jackkuo commited on
Commit
6b4964e
·
verified ·
1 Parent(s): e9bd518

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +101 -0
  2. 1dA0T4oBgHgl3EQfMv9X/content/2301.02136v1.pdf +3 -0
  3. 1dAzT4oBgHgl3EQf8v7L/content/2301.01910v1.pdf +3 -0
  4. 1dAzT4oBgHgl3EQf8v7L/vector_store/index.faiss +3 -0
  5. 1dAzT4oBgHgl3EQf8v7L/vector_store/index.pkl +3 -0
  6. 2dE4T4oBgHgl3EQfagyV/content/tmp_files/2301.05065v1.pdf.txt +3254 -0
  7. 2dE4T4oBgHgl3EQfagyV/content/tmp_files/load_file.txt +0 -0
  8. 3tAzT4oBgHgl3EQfffwg/content/2301.01452v1.pdf +3 -0
  9. 3tAzT4oBgHgl3EQfffwg/vector_store/index.faiss +3 -0
  10. 3tAzT4oBgHgl3EQfffwg/vector_store/index.pkl +3 -0
  11. 49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf +0 -0
  12. 49AzT4oBgHgl3EQfEPqD/content/tmp_files/2301.00990v1.pdf.txt +841 -0
  13. 49AzT4oBgHgl3EQfEPqD/content/tmp_files/load_file.txt +340 -0
  14. 6tE2T4oBgHgl3EQf7Qi3/vector_store/index.faiss +3 -0
  15. 79FLT4oBgHgl3EQfAy4h/content/2301.11967v1.pdf +3 -0
  16. 79FLT4oBgHgl3EQfAy4h/vector_store/index.pkl +3 -0
  17. 89AzT4oBgHgl3EQf-_4J/content/2301.01940v1.pdf +3 -0
  18. 89E1T4oBgHgl3EQfUAPq/content/2301.03086v1.pdf +3 -0
  19. 89E1T4oBgHgl3EQfUAPq/vector_store/index.faiss +3 -0
  20. 8tE3T4oBgHgl3EQfSAk3/content/tmp_files/2301.04427v1.pdf.txt +1228 -0
  21. 8tE3T4oBgHgl3EQfSAk3/content/tmp_files/load_file.txt +0 -0
  22. 99A0T4oBgHgl3EQfO__U/content/2301.02170v1.pdf +3 -0
  23. 99A0T4oBgHgl3EQfO__U/vector_store/index.faiss +3 -0
  24. 9NE4T4oBgHgl3EQfdgy1/content/2301.05092v1.pdf +3 -0
  25. 9NE4T4oBgHgl3EQfdgy1/vector_store/index.pkl +3 -0
  26. 9dE1T4oBgHgl3EQf8AVQ/content/tmp_files/2301.03540v1.pdf.txt +1008 -0
  27. 9dE1T4oBgHgl3EQf8AVQ/content/tmp_files/load_file.txt +0 -0
  28. 9dE3T4oBgHgl3EQfSQko/content/2301.04430v1.pdf +3 -0
  29. 9dE3T4oBgHgl3EQfSQko/vector_store/index.faiss +3 -0
  30. 9dE3T4oBgHgl3EQfSQko/vector_store/index.pkl +3 -0
  31. AdFLT4oBgHgl3EQfEy_H/content/2301.11985v1.pdf +3 -0
  32. AdFLT4oBgHgl3EQfEy_H/vector_store/index.pkl +3 -0
  33. BNAzT4oBgHgl3EQf__-y/content/2301.01957v1.pdf +3 -0
  34. BNAzT4oBgHgl3EQf__-y/vector_store/index.faiss +3 -0
  35. CdFJT4oBgHgl3EQftC3b/content/2301.11616v1.pdf +3 -0
  36. CdFJT4oBgHgl3EQftC3b/vector_store/index.faiss +3 -0
  37. CdFJT4oBgHgl3EQftC3b/vector_store/index.pkl +3 -0
  38. EdAzT4oBgHgl3EQfwv7y/content/2301.01729v1.pdf +3 -0
  39. EdAzT4oBgHgl3EQfwv7y/vector_store/index.faiss +3 -0
  40. EdAzT4oBgHgl3EQfwv7y/vector_store/index.pkl +3 -0
  41. EtE2T4oBgHgl3EQf-Ak-/content/2301.04233v1.pdf +3 -0
  42. EtE2T4oBgHgl3EQf-Ak-/vector_store/index.faiss +3 -0
  43. EtE2T4oBgHgl3EQf-Ak-/vector_store/index.pkl +3 -0
  44. FNE0T4oBgHgl3EQfzAKR/content/tmp_files/2301.02667v1.pdf.txt +1363 -0
  45. FNE0T4oBgHgl3EQfzAKR/content/tmp_files/load_file.txt +0 -0
  46. FdFJT4oBgHgl3EQfDCyN/content/2301.11432v1.pdf +3 -0
  47. FdFJT4oBgHgl3EQfDCyN/vector_store/index.faiss +3 -0
  48. FdFJT4oBgHgl3EQfDCyN/vector_store/index.pkl +3 -0
  49. HNAzT4oBgHgl3EQfjP3H/content/2301.01514v1.pdf +3 -0
  50. HNAzT4oBgHgl3EQfjP3H/vector_store/index.faiss +3 -0
.gitattributes CHANGED
@@ -1134,3 +1134,104 @@ T9FIT4oBgHgl3EQffis3/content/2301.11279v1.pdf filter=lfs diff=lfs merge=lfs -tex
1134
  1dA0T4oBgHgl3EQfMv9X/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1135
  6tE2T4oBgHgl3EQf7Qi3/content/2301.04208v1.pdf filter=lfs diff=lfs merge=lfs -text
1136
  cdAyT4oBgHgl3EQf-foD/content/2301.00891v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1134
  1dA0T4oBgHgl3EQfMv9X/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1135
  6tE2T4oBgHgl3EQf7Qi3/content/2301.04208v1.pdf filter=lfs diff=lfs merge=lfs -text
1136
  cdAyT4oBgHgl3EQf-foD/content/2301.00891v1.pdf filter=lfs diff=lfs merge=lfs -text
1137
+ BNAzT4oBgHgl3EQf__-y/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1138
+ tNAyT4oBgHgl3EQf0PnV/content/2301.00716v1.pdf filter=lfs diff=lfs merge=lfs -text
1139
+ aNE1T4oBgHgl3EQfcwSy/content/2301.03188v1.pdf filter=lfs diff=lfs merge=lfs -text
1140
+ 89E1T4oBgHgl3EQfUAPq/content/2301.03086v1.pdf filter=lfs diff=lfs merge=lfs -text
1141
+ 99A0T4oBgHgl3EQfO__U/content/2301.02170v1.pdf filter=lfs diff=lfs merge=lfs -text
1142
+ aNE1T4oBgHgl3EQfcwSy/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1143
+ o9AzT4oBgHgl3EQfAfpB/content/2301.00926v1.pdf filter=lfs diff=lfs merge=lfs -text
1144
+ otE1T4oBgHgl3EQf1wXJ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1145
+ cdAyT4oBgHgl3EQf-foD/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1146
+ o9AzT4oBgHgl3EQfAfpB/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1147
+ jdE4T4oBgHgl3EQfsg0n/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1148
+ QdA0T4oBgHgl3EQfDf80/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1149
+ b9E0T4oBgHgl3EQfWQBc/content/2301.02275v1.pdf filter=lfs diff=lfs merge=lfs -text
1150
+ FdFJT4oBgHgl3EQfDCyN/content/2301.11432v1.pdf filter=lfs diff=lfs merge=lfs -text
1151
+ BNAzT4oBgHgl3EQf__-y/content/2301.01957v1.pdf filter=lfs diff=lfs merge=lfs -text
1152
+ 89E1T4oBgHgl3EQfUAPq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1153
+ tNAyT4oBgHgl3EQf0PnV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1154
+ bNAyT4oBgHgl3EQfwPk2/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1155
+ bNAyT4oBgHgl3EQfwPk2/content/2301.00644v1.pdf filter=lfs diff=lfs merge=lfs -text
1156
+ l9FPT4oBgHgl3EQf3jX-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1157
+ KdE2T4oBgHgl3EQfVAc5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1158
+ XtE1T4oBgHgl3EQfvwXS/content/2301.03404v1.pdf filter=lfs diff=lfs merge=lfs -text
1159
+ 6tE2T4oBgHgl3EQf7Qi3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1160
+ utE1T4oBgHgl3EQfQwOJ/content/2301.03044v1.pdf filter=lfs diff=lfs merge=lfs -text
1161
+ cNAzT4oBgHgl3EQfLfum/content/2301.01116v1.pdf filter=lfs diff=lfs merge=lfs -text
1162
+ FdFJT4oBgHgl3EQfDCyN/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1163
+ utE1T4oBgHgl3EQfQwOJ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1164
+ KdE2T4oBgHgl3EQfVAc5/content/2301.03818v1.pdf filter=lfs diff=lfs merge=lfs -text
1165
+ XtE1T4oBgHgl3EQfvwXS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1166
+ h9AyT4oBgHgl3EQf-vq9/content/2301.00898v1.pdf filter=lfs diff=lfs merge=lfs -text
1167
+ sdE1T4oBgHgl3EQfQAOj/content/2301.03035v1.pdf filter=lfs diff=lfs merge=lfs -text
1168
+ etFKT4oBgHgl3EQfAi12/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1169
+ 1dA0T4oBgHgl3EQfMv9X/content/2301.02136v1.pdf filter=lfs diff=lfs merge=lfs -text
1170
+ b9E0T4oBgHgl3EQfWQBc/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1171
+ 89AzT4oBgHgl3EQf-_4J/content/2301.01940v1.pdf filter=lfs diff=lfs merge=lfs -text
1172
+ sdE1T4oBgHgl3EQfQAOj/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1173
+ Z9FAT4oBgHgl3EQf4R6K/content/2301.08725v1.pdf filter=lfs diff=lfs merge=lfs -text
1174
+ 9dE3T4oBgHgl3EQfSQko/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1175
+ 9dE3T4oBgHgl3EQfSQko/content/2301.04430v1.pdf filter=lfs diff=lfs merge=lfs -text
1176
+ PNAyT4oBgHgl3EQf7fod/content/2301.00838v1.pdf filter=lfs diff=lfs merge=lfs -text
1177
+ cNAzT4oBgHgl3EQfLfum/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1178
+ HNAzT4oBgHgl3EQfjP3H/content/2301.01514v1.pdf filter=lfs diff=lfs merge=lfs -text
1179
+ 3tAzT4oBgHgl3EQfffwg/content/2301.01452v1.pdf filter=lfs diff=lfs merge=lfs -text
1180
+ EdAzT4oBgHgl3EQfwv7y/content/2301.01729v1.pdf filter=lfs diff=lfs merge=lfs -text
1181
+ etFKT4oBgHgl3EQfAi12/content/2301.11699v1.pdf filter=lfs diff=lfs merge=lfs -text
1182
+ PNAyT4oBgHgl3EQf7fod/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1183
+ tdA0T4oBgHgl3EQfLf9-/content/2301.02119v1.pdf filter=lfs diff=lfs merge=lfs -text
1184
+ 3tAzT4oBgHgl3EQfffwg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1185
+ I9E2T4oBgHgl3EQfUQfh/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1186
+ EtE2T4oBgHgl3EQf-Ak-/content/2301.04233v1.pdf filter=lfs diff=lfs merge=lfs -text
1187
+ EtE2T4oBgHgl3EQf-Ak-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1188
+ gNE1T4oBgHgl3EQfMQM3/content/2301.02986v1.pdf filter=lfs diff=lfs merge=lfs -text
1189
+ x9FQT4oBgHgl3EQfAzVW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1190
+ WdFRT4oBgHgl3EQfMjc9/content/2301.13506v1.pdf filter=lfs diff=lfs merge=lfs -text
1191
+ EdAzT4oBgHgl3EQfwv7y/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1192
+ HNAzT4oBgHgl3EQfjP3H/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1193
+ gNE1T4oBgHgl3EQfMQM3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1194
+ x9FQT4oBgHgl3EQfAzVW/content/2301.13224v1.pdf filter=lfs diff=lfs merge=lfs -text
1195
+ zdFRT4oBgHgl3EQfjzd-/content/2301.13592v1.pdf filter=lfs diff=lfs merge=lfs -text
1196
+ v9AyT4oBgHgl3EQfnPij/content/2301.00486v1.pdf filter=lfs diff=lfs merge=lfs -text
1197
+ rNFKT4oBgHgl3EQfIi19/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1198
+ AdFLT4oBgHgl3EQfEy_H/content/2301.11985v1.pdf filter=lfs diff=lfs merge=lfs -text
1199
+ I9AyT4oBgHgl3EQfTfcL/content/2301.00104v1.pdf filter=lfs diff=lfs merge=lfs -text
1200
+ rNFKT4oBgHgl3EQfIi19/content/2301.11734v1.pdf filter=lfs diff=lfs merge=lfs -text
1201
+ I9AyT4oBgHgl3EQfTfcL/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1202
+ p9E2T4oBgHgl3EQfKgZi/content/2301.03703v1.pdf filter=lfs diff=lfs merge=lfs -text
1203
+ v9AyT4oBgHgl3EQfnPij/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1204
+ dtE1T4oBgHgl3EQfyAVc/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1205
+ dtE1T4oBgHgl3EQfyAVc/content/2301.03428v1.pdf filter=lfs diff=lfs merge=lfs -text
1206
+ 1dAzT4oBgHgl3EQf8v7L/content/2301.01910v1.pdf filter=lfs diff=lfs merge=lfs -text
1207
+ p9E2T4oBgHgl3EQfKgZi/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1208
+ zdFRT4oBgHgl3EQfjzd-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1209
+ LdE1T4oBgHgl3EQfGwON/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1210
+ dtE0T4oBgHgl3EQfoQFr/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1211
+ 9NE4T4oBgHgl3EQfdgy1/content/2301.05092v1.pdf filter=lfs diff=lfs merge=lfs -text
1212
+ dtE0T4oBgHgl3EQfoQFr/content/2301.02523v1.pdf filter=lfs diff=lfs merge=lfs -text
1213
+ iNE1T4oBgHgl3EQfMwPW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1214
+ KdE4T4oBgHgl3EQfiA17/content/2301.05130v1.pdf filter=lfs diff=lfs merge=lfs -text
1215
+ 1dAzT4oBgHgl3EQf8v7L/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1216
+ h9AyT4oBgHgl3EQf-vq9/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1217
+ tdA0T4oBgHgl3EQfLf9-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1218
+ iNE0T4oBgHgl3EQfYAA8/content/2301.02300v1.pdf filter=lfs diff=lfs merge=lfs -text
1219
+ CdFJT4oBgHgl3EQftC3b/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1220
+ b9AyT4oBgHgl3EQfXPer/content/2301.00180v1.pdf filter=lfs diff=lfs merge=lfs -text
1221
+ Z9FAT4oBgHgl3EQf4R6K/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1222
+ oNAzT4oBgHgl3EQfqf3Z/content/2301.01631v1.pdf filter=lfs diff=lfs merge=lfs -text
1223
+ e9E2T4oBgHgl3EQfGgbf/content/2301.03659v1.pdf filter=lfs diff=lfs merge=lfs -text
1224
+ 79FLT4oBgHgl3EQfAy4h/content/2301.11967v1.pdf filter=lfs diff=lfs merge=lfs -text
1225
+ CdFJT4oBgHgl3EQftC3b/content/2301.11616v1.pdf filter=lfs diff=lfs merge=lfs -text
1226
+ e9E2T4oBgHgl3EQfGgbf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1227
+ b9AyT4oBgHgl3EQfXPer/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1228
+ oNE5T4oBgHgl3EQfkA8i/content/2301.05659v1.pdf filter=lfs diff=lfs merge=lfs -text
1229
+ f9AzT4oBgHgl3EQfavwP/content/2301.01372v1.pdf filter=lfs diff=lfs merge=lfs -text
1230
+ I9E2T4oBgHgl3EQfUQfh/content/2301.03812v1.pdf filter=lfs diff=lfs merge=lfs -text
1231
+ wtE0T4oBgHgl3EQf-QJD/content/2301.02811v1.pdf filter=lfs diff=lfs merge=lfs -text
1232
+ kNFPT4oBgHgl3EQf1zVk/content/2301.13184v1.pdf filter=lfs diff=lfs merge=lfs -text
1233
+ oNFPT4oBgHgl3EQfKjR1/content/2301.13019v1.pdf filter=lfs diff=lfs merge=lfs -text
1234
+ LtAyT4oBgHgl3EQfgPig/content/2301.00356v1.pdf filter=lfs diff=lfs merge=lfs -text
1235
+ 99A0T4oBgHgl3EQfO__U/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1236
+ edFST4oBgHgl3EQfFzg4/content/2301.13719v1.pdf filter=lfs diff=lfs merge=lfs -text
1237
+ edFST4oBgHgl3EQfFzg4/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1dA0T4oBgHgl3EQfMv9X/content/2301.02136v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11b960abc5db177debf4f11e398aa702993a5e59f178302db36b709d8bfe43e4
3
+ size 5144707
1dAzT4oBgHgl3EQf8v7L/content/2301.01910v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9802146da3b4a8c2129b1a8e6ccdfe901c5422478b4f1c624e0782ab8c0983cc
3
+ size 221890
1dAzT4oBgHgl3EQf8v7L/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7affa7a2b7e1faeeb277d51131251afe74e0dac2e37d9db01e73527e63e87a2d
3
+ size 2752557
1dAzT4oBgHgl3EQf8v7L/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17334ceee2d4432c9fe3dac0945b2238ed659b74223d81e3e5527c5e0c1d203a
3
+ size 104048
2dE4T4oBgHgl3EQfagyV/content/tmp_files/2301.05065v1.pdf.txt ADDED
@@ -0,0 +1,3254 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Toward Building General Foundation Models for Language, Vision, and
2
+ Vision-Language Understanding Tasks
3
+ Xinsong Zhang 1 Yan Zeng 1 Jipeng Zhang 2 Hang Li 1
4
+ Abstract
5
+ Foundation models or pre-trained models have
6
+ substantially improved the performance of various
7
+ language, vision, and vision-language understand-
8
+ ing tasks. However, existing foundation models
9
+ can only perform the best in one type of tasks,
10
+ namely language, vision, or vision-language. It is
11
+ still an open question whether it is possible to con-
12
+ struct a foundation model performing the best for
13
+ all the understanding tasks, which we call a gen-
14
+ eral foundation model. In this paper, we propose
15
+ a new general foundation model, X-FM (the X-
16
+ Foundation Model). X-FM has one language en-
17
+ coder, one vision encoder, and one fusion encoder,
18
+ as well as a new training method. The training
19
+ method includes two new techniques for learning
20
+ X-FM from text, image, and image-text pair data.
21
+ One is to stop gradients from the vision-language
22
+ training when learning the language encoder. The
23
+ other is to leverage the vision-language training
24
+ to guide the learning of the vision encoder. Exten-
25
+ sive experiments on benchmark datasets show that
26
+ X-FM can significantly outperform existing gen-
27
+ eral foundation models and perform better than or
28
+ comparable to existing foundation models specif-
29
+ ically for language, vision, or vision-language
30
+ understanding.
31
+ 1. Introduction
32
+ With the enormous power of foundation models, also known
33
+ as pre-trained models, remarkable performance gains have
34
+ recently been achieved in a variety of understanding tasks in
35
+ natural language processing (NLP), computer vision (CV),
36
+ and other fields (Devlin et al., 2019; Liu et al., 2019; Lewis
37
+ et al., 2020; Raffel et al., 2020; Brown et al., 2020; Doso-
38
+ vitskiy et al., 2021; He et al., 2022; Bao et al., 2021; Lu
39
+ 1ByteDance AI Lab 2The Hong Kong University of Science
40
+ and Technology. Correspondence to: Xinsong Zhang <zhangxin-
41
42
+ Copyright 2023 by the author(s). The code and pre-trained models
43
+ will be released upon publication.
44
+ et al., 2019; Tan & Bansal, 2019a; Chen et al., 2020; Li
45
+ et al., 2020; 2021a; Zeng et al., 2021; 2022) . Foundation
46
+ models are usually equipped with Transformer (Vaswani
47
+ et al., 2017) as the backbone, pre-trained with a tremendous
48
+ amount of unlabeled data, and then fine-tuned with small
49
+ amounts of labeled data in downstream tasks. The strong
50
+ representation ability of the model, the massive amount of
51
+ data, and the effective means of training make the founda-
52
+ tion models powerful for successfully solving the tasks of
53
+ vision, language, and vision-language (Li et al., 2021b;c;
54
+ Singh et al., 2021; Wang et al., 2021b; 2022b; Diao et al.,
55
+ 2022; Wang et al., 2022a).
56
+ The state-of-the-art foundation models usually work the
57
+ best for one type of tasks, namely language, vision, and
58
+ vision-language. For example, RoBERTa (Liu et al., 2019),
59
+ BEiTv2 (Peng et al., 2022), and X-VLM (Zeng et al., 2021;
60
+ 2022) are language, vision, and vision-language founda-
61
+ tion models respectively, and can achieve state-of-the-art
62
+ performances for the specific type of tasks. It is still very
63
+ challenging, however, to build a general foundation model
64
+ that can perform the best in all types of tasks. Existing
65
+ models, such as FLAVA (Singh et al., 2021), OFA (Wang
66
+ et al., 2022b), DaVinci (Diao et al., 2022) and Uni-Perceiver-
67
+ MoE (Zhu et al., 2022), are trying to achieve the goal. Their
68
+ performances are still not satisfactory, however, when com-
69
+ pared with the best performing foundation models for the
70
+ individual types of tasks, as shown in Table 1. Previous
71
+ work (Bingel & Søgaard, 2017; Wang et al., 2020) also
72
+ shows that it is difficult to train a general foundation model
73
+ in a multi-task learning setting that can effectively learn and
74
+ utilize representations for all types of tasks. The reason is
75
+ that language, vision, and vision-language are very different
76
+ in nature, and a simple way of jointly training a model from
77
+ language, vision, and vision-language data can easily create
78
+ a suboptimal solution.
79
+ To address the challenge, we propose a new general founda-
80
+ tion model, X-FM (X-Foundation Model). X-FM consists of
81
+ three modular encoders for language (text) encoding, vision
82
+ (image) encoding, and fusion encoding, as shown in Fig 1.
83
+ The language encoder, the vision encoder, and the entire
84
+ model can be used in downstream tasks of language, vision,
85
+ and vision-language understanding, respectively. All three
86
+ arXiv:2301.05065v1 [cs.CV] 12 Jan 2023
87
+
88
+ Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks
89
+ Methods
90
+ Text Tasks
91
+ Vision Tasks
92
+ Multi-modal Tasks (MSCOCO Retriveal & VQA)
93
+ GLUE
94
+ ImageNet
95
+ Zero-Shot
96
+ Fine-Tune
97
+ MNLI
98
+ RTE
99
+ FT/LE
100
+ TR
101
+ IR
102
+ TR
103
+ IR
104
+ VQA
105
+ Foundation models specifically for language, vision, or vision-language understanding
106
+ RoBERTa (Liu et al., 2019)
107
+ 87.6
108
+ 78.7
109
+
110
+
111
+
112
+
113
+
114
+
115
+ BEiTv2 (Peng et al., 2022)
116
+
117
+
118
+ 85.5/80.1
119
+
120
+
121
+
122
+
123
+
124
+ X-VLM (Zeng et al., 2021)
125
+
126
+
127
+
128
+ 70.8/92.1/96.5
129
+ 55.6/82.7/90.0
130
+ 80.4/95.5/98.2
131
+ 63.1/85.7/91.6
132
+ 78.1
133
+ X2-VLM (Zeng et al., 2022)
134
+
135
+
136
+
137
+
138
+
139
+ 80.5/95.5/97.8
140
+ 62.7/84.7/90.7
141
+ 79.2
142
+ General foundation models
143
+ UNIMO-2 (Li et al., 2021c)
144
+ 87.5
145
+
146
+ 80.8/-
147
+
148
+
149
+
150
+
151
+ 76.3
152
+ SimVLM (Wang et al., 2021c)
153
+ 83.4
154
+ 63.9
155
+ -/80.6
156
+
157
+
158
+
159
+
160
+ 77.9
161
+ FLAVA (Singh et al., 2021)
162
+ 80.3
163
+ 57.8
164
+ -/75.5
165
+ 42.7/76.8/-
166
+ 38.4/67.5/-
167
+ 61.5/82.1/89.6
168
+ 50.1/74.4/83.2
169
+ 72.8
170
+ OFA (Wang et al., 2022b)
171
+ 84.3
172
+ 70.8
173
+ 82.2/–
174
+
175
+
176
+
177
+
178
+ 78.0
179
+ DaVinci (Diao et al., 2022)
180
+ 83.1
181
+ 64.2
182
+ 83.9/78.8
183
+
184
+
185
+
186
+
187
+ 76.3
188
+ OmniVL (Wang et al., 2022a)
189
+
190
+
191
+
192
+
193
+
194
+ 76.8/93.6/97.3
195
+ 58.5/82.6/89.5
196
+ 78.3
197
+ Uni-Perceiver-MoE (Zhu et al., 2022)
198
+ 81.5
199
+ 75.8
200
+ 84.5/–
201
+ 64.6/–/–
202
+ 51.6/–/–
203
+ 70.5/–/–
204
+ 54.1/–/–
205
+
206
+ X-FMbase
207
+ 87.7
208
+ 83.2
209
+ 85.3/81.0
210
+ 73.8/93.9/97.2
211
+ 59.4/83.6/90.0
212
+ 81.8/96.0/98.3
213
+ 64.7/86.1/91.6
214
+ 79.1
215
+ Table 1: Performance comparisons between foundation models. All results are from base-size models. MSCOCO is a
216
+ cross-modal retrieval task, and IR and TR are image-retrieval and text-retrieval, respectively. MNLI results are average
217
+ accuracies of MNLI-m and MNLI-mm. Accuracy is reported for RTE. For ImageNet1k classification, we report linear
218
+ evaluation (LE) performance and fine-tuning (FT) performance, respectively. We report R@1/R@5/R@10 for all retrieval
219
+ tasks at both zero-shot and fine-tune settings. We report the VQA test-dev result. bold denotes the best number across
220
+ general foundation models. underline denotes the best across all models.
221
+ encoders are stacked Transformer layers. The language en-
222
+ coder and the vision encoder follow the implementations
223
+ of BERT (Devlin et al., 2019) and ViT (Dosovitskiy et al.,
224
+ 2021), respectively. The fusion encoder has the same ar-
225
+ chitecture as BERT except that there is a cross-attention
226
+ sub-layer after the self-attention sub-layer in each Trans-
227
+ former layer.
228
+ In learning of X-FM, the language encoder, vision encoder,
229
+ and fusion encoder are jointly trained with text data, im-
230
+ age data, and image-text pair data as input. Given the text
231
+ data, we train the language encoder by masked language
232
+ modeling (MLM). Given the image data, we train the vi-
233
+ sion encoder by masked image modeling (MIM). Given the
234
+ image-text pair data, we train the fusion encoder by image
235
+ text matching (ITM), image-conditioned masked language
236
+ modeling (IMLM), bounding box prediction (BBP), train
237
+ the vision encoder and the language encoder by image-text
238
+ contrastive learning (ITC), and train the vision encoder by
239
+ MIM. (See Fig 1.)
240
+ The essential thinking of our learning method is that lan-
241
+ guage is more abstract than vision, and there is an asymmet-
242
+ ric relationship between language and vision. Therefore, we
243
+ separate the learning of the three encoders. The language
244
+ encoder is trained mainly from text data and is isolated from
245
+ the training of the fusion encoder. The vision encoder is
246
+ simultaneously trained from image data and image-text pair
247
+ data, guided by the vision-language training. The fusion
248
+ encoder is trained from image-text pair data.
249
+ Our learning method includes two new techniques. One
250
+ technique is to stop gradients from the vision-language train-
251
+ ing when learning the language encoder. The gradient flow
252
+ is stopped from the fusion encoder to the language encoder
253
+ in training, while the activation flow from the language en-
254
+ coder to the fusion encoder is as usual. As a result, the
255
+ language encoder is not affected by training of the fusion
256
+ encoder with image-text pair data. Moreover, the training of
257
+ the fusion encoder concentrates on learning the alignments
258
+ between language and vision features.
259
+ The other technique is to leverage the vision-language train-
260
+ ing to guide the learning of the vision encoder with masked
261
+ image modeling (MIM). In MIM, the masked image is com-
262
+ pared with the original image by the differences between the
263
+ predicted representations and target representations at the
264
+ masked and [CLS] positions. The vision encoder creates
265
+ both the predicated and target representations, while there
266
+ is gradient flow from the predicted representations but no
267
+ gradient flow from the target representations. The vision
268
+ encoder can create the target representations because it is
269
+ also trained in the vision-language training.
270
+ We conduct experiments on a variety of twenty-two tasks of
271
+ language, vision, and vision-language understanding. X-FM
272
+ can outperform other general foundation models by a large
273
+ margin and can even achieve better or comparable perfor-
274
+ mance than SOTA foundation models specifically designed
275
+ for language, vision, or vision-language understanding tasks,
276
+ as shown in Table 1.
277
+
278
+ Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks
279
+ 2. Related Work
280
+ Following the success of language model pre-training, vi-
281
+ sion pre-training and vision-language pre-training with
282
+ Transformer as the backbone (Vaswani et al., 2017) have
283
+ also made significant progress recently, pushing the state-of-
284
+ the-art of various understanding tasks of language, vision,
285
+ and vision-language.
286
+ In language understanding, BERT (Devlin et al., 2019) is
287
+ the first model adopting masked language modeling (MLM)
288
+ for pre-training, which achieves remarkable performance
289
+ on a wide range of tasks. Several other models are then
290
+ developed to improve training robustness (Liu et al., 2019),
291
+ sample efficiency (Sun et al., 2019; Joshi et al., 2020; Clark
292
+ et al., 2020), and prediction accuracy of BERT (Lan et al.,
293
+ 2020; Zhang et al., 2020; He et al., 2021).
294
+ In vision understanding, ViT (Dosovitskiy et al., 2021; Tou-
295
+ vron et al., 2021) is proposed, utilizing Transformer as the
296
+ backbone. Inspired by MLM, subsequent work proposes
297
+ using masked image modeling (MIM) with the objective of
298
+ recovering masked images. The learning targets vary from
299
+ pixels (He et al., 2022) to image tokens (Bao et al., 2021;
300
+ Peng et al., 2022).
301
+ In vision-language understanding, there are generally two
302
+ approaches. One is “dual encoders,” in which image and text
303
+ are encoded separately, followed by a shallow interaction
304
+ layer. The other is “fusion encoder(s)” in which attention
305
+ or self-attention is used to fuse information from the two
306
+ modalities after encoding. The former approach includes
307
+ CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021)
308
+ and performs well in vision tasks and cross-modal retrieval
309
+ tasks. However, it cannot perform so well in multi-modal
310
+ fusion tasks such as visual question answering (VQA (Goyal
311
+ et al., 2017)) and visual reasoning (NLVR2 (Suhr et al.,
312
+ 2019b)). The latter approach varies depending on the way
313
+ of using image features. Early work feeds pre-extracted
314
+ object features along with texts into Transformer models
315
+ and trains the models to make multi-modal modeling and
316
+ multi-modal alignments with suitable objectives (Lu et al.,
317
+ 2019; Tan & Bansal, 2019b; Li et al., 2020; Chen et al.,
318
+ 2020; Cho et al., 2021; Zhang et al., 2021). Later work
319
+ uses patch embeddings directly with new architectures such
320
+ as vision Transformer (Li et al., 2021a; 2022) or multiway
321
+ Transformer (Wang et al., 2021a; Bao et al., 2022) and uses
322
+ new objectives such as bounding box prediction (Zeng et al.,
323
+ 2021; 2022).
324
+ Recently, the fact that Transformer can model multi-modal
325
+ data within a single architecture has inspired research to
326
+ develop general foundation models that can solve lan-
327
+ guage, vision, and vision-language tasks at the same time.
328
+ UNIMO (Li et al., 2021b;c) jointly learns from image
329
+ and text data vision representations, language representa-
330
+ tions, and vision-language alignments in a shared space.
331
+ FLAVA (Singh et al., 2021), a general foundation model, per-
332
+ forms pre-training with masked uni-modal and multi-modal
333
+ modeling objectives. OFA (Wang et al., 2022c) formulates
334
+ vision-language tasks as sequence-to-sequence (seq2seq)
335
+ problems and pre-trains a seq2seq model in multi-task learn-
336
+ ing. SimVLM (Wang et al., 2021c) pre-trains a seq2seq
337
+ model with a single objective of language generation (prefix
338
+ language modeling). DaVinci (Diao et al., 2022) combines
339
+ prefix language modeling and prefix image modeling to
340
+ learn a general foundation model for a wide range of tasks.
341
+ Uni-Perceiver (Zhu et al., 2021; 2022) builds a unified per-
342
+ ception architecture that processes various modalities and
343
+ tasks with a single Transformer network and shared parame-
344
+ ters.
345
+ Previous studies on general foundation models have shown
346
+ that different capabilities can be established with only one
347
+ model. Still, few studies demonstrate that the best perfor-
348
+ mance can be achieved in all tasks with one model. In this
349
+ paper, we propose a new general foundation model and show
350
+ that it can perform the best for all the understanding tasks
351
+ of language, vision, and vision-language. We compare our
352
+ model extensively with recent general foundation models
353
+ on multiple dimensions, as shown in Appendix A.
354
+ Several super-large foundation models (over 1B parame-
355
+ ters) are proposed recently, most of which are trained on
356
+ super-large in-house datasets (over 400M image-text pairs).
357
+ The authors do not report results at the base (about 280M
358
+ parameters) and large (about 800M parameters) scale on
359
+ public datasets, which we consider in this paper. CoCa (Yu
360
+ et al., 2022) pre-trains an image-text sequence-to-sequence
361
+ model with contrastive loss and captioning loss. BEiT-
362
+ 3 (Wang et al., 2022d) uses a multi-way Transformer and a
363
+ unified objective of masked “language” modeling for learn-
364
+ ing from image (Imglish1), text, and image-text pair data.
365
+ Florence (Yuan et al., 2021) first scales the web-scale image-
366
+ text pairs to 900M representations and then adapts to vari-
367
+ ous computer vision tasks. Flamingo (Alayrac et al., 2022)
368
+ makes use of a large language model in vision-language
369
+ pre-training to solve the “in-context learning” problem for
370
+ vision-language tasks. PaLI (Chen et al., 2022) jointly scales
371
+ up the vision encoder and language encoder to cover a vari-
372
+ ety of language, vision, vision-language, and multilingual
373
+ tasks.
374
+ 3. Method
375
+ 3.1. Model Architecture and Training Process
376
+ We propose a new general foundation model X-FM, having
377
+ a language encoder, a vision encoder, and a fusion encoder,
378
+ shown as Fig 1. The language encoder is a stack of Trans-
379
+ 1They view the image as a foreign language.
380
+
381
+ Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks
382
+ Text Encoder
383
+ Cross-Attention
384
+ Fusion Encoder
385
+ Feed Forward
386
+ Self-Attention
387
+ Vision Encoder
388
+ Feed Forward
389
+ Self-Attention
390
+ two
391
+ brown
392
+ and
393
+ white
394
+ dogs.
395
+ Mask
396
+ Feed Forward
397
+ Self-Attention
398
+ stop grad
399
+ MIM
400
+ MLM
401
+ IMLM, ITM, BBP
402
+ ITC
403
+ x M
404
+ x N
405
+ x L
406
+ Mask
407
+ target
408
+ Figure 1: The architecture and pre-training process of X-FM, a Transformer-based general foundation model. Given
409
+ a text, we learn the language encoder by MLM. Given an image, we learn the vision encoder by MIM. Given an image-text
410
+ pair, we learn the fusion encoder by BBP, ITM, IMLM and ITC, and further learn the vision encoder by MIM. The gradients
411
+ of BBP, ITM, and IMLM are stopped from the fusion encoder to the language encoder. The vision encoder is trained by
412
+ MIM with both the image-text pair data and the image data. M, N and P denote numbers of encoder layers.
413
+ former layers like that of BERT (Devlin et al., 2019), while
414
+ the vision encoder is a stack of Transformer layers like that
415
+ of ViT (Dosovitskiy et al., 2021). The language encoder uses
416
+ a post-layer-norm, while the vision encoder uses a pre-layer-
417
+ norm. The fusion encoder is similar to that of ALBEF (Li
418
+ et al., 2021a) and X-VLM (Zeng et al., 2021), in which
419
+ each layer has an attention sub-layer after a self-attention
420
+ sub-layer. In the self-attention sub-layers, the queries are
421
+ from language and the keys & values are from vision.
422
+ We propose a new method for learning X-FM, also shown in
423
+ Fig 1. Text, image, and image-text pair data are used as input
424
+ to train X-FM. The language encoder is trained by masked
425
+ language modeling (MLM) and image text contrastive learn-
426
+ ing (ITC). The vision encoder is trained by masked image
427
+ modeling (MIM) and ITC. The fusion encoder is trained
428
+ by image text matching (ITM), image-conditioned masked
429
+ language modeling (IMLM), and bounding box prediction
430
+ (BBP). There are two new techniques developed for the
431
+ training.
432
+ Stop Gradient. We stop gradients from the vision-language
433
+ training when learning the language encoder. Specifically,
434
+ when the fusion encoder is trained with image-text pair
435
+ data by ITM, IMLM, and BBP, there are forward flows
436
+ (activations) from the language encoder to the fusion en-
437
+ coder, but there are no backward flows (gradients) from the
438
+ fusion encoder to the language encoder. In this way, the
439
+ language encoder is only trained with text data by MLM
440
+ and with image-text pair data by ITC. The former helps the
441
+ language encoder to learn text representations, and the latter
442
+ helps the language encoder and the vision encoder to make
443
+ alignments between their respective text representations and
444
+ image representations. Meanwhile, the training of the fusion
445
+ encoder is performed separately with the focus of learning
446
+ from image-text pair data.
447
+ Masked Image Modeling. The training of vision encoder
448
+ by MIM is carried out as follows. The image data is first
449
+ masked and then predicted by the vision encoder. The dif-
450
+ ferences between predicted representations and ‘target’ rep-
451
+ resentations at masked positions and [CLS] position are
452
+ then measured with MSE (mean squared error) loss. The
453
+ target representations are obtained from the same image
454
+ data (without masking) by the vision encoder. There are
455
+ no gradients from the target representations in the learning
456
+ of the vision encoder. The vision encoder can create target
457
+ representations because it is also trained with image-text
458
+ pair data. In this way, the vision encoder is trained by both
459
+ the cross-modal objectives (ITC, ITM, BBP, IMLM) with
460
+ image-text pair data and the uni-modal objective (MIM)
461
+ with image data. The representations obtained from the
462
+ vision-language training are highly semantic, which is nec-
463
+ essary for MIM as demonstrated in previous work (Bao
464
+ et al., 2021; Peng et al., 2022; Wei et al., 2022a;b).
465
+ There are three advantages by exploiting the new MIM
466
+ technique. First, it becomes possible to leverage image data
467
+ for learning of the vision encoder, which is relatively easy
468
+ to obtain. Second, it is convenient to conduct MIM with the
469
+ signals from the vision-language training. Note that most
470
+ previous work for MIM makes use of an external image
471
+ tokenizer such as VQ-VAE (Bao et al., 2021; Singh et al.,
472
+ 2021), CLIP (Wei et al., 2022b), and VQ-KL (Peng et al.,
473
+
474
+ Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks
475
+ 2022). Third, the learning of the vision encoder and that
476
+ of the fusion encoder are mutually enhanced. Once the
477
+ vision encoder is trained, it is also utilized to train the fusion
478
+ encoder.
479
+ 3.2. Pre-training Objectives
480
+ We explain six objectives in learning of X-FM. Here, T
481
+ represents the distribution of text data, I represents the
482
+ distribution of image data, and D represents the distribution
483
+ of image-text pair data.
484
+ Masked Language Modeling (MLM) We perform MLM
485
+ on text data to learn the language encoder of X-FM. Specifi-
486
+ cally we recover the masked tokens in a text by minimizing
487
+ the cross entropy loss below.
488
+ Lmlm = ET ∼T H(⃗y( ¯T), ˆ⃗p( ¯T))
489
+ (1)
490
+ where T denotes a text, ¯T denotes the masked text of T, ˆ⃗p
491
+ denotes the predicted probability vectors of masked tokens
492
+ of ¯T, ⃗y denotes the one-hot vectors representing the original
493
+ tokens of ¯T, and H denotes cross-entropy.
494
+ Image-Text Contrastive Learning (ITC). We use an
495
+ image-text contrastive loss as in CLIP (Radford et al., 2021)
496
+ to learn the alignments between images and texts in ITC.
497
+ Given a batch of images and texts, we calculate the cosine
498
+ similarities between all image-text pairs. For each image,
499
+ there is one text matched and the rest is unmatched. For each
500
+ text, there is one image matched and the rest is unmatched.
501
+ The contrastive loss is defined as follows.
502
+ Litc = 1
503
+ 2E(I,T )∼D
504
+
505
+ H(⃗yi2t(I), ⃗pi2t(I))
506
+ + H(⃗yt2i(T), ⃗pt2i(T))
507
+
508
+ (2)
509
+ where (I, T) denotes an image-text pair, ⃗pi2t(I) denotes the
510
+ in-batch image-to-text similarities, ⃗pt2i(T) denotes the in-
511
+ batch text-to-image similarities, ⃗yi2t(I) denotes the one-hot
512
+ vectors representing the image-to-text matching relations,
513
+ ⃗yt2i(T) denotes the one-hot vectors representing the text-to-
514
+ image matching relations, and H denotes cross-entropy.
515
+ Image-Text Matching (ITM). We also learn the align-
516
+ ments between images and texts in ITM, using a loss in-
517
+ dicating whether an image-text pair is matched. For each
518
+ image in a batch there is a matched (positive) text, and we
519
+ sample an unmatched (negative) text in the batch. For each
520
+ text there is a matched (positive) image, and we sample
521
+ an unmatched image in the batch. The loss is defined as
522
+ follows.
523
+ Litm = E(I,T )∼D
524
+
525
+ H(pmatch(I, T))
526
+ +H(pmatch(˜I, T))
527
+ (3)
528
+ +H(pmatch(I, ˜T))
529
+
530
+ where (I, T) denotes a positive image-text pair, (˜I, T) and
531
+ (I, ˜T) denote negative image-text pairs, pmatch(I, T) de-
532
+ notes a predicted matching probability of (I, T), and H
533
+ denotes logistic loss.
534
+ Image-conditioned
535
+ Masked
536
+ Language
537
+ Modeling
538
+ (IMLM) We conduct IMLM on image-text pair data to
539
+ learn the fusion encoder.
540
+ Specifically, we recover the
541
+ masked tokens of the text given for an image-text pair by
542
+ minimizing the cross entropy loss below.
543
+ Limlm = E(I,T )∼DH(⃗y( ¯T), ˆ⃗p(I, ¯T))
544
+ (4)
545
+ where (I, T) denotes an image-text pair, ¯T denotes the
546
+ masked text of T, ˆ⃗p(I, ¯T) denotes the predicted probability
547
+ vectors of the masked tokens of ¯T based on I, ⃗y denotes the
548
+ one-hot vectors representing the original tokens of ¯T, and
549
+ H denotes cross-entropy.
550
+ Bounding Box Prediction (BBP) We adopt the BBP in X-
551
+ VLM (Zeng et al., 2021; 2022), which locates the visual
552
+ concept in the image by a bounding box given the text. With
553
+ BBP we learn the alignments between the images and texts
554
+ in multi-granularity. In BBP, two losses are simultaneously
555
+ minimized to measure the differences between the predicted
556
+ bounding box and the ground-truth bounding box. One
557
+ is generalized intersection over union GIoU (Rezatofighi
558
+ et al., 2019) and the other is ℓ1 distance.
559
+ Lbbp = E(I,T )∼D{GIoU(⃗b,ˆ⃗b) + ∥⃗b − ˆ⃗b∥1}
560
+ (5)
561
+ where⃗b = (cx, cy, w, h) denotes the ground truth bounding
562
+ box, ˆ⃗b = ( ˆcx, ˆcy, ˆw, ˆh) denotes the predicted bounding box.
563
+ A bounding box is represented by two coordinates, width,
564
+ and height.
565
+ Masked Image Modeling (MIM) We perform MIM on im-
566
+ age data and image-text pair data to learn the vision encoder.
567
+ Specifically, we recover the masked image patches in an
568
+ image by minimizing the loss below.
569
+ Lmim = E(I,T )∼D||⃗v(¯I) − ˆ⃗v(¯I)||2 + EI∼I||⃗v(¯I) − ˆ⃗v(¯I)||2
570
+ (6)
571
+ where (I, T) and I denote an image-text pair and a single
572
+ image respectively, ¯I denotes the masked image I, ˆ⃗v(¯I) de-
573
+ notes the predicted representations at the masked positions
574
+ and [CLS] of ¯I, and ⃗v(¯I) denotes the target representa-
575
+ tions at the masked positions and [CLS] of ¯I. ||˙||2 is the
576
+ MSE loss. We employ block masking following previous
577
+ work (Bao et al., 2021; Peng et al., 2022). Note that (I, T)
578
+ and I are independently sampled from D and I, and the
579
+ sample sizes are not necessarily equal.
580
+ Finally, the pre-training objective of X-FM is defined as the
581
+ sum of the losses described above.
582
+ L = Lmlm + Litc + Litm + Limlm + Lbbp + Lmim (7)
583
+
584
+ Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks
585
+ Base-Size Models
586
+ Large-Size Models
587
+ RoBERTa
588
+ BEiTv2
589
+ X2-VLM
590
+ UNIMO-2
591
+ FLAVA
592
+ SimVLM
593
+ OFA
594
+ DaVinci
595
+ Uni-Per.
596
+ OmniVL
597
+ X-FM
598
+ RoBERTa
599
+ BEiTv2
600
+ X2-VLM
601
+ SimVLM
602
+ OFA
603
+ Uni-Per.
604
+ X-FM
605
+ Task
606
+ Eval.
607
+ 1
608
+ 2
609
+ 3
610
+ 4
611
+ 5
612
+ 6
613
+ 7
614
+ 8
615
+ 9
616
+ 10
617
+ 11
618
+ 12
619
+ 13
620
+ 14
621
+ 15
622
+ 16
623
+ 17
624
+ 18
625
+ MNLI
626
+ FT
627
+ 87.6
628
+
629
+
630
+ 87.5
631
+ 80.3
632
+ 83.4
633
+ 84.3
634
+ 82.3
635
+ 81.5
636
+
637
+ 87.7
638
+ 90.2
639
+
640
+
641
+
642
+ 84.3
643
+ 85.7
644
+ 90.4
645
+ CoLA
646
+ FT
647
+ 63.6
648
+
649
+
650
+ 62.1
651
+ 50.7
652
+ 46.7
653
+ 52.3
654
+ 52.1
655
+ 52.2
656
+
657
+ 65.3
658
+ 68.0
659
+
660
+
661
+
662
+ 52.3
663
+ 57.4
664
+ 69.9
665
+ MRPC
666
+ FT
667
+ 90.2
668
+
669
+
670
+
671
+ 84.2
672
+ 79.8
673
+ 88.7
674
+ 83.1
675
+
676
+
677
+ 91.7
678
+ 90.9
679
+
680
+
681
+
682
+ 88.7
683
+
684
+ 92.4
685
+ QQP
686
+ FT
687
+ 91.9
688
+
689
+
690
+
691
+ 88.7
692
+ 90.4
693
+ 91.3
694
+ 88.2
695
+
696
+
697
+ 91.8
698
+ 92.2
699
+
700
+
701
+
702
+ 91.3
703
+
704
+ 92.2
705
+ SST-2
706
+ FT
707
+ 94.8
708
+
709
+
710
+ 94.7
711
+ 90.9
712
+ 90.9
713
+ 92.7
714
+ 90.5
715
+ 90.9
716
+
717
+ 95.0
718
+ 96.4
719
+
720
+
721
+
722
+ 92.7
723
+ 93.4
724
+ 96.7
725
+ QNLI
726
+ FT
727
+ 92.8
728
+
729
+
730
+
731
+ 87.3
732
+ 88.6
733
+ 91.1
734
+ 87.2
735
+ 88.2
736
+
737
+ 92.9
738
+ 94.7
739
+
740
+
741
+
742
+ 91.1
743
+ 91.9
744
+ 94.8
745
+ RTE
746
+ FT
747
+ 78.70
748
+
749
+
750
+
751
+ 57.8
752
+ 63.9
753
+ 70.8
754
+ 60.7
755
+ 75.8
756
+
757
+ 83.8
758
+ 86.6
759
+
760
+
761
+
762
+ 70.8
763
+ 78.4
764
+ 87.4
765
+ STS-B
766
+ FT
767
+ 91.2
768
+
769
+
770
+ 91.2
771
+ 85.7
772
+ 87.2
773
+
774
+ 86.3
775
+
776
+
777
+ 90.8
778
+ 92.4
779
+
780
+
781
+
782
+
783
+
784
+ 92.1
785
+ Language Avg.
