyrograms, a long-wish’d for illustration of this argument. Printed by Tho. Harper, sold by Henry Twyford, London.
1298
+ [9] Alexander Buslaev, Vladimir I. Iglovikov, Eugene Khvedchenya, Alex Parinov, Mikhail Druzhinin, and Alexandr A. Kalinin. 2020.
1299
+ Albumentations. Fast and Flexible Image Augmentations. Information 11, 2 (2020). https://doi.org/10.3390/info11020125
1300
+ [10] Emmelyn Butterfield-Rosen. 2021. Modern Art and the Remaking of Human Disposition. University of Chicago Press, Chicago.
1301
+ [11] Zhaowei Cai and Nuno Vasconcelos. 2019. Cascade R-CNN. High Quality Object Detection and Instance Segmentation. IEEE Transactions
1302
+ on Pattern Analysis and Machine Intelligence 43, 5 (2019), 1483–1498. https://doi.org/10.1109/tpami.2019.2956516
1303
+ [12] Michael Camille, Zeynep Çelik, John Onians, Adrian Rifkin, and Christopher B. Steiner. 1996. Rethinking the Canon. The Art Bulletin 78,
1304
+ 2 (1996), 197–217.
1305
+ [13] Yuhang Cao, Kai Chen, Chen Change Loy, and Dahua Lin. 2020. Prime Sample Attention in Object Detection. In IEEE/CVF Conference on
1306
+ Computer Vision and Pattern Recognition, CVPR 2020. IEEE, New York, 11580–11588. https://doi.org/10.1109/CVPR42600.2020.01160
1307
+ [14] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. 2020. End-to-end Object
1308
+ Detection with Transformers. In Computer Vision – ECCV 2020 (Lecture Notes in Computer Science, Vol. 12346), Andrea Vedaldi, Horst
1309
+ Bischof, Thomas Brox, and Jan-Michael Frahm (Eds.). Springer, Cham, 213–229. https://doi.org/10.1007/978-3-030-58452-8_13
1310
+
1311
+ 18
1312
+
1313
+ S. Schneider and R. Vollmer
1314
+ [15] Gustavo Carneiro, Nuno Pinho da Silva, Alessio Del Bue, and João Paulo Costeira. 2012. Artistic Image Classification. An Analysis on
1315
+ the PRINTART Database. In Computer Vision – ECCV 2012 (Lecture Notes in Computer Science, Vol. 7575), Andrew W. Fitzgibbon, Svetlana
1316
+ Lazebnik, Pietro Perona, Yoichi Sato, and Cordelia Schmid (Eds.). Springer, Cham, 143–157. https://doi.org/10.1007/978-3-642-33765-9_11
1317
+ [16] Eva Cetinic. 2021. Iconographic Image Captioning for Artworks. In Pattern Recognition. ICPR International Workshops and Challenges
1318
+ (Lecture Notes in Computer Science, Vol. 12663), Alberto Del Bimbo, Rita Cucchiara, Stan Sclaroff, Giovanni Maria Farinella, Tao Mei,
1319
+ Marco Bertini, Hugo Jair Escalante, and Roberto Vezzani (Eds.). Springer, Cham, 502–516. https://doi.org/10.1007/978-3-030-68796-0_36
1320
+ [17] Keith Christiansen and Patricia Lee Rubin. 2011. Gesichter der Renaissance. Meisterwerke italienischer Portrait-Kunst. Published
1321
+ following the exhibition “Gesichter der Renaissance. Meisterwerke italienischer Portrait-Kunst” at the Bode Museum Berlin, 25.8.–
1322
+ 20.11.2011 and at the Metropolitan Museum of Art New York, 19.12.2011–18.3.2012.
1323
+ [18] Elliot J. Crowley and Andrew Zisserman. 2014. In Search of Art. In Computer Vision – ECCV 2014 Workshops (Lecture Notes in Computer
1324
+ Science, Vol. 8925), Lourdes Agapito, Michael M. Bronstein, and Carsten Rother (Eds.). Springer, Cham, 54–70. https://doi.org/10.1007/978-
1325
+ 3-319-16178-5_4
1326
+ [19] Charles Darwin. 1877. Der Ausdruck der Gemüthsbewegungen bei dem Menschen und den Thieren. Schweizerbart, Stuttgart. Retrieved
1327
+ January 13, 2023 from https://www.zum.de/stueber/darwin/werke07/icon_page_00000.html
1328
+ [20] James Elkins (Ed.). 2007. Is Art History Global? The Art Seminar, Vol. 3. Taylor & Francis, New York.
1329
+ [21] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew Zisserman. 2010. The Pascal Visual Object Classes
1330
+ (VOC) Challenge. International Journal of Computer Vision 88 (2010), 303–338. https://doi.org/10.1007/s11263-009-0275-4
1331
+ [22] Chengjian Feng, Yujie Zhong, Yu Gao, Matthew R. Scott, and Weilin Huang. 2021. TOOD. Task-aligned One-stage Object Detection. In
1332
+ IEEE/CVF International Conference on Computer Vision. IEEE, New York, 3510–3519. https://doi.org/10.1109/ICCV48922.2021.00349
1333
+ [23] Ilsebill Barta Fliedl and Christoph Geissmar. 1992. Die Beredsamkeit des Leibes. Zur Körpersprache in der Kunst. Residenz Verlag,
1334
+ Salzburg/Wien.
1335
+ [24] Corneliu Florea, Razvan George Condorovici, Constantin Vertan, Raluca Butnaru, Laura Florea, and Ruxandra Vrânceanu. 2016. Pandora.
1336
+ Description of a Painting Database for Art Movement Recognition with Baselines and Perspectives. In 24th European Signal Processing
1337
+ Conference, EUSIPCO 2016. IEEE, New York, 918–922. https://doi.org/10.1109/EUSIPCO.2016.7760382
1338
+ [25] Marcus Frings. 1998. Mensch und Maß. Anthropomorphe Elemente in der Architekturtheorie des Quattrocento. Verlag und Datenbank für
1339
+ Geisteswissenschaften, Weimar.
1340
+ [26] Noa Garcia and George Vogiatzis. 2018. How to Read Paintings. Semantic Art Understanding with Multi-modal Retrieval. In Computer
1341
+ Vision – ECCV 2018 Workshops (Lecture Notes in Computer Science, Vol. 11130), Laura Leal-Taixé and Stefan Roth (Eds.). Springer, Cham,
1342
+ 676–691. https://doi.org/10.1007/978-3-030-11012-3_52
1343
+ [27] Noa Garcia, Chentao Ye, Zihua Liu, Qingtao Hu, Mayu Otani, Chenhui Chu, Yuta Nakashima, and Teruko Mitamura. 2020. A Dataset
1344
+ and Baselines for Visual Question Answering on Art. In Computer Vision – ECCV 2020 Workshops (Lecture Notes in Computer Science,
1345
+ Vol. 12536), Adrien Bartoli and Andrea Fusiello (Eds.). Springer, Cham, 92–108. https://doi.org/10.1007/978-3-030-66096-3_8
1346
+ [28] Shiry Ginosar, Daniel Haas, Timothy Brown, and Jitendra Malik. 2014. Detecting People in Cubist Art. In Computer Vision – ECCV 2014
1347
+ Workshops (Lecture Notes in Computer Science, Vol. 8925), Lourdes Agapito, Michael M. Bronstein, and Carsten Rother (Eds.). Springer,
1348
+ Cham, 101–116. https://doi.org/10.1007/978-3-319-16178-5_7
1349
+ [29] Nicolas Gonthier, Yann Gousseau, Saïd Ladjal, and Olivier Bonfait. 2018. Weakly Supervised Object Detection in Artworks. In Computer
1350
+ Vision – ECCV 2018 Workshops (Lecture Notes in Computer Science, Vol. 11130), Laura Leal-Taixé and Stefan Roth (Eds.). Springer, Cham,
1351
+ 692–709. https://doi.org/10.1007/978-3-030-11012-3_53
1352
+ [30] Nicolas Gonthier, Saïd Ladjal, and Yann Gousseau. 2022. Multiple Instance Learning on Deep Features for Weakly Supervised Object
1353
+ Detection with Extreme Domain Shifts. Computer Vision and Image Understanding 214 (2022), 23 pages. https://doi.org/10.1016/j.cviu.
1354
+ 2021.103299
1355
+ [31] Hans R. Hahnloser. 1972. Villard de Honnecourt. Kritische Gesamtausgabe des Bauhüttenbuches ms. fr 19093 der Pariser Nationalbibliothek.
1356
+ Akademische Druck- und Verlagsanstalt, Graz.
1357
+ [32] Berthold Hinz (Ed.). 2011. Albrecht Dürer. Vier Bücher von menschlicher Proportion (1528). Akademie Verlag, Berlin.
1358
+ [33] Leonardo Impett and Franco Moretti. 2017. Totentanz. Operationalizing Aby Warburg’s ‘Pathosformeln’. Number 16 in Pamphlets
1359
+ of the Stanford Literary Lab. Stanford Literary Lab, Stanford. 10 pages. Retrieved January 13, 2023 from https://litlab.stanford.edu/
1360
+ LiteraryLabPamphlet16.pdf
1361
+ [34] Leonardo Impett and Sabine Süsstrunk. 2016. Pose and Pathosformel in Aby Warburg’s Bilderatlas. In Computer Vision – ECCV
1362
+ 2016 Workshops (Lecture Notes in Computer Science, Vol. 9913), Gang Hua and Hervé Jégou (Eds.). Springer, Cham, 888–902. https:
1363
+ //doi.org/10.1007/978-3-319-46604-0_61
1364
+ [35] Tomás Jenícek and Ondrej Chum. 2019. Linking Art Through Human Poses. In International Conference on Document Analysis and
1365
+ Recognition, ICDAR 2019. IEEE, New York, 1338–1345. https://doi.org/10.1109/ICDAR.2019.00216
1366
+ [36] David Kadish, Sebastian Risi, and Anders Sundnes Løvlie. 2021. Improving Object Detection in Art Images Using Only Style Transfer. In
1367
+ International Joint Conference on Neural Networks, IJCNN 2021. IEEE, New York, 1–8. https://doi.org/10.1109/IJCNN52387.2021.9534264
1368
+
1369
+ Poses of People in Art
1370
+
1371
+ 19
1372
+ [37] Georg Kauffmann. 1993. Die Entstehung der Kunstgeschichte im 19. Jahrhundert. Westdeutscher Verlag, Opladen. https://doi.org/10.
1373
+ 1007/978-3-322-98836-2
1374
+ [38] Kenneth D. Keele. 1983. Leonardo da Vinci’s Elements of the Science of Man. Academic Press, New York/London.
1375
+ [39] Martin Kemp. 2006. Leonardo da Vinci. The Marvellous Works of Nature and Man. Oxford University Press, Oxford.
1376
+ [40] Wolfgang Kemp. 1973. Das Bild der Menge (1789–1830). In Städel Jahrbuch. Neue Folge. Vol. 4. Prestel, München, 249–269. https:
1377
+ //doi.org/10.11588/artdok.00001897
1378
+ [41] Fahad Shahbaz Khan, Shida Beigpour, Joost van de Weijer, and Michael Felsberg. 2014. Painting-91. A Large Scale Database for
1379
+ Computational Painting Categorization. Machine Vision Applications 25, 6 (2014), 1385–1397. https://doi.org/10.1007/s00138-014-0621-6
1380
+ [42] Diederik P. Kingma and Jimmy Ba. 2015. Adam. A Method for Stochastic Optimization. In International Conference on Learning
1381
+ Representations, ICLR, Yoshua Bengio and Yann LeCun (Eds.). 15 pages. arXiv:1412.6980
1382
+ [43] James R. Knowlson. 1965. The Idea of Gesture as a Universal Language in the XVIIth and XVIIIth Centuries. Journal of the History of
1383
+ Ideas 26, 4 (1965), 495–508.
1384
+ [44] Hubertus Kohle. 2007. Katastrophe als Strategie und Wunsch. Englische und deutsche Landschaftsmalerei des 19. und frühen 20.
1385
+ Jahrhunderts. In AngstBilderSchauLust. Katastrophenerfahrungen in Kunst, Musik und Theater, Jürgen Schläder (Ed.). Henschel, Leipzig,
1386
+ 125–146. https://doi.org/10.5282/ubm/epub.25708
1387
+ [45] Heimo Kuchling. 1969. Oskar Schlemmer. Der Mensch. Unterricht Am Bauhaus. Nachgelassene Aufzeichnungen. Florian Kupferberg,
1388
+ Mainz.
1389
+ [46] Peiyuan Liao, Xiuyu Li, Xihui Liu, and Kurt Keutzer. 2022. The ArtBench Dataset. Benchmarking Generative Models with Artworks.
1390
+ arXiv:2206.11404
1391
+ [47] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. 2014.
1392
+ Microsoft COCO. Common Objects in Context. In Computer Vision – ECCV 2014, David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne
1393
+ Tuytelaars (Eds.). Springer, Cham, 740–755. https://doi.org/10.1007/978-3-319-10602-1_48
1394
+ [48] Prathmesh Madhu, Tilman Marquart, Ronak Kosti, Peter Bell, Andreas K. Maier, and Vincent Christlein. 2020. Understanding Composi-
1395
+ tional Structures in Art Historical Images Using Pose and Gaze Priors. Towards Scene Understanding in Digital Art History. In Computer
1396
+ Vision – ECCV 2020 Workshops (Lecture Notes in Computer Science, Vol. 12536), Adrien Bartoli and Andrea Fusiello (Eds.). Springer, Cham,
1397
+ 109–125. https://doi.org/10.1007/978-3-030-66096-3_9
1398
+ [49] Prathmesh Madhu, Angel Villar-Corrales, Ronak Kosti, Torsten Bendschus, Corinna Reinhardt, Peter Bell, Andreas K. Maier, and Vincent
1399
+ Christlein. 2020. Enhancing Human Pose Estimation in Ancient Vase Paintings via Perceptually-grounded Style Transfer Learning.
1400
+ arXiv:2012.05616
1401
+ [50] Hui Mao, Ming Cheung, and James She. 2017. DeepArt. Learning Joint Representations of Visual Arts. In MM ’17: The 25th ACM
1402
+ International Conference on Multimedia, Qiong Liu, Rainer Lienhart, Haohong Wang, Sheng-Wei "Kuan-Ta" Chen, Susanne Boll, Yi-
1403
+ Ping Phoebe Chen, Gerald Friedland, Jia Li, and Shuicheng Yan (Eds.). ACM, New York, 1183–1191. https://doi.org/10.1145/3123266.
1404
+ 3123405
1405
+ [51] Leland McInnes, John Healy, and James Melville. 2018. UMAP. Uniform Manifold Approximation and Projection for Dimension
1406
+ Reduction. arXiv:1802.03426
1407
+ [52] Thomas Mensink and Jan C. van Gemert. 2014. The Rijksmuseum Challenge. Museum-centered Visual Recognition. In International
1408
+ Conference on Multimedia Retrieval, ICMR, Mohan S. Kankanhalli, Stefan M. Rüger, R. Manmatha, Joemon M. Jose, and Keith van
1409
+ Rijsbergen (Eds.). ACM, New York, 451–454. https://doi.org/10.1145/2578726.2578791
1410
+ [53] Federico Milani and Piero Fraternali. 2021. A Dataset and a Convolutional Model for Iconography Classification in Paintings. Journal on
1411
+ Computing and Cultural Heritage 14, 4 (2021), 18 pages. https://doi.org/10.1145/3458885
1412
+ [54] Saif M. Mohammad and Svetlana Kiritchenko. 2018. WikiArt Emotions. An Annotated Dataset of Emotions Evoked by Art. In
1413
+ Proceedings of the Eleventh International Conference on Language Resources and Evaluation, LREC 2018, Nicoletta Calzolari, Khalid
1414
+ Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Kôiti Hasida, Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Hélène Mazo,
1415
+ Asunción Moreno, Jan Odijk, Stelios Piperidis, and Takenobu Tokunaga (Eds.). ELRA, Miyazaki, 1225–1238. Retrieved January 13, 2023
1416
+ from http://www.lrec-conf.org/proceedings/lrec2018/summaries/966.html
1417
+ [55] Kiri Nichol. 2016. Painter by Numbers. Retrieved January 13, 2023 from https://www.kaggle.com/c/painter-by-numbers
1418
+ [56] Jiangmiao Pang, Kai Chen, Qi Li, Zhihai Xu, Huajun Feng, Jianping Shi, Wanli Ouyang, and Dahua Lin. 2021. Towards Balanced Learning
1419
+ for Instance Recognition. International Journal of Computer Vision 129, 5 (2021), 1376–1393. https://doi.org/10.1007/s11263-021-01434-2
1420
+ [57] Ulrich Pfisterer. 2020. Kunstgeschichte zur Einführung. Junius, Hamburg.
1421
+ [58] Jan Pieper. 2018. Leonardo da Vincis Homo ad Quadratum et ad Circulum. Antik-römische Maße und dezimaler Maßstab in Leonardos
1422
+ architektonischer Deutung der vitruvianischen Proportionsfigur. In situ. Zeitschrift für Architekturgeschichte 10, 2 (2018), 243–258.
1423
+ [59] Etienne Posthumus. 2020. Iconclass AI Test Set. Retrieved January 13, 2023 from https://iconclass.org/testset/
1424
+ [60] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela
1425
+ Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual Models From Natural Language
1426
+ Supervision. In Proceedings of the 38th International Conference on Machine Learning, ICML 2021 (Proceedings of Machine Learning
1427
+
1428
+ 20
1429
+
1430
+ S. Schneider and R. Vollmer
1431
+ Research, Vol. 139), Marina Meila and Tong Zhang (Eds.). PMLR, 8748–8763. Retrieved January 13, 2023 from http://proceedings.mlr.
1432
+ press/v139/radford21a.html
1433
+ [61] Pirkko Rathgeber. 2011. Struktur- und Umrissmodelle als schematische Bilder der Bewegung. Rheinsprung 11. Zeitschrift für Bildkritik 2
1434
+ (2011), 130–164.
1435
+ [62] Pirkko Rathgeber. 2019. Bewegungsfiguren. Über die Bewegung der Strichfigur in der Zeichnung und ihre Bedeutung für den Zeichentrickfilm.
1436
+ Wilhelm Fink, Paderborn.
1437
+ [63] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2017. Faster R-CNN. Towards Real-time Object Detection with Region Proposal
1438
+ Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence 39, 6 (2017), 1137–1149. https://doi.org/10.1109/TPAMI.2016.
1439
+ 2577031
1440
+ [64] Artem Reshetnikov, Maria-Cristina Marinescu, and Joaquim More Lopez. 2022. DEArt. Dataset of European Art. arXiv:2211.01226
1441
+ [65] Hans Rupprich (Ed.). 1966. Die Anfänge der theoretischen Studien / Das Lehrbuch der Malerei. Von der Maß der Menschen, der Pferde, der
1442
+ Gebäude; Von der Perspektive; Von Farben / Ein Unterricht alle Maß zu ändern. Dürer. Schriftlicher Nachlass, Vol. 2. Deutscher Verein für
1443
+ Kunstwissenschaft, Berlin.
1444
+ [66] Stefanie Schneider, Matthias Springstein, Javad Rahnama, Eyke Hüllermeier, Ralph Ewerth, and Hubertus Kohle. 2020. The Dissimilar
1445
+ in the Similar. An Attribute-guided Approach to the Subject-specific Classification of Art-historical Objects. In 50. Jahrestagung der
1446
+ Gesellschaft für Informatik, INFORMATIK 2020 (LNI, Vol. P-307), Ralf H. Reussner, Anne Koziolek, and Robert Heinrich (Eds.). GI, Bonn,
1447
+ 1355–1364. https://doi.org/10.18420/inf2020_127
1448
+ [67] Stefanie Schneider, Matthias Springstein, Javad Rahnama, Hubertus Kohle, Ralph Ewerth, and Eyke Hüllermeier. 2022. iART. Eine Such-
1449
+ maschine zur Unterstützung von bildorientierten Forschungsprozessen. In 8. Tagung des Verbands Digital Humanities im deutschsprachigen
1450
+ Raum, Michaela Geierhos (Ed.). 142–147. https://doi.org/10.5281/zenodo.6304590
1451
+ [68] Erhard Schön. 1920. Unterweisung der Proportion und Stellung der Possen. Frankfurt am Main.
1452
+ [69] Benoit Seguin, Carlotta Striolo, Isabella diLenardo, and Frédéric Kaplan. 2016. Visual Link Retrieval in a Database of Paintings. In
1453
+ Computer Vision – ECCV 2016 Workshops (Lecture Notes in Computer Science, Vol. 9913), Gang Hua and Hervé Jégou (Eds.). Springer,
1454
+ Cham, 753–767. https://doi.org/10.1007/978-3-319-46604-0_52
1455
+ [70] Xi Shen, Alexei A. Efros, and Mathieu Aubry. 2019. Discovering Visual Patterns in Art Collections With Spatially-consistent Feature
1456
+ Learning. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR. IEEE, New York, 9278–9287. https://doi.org/10.1109/
1457
+ CVPR.2019.00950
1458
+ [71] Shurong Sheng and Marie-Francine Moens. 2019. Generating Captions for Images of Ancient Artworks. In MM ’19: The 27th ACM
1459
+ International Conference on Multimedia, Laurent Amsaleg, Benoit Huet, Martha A. Larson, Guillaume Gravier, Hayley Hung, Chong-Wah
1460
+ Ngo, and Wei Tsang Ooi (Eds.). ACM, New York, 2478–2486. https://doi.org/10.1145/3343031.3350972
1461
+ [72] Klaus Speich. 1957. Die Proportionslehre des menschlichen Körpers. Antike, Mittelalter, Renaissance. Ph. D. Dissertation. Universität Zürich.
1462
+ [73] Matthias Springstein, Stefanie Schneider, Christian Althaus, and Ralph Ewerth. 2022. Semi-supervised Human Pose Estimation
1463
+ in Art-historical Images. In MM ’22: The 30th ACM International Conference on Multimedia, João Magalhães, Alberto Del Bimbo,
1464
+ Shin’ichi Satoh, Nicu Sebe, Xavier Alameda-Pineda, Qin Jin, Vincent Oria, and Laura Toni (Eds.). ACM, New York, 1107–1116. https:
1465
+ //doi.org/10.1145/3503161.3548371
1466
+ [74] Matthias Springstein, Stefanie Schneider, Javad Rahnama, Eyke Hüllermeier, Hubertus Kohle, and Ralph Ewerth. 2021. iART. A Search
1467
+ Engine for Art-Historical Images to Support Research in the Humanities. In MM ’21: The 29th ACM International Conference on Multimedia,
1468
+ Heng Tao Shen, Yueting Zhuang, John R. Smith, Yang Yang, Pablo César, Florian Metze, and Balakrishnan Prabhakaran (Eds.). ACM,
1469
+ New York, 2801–2803. https://doi.org/10.1145/3474085.3478564
1470
+ [75] Matteo Stefanini, Marcella Cornia, Lorenzo Baraldi, Massimiliano Corsini, and Rita Cucchiara. 2019. Artpedia. A New Visual-semantic
1471
+ Dataset with Visual and Contextual Sentences in the Artistic Domain. In Image Analysis and Processing – ICIAP 2019 – 20th International
1472
+ Conference (Lecture Notes in Computer Science, Vol. 11752), Elisa Ricci, Samuel Rota Bulò, Cees Snoek, Oswald Lanz, Stefano Messelodi,
1473
+ and Nicu Sebe (Eds.). Springer, Cham, 729–740. https://doi.org/10.1007/978-3-030-30645-8_66
1474
+ [76] Gjorgji Strezoski and Marcel Worring. 2018. OmniArt. A Large-scale Artistic Benchmark. ACM Transactions on Multimedia Computing,
1475
+ Communications, and Applications 14, 4 (2018), 88:1–88:21. https://doi.org/10.1145/3273022
1476
+ [77] Johan Jakob Tikkanen. 1912. Die Beinstellungen in der Kunstgeschichte. Ein Beitrag zur Geschichte der künstlerischen Motive. Druckerei
1477
+ der finnischen Litteraturgesellschaft, Helsingfors.
1478
+ [78] Henri van de Waal. 1973–1985. Iconclass. An Iconographic Classification System. Completed and Edited by L. D. Couprie with R. H. Fuchs.
1479
+ North-Holland Publishing Company, Amsterdam.
1480
+ [79] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017.
1481
+ Attention is All you Need. In Advances in Neural Information Processing Systems, 30. Annual Conference on Neural Information Processing
1482
+ Systems 2017, Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
1483
+ Garnett (Eds.). Curran Associates, Inc., Red Hook, 5998–6008. arXiv:1706.03762
1484
+ [80] Jiaqi Wang, Wenwei Zhang, Yuhang Cao, Kai Chen, Jiangmiao Pang, Tao Gong, Jianping Shi, Chen Change Loy, and Dahua Lin. 2020.
1485
+ Side-aware Boundary Localization for More Precise Object Detection. In Computer Vision – ECCV 2020 (Lecture Notes in Computer
1486
+
1487
+ Poses of People in Art
1488
+
1489
+ 21
1490
+ Science, Vol. 12349). Springer, Cham, 403–419. https://doi.org/10.1007/978-3-030-58548-8_24
1491
+ [81] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. 2021. PVTv2. Improved
1492
+ Baselines with Pyramid Vision Transformer. arXiv:2106.13797
1493
+ [82] Aby Warburg. 1998. Der Eintritt des antikisierenden Idealstils in die Malerei der Frührenaissance. In Die Erneuerung der heidnischen
1494
+ Antike. Kulturwissenschaftliche Beiträge zur Geschichte der europäischen Renaissance, Horst Bredekamp and Michael Diers (Eds.). Akademie
1495
+ Verlag, Berlin, 173–176.
1496
+ [83] Aby Warburg. 1998. Dürer und die italienische Antike. In Die Erneuerung der heidnischen Antike. Kulturwissenschaftliche Beiträge zur
1497
+ Geschichte der europäischen Renaissance, Horst Bredekamp and Michael Diers (Eds.). Akademie Verlag, Berlin, 443–449.
1498
+ [84] Nicholas Westlake, Hongping Cai, and Peter Hall. 2016. Detecting People in Artwork with CNNs. In Computer Vision – ECCV 2016
1499
+ Workshops (Lecture Notes in Computer Science, Vol. 9913). Springer, Cham, 825–841. https://doi.org/10.1007/978-3-319-46604-0_57
1500
+ [85] WikiArt 2010. WikiArt.org. Visual Art Encyclopedia. Retrieved January 13, 2023 from https://www.wikiart.org/
1501
+ [86] Michael J. Wilber, Chen Fang, Hailin Jin, Aaron Hertzmann, John P. Collomosse, and Serge J. Belongie. 2017. BAM! The Behance
1502
+ Artistic Media Dataset for Recognition Beyond Photography. In IEEE/CVF International Conference on Computer Vision. IEEE, New York,
1503
+ 1211–1220. https://doi.org/10.1109/ICCV.2017.136
1504
+ [87] John Willats. 1997. Art and Representation. New Principles in the Analysis of Pictures. Princeton University Press, Princeton.
1505
+ [88] Victoria Yanulevskaya, Jasper R. R. Uijlings, Elia Bruni, Andreza Sartori, Elisa Zamboni, Francesca Bacci, David Melcher, and Nicu Sebe.
1506
+ 2012. In the Eye of the Beholder. Employing Statistical Analysis and Eye Tracking for Analyzing Abstract Paintings. In MM ’12: The 20th
1507
+ ACM International Conference on Multimedia, Noboru Babaguchi, Kiyoharu Aizawa, John R. Smith, Shin’ichi Satoh, Thomas Plagemann,
1508
+ Xian-Sheng Hua, and Rong Yan (Eds.). ACM, New York, 349–358. https://doi.org/10.1145/2393347.2393399
1509
+ [89] Pradeep Yarlagadda, Antonio Monroy, Bernd Carqué, and Björn Ommer. 2010. Recognition and Analysis of Objects in Medieval Images.
1510
+ In Computer Vision – ECCV 2010 Workshops (Lecture Notes in Computer Science, Vol. 6469), Reinhard Koch and Fay Huang (Eds.). Springer,
1511
+ Cham, 296–305. https://doi.org/10.1007/978-3-642-22819-3_30
1512
+ [90] Nikolaos-Antonios Ypsilantis, Noa Garcia, Guangxing Han, Sarah Ibrahimi, Nanne van Noord, and Giorgos Tolias. 2021. The Met
1513
+ Dataset. Instance-level Recognition for Artworks. In Proceedings of the Neural Information Processing Systems Track on Datasets and
1514
+ Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, Joaquin Vanschoren and Sai-Kit Yeung (Eds.). 12 pages. Retrieved January 13,
1515
+ 2023 from https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/5f93f983524def3dca464469d2cf9f3e-Paper-round2.pdf
1516
+ [91] Linda Gertner Zatlin. 1997. Beardsley, Japonisme and the Perversion of the Victorian Ideal. Cambridge University Press, Cambridge.
1517
+ [92] Frank Zöllner. 2004. Anthropomorphismus. Das Maß des Menschen in der Architektur von Vitruv bis Le Corbusier. In Ist der Mensch
1518
+ das Maß aller Dinge? Beiträge zur Aktualität des Protagoras, Otto Neumaier (Ed.). Bibliopolis, Möhnesee, 306–344.
1519
+ APPENDIX
1520
+ Table 5. Figure detection results are reported for the PoPArt test set by depiction style and training set(s); TOOD [22] is
1521
+ employed as model, respectively. In contrast to previous benchmarks by Kadish et al. [36] and Gonthier et al. [30], we include
1522
+ difficult-to-annotate figures.
1523
+ Style
1524
+ Training Set(s)
1525
+ AP
1526
+ AP50
1527
+ AP75
1528
+ AP𝑆
1529
+ AP𝑀
1530
+ AP𝐿
1531
+ AR
1532
+ Abstract Expressionism
1533
+ People-Art
1534
+ 0.900
1535
+ 1.000
1536
+ 1.000
1537
+ 0.900
1538
+ 0.900
1539
+ People-Art, PoPArt
1540
+ 0.850
1541
+ 1.000
1542
+ 1.000
1543
+ 0.850
1544
+ 0.850
1545
+ Art Nouveau
1546
+ People-Art
1547
+ 0.425
1548
+ 0.677
1549
+ 0.441
1550
+ 0.228
1551
+ 0.449
1552
+ 0.643
1553
+ People-Art, PoPArt
1554
+ 0.460
1555
+ 0.762
1556
+ 0.452
1557
+ 0.222
1558
+ 0.486
1559
+ 0.722
1560
+ Baroque
1561
+ People-Art
1562
+ 0.301
1563
+ 0.461
1564
+ 0.322
1565
+ 0.000
1566
+ 0.024
1567
+ 0.444
1568
+ 0.386
1569
+ People-Art, PoPArt
1570
+ 0.357
1571
+ 0.539
1572
+ 0.389
1573
+ 0.051
1574
+ 0.047
1575
+ 0.512
1576
+ 0.498
1577
+ Contemporary Realism
1578
+ People-Art
1579
+ 0.624
1580
+ 0.864
1581
+ 0.724
1582
+ 0.316
1583
+ 0.501
1584
+ 0.730
1585
+ 0.720
1586
+ People-Art, PoPArt
1587
+ 0.627
1588
+ 0.851
1589
+ 0.746
1590
+ 0.255
1591
+ 0.632
1592
+ 0.755
1593
+ 0.729
1594
+ Cubism
1595
+ People-Art
1596
+ 0.511
1597
+ 0.836
1598
+ 0.565
1599
+ 0.750
1600
+ 0.511
1601
+ 0.696
1602
+ People-Art, PoPArt
1603
+ 0.601
1604
+ 0.876
1605
+ 0.655
1606
+ 0.676
1607
+ 0.607
1608
+ 0.752
1609
+ Early Renaissance
1610
+ People-Art
1611
+ 0.427
1612
+ 0.696
1613
+ 0.442
1614
+ 0.000
1615
+ 0.178
1616
+ 0.541
1617
+ 0.563
1618
+ People-Art, PoPArt
1619
+ 0.503
1620
+ 0.774
1621
+ 0.548
1622
+ 0.000
1623
+ 0.295
1624
+ 0.605
1625
+ 0.629
1626
+ Expressionism
1627
+ People-Art
1628
+ 0.567
1629
+ 0.832
1630
+ 0.594
1631
+ 0.486
1632
+ 0.627
1633
+ 0.711
1634
+
1635
+ 22
1636
+
1637
+ S. Schneider and R. Vollmer
1638
+ Table 5. Figure detection results are reported for the PoPArt test set by depiction style and training set(s); TOOD [22] is
1639
+ employed as model, respectively. In contrast to previous benchmarks by Kadish et al. [36] and Gonthier et al. [30], we include
1640
+ difficult-to-annotate figures.
1641
+ Style
1642
+ Training Set(s)
1643
+ AP
1644
+ AP50
1645
+ AP75
1646
+ AP𝑆
1647
+ AP𝑀
1648
+ AP𝐿
1649
+ AR
1650
+ People-Art, PoPArt
1651
+ 0.592
1652
+ 0.839
1653
+ 0.627
1654
+ 0.474
1655
+ 0.667
1656
+ 0.754
1657
+ Fauvism
1658
+ People-Art
1659
+ 0.493
1660
+ 0.765
1661
+ 0.534
1662
+ 0.126
1663
+ 0.579
1664
+ 0.622
1665
+ People-Art, PoPArt
1666
+ 0.576
1667
+ 0.845
1668
+ 0.643
1669
+ 0.171
1670
+ 0.657
1671
+ 0.690
1672
+ High Renaissance
1673
+ People-Art
1674
+ 0.254
1675
+ 0.405
1676
+ 0.268
1677
+ 0.000
1678
+ 0.052
1679
+ 0.424
1680
+ 0.340
1681
+ People-Art, PoPArt
1682
+ 0.310
1683
+ 0.481
1684
+ 0.319
1685
+ 0.002
1686
+ 0.068
1687
+ 0.514
1688
+ 0.417
1689
+ Impressionism
1690
+ People-Art
1691
+ 0.473
1692
+ 0.737
1693
+ 0.489
1694
+ 0.000
1695
+ 0.341
1696
+ 0.520
1697
+ 0.616
1698
+ People-Art, PoPArt
1699
+ 0.509
1700
+ 0.777
1701
+ 0.527
1702
+ 0.000
1703
+ 0.397
1704
+ 0.549
1705
+ 0.656
1706
+ Mannerism
1707
+ People-Art
1708
+ 0.298
1709
+ 0.540
1710
+ 0.283
1711
+ 0.000
1712
+ 0.069
1713
+ 0.397
1714
+ 0.483
1715
+ People-Art, PoPArt
1716
+ 0.371
1717
+ 0.668
1718
+ 0.343
1719
+ 0.022
1720
+ 0.192
1721
+ 0.459
1722
+ 0.542
1723
+ Naive Art
1724
+ People-Art
1725
+ 0.291
1726
+ 0.470
1727
+ 0.304
1728
+ 0.166
1729
+ 0.150
1730
+ 0.396
1731
+ 0.443
1732
+ People-Art, PoPArt
1733
+ 0.394
1734
+ 0.679
1735
+ 0.379
1736
+ 0.175
1737
+ 0.279
1738
+ 0.487
1739
+ 0.528
1740
+ New Realism
1741
+ People-Art
1742
+ 0.514
1743
+ 0.803
1744
+ 0.538
1745
+ 0.557
1746
+ 0.521
1747
+ 0.665
1748
+ People-Art, PoPArt
1749
+ 0.553
1750
+ 0.842
1751
+ 0.547
1752
+ 0.373
1753
+ 0.593
1754
+ 0.716
1755
+ Northern Renaissance
1756
+ People-Art
1757
+ 0.271
1758
+ 0.460
1759
+ 0.286
1760
+ 0.015
1761
+ 0.128
1762
+ 0.410
1763
+ 0.375
1764
+ People-Art, PoPArt
1765
+ 0.335
1766
+ 0.555
1767
+ 0.350
1768
+ 0.052
1769
+ 0.196
1770
+ 0.481
1771
+ 0.434
1772
+ Pointillism
1773
+ People-Art
1774
+ 0.465
1775
+ 0.726
1776
+ 0.556
1777
+ 0.000
1778
+ 0.467
1779
+ 0.519
1780
+ 0.567
1781
+ People-Art, PoPArt
1782
+ 0.553
1783
+ 0.827
1784
+ 0.644
1785
+ 0.010
1786
+ 0.570
1787
+ 0.600
1788
+ 0.638
1789
+ Pop Art
1790
+ People-Art
1791
+ 0.454
1792
+ 0.628
1793
+ 0.499
1794
+ 0.041
1795
+ 0.258
1796
+ 0.555
1797
+ 0.559
1798
+ People-Art, PoPArt
1799
+ 0.514
1800
+ 0.683
1801
+ 0.580
1802
+ 0.164
1803
+ 0.351
1804
+ 0.600
1805
+ 0.667
1806
+ Post Impressionism
1807
+ People-Art
1808
+ 0.607
1809
+ 0.903
1810
+ 0.660
1811
+ 0.396
1812
+ 0.628
1813
+ 0.732
1814
+ People-Art, PoPArt
1815
+ 0.672
1816
+ 0.911
1817
+ 0.704
1818
+ 0.445
1819
+ 0.693
1820
+ 0.768
1821
+ Realism
1822
+ People-Art
1823
+ 0.657
1824
+ 0.869
1825
+ 0.768
1826
+ 0.000
1827
+ 0.047
1828
+ 0.727
1829
+ 0.746
1830
+ People-Art, PoPArt
1831
+ 0.693
1832
+ 0.915
1833
+ 0.721
1834
+ 0.030
1835
+ 0.347
1836
+ 0.756
1837
+ 0.787
1838
+ Rococo
1839
+ People-Art
1840
+ 0.534
1841
+ 0.787
1842
+ 0.595
1843
+ 0.023
1844
+ 0.601
1845
+ 0.629
1846
+ People-Art, PoPArt
1847
+ 0.606
1848
+ 0.866
1849
+ 0.654
1850
+ 0.184
1851
+ 0.654
1852
+ 0.710
1853
+ Romanticism
1854
+ People-Art
1855
+ 0.303
1856
+ 0.499
1857
+ 0.306
1858
+ 0.000
1859
+ 0.098
1860
+ 0.436
1861
+ 0.414
1862
+ People-Art, PoPArt
1863
+ 0.401
1864
+ 0.619
1865
+ 0.440
1866
+ 0.000
1867
+ 0.176
1868
+ 0.557
1869
+ 0.508
1870
+ Symbolism
1871
+ People-Art
1872
+ 0.322
1873
+ 0.574
1874
+ 0.316
1875
+ 0.068
1876
+ 0.228
1877
+ 0.360
1878
+ 0.458
1879
+ People-Art, PoPArt
1880
+ 0.362
1881
+ 0.674
1882
+ 0.362
1883
+ 0.069
1884
+ 0.276
1885
+ 0.403
1886
+ 0.521
1887
+ Ukiyo-e
1888
+ People-Art
1889
+ 0.414
1890
+ 0.746
1891
+ 0.437
1892
+ 0.000
1893
+ 0.050
1894
+ 0.460
1895
+ 0.619
1896
+ People-Art, PoPArt
1897
+ 0.437
1898
+ 0.830
1899
+ 0.429
1900
+ 0.009
1901
+ 0.080
1902
+ 0.479
1903
+ 0.638
1904
+
I9E4T4oBgHgl3EQfhQ2p/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
INFJT4oBgHgl3EQfFiwP/content/tmp_files/2301.11443v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
INFJT4oBgHgl3EQfFiwP/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
KdE3T4oBgHgl3EQfAQmY/content/tmp_files/2301.04256v1.pdf.txt ADDED
@@ -0,0 +1,792 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.04256v1 [hep-th] 11 Jan 2023
2
+ Quantum backreaction for overspinning BTZ geometries
3
+ Olaf Baake2,1 ∗ and Jorge Zanelli1,3 †
4
+ 1Centro de Estudios Científicos (CECs), Arturo Prat 514, Valdivia, Chile
5
+ 2Instituto de Matemáticas, Universidad de Talca, Casilla 747, Talca 3460000, Chile
6
+ 3Universidad San Sebastián, General Lagos 1163, Valdivia, Chile
7
+ January 12, 2023
8
+ Abstract
9
+ We examine the semiclassical backreaction of a conformally coupled scalar field on an over-
10
+ spinning BTZ geometry. This extends the work done on a similar problem for (2 + 1)- AdS
11
+ geometries of the BTZ family with |M| > |J|. The overspinning classical solutions corresponds
12
+ to |M| < |J| and possess a naked singularity at r = 0.
13
+ Using the renormalized quantum
14
+ stress-energy tensor for a conformally coupled scalar field on such a spacetime, we obtain the
15
+ semiclassical Einstein equations, which we attempt to solve perturbatively. We show that the
16
+ stress-energy tensor is non-renormalizable in this approach, and consequently the perturbative
17
+ solution to the semiclassical equations in the overspinning case does not exist. This could be an
18
+ indication of the fact that the naked singularity at the center of an overspinning geometry is of
19
+ a more severe nature than the conical singularity found in the same family of BTZ geometries.
20
+ 1
21
+ Introduction
22
+ Since the dawn of general relativity, many black hole solutions to Einstein’s field equations have been
23
+ found. All these black holes contain a spacetime singularity hidden by an event horizon. However,
24
+ for some range of values of the integration constants (mass M, angular momentum J, electric charge
25
+ Q) these solutions have no event horizon. Although paradoxical, these naked singularities are exact
26
+ solutions to the classical equations of general relativity as well. In the vicinity of a naked singularity
27
+ causality and other physical laws can be arbitrarily violated, which is why Roger Penrose suggested
28
+ the existence of a (weak) cosmic censorship principle in nature [1], requiring singularities to be
29
+ hidden behind an event horizon. In that case, an outside observer would be causally disconnection
30
+ from the singularity.
31
+ Classically, naked singularities cannot be ruled out on mathematical grounds, and it is difficult to
32
+ prove that every possible collapse process leads to the formation of an event horizon. The fact that
33
+ so far no naked singularities have been observed in the universe may be interpreted as an indication
34
+ that, in the strong gravity regime near a singularity, quantum gravity effects dominate eliminating
35
+ singularities altogether, or at least making sure that a horizon forms around them.
36
+ The accumulation of experiments and observations that confirm the predictions of general rel-
37
+ ativity puts very tight constraints on possible theories incorporating both general relativity and
38
39
40
+ 1
41
+
42
+ quantum theory. Since both theories are so well established in their regimes, it is sensible to look
43
+ for a common area where a semi-classical approach could be used to obtain a better understanding
44
+ of the issues at hand. Calculating quantum effects on a curved background spacetime is notoriously
45
+ difficult, but in (2+1)-dimensional AdS spacetime this problem becomes significantly simpler and
46
+ still provide meaningful information to learn from.
47
+ The Bañados-Teitelboim-Zanelli (BTZ) black hole in (2+1)-dimensional AdS spacetime [2, 3],
48
+ obtained for M ≥ |J| are particularly interesting geometries in this respect, but these are not
49
+ the only solutions of physical interest in this theory and with the same global symmetries.
50
+ Lo-
51
+ cally constant curvature 2+1 spacetimes include, besides the BTZ black hole family, the self-dual
52
+ Coussaert-Henneaux spacetimes [4], and the toroidal time-dependent geometries [5], with global
53
+ isometry groups SO(2) × R SO(2) × SO(2, 1) and SO(2) × SO(2), respectively.
54
+ Recently, the quantum back reaction on the classical singularities was studied for several geome-
55
+ tries, including static, rotating and extremal BTZ black holes, as well as for static and rotating
56
+ conical naked singularities [6, 7, 8, 9]. The naked singularities considered in these papers are contin-
57
+ uations of the BTZ spacetime to the case of negative mass [10]. The interesting aspect of this result
58
+ is that the quantum fluctuations of a conformally coupled scalar field generate a non-vanishing stress
59
+ energy-momentum tensor that through Einstein’s equations produces aback-reacted geometry with
60
+ a horizon of order Planck length in radius. This dressing up of the naked singularity, turning it into
61
+ a black hole, could be viewed as a mechanism that implements cosmic censorship. These results
62
+ have also been confirmed by an alternative holographic approach in [11].
63
+ Here we are concerned with the overspinning BTZ spacetime, which occurs if the absolute value
64
+ of the angular momentum is greater than that of the mass. This geometry is also endowed with a
65
+ naked singularity at r = 0, as in the case of the conical singularity obtained for M ≤ −|J|.
66
+ We show that the stress-energy tensor contains incurable divergences, making the perturbative
67
+ ansatz to the semiclassical equations of motion ill-defined. While the equations of motion can still be
68
+ formally integrated, the first order corrections to the metric functions would become large, further
69
+ demonstrating the inapplicability of a perturbative approach to this type of geometry. This strongly
70
+ suggests that the naked singularity of an overspinning geometry is of a more severe nature than
71
+ the conical singularities appearing in the other BTZ geometries so that they cannot be cured by a
72
+ perturbative quantum censor.
73
+ 2
74
+ Overspinning BTZ space-time
75
+ The rotating BTZ metric [2, 3], is given by
76
+ ds2 = −
77
+ �r2
78
+ l2 − M
79
+
80
+ dt2 − Jdtdθ +
81
+ �r2
82
+ l2 − M + J2
83
+ 4r2
84
+ �−1
85
+ dr2 + r2dθ2,
86
+ (1)
87
+ where the coordinate ranges are: −∞ < t < ∞, 0 < r < ∞ and 0 ≤ θ < 2π, Λ = −l−2 is the
88
+ cosmological constant, and M and J are mass and angular momentum respectively. This metric
89
+ describes different spacetimes that can be classified by the values of M and J which determine the
90
+ nature of the four roots of the equation grr = 0,
91
+ λ± = l
92
+ 2
93
+ ��
94
+ M + J
95
+ l ±
96
+
97
+ M − J
98
+ l
99
+
100
+ .
101
+ (2)
102
+ These roots are real for M ≥ |J|/l (black holes) and take complex values for M < |J|/l (naked
103
+ singularities). The full classification is explained in detail in [3], but here we will consider the so-
104
+ called overspinning geometry (|M|l < |J|). This geometry was examined in [12] through the study
105
+ 2
106
+
107
+ of classical geodesics around it. In particular, we will analyze the back reaction of the geometry to
108
+ the presence of a conformally coupled quantum scalar field, following the steps in [6, 7, 8, 9], where
109
+ the back reaction for conical naked singularities in the parameter range M ≤ −|J| was studied.
110
+ The starting point of the analysis is the observation that the BTZ spacetimes (1) are quotients of
111
+ the universal covering of anti-de Sitter space-time (CAdS3) by an appropriate Killing vector field [3].
112
+ The constant negative curvature spacetime AdS3 is defined by a pseudosphere of radius l embedded
113
+ in R(2,2) as
114
+ ηABXAXB = −
115
+
116
+ X0�2 +
117
+
118
+ X1�2 +
119
+
120
+ X2�2 −
121
+
122
+ X3�2 = −l2 .
123
+ (3)
124
+ The metric reads
125
+ ηABdXAdXB = −
126
+
127
+ dX0�2 +
128
+
129
+ dX1�2 +
130
+
131
+ dX2�2 −
132
+
133
+ dX3�2 ,
134
+ (4)
135
+ where the embedding coordinates XA must be specified as functions of (t, r, θ). As shown in [12],
136
+ the overspinning geometry (1) with |M| < |J| corresponds to embedding coordinates given by
137
+ X0 = l
138
+ 2
139
+
140
+ A + 1 cosh [a (t/l − θ)] {cos [b (θ + t/l)] − sin [b (θ + t/l)]}
141
+ +ǫ l
142
+ 2
143
+
144
+ A − 1 sinh [a (t/l − θ)] {sin [b (θ + t/l)] + cos [b (θ + t/l)]} ,
145
+ (5)
146
+ X1 = l
147
+ 2
148
+
149
+ A + 1 sinh [a (t/l − θ)] {cos [b (θ + t/l)] − sin [b (θ + t/l)]}
150
+ +ǫ l
151
+ 2
152
+
153
+ A − 1 cosh [a (t/l − θ)] {sin [b (θ + t/l)] + cos [b (θ + t/l)]} ,
154
+ (6)
155
+ X2 = l
156
+ 2
157
+
158
+ A + 1 sinh [a (t/l − θ)] {sin [b (θ + t/l)] + cos [b (θ + t/l)]}
159
+ −ǫ l
160
+ 2
161
+
162
+ A − 1 cosh [a (t/l − θ)] {cos [b (θ + t/l)] − sin [b (θ + t/l)]} ,
163
+ (7)
164
+ X3 = l
165
+ 2
166
+
167
+ A + 1 cosh [a (t/l − θ)] {sin [b (θ + t/l)] + cos [b (θ + t/l)]}
168
+ −ǫ l
169
+ 2
170
+
171
+ A − 1 sinh [a (t/l − θ)] {cos [b (θ + t/l)] − sin [b (θ + t/l)]} ,
172
+ (8)
173
+ where
174
+ a =
175
+
176
+ |J|/l + M
177
+ 2
178
+ ,
179
+ b =
180
+
181
+ |J|/l − M
182
+ 2
183
+ ,
184
+ A =
185
+ 2
186
+
187
+ J2
188
+ 4 + r4
189
+ l2 − Mr2
190
+
191
+ J2 − l2M 2
192
+ ,
193
+ (9)
194
+ with ǫ = sign(M − r2/l2). Note that both cases (ǫ = ±1) lead to the same RSET, and hence to the
195
+ same end results.1
196
+ The overspinning BTZ space-time is now obtained through identifications generated by a Killing
197
+ field ξ, which in this case given by [3, 12]
198
+ ξ = −a(J01 − J23) + b(J03 − J12),
199
+ (10)
200
+ which can be written as ξ =
201
+ 1
202
+ 2ωABJAB, where the antisymmetric matrix ωAB characterizes the
203
+ identification. The Killing field in matrix form reads
204
+ ξ =
205
+
206
+
207
+
208
+
209
+ 0
210
+ −a
211
+ 0
212
+ −b
213
+ −a
214
+ 0
215
+ −b
216
+ 0
217
+ 0
218
+ b
219
+ 0
220
+ −a
221
+ b
222
+ 0
223
+ −a
224
+ 0
225
+
226
+
227
+
228
+  .
229
+ (11)
230
+ 1Without loss of generality, we will assume J > 0 for the rest of this work.
231
+ 3
232
+
233
+ The identification in the embedding space R(2,2) under the action of the Killing field is a mapping
234
+ defined by the matrix, H(ξ) = e2πξ, which takes the form
235
+ H =
236
+
237
+
238
+
239
+
240
+ C(a)c(b)
241
+ −S(a)c(b)
242
+ S(a)s(b)
243
+ −C(a)s(b)
244
+ −S(a)c(b)
245
+ C(a)c(b)
246
+ −C(a)s(b)
247
+ S(a)s(b)
248
+ −S(a)s(b)
249
+ C(a)s(b)
250
+ C(a)c(b)
251
+ −S(a)c(b)
252
+ C(a)s(b)
253
+ −S(a)s(b)
254
+ −S(a)c(b)
255
+ C(a)c(b)
256
+
257
+
258
+
259
+  ,
260
+ (12)
261
+ where C(a) ≡ cosh(2πa), S(a) ≡ sinh(2πa) c(b) ≡ cos(2πb), and s(b) ≡ sin(2πb).
262
+ An important feature of the Killing vector (10) is that the boost and rotation generators K ≡
263
+ J01 − J23 and J ≡ J03 − J12 commute, [K, J] = 0. Consequently, H = e2πξ can be factored as
264
+ H = Ha · Hb = Hb · Ha, where Ha = H|b=0 and Hb = H|a=0. Iterating the identification by H is
265
+ equivalent to acting with
266
+ Hn =
267
+
268
+
269
+
270
+
271
+ C(na)c(nb)
272
+ −S(na)c(nb)
273
+ S(na)s(nb)
274
+ −C(na)s(nb)
275
+ −S(na)c(nb)
276
+ C(na)c(nb)
277
+ −C(na)s(nb)
278
+ S(na)s(nb)
279
+ −S(na)s(nb)
280
+ C(na)s(nb)
281
+ C(na)c(nb)
282
+ −S(na)c(nb)
283
+ C(na)s(nb)
284
+ −S(na)s(nb)
285
+ −S(na)c(nb)
286
+ C(na)c(nb)
287
+
288
+
289
+
290
+  = Hn
291
+ a · Hn
292
+ b .
293
+ (13)
294
+ Quotienting a manifold by a rotation Killing vector requires the identification angle to be a
295
+ rational fraction of 2π. Otherwise, each point is identified with infinitely many images which densely
296
+ cover a circle, and the resulting image set would not be a smooth manifold [9]. This means that the
297
+ coefficient b in (10) must be rational, namely,
298
+ b = k/m,
299
+ (14)
300
+ with k, m relative primes. No restrictions are necessary for a, as boosts act transitively in a non-
301
+ compact manner. Note that the m-th iteration produces a pure boost (and a rotation by 2kπ, which
302
+ is equivalent to the identity, Hm
303
+ b
304
+ = 1). In fact, we can treat the rotated plane and the boosted
305
+ plane separately by splitting the identification matrix as follows: consider writing n = qm+p, where
306
+ p ∈ {0, 1, . . ., m − 1}, q ∈ {0, 1, . . ., ∞} and m is some positive integer.
307
+ Hence, the powers of H = Ha · Hb can be arranged as follows
308
+ 1
309
+ HaHb
310
+ H2
311
+ aH2
312
+ b
313
+ H3
314
+ aH3
315
+ b
316
+ . . .
317
+ Hm−1
318
+ a
319
+ Hm−1
320
+ b
321
+ Hm
322
+ a
323
+ Hm+1
324
+ a
325
+ Hb
326
+ Hm+2
327
+ a
328
+ H2
329
+ b
330
+ Hm+3
331
+ a
332
+ H3
333
+ b
334
+ . . .
335
+ H2m−1
336
+ a
337
+ Hm−1
338
+ b
339
+ H2m
340
+ a
341
+ H2m+1
342
+ a
343
+ Hb
344
+ H2m+2
345
+ a
346
+ H2
347
+ b
348
+ H2m+3
349
+ a
350
+ H3
351
+ b
352
+ . . .
353
+ H3m−1
354
+ a
355
+ Hm−1
356
+ b
357
+ ...
358
+ ...
359
+ ...
360
+ ...
361
+ ...
362
+ ...
363
+ .
364
+ (15)
365
+ Here each column corresponds to a fixed p and includes infinitely many boosts, while each row has
366
+ a fixed q comprising a finite set of rotations. In this pattern, an interesting observation becomes
367
+ apparent. First note that Ha is precisely the identification matrix of the rotating non-extremal BTZ
368
+ black hole, and Hb the identification matrix of the rotating non-extremal naked singularity [9]. Now,
369
+ using trigonometric identities, one can write in general, as can be seen in (15),
370
+ Hqm+p = Hqm
371
+ a
372
+ Hp
373
+ aHp
374
+ b = Hq
375
+ a·mHp
376
+ aHp
377
+ b ,
378
+ (16)
379
+ so that the p-th column reads
380
+ Hp
381
+ aHp
382
+ b
383
+
384
+ 1, H1
385
+ a·m, H2
386
+ a·m, H3
387
+ a·m, · · ·
388
+
389
+ .
390
+ (17)
391
+ Or in other words, each column contains the powers of the identification matrix associated with the
392
+ rotating non-extremal black hole, multiplied by some constant.
393
+ 4
394
+
395
+ 3
396
+ Renormalized stress tensor
397
+ To describe the quantum effects on the spacetime geometry, in particular the backreaction of the
398
+ naked singularity to the presence of a quantum field, we consider the semi-classical Einstein equations
399
+ Gµν − l−2gµν = κ ⟨Tµν⟩ ,
400
+ (18)
401
+ where ⟨Tµν⟩ is the renormalized expectation value of the quantum stress-energy tensor (RSET) of a
402
+ conformally coupled scalar field [6, 7, 8, 9],
403
+ κ ⟨Tµν(x)⟩ = πlP lim
404
+ x′→x
405
+
406
+ 3∇x
407
+ µ∇x′
408
+ ν − gµνgλρ∇x
409
+ λ∇x′
410
+ ρ − ∇x
411
+ µ∇x
412
+ ν − 1
413
+ 4l2 gµν
414
+
415
+ G(x, x′) , lP = ℏκ
416
+ 8π .
417
+ (19)
418
+ Using the method of images, the propagator, G(x, x′) = {φ(x), φ(x′)} is the anti-commutator of the
419
+ scalar field, which takes the form [13, 14, 15, 16, 17, 9]
420
+ G(x, x′) =
421
+ 1
422
+ 2
423
+
424
+
425
+
426
+ n∈I
427
+ Θ(σ(x, Hnx′))
428
+
429
+ σ(x, Hnx′)
430
+ ,
431
+ (20)
432
+ where σ(x, x′) is the chordal distance connecting x and x′, which can be expressed in terms of the
433
+ corresponding embedding coordinates in R(2,2) as
434
+ σ(x, x′) = 1
435
+ 2
436
+
437
+
438
+
439
+ X0 − X′0�2 +
440
+
441
+ X1 − X′1�2 +
442
+
443
+ X2 − X′2�2 −
444
+
445
+ X3 − X′3�2�
446
+ .
447
+ (21)
448
+ The Heaviside step function Θ in (20) was introduced in [9] because σ(x, Hnx) can be negative in
449
+ the rotating case. Calling dn(x) the cordal distance between a spacetime point and its nth image,
450
+ dn = 2σ(x, Hnx) = 2l2 [−1 + cosh(2πan) cos(2πbn) − B(r) sinh(2πan) sin(2πbn)] ,
451
+ (22)
452
+ with
453
+ B(r) = l2M − 2r2
454
+ 4abl2
455
+ ,
456
+ (23)
457
+ and the RSET takes the form [13, 9]
458
+ κ ⟨Tµν⟩ = 3lP
459
+ 2
460
+
461
+ n∈I\{0}
462
+ Θ(dn(x))
463
+
464
+ Sn
465
+ µν − 1
466
+ 3gµνgλρSn
467
+ λρ
468
+
469
+ ,
470
+ (24)
471
+ with
472
+ Sn
473
+ ab = Hn
474
+ ab
475
+ d3/2
476
+ n
477
+ + 3Hn
478
+ acXcH−n
479
+ bd Xd − Hn
480
+ acXcHn
481
+ bdXd
482
+ d5/2
483
+ n
484
+ .
485
+ (25)
486
+ The set I in the sum (24) includes all distinct images. With the splitting (16) between boosts (Ha)
487
+ and rotations (Hb), one must sum over different ranges for q and p.
488
+ 3.1
489
+ Explicit form for ⟨T µν⟩
490
+ Note that for any rational value of b there are infinitely many values of n for which 2bn is an integer,
491
+ which occurs for p = 0, which implies bn = kq and consequently the last term in (22) vanishes,
492
+ making the distance function dn independent of r. This causes an infinite number of terms in the
493
+ sum (24) to diverge, signaling a breakdown of the perturbative approach. This can be seen in the
494
+ non-vanishing components of the stress-energy tensor,
495
+ 5
496
+
497
+ κ ⟨T t
498
+ t⟩ =lP l2
499
+ 8ab
500
+
501
+
502
+ n=1
503
+ m∤n
504
+ ′ �
505
+ 6
506
+
507
+ a2 + b2�
508
+ Bbn − 4ab¯bn + 12B¯an
509
+ d5/2
510
+ n
511
+ +
512
+
513
+ 3
514
+
515
+ a2 − b2�
516
+ B − 2ab
517
+
518
+ (¯cn − 8) +
519
+
520
+ 3(a2 − b2) + 2abB
521
+
522
+ cnen
523
+ d5/2
524
+ n
525
+
526
+ ,
527
+ (26a)
528
+ κ ⟨T t
529
+ θ⟩ = − 3lP l3
530
+ 8ab
531
+
532
+
533
+ n=1
534
+ m∤n
535
+ ′ 2
536
+ ��
537
+ a2 − b2�
538
+ B + 4ab
539
+
540
+ bn + 4Ban +
541
+
542
+ a2 + b2�
543
+ [B (¯cn − 8) + encn]
544
+ d5/2
545
+ n
546
+ ,
547
+ (26b)
548
+ κ ⟨T r
549
+ r⟩ =lP
550
+
551
+
552
+ n=1
553
+ m∤n
554
+ ′ cn
555
+ d3/2
556
+ n
557
+ (26c)
558
+ κ ⟨T θ
559
+ t⟩ =3lPl
560
+ 8ab
561
+
562
+
563
+ n=1
564
+ m∤n
565
+ ′ 2
566
+ ��
567
+ a2 − b2�
568
+ B − 4ab
569
+
570
+ bn + 4Ban +
571
+
572
+ a2 + b2�
573
+ [B (¯cn − 8) + cnen]
574
+ d5/2
575
+ n
576
+ ,
577
+ (26d)
578
+ κ ⟨T θ
579
+ θ⟩ = − κ
580
+
581
+ ⟨T t
582
+ t⟩ + ⟨T r
583
+ r⟩
584
+
585
+ ,
586
+ (26e)
587
+ where
588
+
589
+
590
+ n
591
+ sn ≡ �
592
+ n
593
+ Θ(dn)sn, and
594
+ an =a2 cos(4πbn) + b2 cosh(4πan) , ¯an = a2 cos(4πbn) − b2 cosh(4πan),
595
+ (27a)
596
+ bn = cos(4πbn) − cosh(4πan) ,
597
+ ¯bn = cos(4πbn) + cosh(4πan),
598
+ (27b)
599
+ cn =2 cosh(2πan) cos(2πbn) + 2 ,
600
+ ¯cn = 2 cosh(4πan) cos(4πbn) + 2,
601
+ (27c)
602
+ en =4 sinh(2πan) sin(2πbn).
603
+ (27d)
604
+ The presence of B(r) in the numerator of the ⟨T µ
605
+ ν⟩ components makes them grow as r2 for large
606
+ distance. Hence, as the denominators are independent of r for n = qm, these sums contain infinitely
607
+ many asymptotically divergent terms. The problem is that to renormalize the stress-energy tensor
608
+ using the Hadamard regularization scheme simply removes one divergent term corresponding to
609
+ n = 0 (or p = q = 0) in the sum (20). However, we see that the stress energy tensor has infinitely
610
+ many divergent terms, for p = 0 and all possible qs. A “natural” scheme to avoid the problem
611
+ would be to eliminate the bs that generate the issue, but this would mean eliminating all rational bs,
612
+ contradicting (14).
613
+ It is still possible in principle that, in spite of the divergences in ⟨T µ
614
+ ν⟩, they cancel out in the
615
+ equations, yielding a finite result for the back reacted metric. We will see next that such cancellation
616
+ does not occur, so that the field equations do not allow for a perturbative solution.
617
+ 3.2
618
+ Backreacted metric
619
+ The backreacted geometry is expected to belong in the same family of spherically symmetric sta-
620
+ tionary BTZ metrics. It is therefore natural to assume the ansatz
621
+ ds2 = − N(r)2f(r)dt2 + f(r)−1dr2 + r2 (dθ + k(r)dt)2 .
622
+ (28)
623
+ 6
624
+
625
+ Additionally, based on the previous results [9] we write
626
+ N(r) =N0(r) + lP N1(r) + O(l2
627
+ P ),
628
+ (29)
629
+ f(r) =f0(r) + lP f1(r) + O(l2
630
+ P ),
631
+ (30)
632
+ k(r) =k0(r) + lP k1(r) + O(l2
633
+ P ).
634
+ (31)
635
+ The zeroth order equations describe the unperturbed situation that yield the BTZ metric,
636
+ N0(r) = 1,
637
+ f0(r) = r2
638
+ l2 − M + J2
639
+ 4r2 ,
640
+ k0(r) = − J
641
+ 2r2 .
642
+ (32)
643
+ The first order corrections in lP of the field equations yield
644
+ N1(r) = κ
645
+ lP
646
+
647
+ dr
648
+ r
649
+ f0(r)
650
+
651
+ ⟨T r
652
+ r⟩ − ⟨T t
653
+ t⟩ − J
654
+ 2r2 ⟨T t
655
+ θ⟩
656
+
657
+ + K1,
658
+ (33)
659
+ f1(r) =
660
+
661
+ dr
662
+
663
+ −2f0(r)N ′
664
+ 1(r) +
665
+ �J2
666
+ r3 − 2M
667
+ r
668
+
669
+ N1(r)
670
+ (34)
671
+ + 2
672
+ r3
673
+
674
+ dr
675
+
676
+ 2MrN1(r) + κ
677
+ lP
678
+ r3 ⟨T r
679
+ r⟩
680
+ ��
681
+ + K2
682
+ r2 + K3,
683
+ (35)
684
+ Jk1(r) = − f1(r) − 2f0(r)N1(r) + 2
685
+
686
+ rdr
687
+ � 2
688
+ l2 N1(r) + κ
689
+ lP
690
+ ⟨T r
691
+ r⟩
692
+
693
+ + K4,
694
+ (36)
695
+ Here the integration constants must be chosen as Ki = 0 (i = 1, 2, 3, 4) so that the O(lP ) metric
696
+ corrections vanish for ⟨T µ
697
+ ν⟩ = 0. Even before integrating these expressions, it can be directly checked
698
+ that the divergences of the stress-energy tensor do not cancel out, leading to unbounded results for
699
+ N1, f1 and k1. Consequently, the perturbative ansatz (29 –31) does not work, since the first order
700
+ corrections cannot be shown to be small.
701
+ 4
702
+ Summary
703
+ We have shown that a naked singularity of an overspinning BTZ geometry conformally coupled to
704
+ a quantum scalar field does not lead to a renormalized stress-energy tensor. This causes incurable
705
+ infinities to appear in the equations of motion and in the purportedly perturbative solutions. This
706
+ is contrary to the previously studied cases of conical singularities, where the quantum corrections
707
+ of the conformally coupled scalar field yields a finite renormalized stress-energy tensor and the
708
+ resulting back-reacted geometry acquires a horizon, which provides a mechanism that enforces cosmic
709
+ censorship [6, 7, 8, 9]. Our result indicates that the overspinning geometry is plagued by a more
710
+ severe form of naked singularity, inaccessible by a perturbative approach. Consequently, it is not
711
+ possible to claim that the singularity may become dressed by perturbative quantum corrections.
712
+ Our result seems to indicate that coupling a conformal quantum scalar field to an overspinning
713
+ geometry may cause the metric to be significantly different from the original BTZ metric. In any
714
+ event, it is not possible to assert, as in the other cases of naked singularities, that quantum mechanics
715
+ provides a cosmic censor in this case.
716
+ It would be interesting to understand whether there is a more profound problem with this type
717
+ of geometry, or if the strongly rotating behavior simply prevents the application of perturbative
718
+ methods. Perhaps one way to approach this problem would be by numerical methods, hoping to
719
+ get a better understanding of the nature of this particular type of singularity and to see if this is
720
+ purely a problem of the perturbative approach, or if there is a more fundamental issue with the
721
+ overspinning singularity.
722
+ 7
723
+
724
+ Acknowledgements
725
+ We thank C. Martínez, M. Hassaïne and Steen Ryom-Hansen for many enlightening discussions. OB
726
+ is funded by the PhD scholarship of the University of Talca. This work has been partially funded
727
+ by grant No 1220862 from ANID/Fondecyt.
728
+ References
729
+ [1]
730
+ Roger Penrose. “Gravitational Collapse: the Role of General Relativity”. In: Nuovo Cimento
731
+ Rivista Serie 1 (Jan. 1969), p. 252.
732
+ [2]
733
+ Máximo Bañados, Claudio Teitelboim, and Jorge Zanelli. “The Black hole in three-dimensional
734
+ space-time”. In: Phys. Rev. Lett. 69 (1992), pp. 1849–1851. doi: 10.1103/PhysRevLett.69.1849.
735
+ arXiv: hep-th/9204099.
736
+ [3]
737
+ Máximo Bañados et al. “Geometry of the (2+1) black hole”. In: Phys. Rev. D 48 (1993).
738
+ [Erratum: Phys.Rev.D 88, 069902 (2013)], pp. 1506–1525. doi: 10.1103/PhysRevD.48.1506.
739
+ arXiv: gr-qc/9302012.
740
+ [4]
741
+ Olivier Coussaert and Marc Henneaux. “Selfdual solutions of (2+1) Einstein gravity with a
742
+ negative cosmological constant”. In: The Black Hole 25 Years After. Jan. 1994, pp. 25–39.
743
+ arXiv: hep-th/9407181.
744
+ [5]
745
+ Eloy Ayon-Beato, Cristian Martinez, and Jorge Zanelli. “Birkhoff’s theorem for three-dimensional
746
+ AdS gravity”. In: Phys. Rev. D 70 (2004), p. 044027. doi: 10.1103/PhysRevD.70.044027.
747
+ arXiv: hep-th/0403227.
748
+ [6]
749
+ Marc Casals et al. “Quantum dress for a naked singularity”. In: Phys. Lett. B 760 (2016),
750
+ pp. 244–248. doi: 10.1016/j.physletb.2016.06.044. arXiv: 1605.06078 [hep-th].
751
+ [7]
752
+ Marc Casals et al. “Quantum Backreaction on Three-Dimensional Black Holes and Naked Sin-
753
+ gularities”. In: Phys. Rev. Lett. 118.13 (2017), p. 131102. doi: 10.1103/PhysRevLett.118.131102.
754
+ arXiv: 1608.05366 [gr-qc].
755
+ [8]
756
+ Marc Casals et al. “Quantum fields as Cosmic Censors in (2 + 1)-dimensions”. In: Int. J. Mod.
757
+ Phys. D 27.11 (2018). Ed. by L. C. B. Crispino et al., p. 1843011. doi: 10.1142/S0218271818430113.
758
+ [9]
759
+ Marc Casals et al. “Quantum-corrected rotating black holes and naked singularities in ( 2+1
760
+ ) dimensions”. In: Phys. Rev. D 99.10 (2019), p. 104023. doi: 10.1103/PhysRevD.99.104023.
761
+ arXiv: 1902.01583 [hep-th].
762
+ [10]
763
+ Olivera Mišković and Jorge Zanelli. “On the negative spectrum of the 2+1 black hole”. In: Phys.
764
+ Rev. D 79 (2009), p. 105011. doi: 10.1103/PhysRevD.79.10501.arXiv: arXiv:0904.0475[hep-th].
765
+ [11]
766
+ Roberto Emparan, Antonia Micol Frassino, and Benson Way. “Quantum BTZ black hole”. In:
767
+ JHEP 11 (2020), p. 137. doi: 10.1007/JHEP11(2020)137. arXiv: 2007.15999 [hep-th].
768
+ [12]
769
+ Matías Briceño, Cristián Martínez, and Jorge Zanelli. “Overspinning naked singularities in
770
+ AdS3 spacetime”. In: (May 2021). arXiv: 2105.06488 [gr-qc].
771
+ [13]
772
+ Alan R. Steif. “The Quantum stress tensor in the three-dimensional black hole”. In: Phys. Rev.
773
+ D 49 (1994), pp. 585–589. doi: 10.1103/PhysRevD.49.R585. arXiv: gr-qc/9308032.
774
+ [14]
775
+ S. J. Avis, C. J. Isham, and D. Storey. “Quantum Field Theory in anti-De Sitter Space-Time”.
776
+ In: Phys. Rev. D 18 (1978), p. 3565. doi: 10.1103/PhysRevD.18.3565.
777
+ 8
778
+
779
+ [15]
780
+ Kiyoshi Shiraishi and Takuya Maki. “Quantum fluctuation of stress tensor and black holes in
781
+ three dimensions”. In: Phys. Rev. D 49 (1994), pp. 5286–5294. doi: 10.1103/PhysRevD.49.5286.
782
+ arXiv: 1804.07872 [gr-qc].
783
+ [16]
784
+ Kiyoshi Shiraishi and Takuya Maki. “Vacuum polarization near asymptotically anti-de Sit-
785
+ ter black holes in odd dimensions”. In: Class. Quant. Grav. 11 (1994), pp. 1687–1696. doi:
786
+ 10.1088/0264-9381/11/7/009. arXiv: 1901.00977 [gr-qc].
787
+ [17]
788
+ Yves Decanini and Antoine Folacci. “Off-diagonal coefficients of the Dewitt-Schwinger and
789
+ Hadamard representations of the Feynman propagator”. In: Phys. Rev. D 73 (2006), p. 044027.
790
+ doi: 10.1103/PhysRevD.73.044027. arXiv: gr-qc/0511115.
791
+ 9
792
+
KdE3T4oBgHgl3EQfAQmY/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,360 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf,len=359
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
3
+ page_content='04256v1 [hep-th] 11 Jan 2023 Quantum backreaction for overspinning BTZ geometries Olaf Baake2,1 ∗ and Jorge Zanelli1,3 † 1Centro de Estudios Científicos (CECs), Arturo Prat 514, Valdivia, Chile 2Instituto de Matemáticas, Universidad de Talca, Casilla 747, Talca 3460000, Chile 3Universidad San Sebastián, General Lagos 1163, Valdivia, Chile January 12, 2023 Abstract We examine the semiclassical backreaction of a conformally coupled scalar field on an over- spinning BTZ geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
4
+ page_content=' This extends the work done on a similar problem for (2 + 1)- AdS geometries of the BTZ family with |M| > |J|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
5
+ page_content=' The overspinning classical solutions corresponds to |M| < |J| and possess a naked singularity at r = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
6
+ page_content=' Using the renormalized quantum stress-energy tensor for a conformally coupled scalar field on such a spacetime, we obtain the semiclassical Einstein equations, which we attempt to solve perturbatively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
7
+ page_content=' We show that the stress-energy tensor is non-renormalizable in this approach, and consequently the perturbative solution to the semiclassical equations in the overspinning case does not exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
8
+ page_content=' This could be an indication of the fact that the naked singularity at the center of an overspinning geometry is of a more severe nature than the conical singularity found in the same family of BTZ geometries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
9
+ page_content=' 1 Introduction Since the dawn of general relativity, many black hole solutions to Einstein’s field equations have been found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
10
+ page_content=' All these black holes contain a spacetime singularity hidden by an event horizon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
11
+ page_content=' However, for some range of values of the integration constants (mass M, angular momentum J, electric charge Q) these solutions have no event horizon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
12
+ page_content=' Although paradoxical, these naked singularities are exact solutions to the classical equations of general relativity as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
13
+ page_content=' In the vicinity of a naked singularity causality and other physical laws can be arbitrarily violated, which is why Roger Penrose suggested the existence of a (weak) cosmic censorship principle in nature [1], requiring singularities to be hidden behind an event horizon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
14
+ page_content=' In that case, an outside observer would be causally disconnection from the singularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
15
+ page_content=' Classically, naked singularities cannot be ruled out on mathematical grounds, and it is difficult to prove that every possible collapse process leads to the formation of an event horizon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
16
+ page_content=' The fact that so far no naked singularities have been observed in the universe may be interpreted as an indication that, in the strong gravity regime near a singularity, quantum gravity effects dominate eliminating singularities altogether, or at least making sure that a horizon forms around them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
17
+ page_content=' The accumulation of experiments and observations that confirm the predictions of general rel- ativity puts very tight constraints on possible theories incorporating both general relativity and ∗olaf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
18
+ page_content='baake@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
19
+ page_content='com †jorge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
20
+ page_content='zanelli@uss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
21
+ page_content='cl 1 quantum theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
22
+ page_content=' Since both theories are so well established in their regimes, it is sensible to look for a common area where a semi-classical approach could be used to obtain a better understanding of the issues at hand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
23
+ page_content=' Calculating quantum effects on a curved background spacetime is notoriously difficult, but in (2+1)-dimensional AdS spacetime this problem becomes significantly simpler and still provide meaningful information to learn from.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
24
+ page_content=' The Bañados-Teitelboim-Zanelli (BTZ) black hole in (2+1)-dimensional AdS spacetime [2, 3], obtained for M ≥ |J| are particularly interesting geometries in this respect, but these are not the only solutions of physical interest in this theory and with the same global symmetries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
25
+ page_content=' Lo- cally constant curvature 2+1 spacetimes include, besides the BTZ black hole family, the self-dual Coussaert-Henneaux spacetimes [4], and the toroidal time-dependent geometries [5], with global isometry groups SO(2) × R SO(2) × SO(2, 1) and SO(2) × SO(2), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
26
+ page_content=' Recently, the quantum back reaction on the classical singularities was studied for several geome- tries, including static, rotating and extremal BTZ black holes, as well as for static and rotating conical naked singularities [6, 7, 8, 9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
27
+ page_content=' The naked singularities considered in these papers are contin- uations of the BTZ spacetime to the case of negative mass [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
28
+ page_content=' The interesting aspect of this result is that the quantum fluctuations of a conformally coupled scalar field generate a non-vanishing stress energy-momentum tensor that through Einstein’s equations produces aback-reacted geometry with a horizon of order Planck length in radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
29
+ page_content=' This dressing up of the naked singularity, turning it into a black hole, could be viewed as a mechanism that implements cosmic censorship.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
30
+ page_content=' These results have also been confirmed by an alternative holographic approach in [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
31
+ page_content=' Here we are concerned with the overspinning BTZ spacetime, which occurs if the absolute value of the angular momentum is greater than that of the mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
32
+ page_content=' This geometry is also endowed with a naked singularity at r = 0, as in the case of the conical singularity obtained for M ≤ −|J|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
33
+ page_content=' We show that the stress-energy tensor contains incurable divergences, making the perturbative ansatz to the semiclassical equations of motion ill-defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
34
+ page_content=' While the equations of motion can still be formally integrated, the first order corrections to the metric functions would become large, further demonstrating the inapplicability of a perturbative approach to this type of geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
35
+ page_content=' This strongly suggests that the naked singularity of an overspinning geometry is of a more severe nature than the conical singularities appearing in the other BTZ geometries so that they cannot be cured by a perturbative quantum censor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
36
+ page_content=' 2 Overspinning BTZ space-time The rotating BTZ metric [2, 3], is given by ds2 = − �r2 l2 − M � dt2 − Jdtdθ + �r2 l2 − M + J2 4r2 �−1 dr2 + r2dθ2, (1) where the coordinate ranges are: −∞ < t < ∞, 0 < r < ∞ and 0 ≤ θ < 2π, Λ = −l−2 is the cosmological constant, and M and J are mass and angular momentum respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
37
+ page_content=' This metric describes different spacetimes that can be classified by the values of M and J which determine the nature of the four roots of the equation grr = 0, λ± = l 2 �� M + J l ± � M − J l � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
38
+ page_content=' (2) These roots are real for M ≥ |J|/l (black holes) and take complex values for M < |J|/l (naked singularities).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
39
+ page_content=' The full classification is explained in detail in [3], but here we will consider the so- called overspinning geometry (|M|l < |J|).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
40
+ page_content=' This geometry was examined in [12] through the study 2 of classical geodesics around it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
41
+ page_content=' In particular, we will analyze the back reaction of the geometry to the presence of a conformally coupled quantum scalar field, following the steps in [6, 7, 8, 9], where the back reaction for conical naked singularities in the parameter range M ≤ −|J| was studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
42
+ page_content=' The starting point of the analysis is the observation that the BTZ spacetimes (1) are quotients of the universal covering of anti-de Sitter space-time (CAdS3) by an appropriate Killing vector field [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
43
+ page_content=' The constant negative curvature spacetime AdS3 is defined by a pseudosphere of radius l embedded in R(2,2) as ηABXAXB = − � X0�2 + � X1�2 + � X2�2 − � X3�2 = −l2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
44
+ page_content=' (3) The metric reads ηABdXAdXB = − � dX0�2 + � dX1�2 + � dX2�2 − � dX3�2 , (4) where the embedding coordinates XA must be specified as functions of (t, r, θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
45
+ page_content=' As shown in [12],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
46
+ page_content=' the overspinning geometry (1) with |M| < |J| corresponds to embedding coordinates given by X0 = l 2 √ A + 1 cosh [a (t/l − θ)] {cos [b (θ + t/l)] − sin [b (θ + t/l)]} +ǫ l 2 √ A − 1 sinh [a (t/l − θ)] {sin [b (θ + t/l)] + cos [b (θ + t/l)]} ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
47
+ page_content=' (5) X1 = l 2 √ A + 1 sinh [a (t/l − θ)] {cos [b (θ + t/l)] − sin [b (θ + t/l)]} +ǫ l 2 √ A − 1 cosh [a (t/l − θ)] {sin [b (θ + t/l)] + cos [b (θ + t/l)]} ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
48
+ page_content=' (6) X2 = l 2 √ A + 1 sinh [a (t/l − θ)] {sin [b (θ + t/l)] + cos [b (θ + t/l)]} −ǫ l 2 √ A − 1 cosh [a (t/l − θ)] {cos [b (θ + t/l)] − sin [b (θ + t/l)]} ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
49
+ page_content=' (7) X3 = l 2 √ A + 1 cosh [a (t/l − θ)] {sin [b (θ + t/l)] + cos [b (θ + t/l)]} −ǫ l 2 √ A − 1 sinh [a (t/l − θ)] {cos [b (θ + t/l)] − sin [b (θ + t/l)]} ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
50
+ page_content=' (8) where a = � |J|/l + M 2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
51
+ page_content=' b = � |J|/l − M 2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
52
+ page_content=' A = 2 � J2 4 + r4 l2 − Mr2 √ J2 − l2M 2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
53
+ page_content=' (9) with ǫ = sign(M − r2/l2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
54
+ page_content=' Note that both cases (ǫ = ±1) lead to the same RSET, and hence to the same end results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
55
+ page_content='1 The overspinning BTZ space-time is now obtained through identifications generated by a Killing field ξ, which in this case given by [3, 12] ξ = −a(J01 − J23) + b(J03 − J12), (10) which can be written as ξ = 1 2ωABJAB, where the antisymmetric matrix ωAB characterizes the identification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
56
+ page_content=' The Killing field in matrix form reads ξ = \uf8eb \uf8ec \uf8ec \uf8ed 0 −a 0 −b −a 0 −b 0 0 b 0 −a b 0 −a 0 \uf8f6 \uf8f7 \uf8f7 \uf8f8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
57
+ page_content=' (11) 1Without loss of generality, we will assume J > 0 for the rest of this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
58
+ page_content=' 3 The identification in the embedding space R(2,2) under the action of the Killing field is a mapping defined by the matrix, H(ξ) = e2πξ, which takes the form H = \uf8eb \uf8ec \uf8ec \uf8ed C(a)c(b) −S(a)c(b) S(a)s(b) −C(a)s(b) −S(a)c(b) C(a)c(b) −C(a)s(b) S(a)s(b) −S(a)s(b) C(a)s(b) C(a)c(b) −S(a)c(b) C(a)s(b) −S(a)s(b) −S(a)c(b) C(a)c(b) \uf8f6 \uf8f7 \uf8f7 \uf8f8 , (12) where C(a) ≡ cosh(2πa), S(a) ≡ sinh(2πa) c(b) ≡ cos(2πb), and s(b) ≡ sin(2πb).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
59
+ page_content=' An important feature of the Killing vector (10) is that the boost and rotation generators K ≡ J01 − J23 and J ≡ J03 − J12 commute, [K, J] = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
60
+ page_content=' Consequently, H = e2πξ can be factored as H = Ha · Hb = Hb · Ha, where Ha = H|b=0 and Hb = H|a=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
61
+ page_content=' Iterating the identification by H is equivalent to acting with Hn = \uf8eb \uf8ec \uf8ec \uf8ed C(na)c(nb) −S(na)c(nb) S(na)s(nb) −C(na)s(nb) −S(na)c(nb) C(na)c(nb) −C(na)s(nb) S(na)s(nb) −S(na)s(nb) C(na)s(nb) C(na)c(nb) −S(na)c(nb) C(na)s(nb) −S(na)s(nb) −S(na)c(nb) C(na)c(nb) \uf8f6 \uf8f7 \uf8f7 \uf8f8 = Hn a · Hn b .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
62
+ page_content=' (13) Quotienting a manifold by a rotation Killing vector requires the identification angle to be a rational fraction of 2π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
63
+ page_content=' Otherwise, each point is identified with infinitely many images which densely cover a circle, and the resulting image set would not be a smooth manifold [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
64
+ page_content=' This means that the coefficient b in (10) must be rational, namely, b = k/m, (14) with k, m relative primes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
65
+ page_content=' No restrictions are necessary for a, as boosts act transitively in a non- compact manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
66
+ page_content=' Note that the m-th iteration produces a pure boost (and a rotation by 2kπ, which is equivalent to the identity, Hm b = 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
67
+ page_content=' In fact, we can treat the rotated plane and the boosted plane separately by splitting the identification matrix as follows: consider writing n = qm+p, where p ∈ {0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
68
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
69
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
70
+ page_content=', m − 1}, q ∈ {0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
71
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
72
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
73
+ page_content=', ∞} and m is some positive integer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
74
+ page_content=' Hence, the powers of H = Ha · Hb can be arranged as follows 1 HaHb H2 aH2 b H3 aH3 b .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
75
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
76
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
77
+ page_content=' Hm−1 a Hm−1 b Hm a Hm+1 a Hb Hm+2 a H2 b Hm+3 a H3 b .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
78
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
79
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
80
+ page_content=' H2m−1 a Hm−1 b H2m a H2m+1 a Hb H2m+2 a H2 b H2m+3 a H3 b .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
81
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
82
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
83
+ page_content=' H3m−1 a Hm−1 b .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
84
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
85
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
86
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
87
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
88
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
89
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
90
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
91
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
92
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
93
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
94
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
95
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
96
+ page_content=' (15) Here each column corresponds to a fixed p and includes infinitely many boosts, while each row has a fixed q comprising a finite set of rotations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
97
+ page_content=' In this pattern, an interesting observation becomes apparent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
98
+ page_content=' First note that Ha is precisely the identification matrix of the rotating non-extremal BTZ black hole, and Hb the identification matrix of the rotating non-extremal naked singularity [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
99
+ page_content=' Now, using trigonometric identities, one can write in general, as can be seen in (15), Hqm+p = Hqm a Hp aHp b = Hq a·mHp aHp b , (16) so that the p-th column reads Hp aHp b � 1, H1 a·m, H2 a·m, H3 a·m, · · · � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
100
+ page_content=' (17) Or in other words, each column contains the powers of the identification matrix associated with the rotating non-extremal black hole, multiplied by some constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
101
+ page_content=' 4 3 Renormalized stress tensor To describe the quantum effects on the spacetime geometry,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
102
+ page_content=' in particular the backreaction of the naked singularity to the presence of a quantum field,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
103
+ page_content=' we consider the semi-classical Einstein equations Gµν − l−2gµν = κ ⟨Tµν⟩ ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
104
+ page_content=' (18) where ⟨Tµν⟩ is the renormalized expectation value of the quantum stress-energy tensor (RSET) of a conformally coupled scalar field [6,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
105
+ page_content=' 7,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
106
+ page_content=' 8,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
107
+ page_content=' 9],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
108
+ page_content=' κ ⟨Tµν(x)⟩ = πlP lim x′→x � 3∇x µ∇x′ ν − gµνgλρ∇x λ∇x′ ρ − ∇x µ∇x ν − 1 4l2 gµν � G(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
109
+ page_content=' x′) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
110
+ page_content=' lP = ℏκ 8π .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
111
+ page_content=' (19) Using the method of images, the propagator, G(x, x′) = {φ(x), φ(x′)} is the anti-commutator of the scalar field, which takes the form [13, 14, 15, 16, 17, 9] G(x, x′) = 1 2 √ 2π � n∈I Θ(σ(x, Hnx′)) � σ(x, Hnx′) , (20) where σ(x, x′) is the chordal distance connecting x and x′, which can be expressed in terms of the corresponding embedding coordinates in R(2,2) as σ(x, x′) = 1 2 � − � X0 − X′0�2 + � X1 − X′1�2 + � X2 − X′2�2 − � X3 − X′3�2� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
112
+ page_content=' (21) The Heaviside step function Θ in (20) was introduced in [9] because σ(x, Hnx) can be negative in the rotating case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
113
+ page_content=' Calling dn(x) the cordal distance between a spacetime point and its nth image, dn = 2σ(x, Hnx) = 2l2 [−1 + cosh(2πan) cos(2πbn) − B(r) sinh(2πan) sin(2πbn)] , (22) with B(r) = l2M − 2r2 4abl2 , (23) and the RSET takes the form [13, 9] κ ⟨Tµν⟩ = 3lP 2 � n∈I\\{0} Θ(dn(x)) � Sn µν − 1 3gµνgλρSn λρ � , (24) with Sn ab = Hn ab d3/2 n + 3Hn acXcH−n bd Xd − Hn acXcHn bdXd d5/2 n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
114
+ page_content=' (25) The set I in the sum (24) includes all distinct images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
115
+ page_content=' With the splitting (16) between boosts (Ha) and rotations (Hb), one must sum over different ranges for q and p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
116
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
117
+ page_content='1 Explicit form for ⟨T µν⟩ Note that for any rational value of b there are infinitely many values of n for which 2bn is an integer, which occurs for p = 0, which implies bn = kq and consequently the last term in (22) vanishes, making the distance function dn independent of r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
118
+ page_content=' This causes an infinite number of terms in the sum (24) to diverge, signaling a breakdown of the perturbative approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
119
+ page_content=' This can be seen in the non-vanishing components of the stress-energy tensor,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
120
+ page_content=' 5 κ ⟨T t t⟩ =lP l2 8ab ∞ � n=1 m∤n ′ � 6 � a2 + b2� Bbn − 4ab¯bn + 12B¯an d5/2 n + � 3 � a2 − b2� B − 2ab � (¯cn − 8) + � 3(a2 − b2) + 2abB � cnen d5/2 n � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
121
+ page_content=' (26a) κ ⟨T t θ⟩ = − 3lP l3 8ab ∞ � n=1 m∤n ′ 2 �� a2 − b2� B + 4ab � bn + 4Ban + � a2 + b2� [B (¯cn − 8) + encn] d5/2 n ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
122
+ page_content=' (26b) κ ⟨T r r⟩ =lP ∞ � n=1 m∤n ′ cn d3/2 n (26c) κ ⟨T θ t⟩ =3lPl 8ab ∞ � n=1 m∤n ′ 2 �� a2 − b2� B − 4ab � bn + 4Ban + � a2 + b2� [B (¯cn − 8) + cnen] d5/2 n ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
123
+ page_content=' (26d) κ ⟨T θ θ⟩ = − κ � ⟨T t t⟩ + ⟨T r r⟩ � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
124
+ page_content=' (26e) where ′ � n sn ≡ � n Θ(dn)sn,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
125
+ page_content=' and an =a2 cos(4πbn) + b2 cosh(4πan) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
126
+ page_content=' ¯an = a2 cos(4πbn) − b2 cosh(4πan),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
127
+ page_content=' (27a) bn = cos(4πbn) − cosh(4πan) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
128
+ page_content=' ¯bn = cos(4πbn) + cosh(4πan),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
129
+ page_content=' (27b) cn =2 cosh(2πan) cos(2πbn) + 2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
130
+ page_content=' ¯cn = 2 cosh(4πan) cos(4πbn) + 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
131
+ page_content=' (27c) en =4 sinh(2πan) sin(2πbn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
132
+ page_content=' (27d) The presence of B(r) in the numerator of the ⟨T µ ν⟩ components makes them grow as r2 for large distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
133
+ page_content=' Hence, as the denominators are independent of r for n = qm, these sums contain infinitely many asymptotically divergent terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
134
+ page_content=' The problem is that to renormalize the stress-energy tensor using the Hadamard regularization scheme simply removes one divergent term corresponding to n = 0 (or p = q = 0) in the sum (20).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
135
+ page_content=' However, we see that the stress energy tensor has infinitely many divergent terms, for p = 0 and all possible qs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
136
+ page_content=' A “natural” scheme to avoid the problem would be to eliminate the bs that generate the issue, but this would mean eliminating all rational bs, contradicting (14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
137
+ page_content=' It is still possible in principle that, in spite of the divergences in ⟨T µ ν⟩, they cancel out in the equations, yielding a finite result for the back reacted metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
138
+ page_content=' We will see next that such cancellation does not occur, so that the field equations do not allow for a perturbative solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
139
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
140
+ page_content='2 Backreacted metric The backreacted geometry is expected to belong in the same family of spherically symmetric sta- tionary BTZ metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
141
+ page_content=' It is therefore natural to assume the ansatz ds2 = − N(r)2f(r)dt2 + f(r)−1dr2 + r2 (dθ + k(r)dt)2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
142
+ page_content=' (28) 6 Additionally, based on the previous results [9] we write N(r) =N0(r) + lP N1(r) + O(l2 P ), (29) f(r) =f0(r) + lP f1(r) + O(l2 P ), (30) k(r) =k0(r) + lP k1(r) + O(l2 P ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
143
+ page_content=' (31) The zeroth order equations describe the unperturbed situation that yield the BTZ metric, N0(r) = 1, f0(r) = r2 l2 − M + J2 4r2 , k0(r) = − J 2r2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
144
+ page_content=' (32) The first order corrections in lP of the field equations yield N1(r) = κ lP � dr r f0(r) � ⟨T r r⟩ − ⟨T t t⟩ − J 2r2 ⟨T t θ⟩ � + K1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
145
+ page_content=' (33) f1(r) = � dr � −2f0(r)N ′ 1(r) + �J2 r3 − 2M r � N1(r) (34) + 2 r3 � dr � 2MrN1(r) + κ lP r3 ⟨T r r⟩ �� + K2 r2 + K3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
146
+ page_content=' (35) Jk1(r) = − f1(r) − 2f0(r)N1(r) + 2 � rdr � 2 l2 N1(r) + κ lP ⟨T r r⟩ � + K4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
147
+ page_content=' (36) Here the integration constants must be chosen as Ki = 0 (i = 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
148
+ page_content=' 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
149
+ page_content=' 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
150
+ page_content=' 4) so that the O(lP ) metric corrections vanish for ⟨T µ ν⟩ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
151
+ page_content=' Even before integrating these expressions, it can be directly checked that the divergences of the stress-energy tensor do not cancel out, leading to unbounded results for N1, f1 and k1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
152
+ page_content=' Consequently, the perturbative ansatz (29 –31) does not work, since the first order corrections cannot be shown to be small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
153
+ page_content=' 4 Summary We have shown that a naked singularity of an overspinning BTZ geometry conformally coupled to a quantum scalar field does not lead to a renormalized stress-energy tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
154
+ page_content=' This causes incurable infinities to appear in the equations of motion and in the purportedly perturbative solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
155
+ page_content=' This is contrary to the previously studied cases of conical singularities, where the quantum corrections of the conformally coupled scalar field yields a finite renormalized stress-energy tensor and the resulting back-reacted geometry acquires a horizon, which provides a mechanism that enforces cosmic censorship [6, 7, 8, 9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
156
+ page_content=' Our result indicates that the overspinning geometry is plagued by a more severe form of naked singularity, inaccessible by a perturbative approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
157
+ page_content=' Consequently, it is not possible to claim that the singularity may become dressed by perturbative quantum corrections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
158
+ page_content=' Our result seems to indicate that coupling a conformal quantum scalar field to an overspinning geometry may cause the metric to be significantly different from the original BTZ metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
159
+ page_content=' In any event, it is not possible to assert, as in the other cases of naked singularities, that quantum mechanics provides a cosmic censor in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
160
+ page_content=' It would be interesting to understand whether there is a more profound problem with this type of geometry, or if the strongly rotating behavior simply prevents the application of perturbative methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
161
+ page_content=' Perhaps one way to approach this problem would be by numerical methods, hoping to get a better understanding of the nature of this particular type of singularity and to see if this is purely a problem of the perturbative approach, or if there is a more fundamental issue with the overspinning singularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
162
+ page_content=' 7 Acknowledgements We thank C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
163
+ page_content=' Martínez, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
164
+ page_content=' Hassaïne and Steen Ryom-Hansen for many enlightening discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
165
+ page_content=' OB is funded by the PhD scholarship of the University of Talca.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
166
+ page_content=' This work has been partially funded by grant No 1220862 from ANID/Fondecyt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
167
+ page_content=' References [1] Roger Penrose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
168
+ page_content=' “Gravitational Collapse: the Role of General Relativity”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
169
+ page_content=' In: Nuovo Cimento Rivista Serie 1 (Jan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
170
+ page_content=' 1969), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
171
+ page_content=' 252.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
172
+ page_content=' [2] Máximo Bañados, Claudio Teitelboim, and Jorge Zanelli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
173
+ page_content=' “The Black hole in three-dimensional space-time”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
174
+ page_content=' In: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
175
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
176
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
177
+ page_content=' 69 (1992), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
178
+ page_content=' 1849–1851.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
179
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
180
+ page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
181
+ page_content='69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
182
+ page_content='1849.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
183
+ page_content=' arXiv: hep-th/9204099.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
184
+ page_content=' [3] Máximo Bañados et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
185
+ page_content=' “Geometry of the (2+1) black hole”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
186
+ page_content=' In: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
187
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
188
+ page_content=' D 48 (1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
189
+ page_content=' [Erratum: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
190
+ page_content='Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
191
+ page_content='D 88, 069902 (2013)], pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
192
+ page_content=' 1506–1525.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
193
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
194
+ page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
195
+ page_content='48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
196
+ page_content='1506.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
197
+ page_content=' arXiv: gr-qc/9302012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
198
+ page_content=' [4] Olivier Coussaert and Marc Henneaux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
199
+ page_content=' “Selfdual solutions of (2+1) Einstein gravity with a negative cosmological constant”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
200
+ page_content=' In: The Black Hole 25 Years After.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
201
+ page_content=' Jan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
202
+ page_content=' 1994, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
203
+ page_content=' 25–39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
204
+ page_content=' arXiv: hep-th/9407181.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
205
+ page_content=' [5] Eloy Ayon-Beato, Cristian Martinez, and Jorge Zanelli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
206
+ page_content=' “Birkhoff’s theorem for three-dimensional AdS gravity”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
207
+ page_content=' In: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
208
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
209
+ page_content=' D 70 (2004), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
210
+ page_content=' 044027.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
211
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
212
+ page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
213
+ page_content='70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
214
+ page_content='044027.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
215
+ page_content=' arXiv: hep-th/0403227.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
216
+ page_content=' [6] Marc Casals et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
217
+ page_content=' “Quantum dress for a naked singularity”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
218
+ page_content=' In: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
219
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
220
+ page_content=' B 760 (2016), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
221
+ page_content=' 244–248.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
222
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
223
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
224
+ page_content='physletb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
225
+ page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
226
+ page_content='06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
227
+ page_content='044.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
228
+ page_content=' arXiv: 1605.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
229
+ page_content='06078 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
230
+ page_content=' [7] Marc Casals et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
231
+ page_content=' “Quantum Backreaction on Three-Dimensional Black Holes and Naked Sin- gularities”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
232
+ page_content=' In: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
233
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
234
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
235
+ page_content=' 118.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
236
+ page_content='13 (2017), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
237
+ page_content=' 131102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
238
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
239
+ page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
240
+ page_content='118.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
241
+ page_content='131102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
242
+ page_content=' arXiv: 1608.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
243
+ page_content='05366 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
244
+ page_content=' [8] Marc Casals et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
245
+ page_content=' “Quantum fields as Cosmic Censors in (2 + 1)-dimensions”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
246
+ page_content=' In: Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
247
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
248
+ page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
249
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
250
+ page_content=' D 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
251
+ page_content='11 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
252
+ page_content=' Ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
253
+ page_content=' by L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
254
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
255
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
256
+ page_content=' Crispino et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
257
+ page_content=', p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
258
+ page_content=' 1843011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
259
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
260
+ page_content='1142/S0218271818430113.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
261
+ page_content=' [9] Marc Casals et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
262
+ page_content=' “Quantum-corrected rotating black holes and naked singularities in ( 2+1 ) dimensions”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
263
+ page_content=' In: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
264
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
265
+ page_content=' D 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
266
+ page_content='10 (2019), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
267
+ page_content=' 104023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
268
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
269
+ page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
270
+ page_content='99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
271
+ page_content='104023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
272
+ page_content=' arXiv: 1902.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
273
+ page_content='01583 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
274
+ page_content=' [10] Olivera Mišković and Jorge Zanelli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
275
+ page_content=' “On the negative spectrum of the 2+1 black hole”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
276
+ page_content=' In: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
277
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
278
+ page_content=' D 79 (2009), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
279
+ page_content=' 105011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
280
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
281
+ page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
282
+ page_content='79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
283
+ page_content='10501.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
284
+ page_content='arXiv: arXiv:0904.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
285
+ page_content='0475[hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
286
+ page_content=' [11] Roberto Emparan, Antonia Micol Frassino, and Benson Way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
287
+ page_content=' “Quantum BTZ black hole”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
288
+ page_content=' In: JHEP 11 (2020), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
289
+ page_content=' 137.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
290
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
291
+ page_content='1007/JHEP11(2020)137.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
292
+ page_content=' arXiv: 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
293
+ page_content='15999 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
294
+ page_content=' [12] Matías Briceño, Cristián Martínez, and Jorge Zanelli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
295
+ page_content=' “Overspinning naked singularities in AdS3 spacetime”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
296
+ page_content=' In: (May 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
297
+ page_content=' arXiv: 2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
298
+ page_content='06488 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
299
+ page_content=' [13] Alan R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
300
+ page_content=' Steif.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
301
+ page_content=' “The Quantum stress tensor in the three-dimensional black hole”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
302
+ page_content=' In: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
303
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
304
+ page_content=' D 49 (1994), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
305
+ page_content=' 585–589.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
306
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
307
+ page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
308
+ page_content='49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
309
+ page_content='R585.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
310
+ page_content=' arXiv: gr-qc/9308032.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
311
+ page_content=' [14] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
312
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
313
+ page_content=' Avis, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
314
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
315
+ page_content=' Isham, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
316
+ page_content=' Storey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
317
+ page_content=' “Quantum Field Theory in anti-De Sitter Space-Time”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
318
+ page_content=' In: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
319
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
320
+ page_content=' D 18 (1978), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
321
+ page_content=' 3565.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
322
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
323
+ page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
324
+ page_content='18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
325
+ page_content='3565.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
326
+ page_content=' 8 [15] Kiyoshi Shiraishi and Takuya Maki.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
327
+ page_content=' “Quantum fluctuation of stress tensor and black holes in three dimensions”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
328
+ page_content=' In: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
329
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
330
+ page_content=' D 49 (1994), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
331
+ page_content=' 5286–5294.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
332
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
333
+ page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
334
+ page_content='49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
335
+ page_content='5286.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
336
+ page_content=' arXiv: 1804.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
337
+ page_content='07872 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
338
+ page_content=' [16] Kiyoshi Shiraishi and Takuya Maki.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
339
+ page_content=' “Vacuum polarization near asymptotically anti-de Sit- ter black holes in odd dimensions”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
340
+ page_content=' In: Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
341
+ page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
342
+ page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
343
+ page_content=' 11 (1994), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
344
+ page_content=' 1687–1696.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
345
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
346
+ page_content='1088/0264-9381/11/7/009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
347
+ page_content=' arXiv: 1901.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
348
+ page_content='00977 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
349
+ page_content=' [17] Yves Decanini and Antoine Folacci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
350
+ page_content=' “Off-diagonal coefficients of the Dewitt-Schwinger and Hadamard representations of the Feynman propagator”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
351
+ page_content=' In: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
352
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
353
+ page_content=' D 73 (2006), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
354
+ page_content=' 044027.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
355
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
356
+ page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
357
+ page_content='73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
358
+ page_content='044027.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
359
+ page_content=' arXiv: gr-qc/0511115.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
360
+ page_content=' 9' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf'}
L9E4T4oBgHgl3EQfiw1J/content/tmp_files/2301.05136v1.pdf.txt ADDED
@@ -0,0 +1,675 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Received ;
2
+ Revised ;
3
+ Accepted
4
+ DOI: xxx/xxxx
5
+ PROCEEDINGS IWARA 2022
6
+ Light vector meson photoproduction in ultraperipheral heavy ion
7
+ collisions at the LHC within the Reggeometric Pomeron approach
8
+ László Jenkovszky1 | Érison S. Rocha2 | Magno V. T. Machado*2
9
+ 1Bogolyubov ITP, National Academy of
10
+ Sciences of Ukraine, Kiev 03143, Ukraine
11
+ 2HEP Phenomenology Group, Instituto de
12
+ Física UFRGS, RS, Brazil
13
+ Correspondence
14
+ *M.V.T. Machado. Email:
15
16
+ Funding Information
17
+ National Academy of Science of
18
+ Ukraine, 1230/22-1 Fundamental
19
+ Properties of Matter. Coordination
20
+ for the Improvement of Higher Edu-
21
+ cation Personnel (CAPES/Brazil),
22
+ Finance Code 001. National Coun-
23
+ cil for Scientific and Technolog-
24
+ ical Development (CNPq/Brazil),
25
+ 306101/2018-1.
