jackkuo commited on
Commit
60dae9e
·
verified ·
1 Parent(s): c7b6043

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. 0tFPT4oBgHgl3EQfTjTq/content/tmp_files/load_file.txt +0 -0
  3. 4NE1T4oBgHgl3EQfSgOT/content/tmp_files/2301.03067v1.pdf.txt +897 -0
  4. 4NE1T4oBgHgl3EQfSgOT/content/tmp_files/load_file.txt +0 -0
  5. 4tFAT4oBgHgl3EQfFByL/content/tmp_files/2301.08425v1.pdf.txt +488 -0
  6. 4tFAT4oBgHgl3EQfFByL/content/tmp_files/load_file.txt +290 -0
  7. 6dAyT4oBgHgl3EQfcvcQ/content/tmp_files/2301.00287v1.pdf.txt +624 -0
  8. 6dAyT4oBgHgl3EQfcvcQ/content/tmp_files/load_file.txt +440 -0
  9. 6tAyT4oBgHgl3EQfpvgE/content/tmp_files/2301.00529v1.pdf.txt +0 -0
  10. 6tAyT4oBgHgl3EQfpvgE/content/tmp_files/load_file.txt +0 -0
  11. 7dE4T4oBgHgl3EQf2Q2c/content/tmp_files/2301.05297v1.pdf.txt +1046 -0
  12. 89FST4oBgHgl3EQfajh_/content/tmp_files/load_file.txt +0 -0
  13. 8NE4T4oBgHgl3EQf2w06/content/tmp_files/2301.05300v1.pdf.txt +942 -0
  14. 99FJT4oBgHgl3EQfpCw2/vector_store/index.faiss +3 -0
  15. 9tAyT4oBgHgl3EQfQ_bX/content/tmp_files/load_file.txt +0 -0
  16. 9tAyT4oBgHgl3EQfqPjX/content/tmp_files/2301.00541v1.pdf.txt +372 -0
  17. 9tAyT4oBgHgl3EQfqPjX/content/tmp_files/load_file.txt +285 -0
  18. BtE4T4oBgHgl3EQfeA0g/content/tmp_files/2301.05095v1.pdf.txt +1577 -0
  19. BtE4T4oBgHgl3EQfeA0g/content/tmp_files/load_file.txt +0 -0
  20. BtE5T4oBgHgl3EQfTQ-D/content/tmp_files/load_file.txt +0 -0
  21. CtAyT4oBgHgl3EQfR_f1/content/tmp_files/load_file.txt +0 -0
  22. DdAyT4oBgHgl3EQf4vob/content/tmp_files/2301.00790v1.pdf.txt +2521 -0
  23. DdAyT4oBgHgl3EQf4vob/content/tmp_files/load_file.txt +0 -0
  24. F9FKT4oBgHgl3EQfbS5P/content/tmp_files/2301.11811v1.pdf.txt +944 -0
  25. FtE3T4oBgHgl3EQftQtg/content/tmp_files/2301.04674v1.pdf.txt +1488 -0
  26. GdE1T4oBgHgl3EQfrAWz/content/tmp_files/2301.03350v1.pdf.txt +785 -0
  27. GdE1T4oBgHgl3EQfrAWz/content/tmp_files/load_file.txt +392 -0
  28. I9FAT4oBgHgl3EQfux7Z/content/tmp_files/load_file.txt +0 -0
  29. ItFJT4oBgHgl3EQfFyzw/content/tmp_files/load_file.txt +0 -0
  30. JdAyT4oBgHgl3EQffviy/vector_store/index.pkl +3 -0
  31. LNAyT4oBgHgl3EQfgPhD/content/tmp_files/2301.00354v1.pdf.txt +1714 -0
  32. LNAyT4oBgHgl3EQfgPhD/content/tmp_files/load_file.txt +0 -0
  33. PNE3T4oBgHgl3EQfxguY/content/tmp_files/load_file.txt +0 -0
  34. QNE0T4oBgHgl3EQfkQEN/content/tmp_files/2301.02469v1.pdf.txt +795 -0
  35. QNE0T4oBgHgl3EQfkQEN/content/tmp_files/load_file.txt +307 -0
  36. QdAzT4oBgHgl3EQfW_xa/content/tmp_files/2301.01310v1.pdf.txt +2302 -0
  37. QdAzT4oBgHgl3EQfW_xa/content/tmp_files/load_file.txt +0 -0
  38. QtE3T4oBgHgl3EQfDAk3/content/tmp_files/2301.04281v1.pdf.txt +3385 -0
  39. QtE3T4oBgHgl3EQfDAk3/content/tmp_files/load_file.txt +0 -0
  40. SdAyT4oBgHgl3EQfuPmB/content/tmp_files/2301.00609v1.pdf.txt +2307 -0