786
+ 86.4
787
+
788
+
789
+
790
+ 78.2
791
+ 78.9
792
+
793
+ 78.8
794
+
795
+
796
+ 87.4
797
+ 88.9
798
+
799
+
800
+
801
+
802
+
803
+ 89.5
804
+ ImageNet
805
+ FT
806
+
807
+ 85.5
808
+
809
+ 80.8
810
+
811
+
812
+ 82.2
813
+ 83.9
814
+ 84.5
815
+
816
+ 85.3
817
+
818
+ 87.3
819
+
820
+
821
+
822
+ 86.4
823
+ 86.3
824
+ ImageNet
825
+ LE
826
+
827
+ 80.1
828
+
829
+
830
+ 75.5
831
+ 80.6
832
+ 71.4†
833
+ 75.9
834
+
835
+
836
+ 81.0
837
+
838
+ 66.8†
839
+
840
+ 82.3
841
+ 74.7†
842
+
843
+ 81.0
844
+ Food101
845
+ LE
846
+
847
+ 88.2†
848
+
849
+
850
+ 88.5
851
+
852
+ 75.2†
853
+ 89.3
854
+
855
+ 87.4
856
+ 88.7
857
+
858
+ 52.2†
859
+
860
+
861
+ 81.6†
862
+
863
+ 88.9
864
+ CIFAR10
865
+ LE
866
+
867
+ 95.3†
868
+
869
+
870
+ 92.9
871
+
872
+ 86.1†
873
+ 93.0
874
+
875
+ 96.2
876
+ 97.2
877
+
878
+ 63.5†
879
+
880
+
881
+ 91.9†
882
+
883
+ 97.2
884
+ CIFAR100
885
+ LE
886
+
887
+ 81.5†
888
+
889
+
890
+ 77.7
891
+
892
+ 66.7†
893
+ 79.0
894
+
895
+ 83.2
896
+ 86.7
897
+
898
+ 39.7†
899
+
900
+
901
+ 75.6†
902
+
903
+ 85.1
904
+ Pets
905
+ LE
906
+
907
+ 93.1†
908
+
909
+
910
+ 84.8
911
+
912
+ 81.0†
913
+ 85.5
914
+
915
+ 87.1
916
+ 90.8
917
+
918
+ 38.9†
919
+
920
+
921
+ 86.8†
922
+
923
+ 90.0
924
+ DTD
925
+ LE
926
+
927
+ 78.4†
928
+
929
+
930
+ 77.3
931
+
932
+ 70.3†
933
+ 77.1
934
+
935
+ 76.2
936
+ 78.4
937
+
938
+ 44.4†
939
+
940
+
941
+ 74.4†
942
+
943
+ 79.0
944
+ Flowers102
945
+ LE
946
+
947
+ 95.7†
948
+
949
+
950
+ 96.4
951
+
952
+ 86.3†
953
+ 96.1
954
+
955
+ 89.8
956
+ 97.1
957
+
958
+ 66.6†
959
+
960
+
961
+ 92.6†
962
+
963
+ 95.8
964
+ Vision Avg.
965
+
966
+ 88.7
967
+
968
+
969
+ 86.3
970
+
971
+ 79.2
972
+ 86.7
973
+
974
+ 86.7
975
+ 89.8
976
+
977
+ 50.9
978
+
979
+
980
+ 83.8
981
+
982
+ 89.3
983
+ VQAv2
984
+ FT
985
+
986
+
987
+ 79.2
988
+ 76.3
989
+ 72.5
990
+ 77.9
991
+ 78.0
992
+ 73.9
993
+
994
+ 78.3
995
+ 79.1
996
+
997
+
998
+ 80.5
999
+ 79.3
1000
+ 80.3
1001
+
1002
+ 79.5
1003
+ NLVR2
1004
+ FT
1005
+
1006
+
1007
+ 86.1
1008
+
1009
+
1010
+ 81.8
1011
+
1012
+ 77.9
1013
+
1014
+
1015
+ 86.7
1016
+
1017
+
1018
+ 87.6
1019
+ 84.8
1020
+
1021
+
1022
+ 87.8
1023
+ Flickr30K TR R@1
1024
+ ZS
1025
+
1026
+
1027
+ 85.1†
1028
+ 88.5
1029
+ 67.7
1030
+
1031
+
1032
+
1033
+ 82.1
1034
+
1035
+ 90.1
1036
+
1037
+
1038
+ 86.8†
1039
+
1040
+
1041
+ 83.6
1042
+ 89.7
1043
+ Flickr30K IR R@1
1044
+ ZS
1045
+
1046
+
1047
+ 77.3†
1048
+ 72.7
1049
+ 65.2
1050
+
1051
+
1052
+
1053
+ 72.4
1054
+
1055
+ 79.1
1056
+
1057
+
1058
+ 80.5†
1059
+
1060
+
1061
+ 75.9
1062
+ 79.1
1063
+ Flickr30K TR R@1
1064
+ FT
1065
+
1066
+
1067
+ 97.4
1068
+ 92.0
1069
+
1070
+
1071
+
1072
+
1073
+ 93.6
1074
+ 94.9
1075
+ 97.4
1076
+
1077
+
1078
+ 99.1
1079
+
1080
+
1081
+ 94.1
1082
+ 97.9
1083
+ Flickr30K IR R@1
1084
+ FT
1085
+
1086
+
1087
+ 90.0
1088
+ 80.1
1089
+
1090
+
1091
+
1092
+
1093
+ 79.8
1094
+ 83.4
1095
+ 88.6
1096
+
1097
+
1098
+ 91.1
1099
+
1100
+
1101
+ 83.7
1102
+ 89.4
1103
+ COCO TR R@1
1104
+ ZS
1105
+
1106
+
1107
+ 68.4†
1108
+
1109
+ 42.7
1110
+
1111
+
1112
+
1113
+ 64.6
1114
+
1115
+ 73.8
1116
+
1117
+
1118
+ 69.7†
1119
+
1120
+
1121
+ 67.9
1122
+ 74.4
1123
+ COCO IR R@1
1124
+ ZS
1125
+
1126
+
1127
+ 55.2†
1128
+
1129
+ 38.4
1130
+
1131
+
1132
+
1133
+ 51.6
1134
+
1135
+ 59.4
1136
+
1137
+
1138
+ 58.3†
1139
+
1140
+
1141
+ 55.3
1142
+ 59.4
1143
+ COCO TR R@1
1144
+ FT
1145
+
1146
+
1147
+ 80.5
1148
+
1149
+
1150
+
1151
+
1152
+
1153
+ 70.5
1154
+ 76.8
1155
+ 81.8
1156
+
1157
+
1158
+ 82.3
1159
+
1160
+
1161
+ 74.7
1162
+ 82.1
1163
+ COCO IR R@1
1164
+ FT
1165
+
1166
+
1167
+ 62.7
1168
+
1169
+
1170
+
1171
+
1172
+
1173
+ 52.6
1174
+ 58.5
1175
+ 64.7
1176
+
1177
+
1178
+ 65.2
1179
+
1180
+
1181
+ 57.1
1182
+ 65.4
1183
+ Vision-Language Avg.
1184
+
1185
+
1186
+ 78.2
1187
+
1188
+
1189
+
1190
+
1191
+
1192
+
1193
+
1194
+ 80.1
1195
+
1196
+
1197
+ 80.1
1198
+
1199
+
1200
+
1201
+ 80.5
1202
+ Table 2: Experimental results on vision, language and vision-language tasks. MNLI results are average of MNLI-m
1203
+ and MNLI-mm. MRPC results are average accuracies and F1 scores. Matthews correlation coefficient (MCC) is reported for
1204
+ CoLA, and Pearson correlation coefficient (PCC) is reported for STS-B. We report accuracies for all the vision and multi-
1205
+ modal tasks. FT is short for fine-tuning, LE for linear evaluation, ZS for zero-shot, TR for text retrieval, and IR for image
1206
+ retrieval. Results for RoBERTa are from its corresponding paper (Liu et al., 2019), and they use the mid-training (Phang
1207
+ et al., 2018) on MNLI for RTE, MRPC, and STS-B while other models (e.g., BERT, SimVLM, DaVinci, X-FM) do not
1208
+ use this trick. Language Avg. is the average score of all the language tasks, while Vision Avg. is the average score of six
1209
+ line evaluation tasks except ImageNet. Vision-Language Avg. is the average score of all vision-language tasks. † are our
1210
+ reproduced results with the officially released models. Uni-Per. stands for Uni-Perceiver-MoE (Zhu et al., 2022).
1211
+ 4. Experiments
1212
+ 4.1. Pre-training Datasets
1213
+ We conduct our experiments on several widely used pub-
1214
+ lic datasets, which consist of two in-domain datasets,
1215
+ COCO (Lin et al., 2014) and Visual Genome (VG) (Kr-
1216
+ ishna et al., 2017), and two out-of-domain datasets, SBU
1217
+ Captions (Ordonez et al., 2011) and Conceptual Captions
1218
+ (CC) (Sharma et al., 2018). Following X-VLM (Zeng et al.,
1219
+ 2021; 2022), we also include annotations of objects and
1220
+ regions from RefCOCO (Yu et al., 2016), Objects365 (Shao
1221
+ et al., 2019) and OpenImages (Kuznetsova et al., 2018).
1222
+ Since we assume also using uni-modal data, we include
1223
+ RoBERTa corpus (Liu et al., 2019), C4 datasets (Raffel
1224
+ et al., 2020) and Imagenet21K (Ridnik et al., 2021). All
1225
+ pre-training datasets are listed in Table 3.
1226
+ 4.2. Implementation Details
1227
+ Pre-training
1228
+ Our model is of base size and large size, and
1229
+ the parameters are listed in Table 5. The vision encoder is
1230
+ initialized with BEiTv2 (Peng et al., 2022). The language
1231
+ encoder is initialized with RoBERTa (Liu et al., 2019). The
1232
+ fusion encoder is trained from scratch. X-FM is pre-trained
1233
+ at image resolution of 224 × 224 with patch size of 16 × 16.
1234
+ Dataset
1235
+ # Images
1236
+ # Texts
1237
+ # Objects
1238
+ # Regions
1239
+ COCO
1240
+ 0.11M
1241
+ 0.55M
1242
+ 0.45M
1243
+ -
1244
+ VG
1245
+ 0.10M
1246
+ -
1247
+ 2.0M
1248
+ 3.7M
1249
+ SBU
1250
+ 0.86M
1251
+ 0.86M
1252
+ -
1253
+ -
1254
+ CC-3M
1255
+ 2.9M
1256
+ 2.9M
1257
+ -
1258
+ -
1259
+ Objects365
1260
+ 0.58M
1261
+ -
1262
+ 2.0M
1263
+ -
1264
+ OpenImages
1265
+ 1.7M
1266
+ -
1267
+ 4.2M
1268
+ -
1269
+ C4
1270
+ -
1271
+ 800GB
1272
+ -
1273
+ -
1274
+ RoBERTa Corpus
1275
+ -
1276
+ 160GB
1277
+ -
1278
+ -
1279
+ ImageNet-21k
1280
+ 14M
1281
+ -
1282
+ -
1283
+ -
1284
+ Table 3: Statistics of the pre-training datasets.
1285
+ We pre-train X-FMbase for 200K steps with a batch size of
1286
+ 3072 image-text pairs, 3072 images, and 8192 sentences on
1287
+ 32 A100 and pre-train X-FMlarge with the same batch for
1288
+ 160K steps on 64 A100, which takes about six days. The
1289
+ learning rate for both models is warmed-up to 1e−4 in the
1290
+ first 2500 steps and decayed following a linear schedule. We
1291
+ set the maximum number of text tokens to 30 for image-text
1292
+ pairs, while that of pure text corpus is set to 128. We apply
1293
+ mixed precision for pre-training.
1294
+ Fine-tuning
1295
+ We choose widely used downstream tasks
1296
+ whose details are shown in Appendix B. We report overall
1297
+
1298
+ Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks
1299
+ Model
1300
+ # Params
1301
+ MSCOCO (5K test set)
1302
+ Flickr30K (1K test set)
1303
+ MSCOCO (5K test set)
1304
+ Flickr30K (1K test set)
1305
+ TR-Fine-Tune
1306
+ IR-Fine-Tune
1307
+ TR-Fine-Tune
1308
+ IR-Fine-Tune
1309
+ TR-Zero-Shot
1310
+ IR-Zero-Shot
1311
+ TR-Zero-Shot
1312
+ IR-Zero-Shot
1313
+ R@1/R@5/R@10
1314
+ R@1/R@5/R@10
1315
+ R@1/R@5/R@10
1316
+ R@1/R@5/R@10
1317
+ R@1/R@5/R@10
1318
+ R@1/R@5/R@10
1319
+ R@1/R@5/R@10
1320
+ R@1/R@5/R@10
1321
+ ALBEF
1322
+ 210M
1323
+ 73.1/91.4/96.0
1324
+ 56.8/81.5/89.2
1325
+ 94.3/99.4/99.8
1326
+ 82.8/96.7/98.4
1327
+
1328
+
1329
+ 90.5/98.8/99.7
1330
+ 76.8/93.7/96.7
1331
+ VLMobase
1332
+ 175M
1333
+ 74.8/93.1/96.9
1334
+ 57.2/82.6/89.8
1335
+ 92.3/99.4/99.9
1336
+ 79.3/95.7/97.8
1337
+
1338
+
1339
+
1340
+
1341
+ VL-BEiT
1342
+ 175M
1343
+ 79.5/–/–
1344
+ 61.5/–/–
1345
+ 95.8/–/–
1346
+ 83.9/–/–
1347
+
1348
+
1349
+
1350
+
1351
+ OmniVL
1352
+ 288M
1353
+ 76.8/93.6/97.3
1354
+ 58.5/82.6/89.5
1355
+ 94.9/9.6/99.9
1356
+ 83.4/97.0/98.6
1357
+
1358
+
1359
+
1360
+
1361
+ X-VLM
1362
+ 216M
1363
+ 80.4/95.5/98.2
1364
+ 63.1/85.7/91.6
1365
+ 96.8/99.8/100
1366
+ 86.1/97.4/98.7
1367
+ 70.8/92.1/96.5
1368
+ 55.6/82.7/90.0
1369
+ 85.3/97.8/99.6
1370
+ 71.9/93.3/96.4
1371
+ X2-VLMbase
1372
+ 255M
1373
+ 80.5/95.5/97.8
1374
+ 62.7/84.7/90.7
1375
+ 97.4/99.9/100
1376
+ 90.0/98.6/99.3
1377
+ 68.4†/92.5†/96.8†
1378
+ 55.2†/82.2†/89.3†
1379
+ 85.1†/99.2†/100.0†
1380
+ 77.3†/95.3†/97.6†
1381
+ X-FMbase
1382
+ 284M
1383
+ 81.8/96.0/98.3
1384
+ 64.7/86.1/91.6
1385
+ 97.4/100/100
1386
+ 88.6/97.9/98.9
1387
+ 73.8/93.9/97.2
1388
+ 59.4/83.6/90.0
1389
+ 90.1/99.2/99.9
1390
+ 79.1/95.2/97.3
1391
+ VLMolarge
1392
+ 562M
1393
+ 78.2/94.4/97.4
1394
+ 60.6/84.4/91.0
1395
+ 95.3/99.9/100
1396
+ 84.5/97.3/98.6
1397
+
1398
+
1399
+
1400
+
1401
+ X2-VLMlarge
1402
+ 593M
1403
+ 82.3/96.2/98.3
1404
+ 65.2/86.4/91.9
1405
+ 99.1/100/100
1406
+ 91.1/98.6/99.4
1407
+ 69.7†/93.0†/97.2†
1408
+ 58.3†/83.8†/90.5†
1409
+ 86.8†/98.9†/99.9†
1410
+ 80.5†/96.4†/98.3†
1411
+ X-FMlarge
1412
+ 807M
1413
+ 82.1/96.2/98.2
1414
+ 65.4/86.6/91.9
1415
+ 97.9/100/100
1416
+ 89.4/98.2/99.1
1417
+ 74.4/94.1/97.3
1418
+ 59.4/84.4/90.7
1419
+ 89.7/99.1/100
1420
+ 79.1/95.4/97.9
1421
+ Super-Large Models or Super-Large Datasets
1422
+ CLIP
1423
+ 490M
1424
+
1425
+
1426
+ 88.7/98.0/99.2
1427
+ 76.7/93.6/96.4
1428
+ 58.4/81.5/88.1
1429
+ 37.8/62.4/72.2
1430
+ 88.0/98.7/99.4
1431
+ 68.7/90.6/95.2
1432
+ ALIGN
1433
+ 490M
1434
+ 77.0/93.5/96.9
1435
+ 59.9/83.3/89.8
1436
+ 95.3/99.8/100
1437
+ 84.9/97.4/98.6
1438
+ 58.6/83.0/89.7
1439
+ 45.6/69.8/78.6
1440
+ 88.6/98.7/99.7
1441
+ 75.7/93.8/96.8
1442
+ Florence
1443
+ 893M
1444
+ 81.8/95.2/–
1445
+ 63.2/85.7/–
1446
+ 97.2/99.9/–
1447
+ 87.9/98.1/–
1448
+ 64.7/85.9/–
1449
+ 47.2/71.4/–
1450
+ 90.9/99.1/–
1451
+ 76.7/93.6/–
1452
+ CoCa
1453
+ 2.1B
1454
+
1455
+
1456
+
1457
+
1458
+ 66.3/86.2/91.8
1459
+ 51.2/74.2/82.0
1460
+ 92.5/99.5/99.9
1461
+ 80.4/95.7/97.7
1462
+ BEiT-3
1463
+ 1.9B
1464
+ 84.8/96.5/98.3
1465
+ 67.2/87.7/92.8
1466
+ 98.0/100/100
1467
+ 90.3/98.7/99.5
1468
+
1469
+
1470
+ 94.9/99.9/100.0
1471
+ 81.5/95.6/97.8
1472
+ X2-VLMlarge
1473
+ 593M
1474
+ 84.4/96.5/98.5
1475
+ 67.7/87.5/92.5
1476
+ 98.8/100/100
1477
+ 91.8/98.6/99.5
1478
+
1479
+
1480
+
1481
+
1482
+ Table 4: Results of text-retrieval (TR) and image-retrieval (IR) on COCO and Flickr30K. † denotes our reproduced results
1483
+ with the officially released models. Giant models with over 1B parameters (e.g., BEiT-3) and models are pre-trained with
1484
+ over 400M data (e.g., CLIP and X2-VLMlarge) are in grey since they are not directly comparable with other models.
1485
+ Model
1486
+ Param
1487
+ Hidden
1488
+ Layers
1489
+ Vision
1490
+ Text
1491
+ Fusion
1492
+ X-FMbase
1493
+ 284
1494
+ 768
1495
+ 12
1496
+ 12
1497
+ 12
1498
+ X-FMlarge
1499
+ 807
1500
+ 1024
1501
+ 24
1502
+ 24
1503
+ 12
1504
+ Table 5: Size variants of X-FM. All modules consist of
1505
+ transformer layers. Param indicates the parameter number
1506
+ of transformer layers.
1507
+ performance on eight language tasks from GLUE (Wang
1508
+ et al., 2019), eight vision tasks following OmniVL (Wang
1509
+ et al., 2022a), four multi-modal tasks, which are text-
1510
+ image retrieval on MSCOCO and Flickr, visual question
1511
+ answering (VQA (Goyal et al., 2017)) and visual reason-
1512
+ ing (NLVR2 (Suhr et al., 2019b)). For image-text retrieval
1513
+ task, we report both zero-shot results and fine-tuned results.
1514
+ For the ImageNet classification task, we report both linear
1515
+ evaluation results and fine-tuning results. The other vision
1516
+ tasks are evaluated in the linear evaluation setting. All the
1517
+ other tasks are evaluated in the fine-tuning setting. Because
1518
+ the image resolution differs between pre-training and fine-
1519
+ tuning, the position parameters are adapted using linear
1520
+ interpolation. For all downstream tasks, we apply random
1521
+ resize crops and horizontal flips augmentation for the im-
1522
+ ages during training. More details of network architectures
1523
+ and hyper-parameters setups are given in Appendix C.
1524
+ 4.3. Comparison with SOTA Foundation Models
1525
+ We extensively compare the performance of X-FM with
1526
+ state-of-the-art foundation models on vision, language, and
1527
+ multi-modal tasks. We first compare our model with general
1528
+ foundation models, including UNIMO-v2 (Li et al., 2021c),
1529
+ FLAVA (Singh et al., 2021), SimVLM (Wang et al., 2021c),
1530
+ OFA (Wang et al., 2022b), DaVinci (Diao et al., 2022), Om-
1531
+ niVL (Wang et al., 2022a), and Uni-Perceiver-MoE (Zhu
1532
+ et al., 2022). We also include comparisons with SOTA
1533
+ foundation models specifically designed for language, vi-
1534
+ sion, or vision-language tasks, RoBERTa (Liu et al., 2019),
1535
+ BEiTv2 (Peng et al., 2022), and X2-VLM (Zeng et al., 2022).
1536
+ There are several observations in Table 2. First, X-FMbase
1537
+ (column 11) outperforms all the previous general foundation
1538
+ models (column 4-10) across almost all tasks by a large mar-
1539
+ gin, becoming a new and stronger general foundation model.
1540
+ Compared to the previous general foundation models, X-
1541
+ FMbase improves at least 3.2% and the most even to 9.7%
1542
+ on the average of all the reported numbers. Second, we com-
1543
+ pare X-FM with state-of-the-art foundation models specif-
1544
+ ically designed for language, vision, and vision-language
1545
+ tasks, RoBERTa, BEiTv2 and X2-VLM. We observe that
1546
+ X-FM is also better than or comparable with the foundation
1547
+ models at both base and large scale (column 1,2,3 vs 11 and
1548
+ 12,13,14 vs 18).
1549
+ 4.4. Comparison with SOTA Vision-Language Models
1550
+ In addition to general foundation models, we also compare
1551
+ X-FM with state-of-the-art vision-language models. The re-
1552
+ sults are shown in Table 4 and Table 7. X-FM demonstrates
1553
+ its superiority on MSCOCO retrieval and NLVR2, while
1554
+ achieving competitive performance on Flickr retrieval and
1555
+ VQA. Note that X-FMbase outperforms CLIP, ALIGN and
1556
+ Florence on image-text retrieval tasks with fewer parame-
1557
+ ters and much less training data. Compared to the recently
1558
+ released SOTA vision-language model, X2-VLM, X-FM is
1559
+ much better on image-text retrieval tasks at the zero-shot
1560
+ setting.
1561
+
1562
+ Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks
1563
+ X-FMbase
1564
+ RoBERTa†
1565
+ S-MLM
1566
+ S-ITM
1567
+ wostop
1568
+ BEiTv2†
1569
+ woMIM
1570
+ wBEiTv2 Tokenizer
1571
+ X2-VLM†
1572
+ Multi-task
1573
+ ALL
1574
+ Task
1575
+ Eval.
1576
+ 1
1577
+ 2
1578
+ 3
1579
+ 4
1580
+ 5
1581
+ 6
1582
+ 7
1583
+ 8
1584
+ 9
1585
+ 10
1586
+ MNLI
1587
+ FT
1588
+ 87.7
1589
+ 87.4
1590
+ 87.3
1591
+ 87.7
1592
+
1593
+
1594
+
1595
+
1596
+ 87.4
1597
+ 87.6
1598
+ CoLA
1599
+ FT
1600
+ 63.2
1601
+ 61.6
1602
+ 63.6
1603
+ 64.2
1604
+
1605
+
1606
+
1607
+
1608
+ 62.2
1609
+ 65.2
1610
+ MRPC
1611
+ FT
1612
+ 90.7
1613
+ 92.2
1614
+ 91.1
1615
+ 90.7
1616
+
1617
+
1618
+
1619
+
1620
+ 92.0
1621
+ 92.5
1622
+ QQP
1623
+ FT
1624
+ 91.5
1625
+ 91.6
1626
+ 91.6
1627
+ 91.6
1628
+
1629
+
1630
+
1631
+
1632
+ 91.6
1633
+ 91.6
1634
+ SST-2
1635
+ FT
1636
+ 95.0
1637
+ 95.1
1638
+ 94.2
1639
+ 94.6
1640
+
1641
+
1642
+
1643
+
1644
+ 94.4
1645
+ 95.3
1646
+ QNLI
1647
+ FT
1648
+ 93.1
1649
+ 93.0
1650
+ 93.2
1651
+ 92.5
1652
+
1653
+
1654
+
1655
+
1656
+ 92.8
1657
+ 92.9
1658
+ RTE
1659
+ FT
1660
+ 80.9
1661
+ 79.1
1662
+ 81.6
1663
+ 81.2
1664
+
1665
+
1666
+
1667
+
1668
+ 79.8
1669
+ 81.9
1670
+ STS-B
1671
+ FT
1672
+ 90.9
1673
+ 90.7
1674
+ 90.7
1675
+ 90.4
1676
+
1677
+
1678
+
1679
+
1680
+ 90.1
1681
+ 90.8
1682
+ Language Avg.
1683
+ 86.6
1684
+ 86.4
1685
+ 86.7
1686
+ 86.6
1687
+
1688
+
1689
+
1690
+
1691
+ 86.3
1692
+ 87.2
1693
+ ImageNet
1694
+ FT
1695
+
1696
+
1697
+
1698
+
1699
+ 85.5
1700
+ 84.8
1701
+ 85.0
1702
+
1703
+ 85.0
1704
+ 85.3
1705
+ ImageNet
1706
+ LE
1707
+
1708
+
1709
+
1710
+
1711
+ 80.5
1712
+ 79.1
1713
+ 79.4
1714
+
1715
+ 79.3
1716
+ 81.1
1717
+ Food101
1718
+ LE
1719
+
1720
+
1721
+
1722
+
1723
+ 88.2
1724
+ 86.9
1725
+ 87.2
1726
+
1727
+ 86.9
1728
+ 88.7
1729
+ CIFAR10
1730
+ LE
1731
+
1732
+
1733
+
1734
+
1735
+ 95.3
1736
+ 96.6
1737
+ 96.5
1738
+
1739
+ 96.6
1740
+ 97.5
1741
+ CIFAR100
1742
+ LE
1743
+
1744
+
1745
+
1746
+
1747
+ 81.5
1748
+ 83.3
1749
+ 83.9
1750
+
1751
+ 84.1
1752
+ 86.9
1753
+ Pets
1754
+ LE
1755
+
1756
+
1757
+
1758
+
1759
+ 93.1
1760
+ 88.1
1761
+ 88.5
1762
+
1763
+ 88.2
1764
+ 90.7
1765
+ DTD
1766
+ LE
1767
+
1768
+
1769
+
1770
+
1771
+ 78.4
1772
+ 77.7
1773
+ 76.9
1774
+
1775
+ 78.0
1776
+ 78.7
1777
+ Flowers102
1778
+ LE
1779
+
1780
+
1781
+
1782
+
1783
+ 95.7
1784
+ 94.1
1785
+ 94.5
1786
+
1787
+ 94.2
1788
+ 97.1
1789
+ Vision Avg.
1790
+
1791
+
1792
+
1793
+
1794
+ 87.3
1795
+ 86.3
1796
+ 86.5
1797
+
1798
+ 86.5
1799
+ 88.2
1800
+ VQAv2
1801
+ FT
1802
+
1803
+ 78.8
1804
+ 78.5
1805
+ 78.7
1806
+
1807
+ 78.3
1808
+ 78.2
1809
+ 78.0
1810
+ 78.2
1811
+ 78.6
1812
+ NLVR2
1813
+ FT
1814
+
1815
+ 86.3
1816
+ 86.0
1817
+ 86.4
1818
+
1819
+ 85.9
1820
+ 85.5
1821
+ 86.2
1822
+ 86.1
1823
+ 86.7
1824
+ Flickr30K TR R@1
1825
+ ZS
1826
+
1827
+ 88.3
1828
+ 87.2
1829
+ 87.1
1830
+
1831
+ 87.1
1832
+ 87.2
1833
+ 87.7
1834
+ 85.0
1835
+ 89.3
1836
+ Flickr30K IR R@1
1837
+ ZS
1838
+
1839
+ 76.6
1840
+ 74.9
1841
+ 75.8
1842
+
1843
+ 76.1
1844
+ 75.3
1845
+ 75.1
1846
+ 75.6
1847
+ 77.4
1848
+ Flickr30K TR R@1
1849
+ FT
1850
+
1851
+ 97.5
1852
+ 97.0
1853
+ 97.2
1854
+
1855
+ 96.4
1856
+ 96.7
1857
+ 97.0
1858
+ 97.0
1859
+ 97.7
1860
+ Flickr30K IR R@1
1861
+ FT
1862
+
1863
+ 87.4
1864
+ 86.9
1865
+ 87.3
1866
+
1867
+ 86.2
1868
+ 86.6
1869
+ 86.2
1870
+ 86.4
1871
+ 87.4
1872
+ COCO TR R@1
1873
+ ZS
1874
+
1875
+ 72.0
1876
+ 72.1
1877
+ 70.5
1878
+
1879
+ 73.0
1880
+ 72.1
1881
+ 73.2
1882
+ 69.9
1883
+ 72.8
1884
+ COCO IR R@1
1885
+ ZS
1886
+
1887
+ 58.4
1888
+ 57.1
1889
+ 57.7
1890
+
1891
+ 58.2
1892
+ 57.7
1893
+ 57.7
1894
+ 56.5
1895
+ 59.0
1896
+ COCO TR R@1
1897
+ FT
1898
+
1899
+ 81.2
1900
+ 80.2
1901
+ 80.9
1902
+
1903
+ 80.6
1904
+ 80.1
1905
+ 80.3
1906
+ 80.0
1907
+ 81.2
1908
+ COCO IR R@1
1909
+ FT
1910
+
1911
+ 64.2
1912
+ 63.4
1913
+ 63.6
1914
+
1915
+ 63.7
1916
+ 63.0
1917
+ 63.1
1918
+ 63.0
1919
+ 64.0
1920
+ Vision-Language Avg.
1921
+
1922
+ 79.1
1923
+ 78.3
1924
+ 78.5
1925
+
1926
+ 78.6
1927
+ 78.2
1928
+ 78.5
1929
+ 77.8
1930
+ 79.4
1931
+ Table 6: Ablation studies on vision, language, and vision-language tasks. We use the same settings as Table 2. “ALL” for
1932
+ X-FMbase is trained with the same data under the same settings for pre-training and fine-tuning compared to all the variants.
1933
+ Language Avg. is the average of all language tasks, while Vision Avg. is the average of all vision tasks. Vision-Language
1934
+ Avg. is the average of all vision-language tasks. Note that performance of “ALL” is slightly different from X-FMbase in
1935
+ Table 2, because we use less training steps (160k) for ablation to save the computational resources.
1936
+ 4.5. Ablation Study
1937
+ To verify the contributions of different modules in our frame-
1938
+ work, we ablate them and evaluate the performance of X-
1939
+ FM on all downstream tasks. The results are shown in
1940
+ Table 6. We first explain several abbreviations in the table.
1941
+ S-MLM means that we only separate the language represen-
1942
+ tations in the learning IMLM task, while S-ITM means that
1943
+ language representations for computing ITM and BBP are
1944
+ separated. wostop indicates without stopping the gradients
1945
+ of all language representations. woMIM means that we do
1946
+ not learn by MIM, while wBEiTv2 tokenizer means that
1947
+ we learn by MIM with the image tokenizer used in BEiTv2.
1948
+ Multi-task is a variation that uses straightforward multi-task
1949
+ learning to optimize the three encoders in X-FM. To make
1950
+ a fair comparison, we also train RoBERTa, BEiTv2 and
1951
+ X2-VLM with the same data noted as RoBERTa†, BEiTv2†
1952
+ and X2-VLM†. Note that we also increase the fusion layers
1953
+ in X2-VLM† to make the parameter sizes comparable to
1954
+ our models. RoBERTa†, BEiTv2† and X2-VLM† all have
1955
+ slightly better results on average than the official ones. From
1956
+ the results, we have the following observations.
1957
+ First, both designs (stop gradient and masked image mod-
1958
+ eling) bring improvements, and the combination can make
1959
+ further improvements on all three downstream tasks (col-
1960
+ umn 10 vs. others). Second, without separated language
1961
+ representations, models always perform worse on language
1962
+ understanding tasks (column 10 vs. 2,3,4). Besides, the sep-
1963
+ arate language representations in the IMLM task on image-
1964
+ text data are helpful for multi-modal tasks (column 2 vs. 4).
1965
+ As we point out in section 1, the fusion encoder can learn
1966
+ better cross-modal feature alignments by IMLM task from
1967
+ image-text pairs instead of utilizing text tokens. Although S-
1968
+ ITM shows slight side effects (column 4 vs. 3), stopping the
1969
+ gradients of language representation in the fusion encoder
1970
+ is necessary to simultaneously achieve strong language un-
1971
+ derstanding and vision-language understanding capability.
1972
+ Third, the MIM task is useful for vision-language and vi-
1973
+ sion learning (column 10 vs. 6). Meanwhile, the targets
1974
+ in our MIM task are better than the BEiTv2 tokenizer (col-
1975
+ umn 10 vs. 7). Four, X-FM is much better than a naive
1976
+
1977
+ Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks
1978
+ Method
1979
+ # Params
1980
+ VQA
1981
+ NLVR2
1982
+ test-dev
1983
+ test-std
1984
+ dev
1985
+ test-P
1986
+ ALBEF
1987
+ 210M
1988
+ 74.5
1989
+ 74.7
1990
+ 80.2
1991
+ 80.5
1992
+ VLMobase
1993
+ 175M
1994
+ 76.6
1995
+ 76.9
1996
+ 82.8
1997
+ 83.3
1998
+ METER
1999
+ 341M
2000
+ 77.7
2001
+ 77.6
2002
+ 82.3
2003
+ 83.1
2004
+ VL-BEiT
2005
+ 175M
2006
+ 77.5
2007
+ 77.8
2008
+ 81.9
2009
+ 82.7
2010
+ BLIPbase
2011
+ 240M
2012
+ 78.2
2013
+ 78.2
2014
+ 82.5
2015
+ 83.1
2016
+ X-VLM
2017
+ 216M
2018
+ 78.1
2019
+ 78.1
2020
+ 84.2
2021
+ 84.2
2022
+ OFAbase
2023
+ 182M
2024
+ 78.0
2025
+ 78.1
2026
+ -
2027
+ -
2028
+ OmniVL
2029
+ 288M
2030
+ 78.3
2031
+ 78.4
2032
+ -
2033
+ -
2034
+ X2-VLMbase
2035
+ 255M
2036
+ 79.2
2037
+ 79.3
2038
+ 85.9
2039
+ 86.1
2040
+ X-FMbase
2041
+ 284M
2042
+ 79.1
2043
+ 79.2
2044
+ 86.3
2045
+ 86.5
2046
+ VLMolarge
2047
+ 562M
2048
+ 79.9
2049
+ 80.0
2050
+ 85.6
2051
+ 86.9
2052
+ OFAlarge
2053
+ 472M
2054
+ 80.3
2055
+ 80.5
2056
+ -
2057
+ -
2058
+ X2-VLMlarge
2059
+ 593M
2060
+ 80.5
2061
+ 80.5
2062
+ 87.2
2063
+ 87.6
2064
+ X-FMlarge
2065
+ 807M
2066
+ 79.5
2067
+ 79.6
2068
+ 86.2
2069
+ 87.8
2070
+ Super-Large Models or Super-Large Datasets
2071
+ SimVLMbase
2072
+ 273M
2073
+ 77.9
2074
+ 78.1
2075
+ 81.7
2076
+ X2-VLMbase
2077
+ 255M
2078
+ 80.4
2079
+ 80.2
2080
+ 86.2
2081
+ 87.0
2082
+ SimVLMlarge
2083
+ 783M
2084
+ 79.3
2085
+ 79.6
2086
+ 84.1
2087
+ 84.8
2088
+ X2-VLMlarge
2089
+ 593M
2090
+ 81.9
2091
+ 81.8
2092
+ 88.7
2093
+ 89.4
2094
+ Florence
2095
+ 893M
2096
+ 80.2
2097
+ 80.3
2098
+
2099
+
2100
+ CoCa
2101
+ 2.1B
2102
+ 82.3
2103
+ 82.3
2104
+ 86.1
2105
+ 87.0
2106
+ BEiT-3
2107
+ 1.9B
2108
+ 84.2
2109
+ 84.0
2110
+ 91.5
2111
+ 92.6
2112
+ Table 7: Results on VQA and visual reasoning. Giant mod-
2113
+ els with over 1B parameters (e.g., CoCa and BEiT-3) or
2114
+ models are pre-trained with over 400M data (e.g., SimVLM
2115
+ and X2-VLMlarge) are in grey because they are not directly
2116
+ comparable with other models.
2117
+ multi-task learning strategy for a foundation model (column
2118
+ 10 vs. 8). Compared with the straightforward multi-task
2119
+ strategy, X-FMbase improves an average of 0.9%, 1.7%
2120
+ and 1.6% on language, vision, and vision-language tasks,
2121
+ respectively. Five, X-FM is also slightly better than foun-
2122
+ dation models specifically designed for language, vision,
2123
+ and vision-language tasks with the same training corpus
2124
+ (column 10 vs. 1,5,8).
2125
+ 5. Conclusion and Limitation
2126
+ 5.1. Conclusion
2127
+ In this work, we address the problem of how to build a
2128
+ general foundation model that can perform the best for all
2129
+ the understanding tasks of language, vision, and vision-
2130
+ language. We propose a general foundation model with two
2131
+ new and effective training techniques, X-FM, to learn rich
2132
+ language, vision and vision-language representations at the
2133
+ same time. Experimental results explicitly imply that X-FM
2134
+ outperforms other general foundation models by a large
2135
+ margin. Moreover, X-FM can even be better or comparable
2136
+ compared with the SOTA foundation models specifically
2137
+ designed for language, vision, or vision-language under-
2138
+ standing tasks.
2139
+ 5.2. Limitation
2140
+ Like most existing work on foundation models, the entire
2141
+ project consumed over 5 A100 GPU years on a computing
2142
+ cluster with high electricity costs, although we only tested
2143
+ base and large models. There is still potential for efficiency
2144
+ improvement through sparse attention (Zaheer et al., 2020)
2145
+ or the lottery ticket hypothesis (Frankle & Carbin, 2018).
2146
+ We will explore the techniques to improve the training effi-
2147
+ ciency and reduce the carbon footprint so that we can adhere
2148
+ to the proposals on “green” deep learning (Schwartz et al.,
2149
+ 2020; Xu et al., 2021).
2150
+ Due to considerations of fair comparisons and computa-
2151
+ tional resources, we did not try super-large models which
2152
+ use at least 1.9B or more parameters like BEITv3 (Wang
2153
+ et al., 2022d), CoCa (Yu et al., 2022) and PaLI (Chen et al.,
2154
+ 2022). However, scalability is also an important factor for
2155
+ foundation models. We leave the investigations to future
2156
+ work.
2157
+ References
2158
+ Agirre, E., Màrquez, L., and Wicentowski, R. (eds.). Pro-
2159
+ ceedings of the Fourth International Workshop on Seman-
2160
+ tic Evaluations (SemEval-2007), Prague, Czech Republic,
2161
+ 2007. Association for Computational Linguistics. URL
2162
+ https://aclanthology.org/S07-1000.
2163
+ Alayrac, J.-B., Donahue, J., Luc, P., Miech, A., Barr, I.,
2164
+ Hasson, Y., Lenc, K., Mensch, A., Millican, K., Reynolds,
2165
+ M., et al. Flamingo: a visual language model for few-shot
2166
+ learning. arXiv preprint arXiv:2204.14198, 2022.
2167
+ Bao, H., Dong, L., and Wei, F. BEiT: Bert pre-training of
2168
+ image transformers. arXiv preprint, 2021.
2169
+ Bao, H., Wang, W., Dong, L., and Wei, F.
2170
+ Vl-beit:
2171
+ Generative vision-language pretraining. arXiv preprint
2172
+ arXiv:2206.01127, 2022.
2173
+ Bentivogli, L., Clark, P., Dagan, I., and Giampiccolo, D.
2174
+ The fifth pascal recognizing textual entailment challenge.
2175
+ In TAC, 2009.
2176
+ Bingel, J. and Søgaard, A. Identifying beneficial task re-
2177
+ lations for multi-task learning in deep neural networks.
2178
+ arXiv preprint arXiv:1702.08303, 2017.
2179
+ Bossard, L., Guillaumin, M., and Gool, L. V. Food-101–
2180
+ mining discriminative components with random forests.
2181
+ In European conference on computer vision, pp. 446–461.
2182
+ Springer, 2014.
2183
+ Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
2184
+ J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
2185
+
2186
+ Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks
2187
+ Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
2188
+ Henighan, T., Child, R., Ramesh, A., Ziegler, D. M.,
2189
+ Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E.,
2190
+ Litwin, M., Gray, S., Chess, B., Clark, J., Berner,
2191
+ C., McCandlish, S., Radford, A., Sutskever, I., and
2192
+ Amodei, D.
2193
+ Language models are few-shot learners.
2194
+ In Larochelle, H., Ranzato, M., Hadsell, R., Balcan,
2195
+ M., and Lin, H. (eds.), Advances in Neural Information
2196
+ Processing Systems 33: Annual Conference on Neural
2197
+ Information Processing Systems 2020, NeurIPS 2020,
2198
+ December 6-12, 2020, virtual, 2020.
2199
+ URL https:
2200
+ //proceedings.neurips.cc/paper/2020/hash/
2201
+ 1457c0d6bfcb4967418bfb8ac142f64a-Abstract.
2202
+ html.
2203
+ Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J.,
2204
+ Bojanowski, P., and Joulin, A. Emerging properties in
2205
+ self-supervised vision transformers. In Proceedings of
2206
+ the IEEE/CVF International Conference on Computer
2207
+ Vision, pp. 9650–9660, 2021.
2208
+ Chen, X., Wang, X., Changpinyo, S., Piergiovanni, A.,
2209
+ Padlewski, P., Salz, D., Goodman, S., Grycner, A.,
2210
+ Mustafa, B., Beyer, L., et al.
2211
+ Pali: A jointly-scaled
2212
+ multilingual language-image model.
2213
+ arXiv preprint
2214
+ arXiv:2209.06794, 2022.
2215
+ Chen, Y.-C., Li, L., Yu, L., El Kholy, A., Ahmed, F., Gan,
2216
+ Z., Cheng, Y., and Liu, J. UNITER: Universal image-
2217
+ text representation learning. In European Conference on
2218
+ Computer Vision (ECCV), 2020.
2219
+ Cho, J., Lei, J., Tan, H., and Bansal, M.
2220
+ Unifying
2221
+ vision-and-language tasks via text generation. In Meila,
2222
+ M. and Zhang, T. (eds.), Proceedings of the 38th In-
2223
+ ternational Conference on Machine Learning, ICML
2224
+ 2021, 18-24 July 2021, Virtual Event, volume 139 of
2225
+ Proceedings of Machine Learning Research, pp. 1931–
2226
+ 1942. PMLR, 2021. URL http://proceedings.mlr.
2227
+ press/v139/cho21a.html.
2228
+ Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., and
2229
+ Vedaldi, A. Describing textures in the wild. In 2014
2230
+ IEEE Conference on Computer Vision and Pattern Recog-
2231
+ nition, CVPR 2014, Columbus, OH, USA, June 23-28,
2232
+ 2014, pp. 3606–3613. IEEE Computer Society, 2014. doi:
2233
+ 10.1109/CVPR.2014.461. URL https://doi.org/10.
2234
+ 1109/CVPR.2014.461.
2235
+ Clark, K., Luong, M., Le, Q. V., and Manning, C. D.
2236
+ ELECTRA: pre-training text encoders as discriminators
2237
+ rather than generators.
2238
+ In 8th International Confer-
2239
+ ence on Learning Representations, ICLR 2020, Addis
2240
+ Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2241
+ 2020. URL https://openreview.net/forum?id=
2242
+ r1xMH1BtvB.
2243
+ Dagan, I., Glickman, O., and Magnini, B. The pascal recog-
2244
+ nising textual entailment challenge. In Machine Learning
2245
+ Challenges Workshop, pp. 177–190. Springer, 2005.
2246
+ Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
2247
+ Pre-training of deep bidirectional transformers for lan-
2248
+ guage understanding. In Proceedings of the 2019 Confer-
2249
+ ence of the North American Chapter of the Association for
2250
+ Computational Linguistics: Human Language Technolo-
2251
+ gies, Volume 1 (Long and Short Papers), pp. 4171–4186,
2252
+ Minneapolis, Minnesota, 2019. Association for Compu-
2253
+ tational Linguistics. doi: 10.18653/v1/N19-1423. URL
2254
+ https://aclanthology.org/N19-1423.
2255
+ Diao, S., Zhou, W., Zhang, X., and Wang, J. Prefix lan-
2256
+ guage models are unified modal learners. arXiv preprint
2257
+ arXiv:2206.07699, 2022.
2258
+ Dolan, W. B. and Brockett, C. Automatically construct-
2259
+ ing a corpus of sentential paraphrases.
2260
+ In Proceed-
2261
+ ings of the Third International Workshop on Paraphras-
2262
+ ing (IWP2005), 2005. URL https://aclanthology.
2263
+ org/I05-5002.
2264
+ Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
2265
+ D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
2266
+ M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.
2267
+ An image is worth 16x16 words: Transformers for image
2268
+ recognition at scale. In 9th International Conference on
2269
+ Learning Representations, ICLR 2021, Virtual Event, Aus-
2270
+ tria, May 3-7, 2021. OpenReview.net, 2021. URL https:
2271
+ //openreview.net/forum?id=YicbFdNTTy.
2272
+ Frankle, J. and Carbin, M. The lottery ticket hypothesis:
2273
+ Finding sparse, trainable neural networks. arXiv preprint
2274
+ arXiv:1803.03635, 2018.
2275
+ Giampiccolo, D., Magnini, B., Dagan, I., and Dolan, B. The
2276
+ third PASCAL recognizing textual entailment challenge.
2277
+ In Proceedings of the ACL-PASCAL Workshop on Textual
2278
+ Entailment and Paraphrasing, pp. 1–9, Prague, 2007.
2279
+ Association for Computational Linguistics. URL https:
2280
+ //aclanthology.org/W07-1401.
2281
+ Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., and
2282
+ Parikh, D. Making the V in VQA matter: Elevating
2283
+ the role of image understanding in visual question an-
2284
+ swering. In 2017 IEEE Conference on Computer Vi-
2285
+ sion and Pattern Recognition, CVPR 2017, Honolulu,
2286
+ HI, USA, July 21-26, 2017, pp. 6325–6334. IEEE Com-
2287
+ puter Society, 2017. doi: 10.1109/CVPR.2017.670. URL
2288
+ https://doi.org/10.1109/CVPR.2017.670.