26
+ By using the Reggeometric Pomeron model for vector meson production which
27
+ successfully describes the high energy lepton-nucleon data, we analyse the light
28
+ meson production in ultra-peripheral heavy ion collisions at the Large Hadron Col-
29
+ lider (LHC). The rapidity distributions for 휌 and 휙 photoproduction in lead-lead,
30
+ xenon-xenon and oxygen-oxygen collisions are investigated.
31
+ KEYWORDS:
32
+ ultra-peripheral heavy ion collisions, vector meson photoproduction, Regge phenomenology, Large
33
+ Hadron Collider
34
+ 1
35
+ INTRODUCTION
36
+ The exclusive light vector meson (푉 ) photoproduction has
37
+ been studied in recent years both experimentally and theoreti-
38
+ cally (Acharya et al., 2020, 2021; Andreev et al., 2020; S. Klein
39
+ et al., 2020; Sirunyan et al., 2019). The process has not asso-
40
+ ciated hard perturbative Quantum Chromodynamics (pQCD)
41
+ scale in the photoproduction limit, 푄2 → 0. Here, 푄2 is the so
42
+ called photon virtuality in the process 훾∗+푁 → 푉 +푁. There-
43
+ fore, light mesons can be used to test the non-perturbative
44
+ regime of the strong interactions. Within the parton satura-
45
+ tion formalism the transition between the region described by
46
+ pQCD and the non-perturbative regime is interpreted in terms
47
+ of the nucleon QCD saturation scale (Morreale & Salazar,
48
+ 2021), 푄푠(푥) ∼ 푥−0.3, with 푥 being the invariant Bjorken
49
+ kinematic variable. In the vector meson electroproduction off
50
+ nucleon target, 푥 = (푀2
51
+ 푉 + 푄2)∕(푊 2
52
+ 훾푁 + 푄2), where 푊훾푁 is
53
+ the centre-of-mass energy of the photon-nucleon system. In the
54
+ QCD color dipole picture (Chen & Mueller, 1995; Nemchik,
55
+ Nikolaev, Predazzi, & Zakharov, 1996; Nikolaev & Zakharov,
56
+ 1994) 푄푠 characterizes the boundary on the maximum phase-
57
+ space gluon density to be reached in the wave-function of the
58
+ nucleon. In this framework, the light meson photoproduction
59
+ dynamics at the present accelerator energies can be treated per-
60
+ turbatively as 푄푠 reaches values ≲ 1 GeV at very high energies.
61
+ The perturbative description is even improved in case of scat-
62
+ tering off nuclei of atomic number 퐴 as the nuclear saturation
63
+ scale, 푄2
64
+ 푠,퐴 ∝ 퐴1∕3푄2
65
+ 푠, is enhanced regarding the proton. On
66
+ the other hand, it is well known that this approach has been
67
+ unable to describe precisely the total photoproduction cross
68
+ section and 휌 production at 푄2 = 0 GeV2 (Forshaw, Kerley,
69
+ & Shaw, 1999; Gonçalves & Moreira, 2020). In fact, non-
70
+ perturbative corrections are necessary and they are embedded
71
+ in the photon wave-function, 휓훾
72
+ 푇 , for color dipoles containing
73
+ large transverse size.
74
+ In the soft physics sector, the Regge phenomenology
75
+ (Jenkovszky, Schicker, & Szanyi, 2018) is a well founded and
76
+ appropriated formalism to describe exclusive diffractive pro-
77
+ cesses, including the light meson photoproduction. The vector
78
+ meson production amplitude is written in a Regge-factorized
79
+ arXiv:2301.05136v1 [hep-ph] 12 Jan 2023
80
+
81
+ 2
82
+ structure with the corresponding coupling of particles to the
83
+ Pomeron. The introduction of a perturbative scale depen-
84
+ dence suitable for electroproduction can be constructed based
85
+ on geometric arguments. The Reggeometric Pomeron (RP)
86
+ model (Fazio, Fiore, Jenkovszky, & Salii, 2014; Fazio, Fiore,
87
+ Lavorini, Jenkovszky, & Salii, 2013) is one example of such
88
+ a class of phenomenological models. The RP model does a
89
+ good job in describing both photo and electroproduction at
90
+ the DESY-HERA energy regime considering a nucleon target.
91
+ The possibility for testing these models in the coherent vec-
92
+ tor meson production in ultraperipheral heavy ion collisions
93
+ (UPCs) is a reality nowadays. The basic argument is that the
94
+ production cross section in nucleus-nucleus (퐴퐴) collisions
95
+ can be factorized in terms of the equivalent flux of photons of
96
+ the colliding nucleus and the photon-target production cross
97
+ section (S. Klein & Steinberg, 2020).
98
+ In this contribution, the light meson photoproduction in
99
+ nucleus-nucleus UPCs collisions is investigated. The focus is
100
+ on the energies and nuclear species in the heavy ion collisions
101
+ at the Large Hadron Collider (LHC). The theoretical input is
102
+ the description based on the Reggeometric Pomeron model for
103
+ the elastic differential and integrated total cross section in the
104
+ (quasi-real) photon interaction with nucleons. The parameters
105
+ of the model are consistent with the measurements performed
106
+ by HERA-H1 (Andreev et al., 2020) and CMS collabora-
107
+ tions (Sirunyan et al., 2019) as shown in Ref. (Jenkovszky,
108
+ Rocha, & Machado, 2022). The nuclear coherent cross section
109
+ is then obtained by using Vector Dominance Model (VDM)
110
+ and Glauber multiple scattering theory. Predictions are per-
111
+ formed for 휌 and 휙 production in 퐴퐴 UPCs at the LHC. In
112
+ particular, results are compared to the measurements in PbPb
113
+ and XeXe UPCs done by ALICE Collaboration (Acharya et
114
+ al., 2020, 2021) for the energies of √푠NN = 5.02 TeV and
115
+ √푠NN = 5.44 TeV, respectively. Theoretical estimates for the
116
+ cross section in OO collisions are also presented. The study is
117
+ based on earlier works (Jenkovszky, Libov, & Machado, 2022a,
118
+ 2022b; Jenkovszky, Rocha, & Machado, 2022) by the authors.
119
+ The work has been organized as follows. In Sec. 2 we shortly
120
+ review the exclusive vector meson production, 훾+푝 → 푉 +푝, in
121
+ the context of the Reggeometric Pomeron model. Afterwards,
122
+ using VDM model and Glauber formalism for nuclear shad-
123
+ owing, the expression for the coherent nuclear cross section is
124
+ obtained. In section 3 the calculations are compared to avail-
125
+ able experimental measurements in PbPb and XeXe UPCs
126
+ collisions at the LHC. Prediction are done for future light ion
127
+ runs like oxygen-oxygen collisions. Furthermore, discussion
128
+ on the theoretical uncertainties is presented. In section 4 the
129
+ key results are summarized.
130
+ 2
131
+ THEORETICAL FRAMEWORK
132
+ Exclusive vector meson photoproduction process, 훾 + 푝 →
133
+ 푉 + 푝, will be described by using a model based on Regge
134
+ phenomenology, namely the Reggeometric Pomeron model. It
135
+ is also able to describe electroproduction data as discussed in
136
+ what follows. In general case, the hardness scale is given by
137
+ ̃푄2 = 푄2 + 푀2
138
+ 푉 .
139
+ The elastic differential cross section, 푑휎푒푙∕푑푡, related to the
140
+ single-component Reggeometric model in a given scale ̃푄2 is
141
+ given by (Fazio et al., 2014, 2013):
142
+ 푑휎푒푙
143
+ 푑푡
144
+ =
145
+ 퐴2
146
+ 0 exp
147
+ [
148
+ 퐵0(̃
149
+ 푄2) 푡
150
+ ]
151
+ (
152
+ 1 +
153
+ ̃
154
+ 푄2
155
+ 푄2
156
+ 0
157
+ )2푛
158
+ (푊 2
159
+ 훾푝
160
+ 푊 2
161
+ 0
162
+ )2(훼(푡)−1)
163
+ ,
164
+ (1)
165
+ 퐵0(̃
166
+ 푄2) = 4
167
+ (
168
+
169
+ ̃
170
+ 푄2 +
171
+
172
+ 2푚2
173
+
174
+ )
175
+ ,
176
+ (2)
177
+ where the quantity 퐵0(̃
178
+ 푄2) reflects the geometrical nature of
179
+ the model and 훼(푡) denotes the effective Pomeron (퐼푃) trajec-
180
+ tory. The first and second term in Eq. (2) correspond to the
181
+ effective sizes of the 훾퐼푃 푉 and 푝퐼푃 푝 vertices, respectively. In
182
+ the formula above, 푊0 = 1 GeV and 푚푁 is the nucleon mass.
183
+ It is assumed a linear Pomeron trajectory, 훼(푡) = 훼0 +훼′푡, with
184
+ an effective Pomeron intercept 훼0.
185
+ Accordingly, the integrated cross section is written as,
186
+ 휎(훾∗ + 푝 → 푉 + 푝) =
187
+ 퐴2
188
+ 0
189
+ (
190
+ 1 +
191
+ ̃푄2
192
+ ̃푄2
193
+ 0
194
+ )2푛
195
+ (푊훾푝∕푊0
196
+ )4(훼0−1)
197
+
198
+ (
199
+ 푊훾푝, ̃푄2
200
+ )
201
+ , (3)
202
+
203
+ (
204
+ 푊훾푝, ̃푄2)
205
+ = 퐵0(̃
206
+ 푄2) + 4훼′ ln
207
+ (푊훾푝
208
+ 푊0
209
+ )
210
+ .
211
+ (4)
212
+ In the photoproduction limit one has ̃푄2 = 푀2
213
+ 푉 and the param-
214
+ eters of the model for 휌 and 휙 production are presented in Table
215
+ 1 . They have been determined (Fazio et al., 2014) by using
216
+ DESY-HERA measurements (Aaron et al., 2010; Aid et al.,
217
+ 1996; Breitweg et al., 1998, 2000; Derrick et al., 1995).
218
+ Now the expressions for the nuclear coherent cross sections
219
+ are presented. Following the STARLIGHT Monte Carlo gen-
220
+ erator approach for UPCs processes (S. R. Klein, Nystrand,
221
+ Seger, Gorbunov, & Butterworth, 2017), nuclear effects for the
222
+ process, 훾 + 퐴 → 푉 + 퐴 are described here by vector domi-
223
+ nance model (Bauer, Spital, Yennie, & Pipkin, 1978) and the
224
+ classical mechanics Glauber formula for multiple scattering of
225
+ the vector meson in the nuclear medium. At 푡 = 0 the differen-
226
+ tial cross section is obtained by using the Optical theorem for
227
+ scattering in a nucleus and VDM as follows,
228
+ d휎 (훾 + 퐴 → 푉 + 퐴)
229
+ d푡
230
+ ||||푡=0
231
+ = 훼푒푚
232
+ 4푓 2
233
+
234
+ 휎2
235
+ 푡표푡 (푉 퐴) ,
236
+ (5)
237
+ 휎푡표푡 (푉 퐴) = ∫ d2b [1 − 푒−휎푡표푡(푉 푝)푇퐴(b)] ,(6)
238
+
239
+ 3
240
+ TABLE 1 Values of the parameters for the Reggeometric Pomeron model (Fazio et al., 2014).
241
+ Meson
242
+ 퐴0
243
+ [ √
244
+ nb
245
+ GeV
246
+ ]
247
+ ̃
248
+ 푄2
249
+ 0
250
+ [GeV2]
251
+
252
+ 훼0
253
+ 훼′ [GeV−2]
254
+
255
+
256
+
257
+ 344 ± 376
258
+ 0.29 ± 0.14
259
+ 1.24 ± 0.07
260
+ 1.16 ± 0.14
261
+ 0.21 ± 0.53
262
+ 0.60 ± 0.33
263
+ 0.9 ± 4.3
264
+
265
+ 58 ± 112
266
+ 0.89 ± 1.40
267
+ 1.30± 0.28
268
+ 1.14± 0.19
269
+ 0.17 ± 0.78
270
+ 0.0 ± 19.8
271
+ 1.34± 5.09
272
+ where 푇퐴(푏) is the nuclear thickness function and 푓푉 is
273
+ the vector-meson coupling. The values 푓 2
274
+ 휌 ∕4휋 = 2.02 and
275
+ 푓 2
276
+ 휙∕4휋 = 13.7 are considered in calculations, respectively. For
277
+ light mesons, 휎푡표푡(푉 푝) is large and the cross section 휎푡표푡(푉 퐴)
278
+ is approximately the geometric cross section. It is also almost
279
+ energy independent (Jenkovszky, Rocha, & Machado, 2022).
280
+ The input for the Glauber model calculation in Eq. (6) is the
281
+ effective vector meson–nucleon cross for the process 푉 + 푝 →
282
+ 푉 + 푝, which is given by:
283
+ 휎푡표푡 (푉 푝) =
284
+
285
+ 4푓 2
286
+
287
+ 훼푒푚
288
+ d휎 (훾 + 푝 → 푉 + 푝)
289
+ d푡
290
+ ||||푡=0
291
+ ,
292
+ (7)
293
+ where the differential cross section coming from the Reggeo-
294
+ metric Pomeron model, Eq. (1), will be introduced in Eq. (7) .
295
+ The corresponding integrated cross section is given by:
296
+ 휎(훾 + 퐴 → 푉 + 퐴) = 푑휎(훾 + 퐴 → 푉 + 퐴)
297
+ 푑푡
298
+ ||||푡=0
299
+ ×
300
+
301
+
302
+ 푡푚푖푛
303
+ d|푡| ||퐹퐴 (푡)||
304
+ 2 ,
305
+ (8)
306
+ where the quantity 퐹퐴 is the nuclear form factor. It is taken
307
+ into account an analytic form factor given by a hard sphere
308
+ of radius, 푅퐴 = 푟0퐴1∕3 fm (푟0 ≃ 1.2 fm), convoluted with a
309
+ Yukawa potential with range 푎 (Davies & Nix, 1976),
310
+ 퐹퐴(|푞|) = 4휋휌0
311
+ 퐴|푞3|
312
+ (
313
+ 1
314
+ 1 + 푎2푞2
315
+ )
316
+ × [sin (|푞|푅퐴) − |푞|푅퐴 cos (|푞|푅퐴)] ,
317
+ (9)
318
+ where 푞 is the momentum transfer, 휌0 = 3퐴∕(4휋푅3
319
+ 퐴) fm−3 and
320
+ 푎 = 0.7 fm.
321
+ In the calculations the reggeon contribution is added to
322
+ the photoproduction off nucleons. The corresponding cross
323
+ section is parameterized as,
324
+ 푑휎퐼푅(훾푝 → 푉 푃)
325
+ 푑푡
326
+ |||||푡=0
327
+ = 푏푉 푌 푊 −휂
328
+ 훾푝 ,
329
+ (10)
330
+ where the constants 푏푉
331
+ = 11 GeV−2, 푌
332
+ = 26.0 휇b and
333
+ 휂 = 1.23 have been considered for the 휌 production. For the
334
+ 휙, meson exchange is strongly suppressed, and the reaction
335
+ occurs only through 퐼푃-exchange.
336
+ The 퐴-dependence of the cross section for the coherent pro-
337
+ duction of 휌 meson, 휎(훾 + 퐴 → 휌 + 퐴), is presented in Fig.
338
+ FIGURE 1 The 퐴-dependence of the cross section for the
339
+ coherent production of 휌 meson from Reggeometric Pomeron
340
+ model at the LHC. Data from ALICE Collaboration (Acharya
341
+ et al., 2021).
342
+ 1 . Comparison is done with the extracted values of the coher-
343
+ ent cross section performed in Ref. (Acharya et al., 2021) by
344
+ ALICE Collaboration using the measured data on UPCs at the
345
+ LHC (PbPb collisions at 5.02 TeV and XeXe at 5.44 TeV).
346
+ The description is quite reasonable for the nuclear dependence.
347
+ At central rapidity, 푦 = 0, the photon-nucleon centre-of-mass
348
+ energy squared is 푊 2
349
+ 훾푁 = 푀푉
350
+ √푠NN. For xenon the cross
351
+ section corresponds to 푊훾푁 = 65 GeV and 휎(훾Xe → 휌Xe) ≃
352
+ 1.12 ± 0.21 mb. The predicted values from the Reggeomet-
353
+ ric Pomeron model is 1.07 mb. For lead, the data is 휎(훾Pb →
354
+ 휌Pb) ≃ 2.09 ± 0.16 mb for energy 푊훾푁 = 62 GeV and the
355
+ prediction 1.54 mb. Theoretical calculation underestimates the
356
+ extracted 훾Pb cross section, which suggests a strong nuclear
357
+ shadowing correction for very large nucleus in the formalism
358
+ considered for the study.
359
+
360
+ 3,0
361
+ ALICE-Xe
362
+ 2,5
363
+ ALICE-Pb
364
+ ReggeometricPomeron model
365
+ [mb]
366
+ +A)
367
+ P1,5
368
+
369
+ V+i)
370
+ 1,0
371
+ a
372
+ 0.5
373
+ 0,0
374
+ 1
375
+ 0
376
+ 20
377
+ 40
378
+ 60
379
+ 80
380
+ 100
381
+ 120
382
+ 140
383
+ 160
384
+ 180
385
+ 200
386
+ 220
387
+ 240
388
+ A4
389
+ FIGURE 2 Rapidity distributions for the exclusive 휌 meson photoproduction in ultraperipheral PbPb (left panel), XeXe (central
390
+ panel and OO (right panel) collisions considering the Reggeometric Pomeron model. Prediction are done for the current run
391
+ (solid lines) and future HL-LHC run (dashed lines). Comparison is done to ALICE Collaboration data (Acharya et al., 2020,
392
+ 2021).
393
+ 3
394
+ RESULTS AND DISCUSSIONS
395
+ The rapidity distribution for meson production in nucleus-
396
+ nucleus UPCs takes a factorized form in the Equivalent Photon
397
+ Approximation (EPA). The expression is given by:
398
+ 푑휎(퐴 + 퐴 → 퐴 + 푉 + 퐴)
399
+ 푑푦
400
+ = 푘+ 푑푁훾∕퐴(푘+)
401
+ 푑푘
402
+ 휎훾퐴→푉 퐴(푘+)
403
+ + 푘− 푑푁훾∕퐴(푘−)
404
+ 푑푘
405
+ 휎훾퐴→푉 퐴(푘−),
406
+ (11)
407
+ where 푑푁훾∕퐴∕푑푘 is the photon flux in nucleus 퐴 and 푘 is the
408
+ photon momentum. For fixed rapidity 푦 and transverse momen-
409
+ tum 푝2
410
+ 푇 ≈ |푡| of the produced mesons, the photon momentum
411
+ is given by 푘± =
412
+ 푀2
413
+ 푉 −푡
414
+ 2푀푇 푒∓푦 . Here, 푀푇 =
415
+
416
+ 푀2
417
+ 푉 + 푝2
418
+ 푇 is the
419
+ transverse mass of the mesons.
420
+ For simplicity, the analytical expression for the flux of pho-
421
+ tons produced by a fast-moving point-like charge has been
422
+ considered (S. R. Klein et al., 2017),
423
+ 푑푁훾∕퐴(푘)
424
+ 푑푘
425
+ = 2푍2훼푒푚
426
+ 휋푘
427
+ [
428
+ 푥퐾0(푥)퐾1(푥) − 푥2
429
+ 2
430
+ (퐾2
431
+ 1(푥) − 퐾2
432
+ 0(푥))]
433
+ ,
434
+ (12)
435
+ where 푥 = 2푅퐴푘∕훾퐿 and 훾퐿 is the Lorentz factor. 퐾0,1(푥) are
436
+ the modified Bessel functions of the second kind.
437
+ In Fig. 2 results are shown for 휌 production in PbPb, XeXe
438
+ and OO UPCs at the LHC in the rapidity range |푦| ≤ 6. Left
439
+ panel: predictions are presented for the PbPb collisions in ener-
440
+ gies of √푠NN = 5.02 (solid line) and 5.52 TeV (dashed line),
441
+ respectively. It is shown also the measurement performed by
442
+ ALICE Collaboration at mid-rapidity (Acharya et al., 2020).
443
+ Central panel: predictions for XeXe collisions in √푠NN = 5.44
444
+ (solid line) and 5.86 TeV (dashed line) compared to ALICE
445
+ data (Acharya et al., 2021). Right panel: predictions for OO
446
+ collisions with energies of √푠NN = 5.52 (solid line) and 7.00
447
+ TeV (dashed line), respectively. The second energy bin corre-
448
+ sponds to the designed √푠NN for the future High-Luminosity
449
+ LHC (HL-LHC) run (Bruce et al., 2020). In general, the model
450
+ is suitable to predict the magnitude and shape of the rapidity
451
+ distribution in XeXe UPCs. The corresponding suppression at
452
+ central rapidities in PbPb case is consequence of the coherent
453
+ cross section to be underestimated as shown in Fig. 1 Namely,
454
+ the nuclear effects for xenon nucleus are less intense as for lead
455
+ nucleus.
456
+
457
+ 800
458
+ ALICE PbPb UPC 5.02 TeV
459
+ ALICE XeXe UPC 4.44 TeV
460
+ O0 UPC 5.52 TeV
461
+ 700
462
+ PbPb UPC 5.02 TeV
463
+ XeXe UPC 5.44 TeV
464
+ DO UPC7.00TeV
465
+ PbPb UPC 5.52 TeV
466
+ 180
467
+ XeXeUPC 5.86 TeV
468
+ pAA) [mb]
469
+ 0.7
470
+ 600
471
+ 160
472
+ 500
473
+ 140
474
+ 0.6
475
+ 1
476
+ (AA
477
+ 300
478
+ 120
479
+ do/dy
480
+ 0.5
481
+ 200
482
+ 100
483
+ 100
484
+ 0.4
485
+ 80
486
+ 6
487
+ 6
488
+ 0
489
+ 6
490
+ y
491
+ y5
492
+ FIGURE 3 Rapidity distributions for the exclusive 휙 meson photoproduction in ultraperipheral PbPb (left panel), XeXe (central
493
+ panel and OO (right panel) collisions considering the Reggeometric Pomeron model. Prediction are done for the current run
494
+ (solid lines) and future HL-LHC run (dashed lines).
495
+ The contribution of Reggeons to 휌 coherent production turns
496
+ out to be evident in the rapidity distributions at large |푦|. It is
497
+ also 퐴-dependent where the contribution is more important for
498
+ light nuclei than heavy ones. In particular, the energy depen-
499
+ dence of the photon-nucleon cross section, the suppression due
500
+ to nuclear shadowing, and the drop of the flux of high-energy
501
+ photons drive the distribution in the central and forward (back-
502
+ ward) rapidity regions. Bumps or shoulders at large rapidities
503
+ are due to an enhanced contribution of low-energy photopro-
504
+ duction related to the secondary Reggeon exchange in the
505
+ meson-nucleon interaction. The Glauber shadowing at low
506
+ energies is more intense for lead nuclei compared to xenon and
507
+ oxigen ones. This is the reason for the shoulder appearing in
508
+ XeXe and OO collisions and not in PbPb.
509
+ Finally, in Fig. 3 predictions for coherent 휙 photoproduc-
510
+ tion are presented. Using the same notation as previous figure,
511
+ calculations are performed for PbPb, XeXe and OO collisions
512
+ for the energies of the present LHC run (solid lines) and the
513
+ HL-LHC run (dashed lines). Currently, there is no data avail-
514
+ able for 휙 production in AA UPCs at the LHC. It is planned
515
+ a high-granularity detector named FoCal (Bylinkin, Nystrand,
516
+ & Tapia Takaki, 2022) to be installed at the ALICE experi-
517
+ ment, covering large rapidities. It will allow to measure the
518
+ cross sections and expected yields for exclusive production in
519
+ the dielectron decay channel with a coverage for both electrons
520
+ within 3.4 ≤ 휂 ≤ 5.8. The detector FoCal can contribute for
521
+ precise measurements of low-mass vector mesons production
522
+ such as 휌 and 휙 as well as excited 휌 meson states.
523
+ Finally, we discuss the theoretical uncertainties on the cal-
524
+ culations. The predictions are in agreement with those from the
525
+ STARLIGHT Monte Carlo generator for UPCs (S. R. Klein et
526
+ al., 2017) but the cross sections of the coherent meson produc-
527
+ tion are considerably smaller than calculations in Refs. (Frank-
528
+ furt, Guzey, Strikman, & Zhalov, 2016; Guzey, Kryshen, &
529
+ Zhalov, 2020). The main sources of discrepancies are the use
530
+ of the factorized form, Eq. (8), and the classical Glauber for-
531
+ mula, Eq. (6). It is considered the inelastic meson–nucleus
532
+ cross section instead of the total cross section which decreases
533
+ the prediction for the forward cross section by a factor ∼
534
+ 2. Namely, the total cross section of the 푉 퐴 interaction
535
+ is obtained from classical mechanics (MC) Glauber model.
536
+ However, the quantum mechanics expression is given by the
537
+ Gribov-Glauber (GG) formalism where the 푉 퐴 cross section
538
+ is given by:
539
+ 휎GG
540
+ 푡표푡 (푉 퐴) = 2 ∫ 푑2⃗푏
541
+ [
542
+ 1 − exp
543
+ (
544
+ −1
545
+ 2휎푉 푁푇퐴(⃗푏)
546
+ )]
547
+ .
548
+ (13)
549
+
550
+ 30
551
+ PbPb UPC 5.02 TeV
552
+ XeXe UPC 5.44 TeV
553
+ OO UPC 5.52TeV
554
+ PbPbUPC5.52TeV
555
+ XeXeUPC5.86TeV
556
+ OO UPC 7.00 TeV
557
+ 40
558
+ 16
559
+ 0.08
560
+ do/dy (AA →ΦAA) [mb]
561
+ 12
562
+ 0.06
563
+ 20
564
+ 0.04
565
+ 10
566
+ 0.02
567
+ 66
568
+ For example, in the simplification of a sharp sphere nucleus
569
+ with 휌0 = 0.17 fm−3 and radius 푅퐴 one can obtain an estimate
570
+ of the ratio between the GG and CM cross sections,
571
+ 휎GG
572
+ 푡표푡 (푉 퐴)
573
+ 휎CM
574
+ 푡표푡 (푉 퐴)
575
+ ≈ 2
576
+ (
577
+ 1 −
578
+ 3
579
+ 2휌2
580
+ 0휎2
581
+ 푉 푁푅2
582
+
583
+ )
584
+ .
585
+ (14)
586
+ Let us consider the 휌 production. The ratio is ≈ 1.67 for lead
587
+ and 1.55 for xenon by using 휎휌푁 ≈ 25 mb. The classical prob-
588
+ abilistic formula (CM) and the Glauber-Gribov (GG) approach
589
+ give near values of the 휎푡표푡(푉 퐴) only when 휎푡표푡(푉 푝)푇퐴(푏) ≪ 1.
590
+ It is expected that difference for 휙 production be smaller due
591
+ to the lower 휎푡표푡(휙퐴) cross section.
592
+ 4
593
+ CONCLUSIONS
594
+ In this contribution predictions for exclusive light vector
595
+ meson photoproduction in UPCs collisions at the LHC are
596
+ presented and compared with the current experimental mea-
597
+ surements. The theoretical approach is based on Regge phe-
598
+ nomenology. In particular, the single-component Reggeomet-
599
+ ric Pomeron model has been considered. Concerning the rapid-
600
+ ity distributions for 휌 production in PbPb UPCs, the model
601
+ underestimates the data whereas does a better job in case of
602
+ XeXe UPCs. Predictions are provided for OO UPCs in a future
603
+ LHC run in light heavy ion model. The results for 휙 follow the
604
+ same trend observed in 휌 production. The theoretical uncer-
605
+ tainties are considerably large concerning the computation of
606
+ nuclear effects, factorization between energy and momentum
607
+ transfer dependence among others.
608
+ The main focus was on the investigation of how models of
609
+ vector meson production in electron-proton scattering affect
610
+ the results in ultra-peripheral nucleus-nucleus collisions. This
611
+ direction of research is especially promising also because of
612
+ the planned experiments at future accelerators. It is promis-
613
+ ing the coverage of the ALICE FoCal detector which allows to
614
+ study the vector meson photoproduction in both low and high
615
+ photon-nucleon centre-of-mass energies.
616
+ ACKNOWLEDGMENTS
617
+ This work was partially supported by the National Academy
618
+ of Science of Ukraine grant 1230/22-1 Fundamental Prop-
619
+ erties of Matter, the Coordination for the Improvement
620
+ of Higher Education Personnel (CAPES/Brazil) grant
621
+ Finance Code 001 and by the National Council for Scien-
622
+ tific and Technological Development (CNPq/Brazil) grant
623
+ 306101/2018-1.
624
+ Financial disclosure
625
+ None reported.
626
+ Conflict of interest
627
+ The authors declare no potential conflict of interests.
628
+ REFERENCES
629
+ Aaron, F. D., et al. 2010, JHEP, 05, 032.
630
+ Acharya, S., et al. 2020, JHEP, 06, 035.
631
+ Acharya, S., et al. 2021, Phys. Lett. B, 820, 136481.
632
+ Aid, S., et al. 1996, Nucl. Phys. B, 463, 3–32.
633
+ Andreev, V., et al. 2020, Eur. Phys. J. C, 80(12), 1189.
634
+ Bauer, T. H., Spital, R. D., Yennie, D. R., & Pipkin, F. M. 1978, Apr,
635
+ Rev. Mod. Phys., 50, 261–436.
636
+ Breitweg, J., et al. 1998, Eur. Phys. J. C, 2, 247–267.
637
+ Breitweg, J., et al. 2000, Eur. Phys. J. C, 14, 213–238.
638
+ Bruce, R., et al. 2020, J. Phys. G, 47(6), 060501.
639
+ Bylinkin, A., Nystrand, J., & Tapia Takaki, D. 2022, 11,
640
+ Chen, Z., & Mueller, A. H. 1995, Nucl. Phys. B, 451, 579–604.
641
+ Davies, K. T. R., & Nix, J. R. 1976, Nov, Phys. Rev. C, 14, 1977–
642
+ 1994.
643
+ Derrick, M., et al. 1995, Z. Phys. C, 69, 39–54.
644
+ Fazio, S., Fiore, R., Jenkovszky, L., & Salii, A. 2014, Phys. Rev. D,
645
+ 90(1), 016007.
646
+ Fazio, S., Fiore, R., Lavorini, A., Jenkovszky, L., & Salii, A. 2013,
647
+ Acta Phys. Polon. B, 44, 1333–1353.
648
+ Forshaw, J. R., Kerley, G., & Shaw, G.
649
+ 1999,
650
+ Phys. Rev. D, 60,
651
+ 074012.
652
+ Frankfurt, L., Guzey, V., Strikman, M., & Zhalov, M. 2016, Phys.
653
+ Lett. B, 752, 51–58.
654
+ Gonçalves, V. P., & Moreira, B. D. 2020, Eur. Phys. J. C, 80(6), 492.
655
+ Guzey, V., Kryshen, E., & Zhalov, M. 2020, Phys. Rev. C, 102(1),
656
+ 015208.
657
+ Jenkovszky, L., Libov, V., & Machado, M. V. T. 2022a, Phys. Lett.
658
+ B, 824, 136836.
659
+ Jenkovszky, L., Libov, V., & Machado, M. V. T. 2022b, Phys. Lett.
660
+ B, 827, 137004.
661
+ Jenkovszky, L., Rocha, E. d. S., & Machado, M. V. T. 2022, Phys.
662
+ Lett. B, 835, 137585.
663
+ Jenkovszky, L., Schicker, R., & Szanyi, I. 2018, Int. J. Mod. Phys. E,
664
+ 27(08), 1830005.
665
+ Klein, S., et al. 2020, 9,
666
+ Klein, S., & Steinberg, P. 2020, Ann. Rev. Nucl. Part. Sci., 70, 323–
667
+ 354.
668
+ Klein, S. R., Nystrand, J., Seger, J., Gorbunov, Y., & Butterworth, J.
669
+ 2017, Comput. Phys. Commun., 212, 258–268.
670
+ Morreale, A., & Salazar, F. 2021, Universe, 7(8), 312.
671
+ Nemchik, J., Nikolaev, N. N., Predazzi, E., & Zakharov, B. G. 1996,
672
+ Phys. Lett. B, 374, 199–204.
673
+ Nikolaev, N. N., & Zakharov, B. G. 1994, Z. Phys. C, 64, 631–652.
674
+ Sirunyan, A. M., et al. 2019, Eur. Phys. J. C, 79(8), 702.
675
+
L9E4T4oBgHgl3EQfiw1J/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,468 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf,len=467
2
+ page_content='Received ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
3
+ page_content=' Revised ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
4
+ page_content=' Accepted DOI: xxx/xxxx PROCEEDINGS IWARA 2022 Light vector meson photoproduction in ultraperipheral heavy ion collisions at the LHC within the Reggeometric Pomeron approach László Jenkovszky1 | Érison S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
5
+ page_content=' Rocha2 | Magno V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
6
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
7
+ page_content=' Machado*2 1Bogolyubov ITP, National Academy of Sciences of Ukraine, Kiev 03143, Ukraine 2HEP Phenomenology Group, Instituto de Física UFRGS, RS, Brazil Correspondence M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
8
+ page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
9
+ page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
10
+ page_content=' Machado.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
11
+ page_content=' Email: magnus@if.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
12
+ page_content='ufrgs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
13
+ page_content='br Funding Information National Academy of Science of Ukraine, 1230/22-1 Fundamental Properties of Matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
14
+ page_content=' Coordination for the Improvement of Higher Edu- cation Personnel (CAPES/Brazil), Finance Code 001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
15
+ page_content=' National Coun- cil for Scientific and Technolog- ical Development (CNPq/Brazil), 306101/2018-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
16
+ page_content=' By using the Reggeometric Pomeron model for vector meson production which successfully describes the high energy lepton-nucleon data, we analyse the light meson production in ultra-peripheral heavy ion collisions at the Large Hadron Col- lider (LHC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
17
+ page_content=' The rapidity distributions for 휌 and 휙 photoproduction in lead-lead, xenon-xenon and oxygen-oxygen collisions are investigated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
18
+ page_content=' KEYWORDS: ultra-peripheral heavy ion collisions, vector meson photoproduction, Regge phenomenology, Large Hadron Collider 1 INTRODUCTION The exclusive light vector meson (푉 ) photoproduction has been studied in recent years both experimentally and theoreti- cally (Acharya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
19
+ page_content=', 2020, 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
20
+ page_content=' Andreev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
21
+ page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
22
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
23
+ page_content=' Klein et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
24
+ page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
25
+ page_content=' Sirunyan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
26
+ page_content=', 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
27
+ page_content=' The process has not asso- ciated hard perturbative Quantum Chromodynamics (pQCD) scale in the photoproduction limit, 푄2 → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
28
+ page_content=' Here, 푄2 is the so called photon virtuality in the process 훾∗+푁 → 푉 +푁.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
29
+ page_content=' There- fore, light mesons can be used to test the non-perturbative regime of the strong interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
30
+ page_content=' Within the parton satura- tion formalism the transition between the region described by pQCD and the non-perturbative regime is interpreted in terms of the nucleon QCD saturation scale (Morreale & Salazar, 2021), 푄푠(푥) ∼ 푥−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
31
+ page_content='3, with 푥 being the invariant Bjorken kinematic variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
32
+ page_content=' In the vector meson electroproduction off nucleon target, 푥 = (푀2 푉 + 푄2)∕(푊 2 훾푁 + 푄2), where 푊훾푁 is the centre-of-mass energy of the photon-nucleon system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
33
+ page_content=' In the QCD color dipole picture (Chen & Mueller, 1995;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
34
+ page_content=' Nemchik, Nikolaev, Predazzi, & Zakharov, 1996;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
35
+ page_content=' Nikolaev & Zakharov, 1994) 푄푠 characterizes the boundary on the maximum phase- space gluon density to be reached in the wave-function of the nucleon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
36
+ page_content=' In this framework, the light meson photoproduction dynamics at the present accelerator energies can be treated per- turbatively as 푄푠 reaches values ≲ 1 GeV at very high energies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
37
+ page_content=' The perturbative description is even improved in case of scat- tering off nuclei of atomic number 퐴 as the nuclear saturation scale, 푄2 푠,퐴 ∝ 퐴1∕3푄2 푠, is enhanced regarding the proton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
38
+ page_content=' On the other hand, it is well known that this approach has been unable to describe precisely the total photoproduction cross section and 휌 production at 푄2 = 0 GeV2 (Forshaw, Kerley, & Shaw, 1999;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
39
+ page_content=' Gonçalves & Moreira, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
40
+ page_content=' In fact, non- perturbative corrections are necessary and they are embedded in the photon wave-function, 휓훾 푇 , for color dipoles containing large transverse size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
41
+ page_content=' In the soft physics sector, the Regge phenomenology (Jenkovszky, Schicker, & Szanyi, 2018) is a well founded and appropriated formalism to describe exclusive diffractive pro- cesses, including the light meson photoproduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
42
+ page_content=' The vector meson production amplitude is written in a Regge-factorized arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
43
+ page_content='05136v1 [hep-ph] 12 Jan 2023 2 structure with the corresponding coupling of particles to the Pomeron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
44
+ page_content=' The introduction of a perturbative scale depen- dence suitable for electroproduction can be constructed based on geometric arguments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
45
+ page_content=' The Reggeometric Pomeron (RP) model (Fazio, Fiore, Jenkovszky, & Salii, 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
46
+ page_content=' Fazio, Fiore, Lavorini, Jenkovszky, & Salii, 2013) is one example of such a class of phenomenological models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
47
+ page_content=' The RP model does a good job in describing both photo and electroproduction at the DESY-HERA energy regime considering a nucleon target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
48
+ page_content=' The possibility for testing these models in the coherent vec- tor meson production in ultraperipheral heavy ion collisions (UPCs) is a reality nowadays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
49
+ page_content=' The basic argument is that the production cross section in nucleus-nucleus (퐴퐴) collisions can be factorized in terms of the equivalent flux of photons of the colliding nucleus and the photon-target production cross section (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
50
+ page_content=' Klein & Steinberg, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
51
+ page_content=' In this contribution, the light meson photoproduction in nucleus-nucleus UPCs collisions is investigated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
52
+ page_content=' The focus is on the energies and nuclear species in the heavy ion collisions at the Large Hadron Collider (LHC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
53
+ page_content=' The theoretical input is the description based on the Reggeometric Pomeron model for the elastic differential and integrated total cross section in the (quasi-real) photon interaction with nucleons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
54
+ page_content=' The parameters of the model are consistent with the measurements performed by HERA-H1 (Andreev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
55
+ page_content=', 2020) and CMS collabora- tions (Sirunyan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
56
+ page_content=', 2019) as shown in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
57
+ page_content=' (Jenkovszky, Rocha, & Machado, 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
58
+ page_content=' The nuclear coherent cross section is then obtained by using Vector Dominance Model (VDM) and Glauber multiple scattering theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
59
+ page_content=' Predictions are per- formed for 휌 and 휙 production in 퐴퐴 UPCs at the LHC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
60
+ page_content=' In particular, results are compared to the measurements in PbPb and XeXe UPCs done by ALICE Collaboration (Acharya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
61
+ page_content=', 2020, 2021) for the energies of √푠NN = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
62
+ page_content='02 TeV and √푠NN = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
63
+ page_content='44 TeV, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
64
+ page_content=' Theoretical estimates for the cross section in OO collisions are also presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
65
+ page_content=' The study is based on earlier works (Jenkovszky, Libov, & Machado, 2022a, 2022b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
66
+ page_content=' Jenkovszky, Rocha, & Machado, 2022) by the authors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
67
+ page_content=' The work has been organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
68
+ page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
69
+ page_content=' 2 we shortly review the exclusive vector meson production, 훾+푝 → 푉 +푝, in the context of the Reggeometric Pomeron model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
70
+ page_content=' Afterwards, using VDM model and Glauber formalism for nuclear shad- owing, the expression for the coherent nuclear cross section is obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
71
+ page_content=' In section 3 the calculations are compared to avail- able experimental measurements in PbPb and XeXe UPCs collisions at the LHC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
72
+ page_content=' Prediction are done for future light ion runs like oxygen-oxygen collisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
73
+ page_content=' Furthermore, discussion on the theoretical uncertainties is presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
74
+ page_content=' In section 4 the key results are summarized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
75
+ page_content=' 2 THEORETICAL FRAMEWORK Exclusive vector meson photoproduction process, 훾 + 푝 → 푉 + 푝, will be described by using a model based on Regge phenomenology, namely the Reggeometric Pomeron model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
76
+ page_content=' It is also able to describe electroproduction data as discussed in what follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
77
+ page_content=' In general case, the hardness scale is given by ̃푄2 = 푄2 + 푀2 푉 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
78
+ page_content=' The elastic differential cross section, 푑휎푒푙∕푑푡, related to the single-component Reggeometric model in a given scale ̃푄2 is given by (Fazio et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
79
+ page_content=', 2014, 2013): 푑휎푒푙 푑푡 = 퐴2 0 exp [ 퐵0(̃ 푄2) 푡 ] ( 1 + ̃ 푄2 푄2 0 )2푛 (푊 2 훾푝 푊 2 0 )2(훼(푡)−1) , (1) 퐵0(̃ 푄2) = 4 ( 푎 ̃ 푄2 + 푏 2푚2 푁 ) , (2) where the quantity 퐵0(̃ 푄2) reflects the geometrical nature of the model and 훼(푡) denotes the effective Pomeron (퐼푃) trajec- tory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
80
+ page_content=' The first and second term in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
81
+ page_content=' (2) correspond to the effective sizes of the 훾퐼푃 푉 and 푝퐼푃 푝 vertices, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
82
+ page_content=' In the formula above, 푊0 = 1 GeV and 푚푁 is the nucleon mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
83
+ page_content=' It is assumed a linear Pomeron trajectory, 훼(푡) = 훼0 +훼′푡, with an effective Pomeron intercept 훼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
84
+ page_content=' Accordingly, the integrated cross section is written as, 휎(훾∗ + 푝 → 푉 + 푝) = 퐴2 0 ( 1 + ̃푄2 ̃푄2 0 )2푛 (푊훾푝∕푊0 )4(훼0−1) 퐵 ( 푊훾푝, ̃푄2 ) , (3) 퐵 ( 푊훾푝, ̃푄2) = 퐵0(̃ 푄2) + 4훼′ ln (푊훾푝 푊0 ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
85
+ page_content=' (4) In the photoproduction limit one has ̃푄2 = 푀2 푉 and the param- eters of the model for 휌 and 휙 production are presented in Table 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
86
+ page_content=' They have been determined (Fazio et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
87
+ page_content=', 2014) by using DESY-HERA measurements (Aaron et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
88
+ page_content=', 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
89
+ page_content=' Aid et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
90
+ page_content=', 1996;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
91
+ page_content=' Breitweg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
92
+ page_content=', 1998, 2000;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
93
+ page_content=' Derrick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
94
+ page_content=', 1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
95
+ page_content=' Now the expressions for the nuclear coherent cross sections are presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
96
+ page_content=' Following the STARLIGHT Monte Carlo gen- erator approach for UPCs processes (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
97
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
98
+ page_content=' Klein, Nystrand, Seger, Gorbunov, & Butterworth, 2017), nuclear effects for the process, 훾 + 퐴 → 푉 + 퐴 are described here by vector domi- nance model (Bauer, Spital, Yennie, & Pipkin, 1978) and the classical mechanics Glauber formula for multiple scattering of the vector meson in the nuclear medium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
99
+ page_content=' At 푡 = 0 the differen- tial cross section is obtained by using the Optical theorem for scattering in a nucleus and VDM as follows, d휎 (훾 + 퐴 → 푉 + 퐴) d푡 ||||푡=0 = 훼푒푚 4푓 2 푉 휎2 푡표푡 (푉 퐴) , (5) 휎푡표푡 (푉 퐴) = ∫ d2b [1 − 푒−휎푡표푡(푉 푝)푇퐴(b)] ,(6) 3 TABLE 1 Values of the parameters for the Reggeometric Pomeron model (Fazio et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
100
+ page_content=', 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
101
+ page_content=' Meson 퐴0 [ √ nb GeV ] ̃ 푄2 0 [GeV2] 푛 훼0 훼′ [GeV−2] 푎 푏 휌 344 ± 376 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
102
+ page_content='29 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
103
+ page_content='14 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
104
+ page_content='24 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
105
+ page_content='07 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
106
+ page_content='16 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
107
+ page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
108
+ page_content='21 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
109
+ page_content='53 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
110
+ page_content='60 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
111
+ page_content='33 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
112
+ page_content='9 ± 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
113
+ page_content='3 휙 58 ± 112 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
114
+ page_content='89 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
115
+ page_content='40 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
116
+ page_content='30± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
117
+ page_content='28 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
118
+ page_content='14± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
119
+ page_content='19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
120
+ page_content='17 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
121
+ page_content='78 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
122
+ page_content='0 ± 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
123
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
124
+ page_content='34± 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
125
+ page_content='09 where 푇퐴(푏) is the nuclear thickness function and 푓푉 is the vector-meson coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
126
+ page_content=' The values 푓 2 휌 ∕4휋 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
127
+ page_content='02 and 푓 2 휙∕4휋 = 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
128
+ page_content='7 are considered in calculations, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
129
+ page_content=' For light mesons, 휎푡표푡(푉 푝) is large and the cross section 휎푡표푡(푉 퐴) is approximately the geometric cross section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
130
+ page_content=' It is also almost energy independent (Jenkovszky, Rocha, & Machado, 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
131
+ page_content=' The input for the Glauber model calculation in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
132
+ page_content=' (6) is the effective vector meson–nucleon cross for the process 푉 + 푝 → 푉 + 푝, which is given by: 휎푡표푡 (푉 푝) = √ 4푓 2 푉 훼푒푚 d휎 (훾 + 푝 → 푉 + 푝) d푡 ||||푡=0 , (7) where the differential cross section coming from the Reggeo- metric Pomeron model, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
133
+ page_content=' (1), will be introduced in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
134
+ page_content=' (7) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
135
+ page_content=' The corresponding integrated cross section is given by: 휎(훾 + 퐴 → 푉 + 퐴) = 푑휎(훾 + 퐴 → 푉 + 퐴) 푑푡 ||||푡=0 × ∞ ∫ 푡푚푖푛 d|푡| ||퐹퐴 (푡)|| 2 , (8) where the quantity 퐹퐴 is the nuclear form factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
136
+ page_content=' It is taken into account an analytic form factor given by a hard sphere of radius, 푅퐴 = 푟0퐴1∕3 fm (푟0 ≃ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
137
+ page_content='2 fm), convoluted with a Yukawa potential with range 푎 (Davies & Nix, 1976), 퐹퐴(|푞|) = 4휋휌0 퐴|푞3| ( 1 1 + 푎2푞2 ) × [sin (|푞|푅퐴) − |푞|푅퐴 cos (|푞|푅퐴)] , (9) where 푞 is the momentum transfer, 휌0 = 3퐴∕(4휋푅3 퐴) fm−3 and 푎 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
138
+ page_content='7 fm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
139
+ page_content=' In the calculations the reggeon contribution is added to the photoproduction off nucleons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
140
+ page_content=' The corresponding cross section is parameterized as, 푑휎퐼푅(훾푝 → 푉 푃) 푑푡 |||||푡=0 = 푏푉 푌 푊 −휂 훾푝 , (10) where the constants 푏푉 = 11 GeV−2, 푌 = 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
141
+ page_content='0 휇b and 휂 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
142
+ page_content='23 have been considered for the 휌 production.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
143
+ page_content=' For the 휙, meson exchange is strongly suppressed, and the reaction occurs only through 퐼푃-exchange.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
144
+ page_content=' The 퐴-dependence of the cross section for the coherent pro- duction of 휌 meson, 휎(훾 + 퐴 → 휌 + 퐴), is presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
145
+ page_content=' FIGURE 1 The 퐴-dependence of the cross section for the coherent production of 휌 meson from Reggeometric Pomeron model at the LHC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
146
+ page_content=' Data from ALICE Collaboration (Acharya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
147
+ page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
148
+ page_content=' 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
149
+ page_content=' Comparison is done with the extracted values of the coher- ent cross section performed in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
150
+ page_content=' (Acharya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
151
+ page_content=', 2021) by ALICE Collaboration using the measured data on UPCs at the LHC (PbPb collisions at 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
152
+ page_content='02 TeV and XeXe at 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
153
+ page_content='44 TeV).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
154
+ page_content=' The description is quite reasonable for the nuclear dependence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
155
+ page_content=' At central rapidity, 푦 = 0, the photon-nucleon centre-of-mass energy squared is 푊 2 훾푁 = 푀푉 √푠NN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
156
+ page_content=' For xenon the cross section corresponds to 푊훾푁 = 65 GeV and 휎(훾Xe → 휌Xe) ≃ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
157
+ page_content='12 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
158
+ page_content='21 mb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
159
+ page_content=' The predicted values from the Reggeomet- ric Pomeron model is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
160
+ page_content='07 mb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
161
+ page_content=' For lead, the data is 휎(훾Pb → 휌Pb) ≃ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
162
+ page_content='09 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
163
+ page_content='16 mb for energy 푊훾푁 = 62 GeV and the prediction 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
164
+ page_content='54 mb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
165
+ page_content=' Theoretical calculation underestimates the extracted 훾Pb cross section, which suggests a strong nuclear shadowing correction for very large nucleus in the formalism considered for the study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
166
+ page_content=' 3,0 ALICE-Xe 2,5 ALICE-Pb ReggeometricPomeron model [mb] +A) P1,5 个 V+i) 1,0 a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
167
+ page_content='5 0,0 1 0 20 40 60 80 100 120 140 160 180 200 220 240 A4 FIGURE 2 Rapidity distributions for the exclusive 휌 meson photoproduction in ultraperipheral PbPb (left panel), XeXe (central panel and OO (right panel) collisions considering the Reggeometric Pomeron model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
168
+ page_content=' Prediction are done for the current run (solid lines) and future HL-LHC run (dashed lines).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
169
+ page_content=' Comparison is done to ALICE Collaboration data (Acharya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
170
+ page_content=', 2020, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
171
+ page_content=' 3 RESULTS AND DISCUSSIONS The rapidity distribution for meson production in nucleus- nucleus UPCs takes a factorized form in the Equivalent Photon Approximation (EPA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
172
+ page_content=' The expression is given by: 푑휎(퐴 + 퐴 → 퐴 + 푉 + 퐴) 푑푦 = 푘+ 푑푁훾∕퐴(푘+) 푑푘 휎훾퐴→푉 퐴(푘+) + 푘− 푑푁훾∕퐴(푘−) 푑푘 휎훾퐴→푉 퐴(푘−), (11) where 푑푁훾∕퐴∕푑푘 is the photon flux in nucleus 퐴 and 푘 is the photon momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
173
+ page_content=' For fixed rapidity 푦 and transverse momen- tum 푝2 푇 ≈ |푡| of the produced mesons, the photon momentum is given by 푘± = 푀2 푉 −푡 2푀푇 푒∓푦 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
174
+ page_content=' Here, 푀푇 = √ 푀2 푉 + 푝2 푇 is the transverse mass of the mesons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
175
+ page_content=' For simplicity, the analytical expression for the flux of pho- tons produced by a fast-moving point-like charge has been considered (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
176
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
177
+ page_content=' Klein et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
178
+ page_content=', 2017), 푑푁훾∕퐴(푘) 푑푘 = 2푍2훼푒푚 휋푘 [ 푥퐾0(푥)퐾1(푥) − 푥2 2 (퐾2 1(푥) − 퐾2 0(푥))] , (12) where 푥 = 2푅퐴푘∕훾퐿 and 훾퐿 is the Lorentz factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
179
+ page_content=' 퐾0,1(푥) are the modified Bessel functions of the second kind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
180
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
181
+ page_content=' 2 results are shown for 휌 production in PbPb, XeXe and OO UPCs at the LHC in the rapidity range |푦| ≤ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
182
+ page_content=' Left panel: predictions are presented for the PbPb collisions in ener- gies of √푠NN = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
183
+ page_content='02 (solid line) and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
184
+ page_content='52 TeV (dashed line), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
185
+ page_content=' It is shown also the measurement performed by ALICE Collaboration at mid-rapidity (Acharya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
186
+ page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
187
+ page_content=' Central panel: predictions for XeXe collisions in √푠NN = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
188
+ page_content='44 (solid line) and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
189
+ page_content='86 TeV (dashed line) compared to ALICE data (Acharya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
190
+ page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
191
+ page_content=' Right panel: predictions for OO collisions with energies of √푠NN = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
192
+ page_content='52 (solid line) and 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
193
+ page_content='00 TeV (dashed line), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
194
+ page_content=' The second energy bin corre- sponds to the designed √푠NN for the future High-Luminosity LHC (HL-LHC) run (Bruce et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
195
+ page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
196
+ page_content=' In general, the model is suitable to predict the magnitude and shape of the rapidity distribution in XeXe UPCs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
197
+ page_content=' The corresponding suppression at central rapidities in PbPb case is consequence of the coherent cross section to be underestimated as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
198
+ page_content=' 1 Namely, the nuclear effects for xenon nucleus are less intense as for lead nucleus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
199
+ page_content=' 800 ALICE PbPb UPC 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
200
+ page_content='02 TeV ALICE XeXe UPC 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
201
+ page_content='44 TeV O0 UPC 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
202
+ page_content='52 TeV 700 PbPb UPC 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
203
+ page_content='02 TeV XeXe UPC 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
204
+ page_content='44 TeV DO UPC7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
205
+ page_content='00TeV PbPb UPC 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
206
+ page_content='52 TeV 180 XeXeUPC 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
207
+ page_content='86 TeV pAA) [mb] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
208
+ page_content='7 600 160 500 140 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
209
+ page_content='6 1 (AA 300 120 do/dy 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
210
+ page_content='5 200 100 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
211
+ page_content='4 80 6 6 0 6 y y5 FIGURE 3 Rapidity distributions for the exclusive 휙 meson photoproduction in ultraperipheral PbPb (left panel), XeXe (central panel and OO (right panel) collisions considering the Reggeometric Pomeron model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
212
+ page_content=' Prediction are done for the current run (solid lines) and future HL-LHC run (dashed lines).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
213
+ page_content=' The contribution of Reggeons to 휌 coherent production turns out to be evident in the rapidity distributions at large |푦|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
214
+ page_content=' It is also 퐴-dependent where the contribution is more important for light nuclei than heavy ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
215
+ page_content=' In particular, the energy depen- dence of the photon-nucleon cross section, the suppression due to nuclear shadowing, and the drop of the flux of high-energy photons drive the distribution in the central and forward (back- ward) rapidity regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
216
+ page_content=' Bumps or shoulders at large rapidities are due to an enhanced contribution of low-energy photopro- duction related to the secondary Reggeon exchange in the meson-nucleon interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
217
+ page_content=' The Glauber shadowing at low energies is more intense for lead nuclei compared to xenon and oxigen ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
218
+ page_content=' This is the reason for the shoulder appearing in XeXe and OO collisions and not in PbPb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
219
+ page_content=' Finally, in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
220
+ page_content=' 3 predictions for coherent 휙 photoproduc- tion are presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
221
+ page_content=' Using the same notation as previous figure, calculations are performed for PbPb, XeXe and OO collisions for the energies of the present LHC run (solid lines) and the HL-LHC run (dashed lines).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
222
+ page_content=' Currently, there is no data avail- able for 휙 production in AA UPCs at the LHC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
223
+ page_content=' It is planned a high-granularity detector named FoCal (Bylinkin, Nystrand, & Tapia Takaki, 2022) to be installed at the ALICE experi- ment, covering large rapidities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
224
+ page_content=' It will allow to measure the cross sections and expected yields for exclusive production in the dielectron decay channel with a coverage for both electrons within 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
225
+ page_content='4 ≤ 휂 ≤ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
226
+ page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
227
+ page_content=' The detector FoCal can contribute for precise measurements of low-mass vector mesons production such as 휌 and 휙 as well as excited 휌 meson states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
228
+ page_content=' Finally, we discuss the theoretical uncertainties on the cal- culations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
229
+ page_content=' The predictions are in agreement with those from the STARLIGHT Monte Carlo generator for UPCs (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
230
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
231
+ page_content=' Klein et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
232
+ page_content=', 2017) but the cross sections of the coherent meson produc- tion are considerably smaller than calculations in Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
233
+ page_content=' (Frank- furt, Guzey, Strikman, & Zhalov, 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
234
+ page_content=' Guzey, Kryshen, & Zhalov, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
235
+ page_content=' The main sources of discrepancies are the use of the factorized form, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
236
+ page_content=' (8), and the classical Glauber for- mula, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
237
+ page_content=' (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
238
+ page_content=' It is considered the inelastic meson–nucleus cross section instead of the total cross section which decreases the prediction for the forward cross section by a factor ∼ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
239
+ page_content=' Namely, the total cross section of the 푉 퐴 interaction is obtained from classical mechanics (MC) Glauber model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
240
+ page_content=' However, the quantum mechanics expression is given by the Gribov-Glauber (GG) formalism where the 푉 퐴 cross section is given by: 휎GG 푡표푡 (푉 퐴) = 2 ∫ 푑2���푏 [ 1 − exp ( −1 2휎푉 푁푇퐴(⃗푏) )] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
241
+ page_content=' (13) 30 PbPb UPC 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
242
+ page_content='02 TeV XeXe UPC 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
243
+ page_content='44 TeV OO UPC 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
244
+ page_content='52TeV PbPbUPC5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
245
+ page_content='52TeV XeXeUPC5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
246
+ page_content='86TeV OO UPC 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
247
+ page_content='00 TeV 40 16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
248
+ page_content='08 do/dy (AA →ΦAA) [mb] 12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
249
+ page_content='06 20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
250
+ page_content='04 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
251
+ page_content='02 66 For example, in the simplification of a sharp sphere nucleus with 휌0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
252
+ page_content='17 fm−3 and radius 푅퐴 one can obtain an estimate of the ratio between the GG and CM cross sections, 휎GG 푡표푡 (푉 퐴) 휎CM 푡표푡 (푉 퐴) ≈ 2 ( 1 − 3 2휌2 0휎2 푉 푁푅2 퐴 ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
253
+ page_content=' (14) Let us consider the 휌 production.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
254
+ page_content=' The ratio is ≈ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
255
+ page_content='67 for lead and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
256
+ page_content='55 for xenon by using 휎휌푁 ≈ 25 mb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
257
+ page_content=' The classical prob- abilistic formula (CM) and the Glauber-Gribov (GG) approach give near values of the 휎푡표푡(푉 퐴) only when 휎푡표푡(푉 푝)푇퐴(푏) ≪ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
258
+ page_content=' It is expected that difference for 휙 production be smaller due to the lower 휎푡표푡(휙퐴) cross section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
259
+ page_content=' 4 CONCLUSIONS In this contribution predictions for exclusive light vector meson photoproduction in UPCs collisions at the LHC are presented and compared with the current experimental mea- surements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
260
+ page_content=' The theoretical approach is based on Regge phe- nomenology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
261
+ page_content=' In particular, the single-component Reggeomet- ric Pomeron model has been considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
262
+ page_content=' Concerning the rapid- ity distributions for 휌 production in PbPb UPCs, the model underestimates the data whereas does a better job in case of XeXe UPCs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
263
+ page_content=' Predictions are provided for OO UPCs in a future LHC run in light heavy ion model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
264
+ page_content=' The results for 휙 follow the same trend observed in 휌 production.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
265
+ page_content=' The theoretical uncer- tainties are considerably large concerning the computation of nuclear effects, factorization between energy and momentum transfer dependence among others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
266
+ page_content=' The main focus was on the investigation of how models of vector meson production in electron-proton scattering affect the results in ultra-peripheral nucleus-nucleus collisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
267
+ page_content=' This direction of research is especially promising also because of the planned experiments at future accelerators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
268
+ page_content=' It is promis- ing the coverage of the ALICE FoCal detector which allows to study the vector meson photoproduction in both low and high photon-nucleon centre-of-mass energies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
269
+ page_content=' ACKNOWLEDGMENTS This work was partially supported by the National Academy of Science of Ukraine grant 1230/22-1 Fundamental Prop- erties of Matter, the Coordination for the Improvement of Higher Education Personnel (CAPES/Brazil) grant Finance Code 001 and by the National Council for Scien- tific and Technological Development (CNPq/Brazil) grant 306101/2018-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
270
+ page_content=' Financial disclosure None reported.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
271
+ page_content=' Conflict of interest The authors declare no potential conflict of interests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
272
+ page_content=' REFERENCES Aaron, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
273
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
274
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
275
+ page_content=' 2010, JHEP, 05, 032.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
276
+ page_content=' Acharya, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
277
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
278
+ page_content=' 2020, JHEP, 06, 035.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
279
+ page_content=' Acharya, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
280
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
281
+ page_content=' 2021, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
282
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
283
+ page_content=' B, 820, 136481.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
284
+ page_content=' Aid, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
285
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
286
+ page_content=' 1996, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
287
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
288
+ page_content=' B, 463, 3–32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
289
+ page_content=' Andreev, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
290
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
291
+ page_content=' 2020, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
292
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
293
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
294
+ page_content=' C, 80(12), 1189.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
295
+ page_content=' Bauer, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
296
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
297
+ page_content=', Spital, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
298
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
299
+ page_content=', Yennie, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
300
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
301
+ page_content=', & Pipkin, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
302
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
303
+ page_content=' 1978, Apr, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
304
+ page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
305
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
306
+ page_content=', 50, 261–436.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
307
+ page_content=' Breitweg, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
308
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
309
+ page_content=' 1998, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
310
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
311
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
312
+ page_content=' C, 2, 247–267.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
313
+ page_content=' Breitweg, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
314
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
315
+ page_content=' 2000, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
316
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
317
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
318
+ page_content=' C, 14, 213–238.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
319
+ page_content=' Bruce, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
320
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
321
+ page_content=' 2020, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
322
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
323
+ page_content=' G, 47(6), 060501.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
324
+ page_content=' Bylinkin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
325
+ page_content=', Nystrand, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
326
+ page_content=', & Tapia Takaki, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
327
+ page_content=' 2022, 11, Chen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
328
+ page_content=', & Mueller, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
329
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
330
+ page_content=' 1995, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
331
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
332
+ page_content=' B, 451, 579–604.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
333
+ page_content=' Davies, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
334
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
335
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
336
+ page_content=', & Nix, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
337
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
338
+ page_content=' 1976, Nov, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
339
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
340
+ page_content=' C, 14, 1977– 1994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
341
+ page_content=' Derrick, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
342
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
343
+ page_content=' 1995, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
344
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
345
+ page_content=' C, 69, 39–54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
346
+ page_content=' Fazio, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
347
+ page_content=', Fiore, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
348
+ page_content=', Jenkovszky, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
349
+ page_content=', & Salii, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
350
+ page_content=' 2014, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
351
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
352
+ page_content=' D, 90(1), 016007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
353
+ page_content=' Fazio, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
354
+ page_content=', Fiore, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
355
+ page_content=', Lavorini, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
356
+ page_content=', Jenkovszky, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
357
+ page_content=', & Salii, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
358
+ page_content=' 2013, Acta Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
359
+ page_content=' Polon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
360
+ page_content=' B, 44, 1333–1353.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
361
+ page_content=' Forshaw, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
362
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
363
+ page_content=', Kerley, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
364
+ page_content=', & Shaw, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
365
+ page_content=' 1999, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
366
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
367
+ page_content=' D, 60, 074012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
368
+ page_content=' Frankfurt, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
369
+ page_content=', Guzey, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
370
+ page_content=', Strikman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
371
+ page_content=', & Zhalov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
372
+ page_content=' 2016, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
373
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
374
+ page_content=' B, 752, 51–58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
375
+ page_content=' Gonçalves, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
376
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
377
+ page_content=', & Moreira, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
378
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
379
+ page_content=' 2020, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
380
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
381
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
382
+ page_content=' C, 80(6), 492.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
383
+ page_content=' Guzey, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
384
+ page_content=', Kryshen, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
385
+ page_content=', & Zhalov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
386
+ page_content=' 2020, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
387
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
388
+ page_content=' C, 102(1), 015208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
389
+ page_content=' Jenkovszky, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
390
+ page_content=', Libov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
391
+ page_content=', & Machado, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
392
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
393
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
394
+ page_content=' 2022a, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
395
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
396
+ page_content=' B, 824, 136836.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
397
+ page_content=' Jenkovszky, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
398
+ page_content=', Libov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
399
+ page_content=', & Machado, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
400
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
401
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
402
+ page_content=' 2022b, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
403
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
404
+ page_content=' B, 827, 137004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
405
+ page_content=' Jenkovszky, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
406
+ page_content=', Rocha, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
407
+ page_content=' d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
408
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
409
+ page_content=', & Machado, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
410
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
411
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
412
+ page_content=' 2022, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
413
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
414
+ page_content=' B, 835, 137585.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
415
+ page_content=' Jenkovszky, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
416
+ page_content=', Schicker, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
417
+ page_content=', & Szanyi, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
418
+ page_content=' 2018, Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
419
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
420
+ page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
421
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
422
+ page_content=' E, 27(08), 1830005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
423
+ page_content=' Klein, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
424
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
425
+ page_content=' 2020, 9, Klein, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
426
+ page_content=', & Steinberg, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
427
+ page_content=' 2020, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
428
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
429
+ page_content=' Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
430
+ page_content=' Part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
431
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
432
+ page_content=', 70, 323– 354.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
433
+ page_content=' Klein, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
434
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
435
+ page_content=', Nystrand, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
436
+ page_content=', Seger, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
437
+ page_content=', Gorbunov, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
438
+ page_content=', & Butterworth, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
439
+ page_content=' 2017, Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
440
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
441
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
442
+ page_content=', 212, 258–268.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
443
+ page_content=' Morreale, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
444
+ page_content=', & Salazar, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
445
+ page_content=' 2021, Universe, 7(8), 312.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
446
+ page_content=' Nemchik, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
447
+ page_content=', Nikolaev, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
448
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
449
+ page_content=', Predazzi, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
450
+ page_content=', & Zakharov, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
451
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
452
+ page_content=' 1996, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
453
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
454
+ page_content=' B, 374, 199–204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
455
+ page_content=' Nikolaev, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
456
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
457
+ page_content=', & Zakharov, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
458
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
459
+ page_content=' 1994, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
460
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
461
+ page_content=' C, 64, 631–652.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
462
+ page_content=' Sirunyan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
463
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
464
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
465
+ page_content=' 2019, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
466
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
467
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
468
+ page_content=' C, 79(8), 702.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E4T4oBgHgl3EQfiw1J/content/2301.05136v1.pdf'}
LNAyT4oBgHgl3EQfTve8/content/tmp_files/2301.00113v1.pdf.txt ADDED
@@ -0,0 +1,2273 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00113v1 [astro-ph.HE] 31 Dec 2022
2
+ Black hole images: A Review
3
+ Songbai Chen 1,2 ∗, Jiliang Jing 1,2, Wei-Liang Qian 2,3,4, Bin Wang 2,5
4
+ 1 Department of Physics, Synergetic Innovation Center for Quantum Effects and Applications,
5
+ Hunan Normal University, Changsha, Hunan 410081, People’s Republic of China
6
+ 2 Center for Gravitation and Cosmology, College of Physical Science and Technology,
7
+ Yangzhou University, Yangzhou 225009, People’s Republic of China
8
+ 3 Escola de Engenharia de Lorena, Universidade de S˜ao Paulo, 12602-810, Lorena, SP, Brazil
9
+ 4 Faculdade de Engenharia de Guaratinguet´a,
10
+ Universidade Estadual Paulista, 12516-410, Guaratinguet´a, SP, Brazil
11
+ 5 School of Aeronautics and Astronautics, Shanghai Jiao Tong University,
12
+ Shanghai 200240, People’s Republic of China
13
+ In recent years, unprecedented progress has been achieved regarding black holes’ observation
14
+ through the electromagnetic channel. The images of the supermassive black holes M87∗ and Sgr
15
+ A∗ released by the Event Horizon Telescope (EHT) Collaboration provided direct visual evidence
16
+ for their existence, which has stimulated further studies on various aspects of the compact celestial
17
+ objects. Moreover, the information stored in these images provides a new way to understand the
18
+ pertinent physical processes that occurred near the black holes, to test alternative theories of gravity,
19
+ and to furnish insight into fundamental physics. In this review, we briefly summarize the recent
20
+ developments on the topic. In particular, we elaborate on the features and formation mechanism of
21
+ black hole shadows, the properties of black hole images illuminated by the surrounding thin accretion
22
+ disk, and the corresponding polarization patterns. The potential applications of the relevant studies
23
+ are also addressed.
24
+ Key words: black hole shadow, accretion disk, polarization image
25
+ PACS numbers: 04.70.Cs, 98.62.Mw, 97.60.Lf
26
+ I.
27
+ INTRODUCTION
28
+ The releasing of the first image of the supermas-
29
+ sive black hole M87∗ by the EHT Collaboration in
30
+ 2019 [1–6] is a milestone event in physics. It provided
31
+ direct visual evidence of black hole in our universe,
32
+ which means that black hole is no longer just a theo-
33
+ retical model. Combining with the recently published
34
+ black hole image of Sgr A∗ [7], it is widely believed
35
+ that the observational astronomy of black holes has
36
+ entered a new era of rapid progress.
37
+ One of the most important ingredients in the im-
38
+ ages is the black hole shadow [8].
39
+ It is a two di-
40
+ mensional dark region in the observer’s sky, which is
41
+ caused by light rays falling into an event horizon of
42
+ a black hole [9–12]. The captured light rays are very
43
+ close to the black hole so that the shape and size of
44
+ the shadow carry the fingerprint of the celestial ob-
45
+ ject. Therefore, the study of shadows is beneficial to
46
+ identify black holes, to examine theories of gravity in-
47
+ cluding general relativity, and to further understand
48
+ some fundamental problems in physics.
49
+ From the light propagation in spacetime, black
50
+ hole shadow depends on the light source, the back-
51
+ ground spacetime and even the properties of electro-
52
+ dynamics obeyed by photon itself. The light sources
53
+ in many theoretical investigations are assumed to ho-
54
+ mogeneously distribute in the total celestial sphere.
55
+ However, in the real astronomical environment, ac-
56
+ ∗Corresponding author: [email protected]
57
+ cretion disk is a kind of actual and feasible light
58
+ sources around black holes due to its electromagnetic
59
+ emission. Undoubtedly, the matter configuration and
60
+ the accretion process in the disks are indelibly im-
61
+ printed on black hole images. Conversely, analyzing
62
+ the luminosity distribution and electromagnetic sig-
63
+ nals stored in the images can extract the informa-
64
+ tion about the matter fields and the physical pro-
65
+ cesses near the black holes.
66
+ The twisting patterns
67
+ in the first polarized image of the M87* black hole
68
+ [13, 14] revealed the presence of a poloidal magnetic
69
+ field about 1 ∼ 30G near the black hole. Thus, black
70
+ hole images with polarized information provide an-
71
+ other new way to probe the matter distribution, the
72
+ electromagnetic interactions and the accretion pro-
73
+ cesses in the strong gravity region of black holes.
74
+ The literature related to black hole images is
75
+ rapidly increasing. Therefore, it is necessary to sum-
76
+ marize the existing works at the present time and
77
+ make prospects for the future. This review focuses
78
+ on the black hole images, and their rapid develop-
79
+ ment and potential applications. We first introduce
80
+ the basic concepts of black hole shadows and sum-
81
+ marize the main features of the shadows and their
82
+ formation mechanism, and review how the black hole
83
+ shadows are determined by the fundamental photon
84
+ orbits [15] and the corresponding invariant manifolds
85
+ [16]. Next, we introduce the images of the black holes
86
+ surrounded by a thin disk and their polarization pat-
87
+ terns arising from synchrotron radiation.
88
+ We also
89
+ discuss the aspects of the potential applications of
90
+ black hole images.
91
+
92
+ 2
93
+ observer
94
+ photon sphere
95
+ rsh
96
+ FIG. 1: The event horizon (the black disk), the photon
97
+ sphere rps = 3M (the red circle) and the shadow with a
98
+ radius rsh = 3
99
+
100
+ 3M for a Schwarzschild black hole [22].
101
+ II.
102
+ BLACK HOLE SHADOWS AND THEIR
103
+ FORMATION
104
+ It is well known that the shadow of a common ob-
105
+ ject is determined by the light rays passing through
106
+ the edge of the object. However, for the objects with
107
+ strong gravity, such as the black hole, the situation is
108
+ different. According to general relativity, light rays
109
+ travelling in a black hole spacetime can be deflected
110
+ due to the gravitational field of the black hole. This
111
+ phenomenon is known as gravitational lensing, which
112
+ is analogous to optical lensing [17–19]. The deflection
113
+ angle of the light ray increases with the decreasing of
114
+ its impact parameter. Therefore, it is easy to infer
115
+ that the light rays passing very close to the black
116
+ hole will be captured. Black hole shadow is a dark
117
+ silhouette observed in the sky originating from these
118
+ captured light rays. Although the black hole shadow
119
+ is caused by the photons fallen into the event horizon,
120
+ its size is not equal to that of this null hypersurface.
121
+ Actually, for a Schwarzschild black hole, its shadow
122
+ is about 2.5 times as large as the event horizon in
123
+ angular size [9, 10]. This can be explained by two
124
+ reasons. Firstly, it is not only the photons near the
125
+ event horizon can be captured by a black hole. In
126
+ fact, there exists a photon sphere outside the event
127
+ horizon, which is an envelope surface of unstable pho-
128
+ ton circular orbits in the spacetime [20–22]. The light
129
+ rays entered the photon sphere will be captured by
130
+ the black hole as shown in Fig.1. Thus, the bound-
131
+ ary of the shadow is determined by the photon sphere
132
+ rather than the event horizon. Secondly, due to the
133
+ strong bending of light rays induced by black hole’s
134
+ gravity, both the size and shape of the observed dark
135
+ shadow are different from those naively based on Eu-
136
+ clidean geometry without gravity.
137
+ A.
138
+ Features of black hole shadows
139
+ The shape and size of black hole shadows depend
140
+ on the black hole parameters and the observer incli-
141
+ nation. For a Schwarzschild black hole, the shadow
142
+ is a perfect disk for the observer with arbitrary incli-
143
+ nation [10, 12]. For a rotating Kerr black hole, the
144
+ shadow also presents a circular silhouette for the ob-
145
+ server located on its rotation axis. However, for the
146
+ FIG. 2:
147
+ The eyebrowlike shadows near the primary
148
+ shadow for a Kerr black hole with scalar hair [32].
149
+ observer in the equatorial plane, the shadow gradu-
150
+ ally becomes a “D”-shaped silhouette with increasing
151
+ black hole spin [10, 12]. For a Konoplya-Zhidenko ro-
152
+ tating non-Kerr black hole with an extra deformation
153
+ parameter described the deviations from the Kerr
154
+ metric, the “D”-shaped shadow could disappear and
155
+ the special cuspy shadow could emerge in a certain
156
+ range of parameter values for the equatorial observer
157
+ [23].
158
+ This is also true for black holes with Proca
159
+ hair [15, 24]. Thus, the dependence of shadows on
160
+ black hole parameters could provide a potential tool
161
+ to identify black holes in nature. It also triggers the
162
+ further study of black hole shadows in various theo-
163
+ ries of gravity [25–30].
164
+ Black hole shadow also depends on the (non-
165
+ )integrability of motion equation of photon travelling
166
+ in the background spacetime. The completely inte-
167
+ grable systems are such kind of dynamical systems
168
+ where the number of the first integrals is equal to its
169
+ degrees of freedom. Generally, in static spacetimes
170
+ of black holes with spherical symmetry, such as in
171
+ the Schwarzschild black hole spacetime, the dynam-
172
+ ical system of photons is completely integrable since
173
+ it possesses three independent first integrals, i.e., the
174
+ energy E, the z-component of the angular momen-
175
+ tum Lz and the Carter constant Q [31].
176
+ This en-
177
+ sures the motion of photons is regular so that black
178
+ hole shadow has the same shape as the photon sphere
179
+ surface. In these completely integrable systems, the
180
+ black hole shadow can be calculated by analytical
181
+ methods [10, 12].
182
+ However, as the dynamical sys-
183
+ tem of photons is not completely integrable, the null
184
+ geodesic equations are not be variable separable be-
185
+ cause there is no existence of a Carter-like constant
186
+ apart from the usual two integrals of motion E and
187
+ Lz. This implies that the motion of photons could
188
+ be chaotic and sharply affect the shadow so that its
189
+ shape is different from that of the photon sphere sur-
190
+ face [32–37].
191
+ In particular, due to chaotic lensing,
192
+ there are eyebrowlike shadows with the self-similar
193
+ fractal structure near the primary shadow, as shown
194
+ in Fig.2. In addition, the black hole shadows in the
195
+ nonintegrable cases can be only obtained by numeri-
196
+ cal simulations with the so-called “ray-tracing” codes
197
+ [32, 35, 38, 39].
198
+
199
+ 3
200
+ B.
201
+ Formation mechanism of black hole shadows
202
+ The photon sphere plays an important role in the
203
+ formation of black hole shadows. Actually, the pho-
204
+ ton sphere is composed of unstable photon circular
205
+ orbits around black holes. The unstable photon cir-
206
+ cular orbits in the equatorial plane are determined by
207
+ the effective potential and its derivatives [40, 41], i.e.,
208
+ Veff(r) = 0, Veff(r),r = 0 and Veff(r),rr < 0. These
209
+ unstable orbits can also be obtained by a geometric
210
+ way with Gauss curvature and geodesic curvature in
211
+ the optical geometry [42]. For a static four dimen-
212
+ sional spacetime, its optical geometry restricted in
213
+ the equatorial plane is defined by dt2 ≡ gOP
214
+ ij dxidxj,
215
+ i = r, φ. The geodesic curvature and Gauss curvature
216
+ can be expressed as [42]
217
+ κgeo =
218
+ 1
219
+ 2
220
+
221
+ gOP
222
+ rr
223
+ ∂ ln gOP
224
+ φφ
225
+ ∂r
226
+ ,
227
+ (1)
228
+ κGau = −
229
+ 1
230
+
231
+ gOP
232
+ � ∂
233
+ ∂φ
234
+
235
+ 1
236
+
237
+ gOP
238
+ φφ
239
+
240
+
241
+ gOP
242
+ rr
243
+ ∂φ
244
+
245
+ + ∂
246
+ ∂r
247
+
248
+ 1
249
+
250
+ gOP
251
+ rr
252
+
253
+
254
+ gOP
255
+ φφ
256
+ ∂r
257
+ ��
258
+ .
259
+ (2)
260
+ The geodesic curvature κgeo = 0 gives the radius of
261
+ the circular photon orbit and the positive (negative)
262
+ of Gauss curvature κGau determines that the circular
263
+ photon orbit is stable (unstable).
264
+ Fundamental photon orbits
265
+ The unstable photon
266
+ circular orbits in the equatorial plane are often called
267
+ light rings. Light rings also affect dynamical proper-
268
+ ties of ultracompact objects [15]. For the ultracom-
269
+ pact objects without horizon [43], light rings often
270
+ come in pairs, one stable and the other unstable. The
271
+ existence of a stable light ring always implies a space-
272
+ time instability [44]. In the Schwarzschild spacetime,
273
+ light rings are the only bound photon orbits. In the
274
+ rotating Kerr spacetime, there are two light rings
275
+ located in the equatorial plane, one for co-rotating
276
+ photon and one for counter-rotating photon with re-
277
+ spect to the black hole. Moreover, there also exist the
278
+ non-planar bound photon orbits with constant r and
279
+ motion in θ, known as spherical orbits ( see also Fig.
280
+ 2 in [15]). These spherical orbits are unstable and
281
+ completely determine the Kerr black hole shadow.
282
+ Fundamental photon orbits are the generalization
283
+ of light rings and spherical orbits in usual stationary
284
+ and axisymmetric spacetimes [15]. The definition of
285
+ fundamental photon orbits is given in [15]. According
286
+ to the features of orbits, the fundamental photon or-
287
+ bits can be categorized as Xnr±
288
+ ns
289
+ , where X = {O, C},
290
+ and nr, ns ∈ N0. The orbit O is open and it can reach
291
+ the boundary of the effective potential. The orbit C
292
+ is closed and it can not reach the boundary.
293
+ The
294
+ sign +(−) denotes the even (odd) parity of the orbit
295
+ under the Z2 reflection symmetry around the equa-
296
+ torial plane. nr is the number of distinct r values at
297
+ FIG. 3: Some fundamental photon orbits in the (r, θ)-
298
+ plane and their classification. The grey areas represent
299
+ forbidden regions for the effective potential [15].
300
+ where the orbit crosses the equatorial plane. For the
301
+ light rings lied in the equatorial plane, their nr = 0
302
+ because such special kind of orbits never cross the
303
+ equatorial plane. ns is the number of self-intersection
304
+ points of the orbit. In Fig.3, some fundamental pho-
305
+ ton orbits and their classification are illustrated in
306
+ the (r, θ)-plane.
307
+ By making use of the fundamental photon orbits,
308
+ P. V. P. Cunha et al. [15] explained the formation
309
+ of the cuspy silhouette of a Kerr black hole with
310
+ Proca hair shown in Fig.4(a). To clearly demonstrate
311
+ the formation mechanism of the black hole shadow,
312
+ ten fundamental photon orbits are selected out and
313
+ marked by “A1-A4, B1-B3, C1-C3”. Then, the dis-
314
+ tribution of ∆θ ≡ |θmax − π
315
+ 2 | and rperi with the im-
316
+ pact parameter η are presented for each fundamental
317
+ photon orbit, where θmax is the maximal/minimal
318
+ angular coordinate at the spherical orbit and rperi
319
+ is the perimetral radius as a spherical orbit crosses
320
+ the equatorial plane.
321
+ The right panel of Fig.4(b)
322
+ shows the spatial trajectories of the ten fundamental
323
+ photon orbits in Cartesian coordinates, which move
324
+ around the black hole.
325
+ The orbits A1 and C3 are
326
+ the unstable prograde and retrograde light rings re-
327
+ spectively shown as two black circles on the equa-
328
+ torial plane. Other fundamental photon orbits are
329
+ non-planar bound photon orbits crossing the equa-
330
+ torial plane. The continuum of fundamental photon
331
+ orbits can be split into one stable branch (the red dot-
332
+ ted line) and two unstable branches (the green and
333
+ blue lines). The swallow-tail shape pattern related to
334
+ the fundamental photon orbits in the η − ∆θ plane
335
+ yields a jump occurred at A4 and C1 in the η − rperi
336
+ plane. The discontinuity originating from this jump,
337
+ i.e., rperi(C1) > rperi(A4), induces the emergence of
338
+ the cuspy shadow. The unstable fundamental pho-
339
+ ton orbits (C1-B3) non-related to the shadow could
340
+ be associated to a set of lensing patterns attached to
341
+ the shadow edge, called “eyelashes” in Fig.4(a). In
342
+ the black hole spacetimes where there exists a second
343
+ pair of light rings, the fundamental photon orbits can
344
+ be classified into two fully disconnected branches: the
345
+ shadow related branch and the non-shadow related
346
+ one. If the shadow related branch is connected, the
347
+
348
+ .0
349
+ Ci3+
350
+ 04
351
+ (a)
352
+ (b)
353
+ FIG. 4:
354
+ The cuspy shadow (a) and the fundamental pho-
355
+ ton orbits (b) for the Kerr black hole with Proca hair[15].
356
+ shadow edge will be smooth with no cusp. But the
357
+ eyelashes, caused by the non-shadow related unstable
358
+ branch, appear to be disconnected from the shadow,
359
+ forming a pixelated banana-shaped strip in the lens-
360
+ ing image as shown in Fig.2. This feature has been
361
+ dubbed “ghost shadow” in [24]. This mechanism is
362
+ also applied to explain the formation of the cuspy
363
+ shadow in the Konoplya-Zhidenko rotating non-Kerr
364
+ black hole spacetime [23]. It is further confirmed that
365
+ the unstable fundamental photon orbits play an im-
366
+ portant role in determining the boundary of shadow
367
+ and the patterns of the shadow shape. In terms of
368
+ a toy model [45], the feature of cuspy shadow can
369
+ be derived by employing the Maxwell construction
370
+ for phase transition in a two-component system. In
371
+ addition, the shadows for the black holes with gen-
372
+ eral parameterized metrics have been studied by us-
373
+ ing the fundamental photon orbits [46–51].
374
+ These
375
+ studies could also be beneficial to test the Kerr hy-
376
+ pothesis through black hole shadows.
377
+ Invariant phase space structures The invariant
378
+ phase space structures are very important for dynam-
379
+ ical systems because they remain invariant under the
380
+ dynamics. There are several types of invariant struc-
381
+ tures including fixed points, periodic orbits and in-
382
+ variant manifolds. The simplest is the fixed points.
383
+ These phase space structures are applied extensively
384
+ to design space trajectory for various of spacecrafts
385
+ [52–55]. Since black hole shadow depends on the dy-
386
+ namics of photons in the background spacetime, the
387
+ invariant phase space structures should also play an
388
+ important role in the formation mechanism of the
389
+ shadow. For a dynamical system of photons travel-
390
+ ling in a curved spacetime, its fixed points can be
391
+ determined by the conditions
392
+ ˙xµ = ∂H
393
+ ∂pµ
394
+ = 0,
395
+ ˙pµ = − ∂H
396
+ ∂xµ = 0,
397
+ (3)
398
+ where qµ = (t, r, θ, ϕ) and pν = (pt, pr, pθ, pϕ), H is
399
+ the Hamiltonian of the system. Actually, the light
400
+ rings on the equatorial plane are the fixed points for
401
+ the photon motion [15, 16].
402
+ In the vicinity of the
403
+ fixed points, one can linearize the equations (3) and
404
+ obtain a matrix equation
405
+ ˙X = JX,
406
+ (4)
407
+ where X = (qµ, pν) and J is the Jacobian matrix.