  41. TNFAT4oBgHgl3EQf2R4K/content/tmp_files/load_file.txt +0 -0
  42. U9E3T4oBgHgl3EQfawpi/content/tmp_files/load_file.txt +0 -0
  43. V9AzT4oBgHgl3EQfJ_vP/content/tmp_files/load_file.txt +0 -0
  44. W9FQT4oBgHgl3EQfcjYS/content/tmp_files/2301.13327v1.pdf.txt +1839 -0
  45. X9FRT4oBgHgl3EQfODd9/content/tmp_files/2301.13512v1.pdf.txt +934 -0
  46. X9FRT4oBgHgl3EQfODd9/content/tmp_files/load_file.txt +0 -0
  47. XNAyT4oBgHgl3EQf9PpX/content/tmp_files/2301.00870v1.pdf.txt +1356 -0
  48. XtAzT4oBgHgl3EQfKfuP/content/2301.01098v1.pdf +3 -0
  49. YNFQT4oBgHgl3EQfdzaO/content/tmp_files/2301.13332v1.pdf.txt +1307 -0
  50. YNFQT4oBgHgl3EQfdzaO/content/tmp_files/load_file.txt +0 -0
.gitattributes CHANGED
@@ -123,3 +123,4 @@ pNE1T4oBgHgl3EQf2AWA/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -tex
123
  CNFAT4oBgHgl3EQfsx5b/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
124
  VNAyT4oBgHgl3EQf8vqZ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
125
  2tFKT4oBgHgl3EQf7y43/content/2301.11946v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
123
  CNFAT4oBgHgl3EQfsx5b/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
124
  VNAyT4oBgHgl3EQf8vqZ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
125
  2tFKT4oBgHgl3EQf7y43/content/2301.11946v1.pdf filter=lfs diff=lfs merge=lfs -text
126
+ XtAzT4oBgHgl3EQfKfuP/content/2301.01098v1.pdf filter=lfs diff=lfs merge=lfs -text
0tFPT4oBgHgl3EQfTjTq/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
4NE1T4oBgHgl3EQfSgOT/content/tmp_files/2301.03067v1.pdf.txt ADDED
@@ -0,0 +1,897 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03067v1 [astro-ph.HE] 8 Jan 2023
2
+ Neutron stars in the context of f(T, T ) gravity
3
+ Cl´esio E. Mota1,∗ Luis C. N. Santos2,† Franciele M. da Silva3,‡
4
+ Cesar V. Flores4,5,§ Iarley P. Lobo6,7,¶ and Valdir B. Bezerra2∗∗
5
+ 1Departamento de F´ısica, CFM - Universidade Federal de Santa
6
+ Catarina; C.P. 476, CEP 88.040-900, Florian´opolis, SC, Brasil.
7
+ 2Departamento de F´ısica, CCEN-Universidade Federal da Para´ıba;
8
+ C.P. 5008, CEP 58.051-970, Jo˜ao Pessoa, PB, Brazil
9
+ 3N´ucleo Cosmo–ufes & Departamento de F´ısica, Universidade Federal do Esp´ırito Santo,
10
+ Av.
11
+ Fernando Ferrari, 540, CEP 29.075-910, Vit´oria, ES, Brazil
12
+ 4Centro de Ciˆencias Exatas, Naturais e Tecnol´ogicas,
13
+ CCENT - Universidade Estadual da Regi˜ao Tocantina do Maranh˜ao; C.P. 1300,
14
+ CEP 65901-480, Imperatriz, MA, Brasil.
15
+ 5Departamento de F´ısica, CCET - Universidade Federal do Maranh˜ao,
16
+ Campus Universit´ario do Bacanga; CEP 65080-805, S˜ao Lu´ıs, MA, Brasil.
17
+ 6Department of Chemistry and Physics, Federal University of Para´ıba,
18
+ Rodovia BR 079 - Km 12, 58397-000 Areia-PB, Brazil. and
19
+ 7Physics Department, Federal University of Lavras,
20
+ Caixa Postal 3037, 37200-000 Lavras-MG, Brazil.