2289
+ Haim, R. B., Dagan, I., Dolan, B., Ferro, L., Giampiccolo,
2290
+ D., Magnini, B., and Szpektor, I. The second pascal recog-
2291
+ nising textual entailment challenge. In Proceedings of the
2292
+ Second PASCAL Challenges Workshop on Recognising
2293
+ Textual Entailment, volume 7, 2006.
2294
+
2295
+ Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks
2296
+ He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. B. Mo-
2297
+ mentum contrast for unsupervised visual representation
2298
+ learning. In 2020 IEEE/CVF Conference on Computer
2299
+ Vision and Pattern Recognition, CVPR 2020, Seattle, WA,
2300
+ USA, June 13-19, 2020, pp. 9726–9735. IEEE, 2020.
2301
+ doi: 10.1109/CVPR42600.2020.00975. URL https:
2302
+ //doi.org/10.1109/CVPR42600.2020.00975.
2303
+ He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick,
2304
+ R. Masked autoencoders are scalable vision learners. In
2305
+ Proceedings of the IEEE/CVF Conference on Computer
2306
+ Vision and Pattern Recognition, pp. 16000–16009, 2022.
2307
+ He, P., Liu, X., Gao, J., and Chen, W. Deberta: decoding-
2308
+ enhanced bert with disentangled attention. In 9th Interna-
2309
+ tional Conference on Learning Representations, ICLR
2310
+ 2021, Virtual Event, Austria, May 3-7, 2021. Open-
2311
+ Review.net, 2021. URL https://openreview.net/
2312
+ forum?id=XPZIaotutsD.
2313
+ Iyer, S., Dandekar, N., Csernai, K., et al. First quora dataset
2314
+ release: Question pairs. data. quora. com, 2017.
2315
+ Jia, C., Yang, Y., Xia, Y., Chen, Y., Parekh, Z., Pham, H.,
2316
+ Le, Q. V., Sung, Y., Li, Z., and Duerig, T. Scaling up
2317
+ visual and vision-language representation learning with
2318
+ noisy text supervision. In Meila, M. and Zhang, T. (eds.),
2319
+ Proceedings of the 38th International Conference on Ma-
2320
+ chine Learning, ICML 2021, 18-24 July 2021, Virtual
2321
+ Event, volume 139 of Proceedings of Machine Learning
2322
+ Research, pp. 4904–4916. PMLR, 2021. URL http:
2323
+ //proceedings.mlr.press/v139/jia21b.html.
2324
+ Joshi, M., Chen, D., Liu, Y., Weld, D. S., Zettlemoyer,
2325
+ L., and Levy, O. Spanbert: Improving pre-training by
2326
+ representing and predicting spans. Transactions of the As-
2327
+ sociation for Computational Linguistics, 8:64–77, 2020.
2328
+ Karpathy, A. and Li, F. Deep visual-semantic alignments
2329
+ for generating image descriptions. In IEEE Conference
2330
+ on Computer Vision and Pattern Recognition, CVPR
2331
+ 2015, Boston, MA, USA, June 7-12, 2015, pp. 3128–3137.
2332
+ IEEE Computer Society, 2015. doi: 10.1109/CVPR.2015.
2333
+ 7298932.
2334
+ URL https://doi.org/10.1109/CVPR.
2335
+ 2015.7298932.
2336
+ Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K.,
2337
+ Kravitz, J., Chen, S., Kalantidis, Y., Li, L.-J., Shamma,
2338
+ D. A., et al. Visual genome: Connecting language and
2339
+ vision using crowdsourced dense image annotations. In-
2340
+ ternational Journal of Computer Vision (IJCV), 2017.
2341
+ Krizhevsky, A., Hinton, G., et al. Learning multiple layers
2342
+ of features from tiny images. 2009.
2343
+ Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin,
2344
+ I., Pont-Tuset, J., Kamali, S., Popov, S., Malloci, M.,
2345
+ Kolesnikov, A., et al. The open images dataset v4: Unified
2346
+ image classification, object detection, and visual relation-
2347
+ ship detection at scale. arXiv preprint arXiv:1811.00982,
2348
+ 2018. URL https://arxiv.org/abs/1811.00982.
2349
+ Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P.,
2350
+ and Soricut, R. ALBERT: A lite BERT for self-supervised
2351
+ learning of language representations. In 8th International
2352
+ Conference on Learning Representations, ICLR 2020, Ad-
2353
+ dis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2354
+ 2020. URL https://openreview.net/forum?id=
2355
+ H1eA7AEtvS.
2356
+ Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mo-
2357
+ hamed, A., Levy, O., Stoyanov, V., and Zettlemoyer, L.
2358
+ BART: Denoising sequence-to-sequence pre-training for
2359
+ natural language generation, translation, and comprehen-
2360
+ sion. In Proceedings of the 58th Annual Meeting of the As-
2361
+ sociation for Computational Linguistics, pp. 7871–7880,
2362
+ Online, 2020. Association for Computational Linguis-
2363
+ tics. doi: 10.18653/v1/2020.acl-main.703. URL https:
2364
+ //aclanthology.org/2020.acl-main.703.
2365
+ Li, J., Selvaraju, R. R., Gotmare, A. D., Joty, S., Xiong,
2366
+ C., and Hoi, S. Align before fuse: Vision and language
2367
+ representation learning with momentum distillation. In
2368
+ Conference on Neural Information Processing Systems
2369
+ (NeurIPS), 2021a.
2370
+ Li, J., Li, D., Xiong, C., and Hoi, S.
2371
+ Blip:
2372
+ Boot-
2373
+ strapping language-image pre-training for unified vision-
2374
+ language understanding and generation. arXiv preprint
2375
+ arXiv:2201.12086, 2022.
2376
+ Li, W., Gao, C., Niu, G., Xiao, X., Liu, H., Liu, J., Wu,
2377
+ H., and Wang, H. UNIMO: Towards unified-modal un-
2378
+ derstanding and generation via cross-modal contrastive
2379
+ learning. In Proceedings of the 59th Annual Meeting of
2380
+ the Association for Computational Linguistics and the
2381
+ 11th International Joint Conference on Natural Language
2382
+ Processing (Volume 1: Long Papers), pp. 2592–2607,
2383
+ Online, 2021b. Association for Computational Linguis-
2384
+ tics. doi: 10.18653/v1/2021.acl-long.202. URL https:
2385
+ //aclanthology.org/2021.acl-long.202.
2386
+ Li, W., Gao, C., Niu, G., Xiao, X., Liu, H., Liu, J., Wu,
2387
+ H., and Wang, H. UNIMO: Towards unified-modal un-
2388
+ derstanding and generation via cross-modal contrastive
2389
+ learning. In Proceedings of the 59th Annual Meeting of
2390
+ the Association for Computational Linguistics and the
2391
+ 11th International Joint Conference on Natural Language
2392
+ Processing (Volume 1: Long Papers), pp. 2592–2607,
2393
+ Online, 2021c. Association for Computational Linguis-
2394
+ tics. doi: 10.18653/v1/2021.acl-long.202. URL https:
2395
+ //aclanthology.org/2021.acl-long.202.
2396
+
2397
+ Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks
2398
+ Li, X., Yin, X., Li, C., Zhang, P., Hu, X., Zhang, L., Wang,
2399
+ L., Hu, H., Dong, L., Wei, F., et al.
2400
+ Oscar: Object-
2401
+ semantics aligned pre-training for vision-language tasks.
2402
+ In European Conference on Computer Vision (ECCV),
2403
+ 2020.
2404
+ Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
2405
+ Ramanan, D., Dollár, P., and Zitnick, C. L. Microsoft
2406
+ COCO: Common objects in context. In European Con-
2407
+ ference on Computer Vision (ECCV), 2014.
2408
+ Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
2409
+ Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov,
2410
+ V.
2411
+ RoBERTa: A robustly optimized bert pretraining
2412
+ approach. arXiv preprint, 2019.
2413
+ Lu, J., Batra, D., Parikh, D., and Lee, S. Vilbert: Pre-
2414
+ training task-agnostic visiolinguistic representations
2415
+ for vision-and-language tasks.
2416
+ In Wallach, H. M.,
2417
+ Larochelle, H., Beygelzimer, A., d’Alché-Buc, F.,
2418
+ Fox, E. B., and Garnett, R. (eds.), Advances in Neural
2419
+ Information Processing Systems 32:
2420
+ Annual Con-
2421
+ ference on Neural Information Processing Systems
2422
+ 2019, NeurIPS 2019, December 8-14, 2019, Vancou-
2423
+ ver, BC, Canada, pp. 13–23, 2019.
2424
+ URL https:
2425
+ //proceedings.neurips.cc/paper/2019/hash/
2426
+ c74d97b01eae257e44aa9d5bade97baf-Abstract.
2427
+ html.
2428
+ Nilsback, M.-E. and Zisserman, A. Automated flower clas-
2429
+ sification over a large number of classes. In 2008 Sixth
2430
+ Indian Conference on Computer Vision, Graphics & Im-
2431
+ age Processing, pp. 722–729. IEEE, 2008.
2432
+ Ordonez, V., Kulkarni, G., and Berg, T. L. Im2text: Describ-
2433
+ ing images using 1 million captioned photographs. In
2434
+ Shawe-Taylor, J., Zemel, R. S., Bartlett, P. L., Pereira, F.
2435
+ C. N., and Weinberger, K. Q. (eds.), Advances in Neural
2436
+ Information Processing Systems 24: 25th Annual Confer-
2437
+ ence on Neural Information Processing Systems 2011.
2438
+ Proceedings of a meeting held 12-14 December 2011,
2439
+ Granada, Spain, pp. 1143–1151, 2011. URL https:
2440
+ //proceedings.neurips.cc/paper/2011/hash/
2441
+ 5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.
2442
+ html.
2443
+ Parkhi, O. M., Vedaldi, A., Zisserman, A., and Jawahar,
2444
+ C. V.
2445
+ Cats and dogs.
2446
+ In 2012 IEEE Conference on
2447
+ Computer Vision and Pattern Recognition, Providence, RI,
2448
+ USA, June 16-21, 2012, pp. 3498–3505. IEEE Computer
2449
+ Society, 2012. doi: 10.1109/CVPR.2012.6248092. URL
2450
+ https://doi.org/10.1109/CVPR.2012.6248092.
2451
+ Peng, Z., Dong, L., Bao, H., Ye, Q., and Wei, F. Beit v2:
2452
+ Masked image modeling with vector-quantized visual
2453
+ tokenizers. arXiv preprint arXiv:2208.06366, 2022.
2454
+ Phang, J., Févry, T., and Bowman, S. R. Sentence encoders
2455
+ on stilts: Supplementary training on intermediate labeled-
2456
+ data tasks. ArXiv, abs/1811.01088, 2018.
2457
+ Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
2458
+ Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark,
2459
+ J., Krueger, G., and Sutskever, I. Learning transferable
2460
+ visual models from natural language supervision.
2461
+ In
2462
+ Meila, M. and Zhang, T. (eds.), Proceedings of the 38th
2463
+ International Conference on Machine Learning, ICML
2464
+ 2021, 18-24 July 2021, Virtual Event, volume 139 of
2465
+ Proceedings of Machine Learning Research, pp. 8748–
2466
+ 8763. PMLR, 2021. URL http://proceedings.mlr.
2467
+ press/v139/radford21a.html.
2468
+ Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
2469
+ Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring the
2470
+ limits of transfer learning with a unified text-to-text trans-
2471
+ former. Journal of Machine Learning Research (JMLR),
2472
+ 2020.
2473
+ Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. SQuAD:
2474
+ 100,000+ questions for machine comprehension of text.
2475
+ In Proceedings of the 2016 Conference on Empirical
2476
+ Methods in Natural Language Processing, pp. 2383–
2477
+ 2392, Austin, Texas, 2016. Association for Computa-
2478
+ tional Linguistics. doi: 10.18653/v1/D16-1264. URL
2479
+ https://aclanthology.org/D16-1264.
2480
+ Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid,
2481
+ I. D., and Savarese, S. Generalized intersection over
2482
+ union: A metric and a loss for bounding box regression.
2483
+ In IEEE Conference on Computer Vision and Pattern
2484
+ Recognition, CVPR 2019, Long Beach, CA, USA, June
2485
+ 16-20, 2019, pp. 658–666. Computer Vision Foundation /
2486
+ IEEE, 2019. doi: 10.1109/CVPR.2019.00075.
2487
+ Ridnik, T., Ben-Baruch, E., Noy, A., and Zelnik-Manor, L.
2488
+ Imagenet-21k pretraining for the masses, 2021.
2489
+ Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
2490
+ Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
2491
+ M., et al. Imagenet large scale visual recognition chal-
2492
+ lenge. International journal of computer vision, 115(3):
2493
+ 211–252, 2015.
2494
+ Schwartz, R., Dodge, J., Smith, N. A., and Etzioni, O. Green
2495
+ ai. Communications of the ACM, 63(12):54–63, 2020.
2496
+ Shao, S., Li, Z., Zhang, T., Peng, C., Yu, G., Zhang, X., Li,
2497
+ J., and Sun, J. Objects365: A large-scale, high-quality
2498
+ dataset for object detection. In 2019 IEEE/CVF Interna-
2499
+ tional Conference on Computer Vision, ICCV 2019, Seoul,
2500
+ Korea (South), October 27 - November 2, 2019, pp. 8429–
2501
+ 8438. IEEE, 2019. doi: 10.1109/ICCV.2019.00852. URL
2502
+ https://doi.org/10.1109/ICCV.2019.00852.
2503
+
2504
+ Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks
2505
+ Sharma, P., Ding, N., Goodman, S., and Soricut, R. Con-
2506
+ ceptual captions: A cleaned, hypernymed, image alt-text
2507
+ dataset for automatic image captioning. In Proceedings
2508
+ of the 56th Annual Meeting of the Association for Compu-
2509
+ tational Linguistics (Volume 1: Long Papers), pp. 2556–
2510
+ 2565, Melbourne, Australia, 2018. Association for Com-
2511
+ putational Linguistics. doi: 10.18653/v1/P18-1238. URL
2512
+ https://aclanthology.org/P18-1238.
2513
+ Singh, A., Hu, R., Goswami, V., Couairon, G., Galuba,
2514
+ W., Rohrbach, M., and Kiela, D. Flava: A foundational
2515
+ language and vision alignment model. ArXiv preprint,
2516
+ abs/2112.04482, 2021.
2517
+ URL https://arxiv.org/
2518
+ abs/2112.04482.
2519
+ Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
2520
+ C. D., Ng, A., and Potts, C. Recursive deep models for
2521
+ semantic compositionality over a sentiment treebank. In
2522
+ Proceedings of the 2013 Conference on Empirical Meth-
2523
+ ods in Natural Language Processing, pp. 1631–1642,
2524
+ Seattle, Washington, USA, 2013. Association for Com-
2525
+ putational Linguistics. URL https://aclanthology.
2526
+ org/D13-1170.
2527
+ Suhr, A., Zhou, S., Zhang, A., Zhang, I., Bai, H., and
2528
+ Artzi, Y. A corpus for reasoning about natural language
2529
+ grounded in photographs. In Proceedings of the 57th
2530
+ Annual Meeting of the Association for Computational
2531
+ Linguistics, pp. 6418–6428, Florence, Italy, 2019a. As-
2532
+ sociation for Computational Linguistics. doi: 10.18653/
2533
+ v1/P19-1644.
2534
+ URL https://aclanthology.org/
2535
+ P19-1644.
2536
+ Suhr, A., Zhou, S., Zhang, A., Zhang, I., Bai, H., and
2537
+ Artzi, Y. A corpus for reasoning about natural language
2538
+ grounded in photographs. In Proceedings of the 57th
2539
+ Annual Meeting of the Association for Computational
2540
+ Linguistics, pp. 6418–6428, Florence, Italy, 2019b. As-
2541
+ sociation for Computational Linguistics. doi: 10.18653/
2542
+ v1/P19-1644.
2543
+ URL https://aclanthology.org/
2544
+ P19-1644.
2545
+ Sun, Y., Wang, S., Li, Y., Feng, S., Chen, X., Zhang, H.,
2546
+ Tian, X., Zhu, D., Tian, H., and Wu, H. Ernie: Enhanced
2547
+ representation through knowledge integration.
2548
+ arXiv
2549
+ preprint arXiv:1904.09223, 2019.
2550
+ Tan, H. and Bansal, M. LXMERT: Learning cross-modality
2551
+ encoder representations from transformers.
2552
+ In Pro-
2553
+ ceedings of the 2019 Conference on Empirical Meth-
2554
+ ods in Natural Language Processing and the 9th In-
2555
+ ternational Joint Conference on Natural Language Pro-
2556
+ cessing (EMNLP-IJCNLP), pp. 5100–5111, Hong Kong,
2557
+ China, 2019a. Association for Computational Linguis-
2558
+ tics.
2559
+ doi: 10.18653/v1/D19-1514.
2560
+ URL https://
2561
+ aclanthology.org/D19-1514.
2562
+ Tan, H. and Bansal, M. LXMERT: Learning cross-modality
2563
+ encoder representations from transformers.
2564
+ In Pro-
2565
+ ceedings of the 2019 Conference on Empirical Meth-
2566
+ ods in Natural Language Processing and the 9th In-
2567
+ ternational Joint Conference on Natural Language Pro-
2568
+ cessing (EMNLP-IJCNLP), pp. 5100–5111, Hong Kong,
2569
+ China, 2019b. Association for Computational Linguis-
2570
+ tics.
2571
+ doi: 10.18653/v1/D19-1514.
2572
+ URL https://
2573
+ aclanthology.org/D19-1514.
2574
+ Touvron, H., Cord, M., Douze, M., Massa, F., Sablay-
2575
+ rolles, A., and Jégou, H.
2576
+ Training data-efficient im-
2577
+ age transformers & distillation through attention.
2578
+ In
2579
+ Meila, M. and Zhang, T. (eds.), Proceedings of the 38th
2580
+ International Conference on Machine Learning, ICML
2581
+ 2021, 18-24 July 2021, Virtual Event, volume 139 of
2582
+ Proceedings of Machine Learning Research, pp. 10347–
2583
+ 10357. PMLR, 2021.
2584
+ URL http://proceedings.
2585
+ mlr.press/v139/touvron21a.html.
2586
+ Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
2587
+ Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin,
2588
+ I.
2589
+ Attention is all you need.
2590
+ In Guyon, I., von
2591
+ Luxburg, U., Bengio, S., Wallach, H. M., Fergus,
2592
+ R., Vishwanathan, S. V. N., and Garnett, R. (eds.),
2593
+ Advances in Neural Information Processing Systems
2594
+ 30: Annual Conference on Neural Information Pro-
2595
+ cessing Systems 2017, December 4-9, 2017, Long
2596
+ Beach, CA, USA, pp. 5998–6008, 2017. URL https:
2597
+ //proceedings.neurips.cc/paper/2017/hash/
2598
+ 3f5ee243547dee91fbd053c1c4a845aa-Abstract.
2599
+ html.
2600
+ Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
2601
+ Bowman, S. R. GLUE: A multi-task benchmark and
2602
+ analysis platform for natural language understanding. In
2603
+ 7th International Conference on Learning Representa-
2604
+ tions, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
2605
+ OpenReview.net, 2019. URL https://openreview.
2606
+ net/forum?id=rJ4km2R5t7.
2607
+ Wang, J., Chen, D., Wu, Z., Luo, C., Zhou, L., Zhao, Y.,
2608
+ Xie, Y., Liu, C., Jiang, Y.-G., and Yuan, L. Omnivl:
2609
+ One foundation model for image-language and video-
2610
+ language tasks. arXiv preprint arXiv:2209.07526, 2022a.
2611
+ Wang, P., Yang, A., Men, R., Lin, J., Bai, S., Li, Z., Ma, J.,
2612
+ Zhou, C., Zhou, J., and Yang, H. Ofa: Unifying architec-
2613
+ tures, tasks, and modalities through a simple sequence-
2614
+ to-sequence learning framework. In International Con-
2615
+ ference on Machine Learning, pp. 23318–23340. PMLR,
2616
+ 2022b.
2617
+ Wang, P., Yang, A., Men, R., Lin, J., Bai, S., Li, Z.,
2618
+ Ma, J., Zhou, C., Zhou, J., and Yang, H.
2619
+ Unifying
2620
+ architectures, tasks, and modalities through a simple
2621
+
2622
+ Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks
2623
+ sequence-to-sequence learning framework. arXiv preprint
2624
+ arXiv:2202.03052, 2022c.
2625
+ Wang, W., Tran, D., and Feiszli, M. What makes training
2626
+ multi-modal classification networks hard? In Proceedings
2627
+ of the IEEE/CVF Conference on Computer Vision and
2628
+ Pattern Recognition, pp. 12695–12705, 2020.
2629
+ Wang, W., Bao, H., Dong, L., and Wei, F. Vlmo: Unified
2630
+ vision-language pre-training with mixture-of-modality-
2631
+ experts. ArXiv preprint, abs/2111.02358, 2021a. URL
2632
+ https://arxiv.org/abs/2111.02358.
2633
+ Wang, W., Bao, H., Dong, L., Bjorck, J., Peng, Z., Liu,
2634
+ Q., Aggarwal, K., Mohammed, O. K., Singhal, S., Som,
2635
+ S., et al. Image as a foreign language: Beit pretraining
2636
+ for all vision and vision-language tasks. arXiv preprint
2637
+ arXiv:2208.10442, 2022d.
2638
+ Wang, Z., Yu, J., Yu, A. W., Dai, Z., Tsvetkov, Y., and Cao,
2639
+ Y. Simvlm: Simple visual language model pretraining
2640
+ with weak supervision. CoRR, abs/2108.10904, 2021b.
2641
+ Wang, Z., Yu, J., Yu, A. W., Dai, Z., Tsvetkov, Y., and Cao,
2642
+ Y. Simvlm: Simple visual language model pretraining
2643
+ with weak supervision. arXiv preprint, 2021c.
2644
+ Warstadt, A., Singh, A., and Bowman, S. R. Neural network
2645
+ acceptability judgments. Transactions of the Association
2646
+ for Computational Linguistics, 7:625–641, 2019. doi:
2647
+ 10.1162/tacl_a_00290. URL https://aclanthology.
2648
+ org/Q19-1040.
2649
+ Wei, C., Fan, H., Xie, S., Wu, C.-Y., Yuille, A., and Feicht-
2650
+ enhofer, C. Masked feature prediction for self-supervised
2651
+ visual pre-training. In Proceedings of the IEEE/CVF Con-
2652
+ ference on Computer Vision and Pattern Recognition, pp.
2653
+ 14668–14678, 2022a.
2654
+ Wei, L., Xie, L., Zhou, W., Li, H., and Tian, Q. Mvp:
2655
+ Multimodality-guided visual pre-training. arXiv preprint
2656
+ arXiv:2203.05175, 2022b.
2657
+ Williams, A., Nangia, N., and Bowman, S.
2658
+ A broad-
2659
+ coverage challenge corpus for sentence understanding
2660
+ through inference.
2661
+ In Proceedings of the 2018 Con-
2662
+ ference of the North American Chapter of the Associ-
2663
+ ation for Computational Linguistics: Human Language
2664
+ Technologies, Volume 1 (Long Papers), pp. 1112–1122,
2665
+ New Orleans, Louisiana, 2018. Association for Compu-
2666
+ tational Linguistics. doi: 10.18653/v1/N18-1101. URL
2667
+ https://aclanthology.org/N18-1101.
2668
+ Xu, J., Zhou, W., Fu, Z., Zhou, H., and Li, L. A survey
2669
+ on green deep learning. ArXiv preprint, abs/2111.05193,
2670
+ 2021. URL https://arxiv.org/abs/2111.05193.
2671
+ Yu, J., Wang, Z., Vasudevan, V., Yeung, L., Seyedhosseini,
2672
+ M., and Wu, Y. Coca: Contrastive captioners are image-
2673
+ text foundation models. arXiv preprint arXiv:2205.01917,
2674
+ 2022.
2675
+ Yu, L., Poirson, P., Yang, S., Berg, A. C., and Berg, T. L.
2676
+ Modeling context in referring expressions. In European
2677
+ Conference on Computer Vision, pp. 69–85. Springer,
2678
+ 2016.
2679
+ Yuan, L., Chen, D., Chen, Y.-L., Codella, N., Dai, X., Gao,
2680
+ J., Hu, H., Huang, X., Li, B., Li, C., Liu, C., Liu, M.,
2681
+ Liu, Z., Lu, Y., Shi, Y., Wang, L., Wang, J., Xiao, B.,
2682
+ Xiao, Z., Yang, J., Zeng, M., Zhou, L., and Zhang, P.
2683
+ Florence: A new foundation model for computer vision.
2684
+ arXiv preprint, 2021.
2685
+ Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Al-
2686
+ berti, C., Ontanon, S., Pham, P., Ravula, A., Wang, Q.,
2687
+ Yang, L., et al. Big bird: Transformers for longer se-
2688
+ quences. Advances in Neural Information Processing
2689
+ Systems, 33:17283–17297, 2020.
2690
+ Zeng, Y., Zhang, X., and Li, H.
2691
+ Multi-grained vision
2692
+ language pre-training: Aligning texts with visual con-
2693
+ cepts.
2694
+ ArXiv preprint, abs/2111.08276, 2021.
2695
+ URL
2696
+ https://arxiv.org/abs/2111.08276.
2697
+ Zeng, Y., Zhang, X., Li, H., Wang, J., Zhang, J., and Zhou,
2698
+ W. X2-vlm: All-in-one pre-trained model for vision-
2699
+ language tasks. arXiv preprint arXiv:2211.12402, 2022.
2700
+ Zhang, P., Li, X., Hu, X., Yang, J., Zhang, L., Wang, L.,
2701
+ Choi, Y., and Gao, J. VinVL: Revisiting visual repre-
2702
+ sentations in vision-language models. In Conference on
2703
+ Computer Vision and Pattern Recognition (CVPR), 2021.
2704
+ Zhang, X., Li, P., and Li, H. Ambert: A pre-trained language
2705
+ model with multi-grained tokenization. arXiv preprint
2706
+ arXiv:2008.11869, 2020.
2707
+ Zhu, J., Zhu, X., Wang, W., Wang, X., Li, H., Wang, X.,
2708
+ and Dai, J. Uni-perceiver-moe: Learning sparse gen-
2709
+ eralist models with conditional moes. arXiv preprint
2710
+ arXiv:2206.04674, 2022.
2711
+ Zhu, X., Zhu, J., Li, H., Wu, X., Wang, X., Li, H., Wang,
2712
+ X., and Dai, J. Uni-perceiver: Pre-training unified archi-
2713
+ tecture for generic perception for zero-shot and few-shot
2714
+ tasks. arXiv preprint arXiv:2112.01522, 2021.
2715
+
2716
+ Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks
2717
+ A. Comparison of Recent Foundation Models
2718
+ Table 8 shows an extensive comparison of recent foundation
2719
+ models and X-FM on multiple axes. Previous work either (i)
2720
+ perform best on uni-modal tasks (Liu et al., 2019; Peng et al.,
2721
+ 2022) or vision-language tasks (Zeng et al., 2021; 2022); (2)
2722
+ target a specific uni-modal domain along with part of vision-
2723
+ and-language tasks (Wang et al., 2021a; Radford et al., 2021;
2724
+ Jia et al., 2021; Wang et al., 2021c; Yu et al., 2022; Wang
2725
+ et al., 2022b; Diao et al., 2022); or (3) target all domains
2726
+ but cannot perform best on all the tasks (Li et al., 2021c;
2727
+ Singh et al., 2021; Zhu et al., 2022). Our model, X-FM, is
2728
+ a general foundation model that can perform the best for
2729
+ all the understanding tasks of language, vision, and vision
2730
+ language.
2731
+ B. Details of Downstream Tasks
2732
+ Language Understanding.
2733
+ We conduct experiments on GLUE benchmark including
2734
+ MNLI (Williams et al., 2018), CoLA (Warstadt et al., 2019),
2735
+ MRPC (Dolan & Brockett, 2005), QQP (Iyer et al., 2017),
2736
+ SST-2 (Socher et al., 2013), QNLI (Rajpurkar et al., 2016),
2737
+ RTE (Dagan et al., 2005; Haim et al., 2006; Giampiccolo
2738
+ et al., 2007; Bentivogli et al., 2009), and STS-B (Agirre
2739
+ et al., 2007). We follow the practice of BERT (Devlin et al.,
2740
+ 2019; Liu et al., 2019) and feed the input into the language
2741
+ encoder, and the hidden state of the [CLS] is fed into a
2742
+ new multi-class linear classifier or regression head.
2743
+ Vision Understanding.
2744
+ We conduct vision experiments on both fine-tuning and lin-
2745
+ ear evaluation (linear eval). The linear evaluation follows
2746
+ a common practice (Caron et al., 2021; He et al., 2020;
2747
+ Singh et al., 2021) in self-supervised learning to evaluate
2748
+ the representation quality, where the pre-trained backbone
2749
+ model is frozen, and an MLP head is appended on top of it.
2750
+ We choose 7 popular datasets following OmnVL (Wang
2751
+ et al., 2022a):
2752
+ ImageNet (Russakovsky et al., 2015),
2753
+ Food101 (Bossard et al., 2014), CIFAR10 (Krizhevsky et al.,
2754
+ 2009), CIFAR100 (Krizhevsky et al., 2009), DTD (Cimpoi
2755
+ et al., 2014), Pets (Parkhi et al., 2012) and Flowers102 (Nils-
2756
+ back & Zisserman, 2008).
2757
+ Vision-Language Understanding.
2758
+ Image-Text Retrieval We evaluate X-FM on both
2759
+ MSCOCO and Flickr30K datasets. We adopt the widely
2760
+ used Karpathy split (Karpathy & Li, 2015) for both datasets.
2761
+ Following the previous work (Li et al., 2021a; Zeng et al.,
2762
+ 2021; 2022), we first encode images and texts separately
2763
+ and calculate s(I, T) to obtain the top-k candidates, and
2764
+ then use the fusion encoder to re-rank the candidates.
2765
+ Visual Question Answering The task requires the model
2766
+ to predict an answer given an image and a question. We
2767
+ evaluate X-FM on the VQA v2.0 dataset (Goyal et al., 2017).
2768
+ Following the previous work (Zeng et al., 2021), we use
2769
+ a Transformer decoder to generate answers based on the
2770
+ outputs of the fusion module. The decoder network shares
2771
+ the same network architecture with the fusion encoder. Note
2772
+ that we use an image resolution of 768*768 for the final
2773
+ result of X-FMbase, and use an image resolution of 480*480
2774
+ for X-FMlarge and X-FMbase in ablation studies for efficient
2775
+ fine-tuning.
2776
+ Visual Reasoning We evaluate X-FM on a widely used
2777
+ benchmark NLVR2 (Suhr et al., 2019a). The task allows the
2778
+ model to determine whether a text describes the relations
2779
+ between two images. Following previous work (Wang et al.,
2780
+ 2021a; Bao et al., 2022), we formulate the triplet input into
2781
+ two image-text pairs, each containing the text description
2782
+ and an image. We then concatenate the final output [CLS]
2783
+ features of the fusion module of the two pairs to predict the
2784
+ label.
2785
+ C. Details of hyper parameters
2786
+ Pre-training
2787
+ X-FMbase is implemented with a 12-layer
2788
+ language encoder, a 12-layer vision encoder, and a 12-layer
2789
+ fusion encoder, 768 dimensions for hidden states, 3072 for
2790
+ intermediate size, and 128 for maximum input length. X-
2791
+ FMlarge is implemented with a 24-layer language encoder, a
2792
+ 24-layer vision encoder, and a 12-layer fusion encoder, 1024
2793
+ dimensions for hidden states, 4096 for intermediate size, and
2794
+ 128 for maximum input length. We initialize the language
2795
+ encoder with RoBERTa and the vision encoder with BEiTv2.
2796
+ The weight decay is set to 0.01 with β1 = 0.9, β2 = 0.98.
2797
+ The learning rate is 1e-4 with a warm-up period for the first
2798
+ 2500 steps and then linearly decayed to 0. In each batch,
2799
+ there are 3072 image-text pairs, 3072 images, and 8192 text-
2800
+ only sentences. We use center-crop to resize each image
2801
+ to the size of 224×224. The default settings are shown in
2802
+ Table 9.
2803
+ Fine-tuning
2804
+ The learning rate is ∈ {1e-5, 2e-5, 5e-5} and
2805
+ our model is optimized by AdamW. Because the image
2806
+ resolution differs between pre-training and fine-tuning, the
2807
+ position parameters are adapted using linear interpolation.
2808
+ For all downstream tasks, we apply random resize crops
2809
+ and horizontal flips augmentation during training. The de-
2810
+ fault settings for text classification, image classification and
2811
+ vision-language understanding are shown in Tables 10, 11,
2812
+ 12 and 13, respectively. Note that the resolution for VQA is
2813
+ different as described in Section B.
2814
+
2815
+ Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks
2816
+ Methods
2817
+ Multimodal data
2818
+ Pretraining Objectives
2819
+ Fusion Arch.
2820
+ Target Modalities
2821
+ public
2822
+ dataset(s)
2823
+ size
2824
+ Contr.
2825
+ ITM
2826
+ BBP
2827
+ (M/P)LM
2828
+ Unimodal
2829
+ ST
2830
+ CT
2831
+ MT
2832
+ V
2833
+ CV&L
2834
+ MV&L
2835
+ L
2836
+ RoBERTa (Liu et al., 2019)
2837
+
2838
+
2839
+
2840
+
2841
+
2842
+
2843
+
2844
+ MLM
2845
+
2846
+
2847
+
2848
+
2849
+
2850
+
2851
+
2852
+ BEiTv2 (Peng et al., 2022)
2853
+
2854
+
2855
+
2856
+
2857
+
2858
+
2859
+
2860
+ MIM
2861
+
2862
+
2863
+
2864
+
2865
+
2866
+
2867
+
2868
+ X-VLM (Zeng et al., 2021; 2022)
2869
+
2870
+ Combination
2871
+ 5M
2872
+
2873
+
2874
+
2875
+ MLM
2876
+
2877
+
2878
+
2879
+
2880
+
2881
+
2882
+
2883
+
2884
+ VLMo (Wang et al., 2021a)
2885
+
2886
+ Combination
2887
+ 5M
2888
+
2889
+
2890
+
2891
+ MLM
2892
+ MLM+MIM
2893
+
2894
+
2895
+
2896
+
2897
+
2898
+
2899
+
2900
+ CLIP (Radford et al., 2021)
2901
+
2902
+ WebImageText
2903
+ 400M
2904
+
2905
+
2906
+
2907
+
2908
+
2909
+
2910
+
2911
+
2912
+
2913
+
2914
+
2915
+
2916
+ ALIGN (Jia et al., 2021)
2917
+
2918
+ JFT
2919
+ 1.8B
2920
+
2921
+
2922
+
2923
+
2924
+
2925
+
2926
+
2927
+
2928
+
2929
+
2930
+
2931
+
2932
+ SimVLM (Wang et al., 2021c)
2933
+
2934
+ JFT
2935
+ 1.8B
2936
+
2937
+
2938
+
2939
+ PrefixLM
2940
+ PrefixLM
2941
+
2942
+
2943
+
2944
+
2945
+
2946
+
2947
+
2948
+ CoCa (Yu et al., 2022)
2949
+
2950
+ JFT
2951
+ 4.8B
2952
+
2953
+
2954
+
2955
+ LM
2956
+
2957
+
2958
+
2959
+
2960
+
2961
+
2962
+
2963
+
2964
+ UNIMO-2 (Li et al., 2021c)
2965
+
2966
+ Combination
2967
+ 5M
2968
+
2969
+
2970
+
2971
+ MLM
2972
+ VCL
2973
+
2974
+
2975
+
2976
+
2977
+
2978
+
2979
+
2980
+ OFA (Wang et al., 2022b)
2981
+
2982
+ Combination
2983
+ 15M
2984
+
2985
+
2986
+
2987
+ LM
2988
+ LM
2989
+
2990
+
2991
+
2992
+
2993
+
2994
+
2995
+
2996
+ DaVinci (Diao et al., 2022)
2997
+
2998
+ Combination
2999
+ 46M
3000
+
3001
+
3002
+
3003
+ PrefixLM + PrefixIM
3004
+ PrefixLM
3005
+
3006
+
3007
+
3008
+
3009
+
3010
+
3011
+
3012
+ FLAVA (Singh et al., 2021)
3013
+
3014
+ Combination
3015
+ 70M
3016
+
3017
+
3018
+
3019
+ MLM
3020
+ MLM+MIM
3021
+
3022
+
3023
+
3024
+
3025
+
3026
+
3027
+
3028
+ Uni-Perceiver-MoE (Zhu et al., 2022)
3029
+
3030
+ Combination
3031
+ 116M
3032
+
3033
+
3034
+
3035
+ LM+MLM
3036
+ LM+MLM+Classify.
3037
+
3038
+
3039
+
3040
+
3041
+
3042
+
3043
+
3044
+ X-FM
3045
+
3046
+ Combination
3047
+ 5M
3048
+
3049
+
3050
+
3051
+ MLM+MIM
3052
+ MLM+MIM
3053
+
3054
+
3055
+
3056
+
3057
+
3058
+
3059
+
3060
+ Super-Large Models
3061
+ Flamingo (Alayrac et al., 2022)
3062
+
3063
+ Combination
3064
+ 2.2B
3065
+
3066
+
3067
+
3068
+ LM
3069
+
3070
+
3071
+
3072
+
3073
+
3074
+
3075
+
3076
+
3077
+ BEiT-v3 (Wang et al., 2022d)
3078
+
3079
+ Combination
3080
+ 21M
3081
+
3082
+
3083
+
3084
+ MLM
3085
+ MLM+MIM
3086
+
3087
+
3088
+
3089
+
3090
+
3091
+
3092
+
3093
+ PaLI (Chen et al., 2022)
3094
+
3095
+ WebImageText
3096
+ 41B
3097
+
3098
+
3099
+
3100
+ LM
3101
+
3102
+
3103
+
3104
+
3105
+
3106
+
3107
+
3108
+
3109
+ Table 8: Comparison of recent foundation models in different modalities. Contr. indicates contrastive learning. ITM is
3110
+ short for image-text matching. BBP represents boundary box prediction. (M/P)LM means image-conditioned (masked/prefix)
3111
+ language modeling. V, CV&L, MV&L and L stand for vision tasks, cross-modal retrieval tasks, multi-modal fusion tasks
3112
+ and language tasks respectively. ST, CT and MT are abbreviations for single Transformer, cross-attention Transformer and
3113
+ multiway Transformer. VCL stands for visual contrastive learning. ∗ means the modality is partially targeted (SimVLM
3114
+ and OFA include ImageNet.). Giant models with over 1B parameters (e.g. BEiT-3) are in grey since they are not directly
3115
+ comparable with other models.
3116
+ config
3117
+ value
3118
+ optimizer
3119
+ AdamW
3120
+ learning rate
3121
+ 1e-4
3122
+ weight decay
3123
+ 0.01
3124
+ optimizer momentum
3125
+ β1, β2=0.9, 0.999
3126
+ language batch size
3127
+ 8192
3128
+ vision batch size
3129
+ 3072
3130
+ vision-language batch size
3131
+ 3072
3132
+ learning rate schedule
3133
+ linear decay
3134
+ warmup steps
3135
+ 2500
3136
+ training steps
3137
+ 200k
3138
+ augmentation
3139
+ RandomResizedCrop
3140
+ image res
3141
+ 224*224
3142
+ patch size
3143
+ 16
3144
+ text length for MLM
3145
+ 128
3146
+ text length for IMLM
3147
+ 30
3148
+ Table 9: Pre-training setting.
3149
+ config
3150
+ value
3151
+ optimizer
3152
+ AdamW
3153
+ learning rate
3154
+ {1e-5, 2e-5, 5e-5}
3155
+ weight decay
3156
+ 0.0
3157
+ optimizer momentum
3158
+ β1, β2=0.9, 0.999
3159
+ batch size
3160
+ {16, 32, 64}
3161
+ learning rate schedule
3162
+ linear decay
3163
+ warmup ratio
3164
+ 0.0
3165
+ training epochs
3166
+ {5, 10, 20}
3167
+ Table 10: Text classification: GLUE setting.
3168
+ config
3169
+ value
3170
+ optimizer
3171
+ AdamW
3172
+ learning rate
3173
+ [2e-5, 4e-5]
3174
+ weight decay
3175
+ 0.01
3176
+ optimizer momentum
3177
+ β1, β2=0.9, 0.999
3178
+ batch size
3179
+ [256, 2048]
3180
+ learning rate schedule
3181
+ linear decay
3182
+ warmup rate
3183
+ 0.1
3184
+ training epochs
3185
+ 100
3186
+ augmentation
3187
+ RandomResizedCrop
3188
+ image res
3189
+ 224*224
3190
+ patch size
3191
+ 16
3192
+ Table 11: Image classification: Linear probing setting.
3193
+
3194
+ Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks
3195
+ config
3196
+ value
3197
+ optimizer
3198
+ AdamW
3199
+ learning rate
3200
+ 4e-5
3201
+ minimal learning rate
3202
+ 1e-7
3203
+ weight decay
3204
+ 0.01
3205
+ optimizer momentum
3206
+ β1, β2=0.9, 0.999
3207
+ batch size
3208
+ 1024
3209
+ learning rate schedule
3210
+ linear decay
3211
+ warmup rate
3212
+ 0.1
3213
+ training epochs
3214
+ 100
3215
+ augmentation
3216
+ RandomResizedCrop
3217
+ image res
3218
+ 224*224
3219
+ patch size
3220
+ 16
3221
+ label smoothing
3222
+ 0.1
3223
+ mixup prob.
3224
+ 1.0
3225
+ cutmix prob.
3226
+ 1.0
3227
+ Table 12: ImageNet classification: Fine-tuning setting.
3228
+ config
3229
+ value
3230
+ optimizer
3231
+ AdamW
3232
+ learning rate
3233
+ {1e-5, 2e-5, 5e-5}
3234
+ weight decay
3235
+ 0.01
3236
+ optimizer momentum
3237
+ β1, β2=0.9, 0.999
3238
+ batch size
3239
+ {64, 192, 512}
3240
+ learning rate schedule
3241
+ linear decay
3242
+ warmup rate
3243
+ 0.1
3244
+ training epochs
3245
+ {10, 15, 20}
3246
+ augmentation
3247
+ RandomResizedCrop
3248
+ image res
3249
+ 384*384
3250
+ patch size
3251
+ 16
3252
+ Table 13: Vision-Language understanding: fine-tuning set-
3253
+ ting.
3254
+
2dE4T4oBgHgl3EQfagyV/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
3tAzT4oBgHgl3EQfffwg/content/2301.01452v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01557fe8633d95cec7d23f6dadf1a9c88a3b92a89fc15ffb53ddb394a02dab0e
3
+ size 1396191
3tAzT4oBgHgl3EQfffwg/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7898d24ed5bac251f3f3f87c3e699f9b6526d3ef5a5e8599fbb8a4e01d05623
3
+ size 3014701
3tAzT4oBgHgl3EQfffwg/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d649a8d69ca3317a0696c3c3603b53f416a1c7f6f0c5f90e887e73ad5019791
3
+ size 112914
49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf ADDED
Binary file (89.5 kB). View file
 
49AzT4oBgHgl3EQfEPqD/content/tmp_files/2301.00990v1.pdf.txt ADDED
@@ -0,0 +1,841 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00990v1 [math.NA] 3 Jan 2023
2
+ The energy method for high-order invariants in shallow water wave equations
3
+ Qifeng Zhanga, Tong Yana, Guang-hua Gaob
4
+ aDepartment of Mathematics, Zhejiang Sci-Tech University, Hangzhou, 310018, China
5
+ bDepartment of Mathematics, Nanjing University of Posts and Telecommunications, Nanjing, 210096, China
6
+ Abstract
7
+ Third order dispersive evolution equations are widely adopted to model one-dimensional long waves and have
8
+ extensive applications in fluid mechanics, plasma physics and nonlinear optics. Among them are the KdV equation,
9
+ the Camassa–Holm equation and the Degasperis–Procesi equation. They share many common features such as
10
+ complete integrability, Lax pairs and bi-Hamiltonian structure. In this paper we revisit high-order invariants
11
+ for these three types of shallow water wave equations by the energy method in combination of a skew-adjoint
12
+ operator (1 − ∂xx)−1. Several applications to seek high-order invariants of the Benjamin-Bona-Mahony equation,
13
+ the regularized long wave equation and the Rosenau equation are also presented.
14
+ Keywords: Energy method; High-order invariant; Shallow water wave equation
15
+ 1. Introduction
16
+ A family of third order dispersive evolution equations of the form
17
+ ut − α2uxxt + γuxxx + c0ux = (c1u2 + c2u2
18
+ x + c3uuxx)x,
19
+ x ∈ R, t > 0
20
+ (1.1)
21
+ frequently appeared in the simulation of the shallow water waves, see e.g., [1], where α, γ and ci (i = 0, 1, 2, 3) are
22
+ real constants; u denotes a horizontal velocity field with the independent spatial variable x and temporal variable t.
23
+ A typical such equation (1.1) with α2 = c0 = c2 = c3 = 0, c1 = 2, γ = −2 is the KdV equation
24
+ ut − 4uux − 2uxxx = 0,
25
+ x ∈ R, t > 0,
26
+ (1.2)
27
+ which describes the unidirectional propagation of waves at the free surface of shallow water under the influence
28
+ of gravity. The first four invariants of (1.2) are respectively as (see e.g., [2], although there is a minor typo in the
29
+ coefficient of the fourth invariant, it does not affect the reading of this classic review)
30
+ M1 =
31
+
32
+ R
33
+ udx,
34
+ M2 =
35
+
36
+ R
37
+ u2dx,
38
+ M3 =
39
+
40
+ R
41
+
42
+ u2
43
+ x − 2
44
+ 3u3�
45
+ dx,
46
+ M4 =
47
+
48
+ R
49
+
50
+ u2
51
+ xx − 10
52
+ 3 uu2
53
+ x + 5
54
+ 9u4�
55
+ dx.
56
+ Taking α2 = c3 = 1, γ = c0 = 0, c1 = − 3
57
+ 2, c2 =
58
+ 1
59
+ 2, we have another example called the Camassa–Holm
60
+ equation [3]
61
+ ut − uxxt + 3uux = 2uxuxx + uuxxx,
62
+ x ∈ R, t > 0,
63
+ (1.3)
64
+ which models the unidirectional propagation of shallow water waves over a flat bottom. The first three invariants
65
+ are listed as follows
66
+ E1 =
67
+
68
+ R
69
+ (u − uxx)dx,
70
+ E2 = 1
71
+ 2
72
+
73
+ R
74
+ (u2 + u2
75
+ x)dx,
76
+ E3 = 1
77
+ 2
78
+
79
+ R
80
+ u(u2 + u2
81
+ x)dx.
82
+ The third example by assigning α2 = c2 = c3 = 1, γ = c0 = 0, c1 = −2 is called the Degasperis–Procesi
83
+ equation
84
+ ut − uxxt + 4uux = 3uxuxx + uuxxx,
85
+ x ∈ R, t > 0,
86
+ (1.4)
87
+ ∗E-mail address: [email protected] (Q. Zhang), [email protected] (Tong Yan), [email protected] (G. Gao)
88
+ Preprint submitted to Elsevier
89
+ January 4, 2023
90
+
91
+ which can be regarded as a model for nonlinear shallow water dynamics [4]. The frequently discussed invariants
92
+ are
93
+ H1 =
94
+
95
+ R
96
+ (u − uxx)dx,
97
+ H2 =
98
+
99
+ R
100
+ (u − uxx)vdx,
101
+ H3 =
102
+
103
+ R
104
+ u3dx,
105
+ where 4v − vxx = u.