408
+ The eigenvalues µj of the Jacobian matrix J deter-
409
+ mine the local dynamical properties of the system
410
+ near the fixed points (see also in Fig.??). The stable
411
+ and unstable invariant manifolds correspond to the
412
+ cases of Re(µj) < 0 and Re(µj) > 0, respectively;
413
+ while the center manifold corresponds to the case
414
+ with Re(µj) = 0 where the eigenvalues µj are pure
415
+ imaginary numbers. Due to the special properties of
416
+ the invariant manifolds, there is no trajectory cross-
417
+ ing the invariant manifolds. Points in the unstable
418
+ (stable) invariant manifold move to the fixed points
419
+ exponentially in backward (forward) time. In terms
420
+ of Lyapunov’s central limit theorem, the eigenvalue
421
+ with Re(µj) = 0 leads to the so-called Lyapunov or-
422
+ bits, which is a one-parameter family γǫ of periodic
423
+ orbits [16, 52–55]. These orbits γǫ in the center man-
424
+ ifold collapse into a fixed point as ǫ → 0. Similarly,
425
+ the periodic orbits also have their own stable and un-
426
+ stable manifolds. These invariant phase space struc-
427
+ tures are also shown in Fig. 1 in [16]. Obviously, the
428
+ photon spheres and other periodic orbits can be gen-
429
+ eralized to the Lyapunov orbits related to the fixed
430
+ points [16].
431
+ These concepts in dynamical systems provide a
432
+ powerful theoretical foundation for understanding
433
+ the formation of shadows cast by black holes. The
434
+ unstable invariant manifold builds a bridge between
435
+ the photon sphere and the observer because such
436
+ manifold can approach the fixed points exponentially
437
+ in backward time [16, 35]. Only the Lyapunov family
438
+ of the spherical orbits near the unstable fixed points
439
+ are responsible for generating the black hole shadow.
440
+ For a Kerr black hole with scalar hair, there are three
441
+ unstable light rings L1, L2 and L3.
442
+ However, the
443
+ Lyapunov orbits associated with L1 is non-spherical
444
+ and only the orbits emanating from L2 and L3 are
445
+
446
+ J (W)
447
+ a-
448
+ 2-
449
+ 4
450
+ -3
451
+ S-
452
+ -
453
+ 0
454
+ S
455
+ C3
456
+ TA
457
+ CJ=V
458
+ 2.0
459
+ CS
460
+ BJ
461
+ B3'CJ-C3
462
+ A=O
463
+ SA
464
+ BS
465
+ eldsta
466
+ B3
467
+ CA
468
+ 0
469
+ TA
470
+ VS
471
+ AA
472
+ EA
473
+ 2.0
474
+ BJ
475
+ BS
476
+ bel!
477
+ B3
478
+ a.t
479
+ 5
480
+ A-TA
481
+ Cs
482
+ C3......5
483
+ FIG. 5: Intersections of the unstable manifolds of L1, L2,
484
+ and L3 as well as their Lyapunov orbits with the image
485
+ plane.
486
+ Lyapunov orbits related to L1, L2, and L3 are
487
+ marked by red, green, and blue dots, respectively [16].
488
+ spherical [16]. The numerical simulated shadow in
489
+ Fig.5 shows that the complicated and disconnected
490
+ boundaries of the shadow are completely determined
491
+ by the Lyapunov spherical orbits. Thus, the invari-
492
+ ant manifolds of certain Lyapunov orbits are directly
493
+ related to black hole shadows even in the case of com-
494
+ plicated non-convex, disconnected shadows.
495
+ More-
496
+ over, the curved streamlines in the unstable invariant
497
+ manifolds could lead to that the shape of the black
498
+ hole shadow detected by the observer at spatial in-
499
+ finity differs from that of the photon sphere surface
500
+ [16, 35, 37].
501
+ III.
502
+ IMAGE OF A BLACK HOLE WITH A
503
+ THIN ACCRETION DISK
504
+ In the real astrophysical conditions, a black hole
505
+ is surrounded by a hot accretion disk within which
506
+ it emits a characteristic spectrum of electromagnetic
507
+ radiation. The electromagnetic radiation emitted by
508
+ the disk illuminates the background around the black
509
+ hole and makes the black hole shadow visible. Thus,
510
+ the accretion disk is the actual light source in the
511
+ formation of black hole shadows. Clearly, the black
512
+ hole image cast by the light source with the disk-like
513
+ structure differs from that by the former homoge-
514
+ neous light source in the previous analyses. Simulta-
515
+ neously, due to the strong gravitational lensing near
516
+ the central black hole, the shape of the accretion disk
517
+ is heavily distorted.
518
+ Luminet
519
+ first
520
+ simulated
521
+ a
522
+ photograph
523
+ of
524
+ a
525
+ Schwarzschild black hole with a rotating thin accre-
526
+ tion disk [56].
527
+ Here, the proper luminosity of the
528
+ disk is calculated according to the model described
529
+ by Page and Thorne [57] in its relativistic version,
530
+ where the intensity of radiation emitted at arbitrary
531
+ given point of the disk only depends on the radial dis-
532
+ tance to the black hole. As shown in Fig.11 in [56],
533
+ the flying-saucer-shaped bright region is the primary
534
+ image of disk, which is formed by the light emitted
535
+ directly from the upper side of the disk [56].
536
+ Due
537
+ to the considerable distortion caused by the strong
538
+ gravitational lensing near the central black hole, the
539
+ primary image related to the back part of the disk
540
+ is completely visible rather than hidden by the black
541
+ hole.
542
+ Moreover, one also sees a highly deformed image
543
+ associated with the bottom of the gaseous disk. This
544
+ is because the light rays emitted from the bottom side
545
+ can climb back to the top and reach to the observer at
546
+ the spatial distance [56]. Actually, the gravitational
547
+ lensing gives rise to an infinity of images of the disk,
548
+ which are caused by the light rays traveling around
549
+ the black hole any number of times before reaching a
550
+ distant astronomer [56, 58]. The number of times of
551
+ light ray crossing the disk determines the order of the
552
+ image. The higher order images are closer to the cen-
553
+ tral black spot and become thinner and fainter. The
554
+ inner infinite order image is related to the photon
555
+ sphere, which represents the actual shadow boundary
556
+ of the black hole. Generally, it is difficult to distin-
557
+ guish the higher order images optically because they
558
+ are standing quite closely to each other. The central
559
+ black area is the black hole shadow formed by the
560
+ gravitational lensing and capture of light rays.
561
+ The existence of a dark gap between the primary
562
+ image and the higher order images is not surprising
563
+ because the accretion disk is forbidden to touch the
564
+ surface of the black hole and then there is not any ra-
565
+ diation from the region between the black hole’s event
566
+ horizon and the inner edge of the disk. Moreover, be-
567
+ low the inner stable circular orbit, the disk is unstable
568
+ so that the gas particles plunge directly towards the
569
+ black hole without having enough time to emit elec-
570
+ tromagnetic radiation [56]. Unlike the shadow itself,
571
+ the darkness in these patches is of a fundamentally
572
+ different nature, which may be filled with the emis-
573
+ sion from lensed images of distant sources in the en-
574
+ tire universe although it will also be extremely faint
575
+ [59, 60].
576
+ For a disk around the black hole, the region closer
577
+ to the horizon is generally brighter because the gas
578
+ is hotter there.
579
+ However, the apparent luminosity
580
+ of the disk’s image for the distant observer is very
581
+ different from the intrinsic luminosity in the disk.
582
+ The main reason is that the electromagnetic radi-
583
+ ation detected at a great distance undergoes shifts
584
+ in frequency and intensity with respect to the orig-
585
+ inal radiation emitted directly by the disk [56, 61].
586
+ There are two kinds of shift effects.
587
+ One of them
588
+ is the so-called gravitational redshift caused by the
589
+ gravity of the central black hole, which lowers the fre-
590
+ quency and decreases the intensity of the electromag-
591
+ netic radiation. The other is the well-known Doppler
592
+ effect originating from the displacement of the source
593
+ with respect to the observer. Doppler effect gives rise
594
+ to amplification for the approaching source and at-
595
+ tenuation for the retreating source. Therefore, for a
596
+ disk rotating counterclockwise around the black hole,
597
+ the apparent luminosity of the disk in the left side is
598
+
599
+ 000
600
+ a.0-=n
601
+ U=-s'e6
602
+ brighter than that of in the right side [56]. The strong
603
+ gravity of the black hole can give a speed of gas rota-
604
+ tion close to the speed of light in the internal regions
605
+ of an accretion disk, which yields a very strong differ-
606
+ ence of Doppler shift effects on two sides of the black
607
+ hole. This strong asymmetry of apparent luminosity
608
+ is the main signature of the black hole image with a
609
+ thin accretion disk. In short, the effects from Doppler
610
+ shift and gravitational redshift drastically modify the
611
+ luminosity distribution for the observed disk image at
612
+ large distance.
613
+ The black hole spin hardly affects the shape of the
614
+ primary image.
615
+ The principal effect of black hole
616
+ spin is to change the radius of the marginally stable
617
+ orbit and hence to modify the location of the inner
618
+ edge of the accretion disk. Unlike in the case of a
619
+ Schwarzschild black hole, a rapid rotation of Kerr
620
+ black hole could lead to that the inner edge of the
621
+ direct image coincides with the higher order images,
622
+ so the dark gap between them may no longer exist
623
+ [62, 63]. Due to the inner edge of the accretion disk
624
+ being located far deeper in the gravitational poten-
625
+ tial, the range of accessible redshift in the disk for the
626
+ rapidly rotating Kerr black hole is far broader than
627
+ for the Schwarzschild case. Thus, the higher order
628
+ images round a rapidly spinning black hole carry less
629
+ flux than in the Schwarzschild case, which means that
630
+ they are much more difficult to spatially resolve from
631
+ the direct image of the disk in the rapidly rotating
632
+ black hole case.
633
+ Moreover, the gravitational field of the accretion
634
+ disk also affects the propagation of photon and fur-
635
+ ther modifies the shape of black hole shadow. Re-
636
+ cently, a static axially symmetric solution, which de-
637
+ scribes the superposition of a Schwarzschild black
638
+ hole with a relativistic thin and heavy accretion disk
639
+ ( Lemos-Letelier disk [64]), is applied to study black
640
+ hole shadow [65]. This static disk with an inner edge
641
+ is assumed to be made of two streams of counter-
642
+ rotating particles [64], which leads to a total van-
643
+ ishing angular momentum and ensures the existence
644
+ of a static disk in equilibrium with the black hole.
645
+ A heavy accretion disk yields some new features for
646
+ the black hole image [65].
647
+ There is a progressive
648
+ optical enlargement of the disk image covering part
649
+ of the shadow, despite the fact that the disk is in-
650
+ finitesimally thin. This is a consequence of the in-
651
+ creasing light rays’ bending towards the disk due to
652
+ the increase of disk’s “weight”. The heavy disk also
653
+ stretches the black hole shadow so that there is an ex-
654
+ tra deformation of the shadow shape, which becomes
655
+ more prolate as the disk contributes to a higher frac-
656
+ tion of the total mass.
657
+ Furthermore, the noninte-
658
+ grability of the photon motion arising from a heavy
659
+ accretion disk also leads to some chaotic patterns
660
+ both in the black hole shadow and the disk image.
661
+ These features also appear in the gravity system of
662
+ a Schwarzschild black hole surrounded by a massive
663
+ Bach-Weyl ring [37]. The chaotic lensing also leads
664
+ to some distinct differences in the shape of photon
665
+ sphere and the black hole shadow. This is because
666
+ the chaotic orbits sharply modify the locally mea-
667
+ sured four-momentum of the photons reaching a dis-
668
+ tant observer and further influence the celestial coor-
669
+ dinates of the images associated with these photons
670
+ in the observer’s sky, and the latter directly deter-
671
+ mines the shape of the black hole shadow and the
672
+ disk image.
673
+ IV.
674
+ POLARIZED IMAGE OF A BLACK
675
+ HOLE
676
+ Electromagnetic wave is a kind of transverse waves
677
+ so the optical image of a black hole must carry the
678
+ polarization information about the light emitted from
679
+ the accretion disk around the black hole. Recently,
680
+ the EHT Collaboration has published the polarimet-
681
+ ric image of the black hole M87∗ [13, 14]. The twist-
682
+ ing polarization patterns revealed the existence of
683
+ magnetic field near the black hole.
684
+ It is the first
685
+ time to measure the polarization information char-
686
+ acterized by the magnetic field near the black hole,
687
+ which is helpful to understand the formation of the
688
+ black hole jet far from 55 million light years.
689
+ Actually, in order to extract the information car-
690
+ ried in the polarized image of a black hole, one must
691
+ compare the observed polarimetry data with the the-
692
+ oretical one. Thus, it is very vital to make theoretical
693
+ analyses and numerical simulations on the polarized
694
+ images for various black holes. In general, the po-
695
+ larization structures in the black hole images depend
696
+ on the details of the emitting plasma, principally the
697
+ magnetic field geometry, and are also affected by the
698
+ strongly curved spacetime near the black hole. For
699
+ the origin of the polarized emission around a black
700
+ hole, there is a typical scenario where the light with
701
+ high polarization degrees, especially the linearly po-
702
+ larized light, is produced by synchrotron emission in
703
+ a compact and energetic region of the inner hot disk
704
+ [66, 67]. It is because the relativistic Doppler beam-
705
+ ing effect yields that the propagation directions of
706
+ the photons emitted by a charged relativistic parti-
707
+ cle are beamed almost along the tangent direction
708
+ of the particle’s motion so that the light rays in the
709
+ particle’s orbital plane are linearly polarized. In the
710
+ cold disk model [57], the situation is different, the
711
+ dominant thermal radiation leads to that the polar-
712
+ ized directions of light waves are disorder so that the
713
+ disk becomes a source of natural light without the
714
+ total polarization. Thus, in the simulations of the
715
+ polarized image of a black hole, only the hot disk
716
+ model is considered. Moreover, as the linearly po-
717
+ larized light passes through the outer magnetized re-
718
+ gions in plasma, it further undergoes the Faraday
719
+ depolarization effects [68–70].
720
+ Along the path of each light ray from plasma to
721
+ observer, the polarization components expressed by
722
+
723
+ 7
724
+ the Stokes parameters (I, Q, U, V ) [71, 72] satisfy the
725
+ polarized radiative transfer equations [73–77]
726
+ dI
727
+ dλ = J − KI,
728
+ (5)
729
+ where λ is an affine parameter. The Stokes vector
730
+ I = g3(I, Q, U, V ), the propagation matrix K, and
731
+ the emission vector J describe synchrotron emission
732
+ and absorption coefficients in all Stokes parameters,
733
+ as well as Faraday rotation and conversion. Thus,
734
+ the propagations of the polarized light rays depend
735
+ heavily on the plasma properties.
736
+ In the general relativistic magnetohydrodynamic
737
+ (GRMHD) simulations, the plasma in the hot disk
738
+ around the supermassive black hole can be simplified
739
+ by a model, where the plasma is assumed to be col-
740
+ lisionless with electrons and ions so that the electron
741
+ temperature Te deviates from the ion temperature Ti.
742
+ The ratio between the temperatures Ti and Te can be
743
+ expressed as [66, 67, 78]
744
+ R = Ti
745
+ Te
746
+ = Rhigh
747
+ β2
748
+ 1 + β2 + Rlow
749
+ 1
750
+ 1 + β2 ,
751
+ (6)
752
+ where β is the ratio of gas pressure to magnetic pres-
753
+ sure. Rhigh and Rlow are numerical constants, which
754
+ correspond to the ratio of ion to electron tempera-
755
+ tures in the inner disk and in the jet region, respec-
756
+ tively.
757
+ Through quantitatively evaluating a large library
758
+ of images based on GRMHD models and compar-
759
+ ing with the resolved EHT 2017 linear polarization
760
+ map of M87∗ [13, 14], the viable GRMHD models
761
+ revealed that the characteristic parameters for aver-
762
+ age intensity-weighted plasma in the emission region
763
+ are the electron number density ne ∼ 104−5cm−3,
764
+ the magnetic field strength B ≃ 7 − 30G, and the
765
+ dimensionless electron temperature θe ∼ 8 − 60.
766
+ Moreover, recent theoretical investigation shows
767
+ that the polarization images of M87 jets are very
768
+ sensitive to the black hole spin [66], which could pro-
769
+ vide a new possibility for measuring the spin param-
770
+ eter of a black hole. In the low-spin case, there are
771
+ much more symmetric ring shape patterns. This is
772
+ because the beaming and de-beaming effects are not
773
+ so large and the jet acceleration is not so signifi-
774
+ cant as the spin is small. In the high-spin case as
775
+ a = 0.99MBH, the polarized image of the approach-
776
+ ing jet disappeared in the low-spin case is clear [66].
777
+ This is because the high black hole spin gives arise
778
+ to that the particle motion in the plasma can be ac-
779
+ celerated up to the Lorentz factor of ΓL ∼ 3 and
780
+ further yields that the approaching jet is more bright
781
+ than the counter one [66]. Furthermore, there is the
782
+ crescent-like image produced by the toroidal motion
783
+ of gas blobs, which demonstrates that the jet acceler-
784
+ ation process strongly depends on the black hole spin
785
+ [79].
786
+ One can also extract information about circular
787
+ polarization through analyzing the Stokes quantity
788
+ V in the black hole images. The circular polarization
789
+ can be amplified by the Faraday conversion in the
790
+ well-ordered magnetic field.
791
+ This is different from
792
+ the case of the linear polarization where the polar-
793
+ ization vectors are disordered by the strong Faraday
794
+ rotation near the black hole. Generally, in a model
795
+ with hot disk, the circular polarization light images
796
+ are faint and turbulent because the hot region oc-
797
+ cupied with chaotic magnetic fields is Faraday thick
798
+ so that the Faraday conversion cannot be efficient.
799
+ However, the study of circular polarization images
800
+ is helpful to understand the polarized information in
801
+ black hole images more completely.
802
+ The combina-
803
+ tion of linear and circular polarizations in future ob-
804
+ servations could provide a higher-precision detection
805
+ on the magnetic structure, the temperature distribu-
806
+ tion and the coupling between proton and electron
807
+ near black holes. It is shown that the circular polar-
808
+ ization images are sensitive to the inclination angle
809
+ [67]. Moreover, there is a “separatrix” in the circu-
810
+ lar polarization images and across which the sign of
811
+ the circular polarization is reversed. This can be at-
812
+ tributed to the helical magnetic field structure in the
813
+ disk [67]. It implies that future full polarization EHT
814
+ images are quite useful tracers of the magnetic field
815
+ structures near black holes.
816
+ The numerical simulations for the polarization im-
817
+ age of the black hole are generally computation-
818
+ ally expensive due to the broad parameter surveys
819
+ and the complicated couplings among astrophysical
820
+ and relativistic effects. Recently, a simple model of
821
+ an equatorial ring of magnetized fluid has been de-
822
+ veloped to investigate the polarized images of syn-
823
+ chrotron emission around the Schwarzschild black
824
+ hole [80] and the Kerr black hole [81]. Although only
825
+ the emission from a single radius is considered, this
826
+ model can clearly reveal the dependence of the po-
827
+ larization signatures on the magnetic field configu-
828
+ ration, the black hole spin and the observer inclina-
829
+ tion. Moreover, with this model, the image of a finite
830
+ thin disk can be produced by simply summing con-
831
+ tributions from individual radii. The studies [80, 81]
832
+ also indicates that the ring model image is broadly
833
+ consistent with the polarization morphology of the
834
+ EHT image. However, one must note that this sim-
835
+ ple ring model produces a high fractional polarization
836
+ (≥ 60%) even after blurring, which is much larger
837
+ than that in the M87∗ image where the resolved frac-
838
+ tional polarization is about ≤ 20% [80]. This suggests
839
+ that the significant depolarization from the internal
840
+ Faraday effects is essential when modeling and in-
841
+ terpreting the M87∗ image [82].
842
+ Nevertheless, the
843
+ success of the ring model in reproducing the struc-
844
+ ture of some GRMHD images that have significant
845
+ Faraday effects is encouraging for the prospects of
846
+ physical inference from this simple model. Moreover,
847
+ this simple model can be used to study the loops in
848
+ the Stokes Q − U plane, which describes the con-
849
+ tinuous variability in the polarization around a black
850
+
851
+ 8
852
+ hole [83–88]. It is beneficial to understand some time-
853
+ varying features of emission from a localized orbiting
854
+ hotspot near black hole in the real astronomical envi-
855
+ ronment. Thus, this model has been recently applied
856
+ to study the polarized images of black holes in various
857
+ spacetimes [89–93].
858
+ In this simple ring model, the calculation of the po-
859
+ larization vector usually resorts to a so-called Walker-
860
+ Penrose quantity [94, 95]. It is conserved along the
861
+ null geodesic in the spacetimes where the dynamical
862
+ system of photon motion is integrable and the equa-
863
+ tion of motion is full variable separable [94]. The con-
864
+ served Walker-Penrose quantity builds a direct con-
865
+ nection between the polarization vectors of photon
866
+ starting from the emitting source and reaching the
867
+ observer. So in such spacetimes, the propagation of
868
+ polarization vectors can be calculated by analytical
869
+ methods, which greatly simplifies the calculation of
870
+ polarization vectors along null geodesics. However,
871
+ in the spacetimes where the system of photon mo-
872
+ tion is nonintegrable, such as, in the Bonnor black
873
+ dihole spacetime [96], the Walker-Penrose quantity
874
+ is no longer conserved along null geodesic. Without
875
+ the help of the Walker-Penrose constant, the calcula-
876
+ tion of the polarization vectors in this ring model may
877
+ still rely on the numerical methods. In the Bonnor
878
+ black dihole spacetime, there exist some fine fractal
879
+ structures in the distribution of Stokes parameters Q
880
+ and U in the polarized images [97]. The signs of Q
881
+ and U are opposite for two adjacent indirect images.
882
+ It could be caused by that the photons forming two
883
+ adjacent indirect images are emitted from the up-
884
+ per and lower surfaces of accretion disk, respectively,
885
+ resulting in a large difference in the corresponding
886
+ polarization vectors.
887
+ V.
888
+ APPLICATION PROSPECTS OF BLACK
889
+ HOLE IMAGES
890
+ The significance of studying black hole images lies
891
+ in the following aspects. Firstly, such detections can
892
+ identify black holes and further verify and test the
893
+ theories of gravity including general relativity, and
894
+ deepen our understandings on the nature of gravity.
895
+ Secondly, analyzing information carried in black hole
896
+ images enables us to understand matter distribution
897
+ and physical processes around the black holes, and
898
+ to give further insight into some fundamental prob-
899
+ lems in physics. In the following, we present some
900
+ potential application prospects of black hole images.
901
+ A.
902
+ Probe the matter distribution around black
903
+ holes
904
+ To probe the matter distribution around black
905
+ holes, one must simulate images of black hole models
906
+ by considering different choices and select a model
907
+ that could accurately represent the main features of
908
+ the observed images. For the black hole M87∗, it is
909
+ well known that it belongs to the class of low luminos-
910
+ ity active galactic nuclei, and its spectral energy dis-
911
+ tribution presents features associated with emission
912
+ from an optically thin and geometrically thick accre-
913
+ tion disk ascribed to the synchrotron radiation with
914
+ an observed brightness temperature in radio wave-
915
+ lengths in the range of 109 − 1010K [1]. Recently,
916
+ the most salient features appearing in the EHT Col-
917
+ laboration images of M87∗ were reproduced with im-
918
+ pressive fidelity and the corresponding configuration
919
+ model revealed that there may exist an asymmet-
920
+ ric bar-like structure attached to a two-temperature
921
+ thin disk in the equatorial plane of the black hole
922
+ [98]. Moreover, the asymmetry in brightness is a ro-
923
+ bust indicator of the orientation of the spin axis. The
924
+ simulations using different orientations of the black
925
+ hole spin show that the spin direction opposite to
926
+ the observed jet is favored by the asymmetric shape
927
+ of the observed crescent sector.
928
+ As mentioned in the previous part, the compari-
929
+ son between the polarization patterns of the M87∗
930
+ image and the viable GRMHD models reveals the
931
+ existence of magnetic field near the black hole. Ac-
932
+ tually, the magnetic field can generate some features
933
+ of black hole images [99, 100]. For a rotating black
934
+ hole immersed in a Melvin magnetic field [99], the
935
+ shadow becomes oblate for the weak magnetic field.
936
+ However, in the case with the strong magnetic field,
937
+ the multiple disconnected shadows emerge, including
938
+ a middle oblate shadow and many striped shadows.
939
+ Moreover, the novel feature in the Melvin-Kerr black
940
+ hole shadow is the gray regions on both sides of the
941
+ middle main shadow [99], which are caused by the
942
+ stable photon orbits around the stable light rings.
943
+ In fact, the photons moving along the stable pho-
944
+ ton orbits are trapped and they can’t enter the black
945
+ hole. Strictly, the gray regions don’t belong to the
946
+ black hole shadow, but if there are no light sources
947
+ in the stable photon orbit regions, the observer also
948
+ see dark shadows in the gray regions [99, 100]. The
949
+ chaotic lensing arising from the magnetic field gives
950
+ rise to the self-similar fractal structures in the black
951
+ hole shadows. The chaotic image also occurs for the
952
+ case illuminated by an accretion disk in the Kerr-
953
+ Melvin black hole spacetime with a strong enough
954
+ magnetic field [101]. These new effects in shadows
955
+ could provide a new way to probe the magnetic field
956
+ near black holes.
957
+ The images of black holes indicate that the su-
958
+ permassive black holes in the centers of galaxies are
959
+ actually surrounded by plasma.
960
+ Besides as a light
961
+ source to illuminate black holes, plasma is a disper-
962
+ sive medium where the index of refraction depends on
963
+ the spacetime point, the plasma frequency and the
964
+ photon frequency, so the plasma changes the path
965
+ of the light traveling through it and further affects
966
+ the geometrical features of black hole shadows [102–
967
+
968
+ 9
969
+ 119].
970
+ The influence of plasma on the shadows de-
971
+ pends mainly on the ratio between the plasma fre-
972
+ quency and the photon frequency.
973
+ If the plasma
974
+ frequency is smaller than the photon frequency, the
975
+ shadow is not very much different from the vacuum
976
+ case. However, if the plasma frequency tends to the
977
+ photon frequency, the significant changes in the pho-
978
+ ton regions will lead to a drastic modification of the
979
+ properties of the shadow. In the realistic case where
980
+ the plasma frequency is much smaller than the pho-
981
+ ton frequency, the plasma has a decreasing effect on
982
+ the size of the shadows if the plasma density is higher
983
+ at the photon sphere than at the observer position.
984
+ The above analyses are based on an assumption of
985
+ plasma with radial power-law density. Recent study
986
+ of angular Gaussian distributed plasma [115], where
987
+ the plasma is non-spherically symmetric, shows that
988
+ the effect of plasma can be qualitatively explained by
989
+ taking the plasma as a convex lens with the refractive
990
+ index being less than 1. For the supermassive black
991
+ holes at the centers of the Milky Way and the galaxy
992
+ M87, which are the main targets of the current ob-
993
+ servations by the EHT, it is shown that the plasma
994
+ effects start to become relevant at radio wavelengths
995
+ of a few centimeters or more. However, the present
996
+ and planned instruments focus on the submillimeter
997
+ range, where the scattering and self-absorption have
998
+ no significant effect on the emitted radiation around
999
+ the black holes and the plasma effects are very small
1000
+ [117, 118], so a realistic observation of the plasma in-
1001
+ fluence on the shadows seems unfeasible at present.
1002
+ B.
1003
+ Constrain black hole parameters and test
1004
+ theories of gravity
1005
+ It is natural to expect to constrain black hole pa-
1006
+ rameters by the using of shadows because the shape
1007
+ and size of shadows depend on the black hole parame-
1008
+ ters themselves. In general, since black hole shadows
1009
+ have complex shapes in the observer’s sky, the precise
1010
+ description of the shadow boundaries is crucial for
1011
+ measuring black hole parameters. To fit astronomical
1012
+ FIG. 6: The observables for the apparent shape of the
1013
+ Kerr black hole Rs and δs = Dcs/Rs [120].
1014
+ observations, several observables were constructed by
1015
+ using special points on the shadow boundaries in the
1016
+ celestial coordinates. For the Kerr black hole, the two
1017
+ observables Rs and δs = Dcs/Rs ( as shown in Fig.6)
1018
+ are introduced to measure the approximate size of the
1019
+ shadow and its deformation with respect to the refer-
1020
+ ence circle [120], respectively. If the inclination angle
1021
+ is given, the values of the mass and spin of the black
1022
+ hole can be obtained by the precise enough mea-
1023
+ surements of Rs and δs. Recently, the length of the
1024
+ shadow boundary and the local curvature radius are
1025
+ introduced to describe the shadow boundary [121].
1026
+ The black hole spin and the observer inclination can
1027
+ be constrained by simply measuring the maximum
1028
+ and minimum of the curvature radius.
1029
+ Moreover,
1030
+ a topological covariant quantity is analyzed to mea-
1031
+ sure and distinguish different topological structures
1032
+ of the shadows [122, 123]. To further describe the
1033
+ general characterization of the shadow boundaries, a
1034
+ coordinate-independent formalism [124] is proposed
1035
+ where the shadow curves Rψ(ψ) are expressed in
1036
+ terms of Legendre polynomials Rψ =
1037
+
1038
+
1039
+ l=0
1040
+ clPl(cos ψ)
1041
+ with the expansion coefficients cl. The dimensionless
1042
+ deformation parameters δn are defined to measure
1043
+ the relative difference between the shadow at ψ = 0
1044
+ and at other angles ψ = π/n, n = 1, 2, ...k, and k is
1045
+ an arbitrarily positive integer. These distortions are
1046
+ both accurate and robust so they can also be imple-
1047
+ mented to analyse the noisy data.
1048
+ Above analyses are based on an assumption that
1049
+ the black hole shadows are cast by a bundle of pho-
1050
+ tons in parallel trajectories that originating at in-
1051
+ finity.
1052
+ For a realistic black hole surrounded by an
1053
+ accretion disk, the shadow is imprinted on the image
1054
+ of the accretion flow. In principle, comparing a de-
1055
+ tailed model of the accretion disk around the black
1056
+ hole with astronomical observations will yield a mea-
1057
+ surement of the size and shape of the shadow. How-
1058
+ ever, it is not feasible to predict the details of the
1059
+ brightness profile of the accretion flow image. The
1060
+ first reason is the incompleteness of accretion disk
1061
+ models, and all theoretical models are simplified by
1062
+ introducing some assumptions so they are impossi-
1063
+ ble to be completely consistent with the real disks.
1064
+ The other reason is the observed variability of the
1065
+ emission in the disk, since the inner accretion flow is
1066
+ highly turbulent and variable in the real astronomical
1067
+ environment. Thus, it is necessary to build a proce-
1068
+ dure to analyze the observation data that focuses on
1069
+ directly measuring the properties of the shadow in a
1070
+ manner that is not seriously affected by our inabil-
1071
+ ity to predict the brightness profile of the rest of the
1072
+ image [125]. The gradient method [126, 127] is such
1073
+ kind of model-independent algorithms in image pro-
1074
+ cessing, which has already been applied successfully
1075
+ to interferometric images to quantify the properties
1076
+ of the turbulent structure of the interstellar magnetic
1077
+ field. The basic concept in this algorithm is that the
1078
+ magnitude of the gradient of the accretion flow im-
1079
+
1080
+ [M] 0
1081
+ -2
1082
+ 0
1083
+ 2
1084
+ -2
1085
+ D
1086
+ C2
1087
+ B
1088
+ 0
1089
+ 210
1090
+ age has local maxima at the locations of the steep-
1091
+ est gradients, such as, in the case of the expected
1092
+ EHT images, which coincide with the edge of the
1093
+ back hole shadow [125]. With the obtained gradient
1094
+ image where the rim of the black hole shadow appears
1095
+ as the most discernible feature, a shadow pattern al-
1096
+ gorithm matching with the Hough/Radon transform
1097
+ is employed to determine the shape and size of the
1098
+ shadow. This algorithm not only measures the prop-
1099
+ erties of the black hole shadow, but also assesses the
1100
+ statistical significance of the results.
1101
+ The distinct features of black holes originating
1102
+ from deviation parameters in the alternative theory
1103
+ can help test the general relativity. It is shown that
1104
+ the shadow becomes prolate for the negative devi-
1105
+ ation parameter and becomes oblate for the posi-
1106
+ tive one [128].
1107
+ The large deformation parameter
1108
+ in the Konoplya-Zhidenko rotating non-Kerr black
1109
+ hole yields the special cusp-shaped shadow for the
1110
+ equatorial observer [23]. The large deviation arising
1111
+ from the quadrupole mass moment leads to chaotic
1112
+ shadow and the eyeball-like shadows with the self-
1113
+ similar fractal structures [36]. The similar features
1114
+ of shadows also appear in other non-Einstein theories
1115
+ of gravity including the quadratic degenerate higher-
1116
+ order scalar-tensor theories [27]. Moreover, using the
1117
+ priori known estimates for the mass and distance of
1118
+ M87∗ based on stellar dynamics [1–6, 129–131], the
1119
+ inferred size of the shadow from the horizon-scale im-
1120
+ ages of the object M87∗ [1] is found to be consis-
1121
+ tent with that predicted from general relativity for a
1122
+ Schwarzschild black hole within 17% for a 68% con-
1123
+ fidence interval. However, this measurement still ad-
1124
+ mits other possibilities. The size of the black hole
1125
+ shadow M87∗ can be used as a proxy to measure
1126
+ the deviations from Kerr metric satisfied weak-field
1127
+ tests [132]. For the parameterized Johannsen-Psaltis
1128
+ black hole, it has four lowest-order parameters and
1129
+ the shadow depends primarily on the parameter α13
1130
+ and only weakly on spin [133]. The 2017 EHT mea-
1131
+ surement for M87∗ places a bound on the deviation
1132
+ parameter −3.6 < α13 < 5.9 [132]. For the modi-
1133
+ fied gravity bumpy Kerr metric [134], the size of the
1134
+ shadow depends primarily on the parameter γ1,2 and
1135
+ the requirement that the shadow size is consistent
1136
+ with the measurement of M87∗ within 17% gives a
1137
+ constraint on the deviation parameter −5.0 < γ1,2 <
1138
+ 4.9 [132]. For the Konoplya-Rezzolla-Zhidenko met-
1139
+ ric [135], the EHT measurements results in the con-
1140
+ straint −1.2 < α1 < 1.3 [132]. For these parametric
1141
+ deviation metrics, the measurements of the shadow
1142
+ size lead to significant constraints on the deviation
1143
+ parameters that control the second post-Newtonian
1144
+ orders. This means that the EHT measurement of
1145
+ the size of a black hole leads to metric tests that
1146
+ are inaccessible in the weak-field tests. In general,
1147
+ such parametric tests cannot be connected directly
1148
+ to an underlying property of the alternative theory.
1149
+ Recently, the EHT measurements have been applied
1150
+ to set bounds on the physical parameters, such as,
1151
+ the electric charge [136] and the MOG parameter in
1152
+ the Scalar-Tensor-Vector-Gravity Theory [137]. The
1153
+ quality of the measurements [136] is already suffi-
1154
+ cient to rule out that M87∗ is a highly charged dila-
1155
+ ton black hole, a Reissner-Nordstr¨om naked singu-
1156
+ larity or a Janis-Newman-Winicour naked singularity
1157
+ with large scalar charge. Similarly, it also excludes
1158
+ considerable regions of the space of parameters for
1159
+ the doubly-charged dilaton and the Sen black holes.
1160
+ Such tests are very instructive [25, 138–140] because
1161
+ they can shed light on which underlying theories are
1162
+ promising candidates and which must be discarded
1163
+ or modified. The constraints and tests from shadows
1164
+ are complementary to those imposed by observations
1165
+ of gravitational waves from stellar-mass sources.
1166
+ Black hole shadow may also provide a way to test
1167
+ binary black hole. Nowadays, the gravitational-wave
1168
+ events detected by the LIGO-Virgo-KAGRA Collab-
1169
+ orations [141–145] confirm the existence of binary
1170
+ black hole system in the universe, and the systems
1171
+ of binary black hole are expected to be common as-
1172
+ trophysical systems.
1173
+ The shadows of the colliding
1174
+ between two black holes were simulated by adopt-
1175
+ ing the Kastor-Traschen cosmological multiblack hole
1176
+ solution, which describes the collision of maximally
1177
+ charged black holes with a positive cosmological con-
1178
+ stant [146, 147]. Fig.7 shows the change of the shad-
1179
+ ows with time t during the collision of the two black
1180
+ holes with equal mass. At t = 0, the two black holes
1181
+ are mutually away enough and their shadows are sep-
1182
+ arated. However, each shadow is a little bit elongated
1183
+ in the α direction because of the interaction between
1184
+ the two black holes. At t = 1.6, the eyebrowlike shad-
1185
+ ows appear around the main shadows. The eyebrow-
1186
+ like shadows can be explained by a fact that light rays
1187
+ bypass one black hole of binary system and enter the
1188
+ other one. With the further increase of time, the eye-
1189
+ browlike structures grow and the main shadows ap-
1190
+ proach each other. Although not discernible in the
1191
+ figure, in fact there appear the fractal structures of
1192
+ the eyebrows, i.e., infinitely many thinner eyebrows
1193
+ at the outer region of these eyebrows as well as at
1194
+ the inner region of the main shadows [147]. As time
1195
+ elapses, the interval between two black hole shadows
1196
+ becomes indefinitely narrower, and it is expected that
1197
+ the black hole shadows eventually merge with each
1198
+ other [147]. However, due to the special properties
1199
+ of Kastor-Traschen metric, the recent investigation
1200
+ also implies that there is no observer who will see the
1201
+ merge of black hole shadows even if the black holes
1202
+ coalesce into one [148]. Another important solution
1203
+ of binary black hole with analytical metric form is
1204
+ Majumdar-Papapetrou solution, which describes the
1205
+ geometry of two extremally charged black holes in
1206
+ static equilibrium where gravitational attraction is
1207
+ in balance with electrostatic repulsion.
1208
+ The simi-
1209
+ lar eyebrowlike shadows are found in the Majumdar-
1210
+ Papapetrou binary black hole system [149].
1211
+
1212
+ 11
1213
+ FIG. 7: The change of black hole shadows with time t
1214
+ during the collision of two equal mass black holes[147].
1215
+ Actually, these eyebrowlike shadows with fractal
1216
+ structures also appear in other binary black hole
1217
+ systems, such as, in the double-Schwarzschild and
1218
+ double-Kerr black hole systems [150] in which two
1219
+ black holes are separated by a conical singularity.
1220
+ These common key features imprinted in the shad-
1221
+ ows of binary systems, such as disconnected shadows
1222
+ with characteristic eyebrows, open up a new analytic
1223
+ avenue for exploring four dimensional black hole bi-
1224
+ naries [151].
1225
+ C.
1226
+ Fundamental problems in physics
1227
+ Dark matter The nature of dark matter is one
1228
+ of the most important open fundamental questions
1229
+ of physics.
1230
+ Dark matter is assumed to be an in-
1231
+ visible matter, which constitutes the dominant form
1232
+ of matter in the universe and has feeble couplings
1233
+ with the common visible matter at most.
1234
+ Despite
1235
+ extensive observational data supporting its presence
1236
+ on a large scale, dark matter has not been directly
1237
+ detected by any scientific instrument. Dark matter
1238
+ should influence black hole shadow due to its gravi-
1239
+ tational effects. A simple spherical model consisting
1240
+ of a Schwarzschild black hole with mass M and a
1241
+ homocentric spherical shell of dark matter halo with
1242
+ mass ∆M is applied to tentatively study the effects
1243
+ of dark matter on the black hole shadow [152]. It is
1244
+ found that the mass of dark matter and its distance
1245
+ over mass distribution lead to larger radius of shad-
1246
+ ows. However, it must be pointed out that in this
1247
+ simple model the dark matter is unlikely to manifest
1248
+ itself in the shadows of galactic black holes, unless
1249
+ its concentration near black holes is abnormally high
1250
+ [152].
1251
+ The effect of dark matter halo on black hole shad-
1252
+ ows has been studied in the spacetimes of a spher-
1253
+ ically symmetric black hole and of a rotating black
1254
+ hole [153–157]. It is shown that the structures of the
1255
+ black hole shadows in the cold dark matter (CDM)
1256
+ and scalar field dark matter (SFDM) halos are very
1257
+ similar to the cases of the Schwarzschild and Kerr
1258
+ black holes, respectively. Both dark matter models
1259
+ influence the shadows in a similar way and the sizes of
1260
+ the shadows increase with the dark matter parame-
1261
+ ter k ≡ ρcR3, where the characteristic density ρc and
1262
+ the radius R are related to the distribution of dark
1263
+ matter halo in two models. In general, the influence
1264
+ of the dark matter on the black hole shadows is mi-
1265
+ nor and only becomes significant when k increases to
1266
+ order of magnitude of 107 for both CDM and SFDM
1267
+ models [153]. The calculation of the angular radii of
1268
+ the shadows shows that the dark matter halo could
1269
+ influence the shadow of Sgr A∗ at a level of order of
1270
+ magnitude of 10−3µas and 10−5µas, for CDM and
1271
+ SFDM, respectively. However, it is out of the reach
1272
+ of the current astronomical instruments [153]. The
1273
+ current EHT resolution is ∼ 60µas at 230 GHz and
1274
+ will achieve 15µas by observing at a higher frequency
1275
+ of 345 GHz and adding more very long baseline inter-
1276
+ ferometry (VLBI) telescopes. The space-based VLBI
1277
+ RadioAstron [158] will be able to obtain a resolution
1278
+ of 1 − 10µas.
1279
+ This is still at least three orders of
1280
+ magnitude lower than the resolution required by the
1281
+ CDM model. The black hole shadow has been stud-
1282
+ ied for a rotating black hole solution surrounded by
1283
+ superfluid dark matter and baryonic matter. Using
1284
+ the current values for the parameters of the superfluid
1285
+ dark matter and baryonic density profiles for the Sgr
1286
+ A∗ black hole, it is shown that the effects of the super-
1287
+ fluid dark matter and baryonic matter on the sizes of
1288
+ shadows are almost negligible compared to the Kerr
1289
+ vacuum black hole [155]. Moreover, comparing with
1290
+ the dark matter, the shadow size increases consider-
1291
+ ably with the baryonic mass. This can be understood
1292
+ by the fact that the baryonic matter is mostly located
1293
+ in the galactic center. Similarly, the baryonic matter
1294
+ in this model yields an increase of the angular diam-
1295
+ eter of the shadow of the magnitude 10−5µas for the
1296
+ Sgr A∗ black hole [155].
1297
+ The axion is a hypothetical particle beyond the
1298
+ standard model, which is initially proposed to solve
1299
+ the strong CP (charge-conjugation and parity) prob-
1300
+ lem [159–162].
1301
+ Nowadays, axionlike particles are
1302
+ also introduced in fundamental theories and served
1303
+ as an excellent dark matter candidate so there are
1304
+ many search experiments designed to prob axions
1305
+ [163–168]. Axion cloud around a rotating black hole
1306
+ may be formed through the superradiance mecha-
1307
+ nism if the Compton wavelength of axion particle is
1308
+ at the same order of the black hole size [169, 170].
1309
+ Due to the existence of the axion cloud, the axion-
1310
+ electromagnetic-field coupling gives rise to that the
1311
+ position angles of linearly polarized photons emit-
1312
+ ted near the horizon oscillate periodically [171–174].
1313
+ Along this line, a novel strategy of detecting axion
1314
+ clouds around supermassive black holes is recently
1315
+
1316
+ (M3)
1317
+ 8-
1318
+ -4
1319
+ 0
1320
+ 4
1321
+ 8
1322
+ 8
1323
+ 4
1324
+ 0
1325
+ 4
1326
+ 8
1327
+ 5
1328
+ 0 (M3)o
1329
+ a. 1=
1330
+ .ar=}
1331
+ 4
1332
+ -4
1333
+ -5
1334
+ 0
1335
+ 5
1336
+ S.C=t
1337
+ f=4'é
1338
+ 4
1339
+ -4
1340
+ -5
1341
+ 0
1342
+ 5
1343
+ {=O [XJ\H]
1344
+ a.1=
1345
+ 412
1346
+ FIG. 8: The expected axion parameter space probed by
1347
+ polarimetric observations of M87∗ (green) and Sgr A∗
1348
+ (red) for different position angle precisions [175].
1349
+ The
1350
+ bounds from CAST [167] (gray) and Supernova 1987A
1351
+ (pale yellow) are shown to make a comparison.
1352
+ proposed by using the high spatial resolution and
1353
+ polarimetric measurements of the EHT [175]. Fig.8
1354
+ presents the axion parameter space which is poten-
1355
+ tially probed by M87∗ and Sgr A∗ for different posi-
1356
+ tion angle precisions [175]. This method is comple-
1357
+ mentary to the constraints from the black hole spin
1358
+ measurements through gravitational wave detections
1359
+ [176].
1360
+ Since the position angle oscillation induced
1361
+ by the axion background does not depend on photon
1362
+ frequency, it is expected that polarimetric measure-
1363
+ ments at different frequencies in the future can be
1364
+ used to distinguish astrophysical background and to
1365
+ improve the sensitivity of tests of the axion superra-
1366
+ diance scenario. Moreover, the possibility of probing
1367
+ ultralight axions by the circular polarization light is
1368
+ also studied in [177].
1369
+ Extra dimension The possible existence of extra
1370
+ dimensions is one of the most remarkable predictions
1371
+ of the string theory.
1372
+ The extra spatial dimension
1373
+ could play an important role in fundamental theories
1374
+ within the context of the unification of the physical
1375
+ forces and also in black hole physics. For the high-
1376
+ dimensional black holes, it is shown that the extra
1377
+ dimension influences the shape and size of the shad-
1378
+ ows [151, 178–180]. Using the size and deviation from
1379
+ circularity of the shadow of the black hole M87∗ ob-
1380
+ served by the EHT collaboration, the curvature ra-
1381
+ dius of AdS5 in the Randall-Sundrum brane-world
1382
+ scenario is bounded by an upper limit l ≲ 170AU
1383
+ [181]. This upper limit is far from being competitive
1384
+ with current O (mm) scale constraints from preci-
1385
+ sion tests of gravity, but greatly improves the limit
1386
+ l ≲ 0.535 Mpc obtained from GW170817 [182]. More
1387
+ importantly, it is an independent limit from imaging
1388
+ the dark shadow of M87∗. Using a rotating black hole
1389
+ solution with a cosmological in the vacuum brane, the
1390
+ black hole shadow together with the observed data
1391
+ of M87∗ also provides a upper bound for the normal-
1392
+ ized tidal charge q < 0.004 [183], which is the second
1393
+ best result for the tidal charge to date and is a little
1394
+ higher than the best one q < 0.003 from a solar sys-
1395
+ tem test [184]. Moreover, the negative values of the
1396
+ tidal charge are reported to be favored with the M87∗
1397
+ and Sgr A∗ data in the brane contexts by the using
1398
+ of Reissner-Nordstr¨om-type geometry [185–187] and
1399
+ a rotating black hole without a cosmological constant
1400
+ [188].
1401
+ For the case of the compactified extra dimension,
1402
+ the shadow of a rotating uniform black string has
1403
+ been studied where the extra spatial dimension is
1404
+ treated as a compacted circle with the circumference
1405
+ l [189]. The momentum of photon arising from the
1406
+ fifth dimension enlarges the photon regions and the
1407
+ shadow of the rotating 5D black string while it has
1408
+ slight impact on the distortion. The angular diam-
1409
+ eter in the EHT observations of M87∗ leads to the
1410
+ constraint on the length of the compact extra di-
1411
+ mension 2.03125 mm ≲ l ≲ 2.6 mm [189].
1412
+ Simi-
1413
+ larly, from the observations of Sgr A∗, the constraints
1414
+ 2.28070 mm ≲ l ≲ 2.6 mm and 2.13115 mm ≲ l ≲
1415
+ 2.6 mm can be given by the upper bounds of the
1416
+ emission ring and the angular shadow diameter re-
1417
+ spectively [189]. In particular, within these bounds,
1418
+ the rotating 5D black string spacetime is free from
1419
+ the Gregory-Laflamme instability [189].
1420
+ Effects of the specific angular momentum ξψ of
1421
+ photon from the fifth dimension on black hole shadow
1422
+ have also been studied for a rotating squashed
1423
+ Kaluza-Klein black hole [190], which is a kind of
1424
+ interesting Kaluza-Klein type metrics with the spe-
1425
+ cial topology and asymptotical structure [191].
1426
+ It
1427
+ has squashed S3 horizons so the black hole has a
1428
+ structure similar to a five-dimensional black hole in
1429
+ the vicinity of horizon, but behaves as the four-
1430
+ dimensional black holes with a constant twisted S1
1431
+ fiber in the far region. For this special black hole, the
1432
+ radius Rs of the black hole image in the observer’s
1433
+ sky has different values for the photons with different
1434
+ angular momentum ξψ. The real radius of the black
1435
+ shadow is equal to the minimum value of Rsmin. Es-
1436
+ pecially, as the black hole parameters lie in a certain
1437
+ special range, it is found that there is no shadow
1438
+ for a black hole since the minimum value Rsmin = 0
1439
+ in these special cases [190], which is novel since it
1440
+ does not appear in the usual black hole spacetimes.
1441
+ It must be pointed out that the emergence of black
1442
+ hole without shadow does not mean that light rays
1443
+ can penetrate through the black hole. Actually, it is
1444
+ just because the photons near the black hole with cer-
1445
+ tain range of ξψ change their propagation directions
1446
+ and then become far away from the black hole. The
1447
+ phenomenon of black hole without black shadow will
1448
+ vanish if there exists the further constraint on the
1449
+ specific angular momentum ξψ of photon from the
1450
+ fifth dimension. In the case where black hole shadow
1451
+ exists, the radius of the black hole shadow increases
1452
+ monotonically with the increase of extra dimension
1453
+
1454
+ [oa[w'(6N)]
1455
+ -SS
1456
+ -50
1457
+ -18
1458
+ -le
1459
+ 4
1460
+ -5
1461
+ Q 0= 0'3。
1462
+ Q○=↓。
1463
+ roalc
1464
+ Q0=3。
1465
+ 0
1466
+ Vo Tor:
1467
+ S
1468
+ 313
1469
+ parameter in the non-rotating case.
1470
+ With the in-
1471
+ creasing of rotation parameter, the radius of the black
1472
+ hole shadow gradually becomes a monotonously de-
1473
+ creasing function of the extra dimension parameter.
1474
+ With the latest observation data, the angular radii
1475
+ of the shadows for the supermassive black hole Sgr
1476
+ A∗ at the centre of the Milky Way Galaxy and the
1477
+ supermassive black hole in M87 are estimated [190],
1478
+ which implies that there is a room for the theoreti-
1479
+ cal model of such a rotating squashed Kaluza-Klein
1480
+ black hole.
1481
+ Coupling between the photon and background field
1482
+ Analogous to the motion of charged particles in an
1483
+ electromagnetic field, the propagation of light rays
1484
+ in a spacetime is also influenced by the coupling be-
1485
+ tween the photon and background field, which could
1486
+ leave observable effects on the black hole shadow. In
1487
+ the standard Einstein-Maxwell theory, there is only a
1488
+ quadratic term of Maxwell tensor directly related to
1489
+ electromagnetic field, which can be seen as an inter-
1490
+ action between Maxwell field and metric tensor. Ac-
1491
+ tually, the interactions between electromagnetic field
1492
+ and curvature tensor could appear naturally in quan-
1493
+ tum electrodynamics with the photon effective ac-
1494
+ tion originating from one-loop vacuum polarization
1495
+ [192].
1496
+ Although these curvature tensor corrections
1497
+ appear firstly as an effective description of quantum
1498
+ effects, the extended theoretical models without the
1499
+ small coupling constant limit have been investigated
1500
+ for some physical motivations [193–196].
1501
+ The coupling between the photon and Weyl tensor
1502
+ leads to birefringence phenomenon so that the paths
1503
+ of light ray propagations are different for the cou-
1504
+ pled photons with different polarizations. Thus, it
1505
+ is natural to give rise to double shadows for a single
1506
+ black hole because the natural lights near the black
1507
+ hole can be separated into two kinds of linearly po-
1508
+ larized light beams with mutually perpendicular po-
1509
+ larizations [197]. With the increase of the coupling
1510
+ strength, the umbra of the black hole decreases and
1511
+ the penumbra increases. In the case of an equatorial
1512
+ thin accretion disk around the Schwarzschild black
1513
+ hole, the black hole image and its polarization dis-
1514
+ tribution are also affected by the coupling strength
1515
+ [198]. The observed polarized intensity in the bright
1516
+ region is stronger than that in the darker region. It
1517
+ is also noted that the effect of the coupling on the
1518
+ observed polarized vector is weak in general and the
1519
+ stronger effect appears in the bright region close to
1520
+ the black hole in the image plane. Moreover, for the
1521
+ different coupling strengths, the observed polarized
1522
+ patterns have a counterclockwise vortex-like distri-
1523
+ bution with a rotational symmetry as the observed
1524
+ inclination angle θ0 = 0◦.
1525
+ The rotational symme-
1526
+ try in polarized patterns gradually vanishes with the
1527
+ increase of the inclination angle. Quantum electro-
1528
+ dynamic effects from the Euler-Heisenberg effective
1529
+ Lagrangian on the shadow have been studied in the
1530
+ black hole background [199]. Similarly, in this case,
1531
+ the birefringence effect also yields that observer sees
1532
+ different shadow sizes of a single black hole for dif-
1533
+ ferent polarization lights.
1534
+ The coupling between a photon and a generic vec-
1535
+ tor field is also introduced to study black hole shadow
1536
+ [200].
1537
+ The generic vector field is assumed to obey
1538
+ the symmetries possessed by the black hole and the
1539
+ boundary condition that the vector field vanishes at
1540
+ infinity. It is found that the black hole shadow in
1541
+ edge-on view also has different appearances for differ-
1542
+ ent frequencies of the observed light. This is because
1543
+ the coupling form alters the way that the system de-
1544
+ pends on the initial conditions. These new phenom-
1545
+ ena about the black hole shadow originating from the
1546
+ coupling between the photon and background vector
1547
+ field are not simply caused by modifications of the
1548
+ metric, which could help give insight into new physics
1549
+ [200]. In particular, such a kind of coupling can affect
1550
+ the motion of photons and phenomenologically depict
1551
+ a violation of equivalence principle [200]. Thus, it is
1552
+ proposed as a mechanism to test the equivalence prin-
1553
+ ciple by analyzing black hole shadows. Although the
1554
+ current observation conditions might not allow us to
1555
+ directly detect these novel phenomena, it is expected
1556
+ that the future project of the next generation EHT
1557
+ with other future multi-band observations [201] as
1558
+ well as the related data-processing techniques could
1559
+ allow for tests of these new physics imprinted in the
1560
+ black hole shadows. Moreover, the shadow images
1561
+ of M87∗ and Sgr A∗ are recently used to constrain
1562
+ the parameters in the generalized uncertainty princi-
1563
+ ple (GUP) [202] and the Lorentz symmetry violation
1564
+ [203], respectively. Although these best upper limits
1565
+ are weaker than those obtained in most other physi-
1566
+ cal frameworks, they are valuable for further under-
1567
+ standing black hole images and fundamental prob-
1568
+ lems in physics [204–206].
1569
+ VI.
1570
+ SUMMARY
1571
+ The near-horizon images of the shadows of the su-
1572
+ permassive compact objects M87∗ and Sgr A∗ deliv-
1573
+ ered by the EHT have opened an amazing window
1574
+ for the strong-field test of gravity theories as well as
1575
+ fundamental physics. These images are composed of
1576
+ black hole shadow and the image of accretion disk
1577
+ around the central black hole. Black hole shadow is
1578
+ essentially formed by the light rays entering the black
1579
+ hole’s event horizon, in spite that its shape and size
1580
+ also depend on the position of observer and the types
1581
+ of light sources. The fundamental photon orbits and
1582
+ the invariant phase space structures determine the
1583
+ intrinsic features of the black hole shadow. However,
1584
+ the visualization of the shadow must resort to the
1585
+ emission in the accretion disk around the black hole
1586
+ in the real astronomical environment.
1587
+ This means
1588
+ that the visible images of the black hole also depend
1589
+ on the properties of the accretion disk and the phys-
1590
+
1591
+ 14
1592
+ ical processes in the disk, which yields that the black
1593
+ hole images could have a highly model-dependent ap-
1594
+ pearance [125]. For example, some models show a
1595
+ partially obscured shadow and others present an ap-
1596
+ parently exaggerated shadow. Especially, if the disk
1597
+ is optically thick, there may be no visible shadow
1598
+ at all, which means that the geometrical thickness is
1599
+ a key ingredient for observing the shadow. On the
1600
+ other hand, the information on luminance and po-
1601
+ larization stored in the image of accretion disk can
1602
+ be helpful to understand the matter distribution and
1603
+ structures in the strong field region near the black
1604
+ hole.
1605
+ Although black hole shadow and image carry the
1606
+ characteristic information of a black hole, it must be
1607
+ pointed out that the black hole shadows and images
1608
+ in some spacetimes may be not sensitive enough to
1609
+ certain parameters so that the effects of these param-
1610
+ eters on the black hole images can not be discrimi-
1611
+ nated in terms of the resolution of the current obser-
1612
+ vation devices. With the increasing accuracy and res-
1613
+ olution of the future astronomical observations and
1614
+ the technological development, as well as the more
1615
+ theoretical investigations, it is expected that these
1616
+ mint markings of black holes can be more clearly de-
1617
+ tected in the next generation EHT, the BlackHole-
1618
+ Cam and the space-based experiments. The future
1619
+ detections of the fractural fine structures in black
1620
+ hole shadows arising from the chaotic lensing and the
1621
+ competitive constraints on fundamental physics prin-
1622
+ ciples from black hole shadows will help better test
1623
+ theories of gravity and to deeply understand the fun-
1624
+ damental problems in modern physics. In a word, the
1625
+ study of black hole images is still in its infancy, and
1626
+ the detection of images for M87∗ and Sgr A∗ black
1627
+ holes is only a starting point.
1628
+ VII.
1629
+ ACKNOWLEDGMENTS
1630
+ We would like to thank Profs.
1631
+ Carlos Herdeiro
1632
+ and Jieci Wang for their useful comments and sug-
1633
+ gestions. This work was supported by the National
1634
+ Natural Science Foundation of China under Grant
1635
+ Nos. 12035005, 12275078 and 11875026.
1636
+ [1] Event
1637
+ Horizon
1638
+ Telescope
1639
+ Collaboration,
1640
+ K. Akiyama, A. Alberdi, et al., Astrophys. J.
1641
+ Lett. 875, L1 (2019), arXiv:1906.11238.
1642
+ [2] Event
1643
+ Horizon
1644
+ Telescope
1645
+ Collaboration,
1646
+ K. Akiyama, A. Alberdi, et al., Astrophys. J.
1647
+ Lett. 875, L2 (2019), arXiv:1906.11239.
1648
+ [3] Event
1649
+ Horizon
1650
+ Telescope
1651
+ Collaboration,
1652
+ K. Akiyama, A. Alberdi, et al., Astrophys. J.
1653
+ Lett. 875, L3 (2019), arXiv:1906.11240.
1654
+ [4] Event
1655
+ Horizon
1656
+ Telescope
1657
+ Collaboration,
1658
+ K. Akiyama, A. Alberdi, et al., Astrophys. J.
1659
+ Lett. 875, L4 (2019), arXiv:1906.11241.
1660
+ [5] Event
1661
+ Horizon
1662
+ Telescope
1663
+ Collaboration,
1664
+ K. Akiyama, A. Alberdi, et al., Astrophys. J.
1665
+ Lett. 875, L5 (2019), arXiv:1906.11242.
1666
+ [6] Event
1667
+ Horizon
1668
+ Telescope
1669
+ Collaboration,
1670
+ K. Akiyama, A. Alberdi, et al., Astrophys. J.
1671
+ Lett. 875, L6 (2019), arXiv:1906.11243.
1672
+ [7] Event
1673
+ Horizon
1674
+ Telescope
1675
+ Collaboration
1676
+ and
1677
+ K. Akiyama, Astrophys. J. Lett. 930, L17 (2022).
1678
+ [8] H. Falcke, F. Melia, and E. Agol, Astrophys. J. Lett.
1679
+ 528, L13 (2000), astro-ph/9912263.
1680
+ [9] J.
1681
+ L.
1682
+ Synge,
1683
+ Monthly
1684
+ Notices
1685
+ of
1686
+ the
1687
+ Royal
1688
+ Astronomical Society 131, 463 (1966), ISSN 0035-
1689
+ 8711,
1690
+ https://academic.oup.com/mnras/article-
1691
+ pdf/131/3/463/8076763/mnras131-0463.pdf, URL
1692
+ https://doi.org/10.1093/mnras/131.3.463.
1693
+ [10] J. M. Bardeen, in Les Houches Summer School of
1694
+ Theoretical Physics: Black Holes (1973), pp. 215–
1695
+ 240.
1696
+ [11] C. T. Cunningham, Astrophys. J. 202, 788 (1975).
1697
+ [12] S. Chandrasekhar, Fundam. Theor. Phys. 9, 5
1698
+ (1984).
1699
+ [13] Event
1700
+ Horizon
1701
+ Telescope
1702
+ Collaboration,
1703
+ K. Akiyama, J. C. Algaba, et al.,
1704
+ Astrophys.
1705
+ J. Lett. 910, L12 (2021), arXiv:2105.01169.
1706
+ [14] Event
1707
+ Horizon
1708
+ Telescope
1709
+ Collaboration,
1710
+ K. Akiyama, J. C. Algaba, et al., Astrophys.
1711
+ J. Lett. 910, L13 (2021), arXiv:2105.01173.
1712
+ [15] P. V. P. Cunha, C. A. R. Herdeiro, and E. Radu,
1713
+ Phys. Rev. D 96, 024039 (2017), 1705.05461.
1714
+ [16] J. Grover and A. Wittig, Phys. Rev. D 96, 024045
1715
+ (2017), 1705.07061.
1716
+ [17] V. Perlick, Living Rev. Rel. 7, 9 (2004).
1717
+ [18] R. D. Blandford and R. Narayan, Ann. Rev. Astron.
1718
+ Astrophys. 30, 311 (1992).
1719
+ [19] S. Refsdal and J. Surdej, Rept. Prog. Phys. 57, 117
1720
+ (1994).
1721
+ [20] P. V. P. Cunha and C. A. R. Herdeiro, Gen. Rel.
1722
+ Grav. 50, 42 (2018), 1801.00860.
1723
+ [21] V. Perlick and O. Y. Tsupko, Phys. Rept. 947, 1
1724
+ (2022), 2105.07101.
1725
+ [22] M. Wang, S. Chen, and J. Jing, Commun. Theor.
1726
+ Phys. 74, 097401 (2022), 2205.05855.
1727
+ [23] M. Wang, S. Chen, and J. Jing, JCAP 10, 051
1728
+ (2017), 1707.09451.
1729
+ [24] I. Sengo, P. V. P. Cunha, C. A. R. Herdeiro, and
1730
+ E. Radu (2022), 2209.06237.
1731
+ [25] L. Amarilla, E. F. Eiroa, and G. Giribet, Phys. Rev.
1732
+ D 81, 124045 (2010), 1005.0607.
1733
+ [26] S. Dastan, R. Saffari, and S. Soroushfar, Eur. Phys.
1734
+ J. Plus 137, 1002 (2022), 1606.06994.
1735
+ [27] F. Long, S. Chen, M. Wang, and J. Jing, Eur. Phys.
1736
+ J. C 80, 1180 (2020), 2009.07508.
1737
+ [28] A. Stepanian, S. Khlghatyan, and V. G. Gurzadyan,
1738
+ Eur. Phys. J. Plus 136, 127 (2021), 2101.08261.
1739
+ [29] V. A. Prokopov, S. O. Alexeyev, and O. I. Zenin,
1740
+ J. Exp. Theor. Phys. 135, 91 (2022), 2107.01115.
1741
+ [30] Z.
1742
+ Younsi,
1743
+ D.
1744
+ Psaltis,
1745
+ and
1746
+ F.
1747
+ ¨Ozel
1748
+ (2021),
1749
+ 2111.01752.
1750
+
1751
+ 15
1752
+ [31] B. Carter, Phys. Rev. 174, 1559 (1968).
1753
+ [32] P. V. P. Cunha, C. A. R. Herdeiro, E. Radu, and
1754
+ H. F. Runarsson, Phys. Rev. Lett. 115, 211102
1755
+ (2015), 1509.00021.
1756
+ [33] F. H. Vincent,
1757
+ E. Gourgoulhon,
1758
+ C. Herdeiro,
1759
+ and E. Radu, Phys. Rev. D 94, 084045 (2016),
1760
+ 1606.04246.
1761
+ [34] P. V. P. Cunha, J. Grover, C. Herdeiro, E. Radu,
1762
+ H. Runarsson, and A. Wittig, Phys. Rev. D 94,
1763
+ 104023 (2016), 1609.01340.
1764
+ [35] M. Wang, S. Chen, and J. Jing, Phys. Rev. D 97,
1765
+ 064029 (2018), 1710.07172.
1766
+ [36] M. Wang, S. Chen, and J. Jing, Phys. Rev. D 98,
1767
+ 104040 (2018), 1801.02118.
1768
+ [37] M. Wang, S. Chen, J. Wang, and J. Jing, Eur. Phys.
1769
+ J. C 80, 110 (2020), 1904.12423.
1770
+ [38] A. Bohn, W. Throwe, F. H´ebert, K. Henriksson,
1771
+ D. Bunandar, M. A. Scheel, and N. W. Taylor,
1772
+ Class. Quant. Grav. 32, 065002 (2015), 1410.7775.
1773
+ [39] A. Riazuelo, Int. J. Mod. Phys. D 28, 1950042
1774
+ (2018), 1511.06025.
1775
+ [40] C.-M. Claudel, K. S. Virbhadra, and G. F. R. Ellis,
1776
+ J. Math. Phys. 42, 818 (2001), gr-qc/0005050.
1777
+ [41] K. S. Virbhadra and G. F. R. Ellis, Phys. Rev. D
1778
+ 65, 103004 (2002).
1779
+ [42] C.-K. Qiao (2022), 2208.01771.
1780
+ [43] P. V. P. Cunha, E. Berti, and C. A. R. Herdeiro,
1781
+ Phys. Rev. Lett. 119, 251102 (2017), 1708.04211.
1782
+ [44] P. V. P. Cunha,
1783
+ C. Herdeiro,
1784
+ E. Radu,
1785
+ and
1786
+ N. Sanchis-Gual (2022), 2207.13713.
1787
+ [45] W.-L. Qian, S. Chen, C.-G. Shao, B. Wang, and R.-
1788
+ H. Yue, Eur. Phys. J. C 82, 91 (2022), 2102.03820.
1789
+ [46] S. Li, A. A. Abdujabbarov, and W.-B. Han, Eur.
1790
+ Phys. J. C 81, 649 (2021), 2103.08104.
1791
+ [47] C. Bambi, in 14th Marcel Grossmann Meeting on
1792
+ Recent Developments in Theoretical and Experi-
1793
+ mental General Relativity, Astrophysics, and Rela-
1794
+ tivistic Field Theories (2017), vol. 4, pp. 3494–3499,
1795
+ 1507.05257.
1796
+ [48] M. Ghasemi-Nodehi, Z. Li, and C. Bambi, Eur.
1797
+ Phys. J. C 75, 315 (2015), 1506.02627.
1798
+ [49] R. Kumar and S. G. Ghosh, Astrophys. J. 892, 78
1799
+ (2020), 1811.01260.
1800
+ [50] L. Medeiros, D. Psaltis, and F. ¨Ozel, Astrophys. J.
1801
+ 896, 7 (2020), 1907.12575.
1802
+ [51] Z. Carson and K. Yagi, Phys. Rev. D 101, 084030
1803
+ (2020), 2002.01028.
1804
+ [52] G. Mingotti, F. Topputo, and F. Bernelli-Zazzera,
1805
+ Celestial Mechanics and Dynamical Astronomy
1806
+ 105, 61 (2009).
1807
+ [53] W. S. Koon, M. W. Lo, J. E. Marsden, and S. D.
1808
+ Ross, Celestial Mechanics and Dynamical Astron-
1809
+ omy 81, 63 (2001).
1810
+ [54] M. Henon, Generating Families in the Restricted
1811
+ Three-Body Problem (1997).
1812
+ [55] D. L. Richardson, Celestial Mechanics 22, 241
1813
+ (1980).
1814
+ [56] J. P. Luminet, A&A 75, 228 (1979).
1815
+ [57] D. N. Page and K. S. Thorne, Astrophys. J. 191,
1816
+ 499 (1974).
1817
+ [58] G.
1818
+ S.
1819
+ Bisnovatyi-Kogan
1820
+ and
1821
+ O.
1822
+ Y.
1823
+ Tsupko,
1824
+ Phys. Rev. D 105, 064040 (2022), 2201.01716.
1825
+ [59] T. Bronzwaer and H. Falcke, Astrophys. J. 920, 155
1826
+ (2021), 2108.03966.
1827
+ [60] T.
1828
+ Bronzwaer,
1829
+ J.
1830
+ Davelaar,
1831
+ Z.
1832
+ Younsi,
1833
+ M.
1834
+ Mo´scibrodzka,
1835
+ H.
1836
+ Olivares,
1837
+ Y.
1838
+ Mizuno,
1839
+ J. Vos, and H. Falcke, Mon. Not. Roy. Astron. Soc.
1840
+ 501, 4722 (2021), 2011.00069.
1841
+ [61] O. James, E. von Tunzelmann, P. Franklin, and
1842
+ K. S. Thorne, Class. Quant. Grav. 32, 065001
1843
+ (2015), 1502.03808.
1844
+ [62] S. U. Viergutz, A&A 272, 355 (1993).
1845
+ [63] S. U. Viergutz, Ap&SS 205, 155 (1993).
1846
+ [64] J. P. S. Lemos and P. S. Letelier, Phys. Rev. D 49,
1847
+ 5135 (1994).
1848
+ [65] P. V. P. Cunha, N. A. Eir´o, C. A. R. Herdeiro,
1849
+ and J. P. S. Lemos, J. Cosmology Astropart. Phys.
1850
+ 2020, 035 (2020), 1912.08833.
1851
+ [66] Y.
1852
+ Tsunetoe,
1853
+ S.
1854
+ Mineshige,
1855
+ K.
1856
+ Ohsuga,
1857
+ T. Kawashima, and K. Akiyama, Publ. Astron.
1858
+ Soc. Jap. 72, 32 (2020), 2002.00954.
1859
+ [67] Y.
1860
+ Tsunetoe,
1861
+ S.
1862
+ Mineshige,
1863
+ K.
1864
+ Ohsuga,
1865
+ T. Kawashima, and K. Akiyama, Publ. Astron.
1866
+ Soc. Jap. 73, 912 (2021), 2012.05243.
1867
+ [68] E. Agol, ApJ 538, L121 (2000), astro-ph/0005051.
1868
+ [69] D. P. Marrone, J. M. Moran, J.-H. Zhao, and
1869
+ R. Rao, Astrophys. J. 640, 308 (2006), astro-
1870
+ ph/0511653.
1871
+ [70] C. Y. Kuo et al., Astrophys. J. Lett. 783, L33
1872
+ (2014), 1402.5238.
1873
+ [71] J. P. Hamaker and J. D. Bregman, A&AS 117, 161
1874
+ (1996).
1875
+ [72] O. M. Smirnov, A&A 527, A106 (2011), 1101.1764.
1876
+ [73] J. H. Krolik, J. F. Hawley, and S. Hirose, Astrophys.
1877
+ J. 622, 1008 (2005), astro-ph/0409231.
1878
+ [74] R. Shcherbakov, Astrophys. J. 688, 695 (2008),
1879
+ 0809.0012.
1880
+ [75] R. V. Shcherbakov and L. Huang, Mon. Not. Roy.
1881
+ Astron. Soc. 410, 1052 (2011), 1007.4831.
1882
+ [76] J. Dexter, Mon. Not. Roy. Astron. Soc. 462, 115
1883
+ (2016), 1602.03184.
1884
+ [77] A. K. Kulkarni, R. F. Penna, R. V. Shcherbakov,
1885
+ J. F. Steiner, R. Narayan, A. Sadowski, Y. Zhu,
1886
+ J. E. McClintock, S. W. Davis, and J. C. McKin-
1887
+ ney, Mon. Not. Roy. Astron. Soc. 414, 1183 (2011),
1888
+ 1102.0010.
1889
+ [78] M. Moscibrodzka, H. Falcke, and H. Shiokawa, As-
1890
+ tron. Astrophys. 586, A38 (2016), 1510.07243.
1891
+ [79] M. Nakamura et al., Astrophys. J. 868, 146 (2018),
1892
+ 1810.09963.
1893
+ [80] K. Akiyama et al. (Event Horizon Telescope), As-
1894
+ trophys. J. 912, 35 (2021), 2105.01804.
1895
+ [81] Z. Gelles, E. Himwich, D. C. M. Palumbo, and
1896
+ M. D. Johnson, Phys. Rev. D 104, 044060 (2021),
1897
+ 2105.09440.
1898
+ [82] M. Moscibrodzka, J. Dexter, J. Davelaar, and
1899
+ H. Falcke, Mon. Not. Roy. Astron. Soc. 468, 2214
1900
+ (2017), 1703.02390.
1901
+ [83] A. Eckart, R. Schodel, L. Meyer, S. Trippe, T. Ott,
1902
+ and R. Genzel, Astron. Astrophys. 455, 1 (2006),
1903
+ astro-ph/0610103.
1904
+ [84] S. Trippe,
1905
+ T. Paumard,
1906
+ T. Ott,
1907
+ S. Gillessen,
1908
+ F. Eisenhauer, F. Martins, and R. Genzel, Mon.
1909
+ Not. Roy. Astron. Soc. 375, 764 (2007), astro-
1910
+ ph/0611737.
1911
+ [85] M. Zamaninasab et al., Astron. Astrophys. 510, A3
1912
+ (2010), 0911.4659.
1913
+ [86] V. L. Fish, S. S. Doeleman, A. E. Broderick,
1914
+
1915
+ 16
1916
+ A. Loeb, and A. E. E. Rogers, Astrophys. J. 706,
1917
+ 1353 (2009), 0910.3893.
1918
+ [87] A. E. Broderick and A. Loeb, Mon. Not. Roy. As-
1919
+ tron. Soc. 367, 905 (2006), astro-ph/0509237.
1920
+ [88] A. E. Broderick and A. Loeb, Mon. Not. Roy. As-
1921
+ tron. Soc. 363, 353 (2005), astro-ph/0506433.
1922
+ [89] X. Qin, S. Chen, and J. Jing, Eur. Phys. J. C 82,
1923
+ 784 (2022), 2111.10138.
1924
+ [90] H. Zhu and M. Guo (2022), 2205.04777.
1925
+ [91] V. Delijski, G. Gyulchev, P. Nedkova, and S. Yazad-
1926
+ jiev (2022), 2206.09455.
1927
+ [92] X. Qin, S. Chen, Z. Zhang, and J. Jing, Astrophys.
1928
+ J. 938, 2 (2022), 2207.12034.
1929
+ [93] X. Liu, S. Chen, and J. Jing (2022), 2205.00391.
1930
+ [94] M. Walker and R. Penrose, Commun. Math. Phys.
1931
+ 18, 265 (1970).
1932
+ [95] E. Himwich, M. D. Johnson, A. Lupsasca, and
1933
+ A. Strominger, Phys. Rev. D 101, 084020 (2020),
1934
+ 2001.08750.
1935
+ [96] W. B. Bonnor, Zeitschrift fur Physik 190, 444
1936
+ (1966).
1937
+ [97] Z. Zhang, S. Chen, and J. Jing, Eur. Phys. J. C 82,
1938
+ 835 (2022), 2205.13696.
1939
+ [98] E. F. Boero and O. M. Moreschi, Mon. Not. Roy.
1940
+ Astron. Soc. 507, 5974 (2021), 2105.07075.
1941
+ [99] M. Wang, S. Chen, and J. Jing, Phys. Rev. D 104,
1942
+ 084021 (2021), 2104.12304.
1943
+ [100] H. C. D. L. Junior, P. V. P. Cunha, C. A. R.
1944
+ Herdeiro, and L. C. B. Crispino, Phys. Rev. D 104,
1945
+ 044018 (2021), 2104.09577.
1946
+ [101] Y. Hou, Z. Zhang, H. Yan, M. Guo, and B. Chen,
1947
+ Phys. Rev. D 106, 064058 (2022), 2206.13744.
1948
+ [102] V. Perlick, O. Y. Tsupko, and G. S. Bisnovatyi-
1949
+ Kogan,
1950
+ Phys.
1951
+ Rev.
1952
+ D
1953
+ 92,
1954
+ 104031
1955
+ (2015),
1956
+ 1507.04217.
1957
+ [103] F. Atamurotov and B. Ahmedov, Phys. Rev. D 92,
1958
+ 084005 (2015), 1507.08131.
1959
+ [104] A. Abdujabbarov, B. Juraev, B. Ahmedov, and
1960
+ Z. Stuchl´ık, Astrophys. Space Sci. 361, 226 (2016).
1961
+ [105] G. Crisnejo and E. Gallo, Phys. Rev. D 97, 124016
1962
+ (2018), 1804.05473.
1963
+ [106] Y. Huang, Y.-P. Dong, and D.-J. Liu, Int. J. Mod.
1964
+ Phys. D 27, 1850114 (2018), 1807.06268.
1965
+ [107] H.
1966
+ Yan,
1967
+ Phys.
1968
+ Rev.
1969
+ D
1970
+ 99,
1971
+ 084050
1972
+ (2019),
1973
+ 1903.04382.
1974
+ [108] G. Z. Babar, A. Z. Babar, and F. Atamurotov, Eur.
1975
+ Phys. J. C 80, 761 (2020), 2008.05845.
1976
+ [109] K. Matsuno, Phys. Rev. D 103, 044008 (2021),
1977
+ 2011.07742.
1978
+ [110] O. Y. Tsupko, Phys. Rev. D 103, 104019 (2021),
1979
+ 2102.00553.
1980
+ [111] Q. Li, Y. Zhu, and T. Wang, Eur. Phys. J. C 82, 2
1981
+ (2022), 2102.00957.
1982
+ [112] F. Atamurotov, K. Jusufi, M. Jamil, A. Abdujab-
1983
+ barov, and M. Azreg-A¨ınou, Phys. Rev. D 104,
1984
+ 064053 (2021), 2109.08150.
1985
+ [113] H.-M. Wang and S.-W. Wei, Eur. Phys. J. Plus 137,
1986
+ 571 (2022), 2106.14602.
1987
+ [114] J.
1988
+ Bad´ıa
1989
+ and
1990
+ E.
1991
+ F.
1992
+ Eiroa,
1993
+ Phys.
1994
+ Rev.
1995
+ D
1996
+ 104,
1997
+ 084055
1998
+ (2021),
1999
+ URL
2000
+ https://link.aps.org/doi/10.1103/PhysRevD.104.084055.
2001
+ [115] Z. Zhang, H. Yan, M. Guo, and B. Chen (2022),
2002
+ 2206.04430.
2003
+ [116] F. Atamurotov, A. Abdujabbarov, and W.-B. Han,
2004
+ Phys. Rev. D 104, 084015 (2021).
2005
+ [117] V. Perlick and O. Y. Tsupko, Phys. Rev. D 95,
2006
+ 104003 (2017), 1702.08768.
2007
+ [118] V. Perlick, O. Y. Tsupko, and G. S. Bisnovatyi-
2008
+ Kogan, Phys. Rev. D 92, 104031 (2015), URL
2009
+ https://link.aps.org/doi/10.1103/PhysRevD.92.104031.
2010
+ [119] B. Bezdekova, V. Perlick, and J. Bicak (2022),
2011
+ 2204.05593.
2012
+ [120] K. Hioki and K.-I. Maeda, Phys. Rev. D 80, 024042
2013
+ (2009), 0904.3575.
2014
+ [121] S.-W. Wei, Y.-C. Zou, Y.-X. Liu, and R. B. Mann,
2015
+ JCAP 08, 030 (2019), 1904.07710.
2016
+ [122] S.-W. Wei, Y.-X. Liu, and R. B. Mann, Phys. Rev.
2017
+ D 99, 041303 (2019), 1811.00047.
2018
+ [123] P. V. P. Cunha and C. A. R. Herdeiro, Phys. Rev.
2019
+ Lett. 124, 181101 (2020), 2003.06445.
2020
+ [124] A. A. Abdujabbarov, L. Rezzolla, and B. J. Ahme-
2021
+ dov, MNRAS 454, 2423 (2015), 1503.09054.
2022
+ [125] D. Psaltis, F. Ozel, C.-K. Chan, and D. P. Marrone,
2023
+ Astrophys. J. 814, 115 (2015), 1411.1454.
2024
+ [126] D. Marr and E. Hildreth, Proceedings of the Royal
2025
+ Society of London Series B 207, 187 (1980).
2026
+ [127] J. F. Canny, Theory of Computing Systems Math-
2027
+ ematical Systems Theory p. 16 (1983).
2028
+ [128] A. E. Broderick, T. Johannsen, A. Loeb, and
2029
+ D. Psaltis, Astrophys. J. 784, 7 (2014), 1311.5564.
2030
+ [129] K. Gebhardt, J. Adams, D. Richstone, T. R.
2031
+ Lauer, S. M. Faber, K. Gultekin, J. Murphy,
2032
+ and S. Tremaine, Astrophys. J. 729, 119 (2011),
2033
+ 1101.1954.
2034
+ [130] J. L. Walsh, A. J. Barth, L. C. Ho, and M. Sarzi,
2035
+ Astrophys. J. 770, 86 (2013), 1304.7273.
2036
+ [131] J. Kormendy and L. C. Ho, Ann. Rev. Astron. As-
2037
+ trophys. 51, 511 (2013), 1304.7762.
2038
+ [132] D. Psaltis et al. (Event Horizon Telescope), Phys.
2039
+ Rev. Lett. 125, 141104 (2020), 2010.01055.
2040
+ [133] T.
2041
+ Johannsen,
2042
+ Phys.
2043
+ Rev.
2044
+ D
2045
+ 87,
2046
+ 124017
2047
+ (2013),
2048
+ URL
2049
+ https://link.aps.org/doi/10.1103/PhysRevD.87.124017.
2050
+ [134] J. Gair and N. Yunes, Phys. Rev. D 84, 064016
2051
+ (2011), 1106.6313.
2052
+ [135] R. Konoplya, L. Rezzolla, and A. Zhidenko, Phys.
2053
+ Rev. D 93, 064015 (2016), 1602.02378.
2054
+ [136] P. Kocherlakota et al. (Event Horizon Telescope),
2055
+ Phys. Rev. D 103, 104047 (2021), 2105.09343.
2056
+ [137] X.-M. Kuang, Z.-Y. Tang, B. Wang, and A. Wang,
2057
+ Phys. Rev. D 106, 064012 (2022), 2206.05878.
2058
+ [138] C. Bambi and K. Freese, Phys. Rev. D 79, 043002
2059
+ (2009), 0812.1328.
2060
+ [139] Y. Mizuno, Z. Younsi, C. M. Fromm, O. Porth,
2061
+ M.
2062
+ De
2063
+ Laurentis,
2064
+ H.
2065
+ Olivares,
2066
+ H.
2067
+ Falcke,
2068
+ M. Kramer, and L. Rezzolla, Nature Astron. 2, 585
2069
+ (2018), 1804.05812.
2070
+ [140] P. V. P. Cunha, C. A. R. Herdeiro, and E. Radu,
2071
+ Phys. Rev. Lett. 123, 011101 (2019), 1904.09997.
2072
+ [141] B. P. Abbott, R. Abbott, T. D. Abbott, et al.,
2073
+ Phys. Rev. Lett. 116, 061102 (2016), 1602.03837.
2074
+ [142] B. P. Abbott, R. Abbott, T. D. Abbott, et al.,
2075
+ Phys. Rev. Lett. 116, 241103 (2016), 1606.04855.
2076
+ [143] B. P. Abbott, R. Abbott, T. D. Abbott, et al.,
2077
+ Phys. Rev. Lett. 118, 221101 (2017), 1706.01812.
2078
+ [144] B. P. Abbott, R. Abbott, T. D. Abbott, et al.,
2079
+ Phys. Rev. Lett. 119, 141101 (2017), 1709.09660.
2080
+ [145] B. P. Abbott, R. Abbott, T. D. Abbott, et al., ApJ
2081
+
2082
+ 17
2083
+ 851, L35 (2017), 1711.05578.
2084
+ [146] D. Nitta, T. Chiba, and N. Sugiyama, Phys. Rev.
2085
+ D 84, 063008 (2011), 1106.2425.
2086
+ [147] A. Yumoto, D. Nitta, T. Chiba, and N. Sugiyama,
2087
+ Phys. Rev. D 86, 103001 (2012), 1208.0635.
2088
+ [148] K. Okabayashi, N. Asaka, and K.-i. Nakao, Phys.
2089
+ Rev. D 102, 044011 (2020), 2003.07519.
2090
+ [149] J. Shipley and S. R. Dolan, Class. Quant. Grav. 33,
2091
+ 175001 (2016), 1603.04469.
2092
+ [150] P. V. P. Cunha, C. A. R. Herdeiro, and M. J.
2093
+ Rodriguez,
2094
+ Phys. Rev. D
2095
+ 98,
2096
+ 044053
2097
+ (2018),
2098
+ 1805.03798.
2099
+ [151] T. Hertog, T. Lemmens, and B. Vercnocke, Phys.
2100
+ Rev. D 100, 046011 (2019), 1903.05125.
2101
+ [152] R. A. Konoplya, Phys. Lett. B 795, 1 (2019),
2102
+ 1905.00064.
2103
+ [153] X. Hou, Z. Xu, M. Zhou, and J. Wang, JCAP 07,
2104
+ 015 (2018), 1804.08110.
2105
+ [154] Z. Xu, X. Hou, X. Gong, and J. Wang, JCAP 09,
2106
+ 038 (2018), 1803.00767.
2107
+ [155] K. Jusufi, M. Jamil, and T. Zhu, Eur. Phys. J. C
2108
+ 80, 354 (2020), 2005.05299.
2109
+ [156] K. Jusufi, M. Jamil, P. Salucci, T. Zhu, and S. Ha-
2110
+ roon, Phys. Rev. D 100, 044012 (2019), 1905.11803.
2111
+ [157] P. V. P. Cunha, C. A. R. Herdeiro, and E. Radu,
2112
+ Universe 5, 220 (2019), 1909.08039.
2113
+ [158] N. S. Kardashev and V. V. Khartov (RadioAstron),
2114
+ Astronomy Reports 57, 153 (2013), 1303.5013.
2115
+ [159] R.
2116
+ D.
2117
+ Peccei
2118
+ and
2119
+ H.
2120
+ R.
2121
+ Quinn,
2122
+ Phys.
2123
+ Rev.
2124
+ Lett.
2125
+ 38,
2126
+ 1440
2127
+ (1977),
2128
+ URL
2129
+ https://link.aps.org/doi/10.1103/PhysRevLett.38.1440.
2130
+ [160] S. Weinberg, Phys. Rev. Lett. 40, 223 (1978), URL
2131
+ https://link.aps.org/doi/10.1103/PhysRevLett.40.223.
2132
+ [161] F. Wilczek, Phys. Rev. Lett. 40, 279 (1978), URL
2133
+ https://link.aps.org/doi/10.1103/PhysRevLett.40.279.
2134
+ [162] L.
2135
+ Di
2136
+ Luzio,
2137
+ M.
2138
+ Giannotti,
2139
+ E.
2140
+ Nardi,
2141
+ and
2142
+ L. Visinelli, Phys. Rept. 870, 1 (2020), 2003.01100.
2143
+ [163] D. J. E. Marsh,
2144
+ Phys. Rept. 643,
2145
+ 1 (2016),
2146
+ 1510.07633.
2147
+ [164] P. Sikivie, Rev. Mod. Phys. 93, 015004 (2021),
2148
+ 2003.02206.
2149
+ [165] G. G. Raffelt, Lect. Notes Phys. 741, 51 (2008),
2150
+ hep-ph/0611350.
2151
+ [166] G. G. Raffelt, Phys. Rept. 198, 1 (1990).
2152
+ [167] V. Anastassopoulos et al. (CAST), Nature Phys.
2153
+ 13, 584 (2017), 1705.02290.
2154
+ [168] A. Payez, C. Evoli, T. Fischer, M. Giannotti, A. Mi-
2155
+ rizzi, and A. Ringwald, JCAP 02, 006 (2015),
2156
+ 1410.3747.
2157
+ [169] M. J. Strafuss and G. Khanna, Phys. Rev. D 71,
2158
+ 024034 (2005), gr-qc/0412023.
2159
+ [170] R. Brito, V. Cardoso, and P. Pani, Lect. Notes
2160
+ Phys. 906, pp.1 (2015), 1501.06570.
2161
+ [171] S. M.
2162
+ Carroll,
2163
+ G.
2164
+ B.
2165
+ Field,
2166
+ and
2167
+ R. Jackiw,
2168
+ Phys.
2169
+ Rev.
2170
+ D
2171
+ 41,
2172
+ 1231
2173
+ (1990),
2174
+ URL
2175
+ https://link.aps.org/doi/10.1103/PhysRevD.41.1231.
2176
+ [172] A. D. Plascencia and A. Urbano, JCAP 04, 059
2177
+ (2018), 1711.08298.
2178
+ [173] T. Fujita, R. Tazaki, and K. Toma, Phys. Rev. Lett.
2179
+ 122, 191101 (2019), 1811.03525.
2180
+ [174] M. A. Fedderke, P. W. Graham, and S. Rajendran,
2181
+ Phys. Rev. D 100, 015040 (2019), 1903.02666.
2182
+ [175] Y. Chen, J. Shu, X. Xue, Q. Yuan, and Y. Zhao,
2183
+ Phys. Rev. Lett. 124, 061102 (2020), 1905.02213.
2184
+ [176] A. Arvanitaki, M. Baryakhtar, and X. Huang, Phys.
2185
+ Rev. D 91, 084011 (2015), 1411.2263.
2186
+ [177] S. Shakeri and F. Hajkarim (2022), 2209.13572.
2187
+ [178] B. P. Singh and S. G. Ghosh, Annals Phys. 395,
2188
+ 127 (2018), 1707.07125.
2189
+ [179] U. Papnoi, F. Atamurotov, S. G. Ghosh, and
2190
+ B. Ahmedov, Phys. Rev. D 90, 024073 (2014),
2191
+ 1407.0834.
2192
+ [180] M. Amir, B. P. Singh, and S. G. Ghosh, Eur. Phys.
2193
+ J. C 78, 399 (2018), 1707.09521.
2194
+ [181] S. Vagnozzi and L. Visinelli, Phys. Rev. D 100,
2195
+ 024020 (2019), 1905.12421.
2196
+ [182] L. Visinelli, N. Bolis, and S. Vagnozzi, Phys. Rev.
2197
+ D 97, 064039 (2018), 1711.06628.
2198
+ [183] J. C. S. Neves, Eur. Phys. J. C 80, 717 (2020),
2199
+ 2005.00483.
2200
+ [184] C. G. Boehmer, T. Harko, and F. S. N. Lobo, Class.
2201
+ Quant. Grav. 25, 045015 (2008), 0801.1375.
2202
+ [185] A.
2203
+ Y.
2204
+ Bin-Nun,
2205
+ Phys.
2206
+ Rev.
2207
+ D
2208
+ 82,
2209
+ 064009
2210
+ (2010),
2211
+ URL
2212
+ https://link.aps.org/doi/10.1103/PhysRevD.82.064009.
2213
+ [186] A. F. Zakharov, Eur. Phys. J. C 78, 689 (2018),
2214
+ 1804.10374.
2215
+ [187] Z. Horvath and L. A. Gergely, Astron. Nachr. 334,
2216
+ 1047 (2013), 1203.6576.
2217
+ [188] I. Banerjee, S. Chakraborty, and S. SenGupta,
2218
+ Phys. Rev. D 101, 041301 (2020), 1909.09385.
2219
+ [189] Z.-Y. Tang, X.-M. Kuang, B. Wang, and W.-L.
2220
+ Qian (2022), 2206.08608.
2221
+ [190] F. Long, J. Wang, S. Chen, and J. Jing, JHEP 10,
2222
+ 269 (2019), 1906.04456.
2223
+ [191] T. Wang, Nucl. Phys. B 756, 86 (2006), hep-
2224
+ th/0605048.
2225
+ [192] I. T. Drummond and S. J. Hathrell, Physical Re-
2226
+ view D 22, 343 (1980).
2227
+ [193] F. W. Hehl and Y. N. Obukhov, Lecture Notes in
2228
+ Physics 562, 479 (1999).
2229
+ [194] A. B. Balakin, V. V. Bochkarev, and J. P. S. Lemos,
2230
+ Phys. Rev. D 77, 084013 (2008), 0712.4066.
2231
+ [195] T. E. Clarke, P. P. Kronberg, and H. Boehringer,
2232
+ Astrophys. J.
2233
+ Lett.
2234
+ 547,
2235
+ L111
2236
+ (2001),
2237
+ astro-
2238
+ ph/0011281.
2239
+ [196] K. Bamba and S. D. Odintsov, JCAP 04, 024
2240
+ (2008), 0801.0954.
2241
+ [197] Y. Huang, S. Chen, and J. Jing, European Physical
2242
+ Journal C 76, 594 (2016), 1606.04634.
2243
+ [198] Z. Zhang, S. Chen, X. Qin, and J. Jing, Eur. Phys.
2244
+ J. C 81, 991 (2021), 2106.07981.
2245
+ [199] Z. Hu, Z. Zhong, P.-C. Li, M. Guo, and B. Chen,
2246
+ Phys. Rev. D 103, 044057 (2021), 2012.07022.
2247
+ [200] S.-F. Yan, C. Li, L. Xue, X. Ren, Y.-F. Cai, D. A.
2248
+ Easson, Y.-F. Yuan, and H. Zhao, Phys. Rev. Res.
2249
+ 2, 023164 (2020), 1912.12629.
2250
+ [201] L. Blackburn et al. (2019), 1909.01411.
2251
+ [202] J. C. S. Neves, Eur. Phys. J. C 80, 343 (2020),
2252
+ 1906.11735.
2253
+ [203] M. Khodadi and G. Lambiase (2022), 2206.08601.
2254
+ [204] S. Vagnozzi et al. (2022), 2205.07787.
2255
+ [205] F.
2256
+ Ozel,
2257
+ D.
2258
+ Psaltis,
2259
+ and
2260
+ Z.
2261
+ Younsi
2262
+ (2021),
2263
+ 2111.01123.
2264
+ [206] D.
2265
+ Psaltis,
2266
+ Gen.
2267
+ Rel.
2268
+ Grav.
2269
+ 51,
2270
+ 137
2271
+ (2019),
2272
+ 1806.09740.