21
+ In this work, we investigate the existence of neutron stars (NS) in the framework of f(T, T )
22
+ gravity, where T is the torsion tensor and T is the trace of the energy-momentum tensor. The
23
+ hydrostatic equilibrium equations are obtained, however, with p and ρ quantities passed on by
24
+ effective quantities ¯p and ¯ρ, whose mass-radius diagrams are obtained using modern equations of
25
+ state (EoS) of nuclear matter derived from relativistic mean field models and compared with the
26
+ ones computed by the Tolman-Oppenheimer-Volkoff (TOV) equations. Substantial changes in the
27
+ mass-radius profiles of NS are obtained even for small changes in the free parameter of this modified
28
+ theory. The results indicate that the use of f(T, T ) gravity in the study of NS provides good results
29
+ for the masses and radii of some important astrophysical objects, as for example, the low-mass X-ray
30
+ binary (LMXB) NGC 6397 and the pulsar of millisecond PSR J0740+6620. In addition, radii results
31
+ inferred from the Lead Radius EXperiment (PREX-2) can also be described for certain parameter
32
+ values.
33
+ Keywords : general relativity, modified gravity, neutron stars.
34
+ I.
35
+ INTRODUCTION
36
+ In recent years, there have been a growing number
37
+ of ideas exploring modifications and alternative formu-
38
+ lations of General Relativity (GR) emerging of different
39
+ contexts. In fact, GR is a theory well tested, providing
40
+ an interesting description of the space-time nature as a
41
+ dynamical stage where physical phenomena takes place.
42
+ In parallel to the advances in GR, the quantization of
43
+ the gravitational field remains an open problem. With
44
+ respect to this issue, it was pointed out that the action
45
+ for gravity should be constructed with higher-order cur-
46
+ vature terms in the context of renormalization at one
47
+ loop level [1]. In the literature there are some formula-
48
+ tions of gravity where the usual Einstein-Hilbert action
49
+ is supplemented by higher-order curvature terms, as for
50
+ example in the context of the f(R) theory in which case
51
52
53
54
55
+ ¶ iarley˙lobo@fisica.ufpb.com
56
57
+ the Ricci scalar R in the action is replaced by a general
58
+ function f(R) [2].
59
+ On the other hand, there are questions concerning the
60
+ content of energy and matter in the universe that, at
61
+ the moment, are not satisfactorily explained in the scope
62
+ of standard theories.
63
+ The observed rotation curves of
64
+ galaxies [3] and the “missing mass” of galaxy clusters
65
+ [4] suggest the dark matter hypothesis, while the ac-
66
+ celerated expansion of the universe observed today can
67
+ be interpreted as an effect of the so-called dark energy
68
+ [5, 6]. Unexpectedly these observations reveals that the
69
+ ordinary baryonic matter corresponds to only 4% of con-
70
+ tent of energy of the universe while the dark matter and
71
+ dark energy correspond to 20% and 76%, respectively. In
72
+ this sense, there are studies considering the possibility of
73
+ modified theories of gravity which may help to alleviate
74
+ the need for dark components of energy of the universe
75
+ beyond the scope of GR.
76
+ The late-time acceleration of the universe can be in-
77
+ terpreted under two points of view. In the first one, it
78
+ is introduced a dark energy sector in the energy content
79
+ of the universe through a type of field. In the second
80
+ one, the gravitational field itself is modified.
81
+ In addi-
82
+ tion, there may be combinations of both approaches de-
83
+ pending on the couplings between gravitational and non-
84
+
85
+ 2
86
+ gravitational sectors of theory [7–10]. Thus, it is expected
87
+ that different formulations of gravity imply that standard
88
+ results in astrophysics suffer modifications. Compact ob-
89
+ jects as neutron stars (NS), have been studied consid-
90
+ ering effects of such modifications [11–20].
91
+ NS in the
92
+ context of f(R) gravity were studied in [21–23] and in
93
+ f(R, T ) gravity in the papers [24–28]. In common, all
94
+ of these works have considered effects on NS due to the
95
+ modification of the gravitational field that include extra
96
+ terms in the action. In the scheme of nonconservative
97
+ gravity, the modification of the gravitational field can be
98
+ done through a reinterpretation of the conservation law,
99
+ as was considered in the papers [29, 30] (for a review on
100
+ non-conservative theories of gravity, see [31]). Usually,
101
+ the non-conservation of the stress-energy tensor is pro-
102
+ portional to the matter density and pressure themselves.
103
+ For this reason, an environment such as a compact ob-
104
+ ject like a NS turns out to be an appealing laboratory for
105
+ testing such theories.