106
+ Up to now, there have been thousands of papers focusing on the theoretical and numerical studies on these three
107
+ equations. It is worth mentioning that the invariant-preserving property is a key index of the success for numerical
108
+ methods. However, high-order invariants are usually difficult to preserve numerically. Liu et al. also pointed out “it
109
+ appears a rather difficult task to preserve all three conservation laws” in [5]. In this work, higher-order invariants of
110
+ these equations will be re-derived in view of the energy method, which may be possible to provide some thoughts
111
+ for invariant-preserving numerical methods. Actually, the energy method originated from conservation laws in
112
+ physics was first proposed in 1928 by Courant, Friedrichs and Lewy [6]. From then on, it has been widely applied
113
+ to the mathematical and numerical analysis of nonlinear evolution equations. We trust the readers with [7] instead
114
+ of a long list of references to relevant works.
115
+ The rest of the paper is arranged as follows.
116
+ In Section 2, combining the energy method and a skew-
117
+ adjoint operator, we show the high-order invariants for the KdV equation, the Camassa–Holm equation and the
118
+ Degasperis–Procesi equation, respectively. Then we list several applications for seeking some high-order invariants
119
+ of other types of the shallow water wave equations in Section 3.
120
+ 2. Main results
121
+ In what follows, we directly show that Mi (i = 1, 2, 3, 4), Ei (i = 1, 2, 3) and Hi (i = 1, 2, 3) are invariants of
122
+ (1.2), (1.3) and (1.4) subjected to the periodic boundary conditions based on the energy method, respectively.
123
+ 2.1. Invariants of the KdV equation
124
+ Proof: (I) Multiplying by 1, u and (u2 + uxx), respectively, with (1.2), we have Mi (i = 1, 2, 3). In what follows, we
125
+ show the fourth invariant M4 of the KdV equation by the energy method.
126
+ Multiplying both sides of (1.2) by 2uxxxx + 10
127
+ 3 u2
128
+ x + 20
129
+ 3 uuxx + 20
130
+ 9 u3 and integrating the result, we have
131
+ 0 =
132
+
133
+ R
134
+
135
+ 2uxxxx + 10
136
+ 3 u2
137
+ x + 20
138
+ 3 uuxx + 20
139
+ 9 u3�
140
+ · utdx
141
+
142
+
143
+ R
144
+
145
+ 2uxxxx + 10
146
+ 3 u2
147
+ x + 20
148
+ 3 uuxx + 20
149
+ 9 u3�
150
+ · (4uux + 2uxxx)dx
151
+ =
152
+
153
+ R
154
+
155
+ 2uxxuxxt − 10
156
+ 3 (utu2
157
+ x + 2uuxuxt) + 20
158
+ 9 u3ut
159
+
160
+ dx
161
+
162
+
163
+ R
164
+
165
+ 2uxxxx + 10
166
+ 3 u2
167
+ x + 20
168
+ 3 uuxx + 20
169
+ 9 u3�
170
+ · (4uux + 2uxxx)dx
171
+ = d
172
+ dt M4 − 8
173
+
174
+ R
175
+ uuxuxxxxdx − 40
176
+ 3
177
+
178
+ R
179
+ uu3
180
+ xdx − 80
181
+ 3
182
+
183
+ R
184
+ u2uxuxxdx − 80
185
+ 9
186
+
187
+ R
188
+ u4uxdx
189
+ − 4
190
+
191
+ R
192
+ uxxxuxxxxdx − 20
193
+ 3
194
+
195
+ R
196
+ uxxxu2
197
+ xdx − 40
198
+ 3
199
+
200
+ R
201
+ uuxxuxxxdx − 40
202
+ 9
203
+
204
+ R
205
+ u3uxxxdx.
206
+ (2.1)
207
+ It remains to check that the sum of all the integral terms in the above equation is zero. Calculating each term in
208
+ (2.1) using the integration by parts, we have
209
+ − 8
210
+
211
+ R
212
+ uuxuxxxxdx = −20
213
+
214
+ R
215
+ uxu2
216
+ xxdx,
217
+ (2.2)
218
+ − 80
219
+ 3
220
+
221
+ R
222
+ u2uxuxxdx = 80
223
+ 3
224
+
225
+ R
226
+ uu3
227
+ xdx,
228
+ (2.3)
229
+ − 80
230
+ 9
231
+
232
+ R
233
+ u4uxdx = 0,
234
+ (2.4)
235
+ − 4
236
+
237
+ R
238
+ uxxxuxxxxdx = 0,
239
+ (2.5)
240
+ 2
241
+
242
+ − 20
243
+ 3
244
+
245
+ R
246
+ uxxxu2
247
+ xdx = 40
248
+ 3
249
+
250
+ R
251
+ uxu2
252
+ xxdx,
253
+ (2.6)
254
+ − 40
255
+ 3
256
+
257
+ R
258
+ uuxxuxxxdx = 20
259
+ 3
260
+
261
+ R
262
+ uxu2
263
+ xxdx,
264
+ (2.7)
265
+ − 40
266
+ 9
267
+
268
+ R
269
+ u3uxxxdx = −40
270
+ 3
271
+
272
+ R
273
+ uu3
274
+ xdx.
275
+ (2.8)
276
+ Substituting (2.2)–(2.8) into (2.1), we have d
277
+ dt M4 = 0, which completes the proof.
278
+ Remark 1. Suppose the general form of the KdV equation is
279
+ ut − auux − buxxx = 0,
280
+ and the corresponding high-order invariant
281
+ M(t) =
282
+
283
+ R
284
+ (u2
285
+ xx − Auu2
286
+ x + Bu4)dx.
287
+ Using the same method above, we could derive
288
+ � 5a = 3Ab,
289
+ 12Bb = Aa,
290
+ which can be rewritten as
291
+ a
292
+ b = 3A
293
+ 5 = 12B
294
+ A .
295
+ Therefore, it follows
296
+ A2 = 20B.
297
+ For instance, when a = −6, b = −1, we have A = 10, B = 5, which deduces to the KdV equation as
298
+ ut + 6uux + uxxx = 0,
299
+ with a fourth-order invariant
300
+ M(t) =
301
+
302
+ R
303
+ (u2
304
+ xx − 10uu2
305
+ x + 5u4)dx.
306
+ 2.2. Invariants of the Camassa–Holm equation
307
+ Proof: Multiplying by 1 and u on both sides of (1.3), respectively, and then integrating the results, which implies
308
+ E1 and E2 through the integration by parts. Below, we prove E3 by the energy method. Firstly, noticing that (1.3)
309
+ can be written with a skew-adjoint operator (1 − ∂xx)−1 as
310
+ ut + uux + ∂x(1 − ∂xx)−1�
311
+ u2 + 1
312
+ 2u2
313
+ x
314
+
315
+ = 0.
316
+ Let g = (1 − ∂xx)−1�
317
+ u2 + 1
318
+ 2u2
319
+ x
320
+
321
+ . Then we see from the above equation that (1.3) is equivalent to
322
+ 
323
+ ut + uux + gx = 0,
324
+ (2.9)
325
+ g − gxx = u2 + 1
326
+ 2u2
327
+ x.
328
+ (2.10)
329
+ Multiplying (2.9) by 3u2 + u2
330
+ x − 2(uux)x and integrating the result on both sides, we have
331
+ 0 =
332
+
333
+ R
334
+ (ut + uux + gx) · (3u2 + u2
335
+ x − 2(uux)x)dx
336
+ =
337
+
338
+ R
339
+ ut · (3u2 + u2
340
+ x − 2(uux)x)dx +
341
+
342
+ R
343
+ (uux + gx) · (3u2 + u2
344
+ x − 2(uux)x)dx
345
+ ≜ A + B.
346
+ (2.11)
347
+ 3
348
+
349
+ Calculating each term derives that
350
+ A =
351
+
352
+ R
353
+ ut · (3u2 + u2
354
+ x − 2(uux)x)dx
355
+ =
356
+
357
+ R
358
+ ut · (3u2 + u2
359
+ x)dx +
360
+
361
+ R
362
+ 2uux · uxtdx
363
+ =
364
+
365
+ R
366
+ ut · 3u2dx +
367
+
368
+ R
369
+ ut · u2
370
+ xdx +
371
+
372
+ R
373
+ u · (u2
374
+ x)tdx
375
+ =
376
+
377
+ R
378
+ (u3)tdx +
379
+
380
+ R
381
+ (u · u2
382
+ x)tdx
383
+ = d
384
+ dt
385
+
386
+ R
387
+ (u3 + uu2
388
+ x)dx
389
+ (2.12)
390
+ and
391
+ B =
392
+
393
+ R
394
+ (uux + gx) · (3u2 + u2
395
+ x − 2(uux)x)dx
396
+ =
397
+
398
+ R
399
+ u · u3
400
+ xdx +
401
+
402
+ R
403
+ gx · (3u2 + u2
404
+ x)dx −
405
+
406
+ R
407
+ gx · 2(uux)xdx
408
+ =
409
+
410
+ R
411
+ u · u3
412
+ xdx +
413
+
414
+ R
415
+ gx · (3u2 + u2
416
+ x)dx + 2
417
+
418
+ R
419
+ gxx · uuxdx
420
+ =
421
+
422
+ R
423
+ u · u3
424
+ xdx +
425
+
426
+ R
427
+ gx · (3u2 + u2
428
+ x)dx + 2
429
+
430
+ R
431
+ (g − u2 − 1
432
+ 2u2
433
+ x) · uuxdx
434
+ =
435
+
436
+ R
437
+ gx · (3u2 + u2
438
+ x)dx + 2
439
+
440
+ R
441
+ g · uuxdx
442
+ =
443
+
444
+ R
445
+ gx · (3u2 + u2
446
+ x)dx −
447
+
448
+ R
449
+ gx · u2dx
450
+ =
451
+
452
+ R
453
+ gx · (2u2 + u2
454
+ x)dx
455
+ = 2
456
+
457
+ R
458
+ gx · (g − gxx)dx = 0.
459
+ (2.13)
460
+ Substituting (2.12) and (2.13) into (2.11), we have
461
+ d
462
+ dt
463
+
464
+ R
465
+ (u3 + uu2
466
+ x)dx = 0,
467
+ which implies E3.
468
+ 2.3. Invariants of the Degasperis–Procesi equation
469
+ Proof: Integrating on both sides of (1.4), it easily obtains H1. Then we show invariants H2 and H3 of (1.4),
470
+ respectively. Firstly let g = (1 − ∂xx)−1� 3
471
+ 2u2�
472
+ , then (1.4) is equivalent to
473
+ 
474
+ ut + uux + gx = 0,
475
+ (2.14)
476
+ g − gxx = 3
477
+ 2u2.
478
+ (2.15)
479
+ Multiplying by 2u − 6v on both sides of (2.14) and then integrating the result, we have
480
+ 0 =
481
+
482
+ R
483
+ (ut + uux + gx) · (2u − 6v)dx
484
+ =
485
+
486
+ R
487
+ ut · (2u − 6v)dx +
488
+
489
+ R
490
+ uux · (2u − 6v)dx +
491
+
492
+ R
493
+ gx · (2u − 6v)dx
494
+ ≜ C + D.
495
+ (2.16)
496
+ 4
497
+
498
+ The each term in the above identity is estimated as
499
+ C =
500
+
501
+ R
502
+ ut · (2u − 6v)dx = 2
503
+
504
+ R
505
+ ut · udx − 6
506
+
507
+ R
508
+ ut · vdx = 2
509
+
510
+ R
511
+ ut · udx − 6
512
+
513
+ R
514
+ (4vt − vxxt) · vdx
515
+ = 2
516
+
517
+ R
518
+ ut · udx − 24
519
+
520
+ R
521
+ vt · vdx − 6
522
+
523
+ R
524
+ vxt · vxdx = d
525
+ dt
526
+
527
+ R
528
+ (u2 − 12v2 − 3v2
529
+ x)dx
530
+ = d
531
+ dt
532
+
533
+ R
534
+
535
+ u2 − 3(4v − vxx) · v
536
+
537
+ dx = d
538
+ dt
539
+
540
+ R
541
+ (u2 − 3uv)dx = d
542
+ dt
543
+
544
+ R
545
+ u · (u − 3v)dx
546
+ = d
547
+ dt
548
+
549
+ R
550
+ u · (v − vxx)dx = d
551
+ dt
552
+
553
+ R
554
+ (u − uxx) · vdx
555
+ (2.17)
556
+ and
557
+ D =
558
+
559
+ R
560
+ uux · (2u − 6v)dx +
561
+
562
+ R
563
+ gx · (2u − 6v)dx
564
+ = −6
565
+
566
+ R
567
+ uux · vdx +
568
+
569
+ R
570
+ gx · (2u − 6v)dx
571
+ = 3
572
+
573
+ R
574
+ u2 · vxdx +
575
+
576
+ R
577
+ gx · (2u − 6v)dx
578
+ = 2
579
+
580
+ R
581
+ (g − gxx) · vxdx +
582
+
583
+ R
584
+ gx · (2u − 6v)dx
585
+ = 2
586
+
587
+ R
588
+ g · vxdx − 2
589
+
590
+ R
591
+ gxx · vxdx +
592
+
593
+ R
594
+ gx · (2v − 2vxx)dx
595
+ = 2
596
+
597
+ R
598
+ g · vxdx + 2
599
+
600
+ R
601
+ gx · vdx − 2
602
+
603
+ R
604
+ gxx · vxdx − 2
605
+
606
+ R
607
+ gx · vxxdx
608
+ = 2
609
+
610
+ R
611
+ (gv)xdx − 2
612
+
613
+ R
614
+ (gx · vx)xdx = 0.
615
+ (2.18)
616
+ Substituting (2.17) and (2.18) into (2.16), we have
617
+ d
618
+ dt
619
+
620
+ R
621
+ (u − uxx) · vdx = 0,
622
+ which implies H2.
623
+ Finally, we show H3. Multiplying (2.14) on both sides by u2 and integrating the result, it yields by noting (2.15)
624
+ 0 =
625
+
626
+ R
627
+ (ut + uux + gx) · u2dx
628
+ =
629
+
630
+ R
631
+ ut · u2dx +
632
+
633
+ R
634
+ u3 · uxdx +
635
+
636
+ R
637
+ gx · u2dx
638
+ =
639
+
640
+ R
641
+ �1
642
+ 3u3�
643
+ tdx + 2
644
+ 3
645
+
646
+ gx · (g − gxx)dx
647
+ = 1
648
+ 3
649
+ d
650
+ dt
651
+
652
+ R
653
+ u3dx,
654
+ which implies the invariant H3.
655
+ 3. Applications to other periodic nonlinear dispersive waves
656
+ 3.1. Benjamin-Bona-Mahony equation
657
+ Consider the Benjamin-Bona-Mahony equation [8] of the form
658
+ ut − uxxt + ux + εuux = 0,
659
+ x ∈ R.
660
+ (3.1)
661
+ 5
662
+
663
+ It can be written as
664
+ ut + ∂x(1 − ∂xx)−1�
665
+ u + ε
666
+ 2u2�
667
+ = 0,
668
+ x ∈ R.
669
+ Let g = (1 − ∂xx)−1�
670
+ u + ε
671
+ 2u2�
672
+ , then the equation (3.1) turns out to be
673
+ 
674
+ ut + gx = 0,
675
+ (3.2)
676
+ g − gxx = u + ε
677
+ 2u2.
678
+ (3.3)
679
+ Multiplying both sides of (3.2) by u2 and integrating the result, and then using (3.3), we have
680
+ 0 =
681
+
682
+ R
683
+ (ut + gx) · u2dx =
684
+
685
+ R
686
+ ut · u2dx +
687
+
688
+ R
689
+ gx · u2dx
690
+ =
691
+
692
+ R
693
+ ut · u2dx + 2
694
+ ε
695
+
696
+ R
697
+ gx · (g − gxx − u)dx =
698
+
699
+ R
700
+ ut · u2dx − 2
701
+ ε
702
+
703
+ R
704
+ gx · udx
705
+ =
706
+
707
+ R
708
+ ut · u2dx + 2
709
+ ε
710
+
711
+ R
712
+ ut · udx = d
713
+ dt
714
+
715
+ R
716
+ �1
717
+ 3u3 + 1
718
+ εu2�
719
+ dx,
720
+ which indicates
721
+
722
+ R
723
+ 1
724
+ 3
725
+
726
+ u3 + 1
727
+ εu2�
728
+ dx
729
+ is a three-order invariant for (3.1).
730
+ 3.2. Regularized long wave equation
731
+ Consider the regularized long wave equation [9] of the form
732
+ ut − µuxxt + ux + upux = 0,
733
+ (3.4)
734
+ where µ > 0 is a positive constant. When p = 2, it is called modified regularized long wave equation; when p ⩾ 3,
735
+ it is called generalized regularized long wave equation. Similar to the foregoing argument, (3.4) can be written as
736
+ an equivalent form of
737
+ 
738
+ ut + gx = 0,
739
+ (3.5)
740
+ g − µgxx = u +
741
+ 1
742
+ p + 1up+1.
743
+ (3.6)
744
+ Multiplying both sides of (3.5) by up+1, integrating the result, and then using (3.6), we have
745
+ 0 =
746
+
747
+ R
748
+ (ut + gx) · up+1dx =
749
+
750
+ R
751
+ ut · up+1dx +
752
+
753
+ R
754
+ gx · up+1dx
755
+ =
756
+
757
+ R
758
+ ut · up+1dx + (p + 1)
759
+
760
+ R
761
+ gx · (g − µgxx − u)dx
762
+ =
763
+
764
+ R
765
+ ut · up+1dx − (p + 1)
766
+
767
+ R
768
+ gx · udx
769
+ =
770
+
771
+ R
772
+ ut · up+1dx + (p + 1)
773
+
774
+ R
775
+ ut · udx
776
+ = d
777
+ dt
778
+
779
+ R
780
+
781
+ 1
782
+ p + 2up+2 + p + 1
783
+ 2
784
+ u2�
785
+ dx,
786
+ which indicates
787
+
788
+ R
789
+
790
+ 1
791
+ p + 2up+2 + p + 1
792
+ 2
793
+ u2�
794
+ dx
795
+ is a high-order invariant for (3.4). This corrects an invariant I3 in Example 4 appeared in [10] (pp. 492).
796
+ 6
797
+
798
+ 3.3. Rosenau equation
799
+ Consider the Rosenau equation [11]
800
+ ut + uxxxxt + ux + uux = 0,
801
+ (3.7)
802
+ which is equivalent to
803
+ 
804
+ ut + gx = 0,
805
+ (3.8)
806
+ g + gxxxx = u + 1
807
+ 2u2.
808
+ (3.9)
809
+ Multiplying both sides of (3.8) by u2 and noticing (3.9), similar to the argument in the above, we have a third-order
810
+ invariant for (3.7) of the form
811
+
812
+ R
813
+ �1
814
+ 3u3 + u2�
815
+ dx.
816
+ Acknowledgement
817
+ We appreciate Prof. Zhi-zhong Sun for many useful discussions. This work is dedicated to Prof. Zhi-zhong Sun
818
+ on the occasion of his 60th birthday. The work is supported by Natural Science Foundation of Zhejiang Province
819
+ (Grant No. LZ23A010007).
820
+ References
821
+ References
822
+ [1] J. Escher, Y. Liu, Z. Yin, Global weak solutions and blow-up structure for the Degasperis-Procesi equation. J. Funct. Anal., 241 (2006)
823
+ 457–485.
824
+ [2] T. Tao, Low-regularity global solutions to nonlinear dispersive equations. Surveys in analysis and operator theory (Canberra, 2001),
825
+ 19–48, Proc. Centre Math. Appl. Austral. Nat. Univ., 40, Austral. Nat. Univ., Canberra, (2002).
826
+ [3] R. Camassa, D. D. Holm, An integrable shallow water equation with peaked solitons. Phys. Rev. Lett., 71 (1993) 1661–1664.
827
+ [4] A. Degasperis, M. Procesi, Asymptotic integrability, in: A. Degasperis, G. Gaeta (Eds.). Symmetry and Perturbation Theory, World
828
+ Scientific, Singapore, (1999) 23–37.
829
+ [5] H. Liu, Y. Xing, An invariant preserving discontinuous Galerkin method for the Camassa-Holm equation. SIAM J. Sci. Comput., 38
830
+ (2016) A1919–A1934.
831
+ [6] R. Courant, K.O. Friedrichs, H. Lewy, ¨Uber die partiellen Differenzenglei-chungen der mathematischen physik, Math. Ann., 100 (1928)
832
+ 32–74.
833
+ [7] Z. Sun. Finite Difference Methods for Nonlinear Evolution Equations, Science Press, Beijing, (2018).
834
+ [8] L.A. Medeiros, G.P. Menzala, Existence and uniqueness for periodic solutions of the Benjamin-Bona-Mahony equation. SIAM J. Math.
835
+ Anal., 8(5) (1977) 792–799.
836
+ [9] C.E. Seyler, D.L. Fenstermacher, A symmetric regularized-long-wave equation. The Physics of Fluids, 27(4) (1984) 4–7.
837
+ [10] A. Ghiloufi, K. Omrani, New conservative difference schemes with fourth-order accuracy for some model equation for nonlinear
838
+ dispersive waves. Numer. Methods Partial Differential Equation, 34 (2018) 451–500.
839
+ [11] M.A. Park, On the Rosenau equation. Math. Appl. Comput., 9 (1990) 145–152.
840
+ 7
841
+
49AzT4oBgHgl3EQfEPqD/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,340 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf,len=339
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
3
+ page_content='00990v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
4
+ page_content='NA] 3 Jan 2023 The energy method for high-order invariants in shallow water wave equations Qifeng Zhanga,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
5
+ page_content=' Tong Yana,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
6
+ page_content=' Guang-hua Gaob aDepartment of Mathematics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
7
+ page_content=' Zhejiang Sci-Tech University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
8
+ page_content=' Hangzhou,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
9
+ page_content=' 310018,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
10
+ page_content=' China bDepartment of Mathematics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
11
+ page_content=' Nanjing University of Posts and Telecommunications,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
12
+ page_content=' Nanjing,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
13
+ page_content=' 210096,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
14
+ page_content=' China Abstract Third order dispersive evolution equations are widely adopted to model one-dimensional long waves and have extensive applications in fluid mechanics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
15
+ page_content=' plasma physics and nonlinear optics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
16
+ page_content=' Among them are the KdV equation, the Camassa–Holm equation and the Degasperis–Procesi equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
17
+ page_content=' They share many common features such as complete integrability, Lax pairs and bi-Hamiltonian structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
18
+ page_content=' In this paper we revisit high-order invariants for these three types of shallow water wave equations by the energy method in combination of a skew-adjoint operator (1 − ∂xx)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
19
+ page_content=' Several applications to seek high-order invariants of the Benjamin-Bona-Mahony equation, the regularized long wave equation and the Rosenau equation are also presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
20
+ page_content=' Keywords: Energy method;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
21
+ page_content=' High-order invariant;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
22
+ page_content=' Shallow water wave equation 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
23
+ page_content=' Introduction A family of third order dispersive evolution equations of the form ut − α2uxxt + γuxxx + c0ux = (c1u2 + c2u2 x + c3uuxx)x, x ∈ R, t > 0 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
24
+ page_content='1) frequently appeared in the simulation of the shallow water waves, see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
25
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
26
+ page_content=', [1], where α, γ and ci (i = 0, 1, 2, 3) are real constants;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
27
+ page_content=' u denotes a horizontal velocity field with the independent spatial variable x and temporal variable t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
28
+ page_content=' A typical such equation (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
29
+ page_content='1) with α2 = c0 = c2 = c3 = 0, c1 = 2, γ = −2 is the KdV equation ut − 4uux − 2uxxx = 0, x ∈ R, t > 0, (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
30
+ page_content='2) which describes the unidirectional propagation of waves at the free surface of shallow water under the influence of gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
31
+ page_content=' The first four invariants of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
32
+ page_content='2) are respectively as (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
33
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
34
+ page_content=', [2], although there is a minor typo in the coefficient of the fourth invariant, it does not affect the reading of this classic review) M1 = � R udx, M2 = � R u2dx, M3 = � R � u2 x − 2 3u3� dx, M4 = � R � u2 xx − 10 3 uu2 x + 5 9u4� dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
35
+ page_content=' Taking α2 = c3 = 1, γ = c0 = 0, c1 = − 3 2, c2 = 1 2, we have another example called the Camassa–Holm equation [3] ut − uxxt + 3uux = 2uxuxx + uuxxx, x ∈ R, t > 0, (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
36
+ page_content='3) which models the unidirectional propagation of shallow water waves over a flat bottom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
37
+ page_content=' The first three invariants are listed as follows E1 = � R (u − uxx)dx, E2 = 1 2 � R (u2 + u2 x)dx, E3 = 1 2 � R u(u2 + u2 x)dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
38
+ page_content=' The third example by assigning α2 = c2 = c3 = 1, γ = c0 = 0, c1 = −2 is called the Degasperis–Procesi equation ut − uxxt + 4uux = 3uxuxx + uuxxx, x ∈ R, t > 0, (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
39
+ page_content='4) ∗E-mail address: zhangqifeng0504@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
40
+ page_content='com (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
41
+ page_content=' Zhang), tyan0320@mails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
42
+ page_content='zstu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
43
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
44
+ page_content='cn (Tong Yan), gaogh@njupt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
45
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
46
+ page_content='cn (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
47
+ page_content=' Gao) Preprint submitted to Elsevier January 4, 2023 which can be regarded as a model for nonlinear shallow water dynamics [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
48
+ page_content=' The frequently discussed invariants are H1 = � R (u − uxx)dx, H2 = � R (u − uxx)vdx, H3 = � R u3dx, where 4v − vxx = u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
49
+ page_content=' Up to now, there have been thousands of papers focusing on the theoretical and numerical studies on these three equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
50
+ page_content=' It is worth mentioning that the invariant-preserving property is a key index of the success for numerical methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
51
+ page_content=' However, high-order invariants are usually difficult to preserve numerically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
52
+ page_content=' Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
53
+ page_content=' also pointed out “it appears a rather difficult task to preserve all three conservation laws” in [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
54
+ page_content=' In this work, higher-order invariants of these equations will be re-derived in view of the energy method, which may be possible to provide some thoughts for invariant-preserving numerical methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
55
+ page_content=' Actually, the energy method originated from conservation laws in physics was first proposed in 1928 by Courant, Friedrichs and Lewy [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
56
+ page_content=' From then on, it has been widely applied to the mathematical and numerical analysis of nonlinear evolution equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
57
+ page_content=' We trust the readers with [7] instead of a long list of references to relevant works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
58
+ page_content=' The rest of the paper is arranged as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
59
+ page_content=' In Section 2, combining the energy method and a skew- adjoint operator, we show the high-order invariants for the KdV equation, the Camassa–Holm equation and the Degasperis–Procesi equation, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
60
+ page_content=' Then we list several applications for seeking some high-order invariants of other types of the shallow water wave equations in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
61
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
62
+ page_content=' Main results In what follows, we directly show that Mi (i = 1, 2, 3, 4), Ei (i = 1, 2, 3) and Hi (i = 1, 2, 3) are invariants of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
63
+ page_content='2), (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
64
+ page_content='3) and (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
65
+ page_content='4) subjected to the periodic boundary conditions based on the energy method, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
66
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
67
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
68
+ page_content=' Invariants of the KdV equation Proof: (I) Multiplying by 1, u and (u2 + uxx), respectively, with (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
69
+ page_content='2), we have Mi (i = 1, 2, 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
70
+ page_content=' In what follows, we show the fourth invariant M4 of the KdV equation by the energy method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
71
+ page_content=' Multiplying both sides of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
72
+ page_content='2) by 2uxxxx + 10 3 u2 x + 20 3 uuxx + 20 9 u3 and integrating the result,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
73
+ page_content=' we have ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
74
+ page_content='0 = ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
75
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
76
+ page_content='R ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
77
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
78
+ page_content='2uxxxx + 10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
79
+ page_content='3 u2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
80
+ page_content='x + 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
81
+ page_content='3 uuxx + 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
82
+ page_content='9 u3� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
83
+ page_content='utdx ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
84
+ page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
85
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
86
+ page_content='R ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
87
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
88
+ page_content='2uxxxx + 10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
89
+ page_content='3 u2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
90
+ page_content='x + 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
91
+ page_content='3 uuxx + 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
92
+ page_content='9 u3� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
93
+ page_content='(4uux + 2uxxx)dx ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
94
+ page_content='= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
95
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
96
+ page_content='R ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
97
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
98
+ page_content='2uxxuxxt − 10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
99
+ page_content='3 (utu2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
100
+ page_content='x + 2uuxuxt) + 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
101
+ page_content='9 u3ut ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
102
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
103
+ page_content='dx ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
104
+ page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
105
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
106
+ page_content='R ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
107
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
108
+ page_content='2uxxxx + 10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
109
+ page_content='3 u2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
110
+ page_content='x + 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
111
+ page_content='3 uuxx + 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
112
+ page_content='9 u3� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
113
+ page_content='(4uux + 2uxxx)dx ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
114
+ page_content='= d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
115
+ page_content='dt M4 − 8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
116
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
117
+ page_content='R ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
118
+ page_content='uuxuxxxxdx − 40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
119
+ page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
120
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
121
+ page_content='R ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
122
+ page_content='uu3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
123
+ page_content='xdx − 80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
124
+ page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
125
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
126
+ page_content='R ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
127
+ page_content='u2uxuxxdx − 80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
128
+ page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
129
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
130
+ page_content='R ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
131
+ page_content='u4uxdx ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
132
+ page_content='− 4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
133
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
134
+ page_content='R ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
135
+ page_content='uxxxuxxxxdx − 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
136
+ page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
137
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
138
+ page_content='R ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
139
+ page_content='uxxxu2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
140
+ page_content='xdx − 40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
141
+ page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
142
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
143
+ page_content='R ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
144
+ page_content='uuxxuxxxdx − 40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
145
+ page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
146
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
147
+ page_content='R ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
148
+ page_content='u3uxxxdx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
149
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
150
+ page_content='1) It remains to check that the sum of all the integral terms in the above equation is zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
151
+ page_content=' Calculating each term in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
152
+ page_content='1) using the integration by parts, we have − 8 � R uuxuxxxxdx = −20 � R uxu2 xxdx, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
153
+ page_content='2) − 80 3 � R u2uxuxxdx = 80 3 � R uu3 xdx, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
154
+ page_content='3) − 80 9 � R u4uxdx = 0, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
155
+ page_content='4) − 4 � R uxxxuxxxxdx = 0, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
156
+ page_content='5) 2 − 20 3 � R uxxxu2 xdx = 40 3 � R uxu2 xxdx, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
157
+ page_content='6) − 40 3 � R uuxxuxxxdx = 20 3 � R uxu2 xxdx, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
158
+ page_content='7) − 40 9 � R u3uxxxdx = −40 3 � R uu3 xdx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
159
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
160
+ page_content='8) Substituting (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
161
+ page_content='2)–(2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
162
+ page_content='8) into (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
163
+ page_content='1), we have d dt M4 = 0, which completes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
164
+ page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
165
+ page_content=' Suppose the general form of the KdV equation is ut − auux − buxxx = 0, and the corresponding high-order invariant M(t) = � R (u2 xx − Auu2 x + Bu4)dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
166
+ page_content=' Using the same method above, we could derive � 5a = 3Ab, 12Bb = Aa, which can be rewritten as a b = 3A 5 = 12B A .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
167
+ page_content=' Therefore, it follows A2 = 20B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
168
+ page_content=' For instance, when a = −6, b = −1, we have A = 10, B = 5, which deduces to the KdV equation as ut + 6uux + uxxx = 0, with a fourth-order invariant M(t) = � R (u2 xx − 10uu2 x + 5u4)dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
169
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
170
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
171
+ page_content=' Invariants of the Camassa–Holm equation Proof: Multiplying by 1 and u on both sides of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
172
+ page_content='3), respectively, and then integrating the results, which implies E1 and E2 through the integration by parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
173
+ page_content=' Below, we prove E3 by the energy method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
174
+ page_content=' Firstly, noticing that (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
175
+ page_content='3) can be written with a skew-adjoint operator (1 − ∂xx)−1 as ut + uux + ∂x(1 − ∂xx)−1� u2 + 1 2u2 x � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
176
+ page_content=' Let g = (1 − ∂xx)−1� u2 + 1 2u2 x � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
177
+ page_content=' Then we see from the above equation that (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
178
+ page_content='3) is equivalent to \uf8f1\uf8f4\uf8f4\uf8f4\uf8f2\uf8f4\uf8f4\uf8f4\uf8f3 ut + uux + gx = 0, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
179
+ page_content='9) g − gxx = u2 + 1 2u2 x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
180
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
181
+ page_content='10) Multiplying (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
182
+ page_content='9) by 3u2 + u2 x − 2(uux)x and integrating the result on both sides, we have 0 = � R (ut + uux + gx) · (3u2 + u2 x − 2(uux)x)dx = � R ut · (3u2 + u2 x − 2(uux)x)dx + � R (uux + gx) · (3u2 + u2 x − 2(uux)x)dx ≜ A + B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
183
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
184
+ page_content='11) 3 Calculating each term derives that A = � R ut · (3u2 + u2 x − 2(uux)x)dx = � R ut · (3u2 + u2 x)dx + � R 2uux · uxtdx = � R ut · 3u2dx + � R ut · u2 xdx + � R u · (u2 x)tdx = � R (u3)tdx + � R (u · u2 x)tdx = d dt � R (u3 + uu2 x)dx (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
185
+ page_content='12) and B = � R (uux + gx) · (3u2 + u2 x − 2(uux)x)dx = � R u · u3 xdx + � R gx · (3u2 + u2 x)dx − � R gx · 2(uux)xdx = � R u · u3 xdx + � R gx · (3u2 + u2 x)dx + 2 � R gxx · uuxdx = � R u · u3 xdx + � R gx · (3u2 + u2 x)dx + 2 � R (g − u2 − 1 2u2 x) · uuxdx = � R gx · (3u2 + u2 x)dx + 2 � R g · uuxdx = � R gx · (3u2 + u2 x)dx − � R gx · u2dx = � R gx · (2u2 + u2 x)dx = 2 � R gx · (g − gxx)dx = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
186
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
187
+ page_content='13) Substituting (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
188
+ page_content='12) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
189
+ page_content='13) into (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
190
+ page_content='11), we have d dt � R (u3 + uu2 x)dx = 0, which implies E3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
191
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
192
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
193
+ page_content=' Invariants of the Degasperis–Procesi equation Proof: Integrating on both sides of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
194
+ page_content='4), it easily obtains H1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
195
+ page_content=' Then we show invariants H2 and H3 of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
196
+ page_content='4), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
197
+ page_content=' Firstly let g = (1 − ∂xx)−1� 3 2u2� , then (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
198
+ page_content='4) is equivalent to \uf8f1\uf8f4\uf8f4\uf8f4\uf8f2\uf8f4\uf8f4\uf8f4\uf8f3 ut + uux + gx = 0, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
199
+ page_content='14) g − gxx = 3 2u2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
200
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
201
+ page_content='15) Multiplying by 2u − 6v on both sides of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
202
+ page_content='14) and then integrating the result, we have 0 = � R (ut + uux + gx) · (2u − 6v)dx = � R ut · (2u − 6v)dx + � R uux · (2u − 6v)dx + � R gx · (2u − 6v)dx ≜ C + D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
203
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
204
+ page_content='16) 4 The each term in the above identity is estimated as C = � R ut · (2u − 6v)dx = 2 � R ut · udx − 6 � R ut · vdx = 2 � R ut · udx − 6 � R (4vt − vxxt) · vdx = 2 � R ut · udx − 24 � R vt · vdx − 6 � R vxt · vxdx = d dt � R (u2 − 12v2 − 3v2 x)dx = d dt � R � u2 − 3(4v − vxx) · v � dx = d dt � R (u2 − 3uv)dx = d dt � R u · (u − 3v)dx = d dt � R u · (v − vxx)dx = d dt � R (u − uxx) · vdx (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
205
+ page_content='17) and D = � R uux · (2u − 6v)dx + � R gx · (2u − 6v)dx = −6 � R uux · vdx + � R gx · (2u − 6v)dx = 3 � R u2 · vxdx + � R gx · (2u − 6v)dx = 2 � R (g − gxx) · vxdx + � R gx · (2u − 6v)dx = 2 � R g · vxdx − 2 � R gxx · vxdx + � R gx · (2v − 2vxx)dx = 2 � R g · vxdx + 2 � R gx · vdx − 2 � R gxx · vxdx − 2 � R gx · vxxdx = 2 � R (gv)xdx − 2 � R (gx · vx)xdx = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
206
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
207
+ page_content='18) Substituting (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
208
+ page_content='17) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
209
+ page_content='18) into (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
210
+ page_content='16), we have d dt � R (u − uxx) · vdx = 0, which implies H2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
211
+ page_content=' Finally, we show H3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
212
+ page_content=' Multiplying (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
213
+ page_content='14) on both sides by u2 and integrating the result, it yields by noting (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
214
+ page_content='15) 0 = � R (ut + uux + gx) · u2dx = � R ut · u2dx + � R u3 · uxdx + � R gx · u2dx = � R �1 3u3� tdx + 2 3 � gx · (g − gxx)dx = 1 3 d dt � R u3dx, which implies the invariant H3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
215
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
216
+ page_content=' Applications to other periodic nonlinear dispersive waves 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
217
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
218
+ page_content=' Benjamin-Bona-Mahony equation Consider the Benjamin-Bona-Mahony equation [8] of the form ut − uxxt + ux + εuux = 0, x ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
219
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
220
+ page_content='1) 5 It can be written as ut + ∂x(1 − ∂xx)−1� u + ε 2u2� = 0, x ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
221
+ page_content=' Let g = (1 − ∂xx)−1� u + ε 2u2� , then the equation (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
222
+ page_content='1) turns out to be \uf8f1\uf8f4\uf8f4\uf8f2\uf8f4\uf8f4\uf8f3 ut + gx = 0, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
223
+ page_content='2) g − gxx = u + ε 2u2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
224
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
225
+ page_content='3) Multiplying both sides of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
226
+ page_content='2) by u2 and integrating the result, and then using (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
227
+ page_content='3), we have 0 = � R (ut + gx) · u2dx = � R ut · u2dx + � R gx · u2dx = � R ut · u2dx + 2 ε � R gx · (g − gxx − u)dx = � R ut · u2dx − 2 ε � R gx · udx = � R ut · u2dx + 2 ε � R ut · udx = d dt � R �1 3u3 + 1 εu2� dx, which indicates � R 1 3 � u3 + 1 εu2� dx is a three-order invariant for (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
228
+ page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
229
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
230
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
231
+ page_content=' Regularized long wave equation Consider the regularized long wave equation [9] of the form ut − µuxxt + ux + upux = 0, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
232
+ page_content='4) where µ > 0 is a positive constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
233
+ page_content=' When p = 2, it is called modified regularized long wave equation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
234
+ page_content=' when p ⩾ 3, it is called generalized regularized long wave equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
235
+ page_content=' Similar to the foregoing argument, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
236
+ page_content='4) can be written as an equivalent form of \uf8f1\uf8f4\uf8f4\uf8f4\uf8f2\uf8f4\uf8f4\uf8f4\uf8f3 ut + gx = 0, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
237
+ page_content='5) g − µgxx = u + 1 p + 1up+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
238
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
239
+ page_content='6) Multiplying both sides of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
240
+ page_content='5) by up+1, integrating the result, and then using (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
241
+ page_content='6), we have 0 = � R (ut + gx) · up+1dx = � R ut · up+1dx + � R gx · up+1dx = � R ut · up+1dx + (p + 1) � R gx · (g − µgxx − u)dx = � R ut · up+1dx − (p + 1) � R gx · udx = � R ut · up+1dx + (p + 1) � R ut · udx = d dt � R � 1 p + 2up+2 + p + 1 2 u2� dx, which indicates � R � 1 p + 2up+2 + p + 1 2 u2� dx is a high-order invariant for (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
242
+ page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
243
+ page_content=' This corrects an invariant I3 in Example 4 appeared in [10] (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
244
+ page_content=' 492).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
245
+ page_content=' 6 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
246
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
247
+ page_content=' Rosenau equation Consider the Rosenau equation [11] ut + uxxxxt + ux + uux = 0, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
248
+ page_content='7) which is equivalent to \uf8f1\uf8f4\uf8f4\uf8f4\uf8f2\uf8f4\uf8f4\uf8f4\uf8f3 ut + gx = 0, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
249
+ page_content='8) g + gxxxx = u + 1 2u2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
250
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
251
+ page_content='9) Multiplying both sides of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
252
+ page_content='8) by u2 and noticing (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
253
+ page_content='9), similar to the argument in the above, we have a third-order invariant for (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
254
+ page_content='7) of the form � R �1 3u3 + u2� dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
255
+ page_content=' Acknowledgement We appreciate Prof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
256
+ page_content=' Zhi-zhong Sun for many useful discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
257
+ page_content=' This work is dedicated to Prof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
258
+ page_content=' Zhi-zhong Sun on the occasion of his 60th birthday.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
259
+ page_content=' The work is supported by Natural Science Foundation of Zhejiang Province (Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
260
+ page_content=' LZ23A010007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
261
+ page_content=' References References [1] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
262
+ page_content=' Escher, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
263
+ page_content=' Liu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
264
+ page_content=' Yin, Global weak solutions and blow-up structure for the Degasperis-Procesi equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
265
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
266
+ page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
267
+ page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
268
+ page_content=', 241 (2006) 457–485.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
269
+ page_content=' [2] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
270
+ page_content=' Tao, Low-regularity global solutions to nonlinear dispersive equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
271
+ page_content=' Surveys in analysis and operator theory (Canberra, 2001), 19–48, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
272
+ page_content=' Centre Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
273
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
274
+ page_content=' Austral.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
275
+ page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
276
+ page_content=' Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
277
+ page_content=', 40, Austral.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
278
+ page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
279
+ page_content=' Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
280
+ page_content=', Canberra, (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
281
+ page_content=' [3] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
282
+ page_content=' Camassa, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
283
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
284
+ page_content=' Holm, An integrable shallow water equation with peaked solitons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
285
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
286
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
287
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
288
+ page_content=', 71 (1993) 1661–1664.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
289
+ page_content=' [4] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
290
+ page_content=' Degasperis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
291
+ page_content=' Procesi, Asymptotic integrability, in: A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
292
+ page_content=' Degasperis, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
293
+ page_content=' Gaeta (Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
294
+ page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
295
+ page_content=' Symmetry and Perturbation Theory, World Scientific, Singapore, (1999) 23–37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
296
+ page_content=' [5] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
297
+ page_content=' Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
298
+ page_content=' Xing, An invariant preserving discontinuous Galerkin method for the Camassa-Holm equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
299
+ page_content=' SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
300
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
301
+ page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
302
+ page_content=', 38 (2016) A1919–A1934.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
303
+ page_content=' [6] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
304
+ page_content=' Courant, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
305
+ page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
306
+ page_content=' Friedrichs, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
307
+ page_content=' Lewy, ¨Uber die partiellen Differenzenglei-chungen der mathematischen physik, Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
308
+ page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
309
+ page_content=', 100 (1928) 32–74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
310
+ page_content=' [7] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
311
+ page_content=' Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
312
+ page_content=' Finite Difference Methods for Nonlinear Evolution Equations, Science Press, Beijing, (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
313
+ page_content=' [8] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
314
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
315
+ page_content=' Medeiros, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
316
+ page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
317
+ page_content=' Menzala, Existence and uniqueness for periodic solutions of the Benjamin-Bona-Mahony equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
318
+ page_content=' SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
319
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
320
+ page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
321
+ page_content=', 8(5) (1977) 792–799.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
322
+ page_content=' [9] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
323
+ page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
324
+ page_content=' Seyler, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
325
+ page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
326
+ page_content=' Fenstermacher, A symmetric regularized-long-wave equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
327
+ page_content=' The Physics of Fluids, 27(4) (1984) 4–7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
328
+ page_content=' [10] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
329
+ page_content=' Ghiloufi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
330
+ page_content=' Omrani, New conservative difference schemes with fourth-order accuracy for some model equation for nonlinear dispersive waves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
331
+ page_content=' Numer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
332
+ page_content=' Methods Partial Differential Equation, 34 (2018) 451–500.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
333
+ page_content=' [11] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
334
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
335
+ page_content=' Park, On the Rosenau equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
336
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
337
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
338
+ page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
339
+ page_content=', 9 (1990) 145–152.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
340
+ page_content=' 7' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/49AzT4oBgHgl3EQfEPqD/content/2301.00990v1.pdf'}
6tE2T4oBgHgl3EQf7Qi3/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b24495c5010fa3f7b048648148112965ded73097e1856d3e97f54c6acdcfb697
3
+ size 2621485
79FLT4oBgHgl3EQfAy4h/content/2301.11967v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f40400add0a99df05a448f65a729583ee54450a058a5a93f29ea055eb51a7305
3
+ size 3000697
79FLT4oBgHgl3EQfAy4h/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9aaabffa6d8cd3c272a553552179a525d8d50408b82161083b6f13e0a5b03b4
3
+ size 142250
89AzT4oBgHgl3EQf-_4J/content/2301.01940v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9123c1852f7c939b6dfbde1dea226903321fa44fa9c8772e947b3f9ab564b984
3
+ size 25647033
89E1T4oBgHgl3EQfUAPq/content/2301.03086v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3f7e53a9baddb0b2f4df378ac41044dd3942190990959b45e55350abac4cc7b
3
+ size 293704
89E1T4oBgHgl3EQfUAPq/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:824a7bb7a97473d08814defd6cdbd83d2d3d700468e9a85b19be9a68fe63b3b1
3
+ size 2752557
8tE3T4oBgHgl3EQfSAk3/content/tmp_files/2301.04427v1.pdf.txt ADDED
@@ -0,0 +1,1228 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantum sensing of electric field distributions of liquid electrolytes with NV-centers
2
+ in nanodiamonds
3
+ M. Hollendonner,1, 2 S. Sharma,2 D. B. R. Dasari,3 A. Finkler,4 S. V. Kusminskiy,2, 5 and R. Nagy1, ∗
4
+ 1Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany
5
+ 2Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
6
+ 33rd Institute of Physics, IQST, and Research Center SCoPE,
7
+ University of Stuttgart, 70569 Stuttgart, Germany
8
+ 4Department of Chemical and Biological Physics,
9
+ Weizmann Institute of Science, Rehovot 7610001, Israel
10
+ 5Institute for Theoretical Solid State Physics, RWTH Aachen University, 52074 Aachen, Germany
11
+ (Dated: January 12, 2023)
12
+ To use batteries as large-scale energy storage systems it is necessary to measure and understand
13
+ their degradation in-situ and in-operando. As a battery’s degradation is often the result of molecular
14
+ processes inside the electrolyte, a sensing platform which allows to measure the ions with a high
15
+ spatial resolution is needed. Primary candidates for such a platform are NV-centers in diamonds.
16
+ We propose to use a single NV-center to deduce the electric field distribution generated by the
17
+ ions inside the electrolyte through microwave pulse sequences. We show that the electric field can
18
+ be reconstructed with great accuracy by using a protocol which includes different variations of the
19
+ Free Induction Decay to obtain the mean electric field components and a modified Hahn-echo pulse
20
+ sequence to measure the electric field’s standard deviation σE. From a semi-analytical ansatz we find
21
+ that for a lithium ion battery there is a direct relationship between σE and the ionic concentration.
22
+ Our results show that it is therefore possible to use NV-centers as sensors to measure both the
23
+ electric field distribution and the local ionic concentration inside electrolytes.
24
+ I.