2273
+
LNAyT4oBgHgl3EQfTve8/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
MtE3T4oBgHgl3EQfYwqL/content/tmp_files/2301.04491v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
MtE3T4oBgHgl3EQfYwqL/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
NtFLT4oBgHgl3EQfOS8u/content/tmp_files/2301.12023v1.pdf.txt ADDED
@@ -0,0 +1,1533 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ META TEMPORAL POINT PROCESSES
2
+ Wonho Bae
3
+ University of British Columbia & Borealis AI
4
5
+ Mohamed Osama Ahmed
6
+ Borealis AI
7
8
+ Frederick Tung
9
+ Borealis AI
10
11
+ Gabriel L. Oliveira
12
+ Borealis AI
13
14
+ ABSTRACT
15
+ A temporal point process (TPP) is a stochastic process where its realization is a
16
+ sequence of discrete events in time. Recent work in TPPs model the process using
17
+ a neural network in a supervised learning framework, where a training set is a
18
+ collection of all the sequences. In this work, we propose to train TPPs in a meta
19
+ learning framework, where each sequence is treated as a different task, via a novel
20
+ framing of TPPs as neural processes (NPs). We introduce context sets to model
21
+ TPPs as an instantiation of NPs. Motivated by attentive NP, we also introduce
22
+ local history matching to help learn more informative features. We demonstrate
23
+ the potential of the proposed method on popular public benchmark datasets and
24
+ tasks, and compare with state-of-the-art TPP methods.
25
+ 1
26
+ INTRODUCTION
27
+ With the advancement of deep learning, there has been growing interest in modeling temporal point
28
+ processes (TPPs) using neural networks. Although the community has developed many innovations
29
+ in how neural TPPs encode the history of past events (Biloˇs et al., 2021) or how they decode these
30
+ representations into predictions of the next event (Shchur et al., 2020; Lin et al., 2022), the general
31
+ training framework for TPPs has been supervised learning where a model is trained on a collection
32
+ of all the available sequences. However, supervised learning is susceptible to overfitting, especially
33
+ in high noise environments, and generalization to new tasks can be challenging.
34
+ In recent years, meta learning has emerged as an alternative to supervised learning as it aims to
35
+ adapt or generalize well on new tasks, which resembles how humans can learn new skills from a
36
+ few examples. Inspired by this, we propose to train TPPs in a meta learning framework. To this
37
+ end, we treat each sequence as a “task”, since it is a realization of a stochastic process with its
38
+ own characteristics. For instance, consider the pickup times of taxis in a city. The dynamics of
39
+ these event sequences are governed by many factors such as location, weather and the routine of
40
+ a taxi driver, which implies the pattern of each sequence can be significantly different from each
41
+ other. Under the supervised learning framework, a trained model tends to capture the patterns seen
42
+ in training sequences well, but it easily breaks on unseen patterns.
43
+ As the goal of modeling TPPs is to estimate the true probability distribution of the next event time
44
+ given the previous event times, we employ Neural Processes (NPs), a family of the model-based
45
+ meta learning with stochasticity, to explain TPPs. In this work, we formulate neural TPPs as NPs
46
+ by satisfying some conditions of NPs, and term it as Meta TPP. Inspired by the literature in NP, we
47
+ further propose the Meta TPP with a cross-attention module, which we refer to as Attentive TPP. We
48
+ demonstrate the strong potential of the proposed method through extensive experiments.
49
+ Our contributions can be summarized as follows,
50
+ • To the best of our knowledge, this is the first work that formulates the TPP problem in a
51
+ meta learning framework, opening up a new research direction in neural TPPs.
52
+ • Inspired by the NP literature, we present a conditional meta TPP formulation, followed by
53
+ a latent path extension, culminating with our proposed Attentive TPP model.
54
+ 1
55
+ arXiv:2301.12023v1 [cs.LG] 27 Jan 2023
56
+
57
+ • The experimental results show that our proposed Attentive TPP model achieves state-of-
58
+ the-art results on four widely used TPP benchmark datasets, and is more successful in
59
+ capturing periodic patterns on three additional datasets compared to previous methods.
60
+ • We demonstrate that our meta learning TPP approach can be more robust in practical de-
61
+ ployment scenarios such as noisy sequences and distribution drift.
62
+ 2
63
+ PRELIMINARIES
64
+ Neural processes. A general form of optimization objective in supervised learning is defined as,
65
+ θ∗ = arg max
66
+ θ
67
+ EB∼p(D)
68
+
69
+ � �
70
+ (x,y)∈B
71
+ log pθ(y | x)
72
+
73
+
74
+ (1)
75
+ where D := {(x(i), y(i))}|D|
76
+ i=1 for an input x and label y, and B denotes a mini-batch set of (x, y)
77
+ data pairs. Here, the goal is to learn a model f parameterized by θ that maps x to y as fθ : x → y.
78
+ In recent years, meta learning has emerged as an alternative to supervised learning as it aims to
79
+ adapt or generalize well on new tasks (Santoro et al., 2016), which resembles how humans learn
80
+ new skills from few examples. In meta learning, we define a meta dataset, a set of different tasks,
81
+ as M := {D(i)}|M|
82
+ i=1 . Here, D(i) is a dataset of i-th task consisting of a context and target set as
83
+ D := C ∪ T . The objective of meta learning is then defined as,
84
+ θ∗ = arg max
85
+ θ
86
+ EBD∼p(M)
87
+
88
+
89
+
90
+ (C,T )∈BD
91
+ log pθ(YT | XT , C)
92
+
93
+
94
+ (2)
95
+ where BD denotes a mini-batch set of tasks. Also, XT and YT represent inputs and labels of a target
96
+ set, respectively. Unlike supervised learning, the goal is to learn a mapping from x to y given C:
97
+ more formally, fθ(·, C) : x → y. Although meta learning is a powerful framework to learn fast
98
+ adaption to new tasks, it does not provide uncertainty for its predictions, which is becoming more
99
+ important in modern machine learning literature as a metric to measure the reliability of a model.
100
+ To take the uncertainty into account for meta learning, Neural processes (NPs) have been proposed
101
+ (Garnelo et al., 2018b;a). Instead of finding point estimators as done in regular meta learning models,
102
+ NPs learn a probability distribution of a label y given an input x and context set C: pθ(y|x, C). In
103
+ this work, we frame TPPs as meta learning instead of supervised learning, for the first time. To
104
+ this end, we employ NPs to incorporate the stochastic nature of TPPs. In Section 3.1, we propose
105
+ a simple modification of TPPs to connect them to NPs, which enables us to employ a rich line of
106
+ works in NPs to TPPs as described in Section 3.2 and Section 3.3.
107
+ Neural temporal point processes. TPPs are stochastic processes where their realizations are se-
108
+ quences of discrete events in time. In notations, a collection of event time sequences is defined as
109
+ D := {s(i)}|D|
110
+ i=1 where s(i) = (τ (i)
111
+ 1 , τ (i)
112
+ 2 , . . . , τ (i)
113
+ Li ) and Li denotes the length of i-th sequence. The
114
+ history of studying TPPs started decades ago (Daley & Vere-Jones, 2003), but in this work, we focus
115
+ on neural TPPs where TPPs are modeled using neural networks (Shchur et al., 2021). As described
116
+ in Figure 1a, a general form of neural TPPs consists of an encoder, which takes a sequence of previ-
117
+ ous event times and outputs a history embedding, and a decoder which takes the history embedding
118
+ and outputs probability distribution of the time when the next event happens.
119
+ Previous works of neural TPPs are auto-regressively modeled in a supervised learning framework.
120
+ More formally, the objective of neural TPPs are defined as,
121
+ θ∗ = arg max
122
+ θ
123
+ EB∼p(D)
124
+
125
+
126
+ |B|
127
+
128
+ i=l
129
+ Li−1
130
+
131
+ l=1
132
+ log pθ(τ (i)
133
+ l+1 | τ (i)
134
+ ≤l )
135
+
136
+
137
+ (3)
138
+ where B ∼ p(D) denotes a mini-batch of event time sequences. To frame TPPs as NPs, we need to
139
+ define a target input and context set shown in Equation (2), from an event time history τ≤l, which
140
+ will be described in the following section.
141
+ 2
142
+
143
+ 𝜏!
144
+ Decoder
145
+ Encoder
146
+ (a) Neural TPP
147
+ 𝜏"#!
148
+ 𝜏$
149
+ 𝜏"
150
+
151
+ 𝑟!
152
+ 𝑟$
153
+ 𝑟"
154
+
155
+ Attention
156
+ Mask
157
+ 𝜏!
158
+ Decoder
159
+ Encoder
160
+ (b) Conditional Meta TPP
161
+ 𝜏"#!
162
+ 𝜏$
163
+ 𝜏"
164
+
165
+ 𝑟!
166
+ 𝑟$
167
+ 𝑟"
168
+
169
+ Attention
170
+ Mask
171
+ 𝑟"%!
172
+ 𝐺
173
+ 𝜏!
174
+ Decoder
175
+ Encoder
176
+ (c) Attentive TPP
177
+ 𝜏"#!
178
+ 𝜏$
179
+ 𝜏"
180
+
181
+ 𝑟!
182
+ 𝑟$
183
+ 𝑟"
184
+
185
+ Attention
186
+ Mask
187
+ 𝑟"%!
188
+ 𝐺
189
+ 𝜏!
190
+ Encoder
191
+ 𝜏$
192
+ 𝜏"
193
+
194
+ 𝑟!
195
+ 𝑟$
196
+ 𝑟"
197
+
198
+ 𝑟"%!
199
+ 𝜇
200
+ 𝜎
201
+ 𝑧
202
+ Latent Path
203
+ Cross
204
+ Attention
205
+ 𝑘!
206
+ 𝑟"
207
+ &
208
+ 𝑘"#!
209
+ 𝑞
210
+
211
+ Weight
212
+ Sharing
213
+ Figure 1: Overall architectures of TPP models.
214
+ 3
215
+ META TEMPORAL POINT PROCESS AND ITS VARIANTS
216
+ 3.1
217
+ TEMPORAL POINT PROCESSES AS NEURAL PROCESSES
218
+ To frame TPPs as NPs, we treat each event time sequence s as a task for meta learning, which
219
+ intuitively makes sense since each sequence is a realization of a stochastic process. For instance, the
220
+ transaction times of different account holders are very different from each other due to many factors
221
+ including an account holder’s financial status and characteristics.
222
+ With the new definition of tasks, we define a target input and context set for a conditional probability
223
+ distribution of meta learning shown in Equation (2), using previous event times τ≤l. There are many
224
+ ways to define them but a target input and context set need to be semantically aligned since the target
225
+ input will be an element of the context set for the next event time prediction. Hence, we define a
226
+ target input for τl+1 as the latest “local history” τl−k+1:l where k is the window size of the local
227
+ history. Similarly, a context set for τl+1 is defined as Cl := {τt−k+1:t}l−1
228
+ t=1. Here, if t − k ≤ 0, we
229
+ include event times from τ1. With Transformer structure, it is easy to efficiently compute the feature
230
+ embeddings for the context set C. Figure 1b shows a schematic of the Conditional Meta TPP with a
231
+ mask (shaded) used for an example case of 5 event times with a local history window size of k = 3.
232
+ Then, the feature embedding rl contains information of τl−k+1:l. With the notations for target inputs
233
+ and context sets, we propose the objective of TPPs in a meta learning framework as,
234
+ θ∗ = arg max
235
+ θ
236
+ EB∼p(D)
237
+
238
+
239
+ |B|
240
+
241
+ i=l
242
+ Li−1
243
+
244
+ l=1
245
+ log pθ(τ (i)
246
+ l+1 | τ (i)
247
+ l−k+1:l, C(i)
248
+ l )
249
+
250
+ � .
251
+ (4)
252
+ Note that we have only one target label τ (i)
253
+ l+1 to predict per event unlike the general meta learning
254
+ objective in Equation (2) where usually |T | > 1. It is because TPP models in general are trained
255
+ to predict the next event time. Modeling TPPs to predict multiple future event times would be an
256
+ interesting future work, but it is out of scope of this work.
257
+ Requirements for neural processes. Let XT := {xi}|T |
258
+ i=1 and YT := {yi}|T |
259
+ i=1 be a set of target
260
+ inputs and labels, respectively, and π be an arbitrary permutation of a set. To design NP models, it
261
+ is required to satisfy the following two conditions.
262
+ Condition 3.1 (Consistency over a target set). A probability distribution pθ is consistent if it
263
+ is consistent under permutation: pθ(YT | XT , C) = pθ(π(YT ) | π(XT ), C), and marginalization:
264
+ pθ(y1:m | XT , C) =
265
+
266
+ pθ(y1:n | XT , C) dym+1:n for any positive integer m < n.
267
+ 3
268
+
269
+ Condition 3.2 (Permutation invariance over a context set). pθ(YT | XT , C) = pθ(YT | XT , π(C))
270
+ According to Kolmogorov extension theorem (Oksendal, 2013), a collection of finite-dimensional
271
+ distributions is defined as a stochastic process if condition 3.1 is satisfied. In NP literature, condition
272
+ 3.1 is satisfied through factorization: it assumes target labels are independent to each other given a
273
+ target input and a context set C, in other words, pθ(YT | XT , C) = Π|T |
274
+ i=1pθ(yi | xi, x<i, y<i, C) ≈
275
+ Π|T |
276
+ i=1pθ(yi | xi, C) (Dubois et al., 2020). This assumption can be unrealistic if target labels are
277
+ strongly dependent to previous target inputs and labels even after context representations are ob-
278
+ served. It is, however, not necessary to assume factorization to make TPPs as NPs. As previously
279
+ mentioned, we only care about predicting the next event time, which means |YT | = 1. When a
280
+ set contains only one element, its permutation is always itself. More formally, the consistency un-
281
+ der permutation of Condition 3.1 in TPPs: pθ(τl+1 | τl−k+1:l, Cl) = pθ(π(τl+1) | π(τl−k+1:l), Cl),
282
+ is satisfied since π({τl+1}) = {τl+1} and π({τl−k+1:l}) = {τl−k+1:l}.
283
+ Also, the marginal-
284
+ ization under permutation in Condition 3.1 is satisfied as marginalization is not applicable for
285
+ pθ(τl+1 | τl−k+1:l, Cl) since the target label set τl+1 contains only one element.
286
+ Recall that NP models learn a probability distribution of a target label pθ given a target input and
287
+ context set. For computational efficiency (to make inference O(|C| + |T |) time), the feature repre-
288
+ sentation of C should be invariant to the size of the context set, for which Condition 3.2 is required.
289
+ To satisfy Condition 3.2, we average-pool all the context features r1, r2, . . . rl−1 to generate the
290
+ global feature for a task G as shown in Figure 1b, and term it as conditional Meta TPP following
291
+ the terminology used in the NP literature. Each context feature r1, r2, · · · , rl−1 represents a feature
292
+ from a transformer encoder such as Transformer Hawkes Processes (THP), that encodes the corre-
293
+ sponding local history of the context set Cl. For instance, ri contains information of τi−k+1:i. To
294
+ make ri only encode the subset of previous event times τi−k+1:i (instead of the whole previous event
295
+ times τ≤i), we mask out events that are outside of the local history window using an attention mask
296
+ as shown in Figure 1(b) and (c), which is different from a regular attention mask shown in Figure
297
+ 1(a). Using the permutation invariant feature G not only satisfies Condition 3.2, but also lets the de-
298
+ coder approximate the probability distribution of a target label given both a target input and context
299
+ set instead of just a target input. Now that we satisfy both requirements with a new architectural
300
+ design, we can treat TPPs as NPs.
301
+ Implementation. It can be expensive to compute the individual context feature rt for all 1 ≤ t < l,
302
+ from each element of the context set τt−k+1:t ∈ Cl: the time complexity of computing all the
303
+ context features for a sequence is O(L2). Instead of passing each element of a context set, using the
304
+ Transformer architecture (Vaswani et al., 2017), we can simply pass the event times to obtain all the
305
+ context features at once, of which time complexity is O(kL) where k is the window size of a local
306
+ history. To this end, we employ the THP as the encoder. Please refer to Zuo et al. (2020) for details.
307
+ 3.2
308
+ META TEMPORAL POINT PROCESS
309
+ In the NP literature, NPs are generally modeled as latent variable models. Instead of using the
310
+ deterministic global feature G as an input to the decoder (Garnelo et al., 2018a), a latent variable z is
311
+ sampled from a probability distribution e.g. multi-variate Gaussian, using parameters inferred from
312
+ the global feature G (Garnelo et al., 2018b). As it is intractable to compute the log-likelihood for
313
+ a latent variable model, amortized variational inference (VI) can be used to approximate inference.
314
+ In the setting of TPPs, the evidence lower bound (ELBO) of variational inference with an inference
315
+ network pθ(z | CL) can be derived as,
316
+ log pθ(τl+1 | τl−k+1:l, Cl) = log
317
+
318
+ pθ(τl | τl−k+1:l, z)pθ(z | Cl)dz
319
+ (5)
320
+ ≥ Ez [log pθ(τl+1 | τl−k+1:l, z)] − KL(pθ(z | CL) | pθ(z | Cl))
321
+ (6)
322
+ ≈ 1
323
+ N
324
+ N
325
+
326
+ n=1
327
+ log pθ(τl | τl−k+1:l, zn) − KL(pθ(z | CL) | pθ(z | Cl))
328
+ (7)
329
+ where N denotes the number of samples of z ∼ pθ(z | CL) for Monte-Carlo approximation. Here,
330
+ pθ(z | CL) is the posterior given the context at the last (L-th) event, which contains all the events
331
+ of the sequence s (it is accessible in training time). Minimizing KL-divergence between pθ(z | CL)
332
+ and pθ(z | Cl) is to make the global latent variable z inferred from Cl to be similar to the latent
333
+ 4
334
+
335
+ variable of a sequence z from CL, in training time. To sample z, we use the reparameterization trick
336
+ as z = µ + σ ⊙ ϵ where ϵ ∼ N(0, I) as described in the latent path of Figure 1c. In inference,
337
+ we approximate evaluation metrics such as negative log-likelihood or root mean squared error using
338
+ Monte-Carlo samples. But, as we do not have access to CL at l-th event when l < L, we use z from
339
+ pθ(z | Cl). The detailed description of the evaluation metrics are provided in Appendix C.
340
+ An advantage of a latent variable model is that it captures stochasticity of functions, which can
341
+ be particularly beneficial to model TPPs since TPPs are stochastic processes. Experiments in Sec-
342
+ tion 5.4 demonstrate it indeed helps to model TPPs over the deterministic case. In particular, it is
343
+ robust to noises (Section 5.2). We term the latent variable model as Meta TPP throughout the paper.
344
+ Discussion. The existing TPP models treat all event sequences as realization of the same process
345
+ whereas the Meta TPP treats each sequence as a realization of a distinct stochastic process. We
346
+ achieve this by conditioning on the global latent feature z that captures task-specific characteristics.
347
+ For z to be task-specific, it has to be distinct for different sequences but similar throughout different
348
+ events l ∈ [1, L − 1] within the same sequence. It is natural for the global features to be distinct by
349
+ sequence but we need further guidance to make the global feature shared across all the event times in
350
+ a sequence. Due to the permutation invariance constraint implemented in average-pooling, z cannot
351
+ be very different at different event time: adding some addition context feature ri will not change G
352
+ as well as z much. In addition, the KL-divergence between pθ(z | CL) and pθ(z | Cl) further enhances
353
+ the task-specific characteristics of z. We provide more detailed discussion in Appendix B
354
+ 3.3
355
+ ATTENTIVE TEMPORAL POINT PROCESS
356
+ Early works in NPs suffered from the underfitting problem. To alleviate this, Kim et al. (2019)
357
+ proposed AttentiveNP, which explicitly attends the elements in a context set to obtain a better fea-
358
+ ture for target inputs. Inspired by this, we add a cross-attention module that considers the sim-
359
+ ilarity between the feature of a target input and previous event times as described in Figure 1c.
360
+ Given the local history (context) features r1, r2, . . . rl−1 at l-th time step, the key-query-value pairs
361
+ K ∈ Rl−1×D, q ∈ R1×D, and V ∈ Rl−1×D for the cross-attention, are computed using their
362
+ corresponding projection weights WK ∈ RD×D, WQ ∈ RD×D as,
363
+ K = R · WK, q = rl
364
+ T · WQ, V = R where R = [r1, r2, . . . , rl−1]T .
365
+ (8)
366
+ Here, K corresponds to [k1, k2, . . . , kl−1]T in Figure 1c. The feature of i-th attention head hi are
367
+ then computed as follows,
368
+ hi = Softmax(q · KT /
369
+
370
+ D) · V.
371
+ (9)
372
+ With W ∈ RHD×D and some fully connected layers denoted as FC, r′
373
+ l ∈ R1×D is computed as,
374
+ r′
375
+ l = FC( [h1, h2, . . . , hH] · W ).
376
+ (10)
377
+ Finally, the decoder takes the concatenated feature of z, rl, and r′
378
+ l as an input to infer a distribution.
379
+ In the TPP setting, it is common that there are multiple periodic patterns in the underlying stochastic
380
+ process. The cross-attention module provides an inductive bias to a model that the repeating event
381
+ subsequences should have similar features. Our experiments in Section 5.2 demonstrate that the
382
+ explicit attention helps to model TPPs in general, especially when there are periodic patterns.
383
+ Decoder. The decoder takes the concatenated feature of the global latent feature z, target input
384
+ feature rl that encodes τl−k:l−1, and attention feature r′ from the attention module. For the Meta
385
+ TPP (without the attention module), the decoder takes as input the concatenated feature of z and
386
+ rl. Here, z, rl, and r′ are all D-dimensional vectors. The decoder consists of two fully connected
387
+ layers, and the input and hidden dimension of the decoder layers are either 2D or 3D depending on
388
+ whether we use the feature from the attention module r′.
389
+ The decoder outputs the parameters of the probability distribution of the next event time or
390
+ pθ(τl+1 | τl−k+1:l, zm). Inspired by the intensity-free TPP (Shchur et al., 2020), we use a mix-
391
+ ture of log-normal distributions to model the probability distribution. Formally, for l ∈ [1, L − 1],
392
+ τl+1 ∼ MixLogNorm(µl+1, σl+1, ωl+1) where µl+1 are the mixture means, σl+1 are the stan-
393
+ dard deviations, and ωl+1 are the mixture weights.
394
+ 5
395
+
396
+ 4
397
+ RELATED WORK
398
+ Neural temporal point processes. Neural temporal point processes (NTPPs) have been proposed
399
+ to capture complex dynamics of stochastic processes in time. They are derived from traditional
400
+ temporal point processes (Hawkes, 1971; Isham & Westcott, 1979; Daley & Vere-Jones, 2003).
401
+ Models based on RNNs are proposed by (Du et al., 2016) and (Mei & Eisner, 2017) to improve
402
+ NTPPs by constructing continuous-time RNNs. More recent works use Transformers to capture
403
+ long-term dependency (Kumar et al., 2019; Zhang et al., 2020; Zuo et al., 2020; Yang et al., 2022;
404
+ Zhang et al., 2022). (Omi et al., 2019; Shchur et al., 2020; Sharma et al., 2021) propose intensity-free
405
+ NTPPs to directly model the conditional distribution of event times.
406
+ Omi et al. (2019) propose to model a cumulative intensity with a neural network. But, it suffers from
407
+ problems that the probability density is not normalised and negative event times receives non-zero
408
+ probabilities. Alternatively, Shchur et al. (2020) suggest modelling conditional probability density
409
+ by log-normal mixtures. Transformer-based models like Zuo et al. (2020); Zhang et al. (2020)
410
+ propose to leverages the self-attention mechanism to capture long-term dependencies. Another class
411
+ of TPP methods called Neural Flows (Biloˇs et al., 2021), are proposed to model temporal dynamics
412
+ with ordinary differential equations learned by neural networks. Unlike the previous TPP methods,
413
+ we frame TPPs as meta learning (not supervised learning) for the first time.
414
+ Neural processes. Meta learning is a learning framework that aims to adapt or generalize well on
415
+ new tasks. There are three approaches in meta learning: metric-based (Koch et al., 2015; Vinyals
416
+ et al., 2016; Sung et al., 2018; Snell et al., 2017), model-based (Santoro et al., 2016; Munkhdalai &
417
+ Yu, 2017; Grant et al., 2018) and optimization-based (Finn et al., 2017; 2018; Nichol et al., 2018).
418
+ Neural processes (NPs) is the model-based meta learning with stochasticity. Garnelo et al. (2018a)
419
+ propose a conditional neural process as a new formulation to approximate a stochastic process us-
420
+ ing neural network architecture. It succeeds the advantage of Gaussian Processes (GPs) as it can
421
+ estimate the uncertainty of its predictions, without having expensive inference time. Garnelo et al.
422
+ (2018b) generalize a conditional neural process by adding latent variables, which are approximated
423
+ using variational inference. Although NPs can adapt to new tasks quickly without requiring much
424
+ computation, it suffers from underfitting problem. To alleviate it, Kim et al. (2019) propose a cross-
425
+ attention module, which explicitly attends the elements in the context set to obtain better representa-
426
+ tions for the elements in the target set. As another way to address the underfitting problem, Gordon
427
+ et al. (2020) propose a set convolutional layer under the assumption of translation equivariance of
428
+ inputs and outputs, which is expanded to the latent variable counterpart in Foong et al. (2020).
429
+ Transformer NP (Nguyen & Grover, 2022) is the most relevant work to ours. Although it also models
430
+ event sequences, it focuses on modeling regular time series: discrete and regularly-spaced time
431
+ inputs with corresponding label values. TPPs are different as they are continuous and irregularly-
432
+ spaced time sequences not necessarily with corresponding label values.
433
+ 5
434
+ EXPERIMENTS
435
+ 5.1
436
+ EXPERIMENT SETTING
437
+ Datasets. To compare the effectiveness of models, we conduct experiments on 4 popular benchmark
438
+ datasets – Stack Overflow, Mooc, Reddit, and Wiki, and 3 datasets with strong periodic patterns we
439
+ introduce – Sinusoidal wave, Uber, and NYC Taxi. Please refer to Appendix H for details.
440
+ Metrics. We use the root mean squared error (RMSE) as the main metric along with the negative
441
+ log-likelihood (NLL) as a reference since NLL can go arbitrary low if probability density is placed
442
+ mostly on the ground truth event time. RMSE may not be a good metric, either, if one ignores
443
+ stochastic components of TPPs and directly trains a baseline on the ground truth event times to
444
+ obtain point estimations of event times (Shchur et al., 2021). We train all the methods on NLL
445
+ and obtain RMSE in test time to not abuse RMSE scores, keeping stochastic components of TPPs.
446
+ For marked TPP datasets, we extend the proposed method to make class predictions, and report
447
+ accuracy. For details about marked cases, please refer to Appendix G.
448
+ Baselines. We use intensity-free TPP (Shchur et al., 2020), Neural flow (Biloˇs et al., 2021), and
449
+ Transformer Hawkes Processes (THP) (Zuo et al., 2020) as baselines. For intensity-free TPP and
450
+ 6
451
+
452
+ Methods
453
+ Stack Overflow
454
+ Mooc
455
+ Reddit
456
+ Wiki
457
+ RMSE
458
+ NLL
459
+ Acc
460
+ RMSE
461
+ NLL
462
+ Acc
463
+ RMSE
464
+ NLL
465
+ Acc
466
+ RMSE
467
+ NLL
468
+ Acc
469
+ Intensity-free
470
+ 3.64
471
+ 3.66
472
+ 0.43
473
+ 0.31
474
+ 0.94
475
+ 0.40
476
+ 0.18
477
+ 1.09
478
+ 0.60
479
+ 0.60
480
+ 7.76
481
+ 0.26
482
+ (0.26)
483
+ (0.02)
484
+ (0.005)
485
+ (0.006)
486
+ (0.03)
487
+ (0.004)
488
+ (0.006)
489
+ (0.04)
490
+ (0.008)
491
+ (0.05)
492
+ (0.40)
493
+ (0.03)
494
+ Neural flow
495
+
496
+
497
+
498
+ 0.47
499
+ 0.43
500
+ 0.30
501
+ 0.32
502
+ 1.30
503
+ 0.60
504
+ 0.56
505
+ 11.55
506
+ 0.05
507
+
508
+
509
+
510
+ (0.006)
511
+ (0.02)
512
+ (0.04)
513
+ (0.04)
514
+ (0.33)
515
+ (0.07)
516
+ (0.05)
517
+ (2.22)
518
+ (0.01)
519
+ THP+
520
+ 1.68
521
+ 3.28
522
+ 0.46
523
+ 0.18
524
+ 0.13
525
+ 0.38
526
+ 0.26
527
+ 1.20
528
+ 0.60
529
+ 0.17
530
+ 6.25
531
+ 0.23
532
+ (0.16)
533
+ (0.02)
534
+ (0.004)
535
+ (0.005)
536
+ (0.02)
537
+ (0.004)
538
+ (0.005)
539
+ (0.04)
540
+ (0.007)
541
+ (0.02)
542
+ (0.39)
543
+ (0.03)
544
+ Attentive TPP
545
+ 1.15
546
+ 2.64
547
+ 0.46
548
+ 0.16
549
+ -0.72
550
+ 0.36
551
+ 0.11
552
+ 0.03
553
+ 0.60
554
+ 0.15
555
+ 6.25
556
+ 0.25
557
+ (0.02)
558
+ (0.02)
559
+ (0.004)
560
+ (0.004)
561
+ (0.02)
562
+ (0.003)
563
+ (0.002)
564
+ (0.04)
565
+ (0.007)
566
+ (0.01)
567
+ (0.38)
568
+ (0.03)
569
+ Table 1: Comparison of the Attentive TPP to the state-of-the-art methods on a bootstrapped test sets.
570
+ Methods
571
+ Sinusoidal
572
+ Uber
573
+ NYC Taxi
574
+ RMSE
575
+ NLL
576
+ RMSE
577
+ NLL
578
+ RMSE
579
+ NLL
580
+ Intensity-free
581
+ 1.29 (0.08)
582
+ 0.88 (0.02)
583
+ 51.23 (2.89)
584
+ 4.46 (0.02)
585
+ 46.59 (26.16)
586
+ 2.06 (0.07)
587
+ Neural flow
588
+ 1.13 (0.07)
589
+ 0.99 (0.02)
590
+
591
+
592
+
593
+
594
+ THP+
595
+ 1.72 (0.10)
596
+ 0.84 (0.02)
597
+ 90.25 (4.53)
598
+ 3.63 (0.03)
599
+ 10.31 (0.47)
600
+ 2.00 (0.01)
601
+ Attentive TPP (Ours)
602
+ 1.45 (0.11)
603
+ 0.66 (0.02)
604
+ 22.11 (1.94)
605
+ 2.89 (0.04)
606
+ 8.92 (0.42)
607
+ 2.00 (0.009)
608
+ Table 2: Experiment results on bootstrapped test sets with strong periodic patterns.
609
+ neural flow, we add the survival time of the last event to NLL and fix some bugs specified in their
610
+ public repositories. THP and its variants are originally based on intensity: they predict intensities
611
+ from which log-likelihood and expectation of event times are computed. It is, however, computa-
612
+ tionally expensive to compute them as it requires to compute integrals: especially, to compute the
613
+ expected event times, it requires to compute double integrals, which can be quite expensive and
614
+ complex to compute even with thinning algorithms described in Mei & Eisner (2017). To work
615
+ around it without losing performance, we add the mixture of log-normal distribution proposed in
616
+ (Shchur et al., 2020) as the decoder, and we call it THP+. For fair comparison, we fix the number
617
+ of parameters of the models in between 50K and 60K except the last fully-connected layer for class
618
+ predictions since it depends on the number of classes.
619
+ Hyperparameters. We grid-search on every combination of dataset and method for learning rate
620
+ ∈ {0.01, 0.001, 0.0001, 0.00001} and weight decay ∈ {0.01, 0.001, 0.0001, 0.00001} for fair com-
621
+ parison. We bootstrap for 200 times on test sets to obtain the mean and standard deviation (in
622
+ parentheses) for the metrics in Figure 2a and Table 1–3 following Yang et al. (2022). All the other
623
+ hyperparameters are fixed throughout the experiments, and are reported in Appendix I.
624
+ 5.2
625
+ EXPERIMENT RESULTS
626
+ In this section, we begin by comparing our attentive meta temporal point process (denoted as Atten-
627
+ tive TPP) with state-of-the-art supervised TPP methods on 4 popular benchmarks. We then inves-
628
+ tigate how Attentive TPP captures periodic patterns, and show how Attentive TPP can be used to
629
+ impute missing events in noisy sequences. Finally, we consider robustness under distribution drift.
630
+ Comparison with state-of-the-art methods. Table 1 summarizes our comparison of Attentive TPP
631
+ with state-of-the-art baselines – intensity-free (Shchur et al., 2020), neural flow (Biloˇs et al., 2021)1,
632
+ and THP+ (Zuo et al., 2020) on the Stack Overflow, Mooc, Reddit, and Wiki benchmarks. THP+
633
+ generally performs better than the intensity-free and neural flow baselines. Attentive TPP further
634
+ improves over THP+ on all datasets and metrics except for mark accuracy on Mooc and Wiki.
635
+ Periodic patterns. As previously mentioned in Section 3.3, the cross-attention module is designed
636
+ to capture periodic patterns by matching the local history of the current event to the local histories
637
+ 1Neural flow results on Uber, NYC Taxi and Stack Overflow (in Table 1) datasets are missing because the
638
+ official implementation runs into NaN values for long event sequences in inversion step.
639
+ 7
640
+
641
+ 10
642
+ 20
643
+ 30
644
+ 40
645
+ 50
646
+ 60
647
+ 70
648
+ Drop ratio (%)
649
+ 0
650
+ 10
651
+ 20
652
+ 30
653
+ 40
654
+ 50
655
+ RMSE
656
+ THP+
657
+ Meta TPP
658
+ Attn TPP
659
+ (a) Imputation with different drop rates
660
+ Jan-Feb Mar-AprMay-Jun Jul-Aug Sep-Oct Nov-Dec
661
+ Target domains
662
+ 20
663
+ 40
664
+ 60
665
+ 80
666
+ 100
667
+ 120
668
+ 140
669
+ RMSE
670
+ THP+
671
+ Meta TPP
672
+ (b) Distribution drift in NYC Taxi dataset
673
+ Figure 2: Experiment results on imputation and distribution drift.
674
+ Attention
675
+ Latent
676
+ Reddit
677
+ Uber
678
+ RMSE
679
+ NLL
680
+ Acc
681
+ RMSE
682
+ NLL
683
+ 
684
+ 
685
+ 0.16
686
+ 0.92
687
+ 0.59
688
+ 63.71
689
+ 3.68
690
+ 
691
+ 
692
+ 0.13
693
+ -0.39
694
+ 0.61
695
+ 63.35
696
+ 3.25
697
+ 
698
+ 
699
+ 0.12
700
+ 0.29
701
+ 0.61
702
+ 47.91
703
+ 3.72
704
+ 
705
+ 
706
+ 0.12
707
+ 0.07
708
+ 0.60
709
+ 21.87
710
+ 2.98
711
+ Table 3: Comparison of the variants of Meta TPPs
712
+ Reddit
713
+ Methods
714
+ # Params
715
+ RMSE
716
+ NLL
717
+ Acc
718
+ THP+
719
+ 113K
720
+ 0.26
721
+ 1.19
722
+ 0.60
723
+ 170K
724
+ 0.29
725
+ 0.79
726
+ 0.59
727
+ 226K
728
+ 0.28
729
+ 1.44
730
+ 0.57
731
+ AttnTPP
732
+ 222K
733
+ 0.12
734
+ 0.07
735
+ 0.60
736
+ Table 4: Comparison of diff. model size
737
+ of the previous event times, in addition to alleviating the underfitting problem. To validate the effec-
738
+ tiveness of the cross-attention, we experiment on the datasets with strong periodicity – Sinusoidal,
739
+ Uber, and NYC Taxi (please refer to Appendix H for details). Table 2 shows that the Attentive TPP
740
+ generally outperforms the state-of-the-art methods, except for RMSE on Sinusoidal. To investigate
741
+ the behavior of the cross-attention, we provide an example in Figure 3a where we highlight 15 (out
742
+ of 64) the most attended local history indices (in red) to predict the target event (in green) in a se-
743
+ quence from Sinusoidal. The dotted grey lines represent the start and end of periods. We can observe
744
+ that the attention refers to the local histories with similar patterns more than the recent ones.
745
+ 5.3
746
+ APPLICATIONS
747
+ Imputation. We study the robustness of Meta and Attentive TPP to noise by randomly dropping
748
+ events, simulating partial observability in a noisy environment, and measuring imputation perfor-
749
+ mance. For the experiment, we drop n percentage of all the event times drawn independently at
750
+ random per sequence on the Sinusoidal wave dataset. In Figure 2a, we report the bootstrapped im-
751
+ putation performance of THP+, Meta TPP, and Attentive TPP, in terms of RMSE. As the drop ratio
752
+ increases, RMSE increases for all three models but the gap exponentially increases. Given that the
753
+ performance gap between three models on ‘next event’ predictions is not as large (mean RMSE –
754
+ THP+: 1.72, Meta TPP: 1.49, Attentive TPP: 1.45), the results shown in Figure 2a imply that the
755
+ Meta and Attentive TPP are significantly more robust to the noise coming from partial observability.
756
+ Distribution drift. Distribution drift occurs when the distribution observed during training becomes
757
+ misaligned with the distribution during deployment due to changes in the underlying patterns over
758
+ time. This is a common deployment challenge in real-world systems. Figure 2b shows how THP+
759
+ and Meta TPP models trained on the January-February data of the NYC Taxi dataset generalize to
760
+ subsequent months. Both models show a decrease in performance, suggesting the presence of non-
761
+ stationary or seasonal patterns in the data that are not captured in the training months; however, Meta
762
+ TPP is comparatively more robust across all out-of-domain settings. It is also worth mentioning that
763
+ although the Attentive TPP generally performs better than Meta TPP in the conventional experimen-
764
+ tal setting, it is not the case for distribution drifts. We conjecture it is because the cross-attention is
765
+ designed to alleviate the underfitting problem, which results in being less robust to distribution drift.
766
+ 8
767
+
768
+ 0
769
+ 10
770
+ 20
771
+ 30
772
+ 40
773
+ 50
774
+ Unit
775
+ 0
776
+ 1
777
+ 2
778
+ 3
779
+ 4
780
+ 5
781
+ Bin count
782
+ Most attended events
783
+ Target event
784
+ (a) Self-attention in THP and proposed cross-attention
785
+ 0
786
+ 10
787
+ 20
788
+ 30
789
+ Bin counts
790
+ Attentive TPP
791
+ Targets
792
+ 0
793
+ 10
794
+ 20
795
+ 30
796
+ 40
797
+ 50
798
+ 60
799
+ 70
800
+ 80
801
+ 90
802
+ 100
803
+ Days
804
+ 0
805
+ 10
806
+ 20
807
+ 30
808
+ Bin counts
809
+ THP+
810
+ Targets
811
+ (b) Visualization of test predictions vs. targets
812
+ Figure 3: Qualitative analysis on the cross-attention and prediction results.
813
+ 5.4
814
+ ABLATION STUDIES
815
+ Meta TPP and its variants. In Table 3, we compare the proposed Meta TPP and its variants
816
+ on Reddit, and Uber datasets. The result shows that both cross-attention and latent variable path
817
+ generally help to improve the performance. When they are combined (resulting in the Attentive
818
+ TPP), it generally performs the best in terms of both RMSE and NLL.
819
+ Different model sizes. Both latent path and cross-attention components introduce additional learn-
820
+ able parameters (for the Reddit dataset with 984 classes, THP+: 113K, Meta TPP: 126K, and Atten-
821
+ tive TPP: 209K parameters). We provide an ablation study with varying number of model parameters
822
+ for the THP+ baseline to validate the performance improvement does not come from the increased
823
+ number of model parameters. In Table 4, we increase the number of model parameters for THP+ on
824
+ Reddit along with the result of the Attentive TPP. The result shows that the larger model does not
825
+ necessarily help to improve the performance: as the number of parameters increases, NLL some-
826
+ times improves but it may hurt RMSE as in the case of Table 4. The significant improvement in
827
+ performance of our proposed method shows the importance of providing an effective inductive bias.
828
+ Parameter sharing. In Attentive NP, the encoders of the latent path and attention path are separated
829
+ to provide different features. However, it can significantly increase computational overhead, and for
830
+ this reason, we share the weights for the encoders. As an ablation study, we provide the performance
831
+ with and without sharing the weights for the encoders of the Attentive TPP on the Stack Overflow
832
+ dataset. Although the number of parameters of ‘with sharing’ is 50% less than ‘without sharing’
833
+ (‘without sharing’: 86K vs. ‘with sharing’: 136K), it performs better than ‘without sharing’ (RMSE
834
+ / NLL – ‘without sharing’: 1.08 / 3.20 vs. ‘with sharing’: 1.03 / 2.81).
835
+ Visualization of event time predictions. In TPP literature, the evaluation relies only on the RMSE
836
+ and NLL metrics. It is, however, often hard to measure how practically useful a trained TPP model is.
837
+ To qualitatively evaluate TPP models, we convert an event time sequence into time series sequence:
838
+ we count the number of event times falling into each bin (in Figure 3b, each bin is a day). Figure 3b
839
+ shows how close overall predictions of the Attentive TPP and THP+ (in red) are to the ground truth
840
+ event times (in blue). In the figure, we can see that the Attentive TPP’s predictions closely align
841
+ with the targets whereas the predictions of the THP+ are off at some regions. Note that as the y-axis
842
+ represents bin counts, even a slight off from the ground truth implies large values in terms of RMSE.
843
+ 6
844
+ CONCLUSION
845
+ Previously, neural temporal point processes (TPPs) train neural networks in a supervised learning
846
+ framework. Although performing well on event sequences similar to a training set, they are sus-
847
+ ceptible to overfitting, and may not generalize well on sequences with unseen patterns. To alleviate
848
+ this, we proposed a novel framework for TPPs using neural processes (NPs). We proposed the Meta
849
+ TPP where TPP is formulated as NP, and further developed the Attentive TPP using a cross-attention
850
+ module, which forces a model to use similar features for repeating local history patterns. Our exper-
851
+ iments demonstrate that the proposed models outperform strong state-of-the-art baselines on several
852
+ event sequence datasets, effectively capture periodic patterns, and increase robustness to noise and
853
+ distribution drift. We believe this work opens up a new research direction to meta learning for TPPs.
854
+ 9
855
+
856
+ REPRODUCIBILITY STATEMENT
857
+ Hyperparameters and implementation details are available in Section 5.1 and Appendix I. The code
858
+ for the baselines and the proposed method will be released upon acceptance. Our code is based on
859
+ publicly available official intensity-free and neural flow code.
860
+ REFERENCES
861
+ Marin Biloˇs, Johanna Sommer, Syama Sundar Rangapuram, Tim Januschowski, and Stephan
862
+ G¨unnemann. Neural flows: Efficient alternative to neural odes. In NeurIPS, 2021.
863
+ D. J. Daley and D. Vere-Jones. An introduction to the theory of point processes. Vol. I. Probability
864
+ and its Applications (New York). Springer-Verlag, New York, second edition, 2003. ISBN 0-387-
865
+ 95541-0. Elementary theory and methods.
866
+ Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song.
867
+ Recurrent marked temporal point processes: Embedding event history to vector. In SIGKDD,
868
+ 2016.
869
+ Yann Dubois, Jonathan Gordon, and Andrew YK Foong.
870
+ Neural process family.
871
+ http://
872
+ yanndubs.github.io/Neural-Process-Family/, September 2020.
873
+ Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
874
+ of deep networks. In ICML, pp. 1126–1135. PMLR, 2017.
875
+ Chelsea Finn, Kelvin Xu, and Sergey Levine.
876
+ Probabilistic model-agnostic meta-learning.
877
+ In
878
+ NeurIPS, 2018.
879
+ Andrew YK Foong, Wessel P Bruinsma, Jonathan Gordon, Yann Dubois, James Requeima, and
880
+ Richard E Turner. Meta-learning stationary stochastic process prediction with convolutional neu-
881
+ ral processes. In NeurIPS, 2020.
882
+ Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray
883
+ Shanahan, Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. Conditional neural processes. In
884
+ ICML, 2018a.
885
+ Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Eslami,
886
+ and Yee Whye Teh. Neural processes. In ICML Workshop, 2018b.
887
+ Jonathan Gordon, Wessel P Bruinsma, Andrew YK Foong, James Requeima, Yann Dubois, and
888
+ Richard E Turner. Convolutional conditional neural processes. In ICLR, 2020.
889
+ Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths. Recasting gradient-
890
+ based meta-learning as hierarchical bayes. In ICLR, 2018.
891
+ Alan G Hawkes. Spectra of some self-exciting and mutually exciting point processes. Biometrika,
892
+ 1971.
893
+ Valerie Isham and Mark Westcott. A self-correcting point process. Stochastic processes and their
894
+ applications, 1979.
895
+ Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum, Oriol
896
+ Vinyals, and Yee Whye Teh. Attentive neural processes. In ICLR, 2019.
897
+ Gregory Koch et al. Siamese neural networks for one-shot image recognition. In ICML, 2015.
898
+ Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in tem-
899
+ poral interaction networks. In SIGKDD, 2019.
900
+ Haitao Lin, Lirong Wu, Guojiang Zhao, Pai Liu, and Stan Z Li. Exploring generative neural temporal
901
+ point process. TMLR, 2022.
902
+ Hongyuan Mei and Jason M Eisner. The neural hawkes process: A neurally self-modulating multi-
903
+ variate point process. In NeurIPS, 2017.
904
+ 10
905
+
906
+ Tsendsuren Munkhdalai and Hong Yu. Meta networks. In ICML, 2017.
907
+ Tung Nguyen and Aditya Grover. Transformer neural processes: Uncertainty-aware meta learning
908
+ via sequence modeling. In ICML, 2022.
909
+ Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv
910
+ preprint arXiv:1803.02999, 2018.
911
+ Bernt Oksendal. Stochastic Differential Equations: an Introduction with Applications. Springer
912
+ Science & Business Media, 2013.
913
+ Takahiro Omi, Kazuyuki Aihara, et al. Fully neural network based model for general temporal point
914
+ processes. In NeurIPS, 2019.
915
+ Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
916
+ learning with memory-augmented neural networks. In ICML, 2016.
917
+ Karishma Sharma, Yizhou Zhang, Emilio Ferrara, and Yan Liu. Identifying coordinated accounts
918
+ on social media through hidden influence and group behaviours. In SIGKDD, 2021.
919
+ Oleksandr Shchur, Marin Biloˇs, and Stephan G¨unnemann. Intensity-free learning of temporal point
920
+ processes. In ICLR, 2020.
921
+ Oleksandr Shchur, Ali Caner T¨urkmen, Tim Januschowski, and Stephan G¨unnemann. Neural tem-
922
+ poral point processes: A review. In IJCAI, 2021.
923
+ Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks for few-shot learning. In
924
+ NeurIPS, 2017.
925
+ Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M Hospedales.
926
+ Learning to compare: Relation network for few-shot learning. In CVPR, 2018.
927
+ Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
928
+ Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.
929
+ Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
930
+ shot learning. In NeurIPS, 2016.
931
+ Chenghao Yang, Hongyuan Mei, and Jason Eisner. Transformer embeddings of irregularly spaced
932
+ events and their participants. In ICLR, 2022.
933
+ Qiang Zhang, Aldo Lipani, Omer Kirnap, and Emine Yilmaz. Self-attentive hawkes process. In
934
+ ICML, 2020.
935
+ Yunhao Zhang, Junchi Yan, Xiaolu Zhang, Jun Zhou, and Xiaokang Yang. Learning mixture of
936
+ neural temporal point processes for multi-dimensional event sequence clustering. In IJCAI, 2022.
937
+ Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha.
938
+ Transformer hawkes
939
+ process. In ICML, 2020.
940
+ 11
941
+
942
+ A
943
+ DERIVATION OF THE EVIDENCE LOWER BOUND
944
+ We provide the detailed steps to derive the evidence lower bound of the proposed Meta TPP model
945
+ shown in Equation (7). Here, Equation (8) to (9) holds with Jensen’s inequality.
946
+ log pθ(τl | τl−k:l−1, Cl) = log
947
+
948
+ pθ(τl | τl−k:l−1, z)pθ(z | Cl)dz
949
+ = log
950
+
951
+ pθ(z|CL) pθ(z|Cl)
952
+ pθ(z|CL)pθ(τl|τl−k:l−1, z)dz
953
+
954
+
955
+ pθ(z|CL) log pθ(z|Cl)
956
+ pθ(z|CL)pθ(τl|τl−k:l−1, z)dz
957
+ = Ez∼pθ(z | CL) [log pθ(τl | τl−k:l−1, z)] − KL(pθ(z | CL) | pθ(z | Cl)).
958
+ B
959
+ ROLE OF GLOBAL LATENT FEATURE
960
+ For the global latent feature z to be task-specific, it has to be distinct for different sequences but
961
+ similar throughout different event times l ∈ [1, L − 1] within the same sequence as mentioned in
962
+ Section 3.2. It is natural for the global features to be distinct by sequence but we need further
963
+ guidance to make the global feature shared across all the event times in a sequence. In fact, due to
964
+ the permutation invariance constraint (implemented in average-pooling), the global latent feature z
965
+ cannot be very different at different event time: adding some addition context features ri will not
966
+ change G as well as z much.
967
+ For the latent variable z, additional guidance is provided, which is clearer with the objective of
968
+ the variational inference. Recall that the objective of the variational inference in Equation (6) is
969
+ provided as,
970
+ arg max
971
+ θ
972
+ Ez∼pθ(z | CL) log pθ(τl | τl−k:l−1, z) − KL(pθ(z | CL) || pθ(z | Cl)).
973
+ Here, regardless of the index of the target l, it always minimizes the KL divergence between
974
+ pθ(z | CL) and pθ(z | Cl) where L is the length of a sequence.
975
+ So, ideally, the latent variable
976
+ z ∼ pθ(z | Cl) should capture the same information as z ∼ pθ(z | CL). It implies regardless of the
977
+ index of the target l, the latent variable z asymptotically captures the global feature of the whole se-
978
+ quence, which is equivalent to z ∼ pθ(z | CL). Hence, the resulting pθ(z | Cl) captures the global and
979
+ task-specific patterns, which ideally is similar to pθ(z | CL). As a result, the global latent feature is
980
+ guided to be distinct for different sequences but similar throughout different event time l ∈ [1, L−1]
981
+ within the same sequence.
982
+ It is also worth mentioning that its role is quite different from the target input τl−k+1:l which is
983
+ another input for the decoder. Consider two events that are far apart from each other. Due to
984
+ distinctive local patterns, their target inputs can be quite different from each other. On the other
985
+ hand, the global features will not be that different as they are the average of all the context features
986
+ at each event time, plus guided by the KL divergence. Hence, the global feature provides “overall”
987
+ patterns of a task whereas a target input provides local patterns to the decoder.
988
+ Back to our original goal: treating each sequence as a realization of a distinct stochastic process, we
989
+ use the global latent feature that is distinct by each sequence to provide a task-specific information
990
+ which is shared regardless of different event time step l. It is neither implicitly nor explicitly consid-
991
+ ered in the supervised learning case. In supervised learning, each event time step at each sequence
992
+ is treated equally from which patterns for only one stochastic process is learned.
993
+ In the Table 5, we compare the THP+ baseline and Meta TPP on Sinusoidal, Uber and NYC Taxi
994
+ datasets to demonstrate the effectiveness of the global latent feature. The decoder of the Meta TPP
995
+ takes the global latent feature z (from the permutation invariance constraint) as an input, in addition
996
+ to the target input feature r l that the decoder of the THP+ baseline takes as input. The result shows
997
+ that the global latent feature generally helps to improve both RMSE and NLL performance.
998
+ 12
999
+
1000
+ Methods
1001
+ Sinusoidal
1002
+ Uber
1003
+ NYC Taxi
1004
+ RMSE
1005
+ NLL
1006
+ RMSE
1007
+ NLL
1008
+ RMSE
1009
+ NLL
1010
+ THP+
1011
+ 1.72
1012
+ 0.84
1013
+ 90.25
1014
+ 3.63
1015
+ 10.31
1016
+ 2.00
1017
+ Meta TPP
1018
+ 1.48
1019
+ 0.61
1020
+ 63.35
1021
+ 3.25
1022
+ 10.04
1023
+ 2.33
1024
+ Table 5: Comparison between THP+ baseline and Meta TPP.
1025
+ C
1026
+ COMPUTATION OF EVALUATION METRICS
1027
+ Unlike Equation (7) in the main paper where the ELBO is computed using samples from pθ(z | CL),
1028
+ in inference, we do not have access to z ∼ pθ(z | CL). But, as pθ(z | Cl) is trained to be similar
1029
+ to pθ(z | CL) through KL(pθ(z | CL) | pθ(z | Cl), we use samples z ∼ pθ(z | Cl). As specified in
1030
+ Appendix I, we use 256 samples to have good enough approximation.
1031
+ • NLL – We approximate a log-likelihood of the next event time τl+1 using Monte-Carlo
1032
+ approximation as,
1033
+ log pθ(τl+1 | τl−k+1:l, Cl) = log
1034
+
1035
+ pθ(τl+1 | τl−k+1:l, z)pθ(z | Cl)dz
1036
+ (11)
1037
+ ≈ log 1
1038
+ M
1039
+ M
1040
+
1041
+ m=1
1042
+ pθ(τl+1 | τl−k+1:l, zm)
1043
+ (12)
1044
+ where M is the number of samples from pθ(z | Cl).
1045
+ • RMSE – We use a mixture of log-normal distributions to model pθ(τl+1 | τl−k+1:l, z). For-
1046
+ mally, for l ∈ [1, L − 1], τl+1 ∼ MixLogNorm(µl+1, σl+1, ωl+1) where µl+1 are the
1047
+ mixture means, σl+1 are the standard deviations, and ωl+1 are the mixture weights. The
1048
+ parameters are the outputs of the decoder given a latent sample z. Knowing this, we can
1049
+ analytically compute the expected event time for a latent sample z with K mixture compo-
1050
+ nents as,
1051
+ Eτl+1∼pθ(τl+1 | τl−k+1:l,z)[τl+1] =
1052
+ K
1053
+
1054
+ k=1
1055
+ ωl+1,k exp (µl+1,k + 1
1056
+ 2σ2
1057
+ l+1,k).
1058
+ Note that since this expectation is over pθ(τl+1 | τl−k+1:l, z) where z is one sample from
1059
+ the posterior, we need to take another expectation over the posterior as follows,
1060
+ Eτl+1∼pθ(τl+1 | τl−k+1:l,Cl)[τl+1] = Ez∼pθ(z | Cl)Eτl+1∼pθ(τl+1 | τl−k+1:l,z)[τl+1]
1061
+ (13)
1062
+ = Ez∼pθ(z | Cl)
1063
+ K
1064
+
1065
+ k=1
1066
+ ωl+1,k exp (µl+1,k + 1
1067
+ 2σ2
1068
+ l+1,k) (14)
1069
+ ≈ 1
1070
+ M
1071
+ M
1072
+
1073
+ m=1
1074
+ K
1075
+
1076
+ k=1
1077
+ ωl+1,k exp (µl+1,k + 1
1078
+ 2σ2
1079
+ l+1,k)
1080
+ (15)
1081
+ where M is the number of samples from pθ(z | Cl).
1082
+ • Accuracy – We obtain class predictions by taking argmax over the probability distribution
1083
+ of class labels as follows,
1084
+ arg max
1085
+ c∈[1,C]
1086
+ pθ(yl+1 | τl−k+1:l, yl−k+1:l, Cl)
1087
+ where C is the number of marks. The probability distribution of class labels is approxi-
1088
+ mated using MC samples as,
1089
+ pθ(yl+1 | τl−k+1:l, yl−k+1:l, Cl) =
1090
+
1091
+ pθ(yl+1 | rl, z)pθ(z | Cl)dz
1092
+ (16)
1093
+ ≈ 1
1094
+ M
1095
+ M
1096
+
1097
+ m=1
1098
+ pθ(yl+1 | rl, zm)
1099
+ (17)
1100
+ where M is the number of samples from pθ(z | Cl).
1101
+ 13
1102
+
1103
+ D
1104
+ MONTE-CARLO APPROXIMATION VS. VARIATIONAL INFERENCE
1105
+ Amortized variational inference (VI) we described in Section 3 is not the only way to approximate
1106
+ the latent variable model. We can also use Monte-Carlo (MC) approximation, which is simpler and
1107
+ does not rely on a proxy like ELBO. It is formulated as,
1108
+ log
1109
+
1110
+ pθ(τl+1 | τl−k+1:l, z)pθ(z | Cl)dz ≈ log 1
1111
+ N
1112
+ N
1113
+
1114
+ n=1
1115
+ pθ(τl+1 | τl−k+1:l, zn)
1116
+ (18)
1117
+ Note that a sample zn in Equation (18) is drawn from p(zn|Cl), which is different from zn ∼
1118
+ p(zn|CL) in Equation (7). Foong et al. (2020); Dubois et al. (2020) report that MC approximation
1119
+ generally outperforms variational inference. In variational inference, as a model is trained with
1120
+ z ∼ pθ(z | CL), the samples z ∼ pθ(z | Cl) in test time are quite different from what the model has
1121
+ used as inputs: although KL(pθ(z | CL) | pθ(z | Cl)) forces pθ(z | CL) and pθ(z | Cl) close to each
1122
+ other, it is hard to make KL-divergence to be zero. Although MC approximation outperforms VI for
1123
+ the proposed Meta TPP, it is not the case for the Attentive TPP as shown in Table 6.
1124
+ Attention
1125
+ Latent
1126
+ Reddit
1127
+ Uber
1128
+ NYC Taxi
1129
+ VI
1130
+ MC
1131
+ RMSE
1132
+ NLL
1133
+ Acc
1134
+ RMSE
1135
+ NLL
1136
+ RMSE
1137
+ NLL
1138
+ 
1139
+ 
1140
+ 
1141
+ 0.13
1142
+ -0.39
1143
+ 0.61
1144
+ 63.35
1145
+ 3.25
1146
+ 10.04
1147
+ 2.33
1148
+ 
1149
+ 
1150
+ 
1151
+ 0.11
1152
+ 0.16
1153
+ 0.61
1154
+ 37.12
1155
+ 3.22
1156
+ 10.15
1157
+ 2.00
1158
+ 
1159
+ 
1160
+ 
1161
+ 0.11
1162
+ 0.03
1163
+ 0.60
1164
+ 21.87
1165
+ 2.98
1166
+ 8.92
1167
+ 2.00
1168
+ 
1169
+ 
1170
+ 
1171
+ 0.13
1172
+ -0.05
1173
+ 0.60
1174
+ 22.38
1175
+ 3.18
1176
+ 9.10
1177
+ 2.01
1178
+ Table 6: Comparison of the variants of Meta TPPs
1179
+ We conjecture it based on MC approximation better sharing role with the cross-attention path when
1180
+ compared to the VI approximation. More specifically, cross-attention forces a model to have similar
1181
+ features for repeating local history patterns. As it focuses on extracting features from the previous
1182
+ history, which is similar to what z ∼ pθ(z | Cl) contains, the latent and attentive path share a role
1183
+ in MC approximation. On the other hand, as the model is trained on the global latent feature z ∼
1184
+ pθ(z | CL) in VI, without focusing too much on the previous history due to the cross-attention, it
1185
+ may be able to utilize more diverse features. It would be an interesting future work to investigate
1186
+ the theoretical relationship between approximation methods and variants of Meta TPP.
1187
+ E
1188
+ NA¨IVE BASELINE
1189
+ Sometimes na¨ıve baselines can be stronger baselines than more sophisticated ones. To investigate
1190
+ if that is the case for TPPs, we implement a na¨ıve baseline that makes predictions based on median
1191
+ inter-event interval: ˆτ l + 1 = τ l + ∆τ median, l where ∆τ median, l is a median of the inter-
1192
+ event interval up to l-th event. We boostrap for 200 times on the test set to obtain the mean of RMSE
1193
+ metrics as with how we obtain the numbers for the other methods (NLLs are not available for the
1194
+ na¨ıve baseline). In Table 7, the performance of the na¨ıve baseline is surprisingly good for some
1195
+ cases. For instance, it is better than the intensity-free on Wiki and NYC Taxi datasets. It is, however,
1196
+ much worse than THP+ and the proposed Attentive TPP on all the datasets.
1197
+ Methods
1198
+ Stack Overflow
1199
+ Mooc
1200
+ Reddit
1201
+ Wiki
1202
+ Sinusoidal
1203
+ Uber
1204
+ NYC Taxi
1205
+ Na¨ıve baseline
1206
+ 161.21
1207
+ 0.79
1208
+ 0.38
1209
+ 0.21
1210
+ 4.61
1211
+ 107.91
1212
+ 24.58
1213
+ Intensity-free
1214
+ 3.64
1215
+ 0.31
1216
+ 0.18
1217
+ 0.60
1218
+ 1.29
1219
+ 51.23
1220
+ 46.59
1221
+ Neural flow
1222
+
1223
+ 0.47
1224
+ 0.32
1225
+ 0.56
1226
+ 1.13
1227
+
1228
+
1229
+ THP+
1230
+ 1.68
1231
+ 0.18
1232
+ 0.26
1233
+ 0.17
1234
+ 1.72
1235
+ 90.25
1236
+ 10.31
1237
+ Attentive TPP
1238
+ 1.15
1239
+ 0.16
1240
+ 0.11
1241
+ 0.15
1242
+ 1.45
1243
+ 22.11
1244
+ 8.92
1245
+ Table 7: Comparison of Na¨ıve baseline and other methods
1246
+ 14
1247
+
1248
+ F
1249
+ EFFECT OF MODEL SIZE
1250
+ Although we have demonstrated that the improvement in performance does not come from the size
1251
+ of a model through Table 4 on the Reddit dataset, we provide more evidence on the rest of the
1252
+ datasets as below.
1253
+ Methods
1254
+ # Params
1255
+ Sinusoidal
1256
+ Uber
1257
+ NYC Taxi
1258
+ RMSE
1259
+ NLL
1260
+ RMSE
1261
+ NLL
1262
+ RMSE
1263
+ NLL
1264
+ THP+
1265
+ 50K
1266
+ 1.72 (0.10)
1267
+ 0.84 (0.02)
1268
+ 90.25 (4.53)
1269
+ 3.63 (0.03)
1270
+ 10.31 (0.47)
1271
+ 2.00 (0.01)
1272
+ 100K
1273
+ 1.84 (0.13)
1274
+ 1.04 (0.02)
1275
+ 82.69 (4.56)
1276
+ 3.34 (0.03)
1277
+ 10.16 (0.47)
1278
+ 1.92 (0.01)
1279
+ Attentive TPP
1280
+ 96K
1281
+ 1.45 (0.11)
1282
+ 0.66 (0.02)
1283
+ 22.11 (1.94)
1284
+ 2.89 (0.04)
1285
+ 8.92 (0.42)
1286
+ 2.00 (0.009)
1287
+ Table 8: Comparison of different model size on periodic datasets.
1288
+ Methods
1289
+ # Params
1290
+ Stack Overflow
1291
+ RMSE
1292
+ NLL
1293
+ Acc
1294
+ THP+
1295
+ 52K
1296
+ 1.68 (0.16)
1297
+ 3.28 (0.02)
1298
+ 0.46 (0.004)
1299
+ 103K
1300
+ 1.63 (0.06)
1301
+ 2.82 (0.03)
1302
+ 0.46 (0.004)
1303
+ Attentive TPP
1304
+ 99K
1305
+ 1.15 (0.02)
1306
+ 2.64 (0.02)
1307
+ 0.46 (0.004)
1308
+ Table 9: Comparison of different model size on the Stack Overflow dataset.
1309
+ Methods
1310
+ # Params
1311
+ Mooc
1312
+ RMSE
1313
+ NLL
1314
+ Acc
1315
+ THP+
1316
+ 56K
1317
+ 0.18 (0.005)
1318
+ 0.13 (0.02)
1319
+ 0.38 (0.004)
1320
+ 113K
1321
+ 0.22 (0.007)
1322
+ 0.05 (0.03)
1323
+ 0.39 (0.004)
1324
+ Attentive TPP
1325
+ 108K
1326
+ 0.16 (0.004)
1327
+ -0.72 (0.02)
1328
+ 0.36 (0.003)
1329
+ Table 10: Comparison of different model size on the Mooc dataset.
1330
+ Methods
1331
+ # Params
1332
+ Wiki
1333
+ RMSE
1334
+ NLL
1335
+ Acc
1336
+ THP+
1337
+ 577K
1338
+ 0.17 (0.02)
1339
+ 6.25 (0.39)
1340
+ 0.23 (0.03)
1341
+ 1153K
1342
+ 0.16 (0.01)
1343
+ 6.47 (0.40)
1344
+ 0.21 (0.02)
1345
+ Attentive TPP
1346
+ 1149K
1347
+ 0.15 (0.01)
1348
+ 6.25 (0.38)
1349
+ 0.25 (0.03)
1350
+ Table 11: Comparison of different model size on the Wiki dataset.
1351
+ In the table above, we observe that in many cases, smaller models perform better than larger models :
1352
+ on Sinusoidal, Mooc, and Wiki. Although it is sometimes true that larger models perform better than
1353
+ their smaller counterparts, they are still significantly worse than our proposed Attentive TPP. Note
1354
+ that we conducted exactly the same grid search for hyperparameter tuning for the larger models. The
1355
+ results empirically demonstrate that the improvement does not necessarily come from the size of a
1356
+ model but from right inductive biases.
1357
+ Lastly, please note that all the experiment results we have reported in Table 1-4 and in rebuttal are
1358
+ on the test sets. We believe the RMSE, NLL, and Accuracy on test sets are good metrics to compare
1359
+ the generalization performance of different models. Given that our proposed method outperforms
1360
+ all the baselines, we think our experiments empirically demonstrate the robustness of our method in
1361
+ terms of generalization.
1362
+ G
1363
+ EXTENSION TO MARKED TPPS
1364
+ We extended the proposed method to the marked cases by adding class prediction branch following
1365
+ the intensity-free TPP (Shchur et al., 2020). Suppose a mark at l + 1-th event is denoted as yl+1.
1366
+ 15
1367
+
1368
+ Datasets
1369
+ # of Seq.
1370
+ # of Events
1371
+ Max Seq. Length
1372
+ # of Marks
1373
+ Stack Overflow
1374
+ 6,633
1375
+ 480,414
1376
+ 736
1377
+ 22
1378
+ Mooc
1379
+ 7.047
1380
+ 389,407
1381
+ 200
1382
+ 97
1383
+ Reddit
1384
+ 10,000
1385
+ 532,026
1386
+ 100
1387
+ 984
1388
+ Wiki
1389
+ 1,000
1390
+ 138,705
1391
+ 250
1392
+ 7,628
1393
+ Sinusoidal
1394
+ 1,000
1395
+ 107,454
1396
+ 200
1397
+ 1
1398
+ Uber
1399
+ 791
1400
+ 701,579
1401
+ 2,977
1402
+ 1
1403
+ NYC Taxi
1404
+ 1,000
1405
+ 1,141,379
1406
+ 1,958
1407
+ 1
1408
+ Table 12: Statistics of the datasets.
1409
+ For the proposed Meta TPP, we compute the log-likelihood of the mark as,
1410
+ log pθ(yl+1 | τl−k+1:l, yl−k+1:l, Cl) = log
1411
+
1412
+ pθ(yl+1 | τl−k+1:l, yl−k+1:l, z)pθ(z | Cl)dz.
1413
+ Note that Cl includes both event times and corresponding labels. For implementation, we added one
1414
+ fully connected layer that takes as input the same features for the decoder (that predicts the next
1415
+ event time), and outputs the logits for classification. A class prediction is made by taking argmax
1416
+ over the probability distribution which is approximated using Monte-Carlo samples as,
1417
+ pθ(yl+1 | τl−k+1:l, yl−k+1:l, Cl) ≈ 1
1418
+ M
1419
+ M
1420
+
1421
+ m=1
1422
+ pθ(yl+1 | rl, zm)
1423
+ Note that inputs τl−k+1:l and yl−k+1:l are encoded to rl. The class predictions to compute the
1424
+ accuracies reported throughout the experiments are made from this.
1425
+ H
1426
+ DESCRIPTION OF DATASETS
1427
+ We use 4 popular benchmark datasets: Stack Overflow, Mooc, Reddit, and Wiki, and 3 newly pro-
1428
+ cessed datasets: Sinusoidal wave, Uber and NYC Taxi. The statistics are provided in Table 12. To
1429
+ split the data into train, validation, and test, we follow the splits made in the previous works such as
1430
+ Shchur et al. (2020), and Yang et al. (2022). More specifically, we use 60%, 20%, and 20% split for
1431
+ train, validation, and test, respectively, for all the datasets following Shchur et al. (2020) except for
1432
+ Stack Overflow. For Stack Overflow, we follow the split made by Yang et al. (2022) and Du et al.
1433
+ (2016) where 4,777, 530, and 1,326 samples are assigned for train, validation, and test, respectively.
1434
+ For more detailed descriptions of the popular benchmark datasets, please refer to the original papers
1435
+ as described below or Section E.2 of Shchur et al. (2020).
1436
+ H.1
1437
+ BENCHMARK DATASETS
1438
+ Stack Overflow. It was first processed in (Du et al., 2016). We use the first folder of the dataset
1439
+ following (Shchur et al., 2020; Yang et al., 2022).
1440
+ Mooc. It consists of 7,047 sequences, each of which contains of action times an individual user of
1441
+ an online Mooc course. There are 98 categories.
1442
+ Reddit. It consists of 10,000 sequences from the most active users with marks being the sub-reddit
1443
+ categories of each sequence.
1444
+ Wiki. It consists of 1,000 sequences from the most edited Wikipedia pages (for a month period)
1445
+ with marks being users who made at least 5 changes.
1446
+ H.2
1447
+ PROPOSED DATASETS
1448
+ Sinusoidal wave. We generate the Sinusoidal wave using a sine function with a periodicity of 4π
1449
+ and the domain of [0, 32π]. We randomly choose the number of events per sequence in [20, 200] for
1450
+ 1,000 sequences.
1451
+ 16
1452
+
1453
+ 0
1454
+ 20
1455
+ 40
1456
+ 60
1457
+ 80
1458
+ 100
1459
+ Unit
1460
+ 0
1461
+ 2
1462
+ 4
1463
+ 6
1464
+ Bin counts
1465
+ (a) An example in Sinusoidal wave dataset.
1466
+ 0
1467
+ 20
1468
+ 40
1469
+ 60
1470
+ 80
1471
+ 100
1472
+ 120
1473
+ 140
1474
+ Days
1475
+ 0
1476
+ 5
1477
+ 10
1478
+ 15
1479
+ 20
1480
+ Bin counts
1481
+ (b) An example in Uber dataset.
1482
+ 0
1483
+ 50
1484
+ 100
1485
+ 150
1486
+ 200
1487
+ 250
1488
+ 300
1489
+ 350
1490
+ 400
1491
+ Hours
1492
+ 0
1493
+ 2
1494
+ 4
1495
+ 6
1496
+ Bin counts
1497
+ (c) An example in NYC Taxi dataset.
1498
+ Figure 4: Visualization of examples in the datasets with strong periodicity.
1499
+ Uber.2 We generate the Uber dataset using the data from the shared link. Among the data from
1500
+ Januaray, 2015 to June, 2015, we create sequences using Dispatching-base-num and locationID as
1501
+ keys. We also give a constraint that the mininum and maximum events per sequence being 100 and
1502
+ 3,000, respectively, and drop all the overlapping event times.
1503
+ NYC Taxi.3 We generate the NYC Taxi dataset from the NYC Taxi pickup raw data in 2013 shared
1504
+ in the link, which is different from the one proposed in Du et al. (2016), as we do not include
1505
+ any location information. We generate 6 different datasets by splitting the whole data in 2013 for
1506
+ every two months: Jan-Feb, Mar-Apr, May-Jun, Jul-Aug, Sep-Oct, and Nov-Dec. Throughout the
1507
+ experiment, we train models on the training set of Jan-Feb split, and evaluate on the test set of
1508
+ Jan-Feb for in-domin, and other for distribution drift.
1509
+ H.3
1510
+ PERIODICITY
1511
+ In Section 5.2, we provide experiment results that demonstrate the proposed Attentive TPP capture
1512
+ periodic patterns better than the baselines. To validate that the datasets used for Table 2 have strong
1513
+ periodic patterns, we provide visualization in Figure 4. Sinusoidal wave dataset has a periodicity for
1514
+ every 4π as shown in Figure 4a, Uber datset has weekly periodic pattern shown in Figure 4b, and
1515
+ NYC Taxi dataset has daily pattern as shown in Figure 4c.
1516
+ 2https://www.kaggle.com/datasets/fivethirtyeight/uber-pickups-in-new-york-city/metadata
1517
+ 3http://www.andresmh.com/nyctaxitrips/
1518
+ 17
1519
+
1520
+ I
1521
+ HYPERPARAMETERS
1522
+ We use the feature dimension of 96, 72, and 64 for the intensity-free (Shchur et al., 2020), neural
1523
+ flow (Biloˇs et al., 2021), and THP+, respectively, as the numbers of parameters fall in the range of
1524
+ 50K and 60K with those dimensions.
1525
+ For the Meta TPP, we use 64 for the dimension of the latent variable z, and 32 samples to approx-
1526
+ imate the ELBO for variantional inference. As the variance of variational inference is generally
1527
+ low, 32 samples are enough to have stable results. In inference, we increase the sample size to 256
1528
+ to have more accurate approximation. For the Attentive TPP, we use 1-layer self-attention for the
1529
+ cross-attention path, and fix the local history window size to 20.
1530
+ For training, we use a batch size of 16 throughout all the models, and optimize with an Adam
1531
+ optimizer for a grid search for learning rate and weight decay described in Section 5.
1532
+ 18
1533
+
NtFLT4oBgHgl3EQfOS8u/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
QdAzT4oBgHgl3EQfW_xa/content/2301.01310v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16da2d392140a69459a10e7e8c6e928697df10c4263f72ad187b4be9fca278ee
3
+ size 3411071
RdE2T4oBgHgl3EQfBwYp/content/tmp_files/2301.03605v1.pdf.txt ADDED
@@ -0,0 +1,1793 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT–CTP 5475
2
+ DESY–22–159
3
+ Field-Theoretic Analysis of Hadronization Using Soft Drop Jet Mass
4
+ Anna Ferdinand,1, 2, ∗ Kyle Lee,3, 4, † and Aditya Pathak1, 5, ‡
5
+ 1University of Manchester, School of Physics and Astronomy, Manchester, M13 9PL, United Kingdom
6
+ 2DAMTP, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, United Kingdom
7
+ 3Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
8
+ 4Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
9
+ 5Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
10
+ One of the greatest challenges in quantum chromodynamics is understanding the hadronization
11
+ mechanism, which is also crucial for carrying out precision physics with jet substructure. In this
12
+ Letter, we combine recent advancements in our understanding of the field theory-based nonperturba-
13
+ tive structure of the soft drop jet mass with precise perturbative calculations of its multi-differential
14
+ variants at next-to-next-to-leading logarithmic (NNLL) accuracy. This enables a systematic study
15
+ of its hadronization power corrections in a completely model-independent way. We calibrate and
16
+ test hadronization models and their interplay with parton showers by comparing our universality
17
+ predictions with various event generators for quark and gluon initiated jets in both lepton-lepton
18
+ and hadron-hadron collisions.
19
+ We find that hadronization models perform better for quark jets
20
+ relative to gluon jets. Our results provide the necessary toolkit for precision studies with the soft
21
+ drop jet mass motivating future analyses using real world collider data. The nontrivial constraints
22
+ derived in our framework are useful for improving the modeling of hadronization and its interface
23
+ with parton showers in next generation event generators.
24
+ The study of jets and their substructure has become a
25
+ very active program at high energy particle colliders in
26
+ the last decade [1, 2]. A key development has been the use
27
+ of jet grooming techniques [3–10] that allow for theoreti-
28
+ cal control by eliminating contamination from the wide-
29
+ angle soft radiation from the underlying event and pile-
30
+ up, and by reducing hadronization effects. In particular,
31
+ the soft drop (SD) grooming [6–8] has received the most
32
+ widespread attention, inspiring many theoretical calcula-
33
+ tions both for jets in vacuum [11–38] and in medium [39–
34
+ 43], as well as several experimental analyses [44–53].
35
+ Among various groomed observables, the SD jet mass
36
+ is by far the most extensively studied within both theo-
37
+ retical [6, 54–60] and experimental communities [61–71],
38
+ and has been explored for a variety of phenomenologi-
39
+ cal applications, such as quantifying medium modifica-
40
+ tion [39, 61, 68], and precision top quark mass [72–74]
41
+ and strong coupling constant [75, 76] measurements.
42
+ Theoretically, the SD jet mass is the most precisely
43
+ studied groomed jet observable, with predictions avail-
44
+ able at next-to-next-to-next-to-leading logarithmic accu-
45
+ racy (N3LL) matched to next-to-next-to-leading order
46
+ (NNLO) predictions for dijets at e+e− collisions [77],
47
+ and next-to-next-to-leading-logarithmic (NNLL) accu-
48
+ racy [76] for jets at the LHC. At this level of precision,
49
+ the hadronization power corrections become comparable
50
+ in size to perturbative accuracy, and cannot be accounted
51
+ for using hadronization models [78–80] that are tuned
52
+ to lower precision parton showers. In the recent years,
53
+ there has been significant progress in understanding these
54
+ hadronization effects in the SD jet mass [81–83] using a
55
+ field theory-based formalism [84–90], which allows for a
56
+ model-independent description of nonperturbative (NP)
57
+ power corrections for precision phenomenology. Further-
58
+ more, this formalism imposes powerful constraints on jet-
59
+ FIG. 1: An example of fit for nonperturbative param-
60
+ eters in Pythia 8.306 simulation of groomed jet mass.
61
+ The insets show distribution of low energy particles as
62
+ heat maps around the soft drop stopping subjets in the
63
+ transverse plane.
64
+ flavor, kinematics and grooming parameter dependence
65
+ of these NP corrections. Hence, by comparing these pre-
66
+ dictions with event generators, we now have a unique
67
+ opportunity to carry out a nontrivial characterization
68
+ of these hadronization models and their interplay with
69
+ parton showers, which is often difficult to interpret and
70
+ test. In this Letter, using the state-of-the-art theoretical
71
+ advancements in our understanding of the SD jet mass,
72
+ we achieve a systematic and complete field theory-based
73
+ study of hadronization effects and test our predictions
74
+ with multiple event generators.
75
+ Hadronization corrections to groomed jet mass.—
76
+ Compared to the ungroomed jet mass, the SD jet mass
77
+ exhibits a much larger region of applicability for pertur-
78
+ arXiv:2301.03605v1 [hep-ph] 9 Jan 2023
79
+
80
+ 8C2
81
+ bation theory. This region is referred to as the soft drop
82
+ operator expansion (SDOE) region, which is defined be-
83
+ low and shown in Fig. 1 between the vertical lines. Here,
84
+ hadronization effects can be studied using factorization
85
+ in a systematic expansion.
86
+ Using soft collinear effective theory (SCET) [91–94],
87
+ in Ref. [81] the leading hadronization corrections in the
88
+ SDOE region were shown to depend on three O(ΛQCD)
89
+ NP universal constants {Ω◦◦
90
+ 1κ, Υ�
91
+ 1,0κ, Υ�
92
+ 1,1κ}, which solely
93
+ depend on the parton κ = q, g initiating the jet, and
94
+ are completely independent of the jet kinematics, such
95
+ as the jet pT (or EJ), rapidity ηJ, radius R, and the
96
+ SD parameters [7], the energy cut zcut and the angular
97
+ modulation parameter β, such that
98
+ 1
99
+ σκ
100
+ dσκ
101
+ dm2
102
+ J
103
+ = 1
104
+ ˆσκ
105
+ dˆσκ
106
+ dm2
107
+ J
108
+ − QΩ◦◦
109
+
110
+ d
111
+ dm2
112
+ J
113
+ 1
114
+ ˆσκ
115
+ dˆσ◦◦
116
+ κ
117
+ dm2
118
+ J
119
+ (1)
120
+ + Υ�
121
+ 1,0κ + βΥ�
122
+ 1,1κ
123
+ Q
124
+ 1
125
+ ˆσκ
126
+ dˆσ�
127
+ κ
128
+ dm2
129
+ J
130
+ + · · · ,
131
+ Here dσκ and dˆσκ, respectively, refer to hadron and par-
132
+ ton level groomed jet mass cross sections for flavor κ
133
+ and Q characterizing the the hard scale of the jet. The
134
+ weights dˆσ◦◦,�
135
+ κ
136
+ are perturbatively calculable.
137
+ We note
138
+ that, in contrast with analytical hadronization models
139
+ employed in previous work [6, 60, 75, 89], Eq. (1) is a
140
+ model-independent statement and includes hadron mass
141
+ effects.
142
+ In the SDOE region, the leading hadronization cor-
143
+ rections are driven by a two-pronged dipole, which con-
144
+ sists of an energetic collinear subjet at the core of the
145
+ jet and a collinear-soft (c-soft) subjet that is responsible
146
+ for stopping the grooming algorithm.
147
+ The corrections
148
+ represented by the ellipsis ‘. . .’ in Eq. (1) involve higher
149
+ power corrections of ΛQCD and corrections from configu-
150
+ rations that distort the two-pronged catchment area. The
151
+ latter correction is a next-to-leading-logarithmic effect,
152
+ and therefore Eq. (1) can also be seen as a factorization
153
+ of NP effects at leading-logarithmic accuracy, where the
154
+ strong ordering of angles ensures the two-pronged geom-
155
+ etry. As the jet mass decreases, we enter the soft drop
156
+ non-perturbative (SDNP) region, where the c-soft mode
157
+ becomes nonperturbative and correspondingly the non-
158
+ perturbative effects are of O(1). The transition between
159
+ these two regions is clearly visible in Fig. 1, where the
160
+ insets show the distribution of low-energy NP particles
161
+ in the transverse plane of the jet [81].
162
+ The statement of NP factorization in Eq. (1) presents
163
+ us with a singular opportunity to probe hadronization in
164
+ jets in a rich setting. As can be seen from Eq. (1), the
165
+ consistency of the formalism requires that the three con-
166
+ stants be sufficient to describe data measured from high
167
+ energy colliders over a wide range of energies. The highly
168
+ constraining structure given by Eq. (1) (constants being
169
+ of O(ΛQCD), having a β proportional coefficient Υ�
170
+ 1,1κ,
171
+ zcut-independence, etc.) makes this far from a trivial feat
172
+ FIG. 2: NNLL results for perturbative weights in Eq. (1)
173
+ of hadronization corrections (shown here for gluon jets).
174
+ Bands denote perturbative uncertainty and vertical lines
175
+ the extent of the fit region (see Eq. (7)).
176
+ The factor
177
+ of 1/Q is included to illustrate the size of hadronization
178
+ corrections.
179
+ and hence useful for calibrating hadronization models. In
180
+ this work, we demonstrate how the universality structure
181
+ strongly constrains the NP parameters, allowing them to
182
+ be accurately determined by considering various combi-
183
+ nations of soft drop and kinematic parameters. This, for
184
+ example, improves the prospects for measuring the strong
185
+ coupling constant αs at the LHC.
186
+ Calculation of perturbative weights.— Characterizing
187
+ the two-pronged configuration of the collinear and the
188
+ c-soft subjet in the SDOE region requires auxiliary mea-
189
+ surements of the groomed jet radius Rg and soft subjet
190
+ energy fraction zg [7, 34, 35, 95], which after marginaliz-
191
+ ing give [82]
192
+ 1
193
+ ˆσκ
194
+ dˆσ◦◦
195
+ κ
196
+ dm2
197
+ J
198
+
199
+
200
+ drg rg
201
+ 1
202
+ ˆσκ
203
+ d2ˆσκ
204
+ dm2
205
+ Jdrg
206
+ ,
207
+ (2)
208
+ 1
209
+ ˆσκ
210
+ dˆσ�
211
+ κ
212
+ dm2
213
+ J
214
+
215
+ � drgdzg δ
216
+
217
+ zg − zcutrβ
218
+ g
219
+
220
+ rg
221
+ 1
222
+ ˆσκ
223
+ d3ˆσκ
224
+ dm2
225
+ Jdrgdzg
226
+ .
227
+ As the NP constants in Eq. (1) are independent of the
228
+ jet kinematics and grooming parameters, all these depen-
229
+ dencies are encapsulated by dˆσ◦◦,�
230
+ κ
231
+ . The appearance of
232
+ rg = Rg/R in Eq. (2) is analogous to how jet radius R
233
+ appears in hadronization corrections for the ungroomed
234
+ jet mass in the tail and for the jet pT [89, 90]:
235
+ m2
236
+ J,no sd = ˆm2
237
+ J,no sd+pT R Ω1κ ,
238
+ pT = ˆpT + 1
239
+ RΥ1κ , (3)
240
+ where Ω1κ, Υ1κ ∼ ΛQCD are NP parameters and hatted
241
+ variables are parton level values. In the case of the SD
242
+ jet mass, the dynamically determined groomed jet radius
243
+ Rg plays the role of R. The term in Eq. (1) with dˆσ◦◦
244
+ κ is
245
+ analogous to the ungroomed jet mass shift correction in
246
+
247
+ 3
248
+ the tail, but is now described by a different constant Ω◦◦
249
+
250
+ as m2
251
+ J = ˆm2
252
+ J + pT RgΩ◦◦
253
+ 1κ.
254
+ The term in the second line in Eq. (1) with dˆσ�
255
+ κ is
256
+ called the boundary correction. This effect is similar to
257
+ the migration of events across pT -bins due to hadroniza-
258
+ tion.
259
+ Near the “boundary” of the c-soft subjet pass-
260
+ ing/failing soft drop, i.e. when zg ≈ zcutrβ
261
+ g , the partonic
262
+ values ˆzg and ˆrg are modified due to hadronization as
263
+ zg = ˆzg + 1
264
+ rg
265
+ Υ�
266
+ 1,0κ
267
+ pT R ,
268
+ rg = ˆrg − Υ�
269
+ 1,1κ
270
+ pT R .
271
+ (4)
272
+ Here, Υ�
273
+ 1,0κ characterizes the shift in the pT of the c-
274
+ soft subjet analogous to jet pT shift in Eq. (3), and Υ�
275
+ 1,1κ
276
+ describes the change in the subjet location relative to the
277
+ collinear subjet. The combination of the two gives rise
278
+ to the linear structure Υ�
279
+ 1κ = Υ�
280
+ 1,0κ + βΥ�
281
+ 1,1κ as shown in
282
+ Eq. (1), and constitutes a nontrivial prediction. Finally,
283
+ it is useful to factor out the parton level groomed jet mass
284
+ cross section from dσ◦◦,�:
285
+ dˆσκ
286
+ dm2
287
+ J
288
+
289
+ 1 (m2
290
+ J) ≡ dˆσ◦◦
291
+ κ
292
+ dm2
293
+ J
294
+ ,
295
+ dˆσκ
296
+ dm2
297
+ J
298
+
299
+ 2 (m2
300
+ J) ≡ dˆσ�
301
+ κ
302
+ dm2
303
+ J
304
+ .
305
+ (5)
306
+ This definition is convenient as it will allow us to combine
307
+ analytical calculation of the coefficients Cκ
308
+ 1,2(m2
309
+ J) with
310
+ parton shower jet mass cross section dˆσκ as discussed
311
+ below.
312
+ In Ref. [81], Cκ
313
+ 1,2(m2
314
+ J) were computed in the coherent
315
+ branching framework at LL accuracy. The first big step
316
+ towards improving the accuracy of these coefficients was
317
+ achieved in Ref. [82] by recasting them as moments of
318
+ doubly differential cross section as in Eq. (2) and comput-
319
+ ing them at NLL′ accuracy in the SDOE region. In this
320
+ work, we employ a further improved calculation at NNLL
321
+ accuracy described in the companion paper in Ref. [83],
322
+ where the matching of the doubly differential cross sec-
323
+ tion in the ungroomed region is included for correct treat-
324
+ ment of the soft drop cusp location at NNLL. In Fig. 2,
325
+ we show calculations of dˆσ◦◦,�
326
+ κ
327
+ for gluon jets at NNLL
328
+ accuracy. With O(1 GeV) NP constants and kinematic
329
+ prefactors as shown in Eq. (2), we see that the leading
330
+ hadronization corrections can be as large as 10% for small
331
+ jet masses.
332
+ Calibrating hadronization models.— With state-of-the-
333
+ art NNLL perturbative results for Cκ
334
+ 1,2(m2
335
+ J), we are in po-
336
+ sition to carry out a precise calibration of hadronization
337
+ models.
338
+ Furthermore, by incorporating NNLL pertur-
339
+ bative uncertainty, we are able to significantly improve
340
+ upon the analysis of Ref. [82] with LL predictions lack-
341
+ ing uncertainty estimates.
342
+ We simulate e+e− → gg,
343
+ e+e− → q¯q, pp → Z + q jet and pp → Z + g jet pro-
344
+ cesses using Pythia 8.306 [78], Vincia 2.3 [96] and
345
+ Herwig 7.2.3 [80] parton showers with their default
346
+ hadronization models. We reconstruct anti-kT [97] jets
347
+ with R = 0.8 using Fastjet [98], and analyze them us-
348
+ ing jet analysis software JETlib written by two of the
349
+ 2.4
350
+ 2.2
351
+ 2.0
352
+ 1.8
353
+ 1.6
354
+ 1.4
355
+ 1.2
356
+ 0.2
357
+ 0.4
358
+ 0.6
359
+ 0.8
360
+ 1.0
361
+ C1( ), C2( )
362
+ Partonic, e + e
363
+ qq
364
+ EJ = 500 GeV
365
+ zcut = 0.1,
366
+ = 1, R = 0.8
367
+ =
368
+ m2
369
+ J
370
+ Q2
371
+ Partonic, e + e
372
+ gg
373
+ EJ = 500 GeV
374
+ 2.4
375
+ 2.2
376
+ 2.0
377
+ 1.8
378
+ 1.6
379
+ 1.4
380
+ 1.2
381
+ log10
382
+ 0.0
383
+ 0.2
384
+ 0.4
385
+ 0.6
386
+ 0.8
387
+ 1.0
388
+ C1( ), C2( )
389
+ Partonic, pp
390
+ Z + q Jet
391
+ 450 < pT < 550, |
392
+ J| < 2.5
393
+ C1 NNLL
394
+ C2 NNLL
395
+ Pythia 8.306
396
+ Herwig 7.2.3
397
+ 2.4
398
+ 2.2
399
+ 2.0
400
+ 1.8
401
+ 1.6
402
+ 1.4
403
+ 1.2
404
+ 1.0
405
+ log10
406
+ Partonic, pp
407
+ Z + g Jet
408
+ 450 < pT < 550, |
409
+ J| < 2.5
410
+ FIG. 3: Weighted cross sections for hadronization cor-
411
+ rections normalized to parton level jet mass spectrum as
412
+ defined in Eq. (5) for zcut = 0.1 and β = 1.
413
+ authors [99]. For e+e− collisions, we sample both jets
414
+ in the dijet configuration, while only using the leading
415
+ jet in pp collisions.
416
+ As NP parameters are explictly
417
+ predicted to be independent of the jet kinematics and
418
+ grooming parameters, we carry out analysis using a wide
419
+ range of kinematic and grooming parameter choices. In
420
+ e+e− collisions, we analyze events at center of mass
421
+ energies Q = 500, 750, 1000 GeV, while in pp, we use
422
+ jets with pT
423
+ ∈ {[400, 600], [600, 800], [800, 1000]} GeV
424
+ and soft drop parameters zcut ∈ {0.05, 0.1, 0.15, 0.2} and
425
+ β ∈ {0, 0.5, 1, 1.5, 2}.
426
+ We begin by explicitly defining the SDOE region where
427
+ our analysis is carried out. We first define a dimensionless
428
+ variable ξ ≡ m2
429
+ J/Q2, where
430
+ Q(pp) ≡ pT R ,
431
+ Q(ee) ≡ 2EJ .
432
+ (6)
433
+ In terms of ξ, the SDOE region is then defined as ξ ∈
434
+
435
+ ξSDOE, ξ′
436
+ 0
437
+
438
+ , where
439
+ ξSDOE ≡ ξ0
440
+ �ρΛQCD
441
+ Qξ0
442
+ � 2+β
443
+ 1+β ,
444
+ ξ′
445
+ 0 ≡
446
+ ξ0
447
+ (1 + ζ2)
448
+ 2+β
449
+ 2
450
+ .
451
+ (7)
452
+ Here ξ0 is the location of the soft drop cusp [76, 83]:
453
+ ξ(pp)
454
+ 0
455
+ = zcut
456
+ � R
457
+ R0
458
+ �β
459
+ ,
460
+ ξ(ee)
461
+ 0
462
+ = zcut
463
+ �√
464
+ 2 tan R
465
+ 2
466
+ sin R0
467
+ 2
468
+ �β
469
+ ,
470
+ (8)
471
+ while ζ is defined by
472
+ ζ(pp) ≡
473
+ R
474
+ 2 cosh ηJ
475
+ ,
476
+ ζ(ee) ≡ tan R
477
+ 2 ,
478
+ (9)
479
+ such that ξ′
480
+ 0 in Eq. (7) is the soft-wide angle transition
481
+ point of the NNLL calculation. We set ΛQCD → 1 GeV,
482
+ the typical scale of transition from parton showers to
483
+ hadronization. The parameter ρ in Eq. (7) determines
484
+
485
+ 4
486
+ Quark Jets Ω◦◦
487
+ 1q(GeV) Υ�
488
+ 1,0q(GeV) Υ�
489
+ 1,1q(GeV) χ2
490
+ min/dof.
491
+ e+e− →q¯q
492
+ 0.55+0.06
493
+ −0.03
494
+ −0.57+0.16
495
+ −0.19
496
+ 1.06+0.31
497
+ −0.35
498
+ 0.77+0.03
499
+ −0.00
500
+ pp→Z+q
501
+ 0.56+0.05
502
+ −0.14
503
+ −0.73+0.29
504
+ −0.28
505
+ 0.89+0.27
506
+ −0.25
507
+ 0.65+0.01
508
+ −0.02
509
+ Gluon Jets Ω◦◦
510
+ 1g(GeV) Υ�
511
+ 1,0g(GeV) Υ�
512
+ 1,1g(GeV) χ2
513
+ min/dof.
514
+ e+e− →gg
515
+ 1.92+0.16
516
+ −0.32
517
+ −0.48+0.23
518
+ −0.22
519
+ 0.87+0.25
520
+ −0.25
521
+ 3.13+0.05
522
+ −0.20
523
+ pp→Z+g
524
+ 0.93+0.01
525
+ −0.12
526
+ −0.24+0.11
527
+ −0.01
528
+ 0.89+0.20
529
+ −0.23
530
+ 1.34+0.05
531
+ −0.10
532
+ TABLE I: Fit results for NP constants in Pythia 8.306
533
+ for quark and gluon jets in e+e− and pp collisions.
534
+ the onset of the SDOE region, and we set ρ = 4.5. In
535
+ principle, any choice satisfying ρ ≫ 1 is acceptable. We
536
+ explore other choices of ρ in the Supplemental Material.
537
+ In Fig. 3 we show a comparison of the NNLL compu-
538
+ tation of Cκ
539
+ 1,2 with partonic Pythia and Herwig. The
540
+ parton level results for from Vincia are found to be al-
541
+ most identical to Pythia. We find a good agreement of
542
+ the NNLL Cκ
543
+ 1 with MC for all four processes. The unusu-
544
+ ally small errors for Cκ
545
+ 1 result from cancellation between
546
+ correlated uncertainties in the two factors in Eq. (5). For
547
+ pp, the agreement for the boundary term is poor for jet
548
+ masses close to the cusp due to the initial-state radi-
549
+ ation (ISR) contribution.