25
+ INTRODUCTION
26
+ Rechargeable batteries play an important role for our
27
+ society and are a key ingredient for the transition to-
28
+ wards renewable energy sources [1–3]. As the production
29
+ of batteries is accompanied with a considerable use of re-
30
+ sources, recyclable [4] batteries with a long lifetime are
31
+ needed. The latter is limited by degradation mechanisms,
32
+ such as the formation of solid-electrolyte interfaces [5] or
33
+ lithium-plating [6] which can reduce the battery’s capac-
34
+ ity with increasing cell age [7]. As these processes happen
35
+ on a molecular level within nanometer scales [5], a sensor
36
+ which is capable of monitoring the ionic concentration
37
+ in-situ and in-operando with high spatial and temporal
38
+ resolutions is needed. Even though MRI allows to recon-
39
+ struct transport properties [8, 9] of a battery, tools which
40
+ allow to perform measurements inside the electrolyte are
41
+ still absent [5].
42
+ It has been demonstrated that nitrogen-vacancy (NV)
43
+ centers in diamond (see Fig. 1(b)) are high-resolution
44
+ quantum sensors, which can detect oscillating or fluctu-
45
+ ating [10–13] magnetic fields with nano- [14, 15] and even
46
+ subpico-Tesla [16] sensitivities. Besides this, NV-centers
47
+ have great ability for the detection of electric fields. They
48
+ can not only detect DC [17, 18] or AC [19] electric fields
49
+ with remarkable precision, but are additionally capable
50
+ of detecting single fundamental charges [20] even within
51
+ the diamond lattice [21]. This electric field sensitivity was
52
+ used by Ref. [22] to show that, based on theoretical con-
53
54
+ siderations, bulk NV-centers can work as electrochemical
55
+ sensors if they are in contact with an electrolyte solution.
56
+ Here we show that nanodiamonds equipped with sin-
57
+ gle NV-centers can act as in-situ electric field sensors
58
+ inside liquid electrolytes (Fig. 1(a)). By exploiting how
59
+ transverse and axial electric fields act on the NV-center’s
60
+ ground state spin states, we find variations of the free-
61
+ induction decay (FID) pulse sequence, which allow to
62
+ measure the mean electric field components.
63
+ Further,
64
+ we show that it is possible to use variants of the Hahn-
65
+ echo pulse sequence to additionally obtain the electric
66
+ field’s standard deviation σE.
67
+ From a semi-analytical
68
+ ansatz we demonstrate exemplarily for a lithium ion bat-
69
+ tery (LIB) that there is a direct relationship between the
70
+ electric field’s standard deviation and the local ionic con-
71
+ centration. A nanodiamond with a single NV-center can
72
+ therefore work as a sensor which allows to simultaneously
73
+ reconstruct the electric field distribution and to measure
74
+ the ionic concentration with nm spatial resolution.
75
+ II.
76
+ ELECTRIC FIELD DISTRIBUTION IN
77
+ LIQUID ELECTROLYTES
78
+ Before introducing measurements of the electric field
79
+ distribution by the NV-center, we would like to develop
80
+ an analytic expression of the electric field induced inside
81
+ the nanodiamond by the positive and negative ions of the
82
+ electrolyte.
83
+ The potential Φ at position r inside the nanodiamond
84
+ due to a single charge q at position b, is described by
85
+ arXiv:2301.04427v1 [quant-ph] 11 Jan 2023
86
+
87
+ 2
88
+ FIG. 1. (a) Experimental setting. A nanodiamond which is dissolved in the liquid electrolyte of the battery is surrounded by
89
+ positive (orange) and negative (blue) ions. Two perpendicular aligned gold wires allow to generate polarized microwave drives.
90
+ (b) To work as a quantum sensor, the nanodiamond contains a vacancy (V) next to a nitrogen atom (red). (c) Standard deviation
91
+ of Ez, calculated from 500 repeated sets of randomly placed ions of concentration c around the nanodiamond (rND = 100 nm)
92
+ and inside a sphere of radius R. The relative permittivities are ϵND = 5.8 [22] and ϵe = 17.5 [23]. Solid lines are fits following
93
+ Eq. (3) with A as a fit parameter. (d) Fit parameters A obtained from (c), compared to the theory value.
94
+ Poisson’s equation
95
+ ∇2Φ (r) = −ρ (r)
96
+ ϵ
97
+ .
98
+ (1)
99
+ Here ϵ = ϵ0ϵi with i = e, ND, are the permittivities of, re-
100
+ spectively, the electrolyte and the nanodiamond in terms
101
+ of the vacuum permittivity ϵ0 and ρ is the charge density
102
+ induced by q. The solution inside the nanodiamond, ΦND
103
+ (see Methods for the detailed derivation), allows to ob-
104
+ tain the electric field at the center of the nanodiamond,
105
+ which is
106
+ END =
107
+ q
108
+ 4πϵ0
109
+ 3
110
+ 2ϵe + ϵND
111
+ b
112
+ b3 .
113
+ (2)
114
+ By considering the positions of ions of a molar concentra-
115
+ tion c to be normally distributed within a sphere of radius
116
+ R around a nanodiamond (radius rND), the standard de-
117
+ viation of the electric field distribution at the center of
118
+ the nanodiamond is
119
+ σEz = A
120
+
121
+ c
122
+ � 1
123
+ rND
124
+ − 1
125
+ R
126
+
127
+ A =
128
+ |q|
129
+ ϵ0 (2ϵe + ϵND)
130
+
131
+ 3NA
132
+ 4π .
133
+ (3)
134
+ To validate Eq. (3), we simulated the standard deviation
135
+ of 500 sets of uniformly and randomly placed ions for dif-
136
+ ferent molar ionic concentrations (see Fig. 1(c)). As it is
137
+ the most widely used electrolyte of LIBs [24], we chose
138
+ LiPF−
139
+ 6 with ϵe = 17.5 [23]. The total electric field was
140
+ calculated as the linear sum of Eq. (2) for all randomly
141
+ placed ions around a 200 nm spherical nanodiamond [25].
142
+ As it can be seen from Fig. 1(d), the expected A value is
143
+ in fair agreement with the simulations. From Eq. (3) it
144
+ can be calculated that for R = 500 nm, the fluctuations
145
+ will increase only by 3%, compared to σE (R = 400 nm).
146
+ As σE therefore saturates for R ≳ 500 nm, this implies
147
+ that electric field fluctuations only affect the nanodia-
148
+ mond within sub-micrometer range and the system is
149
+ limited by the confocal volume of the experimental setup,
150
+ which typically is ∼ 1 µm3 [26, 27].
151
+ III.
152
+ SENSING OF STATIC ELECTRIC FIELDS
153
+ INSIDE ELECTROLYTES
154
+ An electric field E can in cylindrical coordinates be
155
+ expressed by its axial component Ez, its transverse pro-
156
+ jection E⊥ =
157
+
158
+ E2x + E2y and an angle φE, which defines
159
+ the projections onto the x and y axis as Ex = E⊥ cos φE
160
+ and Ey = E⊥ sin φE. The total Hamiltonian which de-
161
+ scribes the NV-center in presence of electric and axial
162
+ magnetic fields will in the following be denoted as ˆH0.
163
+ By taking into account that the NV-center can be driven
164
+ by two perpendicular microwave wires (see Fig. 1(a)) with
165
+ amplitude Ω, frequency ωd and a phase φ between each
166
+ other, the total ground state Hamiltonian in a frame ro-
167
+ tating with ωd is ˆH = ˆH0 + ˆHd (see Methods), where
168
+ ˆH0 = (∆ + ξz) ˆS2
169
+ z + βz ˆSz − ξ⊥
170
+ 2
171
+
172
+ ˆS2
173
+ +eiφE + h.c.
174
+
175
+ ˆHd = Ω
176
+
177
+ 2
178
+
179
+ ϵ−σ0,−1 + ϵ+σ†
180
+ 0,+1 + h.c.
181
+
182
+ .
183
+ (4)
184
+ Here ∆ = D − ωd is the detuning between the zero-
185
+ field splitting, D = 2.87 GHz [28], and the microwave
186
+ drive frequency.
187
+ Si, i = x, y, z, are the spin-1 op-
188
+ erators, which can be used to define ladder operators
189
+ S± = Sx ± iSy. σ0,±1 = |0⟩ ⟨±1| are operators which
190
+ describe transitions between |0⟩ and, respectively, |±1⟩.
191
+ Frequency contributions generated by electric and axial
192
+ magnetic fields are considered through ξz = d∥Ez and
193
+ ξ⊥ = d⊥E⊥ (d∥ = 0.35 Hz cm/V, d⊥ = 17 Hz cm/V [29])
194
+ and βz = γeBz (γe = 28 GHz/T [30]).
195
+ The phase factors ϵ± =
196
+
197
+ 1 − ie∓iφ�
198
+ /2 which enter into
199
+ Eq. (4), allow to describe the transitions which are caused
200
+ by circularly (φ = ±π/2) or linearly (φ = 0) polarized
201
+ microwave drives [31]. The time-evolution operators of
202
+ ˆHd, ˆR (t) = e−i ˆ
203
+ Hdt (see Methods), show that one can
204
+ induce Rabi oscillations between |0⟩ and |1⟩ for right cir-
205
+ cularly polarized drives and |0⟩ ↔ |−1⟩ for left circular
206
+ polarizations.
207
+ Linearly polarized drives allow to drive
208
+ transitions between |0⟩ and both |±1⟩.
209
+
210
+ MW
211
+ Pos.Electrode3
212
+ FIG. 2. (a) FID-variations to extract ξ⊥, φE and ξz through subsequent pulse sequences. Here Tπ (Tπ/2) is the duration of
213
+ the microwave pulse such that a π-pulse (π/2-pulse) is performed. Subscripts ± denote circularly polarized drives which cause
214
+ oscillations between |0⟩ and either |1⟩ or |−1⟩. Subscript 0 denotes linear polarization of the drive and the free evolution is
215
+ described through ˆF. (b) FIDξ⊥ for different magnetic fields up to βz = 2.7 MHz, corresponding to Bz = 1 G. For βz = 0 the
216
+ signal has the highest contrast with the lowest frequency of oscillation. (c) Fourier transform of FIDξ⊥,ξz with Ω = 10 MHz
217
+ and Ex,y,z = 10 V/µm. Only for T ∗
218
+ 2 > 10 µs the peaks at ξ⊥ ± ξz = 2.4 ± 0.04 MHz and 2ξ⊥ can be resolved.
219
+ In absence of microwave drives, the |±1⟩ states are
220
+ symmetrically mixed by ξ⊥ and axial electric fields ef-
221
+ fectively shift |0⟩ from |±1⟩, which can be seen from
222
+ ˆF (τ) = e−i ˆ
223
+ H0τ (see Methods). As axial and transverse
224
+ electric fields thus act differently on the |ms = 0, ±1⟩
225
+ states of the NV-center, one can derive variations of the
226
+ Free Induction Decay (FID), which allow to extract these
227
+ electric field components.
228
+ A.
229
+ Measurement of electric field components
230
+ The FID consists of two microwave pulses separated
231
+ by a free evolution period τ. Electric field contributions
232
+ ξ⊥, φE and ξz can be sensed through FID-variations,
233
+ as shown in Fig. 2(a). The NV-center can be initialized
234
+ into its |0⟩ state via excitation with green laser light, fol-
235
+ lowed by intersystem-crossing [32]. This state can then
236
+ be driven to −i |1⟩ through a right-polarized π-pulse, de-
237
+ noted as ˆR (Tπ)+, and will be influenced by both axial
238
+ magnetic as well as transverse electric fields. The latter
239
+ induce mixing with |−1⟩. By using a microwave π-pulse
240
+ with the same polarization as the initial one, the trans-
241
+ ferred population from |1⟩ to |−1⟩ can be obtained from
242
+ the FID-signal
243
+ FIDξ⊥ (τ) = | ⟨0| ˆR (Tπ)+ ˆF (τ) ˆR (Tπ)+ |0⟩ |2
244
+ = cos2
245
+
246
+ τ
247
+
248
+ β2z + ξ2
249
+
250
+
251
+ +
252
+ β2
253
+ z
254
+ β2z + ξ2
255
+
256
+ sin2
257
+
258
+ τ
259
+
260
+ β2z + ξ2
261
+
262
+
263
+ ,
264
+ (5)
265
+ which is a measure of the population which has been
266
+ transferred from |1⟩ to |−1⟩. In Fig. 2(b) one can see this
267
+ FID-signal as a function of the free evolution time τ for
268
+ βz values up to 2.8 MHz, which corresponds to Bz = 1 G.
269
+ Besides having a decreased contrast for βz ̸= 0, the
270
+ frequency
271
+
272
+ β2z + ξ2
273
+ ⊥ of the FID-oscillations depends on
274
+ both axial magnetic and transverse electric fields. It is
275
+ therefore strongly recommended to perform the measure-
276
+ ments in a magnetically shielded environment, for exam-
277
+ ple by a µ-metal as in Ref. [33]. In the following it will
278
+ be assumed that all measurement are performed without
279
+ any magnetic field being present.
280
+ The transverse electric field components are uniquely
281
+ defined through φE, as ξx
282
+ =
283
+ ξ⊥ cos φE and ξy
284
+ =
285
+ ξ⊥ sin φE. A superposition state −eiπ/4 (|1⟩ + |−1⟩) /
286
+
287
+ 2
288
+ generated through a linearly polarized π-pulse (consid-
289
+ ered via ˆR (Tπ)0, see Methods) will additionally to ξ⊥
290
+ also be affected by φE as this phase differs in its sign
291
+ for |1⟩ and |−1⟩ (see Methods). If either |1⟩ or |−1⟩ is
292
+ projected to |0⟩ through the final microwave pulse, one
293
+ obtains an FID-signal, which both depends on ξ⊥ and
294
+ φE,
295
+ FIDφE,ξ⊥ (τ) = 1
296
+ 2 (1 − sin (2τξ⊥) sin φE) .
297
+ (6)
298
+ One can obtain φE as the relative fraction between the
299
+ value of the FID-signal at τ = 0 and its first maxima at
300
+ 2τξ⊥ = π/2,
301
+ FIDφE,ξ⊥
302
+
303
+ τ = π
304
+ 2
305
+ 1
306
+ 2ξ⊥
307
+
308
+ FIDφE,ξ⊥ (τ = 0)
309
+ = 1 − sin φE .
310
+ (7)
311
+ By using FIDξ⊥ and FIDξ⊥,φE, it is therefore possible to
312
+ not only determine the electric field’s transverse compo-
313
+ nent, but also to obtain the projection onto the x and y
314
+ axes, which are determined through φE.
315
+ Axial electric field contributions ξz cause a Stark
316
+ shift between |0⟩ and |±1⟩.
317
+ A superposition state
318
+ (|0⟩ − i |−1⟩) /
319
+
320
+ 2 generated by a circularly polarized
321
+ π/2-pulse (see Fig. 2(a)) will therefore be affected both
322
+ by ξz and ξ⊥. If the final microwave π/2-pulse has the
323
+ same polarization as the initial one, an FID-signal is ob-
324
+ tained which depends both on ξ⊥ and ξz,
325
+ FIDξz,ξ⊥ (τ) = 1
326
+ 4
327
+
328
+ 1 − 2 cos (τξ⊥) cos (τξz) + cos2 (τξ⊥)
329
+
330
+ ,
331
+ (8)
332
+ if the NV-center was driven with ωd = D. The Fourier
333
+
334
+ 4
335
+ transform of Eq. (8) (see Methods),
336
+
337
+ FID (ω > 0) = π
338
+ 4
339
+ �1
340
+ 2δ (2ξ⊥ − ω)
341
+ − δ (ξ⊥ + ξz − ω) − δ (ξ⊥ − ξz − ω)
342
+
343
+ , (9)
344
+ shows, that ξz can be measured if it is possible to spec-
345
+ trally resolve ξ⊥ ± ξz.
346
+ To study this, we numerically
347
+ [34, 35] simulated FIDξz,ξ⊥ and included dephasing at
348
+ rates 1/T ∗
349
+ 2 through a Lindblad operator
350
+
351
+ 1/T ∗
352
+ 2 Sz for
353
+ T ∗
354
+ 2 in the range up to 15 µs (see Fig. 2(c)). One can re-
355
+ solve ξ⊥±ξz for nanodiamonds with T ∗
356
+ 2 > 10 µs, which is
357
+ higher than the value of typical nanodiamonds [36]. For
358
+ a nanodiamond with T ∗
359
+ 2 ≈ 15 µs it would be possible to
360
+ distinguish between ξ⊥ and ξz and therefore to determine
361
+ the projection of the electric field onto the symmetry axis
362
+ of the NV-center.
363
+ IV.
364
+ INFLUENCE OF FLUCTUATING
365
+ ELECTRIC FIELDS
366
+ It can be assumed that the ions surrounding the nan-
367
+ odiamond will not stay static for the timescales in which
368
+ measurements are performed but will be subject to, for
369
+ instance, drift and diffusion.
370
+ These fluctuations will
371
+ affect the electric field inside the nanodiamond.
372
+ Due
373
+ to the limited T ∗
374
+ 2 of nanodiamonds, the FID pulse se-
375
+ quences as introduced before will be mainly suitable for
376
+ the measurement of the average electric fields (see Meth-
377
+ ods).
378
+ The coherence time of a nanodiamond can be
379
+ significantly prolonged if instead of an FID, a Hahn-
380
+ Echo pulse sequence is used [25].
381
+ As it is shown in
382
+ Fig. 3(a), we propose a modified version of the Hahn-
383
+ Echo, where after the first free evolution interval, a π-
384
+ pulse with right-circular polarization is performed, be-
385
+ fore the spin is allowed to precess freely during a sec-
386
+ ond free evolution interval τ. Before being read out, a
387
+ right-circularly polarized π-pulse is applied, which leads
388
+ to a signal Hahn (τ) = (1 − cos (2τξ⊥))2 /4. Simulations
389
+ of this Hahn-Echo variation show that the averages (see
390
+ Methods for an example) can be fit by
391
+ ⟨Hahn (τ)⟩ = 1
392
+ 4
393
+
394
+ 1 − cos (2τξ⊥) e−τ/T2�2
395
+ .
396
+ (10)
397
+ Here T2 is the sum of the intrinsic spin coherence time
398
+ T2,int. = 100 µs [25] and a contribution due to the fluc-
399
+ tuating electric fields,
400
+ 1
401
+ T2
402
+ =
403
+ 1
404
+ T2,int.
405
+ +
406
+ 1
407
+ T2,E
408
+ .
409
+ (11)
410
+ In Fig. 3(b), one can see T2 as a function of the electric
411
+ field’s standard deviation σE, where solid lines are T2,E =
412
+ αEm/σ2
413
+ E in terms of a fit parameters α. The total spin
414
+ coherence time is therefore strongly affected by σE and
415
+ the mean electric field value Em. If the mean transverse
416
+ electric field has been sensed by the FID sequence as
417
+ shown in Eq. (5), it is therefore possible to derive the
418
+ electric field’s standard deviation, which together with
419
+ ξ⊥, φE and ξz defines the electric field distribution. As
420
+ there is a direct relationship between σE and the local
421
+ ionic concentration (see Fig. 1(c)), the proposed Hahn-
422
+ echo pulse sequence additionally allows to use the NV-
423
+ center inside the nanodiamond as a local concentration
424
+ sensor.
425
+ FIG. 3.
426
+ (a) Hahn-echo pulse sequence used to simulate
427
+ Eq. (10).
428
+ (b) Total T2 for numerically [34, 35] simulated
429
+ Hahn-Echoes with T2,int = 100 µs, with the electric field com-
430
+ ponents sampled from a normal distribution with mean Em
431
+ and standard deviation σE.
432
+ For the simulations a drive of
433
+ Ω = 10 MHz was used. Solid lines are fits of αEm/σ2
434
+ E. Every
435
+ trajectory was obtained from 1000 individual simulations. Er-
436
+ ror bars of one standard deviation are smaller than the data
437
+ points.
438
+ V.
439
+ CONCLUSION AND OUTLOOK
440
+ In conclusion we have shown here a full reconstruc-
441
+ tion of the mean electric field generated in a liquid elec-
442
+ trolyte, through the spin control of a quantum sensor
443
+ immersed in the electrolyte. We have found exact ex-
444
+ pressions correlating the electric field components with
445
+ the free-induction decay of the sensor spin, and the de-
446
+ pendence of the variance on the spin-echo measurements.
447
+ Together we were able to deduce the electric field distri-
448
+ bution and also measure the local ionic concentration, a
449
+ key parameter in characterizing the performance of the
450
+ liquid electrolyte for battery applications. We envisage
451
+ that with improved modeling of the electric field distribu-
452
+ tion in liquid electrolytes and using better quantum con-
453
+ trol methods, for example using correlation spectroscopy
454
+ [37], we could enhance the sensitivity of the sensor to the
455
+ local electric-field environment, allowing for an in-situ
456
+ monitoring of the battery using the liquid electrolyte.
457
+ ACKNOWLEDGMENTS
458
+ R. N. would like to acknowledge financial support by
459
+ the Federal Ministry of Education and Research (BMBF)
460
+
461
+ 5
462
+ project QMNDQCNet and DFG (Project No. 507241320
463
+ and 46256793).
464
+ S. V. K. and D. D. would like to
465
+ acknowledge the funding support from BMBF (Grant
466
+ No. 16KIS1590K). A. F. is the incumbent of the Elaine
467
+ Blond Career Development Chair and acknowledges sup-
468
+ port from Israel Science Foundation (ISF grants 963/19
469
+ and 418/20) as well as the Abramson Family Center for
470
+ Young Scientists and the Willner Family Leadership In-
471
+ stitute for the Weizmann Institute of Science.
472
+ [1] B. Diouf and R. Pode, “Potential of lithium-ion batteries
473
+ in renewable energy,” Renewable Energy, vol. 76, pp. 375–
474
+ 380, Apr. 2015.
475
+ [2] D. Di Lecce, R. Verrelli, and J. Hassoun, “Lithium-
476
+ ion batteries for sustainable energy storage: recent ad-
477
+ vances towards new cell configurations,” Green Chem-
478
+ istry, vol. 19, no. 15, pp. 3442–3467, 2017.
479
+ [3] A. Jaiswal, “Lithium-ion battery based renewable energy
480
+ solution for off-grid electricity: A techno-economic analy-
481
+ sis,” Renewable and Sustainable Energy Reviews, vol. 72,
482
+ pp. 922–934, May 2017.
483
+ [4] G. Harper, R. Sommerville, E. Kendrick, L. Driscoll,
484
+ P. Slater, R. Stolkin, A. Walton, P. Christensen, O. Hei-
485
+ drich, S. Lambert, A. Abbott, K. Ryder, L. Gaines, and
486
+ P. Anderson, “Recycling lithium-ion batteries from elec-
487
+ tric vehicles,” Nature, vol. 575, pp. 75–86, Nov. 2019.
488
+ [5] Y. S. Meng, V. Srinivasan, and K. Xu, “Designing better
489
+ electrolytes,” Science, vol. 378, p. eabq3750, Dec. 2022.
490
+ [6] U. S. Meda, L. Lal, S. M, and P. Garg, “Solid Electrolyte
491
+ Interphase (SEI), a boon or a bane for lithium batter-
492
+ ies: A review on the recent advances,” Journal of Energy
493
+ Storage, vol. 47, p. 103564, Mar. 2022.
494
+ [7] J. S. Edge, S. O’Kane, R. Prosser, N. D. Kirkaldy, A. N.
495
+ Patel, A. Hales, A. Ghosh, W. Ai, J. Chen, J. Yang,
496
+ S. Li, M.-C. Pang, L. Bravo Diaz, A. Tomaszewska,
497
+ M. W. Marzook, K. N. Radhakrishnan, H. Wang, Y. Pa-
498
+ tel, B. Wu, and G. J. Offer, “Lithium ion battery degra-
499
+ dation:
500
+ what you need to know,” Physical Chemistry
501
+ Chemical Physics, vol. 23, no. 14, pp. 8200–8221, 2021.
502
+ [8] M. Klett, M. Giesecke, A. Nyman, F. Hallberg, R. W.
503
+ Lindstr¨om, G. Lindbergh, and I. Fur´o, “Quantifying
504
+ Mass Transport during Polarization in a Li Ion Battery
505
+ Electrolyte by in Situ 7 Li NMR Imaging,” Journal of the
506
+ American Chemical Society, vol. 134, pp. 14654–14657,
507
+ Sept. 2012.
508
+ [9] S. A. Krachkovskiy, J. D. Bazak, P. Werhun, B. J. Bal-
509
+ com, I. C. Halalay, and G. R. Goward, “Visualization
510
+ of Steady-State Ionic Concentration Profiles Formed in
511
+ Electrolytes during Li-Ion Battery Operation and De-
512
+ termination of Mass-Transport Properties by in Situ
513
+ Magnetic Resonance Imaging,” Journal of the American
514
+ Chemical Society, vol. 138, pp. 7992–7999, June 2016.
515
+ [10] L. T. Hall, J. H. Cole, C. D. Hill, and L. C. L. Hollenberg,
516
+ “Sensing of Fluctuating Nanoscale Magnetic Fields Using
517
+ Nitrogen-Vacancy Centers in Diamond,” Physical Review
518
+ Letters, vol. 103, p. 220802, Nov. 2009.
519
+ [11] S. Steinert, F. Ziem, L. T. Hall, A. Zappe, M. Schweik-
520
+ ert, N. G¨otz, A. Aird, G. Balasubramanian, L. Hollen-
521
+ berg, and J. Wrachtrup, “Magnetic spin imaging under
522
+ ambient conditions with sub-cellular resolution,” Nature
523
+ Communications, vol. 4, p. 1607, June 2013.
524
+ [12] L. Luan, M. S. Grinolds, S. Hong, P. Maletinsky, R. L.
525
+ Walsworth, and A. Yacoby, “Decoherence imaging of spin
526
+ ensembles using a scanning single-electron spin in dia-
527
+ mond,” Scientific Reports, vol. 5, p. 8119, July 2015.
528
+ [13] K. Agarwal, R. Schmidt, B. Halperin, V. Oganesyan,
529
+ G. Zar´and, M. D. Lukin, and E. Demler, “Magnetic noise
530
+ spectroscopy as a probe of local electronic correlations in
531
+ two-dimensional systems,” Physical Review B, vol. 95,
532
+ p. 155107, Apr. 2017.
533
+ [14] G.
534
+ Balasubramanian,
535
+ P.
536
+ Neumann,
537
+ D.
538
+ Twitchen,
539
+ M. Markham,
540
+ R. Kolesov,
541
+ N. Mizuochi,
542
+ J. Isoya,
543
+ J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hem-
544
+ mer, F. Jelezko, and J. Wrachtrup, “Ultralong spin co-
545
+ herence time in isotopically engineered diamond,” Nature
546
+ Materials, vol. 8, pp. 383–387, May 2009.
547
+ [15] J. L. Webb, J. D. Clement, L. Troise, S. Ahmadi, G. J.
548
+ Johansen, A. Huck, and U. L. Andersen, “Nanotesla sen-
549
+ sitivity magnetic field sensing using a compact diamond
550
+ nitrogen-vacancy magnetometer,” Applied Physics Let-
551
+ ters, vol. 114, p. 231103, June 2019.
552
+ [16] T. Wolf,
553
+ P. Neumann,
554
+ K. Nakamura,
555
+ H. Sumiya,
556
+ T. Ohshima, J. Isoya, and J. Wrachtrup, “Subpicotesla
557
+ Diamond Magnetometry,” Physical Review X, vol. 5,
558
+ p. 041001, Oct. 2015.
559
+ [17] F. Dolde, H. Fedder, M. W. Doherty, T. N¨obauer,
560
+ F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard,
561
+ L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup,
562
+ “Electric-field sensing using single diamond spins,” Na-
563
+ ture Physics, vol. 7, pp. 459–463, June 2011.
564
+ [18] K. Bian, W. Zheng, X. Zeng, X. Chen, R. St¨ohr,
565
+ A. Denisenko, S. Yang, J. Wrachtrup, and Y. Jiang,
566
+ “Nanoscale electric-field imaging based on a quantum
567
+ sensor and its charge-state control under ambient con-
568
+ dition,” Nature Communications, vol. 12, p. 2457, Dec.
569
+ 2021.
570
+ [19] J. Michl, J. Steiner, A. Denisenko, A. B¨ulau, A. Zim-
571
+ mermann, K. Nakamura, H. Sumiya, S. Onoda, P. Neu-
572
+ mann, J. Isoya, and J. Wrachtrup, “Robust and Accurate
573
+ Electric Field Sensing with Solid State Spin Ensembles,”
574
+ Nano Letters, vol. 19, pp. 4904–4910, Aug. 2019.
575
+ [20] F. Dolde, M. W. Doherty, J. Michl, I. Jakobi, B. Nay-
576
+ denov, S. Pezzagna, J. Meijer, P. Neumann, F. Jelezko,
577
+ N. B. Manson, and J. Wrachtrup, “Nanoscale Detection
578
+ of a Single Fundamental Charge in Ambient Conditions
579
+ Using the NV - Center in Diamond,” Physical Review
580
+ Letters, vol. 112, p. 097603, Mar. 2014.
581
+ [21] T. Mittiga, S. Hsieh, C. Zu, B. Kobrin, F. Machado,
582
+ P. Bhattacharyya, N. Rui, A. Jarmola, S. Choi, D. Bud-
583
+ ker, and N. Y. Yao, “Imaging the local charge environ-
584
+ ment of nitrogen-vacancy centers in diamond,” Physical
585
+ Review Letters, vol. 121, p. 246402, Dec. 2018.
586
+ [22] H. T. Dinani, E. Mu˜noz, and J. R. Maze, “Sensing elec-
587
+ trochemical signals using a nitrogen-vacancy center in
588
+ diamond,” Nanomaterials, vol. 11, p. 358, Feb. 2021.
589
+ [23] M. Liu, P. J. Chimtali, X.-b. Huang, and R.-b. Zhang,
590
+ “Structures and dynamic properties of the LiPF 6 elec-
591
+ trolytic solution under electric fields – a theoretical
592
+
593
+ 6
594
+ study,” Physical Chemistry Chemical Physics, vol. 21,
595
+ no. 24, pp. 13186–13193, 2019.
596
+ [24] M. Marcinek, J. Syzdek, M. Marczewski, M. Piszcz,
597
+ L. Niedzicki, M. Kalita, A. Plewa-Marczewska, A. Bit-
598
+ ner, P. Wieczorek, T. Trzeciak, M. Kasprzyk, P. �L¸e˙zak,
599
+ Z. Zukowska, A. Zalewska, and W. Wieczorek, “Elec-
600
+ trolytes for Li-ion transport – Review,” Solid State Ion-
601
+ ics, vol. 276, pp. 107–126, Aug. 2015.
602
+ [25] B. D. Wood, G. A. Stimpson, J. E. March, Y. N. D.
603
+ Lekhai, C. J. Stephen, B. L. Green, A. C. Frangeskou,
604
+ L. Gin´es, S. Mandal, O. A. Williams, and G. W. Morley,
605
+ “Long spin coherence times of nitrogen vacancy centers
606
+ in milled nanodiamonds,” Physical Review B, vol. 105,
607
+ p. 205401, May 2022.
608
+ [26] D. Misonou, K. Sasaki, S. Ishizu, Y. Monnai, K. M. Itoh,
609
+ and E. Abe, “Construction and operation of a tabletop
610
+ system for nanoscale magnetometry with single nitrogen-
611
+ vacancy centers in diamond,” AIP Advances, vol. 10,
612
+ p. 025206, Feb. 2020.
613
+ [27] B. J. Maertz, A. P. Wijnheijmer, G. D. Fuchs, M. E.
614
+ Nowakowski, and D. D. Awschalom, “Vector magnetic
615
+ field microscopy using nitrogen vacancy centers in dia-
616
+ mond,” Applied Physics Letters, vol. 96, p. 092504, Mar.
617
+ 2010.
618
+ [28] J. H. N. Loubser and J. A. van Wyk, “Electron spin
619
+ resonance in the study of diamond,” Reports on Progress
620
+ in Physics, vol. 41, pp. 1201–1248, Aug. 1978.
621
+ [29] E. Van Oort and M. Glasbeek, “Electric-field-induced
622
+ modulation of spin echoes of N-V centers in diamond,”
623
+ Chemical Physics Letters, vol. 168, pp. 529–532, May
624
+ 1990.
625
+ [30] E. Abe and K. Sasaki, “Tutorial: Magnetic resonance
626
+ with nitrogen-vacancy centers in diamond—microwave
627
+ engineering,
628
+ materials
629
+ science,
630
+ and
631
+ magnetometry,”
632
+ Journal of Applied Physics, vol. 123, p. 161101, Apr.
633
+ 2018.
634
+ [31] P. London, P. Balasubramanian, B. Naydenov, L. P.
635
+ McGuinness, and F. Jelezko, “Strong driving of a single
636
+ spin using arbitrarily polarized fields,” Physical Review
637
+ A, vol. 90, p. 012302, July 2014.
638
+ [32] M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko,
639
+ J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-
640
+ vacancy colour centre in diamond,” Physics Reports,
641
+ vol. 528, pp. 1–45, July 2013.
642
+ [33] N. Zhao, J.-L. Hu, S.-W. Ho, J. T. K. Wan, and R. B.
643
+ Liu, “Atomic-scale magnetometry of distant nuclear spin
644
+ clusters via nitrogen-vacancy spin in diamond,” Nature
645
+ Nanotechnology, vol. 6, pp. 242–246, Apr. 2011.
646
+ [34] J. Johansson, P. Nation, and F. Nori, “QuTiP: An
647
+ open-source Python framework for the dynamics of open
648
+ quantum systems,” Computer Physics Communications,
649
+ vol. 183, pp. 1760–1772, Aug. 2012.
650
+ [35] J. Johansson, P. Nation, and F. Nori, “QuTiP 2:
651
+ A
652
+ Python framework for the dynamics of open quantum
653
+ systems,” Computer Physics Communications, vol. 184,
654
+ pp. 1234–1240, Apr. 2013.
655
+ [36] H. S. Knowles, D. M. Kara, and M. Atat¨ure, “Observ-
656
+ ing bulk diamond spin coherence in high-purity nanodia-
657
+ monds,” Nature Materials, vol. 13, pp. 21–25, Jan. 2014.
658
+ [37] A.
659
+ Laraoui,
660
+ F.
661
+ Dolde,
662
+ C.
663
+ Burk,
664
+ F.
665
+ Reinhard,
666
+ J. Wrachtrup, and C. A. Meriles, “High-resolution corre-
667
+ lation spectroscopy of 13C spins near a nitrogen-vacancy
668
+ centre in diamond,” Nature Communications, vol. 4,
669
+ p. 1651, June 2013.
670
+
671
+ 1
672
+ Quantum sensing of electric field distributions of liquid electrolytes with NV-centers
673
+ in nanodiamonds - Supplementary Information
674
+ I.
675
+ ELECTRIC FIELD AT CENTER OF NANODIAMOND
676
+ In the following we would like to deduce the electric field of a single point charge q at a distance b from the origin
677
+ of the nanodiamond with radius rND by following Ref. [S1]. Poisson’s equation describes the electrostatic potential Φ,
678
+ ∇2Φ (r) = −ρ (r)
679
+ ϵ
680
+ ,
681
+ (S1)
682
+ where ϵ = ϵ0ϵi, i = e, ND is the permittivity of, respectively, the electrolyte and the nanodiamond in terms of the
683
+ vacuum permittivity ϵ0. By exploiting azimuthal symmetry of the problem, the above expression reduces to Laplace’s
684
+ equation for r ̸= b, which in spherical coordinates with |r| = r and θ the angle spanned by r and b is
685
+ ∇2Φ (r, θ) = 1
686
+ r2
687
+
688
+ ∂r
689
+
690
+ r2 ∂Φ
691
+ ∂r
692
+
693
+ +
694
+ 1
695
+ r2 sin θ
696
+
697
+ ∂θ
698
+
699
+ sin θ∂Φ
700
+ ∂θ
701
+
702
+ = 0 .
703
+ (S2)
704
+ The general solution of this partial differential equation can be expressed in terms of the associated Legendre poly-
705
+ nomials Pl of order l and in terms of two constants Al and Cl as [S1, S2]
706
+ Φ (r, θ) =
707
+
708
+
709
+ l=0
710
+
711
+ Alrl + Cl
712
+ 1
713
+ rl+1
714
+
715
+ Pl (cos θ) .
716
+ (S3)
717
+ As the potential inside the nanodiamond must be finite at r = 0, Cl needs to vanish and one therefore has
718
+ ΦND (r, θ) =
719
+
720
+
721
+ l=0
722
+ AlrlPl (cos θ) .
723
+ (S4)
724
+ By using that 1/|r − b| = �∞
725
+ l=0
726
+
727
+ rl
728
+ </rl+1
729
+ >
730
+
731
+ Pl (cos θ) [S1, S2] with r≷ being the greater (smaller) of |r| and |b|, one can
732
+ derive the potential in the electrolyte without discontinuity, i.e. without nanodiamond, to be
733
+ ˜Φe (r, θ) =
734
+ q
735
+ 4πϵ0ϵe
736
+
737
+
738
+ l=0
739
+ rl
740
+ <
741
+ rl+1
742
+ >
743
+ Pl (cos θ) .
744
+ (S5)
745
+ The general solution would then be given as a superposition of this expression with Eq. (S3), i.e. Φe = ˜Φe + Φ, which
746
+ reads
747
+ Φe (r, θ) =
748
+
749
+
750
+ l=0
751
+
752
+ Cl
753
+ 1
754
+ rl+1 +
755
+ q
756
+ 4πϵ0ϵe
757
+ rl
758
+ <
759
+ rl+1
760
+ >
761
+
762
+ Pl (cos θ) ,
763
+ (S6)
764
+ where it was used that in this case Al = 0 to ensure a vanishing potential at infinite distances to the origin, i.e.
765
+ Φe → 0 for r → ∞. The constants Al and Cl, which enter into, respectively, Eq. (S4) and Eq. (S6), can be determined
766
+ by requiring continuity at the interface between electrolyte and nanodiamond,
767
+
768
+ ϵeEe − ϵNDEND�
769
+ · nND = 0
770
+ (S7)
771
+
772
+ Ee − END�
773
+ × nND ,
774
+ (S8)
775
+ where nND = r/r is the unit vector normal to the surface of the nanodiamond.
776
+ These boundary conditions are
777
+ satisfied, if
778
+ Al =
779
+ q
780
+ 4πϵ0ϵe
781
+ 1
782
+ bl+1
783
+ ϵe (2l + 1)
784
+ ϵNDl + ϵe (l + 1)
785
+ (S9)
786
+ Cl =
787
+ q
788
+ 4πϵ0ϵe
789
+ lr2l+1
790
+ ND
791
+ bl+1
792
+ ϵe − ϵND
793
+ ϵNDl + ϵe (l + 1) .
794
+ (S10)
795
+
796
+ 2
797
+ The electrostatic potential inside the nanodiamond therefore is
798
+ ΦND (r, θ) =
799
+ q
800
+ 4πϵ0ϵe
801
+
802
+
803
+ l=0
804
+ 1
805
+ bl+1
806
+ ϵe (2l + 1)
807
+ ϵNDl + ϵe (l + 1)rlPl (cos θ)
808
+ (S11)
809
+ and the electric field at the center, i.e. for r = 0, can be calculated as
810
+ E (r = 0, θ) =
811
+ q
812
+ 4πϵ0
813
+ 3
814
+ 2ϵe + ϵND
815
+ b
816
+ b3 ,
817
+ (S12)
818
+ if it is used that in cartesian coordinates one has ez = cos θer − sin θeθ with ez the azimuthally symmetric unit vector
819
+ and er and eθ the radial and altitudinal unit vectors.
820
+ A.
821
+ Electric field variance
822
+ The probability of an ion to be located at b witin a sphere of radius R around the nanodiamond is
823
+ p (b) =
824
+ � 3
825
+
826
+ 1
827
+ R3−r3
828
+ ND ,
829
+ rND ≤ b ≤ R
830
+ 0,
831
+ otherwise.
832
+ (S13)
833
+ It can be easily verified that this distribution is normalized, i.e.
834
+
835
+ R3 d3b p (b) = 1. Direct calculation reveals ⟨Ez⟩ = 0
836
+ and therefore
837
+ σ2
838
+ Ez,ion = ⟨E2
839
+ z⟩
840
+ =
841
+ 9q2
842
+ (4πϵ0)2
843
+ 1
844
+ (2ϵe + ϵND)2
845
+ 1
846
+ R3 − r3
847
+ ND
848
+ � 1
849
+ rND
850
+ − 1
851
+ R
852
+
853
+ .
854
+ (S14)
855
+ Under the assumption that the electric fields generated by the single ions are uncorrelated, the total fluctuations
856
+ are given by multiplying the above expression with the number of ions inside the sphere. The standard deviation
857
+ σ2
858
+ Ez = cNAV σ2
859
+ Ez,ion of the electric field components with NA Avogadro’s number, c the molar ionic concentration
860
+ and V the volume in which the ions reside therefore is
861
+ σEz =
862
+ |q|
863
+ ϵ0 (2ϵe + ϵND)
864
+
865
+ 3NA
866
+
867
+
868
+ c
869
+ � 1
870
+ rNV
871
+ − 1
872
+ R
873
+
874
+ .
875
+ (S15)
876
+ From this it can be seen that the expected electric field fluctuations increase with the molar concentration, i.e.
877
+ σEz ∝ √c.
878
+ II.
879
+ HAMILTONIAN IN ROTATING FRAME
880
+ As derived by Doherty et al. in Ref. [S3], the Hamiltonian of the NV-center in presence of axial magnetic fields Bz
881
+ and electric field components Ei with i = x, y, z and ℏ = 1 is
882
+ ˆHNV =
883
+
884
+ D + d∥Ez
885
+ � ˆS2
886
+ z + γeBz ˆSz
887
+ + d⊥
888
+
889
+ Ex
890
+
891
+ ˆS2
892
+ y − ˆS2
893
+ x
894
+
895
+ + Ey
896
+
897
+ ˆSx ˆSy + ˆSy ˆSx
898
+ ��
899
+ ,
900
+ (S16)
901
+ with γe = 2.8 MHz/G the NV’s gyromagnetic ratio [S4] and d∥ = 0.35 Hz · cm/V and d⊥ = 17 Hz · cm/V the axial
902
+ and transverse dipole moments [S5]. By rewriting this Hamiltonian in terms of its frequency contributions βz = γeBz,
903
+ ξz = d∥Ez and ξ⊥ = d⊥
904
+
905
+ E2x + E2y and by introducing the electric field polarization φE, which defines the transverse
906
+ electric field projections via ξx = ξ⊥ cos φE and ξy = ξ⊥ sin φE, Eq. (S16) can be rewritten as
907
+ ˆHNV = (D + ξz) ˆS2
908
+ z + βz ˆSz − ξ⊥
909
+ 2
910
+
911
+ eiφE ˆS2
912
+ + + h.c.
913
+
914
+ ,
915
+ (S17)
916
+ where ˆS± = ˆSx ± i ˆSy are spin-1 ladder-operators and h.c. means the hermitian conjugate.
917
+
918
+ 3
919
+ The NV-center can be driven by perpendicular (compared to the NV’s symmetry axis) microwave magnetic fields
920
+ of amplitude Ω = γeBd and frequency ωd.
921
+ To exert polarized drives onto the NV-center, two wires which are
922
+ perpendicular to each other (see Fig. 1(a) main text) are operated with a phase φ between each other. This drive can
923
+ be described by an Hamiltonian [S6]
924
+ ˆHd (t) = Ω
925
+
926
+ ˆSx cos (ωdt) + ˆSy cos (ωdt + φ)
927
+
928
+ .
929
+ (S18)
930
+ Defining phase-factors ϵ± (φ) =
931
+
932
+ 1 − ie∓iφ�
933
+ /2, similarly to Ref.
934
+ [S6], allows to compactly account for different
935
+ polarizations as ϵ+ = 1 only if φ = −π/2 (i.e. right-circular polarization) and ϵ− = 1 for left-circular polarized
936
+ microwave fields (φ = +π/2). By transforming ˆHNV + ˆHd (t) into a frame oscillating with ωd through the unitary
937
+ U = eiωdS2
938
+ z, one can derive the Hamiltonian under the rotating-wave approximation, which is
939
+ ˆH = ˆH0 + ˆHd
940
+ ˆH0 = (∆ + ξz) ˆS2
941
+ z + βz ˆSz − ξ⊥
942
+ 2
943
+
944
+ eiφE ˆS2
945
+ + + h.c.
946
+
947
+ ˆHd = Ω
948
+
949
+ 2 (ϵ− |0⟩ ⟨−1| + ϵ+ |1⟩ ⟨0| + h.c.) .
950
+ (S19)
951
+ A.
952
+ Derivation of time-evolution operators
953
+ To allow for the efficient calculation of pulse-sequences, time evolution operators of the free evolution ˆF (τ) and the
954
+ drive ˆR (T) will be derived in the following.
955
+ 1.
956
+ Free Evolution
957
+ A possible set of eigenstates of ˆH0 is {|0⟩ , |+⟩ , |−⟩} with
958
+ |+⟩ = cos θ
959
+ 2eiφE/2 |1⟩ + sin θ
960
+ 2e−iφE/2 |−1⟩
961
+ |−⟩ = sin θ
962
+ 2eiφE/2 |1⟩ − cos θ
963
+ 2e−iφE/2 |−1⟩ ,
964
+ (S20)
965
+ where tan θ = −ξ⊥/βz, with corresponding eigenenergies ω0 = 0 and ω± = ∆ + ξz ±
966
+
967
+ β2z + ξ2
968
+ ⊥. The time evolution
969
+ operator of ˆH0 is ˆF (τ) = �
970
+ i={0,±} e−iωiτ |i⟩ ⟨i|, where the sum is performed over all eigenstates of ˆH0. In the basis
971
+ of {|0⟩ , |±1⟩} this is
972
+ ˆF (τ) = |0⟩ ⟨0| + e−iτ(∆+ξz)�
973
+ iξ⊥
974
+ x sin (τx)
975
+
976
+ eiφE |1⟩ ⟨−1| + h.c.
977
+
978
+ +
979
+
980
+ cos (τx) − iβz
981
+ x sin (τx)
982
+
983
+ |1��� ⟨1|
984
+ +
985
+
986
+ cos (τx) + iβz
987
+ x sin (τx)
988
+
989
+ |−1⟩ ⟨−1|
990
+
991
+ .
992
+ (S21)
993
+ Here the frequency of oscillation has been defined as x =
994
+
995
+ β2z + ξ2
996
+ ⊥.
997
+ 2.
998
+ Microwave Drive
999
+ To derive operators which describe the action of the microwave pulses, it will be assumed that these pulses
1000
+ exceed all other frequency scales in magnitude, i.e.
1001
+ Ω ≫ ∆, βz, ξz, ξ⊥, such that
1002
+ ˆH ≈
1003
+
1004
+
1005
+ 2
1006
+ ˆ�
1007
+ Hd with ˆ�
1008
+ Hd =
1009
+
1010
+ 4
1011
+ (ϵ− |0⟩ ⟨−1| + ϵ+ |1⟩ ⟨0| + h.c.). By noting that ˆ�
1012
+ H
1013
+ 3
1014
+ d = ˆ�
1015
+ Hd, the time evolution
1016
+ ˆR (t) = e−it ˆ
1017
+ Hd =
1018
+
1019
+
1020
+ k=0
1021
+
1022
+ −itΩ
1023
+
1024
+ 2
1025
+ �n
1026
+ n!
1027
+ � ˆ�
1028
+ Hd
1029
+ �n
1030
+ ,
1031
+ (S22)
1032
+ can be calculated as
1033
+ ˆR (t) = |1⟩ ⟨1|
1034
+
1035
+ 1 − |ϵ+|2�
1036
+ + |−1⟩ ⟨−1|
1037
+
1038
+ 1 − |ϵ−|2�
1039
+ − ϵ+ϵ− |1⟩ ⟨−1| − ϵ∗
1040
+ +ϵ∗
1041
+ − |−1⟩ ⟨1|
1042
+ + cos
1043
+ � tΩ
1044
+
1045
+ 2
1046
+ � �
1047
+ |0⟩ ⟨0| + |ϵ+|2 |1⟩ ⟨1| + |ϵ−|2 |−1⟩ ⟨−1| + ϵ+ϵ− |1⟩ ⟨−1| + ϵ∗
1048
+ +ϵ∗
1049
+ − |−1⟩ ⟨1|
1050
+
1051
+ − i sin
1052
+ � tΩ
1053
+
1054
+ 2
1055
+
1056
+ (ϵ− |0⟩ ⟨−1| + ϵ+ |1⟩ ⟨0| + h.c.) .
1057
+ (S23)
1058
+ Depending on the polarization, one can induce Rabi oscillations between |0⟩ and either |−1⟩ for φ = π/2 (denoted as
1059
+ ˆR+) or |+1⟩ (φ = −π/2, ˆR−),
1060
+ ˆR (t)± = |∓1⟩ ⟨∓1| + cos
1061
+ � Ωt
1062
+
1063
+ 2
1064
+ � �
1065
+ |0⟩ ⟨0| + |±1⟩ ⟨±1|
1066
+
1067
+ − i sin
1068
+ � Ωt
1069
+
1070
+ 2
1071
+ � �
1072
+ |0⟩ ⟨±1| + h.c.
1073
+
1074
+ .
1075
+ (S24)
1076
+ The system can be driven to both |±1⟩, if a linearly polarized drive is used,
1077
+ R (t)0 = 1
1078
+ 2 (|1⟩ ⟨1| + |−1⟩ ⟨−1| + i |1⟩ ⟨−1| − i |−1⟩ ⟨1|)
1079
+ + cos
1080
+ � tΩ
1081
+
1082
+ 2
1083
+ � �
1084
+ |0⟩ ⟨0|
1085
+ + 1
1086
+ 2 (|1⟩ ⟨1| + |−1⟩ ⟨−1| − i |1⟩ ⟨−1| + i |−1⟩ ⟨1|)
1087
+
1088
+ − 1 + i
1089
+ 2
1090
+ sin
1091
+ � tΩ
1092
+
1093
+ 2
1094
+
1095
+ (|0⟩ ⟨−1| + |1⟩ ⟨0| + h.c.) .
1096
+ (S25)
1097
+ The last expression can similarly be compactly written by noting that (1 ± i) /2 = e±iπ/4/
1098
+
1099
+ 2. These operators can
1100
+ then be used to describe the action of (polarized) π- and π/2-pulses onto the |ms = 0, ±1⟩-states of the NV-center.
1101
+ III.
1102
+ FOURIER TRANSFORMATION OF FID-SIGNAL
1103
+ Some arbitrary signals f and ˜f in time- and frequency-domain are connected to each other as
1104
+ ˜f (ω) = FT [f (τ)] =
1105
+ � +∞
1106
+ −∞
1107
+ dτ f (τ) e−iωτ
1108
+ FT−1 �
1109
+ ˜f (ω)
1110
+
1111
+ = 1
1112
+
1113
+ � +∞
1114
+ −∞
1115
+ dω ˜f (ω) eiωτ .
1116
+ (S26)
1117
+ To simplify the calculation of the Fourier transformed FID-signal, one can rewrite FIDξ⊥,φE (Eq. (6) main text) as
1118
+ FIDξz,ξ⊥ (τ) = 1
1119
+ 4
1120
+ �3
1121
+ 2 + 1
1122
+ 2 cos (2τξ⊥) − cos (τ [ξ⊥ + ξz])
1123
+ − cos (τ [ξ⊥ − ξz])
1124
+
1125
+ .
1126
+ (S27)
1127
+ From Eq. (S26), one sees that FT [cos (τx)] = π [δ (x − ω) + δ (x + ω)] and therefore
1128
+
1129
+ FID (ω) = π
1130
+ 4
1131
+ �3
1132
+ 2δ (ω) + 1
1133
+ 2 [δ (2ξ⊥ − ω) + δ (2ξ⊥ + ω)]
1134
+ − [δ (ξ⊥ + ξz − ω) + δ (ξ⊥ + ξz + ω)]
1135
+ − [δ (ξ⊥ − ξz − ω) + δ (ξ⊥ − ξz + ω)]
1136
+
1137
+ .
1138
+ (S28)
1139
+
1140
+ 5
1141
+ IV.
1142
+ SIMULATED PULSE SEQUENCES FOR NORMALLY DISTRIBUTED ELECTRIC FIELDS
1143
+ FIG. S1. Simulated expected FID-values of FIDξ⊥ (Eq. (5) main text), calculated from 500 individual FID-simulations with
1144
+ drive amplitude of Ω = 10 MHz, intrinsic T ∗
1145
+ 2,int. and electric field components sampled from a normal distribution with mean
1146
+ Em and standard deviation σE. Dephasing is considered through a Lindblad-Operator
1147
+
1148
+ 1/T ∗
1149
+ 2,int.Sz. For both mean electric
1150
+ field values of (a) 1.0 V/µm and (b) 4.0 V/µm, it is not possible to resolve ξ⊥.
1151
+ To understand how fluctuating electric fields alter the FID-signal, we numerically [S7, S8] simulated FIDξ⊥ (Eq. (5)
1152
+ main text) for normally distributed electric fields. Hereby, at every timestep at which the time-evolution is calcuated,
1153
+ the electric field components are passed from a beforehand sampled normal distribution with mean Em and standard
1154
+ deviation σE. It can be seen from Fig. S1 that the average FIDξ⊥ signal decays rapidly to its steady-state value of
1155
+ 1/2, which is due to the short T ∗
1156
+ 2 time of 1 µs. For this reason it is proposed to use the Hahn-Echo pulse sequence for
1157
+ measurements of strongly fluctuating electric fields.
1158
+ 0
1159
+ 50
1160
+ 100
1161
+ 150
1162
+ 200
1163
+ τ in µs
1164
+ 0.0
1165
+ 0.2
1166
+ 0.4
1167
+ 0.6
1168
+ 0.8
1169
+ ⟨Hahn (τ)⟩
1170
+ Sim.
1171
+ Fit
1172
+ FIG. S2.
1173
+ Example of the average Hahn-echo signal, which was obtained numerically from 1000 individual simulations of
1174
+ the pulse sequence shown in Fig. 3(a) (main text) with a mean electric field value of Em = 1.0 V/µm, standard deviation
1175
+ σE = 0.75 V/µm, drive amplitude Ω = 10 MHz and intrisic T2,int. = 100 µs together with the fit following Eq. (10) (main text).
1176
+ The total T2 value obtained from this fit is T2 = (39.87 ± 0.86) µs.
1177
+ As described in the main text, the numerically obtained Hahn-echo trajectories (see Fig. S2 for an example) are well
1178
+ fitted by ⟨Hahn (τ)⟩ = 1
1179
+ 4
1180
+
1181
+ 1 − cos (2τξ⊥) e−τ/T2�2. Here both the intrinsic T2,int. = 100 µs and T2,E due to fluctuating
1182
+ elecric fields contribute to the total T2 via
1183
+ 1
1184
+ T2
1185
+ =
1186
+ 1
1187
+ T2,int.
1188
+ +
1189
+ 1
1190
+ T2,E
1191
+ .
1192
+ (S29)
1193
+ The latter can be fitted in terms of Em and σE via
1194
+ T2,E = αEm
1195
+ σ2
1196
+ E
1197
+ .
1198
+ (S30)
1199
+ The values of the fit parameter α can be found in Fig. S3.
1200
+
1201
+ 6
1202
+ 1
1203
+ 2
1204
+ Em in V/µm
1205
+ 30
1206
+ 35
1207
+ 40
1208
+ α
1209
+ FIG. S3. Fit parameter α, obtained by numerically fitting Eq. (S29) and Eq. (S30) with T2,int. = 100 µs to the data from Fig. 3
1210
+ (main text).
1211
+ [S1] R. Messina, “Image charges in spherical geometry: Application to colloidal systems,” The Journal of Chemical
1212
+ Physics, vol. 117, no. 24, pp. 11062-11074, Dec. 2002.
1213
+ [S2] J. D. Jackson, “Klassische Elektrodynamik,” De Gruyter, Dec. 2006.
1214
+ [S3] M. W. Doherty, F. Dolde, H. Fedder, F. Jelezko, J. Wrachtrup, N. B. Manson, and L. C. L. Hollenberg, “Theory
1215
+ of the ground-state spin of the NV center in diamond,” Physical Review B, vol. 85, no. 20, p. 205203, May
1216
+ 2012.
1217
+ [S4] E. Abe and K. Sasaki, “Tutorial: Magnetic resonance with nitrogen-vacancy centers in diamond - microwave
1218
+ engineering, materials science, and magnetometry,” Journal of Applied Physics, vol. 123, no. 16, p. 161101,
1219
+ Apr. 2018.
1220
+ [S5] E. Van Oort and M. Glasbeek, “Electric-field induced modulation of spin echoes of N-V centers in diamond,”
1221
+ Chemical Physics Letters, vol. 168, no. 6, pp. 529-532, May 1990.
1222
+ [S6] P. London, P. Balasubramanian, B. Naydenov, L. P. McGuiness, and F. Jelezko, “Strong driving of a single spin
1223
+ using arbitrarily polarized fields,” Physical Review A, vol. 90, no. 1, p. 012302, July 2014.
1224
+ [S7] J. Johansson, P. Nation, and F. Nori, “QuTiP: An open-source Python framework for the dynamics of open
1225
+ quantum systems,” Computer Physics Communications, vol. 183, no. 8, pp. 1760-1772, Aug. 2012.
1226
+ [S8] J. Johansson, P. Nation, and F. Nori, “QuTiP 2: A Python framework for the dynamics of open quantum
1227
+ systems,” Computer Physics Communications, vol. 184, no. 4, pp. 1234-1240, Apr. 2013.
1228
+
8tE3T4oBgHgl3EQfSAk3/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
99A0T4oBgHgl3EQfO__U/content/2301.02170v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1f20ad216a560d2b0666d9c88e4f4f2578b43ea93de7f4bd4ba17061504e504
3
+ size 502938
99A0T4oBgHgl3EQfO__U/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07fbf523691c679eb4d95d32e256bd3015c74ffc0d78ff815d5c7d66fb3998b2
3
+ size 7798829
9NE4T4oBgHgl3EQfdgy1/content/2301.05092v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:624a56b4844611187e782f5f4cbc45ccfcc3ddf83b7464f01c3dd9be673f4ae8
3
+ size 299893
9NE4T4oBgHgl3EQfdgy1/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3810c81325f13cbe1c0669c77fb2bf8a119e973999c5ed76d59a6bd7b462eaf
3
+ size 152679
9dE1T4oBgHgl3EQf8AVQ/content/tmp_files/2301.03540v1.pdf.txt ADDED
@@ -0,0 +1,1008 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 3D ZEROS IN ELECTROMAGNETIC FIELDS
2
+ Alex J. Vernon1†, Mark R. Dennis2‡, and Francisco J. Rodr´ıguez-Fortu˜no1∗
3
+ 1Department of Physics and London Centre for Nanotechnology, King’s College London,
4
+ Strand, London WC2R 2LS, UK
5
+ 2School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK
6
7
8
+ ∗francisco.rodriguez [email protected]
9
+ Abstract. We present a study of 3D electromagnetic field zeros, uncovering their re-
10
+ markable characteristic features and propose a classifying framework. These are a spe-
11
+ cial case of general dark spots in optical fields, which sculpt light’s spatial structure into
12
+ matter-moving, information-rich vortices, escape the diffraction limit for single-molecule
13
+ imaging, and can trap particles for nanoscale manipulation. Conventional dark spots
14
+ are two-dimensional in two aspects: localised in a plane and having a non-zero out-of-
15
+ plane field component. We focus on non-paraxial fields, where three-dimensional dark
16
+ spots can exist non-stably at fully localised points, making distinct imprints in the flux
17
+ of energy and momentum, and in the light’s polarisation texture. With this work, we
18
+ hope to enhance current dark spot applications, or inspire new ones impossible with
19
+ lower-dimensional zeros.
20
+ 1. Introduction
21
+ An optical vortex is the name commonly given to a zero in a complex scalar field, such
22
+ as a component of the electric E or magnetic H field. Vortices in these components occur
23
+ naturally in general 3D monochromatic interference [1], where they are infinitely thin con-
24
+ tinuous strands either extending infinitely through space, or coiled into knotted, un-knotted
25
+ or linked closed loops [2]–[5]. On a vortex strand, the phase of the complex scalar field (with
26
+ zero real and imaginary parts) is undefined creating circulation in the phase of the rest of the
27
+ field. This phase increases in a clockwise or anti-clockwise sense by an integer multiple of 2π
28
+ along any closed loop containing one vortex line. Vortex lines in optics have direct analogues
29
+ in acoustics and water waves, and as a type of topological defect, are related to vortices in
30
+ (super)fluids [6] and in Bose-Einstein condensates [7], and even cosmic strings [8]. Strong
31
+ research interest in optical vortices over the past 30 years, combined with the availability
32
+ of instruments and the flexibility in generating [9]–[12] and structuring [13] vortex-carrying
33
+ beams, has positioned optics to act as a sandbox for exploring topological phenomena that
34
+ appear more broadly across physics.
35
+ When considering the full 3D vector characteristics of an optical field, vortex lines in
36
+ individual field components like Ex, Ey, and Ez are basis-dependent and not so physically
37
+ meaningful. By picturing these different scalar vortex threads permeating the vector field,
38
+ we can appreciate how unlikely it is that the optical field is zero at a point (i.e. E = 0, all
39
+ 1
40
+ arXiv:2301.03540v1 [physics.optics] 9 Jan 2023
41
+
42
+ 2
43
+ 3D ZEROS IN ELECTROMAGNETIC FIELDS
44
+ three components simultaneously zero) in typical 3D interference (the vortex line in each of
45
+ the three field components would meet at such a zero point, requiring the manipulation of
46
+ three extra parameters beyond the spatial x, y, z). Despite the rarity of zeros in the wild, a
47
+ lower-dimensional version can be readily manufactured in optical beams, and is remarkably
48
+ well-studied. Paraxial doughnut beams have an axial zero in the transverse field surrounded
49
+ by a bright ring, and are used in modern spectroscopy techniques [14], [15] because of the
50
+ zero’s immunity to the diffraction limit. The transverse field effectively consists of one or
51
+ two scalar components with the vortex line along the beam axis, causing the real part of
52
+ the local wavevector to curl around the axis and imbue the beam with intrinsic orbital an-
53
+ gular momentum. The longitudinal field, meanwhile, is non-zero (albeit very small due to
54
+ paraxiality) in the centre of the beam which, therefore, is better imagined not as an exact
55
+ axial zero, but as a dim line of linear polarisation (an L line) polarised parallel to the beam
56
+ direction. This, and its confinement in only two dimensions, stretching along the third, is
57
+ why we refer to the almost-dark centre of the doughnut beam as a two-dimensional zero.
58
+ Its topological index is straightforward to define by counting how many multiples of 2π the
59
+ phases of the transverse components climb through over an enclosing circuit. The intrinsic
60
+ orbital angular momentum carried by doughnut beams is the key property of the spatial
61
+ structure of light that can rotate matter [16], [17] and store information [18]–[20].
62
+ Surprisingly, the fully localised, three-dimensional optical field zero, E = 0, has been left
63
+ largely unexplored. This is probably due to its unstable nature—a perturbation will destroy
64
+ the zero point (i.e. cause the vortices in the three components no longer to coincide). Never-
65
+ theless, such a point is theoretically possible and can be artificially synthesised [21], but very
66
+ little is understood about how it is imprinted into the surrounding field, and there is no clas-
67
+ sifying topological index like the topological charge of a 2D vortex. The 3D electromagnetic
68
+ field zero is the focus of this work. A zero in the E-field alone has codimension 6, requiring
69
+ that the six total degrees of freedom of two real, three-dimensional vectors (the real and
70
+ imaginary parts of the three components E) are suppressed simultaneously. This means 3D
71
+ zeros exist stably in a six-dimensional parameter space, and is why optical field zeros are
72
+ not natural in random interference patterns spanning only three spatial dimensions, being
73
+ hidden by instability. Instead, 3D zeros must be revealed by tuning an additional three
74
+ parameters (this is discussed in [22] for a zero in two electric field components). Some of
75
+ these parameters could be the polarisation components of a plane wave, for example, and in
76
+ fact, 3D zeros can be very easily manufactured and controlled in pure plane wave interfer-
77
+ ence or near fields with a simple technique [21], and their higher dimensional confinement
78
+ could provide a greater degree of precision in dark spot spectroscopy. Due to their electric
79
+ field dependence, the zero in E is coupled to a collection of singularities, each with its own
80
+ topological signature, in various physical quantities associated with the light field includ-
81
+ ing the complex Poynting vector, canonical momentum, spin momentum and spin angular
82
+ momentum. Learning how energy flow and momentum circulate around a 3D vortex could
83
+ inspire applications which would be otherwise unfeasible using typical lower dimensional
84
+ zeros. Alternatively, the magnetic field H may vanish at a point, or more extremely, both
85
+ E and H might simultaneously vanish, giving a true electromagnetic null with codimension
86
+ 12. Here, we report the key features of a 3D field electric or magnetic field zero, including
87
+ the way that polarisation singularities are forced to intersect and the flux of the complex
88
+ Poynting vector and canonical and spin momentum. With these findings, for the first time,
89
+ we propose a framework to classify the physically realisable varieties of 3D field zero.
90
+
91
+ 3D ZEROS IN ELECTROMAGNETIC FIELDS
92
+ 3
93
+ 2. Results
94
+ To contextualise our study, we begin with some brief intuition on the special features
95
+ which we might expect to find near to a 3D zero.
96
+ If either E or H is zero at a point r0, then of that field, say E, the flux of energy, canon-
97
+ ical momentum, spin angular momentum (and other quantities) are zero too. Since these
98
+ fluxes are vector quantities, their direction is singular at r0 and an imprint is made in the
99
+ surrounding space where they are well-defined. In three spatial dimensions, even if these
100
+ fluxes are divergence-less, there is more than one possible (topologically unique) imprint
101
+ which can be left by and characterise the zero in E. The electric field spin is particularly
102
+ interesting, because its zeros (in non-paraxial fields) are co-dimension 2 objects—meaning
103
+ they are one-dimensional continuous lines, defining the threads of pure linear electric polar-
104
+ isation. This continuity should require at least one zero-spin line, an L line, to pass through
105
+ r0. A similar argument can be made for lines of pure circular electric polarisation, except
106
+ that C lines are defined by a complex quadratic equation, E · E = 0, equivalent to a real
107
+ quartic equation, |E · E|2 = 0, which has either zero, two or four real roots. It turns out,
108
+ as we will show, that a given number of C lines and L lines must always intersect in a 3D
109
+ electric field zero. Before reporting these and other findings in detail from mathematical
110
+ argument and analytical simulations in section 2.3 and beyond, the next two subsections 2.1
111
+ and 2.2 provide an overview of polarisation singularities and set out our way of classifying
112
+ 3D field zeros using dyadics associated with the field.
113
+ 2.1. Overview of Polarisation Singularities in Paraxial and Non-Paraxial Fields.
114
+ L lines and C lines are called polarisation singularities and are the vector version of scalar
115
+ vortex lines in wave fields, existing in light [23]–[25], acoustic and water waves [26] (both
116
+ acoustic and water waves have a vector nature [27], [28]) where some property of the general
117
+ polarisation ellipse is not defined. In 3D fields, polarisation singularities are often described
118
+ as the underlying skeleton which embeds highly complex topologies into the field’s polar-
119
+ isation texture [29], [30].
120
+ Polarisation singularities have been studied in full 3D and in
121
+ paraxial fields [31], where in paraxial fields (considering only the two transverse field com-
122
+ ponents), polarisation is circular at points and linear along lines. Propagating the paraxial
123
+ field (maintaining the transverse polarisation) draws out the C points and L lines in the
124
+ transverse plane into C lines and L surfaces in three dimensions.
125
+ A polarisation ellipse has orthogonal semi-major and semi-minor axes, telling us which
126
+ way the ellipse is oriented. But because a polarisation circle has no semi-major or semi-
127
+ minor axes, at a C point, the orientation of the circle is undefined causing neighbouring
128
+ polarisation ellipses (almost circular) to rotate when tracked along a C point-enclosing loop.
129
+ The ellipse major axis is described throughout space with a line field, in that the axis is
130
+ oriented some way in space but does not point one way or another—an ellipse looks identi-
131
+ cal to its 180 degree rotated self. This means that along the enclosing circuit, the rotating
132
+ ellipses turn continuously through an integer multiple of π radians, rather than 2π, which
133
+ is why C points are assigned a half-integer index. When the field is fully three dimensional
134
+ and the polarisation ellipse is free to tilt in any Cartesian direction, circular polarisation still
135
+ occurs along one-dimensional threads (C lines which are no longer straight as in the paraxial
136
+ case) but the surrounding polarisation ellipses also twist, so that their major axes sweep out
137
+ M¨obius strips [32]–[34]. Analogues of C lines exist in polychromatic fields, shaping the rest
138
+ of the field into other remarkable topological structures [35].
139
+
140
+ 4
141
+ 3D ZEROS IN ELECTROMAGNETIC FIELDS
142
+ L lines/L surfaces in paraxial fields (ignoring longitudinal fields) separate regions of left
143
+ and right handed polarisation ellipses.
144
+ In non-paraxial fields, L lines are strictly one-
145
+ dimensional lines (not surfaces) and complement C lines in shaping the surrounding po-
146
+ larisation structure.
147
+ This reduction of dimension to the L entity occurs because, to be
148
+ linearly polarised, the real and imaginary parts of the field (say E = p + iq) need to be
149
+ (anti)parallel (not necessarily equal). If E is paraxial and linearly polarised, then in the
150
+ transverse plane, the ratio of the x components of p and q must equal the ratio of their y
151
+ components—a single condition, dissolving only one degree of freedom of one vector relative
152
+ to the other. If E is non-paraxial, then an extra condition accounting for the ratio of the
153
+ z components of p and q must be satisfied for linear polarisation [23]. Between paraxial
154
+ and full 3D fields, the linear polarisation object’s codimension, which is the dimension of
155
+ the electric spin angular momentum field SE minus the dimension of the L line/L surface
156
+ which lies in SE, increases from one to two. The spin angular momentum of the field is zero
157
+ when linearly polarised, meaning the direction of the normal to the field oscillations cannot
158
+ be defined. Drawing a circuit around an L line, the spin vector rotates through 2π radians
159
+ in a clockwise or anti-clockwise sense and defines the L line’s topological index.
160
+ The characteristics of scalar vortices and C lines and L lines are visualised in Fig. 1.
161
+ 2.2. Indexing Point-like Singularities. Polarisation singularities occur equally often
162
+ among the general polarisation ellipses in E and H fields, and need not coincide with each
163
+ other. Phase singularities, C lines and L lines are all indexed by looking at the circulation or
164
+ rotation of a scalar or vector quantity around a loop enclosing the singularity of interest [36].
165
+ All three of these singularities are threads in 3D fields, but the winding number concept can
166
+ be generalised to higher dimensional singularities and calculated for point-like, 3D vector
167
+ singularities via the topological degree. Instead of integrating a quantity associated with
168
+ a line singularity around a 1D closed circuit, for isolated singular points in 3D, we should
169
+ integrate an appropriate quantity over a closed surface enclosing the point singularity. For
170
+ a vector V(rS) on a surface S (rS ∈ S) in 3D real space, for example, the topological de-
171
+ gree of rS �→ V (the mapping from the real space surface rS to V) is a calculation of the
172
+ integer number of times that every possible direction of V is realised (on a sphere) on all
173
+ the points rS on the surface S. As with other kinds of topological singularities in physical
174
+ fields, the easiest realised topological degrees (winding numbers) are ±1. Mathematically, a
175
+ 0, ±1 topological degree is the integral of the determinant of the dyadic D(V) of V over S
176
+ divided by A, the area of S,
177
+ (1)
178
+ deg(V) = 1
179
+ A
180
+
181
+ S
182
+ det(D(V))dS.
183
+ The dyadic D(V), also called the Jacobian matrix of V, contains the first order spatial
184
+ derivatives of each component of V.
185
+ The sign of the determinant of D(V) equals the
186
+ product of the signs of its eigenvalues. For 3D vectors where D(V) is a 3 × 3 matrix, it
187
+ is possible for drastically different behaviour of V to be hidden under the same topological
188
+ degree. For example, if V(r = 0) = 0 (meaning the direction of V is singular at the origin)
189
+ and we assume that a linear map from an origin-enclosing surface to V has a topological
190
+ degree of −1, then D(V) at r = 0 could have signed eigenvalues (in any order) of + + −
191
+ or − − −. Physically, the origin could either be a saddle point or a sink for V with no
192
+ distinction in topological degree because both + + − and − − − eigenvalues multiply to a
193
+ negative sign. Rather than calculating the topological degree, to try to classify the flux of
194
+
195
+ 3D ZEROS IN ELECTROMAGNETIC FIELDS
196
+ 5
197
+ C-l
198
+ in
199
+ e
200
+ L
201
+ -l
202
+ in
203
+ e
204
+ S
205
+ c
206
+ a
207
+ l
208
+ a
209
+ r
210
+ V
211
+ o
212
+ r
213
+ t
214
+ e
215
+ x
216
+ ±
217
+ 2
218
+ l
219
+ π
220
+ on-plane view
221
+ on-plane view
222
+ Figure 1. Visualisation of scalar and polarisation singularities in a non-
223
+ paraxial electromagnetic field. Scalar vortices (black line) exist in complex
224
+ scalar fields, such as the components of E, where the scalar field is zero
225
+ and its phase is undefined, forming 1D threads in the interference of three
226
+ or more plane waves. Around a scalar vortex line, the phase of the field
227
+ increases by an integer l multiple of 2π in a clockwise or anticlockwise
228
+ sense. Singular lines exist in the complex vector characteristic of E and
229
+ H fields, called polarisation singularities, which include C lines (lines of
230
+ circular polarisation) and L lines (lines of linear polarisation). In a circuit
231
+ around a point on a C line (blue line), in the plane of the polarisation
232
+ circle at that point, nearby polarisation ellipses rotate through an integer
233
+ multiple of π radians. Around an L line (green line), the normal to nearby
234
+ polarisation ellipses rotates by an integer multiple of 2π radians.
235
+ energy and canonical momentum through a 3D optical field zero, we use the signs of the
236
+ eigenvalues of their first order dyadics evaluated in the position of the field zero.
237
+ We use the ideas discussed here to report our findings in the following sub-sections,
238
+ beginning with the six possible ways that C lines and L lines can intersect in a 3D zero.
239
+ 2.3. Polarisation Singularities at a 3D Electric Field Zero. We will focus on a 3D
240
+ electric field zero in a position r0, that is E(r0) = 0, and study the nearby strands of circular
241
+
242
+ 6
243
+ 3D ZEROS IN ELECTROMAGNETIC FIELDS
244
+ and linear electric polarisation. Identical arguments to those given here could be made for
245
+ magnetic field zeros (H(r0) = 0) and magnetic polarisation singularities, or for simultaneous
246
+ electric and magnetic field zeros (E(r0) = H(r0) = 0) and polarisation singularities of either
247
+ E or H. Any smooth function of r is nearly linear over small distances, which means all
248
+ fundamental behaviour of the electric field in the immediate vicinity of the zero is captured by
249
+ its Jacobian, JE = D(E), a complex 3×3 matrix containing all first-order spatial derivatives
250
+ of Ex, Ey and Ez, evaluated at r0,
251
+ (2)
252
+ JE = D(E) =
253
+
254
+
255
+
256
+ ∂Ex
257
+ ∂x
258
+ ∂Ex
259
+ ∂y
260
+ ∂Ex
261
+ ∂z
262
+ ∂Ey
263
+ ∂x
264
+ ∂Ey
265
+ ∂y
266
+ ∂Ey
267
+ ∂z
268
+ ∂Ez
269
+ ∂x
270
+ ∂Ez
271
+ ∂y
272
+ ∂Ez
273
+ ∂z
274
+
275
+
276
+ � = (∇ ⊗ E)T .
277
+ The Jacobian of the magnetic field at r0, JH, can be defined similarly. In free space, JE
278
+ and JH are always traceless because E and H are divergence-free. Maxwell’s equations also
279
+ require that if E(r0) = 0, then JH must be symmetric at r0 and vice versa for H(r0) = 0.
280
+ We make a first-order approximation of the electric field vector near r0 with,
281
+ (3)
282
+ ˜E = JEv,
283
+ where v = r−r0.
284
+ Nearby C lines emerge in our approximated field wherever ˜E · ˜E = 0, which we may
285
+ calculate using (3) and separate into real and imaginary parts,
286
+ (4)
287
+ ˜E · ˜E = (JEv) · (JEv)
288
+ = vT Mv + ivT Nv,
289
+ where M = Re{JT
290
+ EJE} and N = Im{JT
291
+ EJE}. The two terms in equation (4) are quadric
292
+ surfaces connecting constant valued real and imaginary parts of ˜E · ˜E, and the real and
293
+ imaginary surfaces described by setting (4) equal to zero cross in real space where ˜E is
294
+ circularly polarised. The real 3 × 3 matrices M and N are symmetric and always have real
295
+ eigenvalues. Normally, these eigenvalues have signs + + − or − − + (in any order) so that
296
+ the surfaces vT Mv = 0 and vT Nv = 0 are both double cones, vertices touching at v = 0
297
+ as shown in Fig. 2(a). The cones have an elliptical cross section whose ellipticity is constant
298
+ with distance from v = 0 in the linear approximation. Because two ellipses can intersect
299
+ at either zero, two or four points (as shown in the lower part of Fig. 2(a)), there must be
300
+ either zero, two or four C lines passing through the electric field zero. If one matrix, say
301
+ M, is positive or negative definite (all positive or all negative eigenvalues), Re{˜E · ˜E} will
302
+ solely increase or decrease in all outward directions from v = 0. Then, the constant-valued
303
+ surface vT Mv = C becomes an ellipsoid, and vT Mv = 0 is satisfied only at v = 0 so that
304
+ no C lines pass through the 3D vortex.
305
+ To reveal the number of L lines that extend through the 3D electric field zero, we must
306
+ calculate the electric field spin, given by,
307
+ (5)
308
+ SE ∝ Im{E∗ × E} = 2Re{E} × Im{E}.
309
+ When the electric field is linearly polarised (SE = 0), the real and imaginary parts of E
310
+ must be (anti)parallel. Under the approximation (3), this means,
311
+ (6)
312
+ Re{JE}v = λIm{JE}v,
313
+
314
+ 3D ZEROS IN ELECTROMAGNETIC FIELDS
315
+ 7
316
+ b
317
+ a
318
+ L-line
319
+ C-line
320
+ cone cross section
321
+ on unit sphere
322
+ Re{E · E} = 0
323
+ E = 0
324
+ Im{E · E} = 0
325
+ 2
326
+ 0
327
+ 4
328
+ Figure 2. Electric polarisation singularities passing through a 3D electric
329
+ field zero at a position r0. (a) Visualisation of why zero, two or four C
330
+ lines must pass through r0. In a first-order approximation, the surfaces
331
+ Re{E · E} = 0 (red) and Im{E · E} = 0 (blue) are double cones, and where
332
+ they intersect, C lines exist. Two double cones intersect along two or four
333
+ lines, or do not intersect at all, which is easy to see by considering the cones’
334
+ cross sections on the unit sphere: ellipses which cross at zero, two or four
335
+ points. (b) Six different examples of electric field zeros created at a position
336
+ r0 (red circle), one per unique combination of C lines and L lines meeting
337
+ there. The C lines are marked by blue regions where E · E ≈ 0 and the L
338
+ lines by the green regions where Im{E∗ × E} ≈ 0. Each field zero is created
339
+ in analytical simulations by designing the polarisation of ten plane waves
340
+ with random wavevectors, wavelength 500 nm, to interfere destructively at
341
+ r0. The plane waves have different polarisations and wavevectors for each
342
+ example zero in (b).
343
+ where λ is a positive or negative scalar. The directions of the L lines crossing through v = 0
344
+ are given by the three eigenvectors of the matrix Im{JE}−1Re{JE}. Since this matrix is
345
+ real-valued, either all three of these eigenvectors are real, corresponding to three L lines, or
346
+ only one of them is real and is accompanied by a conjugate pair of complex eigenvectors. In
347
+ that case, just one L line passes through the 3D zero because v cannot point in a complex
348
+ direction.
349
+ Summarising, either zero, two or four C lines and either one or three L lines always meet
350
+ at r0 in a 3D electric field zero E(r0) = 0. An identical conclusion can be drawn for C lines
351
+ and L lines of the magnetic field for the case of H(r0) = 0. In Fig. 2(b), an example of
352
+ each of the six possible C line/L line combinations through a 3D zero is presented, the zeros
353
+
354
+ 8
355
+ 3D ZEROS IN ELECTROMAGNETIC FIELDS
356
+ created in the interference of ten plane waves. Each zero is enforced by separate ensembles
357
+ of ten plane waves with random wavevector directions that are deliberately polarised to
358
+ destructively interfere at a single point.
359
+ 2.4. Energy Flux Singularity. The flow of energy in a light field is described by the
360
+ complex Poynting vector,
361
+ 1
362
+ 2E∗ × H.
363
+ The real part of this vector (often itself called the
364
+ ‘Poynting vector’) corresponds to the time-averaged power transfer (sometimes known as
365
+ active power) in the field, while reactive power (associated with oscillations in the transfer
366
+ of power) is accounted for by the less-used imaginary part. We refer to these two real vectors
367
+ as Pr and Pi,
368
+ (7)
369
+ Pr = 1
370
+ 2Re{E∗ × H}
371
+ (8)
372
+ Pi = 1
373
+ 2Im{E∗ × H}
374
+ When either E or H is zero at a point r0, the complex Poynting vector vanishes, and its
375
+ real and imaginary parts circulate in the space around the zero according to their first-order
376
+ derivatives at r0. The real part Pr is divergence-less in free space where there is no absorption
377
+ or energy generation, and must therefore be organised into a vector saddle point at r0. An
378
+ example flow of active power around a 3D electric field zero created at r0 (E(r0) = 0,
379
+ H(r0) ̸= 0) is given in the top row of panels in Fig. 3, where Pr is plotted on the xy, xz, and
380
+ yz planes coinciding at r0. Although there is no net flow of active power in or out of the zero,
381
+ Pr streamlines can be arranged in two topologically different ways depending on whether
382
+ the signs of the eigenvalues of its first-order dyadic, Im{(JT
383
+ E − JE)J∗
384
+ E} (written electrically
385
+ without prefactors), are + + − or + − −, corresponding to two possible topological orders
386
+ of −1 or +1. One might notice that the imaginary Poynting vector Pi, which is plotted on
387
+ the same planes for the same free space electric field zero at r0 in the lower row of panels of
388
+ Fig. 3, is not divergence-free—in fact, it is physically possible for a source, sink or saddle of
389
+ Pi to exist there, depending on whether E or H is zero. To see why, we first note that using
390
+ Maxwell’s equations in free space (see supplemental information), the imaginary Poynting
391
+ vector can be decomposed into a sum of two terms, one polarisation-independent and one
392
+ polarisation-dependent, each containing electric and magnetic contributions,
393
+ (9)
394
+ Pi = − c2
395
+ 2ω ϵ0Re{(JT
396
+ E − JE)E∗}
397
+ = c2
398
+ 2ω µ0Re{(JT
399
+ H − JH)H∗}
400
+ = c2
401
+
402
+
403
+ −1
404
+ 2ϵ0∇(E∗ · E) + 1
405
+ 2µ0∇(H∗ · H)
406
+
407
+ + c2
408
+ 4ω Re{ϵ0JEE∗ − µ0JHH∗}.
409
+ The first term in Eq. (9) represents the difference in gradient of the electric and magnetic
410
+ energy density of the light field, while polarisation-dependent behaviour of Pi derives from
411
+ the second term since JEE∗ and JHH∗ contain inter-component multiplication. In certain
412
+ cases such as a uniformly polarised standing wave, the second term is zero and the gradient
413
+ of the difference in electric and magnetic energy density determines the direction of reactive
414
+ power flow. Because E∗ · E = |E|2 is a positive real quantity, a 3D zero in E is a source for
415
+
416
+ 3D ZEROS IN ELECTROMAGNETIC FIELDS
417
+ 9
418
+ Pi
419
+ Pr
420
+ x
421
+ y
422
+ 0.08λ
423
+ x
424
+ z
425
+ y
426
+ z
427
+ y
428
+ x
429
+ x
430
+ y
431
+ z
432
+ z
433
+ Figure 3. Flow of the real (Pr, red) and imaginary (Pi, teal) parts of the
434
+ Poynting vector, 1
435
+ 2E∗ × H, on the xy, xz and yz planes coinciding with an
436
+ electric field zero at position r0 (blue circle). The real Poynting vector is
437
+ divergence-free, meaning a vector saddle point of Pr is set up at r0. The
438
+ imaginary Poynting vector is not necessarily divergence-free and can be or-
439
+ ganised in a sink at r0 when E(r0) = 0 (a source is not possible unless
440
+ the magnetic field is zero). Results are generated by designing the polari-
441
+ sation of ten plane waves with random propagation directions to interfere
442
+ completely at r0.
443
+ the vector ∇(E∗ · E) (and likewise for H). Depending on how the polarisation-independent
444
+ and polarisation-dependent terms combine in Eq. (9), the imaginary Poynting vector could
445
+ have non-zero divergence at r0. Note that there is a difference in sign between the electric
446
+ and magnetic terms in Eq. (9), meaning Pi behaves differently for E(r0) = 0, H(r0) ̸= 0
447
+ and H(r0) = 0, E(r0) ̸= 0 and E(r0) = H(r0) = 0 3D zeros. To understand the flow of
448
+ Pi through an optical field zero, we assume a non-dual electric field zero (E(r0) = 0 and
449
+ H(r0) ̸= 0) and make a first-order approximation of Pi, this time referring to the relevant
450
+ linear transformation matrix as the first-order dyadic of the imaginary Poynting vector,
451
+ D(Pi), which is defined identically to JE in Eq. (2) with Pi and its components in place of
452
+ E. Our approximate imaginary Poynting vector is,
453
+ (10)
454
+ ˜Pi = D(Pi)v
455
+
456
+ 10
457
+ 3D ZEROS IN ELECTROMAGNETIC FIELDS
458
+ where v = r − r0. The dyadic D(Pi) = (∇ ⊗ Pi)T evaluated at r0 is, using the electric
459
+ representation of Pi in Eq. (9) (top line),
460
+ (11)
461
+ D(Pi) = − c2
462
+ 2ω ϵ0Re{(JT
463
+ E − JE)J∗
464
+ E}.
465
+ There are no second order derivatives of E in Eq. (11) because E(r0) = 0. Surprisingly,
466
+ D(Pi) cannot have three positive eigenvalues, as justified in the supplemental information.
467
+ The result is that at a 3D electric field zero, Pi is organised into one of two types of sad-
468
+ dle with topological degree 1 or −1, or a sink with topological degree −1, never a source.
469
+ When H(r0) = 0 and E(r0) ̸= 0, the opposite is true because of the dual-asymmetry of the
470
+ imaginary Poynting vector: Pi can form a saddle or source at r0 but not a sink.
471
+ 2.5. Orbital Current Singularity. When divided by c2, the real Poynting vector Eq. (7)
472
+ turns into a momentum density, the kinetic momentum density, which, using Maxwell’s
473
+ equations for time-harmonic fields, can be split in to a well-known sum of separate orbit
474
+ and spin contributions [37], [38]. For instance, by substituting (with prefactors) the curl of
475
+ E for H, the kinetic momentum density can be written as,
476
+ (12)
477
+ Π =
478
+ 1
479
+ 2c2 Re{E∗ × H}
480
+ = 1
481
+ 2ω ϵ0Im{E∗ · (∇)E} + 1
482
+ 2ω ϵ0∇ × 1
483
+ 2Im{E∗ × E},
484
+ where A · (∇)B = Ax∇Bx + Ay∇By + Az∇Bz = JT
485
+ BA, with JB being the Jacobian
486
+ of B defined identically to Eq. (2) (the decomposition is explained in more detail in the
487
+ supplemental information). The first decomposed term is po
488
+ E, the orbital contribution to
489
+ the kinetic momentum density, called the canonical momentum density, imparted by the
490
+ electric field only,
491
+ (13)
492
+ po
493
+ E = 1
494
+ 2ω ϵ0Im{E∗ · (∇)E} = 1
495
+ 2ω ϵ0Im{JT
496
+ EE∗}.
497
+ Eq. (12) can also be written purely in terms of H and by averaging these equivalent repre-
498
+ sentations of Π, the dual-symmetric canonical momentum density is obtained,
499
+ (14)
500
+ po = 1
501
+ 4ω Im{ϵ0E∗ · (∇)E + µ0H∗ · (∇)H}.
502
+ This momentum density definition contains both the electric and magnetic field’s influence,
503
+ and produces the total orbital angular momentum of the field within a volume when r×po is
504
+ integrated. Naturally, the electric and magnetic contributions to (14) become zero whenever
505
+ E = 0 and H = 0. This means that, in a 3D electric field zero positioned at r0, the direction
506
+ of the electric contribution po
507
+ E is undefined and should circulate around r0 in some fashion.
508
+ Of course, while the total canonical momentum density at r0 is not zero when only E = 0,
509
+ we could draw the same conclusions we make here for Eq. (14) rather than Eq. (13) near a
510
+ dual 3D vortex (E(r0) = H(r0) = 0). Note that by normalising E, the argument to Im{}
511
+ in Eq. (13) defines the local electric wavevector [25],
512
+ (15)
513
+ ke
514
+ loc = −ie∗ · (∇)e,
515
+ where e =
516
+ E
517
+
518
+ E∗·E. The real part of ke
519
+ loc is the local phase gradient of the electric field, while
520
+
521
+ 3D ZEROS IN ELECTROMAGNETIC FIELDS
522
+ 11
523
+ Re{kloc} on yz plane
524
+ xplane = -25 nm
525
+ xplane = -95 nm
526
+ xplane = 0 nm
527
+ xplane = +25 nm
528
+ |Re{kloc}| < 0.1*k
529
+ r0
530
+ Figure 4. Vortex pseudo-line (red) of the real electric local wavevector,
531
+ Re{ke
532
+ loc}, passing though an electric field zero at position r0 (blue circle),
533
+ that is E(r0) = 0 and H(r0) ̸= 0. The red line indicates regions of space
534
+ where |Re{ke
535
+ loc}| < 0.1k, where k = 2π
536
+ λ and λ = 500 nm. The line is roughly
537
+ oriented along the x axis and the electric local wavevector is plotted on four
538
+ different yz planes. The three planes which coincide with the line are −25
539
+ nm, 0 nm, +25 nm in the x direction away from r0, showing clear vortex-
540
+ like circulation of momentum around the axis of the red line. On the fourth
541
+ plane −95 nm away from r0, the vortex-like circulation of Re{ke
542
+ loc} has lost
543
+ some definition, highlighting that Re{ke
544
+ loc} is not exactly zero along a line,
545
+ and only appears line-like near to the E field zero (the only location where
546
+ Re{ke
547
+ loc} is exactly zero is at r0, because Re{ke
548
+ loc} vanishes at points, not
549
+ along lines). Results are generated from interference of ten plane waves
550
+ with random wavevectors, wavelength λ = 500 nm, deliberately polarised
551
+ to create a 3D electric field zero at r0.
552
+
553
+ 12
554
+ 3D ZEROS IN ELECTROMAGNETIC FIELDS
555
+ Im{ke
556
+ loc} points in the direction of decreasing electric field intensity. A three-dimensional,
557
+ real vector, Re{kE
558
+ loc} (and therefore canonical momentum density) can vanish at localised
559
+ points in space with non-zero electric field, where a saddle-like circulation of Re{kE
560
+ loc} sur-
561
+ rounds [39], similar to the top row of panels in Fig. 3. But when the electric field vanishes
562
+ and the direction of Re{kE
563
+ loc} is automatically undefined, a different behaviour emerges.
564
+ To understand why, we once again make a first-order approximation, this time of po
565
+ E,
566
+ capturing the electric canonical momentum very near to a 3D electric field zero at r0 in its
567
+ dyadic D(po
568
+ E),
569
+ (16)
570
+ ˜po
571
+ E = D(po
572
+ E)v,
573
+ where v = r − r0. The dyadic D(po
574
+ E) = (∇ ⊗ po
575
+ E)T at a general point in space is given by,
576
+ (17)
577
+ D(po
578
+ E) = 1
579
+ 4ω ϵ0Im{JT
580
+ EJ∗
581
+ E} + 1
582
+ 4ω ϵ0Im{E∗
583
+ xHess(Ex) + E∗
584
+ yHess(Ey) + E∗
585
+ zHess(Ez)},
586
+ where Hess(A) is the Hessian matrix of the scalar field A,
587
+ (18)
588
+ Hess(A) =
589
+
590
+
591
+
592
+ ∂2A
593
+ ∂x2
594
+ ∂2A
595
+ ∂x∂y
596
+ ∂2A
597
+ ∂x∂z
598
+ ∂2A
599
+ ∂y∂x
600
+ ∂2A
601
+ ∂y2
602
+ ∂2A
603
+ ∂y∂z
604
+ ∂2A
605
+ ∂z∂x
606
+ ∂2A
607
+ ∂z∂y
608
+ ∂2A
609
+ ∂z2
610
+
611
+
612
+ � .
613
+ As E approaches zero, the trace-less matrix D(po
614
+ E) is dominated by the first term in Eq. (17)
615
+ and if evaluated at a location r0 where E(r0) = 0, the linear approximation of po
616
+ E responds
617
+ only to the properties of the matrix in the first term of Eq. (17), Im{JT
618
+ EJ∗
619
+ E}. This is an
620
+ anti-symmetric matrix which always has one zero and two purely imaginary eigenvalues,
621
+ meaning that in the direction of the one real eigenvector of D(po
622
+ E) at r0, the approximated
623
+ electric canonical momentum does not increase at all, producing a zero-momentum line. The
624
+ imaginary eigenvalues of D(po
625
+ E) twists po
626
+ E into a surrounding vortex-like structure. This
627
+ special type of vector field singularity is called a circulation. Fundamentally, the canonical
628
+ momentum should only be zero at confined points in general 3D fields, so this apparent
629
+ vortex line is only preserved locally to the electric field zero at r0, dissolving with distance
630
+ as higher-order derivatives of po
631
+ E become significant (it is, in fact, just a very elongated null
632
+ point of po
633
+ E). The direction of the vortex pseudo-line in the vicinity of the electric field zero
634
+ is also given by the curl of the orbital current,
635
+ (19) D = ∇×po
636
+ E ∝ Re{∇Ex}×Im{∇Ex}+Re{∇Ey}×Im{∇Ey}+Re{∇Ez}×Im{∇Ez}.
637
+ We visualise this feature in Fig. 4, where a 3D electric field zero is created at a point r0
638
+ by deliberately polarising ten plane waves, each with random wavevectors, to destructively
639
+ interfere at r0. The real part of the electric local wavevector, Re{ke
640
+ loc}, the real part of
641
+ Eq. (15), is calculated and the region of space where |Re{ke
642
+ loc}| < 0.1k (k = 2π
643
+ λ ) is revealed
644
+ by a red line approximately 0.1λ in length. The electric local wavevector is proportional to
645
+ po
646
+ E and shows the direction of canonical momentum carried by the electric field. This red
647
+ line is not continuous; Re{ke
648
+ loc} actually vanishes only at r0 but it increases in magnitude
649
+ so slowly in a certain direction (the direction of the real eigenvector of Im{JT
650
+ EJ∗
651
+ E}) that a
652
+ line-like structure of |Re{ke
653
+ loc}| ≈ 0 exists very near to r0, stirring the electric canonical
654
+ momentum into a local vortex. This is shown by the four yz planes on which Re{ke
655
+ loc} is
656
+ plotted in Fig. 4. The real part of the electric local wavevector forms a swirl around the
657
+ red line, a swirl losing definition if the plotting plane is too far from r0. This remarkable
658
+
659
+ 3D ZEROS IN ELECTROMAGNETIC FIELDS
660
+ 13
661
+ structure always appears when all three electric field components are zero together at a point.