550
+ However, as seen in Fig. 2,
551
+ the NP corrections in the cusp-region are relatively sup-
552
+ pressed, and NP corrections from ISR are also expected
553
+ to be smaller as they involve subleading r2
554
+ g moment of the
555
+ boundary cross section [83]. Consequently, these effects
556
+ do not significantly impact the analysis below.
557
+ Finally, we perform a least-squares fit for the NP pa-
558
+ rameters by defining our χ2 statistic as
559
+ χ2 ≡
560
+
561
+ i
562
+
563
+ (⃗σMC
564
+ κ,had)i − (⃗σκ,part+NP(Ω◦◦
565
+ 1κ, . . .)
566
+
567
+ i
568
+ �2
569
+ (∆⃗σ)2
570
+ i
571
+ .
572
+ (10)
573
+ Here, ⃗σX is a vector of cross section values for nbins = 10
574
+ bins in the fit range and all permutations of pT (or
575
+ EJ), zcut, and β values considered above.
576
+ We denote
577
+ the hadron level MC groomed jet mass cross section as
578
+ ⃗σMC
579
+ κ,had, and define ⃗σκ,part+NP by including the NP con-
580
+ stants Ω◦◦
581
+ 1κ, Υ�
582
+ 1,0κ, Υ�
583
+ 1,1κ and NNLL computation of Cκ
584
+ 1,2
585
+ in Eq. (5) to the parton level MC spectrum dˆσMC
586
+ κ
587
+ fol-
588
+ lowing Eq. (1). The uncertainty in the denominator is
589
+ defined as
590
+ (∆⃗σ)2
591
+ i ≡
592
+
593
+ 0.05(⃗σpart×C1)i
594
+ �2 +
595
+
596
+ 0.25(⃗σpart×C2)i
597
+ �2 , (11)
598
+ where, guided by the size of perturbative uncertainties
599
+ in Fig. 2, we have assigned 5% and 25% uncertainty re-
600
+ spectively to the weighted cross sections for shift and
601
+ boundary corrections respectively.
602
+ The NP constants
603
+ Ω◦◦
604
+ 1κ, Υ�
605
+ 1,0κ, Υ�
606
+ 1,1κ are then varied to minimize this χ2
607
+ statistic. An example of the fit for mass distribution is
608
+ shown in Fig. 1.
609
+ In Tab. I, we present the fit results for the NP con-
610
+ stants with scale variations of Cκ
611
+ 1,2 for Pythia. As an-
612
+ 0.5
613
+ 1.0
614
+ 1.5
615
+ 2.0
616
+ 1 (GeV)
617
+ 1.6
618
+ 1.4
619
+ 1.2
620
+ 1.0
621
+ 0.8
622
+ 0.6
623
+ 0.4
624
+ 0.2
625
+ 0.0
626
+ 1, 0 (GeV)
627
+ Pythia 8.306
628
+ e + e
629
+ qq
630
+ e + e
631
+ gg
632
+ pp
633
+ Z + qJet
634
+ pp
635
+ Z + gJet
636
+ C2 down
637
+ C2 central
638
+ C2 up
639
+ 0.5
640
+ 1.0
641
+ 1.5
642
+ 2.0
643
+ 1 (GeV)
644
+ 1.6
645
+ 1.4
646
+ 1.2
647
+ 1.0
648
+ 0.8
649
+ 0.6
650
+ 0.4
651
+ 0.2
652
+ 0.0
653
+ 1, 0 (GeV)
654
+ Vincia 2.3
655
+ 0.5
656
+ 1.0
657
+ 1.5
658
+ 2.0
659
+ 1 (GeV)
660
+ Herwig 7.2.3
661
+ FIG. 4: Testing jet flavor universality of soft drop NP pa-
662
+ rameters in Pythia 8.306 (top), Vincia 2.3 (bottom,
663
+ left) and Herwig 7.2.3 (bottom, right).
664
+ ticipated, the parameters are ≲ 1 GeV. We also find
665
+ similar parameter values for quark jets within the two
666
+ quark processes within uncertainties.
667
+ Even when NP
668
+ parameters for quark jets are simultaneously fit for in
669
+ e+e− and pp process, we find an excellent χ2 value of
670
+ 0.840/dof. This is expected, as soft drop isolates the jet
671
+ from surrounding radiation. To further investigate this,
672
+ we show correlations between Ω◦◦
673
+ 1κ and Υ�
674
+ 1,0κ for the four
675
+ processes in Fig. 4 where each ellipse represents a 1σ
676
+ deviation. To account for perturbative uncertainties, we
677
+ repeat the fit by varying Cκ
678
+ 1,2 up and down within the un-
679
+ certainty band shown in Fig. 3. We observe an excellent
680
+ agreement within uncertainties between the NP param-
681
+ eters for quark jets in pp and e+e− collisions in Pythia
682
+ simulations, and a moderate agreement for Vincia and
683
+ Herwig. In contrast, while Herwig exhibits similar levels
684
+ of agreement for gluon jets and quark jets at both collid-
685
+ ers, Pythia and Vincia show significant disagreement.
686
+ This shows that contrary to the expectation for groomed
687
+ jets, hadronization modeling of gluon jets in isolation in
688
+ e+e− collisions in Pythia and Vincia differs significantly
689
+ from jets in hadron colliders. Additionally, the differing
690
+ results between Pythia and Vincia point to the inter-
691
+ play of parton showers with hadronization models. In the
692
+ Supplemental Material we show correlations in the other
693
+ two combinations of NP parameters which show similar
694
+ behavior as well as numerical fit results for Herwig and
695
+ Vincia.
696
+ Next, we test the grooming parameters independence
697
+
698
+ 5
699
+ 0.0
700
+ 0.5
701
+ 1.0
702
+ 1.5
703
+ 2.0
704
+ 1.5
705
+ 1.0
706
+ 0.5
707
+ 0.0
708
+ 0.5
709
+ 1.0
710
+ 1.5
711
+ 2.0
712
+ 1g (Gev)
713
+ e + e
714
+ gg
715
+ Vincia 2.3
716
+ Herwig 7.2.3
717
+ Pythia 8.306
718
+ 0.0
719
+ 0.5
720
+ 1.0
721
+ 1.5
722
+ 2.0
723
+ pp
724
+ Z + gJet
725
+ 0.0
726
+ 0.5
727
+ 1.0
728
+ 1.5
729
+ 2.0
730
+ 1
731
+ 0
732
+ 1
733
+ 2
734
+ 3
735
+ 1q (Gev)
736
+ e + e
737
+ qq
738
+ 0.0
739
+ 0.5
740
+ 1.0
741
+ 1.5
742
+ 2.0
743
+ pp
744
+ Z + qJet
745
+ FIG. 5: Test for linear β dependence of boundary correc-
746
+ tions (Υ�
747
+ 1κ = Υ�
748
+ 1,0κ + βΥ�
749
+ 1,1κ) in gluon (top) and quark
750
+ (bottom) jets for e+e− (left) and pp (right) collisions
751
+ of these NP constants. We follow the same procedure
752
+ as Ref. [81] and test this behavior by comparing the fit
753
+ results for individual zcut and β values with the global
754
+ fit. In Fig. 5, we demonstrate the linear β-dependence
755
+ of the boundary correction by fitting for a single param-
756
+ eter Υ�
757
+ 1κ(β) for each value of β. Because of degeneracy
758
+ in the NP parameters, we fix Ω◦◦
759
+ 1κ to its global-fit value
760
+ in this case. The error bars take into account perturba-
761
+ tive uncertainty in Cκ
762
+ 1,2 by re-fitting with minimum and
763
+ maximum variations. We find that all the three simula-
764
+ tions perform well in each of the four cases. In Fig. 6,
765
+ we repeat the same procedure to test zcut-independence
766
+ of NP parameters.
767
+ We find here that the three event
768
+ generators pass the test for both quark and gluon jets in
769
+ e+e− collisions, but exhibit a linear trend in zcut for both
770
+ flavors in pp collisions. The larger χ2 values for gluon
771
+ jets, as seen in Tab. I for Pythia (also true for Herwig
772
+ and Vincia) suggest that modeling of hadronization in
773
+ gluon jets is less consistent with our field theory predic-
774
+ tions. Finally, our analysis of the e+e− → q¯q process
775
+ using NNLL predictions of Cκ
776
+ 1,2 demonstrates significant
777
+ improvement in the universality behavior of zcut and β,
778
+ compared to Ref. [81] where LL predictions were used.1
779
+ In conclusion, while our universality tests of the NP pa-
780
+ rameters generally display expected behaviors in all the
781
+ cases considered, they also reveal some tension with the
782
+ 1 Note that our numerical results for e+e− → q¯q also differ from
783
+ those in Ref. [81] due to different prescription for error in Eq. (11)
784
+ and newer versions of MC.
785
+ 0.05
786
+ 0.10
787
+ 0.15
788
+ 0.20
789
+ zcut
790
+ 0.0
791
+ 0.5
792
+ 1.0
793
+ 1.5
794
+ 2.0
795
+ 2.5
796
+ 3.0
797
+ 1g (Gev)
798
+ e + e
799
+ gg
800
+ Vincia 2.3
801
+ Herwig 7.2.3
802
+ Pythia 8.306
803
+ 0.05
804
+ 0.10
805
+ 0.15
806
+ 0.20
807
+ zcut
808
+ pp
809
+ Z + gJet
810
+ 0.05
811
+ 0.10
812
+ 0.15
813
+ 0.20
814
+ zcut
815
+ 0.0
816
+ 0.2
817
+ 0.4
818
+ 0.6
819
+ 0.8
820
+ 1.0
821
+ 1.2
822
+ 1.4
823
+ 1q (Gev)
824
+ e + e
825
+ qq
826
+ 0.05
827
+ 0.10
828
+ 0.15
829
+ 0.20
830
+ zcut
831
+ pp
832
+ Z + qJet
833
+ FIG. 6: Testing zcut-independence of Ω◦◦
834
+ 1κ for gluon (top)
835
+ and quark jets (bottom) in e+e− (left) and pp collisions.
836
+ hadronization models, pointing to interesting avenues for
837
+ further improvement2 and motivate the use of real-world
838
+ collider data for further analyses.
839
+ Conclusions.— In this Letter, we have presented a sys-
840
+ tematic framework for analyzing nonperturbative correc-
841
+ tions in soft drop jet mass by bringing together earlier
842
+ work on nonperturbative factorization and high preci-
843
+ sion calculations of multi-differential soft drop cross sec-
844
+ tions. Our analysis with hadronization models success-
845
+ fully demonstrates that nonperturbative parameters ex-
846
+ hibit the universal behaviors predicted by field theory.
847
+ Our analysis is also directly applicable to precision phe-
848
+ nomenology involving soft drop jet mass. For example,
849
+ in Ref. [76] our results are used to assess the impact of
850
+ the NP corrections on the sensitivity and ultimate pre-
851
+ cision achievable on αs at the LHC using SD jet mass.
852
+ Findings in Ref. [76] indicate that the hadronization ef-
853
+ fects in the β = 1 case, for instance, are 3% (8%) for
854
+ quark (gluon) jets when nonperturbative parameters in
855
+ Eq. (1) are left unconstrained, which are of the same size
856
+ as the NNLL perturbative uncertainty.
857
+ We anticipate
858
+ that with high precision calculations for the soft drop
859
+ jet mass and the boundary correction (Cκ
860
+ 2 in Fig. 3),
861
+ it will be possible to significantly constrain some or all
862
+ of the NP constants, and hence improve the ultimate
863
+ precision achievable on αs-determination at the LHC. In
864
+ summary, our work thus provides crucial understanding
865
+ 2 For example, the analysis at LL in Reference [81] already revealed
866
+ problems in the Herwig 8.2 hadronization model, which resulted
867
+ in its improvement in version 8.3.
868
+
869
+ 6
870
+ of hadronization corrections necessary for precision mea-
871
+ surements with soft drop jet mass, a benchmark tool for
872
+ improving hadronization modeling in MC event genera-
873
+ tors, and motivation for analyses with real world collider
874
+ data.
875
+ Acknowledgements.— We would like to thank Mri-
876
+ nal Dasgupta, Michael Seymour for helpful discussions.
877
+ We are grateful to Simon Plätzer for many discus-
878
+ sions and support with analysis with Herwig.
879
+ We
880
+ thank Holmfridur Hannesdottir, Johannes Michel and
881
+ Iain Stewart for numerous discussions and feedback on
882
+ the manuscript.
883
+ We provide a numerical implementa-
884
+ tion of the NNLL calculation in C++ building on core
885
+ classes of SCETlib [100] which will be made available
886
+ as a part of the scetlib::sd module [101]. We thank
887
+ Johannes Michel for support with above-mentioned im-
888
+ plementation in SCETlib.
889
+ KL was supported by the
890
+ LDRD program of LBNL and the U.S. DOE under con-
891
+ tract number DE-SC0011090.
892
+ AP acknowledges sup-
893
+ port from DESY (Hamburg, Germany), a member of
894
+ the Helmholtz Association HGF. AP was a member of
895
+ the Lancaster-Manchester-Sheffield Consortium for Fun-
896
+ damental Physics, which is supported by the UK Science
897
+ and Technology Facilities Council (STFC) under grant
898
+ number ST/T001038/1. AF also gratefully acknowledges
899
+ support from the above-mentioned grant.
900
901
902
903
+ [1] A. J. Larkoski, I. Moult,
904
+ and B. Nachman,
905
+ (2017),
906
+ arXiv:1709.04464 [hep-ph].
907
+ [2] R. Kogler et al., Rev. Mod. Phys. 91, 045003 (2019),
908
+ arXiv:1803.06991 [hep-ex].
909
+ [3] S. D. Ellis, C. K. Vermilion,
910
+ and J. R. Walsh, Phys.
911
+ Rev. D 81, 094023 (2010), arXiv:0912.0033 [hep-ph].
912
+ [4] M. Cacciari, G. P. Salam, and G. Soyez, Eur. Phys. J.
913
+ C 75, 59 (2015), arXiv:1407.0408 [hep-ph].
914
+ [5] D. Krohn, J. Thaler,
915
+ and L.-T. Wang, JHEP 02, 084
916
+ (2010), arXiv:0912.1342 [hep-ph].
917
+ [6] M. Dasgupta, A. Fregoso, S. Marzani, and G. P. Salam,
918
+ JHEP 09, 029 (2013), arXiv:1307.0007 [hep-ph].
919
+ [7] A. J. Larkoski, S. Marzani, G. Soyez,
920
+ and J. Thaler,
921
+ JHEP 05, 146 (2014), arXiv:1402.2657 [hep-ph].
922
+ [8] J. M. Butterworth, A. R. Davison, M. Rubin,
923
+ and
924
+ G. P. Salam, Phys. Rev. Lett. 100, 242001 (2008),
925
+ arXiv:0802.2470 [hep-ph].
926
+ [9] C. Frye, A. J. Larkoski, J. Thaler, and K. Zhou, JHEP
927
+ 09, 083 (2017), arXiv:1704.06266 [hep-ph].
928
+ [10] F. A. Dreyer, L. Necib, G. Soyez, and J. Thaler, JHEP
929
+ 06, 093 (2018), arXiv:1804.03657 [hep-ph].
930
+ [11] A. J. Larkoski, I. Moult, and D. Neill, JHEP 02, 144
931
+ (2018), arXiv:1710.00014 [hep-ph].
932
+ [12] A. J. Larkoski, I. Moult,
933
+ and D. Neill,
934
+ (2017),
935
+ arXiv:1708.06760 [hep-ph].
936
+ [13] J. Baron, S. Marzani, and V. Theeuwes, JHEP 08, 105
937
+ (2018), arXiv:1803.04719 [hep-ph].
938
+ [14] Z.-B. Kang, K. Lee, X. Liu, and F. Ringer, Phys. Lett.
939
+ B793, 41 (2019), arXiv:1811.06983 [hep-ph].
940
+ [15] Y. Makris and V. Vaidya, JHEP 10, 019 (2018),
941
+ arXiv:1807.09805 [hep-ph].
942
+ [16] A. Kardos, G. Somogyi, and Z. Trócsányi, Phys. Lett.
943
+ B786, 313 (2018), arXiv:1807.11472 [hep-ph].
944
+ [17] D. Napoletano and G. Soyez, JHEP 12, 031 (2018),
945
+ arXiv:1809.04602 [hep-ph].
946
+ [18] C. Lee, P. Shrivastava, and V. Vaidya, JHEP 09, 045
947
+ (2019), arXiv:1901.09095 [hep-ph].
948
+ [19] D. Gutierrez-Reyes, Y. Makris, V. Vaidya, I. Scimemi,
949
+ and L. Zoppi, JHEP 08, 161 (2019), arXiv:1907.05896
950
+ [hep-ph].
951
+ [20] A. Kardos, A. Larkoski, and Z. Trócsányi, Acta Phys.
952
+ Polon. B 50, 1891 (2019).
953
+ [21] Y. Mehtar-Tani, A. Soto-Ontoso,
954
+ and K. Tywoniuk,
955
+ (2019), arXiv:1911.00375 [hep-ph].
956
+ [22] A. Kardos, A. J. Larkoski, and Z. Trócsányi, (2020),
957
+ arXiv:2002.05730 [hep-ph].
958
+ [23] A. J. Larkoski, (2020), arXiv:2006.14680 [hep-ph].
959
+ [24] A. Lifson, G. P. Salam,
960
+ and G. Soyez,
961
+ (2020),
962
+ arXiv:2007.06578 [hep-ph].
963
+ [25] P. Caucal, A. Soto-Ontoso,
964
+ and A. Takacs,
965
+ (2021),
966
+ arXiv:2111.14768 [hep-ph].
967
+ [26] Y.-T. Chien and I. Vitev, Phys. Rev. Lett. 119, 112301
968
+ (2017), arXiv:1608.07283 [hep-ph].
969
+ [27] G. Milhano, U. A. Wiedemann, and K. C. Zapp, Phys.
970
+ Lett. B779, 409 (2018), arXiv:1707.04142 [hep-ph].
971
+ [28] N.-B. Chang, S. Cao, and G.-Y. Qin, Phys. Lett. B781,
972
+ 423 (2018), arXiv:1707.03767 [hep-ph].
973
+ [29] H. T. Li and I. Vitev, Phys. Lett. B793, 259 (2019),
974
+ arXiv:1801.00008 [hep-ph].
975
+ [30] Y.-T. Chien and R. Kunnawalkam Elayavalli,
976
+ (2018),
977
+ arXiv:1803.03589 [hep-ph].
978
+ [31] C. Sirimanna, S. Cao,
979
+ and A. Majumder, Proceed-
980
+ ings, 9th International Conference on Hard and Elec-
981
+ tromagnetic Probes of High-Energy Nuclear Collisions:
982
+ Hard Probes 2018 (HP2018): Aix-Les-Bains, France,
983
+ October 1-5, 2018, PoS HardProbes2018, 053 (2019),
984
+ arXiv:1901.03635 [nucl-th].
985
+ [32] P.
986
+ Caucal,
987
+ E.
988
+ Iancu,
989
+ and
990
+ G.
991
+ Soyez,
992
+ (2019),
993
+ arXiv:1907.04866 [hep-ph].
994
+ [33] F. Ringer,
995
+ B.-W. Xiao,
996
+ and F. Yuan,
997
+ (2019),
998
+ arXiv:1907.12541 [hep-ph].
999
+ [34] P. Cal, K. Lee, F. Ringer, and W. J. Waalewijn, (2021),
1000
+ arXiv:2106.04589 [hep-ph].
1001
+ [35] A. Larkoski, S. Marzani, J. Thaler, A. Tripathee,
1002
+ and W. Xue, Phys. Rev. Lett. 119, 132003 (2017),
1003
+ arXiv:1704.05066 [hep-ph].
1004
+ [36] Y.-T.
1005
+ Chien
1006
+ and
1007
+ I.
1008
+ W.
1009
+ Stewart,
1010
+ (2019),
1011
+ arXiv:1907.11107 [hep-ph].
1012
+ [37] P. Cal, K. Lee, F. Ringer, and W. J. Waalewijn, JHEP
1013
+ 11, 012 (2020), arXiv:2007.12187 [hep-ph].
1014
+ [38] I. W. Stewart and X. Yao,
1015
+ (2022), arXiv:2203.14980
1016
+ [hep-ph].
1017
+ [39] R. Kunnawalkam Elayavalli and K. C. Zapp, JHEP 07,
1018
+ 141 (2017), arXiv:1707.01539 [hep-ph].
1019
+ [40] H. A. Andrews et al.,
1020
+ (2018), arXiv:1808.03689 [hep-
1021
+ ph].
1022
+ [41] Y. Mehtar-Tani and K. Tywoniuk, JHEP 04, 125
1023
+ (2017), arXiv:1610.08930 [hep-ph].
1024
+ [42] J. Casalderrey-Solana, G. Milhano, D. Pablos,
1025
+ and
1026
+ K. Rajagopal, JHEP 01, 044 (2020), arXiv:1907.11248
1027
+ [hep-ph].
1028
+
1029
+ 7
1030
+ [43] J. Brewer, Q. Brodsky,
1031
+ and K. Rajagopal, JHEP 02,
1032
+ 175 (2022), arXiv:2110.13159 [hep-ph].
1033
+ [44] M. Aaboud et al. (ATLAS), Phys. Rev. Lett. 121,
1034
+ 092001 (2018), arXiv:1711.08341 [hep-ex].
1035
+ [45] A. M. Sirunyan et al. (CMS), Phys. Rev. Lett. 120,
1036
+ 142302 (2018), arXiv:1708.09429 [nucl-ex].
1037
+ [46] K. Kauder (STAR), Proceedings,
1038
+ 8th International
1039
+ Conference on Hard and Electromagnetic Probes of
1040
+ High-energy Nuclear Collisions:
1041
+ Hard Probes 2016
1042
+ (HP2016):
1043
+ Wuhan, Hubei, China, September 23-27,
1044
+ 2016, Nucl. Part. Phys. Proc. 289-290, 137 (2017),
1045
+ arXiv:1703.10933 [nucl-ex].
1046
+ [47] A. M. Sirunyan et al. (CMS), JHEP 11, 113 (2018),
1047
+ arXiv:1807.05974 [hep-ex].
1048
+ [48] S. Acharya et al. (ALICE),
1049
+ (2019), arXiv:1905.02512
1050
+ [nucl-ex].
1051
+ [49] T. A. collaboration (ATLAS), (2019).
1052
+ [50] G. Aad et al. (ATLAS), (2019), arXiv:1912.09837 [hep-
1053
+ ex].
1054
+ [51] J. Adam et al. (STAR), (2020), arXiv:2003.02114 [hep-
1055
+ ex].
1056
+ [52] G. Aad et al. (ATLAS), (2020), arXiv:2004.03540 [hep-
1057
+ ex].
1058
+ [53] A. M. Sirunyan et al. (CMS), JHEP 10, 161 (2018),
1059
+ arXiv:1805.05145 [hep-ex].
1060
+ [54] M. Dasgupta, A. Fregoso, S. Marzani, and A. Powling,
1061
+ Eur. Phys. J. C 73, 2623 (2013), arXiv:1307.0013 [hep-
1062
+ ph].
1063
+ [55] A. J. Larkoski, J. Thaler, and W. J. Waalewijn, JHEP
1064
+ 11, 129 (2014), arXiv:1408.3122 [hep-ph].
1065
+ [56] M. Dasgupta, A. Powling, and A. Siodmok, JHEP 08,
1066
+ 079 (2015), arXiv:1503.01088 [hep-ph].
1067
+ [57] S. Marzani, L. Schunk,
1068
+ and G. Soyez, JHEP 07, 132
1069
+ (2017), arXiv:1704.02210 [hep-ph].
1070
+ [58] J. Chay and C. Kim, J. Korean Phys. Soc. 74, 439
1071
+ (2019), arXiv:1806.01712 [hep-ph].
1072
+ [59] Z.-B. Kang, K. Lee, X. Liu, and F. Ringer, JHEP 10,
1073
+ 137 (2018), arXiv:1803.03645 [hep-ph].
1074
+ [60] S. Marzani, L. Schunk, and G. Soyez, Eur. Phys. J. C
1075
+ 78, 96 (2018), arXiv:1712.05105 [hep-ph].
1076
+ [61] S. Acharya et al. (ALICE), Phys. Lett. B 776, 249
1077
+ (2018), arXiv:1702.00804 [nucl-ex].
1078
+ [62] M. Aaboud et al. (ATLAS), Phys. Rev. Lett. 121,
1079
+ 092001 (2018), arXiv:1711.08341 [hep-ex].
1080
+ [63] (2018).
1081
+ [64] G. Aad et al. (ATLAS), Phys. Lett. B 812, 135991
1082
+ (2021), arXiv:1907.07093 [hep-ex].
1083
+ [65] G. Aad et al. (ATLAS), Phys. Rev. D 101, 052007
1084
+ (2020), arXiv:1912.09837 [hep-ex].
1085
+ [66] C. Collaboration (CMS), (2017).
1086
+ [67] A. M. Sirunyan et al. (CMS), JHEP 11, 113 (2018),
1087
+ arXiv:1807.05974 [hep-ex].
1088
+ [68] A. M. Sirunyan et al. (CMS), JHEP 10, 161 (2018),
1089
+ arXiv:1805.05145 [hep-ex].
1090
+ [69] S. Acharya et al. (ALICE),
1091
+ (2021), arXiv:2107.11303
1092
+ [nucl-ex].
1093
+ [70] M. Abdallah et al. (STAR), Phys. Rev. D 104, 052007
1094
+ (2021), arXiv:2103.13286 [hep-ex].
1095
+ [71] H. Klest, “First measurement of groomed events shapes
1096
+ in ep dis using archived H1 data, REF 2022,” .
1097
+ [72] A. H. Hoang, S. Mantry, A. Pathak,
1098
+ and I. W. Stew-
1099
+ art, Phys. Rev. D 100, 074021 (2019), arXiv:1708.02586
1100
+ [hep-ph].
1101
+ [73] B. Bachu, A. H. Hoang, V. Mateu, A. Pathak,
1102
+ and
1103
+ I. W. Stewart, Phys. Rev. D 104, 014026 (2021),
1104
+ arXiv:2012.12304 [hep-ph].
1105
+ [74] ATL-PHYS-PUB-2021-034 (2021).
1106
+ [75] S. Marzani, D. Reichelt, S. Schumann, G. Soyez,
1107
+ and
1108
+ V. Theeuwes, JHEP 11, 179 (2019), arXiv:1906.10504
1109
+ [hep-ph].
1110
+ [76] H. S. Hannesdottir, A. Pathak, M. D. Schwartz,
1111
+ and
1112
+ I. W. Stewart, (2022), arXiv:2210.04901 [hep-ph].
1113
+ [77] A. Kardos, A. J. Larkoski,
1114
+ and Z. Trócsányi, Phys.
1115
+ Lett. B 809, 135704 (2020), arXiv:2002.00942 [hep-ph].
1116
+ [78] T. Sjostrand, S. Mrenna,
1117
+ and P. Z. Skands, Comput.
1118
+ Phys. Commun. 178, 852 (2008), arXiv:0710.3820 [hep-
1119
+ ph].
1120
+ [79] T. Gleisberg, S. Hoeche, F. Krauss, M. Schonherr,
1121
+ S. Schumann, F. Siegert,
1122
+ and J. Winter, JHEP 02,
1123
+ 007 (2009), arXiv:0811.4622 [hep-ph].
1124
+ [80] M. Bahr et al., Eur. Phys. J. C58, 639 (2008),
1125
+ arXiv:0803.0883 [hep-ph].
1126
+ [81] A. H. Hoang, S. Mantry, A. Pathak, and I. W. Stewart,
1127
+ (2019), arXiv:1906.11843 [hep-ph].
1128
+ [82] A. Pathak, I. W. Stewart, V. Vaidya,
1129
+ and L. Zoppi,
1130
+ (2020), arXiv:2012.15568 [hep-ph].
1131
+ [83] A. Pathak, “The catchment area of groomed jets,” In
1132
+ preparation.
1133
+ [84] C. Lee and G. F. Sterman, First principles non-
1134
+ perturbative QCD of hadron jets. Proceedings, FRIF
1135
+ Workshop, Paris, France, January 12-14, 2006, eConf
1136
+ C0601121, A001 (2006), arXiv:hep-ph/0603066 [hep-
1137
+ ph].
1138
+ [85] G. P. Korchemsky and G. F. Sterman, Nucl. Phys. B
1139
+ 437, 415 (1995), arXiv:hep-ph/9411211.
1140
+ [86] G. P. Korchemsky, G. Oderda, and G. F. Sterman, AIP
1141
+ Conf. Proc. 407, 988 (1997), arXiv:hep-ph/9708346.
1142
+ [87] G. P. Korchemsky and G. F. Sterman, Nucl. Phys. B
1143
+ 555, 335 (1999), arXiv:hep-ph/9902341.
1144
+ [88] A. V. Belitsky, G. P. Korchemsky, and G. F. Sterman,
1145
+ Phys. Lett. B 515, 297 (2001), arXiv:hep-ph/0106308.
1146
+ [89] M. Dasgupta, L. Magnea, and G. P. Salam, JHEP 02,
1147
+ 055 (2008), arXiv:0712.3014 [hep-ph].
1148
+ [90] I. W. Stewart, F. J. Tackmann, and W. J. Waalewijn,
1149
+ Phys. Rev. Lett. 114, 092001 (2015), arXiv:1405.6722
1150
+ [hep-ph].
1151
+ [91] C. W. Bauer, S. Fleming, and M. E. Luke, Phys. Rev.
1152
+ D 63, 014006 (2000), arXiv:hep-ph/0005275.
1153
+ [92] C. W. Bauer, S. Fleming, D. Pirjol, and I. W. Stewart,
1154
+ Phys. Rev. D63, 114020 (2001), arXiv:hep-ph/0011336
1155
+ [hep-ph].
1156
+ [93] C. W. Bauer and I. W. Stewart, Phys. Lett. B 516, 134
1157
+ (2001), arXiv:hep-ph/0107001.
1158
+ [94] C. W. Bauer, D. Pirjol, and I. W. Stewart, Phys. Rev.
1159
+ D65, 054022 (2002), arXiv:hep-ph/0109045 [hep-ph].
1160
+ [95] Z.-B. Kang, K. Lee, X. Liu, D. Neill,
1161
+ and F. Ringer,
1162
+ (2019), arXiv:1908.01783 [hep-ph].
1163
+ [96] N. Fischer, S. Prestel, M. Ritzmann,
1164
+ and P. Skands,
1165
+ The
1166
+ European
1167
+ Physical
1168
+ Journal
1169
+ C
1170
+ 76
1171
+ (2016),
1172
+ 10.1140/epjc/s10052-016-4429-6.
1173
+ [97] M. Cacciari, G. P. Salam, and G. Soyez, JHEP 04, 063
1174
+ (2008), arXiv:0802.1189 [hep-ph].
1175
+ [98] M. Cacciari, G. P. Salam, and G. Soyez, Eur. Phys. J.
1176
+ C 72, 1896 (2012), arXiv:1111.6097 [hep-ph].
1177
+ [99] A. E. Ferdinand, A. Pathak, et al., “JETlib: A C++
1178
+ Package for Efficient Analyses with Monte Carlo Event
1179
+ Generators,” (2019).
1180
+ [100] M.
1181
+ A.
1182
+ Ebert,
1183
+ J.
1184
+ K.
1185
+ L.
1186
+ Michel,
1187
+ F.
1188
+ J.
1189
+ Tack-
1190
+
1191
+ 8
1192
+ mann,
1193
+ et
1194
+ al.,
1195
+ DESY-17-099
1196
+ (2018),
1197
+ webpage:
1198
+ http://scetlib.desy.de.
1199
+ [101] A. Pathak, “scetlib::sd: A C++ library for for soft
1200
+ drop resummed observables in SCETlib,” (2022).
1201
+
1202
+ 1
1203
+ SUPPLEMENTAL MATERIAL
1204
+ 0.0
1205
+ 0.5
1206
+ 1.0
1207
+ 1.5
1208
+ 2.0
1209
+ 0.0
1210
+ 0.5
1211
+ 1.0
1212
+ 1.5
1213
+ 2.0
1214
+ 2.5
1215
+ 3.0
1216
+ 1g (Gev)
1217
+ e + e
1218
+ gg
1219
+ Vincia 2.3
1220
+ Herwig 7.2.3
1221
+ Pythia 8.306
1222
+ 0.0
1223
+ 0.5
1224
+ 1.0
1225
+ 1.5
1226
+ 2.0
1227
+ pp
1228
+ Z + gJet
1229
+ 0.0
1230
+ 0.5
1231
+ 1.0
1232
+ 1.5
1233
+ 2.0
1234
+ 0.0
1235
+ 0.2
1236
+ 0.4
1237
+ 0.6
1238
+ 0.8
1239
+ 1.0
1240
+ 1.2
1241
+ 1.4
1242
+ 1.6
1243
+ 1q (Gev)
1244
+ e + e
1245
+ qq
1246
+ 0.0
1247
+ 0.5
1248
+ 1.0
1249
+ 1.5
1250
+ 2.0
1251
+ pp
1252
+ Z + qJet
1253
+ FIG. 1: Testing β-independence of Ω◦◦
1254
+ 1κ for quark and
1255
+ gluon jets while fixing Υ�
1256
+ 1,0κ and Υ�
1257
+ 1,1κ paramaters to
1258
+ their global-fit values.
1259
+ Quark Jets Ω◦◦
1260
+ 1q(GeV) Υ�
1261
+ 1,0q(GeV) Υ�
1262
+ 1,1q(GeV) χ2
1263
+ min/dof.
1264
+ e+e− →q¯q
1265
+ 0.62+0.39
1266
+ −0.10
1267
+ −0.69+0.05
1268
+ −0.16
1269
+ 1.21+0.39
1270
+ −0.48
1271
+ 0.94+0.06
1272
+ −0.01
1273
+ pp→Z+q
1274
+ 0.93+0.16
1275
+ −0.14
1276
+ −1.05+0.26
1277
+ −0.26
1278
+ 0.87+0.32
1279
+ −0.30
1280
+ 0.82+0.02
1281
+ −0.02
1282
+ Gluon Jets Ω◦◦
1283
+ 1g(GeV) Υ�
1284
+ 1,0g(GeV) Υ�
1285
+ 1,1g(GeV) χ2
1286
+ min/dof.
1287
+ e+e− →gg
1288
+ 2.17+0.18
1289
+ −0.39
1290
+ −0.81+0.36
1291
+ −0.34
1292
+ 1.16+0.34
1293
+ −0.32
1294
+ 3.56+0.07
1295
+ −0.20
1296
+ pp→Z+g
1297
+ 1.18+0.03
1298
+ −0.20
1299
+ −0.47+0.18
1300
+ −0.03
1301
+ 1.06+0.24
1302
+ −0.28
1303
+ 1.75+0.08
1304
+ −0.10
1305
+ TABLE I: Fit results for NP constants in Vincia 2.3.
1306
+ Quark Jets Ω◦◦
1307
+ 1q(GeV) Υ�
1308
+ 1,0q(GeV) Υ�
1309
+ 1,1q(GeV) χ2
1310
+ min/dof.
1311
+ e+e− →q¯q
1312
+ 0.34+0.25
1313
+ −0.03
1314
+ −0.64+0.09
1315
+ −0.19
1316
+ 1.40+0.42
1317
+ −0.51
1318
+ 0.63+0.10
1319
+ −0.02
1320
+ pp→Z+q
1321
+ 0.66+0.17
1322
+ −0.08
1323
+ −0.98+0.24
1324
+ −0.29
1325
+ 1.21+0.41
1326
+ −0.42
1327
+ 0.27+0.03
1328
+ −0.01
1329
+ Gluon Jets Ω◦◦
1330
+ 1g(GeV) Υ�
1331
+ 1,0g(GeV) Υ�
1332
+ 1,1g(GeV) χ2
1333
+ min/dof.
1334
+ e+e− →gg
1335
+ 1.64+0.07
1336
+ −0.15
1337
+ −0.93+0.32
1338
+ −0.32
1339
+ 1.09+0.34
1340
+ −0.33
1341
+ 1.70+0.02
1342
+ −0.02
1343
+ pp→Z+g
1344
+ 1.32+0.07
1345
+ −0.20
1346
+ −0.76+0.24
1347
+ −0.14
1348
+ 0.94+0.23
1349
+ −0.26
1350
+ 0.71+0.07
1351
+ −0.03
1352
+ TABLE II:
1353
+ Fit results for NP constants in Herwig
1354
+ 7.2.3.
1355
+ In this Supplemental material, we present additional
1356
+ results for the calibration exercise of the MC hadroniza-
1357
+ tion model. Tables I and II present the results of fitting
1358
+ to Vincia 2.3 and Herwig 7.2.3, respectively. Similar
1359
+ to fits to Pythia 8.306 in Tab. I discussed in the main
1360
+ text, the χ2 values in Tab. I and Tab. II show that the
1361
+ fits for quark jets are much better constrained than gluon
1362
+ jets for both Vincia and Herwig, with those of Herwig
1363
+ 0.05
1364
+ 0.10
1365
+ 0.15
1366
+ 0.20
1367
+ zcut
1368
+ 1.75
1369
+ 1.50
1370
+ 1.25
1371
+ 1.00
1372
+ 0.75
1373
+ 0.50
1374
+ 0.25
1375
+ 0.00
1376
+ 0.25
1377
+ 1, 0g (Gev)
1378
+ e + e
1379
+ gg
1380
+ 0.05
1381
+ 0.10
1382
+ 0.15
1383
+ 0.20
1384
+ zcut
1385
+ pp
1386
+ Z + gJet
1387
+ 0.05
1388
+ 0.10
1389
+ 0.15
1390
+ 0.20
1391
+ zcut
1392
+ 1.8
1393
+ 1.6
1394
+ 1.4
1395
+ 1.2
1396
+ 1.0
1397
+ 0.8
1398
+ 0.6
1399
+ 0.4
1400
+ 0.2
1401
+ 0.0
1402
+ 1, 0q (Gev)
1403
+ e + e
1404
+ qq
1405
+ Vincia 2.3
1406
+ Herwig 7.2.3
1407
+ Pythia 8.306
1408
+ 0.05
1409
+ 0.10
1410
+ 0.15
1411
+ 0.20
1412
+ zcut
1413
+ pp
1414
+ Z + qJet
1415
+ FIG. 2: Testing zcut-independence of Υ�
1416
+ 1,0κ for quark and
1417
+ gluon jets while fixing Υ�
1418
+ 1,1κ and Ω◦◦
1419
+ 1κ paramaters to their
1420
+ global-fit values.
1421
+ 0.05
1422
+ 0.10
1423
+ 0.15
1424
+ 0.20
1425
+ zcut
1426
+ 0.00
1427
+ 0.25
1428
+ 0.50
1429
+ 0.75
1430
+ 1.00
1431
+ 1.25
1432
+ 1.50
1433
+ 1.75
1434
+ 2.00
1435
+ 1, 1g (Gev)
1436
+ e + e
1437
+ gg
1438
+ 0.05
1439
+ 0.10
1440
+ 0.15
1441
+ 0.20
1442
+ zcut
1443
+ pp
1444
+ Z + gJet
1445
+ 0.05
1446
+ 0.10
1447
+ 0.15
1448
+ 0.20
1449
+ zcut
1450
+ 0.00
1451
+ 0.25
1452
+ 0.50
1453
+ 0.75
1454
+ 1.00
1455
+ 1.25
1456
+ 1.50
1457
+ 1.75
1458
+ 2.00
1459
+ 1, 1q (Gev)
1460
+ e + e
1461
+ qq
1462
+ Vincia 2.3
1463
+ Herwig 7.2.3
1464
+ Pythia 8.306
1465
+ 0.05
1466
+ 0.10
1467
+ 0.15
1468
+ 0.20
1469
+ zcut
1470
+ pp
1471
+ Z + qJet
1472
+ FIG. 3: Testing zcut-independence of Υ�
1473
+ 1,1κ for quark and
1474
+ gluon jets while fixing Υ�
1475
+ 1,0κ and Ω◦◦
1476
+ 1κ paramaters to their
1477
+ global-fit values.
1478
+ being more consistent with our predictions.
1479
+ In Figs. 1, 2 and 3 we show tests for the independence
1480
+ of the grooming parameters Ω◦◦
1481
+ 1κ, Υ�
1482
+ 1,0κ, and Υ�
1483
+ 1,1κ. The
1484
+ horizontal lines in these figures represent the global-fit
1485
+ values, while the markers with error bars represent fits for
1486
+ individual zcut or β parameters. We observe that for each
1487
+ process the results of fits to individual zcut or β values are
1488
+ arXiv:2301.03605v1 [hep-ph] 9 Jan 2023
1489
+
1490
+ 2
1491
+ 0.5
1492
+ 1.0
1493
+ 1.5
1494
+ 2.0
1495
+ 1 (GeV)
1496
+ 0.6
1497
+ 0.8
1498
+ 1.0
1499
+ 1.2
1500
+ 1.4
1501
+ 1.6
1502
+ 1.8
1503
+ 2.0
1504
+ 1, 1 (GeV)
1505
+ Pythia 8.306
1506
+ e + e
1507
+ qq
1508
+ e + e
1509
+ gg
1510
+ pp
1511
+ Z + qJet
1512
+ pp
1513
+ Z + gJet
1514
+ C2 down
1515
+ C2 central
1516
+ C2 up
1517
+ 1.4
1518
+ 1.2
1519
+ 1.0
1520
+ 0.8
1521
+ 0.6
1522
+ 0.4
1523
+ 0.2
1524
+ 0.0
1525
+ 1, 0 (GeV)
1526
+ 0.6
1527
+ 0.8
1528
+ 1.0
1529
+ 1.2
1530
+ 1.4
1531
+ 1.6
1532
+ 1.8
1533
+ 1, 1 (GeV)
1534
+ Pythia 8.306
1535
+ 0.5
1536
+ 1.0
1537
+ 1.5
1538
+ 2.0
1539
+ 1 (GeV)
1540
+ 0.6
1541
+ 0.8
1542
+ 1.0
1543
+ 1.2
1544
+ 1.4
1545
+ 1.6
1546
+ 1.8
1547
+ 2.0
1548
+ 1, 1 (GeV)
1549
+ Vincia 2.3
1550
+ 1.4
1551
+ 1.2
1552
+ 1.0
1553
+ 0.8
1554
+ 0.6
1555
+ 0.4
1556
+ 0.2
1557
+ 0.0
1558
+ 1, 0 (GeV)
1559
+ 0.6
1560
+ 0.8
1561
+ 1.0
1562
+ 1.2
1563
+ 1.4
1564
+ 1.6
1565
+ 1.8
1566
+ 1, 1 (GeV)
1567
+ Vincia 2.3
1568
+ 0.5
1569
+ 1.0
1570
+ 1.5
1571
+ 2.0
1572
+ 1 (GeV)
1573
+ 0.6
1574
+ 0.8
1575
+ 1.0
1576
+ 1.2
1577
+ 1.4
1578
+ 1.6
1579
+ 1.8
1580
+ 2.0
1581
+ 1, 1 (GeV)
1582
+ Herwig 7.2.3
1583
+ 1.4
1584
+ 1.2
1585
+ 1.0
1586
+ 0.8
1587
+ 0.6
1588
+ 0.4
1589
+ 0.2
1590
+ 0.0
1591
+ 1, 0 (GeV)
1592
+ 0.6
1593
+ 0.8
1594
+ 1.0
1595
+ 1.2
1596
+ 1.4
1597
+ 1.6
1598
+ 1.8
1599
+ 1, 1 (GeV)
1600
+ Herwig 7.2.3
1601
+ FIG. 4: 1σ contours showing correlations between Υ�
1602
+ 1,1κ and Ω◦◦
1603
+ 1κ (left column) and between Υ�
1604
+ 1,1κ and Υ�
1605
+ 1,0κ (right
1606
+ column) for Pythia 8.306 (top row), Vincia 2.3 (middle row) and Herwig 7.2.3 (bottom row).
1607
+ consistent with the global-fit value within uncertainty,
1608
+ with the exception of β = 0 result of Ω◦◦
1609
+ 1g for gluon jets
1610
+ in Fig. 1 where we notice a significant deviation.
1611
+ In order to better visualize the level of agreement for
1612
+ quark and gluon jets in e+e− and pp collisions for the
1613
+ three MC event generators considered we show in Fig. 4
1614
+ the 1σ contours for correlations between Υ�
1615
+ 1,1κ and Ω◦◦
1616
+ 1κ,
1617
+ and between Υ�
1618
+ 1,0κ and Υ�
1619
+ 1,1κ. The dominant uncertainty
1620
+ results from variation in Cκ
1621
+ 2 . Here we see for all three
1622
+ hadronization models a better agreement of correlations
1623
+ between Ω◦◦
1624
+ 1κ and Υ�
1625
+ 1,0κ for quark jets in the two collid-
1626
+ ers than Υ�
1627
+ 1,0κ and Υ�
1628
+ 1,1κ. As noted earlier in the main
1629
+ text, Pythia and Vincia results for gluon jets for the
1630
+ two collider settings significantly disagree, whereas the
1631
+ corresponding results for Herwig display similar trend as
1632
+ quark jets.
1633
+
1634
+ 3
1635
+ 3.0
1636
+ 3.5
1637
+ 4.0
1638
+ 4.5
1639
+ 5.0
1640
+ 5.5
1641
+ 0.0
1642
+ 0.2
1643
+ 0.4
1644
+ 0.6
1645
+ 0.8
1646
+ 1.0
1647
+ 1q (Gev)
1648
+ e + e
1649
+ qq
1650
+ Vincia 2.3
1651
+ Herwig 7.2.3
1652
+ Pythia 8.306
1653
+ 3.0
1654
+ 3.5
1655
+ 4.0
1656
+ 4.5
1657
+ 5.0
1658
+ 5.5
1659
+ 0.50
1660
+ 0.75
1661
+ 1.00
1662
+ 1.25
1663
+ 1.50
1664
+ 1.75
1665
+ 2.00
1666
+ 2.25
1667
+ 2.50
1668
+ 2/d. o. f
1669
+ e + e
1670
+ qq
1671
+ Vincia 2.3
1672
+ Herwig 7.2.3
1673
+ Pythia 8.306
1674
+ 3.0
1675
+ 3.5
1676
+ 4.0
1677
+ 4.5
1678
+ 5.0
1679
+ 5.5
1680
+ 0.0
1681
+ 0.2
1682
+ 0.4
1683
+ 0.6
1684
+ 0.8
1685
+ 1.0
1686
+ 1q (Gev)
1687
+ pp
1688
+ Z + qJet
1689
+ Vincia 2.3
1690
+ Herwig 7.2.3
1691
+ Pythia 8.306
1692
+ 3.0
1693
+ 3.5
1694
+ 4.0
1695
+ 4.5
1696
+ 5.0
1697
+ 5.5
1698
+ 0.2
1699
+ 0.4
1700
+ 0.6
1701
+ 0.8
1702
+ 1.0
1703
+ 1.2
1704
+ 1.4
1705
+ 1.6
1706
+ 1.8
1707
+ 2/d. o. f
1708
+ pp
1709
+ Z + qJet
1710
+ Vincia 2.3
1711
+ Herwig 7.2.3
1712
+ Pythia 8.306
1713
+ 3.0
1714
+ 3.5
1715
+ 4.0
1716
+ 4.5
1717
+ 5.0
1718
+ 5.5
1719
+ 0.8
1720
+ 1.0
1721
+ 1.2
1722
+ 1.4
1723
+ 1.6
1724
+ 1.8
1725
+ 1g (Gev)
1726
+ pp
1727
+ Z + gJet
1728
+ Vincia 2.3
1729
+ Herwig 7.2.3
1730
+ Pythia 8.306
1731
+ 3.0
1732
+ 3.5
1733
+ 4.0
1734
+ 4.5
1735
+ 5.0
1736
+ 5.5
1737
+ 0.5
1738
+ 1.0
1739
+ 1.5
1740
+ 2.0
1741
+ 2.5
1742
+ 3.0
1743
+ 2/d. o. f
1744
+ pp
1745
+ Z + gJet
1746
+ Vincia 2.3
1747
+ Herwig 7.2.3
1748
+ Pythia 8.306
1749
+ FIG. 5: Fit range dependence of the fit values of NP parameters and the reduced χ2 parameterized in terms of ρ
1750
+ defined in Eq. (1).
1751
+ Finally, we now investigate the dependence of the fit
1752
+ values of the NP parameters and the resulting χ2 on the
1753
+ fit range, parameterized in terms of a parameter ρ defined
1754
+ via the equation
1755
+ ξSDOE ≡ ξ0
1756
+ �ρΛQCD
1757
+ Qξ0
1758
+ � 2+β
1759
+ 1+β .
1760
+ (1)
1761
+ Thus, ρ determines the extent of the SDOE region. In
1762
+ Fig. 5 we illustrate the fit value obtained for Ω◦◦
1763
+ 1κ (other
1764
+ parameters not shown for simplicity) and the correspond-
1765
+ ing reduced χ2 value for e+e− → q¯q and pp → Z + q, g
1766
+ jet processes. As the value of ρ increases, Eq. (1) implies
1767
+ that we move further into the perturbative region, which
1768
+ leads to a smaller errors on the fit value of Ω◦◦
1769
+ 1κ and the
1770
+
1771
+ 4
1772
+ other two NP parameters due to the reduction in pertur-
1773
+ bative uncertainty on Cκ
1774
+ 1,2 moments. At the same time,
1775
+ increasing ρ also reduces the available fit range which
1776
+ can impact the quality of the fit.
1777
+ As a result, we see
1778
+ in Fig. 5 that the reduced χ2 value initially improves as
1779
+ ρ is increased but eventually saturates as the fit range
1780
+ becomes too small. In order to find an optimal balance
1781
+ between perturbative uncertainty and fit range, we used
1782
+ the e+e− → q¯q process as a benchmark due to the ab-
1783
+ sence of ISR effects. We chose ρ = 4.5 as in all the results
1784
+ presented above, it is at this point the errors and χ2 val-
1785
+ ues stabilize while still allowing for a reasonable fit range.
1786
+ We also see this trend reflected in the values of Ω◦◦
1787
+ 1κ for
1788
+ the e+e− → q¯q case. In the pp cases, however, we ob-
1789
+ serve a linear dependence of Ω◦◦
1790
+ 1κ on the fit range, which
1791
+ is within the uncertainty for quark jets but not for gluon
1792
+ jets.
1793
+
RdE2T4oBgHgl3EQfBwYp/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
SNAzT4oBgHgl3EQf0f5U/content/tmp_files/2301.01784v1.pdf.txt ADDED
@@ -0,0 +1,1934 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MNRAS 000, 1–16 (2023)
2
+ Preprint 6 January 2023
3
+ Compiled using MNRAS LATEX style file v3.0
4
+ Local positive feedback in the overall negative: the impact of quasar winds
5
+ on star formation in the FIRE cosmological simulations
6
+ Jonathan Mercedes-Feliz,1⋆ Daniel Anglés-Alcázar,1,2 Christopher C. Hayward,2 Rachel K. Cochrane,2,3
7
+ Bryan A. Terrazas,4 Sarah Wellons,5,8 Alexander J. Richings,6,7 Claude-André Faucher-Giguère,8
8
+ Jorge Moreno,9 Kung Yi Su,2,10,14 Philip F. Hopkins,11 Eliot Quataert,12 and Dušan Kereš13
9
+ 1Department of Physics, University of Connecticut, 196 Auditorium Road, U-3046, Storrs, CT 06269-3046, USA
10
+ 2Center for Computational Astrophysics, Flatiron Institute, 162 5th Avenue, New York NY 10010, USA
11
+ 3Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138, USA
12
+ 4Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027, USA
13
+ 5Department of Astronomy, Van Vleck Observatory, Wesleyan University, 96 Foss Hill Drive, Middletown, CT 06459, USA
14
+ 6E. A. Milne Centre for Astrophysics, Department of Physics and Mathematics, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
15
+ 7DAIM, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
16
+ 8CIERA and Department of Physics and Astronomy, Northwestern University, 1800 Sherman Ave., Evanston, IL 60201, USA
17
+ 9Department of Physics and Astronomy, Pomona College, 333 N. College Way, Claremont, CA 91711, USA
18
+ 10Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027, USA
19
+ 11TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125, USA
20
+ 12Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA
21
+ 13Department of Physics, Center for Astrophysics and Space Sciences,University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
22
+ 14Black Hole Initiative, Harvard University, 20 Garden St., Cambridge, MA 02138, USA
23
+ Accepted XXX. Received YYY; in original form ZZZ
24
+ ABSTRACT
25
+ Negative feedback from accreting supermassive black holes is regarded as a key ingredient in suppressing star formation and
26
+ quenching massive galaxies. However, several models and observations suggest that black hole feedback may have a positive
27
+ effect, triggering star formation by compressing interstellar medium gas to higher densities. We investigate the dual role of black
28
+ hole feedback using cosmological hydrodynamic simulations from the Feedback In Realistic Environments (FIRE) project,
29
+ including a novel implementation of hyper-refined accretion-disc winds. Focusing on a massive, star-forming galaxy at z ∼ 2
30
+ (Mhalo ∼ 1012.5 M⊙), we show that strong quasar winds with kinetic power ∼1046 erg/s acting for >20 Myr drive the formation of
31
+ a central gas cavity and can dramatically reduce the star formation rate surface density across the galaxy disc. The suppression of
32
+ star formation is primarily driven by reducing the amount of gas that can become star-forming, compared to directly evacuating
33
+ the pre-existing star-forming gas reservoir (preventive feedback dominates over ejective feedback). Despite the global negative
34
+ impact of quasar winds, we identify several plausible signatures of local positive feedback, including: (1) spatial anti-correlation
35
+ of wind-dominated regions and star-forming clumps, (2) higher local star formation efficiency in compressed gas near the edge
36
+ of the cavity, and (3) increased local contribution of outflowing material to star formation. Stars forming under the presence of
37
+ quasar winds tend to do so at larger radial distances. Our results suggest that positive and negative AGN feedback can coexist
38
+ in galaxies, but local positive triggering of star formation plays a minor role in global galaxy growth.
39
+ Key words: galaxies: evolution – galaxies: star formation – quasars: general – quasars: supermassive black holes
40
+ 1 INTRODUCTION
41
+ A copious amount of evidence show that most galaxies host a mas-
42
+ sive black hole (BH) at their centre, with the mass of the BH strongly
43
+ correlating with global galaxy properties (Magorrian et al. 1998;
44
+ Bennert et al. 2011; Kormendy & Ho 2013; McConnell & Ma 2013;
45
+ Reines & Volonteri 2015; Graham 2016; Shankar et al. 2020). Ac-
46
+ tively accreting BHs in active galactic nuclei (AGN) can impact
47
+ the host galaxy through a variety of feedback mechanisms, includ-
48
+ ⋆ E-mail: [email protected]
49
+ ing fast accretion-driven winds (Faucher-Giguère & Quataert 2012;
50
+ Zubovas & Nayakshin 2012; Tombesi et al. 2013; Nardini et al.
51
+ 2015), galaxy-scale outflows (Feruglio et al. 2010; Sturm et al. 2011;
52
+ Greene et al. 2012; Cicone et al. 2014; Zakamska & Greene 2014;
53
+ Wylezalek et al. 2020; Ramos Almeida et al. 2022), and large scale
54
+ jets (Fabian 2012). Observational constraints on the efficiency of
55
+ AGN feedback suggest that massive BHs may play a key role in
56
+ galaxy evolution by injecting energy and momentum into the inter-
57
+ stellar medium (ISM) and circumgalactic medium (CGM) of galax-
58
+ ies (Hopkins & Elvis 2010; Alexander & Hickox 2012; Fabian 2012;
59
+ Alatalo et al. 2015; Wylezalek & Zakamska 2016; Fiore et al. 2017;
60
+ Harrison 2017; Harrison et al. 2018). Most galaxy formation models
61
+ © 2023 The Authors
62
+ arXiv:2301.01784v1 [astro-ph.GA] 4 Jan 2023
63
+
64
+ 2
65
+ J. Mercedes-Feliz et al.
66
+ indeed require some form of negative AGN feedback to eject exist-
67
+ ing ISM gas from massive galaxies and/or prevent CGM gas from
68
+ cooling and accreting onto the galaxy, suppressing star formation
69
+ and quenching massive galaxies, regulating their sizes and central
70
+ densities, and reproducing the observed bimodality in galaxy colours
71
+ (Di Matteo et al. 2005; Baldry et al. 2006; Bower et al. 2006; Croton
72
+ et al. 2006; Dubois et al. 2012; Silk & Mamon 2012; Somerville &
73
+ Davé 2015; Choi et al. 2018; Davé et al. 2019; Wellons et al. 2022).
74
+ However, recent observations suggest that AGN feedback could
75
+ also have positive effects, by triggering star formation, as opposed
76
+ to suppressing it, in galaxies. Direct observational evidence of AGN
77
+ outflows triggering star formation is slim, but examples exist where
78
+ star formation seems to occur within the outflow itself. Maiolino
79
+ et al. (2017) studied a merging system that hosts an obscured AGN
80
+ with a prominent outflow and found that multiple optical and near-
81
+ infrared (IR) diagnostics of the outflowing gas are consistent with
82
+ star formation within the outflow, where the inferred star formation
83
+ rate (SFR) can exceed 15 M⊙ yr−1 and account for ∼25% of the to-
84
+ tal SFR in the system. Analyzing over 2,500 galaxies in MaNGA
85
+ DR2, Gallagher et al. (2019) identified a subsample of 37 galaxies
86
+ with outflows, of which ∼30% show signs of star formation within
87
+ the outflowing gas, ranging from 0.1–1 M⊙ yr−1 and contributing 5–
88
+ 30% of the total SFR in the galaxy. Positive and negative AGN feed-
89
+ back do not necessarily act against one another, and some obser-
90
+ vations suggest that their effects could simultaneously be present
91
+ within the same galaxy. Cresci et al. (2015b) used SINFONI near-
92
+ IR integral field spectroscopy of an obscured quasar at z ∼ 1.6 to
93
+ show that a prominent outflow traced by [OIII] lines coincides with
94
+ the location of an empty central cavity surrounded by star-forming
95
+ regions, suggesting that the outflow is removing gas from the cav-
96
+ ity (negative feedback) while triggering star formation at the edge
97
+ of the cavity (positive feedback). Additional plausible implications
98
+ of positive AGN feedback include the alignment of non-thermal ra-
99
+ dio emission and rest-frame UV continuum emission in radio galax-
100
+ ies, suggesting jet-induced star formation in the host galaxy (Bick-
101
+ nell et al. 2000; Zirm et al. 2005; Drouart et al. 2016), higher SFR
102
+ in green-valley galaxies with X-ray detected AGN and far infrared
103
+ emission (Mahoro et al. 2017), and large scale expanding bubbles
104
+ powered by jets potentially triggering star formation in other galax-
105
+ ies (Gilli et al. 2019).
106
+ Several theoretical models have explored the conditions under
107
+ which AGN feedback can trigger star formation by compressing in-
108
+ terstellar medium gas to higher densities, using analytic calculations
109
+ (Begelman & Cioffi 1989; Rees 1989; Natarajan et al. 1998; King
110
+ 2005; Silk 2005; Ishibashi & Fabian 2012; Silk 2013; Zubovas et al.
111
+ 2013; Nayakshin 2014) and hydrodynamic simulations of idealized
112
+ systems (Gaibler et al. 2012; Zubovas & Nayakshin 2012; Bieri et al.
113
+ 2015, 2016; Zubovas & Bourne 2017). Some of these models pro-
114
+ pose that AGN feedback triggering of star formation plays a key
115
+ role driving simultaneous AGN and star formation in galaxies (King
116
+ 2005), the observed correlation between star formation and AGN lu-
117
+ minosities (Zubovas et al. 2013), the similarity in the comoving BH
118
+ accretion rate density and the cosmic star formation history (Silk
119
+ 2013), the BH–galaxy scaling relations (Nayakshin 2014), the ex-
120
+ treme SFRs of high redshift starbursts (Silk 2005; Gaibler et al.
121
+ 2012; Bieri et al. 2015, 2016), the size and structural evolution of
122
+ massive galaxies (Ishibashi & Fabian 2012, 2014), and the forma-
123
+ tion of dark matter-deficient dwarf galaxies from swept up gas in the
124
+ intergalactic medium by quasar outflows (Natarajan et al. 1998, but
125
+ see Moreno et al. 2022). Given the plausible strong implications for
126
+ galaxy evolution predicted by these idealized models, it is crucial to
127
+ investigate the impact of positive AGN feedback in more realistic
128
+ simulations of galaxy formation in a full cosmological context.
129
+ Large-volume cosmological hydrodynamic simulations, however,
130
+ generally do not predict positive AGN feedback scenarios, in part by
131
+ construction because their subgrid AGN feedback models are im-
132
+ plemented to help suppress star formation and regulate the growth
133
+ of massive galaxies when stellar feedback is not sufficiently strong
134
+ (see the review by Somerville & Davé 2015, and references therein).
135
+ In this context, the connection between AGN and star formation ac-
136
+ tivity in galaxies is more naturally explained by a common gas sup-
137
+ ply for star formation and BH growth (Anglés-Alcázar et al. 2015;
138
+ Volonteri et al. 2015; Anglés-Alcázar et al. 2017a; Ricarte et al.
139
+ 2019; Thomas et al. 2019), and the extreme SFRs of high redshift
140
+ galaxies are primarily driven by the systematically higher cosmolog-
141
+ ical gas accretion rate onto halos and/or higher incidence of galaxy
142
+ mergers (Davé et al. 2010; Hayward et al. 2013; Narayanan et al.
143
+ 2015), without requiring AGN feedback-driven triggering of star for-
144
+ mation. However, cosmological simulations generally lack the reso-
145
+ lution to model in detail the interaction of AGN-driven winds or jets
146
+ with the multi-phase interstellar medium (ISM).
147
+ In this paper, we investigate the plausible dual role of AGN
148
+ feedback in galaxies using high-resolution cosmological zoom-in
149
+ simulations from the Feedback In Realistic Environments (FIRE1)
150
+ project (Hopkins et al. 2014, 2018), including local stellar feed-
151
+ back by supernovae, stellar winds, and radiation in a multi-phase
152
+ ISM, and a novel implementation of hyper-refined AGN-driven
153
+ winds that simultaneously captures their propagation and impact
154
+ from the inner nuclear region (≲10 pc) to circumgalactic medium
155
+ (CGM) scales (Anglés-Alcázar et al., in prep.). Focusing on a mas-
156
+ sive, star-forming galaxy near the peak of cosmic activity (z ∼ 2;
157
+ Madau & Dickinson 2014), we investigate its subsequent evolution
158
+ over a ∼35 Myr period in simulations with different AGN feedback
159
+ strengths compared to that of an identical control simulation with-
160
+ out AGN feedback. This provides an ideal framework to evaluate
161
+ any positive versus negative feedback effects on the host galaxy.
162
+ The outline of this paper is as follows: §2 provides a brief sum-
163
+ mary of our methodology and §3 presents an overview of our sim-
164
+ ulations. In §4 we investigate the global negative impact of AGN
165
+ feedback on our simulated galaxy while §5 investigates plausible
166
+ signatures of positive AGN feedback. In §6 we analyse the impact
167
+ of AGN winds in simulations that vary the kinetic feedback effi-
168
+ ciency. We discuss our results in §7 and present our summary and
169
+ conclusions in §8.
170
+ 2 METHODS
171
+ Anglés-Alcázar et al. (in prep.) fully describes the simulations and
172
+ methodology that we implement, which we briefly summarize be-
173
+ low.
174
+ 2.1 FIRE-2 galaxy formation model
175
+ The simulations are part of the FIRE-2 project, an updated imple-
176
+ mentation of the original FIRE simulations. The GIZMO2 solver is
177
+ used in its meshless finite mass (MFM) mode, which implements a
178
+ Lagrangian Godunov formulation with many of the benefits of par-
179
+ ticle and grid-based methods (Hopkins 2015). We include cooling
180
+ 1 http://fire.northwestern.edu
181
+ 2 http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.html
182
+ MNRAS 000, 1–16 (2023)
183
+
184
+ Local positive AGN feedback in the overall negative
185
+ 3
186
+ 1 kpc
187
+ log10(
188
+ SFR) [M yr
189
+ 1 kpc
190
+ 2]
191
+ 0
192
+ 2
193
+ 4
194
+ log10(
195
+ wind) [M kpc
196
+ 2]
197
+ 5
198
+ 6
199
+ 7
200
+ Figure 1. Projected star formation rate surface density (ΣSFR) for the central 1 kpc region of a massive, star-forming galaxy (Mstar ∼ 1011 M⊙, SFR ∼
201
+ 300 M⊙ yr−1) at z ∼ 2.28 for the no-wind (top rows) and AGN-wind (bottom rows) simulations. In both cases we show edge-on and face-on views along
202
+ with time evolution (from left to right) for ∼35 Myr since the start (∆t = 0) of the quasar feedback phase in the AGN-wind simulation. The projected mass
203
+ density distribution of AGN winds is overlaid in the bottom rows, as indicated by the colour scale. In the absence of AGN-driven winds, the star-forming
204
+ disc becomes denser and more compact as time progresses. In contrast, AGN winds evacuate star-forming gas from the central region, with the formation of a
205
+ growing central cavity and global suppression of star formation by the end of the simulation.
206
+ Name
207
+ ηk
208
+ ϵk
209
+ ˙Mw [M⊙ yr−1]
210
+ ˙Ew [erg s−1]
211
+ Notes
212
+ noAGN
213
+ -
214
+ -
215
+ -
216
+ -
217
+ no-wind
218
+ m0.1e0.5
219
+ 0.1
220
+ 0.005
221
+ 2.22
222
+ 6.29 × 1044
223
+ m1e5
224
+ 1
225
+ 0.05
226
+ 22.2
227
+ 6.29 × 1045
228
+ m2e10
229
+ 2
230
+ 0.1
231
+ 44.4
232
+ 1.26 × 1046
233
+ AGN-wind
234
+ m4e20
235
+ 4
236
+ 0.2
237
+ 88.8
238
+ 2.52 × 1046
239
+ m10e50
240
+ 10
241
+ 0.5
242
+ 222
243
+ 6.29 × 1046
244
+ Table 1. Simulation parameters: (1) Name: simulation designation. (2) ηk ≡
245
+ ˙Mw/ ˙MBH: mass loading factor. (3) ϵk ≡ ˙Ew/Lbol: kinetic feedback efficiency.
246
+ (4) ˙Mw: mass outflow rate in winds. (5) ˙Ew: kinetic energy injection rate. (6)
247
+ Notes.
248
+ and heating from T = 10 − 1010 K; star formation in locally self-
249
+ gravitating, dense (nH > 1000 cm−3), molecular, and Jeans-unstable
250
+ gas; and stellar feedback from OB & AGB mass-loss, Type Ia & II
251
+ Supernovae (SNe), and multi-wavelength photo-heating and radia-
252
+ tion pressure (Hopkins et al. 2018). Each star particle represents a
253
+ population of stars with known mass, age, and metallicity, with all
254
+ stellar feedback quantities and their time dependence taken from the
255
+ starburst99 population synthesis model (Leitherer et al. 1999).
256
+ 2.2 Initial conditions
257
+ Our initial conditions are derived from snapshots of pre-existing
258
+ FIRE-2 simulations, and adopted to include AGN-driven winds in
259
+ our new simulations. We focus on the massive FIRE-2 halo A4 from
260
+ Anglés-Alcázar et al. (2017c), with Mhalo ∼ 1012.5 M⊙ at z = 2
261
+ and evolved down to z = 1 including on-the-fly BH growth driven
262
+ by gravitational torques (Hopkins & Quataert 2011; Anglés-Alcázar
263
+ et al. 2013, 2015, 2017a) but not including BH feedback. The new
264
+ simulations with AGN winds adopt the same baryonic mass resolu-
265
+ tion mb = 3.3 × 104 M⊙ and force softenings ϵmin
266
+ gas = 0.7 pc, ϵ⋆ = 7 pc
267
+ and ϵDM = 57 pc for the gas (minimum adaptive force softening),
268
+ stellar, and dark matter components. We assume a ΛCDM cosmol-
269
+ ogy with parameters H0 = 69.7 km s−1 Mpc−1, ΩM = 1 − ΩΛ =
270
+ 0.2821, Ωb = 0.0461, σ8 = 0.817, and ns = 0.9646 (Hinshaw et al.
271
+ 2013).
272
+ We choose to inject AGN winds in the new simulations at the
273
+ z = 2.28 snapshot, which will be referenced hereafter as ∆t = 0 Myr.
274
+ At this time, the galaxy is undergoing a strong starburst phase which
275
+ will lead to the formation of an overcompact and overdense stellar
276
+ system because stellar feedback is no longer able to regulate star for-
277
+ mation (Wellons et al. 2020; Parsotan et al. 2021, Anglés-Alcázar et
278
+ al. in prep., Cochrane et al. in prep.). Cosmological hyper-refinement
279
+ simulations of this galaxy have shown explicitly that strong gravita-
280
+ tional torques from stellar non-axisymmetries can drive large gas
281
+ inflow rates down to sub-pc scales under these conditions (Anglés-
282
+ MNRAS 000, 1–16 (2023)
283
+
284
+ 4
285
+ J. Mercedes-Feliz et al.
286
+ 1
287
+ 2
288
+ 3
289
+ log10(vr) [km s
290
+ 1]
291
+ 0.2 Myr
292
+ Outflow
293
+ 5.0 Myr
294
+ 10.0 Myr
295
+ 15.0 Myr
296
+ 20.0 Myr
297
+ 25.0 Myr
298
+ 35.0 Myr
299
+ 2
300
+ 1
301
+ 0
302
+ log10(R) [kpc]
303
+ 0
304
+ 1
305
+ 2
306
+ 3
307
+ 42%
308
+ Inflow
309
+ 62%
310
+ 40%
311
+ 55%
312
+ 60%
313
+ 55%
314
+ 52%
315
+ 1
316
+ 2
317
+ 3
318
+ log10(vr) [km s
319
+ 1]
320
+ Outflow
321
+ 2
322
+ 1
323
+ 0
324
+ log10(R) [kpc]
325
+ 0
326
+ 1
327
+ 2
328
+ 3
329
+ 43%
330
+ Inflow
331
+ 55%
332
+ 51%
333
+ 75%
334
+ 89%
335
+ 14%
336
+ 74%
337
+ Figure 2. Two-dimensional, SFR-weighted distribution of radial velocity and radial distance for gas in the central ∼3 kpc for the no-wind (top rows) and AGN-
338
+ wind (bottom rows) simulations. Time evolution is shown from left to right for ∼35 Myr (the colour scale is logarithmic and uniform throughout). In both cases
339
+ we show separately the outflowing (1st and 3rd row) and inflowing (2nd and 4th row) star formation components based on radial velocity. The fraction of total
340
+ galaxy SFR in the inflowing gas component is indicated in each case. The inflowing and outflowing components for the no-wind case are very similar in their
341
+ contribution to the SFR, varying anywhere between ∼ 40–60% of the total SFR in any one of the components. AGN winds introduce stark differences in the
342
+ amount and distribution of star-forming gas, with the inflowing and outflowing components contributing as much as ∼80–90% of the total SFR at different
343
+ times.
344
+ Alcázar et al. 2021), suggesting that this is a likely phase for strong
345
+ AGN activity as well. We thus investigate the plausible positive and
346
+ negative effects of AGN feedback at the galaxy’s peak of nuclear and
347
+ star formation activity.
348
+ 2.3 Hyper-refined AGN winds
349
+ The method to inject AGN winds at super-Lagrangian resolution in
350
+ cosmological simulations is described in Anglés-Alcázar et al. (in
351
+ prep.), and builds on earlier particle spawning implementations in
352
+ idealized simulations of galaxies and massive halos (Richings &
353
+ Faucher-Giguère 2018a; Torrey et al. 2020; Su et al. 2021). The
354
+ BH is modelled as a collisionless particle with initial mass MBH =
355
+ 109 M⊙ and located near the centre of the main galaxy. The accretion
356
+ rate is assumed to be constant, for simplicity, throughout the dura-
357
+ tion of the simulation, representing a luminous quasar phase lasting
358
+ ∼ 40 Myr with the BH accreting at a fixed fraction λEdd of the Ed-
359
+ dington rate. Stochastic swallowing of gas particles within the BH
360
+ interaction kernel (defined to contain ∼ 256 particles) ensures mass
361
+ conservation (e.g. Anglés-Alcázar et al. 2017a).
362
+ Our AGN wind model is specified by the following main proper-
363
+ ties: the mass outflow rate ˙Mw, the initial wind velocity vw, and the
364
+ geometry of the wind. We consider that a fraction ϵk of the AGN
365
+ bolometric luminosity (Lbol ≡ 0.1 ˙MBH c2) emerges as a fast, nuclear
366
+ isotropic wind radially outward from the BH, with initial velocity
367
+ vw = 30, 000 km s−1 and temperature Tw ∼ 104 K, typical of broad
368
+ absorption line winds and ultrafast outflows (Weymann et al. 1981;
369
+ Gibson et al. 2009; Feruglio et al. 2015; Nardini et al. 2015; Tombesi
370
+ et al. 2015). We assume that the wind immediately interacts with the
371
+ ambient medium, with post-shock velocity and temperature given
372
+ by vsh = vw/4 = 7, 500 km s−1 and Tsh ≈ 1.2 × 1010 K (Faucher-
373
+ Giguère & Quataert 2012). In practice, resolving the shock structure
374
+ is challenging (Richings & Faucher-Giguère 2018a,b; Torrey et al.
375
+ 2020) and we model the AGN wind by creating or spawning new
376
+ gas particles within a sphere Rw = 0.1 pc around the BH, with ini-
377
+ tial velocity vsh and temperature Tsh consistent with post-shock con-
378
+ ditions. Other fluid quantities are immediately recomputed for the
379
+ wind particles after spawning, interacting hydrodynamically with
380
+ the ISM gas in the simulation. The simulations presented here imple-
381
+ ment a target wind particle mass of 1000 M⊙ h−1, which represents
382
+ a factor >20 times higher mass resolution than the original simula-
383
+ tion, and we consider discrete ejection events containing between 10
384
+ and 100 wind particles distributed isotropically and moving radially
385
+ outward from the BH. Particle spawning allows us to fully capture
386
+ the propagation and impact of fast winds at higher resolution than
387
+ normally possible with Lagrangian hydrodynamics (see also Costa
388
+ et al. 2020), injecting feedback locally around the BH and capturing
389
+ the wind-ISM interaction robustly regardless of gas geometry and at
390
+ MNRAS 000, 1–16 (2023)
391
+
392
+ Local positive AGN feedback in the overall negative
393
+ 5
394
+ significantly higher resolution than nearest neighbor-based feedback
395
+ coupling models.
396
+ Table 1 summarizes the main properties of the simulations anal-
397
+ ysed here. All simulations start from the same initial conditions de-
398
+ scribed in §2.2, containing a central BH with mass MBH = 109 M⊙,
399
+ and implementing the same post-shock wind velocity and temper-
400
+ ature while varying the mass outflow rate
401
+ ˙Mw. We assume that
402
+ the BH accretes at the Eddington rate (λEdd = 1), motivated by
403
+ hyper-refinement simulations that predict quasar-like inflow rates
404
+ at sub-pc scales for the same simulated galaxy conditions (Anglés-
405
+ Alcázar et al. 2021). Along with the standard FIRE-2 simulation
406
+ that excludes AGN feedback (no-wind), we investigate the impact
407
+ of AGN-driven winds with kinetic feedback efficiencies in the range
408
+ ϵk = 0.5–50%, which brackets a range of observational constraints
409
+ (e.g. Cicone et al. 2014; Fiore et al. 2017; Harrison et al. 2018) and
410
+ assumed feedback efficiencies in previous simulations (e.g. Di Mat-
411
+ teo et al. 2005; Weinberger et al. 2017; Davé et al. 2019). The sim-
412
+ ulation name in each feedback implementation encodes the value
413
+ of the mass loading factor (ηk) and the kinetic feedback efficiency
414
+ (ϵk × 100). The two simulations that we reference the most through-
415
+ out this work are:
416
+ • no-wind: The control simulation using standard FIRE-2 physics,
417
+ where we model the evolution of a massive galaxy (Mstar ∼ 1011 M⊙)
418
+ starting at z ∼ 2.28 (∆t = 0 Myr) and no AGN winds are introduced.
419
+ The BH is still accreting at the Eddington rate, ˙MBH ∼ 22.2 M⊙ yr−1.
420
+ • AGN-wind: Fiducial simulation where AGN winds are turned on
421
+ at ∆t = 0 Myr with the same initial conditions as the no-wind case.
422
+ We consider a luminous quasar phase with bolometric luminosity
423
+ Lbol = 1.26 × 1047 erg s−1, driving a wind with kinetic efficiency
424
+ ϵk = 0.1 and mass loading factor ηk ≡ ˙Mw/ ˙MBH = 2, corresponding
425
+ to a mass outflow rate in winds ˙Mw = 44.4 M⊙ yr−1.
426
+ The times mentioned in this work are relative to the start of the wind
427
+ phase at t0, with ∆t referring to the time that has passed since then
428
+ as ∆t ≡ t − t0.
429
+ 3 OVERVIEW OF SIMULATIONS
430
+ Figure 1 shows the projected star formation rate surface density for
431
+ two different simulations of the same massive star-forming galaxy
432
+ (Mstar ∼ 1011 M⊙, SFR ∼ 300 M⊙ yr−1) at z ∼ 2.28, one with
433
+ no AGN feedback (no-wind), and the other with feedback (AGN-
434
+ wind), at varying snapshots in time. In the no-wind case (top two
435
+ rows), the central BH accretes gas at the Eddington limit but we
436
+ neglect any AGN feedback effects, with stellar feedback solely re-
437
+ sponsible for regulating star formation. At the beginning of the sim-
438
+ ulated period, the galaxy resembles a turbulent, clumpy, kpc-scale
439
+ disc with significant amounts of star formation occurring along frac-
440
+ tured spiral arms and the denser nuclear region. As time proceeds,
441
+ the dense, star-forming gas reservoir continues to be replenished by
442
+ infalling gas across scales and becomes more concentrated toward
443
+ the centre, forming an ultra-compact, nuclear star-forming disc after
444
+ ∆t ∼ 25 Myr of evolution. From the first snapshot (∆t = 0.2 Myr) to
445
+ the last (∆t = 35 Myr), the SFR in the central 1 kpc region increases
446
+ from ∼ 400 M⊙ yr−1 to ∼ 640 M⊙ yr−1.
447
+ In the AGN-wind simulation (bottom two rows), we inject radial
448
+ shells of high resolution particles to represent the AGN wind. In the
449
+ first ∆t = 1 Myr of evolution there is already a noticeable effect on
450
+ the galaxy. The wind has ejected star-forming gas from the central
451
+ 50 pc as well as cleared out other areas throughout the disc that had
452
+ high SFR (dark green regions) in the no-wind case, that now have
453
+ lower amounts of star formation (lighter green regions) or none at
454
+ all. Winds propagate more efficiently along paths of least resistance,
455
+ preferentially along the rotation axis of the galaxy, but can nonethe-
456
+ less penetrate through low-density ISM channels across the galaxy
457
+ disc. After 5 Myr, the morphology of the star-forming gas becomes
458
+ drastically different, with AGN winds opening up a growing, central
459
+ cavity surrounded by strips of gas, in contrast to the ultra-compact
460
+ star-forming disc in the absence of AGN feedback. Not only is the
461
+ morphology different than in the no-wind case, but the amount of
462
+ star formation is drastically different as well. By ∆t = 0.2 Myr, the
463
+ AGN winds have already had a clear impact on the nuclear SFR,
464
+ with ∼ 230 M⊙ yr−1 within 1 kpc, a factor of ∼ 0.5 less than in the
465
+ no-wind simulation. At a later time, 25 Myr, the total SFR in the
466
+ AGN-wind case reaches ∼ 19 M⊙ yr−1, constituting a decrease by
467
+ a factor of ∼ 33 from the no-wind case, an overwhelmingly nega-
468
+ tive effect. By the end of the simulation, (∆t = 35 Myr), the total
469
+ SFR within 1 kpc in the no-wind case is ∼ 640 M⊙ yr−1, but only
470
+ ∼ 0.4 M⊙ yr−1 in the AGN-wind case, where most of the dense star-
471
+ forming gas has been evacuated by the winds. In the central 250 pc
472
+ region, the SFR increases from ∼ 230 M⊙ yr−1 (∆t = 0.2 Myr) to
473
+ ∼ 600 M⊙ yr−1 (∆t = 35 Myr) in the no-wind simulation, while in
474
+ the AGN-wind case it goes from ∼ 90 M⊙ yr−1 (∆t = 0.2 Myr) to
475
+ ∼ 0.003 M⊙ yr−1 (∆t = 35 Myr). While the global SFR increases by
476
+ 40% during the no-wind simulation, the SFR in the AGN-wind case
477
+ decreases by a factor of ∼ 3000.
478
+ Figure 2 shows the 2D distribution of star-forming gas in the ra-
479
+ dial velocity–radial distance plane for the no-wind (top) and AGN-
480
+ wind (bottom) simulations. For each case, we show separately the
481
+ inflowing (vr < 0) and outflowing (vr > 0) components of the star-
482
+ forming gas, which are defined relative to the radial velocity (vr) with
483
+ respect to the BH. We thus refer to inflows and outflows as radially
484
+ inward and outward components without requiring a minimum abso-
485
+ lute velocity. Some of the morphological features that were present
486
+ in Figure 1 are identifiable within the 2D distribution for the no-
487
+ wind simulation, such as the vertical stripes corresponding to spi-
488
+ ral arms. As time progresses, the star-forming gas becomes more
489
+ centrally concentrated, which is seen here as the distribution shift-
490
+ ing to the left. Aside from the increase in total SFR, there is an in-
491
+ crease in the net radial velocity with time, reaching ∼2,000 km/s on
492
+ 10–100 pc scales for both the outflowing and inflowing components
493
+ (∆t = 20−25 Myr). In the no-wind simulation, the two radial velocity
494
+ components show similar distributions and contribute approximately
495
+ similar amounts to the global SFR, with a slight predominance of the
496
+ inflow component at later times. In the absence of coherent, large
497
+ scale inflow/outflow conditions dominating the gas’ dynamics, the
498
+ roughly symmetric radial velocity structure is the result of highly
499
+ turbulent motions in the ISM. The intense star formation in the nu-
500
+ clear region at high surface densities (ΣSFR > 1000 M⊙ yr−1 kpc−2)
501
+ rapidly deepens the potential well, resulting in the increased maxi-
502
+ mum radial velocities observed.
503
+ In the AGN-wind simulation, the radial distribution of star-
504
+ forming gas clearly shows the impact of AGN feedback, with the
505
+ size of the central cavity growing with time on average (bottom
506
+ rows). Despite the injection of positive radial momentum, there is
507
+ no significant sign of SFR enhancement in the outflowing compo-
508
+ nent. During the first ∼10 Myr of evolution, the inflow and outflow
509
+ components contribute roughly equally to the total SFR, similar to
510
+ the no-wind case. However, the inflow component tends to dominate
511
+ at later times, when the impact of winds becomes more dramatic.
512
+ This suggests that gas radially accelerated by the winds has gener-
513
+ ally lower probability of forming stars. One interesting exception is
514
+ MNRAS 000, 1–16 (2023)
515
+
516
+ 6
517
+ J. Mercedes-Feliz et al.
518
+ 3.0
519
+ 2.5
520
+ 2.0
521
+ 1.5
522
+ 1.0
523
+ 0.5
524
+ 0.0
525
+ 0.5
526
+ log10(R) [kpc]
527
+ 6
528
+ 4
529
+ 2
530
+ 0
531
+ 2
532
+ 4
533
+ 6
534
+ log10(
535
+ SFR) [M yr
536
+ 1 kpc
537
+ 2]
538
+ No-wind
539
+ No-wind
540
+ No-wind
541
+ No-wind
542
+ No-wind
543
+ No-wind
544
+ No-wind
545
+ 3.0
546
+ 2.5
547
+ 2.0
548
+ 1.5
549
+ 1.0
550
+ 0.5
551
+ 0.0
552
+ 0.5
553
+ log10(R) [kpc]
554
+ AGN-wind
555
+ AGN-wind
556
+ AGN-wind
557
+ AGN-wind
558
+ AGN-wind
559
+ AGN-wind
560
+ AGN-wind
561
+ 0.2 Myr
562
+ 5.0 Myr
563
+ 10.0 Myr
564
+ 15.0 Myr
565
+ 20.0 Myr
566
+ 25.0 Myr
567
+ 35.0 Myr
568
+ Figure 3. Radial profile of star formation rate surface density (ΣSFR) for the no-wind (left; blue) and AGN-wind (right; orange) simulations. Time evolution is
569
+ indicated by the saturation of the coloured lines. The high nuclear ΣSFR in the no-wind simulation continues to increase with time while AGN winds create a
570
+ central cavity and suppress the overall SFR.
571
+ the outflowing component at ∆t = 25 Myr since the start of the AGN
572
+ wind phase, which contains a considerable amount of star formation
573
+ (16 M⊙ yr−1, corresponding to >80% of the total SFR) in a localized
574
+ region at 300 pc from the centre and with radial velocity as high as
575
+ 800 km s−1 on average.
576
+ 4 NEGATIVE GLOBAL IMPACT OF AGN FEEDBACK
577
+ Figure 3 shows the azimuthally-averaged radial profile of the star
578
+ formation rate surface density for the no-wind (left) and AGN-
579
+ wind (right) simulations, for various times. We use cylindrical ra-
580
+ dial bins that are defined relative to the angular momentum rotation
581
+ axis of star-forming gas within 2 kpc (since the majority of the star-
582
+ forming gas is contained within this scale) of width ∆ log10(R) =
583
+ 0.1 dex to calculate the SFR per unit area in each bin (ΣSFR). For clar-
584
+ ity, we smooth the resulting radial distributions by applying a run-
585
+ ning average considering the two nearest neighbor bins. At the start
586
+ of the simulation in the no-wind case, the star-forming disc reaches
587
+ ΣSFR ∼ 1000 M⊙ yr−1 kpc−2 in the nuclear region (10–100 pc), while
588
+ maintaining ΣSFR ∼ 10 M⊙ yr−1 kpc−2 on kpc scales. In the ab-
589
+ sence of AGN winds, the nuclear gravitational potential deepens
590
+ significantly and the radial distribution of star-forming gas steepens
591
+ strongly over the 35 Myr period, reaching extreme surface densities,
592
+ up to ΣSFR ∼ 104 M⊙ yr−1 kpc−2 in the inner pc, and containing most
593
+ star formation within ∼200 pc.
594
+ In contrast to the no-wind simulation, the formation of the cen-
595
+ tral cavity is clearly visible in the radial SFR profile of the AGN-
596
+ wind simulation. The size of the cavity increases with time, on av-
597
+ erage, as winds continue to inject energy and momentum into the
598
+ surrounding gas. However, the persistent, non-isotropic infall of gas
599
+ onto the galaxy and the inefficient coupling of winds with low-
600
+ subtended area gas structures drives fluctuations in the size of the
601
+ cavity, with dense gas clumps sometimes able to penetrate the inner
602
+ cavity down to <10 pc scales. Besides the cavity opening, the ampli-
603
+ tude of the ΣSFR profile also decreases with time across radial scales,
604
+ emphasizing the overall negative impact of AGN winds on the star
605
+ formation properties of the host galaxy.
606
+ Figure 4 shows the total stellar mass enclosed in the central 2 kpc
607
+ of the galaxy as a function of time since the start of the AGN
608
+ feedback phase at ∆t = 0, excluding stars formed at earlier times
609
+ (solid lines). In the no-wind simulation (blue), the extreme SFR sur-
610
+ face densities reached lead to the formation of ∼ 2 × 1010 M⊙ of
611
+ stars during only 35 Myr. In contrast, the overall reduction in SFR
612
+ in the AGN-wind simulation (orange) yields the formation of only
613
+ ∼ 3 × 109 M⊙ of stars during the initial 10 Myr, with a subsequent
614
+ ∼60% decrease in enclosed stellar mass within 2 kpc owing to the
615
+ expansion of the stellar component driven by the expulsion of the
616
+ nuclear gas reservoir as well as stellar mass return to the ISM and
617
+ significantly lower SFR at later times.
618
+ In order to understand the effect of AGN winds, we identify
619
+ all gas elements within 2 kpc that have non-zero SFR at t = t0
620
+ and track them in time by means of their unique identifiers, which
621
+ are preserved when gas elements are converted into star particles
622
+ (e.g. Anglés-Alcázar et al. 2017b). The horizontal dash-dotted line
623
+ (black) indicates the corresponding total initial amount of star-
624
+ forming gas available at t = t0. The blue and orange dashed lines
625
+ represent the amount of stellar mass formed from this selected ini-
626
+ tial star-forming gas reservoir in the no-wind and AGN-wind simula-
627
+ tions, respectively, while the leftover gas mass is shown as the dotted
628
+ lines.
629
+ In the no-wind simulation, almost all of the initial star-forming gas
630
+ MNRAS 000, 1–16 (2023)
631
+
632
+ Local positive AGN feedback in the overall negative
633
+ 7
634
+ 0
635
+ 5
636
+ 10
637
+ 15
638
+ 20
639
+ 25
640
+ 30
641
+ 35
642
+ t = t
643
+ t0 [Myr]
644
+ 7.5
645
+ 8.0
646
+ 8.5
647
+ 9.0
648
+ 9.5
649
+ 10.0
650
+ log10(Mass) [M ]
651
+ R < 2 kpc
652
+ M (t)
653
+ M (t0)
654
+ Stars from SF gas at t0
655
+ Leftover SF gas from t0
656
+ No-wind
657
+ AGN-wind
658
+ Figure 4. Stellar mass growth within the central 2 kpc as a function of time
659
+ for the no-wind (blue) and AGN-wind (orange) simulations. Solid lines rep-
660
+ resent the total mass of stars formed since t0, i.e. excluding any pre-existing
661
+ stars. The horizontal dash-dotted line (black) represents the initial total mass
662
+ of star-forming gas available at the start of the simulations (t0), the dashed
663
+ lines indicate the stellar mass formed from this gas, and the dotted lines show
664
+ the remaining gas mass from originally star-forming gas. The suppression of
665
+ stellar mass growth by AGN winds over ∼35 Myr is driven primarily by a
666
+ reduction in the amount of new gas that can become star-forming as opposed
667
+ to by directly ejecting pre-existing star-forming gas.
668
+ is converted into stars after 35 Myr, corresponding to ∼ 109 M⊙3.
669
+ In contrast, in the AGN-wind simulation, only ∼40% of the origi-
670
+ nal star-forming gas is converted into stars (∼ 6 × 108 M⊙), which
671
+ demonstrates a direct, negative impact of AGN winds on the pre-
672
+ existing star-forming gas. However, the total amount of stellar mass
673
+ formed in the no-wind case is more than one order of magnitude
674
+ larger than the mass available in the initial star-forming gas reser-
675
+ voir, indicating that the majority of stars form from additional gas
676
+ becoming star-forming over time. The dominant negative effect of
677
+ AGN winds over the 35 Myr period is thus to prevent the replen-
678
+ ishment of the star-forming gas reservoir, with the direct ejection of
679
+ pre-existing star-forming gas playing a lesser role.
680
+ 5 SIGNATURES OF (LOCAL) POSITIVE AGN FEEDBACK
681
+ 5.1 Spatial anti-correlation of winds and star-forming regions
682
+ Figure 5 shows the star formation rate surface density as a function
683
+ of radial distance (left panel), comparing the no-wind and AGN-
684
+ wind simulations at time ∆t = 20 Myr. This highlights again the
685
+ overall negative impact of AGN winds, creating a central cavity de-
686
+ void of star-forming gas, in stark contrast to the extreme ΣSFR values
687
+ reached in the absence of winds. However, this also shows that ΣSFR
688
+ can be larger in the presence of AGN winds in localized regions un-
689
+ der certain conditions. In this case, the azimuthally-averaged ΣSFR at
690
+ 3 There is ∼20% of “missing” mass due to stellar mass loss as well as BH
691
+ accretion.
692
+ a radial distance of ∼150–250 pc is larger in the AGN-wind simula-
693
+ tion compared to the no-wind simulation (grey shaded area), which
694
+ represents a plausible indication of local positive AGN feedback.
695
+ The same effect is illustrated in the right panel, where we show
696
+ the projected, face-on spatial distribution of star-forming gas, over-
697
+ laying the no-wind (grey scale) and AGN-wind (colour scale) simu-
698
+ lations. Most star formation in the presence of AGN winds occurs in
699
+ dense gas clumps located at >100 pc, outside of the wind-dominated
700
+ region. This spatial anti-correlation of winds and high star-forming
701
+ regions suggests that the accumulation and compression of gas by
702
+ AGN feedback in certain regions can enhance, rather than suppress,
703
+ local star formation.
704
+ 5.2 Enhanced star formation efficiency by AGN wind
705
+ compression
706
+ Figure 6 investigates in more detail the local triggering of star forma-
707
+ tion by AGN winds, comparing the radial profiles of star formation
708
+ efficiency (SFE) and molecular gas mass surface density (Σmol) at
709
+ times ∆t = 10 Myr and ∆t = 20 Myr for the no-wind and AGN-
710
+ wind simulations (left panels). We compute the SFE of each gas el-
711
+ ement as the SFR divided by mass, SFE ≡ SFR/Mgas, which is then
712
+ averaged (mass-weighted) over all gas elements in cylindrical radial
713
+ bins. For Σmol, we assume that gas elements with Hydrogen number
714
+ density nH > 1000 cm−3 have a molecular fraction near unity. We
715
+ also show face-on projections of the spatial distribution of SFE for
716
+ the AGN-wind simulation (right panels).
717
+ In both simulations we see a consistent trend of higher SFE with
718
+ higher molecular gas surface density, as expected, but they do not
719
+ follow a one-to-one relation because the SFR of a given gas clump
720
+ depends on its free-fall time, virial parameter, and other factors
721
+ (Hopkins et al. 2018). In the no-wind simulation, SFE and Σmol both
722
+ increase by more than three orders of magnitude from kpc to pc
723
+ scales at ∆t = 10 Myr, and by almost five orders of magnitude at
724
+ ∆t = 20 Myr, since gas had more time to accumulate in the cen-
725
+ tre, becoming more centrally concentrated. In the presence of AGN
726
+ feedback, SFE and Σmol also tend to increase with decreasing radial
727
+ distance, but both drop very rapidly inside of the central cavity evac-
728
+ uated by the AGN winds.
729
+ A local enhancement of SFR in the presence of AGN winds rel-
730
+ ative to the no-wind case, such as seen at ∆t = 20 Myr (Figure 5),
731
+ could be due to an increase in the amount of dense gas available
732
+ in a given region and/or an increase in the efficiency of converting
733
+ gas into stars (Moreno et al. 2021). The bottom left panel of Figure 6
734
+ shows that, at ∆t = 20 Myr, the increase in local SFR surface density
735
+ in the range ∼150–250 pc under the presence of AGN winds coin-
736
+ cides with the SFE being up to one order of magnitude higher in the
737
+ AGN-wind simulation compared to the no-wind case. In the same ra-
738
+ dial range, however, the amount of fuel for star formation (molecular
739
+ gas) is similar both in the presence and absence of AGN winds, sug-
740
+ gesting that the increase in local SFR is more efficiency-driven than
741
+ fuel-driven in this case. We find similar results when considering the
742
+ SFE per free-fall time (Fig. 6.
743
+ The earlier physical conditions at ∆t = 10 Myr (Figure 6, top
744
+ panels) also represent an interesting example of increased SFE lo-
745
+ cally (R ∼ 100 pc) in the presence of AGN winds despite the overall
746
+ suppression of global star formation relative to the no-wind simula-
747
+ tion. The top right panel of Fig 6 shows that gas clumps with high
748
+ SFE clearly form along the edge of the cavity, where the incident
749
+ AGN winds interact with the ISM. In this case, they also have higher
750
+ molecular gas surface density compared to the no-wind simulation.
751
+ Overall, these results suggest that AGN winds can trigger star for-
752
+ MNRAS 000, 1–16 (2023)
753
+
754
+ 8
755
+ J. Mercedes-Feliz et al.
756
+ 3.0
757
+ 2.5
758
+ 2.0
759
+ 1.5
760
+ 1.0
761
+ 0.5
762
+ 0.0
763
+ log10(R) [kpc]
764
+ 3
765
+ 2
766
+ 1
767
+ 0
768
+ 1
769
+ 2
770
+ 3
771
+ 4
772
+ 5
773
+ 6
774
+ log10(
775
+ SFR) [M yr
776
+ 1 kpc
777
+ 2]
778
+ t = 20.0 Myr
779
+ No-wind
780
+ AGN-wind
781
+ 200 pc
782
+ log10(
783
+ SFR) [M yr
784
+ 1 kpc
785
+ 2]
786
+ log10(
787
+ SFR) [M yr
788
+ 1 kpc
789
+ 2]
790
+ 0
791
+ 1
792
+ 2
793
+ 3
794
+ 4
795
+ 5
796
+ Figure 5. Left: Radial profile of the total star formation rate surface density (ΣSFR) corresponding to ∆t = 20 Myr since the start of the AGN feedback phase.
797
+ The blue line represents the no-wind case while orange is the AGN-wind case. The vertical grey band indicates the region where ΣSFR is higher in the AGN-
798
+ wind simulation compared to the no-wind case. Right: Projected star formation surface density map with the no-wind (grey scale) and AGN-wind (colour scale)
799
+ simulations superimposed. The radial annulus corresponds to the vertical grey band in the left panel. Despite the overall negative effect of BH feedback, ΣSFR
800
+ can reach higher values in certain regions under the presence of AGN winds, suggesting local positive feedback effects.
801
+ mation and enhance the local star formation efficiency locally by
802
+ compressing the ISM, while having a global negative effect.
803
+ 5.3 Contribution of outflowing gas to star formation
804
+ Figure 7 shows the radial profiles of the SFR surface density at
805
+ ∆t = 15 Myr and ∆t = 25 Myr (left), separating the distribution into
806
+ inflowing and outflowing components based on the radial velocity of
807
+ gas, as in Figure 2. We also show the projected, face-on distributions
808
+ of ΣSFR in the right panels, overlaying the no-wind (grey scale) and
809
+ AGN-wind (colour scale) simulations.
810
+ In the no-wind simulation at ∆t = 15 Myr, a single spiral arm sur-
811
+ rounds the ultra-compact nuclear disc forming on 100 pc scales. As
812
+ shown above, introducing AGN feedback changes the morphology
813
+ of the galaxy, forming a slightly off-centred cavity ∼400 pc wide by
814
+ evacuating the nuclear gas disc and pushing outward the dominant
815
+ spiral arm. The inset figure in the ΣSFR map indicates the spatial dis-
816
+ tribution of the inflowing (blue) and outflowing (red) star-forming
817
+ gas, showing that the region near the cavity edge is dominated by
818
+ the outflow component. Interestingly, the inflow component reaches
819
+ inside of the cavity down to the inner ∼10 pc, previously devoid of
820
+ dense gas, despite the continuous injection of winds pushing ma-
821
+ terial outwards. At ∆t = 25 Myr, the centre of the cavity has been
822
+ cleared out again by the winds, but the overall size of the cavity has
823
+ decreased to ∼100 pc in diameter, owing to the large inflow of gas
824
+ occurring during the previous ∼10 Myr. At this time, the dense, ring-
825
+ like gas structure in the AGN-wind simulation is outflow-dominated
826
+ and on the way to expand again, in contrast to the ultra-compact nu-
827
+ clear spiral prevalent in the no-wind simulation. This illustrates the
828
+ complex interaction between AGN-driven winds and infalling gas in
829
+ the strong nuclear gravitational potential of a massive galaxy.
830
+ In the no-wind simulation, the inflow and outflow components of
831
+ star-forming gas exhibit roughly similar radial distributions, indica-
832
+ tive of turbulent motions (see also Figure 2), with the overall contri-
833
+ bution of inflowing material to global star formation being slightly
834
+ predominant over the outflow component for both ∆t = 15 Myr and
835
+ ∆t = 25 Myr. In the AGN-wind simulation, however, we identify a
836
+ decoupling of dynamical components, with certain regions clearly
837
+ dominated by outflowing material. In the radial range indicated by
838
+ the vertical grey bands, the outflow component reaches ΣSFR values
839
+ between one (∆t = 25 Myr) and two (∆t = 15 Myr) orders of mag-
840
+ nitude higher than the inflow component, coinciding with gas struc-
841
+ tures along the edge of the cavity compressed by the AGN winds.
842
+ Thus, even in cases such as these, where AGN winds suppress ΣSFR
843
+ at all radii relative to the no-wind case, the higher fractional contri-
844
+ bution of outflowing material to star formation can be indicative of
845
+ local AGN feedback triggering of star formation, as star-forming gas
846
+ is preferentially entrained within the outflowing medium.
847
+ 5.4 Spatial and temporal shift in star formation
848
+ Since all simulations start from the same initial conditions (§2.2), it
849
+ is possible to track the evolution of the same Lagrangian mass ele-
850
+ ments (either gas or stars) across simulations using their unique par-
851
+ ticle identifiers. Star formation is so efficient in the no-wind case that
852
+ the majority of the gas particles that turned into stars in the AGN-
853
+ wind case also formed stars in the no-wind simulation, which allows
854
+ us to look further into the effect of AGN feedback on the stars that
855
+ form in both cases. Figure 8 quantifies the difference in the forma-
856
+ tion time and radial distance for stars formed in the AGN-wind sim-
857
+ ulation relative to the stars formed out of the same gas elements in
858
+ the no-wind simulation. Here, we show the two-dimensional distri-
859
+ MNRAS 000, 1–16 (2023)
860
+
861
+ Local positive AGN feedback in the overall negative
862
+ 9
863
+ 3.0
864
+ 2.5
865
+ 2.0
866
+ 1.5
867
+ 1.0
868
+ 0.5
869
+ 0.0
870
+ log10(R) [kpc]
871
+ 9.0
872
+ 8.5
873
+ 8.0
874
+ 7.5
875
+ 7.0
876
+ 6.5
877
+ 6.0
878
+ 5.5
879
+ 5.0
880
+ log10(SFE) [yr
881
+ 1]
882
+ t = 10.0 Myr
883
+ 3
884
+ 4
885
+ 5
886
+ 6
887
+ 7
888
+ 8
889
+ 9
890
+ 10
891
+ log10(
892
+ mol) [M kpc
893
+ 2]
894
+ 3
895
+ 4
896
+ 5
897
+ 6
898
+ 7
899
+ 8
900
+ 9
901
+ 10
902
+ log10(
903
+ mol) [M kpc
904
+ 2]
905
+ No-wind
906
+ AGN-wind
907
+ SFE
908
+ mol
909
+ log10(SFE) [yr
910
+ 1]
911
+ 200 pc
912
+ 9.5
913
+ 8.5
914
+ 7.5
915
+ 6.5
916
+ 5.5
917
+ 3.0
918
+ 2.5
919
+ 2.0
920
+ 1.5
921
+ 1.0
922
+ 0.5
923
+ 0.0
924
+ log10(R) [kpc]
925
+ 9.0
926
+ 8.5
927
+ 8.0
928
+ 7.5
929
+ 7.0
930
+ 6.5
931
+ 6.0
932
+ 5.5
933
+ 5.0
934
+ log10(SFE) [yr
935
+ 1]
936
+ t = 20.0 Myr
937
+ 3
938
+ 4
939
+ 5
940
+ 6
941
+ 7
942
+ 8
943
+ 9
944
+ 10
945
+ log10(
946
+ mol) [M kpc
947
+ 2]
948
+ 3
949
+ 4
950
+ 5
951
+ 6
952
+ 7
953
+ 8
954
+ 9
955
+ 10
956
+ log10(
957
+ mol) [M kpc
958
+ 2]
959
+ No-wind
960
+ AGN-wind
961
+ SFE
962
+ mol
963
+ log10(SFE) [yr
964
+ 1]
965
+ 200 pc
966
+ 9.5
967
+ 8.5
968
+ 7.5
969
+ 6.5
970
+ 5.5
971
+ Figure 6. Left: Radial profile of the star formation efficiency (SFE; solid lines) and the total molecular gas surface density (Σmol; dashed lines) at time
972
+ ∆t = 10 Myr (top) and ∆t = 20 Myr (bottom) since the beginning of the AGN feedback phase for the no-wind (blue) and AGN-wind (orange) simulations. The
973
+ vertical grey band indicates the region where SFE is higher in the AGN-wind simulation compared to the no-wind case. Right: Spatial SFE distribution for a
974
+ face-on projection of the AGN-wind case. The radial annulus corresponds to the vertical grey band in the left panel. The star formation efficiency increases
975
+ along the edge of the central cavity relative to the no-wind simulation, suggesting that compression of ISM by AGN winds can trigger star formation locally.
976
+ bution for the differences in formation time and distance for stars
977
+ that formed during the 30 Myr since the start of the AGN feedback
978
+ phase (defined for the AGN-wind simulation). This allows us to in-
979
+ vestigate whether stars that form in the presence of AGN winds do
980
+ so at similar times/distances or not compared to the same stars in the
981
+ absence of winds. For example, the top right quadrant corresponds
982
+ to stars forming later in time and farther from the centre in the AGN-
983
+ wind run, while the lower left quadrant represents stars forming ear-
984
+ lier and closer than in the no-wind case.
985
+ The distribution in the difference of radial distances for stars that
986
+ formed under the presence of AGN winds shows that ∼80% of stars
987
+ preferentially formed at a further distance compared to their no-
988
+ wind counterpart. This may constitute indication of negative feed-
989
+ back, even for stars that manage to form in the presence of AGN
990
+ feedback. When investigating the difference in formation times, we
991
+ find some indication of earlier conversion of gas into stars for stars
992
+ that form further out in the AGN-wind simulation (with AGN winds
993
+ pushing ISM gas radially outward but locally triggering faster star
994
+ formation) while preferentially delayed star formation for stars that
995
+ form closer to the BH. The complex interaction of AGN winds and
996
+ ISM gas drives a weak anti-correlation between the difference in for-
997
+ MNRAS 000, 1–16 (2023)
998
+
999
+ 10
1000
+ J. Mercedes-Feliz et al.
1001
+ 3.0
1002
+ 2.5
1003
+ 2.0
1004
+ 1.5
1005
+ 1.0
1006
+ 0.5
1007
+ 0.0
1008
+ log10(R) [kpc]
1009
+ 6
1010
+ 4
1011
+ 2
1012
+ 0
1013
+ 2
1014
+ 4
1015
+ 6
1016
+ log10(
1017
+ SFR) [M yr
1018
+ 1 kpc
1019
+ 2]
1020
+ t = 15.0 Myr
1021
+ No-wind
1022
+ AGN-wind
1023
+ Inflow
1024
+ Outflow
1025
+ log10(
1026
+ SFR) [M yr
1027
+ 1 kpc
1028
+ 2]
1029
+ log10(
1030
+ SFR) [M yr
1031
+ 1 kpc
1032
+ 2]
1033
+ 0
1034
+ 1
1035
+ 2
1036
+ 3
1037
+ 4
1038
+ 5
1039
+ Inflow
1040
+ Outflow
1041
+ 3.0
1042
+ 2.5
1043
+ 2.0
1044
+ 1.5
1045
+ 1.0
1046
+ 0.5
1047
+ 0.0
1048
+ log10(R) [kpc]
1049
+ 6
1050
+ 4
1051
+ 2
1052
+ 0
1053
+ 2
1054
+ 4
1055
+ 6
1056
+ log10(
1057
+ SFR) [M yr
1058
+ 1 kpc
1059
+ 2]
1060
+ t = 25.0 Myr
1061
+ No-wind
1062
+ AGN-wind
1063
+ Inflow
1064
+ Outflow
1065
+ log10(
1066
+ SFR) [M yr
1067
+ 1 kpc
1068
+ 2]
1069
+ log10(
1070
+ SFR) [M yr
1071
+ 1 kpc
1072
+ 2]
1073
+ 0
1074
+ 1
1075
+ 2
1076
+ 3
1077
+ 4
1078
+ 5
1079
+ Inflow
1080
+ Outflow
1081
+ Figure 7. Left: Radial profile of the total star formation rate surface density (ΣSFR) for the inflowing material (solid lines) and outflowing material (dashed
1082
+ lines) at time ∆t = 15 Myr (top) and ∆t = 25 Myr (bottom) since the beginning of the AGN feedback phase for the no-wind (blue) and AGN-wind (orange)
1083
+ simulations. Right: Spatial star formation surface density distribution for a face-on projection with the no-wind (grey scale) and AGN-wind (colour scale)
1084
+ simulations superimposed. Inset: A closer look at the central 250 pc (top) and 200 pc (bottom) region, decomposing the AGN-wind map into inflowing (blue)
1085
+ and outflowing (red) components. The vertical grey band (left) and corresponding radial annulus (right) indicate the region where the outflowing component
1086
+ dominates over the inflowing component for the AGN-wind simulation. The increased local fractional contribution of outflowing gas to star formation is a
1087
+ plausible signature of positive AGN feedback.
1088
+ mation distance and the difference in formation time relative to the
1089
+ no-wind simulation.
1090
+ Figure 9 examines the radial velocities of the same sample of
1091
+ stars as in Figure 8, where we now show separate distributions for
1092
+ stars that formed in the AGN-wind simulation during three differ-
1093
+ ent time intervals: 0 ≤ tform < 10 Myr, 10 ≤ tform < 20 Myr, and
1094
+ 20 ≤ tform < 30 Myr. In the no-wind simulation, the stellar ra-
1095
+ dial velocity distributions are roughly symmetric and spread up to
1096
+ ±1000 km s−1, owing to the strong deepening of the nuclear grav-
1097
+ itational potential in the absence of AGN feedback, with only mi-
1098
+ nor differences depending on the stellar formation time. For com-
1099
+ parison, the escape velocity at 1 kpc increases from ∼620 km s−1 at
1100
+ MNRAS 000, 1–16 (2023)
1101
+
1102
+ Local positive AGN feedback in the overall negative
1103
+ 11
1104
+ 1.00
1105
+ 0.75
1106
+ 0.50
1107
+ 0.25 0.00
1108
+ 0.25
1109
+ 0.50
1110
+ 0.75
1111
+ 1.00
1112
+ Radial Distance [kpc]
1113
+ 40
1114
+ 30
1115
+ 20
1116
+ 10
1117
+ 0
1118
+ 10
1119
+ 20
1120
+ 30
1121
+ 40
1122
+ Formation Time [Myr]
1123
+ 14.3%
1124
+ 32.5%
1125
+ 46.7%
1126
+ 6.5%
1127
+ AGN-wind
1128
+ No-wind
1129
+ 3-
1130
+ 2-
1131
+ 1-
1132
+ 0
1133
+ 1
1134
+ 2
1135
+ 3
1136
+ log10(Counts)
1137
+ Figure 8. Difference in formation time and radial distance for stars formed
1138
+ in the AGN-wind simulation relative to stars formed out of the same gas
1139
+ elements in the no-wind simulation. The two-dimensional distribution (and
1140
+ corresponding one-dimensional histograms) are shown for stars that formed
1141
+ in the AGN-wind simulation during : 0 �� tform < 30 Myr. The radial distance
1142
+ to the centre is always measured at ∆t = 30 Myr. The contour lines high-
1143
+ light the regions that contains 1-σ, 2-σ, and 3-σ of the distribution. Dashed
1144
+ lines separate the distributions into four quadrants centred at [0,0], with the
1145
+ corresponding fraction of stellar mass indicated in each quadrant. Stars form
1146
+ preferentially farther out under the presence of AGN winds compared to the
1147
+ no-wind simulation (right quadrants), with a weak correlation between dif-
1148
+ ference in formation time and distance.
1149
+ ∆t = 5 Myr to ∼700 km s−1 at ∆t = 25 Myr, while at 100 pc the
1150
+ escape velocity increases from ∼750 km s−1 to ∼1150 km s−1 in the
1151
+ same time interval. In the absence of strong AGN or stellar-feedback
1152
+ driven winds that could potentially accelerate star-forming clumps,
1153
+ the large stellar velocities reached in the no-wind simulation can thus
1154
+ be easily explained by orbital dynamics in the ultra-dense nuclear
1155
+ stellar potential (Anglés-Alcázar et al. 2017c; Wellons et al. 2020;
1156
+ Parsotan et al. 2021).
1157
+ In contrast, we find that new stars in the AGN-wind simulation are
1158
+ kinematically different in addition to forming further out compared
1159
+ to the no-wind case, exhibiting lower radial velocities than the same
1160
+ stars in the no-wind simulation. This is particularly the case for stars
1161
+ forming in the first ∼ 20 Myr, where ∼90% end up with radial veloc-
1162
+ ities within ±250 km s−1, owing to the lower gravitational potential.
1163
+ In this case, stars that form in the last ∼10 Myr in the presence of
1164
+ winds show a broader velocity distribution compared to stars formed
1165
+ earlier, extending up to ±500 km s−1 possibly due to the more coher-
1166
+ ent nature of star-forming structures dominated by either inflowing
1167
+ or outflowing material at higher velocities (Fig. 2). In any case, stel-
1168
+ lar radial velocities are a better reflection of the depth of the gravita-
1169
+ tional potential than of the velocity of AGN-driven winds.
1170
+ 6 DEPENDENCE ON AGN WIND EFFICIENCY
1171
+ Figure 10 shows the star formation rate surface density (ΣSFR) as a
1172
+ function of radial distance, similar to Figure 5 but at ∆t = 10 Myr, for
1173
+ Radial Velocity [km s
1174
+ 1]
1175
+ 0.00
1176
+ 0.05
1177
+ 0.10
1178
+ 0.15
1179
+ 0.20
1180
+ 0.25
1181
+ 0.30
1182
+ Fraction of Stars
1183
+ No-wind
1184
+ 1000
1185
+ 750
1186
+ 500
1187
+ 250
1188
+ 0
1189
+ 250
1190
+ 500
1191
+ 750
1192
+ 1000
1193
+ Radial Velocity [km s
1194
+ 1]
1195
+ 0.00
1196
+ 0.05
1197
+ 0.10
1198
+ 0.15
1199
+ 0.20
1200
+ 0.25
1201
+ 0.30
1202
+ Fraction of Stars
1203
+ AGN-wind
1204
+ Stellar Formation Time
1205
+ 0
1206
+ tform < 10 Myr
1207
+ 10
1208
+ tform < 20 Myr
1209
+ 20
1210
+ tform < 30 Myr
1211
+ Figure 9. Radial velocity distribution for stars that formed in the AGN-
1212
+ wind simulation within ∼ 30 Myr (bottom panel), and the same star particles
1213
+ tracked in the no-wind simulation (top panel). Stars are separated according
1214
+ to their formation time in the AGN-wind simulation, as in Figure 8, with
1215
+ each colour corresponding to stars that formed in a given time interval as
1216
+ indicated. The radial velocity is always measured at ∆t = 30 Myr.
1217
+ the no-wind and AGN-wind simulations, as well as four other sim-
1218
+ ulations that vary in AGN feedback strength (see Table 1). At first
1219
+ glance, the hierarchy in feedback strength, from weakest (ϵk = 0.5%;
1220
+ green) to strongest (ϵk = 50%; red), can be clearly seen in the
1221
+ increasing suppression of the star formation rate surface density
1222
+ distribution relative to the no-wind case. The weakest AGN winds
1223
+ can barely open a central cavity of size ∼ 25 pc during the first
1224
+ 10 Myr, while the strongest winds very quickly evacuate the entire
1225
+ star-forming gas reservoir within the central kpc. Aside from seeing
1226
+ how ΣSFR changes with different feedback efficiencies, we can also
1227
+ identify examples of local positive feedback. AGN winds in sim-
1228
+ ulation m0.1e0.5 can only suppress star formation within a small
1229
+ cavity, but the compression of gas in the edge of the cavity triggers
1230
+ star formation reaching a factor of ten higher ΣSFR than in the no-
1231
+ wind simulation in the same radial range.
1232
+ The top panel of Figure 11 shows the stellar mass enclosed within
1233
+ R < 2 kpc as a function of time, excluding the mass found already
1234
+ in stars at the beginning of the AGN feedback phase at t0, as in Fig-
1235
+ ure 4 but now comparing simulations with different AGN feedback
1236
+ strength. Similarly, the middle panel shows the stellar mass formed
1237
+ out of the initial star-forming gas reservoir at t0 for each simula-
1238
+ tion, and the bottom panel shows the corresponding leftover star-
1239
+ forming gas. The m0.1e0.5 simulation shows very similar stellar
1240
+ mass growth as the no-wind case over time, indicating that AGN
1241
+ winds with kinetic feedback efficiency ϵk = 0.5% and energy injec-
1242
+ tion rate ˙Ew ∼ 6.29 × 1044 erg s−1 can only barely affect the star-
1243
+ forming gas reservoir of this massive galaxy. Increasing the AGN
1244
+ feedback strength by a factor of ten (ϵk = 5%) has a clear negative
1245
+ effect in the overall stellar mass growth, suppressing the conversion
1246
+ of initially star-forming gas into stars and, more importantly, reduc-
1247
+ ing the amount of new gas that can become star-forming, as seen
1248
+ in Figure 4 for our fiducial AGN-wind simulation. In the strongest
1249
+ feedback cases (m4e20 and m10e50), the total stellar mass enclosed
1250
+ within 2 kpc increases initially by ∆M⋆ ∼ 109 M⊙ (during the first
1251
+ MNRAS 000, 1–16 (2023)
1252
+
1253
+ 12
1254
+ J. Mercedes-Feliz et al.
1255
+ 3.0
1256
+ 2.5
1257
+ 2.0
1258
+ 1.5
1259
+ 1.0
1260
+ 0.5
1261
+ 0.0
1262
+ log10(R) [kpc]
1263
+ 4
1264
+ 2
1265
+ 0
1266
+ 2
1267
+ 4
1268
+ 6
1269
+ log10(
1270
+ SFR) [M yr
1271
+ 1 kpc
1272
+ 2]
1273
+ t = 10.0 Myr
1274
+ No-wind
1275
+ m0.1e0.5
1276
+ m1e5
1277
+ AGN-wind
1278
+ m4e20
1279
+ m10e50
1280
+ Figure 10. Radial profile of the total star formation rate surface density
1281
+ (ΣSFR) corresponding to ∆t = 10 Myr since the start of the AGN phase, for
1282
+ various simulations with different AGN feedback strength.
1283
+ ∼5 Myr) but then quickly decreases owing to the very strong sup-
1284
+ pression of subsequent star formation and the change in the gravita-
1285
+ tional potential due to the massive evacuation of gas from the galaxy
1286
+ driving the expansion of the stellar component.
1287
+ 7 DISCUSSION
1288
+ Our simulations suggest that powerful AGN winds have a global
1289
+ negative impact on the stellar mass growth of massive galaxies near
1290
+ their peak of star formation activity (Anglés-Alcázar et al., in prep.),
1291
+ in broad agreement with many previous cosmological simulations
1292
+ where AGN feedback prescriptions are calibrated to help regulate
1293
+ star formation in galaxies at the high mass end (Di Matteo et al.
1294
+ 2005; Baldry et al. 2006; Bower et al. 2006; Dubois et al. 2012;
1295
+ Somerville & Davé 2015; Choi et al. 2012, 2018; Davé et al. 2019;
1296
+ Wellons et al. 2022). In the absence of AGN feedback, an ultra dense
1297
+ central starburst quickly develops at the time at which stellar feed-
1298
+ back no longer becomes efficient enough to drive large-scale galactic
1299
+ winds (Anglés-Alcázar et al. 2017c; Stern et al. 2021; Pandya et al.
1300
+ 2021; Byrne et al. 2022) and the simulated galaxy becomes overmas-
1301
+ sive and overcompact relative to observations (Wellons et al. 2020;
1302
+ Parsotan et al. 2021). Our results indicate that sufficiently strong
1303
+ AGN winds (as would be produced by a MBH with MBH = 109 M⊙
1304
+ accreting at the Eddington rate with kinetic feedback efficiency
1305
+ ϵk = 5%) can shut down star formation at this critical time, pro-
1306
+ ducing more realistic galaxy sizes and central stellar densities (see
1307
+ Cochrane et al. in prep.). However, a factor of ten reduction in either
1308
+ MBH, ϵk, accretion rate relative to Eddington, or a combination of
1309
+ them (since these parameters are degenerate) can dramatically de-
1310
+ crease the impact of AGN-driven winds, suggesting that other feed-
1311
+ back channels, such as radiation pressure or cosmic rays (not in-
1312
+ cluded here) may be required to regulate massive galaxies (Costa
1313
+ et al. 2018a,b; Choi et al. 2018; Wellons et al. 2022).
1314
+ AGN winds create a central cavity devoid of star-forming gas,
1315
+ as seen in previous studies (Gabor & Bournaud 2014; Curtis & Si-
1316
+ jacki 2016; Hopkins et al. 2016; Richings & Faucher-Giguère 2018a;
1317
+ Costa et al. 2020; Torrey et al. 2020), but can also penetrate into the
1318
+ galaxy disc to some extent, reducing the star formation rate surface
1319
+ density on all scales. The coupling efficiency of AGN winds and
1320
+ the surrounding ISM decreases as the size of the cavity increases,
1321
+ with a larger fraction of input wind energy escaping along the po-
1322
+ lar direction (Torrey et al. 2020, Anglés-Alcázar et al. in prep.). The
1323
+ large, sustained gas inflow rate onto the galaxy yields a complex
1324
+ interaction between AGN winds in infalling structures, with dense
1325
+ star-forming clumps able to penetrate the cavity in some cases, and
1326
+ the geometric coupling efficiency of winds and ISM gas changing
1327
+ with time accordingly. Our results show that AGN winds reduce the
1328
+ amount of stars formed out of the initial star-forming gas reservoir
1329
+ but, more importantly, AGN winds are preventing new gas from be-
1330
+ coming star-forming throughout the simulation.
1331
+ The impact of stellar and/or AGN feedback in galaxies has been
1332
+ generically considered as either ejective, removing gas directly from
1333
+ the ISM, or preventive, stopping gas from accreting into the ISM in
1334
+ the first place (Somerville & Davé 2015). Previous studies suggest
1335
+ that preventive AGN feedback is crucial in dwarf galaxies, where
1336
+ galactic winds reduce the accretion rate onto the galaxy (Muratov
1337
+ et al. 2015; Hirschmann et al. 2016; Anglés-Alcázar et al. 2017b;
1338
+ Hafen et al. 2019, 2020; Mitchell et al. 2020; Tollet et al. 2019;
1339
+ Pandya et al. 2020), and massive halos, where “radio-mode” or
1340
+ “jet-mode” AGN feedback has been proposed to prevent hot halo
1341
+ gas from cooling (Bower et al. 2006; Gabor & Davé 2015; Wein-
1342
+ berger et al. 2017; Davé et al. 2019; Su et al. 2021), while ejective
1343
+ feedback may be more prominent in gas-rich star-forming galaxies
1344
+ (Somerville & Davé 2015). Our analysis tracking the source of gas
1345
+ responsible for star formation in each simulation suggests that AGN
1346
+ winds are acting as both modes of negative feedback simultaneously,
1347
+ ejective and preventive (see also Grand et al. 2017; Irodotou et al.
1348
+ 2022). Interestingly, preventive AGN-wind feedback (in the sense of
1349
+ preventing the replenishment of the star-forming gas reservoir) ap-
1350
+ pears to be far more important than ejective feedback for suppress-
1351
+ ing the stellar mass growth of massive star-forming galaxies at their
1352
+ peak of activity (Figures 4 & 11).
1353
+ Our simulations show that AGN winds can also trigger star forma-
1354
+ tion locally by compressing gas along the edge of the cavity, increas-
1355
+ ing the gas density and star formation efficiency locally compared
1356
+ to the same region in the simulation without AGN winds. This posi-
1357
+ tive AGN feedback effect by gas compression is in qualitative agree-
1358
+ ment with previous analytic models and idealized simulations (e.g.,
1359
+ Silk 2005; Gaibler et al. 2012; Ishibashi & Fabian 2012; Zubovas &
1360
+ Nayakshin 2012; Silk 2013; Zubovas et al. 2013; Nayakshin 2014;
1361
+ Bieri et al. 2015, 2016; Dugan et al. 2017; Zubovas & Bourne 2017).
1362
+ However, while many previous studies have argued that global pos-
1363
+ itive AGN feedback plays a key role, and can even be the domi-
1364
+ nant star formation mode of gas-rich galaxies at high redshift (e.g.,
1365
+ Gaibler et al. 2012; Silk 2013; Zubovas et al. 2013; Bieri et al. 2015,
1366
+ 2016), our simulations show that powerful AGN winds acting on a
1367
+ massive star-forming galaxy can only trigger a small amount of star
1368
+ formation compared to the overall negative effect.
1369
+ Some studies propose that the dominant feedback effect, positive
1370
+ or negative, may depend on global host galaxy properties and/or
1371
+ the physical conditions in different parts of the galaxy. Nayakshin
1372
+ (2014) argues that AGN feedback has a negative effect in gas poor
1373
+ galaxies but a global positive effect in gas rich galaxies with AGN
1374
+ feedback accelerating the collapse of the cold ISM phase, in contrast
1375
+ with our results. Gaibler et al. (2012) simulated the impact of AGN
1376
+ jets on idealized simulations of high-redshift galaxies, arguing that
1377
+ jet feedback suppresses star formation in the central region, forming
1378
+ MNRAS 000, 1–16 (2023)
1379
+
1380
+ Local positive AGN feedback in the overall negative
1381
+ 13
1382
+ a ring-like star-forming structure at the cavity boundary in qualita-
1383
+ tive agreement with our results, but they predict a strong increase
1384
+ in global SFR due to the external pressure enhancement throughout
1385
+ the galaxy disc produced by the jet cocoon (see also Sutherland &
1386
+ Bicknell 2007; Bieri et al. 2015, 2016; Dugan et al. 2017). Using ide-
1387
+ alized simulations of the impact of AGN outflows on the fragmen-
1388
+ tation rate of gas in turbulent spheres, Zubovas & Bourne (2017)
1389
+ proposed that there is a critical AGN luminosity at which positive
1390
+ feedback dominates, with outflows being too efficient at removing
1391
+ gas at higher luminosities. Different galaxy properties, AGN feed-
1392
+ back mechanisms, and efficiencies may thus play a role in the de-
1393
+ tailed balance of positive and negative feedback. Our cosmological
1394
+ zoom-in simulations including a detailed treatment of star forma-
1395
+ tion, stellar feedback, and hyper-refined AGN-driven winds propa-
1396
+ gating in a multi-phase ISM suggest that AGN feedback has either
1397
+ a minor global impact on massive star-forming galaxies (assuming
1398
+ low feedback efficiency) or net negative effects (for high feedback
1399
+ efficiency), but the contribution of positive feedback to star forma-
1400
+ tion in galaxies under different conditions and/or redshifts should be
1401
+ investigated in future work.
1402
+ Signatures of local positive AGN feedback in our simulations
1403
+ include the spatial anti-correlation of wind-dominated regions and
1404
+ star-forming clumps, and higher local star formation efficiency in
1405
+ regions compressed by the winds, in qualitative agreement with ob-
1406
+ servations (Cresci et al. 2015a,b; Carniani et al. 2016; Shin et al.
1407
+ 2019; Perna et al. 2020; Bessiere & Ramos Almeida 2022; Schutte
1408
+ & Reines 2022). Examples of high redshift galaxies where posi-
1409
+ tive and negative AGN feedback may co-exist include SINFONI ob-
1410
+ servations of quasars with extended outflows (traced by OIII) that
1411
+ appear to suppress star formation in a central cavity while trigger-
1412
+ ing star formation (traced by Hα) along the edges of the outflow-
1413
+ dominated region (Cresci et al. 2015b; Carniani et al. 2016), qualita-
1414
+ tively similar to our simulated galaxy. Examples in the low redshift
1415
+ universe include MUSE observations of Seyfert galaxies with simi-
1416
+ lar spatial anti-correlations of outflow components and star-forming
1417
+ regions (Cresci et al. 2015a; Shin et al. 2019). Combining MUSE
1418
+ and ALMA observations, Shin et al. (2019) showed that regions of
1419
+ a star-forming ring structure interacting with a large-scale outflow
1420
+ in a nearby Seyfert 2 galaxy have higher SFR density but compar-
1421
+ atively lower molecular gas content than other regions. This may
1422
+ imply higher star formation efficiency by a factor ∼3–5 owing to
1423
+ positive AGN feedback, in qualitative agreement with our results.
1424
+ Following a different approach, Bessiere & Ramos Almeida (2022)
1425
+ compared the spatial distribution of the young stellar populations
1426
+ (<100 Myr) of the nearby Type II quasar Markarian 34 and the kine-
1427
+ matics of the warm ionized outflows, finding a local enhancement
1428
+ of recent star formation coinciding with the outer edge of one side
1429
+ of the outflow, while increased turbulence and disrupted gas kine-
1430
+ matics with no signs of recent star formation in the other side of the
1431
+ outflow. This provides further indication that positive and negative
1432
+ AGN feedback can coexist in galaxies, as suggested by our simu-
1433
+ lations. Nonetheless, simulated global galaxy SFRs are consistently
1434
+ higher in the absence of AGN winds, supporting scenarios where
1435
+ AGN feedback is globally negative (if anything) while star forma-
1436
+ tion triggering represents a subdominant component.
1437
+ In the absence of AGN winds, the star-forming gas reservoir con-
1438
+ tains roughly similar fractions of inflowing and outflowing com-
1439
+ ponents, reflecting the turbulent ISM dynamics prevalent through-
1440
+ out the simulation. However, efficient AGN winds can significantly
1441
+ change the ISM gas kinematics. Simulations with AGN winds show
1442
+ stronger variability in the contributions of different dynamical com-
1443
+ ponents to the global SFR at later stages, varying from up to ∼90% of
1444
+ 7.5
1445
+ 8.0
1446
+ 8.5
1447
+ 9.0
1448
+ 9.5
1449
+ 10.0
1450
+ log10( M ) [M ]
1451
+ M (t)
1452
+ M (t0)
1453
+ 7.5
1454
+ 8.0
1455
+ 8.5
1456
+ 9.0
1457
+ 9.5
1458
+ log10(M ) [M ]
1459
+ Stars from SF gas at t0
1460
+ 0
1461
+ 10
1462
+ 20
1463
+ 30
1464
+ t = t
1465
+ t0 [Myr]
1466
+ 7.5
1467
+ 8.0
1468
+ 8.5
1469
+ 9.0
1470
+ 9.5
1471
+ log10(Mgas) [M ]
1472
+ Leftover SF gas from t0
1473
+ R < 2 kpc
1474
+ No-wind
1475
+ m0.1e0.5
1476
+ m1e5
1477
+ AGN-wind
1478
+ m4e20
1479
+ m10e50
1480
+ Figure 11. Top: Stellar mass growth within the central 2 kpc as a function of
1481
+ time for a variety of simulation runs with different AGN feedback strengths.
1482
+ Solid lines represent the total mass of stars formed since t0, i.e. excluding any
1483
+ pre-existing stars. Middle: The total mass in stars formed by initially star-
1484
+ forming gas at t0 (dashed lines). Bottom: Total gas mass remaining from the
1485
+ original star-forming gas reservoir (dotted lines). The horizontal dash-dotted
1486
+ line (black) represents the initial total mass of star-forming gas available at
1487
+ the start of the simulations (t0).
1488
+ MNRAS 000, 1–16 (2023)
1489
+
1490
+ 14
1491
+ J. Mercedes-Feliz et al.
1492
+ inflowing material to ∼90% of outflowing material over time. Some
1493
+ observations suggest that outflows driven by AGN feedback con-
1494
+ tain star-forming gas within the outflow itself, which may consti-
1495
+ tute a strong manifestation of positive AGN feedback (Santoro et al.
1496
+ 2016; Maiolino et al. 2017; Cresci & Maiolino 2018; Gallagher et al.
1497
+ 2019; Rodríguez del Pino et al. 2019). We have identified some ex-
1498
+ amples of outflowing star formation material, including a clear out-
1499
+ flow component contributing ≳70% of the total SFR (16 M⊙ yr−1 out
1500
+ of ∼ 20 M⊙ yr−1) with velocities reaching up to ∼1000 km s−1. How-
1501
+ ever, we do not see a consistent trend of outflowing gas dominating
1502
+ the SFR; the inflow component actually becomes more prevalent at
1503
+ later times, suggesting that gas pushed by the AGN winds has lower
1504
+ probability of forming stars except for short transitory phases.
1505
+ The small overall amount of star formation in fast outflows sug-
1506
+ gests that positive AGN feedback does not contribute much to high
1507
+ velocity stars populating the stellar halo, possibly less than similar
1508
+ processes operating in galactic winds driven by stellar feedback (Yu
1509
+ et al. 2020). This is in contrast with some analytic models where gas
1510
+ swept outward by radiation pressure from the AGN efficiently forms
1511
+ outflowing stars that drive the size and structural evolution of mas-
1512
+ sive galaxies (Ishibashi & Fabian 2012, 2014). Instead, the dominant
1513
+ structural effect of efficient AGN winds in our simulations is the sup-
1514
+ pression of the central starburst, with the consequent reduction in the
1515
+ nuclear stellar density and increase in the stellar effective radius of
1516
+ the galaxy (Anglés-Alcázar et al. in prep., Cochrane et al. in prep).
1517
+ In a companion paper (Mercedes-Feliz et al., in prep.), we explore in
1518
+ detail the role of powerful AGN winds driving the formation of very
1519
+ dense stellar clumps in rare but extreme positive feedback events.
1520
+ Future work should consider the role of AGN winds on a larger
1521
+ sample of galaxies across different halo masses and redshifts, to in-
1522
+ vestigate if the results presented here can be generalized beyond the
1523
+ specific galaxy conditions simulated here, and to evaluate whether
1524
+ host galaxy properties play a role in determining the efficiency
1525
+ of positive AGN feedback. In addition, future simulations should
1526
+ consider the impact of AGN winds coupled to BH accretion self-
1527
+ consistently, unifying our wind particle spawning technique with the
1528
+ hyper-refinement scheme presented in Anglés-Alcázar et al. (2021)
1529
+ to increase the mass resolution dynamically as gas approaches the
1530
+ BH. The BH accretion rate is expected to decrease owing to AGN
1531
+ feedback self-regulation (e.g. Di Matteo et al. 2005; Choi et al. 2012;
1532
+ Hopkins et al. 2016; Habouzit et al. 2021). Our results, assuming
1533
+ constant accretion rate, should thus represent an upper limit to the
1534
+ impact of accretion-driven winds for a given kinetic efficiency.
1535
+ 8 SUMMARY AND CONCLUSIONS
1536
+ We have presented a detailed analysis of a set of high-resolution cos-
1537
+ mological zoom-in simulations of a massive galaxy near the peak
1538
+ of star formation activity (Mhalo ∼ 1012.5 M⊙ at z ∼ 2) to inves-
1539
+ tigate the plausible positive versus negative effects of AGN feed-
1540
+ back during a luminous quasar phase. Crucially, our simulations
1541
+ include resolved multi-phase ISM physics from the FIRE project
1542
+ (Hopkins et al. 2018) and a novel implementation of hyper-refined
1543
+ AGN-driven winds that simultaneously captures their propagation
1544
+ and impact from the inner ≲10 pc to CGM scales (Anglés-Alcázar
1545
+ et al., in prep.). Comparing simulations without MBH feedback and
1546
+ with different AGN feedback strength, our results can be summa-
1547
+ rized as follows:
1548
+ • Strong AGN winds with 5% kinetic efficiency, powered by a
1549
+ MBH with mass MBH = 109 M⊙ accreting at the Eddington rate,
1550
+ drive the formation of a central gas cavity of size ∼200 pc and can
1551
+ dramatically reduce the star formation rate surface density across
1552
+ the galaxy disc in ∼30 Myr, indicating that powerful quasar winds
1553
+ have a global negative impact on star formation.
1554
+ • Most of the star formation suppression relative to the control
1555
+ simulation without AGN winds is driven by a strong reduction
1556
+ in the amount of new gas that can become star-forming during a
1557
+ period of intense gas accretion onto the galaxy. Direct ejection
1558
+ of the pre-existing star-forming gas reservoir at the beginning of
1559
+ the quasar phase only accounts for a small fraction of the overall
1560
+ reduction in stellar growth, suggesting that preventive feedback
1561
+ dominates over ejective feedback for strong AGN winds.
1562
+ • Reducing the kinetic efficiency by a factor of ten (ϵk = 0.5%)
1563
+ barely affects the star-forming rate of the host galaxy, with no clear
1564
+ signs of either global positive or negative feedback, while increasing
1565
+ the kinetic efficiency by a factor of ten (ϵk = 50%) results in a
1566
+ complete blow out of the star-forming gas reservoir in ≲10 Myr.
1567
+ • Compression of gas near the edge of the cavity by AGN winds can
1568
+ increase the local star formation rate surface density compared to
1569
+ the same radial range in the simulated galaxy without AGN winds.
1570
+ This local triggering of star formation is driven by the increased
1571
+ amount of gas accumulated at the edge of the cavity as well as the
1572
+ higher star formation efficiency of compressed gas.
1573
+ • The spatial anti-correlation of wind-dominated regions and star-
1574
+ forming clumps along with higher local star formation efficiencies
1575
+ constitute plausible signatures of local positive AGN feedback, in
1576
+ qualitative agreement with observations. However, the highest star
1577
+ formation efficiency reached across all simulations occurs in the
1578
+ absence of AGN winds, owing to the much larger central stellar
1579
+ mass surface density and the inability of stellar feedback to regulate
1580
+ star formation.
1581
+ • Besides the overall suppression of star formation, efficient AGN
1582
+ feedback drives a spatial and temporal shift in star formation. Stars
1583
+ that do form under the presence of AGN winds tend to do so at
1584
+ larger radial distances compared to stars formed out of the same gas
1585
+ clumps in the absence of AGN winds. Star formation also tends to
1586
+ occur earlier in time at the beginning of the quasar phase, with AGN
1587
+ winds triggering faster conversion of gas into stars in local regions,
1588
+ but comparatively later in time for stars forming after ∼20 Myr of
1589
+ global negative impact of AGN winds.
1590
+ • The main impact of AGN feedback on the kinematics of new
1591
+ stars is the reduction of their typical radial velocity (either positive
1592
+ or negative). The strong deepening of the nuclear gravitational
1593
+ potential in the absence of AGN winds results in stellar radial
1594
+ velocities reaching up to 1000 km s−1, while the suppression of the
1595
+ nuclear stellar density by AGN winds yields stellar radial velocities
1596
+ ≲ 500 km s−1.
1597
+ • AGN winds tend to produce decoupling of dynamical components,
1598
+ with star-forming gas dominated by either inflowing or outflowing
1599
+ material in different regions. In some cases, the local contribution of
1600
+ outflowing material to star formation can exceed that of the inflow
1601
+ component by factors >10. However, the inflow component tends
1602
+ to dominate at later times, suggesting that gas radially accelerated
1603
+ by the winds has lower probability of forming stars except for short
1604
+ transitory phases.
1605
+ MNRAS 000, 1–16 (2023)
1606
+
1607
+ Local positive AGN feedback in the overall negative
1608
+ 15
1609
+ In conclusion, our results suggest that positive and negative AGN
1610
+ feedback coexist in galaxies, where strong quasar winds can sup-
1611
+ press global stellar mass growth while locally triggering a small
1612
+ amount of star formation. The simulations presented here do not sup-
1613
+ port scenarios where positive AGN feedback is the dominant mech-
1614
+ anism powering rapid star formation in galaxies.
1615
+ ACKNOWLEDGEMENTS
1616
+ The simulations were run on Flatiron Institute’s research comput-
1617
+ ing facilities (Gordon-Simons, Popeye, and Iron compute clusters),
1618
+ supported by the Simons Foundation. We thank the Scientific Com-
1619
+ puting Core group at the Flatiron Institute for outstanding support.
1620
+ Additional numerical calculations were run on the Caltech compute
1621
+ cluster “Wheeler,” allocations FTA-Hopkins supported by the NSF
1622
+ and TACC, and NASA HEC SMD-16-7592, and XSEDE allocation
1623
+ TG-AST160048 supported by NSF grant ACI-1053575. JMF was
1624
+ supported in part by a NASA CT Space Grant Graduate Fellow-
1625
+ ship. DAA acknowledges support by NSF grants AST-2009687 and
1626
+ AST-2108944, CXO grant TM2-23006X, and Simons Foundation
1627
+ award CCA-1018464. SW was supported by an NSF Astronomy and
1628
+ Astrophysics Postdoctoral Fellowship under award AST2001905.
1629
+ CAFG was supported by NSF through grants AST-1715216, AST-
1630
+ 2108230, and CAREER award AST-1652522; by NASA through
1631
+ grants 17-ATP17-006 7 and 21-ATP21-0036; by STScI through
1632
+ grants HST-AR-16124.001-A and HST-GO-16730.016-A; by CXO
1633
+ through grant TM2-23005X; and by the Research Corporation for
1634
+ Science Advancement through a Cottrell Scholar Award. KS ac-
1635
+ knowledges support from the Black Hole Initiative at Harvard Uni-
1636
+ versity, which is funded by grants from the John Templeton Founda-
1637
+ tion and the Gordon and Betty Moore Foundation, and support from
1638
+ Simons Foundation.
1639
+ DATA AVAILABILITY
1640
+ The data supporting the plots within this article are available
1641
+ on reasonable request to the corresponding author. FIRE-2 sim-
1642
+ ulations are publicly available (Wetzel et al. 2022) at http://
1643
+ flathub.flatironinstitute.org/fire. Additional FIRE sim-
1644
+ ulation data, including initial conditions and derived data prod-
1645
+ ucts, are available at https://fire.northwestern.edu/data/.
1646
+ A public version of the GIZMO code is available at http://www.
1647
+ tapir.caltech.edu/~phopkins/Site/GIZMO.html.
1648
+ REFERENCES
1649
+ Alatalo K., et al., 2015, ApJ, 798, 31
1650
+ Alexander D. M., Hickox R. C., 2012, New Astron. Rev., 56, 93
1651
+ Anglés-Alcázar D., Özel F., Davé R., 2013, ApJ, 770, 5
1652
+ Anglés-Alcázar D., Özel F., Davé R., Katz N., Kollmeier J. A., Oppenheimer
1653
+ B. D., 2015, ApJ, 800, 127
1654
+ Anglés-Alcázar D., Davé R., Faucher-Giguère C.-A., Özel F., Hopkins P. F.,
1655
+ 2017a, MNRAS, 464, 2840
1656
+ Anglés-Alcázar D., Faucher-Giguère C.-A., Kereš D., Hopkins P. F., Quataert
1657
+ E., Murray N., 2017b, MNRAS, 470, 4698
1658
+ Anglés-Alcázar D., Faucher-Giguère C.-A., Quataert E., Hopkins P. F., Feld-
1659
+ mann R., Torrey P., Wetzel A., Kereš D., 2017c, MNRAS, 472, L109
1660
+ Anglés-Alcázar D., et al., 2021, ApJ, 917, 53
1661
+ Baldry I. K., Balogh M. L., Bower R. G., Glazebrook K., Nichol R. C., Bam-
1662
+ ford S. P., Budavari T., 2006, MNRAS, 373, 469
1663
+ Begelman M. C., Cioffi D. F., 1989, ApJ, 345, L21
1664
+ Bennert V. N., Auger M. W., Treu T., Woo J.-H., Malkan M. A., 2011, ApJ,
1665
+ 726, 59
1666
+ Bessiere P. S., Ramos Almeida C., 2022, MNRAS, 512, L54
1667
+ Bicknell G. V., Sutherland R. S., van Breugel W. J. M., Dopita M. A., Dey
1668
+ A., Miley G. K., 2000, ApJ, 540, 678
1669
+ Bieri R., Dubois Y., Silk J., Mamon G. A., 2015, ApJ, 812, L36
1670
+ Bieri R., Dubois Y., Silk J., Mamon G. A., Gaibler V., 2016, MNRAS, 455,
1671
+ 4166
1672
+ Bower R. G., Benson A. J., Malbon R., Helly J. C., Frenk C. S., Baugh C. M.,
1673
+ Cole S., Lacey C. G., 2006, MNRAS, 370, 645
1674
+ Byrne L., Faucher-Giguère C.-A., Stern J., Anglés-Alcázar D., Wellons S.,
1675
+ Gurvich A. B., Hopkins P. F., 2022, arXiv e-prints, p. arXiv:2210.09320
1676
+ Carniani S., et al., 2016, A&A, 591, A28
1677
+ Choi E., Ostriker J. P., Naab T., Johansson P. H., 2012, ApJ, 754, 125
1678
+ Choi E., Somerville R. S., Ostriker J. P., Naab T., Hirschmann M., 2018, ApJ,
1679
+ 866, 91
1680
+ Cicone C., et al., 2014, A&A, 562, A21
1681
+ Costa T., Rosdahl J., Sijacki D., Haehnelt M. G., 2018a, MNRAS, 473, 4197
1682
+ Costa T., Rosdahl J., Sijacki D., Haehnelt M. G., 2018b, MNRAS, 479, 2079
1683
+ Costa T., Pakmor R., Springel V., 2020, MNRAS, 497, 5229
1684
+ Cresci G., Maiolino R., 2018, Nature Astronomy, 2, 179
1685
+ Cresci G., et al., 2015a, A&A, 582, A63
1686
+ Cresci G., et al., 2015b, ApJ, 799, 82
1687
+ Croton D. J., et al., 2006, MNRAS, 365, 11
1688
+ Curtis M., Sijacki D., 2016, MNRAS, 463, 63
1689
+ Davé R., Finlator K., Oppenheimer B. D., Fardal M., Katz N., Kereš D.,
1690
+ Weinberg D. H., 2010, MNRAS, 404, 1355
1691
+ Davé R., Anglés-Alcázar D., Narayanan D., Li Q., Rafieferantsoa M. H.,
1692
+ Appleby S., 2019, MNRAS, 486, 2827
1693
+ Di Matteo T., Springel V., Hernquist L., 2005, Nature, 433, 604
1694
+ Drouart G., Rocca-Volmerange B., De Breuck C., Fioc M., Lehnert M., Sey-
1695
+ mour N., Stern D., Vernet J., 2016, A&A, 593, A109
1696
+ Dubois Y., Devriendt J., Slyz A., Teyssier R., 2012, MNRAS, 420, 2662
1697
+ Dugan Z., Gaibler V., Silk J., 2017, ApJ, 844, 37
1698
+ Fabian A. C., 2012, ARA&A, 50, 455
1699
+ Faucher-Giguère C.-A., Quataert E., 2012, MNRAS, 425, 605
1700
+ Faucher-Giguère C.-A., Quataert E., Hopkins P. F., 2013, MNRAS, 433,
1701
+ 1970
1702
+ Feruglio C., Maiolino R., Piconcelli E., Menci N., Aussel H., Lamastra A.,
1703
+ Fiore F., 2010, A&A, 518, L155
1704
+ Feruglio C., et al., 2015, A&A, 583, A99
1705
+ Fiore F., et al., 2017, A&A, 601, A143
1706
+ Gabor J. M., Bournaud F., 2014, MNRAS, 441, 1615
1707
+ Gabor J. M., Davé R., 2015, MNRAS, 447, 374
1708
+ Gaibler V., Khochfar S., Krause M., Silk J., 2012, MNRAS, 425, 438
1709
+ Gallagher R., Maiolino R., Belfiore F., Drory N., Riffel R., Riffel R. A., 2019,
1710
+ MNRAS, 485, 3409
1711
+ Gibson R. R., et al., 2009, ApJ, 692, 758
1712
+ Gilli R., et al., 2019, A&A, 632, A26
1713
+ Graham A. W., 2016, in Laurikainen E., Peletier R., Gadotti D., eds, As-
1714
+ trophysics and Space Science Library Vol. 418, Galactic Bulges. p. 263
1715
+ (arXiv:1501.02937), doi:10.1007/978-3-319-19378-6_11
1716
+ Grand R. J. J., et al., 2017, MNRAS, 467, 179
1717
+ Greene J. E., Zakamska N. L., Smith P. S., 2012, ApJ, 746, 86
1718
+ Habouzit M., et al., 2021, MNRAS, 503, 1940
1719
+ Hafen Z., et al., 2019, MNRAS, 488, 1248
1720
+ Hafen Z., et al., 2020, MNRAS, 494, 3581
1721
+ Harrison C. M., 2017, Nature Astronomy, 1, 0165
1722
+ Harrison C. M., Costa T., Tadhunter C. N., Flütsch A., Kakkad D., Perna M.,
1723
+ Vietri G., 2018, Nature Astronomy, 2, 198
1724
+ Hayward C. C., Narayanan D., Kereš D., Jonsson P., Hopkins P. F., Cox T. J.,
1725
+ Hernquist L., 2013, MNRAS, 428, 2529
1726
+ Hinshaw G., et al., 2013, ApJS, 208, 19
1727
+ Hirschmann M., De Lucia G., Fontanot F., 2016, MNRAS, 461, 1760
1728
+ Hopkins P. F., 2015, MNRAS, 450, 53
1729
+ Hopkins P. F., Elvis M., 2010, MNRAS, 401, 7
1730
+ Hopkins P. F., Quataert E., 2011, MNRAS, 415, 1027
1731
+ Hopkins P. F., Quataert E., Murray N., 2012, MNRAS, 421, 3522
1732
+ MNRAS 000, 1–16 (2023)
1733
+
1734
+ 16
1735
+ J. Mercedes-Feliz et al.
1736
+ Hopkins P. F., Kereš D., Oñorbe J., Faucher-Giguère C.-A., Quataert E., Mur-
1737
+ ray N., Bullock J. S., 2014, MNRAS, 445, 581
1738
+ Hopkins P. F., Torrey P., Faucher-Giguère C.-A., Quataert E., Murray N.,
1739
+ 2016, MNRAS, 458, 816
1740
+ Hopkins P. F., et al., 2018, MNRAS, 480, 800
1741
+ Irodotou D., et al., 2022, MNRAS, 513, 3768
1742
+ Ishibashi W., Fabian A. C., 2012, MNRAS, 427, 2998
1743
+ Ishibashi W., Fabian A. C., 2014, MNRAS, 441, 1474
1744
+ King A., 2005, ApJ, 635, L121
1745
+ Kormendy J., Ho L. C., 2013, ARA&A, 51, 511
1746
+ Leitherer C., et al., 1999, ApJS, 123, 3
1747
+ Madau P., Dickinson M., 2014, ARA&A, 52, 415
1748
+ Magorrian J., et al., 1998, AJ, 115, 2285
1749
+ Mahoro A., Povi´c M., Nkundabakura P., 2017, MNRAS, 471, 3226
1750
+ Maiolino R., et al., 2017, Nature, 544, 202
1751
+ McConnell N. J., Ma C.-P., 2013, ApJ, 764, 184
1752
+ Mitchell P. D., Schaye J., Bower R. G., Crain R. A., 2020, MNRAS, 494,
1753
+ 3971
1754
+ Moreno J., et al., 2021, MNRAS, 503, 3113
1755
+ Moreno J., et al., 2022, Nature Astronomy, 6, 496
1756
+ Muratov A. L., Kereš D., Faucher-Giguère C.-A., Hopkins P. F., Quataert E.,
1757
+ Murray N., 2015, MNRAS, 454, 2691
1758
+ Narayanan D., et al., 2015, Nature, 525, 496
1759
+ Nardini E., et al., 2015, Science, 347, 860
1760
+ Natarajan P., Sigurdsson S., Silk J., 1998, MNRAS, 298, 577
1761
+ Nayakshin S., 2014, MNRAS, 437, 2404
1762
+ Orr M. E., et al., 2018, MNRAS, 478, 3653
1763
+ Ostriker E. C., Shetty R., 2011, ApJ, 731, 41
1764
+ Pandya V., et al., 2020, ApJ, 905, 4
1765
+ Pandya V., et al., 2021, MNRAS, 508, 2979
1766
+ Parsotan T., Cochrane R. K., Hayward C. C., Anglés-Alcázar D., Feldmann
1767
+ R., Faucher-Giguère C. A., Wellons S., Hopkins P. F., 2021, MNRAS,
1768
+ 501, 1591
1769
+ Perna M., et al., 2020, A&A, 643, A139
1770
+ Ramos Almeida C., et al., 2022, A&A, 658, A155
1771
+ Rees M. J., 1989, MNRAS, 239, 1P
1772
+ Reines A. E., Volonteri M., 2015, ApJ, 813, 82
1773
+ Ricarte A., Tremmel M., Natarajan P., Quinn T., 2019, MNRAS, 489, 802
1774
+ Richings A. J., Faucher-Giguère C.-A., 2018a, MNRAS, 474, 3673
1775
+ Richings A. J., Faucher-Giguère C.-A., 2018b, MNRAS, 478, 3100
1776
+ Rodríguez del Pino B., Arribas S., Piqueras López J., Villar-Martín M., Col-
1777
+ ina L., 2019, MNRAS, 486, 344
1778
+ Santoro F., Oonk J. B. R., Morganti R., Oosterloo T. A., Tadhunter C., 2016,
1779
+ A&A, 590, A37
1780
+ Schutte Z., Reines A. E., 2022, Nature, 601, 329
1781
+ Shankar F., et al., 2020, Nature Astronomy, 4, 282
1782
+ Shin J., Woo J.-H., Chung A., Baek J., Cho K., Kang D., Bae H.-J., 2019,
1783
+ ApJ, 881, 147
1784
+ Silk J., 2005, MNRAS, 364, 1337
1785
+ Silk J., 2013, ApJ, 772, 112
1786
+ Silk J., Mamon G. A., 2012, Research in Astronomy and Astrophysics, 12,
1787
+ 917
1788
+ Somerville R. S., Davé R., 2015, ARA&A, 53, 51
1789
+ Stern J., et al., 2021, ApJ, 911, 88
1790
+ Sturm E., et al., 2011, ApJ, 733, L16
1791
+ Su K.-Y., et al., 2021, MNRAS, 507, 175
1792
+ Sutherland R. S., Bicknell G. V., 2007, ApJS, 173, 37
1793
+ Thomas N., Davé R., Anglés-Alcázar D., Jarvis M., 2019, MNRAS, 487,
1794
+ 5764
1795
+ Tollet É., Cattaneo A., Macciò A. V., Dutton A. A., Kang X., 2019, MNRAS,
1796
+ 485, 2511
1797
+ Tombesi F., Cappi M., Reeves J. N., Nemmen R. S., Braito V., Gaspari M.,
1798
+ Reynolds C. S., 2013, MNRAS, 430, 1102
1799
+ Tombesi F., Meléndez M., Veilleux S., Reeves J. N., González-Alfonso E.,
1800
+ Reynolds C. S., 2015, Nature, 519, 436
1801
+ Torrey P., et al., 2020, MNRAS, 497, 5292
1802
+ Volonteri M., Capelo P. R., Netzer H., Bellovary J., Dotti M., Governato F.,
1803
+ 2015, MNRAS, 452, L6
1804
+ Weinberger R., et al., 2017, MNRAS, 465, 3291
1805
+ Wellons S., Faucher-Giguère C.-A., Anglés-Alcázar D., Hayward C. C.,
1806
+ Feldmann R., Hopkins P. F., Kereš D., 2020, MNRAS, 497, 4051
1807
+ Wellons S., et al., 2022, arXiv e-prints, p. arXiv:2203.06201
1808
+ Wetzel A., et al., 2022, arXiv e-prints, p. arXiv:2202.06969
1809
+ Weymann R. J., Carswell R. F., Smith M. G., 1981, ARA&A, 19, 41
1810
+ Wylezalek D., Zakamska N. L., 2016, MNRAS, 461, 3724
1811
+ Wylezalek D., Flores A. M., Zakamska N. L., Greene J. E., Riffel R. A.,
1812
+ 2020, MNRAS, 492, 4680
1813
+ Yu S., et al., 2020, MNRAS, 494, 1539
1814
+ Zakamska N. L., Greene J. E., 2014, MNRAS, 442, 784
1815
+ Zirm A. W., et al., 2005, ApJ, 630, 68
1816
+ Zubovas K., Bourne M. A., 2017, MNRAS, 468, 4956
1817
+ Zubovas K., Nayakshin S., 2012, MNRAS, 424, 666
1818
+ Zubovas K., Nayakshin S., King A., Wilkinson M., 2013, MNRAS, 433,
1819
+ 3079
1820
+ APPENDIX A: STAR FORMATION EFFICIENCY PER
1821
+ FREE-FALL TIME
1822
+ Figure A1 shows the radial profile of the star formation efficiency
1823
+ (SFE), as in Figure 6, and the SFE per free-fall time (ϵff) for two
1824
+ snapshots, ∆t = 10 Myr and ∆t = 20 Myr since the start of the quasar
1825
+ feedback phase. We compute ϵff ≡ (SFR/Mgas) × tff = SFE × tff
1826
+ for each gas element according to its mass Mgas and SFR, where
1827
+ the free-fall time is defined as tff =
1828
+
1829
+ 3π/32Gρ. We then compute
1830
+ the mass-weighted average over all gas in cylindrical radial bins.
1831
+ The grey bands correspond to regions where ΣSFR is higher in the
1832
+ AGN-wind simulation compared to the no-wind case, which coin-
1833
+ cides with higher SFE and higher molecular gas mass surface den-
1834
+ sity in the presence of AGN winds (Figure 6). Here, we see that
1835
+ these regions also have higher effective star formation efficiency per
1836
+ free-fall time ϵff, recovering similar results. In the FIRE simulations,
1837
+ ϵff is a predicted quantity (Hopkins et al. 2018), with typical kpc
1838
+ scale-averaged efficiencies in the range ϵff ∼ 0.01 − 0.1 for Milky
1839
+ Way-mass galaxies at z = 0 (Orr et al. 2018), determined by stel-
1840
+ lar feedback self-regulation (Ostriker & Shetty 2011; Hopkins et al.
1841
+ 2012; Faucher-Giguère et al. 2013). Our simulations of a massive,
1842
+ high-redshift galaxy represent very different conditions either with
1843
+ our without AGN winds. In the no-wind simulation, we find that ϵff is
1844
+ significantly higher in the nuclear region because stellar feedback is
1845
+ no longer able to regulate star formation with such high stellar sur-
1846
+ face density; as expected, the average ϵff on kpc scales is much more
1847
+ similar to low-z Milky Way-mass galaxies. In the AGN-wind case,
1848
+ the ultra-compact nuclear region does not develop, and the efficiency
1849
+ remains in the range ϵff ∼ 0.01 − 0.1.
1850
+ This paper has been typeset from a TEX/LATEX file prepared by the author.
1851
+ MNRAS 000, 1–16 (2023)
1852
+
1853
+ Local positive AGN feedback in the overall negative
1854
+ 17
1855
+ 3.0
1856
+ 2.5
1857
+ 2.0
1858
+ 1.5
1859
+ 1.0
1860
+ 0.5
1861
+ 0.0
1862
+ log10(R) [kpc]
1863
+ 10
1864
+ 9
1865
+ 8
1866
+ 7
1867
+ 6
1868
+ 5
1869
+ log10(SFE) [yr
1870
+ 1]
1871
+ 6
1872
+ 5
1873
+ 4
1874
+ 3
1875
+ 2
1876
+ 1
1877
+ 0
1878
+ log10( ff)
1879
+ 6
1880
+ 5
1881
+ 4
1882
+ 3
1883
+ 2
1884
+ 1
1885
+ 0
1886
+ log10( ff)
1887
+ t = 10.0 Myr
1888
+ No-wind
1889
+ AGN-wind
1890
+ SFE
1891
+ ff
1892
+ 3.0
1893
+ 2.5
1894
+ 2.0
1895
+ 1.5
1896
+ 1.0
1897
+ 0.5
1898
+ 0.0
1899
+ log10(R) [kpc]
1900
+ 10
1901
+ 9
1902
+ 8
1903
+ 7
1904
+ 6
1905
+ 5
1906
+ log10(SFE) [yr
1907
+ 1]
1908
+ 6
1909
+ 5
1910
+ 4
1911
+ 3
1912
+ 2
1913
+ 1
1914
+ 0
1915
+ log10( ff)
1916
+ 6
1917
+ 5
1918
+ 4
1919
+ 3
1920
+ 2
1921
+ 1
1922
+ 0
1923
+ log10( ff)
1924
+ t = 20.0 Myr
1925
+ No-wind
1926
+ AGN-wind
1927
+ SFE
1928
+ ff
1929
+ Figure A1. Radial profile of the star formation efficiency (SFE; solid lines) and the SFE per free-fall time (ϵff; dashed lines) at time ∆t = 10 Myr (left) and
1930
+ ∆t = 20 Myr (right) since the beginning of the quasar feedback phase for the no-wind (blue) and AGN-wind (orange) simulations. The vertical grey band
1931
+ indicates the main region where SFE and ϵff are higher in the AGN-wind simulation compared to the no-wind case, which also corresponds to a region with
1932
+ higher ΣSFR in the presence of AGN winds.
1933
+ MNRAS 000, 1–16 (2023)
1934
+
SNAzT4oBgHgl3EQf0f5U/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
UtAyT4oBgHgl3EQfhfhI/content/tmp_files/2301.00377v1.pdf.txt ADDED
@@ -0,0 +1,748 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ITHACA. A TOOL FOR INTEGRATING FUZZY
2
+ LOGIC IN UNITY
3
+ 1st Alfonso Tejedor Moreno
4
+ Department of Computer Science
5
+ University of Almeria
6
+ Almeria 04120, Spain
7
8
+ 2nd Jose A. Piedra-Fernandez
9
+ Department of Computer Science
10
+ University of Almeria
11
+ Almeria 04120, Spain
12
13
+ 3rd Juan Jesus Ojeda-Castelo
14
+ Department of Computer Science
15
+ University of Almeria
16
+ Almeria 04120, Spain
17
18
+ 4th Luis Iribarne Member, IEEE
19
+ Department of Computer Science
20
+ University of Almeria
21
+ Almeria 04120, Spain
22
23
+ Abstract—Ithaca is a Fuzzy Logic (FL) plugin for developing
24
+ artificial intelligence systems within the Unity game engine. Its
25
+ goal is to provide an intuitive and natural way to build advanced
26
+ artificial intelligence systems, making the implementation of such
27
+ a system faster and more affordable. The software is made up
28
+ by a C# framework and an Application Programming Interface
29
+ (API) for writing inference systems, as well as a set of tools
30
+ for graphic development and debugging. Additionally, a Fuzzy
31
+ Control Language (FCL) parser is provided in order to import
32
+ systems previously defined using this standard.
33
+ Index Terms—Artificial Intelligence, Fuzzy Logic, Fuzzy Con-
34
+ trol Language, video games.
35
+ I. INTRODUCTION
36
+ G
37
+ RAPHICS is a relevant factor in terms of video games
38
+ and that fact is appreciated in the latest development of
39
+ video games and consoles. Each new generation of consoles
40
+ empower their resources such as a graphic card with a lot
41
+ of calculation, a processor with many cores and so forth.
42
+ Therefore, the video games are developed with very realistic
43
+ graphics and the users feel that they are part of a real
44
+ environment more than a virtual world. However, users are
45
+ more demanding and currently artificial intelligence (AI) plays
46
+ a significance role in this field since a video game is not really
47
+ popular if its graphics are spectacular but its AI is very low.
48
+ In fact, the quality of AI is an important feature in order to
49
+ increase the immersion and enjoyment of the players [1].
50
+ The AI has been a magnificent contribution to the video
51
+ games sector since it has mastered games as Chess [2] or Go
52
+ [3]. Or even the algorithm developed by DeepMind which
53
+ is able to cooperate with human players or other machine
54
+ players [4]. These agents have been tested in the game Quake
55
+ III. According to Pirovano [5], the two most common AI
56
+ techniques found in games are Finite State Machines (FSM)
57
+ and Decision Trees (DT), far from the performance of more
58
+ complex techniques like Artificial Neural Networks (ANN)
59
+ and Genetic Algorithms (GA). Therefore our main goal is
60
+ making AI achievable for small and medium sized teams, pro-
61
+ viding a tool for implementing a technique halfway between
62
+ the easy to use of the FSM and the power and flexibility of
63
+ the ANN. And right from the most used game engine, Unity 1
64
+ (Fast Facts - Unity) The AI in games is not only for the NPC
65
+ or that the player can make more decisions in the game if not
66
+ that AI is being used to remaster video games and improve
67
+ the quality of these products in hours.
68
+ On the other hand, most game developers work on huge
69
+ constraints of time and budget, thus the AI implemented
70
+ specifically in games by indie developers is naive at best, if
71
+ there is any at all. That is the reason that we have developed a
72
+ plugin with fuzzy logic in order to help the developers and so
73
+ forth to apply fuzzy logic in their projects in a easy way and
74
+ make the most of it. Moreover, this plugin was developed for
75
+ Unity because this game engine is operated from students or
76
+ hobbyists to professionals and game studios. Unity allows the
77
+ developers to create video games in multiple platforms, more
78
+ exactly 30 different platforms, such as mobile, PC or console.
79
+ As a result, this tool is very useful for people who wants
80
+ to learn how to develop games, people that they only want to
81
+ create a video game as a hobby or even in a more professional
82
+ level entrepreneurs who wants to set up their entertainment
83
+ company or create a professional game. Furthermore, this
84
+ plugin has been designed with the fundamental functions of
85
+ fuzzy logic and is very easy to use because it is aimed at
86
+ beginners without previous knowledge of the subject. And
87
+ this is possible because Unity is adapted to many needs being
88
+ its learning process very easy at the beginning although it
89
+ gets more difficult if you want to do a complex game. These
90
+ features make that this game engine is used by a wider
91
+ population than other game engines as Unreal Engine 2 In
92
+ fact, John Riccitiello (Unity CEO) states that the half of all
93
+ the games has been developed on Unity 3.
94
+ The objectives of the project are:
95
+ 1Unity - https://unity.com/
96
+ 2Unreal Engine - https://www.unrealengine.com/en-US/
97
+ 3Unity games developed - https://techcrunch.com/2018/09/05/unity-ceo-
98
+ says-half-of-all-games-are-built-on-unity/
99
+ arXiv:2301.00377v1 [cs.AI] 1 Jan 2023
100
+
101
+ This is a preprint and it is not the ultimate version.
102
+ • Create an easy to use tool that makes the Artificial Intelli-
103
+ gence and Fuzzy Logic available to all game developers.
104
+ • The tool has to be simple and flexible in order to be used
105
+ in any kind of projects and games.
106
+ • The user must be able to work with the tool using either
107
+ a Graphical User Interface (GUI) or an API.
108
+ • Be compliant with the FCL standard as defined in IEC
109
+ 61131-7 [6]
110
+ The remainder of the paper is organized as follows: Section
111
+ II presents some background on Fuzzy Logic and Artificial In-
112
+ telligence. Section III describes the architecture and its Fuzzy
113
+ Logic foundations. Section IV shows the results obtained
114
+ by building a few small games. Section V summarizes the
115
+ conclusions and discusses the future work.
116
+ II. BACKGROUND
117
+ In 1940 Edward Uhler Condon presented a Math game at
118
+ the exhibition of Westinghouse. This human vs machine game
119
+ was played by thousands of people of which only 10% were
120
+ able to beat the machine. However, it was not until the 1970s
121
+ that video games began to commercialize on a large scale, as
122
+ in the case of the game developed by the Atari company: Pong
123
+ [7]. At that time, Neural Networks were not included in the AI
124
+ system of the video game, although simpler techniques such as
125
+ finite state machines were used. The next section will briefly
126
+ describe the influence of AI in the world of video games.
127
+ A. Artificial Intelligence in Games
128
+ In 1959 Arthur Lee Samuel introduced Artificial Intel-
129
+ ligence into the world of video games, more specifically
130
+ teaching a computer how to play the game of checkers [8].
131
+ Thereafter, other games were developed that included artificial
132
+ intelligence, highlighting the video game Space Invaders in the
133
+ 70s and Pac-Man in the 80s. In Space Invaders, complexity
134
+ was added to the game by introducing hash functions that
135
+ ”learned” from the player’s actions. The heart of the Pac-
136
+ Man game is the behavior of the ghosts that are the player’s
137
+ enemies, where each one has a different behavior [9] and it is
138
+ controlled by a state machine [10]. In the 90s video games
139
+ were booming due to the appearance of various consoles
140
+ such as Gameboy, SNES or PS One. This expansion also
141
+ produced the inclusion of more complex AI systems, with
142
+ special mention to the Half-life video game in which it existed
143
+ a cooperation between the enemies to kill the player [11].
144
+ In the 21st century AI has advanced considerably and its
145
+ algorithms are capable of defeating a human player in games
146
+ like Starcraft II [12], [13].
147
+ All these developments have in common, regardless of the
148
+ AI that they integrated, the improvement of the user experience
149
+ and for this objective AI is an outstanding candidate. AI can
150
+ be used in different aspects of a video game as pathfinding,
151
+ movement, making decision or learning [10], but probably
152
+ the one that stands out the most is the one that controls
153
+ the behavior of NPCs. The reason is because if the behavior
154
+ of these elements is realistic and resembles the real world,
155
+ the users will feel that he is not playing in an artificial and
156
+ predefined world but in a world more similar to their own. In
157
+ reference to this last idea, it is important to remember that the
158
+ aim of the AI is not to beat the player always, since the fun and
159
+ motivation would be lost, but rather to create an experience as
160
+ realistic as possible.
161
+ There are even studies that have analyzed the feasibility of
162
+ Deep reinforcement learning for serious games [14]
163
+ In addition to Deep reinforcement learning, genetic algo-
164
+ rithms have brought improvements in this area. In [15] AI
165
+ characters for fighting games can be generated with the help of
166
+ genetic algorithms and through a low-cost process. Moreover,
167
+ it has also been used in a soccer simulator (Robocup Soccer)
168
+ with the aim of improving decision making in the simulation
169
+ of soccer teams [16]. The result of the implementation of this
170
+ enhancement was that two of the three teams that made up
171
+ this system were top teams in the RoboCup competition. In
172
+ [17] sets out to apply genetic algorithms in real-time strategy
173
+ games to learn new and effective strategies for this type of
174
+ game. The problem is that these types of actions are usually
175
+ abstract for the player and for this reason in this work they
176
+ focus on learning strategies that can be easily interpreted by
177
+ people. Furthermore, this type of algorithms have also been
178
+ used in games such as Backgammon [18] or Chess [19].
179
+ In the previous paragraphs, a series of applications have
180
+ been shown that are far from the AI techniques used in the
181
+ first video games, which were defined by rule-based systems,
182
+ that constitute the most basic algorithms in AI. More complex
183
+ and innovative structures such as Deep learning or genetic
184
+ algorithms are currently integrated. However, there is an AI
185
+ technique called fuzzy logic that, despite not being as popular
186
+ as neural networks, is very useful for this type of development
187
+ and will be described below.
188
+ B. Fuzzy Logic
189
+ Fuzzy Logic is advisable for solving many problems where
190
+ the uncertainty is a main actor, for instance the uncertain
191
+ multi-criteria decision making problem [20]. It is broadly
192
+ used in controllers where it is hard to obtain a mathematical
193
+ model, or systems that need to work with some vagueness or
194
+ ambiguousness. Some applications created with fuzzy logic
195
+ would be medical applications [21], daily life applications
196
+ as the washing machine [22], natural interaction with face
197
+ recognition [23] and posture recognition [24] and lastly smart
198
+ cities. Perhaps the last one could be disconcerting, notwith-
199
+ standing the growth of cities has generated various problems in
200
+ them. The administration of aspects such as waste collection,
201
+ environmental pollution, traffic, energy distribution or water,
202
+ becomes an increasingly complex task. Fuzzy logic has con-
203
+ tributed to energy efficiency in smart cities [25].
204
+ 1) Fuzzy Logic in Games: Fuzzy logic, like other AI
205
+ techniques cited previously, has also contributed to video
206
+ games. In special needs, games have been developed specially
207
+ for autistic people. In [26] FL is used in order to rate the
208
+ social skills in autistic children and adapt the level of the
209
+ game to them. In the diagnoses of a patient’s autism level,
210
+ the patient has to carry out activities that will determine that
211
+ 2
212
+
213
+ This is a preprint and it is not the ultimate version.
214
+ level. The authors of this work [27] have designed a game
215
+ that is able to calculate the player’s autism level using FL.
216
+ Nevertheless, apart from carrying out work with people with
217
+ autism, serious games have also been designed for people with
218
+ physical impairments, such as the example of this game called
219
+ ReHabGame [28] where a series of activities are conducted
220
+ for the upper and lower limbs, in order to evaluate and
221
+ improve motor and sensory faculties in patients who have
222
+ neuromuscular problems. This serious game allows the user
223
+ to interact with Kinect in order to obtain information on the
224
+ movement of their body during the performance of tasks and
225
+ thus the fuzzy logic system will be able to extract and analyze
226
+ the data corresponding to the positions of the users to satisfy
227
+ their needs. In addition to ReHabGame, other serious games
228
+ with different themes have also been developed, such as this
229
+ serious game, in which the authors have studied the variables
230
+ of throttle position sensor, engine rotation speed and car speed
231
+ to determine by FL whether the driving style is efficient and in
232
+ this way improve driver behavior in front of the steering wheel
233
+ [29]. The authors expanded the work done integrating FL and
234
+ Random Forest in order to know which algorithm was best
235
+ for this type of serious game. The results indicated that the
236
+ advantage of FL was that it produced understandable linguistic
237
+ feedback while Random Forest predicted fuel consumption
238
+ more accurately [30]. Another work that is worth mentioning
239
+ for its novelty is the study conducted in [31] which aims to
240
+ create a game to induce emotions in students with the aim
241
+ of improving their learning process through inductive control.
242
+ This system integrates fuzzy logic to analyze the performance
243
+ and emotional state of the players through a voice analysis.
244
+ C. AI Plugins for Unity
245
+ Recently the Unity engine has finally embraced artificial
246
+ intelligence, adding Machine Learning (ML) to its pathfinding
247
+ tool. The most outstanding open-source plugin that this game
248
+ engine has it is called ML-Agents. This plugin enables games
249
+ and simulators to become a training environment to train
250
+ artificial intelligence agents through reinforcement learning
251
+ [32]. Anyhow, if a developer wants to implement another
252
+ technique the first stop is the Unity’s Assets Store, filled
253
+ with thousand of plugins. But among all the variety of tools
254
+ available, those intended for implementing AI are scarce, and
255
+ only one of them is based on fuzzy logic. This plugin is just
256
+ a Fuzzy Logic layer for another tool aimed to build fighting
257
+ games. The best solution is using an external library called
258
+ AForge.net (AForge.NET). Written in C#, is an AI library
259
+ that includes an API for working with Neural Networks,
260
+ Artificial Vision, and Machine Learning, among others. Given
261
+ the broad scope of the library, the Fuzzy Logic implementation
262
+ is shallow but easy to use. It has no Unity integration, so
263
+ it lacks of GUI and makes it harder to use by staff like
264
+ designers. The project is open source with a LGPLv3 license,
265
+ so it can be easily extended, but our tool already has most
266
+ of the elements it lacks like more membership functions,
267
+ operators, or defuzzification methods. Ithaca was built from
268
+ scratch thinking in Unity, so it implements components that
269
+ can be attached to game objects. It also has a GUI for defining
270
+ a system and debugging it without writing a single line of
271
+ code. All these makes our solution more complete, more
272
+ powerful and flexible, and thanks to its integration with Unity,
273
+ easier to use.
274
+ III. ITHACA
275
+ A. What is Ithaca
276
+ Ithaca is a tool for integrating a Fuzzy Logic Inference
277
+ System (FIS) on any project developed with the Unity engine.
278
+ It is written in C# but it is not compiled, so all code is available
279
+ to the developer for any needed modification. This makes the
280
+ tool platform-independent, allowing to use it in any device
281
+ among the ones available in Unity. Its core consist in a Fuzzy
282
+ Rule Based System (FRBS) that evaluates a set of rules which
283
+ are formed by fuzzy sets and fuzzy logic.
284
+ B. Fuzzy Logic and Inference Engine
285
+ The fuzzy inference system implemented in Ithaca uses the
286
+ Mamdani model, where the consequent of the IF-THEN rules
287
+ is a fuzzy statement like this:
288
+ IF X is A and Y is B THEN Z is C
289
+ This way of writing rules is natural and intuitive, making it
290
+ more suitable for developing systems where we are trying to
291
+ simulate human decision making. This model is less efficient
292
+ than the Sugeno model, where the consequent of the rules are
293
+ algebraic expressions [33] so the defuzzifying step is faster to
294
+ compute. For defuzzifying Mamdani FIS we implemented the
295
+ next methods:
296
+ • Centroid or Centre of Gravity (COG):
297
+ COG =
298
+ � max
299
+ min xµ(x)dx
300
+ � max
301
+ min µ(x)dx
302
+ • Centroid for Singleton (COGS):
303
+ COGS =
304
+
305
+ i xiµi
306
+
307
+ i µi
308
+ • Bisector or Centre of Area (COA):
309
+ COA = u′,
310
+ � u′
311
+ min
312
+ µ(u)du =
313
+ � max′
314
+ u′
315
+ µ(u)du
316
+ • Mean of Maximum (MOM):
317
+ MOM =
318
+
319
+ Amax xdx
320
+
321
+ Amax dx
322
+ • Right Most (RM):
323
+ RM = {x|x > x′, ∀x′ ∈ Amax}
324
+ • Left Most (LM):
325
+ LM = {x|x < x′, ∀x′ ∈ Amax}
326
+ For the fuzzifying interface we wrote twelve membership
327
+ functions, being some of them specific cases from more
328
+ general functions, but broadly used. Regarding the logical
329
+ 3
330
+
331
+ This is a preprint and it is not the ultimate version.
332
+ connectives for the rules’ elements, conjunction can be defined
333
+ by a set of different t-norm methods. The same happens to the
334
+ union, which may be defined using one of various t-conorms.
335
+ All the methods implemented are:
336
+ • Membership functions:
337
+ – Singleton.
338
+ – Piecewise.
339
+ – Triangle.
340
+ – Trapezoid.
341
+ – Grade.
342
+ – Reverse grade.
343
+ – Gaussian.
344
+ – Double Gaussian.
345
+ – Bell.
346
+ – Cosine.
347
+ – Sigmoidal.
348
+ – Difference of sigmoidals.
349
+ • T-Norm (AND operation):
350
+ – Min (G¨odel-Dummett).
351
+ – Product
352
+ – Bounded Difference (Łukasiewicz).
353
+ • T-CoNorm (OR operation):
354
+ – Max.
355
+ – ASUM.
356
+ – BSUM.
357
+ – NSUM.
358
+ C. Architecture
359
+ The system architecture is divided in three subsystem;
360
+ the core, the graphics subsystem, and the parser. The core
361
+ subsystem has three main components (Figure 1):
362
+ Fig. 1: System architecture
363
+ 1) The fuzzifier interface: this is where the crisp input
364
+ values are turned into fuzzy values depending on the
365
+ membership functions.
366
+ 2) The inference system: all the rules are evaluated here.
367
+ The antecedents determine the value of the consequences
368
+ and the result is a fuzzy value.
369
+ 3) The defuzzifier interface: the outputs are turned into
370
+ crisp values in order to be used in the game.
371
+ The graphics subsystem is formed by the classes for the GUI
372
+ and an additional set of classes, in a separated namespace, for
373
+ drawing the graphs for the membership functions (Figure 3).
374
+ Unity has no built-in system for drawing graphs, so we had to
375
+ build our own plugin. We made it decoupled from the rest of
376
+ the GUI so it could be used in other cases. At last, the parser
377
+ subsystem translates the FCL files to the Ithaca inner format.
378
+ The inference engine structure is based in the FCL’s def-
379
+ inition, where a system is represented by a Function Block
380
+ (FB), which in turn is defined by a set of Linguistic Variables
381
+ (LV) as inputs and outputs, and a set of rules or Rule Block
382
+ (RB). Each LV represents a domain of knowledge, and if
383
+ declared as input has as many fuzzy sets as needed. Each
384
+ fuzzy set has a membership function that defines the degree of
385
+ correspondence of an input value to this set. On the other side,
386
+ if a LV is declared as output, it has an additional defuzzifier
387
+ method to translate the fuzzy values to crisp values. The rules
388
+ set is changeable in runtime, making it possible to adapt the
389
+ knowledge base depending of the needs.
390
+ Once a system is defined using the API, GUI, or a FCL file,
391
+ the inference engine can be called during gameplay asking for
392
+ an output depending on the current value, or with a new value.
393
+ The GUI has a main window with three tabs (see Figure 2):
394
+ • One for creating/loading a system
395
+ • Another one for defining input and output variables
396
+ • The last one to write sets of rules
397
+ Fig. 2: Ithaca window
398
+ The first tab lets the user create a new system or import
399
+ one already defined. The systems can be exported to JSON
400
+ format, and be loaded back from JSON and also from an
401
+ FCL file. This lets the users save and exchange systems in a
402
+ format trackable by version control software. Once the system
403
+ is created, an asset file is created in the Unity project. This is
404
+ a binary file with a serialization of the full system. If the asset
405
+ file is selected, it can be edited from this window. The second
406
+ tab is for declaring the input and output linguistic variables.
407
+ Once the LV is created, it can be edited in order to add the
408
+ fuzzy sets and its membership functions (Figure 3). The user
409
+ can declare the limits of the LV and its default value.
410
+ Finally, in the third tab, the user can define sets of rules
411
+ written in natural language (Figure 4). For each set of rules the
412
+ user can decide the methods for the operations. This operations
413
+ are:
414
+ 4
415
+
416
+ Ithaca Fuzzy Logic Editor
417
+ System info
418
+ Variables
419
+ Rules
420
+ Info
421
+ Import/Export
422
+ Name:container_crane
423
+ Save as JSON
424
+ LoadfromJSON
425
+ Load from FCLThis is a preprint and it is not the ultimate version.
426
+ Fig. 3: Linguistic variable editor
427
+ • The methods for the logic operations AND/OR, also
428
+ called aggregation operation. In order to satisfy De Mor-
429
+ gan’s law the methods must go in the following pairs:
430
+ – Min-Max
431
+ – Prod-ASUM
432
+ – BDIF-BSUM
433
+ • The methods for the activation operation. This operation
434
+ translates the result of the antecedent to the consequent.
435
+ – Min
436
+ – Prod
437
+ • The method for the accumulation operation. This oper-
438
+ ation takes the results from the consequent of all fired
439
+ rules and combines its values to obtain one output.
440
+ – Max
441
+ – BSUM
442
+ – NSUM
443
+ If the used defines more than one set of rules, a default one
444
+ must be choosen. As we said, the RB can be changed during
445
+ runtime.
446
+ Fig. 4: Rules editor
447
+ There is also an additional window, the debugger. It lets the
448
+ developer debug both the graphs values and the rules that fired
449
+ and its values. (Figure 5).
450
+ Fig. 5: Debug window
451
+ D. Features
452
+ The main features of the Ithaca tool are:
453
+ • A powerful GUI that allows to define a full system using
454
+ graphs.
455
+ • The inference system used is Mamdani, which uses fuzzy
456
+ sets as outputs for the rules. This way the output is easier
457
+ to use by the developer in most cases.
458
+ • Covers the most used membership functions, defuzzifier
459
+ methods, and operation expressions. The user can define
460
+ new functions, methods, or expressions.
461
+ • It is not compiled, thus the user can modify the code as
462
+ needed within Unity.
463
+ • A graphical debugging system that allow to check in real
464
+ time the input and output values, as well as the values of
465
+ every rule and if it was fired.
466
+ • It can be used to build games in any platform available
467
+ in Unity.
468
+ IV. RESULTS
469
+ A. Crane
470
+ The goal of this test was to build a complex system using
471
+ our tool, and to check the compliance with the FCL standard.
472
+ So we decided to use the crane system defined in the FCL
473
+ standard [6], that controls container crane that loads and
474
+ unloads containers from ships. The controller must moves the
475
+ containers taking care of the speed and angle(Figure 6). The
476
+ rules of the system were:
477
+ 1) IF distance IS far AND angle IS zero THEN power IS
478
+ pos medium.
479
+ 2) IF distance IS far AND angle IS neg small THEN power
480
+ IS pos high.
481
+ 5
482
+
483
+ 0.75
484
+ 0.5
485
+ 0.25
486
+ 1.25
487
+ 2.5
488
+ 3.75
489
+
490
+ Rocket_Ammunition Sets
491
+ Low:Inverse Grade function
492
+ Ok: Triangular function
493
+ High: Grade functionIthaca Fuzzy Logic Editor
494
+ Systeminfo
495
+ Variables
496
+ Rules
497
+ Default:
498
+ Nol
499
+ AND/OR:
500
+ MIN- MAX
501
+ ACT:
502
+ MIN
503
+ ACCUM:
504
+ MAX
505
+ Nol rule block
506
+ O:IF distance Is farANDangle IS zero THEN power IS pos_medium
507
+ 1:IF distanceIS farANDangle IS neg_small THENpowerISpos_high
508
+ 2:IF distance IS far AND angle IS neg_big THEN power IS pos_medium
509
+ 3:IF distance IS medium AND angle IS neg_small THEN powerIS neg_medium
510
+ 4: IF distance IS closeAND angle IS pos_small THENpowerISpos_medium
511
+ 5: IF distance IS zero AND angle IS zero THEN power IS zero
512
+ NewRuleblock
513
+ Delete Ruleblock
514
+ Ithacav.1.ob.AlfonsoTejedorMoreno2ol6Ithaca Debugger
515
+ Graphs
516
+ Rules
517
+
518
+ Distance (10)
519
+ 1
520
+ 0.75
521
+ 0.5
522
+ 0.25
523
+ 2.5
524
+ 7.5
525
+ 10
526
+ Ammunition (10)
527
+ 0.75
528
+ 0.5
529
+ 0.25
530
+ 10
531
+ 15
532
+ 20
533
+ Desirability (0.1941917)
534
+ 0.75
535
+ 0.5
536
+ 0.25
537
+ 0.25
538
+ 0.5
539
+ 0.75
540
+ 1This is a preprint and it is not the ultimate version.
541
+ 3) IF distance IS far AND angle IS neg big THEN power
542
+ IS pos medium.
543
+ 4) IF distance IS medium AND angle IS neg small THEN
544
+ power IS neg medium.
545
+ 5) IF distance IS close AND angle IS pos small THEN
546
+ power IS pos medium.
547
+ 6) IF distance IS zero AND angle IS zero THEN power IS
548
+ zero.
549
+ The test demonstrated both the compliance with the FCL
550
+ standard and the usefulness of the tool for building complex
551
+ system using natural knowledge provided by specialists like a
552
+ crane operator.
553
+ Fig. 6: Crane simulation
554
+ B. Race car
555
+ The objective in this test was to develop an adversary AI
556
+ that looks natural and realistic, and to develop it entirely with
557
+ the GUI. Many times it is important to keep the illusion that
558
+ we are playing against a human to engage with the player,
559
+ even if it makes our AI less optimal. The vagueness of the
560
+ Fuzzy Logic makes it ideal for developing systems that act as
561
+ imprecise as a human would. In this case we built two race
562
+ cars, both with the same sensors and almost the same set of
563
+ rules. But one, called ”Classic car”, used classic logic, while
564
+ the ”Fuzzy car” used our inference system. The knowledge
565
+ base used was:
566
+ 1) IF Front IS Normal THEN Steering IS Straight, Speed
567
+ IS Somewhat Fast.
568
+ 2) IF Front IS Far THEN Steering IS Straight, Speed IS
569
+ Very Fast.
570
+ 3) IF Left IS Close THEN Steering IS Right.
571
+ 4) IF Right IS Close THEN Steering IS Left.
572
+ 5) IF VeryLeft IS Close THEN Steering IS VeryRight.
573
+ 6) IF VeryRight IS Close THEN Steering IS VeryLeft.
574
+ The results were that the fuzzy car was faster and its
575
+ trajectory was much more natural (Figure 7). As for the use
576
+ of the GUI, the system revealed itself as faster than using the
577
+ API.
578
+ Fig. 7: Paths followed by AI cars
579
+ V. CONCLUSIONS
580
+ After the experience of developing those tests and some
581
+ more small games, the power of our tool was clear. Its
582
+ installation and integration on the project are really simple
583
+ and straightforward, making the first step as easy as possible
584
+ for any developer, especially the ones less experienced. This
585
+ point is noteworthy as many of the users of Unity are not
586
+ seasoned programmers.
587
+ The use of the GUI or the FCL makes building a Fuzzy
588
+ Logic AI more approachable for small teams or solo develop-
589
+ ers, who can spend more time designing the behaviour of the
590
+ agents rather than writing code. The use of natural language
591
+ for writing the rules and defining the variable makes it easier
592
+ to involve staff that does not know how to code but has a great
593
+ knowledge of the matter. This allows these teams to focus on
594
+ what is perceived by the players, the gameplay and the way
595
+ of acting of its artificial intelligence.
596
+ Not only is it easy to develop, but it is also very simple
597
+ to debug and maintain. Using natural language the developer
598
+ is able to understand what is happening in the system at any
599
+ moment and know what to expect from it. The debugging
600
+ window is additional help on this task, as the user can read
601
+ the status of the system and its expected outcomes in a visual
602
+ way.
603
+ A. Future Work
604
+ • To implement Combs method for reducing the number of
605
+ rules needed by combining them.
606
+ • To add the option to create Fuzzy Finite State Machines
607
+ (FuFSM). The FSM is a very popular technique among
608
+ game developers and the use of FL can provide a degree
609
+ of uncertainty very valuable in some cases.
610
+ • To generate the knowledge base implementing Adaptive
611
+ Network-based Fuzzy Inference System (ANFIS) [34].
612
+ This would allow creating more powerful systems thanks
613
+ to the use of NN.
614
+ 6
615
+
616
+ Distance:12.03
617
+ Angle:-32.12
618
+ Motor power: 2.48Fuzzy car
619
+ Classic carThis is a preprint and it is not the ultimate version.
620
+ • To implement Takagi-Sugeno method for inference.
621
+ • To implement the new Fuzzy Markup Language (FML),
622
+ based on XML [35].
623
+ ACKNOWLEDGMENT
624
+ This work was funded by the EU ERDF and the Spanish Min-
625
+ istry of Economy and Competitiveness (MINECO) under the
626
+ Project TIN2017-83964-R. This work also received funding
627
+ from the CEiA3 and CEIMAR consortium.
628
+ REFERENCES
629
+ [1] A. Nareyek, “Ai in computer games,” Queue, vol. 1, no. 10, pp. 58–65,
630
+ 2004.
631
+ [2] M. Newborn, Kasparov versus Deep Blue: Computer chess comes of
632
+ age.
633
+ Springer Science & Business Media, 2012.