662
+ 2.6. Spin Current. In the decomposition of the kinetic momentum density, Eq. (12), the
663
+ second term is called the spin momentum. It is proportional (and should not be confused
664
+ with) the curl of the spin angular momentum of the electric, magnetic or electromagnetic field
665
+ depending on the representation. Like before, we will focus on the electric representation of
666
+ the decomposed kinetic momentum density, referring to the electric spin momentum with
667
+ ps
668
+ E,
669
+ (20)
670
+ ps
671
+ E = 1
672
+ 2ω ϵ0∇ × 1
673
+ 2Im{E∗ × E} = − 1
674
+ 2ω ϵ0Im{JEE∗}.
675
+ The electric spin momentum is a divergence-free vector whose dyadic D(ps
676
+ E) has three non-
677
+ zero eigenvalues when evaluated in the position of an electric field zero, organising ps
678
+ E into
679
+ one of two types of 3D vector saddle point, just like the real Poynting vector in Fig. 3.
680
+ Expressing, in Eq. (20), the electric spin momentum with the electric field Jacobian reveals
681
+ that only a difference in sign and orientation of JE separates ps
682
+ E from the electric canon-
683
+ ical momentum po
684
+ E, given by Eq. (13). This means that, in a dual electric-magnetic zero,
685
+ E(r0) = H(r0) = 0, where JE is symmetric from Maxwell’s equations, the spin and canoni-
686
+ cal momentum dyadics are equal and opposite, D(ps
687
+ E) = −D(po
688
+ E) (this also means that the
689
+ dyadic of the real Poynting vector is zero). In a first-order approximation of both ps
690
+ E and
691
+ po
692
+ E near r0 in this case, a zero-line exists in exactly the same place for both vectors, and
693
+ around it, ps
694
+ E and po
695
+ E have vortex-like circulation with opposite handedness to each other.
696
+ 2.7. Spin Angular Momentum. The dual spin angular momentum, created by the rota-
697
+ tion of the electric and magnetic field vectors, is given by [40],
698
+ (21)
699
+ S = 1
700
+ 4ω Im{ϵ0E∗ × E + µ0H∗ × H}.
701
+ The electric and magnetic parts individually describe the ellipticity of the electric and mag-
702
+ netic polarisation ellipses, pointing in the perpendicular direction to the ellipse plane. Once
703
+ more for simplicity, we will focus on the singularity in the electric field spin angular momen-
704
+ tum, SE =
705
+ 1
706
+ 4ωIm{ϵ0E∗ × E}, left in a 3D electric field zero positioned at r0. The total spin
707
+ angular momentum, Eq. (21), is not zero if only E(r0) = 0, but we could draw similar con-
708
+ clusions for S as we do here for SE when the electric and magnetic fields are simultaneously
709
+ zero at r0.
710
+ Decomposing SE using Maxwell’s equations, we can write its first-order dyadic at r0 in
711
+ terms of the light field Jacobian matrices (see supplemental material),
712
+ (22)
713
+ D(SE) =
714
+ 1
715
+ 4ω2 ϵ0Re{(JT
716
+ H − JH)J∗
717
+ E}.
718
+ We note that Eq. (22), describing the spatial derivatives of the electric field spin only, de-
719
+ pends on the magnetic field Jacobian matrix JH, which is automatically symmetric whenever
720
+ E = 0 from Maxwell’s equations. The consequence is that JT
721
+ H − JH = 0 and all elements
722
+ of D(SE) at r0 are zero when E(r0) = 0. Higher-order derivatives of SE (Hessian matrices
723
+ for each component) need to be calculated to fully understand the flux of the electric spin
724
+ angular momentum in the neighbourhood of a 3D zero in E.
725
+
726
+ 14
727
+ 3D ZEROS IN ELECTROMAGNETIC FIELDS
728
+ Matrix at r0
729
+ Characteristic
730
+ JE
731
+ 3D complex Jacobian of the electric field at r0 (Eq. (2))
732
+ 1.
733
+ Im{JE}−1Re{JE}
734
+ Number of real eigenvalues is the number of L lines passing through r0
735
+ 2.
736
+ Re{JT
737
+ EJE}
738
+ Eigenvectors are the principle axes of the double cone Re{E · E} = 0.
739
+ Number of intersections of this double cone with that of matrix 3 are the number of C lines.
740
+ 3.
741
+ Im{JT
742
+ EJE}
743
+ Eigenvectors are the principle axes of the double cone Im{E · E} = 0.
744
+ Number of intersections of this double cone with that of matrix 2 are the number of C lines.
745
+ 4.
746
+ Im{JT
747
+ EJ∗
748
+ E}
749
+ Direction of real eigenvector (there is only one) is the axis of the electric local wavevector vortex.
750
+ Imaginary eigenvectors give the handedness of momentum circulation.
751
+ 5.
752
+ −Im{JEJ∗
753
+ E}
754
+ Proportional to first-order dyadic of spin current (Eq. (20)).
755
+ Eigenvalue signs give the type of minimum at r0
756
+ 6.
757
+ Im{(JT
758
+ E − JE)J∗
759
+ E}
760
+ Proportional to first-order dyadic of real Poynting vector (active power flow).
761
+ Eigenvalue signs give the type of minimum at r0
762
+ 7.
763
+ −Re{(JT
764
+ E − JE)J∗
765
+ E}
766
+ Proportional to first-order dyadic of imaginary Poynting vector (reactive power flow).
767
+ Eigenvalue signs give the type of minimum at r0
768
+ Table 1. Summary of the seven dyadics (numbered) which classify the
769
+ vector field singularities organised by a 3D electric field zero.
770
+ 2.8. Summary Table. Here, in Table 1, we summarise the seven dyadics which classify
771
+ the number of crossing C lines and L lines, the flux of the real and imaginary parts of the
772
+ Poynting vector, the spin current, and the orientation of the canonical momentum vortex
773
+ pseudo-line existing at a 3D electric field zero, E(r0) = 0 while H(r0) ̸= 0. To characterise
774
+ a magnetic field zero, the matrices can be written magnetically by substituting JE for JH
775
+ (and changing the ‘−’ sign in front of matrix 7 to a ‘+’), in which case matrices 1, 2, and
776
+ 3 characterise magnetic polarisation singularities, and matrix 4 and 5 the magnetic local
777
+ wavevector and spin current respectively. In the case of a dual 3D zero, E(r0) = H(r0) = 0,
778
+ matrices 6 and 7 are zero because both JE and JH are symmetric.
779
+ 3. Discussion
780
+ Three-dimensional optical field zeros are co-dimension 6 entities which, unlike axial zeros
781
+ in beams, are completely localised, the optical field growing brighter in all outward directions.
782
+ Although they rarely occur naturally in light (requiring three additional parameters beyond
783
+ spatial x, y, z due to their codimension), 3D zeros can be deliberately created in plane wave
784
+ interference or in the near fields of light-scattering matter [21] to reveal the unusual features
785
+ they imprint in the light field’s energy, wavevector and polarisation structures. Both with
786
+ mathematical argument and by creating field zeros in plane wave interference, we showed
787
+ that whenever the electric or magnetic field is zero at a point r0, then some combination of
788
+ zero, two or four C lines, lines of pure circular polarisation, and one or three L lines, lines of
789
+ pure linear polarisation of the field in question, intersect at r0. Likewise, an imprint is made
790
+ at r0 in the surrounding flux of the parts of the complex Poynting vector 1
791
+ 2E∗ × H, the local
792
+ wavevector, the spin momentum and spin angular momentum, each organised in a vector
793
+ source, sink or saddle point. The signs of the eigenvalues of the first-order dyadics of each
794
+ quantity at r0 reveal this. Of particular interest is the canonical momentum: while typically
795
+
796
+ 3D ZEROS IN ELECTROMAGNETIC FIELDS
797
+ 15
798
+ vanishing at confined points in space, a zero in E or H at r0 twists the canonical momentum
799
+ imparted by that null-containing field into a sub-wavelength, vortex-like structure around
800
+ an axis with an easily calculated direction. We say it is a sub-wavelength object because,
801
+ although it resembles the twisted vortex structures of well-known doughnut beams, it is
802
+ not preserved with increasing distance from r0.
803
+ In the combination of the way energy
804
+ flows through r0 and the number of intersecting polarisation singularities, any 3D field zero
805
+ inscribes one of a discrete number of topologically unique signatures in the electromagnetic
806
+ field. We identify seven dyadics whose spectra could classify all physically possible imprints
807
+ of 3D optical field zeros.
808
+ It is tempting to speculate that a surface enclosing an electric or magnetic field point
809
+ zero might, in addition to the quantities already identified, possess a nonzero topological
810
+ Chern number due to a nontrivial geometric phase 2-form (Berry curvature) resulting from
811
+ the neighbouring polarisation pattern. The appropriate expression for the geometric phase
812
+ 2-form is the curl of the local wavevector Eq. (15),
813
+ (23)
814
+ V = ∇ × ke
815
+ loc
816
+ Near an electric field zero, V is anti-symmetric; integrating over a small sphere centred on
817
+ the field zero gives zero. We showed that in its neighbourhood, a 3D zero in E constructs
818
+ a local wavevector vortex with an identifiable axis along which |V| is very large.
819
+ It is
820
+ interesting that even when the complete vector characteristics of light are considered, a
821
+ linear momentum vortex line still persists when all three field components are zero at a
822
+ confined point. This vector field vortex is an analogue to a phase vortex in a complex scalar
823
+ field, with a key difference being that the vector field vortex line is not continuous. Although
824
+ the electromagnetic zero has some topological effects as we described in this paper, it is not
825
+ so strong as to endow a surface around it with a nonzero Chern number.
826
+ We have shown that, despite being unstable to perturbation, 3D zeros of the electric and
827
+ electromagnetic field have topological properties generalising those of scalar vortices and
828
+ polarisation singularities. Further studies might indicate how these properties behave under
829
+ perturbation. We hope that by highlighting the unusual properties of 3D field zeros, we
830
+ can inspire new applications that may be otherwise unachievable with traditionally used,
831
+ lower-dimensional dark spots, such as those in beams or simple standing waves.
832
+ 4. Methods
833
+ 3D electric field zeros were created in analytical simulations of ten monochromatic inter-
834
+ fering plane waves. In all simulations, ten random wavevectors (all of the same magnitude
835
+ k = 2π
836
+ λ ) were generated, and for each, two orthogonal polarisation basis vectors were defined,
837
+ representing the two electric field degrees of freedom of a plane wave propagating in that
838
+ direction. The ten plane waves were then polarised deliberately to destructively interfere
839
+ and leave a 3D electric field zero at a single confined point, r0, following the procedure given
840
+ in [21]. Let eikj·rˆej,1 and eikj·rˆej,2 be the two orthogonal polarisation states (degrees of free-
841
+ dom) of the electric field of the jth plane wave with unit amplitude at the origin (j ranges
842
+ from 1 to 10, kj is the jth plane wave’s random wavevector with magnitude |kj| =
843
+
844
+ λ ,
845
+ and ˆej,1 and ˆej,2 are two orthogonal unit vectors satisfying ˆej,1 · ˆej,2 = 0, ˆej,1 · kj = 0,
846
+ ˆej,2 · kj = 0). In total, we have twenty available polarisation degrees of freedom, and by
847
+ propagating each plane wave, we can calculate the electric field that each individual degree
848
+ of freedom develops in the position of a desired electric field zero, r0. Now, we multiply
849
+
850
+ 16
851
+ 3D ZEROS IN ELECTROMAGNETIC FIELDS
852
+ each degree of freedom by a complex scalar, so that the jth plane wave has components
853
+ xj,1eikj·rˆej,1 and xj,2eikj·rˆej,2. Adding together all scaled degrees of freedom, evaluated at
854
+ r = r0, we have a linear system of three equations, one per component of the total field
855
+ at r0, with complex variables xj,1 and xj,2 representing the amplitude of the orthogonal
856
+ components of the jth plane wave phasor. Setting to zero all three total electric field com-
857
+ ponents at r0, we may solve the system of equations to find the polarisation components of
858
+ each plane wave required for complete destructive interference at r0. Since only three scalar
859
+ conditions are enforced (Ex = 0, Ey = 0 and Ez = 0 for the total field at r0) by twenty
860
+ degrees of freedom, the system is under-determined and seventeen possible solutions exist
861
+ for a 3D zero at r0. Any one of these solutions may be chosen to realise the zero, or, as we
862
+ do, the solutions may be combined in a linear sum with random complex amplitudes. A 3D
863
+ zero could be produced with as few as four plane waves (in fact, a zero could be enforced by
864
+ only two plane waves, but it would not be three-dimensional), though the total field would
865
+ appear less random.
866
+ References
867
+ 1.
868
+ O’Holleran, K., Dennis, M. R. & Padgett, M. J. Topology of Light’s Darkness. Physical
869
+ Review Letters 102 (2009).
870
+ 2.
871
+ Leach, J., Dennis, M. R., Courtial, J. & Padgett, M. J. Knotted threads of darkness.
872
+ Nature 432 (2004).
873
+ 3.
874
+ O’Holleran, K., Padgett, M. J. & Dennis, M. R. Topology of optical vortex lines formed
875
+ by the interference of three, four, and five plane waves. Optics Express 14, 3039 (2006).
876
+ 4.
877
+ Dennis, M. R., King, R. P., Jack, B., O’Holleran, K. & Padgett, M. J. Isolated optical
878
+ vortex knots. Nature Physics 6 (2010).
879
+ 5.
880
+ Tempone-Wiltshire, S. J., Johnstone, S. P. & Helmerson, K. Optical vortex knots – one
881
+ photon at a time. Scientific Reports 6 (2016).
882
+ 6.
883
+ Kleckner, D. & Irvine, W. T. M. Creation and dynamics of knotted vortices. Nature
884
+ Physics 9 (2013).
885
+ 7.
886
+ Weiler, C. N., Neely, T. W., Scherer, D. R., et al. Spontaneous vortices in the formation
887
+ of Bose–Einstein condensates. Nature 455 (2008).
888
+ 8.
889
+ Hindmarsh, M. B. & Kibble, T. W. B. Cosmic strings. Reports on Progress in Physics
890
+ 58 (1995).
891
+ 9.
892
+ Guo, X., Zhong, J., Li, P., et al. Creation of topological vortices using Pancharatnam-
893
+ Berry phase liquid crystal holographic plates. Chinese Physics B 29 (2020).
894
+ 10.
895
+ Wang, L., Zhang, W., Yin, H. & Zhang, X. Ultrasmall Optical Vortex Knots Generated
896
+ by Spin-Selective Metasurface Holograms. Advanced Optical Materials 7 (2019).
897
+ 11.
898
+ Li, P., Guo, X., Zhong, J., et al. Optical vortex knots and links via holographic meta-
899
+ surfaces. Advances in Physics: X 6 (2021).
900
+ 12.
901
+ Zhang, W., Wei, K., Huang, L., et al. Optical vortex generation with wavelength tun-
902
+ ability based on an acoustically-induced fiber grating. Optics Express 24 (2016).
903
+ 13.
904
+ Lim, S. W. D., Park, J.-S., Meretska, M. L., Dorrah, A. H. & Capasso, F. Engineering
905
+ phase and polarization singularity sheets. Nature Communications 12, 4190 (2021).
906
+ 14.
907
+ Balzarotti, F., Eilers, Y., Gwosch, K. C., et al. Nanometer resolution imaging and
908
+ tracking of fluorescent molecules with minimal photon fluxes. Science 355, 606–612
909
+ (2017).
910
+
911
+ REFERENCES
912
+ 17
913
+ 15.
914
+ Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated
915
+ emission: stimulated-emission-depletion fluorescence microscopy. Optics Letters 19, 780
916
+ (1994).
917
+ 16.
918
+ He, H., Heckenberg, N. & Rubinsztein-Dunlop, H. Optical Particle Trapping with
919
+ Higher-order Doughnut Beams Produced Using High Efficiency Computer Generated
920
+ Holograms. Journal of Modern Optics 42 (1995).
921
+ 17.
922
+ He, H., Friese, M. E. J., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Direct Obser-
923
+ vation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam
924
+ with a Phase Singularity. Physical Review Letters 75 (1995).
925
+ 18.
926
+ Wang, J., Yang, J.-Y., Fazal, I. M., et al. Terabit free-space data transmission employ-
927
+ ing orbital angular momentum multiplexing. Nature Photonics 6 (2012).
928
+ 19.
929
+ Huang, H., Xie, G., Yan, Y., et al. 100 Tbit/s free-space data link enabled by three-
930
+ dimensional multiplexing of orbital angular momentum, polarization, and wavelength.
931
+ Optics Letters 39 (2014).
932
+ 20.
933
+ Willner, A. E., Pang, K., Song, H., Zou, K. & Zhou, H. Orbital angular momentum of
934
+ light for communications. Applied Physics Reviews 8 (2021).
935
+ 21.
936
+ Vernon, A. J. & Rodr´ıguez-Fortu˜no, F. J. Creating and moving nanoantenna cold spots
937
+ anywhere. Light: Science & Applications 11 (2022).
938
+ 22.
939
+ Spaegele, C. M., Tamagnone, M., Lim, S. W. D., et al. Topologically protected four-
940
+ dimensional optical singularities 2022.
941
+ 23.
942
+ Nye, J. F. & V, H. J. The wave structure of monochromatic electromagnetic radiation.
943
+ Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences
944
+ 409, 21–36 (1987).
945
+ 24.
946
+ Nye, J. Lines of circular polarization in electromagnetic wave fields. Proceedings of the
947
+ Royal Society of London. A. Mathematical and Physical Sciences 389 (1983).
948
+ 25.
949
+ Berry, M. & Dennis, M. Polarization singularities in isotropic random vector waves.
950
+ Proceedings of the Royal Society of London. Series A: Mathematical, Physical and
951
+ Engineering Sciences 457, 141–155 (2001).
952
+ 26.
953
+ Bliokh, K. Y., Alonso, M. A., Sugic, D., et al. Polarization singularities and M¨obius
954
+ strips in sound and water-surface waves. Physics of Fluids 33 (2021).
955
+ 27.
956
+ Bliokh, K. Y. & Nori, F. Spin and orbital angular momenta of acoustic beams. Physical
957
+ Review B 99 (2019).
958
+ 28.
959
+ Bliokh, K. Y., Punzmann, H., Xia, H., Nori, F. & Shats, M. Field theory spin and
960
+ momentum in water waves. Science Advances 8 (2022).
961
+ 29.
962
+ Sugic, D., Droop, R., Otte, E., et al. Particle-like topologies in light. Nature Commu-
963
+ nications 12 (2021).
964
+ 30.
965
+ Larocque, H., Sugic, D., Mortimer, D., et al. Reconstructing the topology of optical
966
+ polarization knots. Nature Physics 14 (2018).
967
+ 31.
968
+ Dennis, M. Polarization singularities in paraxial vector fields: morphology and statis-
969
+ tics. Optics Communications 213, 201–221 (2002).
970
+ 32.
971
+ Freund, I. Multitwist optical M¨obius strips. Optics Letters 35, 148 (2010).
972
+ 33.
973
+ Dennis, M. R. Fermionic out-of-plane structure of polarization singularities. Optics
974
+ Letters 36 (2011).
975
+ 34.
976
+ Bauer, T., Banzer, P., Karimi, E., et al. Observation of optical polarization M¨obius
977
+ strips. Science 347, 964–966 (2015).
978
+
979
+ 18
980
+ REFERENCES
981
+ 35.
982
+ Pisanty, E., Machado, G. J., Vicu˜na-Hern´andez, V., et al. Knotting fractional-order
983
+ knots with the polarization state of light. Nature Photonics 13 (2019).
984
+ 36.
985
+ Berry, M. V. Index formulae for singular lines of polarization. Journal of Optics A:
986
+ Pure and Applied Optics 6, 675–678 (2004).
987
+ 37.
988
+ Berry, M. V. Optical currents. Journal of Optics A: Pure and Applied Optics 11 (2009).
989
+ 38.
990
+ Bliokh, K. Y., Bekshaev, A. Y. & Nori, F. Optical momentum and angular momen-
991
+ tum in complex media: from the Abraham–Minkowski debate to unusual properties of
992
+ surface plasmon-polaritons. New Journal of Physics 19 (2017).
993
+ 39.
994
+ Berry, M. V. & Shukla, P. Geometry of 3D monochromatic light: local wavevectors,
995
+ phases, curl forces, and superoscillations. Journal of Optics 21 (2019).
996
+ 40.
997
+ Bekshaev, A. Y., Bliokh, K. Y. & Nori, F. Transverse Spin and Momentum in Two-
998
+ Wave Interference. Physical Review X 5 (2015).
999
+ 5. Acknowledgements
1000
+ We would like to thank Sinuh´e Perea-Puente for a mathematical proof. This work was sup-
1001
+ ported by European Research Council Starting Grant ERC2016-STG-714151-PSINFONI.
1002
+ 6. Author Contribution
1003
+ A.J.V. conducted mathematical analyses and simulations; M.R.D. gave direction to and
1004
+ supervised the research; F.J.R-F. supervised the research. All authors wrote the manuscript;
1005
+ A.J.V. wrote the first draft.
1006
+ 7. Competing Interests
1007
+ The Authors declare no competing interests.
1008
+
9dE1T4oBgHgl3EQf8AVQ/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
9dE3T4oBgHgl3EQfSQko/content/2301.04430v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c7d3b2149d9385a9c4fc5c8772d20f658cc374a218625c76296386c92fa6662
3
+ size 3086526
9dE3T4oBgHgl3EQfSQko/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c23c06929f8e125b722e4f680f419a7dd43acd133e35d8ccd86994f88ec8d98
3
+ size 6881325
9dE3T4oBgHgl3EQfSQko/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5bc215ac62de89348eb3ebff2168b293d342c06dad9ffacb59ecaf841b1653a
3
+ size 287335
AdFLT4oBgHgl3EQfEy_H/content/2301.11985v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17ea3965965bd7cc11cd24368e173e8959a79ca82a0f18fcfd0f99c67aeea658
3
+ size 655893
AdFLT4oBgHgl3EQfEy_H/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c08fefd17fb896b91f9c937af3fb706726ff5b30e665a2e6cbdc82754a099bc7
3
+ size 373736
BNAzT4oBgHgl3EQf__-y/content/2301.01957v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a54e8cdd765c83be86d509a4332540543e1b4aa871cb78d5368a2f40031e5184
3
+ size 602080
BNAzT4oBgHgl3EQf__-y/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8409271edeae02b25fd6251c60f5e2d7814a1a3d03f20e2312b8ef7a04410438
3
+ size 2949165
CdFJT4oBgHgl3EQftC3b/content/2301.11616v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:428031ac2f6fbfc00616178dd9e25ee904eefe495c07af9afcf95fdcc5bc83cc
3
+ size 2882587
CdFJT4oBgHgl3EQftC3b/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f70c2cc5f7cec08faea24d9299b52fd9c44bdb2a9fbc050ff0b053deaac06249
3
+ size 3407917
CdFJT4oBgHgl3EQftC3b/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8672a5657d290bf9a26b0f89fbcc53f03354a231f698192768dfd93e1175ca96
3
+ size 137337
EdAzT4oBgHgl3EQfwv7y/content/2301.01729v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:925ef4555a30838df06af04de4718e654c6042c5de3e97dc0fcc9532b0943a62
3
+ size 688106
EdAzT4oBgHgl3EQfwv7y/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e709140c18a25e3192df22fc202df0c72fa86cea49464f02456c947a812c614b
3
+ size 3145773
EdAzT4oBgHgl3EQfwv7y/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:796955ba0da267ae55dc5660a29d27a90ca666c1a6779912d4e1734f96605dcb
3
+ size 114890
EtE2T4oBgHgl3EQf-Ak-/content/2301.04233v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:caebc8f93fb3d9988484e24f6181bd4615a82f817adb53eefe1911a6df45ff92
3
+ size 13465609
EtE2T4oBgHgl3EQf-Ak-/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9564be9d2f62ffc08e3e96c4b87a4e74d24c6f8ee385898c1f7dbdd029c61d56
3
+ size 4587565
EtE2T4oBgHgl3EQf-Ak-/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc0227cccf938264aa3a03bf1c701fd0c59843d03c9795c9707d8ab939f3bc0d
3
+ size 175698
FNE0T4oBgHgl3EQfzAKR/content/tmp_files/2301.02667v1.pdf.txt ADDED
@@ -0,0 +1,1363 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Locomotion-Action-Manipulation:
2
+ Synthesizing Human-Scene Interactions in Complex 3D Environments
3
+ Jiye Lee
4
+ Hanbyul Joo
5
+ Seoul National University
6
+ {kay2353,hbjoo}@snu.ac.kr
7
+ Figure 1. Our system, LAMA, produces high-quality and realistic 3D human motions that include locomotion, scene interactions, and
8
+ manipulations given a 3D environment and designated interaction cues.
9
+ Abstract
10
+ Synthesizing interaction-involved human motions has
11
+ been challenging due to the high complexity of 3D environ-
12
+ ments and the diversity of possible human behaviors within.
13
+ We present LAMA, Locomotion-Action-MAnipulation, to
14
+ synthesize natural and plausible long term human move-
15
+ ments in complex indoor environments. The key motivation
16
+ of LAMA is to build a unified framework to encompass a
17
+ series of motions commonly observable in our daily lives,
18
+ including locomotion, interactions with 3D scenes, and ma-
19
+ nipulations of 3D objects. LAMA is based on a reinforce-
20
+ ment learning framework coupled with a motion matching
21
+ algorithm to synthesize locomotion and scene interaction
22
+ seamlessly under common constraints and collision avoid-
23
+ ance handling. LAMA also exploits a motion editing frame-
24
+ work via manifold learning to cover possible variations
25
+ in interaction and manipulation motions. We quantitatively
26
+ and qualitatively demonstrate that LAMA outperforms ex-
27
+ isting approaches in various challenging scenarios. Project
28
+ page: https://lama-www.github.io/.
29
+ 1. Introduction
30
+ In our daily lives, we can easily observe that humans do
31
+ not live in isolation nor in voids, but continuously interact
32
+ with a complex environment surrounded by many objects.
33
+ Notably, humans perform such a diverse set of daily life
34
+ actions effortlessly. Imagine that we visit a new indoor en-
35
+ vironment (e.g., a hotel room) we have never been before.
36
+ It is expected that we can still easily figure out how to move
37
+ from rooms to rooms, how to sit on a chair, how to open the
38
+ doors of closets, and so on. However, endowing machines
39
+ or virtual humans with such abilities is still a largely unex-
40
+ plored area, despite its importance.
41
+ Synthesizing scene interactions within real-life 3D envi-
42
+ ronments has been a challenging research problem due to
43
+ its complexity and diversity. Human movements in real life
44
+ consists of various types of behaviors, including locomotion
45
+ with avoiding cluttered areas, diverse interactions with 3D
46
+ scenes, and sophisticated object-manipulations. In particu-
47
+ lar, the spatial constraint that arises from real-life 3D envi-
48
+ ronments where many objects are cluttered makes motion
49
+ synthesis highly constrained and complex, and various pos-
50
+ sible arrangements of 3D environments make generalization
51
+ difficult. As human-scene interactions cover a wide range of
52
+ technical challenges, previous approaches have focused on
53
+ sub-problems, such as (1) modeling static poses [17,24,49,
54
+ 64,69,71,72] or (2) human object interactions with a single
55
+ target object or interaction type [10, 47, 53–55, 66, 67, 70].
56
+ Recent methods [15,59,60] extend to synthesizing dynamic
57
+ interaction motions in cluttered real-world 3D scenes. How-
58
+ ever, the performance of these methods are fundamentally
59
+ limited due to the lack of 3D ground truth data that contains
60
+ both human motions and paired 3D environments.
61
+ 1
62
+ arXiv:2301.02667v1 [cs.CV] 9 Jan 2023
63
+
64
+ In this paper, we present LAMA, Locomotion-Action-
65
+ MAnipulation, to synthesize natural and plausible long term
66
+ human motions in complex indoor environments. The key
67
+ motivation of LAMA is to build a unified framework to
68
+ include locomotion, interactions with 3D scenes, and ma-
69
+ nipulations of 3D objects, which are the series of motions
70
+ commonly observable in our daily lives. LAMA is based
71
+ on a reinforcement learning framework coupled with a mo-
72
+ tion matching algorithm to synthesize locomotion and scene
73
+ interaction seamlessly while adapting to complicated 3D
74
+ scenes with collision avoidance handling. The reinforce-
75
+ ment learning framework interprets the 3D information of
76
+ the given scene and optimally traverses among the motion
77
+ capture database via motion matching. As an advantage, our
78
+ system does not require any “scene-paired” datasets where
79
+ human movements are captured with the surrounding 3D
80
+ environments simultaneously, which is rarely available. To
81
+ further cover the numerous variations of interaction mo-
82
+ tions, we also exploit an autoencoder based motion editing
83
+ approach to learn the motion manifold space [20] in which
84
+ the editing is performed. Through extensive quantitative
85
+ and qualitative evaluations against existing approaches, we
86
+ demonstrate that our method outperforms previous methods
87
+ in various challenging scenarios.
88
+ Our contributions are summarized as follows: (1) we
89
+ present the first method to generate realistic long term mo-
90
+ tions combined with locomotion, interaction with scene,
91
+ and manipulation in complicated cluttered scenes; (2) we
92
+ propose a novel, unified framework that synthesizes loco-
93
+ motion and human-scene interactions in a seamless man-
94
+ ner, by introducing scene interpretation terms to a reinforce-
95
+ ment learning based approach to automatically generate op-
96
+ timal transitions; and (3) our outputs show the state-of-the-
97
+ art motion synthesis quality with longer duration (more than
98
+ 10 sec) than previous methods.
99
+ 2. Related Work
100
+ Generating Human-Scene Interactions. Generating
101
+ natural human motion has been a widely researched topic
102
+ in the computer vision community. Early methods focus on
103
+ synthesizing or predicting human movements by exploiting
104
+ neural networks [11,13,35,35,38,46,56,58]. However, these
105
+ approaches primarily address the synthesis of human mo-
106
+ tion itself, without taking into account the surrounding 3D
107
+ environments. Recent approaches begin to tackle modeling
108
+ and synthesizing human interactions within 3D scenes, or
109
+ with objects. Most of the researches focus on statically pos-
110
+ ing humans within the given 3D environment [16,24,69,71],
111
+ by generating human scene interaction poses from vari-
112
+ ous types of input including object semantics [17], im-
113
+ ages [21,23,64,65,68], and text descriptions [49,72].
114
+ More recently, there have been approaches to synthesize
115
+ dynamic human object interactions (e.g., sitting on chairs,
116
+ Encoder
117
+ Decoder
118
+ Task-Adaptive Motion Editing
119
+ Motion Generation
120
+ Action
121
+ Controller
122
+ 3D Scene
123
+ Interaction
124
+ Cue
125
+ Action
126
+ Posture
127
+ Motion
128
+ Synthesizer
129
+ Optimization
130
+ Figure 2. Overview of LAMA.
131
+ carrying boxes). Starke et al. [53] introduce an autoregres-
132
+ sive learning framework with object geometry-based envi-
133
+ ronmental encodings to synthesize various human-object
134
+ interactions. Later work [15, 70] extends this by synthe-
135
+ sizing motions conditioned with variations of objects and
136
+ contact points. Other approaches [47, 54, 55, 66, 67] focus
137
+ on generating natural hand movements for manipulation,
138
+ which is extended by including full body motions [54].
139
+ Physics-based character control to synthesize human object
140
+ interactions has been also explored in [8,10,39,47,66]. Al-
141
+ though these approaches cover a wide range of human ob-
142
+ ject interactions, most of them solely focus on the relation-
143
+ ship between human and the target object without long-term
144
+ navigation in cluttered 3D scenes.
145
+ More recent approaches include generating natural hu-
146
+ man scene interactions within a complex 3D scene clut-
147
+ tered with many objects [6, 59–61], closely related to ours.
148
+ These methods are trained using human motion datasets
149
+ paired with 3D scenes, which require both ground truth mo-
150
+ tions and simultaneously captured 3D scenes for supervi-
151
+ sion. Due to such difficulties, some methods exploit syn-
152
+ thetic datasets [6,61] or data fitted from depth videos [60].
153
+ In previous approaches [15,59], navigation to move through
154
+ cluttered environments is often performed by a separate
155
+ module via a path planning algorithm (e.g., A∗ algorithm)
156
+ by approximating the volume of a human as a cylinder. This
157
+ path planning based methods approximate the spatial infor-
158
+ mation of the scene and the human body and therefore have
159
+ limitations under highly complex conditions.
160
+ Motion Synthesis and Editing. Synthesizing natural
161
+ human motions by leveraging motion capture data has also
162
+ been a long-researched topic in computer graphics. Some
163
+ approaches [26,37] construct motion graphs, where plausi-
164
+ ble transitions are inserted as edges and motion synthesis is
165
+ done by traversing through the constructed graph. Similar
166
+ approaches [31, 51] connect motion patches to synthesize
167
+ interactions in a virtual environment or multi-person inter-
168
+ actions. Due to its versatility and simplicity, a number of
169
+ variations have been made on the graph based approach,
170
+ such as motion grammar [22] which enforces traversing
171
+ rules in the motion graph. Motion matching [5, 9] can also
172
+ be understood as a special case of motion graph traver-
173
+ sal, where the plausible transitions are not precomputed but
174
+ searched during runtime. Recent advances in deep learning
175
+ allow to leverage motion capture data for motion manifold
176
+ 2
177
+
178
+ rendel
179
+ reset
180
+ prev
181
+ play
182
+ nextlearning [19, 20, 52]. Autoregressive approaches based on
183
+ variational autoencoders (VAE) [36, 46] and recurrent neu-
184
+ ral networks [14,29,41] are also used to forecast future mo-
185
+ tions based on past frames. These frameworks are general-
186
+ ized to synthesizing a diverse set of motions including lo-
187
+ comotion on terrains [19] mazes [36], action-specified mo-
188
+ tions [46], and interaction-involved sports [29, 41]. Neural
189
+ network-based methods are also reported to be successful
190
+ in various motion editing tasks such as skeleton retarget-
191
+ ing [2], style transfer [3,20], and inbetweening [14].
192
+ Reinforcement learning (RL) has also been successful in
193
+ combination with both data-driven and physics-based ap-
194
+ proaches for synthesizing human motions. Combined with
195
+ data-driven approaches, these RL frameworks serve as a
196
+ control module that generates corresponding motions to a
197
+ given user input by traversing through motion graphs [28],
198
+ latent space [34, 36, 57], and precomputed transition ta-
199
+ bles [30]. Deep reinforcement learning (DRL) has been
200
+ widely used recently in physics simulation as well to syn-
201
+ thesize physically plausible movements with a diverse set
202
+ of motor skills [4,32,41,43–45,62].
203
+ 3. Method
204
+ 3.1. Overview
205
+ Our system, dubbed as LAMA, outputs a sequence of
206
+ human poses M = {mt}T
207
+ t=1 by taking the 3D surrounding
208
+ cues W and desired interaction cues Φ, as inputs:
209
+ M = LAMA(W, Φ).
210
+ (1)
211
+ The output posture at time t, mt = (p0, r1, ..., rJ) ∈
212
+ R3J+3, is represented by a concatenated vector of global
213
+ root position p0 ∈ R3 and local joint orientations of J
214
+ joints where each j-th joint is in angle-axis representations
215
+ rj ∈ so(3). Throughout our system, the skeleton tree struc-
216
+ ture and joint offsets are fixed and shown in Fig. 3 (a). We
217
+ represent the 3D environments W = {wi} as a set of 3D
218
+ object and environment meshes, including the background
219
+ scene mesh and other object meshes targeted for manip-
220
+ ulation. The interaction cues, Φ = [φ1, φ2, ...φn], are an
221
+ ordered list of desired interaction inputs φi = {qj}j∈Ji
222
+ where qj ∈ R3 indicates desired positions of j-th joint,
223
+ and Ji is a set of specified joints for interaction (in prac-
224
+ tice, few joints such as root 1 or end-effectors). Examples of
225
+ the 3D environment W and interaction inputs φi are shown
226
+ in Fig. 5 (a). Intuitively, φi specifies the expected positions
227
+ of selected joints of the human character. Note that we do
228
+ not specify the exact timing of the interaction, as the timing
229
+ is automatically determined by our action controller. More
230
+ details are addressed in Sec. 3.4.
231
+ To synthesize locomotion, interaction, and manipulation
232
+ together, LAMA is designed via a three-level system com-
233
+ 1For root, orientation in angle-axis representation is also included in φ.
234
+ Figure 3. (a) Skeleton with joints and box nodes. (b) Automatically
235
+ detected collision points (colored as red).
236
+ posed of the action controller A and the motion synthesizer
237
+ S, followed by a manifold-based motion editor E. By taking
238
+ 3D scene cues W and desired interaction cues Φ as input,
239
+ the action controller A makes the use of a reinforcement
240
+ learning (RL) framework by training the control policy π to
241
+ sample an action at time t, π(at|st, W, Φ), where at con-
242
+ tains the plausible next action cues including predicted ac-
243
+ tion types and short-term future forecasting. st is the state
244
+ cues to represent the current status of human characters in-
245
+ cluding its body posture, surrounding scene occupancy, and
246
+ current target interaction cue, which can be computed via
247
+ a function ψ, st = ψ(mt−1, mt, W, Φ). Intuitively, action
248
+ controller A predicts the plausible next action cues at by
249
+ considering the current character-scene state st. The gener-
250
+ ated action signals at from the action controller A is pro-
251
+ vided as the input for the motion synthesizer S, which then
252
+ determines the posture at the next time step mt+1, i. e.,
253
+ S(mt, at) = mt+1. Afterwards, the character’s next state
254
+ can be computed again via st+1 = ψ(mt, mt+1, W, Φ),
255
+ which is input to the action controller recursively.
256
+ Followed by the initial motion generation part from A
257
+ and S, our system furthermore applies a motion editor
258
+ E(M) = ˜M, where ˜M = { ˜Mt}T
259
+ t=1 is the edited motions
260
+ to further express the motions involving complex human-
261
+ object interactions such as manipulation (e.g. moving ob-
262
+ jects, opening doors). Fig. 2 shows the overview of LAMA.
263
+ 3.2. Scene-Aware Action Controller
264
+ Based on reinforcement learning, our action controller
265
+ A enables the character to perform locomotion and desired
266
+ actions with fulfilling the interaction cues Φ and avoiding
267
+ collisions in the 3D environment W. A is a trained control
268
+ policy π where π(at|st, W, Φ). Different from previous
269
+ approaches where navigation and scene-object interactions
270
+ (e.g., sitting) are performed by separate modules [15, 59],
271
+ our RL-based framework performs both in a unified way
272
+ with a common objective by automatically determining the
273
+ transition from navigation to specific actions. As a key ad-
274
+ vantage, LAMA can be robustly generalized to challenging
275
+ unseen 3D clutters in long-term human motion synthesis
276
+ and also outperforms previous methods by avoiding colli-
277
+ sions throughout the whole process, including navigation
278
+ 3
279
+
280
+ Joint
281
+ - Node
282
+ Jointand interaction.
283
+ State. The state st = ψ(mt−1, mt, W, Φ) at time t is
284
+ a feature vector representing the current status of the hu-
285
+ man character. st = (sbody
286
+ t
287
+ , sscene
288
+ t
289
+ , sinter
290
+ t
291
+ ) is composed of
292
+ body configuration sbody, 2D scene occupancy sscene, and
293
+ desired current target interaction sinter. Body configuration
294
+ sbody = {r, ˙r, θup, h, pe} includes r, ˙r ∈ RJ′×6 that are the
295
+ joint rotations and velocities respectively for the J′ joints
296
+ excluding the root in 6D representations [73], θup ∈ R that
297
+ is the up vector of the root (represented by the angle w.r.t
298
+ the Y-axis), h ∈ R that is the root height from the floor,
299
+ and pe ∈ Re×3 that is the end-effector positions in person-
300
+ centric coordinate (where e is the number of end-effectors).
301
+ sscene = {gocc, groot} includes scene occupancy informa-
302
+ tion in 2D floor plane, as shown in Fig. 4. gocc ∈ Rn2 rep-
303
+ resents the 2D occupancy grid on the floor plane of neigh-
304
+ boring n cells around the agent and groot ∈ R2 denote the
305
+ current 2D global root position of the character in the dis-
306
+ cretized grid plane. sinter is an element of Φ and represents
307
+ the interaction cue the character is currently targeting, that
308
+ is sinter = φi.
309
+ Action. Given the current status of the character st,
310
+ the control policy π outputs the feasible action at
311
+ =
312
+ (atype
313
+ t
314
+ , afuture
315
+ t
316
+ , aoffset
317
+ t
318
+ ). atype
319
+ t
320
+ provides the probabilities
321
+ of next action type among all possible actions, determining
322
+ the transition timing between actions (e.g., from locomo-
323
+ tion to sitting). afuture
324
+ t
325
+ predict future motion cues such as
326
+ plausible root position for the next 10, 20, and 30 frames.
327
+ aoffset
328
+ t
329
+ is intended to update the raw motion data searched
330
+ from the motion database in motion synthesizer module S.
331
+ Intuitively, our learned control policy generates an optimal
332
+ posture offset aoffset
333
+ t
334
+ which is applied to the closest plau-
335
+ sible raw posture in the database. This enables the character
336
+ to perform more plausible scene-aware human poses, allow-
337
+ ing our system to be generalized to any unseen 3D scenes
338
+ given a limited amount of motion capture data. More details
339
+ are addressed in Sec. 3.3.
340
+ 3.3. Motion Synthesizer
341
+ Given the current motion output mt and actions sig-
342
+ nals at from the action controller A as inputs, the mo-
343
+ tion synthesizer produces the next plausible character pos-
344
+ ture: S(mt, at) = mt+1. As the first step, motion synthe-
345
+ sizer searches for the motion from a motion database that
346
+ best matches the closest motion feature, then modifies the
347
+ searched raw motion to be more suitable for the scene envi-
348
+ ronment. To this end, motion synthesizer’s output mt+1 is
349
+ in turn fed into the action controller recursively. We exploit
350
+ a modified version of motion matching algorithm [5, 9, 18]
351
+ for the first step of motion synthesis. In motion matching,
352
+ motion synthesis is performed periodically by searching the
353
+ most plausible next shot motion segments from a motion
354
+ DB, and compositing them into a long connected sequence.
355
+ Figure 4. Visual representation of the 2D occupancy grid near the
356
+ root. Grid on the right represents top view of the grid. Blue in-
357
+ dicates root position while gray represents the space is occupied.
358
+ Occupied cells near the root are colored as black.
359
+ Motion features. Motion feature represents the charac-
360
+ teristic of each frame in the short motion segment and is
361
+ computed as f(m) = {{pj}, { ˙pj}, θup, c, ofuture}. From
362
+ a posture m, the positions and velocities pj, ˙pj
363
+ ∈ R3
364
+ are extracted for the selected joints j ∈ {Head, Hand,
365
+ Foot}, which are defined in a person-centric coordinate
366
+ of m. θup ∈ R3 is the up-vector of the root joint, and
367
+ c ∈ {0, 0.5, 1} indicates automatically computed foot con-
368
+ tact cues of the left and right foot (0 for non-contact, 1 for
369
+ contact, 0.5 for non-contact but close to the floor within
370
+ a threshold). ofuture = {{pdt
371
+ 0 }, {rdt
372
+ 0 }} contains the cues
373
+ for the short-term future postures, where pdt
374
+ 0 and rdt
375
+ 0 are
376
+ the position and orientation of root joint at dt frames later
377
+ from the current target frame. ofuture are computed in 2D
378
+ XZ plane in person-centric coordinate of the current tar-
379
+ get motion m, and thus pdt
380
+ 0 , rdt
381
+ 0
382
+ ∈ R2. The selected fu-
383
+ ture frames are action-type specific, and for locomotion we
384
+ extract 10, 20, and 30 frames in the future (at 30Hz) fol-
385
+ lowing [9]. Intuitively, the motion feature extracts the target
386
+ frame’s posture and temporal cues by considering neigh-
387
+ boring frames 2. We pre-compute motion features for every
388
+ frame of the motion clips in the motion database. Motion
389
+ feature of the current state of the character, or the query
390
+ feature, is also computed in the same way based on posture
391
+ mt−1, mt and afuture
392
+ t
393
+ produced by the action controller,
394
+ that is xt = f(mt−1, mt, atype
395
+ t
396
+ , afuture
397
+ t
398
+ ). The component
399
+ afuture
400
+ t
401
+ serves as ofuture in the query feature, which can be
402
+ understood as the action controller providing cues for pre-
403
+ dicted future postures.
404
+ Motion searching and updating. The query motion fea-
405
+ ture xt from the current character is computed as addressed
406
+ above, and let the motion features in motion database de-
407
+ noted as yk for the k-th clips in the DB. Motion searching
408
+ finds the best matches in the motion database by computing
409
+ the weighted euclidean distances between the query feature
410
+ and DB features:
411
+ k∗ = arg min
412
+ k
413
+ ||wT
414
+ f (xt − yk)||2,
415
+ (2)
416
+ where wf is a fixed weight vector to control the impor-
417
+ 2In practice, the input of feature extractor function f should take into
418
+ account the motions of neighboring timesteps.
419
+ 4
420
+
421
+ 2D
422
+ occupancy gridtance of feature elements. After finding the best match ˆmk∗
423
+ from motion database, the motion synthesizer further up-
424
+ dates it with the predicted motion offset aoffset
425
+ t
426
+ from at,
427
+ that is τ( ˆmk∗+1, aoffset) = mt+1, where ˆmk∗+1 is the
428
+ next plausible character posture and τ is an update function
429
+ to update selected joints. In practice, the motion searching
430
+ is performed periodically (e.g., every N-th frames) to make
431
+ the synthesized motion temporally more coherent.
432
+ 3.4. Learning for Scene-Aware Action Controller
433
+ In the reinforcement learning framework, the objective is
434
+ to learn the optimal policy which maximizes the discounted
435
+ cumulative reward. In our method, we design rewards to
436
+ guide the agent to perform locomotion towards the target
437
+ objects (e.g., sofa) and also perform desired interaction with
438
+ the object (e.g., sitting). In particular, our RL-framework
439
+ performs both navigation and interaction with common con-
440
+ straints (e.g., smooth transitions, collision avoidance).
441
+ Our reward function consist of the following terms:
442
+ Rtotal = wtrRtr + wactRact + wregRreg,
443
+ (3)
444
+ where wtr, wact, and wreg are the weights to balance among
445
+ reward terms. The trajectory reward Rtr is obtained when
446
+ the character moves towards the desired interaction input φ
447
+ while meeting the spatial constraints from the surrounding
448
+ 3D scene, described below:
449
+ Rtr = rcoli · rpos · rroot, where
450
+ (4)
451
+ rcoli = exp
452
+
453
+ − 1
454
+ σ2
455
+ coli
456
+
457
+ b∈B
458
+ wbρ(b, W)
459
+
460
+ ,
461
+ (5)
462
+ rpos = exp
463
+
464
+ �−
465
+ 1
466
+ σ2
467
+ root
468
+
469
+ j∈J
470
+ ∥p0 − qj∥2
471
+
472
+ � ,
473
+ (6)
474
+ rvel =
475
+
476
+ 1
477
+ when ˙proot ≥ σth
478
+ σvel∥ ˙p0∥2
479
+ else.
480
+ (7)
481
+ The collision-avoidance reward rcoli penalizes collisions
482
+ with 3D scenes. As depicted in Fig. 3 (a), body limbs in
483
+ the skeletal structure are represented as a set of box-shaped
484
+ nodes B with a fixed width, where each element b ∈ B is
485
+ a 3D box representation of legs and arms (we exclude torso
486
+ and head). The function ρ(b, W) detects the collision be-
487
+ tween edges of a box-shaped node b with 3D scene meshes
488
+ W and returns the number of intersection points. (Fig. 3
489
+ (b)). wb is the weights to control importance of each limb b.