634
+ [3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
635
+ Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
636
+ M. Lanctot et al., “Mastering the game of go with deep neural networks
637
+ and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.
638
+ [4] M. Jaderberg, W. M. Czarnecki, I. Dunning, L. Marris, G. Lever, A. G.
639
+ Castaneda, C. Beattie, N. C. Rabinowitz, A. S. Morcos, A. Ruder-
640
+ man et al., “Human-level performance in 3d multiplayer games with
641
+ population-based reinforcement learning,” Science, vol. 364, no. 6443,
642
+ pp. 859–865, 2019.
643
+ [5] M. Pirovano, “The use of fuzzy logic for artificial intelligence in games,”
644
+ University of Milano, 2012.
645
+ [6] International Electrotechnical Commission, “IEC 61131-7 Committee
646
+ Draft CD 1.0,” 1997.
647
+ [7] T. S. Perry and P. Wallich, “Microprocessors: Design case history: The
648
+ atari video computer system: By omitting lots of hardware, designers
649
+ added flexibility and gave video-game programmers room to be cre-
650
+ ative,” IEEE Spectrum, vol. 20, no. 3, pp. 45–51, 1983.
651
+ [8] A. L. Samuel, “Some studies in machine learning using the game of
652
+ checkers,” IBM Journal of research and development, vol. 3, no. 3, pp.
653
+ 210–229, 1959.
654
+ [9] S. M. Lammers, Programmers at work: Interviews with 19 programmers
655
+ who shaped the computer industry.
656
+ Microsoft Press, 1989.
657
+ [10] I. Millington, AI for Games.
658
+ CRC Press, 2019.
659
+ [11] K. Birdwell, “Valve’s design process for creating half-life,” 1999.
660
+ [12] M. ˇCertick`y, D. Churchill, K.-J. Kim, M. ˇCertick`y, and R. Kelly,
661
+ “Starcraft ai competitions, bots, and tournament manager software,”
662
+ IEEE Transactions on Games, vol. 11, no. 3, pp. 227–237, 2018.
663
+ [13] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets,
664
+ M. Yeo, A. Makhzani, H. K¨uttler, J. Agapiou, J. Schrittwieser et al.,
665
+ “Starcraft ii: A new challenge for reinforcement learning,” arXiv preprint
666
+ arXiv:1708.04782, 2017.
667
+ [14] A. Dobrovsky, C. W. Wilczak, P. Hahn, M. Hofmann, and U. M.
668
+ Borghoff, “Deep reinforcement learning in serious games: Analysis
669
+ and design of deep neural network architectures,” in International
670
+ Conference on Computer Aided Systems Theory.
671
+ Springer, 2017, pp.
672
+ 314–321.
673
+ [15] G. Martinez-Arellano, R. Cant, and D. Woods, “Creating ai characters
674
+ for fighting games using genetic programming,” IEEE Transactions on
675
+ Computational Intelligence and AI in Games, vol. 9, no. 4, pp. 423–434,
676
+ 2016.
677
+ [16] A. Tavafi and W. Banzhaf, “A hybrid genetic programming decision
678
+ making system for robocup soccer simulation,” in Proceedings of the
679
+ Genetic and Evolutionary Computation Conference, 2017, pp. 1025–
680
+ 1032.
681
+ [17] J. R. Marino, “Learning strategies for real-time strategy games with
682
+ genetic programming,” in Proceedings of the AAAI Conference on
683
+ Artificial Intelligence and Interactive Digital Entertainment, vol. 15,
684
+ no. 1, 2019, pp. 219–220.
685
+ [18] Y. Azaria and M. Sipper, “Gp-gammon: Genetically programming
686
+ backgammon players,” Genetic Programming and Evolvable Machines,
687
+ vol. 6, no. 3, pp. 283–300, 2005.
688
+ [19] A. Hauptman and M. Sipper, “Gp-endchess: Using genetic programming
689
+ to evolve chess endgame players,” in European Conference on Genetic
690
+ Programming.
691
+ Springer, 2005, pp. 120–131.
692
+ [20] L. Chen, G. Duan, S. Wang, and J. Ma, “A choquet integral based
693
+ fuzzy logic approach to solve uncertain multi-criteria decision making
694
+ problem,” Expert Systems with Applications, vol. 149, p. 113303, 2020.
695
+ [21] R. Nimri and M. Phillip, “Artificial pancreas: fuzzy logic and control
696
+ of glycemia,” Current Opinion in Endocrinology, Diabetes and Obesity,
697
+ vol. 21, no. 4, pp. 251–256, 2014.
698
+ [22] P. Gupta, “Applications of fuzzy logic in daily life.” International
699
+ Journal of Advanced Research in computer science, vol. 8, no. 5, 2017.
700
+ [23] S. Basak, R. Jia, and C. Lei, “Face recognition using fuzzy logic,” in
701
+ 2018 IEEE International Conference on Information and Automation
702
+ (ICIA).
703
+ IEEE, 2018, pp. 1317–1322.
704
+ [24] D. Brulin, Y. Benezeth, and E. Courtial, “Posture recognition based on
705
+ fuzzy logic for home monitoring of the elderly,” IEEE transactions on
706
+ information technology in biomedicine, vol. 16, no. 5, pp. 974–982,
707
+ 2012.
708
+ [25] P. N. Krishna, S. R. Gupta, P. Shankaranarayanan, S. Sidharth, and
709
+ M. Sirphi, “Fuzzy logic based smart home energy management system,”
710
+ in 2018 9th International Conference on Computing, Communication
711
+ and Networking Technologies (ICCCNT).
712
+ IEEE, 2018, pp. 1–5.
713
+ [26] A. Khabbaz, A. Pouyan, M. Fateh, and V. Abolghasemi, “An adaptive
714
+ learning game for autistic children using reinforcement learning and
715
+ fuzzy logic,” Journal of AI and Data Mining, vol. 7, no. 2, pp. 321–
716
+ 329, 2019.
717
+ [27] S. Iyer, R. S. Mishra, S. P. Kulkami, and D. Kalbande, “Assess autism
718
+ level while playing games,” in 2017 2nd International Conference on
719
+ Communication Systems, Computing and IT Applications (CSCITA).
720
+ IEEE, 2017, pp. 42–47.
721
+ [28] S. S. Esfahlani, S. Cirstea, A. Sanaei, and G. Wilson, “An adaptive
722
+ self-organizing fuzzy logic controller in a serious game for motor
723
+ impairment rehabilitation,” in 2017 IEEE 26th International Symposium
724
+ on Industrial Electronics (ISIE).
725
+ IEEE, 2017, pp. 1311–1318.
726
+ [29] R. Massoud, S. Poslad, F. Bellotti, R. Berta, K. Mehran, and A. De Glo-
727
+ ria, “A fuzzy logic module to estimate a driver’s fuel consumption
728
+ for reality-enhanced serious games,” International Journal of Serious
729
+ Games, vol. 5, no. 4, pp. 45–62, 2018.
730
+ [30] R. Massoud, F. Bellotti, S. Poslad, R. Berta, and A. De Gloria,
731
+ “Exploring fuzzy logic and random forest for car drivers’ fuel consump-
732
+ tion estimation in iot-enabled serious games,” in IEEE International
733
+ Symposium on Autonomous Decentralized Systems (ISADS), 2019.
734
+ [31] C. A. Lara, H. Mitre-Hernandez, J. Flores, and H. Perez, “Induction
735
+ of emotional states in educational video games through a fuzzy control
736
+ system,” IEEE Transactions on Affective Computing, 2018.
737
+ [32] H. C. M. Karangiya, “Training an agent to play a game using reinforce-
738
+ ment learning,” 2019.
739
+ [33] A. Kaur and A. Kaur, “Comparison of mamdani-type and sugeno-
740
+ type fuzzy inference systems for air conditioning system,” International
741
+ Journal of Soft Computing and Engineering (IJSCE), vol. 2, no. 2, pp.
742
+ 323–325, 2012.
743
+ [34] J. S. R. Jang, “Anfis: adaptive-network-based fuzzy inference system,”
744
+ IEEE Transactions on Systems, Man, and Cybernetics, vol. 23, no. 3,
745
+ pp. 665–685, May 1993.
746
+ [35] I. S. Association et al., “Ieee standard for fuzzy markup language,” 1855.
747
+ 7
748
+
UtAyT4oBgHgl3EQfhfhI/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
VdE3T4oBgHgl3EQf0Qv6/content/tmp_files/2301.04737v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
VdE3T4oBgHgl3EQf0Qv6/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
XtE1T4oBgHgl3EQfcAQQ/content/tmp_files/2301.03178v1.pdf.txt ADDED
@@ -0,0 +1,1364 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Deep Planar Parallax for Monocular Depth Estimation
2
+ Haoqian Liang1
3
+ Zhichao Li2
4
+ Ya Yang1*
5
+ Naiyan Wang2
6
+ 1Beijing University of Posts and Telecommunications
7
+ 2TuSimple
8
+ {lianghq, yangya}@bupt.edu.cn, {leeisabug, winsty}@gmail.com
9
+ Abstract
10
+ Depth estimation is a fundamental problem in the per-
11
+ ception system of autonomous driving scenes. Although au-
12
+ tonomous driving is challenging, much prior knowledge can
13
+ still be utilized, by which the sophistication of the problem
14
+ can be effectively restricted. Some previous works intro-
15
+ duce the road plane prior to the depth estimation problem
16
+ according to the Planar Parallax Geometry. However, we
17
+ find that their usages are not effective, leaving the network
18
+ cannot learn the geometric information. To this end, we an-
19
+ alyze this problem in detail and reveal that explicit warping
20
+ of consecutive frames and flow pre-training can effectively
21
+ bring the geometric prior into learning. Furthermore, we
22
+ propose Planar Position Embedding to deal with the intrin-
23
+ sic weakness of plane parallax geometry. Comprehensive
24
+ experimental results on autonomous driving datasets like
25
+ KITTI and Waymo Open Dataset (WOD) demonstrate that
26
+ our Planar Parallax Network(PPNet) dramatically outper-
27
+ forms existing learning-based methods.
28
+ 1. Introduction
29
+ Depth perception is at the core of 3D computer vision
30
+ task. Benefiting the data-driven approach, recent work has
31
+ shown that learning-based methods [1,4,5,9,21,24,31,55]
32
+ can estimate the geometric properties such as depth or pose
33
+ in one single forward pass. However, pure deep learning
34
+ based methods usually suffer from serious generalization
35
+ problems [25,50,57,65], and not as robust as traditional the-
36
+ oretically sound approaches. Consequently, recent methods
37
+ introduce geometric constraints or priors into deep learning
38
+ approaches to regularize the solution space. For example,
39
+ [61, 63] utilize epipolar geometry for better generalization
40
+ and scale consistency in depth estimation. [26,30] incorpo-
41
+ rate Singular Value Decomposition (SVD) into deep point
42
+ cloud registration to get the final pose.
43
+ For the depth estimation problem in the autonomous
44
+ driving system, the following crucial assumptions exist: the
45
+ *Corresponding author.
46
+ Figure 1. The first row shows current frame superimposed by the
47
+ homography warping of previous frame based on planar paral-
48
+ lax geometry, in which if the pixel is higher than the plane, the
49
+ shearing is heavier. The second row shows the flow estimated by
50
+ a pre-trained optical flow model between the two images in first
51
+ row. Furthermore, the last row displays our depth estimation re-
52
+ sults based on the estimated flow.
53
+ objects and obstacles are all placed on a known road plane,
54
+ and we could access multiple consecutive frames and know
55
+ ego-motion between the frames. This assumption naturally
56
+ leads to the planar parallax (P+P) geometry [40,43]. In par-
57
+ ticular, The P+P geometry shows that the 3D scene struc-
58
+ ture after the alignment of consecutive frames to the refer-
59
+ ence plane can be derived from the residual pixel displace-
60
+ ments caused by the camera’s motion. As the formulation
61
+ is shown in Sec. 3, P+P methods save the capacity for esti-
62
+ mating the depth of ground and eliminate the dependencies
63
+ in estimating camera rotation. Consequently, [53, 59] fol-
64
+ lows the P+P framework, using a neural network to predict
65
+ pixel-wise γ, which is the ratio of height to depth rather than
66
+ a depth map. Nevertheless, we argue that they are reason-
67
+ able attempts, but it does not enjoy the gains of geometric
68
+ 1
69
+ arXiv:2301.03178v1 [cs.CV] 9 Jan 2023
70
+
71
+ priors. It is unachievable to guide the model to learn geo-
72
+ metric information only depending on the supervision of γ.
73
+ We perform detailed experiments to investigate whether the
74
+ P+P pipeline benefits the depth estimation network.
75
+ In this paper, we are committed to fully utilising the P+P
76
+ geometric priors. Intuitively, additional parallax supervi-
77
+ sion can force the network to learn the residual displace-
78
+ ment, which can derive the γ. However, parallax ground
79
+ truth in real-world data is costly, so we choose a more easy
80
+ but practical way. We reveal that a well pre-trained optical
81
+ flow network can keep the ability to estimate the residual
82
+ pixel displacements, dramatically improving depth estima-
83
+ tion results. Regarding the challenge of moving objects, be-
84
+ cause it violates the rigid motion assumption of P+P, we fol-
85
+ low DfM [51] to involve a single view path with learnable
86
+ weights to compensate. Moreover, as derived about γ and
87
+ depth, the depth estimation will be very sensitive to pixel
88
+ error for pixels higher than the camera or near the epipole.
89
+ To remedy this issue, we propose Planar Position Embed-
90
+ ding (PPE), which makes the network aware of the relative
91
+ position to the reference plane of each pixel, guiding the
92
+ network to choose whether to depend more on geometry or
93
+ statistics.
94
+ To summarize, our main contributions are three-folds:
95
+ • We propose a deep planar parallax depth estimation
96
+ network, which effectively incorporates planar paral-
97
+ lax geometry pipeline and data-driven methods. For
98
+ the first time, we demonstrate that optical flow pre-
99
+ training is crucial for using geometric prior.
100
+ • We also propose a Planar Position Embedding which
101
+ introduces the pixel position related to the reference
102
+ plane into the network. It overcomes the inherent de-
103
+ fect of the learning based planar parallax framework.
104
+ • We test our proposed method on large-scale self-
105
+ driving datasets, KITTI [13] and Waymo Open Dataset
106
+ (WOD) [46]. Extensive results demonstrate that our
107
+ method beats the state-of-the-art methods by a large
108
+ margin about 28.8%.
109
+ 2. Related Work
110
+ 2.1. Monocular Depth Estimation
111
+ Eigen et al. [11] are the ones who first utilize CNN for
112
+ the monocular depth estimation task. They predict depth
113
+ from a single image by combining local and global infor-
114
+ mation. Since then, methods based on neural networks have
115
+ gained significant improvement [12,22,56]. In recent years,
116
+ Vision transformers have been introduced to depth estima-
117
+ tion tasks. Adabin [3] uses a transformer-based architecture
118
+ to divide the depth range into bins. NeWCRFs [60] adopt
119
+ Swin Transformer [27] as encoder and a fully-connected
120
+ Pw
121
+ P'w
122
+ p
123
+ pt
124
+ ps
125
+ p's
126
+ es
127
+ et
128
+ Is
129
+ Os
130
+ Ot
131
+ P
132
+ h
133
+ π
134
+ u
135
+ hc
136
+ w
137
+ p'w
138
+ It
139
+ res
140
+ u'res
141
+ P'
142
+ p't
143
+ Figure 2. The illustration of planar parallax geometry.
144
+ Conditional Random Field(CRF) as decoder, which made a
145
+ considerable improvement. Despite learning from a single
146
+ image, some other work focus on using monocular videos.
147
+ Monocular videos are mainly used by self-supervised mod-
148
+ els [14, 19, 23, 32, 39, 44, 49, 57, 66, 67]. Geometric con-
149
+ straints are built between consecutive frames to reduce the
150
+ dependency on ground-truth depth. We believe that geomet-
151
+ ric information can not only provide supervision in unsuper-
152
+ vised settings but also help supervised methods to achieve
153
+ better performance and generalization.
154
+ 2.2. Flow Estimation
155
+ Start from FlowNet series [10, 15], end-to-end optical
156
+ flow networks have shown their superiority in flow estima-
157
+ tion tasks. After that, PWC-Net [45] introduces the pyra-
158
+ mid(P), warping(W), and cost volume(C) into network de-
159
+ sign and significantly improves the performance.
160
+ Mask-
161
+ FlowNet [62] resolves the occluded areas during warping by
162
+ a self-learned occlusion mask. The success of RAFT [47]
163
+ lies in the iterative refinement on the cost volumes. GM-
164
+ Flow [54] first uses a transformer in flow estimation. Along
165
+ with the supervised methods, photometric loss based unsu-
166
+ pervised flow [18,35,52,64] achieves researchers’ attention,
167
+ but there still exists a gap in performance compared with su-
168
+ pervised methods. Optical flow is a fundamental low-level
169
+ task that plays an essential role in many downstream prob-
170
+ lems. We use it as a geometric prior so that the network can
171
+ more efficiently use the geometric information to estimate
172
+ the depth.
173
+ 2.3. Planar Parallax Methods
174
+ The planar parallax methods were first proposed in
175
+ the mid-90s in
176
+ [40, 41, 43]. After choosing a reference
177
+ plane, this method decomposes the motion between mul-
178
+ tiple frames into planar homography and residual pixel dis-
179
+ placement from the unaligned pixels [16]. The planar ho-
180
+ mography can be computed by camera z axis translation and
181
+ plane normal vector. The residual pixel displacements can
182
+ 2
183
+
184
+ be obtained by feature matching methods such as optical
185
+ flow. In this way, P+P geometry significantly reduces the
186
+ estimation space. Many applications [8,17,42,58] depends
187
+ on a plane in the scene. For example, in robotics [2,29], the
188
+ height of points from the ground plane is crucial. Moreover,
189
+ Jung et al. [20] propose a method based on planar parallax
190
+ for quantifying image stitching, and Vaish et al. [48] use
191
+ it in camera calibration. A critical problem in these meth-
192
+ ods is finding a suitable reference plane. Naturally, in driv-
193
+ ing scenes, the road plane can easily be extracted from Li-
194
+ DAR points or high-precision maps. Taking these advan-
195
+ tages, Yuan et al. [59] proposed a new solution combining
196
+ traditional planar parallax geometry with a deep neural net-
197
+ work for road environment. Xing et al. [53] uses the dense
198
+ structure information provided by P+P as depth hints. Dur-
199
+ ing our experiments, we found that previous learning-based
200
+ P+P methods do not fully utilize the geometry structure. In
201
+ this paper, we will pursue this goal.
202
+ 3. Method
203
+ In this section, we first briefly review planar parallax ge-
204
+ ometry, showing how the method connects 3D structure γ
205
+ with residual image displacement. And then, we elaborate
206
+ on combining this method with deep learning, which enjoys
207
+ the best of two worlds.
208
+ 3.1. Planar Parallax Geometry
209
+ For better understanding, we use capital letter to repre-
210
+ sent 3D points, lowercase letter for 2D points, bold font for
211
+ vectors, and matrix in calligraphy. As [16] shown, the ratio
212
+ of height to depth γ plays an important role in modeling the
213
+ homography as a 2D projective transformation. In particu-
214
+ lar,
215
+ γ = h
216
+ z ,
217
+ (1)
218
+ where h and z is the height and depth of a pixel.
219
+ In Fig. 2, we describe the geometry visually.
220
+ Define
221
+ Ps = (x′, y′, z′)T and Pt = (x, y, z)T as the coordinates
222
+ of a point P in source view and target view, separately. Let
223
+ R and T = (tx, ty, tz)T denote the rotation matrix and
224
+ translation vector between the two camera views. The trans-
225
+ formation from Ps to Pt can be written as:
226
+ Pt = RPs + T.
227
+ (2)
228
+ The height above the reference plane π of the point Pt
229
+ can be express as:
230
+ h = hc − ⃗NT Pt,
231
+ (3)
232
+ where ⃗NT is the normal of plane π and hc is the height of
233
+ the camera.
234
+ Let ps = 1
235
+ zKPs, pt = 1
236
+ zKPt and t = KT, where K
237
+ is intrinsic matrix of the camera. The homography matrix
238
+ between the two images can be written as:
239
+ H = K(R + T⃗NT
240
+ hc
241
+ )K−1.
242
+ (4)
243
+ Define pw as the ps warped by homography H,
244
+ pw = Hps
245
+ (5)
246
+ As shown in Fig. 2, ures = pw − pt is the residual flow.
247
+ Following the mathematical derivation in [16, 59], when
248
+ tz ̸= 0, we can obtain:
249
+ ures =
250
+ γ tz
251
+ hc
252
+ 1 − γ tz
253
+ hc
254
+ (pt − et),
255
+ (6)
256
+ where et =
257
+ 1
258
+ tz t is the epipole in the target view, which
259
+ denotes the point that does not move after the warping. For
260
+ detailed derivation, we refer the readers to the appendix. In
261
+ Fig. 2, P
262
+ ′ is a 3D point higher than P. Because γ = h/z,
263
+ for the points with the same depth z, the higher it is, the
264
+ residual flow is larger, equivalently u
265
+
266
+ res > ures. The first
267
+ row in Fig. 1 also shows that intuitively. The higher position
268
+ has larger distortion. This is the key geometric clue for 3D
269
+ structure.
270
+ From Eqn. 6, we can conclude that the residual flow al-
271
+ ways moves towards or away from the epipole, and has a
272
+ strong relationship with γ. We can also convert Eqn. 6 to
273
+ γ =
274
+ hc
275
+ tz(1 + pt−et
276
+ ures ).
277
+ (7)
278
+ Except the relationship with residual flow, γ can also pre-
279
+ form 3D reconstruction. Since P can be calculated by an
280
+ inverse projection
281
+ Pt = zK−1pt.
282
+ (8)
283
+ By substituting it into Eqn. 3, we can obtain an important
284
+ formula discussed in proposed Planar Position Embedding.
285
+ ⃗NT (K−1pt) = hc − h
286
+ z
287
+ .
288
+ (9)
289
+ Eqn. 9 can be finally transformed into
290
+ z =
291
+ hc
292
+ γ + ⃗NT (K−1pt)
293
+ .
294
+ (10)
295
+ We could use it to convert predicted γ to depth results
296
+ given the plane and camera height above the plane. Com-
297
+ pared with epipolar geometry, the superiority of the P+P ge-
298
+ ometry is twofold: First, as shown in the first row in Fig. 1,
299
+ the road pixel in the image is aligned without disparity after
300
+ warping by road homography. It saves the network capacity
301
+ for estimating the depth of the ground. Second, Eqn. 7 is
302
+ only affected by tz, which removes the dependency on the
303
+ rotation, reducing the error caused by ego-motion noise.
304
+ 3
305
+
306
+ Warped Image
307
+ Target Image
308
+ 𝑆
309
+ Self Attention
310
+ Cross Attention
311
+ FFN
312
+ Flow Head
313
+ Score Layer
314
+ Correlation
315
+ Softmax
316
+ Self Attention
317
+ PPE
318
+ Gamma
319
+ Depth
320
+ Transform
321
+ 𝐿𝛾
322
+ 𝐿𝑑
323
+ Swin-T
324
+ Swin-T
325
+ weight sharing
326
+ Single Frame
327
+ Branch
328
+ Feature Enhancement
329
+ × 𝐿 layers
330
+ Weighted Sum
331
+ Embedding Layer
332
+ Figure 3. Overview of the proposed Planar Parallax Network. Given two plane-aligned images, we first extract features by a swin-tiny
333
+ backbone. And then we divide two streams, a flow branch and a single frame branch. In flow branch, we follow the Feature Enhancement
334
+ module and Flow Head in GMflow [54]. The Flow Head is only used in flow pretrain. The Single Frame Branch is a simple conv net and
335
+ fused with flow branch by weighted sum. The network is supervised by gamma loss Lγ and depth loss Ld.
336
+ 3.2. Planar Parallax Network
337
+ Flow Network Pre-training As shown in Eqn. 7, given the
338
+ height of the camera and the translation along the forward
339
+ axis, γ can be described by residual flow based on plane-
340
+ aligned images. The pixel fall on the plane has zero height
341
+ which leads to γ = 0, ures = 0, and the flow can recon-
342
+ struct the height and depth. To enhance the accuracy of
343
+ residual flow, we try to introduce geometric prior by pre-
344
+ training the network by flow estimation task [54,62]. After
345
+ that, the γ prediction becomes a much easier assignment.
346
+ As in Tab. 3, the flow pre-training brings significant im-
347
+ provement.
348
+ Prediction for Dynamic Objects For moving objects that
349
+ violate the underlying static scene assumption in Sec. 3.1,
350
+ we follow the recent work DfM [51] that introduces an ad-
351
+ ditional component. It utilizes only the reference image as
352
+ input and predicts γ, which mainly benefits from the train-
353
+ ing data and network’s generalization power. This branch is
354
+ fused into the primary branch as:
355
+ S = σ[φ(Fm, Fs)],
356
+ (11)
357
+ F = S ◦ Fm + (1 − S) ◦ Fs,
358
+ (12)
359
+ where σ is the sigmoid function. ◦ is element-wise multi-
360
+ plication. φ is a simple convolutional layer, which outputs
361
+ fusion score S guiding the fusion of the single-frame feature
362
+ Fs and multi-frame feature Fm.
363
+ Planar Position Embedding (PPE) In P+P methods, there
364
+ are two parameters the camera’s intrinsic K and normal vec-
365
+ tor of the plane ⃗NT . The network should be aware these
366
+ two variables. Inspired by position embedding from trans-
367
+ former models, we propose Planar Position Embedding,
368
+ which combines these two into one formula ⃗NT (K−1p).
369
+ As shown in Eqn. 9, the PPE is the projection of the point
370
+ in the normalized image plane on the normal direction of
371
+ the reference plane. We show the visualization of PPE in
372
+ Fig. 3. PPE distinctly describes the trend of change when
373
+ the plane is tilted in the camera. We use it as the pixel’s
374
+ position related to the reference plane and build embedding
375
+ as follows:
376
+ F = φ(E)
377
+ (13)
378
+ Eij = ⃗NT (K−1pij)
379
+ (14)
380
+ where φ is a simple convolutional network. It lets the net-
381
+ work aware the relative position of the plane, suppress-
382
+ ing some absurd errors. We investigate its effectiveness in
383
+ Sec. 4.4.
384
+ 4
385
+
386
+ Overall Structure Combining the method mentioned
387
+ above, we propose a new framework named PPNet.
388
+ As
389
+ shown in Fig. 3, the network takes two consecutive im-
390
+ ages It−1 and It as input.
391
+ image It−1 is warped using
392
+ road plane homography. The network outputs γ map of
393
+ image It, which is then transformed into depth map us-
394
+ ing Eqn. 10. We adopt the feature extraction and feature
395
+ enhancement component introduced in GMFlow [54] and
396
+ leave the feature matching and flow propagation only for
397
+ flow pre-training.
398
+ We replace the CNN backbone in GMFlow with a Swin
399
+ Transformer [27] for greater model capacity. The 1
400
+ 8 down-
401
+ sampled feature map is fed into feature enhancement trans-
402
+ former, where the P+P geometry can be analyzed. The
403
+ 1
404
+ 32
405
+ downsampled feature map is used for single frame estima-
406
+ tion, which is then fused with the output of the feature en-
407
+ hancement transformer. After the fusion, planar position
408
+ embedding will be introduced. The final feature is upsam-
409
+ pled to the original size to output γ.
410
+ Training Loss. Following previous work [3,11,22,59,60],
411
+ we use a L1 loss to supervise γ and a Scale-Invariant Log-
412
+ arithmic (SILog) loss to supervise the depth obtained by γ
413
+ using Eqn. 10. If the total number of pixels with ground-
414
+ truth is N, the loss for γ can be define as
415
+ Lγ = 1
416
+ N
417
+
418
+ i
419
+ |γi − γ∗
420
+ i |,
421
+ (15)
422
+ where γi and γ∗
423
+ i are the predicted γ value and correspond-
424
+ ing ground-truth.
425
+ The logarithm difference is defined as
426
+ ∆di = log di − log d∗
427
+ i ,
428
+ (16)
429
+ where di and d∗
430
+ i are the predicted depth value obtained by
431
+ γ using Eqn. 10 and its corresponding ground-truth depth
432
+ value. Then the depth loss is defined as:
433
+ Ld = α
434
+
435
+ 1
436
+ N
437
+
438
+ i
439
+ ∆d2
440
+ i − λ
441
+ N 2 (
442
+
443
+ i
444
+ ∆di)2,
445
+ (17)
446
+ where λ is a variance minimizing factor, and α is a scale
447
+ constant. Following the previous works [22,60], we set λ =
448
+ 0.85 and α = 10.
449
+ The total loss function is defined as the summation of the
450
+ loss for γ and depth with weight wγ and wd:
451
+ L = wγLγ + wdLd.
452
+ (18)
453
+ Here we set wγ = 1 and wd = 10−2 since the depth
454
+ produced by Eqn. 10 may be very unstable. Also, the net-
455
+ work should focus more on the geometric advantage that γ
456
+ brings.
457
+ 4. Experiments
458
+ In this Section, we first introduce two autonomous driv-
459
+ ing datasets in Sec. 4.1, KITTI and WOD, and describe how
460
+ we build the data our model needs. Then we provide the
461
+ implementation details of our method in Sec. 4.2. Sec. 4.3
462
+ demonstrates that our method dramatically exceeds the pre-
463
+ vious state-of-the-art methods in both datasets. We conduct
464
+ specific ablation studies in Sec. 4.4. On the one hand, we
465
+ prove our main point that the flow pre-trained model effec-
466
+ tively helps the model using the geometric prior. On the
467
+ other hand, it shows that the improvements we proposed
468
+ are practical and critical.
469
+ 4.1. Datasets
470
+ We
471
+ use
472
+ KITTI
473
+ dataset
474
+ [13]
475
+ and
476
+ Waymo
477
+ Open
478
+ Dataset [46] to evaluate the performance of the proposed
479
+ network.
480
+ KITTI. KITTI dataset is one of the most popular bench-
481
+ mark in Monocular Depth Estimation. We use the data split
482
+ proposed by Eigen et al. [11], which contains 23488 train-
483
+ ing samples and 697 testing samples. We reproject all the
484
+ points on the ground-truth depth map back to 3D space and
485
+ extract the road plane using RANSAC algorithm. As in pre-
486
+ vious work, the homography transformation is calculated
487
+ using odometry data provided by KITTI. Moreover, we fix
488
+ some inaccurate pose matrix using point-to-plane ICP algo-
489
+ rithm [7]. For the reference plane, we adopt two different
490
+ settings to show the universality of our work:
491
+ • Estimated Plane(EP). In this setting, the road planes
492
+ are extracted using the RANSAC algorithm to fit a
493
+ flat plane in the scene. For the images without a road
494
+ plane, we use the mean plane method below.
495
+ • Mean Plane(MP). In this setting, We demonstrate the
496
+ capabilities of our model without the accurate planes.
497
+ The mean plane is acquired by computing the mean
498
+ plane normal of the estimated plane from all the frames
499
+ in the dataset. Note that if we have accurate extrinsic
500
+ parameters of camera w.r.t. the road plane, we could
501
+ also approximately extract planes using methods like
502
+ IPM [33]. However, it is not provided accruractly in
503
+ the dataset.
504
+ Waymo Open Dataset. Since the RP2-Waymo dataset [59]
505
+ remains unpublished, to compare with RPANet [59], we re-
506
+ produced the dataset following it. The reproduced dataset
507
+ contains 12894 training samples and 1345 test samples.
508
+ WOD does not have dense depth supervision. The ground-
509
+ truth γ is built by the sparse observations from LiDAR. Al-
510
+ though the experiments on WOD show the generalization
511
+ of methods, we also argue that without a deliberate process-
512
+ ing, the ground-truth depth from LiDAR may also lead to
513
+ 5
514
+
515
+ Method
516
+ Backbone
517
+ Abs Rel ↓
518
+ Sq Rel ↓
519
+ RMSE ↓
520
+ RMSE log ↓
521
+ δ1 ↑
522
+ δ2 ↑
523
+ δ3 ↑
524
+ Params
525
+ Eigen et al. [11]
526
+ -
527
+ 0.190
528
+ 1.515
529
+ 7.156
530
+ 0.270
531
+ 0.692
532
+ 0.899
533
+ 0.967
534
+ 83 M
535
+ DORN [12]
536
+ ResNet-101
537
+ 0.072
538
+ 0.307
539
+ 2.727
540
+ 0.120
541
+ 0.932
542
+ 0.984
543
+ 0.995
544
+ 100 M
545
+ BTS [22]
546
+ ResNext-101
547
+ 0.059
548
+ 0.241
549
+ 2.756
550
+ 0.096
551
+ 0.956
552
+ 0.993
553
+ 0.998
554
+ 113 M
555
+ DPT [38]
556
+ VIT-Hybrid
557
+ 0.062
558
+ 0.222
559
+ 2.575
560
+ 0.092
561
+ 0.959
562
+ 0.995
563
+ 0.999
564
+ 123 M
565
+ Adabin [3]
566
+ EfficientNet-B5
567
+ 0.058
568
+ 0.190
569
+ 2.360
570
+ 0.088
571
+ 0.964
572
+ 0.995
573
+ 0.999
574
+ 78 M
575
+ NeW CRFs [60]
576
+ Swin-Large
577
+ 0.052
578
+ 0.155
579
+ 2.129
580
+ 0.079
581
+ 0.974
582
+ 0.997
583
+ 0.999
584
+ 270 M
585
+ Ours(MP)
586
+ Swin-Tiny
587
+ 0.044
588
+ 0.127
589
+ 1.986
590
+ 0.069
591
+ 0.981
592
+ 0.997
593
+ 0.999
594
+ 52 M
595
+ Ours(EP)
596
+ Swin-Tiny
597
+ 0.037
598
+ 0.109
599
+ 1.815
600
+ 0.062
601
+ 0.983
602
+ 0.997
603
+ 0.999
604
+ 52 M
605
+ Table 1. Quantitative results on the Eigen split of KITTI dataset. The best results are in bold and second best are underlined.
606
+ Method
607
+ Height
608
+ Abs Rel ↓
609
+ Sq Rel ↓
610
+ RMSE ↓
611
+ RMSE log ↓
612
+ δ1 ↑
613
+ δ2 ↑
614
+ δ3 ↑
615
+ RPANet [59]
616
+ < 1m
617
+ 0.036
618
+ 0.198
619
+ 2.707
620
+ 0.080
621
+ 0.974
622
+ 0.992
623
+ 0.997
624
+ BTS [22]
625
+ < 1m
626
+ 0.044
627
+ 0.166
628
+ 2.383
629
+ 0.075
630
+ 0.980
631
+ 0.995
632
+ 0.998
633
+ NeW CRFs [60]
634
+ < 1m
635
+ 0.043
636
+ 0.155
637
+ 2.321
638
+ 0.072
639
+ 0.981
640
+ 0.996
641
+ 0.999
642
+ Ours(EP)
643
+ < 1m
644
+ 0.029
645
+ 0.131
646
+ 2.200
647
+ 0.065
648
+ 0.984
649
+ 0.995
650
+ 0.998
651
+ RPANet [59]
652
+ -
653
+ 0.086
654
+ 1.089
655
+ 5.623
656
+ 0.187
657
+ 0.903
658
+ 0.968
659
+ 0.987
660
+ BTS [22]
661
+ -
662
+ 0.071
663
+ 0.531
664
+ 4.105
665
+ 0.119
666
+ 0.939
667
+ 0.984
668
+ 0.995
669
+ NeW CRFs [60]
670
+ -
671
+ 0.067
672
+ 0.459
673
+ 3.866
674
+ 0.112
675
+ 0.945
676
+ 0.987
677
+ 0.996
678
+ Ours(EP)
679
+ -
680
+ 0.056
681
+ 0.450
682
+ 3.853
683
+ 0.108
684
+ 0.950
685
+ 0.987
686
+ 0.995
687
+ Table 2. Quantitative results on the Waymo Open Dataset.
688
+ Figure 4. Mismatch examples of Waymo Open Dataset. Left Up:
689
+ motion distortion. Right Up: noise of high reflectance. Left Bot-
690
+ tom: rainy noise. Right Bottom: unknown noise.
691
+ some unexpected errors. As shown in Fig. 4, objects with
692
+ high reflectance or motion distortion will mismatch the ob-
693
+ servations from the image and LiDAR.
694
+ 4.2. Implementation Details
695
+ We implement the proposed network using Pytorch [37].
696
+ AdamW optimizer [28] with a weight decay of 10−2 is
697
+ adopted. All experiments are preformed on Nvidia RTX
698
+ 3090 GPUs. Following
699
+ [22], the learning rate decrease
700
+ from 10−4 to 10−5 using polynomial decay with power
701
+ p = 0.9. Our model is trained for 20 epochs with a to-
702
+ tal batch size of 8. We use augmentation techniques such as
703
+ horizontal flipping and brightness jittering. Moreover, since
704
+ the P+P geometry is built on the condition tz ̸= 0, we ran-
705
+ domly replace the warped image It−1 with image It to im-
706
+ prove the robustness to the static scene. Our model is first
707
+ pre-trained on flow estimation task. We follow the train-
708
+ ing strategy of KITTI dataset in GMFlow [54], the model
709
+ is first traind on FlyingChairs(Chairs) [10] and FlyingTh-
710
+ ings3D (Things) [34] datasets, then fine-tuned on Sintel [6]
711
+ and KITTI [36] datasets.
712
+ 4.3. Comparisons with the state-of-the-art Depth
713
+ Depth results on KITTI dataset In Tab. 1, we report the re-
714
+ sults of depth estimation on KITTI, in which our model sur-
715
+ passes the previous state-of-the-art model by a significant
716
+ margin on all the metrics. Notably, although we can easily
717
+ get the estimated plane(EP) during the autonomous driving
718
+ scenes, we also show the results with the mean plane(MP),
719
+ which does not rely on any online estimation. With some
720
+ loss of accuracy by the estimated plane, the improvement is
721
+ still considerable. Fig. 5 illustrates the quantitative results.
722
+ As shown in the error map, we highlight the advantages of
723
+ our method in estimating obstacles. Since there are priors
724
+ provided by the ground, the error of vertical and static ob-
725
+ jects are significantly improved.
726
+ Depth results on Waymo Open Dataset As for Waymo
727
+ Open Dataset, we reproduce the RPANet following [59]
728
+ 6
729
+
730
+ NismettaInput Image
731
+ BTS [22]
732
+ NeW CRFs [60]
733
+ Ours
734
+ Figure 5. Qualitative results on the Eigen split of KITTI dataset. For each sample, the first column shows the target image and the flow
735
+ estimated by the pre-trained optical flow model between the two plane-aligned images. The rest columns each shows the predicted depth
736
+ map and the corresponding error map for a model. Blue represents smaller error, while red represents larger error.
737
+ and train BTS [22], NeW CRFs [60] with official open-
738
+ sourced code for comparison1.
739
+ In Tab. 2, we show the
740
+ results with height < 1m and full range. Compared with
741
+ the results in KITTI, PPNetstill shows remarkable improve-
742
+ ment in Abs Rel, but the improvement gap in Sq Rel has
743
+ been narrowed. That means our model still has a higher
744
+ accuracy, but there are more pixels with larger errors in all
745
+ methods. This is because WOD includes some difficult data
746
+ on nights or rainy days. Moreover, there are many slow-
747
+ driving scenarios which violate the motion assumption in
748
+ Eqn. 6. Despite all this, our methods show the priority in
749
+ height < 1m, benefiting from the plane prior.
750
+ 4.4. Ablation Study
751
+ Effectiveness of flow pre-training To better understand
752
+ the benefit flow pre-training brings, we remove the single
753
+ frame branch, Planar Position Embedding, and the random
754
+ data augmentation so that no extra single frame information
755
+ would affect the result in this ablation study. After remov-
756
+ ing these components, we also add a condition height< 1m
757
+ to highlight the influence caused by the prior of plane. In
758
+ 1http://github.com/cleinc/bts, http://github.
759
+ com/aliyun/NeWCRFs
760
+ Target
761
+ Frame
762
+ Warp
763
+ Pretrain
764
+ Abs Rel ↓
765
+ RMSE ↓
766
+ Flow
767
+ 2
768
+ N
769
+ ImageNet
770
+ 0.160
771
+ 5.661
772
+ Depth
773
+ 1
774
+ N
775
+ ImageNet
776
+ 0.059
777
+ 2.059
778
+ Gamma(γ)
779
+ 1
780
+ N
781
+ -
782
+ 0.055
783
+ 2.271
784
+ Gamma(γ)
785
+ 2
786
+ N
787
+ -
788
+ 0.054
789
+ 2.231
790
+ Gamma(γ)
791
+ 2
792
+ Y
793
+ -
794
+ 0.054
795
+ 2.191
796
+ Gamma(γ)
797
+ 1
798
+ N
799
+ ImageNet
800
+ 0.047
801
+ 1.985
802
+ Gamma(γ)
803
+ 2
804
+ N
805
+ ImageNet
806
+ 0.046
807
+ 1.944
808
+ Gamma(γ)
809
+ 2
810
+ Y
811
+ ImageNet
812
+ 0.045
813
+ 1.927
814
+ Gamma(γ)
815
+ 1
816
+ N
817
+ Flow
818
+ 0.044
819
+ 1.965
820
+ Gamma(γ)
821
+ 2
822
+ N
823
+ Flow
824
+ 0.039
825
+ 1.755
826
+ Gamma(γ)
827
+ 2
828
+ Y
829
+ Flow
830
+ 0.035
831
+ 1.460
832
+ Table 3.
833
+ Ablation studies for flow pre-training. The target flow
834
+ means we use the flow prediction and compute γ by Eqn. 7. Frame
835
+ indicates to number of consecutive frames we use. Warp denotes
836
+ whether to warp with planar homography. All results are under
837
+ condition height< 1m.
838
+ Tab. 3, we first show the pure geometry methods. We com-
839
+ pute γ by Eqn. 7 with flow prediction from GMFlow. This
840
+ method merely does not work because dynamic objects do
841
+ not meet the hypothesis and some pixels near to the epipole
842
+ are too sensitive to flow’s precision. Furthermore, the com-
843
+ 7
844
+
845
+ Figure 6. Row 1: Original images. Row 2: Predicted depth map
846
+ without PPE. Row 3: Predicted depth map with PPE. Row 4: Error
847
+ map without PPE. Row 5: Error map with PPE.
848
+ Method
849
+ Abs Rel ↓
850
+ Sq Rel ↓
851
+ RMSE ↓
852
+ baseline
853
+ 0.073
854
+ 0.411
855
+ 3.378
856
+ +FP
857
+ 0.044
858
+ 0.216
859
+ 2.165
860
+ +PPE
861
+ 0.040
862
+ 0.145
863
+ 2.013
864
+ +SFB
865
+ 0.037
866
+ 0.117
867
+ 1.878
868
+ +DL
869
+ 0.037
870
+ 0.109
871
+ 1.815
872
+ Table 4.
873
+ Ablation studies for components. The components is
874
+ added incrementally. Flow pretrain is shown as FP. SFB means
875
+ single frame branch. DL is the auxiliary depth loss described in
876
+ Eqn. 17. PPE is proposed Planar Position Embedding.
877
+ parison between depth and γ shows the superiority of γ
878
+ prediction.
879
+ As in Eqn. 10, γ is independent of intrinsic
880
+ K, which improves its generalization. Above all, we con-
881
+ duct experiments in different pre-training, from scratch, Im-
882
+ ageNet and optical flow. The results indicate that the model
883
+ with ImageNet pre-training can not take advantage of the
884
+ consecutive frame shown by the similar performance be-
885
+ tween frame one or two. On the contrary, the flow pre-
886
+ training significantly improves the results. Finally, to fig-
887
+ ure out the influence of planar prior, we show the model
888
+ without warping, which only uses the epipolar geometry.
889
+ The results are still worse than our proposed method, which
890
+ means the planar prior plays an essential role in our superior
891
+ results.
892
+ Effect of each component. In Tab. 4, we unfold the pro-
893
+ posed model module by module to understand how each
894
+ component affects our results. We first validate the effec-
895
+ tiveness of the essential idea, the flow pre-training. It almost
896
+ halves the error. Then, Planar Position Embedding reduce
897
+ the Sq Rel by more than 25%. Specifically, its influence is
898
+ Figure 7. Row 1: Homography aligned images pairs, the first sam-
899
+ ple contains moving cars, the second sample does not have ego
900
+ motion. Row 2: Predicted depth map without SFB. Row 3: Pre-
901
+ dicted depth map with SFB. Row 4: Error map without SFB. Row
902
+ 5: Error map with SFB.
903
+ more intuitive in Fig. 6. Planar Position Embedding con-
904
+ tains the pixels’ position related to the ground plane, which
905
+ can restrain some unreasonable errors caused by road with
906
+ different slope or moving objects. As shown in Fig. 7, a
907
+ single frame branch improves the performance on dynamic
908
+ objects and static frames. Lastly, adding additional depth
909
+ supervision makes the network learn the depth information
910
+ directly, leading the error to the final level.
911
+ 5. Conclusions and Future Work
912
+ This paper presents Planar Parallax Network, a simple
913
+ but effective depth estimation framework based on planar
914
+ parallax geometry. By deliberately analyzing geometric in-
915
+ formation’s effectiveness, our method introduces the flow
916
+ pretrain to make the network learning start from an initial-
917
+ ization well-tuned by geometric prior. Then we handle the
918
+ inherent weakness of the planar parallax pipeline by single
919
+ frame estimation and Planar Position Embedding. Compre-
920
+ hensive experiments on KITTI and Waymo Open Dataset
921
+ demonstrate PPNetsurpsasses the previous SOTA methods
922
+ by a significant margin.
923
+ For future work, low-cost flow supervision will be a po-
924
+ tential topic. Many unsupervised flow methods can be joint
925
+ training in our framework. Furthermore, we would like to
926
+ extend our method to multi-frame observation, which can
927
+ provide more geometric information.
928
+ Moreover, we are
929
+ also interested in integrating our method into the real au-
930
+ tonomous driving perception system.
931
+ 8
932
+
933
+ KAHJS6312TUTENSEReferences
934
+ [1] Yasuhiro Aoki, Hunter Goforth, Rangaprasad Arun Srivat-
935
+ san, and Simon Lucey. PointNetLK: Robust & efficient point
936
+ cloud registration using PointNet. In CVPR, 2019. 1
937
+ [2] Dietrich Baehring, Stephan Simon, Wolfgang Niehsen, and
938
+ Christoph Stiller. Detection of close cut-in and overtaking
939
+ vehicles for driver assistance based on planar parallax. In IV,
940
+ 2005. 3
941
+ [3] Shariq Farooq Bhat, Ibraheem Alhashim, and Peter Wonka.
942
+ AdaBins: Depth estimation using adaptive bins. In CVPR,
943
+ 2021. 2, 5, 6
944
+ [4] Jiawang Bian, Zhichao Li, Naiyan Wang, Huangying Zhan,
945
+ Chunhua Shen, Ming-Ming Cheng, and Ian Reid. Unsuper-
946
+ vised scale-consistent depth and ego-motion learning from
947
+ monocular video. NeurIPS, 2019. 1
948
+ [5] Jia-Wang Bian, Huangying Zhan, Naiyan Wang, Zhichao
949
+ Li, Le Zhang, Chunhua Shen, Ming-Ming Cheng, and Ian
950
+ Reid.
951
+ Unsupervised scale-consistent depth learning from
952
+ video. IJCV, 2021. 1
953
+ [6] Daniel J Butler, Jonas Wulff, Garrett B Stanley, and
954
+ Michael J Black. A naturalistic open source movie for opti-
955
+ cal flow evaluation. In ECCV, 2012. 6
956
+ [7] Yang Chen and G´erard Medioni. Object modelling by regis-
957
+ tration of multiple range images. IVC, 1992. 5
958
+ [8] Geoffrey Cross, Andrew W Fitzgibbon, and Andrew Zis-
959
+ serman. Parallax geometry of smooth surfaces in multiple
960
+ views. In ICCV, 1999. 3
961
+ [9] Nicolas Donati, Abhishek Sharma, and Maks Ovsjanikov.
962
+ Deep geometric functional maps: Robust feature learning for
963
+ shape correspondence. In CVPR, 2020. 1
964
+ [10] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip
965
+ Hausser, Caner Hazirbas, Vladimir Golkov, Patrick Van
966
+ Der Smagt, Daniel Cremers, and Thomas Brox. FlowNet:
967
+ Learning optical flow with convolutional networks. In ICCV,
968
+ 2015. 2, 6
969
+ [11] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map
970
+ prediction from a single image using a multi-scale deep net-
971
+ work. NeurIPS, 2014. 2, 5, 6
972
+ [12] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Bat-
973
+ manghelich, and Dacheng Tao. Deep ordinal regression net-
974
+ work for monocular depth estimation. In CVPR, 2018. 2,
975
+ 6
976
+ [13] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
977
+ ready for autonomous driving? the KITTI vision benchmark
978
+ suite. In CVPR, 2012. 2, 5
979
+ [14] Cl´ement Godard, Oisin Mac Aodha, Michael Firman, and
980
+ Gabriel J Brostow. Digging into self-supervised monocular
981
+ depth estimation. In ICCV, 2019. 2
982
+ [15] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper,
983
+ Alexey Dosovitskiy, and Thomas Brox. FlowNet 2.0: Evolu-
984
+ tion of optical flow estimation with deep networks. In CVPR,
985
+ 2017. 2
986
+ [16] Michal Irani and Prabu Anandan. Parallax geometry of pairs
987
+ of points for 3D scene analysis. In ECCV, 1996. 2, 3
988
+ [17] Michal Irani, P Anandan, and Meir Cohen. Direct recovery
989
+ of planar-parallax from multiple frames. PAMI, 2002. 3
990
+ [18] Joel Janai, Fatma Guney, Anurag Ranjan, Michael Black,
991
+ and Andreas Geiger. Unsupervised learning of multi-frame
992
+ optical flow with occlusions. In ECCV, 2018. 2
993
+ [19] Hualie Jiang, Laiyan Ding, Junjie Hu, and Rui Huang.
994
+ PLNet: Plane and line priors for unsupervised indoor depth
995
+ estimation. In 3DV, 2021. 2
996
+ [20] Kyunghwa Jung and Jaesung Hong. Quantitative assessment
997
+ method of image stitching performance based on estimation
998
+ of planar parallax. IA, 2021. 3
999
+ [21] Johannes Kopf, Xuejian Rong, and Jia-Bin Huang. Robust
1000
+ consistent video depth estimation. In CVPR, 2021. 1
1001
+ [22] Jin Han Lee, Myung-Kyu Han, Dong Wook Ko, and Il Hong
1002
+ Suh. From big to small: Multi-scale local planar guidance
1003
+ for monocular depth estimation. arXiv, 2019. 2, 5, 6, 7, 11,
1004
+ 13
1005
+ [23] Seokju Lee, Sunghoon Im, Stephen Lin, and In So Kweon.
1006
+ Learning monocular depth in dynamic scenes via instance-
1007
+ aware projection consistency. In AAAI, 2021. 2
1008
+ [24] Jiaxin Li and Gim Hee Lee. DeepI2P: Image-to-point cloud
1009
+ registration via deep classification. In CVPR, 2021. 1
1010
+ [25] Qing Li, Shaoyang Chen, Cheng Wang, Xin Li, Chenglu
1011
+ Wen, Ming Cheng, and Jonathan Li. LO-Net: Deep real-
1012
+ time LiDAR odometry. In CVPR, 2019. 1
1013
+ [26] Zhichao Li and Naiyan Wang. DMLO: Deep matching Li-
1014
+ DAR odometry. In IROS, 2020. 1
1015
+ [27] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
1016
+ Zhang, Stephen Lin, and Baining Guo. Swin Transformer:
1017
+ Hierarchical vision transformer using shifted windows. In
1018
+ ICCV, 2021. 2, 5
1019
+ [28] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
1020
+ regularization. arXiv, 2017. 6
1021
+ [29] Manolis IA Lourakis and Stelios C Orphanoudakis. Using
1022
+ planar parallax to estimate the time-to-contact.
1023
+ In CVPR,
1024
+ 1999. 3
1025
+ [30] Weixin Lu, Guowei Wan, Yao Zhou, Xiangyu Fu, Pengfei
1026
+ Yuan, and Shiyu Song. DeepVCP: An end-to-end deep neu-
1027
+ ral network for point cloud registration. In ICCV, 2019. 1
1028
+ [31] Xuan Luo, Jia-Bin Huang, Richard Szeliski, Kevin Matzen,
1029
+ and Johannes Kopf. Consistent video depth estimation. ToG,
1030
+ 2020. 1
1031
+ [32] Reza Mahjourian, Martin Wicke, and Anelia Angelova. Un-
1032
+ supervised learning of depth and ego-motion from monocu-
1033
+ lar video using 3D geometric constraints. In CVPR, 2018.
1034
+ 2
1035
+ [33] Hanspeter A Mallot, Heinrich H B¨ulthoff, JJ Little, and Ste-
1036
+ fan Bohrer. Inverse perspective mapping simplifies optical
1037
+ flow computation and obstacle detection. Biological cyber-
1038
+ netics, 1991. 5
1039
+ [34] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,
1040
+ Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A
1041
+ large dataset to train convolutional networks for disparity,
1042
+ optical flow, and scene flow estimation. In CVPR, 2016. 6
1043
+ [35] Simon Meister, Junhwa Hur, and Stefan Roth. UnFlow: Un-
1044
+ supervised learning of optical flow with a bidirectional cen-
1045
+ sus loss. In AAAI, 2018. 2
1046
+ [36] Moritz Menze and Andreas Geiger. Object scene flow for
1047
+ autonomous vehicles. In CVPR, 2015. 6
1048
+ 9
1049
+
1050
+ [37] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
1051
+ James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
1052
+ ing Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
1053
+ An imperative style, high-performance deep learning library.
1054
+ NeurIPS, 2019. 6
1055
+ [38] Ren´e Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vi-
1056
+ sion transformers for dense prediction. In ICCV, 2021. 6
1057
+ [39] Anurag Ranjan, Varun Jampani, Lukas Balles, Kihwan Kim,
1058
+ Deqing Sun, Jonas Wulff, and Michael J Black. Competitive
1059
+ collaboration: Joint unsupervised learning of depth, camera
1060
+ motion, optical flow and motion segmentation. In CVPR,
1061
+ 2019. 2
1062
+ [40] Harpreet S Sawhney. 3D geometry from planar parallax. In
1063
+ CVPR, 1994. 1, 2
1064
+ [41] Harpreet S Sawhney.
1065
+ Motion video analysis using planar
1066
+ parallax.
1067
+ In Storage and Retrieval for Image and Video
1068
+ Databases II, 1994. 2
1069
+ [42] Harpreet S Sawhney. Simplifying motion and structure anal-
1070
+ ysis using planar parallax and image warping.
1071
+ In ICPR,
1072
+ 1994. 3
1073
+ [43] Shashua and Navab. Relative affine structure: theory and
1074
+ application to 3D reconstruction from perspective views. In
1075
+ CVPR, 1994. 1, 2
1076
+ [44] Chang Shu, Kun Yu, Zhixiang Duan, and Kuiyuan Yang.
1077
+ Feature-metric loss for self-supervised learning of depth and
1078
+ egomotion. In ECCV, 2020. 2
1079
+ [45] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.
1080
+ PWC-Net: CNNs for optical flow using pyramid, warping,
1081
+ and cost volume. In CVPR, 2018. 2
1082
+ [46] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
1083
+ Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
1084
+ Yuning Chai, Benjamin Caine, et al. Scalability in perception
1085
+ for autonomous driving: Waymo open dataset. In CVPR,
1086
+ 2020. 2, 5
1087
+ [47] Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field
1088
+ transforms for optical flow. In ECCV, 2020. 2
1089
+ [48] Vaibhav Vaish, Bennett Wilburn, Neel Joshi, and Marc
1090
+ Levoy. Using plane+parallax for calibrating dense camera
1091
+ arrays. In CVPR, 2004. 3
1092
+ [49] Chaoyang Wang, Jos´e Miguel Buenaposada, Rui Zhu, and
1093
+ Simon Lucey. Learning depth from monocular videos using
1094
+ direct methods. In CVPR, 2018. 2
1095
+ [50] Guangming Wang, Xinrui Wu, Zhe Liu, and Hesheng Wang.
1096
+ PWCLO-Net: Deep LiDAR odometry in 3D point clouds
1097
+ using hierarchical embedding mask optimization. In CVPR,
1098
+ 2021. 1
1099
+ [51] Tai Wang, Jiangmiao Pang, and Dahua Lin. Monocular 3D
1100
+ object detection with depth from motion. In ECCV, 2022. 2,
1101
+ 4
1102
+ [52] Yang Wang, Yi Yang, Zhenheng Yang, Liang Zhao, Peng
1103
+ Wang, and Wei Xu. Occlusion aware unsupervised learning
1104
+ of optical flow. In CVPR, 2018. 2
1105
+ [53] Hao Xing, Yifan Cao, Maximilian Biber, Mingchuan Zhou,
1106
+ and Darius Burschka. Joint prediction of monocular depth
1107
+ and structure using planar and parallax geometry. PR, 2022.
1108
+ 1, 3
1109
+ [54] Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, and
1110
+ Dacheng Tao. GMFlow: Learning optical flow via global
1111
+ matching. In CVPR, 2022. 2, 4, 5, 6
1112
+ [55] Wei Yin, Yifan Liu, and Chunhua Shen. Virtual normal: En-
1113
+ forcing geometric constraints for accurate and robust depth
1114
+ prediction. PAMI, 2021. 1
1115
+ [56] Wei Yin, Yifan Liu, Chunhua Shen, and Youliang Yan. En-
1116
+ forcing geometric constraints of virtual normal for depth pre-
1117
+ diction. In ICCV, 2019. 2
1118
+ [57] Zhichao Yin and Jianping Shi. GeoNet: Unsupervised learn-
1119
+ ing of dense depth, optical flow and camera pose. In CVPR,
1120
+ 2018. 1, 2
1121
+ [58] Chang Yuan, Gerard Medioni, Jinman Kang, and Isaac Co-
1122
+ hen. Detecting motion regions in the presence of a strong
1123
+ parallax from a moving camera by multiview geometric con-
1124
+ straints. PAMI, 2007. 3
1125
+ [59] Haobo Yuan, Teng Chen, Wei Sui, Jiafeng Xie, Lefei Zhang,
1126
+ Yuan Li, and Qian Zhang. Monocular road planar parallax
1127
+ estimation. arXiv, 2021. 1, 3, 5, 6
1128
+ [60] Weihao Yuan, Xiaodong Gu, Zuozhuo Dai, Siyu Zhu, and
1129
+ Ping Tan. NeWCRFs: Neural window fully-connected CRFs
1130
+ for monocular depth estimation. In CVPR, 2022. 2, 5, 6, 7,
1131
+ 11, 13
1132
+ [61] Huangying Zhan, Chamara Saroj Weerasekera, Jia-Wang
1133
+ Bian, and Ian Reid. Visual odometry revisited: What should
1134
+ be learnt? In ICRA, 2020. 1
1135
+ [62] Shengyu Zhao, Yilun Sheng, Yue Dong, Eric I Chang, Yan
1136
+ Xu, et al. MaskFlowNet: Asymmetric feature matching with
1137
+ learnable occlusion mask. In CVPR, 2020. 2, 4
1138
+ [63] Wang Zhao, Shaohui Liu, Yezhi Shu, and Yong-Jin Liu. To-
1139
+ wards better generalization: Joint depth-pose learning with-
1140
+ out PoseNet. In CVPR, 2020. 1
1141
+ [64] Yiran Zhong, Pan Ji, Jianyuan Wang, Yuchao Dai, and Hong-
1142
+ dong Li. Unsupervised deep epipolar flow for stationary or
1143
+ dynamic scenes. In CVPR, 2019. 2
1144
+ [65] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G
1145
+ Lowe. Unsupervised learning of depth and ego-motion from
1146
+ video. In CVPR, 2017. 1
1147
+ [66] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G
1148
+ Lowe. Unsupervised learning of depth and ego-motion from
1149
+ video. In CVPR, 2017. 2
1150
+ [67] Yuliang Zou, Zelun Luo, and Jia-Bin Huang. DF-Net: Un-
1151
+ supervised joint learning of depth and flow using cross-task
1152
+ consistency. In ECCV, 2018. 2
1153
+ 10
1154
+
1155
+ A. Planar Parallax Geometry
1156
+ We provide a complete derivation process in this section.
1157
+ As in the main body, we use capital letter to represent 3D
1158
+ points, lowercase letter for 2D points, bold font for vectors,
1159
+ and matrix in calligraphy.
1160
+ The ratio of height to depth γ is defined as:
1161
+ γ = h
1162
+ z ,
1163
+ (19)
1164
+ where h and z is the height and depth of a pixel.
1165
+ Define Ps = (x′, y′, z′)T and Pt = (x, y, z)T as the
1166
+ coordinates of a point P in source view and target view,
1167
+ separately. Let R and T = (tx, ty, tz)T denote the rota-
1168
+ tion matrix and translation vector between the two camera
1169
+ views. The transformation from Ps to Pt can be written as:
1170
+ Pt = RPs + T.
1171
+ (20)
1172
+ The height above the reference plane π of the point P
1173
+ can be express as:
1174
+ h = hc − ⃗NT P,
1175
+ (21)
1176
+ where ⃗NT is the normal of plane π and hc is the height of
1177
+ the camera. Eqn. 21 can be transformed into:
1178
+ h + ⃗NT P
1179
+ hc
1180
+ = 1.
1181
+ (22)
1182
+ By multiply T by 1 in Eqn. 20, we can obtain
1183
+ Pt = RPs + Th + ⃗NT Ps
1184
+ hc
1185
+ = (R + T⃗NT
1186
+ hc
1187
+ )Ps + h
1188
+ hc
1189
+ T
1190
+ (23)
1191
+ Let ps = 1
1192
+ z′ KPs, pt = 1
1193
+ zKPt and t = KT, where K is
1194
+ intrinsic matrix of the camera. Then we can obtain
1195
+ zK−1pt = (R + T⃗NT
1196
+ hc
1197
+ )z′K−1ps + h
1198
+ hc
1199
+ T
1200
+ (24)
1201
+ By mutiply 1
1202
+ z′ K on both sides, we have:
1203
+ z
1204
+ z′ pt = K(R + T⃗NT
1205
+ hc
1206
+ )K−1ps +
1207
+ h
1208
+ hcz′ t.
1209
+ (25)
1210
+ With the homography matrix between the two images
1211
+ written as:
1212
+ H = K(R + T⃗NT
1213
+ hc
1214
+ )K−1,
1215
+ (26)
1216
+ Eqn. 25 can be reformulated as
1217
+ z
1218
+ z′ pt = Hps +
1219
+ h
1220
+ hcz′ t.
1221
+ (27)
1222
+ By considering the z-axis of both sides, we have:
1223
+ z
1224
+ z′ = H3ps + htz
1225
+ hcz′ ,
1226
+ (28)
1227
+ where H3 denote the third row of homography matrix H
1228
+ Note that, the z-axis of ps and pt is 1. Scaling both sides
1229
+ by their z-axis, we can obtain
1230
+ pt =
1231
+ Hps +
1232
+ h
1233
+ hcz′ t
1234
+ H3ps + htz
1235
+ hcz′
1236
+ = Hps
1237
+ H3ps
1238
+ − Hps
1239
+ H3ps
1240
+ +
1241
+ Hps +
1242
+ h
1243
+ hcz′ t
1244
+ H3ps + htz
1245
+ hcz′
1246
+ = Hps
1247
+ H3ps
1248
+
1249
+ htz
1250
+ hcz′
1251
+ (H3ps + htz
1252
+ hcz′ )
1253
+ Hps
1254
+ H3ps
1255
+ +
1256
+ h
1257
+ hcz′ t
1258
+ H3ps + htz
1259
+ hcz′
1260
+ = Hps
1261
+ H3ps
1262
+ − htz
1263
+ zhc
1264
+ Hps
1265
+ H3ps
1266
+ +
1267
+ h
1268
+ hcz t.
1269
+ (29)
1270
+ With epipole et =
1271
+ 1
1272
+ tz t, γ = h
1273
+ z , ps warped by homogra-
1274
+ phy pw =
1275
+ Hps
1276
+ H3ps , when tz = 0, we have
1277
+ pt = pw +
1278
+ h
1279
+ hcz t.
1280
+ (30)
1281
+ When tz ̸= 0, we have
1282
+ pt = pw − γ tz
1283
+ hc
1284
+ (pw − et).
1285
+ (31)
1286
+ Then we can obtain
1287
+ pw − pt = γ tz
1288
+ hc
1289
+ (pw − et),
1290
+ (32)
1291
+ which can also be converted to
1292
+ pw − pt = γ tz
1293
+ hc
1294
+ (pw − pt + pt − et)
1295
+ (33)
1296
+ (1 − γ tz
1297
+ hc
1298
+ )(pw − pt) = γ tz
1299
+ hc
1300
+ (pt − et)
1301
+ (34)
1302
+ pw − pt =
1303
+ γ tz
1304
+ hc
1305
+ 1 − γ tz
1306
+ hc
1307
+ (pt − et)
1308
+ (35)
1309
+ Now we get the relationship between ures = pw − pt and
1310
+ γ.
1311
+ B. More Qualitative Results
1312
+ In Fig. 8, we show more qualitative results of BTS [22],
1313
+ NeW CRFs [60] and our method. As shown in the error
1314
+ maps, the result have improved significantly.
1315
+ In Fig. 9, we show an example of how each component
1316
+ affects the result. By adding flow pre-training, the perfor-
1317
+ mance is improved significantly on static scenes but wors-
1318
+ ened on dynamic objects that violate the static assumption
1319
+ 11
1320
+
1321
+ in planar parallax geometry. It suggests that, without flow
1322
+ pre-training, models may not take advantage of the consecu-
1323
+ tive frame. More examples are shown in Fig.10. By adding
1324
+ Planar Position Embedding, the unreasonable errors have
1325
+ been restrained. Finally, the single frame branch and depth
1326
+ supervision improves the performance on dynamic objects
1327
+ and leads the error to the final level.
1328
+ 12
1329
+
1330
+ Input Image
1331
+ BTS [22]
1332
+ NeW CRFs [60]
1333
+ Ours
1334
+ Figure 8. Qualitative results on the Eigen split of KITTI dataset. For each sample, the first column shows the target image and the flow
1335
+ estimated by the pre-trained optical flow model between the two plane-aligned images. The rest columns each shows the predicted depth
1336
+ map and the corresponding error map for a model. Blue represents smaller error, while red represents larger error.
1337
+ 13
1338
+
1339
+ 皖9PHK·C1338888mobel ms:
1340
+ HieFer KefsInput Image
1341
+ Baseline
1342
+ +FP
1343
+ +PPE
1344
+ +SFB
1345
+ +DL
1346
+ Figure 9. Qualitative results for components. The components is added incrementally. Flow pretrain is shown as FP. SFB means single
1347
+ frame branch. DL is the depth loss. PPE is the proposed Planar Position Embedding. The first row shows the target image and the
1348
+ plane-aligned image pairs. The rest rows shows the predicted depth map and the corresponding error map separately.
1349
+ 14
1350
+
1351
+ Input Image
1352
+ Baseline
1353
+ +FP
1354
+ Input Image
1355
+ Baseline
1356
+ +FP
1357
+ Input Image
1358
+ Baseline
1359
+ +FP
1360
+ Figure 10. Comparison between baseline and +FP. For each sample, the first row shows the target image and the plane-aligned image pairs.
1361
+ The rest rows shows the predicted depth map and the corresponding error map separately.
1362
+ 15
1363
+
1364
+ VerwaltenerwaltenERAEL
XtE1T4oBgHgl3EQfcAQQ/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
YdFJT4oBgHgl3EQf6i0m/content/tmp_files/2301.11674v1.pdf.txt ADDED
@@ -0,0 +1,2239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Optimally-Weighted Estimators of the Maximum
2
+ Mean Discrepancy for Likelihood-Free Inference
3
+ Ayush Bharti 1
4
+ Masha Naslidnyk 2
5
+ Oscar Key 2
6
+ Samuel Kaski 1,3
7
+ François-Xavier Briol 2,4
8
+ 1 Department of Computer Science, Aalto University, Finland
9
+ 2 Department of Statistical Science, University College London, London, UK
10
+ 3 Department of Computer Science, University of Manchester, UK
11
+ 4 The Alan Turing Institute, UK
12
+ Likelihood-free inference methods typically make use of a distance between simulated and real
13
+ data. A common example is the maximum mean discrepancy (MMD), which has previously been
14
+ used for approximate Bayesian computation, minimum distance estimation, generalised Bayesian
15
+ inference, and within the nonparametric learning framework. The MMD is commonly estimated
16
+ at a root-m rate, where m is the number of simulated samples. This can lead to significant
17
+ computational challenges since a large m is required to obtain an accurate estimate, which is
18
+ crucial for parameter estimation. In this paper, we propose a novel estimator for the MMD
19
+ with significantly improved sample complexity. The estimator is particularly well suited for
20
+ computationally expensive smooth simulators with low- to mid-dimensional inputs. This claim
21
+ is supported through both theoretical results and an extensive simulation study on benchmark
22
+ simulators.
23
+ 1. Introduction
24
+ Many domains of science, medicine and engineering use our mechanistic understanding of real-world
25
+ phenomena to create simulators that can represent system behaviour in different circumstances. Such
26
+ simulator-based models define a stochastic procedure that can generate (possibly complex) synthetic data-
27
+ sets, and are widely used in fields such as population genetics Beaumont (2010), ecology Wood (2010),
28
+ astronomy Cameron and Pettitt (2012); Akeret et al. (2015), epidemiology Kypraios et al. (2017), atmospheric
29
+ contamination Kopka et al. (2016), radio propagation Bharti et al. (2022a), and agent-based modelling
30
+ Jennings (1999). However, the ease of simulating data from the model comes at the cost of an intractable
31
+ likelihood function, rendering most standard statistical inference methods inapplicable to such models. To
32
+ solve this issue, a host of likelihood-free inference methods have been developed that circumvent the need to
33
+ evaluate the likelihood or its derivatives, see Lintusaari et al. (2017); Cranmer et al. (2020) for an overview.
34
+ A common approach for likelihood-free inference involves comparing simulated observations from the
35
+ model and the observed data, with respect to some notion of distance. Accurately estimating the distance is
36
+ essential for inference but doing so usually requires simulating large amounts of synthetic data. This can be
37
+ a computational bottleneck, especially for expensive simulators, which in the most extreme cases can take up
38
+ 1
39
+ arXiv:2301.11674v1 [stat.ME] 27 Jan 2023
40
+
41
+ equally-weighted
42
+ True
43
+ optimally-weighted
44
+ (ours)
45
+ Figure 1.: Estimating the MMD requires approximating the embedding µk,Pθ of the model Pθ in a reproducing
46
+ kernel Hilbert space Hk. The classical approach consists of doing this from m equally-weighted
47
+ independent samples from Pθ (denoted µEW
48
+ k,Pm
49
+ θ ), but we show in this paper that it is possible to
50
+ improve this estimator by using optimally-weighted samples (denoted µOW
51
+ k,Pm
52
+ θ ).
53
+ to hundreds or thousands of CPU hours per simulation; see Niederer et al. (2019) for an example in cardiac
54
+ modelling. Other examples include tsunami models based on shallow water equations that require several
55
+ GPU hours per run Behrens and Dias (2015), runaway electron analysis models for nuclear fusion devices
56
+ that require 24 CPU hours per run Hoppe et al. (2021), and models of large-scale wind farms that require
57
+ 100 CPU hours per run Kirby et al. (2022). Naturally, the discrepancies popular for likelihood-free inference
58
+ are those which can be efficiently estimated given samples from two distributions, such as the KL divergence
59
+ Jiang (2018), Wasserstein distance Peyré and Cuturi (2019); Bernton et al. (2019), Sinkhorn divergence
60
+ Genevay et al. (2018), energy distance Nguyen et al. (2020), classification accuracy Gutmann et al. (2017),
61
+ or the maximum mean discrepancy, the latter of which is the topic of this paper. Here, “efficiently estimated”
62
+ is defined in terms of sample complexity, that is, how many samples from the distributions we need to
63
+ estimate a distance. The faster this error goes to zero with the number of samples, the less we need to
64
+ simulate from the model, and hence, the smaller the computational cost.
65
+ We focus on the maximum mean discrepancy (MMD) Gretton et al. (2006, 2012), a probability metric
66
+ which measures the distance between distributions through the distance between their embeddings in a
67
+ reproducing kernel Hilbert space; see Figure 1 for an illustration. A number of advantages of this distance
68
+ are commonly put forward in the literature: (i) it has relatively low sample complexity when compared to its
69
+ alternatives listed above, (ii) it has desirable statistical properties, such as leading to consistent and robust
70
+ estimators, (iii) it is applicable on any data-type for which a kernel can be defined, and does not require
71
+ hand-crafted summary statistics. Due to these attractive properties, the MMD has been used in a range of
72
+ frameworks for likelihood-free inference, including for approximate Bayesian computation (ABC) Park et al.
73
+ (2015); Mitrovic et al. (2016); Kajihara et al. (2018); Bharti et al. (2022a); Legramanti et al. (2022), for
74
+ minimum distance estimation (MDE) Briol et al. (2019a); Chérief-Abdellatif and Alquier (2021); Alquier
75
+ and Gerber (2021); Niu et al. (2021); Key et al. (2021), for generalised Bayesian inference Chérief-Abdellatif
76
+ and Alquier (2020); Pacchiardi and Dutta (2021), for Bayesian nonparametric learning Dellaporta et al.
77
+ (2022), and for training generative adversarial networks Dziugaite et al. (2015); Li et al. (2015, 2017a);
78
+ Bińkowski et al. (2018).
79
+ In this paper, we do not revisit the question of whether the MMD is the best choice of distance for
80
+ a particular problem. Instead, we assume that the MMD has been chosen, and focus on constructing
81
+ estimators with strong sample complexity for this distance. The most common estimators for the MMD are
82
+ U-statistic or V-statistic estimators, and these have sample complexity of O(m− 1
83
+ 2 ), under mild conditions
84
+ Briol et al. (2019a), where m is the number of samples. In recent work, Niu et al. (2021) showed that this
85
+ can be improved to O(m−1+ϵ) for any ϵ > 0 through the use of a V-statistic estimator and randomised
86
+ 2
87
+
88
+ quasi-Monte Carlo (RQMC) sampling. This significant improvement does come at the cost of restrictive
89
+ assumptions — the simulator must be written in a form where the inputs are uniform random variables,
90
+ and must satisfy stringent smoothness conditions which are difficult to verify in practice.
91
+ In this paper, we propose a novel set of optimally-weighted estimators with sample complexity of
92
+ O(m− νc
93
+ s − 1
94
+ 2 ) where s is the dimension of the base space and νc is a parameter depending on the smoothness
95
+ of the kernel and the simulator. This leads to significantly improved sample complexity against both U-
96
+ or V-statistic and independent samples for any νc, and against RQMC when νc > s/2. Additionally, the
97
+ optimality of the weights guarantees that even if this condition is not satisfied, the order of the sample
98
+ complexity is still at least as good as that for existing estimators.
99
+ The remainder of the paper is structured as follows. Section 2 recalls existing estimators for the MMD, and
100
+ how these are used in likelihood-free inference. Section 3 presents our estimators, and Section 4 provides a
101
+ theoretical analysis of their sample complexity. Finally, Section 5 demonstrates strong empirical performance
102
+ on a range of simulators, and Section 6 discusses future research.
103
+ 2. Background
104
+ Throughout the paper, X will denote some set, and P(X) will be the set of all Borel probability measures
105
+ on X.
106
+ Likelihood-free inference
107
+ We consider the classic parameter estimation problem, where we assume that
108
+ we observe some independent and identically distributed (iid) realisations {xi}n
109
+ i=1 ⊆ X from some data-
110
+ generating mechanism Q ∈ P(X). Given {xi}n
111
+ i=1 and a parametric family of distributions {Pθ : θ ∈ Θ} ⊂
112
+ P(X) (i.e. the model) with parameter space Θ, we are interested in recovering the parameter value θ∗ ∈ Θ
113
+ such that Pθ∗ is either equal, or in some sense closest, to Q.
114
+ The challenge in likelihood-free inference is that the likelihood associated with Pθ is intractable, meaning
115
+ it cannot be evaluated pointwise. This prevents the use of classical methods such as maximum likelihood
116
+ estimation or (exact) Bayesian inference. Instead, we assume that we are able to simulate iid realisations
117
+ from Pθ, and such models are hence called generative models or simulator-based models. Such models are
118
+ characterised through their generative process, a pair (Gθ, U) consisting of a simple distribution U (such as
119
+ a multivariate Gaussian or uniform distribution) on a space U and a map Gθ : U → X called the generator
120
+ or simulator. We will call U a base measure and U the base space, and consider U ⊂ Rs and X ⊆ Rd. To
121
+ sample y ∼ Pθ, one can first sample u ∼ U, then apply the generator y = Gθ(u). To perform parameter
122
+ estimation for these models, it is common to repeatedly sample simulated data from the model for different
123
+ parameter values and compare them to {xi}n
124
+ i=1 using a distance. We now recall the distance which will be
125
+ the focus of this paper.
126
+ Maximum mean discrepancy (MMD)
127
+ Let Hk be a reproducible kernel Hilbert space (RKHS) associated
128
+ with the symmetric and positive definite function k : X × X → R Berlinet and Thomas-Agnan (2004),
129
+ called a reproducing kernel, and denote by ∥ · ∥Hk and ⟨·, ·⟩Hk the corresponding norm and inner product.
130
+ Additionally, let Pk(X) := {P ∈ P(X) :
131
+
132
+ X
133
+
134
+ k(x, x)P(dx) < ∞}; whenever k is bounded, Pk(X) = P(X).
135
+ As illustrated in the sketch in Figure 1, any distribution P ∈ Pk(X) can be mapped into Hk via its kernel
136
+ mean embedding, defined as µk,P =
137
+
138
+ X k(·, x)P(dx). Then, the MMD between P and Q is the distance
139
+ between their embeddings in Hk:
140
+ MMDk(P, Q) = ∥µk,P − µk,Q∥Hk,
141
+ (1)
142
+ see Muandet et al. (2017) for a review. Alternatively, the MMD can also be expressed as MMDk(P, Q) =
143
+ sup∥f∥Hk≤1
144
+ ���
145
+ X f(x)P(dx) −
146
+
147
+ X f(x)Q(dx)
148
+ �� , where the supremum is taken over all the functions in the unit-
149
+ 3
150
+
151
+ ball of the RKHS Hk. Whenever k is a characteristic kernel, the MMD is a probability metric, meaning that
152
+ MMDk(P, Q) = 0 if and only if P = Q. This condition is satisfied for kernels including the squared-exponential
153
+ (SE) kSE(x, y) = η exp(−∥x−y∥2
154
+ 2/l2), the Matérn kν(x, y) =
155
+ η
156
+ Γ(ν)2ν−1 (
157
+
158
+
159
+ l ∥x−y∥2)νKν(
160
+
161
+
162
+ l ∥x−y∥2), where
163
+ Kν is the modified Bessel function of the second kind, and the inverse-multiquadric kernels on X = Rd
164
+ Sriperumbudur et al. (2010). Matérn kernels are of particular interest: the order parameter ν uniquely
165
+ determines the smoothness of Hk, and for half-integer orders ν ∈ {1
166
+ 2, 3
167
+ 2, . . . }, the kernel kν can be written as
168
+ a product of an exponential and a polynomial of order ⌊ν⌋ (Rasmussen and Williams, 2006).
169
+ Unfortunately, the expression in (1) usually cannot be computed directly since µk,P will not be available
170
+ in closed form outside of a limited number of (k, P) pairs. Instead, using the reproducing property (i.e.
171
+ f(x) = ⟨f, k(·, x)⟩Hk ∀f ∈ Hk), we can write
172
+ MMD2
173
+ k(P, Q) =
174
+
175
+ X
176
+
177
+ X
178
+ k(x, y)P(dx)P(dy) − 2
179
+
180
+ X
181
+
182
+ X
183
+ k(x, y)P(dx)Q(dy) +
184
+
185
+ X
186
+
187
+ X
188
+ k(x, y)Q(dx)Q(dy).
189
+ (2)
190
+ This expression is convenient to work with as it can be estimated through approximations of the integrals.
191
+ Let {yi}m
192
+ i=1 ∼ P, {xi}n
193
+ i=1 ∼ Q and let Pm = 1
194
+ m
195
+ �m
196
+ j=1 δyj and Qn = 1
197
+ n
198
+ �n
199
+ i=1 δxi, where δxi is a Dirac measure
200
+ at xi. The squared-MMD can be approximated through a V-statistic as
201
+ MMD2
202
+ k(Pm, Qn) = 1
203
+ m2
204
+ m
205
+
206
+ i,j=1
207
+ k(yi, yj) −
208
+ 2
209
+ nm
210
+ n
211
+
212
+ i=1
213
+ m
214
+
215
+ j=1
216
+ k(xi, yj) + 1
217
+ n2
218
+ n
219
+
220
+ i,j=1
221
+ k(xi, xj).
222
+ This is equivalent to approximating µk,P using µEW
223
+ k,Pm(x) =
224
+ 1
225
+ m
226
+ �m
227
+ i=1 k(x, xi). Alternatively, one can use
228
+ an unbiased U-statistic approximation Gretton et al. (2012). Both of these estimates can be calculated
229
+ straightforwardly via evaluations of the kernel k at a computational cost O(m2 + mn + n2).
230
+ Likelihood-free inference with the MMD
231
+ The MMD has been used within a range of frameworks. In a
232
+ frequentist setting, the MMD was proposed for minimum distance estimation by Briol et al. (2019a):
233
+ ˆθn = arg min
234
+ θ∈Θ
235
+ MMD2
236
+ k(Pθ, Qn).
237
+ (3)
238
+ In practice, the minimiser is computed through an optimisation algorithm, which requires evaluations of the
239
+ squared-MMD or of its gradient. Such evaluations are intractable, but any estimator can be used within a
240
+ stochastic optimisation algorithm. Similar optimisation problems and stochastic approximations also arise
241
+ when using the MMD for generative adversarial networks Dziugaite et al. (2015); Li et al. (2015) and for
242
+ nonparametric learning Dellaporta et al. (2022).
243
+ In a Bayesian setting, the MMD has been used to create several pseudo-posteriors by updating a prior
244
+ distribution p on Θ using data. For example, the K2-ABC posterior of Park et al. (2015) is a pseudo-posterior
245
+ of the form:
246
+ pABC(θ|x1 . . . , xn) ∝
247
+
248
+ · · ·
249
+
250
+ m
251
+
252
+ j=1
253
+ 1{MMD2
254
+ k(Pθ,Qn)<ε}(θ)p(yj|θ)p(θ)dy1, . . . , dym.
255
+ (4)
256
+ where the indicator function 1{A} is equal to 1 if event A holds. Here, the MMD is used to determine
257
+ whether a particular instance of the parametric model is within an ε distance from the data. The K2-ABC
258
+ algorithm approximates this pseudo-posterior through sampling of the model Pθ which leads to the use of
259
+ an estimator of the squared-MMD.
260
+ Finally, the MMD has also been used for generalised Bayesian inference, where it is used to construct the
261
+ MMD-Bayes posterior Chérief-Abdellatif and Alquier (2020)
262
+ pGBI(θ|x1 . . . , xn) ∝ exp(−MMD2
263
+ k(Pθ, Qn))p(θ).
264
+ 4
265
+
266
+ Once again, this pseudo-posterior is intractable, but it can be approximated through pseudo-marginal
267
+ MCMC, in which case an unbiased estimator is used in place of the squared-MMD Pacchiardi and Dutta
268
+ (2021).
269
+ Sample complexity of MMD estimators
270
+ As highlighted above, the performance of these likelihood-free
271
+ inference methods relies heavily on how accurately we can estimate the MMD using samples; that is, how
272
+ fast our estimator approaches MMDk(Pθ, Q) as a function of n and m, the number of observed and simulated
273
+ data points, respectively. Let �
274
+ MMDk(Pm
275
+ θ , Qn) be any estimator of the MMD based on m simulated data
276
+ points. Using the triangle inequality, this error can be decomposed as follows:
277
+ |MMDk(Pθ, Q) − �
278
+ MMDk(Pm
279
+ θ , Qn)| ≤ |MMDk(Pθ, Q) − MMDk(Pθ, Qn)|
280
+ + |MMDk(Pθ, Qn) − �
281
+ MMDk(Pm
282
+ θ , Qn)|
283
+ (5)
284
+ where the first term describes the approximation error due to having a finite number of data points n, and
285
+ the second term describes the error due to a finite number m of simulator evaluations. To understand the
286
+ behaviour of the first term, we can use the following sample complexity result for the V-statistic. The proof
287
+ is a direct application of the triangle inequality together with Lemma 1 in Briol et al. (2019a).
288
+ Theorem 1. Suppose that supx,x′ k(x, x′) < ∞ and let Qn consist of n iid realisations from Q ∈ Pk(X).
289
+ Then, for any P ∈ Pk(X), we have with high probability
290
+ |MMDk(P, Q) − MMDk(P, Qn)| = O(n− 1
291
+ 2 ).
292
+ When �
293
+ MMDk(Pm
294
+ θ , Qn) is also a V-statistic approximation, both terms in (5) can be tackled with this
295
+ result and the overall error is of size O(n− 1
296
+ 2 + m− 1
297
+ 2 ). This shows that we should take m = O(n) to ensure a
298
+ good enough approximation of the MMD. Though this rate has the advantage of being independent of the
299
+ dimension of X, it is relatively slow in m. We therefore require a large number of simulated data points,
300
+ which can be computationally expensive.
301
+ Niu et al. (2021) recently proposed an alternate approach based on randomised quasi-Monte Carlo (RQMC)
302
+ Dick et al. (2013) samples within a V-statistic. Using stronger assumptions on U, k and Gθ, they are able to
303
+ obtain an estimator with improved sample complexity. We now state their assumptions and result below.
304
+ For f : X → R and a multi-index α = (α1, . . . αd) ∈ Nd, we denote the |α| = �d
305
+ i=1 αi order partial
306
+ derivative ∂αf = ∂|α|f/∂α1x1 . . . ∂αdxd by ∂αf. We say f ∈ Cm(X), for m ∈ N, if ∂αf exists and is
307
+ continuous for any |α| ∈ [0, m]. For two-variable f : X × X → R, ∂α,αf is the α-partial derivative in each
308
+ variable. The norm ∥ · ∥Lp(X) for f : X → R is defined as ∥f∥Lp(X) = (
309
+
310
+ X |f(x)|pdx)1/p. The notation
311
+ av : b−v represents a point u ∈ [a, b]s with uj = aj for j ∈ v, and uj = bj for j /∈ v.
312
+ Assumption A1’. The base space U = [0, 1]s, the base measure U is uniform on U, and {ui}m
313
+ i=1 ⊂ U forms
314
+ an RQMC point set.
315
+ Assumption A2’. The generator Gθ : [0, 1]s → X is such that:
316
+ 1. ∂(1,...,1)Gθ,j ∈ C([0, 1]s) for all j = 1, . . . , d.
317
+ 2. for all j = 1, . . . , d and v ∈ {0, 1}s \ (0, . . . , 0), there is a pj ∈ [1, ∞], �d
318
+ j=1 p−1
319
+ j
320
+ ≤ 1, such that for
321
+ g(·) = ∂vGθ,j(· : 1−v) it holds that ∥g∥Lpj ([0,1]|v|) < ∞.
322
+ Assumption A3’. For any x ∈ X, k(x, ·) ∈ Cs(X) and ∀t ∈ Nd, |t| ≤ s, supx∈X ∂t,tk(x, x) < Ck where Ck
323
+ is some universal constant depending only on k.
324
+ 5
325
+
326
+ Theorem 2. Under A1’ to A3’ and Q ∈ Pk(X),
327
+ |MMDk(Pθ, Q) − MMDk(Pm
328
+ θ , Q)| = O(m−1+ϵ).
329
+ In this case, the second term in (5) decreases at a faster rate than the first term and the overall error
330
+ decreases as O(n− 1
331
+ 2 + m−1+ϵ) for any ϵ > 0. As a result, (ignoring log-terms) we can take m = O(n− 1
332
+ 2 ),
333
+ meaning a much smaller number of simulations are required. However, the technical conditions required
334
+ are either very restrictive (U must be uniform), or will be difficult to verify in practice (the conditions
335
+ on Gθ are not very interpretable and difficult to verify). Hence, the range of cases where RQMC can be
336
+ applied is limited. Additionally, when both k and Gθ are smooth, faster rates can be obtained using our
337
+ optimally-weighted estimator presented in the next section.
338
+ 3. Optimally-Weighted Estimators
339
+ We now present our estimator, which weighs simulated data. To that end, we denote the empirical measure
340
+ of the simulated data as Pm,w
341
+ θ
342
+ = �m
343
+ i=1 wiδyi where yi = Gθ(ui), and wi ∈ R is the weight associated with
344
+ yi ∈ X for all i ∈ {1, . . . , m}. Assuming for a moment that these weights are known, then we have
345
+ MMD2
346
+ k(Pm,w
347
+ θ
348
+ , Qn) =
349
+ m
350
+
351
+ i,j=1
352
+ wiwjk(yi, yj) − 2
353
+ n
354
+ n
355
+
356
+ i=1
357
+ m
358
+
359
+ j=1
360
+ wjk(xi, yj) + 1
361
+ n2
362
+ n
363
+
364
+ i,j=1
365
+ k(xi, xj).
366
+ (6)
367
+ Clearly, wi = 1/m for all i recovers the V-statistic approximation of the squared-MMD, but here we have
368
+ additional flexibility in how to select these weights. To do so, we will make use of a tight upper bound on
369
+ the approximation error, whose proof is in Appendix A.1.
370
+ Theorem 3. Let c : U × U → R be a reproducing kernel such that k(x, ·) ◦ Gθ ∈ Hc and Q ∈ Pk(X). Then,
371
+ ∃K > 0 independent of {ui, yi, wi}m
372
+ i=1 but dependent on c, k and Gθ such that:
373
+ |MMDk(Pθ, Q) − MMDk(Pm,w
374
+ θ
375
+ , Q)| ≤ K × MMDc
376
+
377
+ U,
378
+ m
379
+
380
+ i=1
381
+ wiδui
382
+
383
+ ,
384
+ Additionally, the weights minimising this upper bound can be obtained in closed-form; i.e.
385
+ w∗ = arg min
386
+ w∈Rm
387
+ MMDc
388
+
389
+ U,
390
+ m
391
+
392
+ i=1
393
+ wiδui
394
+
395
+ = c(U, U)−1z(U)
396
+ (7)
397
+ where z(U)i = µc,U(ui) =
398
+
399
+ U c(ui, u)U(du) is the kernel mean embedding of U in the RKHS Hc and
400
+ (c(U, U))ij = c(ui, uj) for all i, j ∈ {1, . . . , m}.
401
+ Our optimally-weighted (OW) estimator is the weighted estimator in (6) with the optimal weights in
402
+ (7). This corresponds to estimating µk,Pθ with a weighted approximation µOW
403
+ k,Pm
404
+ θ
405
+ = �n
406
+ i=1 w∗
407
+ i k(x, xi) =
408
+ �n
409
+ i=1 w∗
410
+ i k(x, Gθ(ui)) where w∗
411
+ i represents the importance of xi = Gθ(ui) for our approximation. To calculate
412
+ these weights, we need to evaluate µc,U pointwise in closed-form. The key insight is that although µk,Pθ will
413
+ usually not be available in closed-form, the same is not true for µc,U. This is because, unlike Pθ, U is usually
414
+ a simple distribution such as a uniform, Gaussian, Gamma or Poisson. Additionally, we have full flexibility
415
+ in our choice of c so long as k(x, ·) ◦ Gθ ∈ Hc. We refer to Table 1 in Briol et al. (2019b) or the ProbNum
416
+ Python package Wenger et al. (2021) for a list of known closed-form kernel embeddings. Note that, both
417
+ terms in the upper bound in Theorem 3 depend on the kernel c, meaning that c cannot simply be chosen for
418
+ computational convenience and must also be chosen such that these quantities are as small as possible. This
419
+ choice will be explored in further details through theory (in Section 4) and experiments (in Section 5).
420
+ 6
421
+
422
+ Related methods
423
+ The optimal weights in Theorem 3 are equivalent to Bayesian quadrature (BQ) weights
424
+ Diaconis (1988); O’Hagan (1991); Rasmussen and Ghahramani (2002); Briol et al. (2019b). BQ is a method
425
+ for numerical integration based on Gaussian process regression (in our case with prior mean zero and prior
426
+ covariance function c). We can therefore think of our estimator as performing BQ to approximate all
427
+ integrals against P in (2). This interpretation is helpful for selecting c — the kernel should be chosen so
428
+ that the corresponding Gaussian process is a good prior for the integrands in (2). This correspondence will
429
+ also help us derive sample complexity results in the next section.
430
+ Our estimator minimises MMDc (U, �m
431
+ i=1 wiδui) over the choice of weights, but we also have flexibility
432
+ over the choice of {ui}m
433
+ i=1. Unfortunately, this optimisation cannot be solved in closed-form, and is in fact
434
+ usually not convex. There is a wide range of methods which have been proposed to do point selection so as
435
+ to minimise an MMD with equally-weighted points. Kernel thinning Dwivedi and Mackey (2021), support
436
+ points Mak and Joseph (2018) and Stein thinning Riabiz et al. (2020) are methods based on the MMD to
437
+ subsample points given a large dataset. Kernel herding Chen et al. (2010); Bach et al. (2012) and Stein
438
+ points Chen et al. (2018, 2019) are sequential point selection methods which use an MMD as objective. In
439
+ addition, similar point selection methods have also been proposed for BQ Gunter et al. (2014); Briol et al.
440
+ (2015); Belhadji et al. (2019) and these are therefore closest to our OW setting.
441
+ 4. Theoretical Guarantees
442
+ Sample complexity
443
+ The following theorem establishes a sample complexity of O(m− νc
444
+ s − 1
445
+ 2 ) for our optimally-
446
+ weighted estimator, where νc is a parameter depending on the smoothness of k and Gθ. We achieve a better
447
+ rate than RQMC under milder conditions, as discussed below.
448
+ Assumption A1. The base space U ⊂ Rs is bounded, open, and convex, the data space X is the entire
449
+ Rd or is bounded, open, and convex. The base measure U has a density fU : U → [CU, C′
450
+ U] for some CU,
451
+ C′
452
+ U > 0, and Pθ has a density bounded above. The point set {ui}m
453
+ i=1 ⊂ U has a fill distance of asymptotics
454
+ hm = O(m− 1
455
+ s ), where hm = supu∈U mini∈[1,m] ∥u − ui∥2.
456
+ Our assumptions on U and U are milder than those of A1’, which requires U to be uniform. The
457
+ assumptions on X and Pθ are likely to hold for simulators in practice. We replace the requirement that
458
+ the point set {ui}m
459
+ i=1 is RQMC with a milder assumption on the fill distance, which quantifies how far any
460
+ point in U can get from the set {ui}m
461
+ i=1. The fill distance asymptotics is a standard assumption that ensures
462
+ the coverage of U; for example, it holds for regular grids, and in expectation for independent samples. For
463
+ further examples of point sets that guarantee small fill distance, see Wynne et al. (2021).
464
+ Assumption A2. The generator is a map Gθ : U → X such that for some integer l > s/2, any j ∈ [1, d]
465
+ and any multi-index α ∈ Nd of size |α| ≤ l, the partial derivative ∂αGθ,j exists and is bounded from above.
466
+ Assumption A2 is more interpretable and easier to check than A2’ (specifically part 2) as it just requires
467
+ knowing how many derivatives Gθ has. As stated in Niu et al. (2021), a simpler condition that implies A2’
468
+ needs Gθ to be smooth up to the order l ≥ s, which rules out the standard choices of ν ∈ {1
469
+ 2, 3
470
+ 2, 5
471
+ 2} for large
472
+ enough s. In contrast, we only ask that l > s/2.
473
+ Assumption A3. k is a Matérn kernel on X of order νk such that ⌊νk + d/2⌋ > s/2, or an SE kernel, and
474
+ c is a Matérn kernel on U of order νc ≤ min(⌊νk + d/2⌋, l).
475
+ A3 places less restrictions on the choice of k than A3’. Although both allow for k to be the SE kernel, as
476
+ a corollary of the Sobolev embedding theorem (Adams and Fournier, 2003, Theorem 4.12), A3’ only holds
477
+ for a Matérn k if ⌈νk⌉ ≥ s + 1 (i.e. smooth k), while our lower bound on νk is much less restrictive. The
478
+ conditions on c are needed to ensure k(x, ·) ◦ Gθ ∈ Hc. Note that these could be weakened using the work
479
+ 7
480
+
481
+ of Kanagawa et al. (2020); Teckentrup (2020); Wynne et al. (2021), but at the expense of more restrictive
482
+ conditions on {ui}m
483
+ i=1 in A1.
484
+ Theorem 4. Under A1 to A3, k(x, ·) ◦ Gθ ∈ Hc holds, and for any and Q ∈ Pk(X):
485
+ ��MMDk(Pθ, Q) − MMDk(Pm,w
486
+ θ
487
+ , Q)
488
+ �� = O(m− νc
489
+ s − 1
490
+ 2 ).
491
+ The result shows that our method has improved sample complexity over the V-statistic for any νc and
492
+ s. Additionally, it is better than RQMC when νc > s/2. In practice, we should pick a kernel c that is as
493
+ smooth as possible whilst not being smoother than Gθ or k, as per A3. Hence, we should take νc to be
494
+ smaller than l and νk, the smoothness of Gθ and k, respectively. In case the smoothness of Gθ is unknown,
495
+ the conservative choice is to take a smaller value of νc to ensure A3 is satisfied.
496
+ Computational Cost
497
+ The total computational cost of our method is the sum of (i) the cost of simulating
498
+ from the model, which is O(mCgen), where Cgen is the cost of sampling one data point, and (ii) the cost of
499
+ estimating MMD, which is O(m2 + mn + n2) for the V-statistic and O(m3 + mn + n2) for the OW estimator.
500
+ Our method is hence slightly more expensive when m is large. However, the cost of the simulator is often
501
+ the computational bottleneck, sometimes taking up to tens or hundreds of CPU hours per run; see Behrens
502
+ and Dias (2015); Kirby et al. (2022). As a result, proposing data efficient likelihood-free inference methods
503
+ Beaumont et al. (2009); Gutmann and Corander (2016); Greenberg et al. (2019) is still an active research
504
+ area. In cases where O(mCgen) ≫ O(m3), the OW estimator is more efficient than the V-statistic as it
505
+ requires fewer simulations to estimate the MMD. If the simulator is not costlier than estimating the MMD
506
+ and assuming a fixed computational budget, then the OW estimator achieves lower error than the V-statistic
507
+ if νc/s > 1/4 and assumptions A1 to A3 hold. This result is straightforwardly derived from Theorem 4, see
508
+ Appendix A.4 for details.
509
+ 5. Numerical Experiments
510
+ We now illustrate the performance of our OW estimator on various benchmark simulators and on challenging
511
+ likelihood-free inference tasks. The lengthscale of kernels k and c is set using the median heuristic Garreau
512
+ et al. (2017), unless otherwise stated. The closed-form kernel mean embeddings used in the experiments are
513
+ derived in Appendix A.5. Our code is available at [link removed to preserve anonymity].
514
+ 5.1. Benchmarking on popular simulators
515
+ We begin by comparing the V-statistic with our OW estimator on a number of popular benchmark simulators
516
+ having different dimensions for U ⊆ Rs and X ⊆ Rd. The experiments are conducted for {ui}m
517
+ i=1 being iid
518
+ as well as RQMC points. We fix θ for each model (see Appendix B.1 for exact values) and estimate the
519
+ MMD2 between Pm
520
+ θ and Pn
521
+ θ , with k and c both being the SE kernel. We set n = 10, 000 to be large in order
522
+ to make Pn
523
+ θ an accurate approximation of Pθ, and m = 28 so as to facilitate comparison with RQMC, which
524
+ requires m to be a power of 2.
525
+ The results are reported in Table 1. For RQMC points, the errors are generally either similar for the two
526
+ estimators (g-and-k, two moons, and Lotka-volterra models) or smaller for the OW estimator (bivariate Beta
527
+ and MA(2)), with the OW estimator achieving lower errors in all cases barring the M/G/1 queuing model.
528
+ This is to be expected since the M/G/1 model has a discontinuous generator, and our theory therefore
529
+ does not hold. It is also important to note that although RQMC performs very well here even without the
530
+ optimal weights, the simulators were chosen in order to make this comparison feasible. In many cases, U
531
+ will not be uniform and therefore the RQMC approach will not be possible to implement and only the iid
532
+ approach is feasible.
533
+ 8
534
+
535
+ Table 1.: Average and standard deviation (in parenthesis) of estimated MMD2 (×10−3) between Pm
536
+ θ and Pn
537
+ θ
538
+ computed over 100 runs for the V-statistic and our optimally-weighted (OW) estimator. Settings:
539
+ n = 10, 000, m = 256.
540
+ Model
541
+ s
542
+ d
543
+ References
544
+ IID V-stat
545
+ IID OW (ours)
546
+ RQMC V-stat
547
+ RQMC OW (ours)
548
+ g-and-k
549
+ 1
550
+ 1
551
+ Bharti et al. (2022b); Niu et al. (2021)
552
+ 2.25 (1.52)
553
+ 0.086 (0.049)
554
+ 0.060 (0.037)
555
+ 0.059 (0.037)
556
+ Two moons
557
+ 2
558
+ 2
559
+ Lueckmann et al. (2021); Wiqvist et al. (2021)
560
+ 2.36 (1.94)
561
+ 0.057 (0.054)
562
+ 0.056 (0.044)
563
+ 0.055 (0.044)
564
+ Bivariate Beta
565
+ 5
566
+ 2
567
+ Nguyen et al. (2020); Niu et al. (2021)
568
+ 2.13 (1.17)
569
+ 0.555 (0.227)
570
+ 0.222 (0.111)
571
+ 0.193 (0.088)
572
+ MA(2)
573
+ 12
574
+ 10
575
+ Marin et al. (2011); Nguyen et al. (2020)
576
+ 2.42 (0.796)
577
+ 0.705 (0.107)
578
+ 0.381 (0.054)
579
+ 0.322 (0.052)
580
+ M/G/1 queue
581
+ 10
582
+ 5
583
+ Pacchiardi and Dutta (2021); Jiang (2018)
584
+ 2.52 (1.19)
585
+ 1.71 (0.568)
586
+ 0.595 (0.134)
587
+ 0.646 (0.202)
588
+ Lotka-Volterra
589
+ 600
590
+ 2
591
+ Briol et al. (2019a); Wiqvist et al. (2021)
592
+ 2.13 (1.10)
593
+ 2.04 (0.956)
594
+ 1.44 (0.955)
595
+ 1.42 (0.942)
596
+ For the iid points, the improvement in performance is much more significant. The OW estimator achieves
597
+ the lowest error for all the models when {ui}m
598
+ i=1 are taken to be iid uniforms. Its error is reduced by a factor
599
+ of around 20 and 40 for the g-and-k and the two moons model, respectively, compared to the V-statistic.
600
+ As expected from our sample complexity results, the magnitude of this improvement reduces as s (the
601
+ dimension of U) increases. However, the OW estimator still performs slightly better than the V-statistic for
602
+ the Lotka-Volterra model where s = 600.
603
+ 5.2. Multivariate g-and-k distribution
604
+ We now assess the impact of various practical choices on the performance of our method. To do so, we
605
+ consider the multivariate extension of the g-and-k distribution introduced in Drovandi and Pettitt (2011)
606
+ and used as a benchmark in Li et al. (2017b); Jiang (2018); Nguyen et al. (2020). This flexible parametric
607
+ family of distributions does not have a closed-form likelihood, but is easy to simulate from. We define a
608
+ distribution in this family through (Gθ, Uθ), where
609
+ Gθ(u) = θ1+ θ2
610
+
611
+ 1+0.81 − exp(−θ3z(u))
612
+ 1 + exp(−θ3z(u))
613
+ ��
614
+ 1+z(u)2�θ4z(u),
615
+ with θ = (θ1, θ2, θ3, θ4, θ5), z(u) = Σ
616
+ 1
617
+ 2 u and U = N(0, Is), where Σ ∈ Rd×d is a symmetric tri-diagonal
618
+ Toeplitz matrix such that Σii = 1 and Σij = θ5. The parameters θ1,θ2,θ3, and θ4 govern the location,
619
+ scale, skewness, and kurtosis respectively, and s = d. An alternative formulation is through (˜U, ˜Gθ) where
620
+ ˜U = Unif(0, 1)s, and ˜Gθ = Gθ ◦ Φ−1 where Φ is the cumulative distribution function of a N(0, 1).
621
+ Varying choice of k and c
622
+ We first investigate the performance of our OW estimator for different
623
+ combinations of k and c, the choices being either the SE or the Matérn kernel. We estimate the squared-
624
+ MMD for each of these combinations as a function of m, with d = 10 and n = 10, 000. The Lebesgue
625
+ measure formulation is used while computing the embeddings for both the kernels. The Matérn kernel is set
626
+ to order νk = νc = 2.5, and the parameter value to θ0 = (3, 1, 0.1, 0.1, 0.1). The resulting curves are shown
627
+ in Figure 2a. Our method performs best when k is the SE kernel, i.e., when it is infinitely smooth. The
628
+ performance degrades slightly when k is Matérn, while the combination of c as SE and k as the Matérn
629
+ kernel is the worst. This is expected from our theory, and is because the composition of Gθ and k is not
630
+ smooth, but we approximate it with an infinitely smooth function. Hence, from a computational viewpoint,
631
+ it is always beneficial to take k to be very smooth.
632
+ Varying dimensions s and d
633
+ We now analyse the impact of the choice of measure, either Gaussian or
634
+ uniform. Figure 2b shows the OW and V-statistic estimators as the dimension s = d varies. The parameter
635
+ values are the same as before, m = 500, and the SE kernel is used for both k and c. We observe that the OW
636
+ 9
637
+
638
+ 100
639
+ 200
640
+ 300
641
+ 400
642
+ 500
643
+ No. of samples, m
644
+ 10
645
+ 3
646
+ 10
647
+ 2
648
+ MMD2
649
+ k(
650
+ m,
651
+ n)
652
+ s = d = 10, n = 10,000
653
+ c: SE, k: Matern
654
+ c: Matern, k: Matern
655
+ c: SE, k: SE
656
+ c: Matern, k: SE
657
+ (a)
658
+ 25
659
+ 50
660
+ 75
661
+ 100
662
+ Dimension, s
663
+ 10
664
+ 4
665
+ 10
666
+ 3
667
+ n = 10,000, m = 500
668
+ V-statistic
669
+ : Uniform
670
+ : Gaussian
671
+ (b)
672
+ 0.0
673
+ 0.2
674
+ 0.4
675
+ 0.6
676
+ 0.8
677
+ 4
678
+ 10
679
+ 4
680
+ 10
681
+ 3
682
+ 3 = 0.1, s = d = 10
683
+ V-statistic
684
+ : Uniform
685
+ : Gaussian
686
+ (c)
687
+ 10
688
+ 2
689
+ 10
690
+ 1
691
+ 100
692
+ Total cost [seconds]
693
+ 10
694
+ 3
695
+ 10
696
+ 2
697
+ n=200
698
+ n=500
699
+ n=1000
700
+ n=2000
701
+ V-statistic
702
+ OW (ours)
703
+ (d)
704
+ Figure 2.: Error in estimating MMD2 for the multivariate g-and-k distribution. (a) Error of our OW estimator
705
+ for different choices of k and c. Increasing the smoothness of k improves the performance. (b)
706
+ Comparison of V-statistic and OW estimator as a function of dimension. OW performs better
707
+ for both parametrisations of U, with the Gaussian giving lowest error. (c) Value of θ4 also
708
+ impacts the performance of the OW estimator. (d) Error vs. total computation cost for different
709
+ n.
710
+ OW performs better than V-statistic for similar cost: m = n for V-statistic, whereas
711
+ m = (68, 126, 200, 317) for OW.
712
+ estimator performs better than the V-statistic even in dimensions as high as 100. In lower dimensions, the
713
+ Gaussian embedding achieves lower error than the uniform for this model, with their performance converging
714
+ around d = 60. This is likely due to the fact that ˜Gθ is an easier function to approximate than Gθ, but this
715
+ is harder to assess a-priori for the user and highlights some open questions not yet covered by our theory.
716
+ Varying model parameters
717
+ Building on the previous result, we show that the performance of the OW
718
+ estimation is also impacted by θ. In Figure 2c, we analyse the performance of the estimators as a function of
719
+ parameter θ4. The SE kernel is used for both k and c. While the V-statistic is not impacted by the choice
720
+ of θ4, the performance of our estimators degrade as θ4 increases. The behaviour is similar on varying θ3,
721
+ albeit not as drastic as θ4, see Appendix B.2 for the plot. We expect that this difference in performance is
722
+ due to the regularity of the generator varying with θ.
723
+ Performance vs. computational cost
724
+ Finally, since the OW estimator tends to be more computationally
725
+ expensive and this simulator is relatively cheap (≈ 1 ms to generate one sample), we also compare estimators
726
+ for a fixed computational budget. To that end, we vary n and take m = n for the V-statistic and m = 2n2/3
727
+ for the OW estimator. Figure 2d shows their performance with respect to their total computational cost,
728
+ including the cost of simulating from the model (d = s = 5). We see that the OW estimator achieves
729
+ lower error on average than the V-statistic. Hence, it is preferable to use the OW estimator even for a
730
+ computationally cheap simulator like the multivariate g-and-k.
731
+ Composite goodness-of-fit test
732
+ We demonstrate the performance of our method when applied to composite
733
+ goodness-of-fit testing, using the method proposed by Key et al. (2021) with a test statistic based on the
734
+ squared-MMD. Given iid draws from some distribution Q, the test considers whether Q is an element of
735
+ some parametric family {Pθ : θ ∈ Θ} (null hypothesis) or not (alternative hypothesis). The approach uses a
736
+ parametric bootstrap (Stute et al., 1993) to estimate the distribution of the squared-MMD under the null
737
+ hypothesis, which can then be used to decide whether or not to reject. This requires repeatedly performing
738
+ two steps: (i) estimating a parameter value through an MMD estimator of the form in Equation (3), and (ii)
739
+ estimating the squared-MMD between Q and the model at the estimated parameter value. See Appendix B.3
740
+ 10
741
+
742
+ Table 2.: Fraction of repeats for which the null was rejected. An ideal test would have 0.05 when the null
743
+ holds, and 1 otherwise.
744
+ Cases
745
+ IID V-stat
746
+ IID OW (ours)
747
+ θ4 = 0.1 (null holds)
748
+ 0.040
749
+ 0.047
750
+ θ4 = 0.5 (alternative holds)
751
+ 0.040
752
+ 0.413
753
+ for the full algorithm. This needs to be done up to B times, where B can be in the hundreds or thousands,
754
+ which can be a significant challenge computationally. This limits the number of simulated samples m that
755
+ can be used at each step, and is therefore a prime use case for our OW estimator.
756
+ We performed this test with a level of 0.05 using the V-statistic and OW estimator, using B = 200. We
757
+ considered the multivariate g-and-k model with unknown θ1, θ2, θ3, and θ5 but fixed θ4 = 0.1. We used
758
+ m = 100 and n = 500 and considered two cases: Q is a multivariate g-and-k with θ4 = 0.1 (null holds) or
759
+ θ4 = 0.5 (alternative holds). When the null hypothesis holds, we should expect the tests to reject the null at
760
+ a rate close 0.05, whereas when the alternative holds, we should reject at a rate close to 1. Table 2 shows
761
+ that our test based on the OW estimator performs significantly better in that respect than the V-statistic.
762
+ This is due to the fact that the OW estimator is able to improve both the estimate of the parameter (see
763
+ Figure 5 in Appendix B.3), and the estimate of the test statistic, thus improving the overall performance.
764
+ 5.3. Large scale offshore wind farm model
765
+ Finally, we consider a low-order wake model Niayifar and Porté-Agel (2016); Kirby et al. (2023) for large-scale
766
+ offshore wind farms. The model simulates an estimate of the farm-averaged local turbine thrust coefficient
767
+ Nishino (2016), which is an indicator of the energy produced. The parameter θ is the angle (in degrees)
768
+ at which the wind is blowing. The turbulence intensity is assumed to have zero-mean additive Gaussian
769
+ noise (i.e. U = N(0, 10−3)), which then goes through the non-linear mapping of the generator. Although
770
+ this model is an approximation of the state-of-the-art models that can take around 100 CPU hours per run
771
+ (see e.g. Kirby et al. (2022)), one realisation from this model takes ≈ 2 mins, which is still computationally
772
+ prohibitive for likelihood-free inference. This example is indicative of the expensive simulators which are
773
+ widely used in science, and is thus suitable for our method.
774
+ We apply the ABC method of (4) to estimate θ with both the OW estimator and the V-statistic. The
775
+ tolerance threshold ε is taken in terms of percentile, i.e., the proportion of the data that yields the least
776
+ MMD distances. We use 1000 parameter values from the Unif(0, 30) prior on Θ. As the cost of the model
777
+ far exceeds that of estimating the MMD, we take m = 10 for both estimators. With few m, setting
778
+ the lengthscale of c using median heuristic is difficult, so we fix it to be 1. The simulated datasets took
779
+ ≈ 245 hours to generate, while estimating the MMD took around 0.13 s and 0.36 s for the V-statistic and
780
+ the OW estimator, respectively.
781
+ The resulting posteriors, which are approximations of the ABC posterior obtained if the MMD was
782
+ computable in closed-form, are in Figure 3. We observe that the OW estimator’s posterior is much more
783
+ concentrated around the true value than that of the V-statistic for both values of ε. This is because the OW
784
+ estimator approximates the MMD more accurately than the V-statistic for the same m. Hence, our method
785
+ can achieve similar performance as the V-statistic with much smaller m, saving hours of computation time.
786
+ 11
787
+
788
+ 0
789
+ 10
790
+ 20
791
+ 30
792
+ 0.00
793
+ 0.05
794
+ 0.10
795
+ 0.15
796
+ Density
797
+ = 5%
798
+ V-stat.
799
+ OW
800
+ 0
801
+ 0
802
+ 10
803
+ 20
804
+ 30
805
+ 0.00
806
+ 0.05
807
+ 0.10
808
+ = 10%
809
+ Figure 3.: ABC posteriors for the wind farm model. Our OW estimator yields posterior samples that are
810
+ more concentrated around the true θ0 than the V-statistic. Settings: n = 100, θ0 = 20.
811
+ 6. Conclusion
812
+ We proposed an optimally-weighted MMD estimator which has improved sample complexity than the
813
+ V-statistic when the generator and kernel are smooth and the dimensionality is small or moderate. Thus, our
814
+ estimator requires fewer data points than alternatives in this setting, making it especially advantageous for
815
+ computationally expensive simulators which are widely used in the natural sciences, biology and engineering.
816
+ However, a number of open questions remain, and we highlight the most relevant below.
817
+ The parameterisation of a simulator through a generator Gθ and a measure U is usually not unique, and it
818
+ is often unclear which parameterisation is most amenable to our method. One approach would be to choose
819
+ a parameterisation where the dimension of U is small so as to improve the convergence rate. However, our
820
+ result in Theorem 4 also contains rate constants which are difficult to get a handle on, and it is therefore
821
+ difficult to identify which parameterisation is best amongst those with fixed smoothness and dimensionality.
822
+ Finally, our sample complexity result could be extended. One limitation is that we focus on the MMD
823
+ and not its gradient, meaning that our results are not directly applicable for gradient-based likelihood-free
824
+ inference such as the method used for our g-and-k example Briol et al. (2019a). A future line of work
825
+ could also investigate if our ideas translate to other distances used for likelihood-free inference, such as the
826
+ Wasserstein distance Bernton et al. (2019) and Sinkhorn divergence Genevay et al. (2018, 2019).
827
+ Acknowledgements
828
+ AB was supported by the Academy of Finland (Flagship programme: Finnish Center for Artificial Intelligence
829
+ FCAI). MN and OK acknowledge support from UKRI under the EPSRC grant number [EP/S021566/1].
830
+ MN was also supported through The Alan Turing Institute’s Enrichment Scheme. SK was supported by
831
+ the UKRI Turing AI World-Leading Researcher Fellowship, [EP/W002973/1]. FXB was supported by the
832
+ Lloyd’s Register Foundation Programme on Data-Centric Engineering and The Alan Turing Institute under
833
+ the EPSRC grant [EP/N510129/1], and through an Amazon Research Award on “Transfer Learning for
834
+ Numerical Integration in Expensive Machine Learning Systems”.
835
+ References
836
+ Adams, R. A. and Fournier, J. J. (2003). Sobolev spaces. Elsevier.
837
+ Akeret, J., Refregier, A., Amara, A., Seehars, S., and Hasner, C. (2015). Approximate Bayesian computation
838
+ for forward modeling in cosmology. Journal of Cosmology and Astroparticle Physics, 2015(08):043–043.
839
+ 12
840
+
841
+ Alquier, P. and Gerber, M. (2021).
842
+ Universal robust regression via maximum mean discrepancy.
843
+ arXiv:2006.00840.
844
+ Bach, F., Lacoste-Julien, S., and Obozinski, G. (2012). On the equivalence between herding and conditional
845
+ gradient algorithms. In Proceedings of the International Conference on Machine Learning, pages 1355–1362.
846
+ Beaumont, M. A. (2010). Approximate Bayesian computation in evolution and ecology. Annual Review of
847
+ Ecology, Evolution, and Systematics, 41(1):379–406.
848
+ Beaumont, M. A., Cornuet, J.-M., Marin, J.-M., and Robert, C. P. (2009). Adaptive approximate Bayesian
849
+ computation. Biometrika, 96(4):983–990.
850
+ Behrens, J. and Dias, F. (2015). New computational methods in tsunami science. Philosophical Transactions
851
+ of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2053):20140382.
852
+ Belhadji, A., Bardenet, R., and Chainais, P. (2019). Kernel quadrature with DPPs. In Neural Information
853
+ Processing Systems, pages 12927–12937.
854
+ Berlinet, A. and Thomas-Agnan, C. (2004). Reproducing Kernel Hilbert Spaces in Probability and Statistics.
855
+ Springer Science+Business Media, New York.
856
+ Bernton, E., Jacob, P. E., Gerber, M., and Robert, C. P. (2019). Approximate Bayesian computation with
857
+ the Wasserstein distance. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
858
+ 81(2):235–269.
859
+ Bharti, A., Briol, F.-X., and Pedersen, T. (2022a). A general method for calibrating stochastic radio channel
860
+ models with kernels. IEEE Transactions on Antennas and Propagation, 70(6):3986–4001.
861
+ Bharti, A., Filstroff, L., and Kaski, S. (2022b). Approximate Bayesian computation with domain expert in
862
+ the loop. In Proceedings of the 39th International Conference on Machine Learning, pages 1893–1905.
863
+ Bińkowski, M., Sutherland, D. J., Arbel, M., and Gretton, A. (2018). Demystifying MMD GANs. In
864
+ International Conference on Learning Representation.
865
+ Briol, F.-X., Barp, A., Duncan, A. B., and Girolami, M. (2019a). Statistical inference for generative models
866
+ with maximum mean discrepancy. arXiv:1906.05944.
867
+ Briol, F.-X., Oates, C. J., Girolami, M., and Osborne, M. A. (2015). Frank-Wolfe Bayesian quadrature:
868
+ Probabilistic integration with theoretical guarantees. In Neural Information Processing Systems, pages
869
+ 1162–1170.
870
+ Briol, F.-X., Oates, C. J., Girolami, M., Osborne, M. A., and Sejdinovic, D. (2019b). Probabilistic integration:
871
+ A role in statistical computation? (with discussion). Statistical Science, 34(1):1–22.
872
+ Cameron, E. and Pettitt, A. N. (2012). Approximate Bayesian computation for astronomical model analysis:
873
+ a case study in galaxy demographics and morphological transformation at high redshift. Monthly Notices
874
+ of the Royal Astronomical Society, 425(1):44–65.
875
+ Chen, W. Y., Barp, A., Briol, F.-X., Gorham, J., Girolami, M., Mackey, L., and Oates, C. J. (2019). Stein
876
+ point Markov chain Monte Carlo. In International Conference on Machine Learning, pages 1011–1021.
877
+ Chen, W. Y., Mackey, L., Gorham, J., Briol, F.-X., and Oates, C. J. (2018). Stein points. In Proceedings of
878
+ the International Conference on Machine Learning, pages 843–852.
879
+ 13
880
+
881
+ Chen, Y., Welling, M., and Smola, A. (2010). Super-samples from kernel herding. In Proceedings of the
882
+ Conference on Uncertainty in Artificial Intelligence, pages 109–116.
883
+ Chérief-Abdellatif, B.-E. and Alquier, P. (2020). MMD-Bayes: Robust Bayesian estimation via maximum
884
+ mean discrepancy. In Proceesings of the 2nd Symposium on Advances in Approximate Bayesian Inference,
885
+ pages 1–21.
886
+ Chérief-Abdellatif, B.-E. and Alquier, P. (2021). Finite sample properties of parametric MMD estimation:
887
+ robustness to misspecification and dependence. arXiv:1912.05737.
888
+ Constantine, G. M. and Savits, T. H. (1996). A multivariate faa di bruno formula with applications.
889
+ Transactions of the American Mathematical Society, 348(2):503–520.
890
+ Cranmer, K., Brehmer, J., and Louppe, G. (2020). The frontier of simulation-based inference. Proceedings
891
+ of the National Academy of Sciences, 117(48):30055–30062.
892
+ Dellaporta, C., Knoblauch, J., Damoulas, T., and Briol, F.-X. (2022). Robust Bayesian inference for
893
+ simulator-based models via the MMD posterior bootstrap. In Proceedings of the International Conference
894
+ in Artificial Intelligence and Statistics.
895
+ Diaconis, P. (1988). Bayesian Numerical Analysis. Statistical Decision Theory and Related Topics IV, pages
896
+ 163–175.
897
+ Dick, J., Kuo, F. Y., and Sloan, I. H. (2013). High-dimensional integration: The quasi-Monte Carlo way.
898
+ Acta Numerica, 22(April 2013):133–288.
899
+ Drovandi, C. C. and Pettitt, A. N. (2011). Likelihood-free Bayesian estimation of multivariate quantile
900
+ distributions. Computational Statistics & Data Analysis, 55(9):2541–2556.
901
+ Dwivedi, R. and Mackey, L. (2021). Kernel Thinning. In Conference on Learning Theory, volume 134.
902
+ Dziugaite, G. K., Roy, D. M., and Ghahramani, Z. (2015). Training generative neural networks via maximum
903
+ mean discrepancy optimization. In Uncertainty in Artificial Intelligence.
904
+ Evans, L. C. and Garzepy, R. F. (2018). Measure theory and fine properties of functions. Routledge.
905
+ Garreau, D., Jitkrittum, W., and Kanagawa, M. (2017). Large sample analysis of the median heuristic.
906
+ arXiv:1707.07269.
907
+ Genevay, A., Chizat, L., Bach, F., Cuturi, M., and Peyré, G. (2019). Sample complexity of Sinkhorn
908
+ divergences. In International Conference on Artificial Intelligence and Statistics.
909
+ Genevay, A., Peyré, G., and Cuturi, M. (2018). Learning generative models with Sinkhorn divergences. In
910
+ Proceedings of the International Conference on Artificial Intelligence and Statistics, pages 1608–1617.
911
+ Greenberg, D., Nonnenmacher, M., and Macke, J. (2019). Automatic posterior transformation for likelihood-
912
+ free inference. In Proceedings of the International Conference on Machine Learning, pages 2404–2414.
913
+ Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., and Smola, A. (2006). A kernel method for the
914
+ two-sample-problem. In Advances in Neural Information Processing Systems, volume 19.
915
+ Gretton, A., Borgwardt, K., Rasch, M. J., and Scholkopf, B. (2012). A kernel two-sample test. Journal of
916
+ Machine Learning Research, 13:723–773.
917
+ 14
918
+
919
+ Gunter, T., Garnett, R., Osborne, M., Hennig, P., and Roberts, S. (2014). Sampling for inference in
920
+ probabilistic models with fast Bayesian quadrature. In Advances in Neural Information Processing
921
+ Systems, pages 2789–2797.
922
+ Gutmann, M. U. and Corander, J. (2016). Bayesian optimization for likelihood-free inference of simulator-
923
+ based statistical models. Journal of Machine Learning Research, 17(125):1–47.
924
+ Gutmann, M. U., Dutta, R., Kaski, S., and Corander, J. (2017). Likelihood-free inference via classification.
925
+ Statistics and Computing, 28(2):411–425.
926
+ Hoppe, M., Embreus, O., and Fülöp, T. (2021). Dream: A fluid-kinetic framework for tokamak disruption
927
+ runaway electron simulations. Computer Physics Communications, 268:108098.
928
+ Jennings, N. R. (1999). Agent-based computing: Promise and perils. In Proceedings of the International
929
+ Joint Conference on Artificial Intelligence (IJCAI).
930
+ Jiang, B. (2018). Approximate Bayesian computation with Kullback-Leibler divergence as data discrepancy.
931
+ In Proceedings of the International Conference on Artificial Intelligence and Statistics, pages 1711–1721.
932
+ Kajihara, T., Yamazaki, K., Kanagawa, M., and Fukumizu, K. (2018). Kernel recursive ABC: Point estimation
933
+ with intractable likelihood. In International Conference on Machine Learning, pages 2400–2409.
934
+ Kanagawa, M., Sriperumbudur, B. K., and Fukumizu, K. (2020). Convergence analysis of deterministic
935
+ kernel-based quadrature rules in misspecified settings.
936
+ Foundations of Computational Mathematics,
937
+ 20:155–194.
938
+ Key, O., Fernandez, T., Gretton, A., and Briol, F.-X. (2021). Composite goodness-of-fit tests with kernels. In
939
+ NeurIPS 2021 Workshop Your Model Is Wrong: Robustness and Misspecification in Probabilistic Modeling.
940
+ Kirby, A., Briol, F.-X., Dunstan, T. D., and Nishino, T. (2023). Data-driven modelling of turbine wake
941
+ interactions and flow resistance in large wind farms. arXiv:2301.01699.
942
+ Kirby, A., Nishino, T., and Dunstan, T. (2022). Two-scale interaction of wake and blockage effects in large
943
+ wind farms. arXiv:2207.03148.
944
+ Kopka, P., Wawrzynczak, A., and Borysiewicz, M. (2016).
945
+ Application of the approximate Bayesian
946
+ computation methods in the stochastic estimation of atmospheric contamination parameters for mobile
947
+ sources. Atmospheric Environment, 145:201–212.
948
+ Kypraios, T., Neal, P., and Prangle, D. (2017). A tutorial introduction to Bayesian inference for stochastic
949
+ epidemic models using approximate Bayesian computation. Mathematical Biosciences, 287:42–53.
950
+ Legramanti, S., Durante, D., and Alquier, P. (2022). Concentration and robustness of discrepancy-based
951
+ ABC via Rademacher complexity. arXiv:2206.06991.
952
+ Li, C.-L., Chang, W.-C., Cheng, Y., Yang, Y., and Póczos, B. (2017a). MMD GAN: Towards deeper
953
+ understanding of moment matching network. In Advances in Neural Information Processing Systems,
954
+ pages 2203–2213.
955
+ Li, J., Nott, D., Fan, Y., and Sisson, S. (2017b). Extending approximate Bayesian computation methods to
956
+ high dimensions via a Gaussian copula model. Computational Statistics & Data Analysis, 106:77–89.
957
+ Li, Y., Swersky, K., and Zemel, R. (2015). Generative moment matching networks. In International
958
+ Conference on Machine Learning, pages 1718–1727.
959
+ 15
960
+
961
+ Lintusaari, J., Gutmann, M. U., Dutta, R., Kaski, S., and Corander, J. (2017). Fundamentals and recent
962
+ developments in approximate Bayesian computation. Systematic Biology, 66:66–82.
963
+ Lueckmann, J.-M., Boelts, J., Greenberg, D., Goncalves, P., and Macke, J. (2021). Benchmarking simulation-
964
+ based inference. In Proceedings of the International Conference on Artificial Intelligence and Statistics,
965
+ pages 343–351.
966
+ Mak, S. and Joseph, V. R. (2018). Support points. Annals of Statistics, 46(6A):2562–2592.
967
+ Marin, J.-M., Pudlo, P., Robert, C. P., and Ryder, R. J. (2011). Approximate Bayesian computational
968
+ methods. Statistics and Computing, 22(6):1167–1180.
969
+ Mitrovic, J., Sejdinovic, D., and Teh, Y.-W. (2016). DR-ABC: Approximate Bayesian computation with
970
+ kernel-based distribution regression. In Proceedings of the International Conference on Machine Learning,
971
+ pages 1482–1491.
972
+ Muandet, K., Fukumizu, K., Sriperumbudur, B., and Schölkopf, B. (2017). Kernel mean embedding of
973
+ distributions: A review and beyond. Foundations and Trends® in Machine Learning, 10(1-2):1–141.
974
+ Nguyen, H. D., Arbel, J., Lu, H., and Forbes, F. (2020). Approximate Bayesian computation via the energy
975
+ statistic. IEEE Access, 8:131683–131698.
976
+ Niayifar, A. and Porté-Agel, F. (2016). Analytical modeling of wind farms: A new approach for power
977
+ prediction. Energies, 9(9):1–13.
978
+ Niederer, S. A., Lumens, J., and Trayanova, N. A. (2019). Computational models in cardiology. Nature
979
+ Reviews Cardiology, 16(2):100–111.
980
+ Nishino, T. (2016). Two-scale momentum theory for very large wind farms. Journal of Physics: Conference
981
+ Series, 753(3).
982
+ Niu, Z., Meier, J., and Briol, F.-X. (2021). Discrepancy-based inference for intractable generative models
983
+ using quasi-Monte Carlo. arXiv:2106.11561.
984
+ O’Hagan, A. (1991). Bayes-Hermite quadrature. Journal of Statistical Planning and Inference, 29:245–260.
985
+ Pacchiardi, L. and Dutta, R. (2021). Generalized Bayesian likelihood-free inference using scoring rules
986
+ estimators. arXiv:2104.03889.
987
+ Park, M., Jitkrittum, W., and Sejdinovic, D. (2015). K2-ABC: approximate Bayesian computation with
988
+ kernel embeddings. Proceedings of the International Conference on Artificial Intelligence and Statistics,
989
+ 51:398–407.
990
+ Peyré, G. and Cuturi, M. (2019). Computational optimal transport: With applications to data science.
991
+ Foundations and Trends® in Machine Learning, 11(5-6):355–607.
992
+ Rasmussen, C. and Ghahramani, Z. (2002). Bayesian Monte Carlo. In Advances in Neural Information
993
+ Processing Systems, pages 489–496.
994
+ Rasmussen, C. and Williams, C. (2006). Gaussian Processes for Machine Learning. MIT Press.
995
+ Riabiz, M., Chen, W., Cockayne, J., Swietach, P., Niederer, S. A., Mackey, L., and Oates, C. J. (2020).
996
+ Optimal thinning of MCMC output. arXiv:2005.03952.
997
+ 16
998
+
999
+ Sriperumbudur, B. K., Gretton, A., Fukumizu, K., Schölkopf, B., and Lanckriet, G. R. G. (2010). Hilbert
1000
+ space embeddings and metrics on probability measures. Journal of Machine Learning Research, 11.
1001
+ Stein, E. M. (1970). Singular integrals and differentiability properties of functions, volume 2. Princeton
1002
+ university press.
1003
+ Stute, W., Manteiga, W. G., and Quindimil, M. P. (1993). Bootstrap based goodness-of-fit-tests. Metrika,
1004
+ 40(1):243–256.
1005
+ Teckentrup, A. L. (2020). Convergence of Gaussian process regression with estimated hyper-parameters
1006
+ and applications in Bayesian inverse problems.
1007
+ SIAM-ASA Journal on Uncertainty Quantification,
1008
+ 8(4):1310–1337.
1009
+ Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E.,
1010
+ Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov,
1011
+ N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W.,
1012
+ VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R.,
1013
+ Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors (2020).
1014
+ SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272.
1015
+ Wendland, H. (2005). Scattered Data Approximation. Cambridge University Press.
1016
+ Wenger, J., Krämer, N., Pförtner, M., Schmidt, J., Bosch, N., Effenberger, N., Zenn, J., Gessner, A.,
1017
+ Karvonen, T., Briol, F.-X., Mahsereci, M., and Hennig, P. (2021). ProbNum: Probabilistic numerics in
1018
+ Python. arXiv:2112.02100.
1019
+ Wiqvist, S., Frellsen, J., and Picchini, U. (2021). Sequential neural posterior and likelihood approximation.
1020
+ arXiv:2102.06522.
1021
+ Wood, S. N. (2010).
1022
+ Statistical inference for noisy nonlinear ecological dynamic systems.
1023
+ Nature,
1024
+ 466(7310):1102–1104.
1025
+ Wynne, G., Briol, F.-X., and Girolami, M. (2021). Convergence guarantees for Gaussian process means with
1026
+ misspecified likelihoods and smoothness. Journal of Machine Learning Research, 22(123):1–40.
1027
+ 17
1028
+
1029
+ Supplementary Materials
1030
+ In Appendix A, we present the proofs and derivations of all the theoretical results in our paper, while
1031
+ Appendix B contains additional details regarding our experiments.
1032
+ A. Proof of Theoretical Results
1033
+ In this section, we prove Theorems 3 and 4 and intermediate results required, and expand on the technical
1034
+ background.
1035
+ A.1. Proof of Theorem 3
1036
+ Proof. Let Pm,w
1037
+ θ
1038
+ = �m
1039
+ i=1 wiδyi = �m
1040
+ i=1 wiδGθ(ui). Using the fact that the MMD is a metric, we can use the
1041
+ reverse triangle inequality to get
1042
+ ��MMDk(Pθ, Q) − MMDk(Pm,w
1043
+ θ
1044
+ , Q)
1045
+ �� ≤ MMDk(Pθ, Pm,w
1046
+ θ
1047
+ ).
1048
+ To bound the right-hand side, we can use the fact that MMDk is an integral-probability metric with
1049
+ underlying function class being the unit-ball in Hk:
1050
+ MMDk(Pθ, Pm,w
1051
+ θ
1052
+ ) =
1053
+ sup
1054
+ ∥f∥Hk≤1
1055
+ ����
1056
+
1057
+ X
1058
+ f(x)Pθ(dx) −
1059
+
1060
+ X
1061
+ f(x)Pm,w
1062
+ θ
1063
+ (dx)
1064
+ ����
1065
+ =
1066
+ sup
1067
+ ∥f∥Hk≤1
1068
+ �����
1069
+
1070
+ U
1071
+ f(Gθ(u))U(du) −
1072
+ m
1073
+
1074
+ i=1
1075
+ wif(Gθ(ui))
1076
+ ����� .
1077
+ A similar definition for MMDc can also give us:
1078
+ �����
1079
+
1080
+ U
1081
+ f(Gθ(u))U(du) −
1082
+ m
1083
+
1084
+ i=1
1085
+ wif(Gθ(ui))
1086
+ ����� ≤ ∥f ◦ Gθ∥Hc × MMDc
1087
+
1088
+ U,
1089
+ m
1090
+
1091
+ i=1
1092
+ wiδui
1093
+
1094
+ .
1095
+ Putting the last two results together, we get:
1096
+ ��MMDk(Pθ, Q) − MMDk(Pm,w
1097
+ θ
1098
+ , Q)
1099
+ �� ≤
1100
+ sup
1101
+ ∥f∥Hk≤1
1102
+ ∥f ◦ Gθ∥Hc × MMDc
1103
+
1104
+ U,
1105
+ m
1106
+
1107
+ i=1
1108
+ wiδui
1109
+
1110
+ .
1111
+ From our assumption that k(x, ·) ◦ Gθ ∈ Hc for any x ∈ X, we have that
1112
+ K =
1113
+ sup
1114
+ ∥f∥Hk≤1
1115
+ ∥f ◦ Gθ∥Hc < ∞,
1116
+ and therefore
1117
+ |MMDk(Pθ, Q) − MMDk(Pm,w
1118
+ θ
1119
+ , Q)| ≤ K × MMDc
1120
+
1121
+ U,
1122
+ m
1123
+
1124
+ i=1
1125
+ wiδui
1126
+
1127
+ .
1128
+ To prove the second result, we note that
1129
+ arg min
1130
+ w∈Rm
1131
+ MMDc
1132
+
1133
+ U,
1134
+ m
1135
+
1136
+ i=1
1137
+ wiδui
1138
+
1139
+ = arg min
1140
+ w∈Rm
1141
+ MMD2
1142
+ c
1143
+
1144
+ U,
1145
+ m
1146
+
1147
+ i=1
1148
+ wiδui
1149
+
1150
+ .
1151
+ 18
1152
+
1153
+ and
1154
+ MMD2
1155
+ c
1156
+
1157
+ U,
1158
+ m
1159
+
1160
+ i=1
1161
+ wiδui
1162
+
1163
+ =
1164
+
1165
+ U
1166
+
1167
+ U
1168
+ c(u, v)U(du)U(dv) − 2
1169
+ m
1170
+
1171
+ i=1
1172
+ wi
1173
+
1174
+ U
1175
+ c(ui, u)U(du) +
1176
+ m
1177
+
1178
+ i,j=1
1179
+ wiwjc(ui, uj).
1180
+ The latter is a quadratic form in w, meaning it can be minimised in closed-form over w and the optimal
1181
+ weights are given by w∗. This completes the proof of the second part of the theorem.
1182
+ A.2. Chain rule in Sobolev spaces
1183
+ The proof of Theorem 4, specifically the result k(x, ·) ◦ Gθ ∈ Hc for Matérn k and c, will use a specific form
1184
+ of a chain rule for Sobolev spaces. We justify the choice of Matérn kernels—or more generally, kernels the
1185
+ RKHS of which is norm-equivalent to the well-studied Sobolev space—and prove the form of the chain rule
1186
+ for Sobolev spaces that will imply k(x, ·) ◦ Gθ ∈ Hc.
1187
+ For general c and k, k(x, ·) ◦ Gθ ∈ Hc is non-trivial to check. Here, we introduce sufficient conditions
1188
+ on c, k, and Gθ that are easily interpretable and correspond to common practical settings. Specifically,
1189
+ we consider c and k the RKHS of which, Hc and Hk, are Sobolev spaces, and Gθ of a certain degree of
1190
+ smoothness—which reduces the problem to a form of a chain rule for Sobolev spaces.1 The rest of the
1191
+ section proceeds as follows: first, we introduce the background definitions and results, then show that the
1192
+ required form of the chain rule holds for first order derivatives (Lemma 1), and finally extend the result to
1193
+ higher order derivatives (Theorem 6).
1194
+ Background.
1195
+ We consider the well-studied Sobolev kernels (see e.g. Wendland, 2005, Chapter 10), which
1196
+ are kernels that induce a reproducing kernel Hilbert space (RKHS) that is norm-equivalent to a Sobolev
1197
+ space Wl,2(X), X ⊆ Rd, for some integer l > d/2. We give the definition of Wl,2 Sobolev spaces below,
1198
+ and refer to Adams and Fournier (2003) for an in-depth treatment of Sobolev spaces and Berlinet and
1199
+ Thomas-Agnan (2004) for general RKHS theory.
1200
+ Definition 1 (Sobolev spaces). Suppose X is an open subset of Rd. The Sobolev space Wl,2(X), l > d/2, is
1201
+ a space of functions f : X → R such that ∥f∥2
1202
+ L2(X) =
1203
+
1204
+ X f2(x)dx < ∞, and for any multi-index α ∈ Nd with
1205
+ |α| = �d
1206
+ i=1 αi ≤ l, the weak derivative Dαf = Dα1
1207
+ x1 . . . Dαd
1208
+ xd f exists and ∥Dαf∥L2(X) < ∞.
1209
+ A weak derivative is a generalisation of the concept of a derivative to functions that are not differentiable.
1210
+ A locally integrable function Dxif is a weak derivative of f in xi if it closely resembles the behavior of
1211
+ the ordinary derivative on any open U ⊆ X: for any infinitely continuously differentiable function with a
1212
+ compact support, the integration chain rule holds with f and Dxif—as it would for an ordinary derivative.
1213
+ As the definition is only concerned with equality of the integrals in the chain rule, a weak derivative is not
1214
+ uniquely defined: two functions g1 and g2 can be weak derivatives of f in xi if (and only if) they only differ
1215
+ on a zero-volume set, meaning a set the Lebesgue measure of which is zero. As such, by Dxif we will refer
1216
+ to any function that satisfies the definition of a weak derivative. For a multi-index α = (α1, . . . αd) ∈ Nd, by
1217
+ Dαf we denote the |α| order weak derivative Dαf = Dα1
1218
+ x1 . . . Dαd
1219
+ xd f, where
1220
+ Dnxif = Dxi . . . Dxi
1221
+
1222
+ ��
1223
+
1224
+ n
1225
+ f for any n ∈ N.
1226
+ 1Though various forms of the chain rule for Sobolev spaces exist in the literature (for example, Evans and Garzepy (2018,
1227
+ Section 4.2.2)), they tend to either consider F ◦ f, where f is in the Sobolev space (rather than F), or place overly strong
1228
+ assumptions on f.
1229
+ 19
1230
+
1231
+ If an ordinary derivative ∂αf = ∂|α|f/∂α1x1 . . . ∂αdxd exists, it is equal to any weak Dαf. It is important
1232
+ to clarify that the definition of Sobolev spaces given here is specific to the case Wl,2(X), l > d/2. General
1233
+ Sobolev spaces W l,p(X) are subspaces of more general Lebesgue spaces, and are spaces not of functions, but
1234
+ of equivalence classes of functions. Two functions f1, f2 are in the same equivalence class [f] if they are equal
1235
+ almost everywhere. General Lebesgue and Sobolev space theory requires careful handling of the notion of
1236
+ equivalence classes, as the functions in them may differ arbitrarily on sets of Lebesgue measure zero. However,
1237
+ by Sobolev embedding theorem (Adams and Fournier, 2003, Theorem 4.12) every element of Wl,2(X) is
1238
+ continuous if l > d/2, which implies that every equivalence class contains exactly one function—and we may
1239
+ define Wl,2(X) as a space of functions, as is done above.
1240
+ Throughout the proofs, we will say f ∈ L∞(X) if it is bounded on X, and f ∈ Cm(X), for m ∈ N, if
1241
+ ∂αf exists and is continuous for any |α| ∈ [0, m]. Specifically, C0(X) is the space of continuous functions,
1242
+ and C∞(X) a space of infinitely differentiable functions with continuous derivatives. The output space of
1243
+ functions in both L∞(X) and Cm(X) is omitted from the notation as it will be clear from the specific f in
1244
+ question.
1245
+ We start by recalling an important result that characterises Sobolev functions as limit points of sequences
1246
+ of C∞(X) functions. Since it is a necessary and sufficient condition, we will use this result both to operate
1247
+ on a function in a Sobolev space using the "friendlier" smooth functions, and to prove a function of interest
1248
+ lies in a Sobolev space by finding a sequence of smooth function that approximates it accordingly.
1249
+ Theorem 5 (Theorem 3.17, Adams and Fournier (2003)). For an open set X ⊆ Rd, a function f : X → R
1250
+ lies in the Sobolev space W1,2(X) and has weak derivatives Dxj[f], j ∈ [1, d] if and only if there exists a
1251
+ sequence of functions fn ∈ C∞(X) ∩ W1,2(X) such that for j ∈ [1, d]
1252
+ ∥f − fn∥L2(X) → 0,
1253
+ n → ∞,
1254
+ (8)
1255
+ ����Dxj[f] − ∂fn
1256
+ ∂xj
1257
+ ����
1258
+ L2(X)
1259
+ → 0,
1260
+ n → ∞,
1261
+ (9)
1262
+ where ∂fn
1263
+ ∂xj is the ordinary derivative of fn with respect to xj.
1264
+ Note that the functions fn converge to f in the Sobolev W1,2(X) norm, ∥f −fn∥2
1265
+ W1,2(X) = ∥f −fn∥L2(X) +
1266
+ �d
1267
+ j=1 ∥Dxjf − ∂fn/∂xj∥L2(X) → 0 as n → ∞ , if and only if (8) and (9) hold.
1268
+ Chain rule for W1,2.
1269
+ We now prove that chain rule holds for ϕ ◦ Gθ for ϕ in a Sobolev space W 1,2(X).
1270
+ For clarity, we will explicitly state the assumptions on Gθ in the main text. Recall that a measure Pθ on
1271
+ X ⊆ Rd is said to be a pushforward of a measure U on U ⊆ Rs under Gθ : U → X if for any X-measurable
1272
+ f : X → R it holds that
1273
+
1274
+ X f(x)Pθ(dx) =
1275
+
1276
+ U [f ◦ Gθ] (u)U(du).
1277
+ Lemma 1 (Chain rule for W1,2). Suppose
1278
+ • ϕ ∈ W1,2(X).
1279
+ • U ⊂ Rs is bounded, X ⊂ Rd is open, and X = Gθ(U) for some Gθ = (Gθ,1, . . . , Gθ,d)⊤. The partial
1280
+ derivative ∂Gθ,j/∂ui exists and |∂G��,j/∂ui| ≤ CG for some CG for all i ∈ [1, s] and j ∈ [1, d].
1281
+ • U is a probability distribution on U that has a density fU : U → [CU, ∞) for CU > 0.
1282
+ • Pθ is a pushforward of U under Gθ, and has a density fPθ such that fPθ(x) ≤ CPθ for all x ∈ X for
1283
+ some CPθ.
1284
+ Then ϕ ◦ Gθ ∈ W1,2(U), and for i ∈ [1, s], its weak derivative Dui[ϕ ◦ Gθ] is equal to �d
1285
+ j=1[Dxjϕ ◦ Gθ] ∂Gθ,j
1286
+ ∂ui .
1287
+ 20
1288
+
1289
+ Proof. Since X is open, by Theorem 5 there is a sequence ϕn ∈ C∞(X) ∩ W1,2(X) such that
1290
+ ∥ϕ − ϕn∥L2(X) → 0,
1291
+ n → ∞,
1292
+ ����Dxjϕ − ∂ϕn
1293
+ ∂xj
1294
+ ����
1295
+ L2(X)
1296
+ → 0,
1297
+ n → ∞,
1298
+ The proof proceeds as follows: we show that the sequence ϕn ◦ Gθ approximates ϕ ◦ Gθ, and ∂[ϕn◦Gθ]
1299
+ ∂ui
1300
+ approximates the sum in the statement of the lemma, �d
1301
+ j=1[Dxjϕ ◦ Gθ] ∂Gθ,j
1302
+ ∂ui , in L2(U)–norm. Then, by
1303
+ the sufficient condition in Theorem 5, ϕ ◦ Gθ lies in W1,2(U), and its weak derivative in ui is �d
1304
+ j=1[Dxjϕ ◦
1305
+ Gθ](u) ∂Gθ,j
1306
+ ∂ui (u), for any i ∈ [1, s].
1307
+ Since Pθ has a density, for any X-measurable f it holds that
1308
+
1309
+ X
1310
+ f(x)fPθ(x)dx =
1311
+
1312
+ U
1313
+ [f ◦ Gθ] (u)fU(u)du.
1314
+ Together with density bounds, this gives ∥ϕ ◦ Gθ − ϕn ◦ Gθ∥L2(U) → 0 as
1315
+
1316
+ U
1317
+ (ϕ ◦ Gθ(u) − ϕn ◦ Gθ(u))2 du ≤ C−1
1318
+ U
1319
+
1320
+ U
1321
+ (ϕ ◦ Gθ(u) − ϕn ◦ Gθ(u))2 fU(u)du
1322
+ = C−1
1323
+ U
1324
+
1325
+ X
1326
+ (ϕ(x) − ϕn(x))2 fPθ(x)dx
1327
+ ≤ C−1
1328
+ U CPθ
1329
+
1330
+ X
1331
+ (ϕ(x) − ϕn(x))2 dx.
1332
+ In the same fashion, ∥Dxjϕ ◦ Gθ − ∂ϕn
1333
+ ∂xj ◦ Gθ∥L2(U) → 0 since
1334
+
1335
+ U
1336
+
1337
+ Dxjϕ ◦ Gθ(u) − ∂ϕn
1338
+ ∂xj
1339
+ ◦ Gθ(u)
1340
+ �2du ≤ C−1
1341
+ U
1342
+
1343
+ U
1344
+
1345
+ Dxjϕ ◦ Gθ(u) − ∂ϕn
1346
+ ∂xj
1347
+ ◦ Gθ(u)
1348
+ �2fU(u)du
1349
+ = C−1
1350
+ U
1351
+
1352
+ X
1353
+
1354
+ Dxjϕ(x) − ∂ϕn
1355
+ ∂xj
1356
+ (x)
1357
+ �2fPθ(x)dx
1358
+ ≤ C−1
1359
+ U CPθ
1360
+
1361
+ X
1362
+
1363
+ Dxjϕ(x) − ∂ϕn
1364
+ ∂xj
1365
+ (x)
1366
+ �2dx.
1367
+ Since ϕ and Gθ are both differentiable, the ordinary chain rules applies to ϕn ◦ Gθ,
1368
+ ∂[ϕn ◦ Gθ]
1369
+ ∂ui
1370
+ =
1371
+ d
1372
+
1373
+ j=1
1374
+ �∂ϕn
1375
+ ∂xj
1376
+ ◦ Gθ
1377
+ � ∂Gθ,j
1378
+ ∂ui
1379
+ ,
1380
+ and for any i ∈ [1, s] the convergence of derivatives ∥[Dxjϕ ◦ Gθ] ∂Gθ,j
1381
+ ∂ui − ∂[ϕn◦Gθ]
1382
+ ∂ui
1383
+ ∥L2(U) → 0 follows since
1384
+
1385
+ U
1386
+
1387
+ d
1388
+
1389
+ j=1
1390
+
1391
+ Dxjϕ ◦ Gθ
1392
+ �∂Gθ,j
1393
+ ∂ui
1394
+ − ∂[ϕn ◦ Gθ]
1395
+ ∂ui
1396
+ �2
1397
+ du =
1398
+
1399
+ U
1400
+
1401
+ d
1402
+
1403
+ j=1
1404
+
1405
+ Dxjϕ ◦ Gθ − ∂ϕn
1406
+ ∂xj
1407
+ ◦ Gθ
1408
+ �∂Gθ,j
1409
+ ∂ui
1410
+ �2
1411
+ du
1412
+ ≤ 2
1413
+ d
1414
+
1415
+ j=1
1416
+
1417
+ U
1418
+ ��
1419
+ Dxjϕ ◦ Gθ − ∂ϕn
1420
+ ∂xj
1421
+ ◦ Gθ
1422
+ �∂Gθ,j
1423
+ ∂ui
1424
+ �2
1425
+ du
1426
+ ≤ 2C2
1427
+ G
1428
+ d
1429
+
1430
+ j=1
1431
+
1432
+ U
1433
+
1434
+ Dxjϕ ◦ Gθ − ∂ϕn
1435
+ ∂xj
1436
+ ◦ Gθ
1437
+ �2du
1438
+ where the first inequality is using the inequality (�d
1439
+ i=1 ai)2 ≤ 2 �d
1440
+ i=1 a2
1441
+ i . This completes the proof.
1442
+ 21
1443
+
1444
+ Chain rule for Wl,2.
1445
+ To extend Lemma 1 to Sobolev spaces of order higher than 1, we need the following
1446
+ version of the weak derivative product rule, for a product of a function f in W1,2 and bounded differentiable
1447
+ function g with bounded derivatives. Other versions of the product rule—for different regularity assumptions
1448
+ on g—exist in the literature (for example, Adams and Fournier (2003)); we will require this specific form.
1449
+ Lemma 2 (Product rule). Suppose X ⊆ Rd is open, f ∈ W1,2(X), g(x) is differentiable on X, and g(x) ≤ L,
1450
+ [∂g/∂xi](x) ≤ L for all x ∈ X for some constant L. Then fg ∈ W1,2(X) and for any i ∈ [1, d],
1451
+ Dxi[fg] = [Dxif]g + f
1452
+
1453
+ ∂g/∂xi
1454
+
1455
+ Proof. By the criterion in Theorem 5, there is a sequence of smooth functions fn approximating f, meaning
1456
+
1457
+ X
1458
+ (f(x) − fn(x))2dx → 0 as n → ∞,
1459
+
1460
+ X
1461
+
1462
+ Dxif(x) − [∂fn/∂xi](x)
1463
+ �2dx → 0 as n → ∞.
1464
+ We will show that fng approximates fg with weak derivatives taking the form [Dxif]g + f[∂g/∂xi]; by the
1465
+ aforementioned criterion, it will follow that fg ∈ W1,2(X).
1466
+ First, we establish convergence of functions. As n → ∞,
1467
+ ∥fg − fng∥2
1468
+ L2(X) =
1469
+
1470
+ X
1471
+ (f(x)g(x) − fn(x)g(x))2 dx ≤ L2
1472
+
1473
+ X
1474
+ (f(x) − fn(x))2 dx → 0.
1475
+ By the ordinary chain rule, ∂[fng]/∂xi = [∂fn/∂xi]g + f[∂g/∂xi]. Then, applying triangle inequality for
1476
+ norms and the fact that (a + b)2 ≤ 2a2 + 2b2 for any a, b, we get that for n → ∞,
1477
+ ����
1478
+ ∂fn
1479
+ ∂xi
1480
+ g + fn
1481
+ ∂g
1482
+ ∂xi
1483
+ − [Dxif] g − f ∂g
1484
+ ∂xi
1485
+ ����
1486
+ 2
1487
+ L2(X)
1488
+ ≤ 2
1489
+ ����
1490
+ ∂fn
1491
+ ∂xi
1492
+ g − [Dxif] g
1493
+ ����
1494
+ 2
1495
+ L2(X)
1496
+ + 2
1497
+ ����fn
1498
+ ∂g
1499
+ ∂xi
1500
+ − f ∂g
1501
+ ∂xi
1502
+ ����
1503
+ 2
1504
+ L2(X)
1505
+ ≤ 2L2
1506
+ ����
1507
+ ∂fn
1508
+ ∂xi
1509
+ − [Dxif]
1510
+ ����
1511
+ 2
1512
+ L2(X)
1513
+ + 2L2 ∥fn − f∥L2(X) → 0.
1514
+ This completes the proof.
1515
+ We are now ready to extend the chain rule from order 1—proven in Lemma 1—to arbitrary order l.
1516
+ Theorem 6 (Chain rule for Wl,2). Suppose
1517
+ • ϕ ∈ Wlϕ,2(X).
1518
+ • U ⊂ Rs is bounded, X ⊂ Rd is open, and X = Gθ(U) for some Gθ = (Gθ,1, . . . , Gθ,d)⊤. For some lG
1519
+ and any |α| ≤ lG, j ∈ [1, s], the derivative ∂αGθ,j exists and is in L∞(U).
1520
+ • U is a probability distribution on U that has a density fU : U → [CU, ∞) for CU > 0.
1521
+ • Pθ is a pushforward of U under Gθ with a density bounded above.
1522
+ Then ϕ◦Gθ ∈ Wl,2(U) for l = min{lϕ, lG}, and for any k ≤ l and |α0| = k, the derivative takes an α0-specific
1523
+ (κ, β, α, η)–form
1524
+ Dα0[ϕ ◦ Gθ] =
1525
+ I
1526
+
1527
+ i=1
1528
+ dκi
1529
+
1530
+ j=1
1531
+
1532
+ Dβijϕ ◦ Gθ
1533
+ � κi
1534
+
1535
+ l=1
1536
+ ∂αijlGθ,ηijl,
1537
+ (10)
1538
+ where I ∈ N, and for any i ∈ [1, I], k ≥ κi ∈ N; βij ∈ Nd is a multi-index of size κi for j ∈ [1, dκi]; αijl ∈ Ns
1539
+ is of size |αijl| ≤ k, and ηijl ∈ [1, d] for l ∈ [1, κi].
1540
+ 22
1541
+
1542
+ By saying the (κ, β, α, η) form is α0-specific, we mean that the values of I, (κ, β, α, η) depend on α0, and
1543
+ may be different for α′
1544
+ 0 ̸= α0; we do not index I, (κ, β, α, η) by α0 for the sake of readability.
1545
+ Before proving this result, let us point out that the (κ, β, α, η)–form introduced in the theorem can be seen
1546
+ as a form of the Faà di Bruno’s formula which generalises the chain rule to higher derivatives (Constantine
1547
+ and Savits, 1996, Theorem 1). However, since our ultimate goal is to show ϕ ◦ Gθ ∈ Wl,2(U), and the
1548
+ expression for the derivative is simply a means for proving that, an unspecified (κ, β, α, η)–form suffices. It
1549
+ is simpler to conduct a proof for general (κ, β, α, η) without using explicit Faà di Bruno forms.
1550
+ Proof of Theorem 6. Note that ϕ ◦ Gθ ∈ Wl,2(U) if and only if ϕ ◦ Gθ ∈ Wk,2(U) for k ≤ l. We use this to
1551
+ construct a proof by induction: we show the statement holds for k = 1, and that ϕ ◦ Gθ ∈ Wk,2(U) implies
1552
+ ϕ ◦ Gθ ∈ Wk+1,2(U) if k + 1 ≤ l (and the weak derivatives take a (κ, β, α, η)-form stated in Equation (10)).
1553
+ Case k = 1:
1554
+ ϕ ◦ Gθ is in W1,2(U).
1555
+ Suppose α0 = e[m] for some unit vector e[m] = (0, . . . , 0, 1, 0, . . . , 0) where the 1 is the m’th element.
1556
+ Then, as proven in Lemma 1, De[m][ϕ ◦ Gθ] = Dum[ϕ ◦ Gθ] is equal to �d
1557
+ j=1[Dxjϕ ◦ Gθ][∂Gθ,j/∂um] =
1558
+ �d
1559
+ j=1[De[j]ϕ ◦ Gθ]∂e[m]Gθ,j, so the statement holds for I = 1, κ1 = 1, β1j = e[j], α1j1 = e[m], η1j1 = j.
1560
+ Case k implies k + 1:
1561
+ If k + 1 ≤ l and ϕ ◦ Gθ is in Wk,2(U), and for every |α0| = k Equation (10) holds for
1562
+ some α0-specific (κ, β, α, η), then ϕ◦Gθ is in Wk+1,2(U), and for any |˜α0| = k +1 there is a (˜κ, ˜β, ˜α, ˜η)–form,
1563
+ |˜κ| = ˜I,
1564
+ D˜α0[ϕ ◦ Gθ] =
1565
+ ˜I
1566
+
1567
+ i=1
1568
+ d˜κi
1569
+
1570
+ j=1
1571
+
1572
+ D
1573
+ ˜βijϕ ◦ Gθ
1574
+ � ˜κi
1575
+
1576
+ l=1
1577
+ ∂ ˜αijlGθ,˜ηijl.
1578
+ (11)
1579
+ By induction assumption, ϕ ◦ Gθ is in Wk,2(U), so it is in Wk+1,2(U) if and only if Dα0 [ϕ ◦ Gθ] is in
1580
+ W1,2(U) for any α0 of size k. The latter can be shown by studying the (κ, β, α, η)–form that Dα0[ϕ ◦ Gθ]
1581
+ takes by (10), for some α0–specific (κ, β, α, η). Since lϕ ≥ l ≥ k + 1 (the last inequality holds by the
1582
+ induction assumption), it holds that Wlϕ,2(X) ⊆ Wl,2(X) ⊆ Wk+1,2(X). Then ϕ ∈ Wk+1,2(X), and since
1583
+ |βij| = κi ≤ k by definition of βij, we have Dβijϕ ∈ W1,2(X) for all i, j. Then by Lemma 1, its composition
1584
+ with Gθ is in W1,2(U), meaning Dβijϕ ◦ Gθ ∈ W1,2(U). Consequently, Dα0 [ϕ ◦ Gθ] as per Equation (10) is a
1585
+ sum over the product of functions in W1,2(U), and bounded functions with bounded derivatives; by Lemma 2,
1586
+ such product is in W1,2(U), and it follows that Dα0 [ϕ ◦ Gθ] ∈ W1,2(U) as well.
1587
+ Finally, we show that for any fixed |˜α0| = k + 1 there are ˜I, ˜κ, ˜β, ˜α, ˜η for which (11) holds; this will
1588
+ conclude the induction step. Suppose α0 of size k, |α0| = k, is such that ˜α0 = α0 + e[m] for some α0 (that
1589
+ is unrelated to α0 in the previous part of the proof) and a unit vector e[m] (such pair of m and α0 must
1590
+ exist as |˜α0| = k + 1). For this α0, in a slight abuse of notation, we shall say that κ, β, α, η are such that
1591
+ Dα0[ϕ ◦ Gθ] takes a (κ, β, α, η) form. Then, by the sum rule for weak derivatives and the product rule
1592
+ of Lemma 2, D˜α0 [ϕ ◦ Gθ] = Dum [Dα0 [ϕ ◦ Gθ]] takes the form
1593
+ D˜α0 [ϕ ◦ Gθ] = Dum [Dα0 [ϕ ◦ Gθ]] =
1594
+ I
1595
+
1596
+ i=1
1597
+ dκi
1598
+
1599
+ j=1
1600
+ Dum
1601
+
1602
+ Dβijϕ ◦ Gθ
1603
+ � κi
1604
+
1605
+ l=1
1606
+ ∂αijlGθ,ηijl
1607
+ +
1608
+ I
1609
+
1610
+ i=1
1611
+ dκi
1612
+
1613
+ j=1
1614
+
1615
+ Dβijϕ ◦ Gθ
1616
+
1617
+ ∂e[m]� κi
1618
+
1619
+ l=1
1620
+ ∂αijlGθ,ηijl
1621
+
1622
+ .
1623
+ (12)
1624
+ 23
1625
+
1626
+ By the product rule for regular derivatives,
1627
+ ∂e[m]� κi
1628
+
1629
+ l=1
1630
+ ∂αijlGθ,ηijl
1631
+
1632
+ =
1633
+ κi
1634
+
1635
+ l0=1
1636
+ ∂αijl0+e[m]Gθ,ηijl0
1637
+
1638
+ l∈[1,κi]
1639
+ l̸=l0
1640
+ ∂αijlGθ,ηijl.
1641
+ (13)
1642
+ Since Dβijϕ ∈ W1,2(X), the statement in Lemma 1 applies to its composition with Gθ, meaning
1643
+ Dum
1644
+
1645
+ Dβijϕ ◦ Gθ
1646
+
1647
+ =
1648
+ d
1649
+
1650
+ j0=1
1651
+
1652
+ Dxj0
1653
+
1654
+ Dβijϕ
1655
+
1656
+ ◦ Gθ
1657
+ � ∂Gθ,j0
1658
+ ∂um
1659
+ =
1660
+ d
1661
+
1662
+ j0=1
1663
+
1664
+ Dβij+e[j0]ϕ ◦ Gθ
1665
+ � ∂Gθ,j0
1666
+ ∂um
1667
+ ,
1668
+ where, recall, e[j0] is a d-dimensional unit vector with 1 as the j0’th element. Substituting these into (12),
1669
+ we get
1670
+ D˜α0[ϕ ◦ Gθ] =
1671
+ I
1672
+
1673
+ i=1
1674
+ dκi
1675
+
1676
+ j=1
1677
+ d
1678
+
1679
+ j0=1
1680
+
1681
+ Dβij+e[j0]ϕ ◦ Gθ
1682
+ � ∂Gθ,j0
1683
+ ∂um
1684
+ κi
1685
+
1686
+ l=1
1687
+ ∂αijlGθ,ηijl
1688
+ +
1689
+ I
1690
+
1691
+ i=1
1692
+ κi
1693
+
1694
+ l0=1
1695
+ dκi
1696
+
1697
+ j=1
1698
+
1699
+ Dβijϕ ◦ Gθ
1700
+
1701
+ ∂αijl0+e[m]Gθ,ηijl0
1702
+
1703
+ l∈[1,��i]
1704
+ l̸=l0
1705
+ ∂αijlGθ,ηijl
1706
+ (14)
1707
+ Now all that is left to do is find ˜I, ˜κ, ˜β, ˜α, ˜η for which this will that the (˜κ, ˜β, ˜α, ˜η)–form similar to Equa-
1708
+ tion (10). One can already see this should be possible, due to the flexibility in the definition of (˜κ, ˜β, ˜α, ˜η)–
1709
+ forms; for completeness, we give the exact values now.
1710
+ Define κ0 = 0. Take ˜I = I + �I
1711
+ i=1 κi, and
1712
+ ˜κi =
1713
+
1714
+ κi + 1,
1715
+ i ∈ [1, I],
1716
+ κp,
1717
+ i ∈ (I + �p−1
1718
+ h=0 κh, I + �p
1719
+ h=0 κh] for p ∈ [1, I],
1720
+ ˜βij =
1721
+
1722
+ βi⌊j/d⌋ + e[j
1723
+ mod d],
1724
+ i ∈ [1, I], j ∈ [1, 2κi+1],
1725
+ βpj,
1726
+ i ∈ (I + �p−1
1727
+ h=0 κh, I + �p
1728
+ h=0 κh], j ∈ [1, 2κp] for p ∈ [1, I],
1729
+ ˜αijl =
1730
+
1731
+
1732
+
1733
+
1734
+
1735
+
1736
+
1737
+
1738
+
1739
+
1740
+
1741
+ αi⌊j/d⌋l,
1742
+ i ∈ [1, I], j ∈ [1, 2κi+1], l ∈ [1, κi],
1743
+ e[m],
1744
+ i ∈ [1, I], j ∈ [1, 2κi+1], l = κi + 1,
1745
+ αpjl,
1746
+ i ∈ (I + �p−1
1747
+ h=0 κh, I + �p
1748
+ h=0 κh], j ∈ [1, 2κp], l ∈ [1, κp] \ {i − I − �p−1
1749
+ h=0 κh},
1750
+ αpjl + e[m],
1751
+ i ∈ (I + �p−1
1752
+ h=0 κh, I + �p
1753
+ h=0 κh], j ∈ [1, 2κp], l = i − I − �p−1
1754
+ h=0 κh for p ∈ [1, I],
1755
+ ˜ηijl =
1756
+
1757
+
1758
+
1759
+
1760
+
1761
+ ηi⌊j/d⌋l,
1762
+ i ∈ [1, I], j ∈ [1, 2κi+1], l ∈ [1, κi],
1763
+ j
1764
+ mod d,
1765
+ i ∈ [1, I], j ∈ [1, 2κi+1], l = κi + 1,
1766
+ ηpjl,
1767
+ i ∈ (I + �p−1
1768
+ h=0 κh, I + �p
1769
+ h=0 κh], j ∈ [1, 2κp], l ∈ [1, κp] for p ∈ [1, I],
1770
+ where j mod d is the remainder of dividing j by d. Then, (14) becomes
1771
+ D˜α0[ϕ ◦ Gθ] =
1772
+ ˜I
1773
+
1774
+ i=1
1775
+ d˜κi
1776
+
1777
+ j=1
1778
+
1779
+ D
1780
+ ˜βijϕ ◦ Gθ
1781
+ � ˜κi
1782
+
1783
+ l=1
1784
+ ∂ ˜αijlGθ,˜ηijl.
1785
+ This completes the proof of the induction step, and the theorem.
1786
+ 24
1787
+
1788
+ A.3. Proof of Theorem 4
1789
+ Before proving the main theorem, we introduce two auxilliary lemmas, Lemmas 3 and 4. The former will
1790
+ allow us to apply the chain rule of Theorem 6 to get k(x, ·) ◦ Gθ ∈ Hc, and the latter claim the asymptotic
1791
+ rate of m−νc/s−1/2. The proof of Theorem 4 will follow.
1792
+ Given A1 to A3, all that is missing to prove k(x, ·) ◦ Gθ ∈ Hc by applying Theorem 6 is the connection
1793
+ between RKHS of Matérn kernels, and Sobolev spaces. To that end, we introduce a Lemma (that is a minor
1794
+ extension to classic results, see for instance Wendland (2005, Corollary 10.48)) that links RKHS Hk of a
1795
+ Matérn kernel k of order ν with Sobolev spaces Wl,2 for l ∈ N+. In the Lemma, we briefly refer to Bessel
1796
+ potential spaces—only for their norm-equivalence both to the RKHS of Matérn kernels, and to the Sobolev
1797
+ spaces of fractional order, which themselves lie between Sobolev spaces of integer order—and to extension
1798
+ operators, that allow us to extend results on Rd to open, connected, bounded X with a Lipschitz boundary.
1799
+ Every open, bounded, and convex X has a Lipschitz boundary (Stein, 1970); for example, this includes
1800
+ the hypercube X = (0, 1)d. For a detailed overview of Bessel potential spaces, fractional Sobolev spaces,
1801
+ and extension operators, we refer to Adams and Fournier (2003); these will only appear in the proof of the
1802
+ following Lemma.
1803
+ For a β ∈ R+ ∪ {0}, we denote the ceiling operation ⌈β⌉ = min({z ∈ N | z ≥ β}), and the rounding
1804
+ operation ⌊β⌋ = max({z ∈ N | z ≤ β}).
1805
+ Lemma 3. Suppose X = Rd, or X ⊆ Rd is open, connected, and bounded with a Lipshitz boundary, and
1806
+ k is a Matérn kernel on X of order ν. Then, the RKHS Hk induced by k lies between Sobolev spaces
1807
+ W⌈ν+d/2⌉,2(X) and W⌊ν+d/2⌋,2(X), meaning
1808
+ W⌈ν+d/2⌉,2(X) ⊆ Hk ⊆ W⌊ν+d/2⌋,2(X).
1809
+ Proof. We start by proving the result for X = Rd. By Wendland (2005, Corollary 10.13), the RKHS of a
1810
+ Matérn k is norm-equivalent to the Bessel potential space Hs(X) for s = ν + d/2. The Bessel potential
1811
+ space Hs(X), by Adams and Fournier (2003, Section 7.62), is norm-equivalent to a fractional Sobolev space
1812
+ (a Sobolev-Slobodeckij space) W s,2(X), which lies between spaces of integer order, W ⌈s⌉,2(X) ⊆ W s,2(X) ⊆
1813
+ W ⌊s⌋,2(X).
1814
+ Finally, the result W⌈s⌉,2(X) ⊆ Hk ⊆ W⌊s⌋,2(X) extends to an open connected bounded X ⊂ Rd with a
1815
+ Lipshitz boundary identically to the proof of Wendland (2005, Corollary 10.48), which makes use of the
1816
+ extension operator introduced for such X by Stein (1970).
1817
+ To show the claimed asymptotic rate, we use the following straightforward corollary of Wynne et al. (2021,
1818
+ Theorem 9).
1819
+ Lemma 4 (Corollary of Theorem 9 in Wynne et al. (2021)). Suppose for any m ≥ M ∈ N+,
1820
+ • U is a measure on a convex, open, and bounded U ⊂ Rs that has a density fU : U → [0, C′
1821
+ U] for some
1822
+ C′
1823
+ U > 0.
1824
+ • {ui}m
1825
+ i=1 are such that the fill distance hm = O(m−1/s).
1826
+ • {wi}m
1827
+ i=1 are the optimal weights obtained based on the kernel cβm and measure U, parametrised by
1828
+ βm ∈ B for some parameter space B,
1829
+ • for any β ∈ B, cβ is a Matérn kernel of order νc; νc is independent of β.
1830
+ Then, for some C0 independent of m and f, and any f ∈ Hc with ∥f∥Hc = 1,
1831
+ �����
1832
+
1833
+ U
1834
+ f(u)U(du) −
1835
+ m
1836
+
1837
+ i=1
1838
+ wif(ui)
1839
+ ����� ≤ C0m−νc/s−1/2.
1840
+ 25
1841
+
1842
+ Proof. The expression on the left hand side of Wynne et al. (2021, Theorem 9) is |
1843
+
1844
+ U f(u)U(du) −
1845
+ �m
1846
+ i=1 wif(ui)|; the notation from their paper to this result maps as θ → β, p → fU, X → U, x → u,
1847
+ Θ → B, and the prior mean µ(β) = 0 for any β ∈ B. First, we show the assumptions in the Theorem hold.
1848
+ Assumption 1 (Assumptions on the Domain): An open, bounded, and convex U satisfies the assumption,
1849
+ as discussed in Wynne et al. (2021).
1850
+ Assumption 2 (Assumptions on the Kernel Parameters): Since cβ is a Matérn kernel of order νc, the
1851
+ smoothness constant of cβ is νc +s/2 regardless of the value of β ∈ B, meaning τ(β) = τ −
1852
+ c = τ +
1853
+ c = νc +s/2 >
1854
+ s/2. Lastly, the norm equivalence constants of Wynne et al. (2021, Equation 3) are the same for all β—since
1855
+ the respective RKHS and Sobolev spaces are—so the set of extreme values B∗
1856
+ m is finite and does not depend
1857
+ on m; we denote B∗
1858
+ c = B∗
1859
+ m, to highlight that B∗
1860
+ c only depends on the choice of kernel family c and not m.
1861
+ Assumption 3 (Assumptions on the Kernel Smoothness Range): As discussed in Assumption 2, τ(β) =
1862
+ νc + s/2 for any β ∈ B, so the set in the statement of Assumption 3 has only one element.
1863
+ Assumption 4 (Assumptions on the Target Function and Mean Function): The target function f is in Hc,
1864
+ meaning τf = τ −
1865
+ c = τ +
1866
+ c = νc + s/2. The mean function µ(β) was taken to be zero, so has zero norm.
1867
+ Lastly, take h0 such that h1 ≤ h0; as we assumed hm = O(m−1/s), it holds that h0 ≤ hm for all m ≥ 1.
1868
+ Therefore, all the assumptions are satisfied and Wynne et al. (2021, Theorem 9) applies; moreover, the
1869
+ bounding expression is C0m−α/s for α = νc + s/2 and some C0 independent of m and f since
1870
+ • hm = O(m−1/s), and as τf = τ −
1871
+ c = τ +
1872
+ c = νc + s/2 as discussed in the verification of assumptions,
1873
+ hmax(τf,τ −
1874
+ c )
1875
+ m
1876
+ = O(m−νc/s−1/2),
1877
+ • the rest of the multipliers do not depend on m and f: C depends only on U, s, τf = νc + s/2, and
1878
+ B∗; ∥fU∥L2(U) is a constant and finite since fU is bounded above; τf − τ +
1879
+ c = 0 so rising to its power
1880
+ produces 1; the norm ∥f∥Hc = 1; for any m ≥ M, µ(βm) = 0.
1881
+ This completes the proof.
1882
+ Now we are ready to prove the main theorem.
1883
+ Proof of Theorem 4. To show k(x, ·) ◦ Gθ ∈ Hc for all x ∈ X, first note that Lemma 3 applies for both
1884
+ U and X that satisfy A1: trivially for Rd, and for an open, convex, and bounded space since it has a
1885
+ Lipschitz boundary (Stein, 1970). Since by A3, k is a Matérn kernel of order νk, it holds by Lemma 3 that
1886
+ k(x, ·) ∈ Wlϕ,2(X) for lϕ = ⌊νk + d/2⌋ and any x ∈ X. Then, by Theorem 6, k(x, ·) ◦ Gθ ∈ W˜l,2(U), for a
1887
+ Gθ that satisfies A2, and ˜l = min(lϕ, l) = min(⌊νk + d/2⌋, l). By A3, νc ≤ min(⌊νk + d/2⌋, l) − s/2 = ˜l − s/2,
1888
+ and it holds that ˜l ≥ νc + s/2. Since ˜l is an integer, this implies ˜l ≥ ⌈νc + s/2⌉, and we have that
1889
+ W˜l,2(U) ⊆ W⌈νc+s/2⌉,2(U).
1890
+ Finally, as c is a Matérn kernel or order νc, by Lemma 3 it holds that
1891
+ W⌈νc+s/2⌉,2(U) ⊆ Hc, and we arrive at k(x, ·) ◦ Gθ ∈ Hc.
1892
+ Since k(x, ·) ◦ Gθ ∈ Hc holds, we can use Theorem 3 and state
1893
+ |MMDk(Pθ, Qn) − MMDk(Pm
1894
+ θ , Qn)| ≤ K × MMDc
1895
+
1896
+ U,
1897
+ m
1898
+
1899
+ i=1
1900
+ wiδui
1901
+
1902
+ .
1903
+ By the reproducing property, it holds that sup
1904
+ f∈Hc
1905
+ ∥f∥Hc=1
1906
+ |
1907
+
1908
+ U f(u)P(du)−
1909
+
1910
+ U f(u)Q(du)| is equal to MMDc(P, Q)
1911
+ for any two distributions P, Q on U. Then,
1912
+ MMDc(U,
1913
+ m
1914
+
1915
+ i=1
1916
+ wiδui) =
1917
+ sup
1918
+ f∈Hc
1919
+ ∥f∥Hc=1
1920
+ �����
1921
+
1922
+ U
1923
+ f(u)U(du) −
1924
+ m
1925
+
1926
+ i=1
1927
+ wif(ui)
1928
+ ����� .
1929
+ The expression under the supremum is bounded by Lemma 4 with C0m−νc/s−1/2, for C0 independent of m
1930
+ and f. Therefore, MMDc(U, �m
1931
+ i=1 wiδui) ≤ C0m−νc/s−1/2, and the result holds.
1932
+ 26
1933
+
1934
+ Table 3.: Computational and sample complexity rates of the V-statistic and the OW estimator with respect
1935
+ to m.
1936
+ Cost
1937
+ Error
1938
+ V-statistic
1939
+ O(m2)
1940
+ O(m− 1
1941
+ 2 )
1942
+ OW
1943
+ O(m3)
1944
+ O(m− νc
1945
+ s − 1
1946
+ 2 )
1947
+ Note that while the result was formulated for the special case of convex spaces, it applies more generally to
1948
+ any open, connected, bounded X ⊂ Rd, U ⊂ Rs with Lipschitz-continuous boundaries—with no changes to
1949
+ the proof. The applicability to X = Rd remains unchanged; U, however, must remain bounded for Theorem 6
1950
+ to hold.
1951
+ A.4. Computational and sample complexity
1952
+ We derive the condition under which the OW estimator achieves better sample complexity than the V-statistic
1953
+ for the same order of computational cost, see Table 3 for the rates.
1954
+ Suppose the cost for both V-statistic and OW is O( ˜m). Then, the sample complexity for the V-statistic
1955
+ can be written in terms of ˜m as O( ˜m−1/4). Similarly, for the OW estimator, the sample complexity in terms
1956
+ of ˜m is O( ˜m−(νc+ s
1957
+ 2 )/3s). The more accurate estimator is therefore the one whose error rate goes to zero
1958
+ quicker. Therefore, the OW estimator is more accurate than the V-statistic if
1959
+ νc
1960
+ s > 1
1961
+ 4,
1962
+ which for the common choice of νc = 5/2 implies s < 10.
1963
+ A.5. Derivation of closed-form kernel embeddings
1964
+ We have zi =
1965
+
1966
+ U c(ui, v)U(dv), where c : U × U → R is the SE kernel parameterised by the lengthscale
1967
+ l > 0, i.e., c(u, v) =
1968
+
1969
+ 2πlϕ(u; v, l2), where ϕ is the Gaussian pdf. For s > 1, we can write the kernel as
1970
+ c(u, v) = �s
1971
+ j=1 c(uj, vj). We now derive closed-form kernel embeddings for zi for different choices of the
1972
+ base space U and the distribution U.
1973
+ For U = [0, 1]s, and U the uniform distribution, i.e., ui ∼ Uniform([0, 1]s), we get
1974
+ zi =
1975
+ s
1976
+
1977
+ j=1
1978
+
1979
+ [0,1]
1980
+ c(uij, vj)dvj =
1981
+ s
1982
+
1983
+ j=1
1984
+
1985
+ 2πl
1986
+
1987
+ ϕ(1; uij, l2) − ϕ(0; uij, l2)
1988
+
1989
+ ,
1990
+ where ϕ is the Gaussian cdf and uij is the jth element of ui.
1991
+ In the case of U = Rs, and U being the Gaussian distribution such that ui ∼ N(µ, Σ), where µ =
1992
+ [µ1, . . . , µs]⊤ and Σ is the s-dimensional diagonal matrix with entries (σ2
1993
+ 1, . . . , σ2
1994
+ s), the closed-form embedding
1995
+ for zi reads
1996
+ zi =
1997
+ s
1998
+
1999
+ j=1
2000
+ � ∞
2001
+ −∞
2002
+ c(uij, vj)ϕ(vj; µj, σ2
2003
+ j )dvj =
2004
+ s
2005
+
2006
+ j=1
2007
+
2008
+ 2πl
2009
+ � ∞
2010
+ −∞
2011
+ ϕ(vj; uij, l2)ϕ(vj; µj, σ2
2012
+ j )dvj
2013
+ =
2014
+ s
2015
+
2016
+ j=1
2017
+
2018
+ l2
2019
+ (l2 + σ2
2020
+ j ) exp
2021
+
2022
+ −(uij − µj)2
2023
+ 2(l2 + σ2
2024
+ j )
2025
+
2026
+ .
2027
+ 27
2028
+
2029
+ 0.0
2030
+ 0.2
2031
+ 0.4
2032
+ 0.6
2033
+ 0.8
2034
+ 3
2035
+ 10
2036
+ 4
2037
+ 10
2038
+ 3
2039
+ MMD2(
2040
+ m,
2041
+ n)
2042
+ 4 = 0.1, s = d = 10
2043
+ V-statistic
2044
+ : Uniform
2045
+ : Gaussian
2046
+ 0
2047
+ 20
2048
+ x
2049
+ 0.0
2050
+ 0.1
2051
+ 0.2
2052
+ 0.3
2053
+ Density
2054
+ 4 = 0.1
2055
+ 4 = 0.5
2056
+ Figure 4.: Additional results for the multivariate g-and-k distributions. Left: Estimated MMD2 for the
2057
+ V-statistic and our OW estimator as a function of θ3. Right: Histogram of samples from the
2058
+ g-and-k distribution for different values of θ4. Settings: no. of samples = 100,000, θ1 = 3, θ2 = 1,
2059
+ θ3 = 0.1.
2060
+ For the special case of Σ = diag(σ2, . . . , σ2), the expression simplifies to
2061
+ zi =
2062
+
2063
+ l2
2064
+ l2 + σ2
2065
+ �s/2
2066
+ exp
2067
+
2068
+ − ∥ui − µ∥2
2069
+ 2(l2 + σ2)
2070
+
2071
+ .
2072
+ B. Additional Experimental details
2073
+ True parameter values of the benchmark simulators in Section 5.1 is given in Appendix B.1. Appendix B.2
2074
+ and Appendix B.3 provide additional results and details regarding the experiments in Section 5.2. Finally,
2075
+ the link to the source code of the wind farm simulator is in Appendix B.4.
2076
+ B.1. Benchmark Simulators
2077
+ We now provide further details on the benchmark simulators. For drawing iid or RQMC points, we use
2078
+ the implementation from SciPy Virtanen et al. (2020). Below, we report the parameter value θ used to
2079
+ generate the results in Table 1 for each model. We refer the reader to the respective reference in Table 1 for
2080
+ a description of the model and their parameters.
2081
+ g-and-k distribution: (A, B, g, k) = (3, 1, 0.1, 0.1)
2082
+ Two moons: (θ1, θ2) = (0, 0)
2083
+ Bivariate Beta: (θ1, θ2, θ3, θ4, θ5) = (1, 1, 1, 1, 1)
2084
+ Moving average (MA) 2: (θ1, θ2) = (0.6, 0.2)
2085
+ M/G/1 queue: (θ1, θ2, θ3) = (1, 5, 0.2)
2086
+ Lotka-Volterra: (θ11, θ12, θ13) = (5, 0.025, 6)
2087
+ B.2. Multivariate g-and-k
2088
+ The performance of the V-statistic and our OW estimator as a function of θ3 parameter of the multivariate
2089
+ g-and-k distribution is shown in Figure 4 (left). The observed effect on the performance is similar to that of
2090
+ Figure 2c, where the error in the OW estimator increases as we vary θ3. The degradation in performance is
2091
+ not as severe as when varying θ4, indicating that the smoothness of the multivariate g-and-k generator is not
2092
+ impacted by θ3 compared to θ4. Both the uniform and the Gaussian embedding achieves better performance
2093
+ than the V-statistic, whose performance remains unaffected by θ3.
2094
+ 28
2095
+
2096
+ B.3. Composite goodness-of-fit test: details and additional results
2097
+ Algorithm 1: Composite goodness-of-fit test
2098
+ Input: Pθ, Qn, α, B
2099
+ ˆθn = arg min
2100
+ θ
2101
+ MMD2(Pθ, Qn) ;
2102
+ for k ∈ {1, . . . , B} do
2103
+ Qn
2104
+ (k) = 1
2105
+ n
2106
+ �n
2107
+ i=1 δx(k)
2108
+ i ,
2109
+
2110
+ x(k)
2111
+ i
2112
+ �n
2113
+ i=1 ∼ Pˆθn;
2114
+ ˆθn
2115
+ (k) = arg min
2116
+ θ∈Θ
2117
+ MMD2(Pθ, Qn
2118
+ (k));
2119
+ ∆(k) = MMD2(Pˆθn
2120
+ (k), Qn
2121
+ (k));
2122
+ cα = quantile({∆(1), . . . , ∆(B)}, 1 − α);
2123
+ Pm
2124
+ ˆθn = 1
2125
+ m
2126
+ �m
2127
+ i=1 δyi, where {yi}m
2128
+ i=1 ∼ Pˆθn;
2129
+ if MMD2(Pm
2130
+ ˆθn, Qn) > cα then
2131
+ return reject;
2132
+ else
2133
+ return do not reject;
2134
+ Algorithm 2: Random-restart optimiser
2135
+ Input: Pθ, Qn, m, I, R, S, s, Θinit
2136
+ Function loss(θ) is
2137
+ Pm
2138
+ θ = 1
2139
+ m
2140
+ �m
2141
+ i=1 δyi, where {yi}m
2142
+ i=1 ∼ Pθ ;
2143
+ return MMD2(Pm
2144
+ θ , Qn);
2145
+ θtrial
2146
+ (1) , . . . , θtrial
2147
+ (I) ∼ Θinit ;
2148
+ Select θinit
2149
+ (1) , . . . , θinit
2150
+ (R) ∈ {θtrial
2151
+ (k) }I
2152
+ k=1 that yield the
2153
+ smallest loss(θinit
2154
+ (k) );
2155
+ ˆθopt
2156
+ (1) , . . . , ˆθopt
2157
+ (R) = for k ∈ {1, . . . , R} do
2158
+ ˆθopt
2159
+ (k) = adam_optimizer(loss, S, s, θinit
2160
+ (k) )
2161
+ return θ∗ ∈ {ˆθopt
2162
+ (k) }R
2163
+ k=1 s.t.
2164
+ ∀k. loss(θ∗) ≤ loss(ˆθopt
2165
+ (k) );
2166
+ Algorithm 1 shows the details of the composite goodness-of-fit test using the parametric bootstrap. The
2167
+ algorithm is written for the V-statistic estimator, but each instance of the squared MMD can be replaced
2168
+ with our OW estimator. In practice, to compute arg minθ MMD2(Pθ, Qn) we use gradient-based optimisation,
2169
+ as described in Algorithm 2. The definitions of the hyperparameters of these two algorithms, and the values
2170
+ that we use, are given below:
2171
+ hyperparameter
2172
+ value
2173
+ α
2174
+ 0.05
2175
+ level of the test
2176
+ B
2177
+ 200
2178
+ number of bootstrap samples
2179
+ m
2180
+ 100
2181
+ number of samples from the simulator
2182
+ n
2183
+ 500
2184
+ number of observations in the data
2185
+ I
2186
+ 50
2187
+ number of initial parameters sampled
2188
+ R
2189
+ 10
2190
+ number of initial parameters to optimise
2191
+ S
2192
+ 200
2193
+ number of gradient steps
2194
+ s
2195
+ 0.04
2196
+ step size
2197
+ Θinit is the distribution from which the initial parameters are sampled, and is a uniform distribution with
2198
+ the following ranges: θ1 : (0.001, 5), θ2 : (0.001, 5), θ3 : (0.001, 1), θ5 : (0.001, 1). To compute the fraction of
2199
+ times that the null hypothesis is rejected (Table 2) we repeat the experiment 150 times.
2200
+ To demonstrate why the test using the OW estimator has better performance, we examine the distribution
2201
+ of the parameter estimates. We repeatedly sample Qn from the multivariate g-and-k distribution with
2202
+ θ = θ0, and then plot a histogram of ˆθn = arg minθ MMD2(Pθ, Qn). Figure 5 shows that the estimates of
2203
+ the parameters computed using the OW estimator are more concentrated around the true parameter value,
2204
+ whereas the estimates computed using the V-statistic have higher variance. This means that, when using
2205
+ the V-statistic, the distribution of the test statistic approximated by the bootstrap has higher variance, thus
2206
+ the estimated critical value is more conservative, and the test is not sensitive to smaller departures from the
2207
+ null hypothesis. In contrast, when using the OW estimator, the estimated critical value is less conservative
2208
+ and the test has higher performance.
2209
+ 29
2210
+
2211
+ 2.6
2212
+ 3.1
2213
+ θ1
2214
+ ↔ 2
2215
+ 0.9
2216
+ 1.1
2217
+ θ2
2218
+ ↔ 3
2219
+ −0.2
2220
+ 0.5
2221
+ θ3
2222
+ ↔ 10
2223
+ −0.05
2224
+ 0.25
2225
+ θ5
2226
+ ↔ 2
2227
+ Figure 5.: Histogram of parameters estimated using Algorithm 2 with the V-statistic estimator (blue) and
2228
+ the OW estimator (orange). The histogram is generated by sampling 100 sets of observations
2229
+ of size n from Q, and applying the minimum distance estimator to each one. The black vertical
2230
+ lines show the true value of the parameter from which the observed data was generated. The
2231
+ estimates produced using the V-statistic have high variance, thus to improve the readability of
2232
+ the plot some of the outliers are not shown as they are outside of the x-axis range of the plot. ↔
2233
+ indicates the number of these estimates for each parameter. For the OW estimator, all estimates
2234
+ are within the x-axis range. The hyperparameters were set as in the table above.
2235
+ B.4. Large scale wind farm model
2236
+ The low-order wake model is described in Kirby et al. (2023) and the code is available at https://github.
2237
+ com/AndrewKirby2/ctstar_statistical_model/blob/main/low_order_wake_model.py.
2238
+ 30
2239
+