490
+ The collision-avoidance reward is maximized when no pen-
491
+ etration occurs, making the control policy π to find the opti-
492
+ mal trajectory and pose offset to avoid physically implausi-
493
+ ble collisions and penetrations. rpos are obtained when the
494
+ agent moves to reach the targeting interaction cue φ, by en-
495
+ couraging agent’s root position p0 to be closer to the target
496
+ interaction cue {qj}. rvel encourages the character to move
497
+ by penalizing when the root velocity ˙proot is less than a
498
+ threshold σth. σcoli, σroot, and vel are weights to control
499
+ the balance between terms.
500
+ Action reward Ract enforces the synthesized motion to
501
+ fulfill the given interaction cue φ = {qj}:
502
+ Ract = rinter · r∆t · r∆v,
503
+ where
504
+ rinter = exp
505
+
506
+ �−
507
+ 1
508
+ σ2
509
+ inter
510
+
511
+ j∈J
512
+ ∥pj − qj∥2
513
+
514
+ � ,
515
+ r∆t = exp
516
+
517
+ −σ2
518
+ ∆tCtr
519
+
520
+ ,
521
+ r∆v = exp
522
+
523
+ −σ2
524
+ ∆vCvel
525
+
526
+ ,
527
+ (8)
528
+ where interaction reward term rinter is maximized when the
529
+ performed action meets the positional constraints provided
530
+ by interaction cues. Smoothness reward terms r∆t and r∆v
531
+ minimizes the transition cost, which is based on the subpart
532
+ of the feature distances defined in Eq. 2, where Ctr is the
533
+ weighted feature distances of pj, θup, and c, and Cvel is
534
+ from ˙p. These are intended to penalize the case where the
535
+ character makes abrupt changes.
536
+ Regularization reward Rreg penalizes the aoffset
537
+ t
538
+ exces-
539
+ sively modifying the original posture brought from the mo-
540
+ tion synthesizer, denoted as ˆmt, and maintains temporal
541
+ consistency among frames.
542
+ Rreg = exp
543
+
544
+
545
+ 1
546
+ σ2reg
547
+
548
+ ∥ ˆmt − mt∥2 + ∥mt − mt−1∥2��
549
+ .
550
+ It is reported that [33, 41] multiplying rewards with con-
551
+ sistent goals are suitable for learning, as the reward is re-
552
+ ceived when the conditions are simultaneously met. Fur-
553
+ thermore, to accelerate learning, we use early termination
554
+ conditions [43] and limited action transitions. The episode
555
+ is terminated when the character moves out of the scene
556
+ bounding box, or when the collision reward rcoli is under a
557
+ certain threshold. Also, the action controller first checks in
558
+ advance whether the action signal is valid when it makes
559
+ transitions from locomotion to other actions. When the
560
+ nearest feature distance of Eq. 2 in the motion synthesizer
561
+ is over a certain threshold, the action controller discards the
562
+ transition and continues navigating. The control policy is
563
+ learned through Proximal Policy Optimization (PPO) algo-
564
+ rithm [50].
565
+ 3.5. Task-Adaptive Motion Editing
566
+ Interaction includes a massively diverse pool of mo-
567
+ tions, and these variations cannot be fully handled by lim-
568
+ ited amount of motion database. In order to cover such di-
569
+ versity, we include a task-adaptive motion editing module
570
+ in our motion synthesis framework. The goal of our edit-
571
+ ing module E is (1) to edit motion M to fit into diverse
572
+ 5
573
+
574
+ Figure 5. Visual representation of system input Φ, W and output
575
+ motion sequence. On the left, interaction cues are shown as cyan
576
+ spheres and arrows (indicating orientation). The right is the syn-
577
+ thesized human motion ˜
578
+ M.
579
+ target object geometries (e.g., sitting on a chair with dif-
580
+ ferent height), and (2) to generate additional hand move-
581
+ ments for manipulation (e.g., grasping). In particular, in the
582
+ case of manipulation, additional interaction cue φ can be
583
+ provided to enforce an end-effector (e.g., a hand) to fol-
584
+ low the desired trajectories to express the manipulation task
585
+ on the target object, as shown in Fig 8 (left). The edited
586
+ motion ˜M = E(M) should not only fulfill the sparsely
587
+ given positional constraints, but also preserve the temporal
588
+ consistency between frames and spatial correlations among
589
+ joints in order to maintain its naturalness. We adopt the mo-
590
+ tion manifold learning approach with convolutional autoen-
591
+ coders [20] to compress motion to a latent vector within a
592
+ motion manifold space. Motion editing is done by searching
593
+ for an optimal latent vector among the manifold. For train-
594
+ ing the autoencoder, motion sequence, which we denote as
595
+ X converted from M, is represented as a time-series of hu-
596
+ man postures by concatenating joint rotations in 6D repre-
597
+ sentations [73], root height, root transform relative to the
598
+ previous frame projected on the XZ plane, and foot contact
599
+ labels. The encoder and decoder module are trained based
600
+ on reconstruction loss, ||X − Ψ−1(Ψ (X)) ||2, where Ψ is
601
+ the encoder and Ψ−1 is the decoder.
602
+ The latent vector from the encoder z = Ψ(X) repre-
603
+ sent the motion manifold space by preserving the spatio-
604
+ temporal relationship among joints and frames within the
605
+ motion sequence. As demonstrated in [20], editing motions
606
+ in this manifold space ensures the edited motion to be re-
607
+ alistic and temporally coherent. To this end, we find the
608
+ optimal latent vector z∗ by minimizing a loss function L
609
+ by constraining the outputs motions to follow the interac-
610
+ tion constraint φ. We also include additional regularizers in
611
+ L so that the output motion to maintain the foot locations
612
+ and root trajectories to the original motions. See supp. mat.
613
+ for more details on L. Finally, the edited motion ˜M can be
614
+ computed via Ψ−1(z∗).
615
+ 4. Experiments
616
+ We evaluate LAMA’s ability on synthesizing long-term
617
+ motions with various human-scene and human-object inter-
618
+ Method
619
+ Plausibility
620
+ Naturalness
621
+ Slip
622
+ Penetration
623
+ FDtotal
624
+ FDroot
625
+ FDjoint
626
+ Wang et al. [60]
627
+ 5.13
628
+ 3.88
629
+ 1.38
630
+ 0.45
631
+ 0.93
632
+ Wang et al. [60]*
633
+ 24.8
634
+ 4.58
635
+ 1.44
636
+ 0.44
637
+ 1.00
638
+ SAMP [15]
639
+ 10.5
640
+ 12.49
641
+ 1.25
642
+ 0.30
643
+ 0.95
644
+ LAMA (ours)
645
+ 5.21
646
+ 1.52
647
+ 1.22
648
+ 0.31
649
+ 0.91
650
+ Table 1. Baseline comparison Foot slip loss (cm, ↓) averaged over
651
+ all frames. Penetration loss(percentage, ↓) is counted based on in-
652
+ tersection points of the 3D environment and the skeleton. Natural-
653
+ ness score is based on fr´echet distance (FD ↓). Wang et al. with an
654
+ asterisk indicates without post-processing optimization.
655
+ actions involved. We exploit an extensive set of quantitative
656
+ metrics and perceptual study to evaluate the physical plau-
657
+ sibility and naturalness of the synthesized motion.
658
+ Dataset. For constructing the database for the motion
659
+ synthesizer, motion capture data are selectively collected
660
+ and refined from Ubisoft La Forge [14], COUCH [70],
661
+ and SAMP [15]. All the data used in this system are mo-
662
+ tion capture data (in bvh format) with no scene or ob-
663
+ ject related information, and are retargeted into a unified
664
+ skeletal structure with MotionBuilder. We use PROX [16]
665
+ and Matterport3D [7] datasets for 3D environment and
666
+ SAPIEN [63] object meshes for manipulation. Our code and
667
+ pre-processed data will be publicly released.
668
+ Implementation Details. The policy and the value net-
669
+ work of the action controller module consists of 4 and
670
+ 2 fully connected layers of 256 nodes, respectively. The
671
+ encoder and decoder of the task-adaptive motion editing
672
+ module consist of three convolutional layers. Adam opti-
673
+ mizer [25] is used for training and optimization. We use
674
+ Nvidia RTX 3090 for training the action controller and the
675
+ motion editing module. It takes 10 to 80 minutes to learn
676
+ a single control policy, where the training time mainly de-
677
+ pends on how difficult the interaction cues are to achieve.
678
+ For optimization in the motion editing module, it takes 3 to
679
+ 4 minutes for 500 epochs. See supp. mat. for more detail.
680
+ 4.1. Experimental Setup
681
+ Evaluation metrics. Quantifying motion synthesis quality
682
+ is challenging due to the lack of ground-truth data or offi-
683
+ cial evaluation metrics. We try to quantify them in terms of
684
+ physical plausibility and naturalness.
685
+ • Physical plausibility: We use contact and penetration
686
+ metrics to evaluate the physical plausibility of the synthe-
687
+ sized motions. Contact loss penalizes the foot movement
688
+ when the foot is in contact. Since foot contact is a critical
689
+ element in dynamics, contact-based metric is closely related
690
+ in determining the physical plausibility of motions. Pene-
691
+ tration loss (“Penetration” in Table 1) measures implausible
692
+ cases when the body penetrates the objects in the scene. We
693
+ compute penetration metric by counting frames where the
694
+ 6
695
+
696
+ interaction cue Φ2
697
+ interaction cue ΦFigure 6. Comparison with LAMA (left) and LAMA without col-
698
+ lision reward (right). As shown in the right, without collision re-
699
+ ward the character fails to avoid collisions with obstacles (marked
700
+ as red).
701
+ intersection points (Sec. 3.4) goes over a certain threshold. 3
702
+ • Naturalness: We measure the naturalness of the synthe-
703
+ sized motions by measuring the Fr´echet distance, as re-
704
+ ported in [15, 35, 40] between the synthesized motion and
705
+ motions from motion capture data. Features are extracted
706
+ from motion sequences and the Fr´echet distance is com-
707
+ puted with the extracted features. We measure the natural-
708
+ ness of character root movements FDroot, including root ori-
709
+ entation and velocity, and character joint rotations FDjoint.
710
+ Baselines. We compare our LAMA with the state-of-the-art
711
+ approaches as well as variations of ours.
712
+ • Wang et al. [60] is the state-of-the-art long term mo-
713
+ tion synthesis method for human-scene interactions within
714
+ a given 3D scene. We use the author’s code for evaluation.
715
+ As Wang et al. uses optimization to post-process the synthe-
716
+ sized motion to improve foot contact and reduce collisions,
717
+ we both compare Wang et al. with and without optimization.
718
+ • SAMP [15] generates interactions which can be general-
719
+ ized not only for object variations but also random starting
720
+ points within a given 3D scene. SAMP explicitly exploits a
721
+ path planning module to navigate through cluttered 3D en-
722
+ vironments.
723
+ • Ablative baselines We perform ablation studies on the ac-
724
+ tion controller and task-adaptive motion editing module. We
725
+ perform ablation studies on the scene reward rcoli, and ac-
726
+ tion offset aoffset
727
+ t
728
+ to present the contribution of both terms
729
+ on our system’s capability to generate scene-aware motions.
730
+ We also compare our method without the transition reward
731
+ r∆t and r∆v terms (Sec. 3.4) in the action controller. Fi-
732
+ nally, we demonstrate the strength of our task-adaptive mo-
733
+ tion editing module to edit motions naturally (Sec. 3.5) by
734
+ comparing with inverse kinematics (IK).
735
+ 4.2. Comparisons with Previous Work
736
+ Quantitative Evaluation. We compare methods in 6
737
+ different scenarios from various 3D scenes in the PROX
738
+ dataset [16]. Foot contact is automatically labeled based on
739
+ 310 for legs and 7 for arms
740
+ Figure 7. Comparison with LAMA (left) and LAMA without ac-
741
+ tion offset (right). The character in original LAMA moves forward
742
+ while tilting its arms to avoid collision with walls, while in LAMA
743
+ without action offset does not.
744
+ positional velocity of the foot joint. Foot slip metric is mea-
745
+ sured by foot joint positions. To compute penetration metric
746
+ in a fair way, SMPL-X outputs of Wang et al. and SAMP are
747
+ converted to box-shaped skeletons as in ours and intersec-
748
+ tion point are counted. Table 1 shows the results.
749
+ As shown, our LAMA outperforms Wang et al both in
750
+ naturalness and physical plausibility. It is noted that Wang
751
+ et al performs optimization as post-processing to explic-
752
+ itly minimize foot slip, and yet LAMA still shows on-par
753
+ performance against it (and better in all other metrics).
754
+ Compared with SAMP, our method shows much better re-
755
+ sults in plausibility metrics (both Slip and Penetration),
756
+ and shows slightly better performance in naturalness. Apart
757
+ from SAMP which relies on a separate navigation mod-
758
+ ule, our RL-based action controller handles collisions in the
759
+ same way of scene-interaction and shows much better per-
760
+ formance in in complex and cluttered 3D scenes.
761
+ A Human Study. To further validate our results, we
762
+ compare the quality of our output over other baselines,
763
+ Wang et al. and SAMP, through A/B testing from human
764
+ observers. For the study, we choose 5 scenarios from dif-
765
+ ferent indoor scenes, and render the results of each method
766
+ using the exactly same view and 3D characters, so that they
767
+ cannot be distinguished from the appearance side. We build
768
+ two separate sets, where in each set the result videos of
769
+ our method are shown with each competitor side by side
770
+ in a random order. Human observers are asked to choose a
771
+ motion clip that is more human-like and plausible in the
772
+ given 3D scene. We perform each set of tests with non-
773
+ overlapping 15 participants. See our supp. mat. for more
774
+ details about the study setup. As the result, the outputs of
775
+ our method are preferred by the majority (more than 50%
776
+ voting) in all cases. By considering all votes independently,
777
+ our method are preferred 80.0% over SAMP and 97.3%
778
+ over Wang et al.’s work. In particular, we found that our
779
+ method greatly outperform the competing methods in terms
780
+ of the naturalism of foot stepping, transition between loco-
781
+ motion and action, and collision avoidance with the scenes.
782
+ See our supp. videos for more results.
783
+ 7
784
+
785
+ LAMA
786
+ LAMA w/o collision rewardoffset
787
+ LAMA w/o a
788
+ LAMA
789
+ LAMAFigure 8. (a) Comparison with LAMA (top) and LAMA without
790
+ manifold and replaced with IK (bottom) of a character opening the
791
+ toilet lid. (b) Comparison with LAMA (top) and LAMA without
792
+ motion editing (bottom) in sitting.
793
+ 4.3. Ablation Studies
794
+ Ablation Studies on Action Controller. We quantita-
795
+ tively compare the original LAMA and the LAMA without
796
+ collision reward rcoli. We intend to demonstrate the role of
797
+ rcoli that enforces the action controller to search for optimal
798
+ actions for generating motions without collisions. Ablation
799
+ studies are done in 5 PROX scenes. In the original LAMA,
800
+ penetrations occur in only 1.1% of the frames among the
801
+ whole motion sequences, while the ratio is 15.7% in LAMA
802
+ without collision reward. The result supports that the colli-
803
+ sion reward rcoli enforces the action controller to compute
804
+ optimal actions for synthesizing body movement according
805
+ to the spatial constraint of the given 3D scene. Example re-
806
+ sults are shown in Fig. 6.
807
+ We also compare the contribution of other components
808
+ in the action controller module in generating natural inter-
809
+ actions. As seen in Fig. 7, with the action controller without
810
+ aoffset
811
+ t
812
+ the character fails to avoid penetration with objects
813
+ or walls, as the raw motion from the motion database does
814
+ not have any information of the scene. This demonstrates
815
+ that action offset also plays a role in generating detailed
816
+ scene-aware poses even from raw motion capture data.
817
+ Moreover, the results with the action controller without
818
+ smoothness rewards r∆t and r∆v are not smooth enough,
819
+ showing unnatural movements such as jerking. These abla-
820
+ tion studies justify the advantages of our reward terms.
821
+ Ablation Studies on Task-Adaptive Motion Editing.
822
+ We ablate our motion editing module by replacing it with
823
+ an alternative approach via Inverse-Kinematics (IK). An ex-
824
+ ample result is shown in Fig. 8 (left). For manipulation, the
825
+ results with IK show jerky and awkward motions because
826
+ the temporal and inter-joint correlations in natural human
827
+ motions are not reflected in IK, while original LAMA with
828
+ task-adaptive motion editing module shows much natural
829
+ motions. Our motion editing module can also be used to
830
+ Figure 9. Examples of synthesized manipulation motions. The tar-
831
+ get object for manipulation is colored as orange. Top is a motion
832
+ sequence of walking and opening a toilet lid, and the bottom is a
833
+ sequence of walking and opening doors. The character is colored
834
+ purple at start and aqua at the end.
835
+ further adjust the character movements in different object
836
+ geometries, going over the limit of the motion database. As
837
+ seen in Fig 8 (right), the motion editing module enables the
838
+ character to properly sit in chairs with various sizes.
839
+ 5. Discussion
840
+ In this paper, we present a method to synthesize locomo-
841
+ tion, scene-interaction, and manipulation in a unified sys-
842
+ tem. Leveraging a RL framework with motion matching,
843
+ our method enables to produce natural and plausible hu-
844
+ mans motions in complex and cluttered 3D environments
845
+ only with a limited amount of motion-only datasets. Our
846
+ method has been thoroughly evaluated in diverse scenar-
847
+ ios, outperforming previous approaches [15, 60]. We also
848
+ demonstrate the robustness and generalization ability of our
849
+ system by covering a wide range of human interactions in
850
+ many different 3D environments.
851
+ While our RL-based method can be generalized to any
852
+ unseen 3D environments, a new control policy has to be
853
+ trained for each motion sequence. Combining RL with a
854
+ supervised learning framework for better efficiency can be
855
+ an interesting future research direction. Furthermore, al-
856
+ though we assume a fixed skeletal information throughout
857
+ the system, interaction motions may change depending on
858
+ the character’s body shape and sizes. We leave synthesizing
859
+ motions on varying body shapes as future work.
860
+ Acknowledgments: This work was supported by SNU-
861
+ Naver Hyperscale AI Center, SNU Creative-Pioneering Re-
862
+ searchers Program, and NRF grant funded by the Korea
863
+ government (MSIT) (No. 2022R1A2C209272411).
864
+ 8
865
+
866
+ LAMA
867
+ LAMA
868
+ LAMA w/o motion editing
869
+ LAMA w/o manifold + IK梦人庆A. Supplementary Video
870
+ The supplementary video shows the results of our
871
+ method, LAMA, on various scenarios. In the video, we
872
+ show the human motion synthesis results on PROX [16],
873
+ Matterport3D [7], and also our own home-brewed 3D scene
874
+ produced by Polycam App [1] in an iPad pro. We use
875
+ SAPIEN [63] object meshes for manipulation examples. As
876
+ shown, our method successfully produces plausible and nat-
877
+ ural human motions in many challenging scenarios. Our
878
+ supplementary video contains several ablation studies of
879
+ our method by showing the importance of collision reward
880
+ rcoli in Eq. (4), transition reward (r∆t , r∆v) in Eq. (8), pos-
881
+ ture offset aoffset
882
+ t
883
+ in Action Controller (Sec. 3.2), and our
884
+ motion editing modules (Sec. 3.5) compared to the tradi-
885
+ tional Inverse Kinematics (IK). We also show the compari-
886
+ son with previous state-of-the arts [15, 59, 60] and demon-
887
+ strate that our results produces better quality of motions
888
+ with better collision avoidance performance in complicated
889
+ 3D scenes.
890
+ B. Additional Details on Implementations
891
+ B.1. Action Controller
892
+ Implementation Details.
893
+ For the action controller A and
894
+ motion synthesizer module S, we use the animation library
895
+ DART [27]. We also use a publicly available PPO imple-
896
+ mentation [32, 41], where we remove the variable time-
897
+ stepping functions stepping in [32] by following the origi-
898
+ nal PPO algorithm. The details of the training regarding the
899
+ policy and value network of the action controller are written
900
+ in Table 2.
901
+ Early Termination Conditions.
902
+ As written in the main
903
+ paper, the episode is terminated (1) when the character
904
+ moves out of the scene bounding box; (2) when the colli-
905
+ sion reward rcoli is under a certain threshold; or (3) when
906
+ the root of the human character is located in the blocked
907
+ (occupied) regions of the scenes in 2D grid space during
908
+ the locomotion status.
909
+ Name
910
+ Value
911
+ Learning rate of policy network
912
+ 2e-4
913
+ Learning rate of value network
914
+ 0.001
915
+ Discount factor (γ)
916
+ 0.95
917
+ GAE and TD (λ)
918
+ 0.95
919
+ Clip parameter (ϵ)
920
+ 0.2
921
+ # of tuples per policy update
922
+ 30000
923
+ Batch size for policy/value update
924
+ 512
925
+ Table 2. Details on the hyper-parameters for learning the control
926
+ policy of the action controller A.
927
+ B.2. Motion Synthesizer
928
+ Motion Database Information.
929
+ As described in our
930
+ main paper, we pre-process the motion segments by selec-
931
+ tively collecting and clipping from Ubisoft La Forge [14],
932
+ COUCH [70], and SAMP [15]. The length (in frames)
933
+ of motion segments (“Seg. Length” in tables), number of
934
+ motion segment (“Seg. Count” in tables), and the number
935
+ of total frames (“Total Frames” in tables) are summarized
936
+ in Table 3.
937
+ Action-Specific Feature Definition.
938
+ The motion feature,
939
+ as defined in our main paper Sec 3.3, represents both the
940
+ current state of the motion and a short term future move-
941
+ ments: f(m) = {{pj}, { ˙pj}, θup, c, ofuture}. In particu-
942
+ lar the action specific feature ofuture = {{pdt
943
+ 0 }, {rdt
944
+ 0 }}
945
+ contains future motions so that the motion search process
946
+ can take into account the future motion consistency, where
947
+ pdt
948
+ 0 , rdt
949
+ 0 ∈ R2 are the position and orientation of root joint at
950
+ dt frames later from the current target frame. For locomo-
951
+ tion, we extract dt = 10, 20, and 30 frames in the future (at
952
+ 30Hz) following [9], as addressed in our main paper. For sit-
953
+ ting, we specifically choose dt as the frame where the char-
954
+ acter completes the sit-down motion. The major motivation
955
+ of this design choice is encourage the motion synthesizer to
956
+ search the motion clips with the desired target action.
957
+ Computation Cost for Searching.
958
+ The computation time
959
+ for searching the motion database is done between 1-2 mil-
960
+ liseconds in CPU, where we test on AMD Ryzen 5950X
961
+ CPU. The number of search times varies and is dependent
962
+ to the 3D scenes and desired motions. In one of our sce-
963
+ narios, total 17 searches in locomotion(walk) and 14 in ac-
964
+ tion(sit) were done. For locomotion, the searching time is
965
+ average 1.743 milliseconds (standard deviation 0.46) and
966
+ for action(sit) 1.103 milliseconds (standard deviation 0.63).
967
+ B.3. Motion Editing via Motion Manifold
968
+ Implementation Details.
969
+ For the convolutional autoen-
970
+ coder of task-adaptive motion editing, we use PyTorch [42],
971
+ FairMotion [12], and PyTorch3d [48]. The autoencoder is
972
+ trained with the Adam optimizer with learning rate 0.0001.
973
+ We use 3 layers of 1D temporal-convolutions with kernel
974
+ width of 25 and stride 2, and the channel dimension of each
975
+ output feature is 256. The training datasets are summarized
976
+ in Table 4. Note that we use different pre-processing steps
977
+ between Motion editing module and Motion Synthesizer.
978
+ Reconstruction Loss.
979
+ The encoder Ψ and decoder Ψ−1
980
+ are trained based on reconstruction loss Lrecon = ||X −
981
+ Ψ−1(Ψ (X)) ||2, where:
982
+ Lrecon = wcLcontact + wrLroot + wqLquat + wpLpos.
983
+ (9)
984
+ 9
985
+
986
+ Lcontact, Lroot, and Lquat are the MSE losses of foot con-
987
+ tact labels, root status (height and transform relative to the
988
+ previous frame projected on the XZ plane), and the joint
989
+ rotations in 6D representations [73]. To penalize errors ac-
990
+ cumulating along the kinematic chain, we perform forward
991
+ kinematics (FK) and measure the global position distance of
992
+ joints between original and reconstructed motion. As global
993
+ positions of the joints are highly dependent on the root po-
994
+ sitions, for the early epochs, the distance is measured based
995
+ on root-centric coordinates to ignore the global location of
996
+ roots, which we found empirically more stable.
997
+ Motion Editing Loss
998
+ For motion editing, the positional
999
+ loss and regularization loss are defined as follows.
1000
+ L = wpLpos + wfLfoot + wrLroot,
1001
+ where
1002
+ Lpos =
1003
+
1004
+ j,qj∈φ
1005
+ ∥pj − qj∥2, if φ exists at t
1006
+ Lfoot =
1007
+
1008
+ foot
1009
+ ∥pe
1010
+ foot − pi
1011
+ foot∥2,
1012
+ Lroot = wr∥re
1013
+ xz − ri
1014
+ xz∥2 + w∆r∥˙re
1015
+ xz − ˙ri
1016
+ xz∥2.
1017
+ (10)
1018
+ pj denotes positions of joint j, and r, ˙r denotes root po-
1019
+ sitions and velocities respectively. Superscript e and i in-
1020
+ dicates whether it is from edited or initial motion, respec-
1021
+ tively. Subscript xz indicates the vector is projected onto
1022
+ the XZ plane. The loss term L enforces the edited motion
1023
+ to maintain contact and root trajectory (in the XZ plane) of
1024
+ the initial motion, while generating natural movements of
1025
+ the other joints to meet the sparse positional constraints.
1026
+ Generating Interaction Cue for Manipulation
1027
+ To syn-
1028
+ thesize character’s arm motions naturally interacting with
1029
+ the movements of articulated target objects, we produce
1030
+ desired interaction cues by producing the 3D trajectories
1031
+ of a chosen 3D position of the object at which the hand
1032
+ part of the character are expected to touch. Specifically,
1033
+ we apply the expected articulated motion of the 3D object
1034
+ model to produce the 3D trajectory of a chosen object ver-
1035
+ tex, v(Rt, Tt, θt), where Rt, Tt, are the global orientation
1036
+ and translation of the object and θt is the parameters for the
1037
+ object articulation (e.g., the hinge angle of the cover of a
1038
+ laptop) at time t. v(·) represents the 3D location of the cho-
1039
+ sen vertex v. To this end, we input the produced trajectory
1040
+ as the desired 3D interaction cue for a character’s joint (e.g.,
1041
+ a hand joint) assuming the joint is touching this object tra-
1042
+ jectory for manipulation φ = [v(Rt, Tt, θt)]t. Note that, in
1043
+ our visualization, we apply the desired articulated motions
1044
+ for the 3D object at each time, synced to the produced in-
1045
+ teraction cues.
1046
+ Label
1047
+ Seg. Length
1048
+ Seg. Count
1049
+ Total Frames
1050
+ Locomotion
1051
+ 10
1052
+ 11063
1053
+ 11498
1054
+ Sit
1055
+ 50 – 85
1056
+ 5842
1057
+ 14942
1058
+ Table 3. Details on pre-processed motion datasets per each action
1059
+ category for training our motion synthesizer S.
1060
+ Name
1061
+ Value
1062
+ Motion sequence length
1063
+ 120
1064
+ Number of sequence (training)
1065
+ 11397
1066
+ Number of sequence (validation)
1067
+ 3135
1068
+ Number of sequence (test)
1069
+ 2139
1070
+ Table 4. Details on pre-processed motion datasets for training our
1071
+ motion editing module M.
1072
+ C. More Details on Experiments
1073
+ C.1. Frechet Distance Features
1074
+ FDroot is computed by root feature vector, which is a con-
1075
+ catenated vector of root orientation in angle-axis represen-
1076
+ tation, root up vector, and root transform relative to the pre-
1077
+ vious frame. We note that all of the motions for comparison
1078
+ have the same up axis (y) and floor plane (xz). FDjoint is
1079
+ computed by joint feature vector, represented as joint orien-
1080
+ tations in angle-axis representation, excluding the root.
1081
+ References
1082
+ [1] Polycam - lidar and 3d scanner for iphone & android.
1083
+ https://poly.cam/. 9
1084
+ [2] Kfir Aberman, Peizhuo Li, Dani Lischinski, Olga Sorkine-
1085
+ Hornung, Daniel Cohen-Or, and Baoquan Chen. Skeleton-
1086
+ aware networks for deep motion retargeting. ACM Trans.
1087
+ Graph, 39(4), 2020. 3
1088
+ [3] Kfir Aberman, Yijia Weng, Dani Lischinski, Daniel Cohen-
1089
+ Or, and Baoquan Chen. Unpaired motion style transfer from
1090
+ video to animation. ACM Trans. Graph., 39(4), 2020. 3
1091
+ [4] Kevin
1092
+ Bergamin,
1093
+ Simon
1094
+ Clavet,
1095
+ Daniel
1096
+ Holden,
1097
+ and
1098
+ James Richard Forbes. Drecon: data-driven responsive con-
1099
+ trol of physics-based characters. ACM Trans. Graph., 38(6),
1100
+ 2019. 3
1101
+ [5] Michael B¨uttner and Simon Clavet. Motion matching - the
1102
+ road to next gen animation. In Proc. of Nucl.ai, 2015. 2, 4
1103
+ [6] Zhe Cao, Hang Gao, Karttikeya Mangalam, Qi-Zhi Cai,
1104
+ Minh Vo, and Jitendra Malik. Long-term human motion pre-
1105
+ diction with scene context. In ECCV, 2020. 2
1106
+ [7] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-
1107
+ ber, Matthias Niessner, Manolis Savva, Shuran Song, Andy
1108
+ Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d
1109
+ data in indoor environments. In 3DV, 2017. 6, 9
1110
+ [8] Yu-Wei Chao, Jimei Yang, Weifeng Chen, and Jia Deng.
1111
+ Learning to sit: Synthesizing human-chair interactions via
1112
+ hierarchical control. In AAAI, 2021. 2
1113
+ 10
1114
+
1115
+ [9] Simon Clavet. Motion matching and the road to next-gen
1116
+ animation. In Proc. of GDC, 2016. 2, 4, 9
1117
+ [10] Haegwang Eom, Daseong Han, Joseph S Shin, and Junyong
1118
+ Noh.
1119
+ Model predictive control with a visuomotor system
1120
+ for physics-based character animation. ACM Trans. Graph.,
1121
+ 39(1), 2019. 1, 2
1122
+ [11] Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Ji-
1123
+ tendra Malik. Recurrent network models for human dynam-
1124
+ ics. In ICCV, 2015. 2
1125
+ [12] Deepak Gopinath and Jungdam Won. fairmotion - tools to
1126
+ load, process and visualize motion capture data.
1127
+ Github,
1128
+ 2020. 9
1129
+ [13] Ikhsanul Habibie, Daniel Holden, Jonathan Schwarz, Joe
1130
+ Yearsley, and Taku Komura. A recurrent variational autoen-
1131
+ coder for human motion synthesis. In BMVC, 2017. 2
1132
+ [14] F´elix G Harvey, Mike Yurick, Derek Nowrouzezahrai, and
1133
+ Christopher Pal. Robust motion in-betweening. ACM Trans.
1134
+ Graph, 39(4), 2020. 3, 6, 9
1135
+ [15] Mohamed Hassan, Duygu Ceylan, Ruben Villegas, Jun Saito,
1136
+ Jimei Yang, Yi Zhou, and Michael Black. Stochastic scene-
1137
+ aware motion prediction. In ICCV, 2021. 1, 2, 3, 6, 7, 8,
1138
+ 9
1139
+ [16] Mohamed Hassan, Vasileios Choutas, Dimitrios Tzionas,
1140
+ and Michael J. Black. Resolving 3D human pose ambigu-
1141
+ ities with 3D scene constraints. In ICCV, 2019. 2, 6, 7, 9
1142
+ [17] Mohamed Hassan, Partha Ghosh, Joachim Tesch, Dimitrios
1143
+ Tzionas, and Michael J Black.
1144
+ Populating 3d scenes by
1145
+ learning human-scene interaction. In CVPR, 2021. 1, 2
1146
+ [18] Daniel Holden, Oussama Kanoun, Maksym Perepichka, and
1147
+ Tiberiu Popa.
1148
+ Learned motion matching.
1149
+ ACM Trans.
1150
+ Graph., 39(4), 2020. 4
1151
+ [19] Daniel Holden, Taku Komura, and Jun Saito.
1152
+ Phase-
1153
+ functioned neural networks for character control.
1154
+ ACM
1155
+ Trans. Graph., 36(4), 2017. 3
1156
+ [20] Daniel Holden, Jun Saito, and Taku Komura. A deep learning
1157
+ framework for character motion synthesis and editing. ACM
1158
+ Trans. Graph., 35(4), 2016. 2, 3, 6
1159
+ [21] Chun-Hao P Huang, Hongwei Yi, Markus H¨oschle, Matvey
1160
+ Safroshkin, Tsvetelina Alexiadis, Senya Polikovsky, Daniel
1161
+ Scharstein, and Michael J Black. Capturing and inferring
1162
+ dense full-body human-scene contact. In CVPR, 2022. 2
1163
+ [22] Kyunglyul Hyun, Kyungho Lee, and Jehee Lee.
1164
+ Motion
1165
+ grammars for character animation. In Computer Graphics
1166
+ Forum, volume 35, 2016. 2
1167
+ [23] Yuheng Jiang, Suyi Jiang, Guoxing Sun, Zhuo Su, Kaiwen
1168
+ Guo, Minye Wu, Jingyi Yu, and Lan Xu. Neuralhofusion:
1169
+ Neural volumetric rendering under human-object interac-
1170
+ tions. In CVPR, 2022. 2
1171
+ [24] Vladimir G Kim, Siddhartha Chaudhuri, Leonidas Guibas,
1172
+ and Thomas Funkhouser. Shape2pose: Human-centric shape
1173
+ analysis. ACM Trans. Graph., 33(4), 2014. 1, 2
1174
+ [25] Diederik P Kingma and Jimmy Ba. Adam: A method for
1175
+ stochastic optimization.
1176
+ arXiv preprint arXiv:1412.6980,
1177
+ 2014. 6
1178
+ [26] Jehee Lee, Jinxiang Chai, Paul SA Reitsma, Jessica K Hod-
1179
+ gins, and Nancy S Pollard.
1180
+ Interactive control of avatars
1181
+ animated with human motion data. In Proceedings of the
1182
+ 29th annual conference on Computer graphics and interac-
1183
+ tive techniques, 2002. 2
1184
+ [27] Jeongseok Lee, Michael X Grey, Sehoon Ha, Tobias Kunz,
1185
+ Sumit Jain, Yuting Ye, Siddhartha S Srinivasa, Mike Stilman,
1186
+ and C Karen Liu.
1187
+ Dart: Dynamic animation and robotics
1188
+ toolkit. The Journal of Open Source Software, 3(22), 2018.
1189
+ 9
1190
+ [28] Jehee Lee and Kang Hoon Lee.
1191
+ Precomputing avatar be-
1192
+ havior from human motion data.
1193
+ In Proceedings of the
1194
+ 2004 ACM SIGGRAPH/Eurographics symposium on Com-
1195
+ puter animation, 2004. 3
1196
+ [29] Kyungho Lee, Seyoung Lee, and Jehee Lee. Interactive char-
1197
+ acter animation by learning multi-objective control. ACM
1198
+ Trans. Graph., 37(6), 2018. 3
1199
+ [30] Kyungho Lee, Sehee Min, Sunmin Lee, and Jehee Lee.
1200
+ Learning time-critical responses for interactive character
1201
+ control. ACM Trans. Graph., 40(4), 2021. 3
1202
+ [31] Kang Hoon Lee, Myung Geol Choi, and Jehee Lee. Motion
1203
+ patches: building blocks for virtual environments annotated
1204
+ with motion data. In ACM SIGGRAPH 2006 Papers. 2006.
1205
+ 2
1206
+ [32] Seyoung Lee, Sunmin Lee, Yongwoo Lee, and Jehee Lee.
1207
+ Learning a family of motor skills from a single motion clip.
1208
+ ACM Trans. Graph., 40(4), 2021. 3, 9
1209
+ [33] Seunghwan Lee, Moonseok Park, Kyoungmin Lee, and Je-
1210
+ hee Lee. Scalable muscle-actuated human simulation and
1211
+ control. ACM Trans. Graph., 38(4), 2019. 5
1212
+ [34] Sergey Levine, Jack M Wang, Alexis Haraux, Zoran
1213
+ Popovi´c, and Vladlen Koltun.
1214
+ Continuous character con-
1215
+ trol with low-dimensional embeddings. ACM Trans. Graph,
1216
+ 31(4), 2012. 3
1217
+ [35] Ruilong Li, Shan Yang, David A. Ross, and Angjoo
1218
+ Kanazawa. Ai choreographer: Music conditioned 3d dance
1219
+ generation with aist++. In ICCV, 2021. 2, 7
1220
+ [36] Hung Yu Ling, Fabio Zinno, George Cheng, and Michiel Van
1221
+ De Panne. Character controllers using motion vaes. ACM
1222
+ Trans. Graph., 39(4), 2020. 3
1223
+ [37] Kovar Lucas, Gleicher Michael, and Pighin Fr´ed´eric. Motion
1224
+ graphs. In Proceedings of the 29th Annual Conference on
1225
+ Computer Graphics and Interactive Techniques, 2002. 2
1226
+ [38] Julieta Martinez, Michael J Black, and Javier Romero. On
1227
+ human motion prediction using recurrent neural networks.
1228
+ In CVPR, 2017. 2
1229
+ [39] Josh Merel, Saran Tunyasuvunakool, Arun Ahuja, Yuval
1230
+ Tassa, Leonard Hasenclever, Vu Pham, Tom Erez, Greg
1231
+ Wayne, and Nicolas Heess. Catch & carry: reusable neural
1232
+ controllers for vision-guided whole-body tasks. ACM Trans.
1233
+ Graph., 39(4), 2020. 2
1234
+ [40] Evonne Ng, Hanbyul Joo, Liwen Hu, Hao Li, , Trevor Dar-
1235
+ rell, Angjoo Kanazawa, and Shiry Ginosar. Learning to lis-
1236
+ ten: Modeling non-deterministic dyadic facial motion.
1237
+ In
1238
+ CVPR, 2022. 7
1239
+ [41] Soohwan Park, Hoseok Ryu, Seyoung Lee, Sunmin Lee, and
1240
+ Jehee Lee. Learning predict-and-simulate policies from un-
1241
+ organized human motion data. ACM Trans. Graph., 38(6),
1242
+ 2019. 3, 5, 9
1243
+ 11
1244
+
1245
+ [42] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
1246
+ James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
1247
+ Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
1248
+ Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
1249
+ son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
1250
+ Lu Fang, Junjie Bai, and Soumith Chintala.
1251
+ Pytorch: An
1252
+ imperative style, high-performance deep learning library.
1253
+ In Advances in Neural Information Processing Systems 32,
1254
+ pages 8024–8035. Curran Associates, Inc., 2019. 9
1255
+ [43] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel
1256
+ Van de Panne. Deepmimic: Example-guided deep reinforce-
1257
+ ment learning of physics-based character skills. ACM Trans.
1258
+ Graph., 37(4), 2018. 3, 5
1259
+ [44] Xue Bin Peng, Yunrong Guo, Lina Halper, Sergey Levine,
1260
+ and Sanja Fidler. Ase: Large-scale reusable adversarial skill
1261
+ embeddings for physically simulated characters. ACM Trans.
1262
+ Graph, 41(4), 2022. 3
1263
+ [45] Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and
1264
+ Angjoo Kanazawa. Amp: Adversarial motion priors for styl-
1265
+ ized physics-based character control. ACM Trans. Graph,
1266
+ 40(4), 2021. 3
1267
+ [46] Mathis Petrovich, Michael J Black, and G¨ul Varol. Action-
1268
+ conditioned 3d human motion synthesis with transformer
1269
+ vae. In ICCV, 2021. 2, 3
1270
+ [47] Yuzhe Qin, Yueh-Hua Wu, Shaowei Liu, Hanwen Jiang, Rui-
1271
+ han Yang, Yang Fu, and Xiaolong Wang. Dexmv: Imitation
1272
+ learning for dexterous manipulation from human videos. In
1273
+ ECCV, 2022. 1, 2
1274
+ [48] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay-
1275
+ lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia
1276
+ Gkioxari.
1277
+ Accelerating 3d deep learning with pytorch3d.
1278
+ arXiv:2007.08501, 2020. 9
1279
+ [49] Manolis Savva, Angel X Chang, Pat Hanrahan, Matthew
1280
+ Fisher, and Matthias Nießner. Pigraphs: learning interaction
1281
+ snapshots from observations.
1282
+ ACM Trans. Graph., 35(4),
1283
+ 2016. 1, 2
1284
+ [50] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
1285
+ ford, and Oleg Klimov. Proximal policy optimization algo-
1286
+ rithms. arXiv preprint arXiv:1707.06347, 2017. 5
1287
+ [51] Hubert PH Shum, Taku Komura, Masashi Shiraishi, and
1288
+ Shuntaro Yamazaki. Interaction patches for multi-character
1289
+ animation. ACM Trans. Graph., 27(5), 2008. 2
1290
+ [52] Sebastian Starke, Ian Mason, and Taku Komura. Deepphase:
1291
+ periodic autoencoders for learning motion phase manifolds.
1292
+ ACM Trans. Graph., 41(4):1–13, 2022. 3
1293
+ [53] Sebastian Starke, He Zhang, Taku Komura, and Jun Saito.
1294
+ Neural state machine for character-scene interactions. ACM
1295
+ Trans. Graph., 38(6), 2019. 1, 2
1296
+ [54] Omid Taheri, Vasileios Choutas, Michael J Black, and Dim-
1297
+ itrios Tzionas. Goal: Generating 4d whole-body motion for
1298
+ hand-object grasping. In CVPR, 2022. 1, 2
1299
+ [55] Omid Taheri, Nima Ghorbani, Michael J Black, and Dim-
1300
+ itrios Tzionas. Grab: A dataset of whole-body human grasp-
1301
+ ing of objects. In ECCV, 2020. 1, 2
1302
+ [56] Graham W Taylor and Geoffrey E Hinton. Factored con-
1303
+ ditional restricted boltzmann machines for modeling motion
1304
+ style. In ICML, 2009. 2
1305
+ [57] Adrien Treuille, Yongjoon Lee, and Zoran Popovi´c. Near-
1306
+ optimal character animation with continuous control.
1307
+ In
1308
+ ACM SIGGRAPH 2007 papers. 2007. 3
1309
+ [58] Ruben Villegas, Jimei Yang, Yuliang Zou, Sungryull Sohn,
1310
+ Xunyu Lin, and Honglak Lee. Learning to generate long-
1311
+ term future via hierarchical prediction. In ICML, 2017. 2
1312
+ [59] Jingbo Wang, Yu Rong, Jingyuan Liu, Sijie Yan, Dahua Lin,
1313
+ and Bo Dai. Towards diverse and natural scene-aware 3d
1314
+ human motion synthesis. In CVPR, 2022. 1, 2, 3, 9
1315
+ [60] Jiashun Wang, Huazhe Xu, Jingwei Xu, Sifei Liu, and Xiao-
1316
+ long Wang. Synthesizing long-term 3d human motion and
1317
+ interaction in 3d scenes. In CVPR, 2021. 1, 2, 6, 7, 8, 9
1318
+ [61] Jingbo Wang, Sijie Yan, Bo Dai, and Dahua Lin.
1319
+ Scene-
1320
+ aware generative network for human motion synthesis. In
1321
+ CVPR, 2021. 2
1322
+ [62] Jungdam Won, Deepak Gopinath, and Jessica Hodgins. A
1323
+ scalable approach to control diverse behaviors for physically
1324
+ simulated characters. ACM Trans. Graph., 39(4), 2020. 3
1325
+ [63] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao
1326
+ Zhu, Fangchen Liu, Minghua Liu, Hanxiao Jiang, Yifu Yuan,
1327
+ He Wang, et al. Sapien: A simulated part-based interactive
1328
+ environment. In CVPR, 2020. 6, 9
1329
+ [64] Xianghui Xie, Bharat Lal Bhatnagar, and Gerard Pons-Moll.
1330
+ Chore: Contact, human and object reconstruction from a sin-
1331
+ gle rgb image. In ECCV, 2022. 1, 2
1332
+ [65] Xiang Xu, Hanbyul Joo, Greg Mori, and Manolis Savva.
1333
+ D3d-hoi: Dynamic 3d human-object interactions from
1334
+ videos. arXiv preprint arXiv:2108.08420, 2021. 2
1335
+ [66] Zeshi Yang, Kangkang Yin, and Libin Liu. Learning to use
1336
+ chopsticks in diverse gripping styles. ACM Trans. Graph.,
1337
+ 41(4), 2022. 1, 2
1338
+ [67] He Zhang, Yuting Ye, Takaaki Shiratori, and Taku Komura.
1339
+ Manipnet: Neural manipulation synthesis with a hand-object
1340
+ spatial representation. ACM Trans. Graph., 40(4), 2021. 1, 2
1341
+ [68] Jason Y. Zhang, Sam Pepose, Hanbyul Joo, Deva Ramanan,
1342
+ Jitendra Malik, and Angjoo Kanazawa.
1343
+ Perceiving 3d
1344
+ human-object spatial arrangements from a single image in
1345
+ the wild. In ECCV, 2020. 2
1346
+ [69] Siwei Zhang, Yan Zhang, Qianli Ma, Michael J Black, and
1347
+ Siyu Tang. Place: Proximity learning of articulation and con-
1348
+ tact in 3d environments. In 3DV, 2020. 1, 2
1349
+ [70] Xiaohan Zhang, Bharat Lal Bhatnagar, Sebastian Starke,
1350
+ Vladimir Guzov, and Gerard Pons-Moll. Couch: Towards
1351
+ controllable human-chair interactions. In ECCV, 2022. 1, 2,
1352
+ 6, 9
1353
+ [71] Yan Zhang, Mohamed Hassan, Heiko Neumann, Michael J
1354
+ Black, and Siyu Tang. Generating 3d people in scenes with-
1355
+ out people. In CVPR, 2020. 1, 2
1356
+ [72] Kaifeng Zhao, Shaofei Wang, Yan Zhang, Thabo Beeler, ,
1357
+ and Siyu Tang. Compositional human-scene interaction syn-
1358
+ thesis with semantic control. In ECCV, 2022. 1, 2
1359
+ [73] Yi Zhou, Connelly Barnes, Lu Jingwan, Yang Jimei, and Li
1360
+ Hao. On the continuity of rotation representations in neural
1361
+ networks. In CVPR, 2019. 4, 6, 10
1362
+ 12
1363
+
FNE0T4oBgHgl3EQfzAKR/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
FdFJT4oBgHgl3EQfDCyN/content/2301.11432v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03208bc0f2477510ed8d67c765746a7d627f9b98639c8e32e7c9904d21c68e8e
3
+ size 221312
FdFJT4oBgHgl3EQfDCyN/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90b48d51617bbb71df1b815fc00ebe451f447910edbd3d0b2daea1a7449c2406
3
+ size 1638445
FdFJT4oBgHgl3EQfDCyN/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:303cb74baadf59f951360c835a4afd1ba07a11642253c7446b90c6310a1e9c55
3
+ size 53443
HNAzT4oBgHgl3EQfjP3H/content/2301.01514v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55fccdce5be01ca1a2a5a69a3f7e1de839adabac949ee02bfa18c7f9a46d5f80
3
+ size 451039
HNAzT4oBgHgl3EQfjP3H/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e501500941e2869b7fc2df4d9c1ac7901033112590724ab6f7df8829403e4af1
3
+ size 2883629