106
+ In the context of modified theories of gravity, the so-
107
+ called f(T,T ) gravity is a class of such theories, free of
108
+ ghosts and instabilities which, when applied to cosmo-
109
+ logical problems, leads to interesting results [32]. In this
110
+ formulation, the action depends on the torsion scalar T
111
+ and on the trace of the energy-momentum tensor T . As
112
+ in the case of f(T) gravity where the action is an ar-
113
+ bitrary function of the torsion, in f(T, T ) gravity, the
114
+ action is a arbitrary function of both the trace of the
115
+ energy-momentum tensor and the torsion scalar.
116
+ In this paper, we study an important context, not yet
117
+ explored in the literature, that are the implications of
118
+ the f(T,T ) gravity on NS. In particular, we obtain the
119
+ mass-radius relation of NS in the context of this modified
120
+ gravity and compare our results with recent astrophysical
121
+ observations and experiments.
122
+ This work is organized as follows: In Section II we ex-
123
+ pose a summary of the f(T,T ) gravity. In Section III we
124
+ derive the equations describing static, spherically sym-
125
+ metric stars in this modified theory of gravity. In Section
126
+ IV we present our results and in Section V we close with
127
+ our final remarks.
128
+ II.
129
+ GRAVITATIONAL FIELD EQUATIONS OF
130
+ f(T, T ) GRAVITY
131
+ Given a line element describing a space-time we want
132
+ to study
133
+ ds2 = gµνdxµdxν = ηABeA
134
+ µeB
135
+ νdxµdxν
136
+ (1)
137
+ where gµν and {eA
138
+ µ} are respectively the metric tensor
139
+ and the components of the tetrad associated to space-
140
+ time geometry, and ηAB = diag(1, −1, −1, −1) is the
141
+ Minkowski metric. The signature (+ − − −) and ge-
142
+ ometrized units, that is, G = c = 1, will be taken into
143
+ account.
144
+ In GR we assume that gravity is associated
145
+ with the curvature of the space-time and thus we use the
146
+ Levi-Civita’s connection
147
+
148
+ Γρ
149
+ µν = 1
150
+ 2gρσ (∂νgσµ + ∂µgσν − ∂σgµν)
151
+ (2)
152
+ to compute quantities associated with the curvature such
153
+ as the Ricci scalar, R, that is present in the GR’s action.
154
+ On the other hand, in teleparallel theory one assumes
155
+ that gravity is associated to the torsion of the space-time
156
+ and thus the Weizenbock’s connection
157
+ Γλ
158
+ µν = e λ
159
+ A ∂µeA
160
+ ν = −eA
161
+ µ∂νe λ
162
+ A
163
+ (3)
164
+ is used to construct quantities associated with the tor-
165
+ sion, as the torsion scalar T that appears in the telepar-
166
+ allel gravity action. In the modified teleparallel theories
167
+ it is assumed that the action depends on a arbitrary func-
168
+ tion of T. In our case, we are going to consider a modified
169
+ action given by [32]
170
+ S =
171
+
172
+ d4x e
173
+ �T + f(T, T )
174
+ 16π
175
+ + Lm
176
+
177
+ ,
178
+ (4)
179
+ where e is the determinant of the tetrads e = det(eA
180
+ µ) =
181
+ √−g and T
182
+ = gµνTµν is the trace of the energy-
183
+ momentum tensor Tµν, which can be obtained from the
184
+ Lagrangian for the matter distribution Lm in the follow-
185
+ ing way
186
+ Tµν = gµνLm − 2∂Lm
187
+ ∂gµν .
188
+ (5)
189
+ Let us assume that the function f(T, T ) is given by
190
+ f (T, T ) = ω Tn T − 2Λ ,
191
+ (6)
192
+ where ω, n and Λ are arbitrary constants, specifically ω
193
+ can be interpreted as a coupling constant of geometry
194
+ with matter fields, n is a pure number (assumed to be
195
+ unity here) and Λ can be recognized as the cosmological
196
+ constant as discussed in [32, 33].
197
+ We are interested in matter that can be described by
198
+ a perfect fluid, so that Tµν is given by:
199
+ Tµν = −pgµν + (p + ρ)uµuν,
200
+ (7)
201
+ where p is the pressure and ρ is the energy density of
202
+ the fluid. By varying the action from Equation (4) with
203
+ respect to the tetrad we find the following field equation
204
+ Gµν = 8πT eff
205
+ µν ,
206
+ (8)
207
+ where the effective energy-momentum tensor T eff
208
+ µν
209
+ is
210
+ T eff
211
+ µν
212
+ = gµν
213
+
214
+
215
+
216
+ − ω(ρ − 3p) + 2Λ
217
+
218
+ 16π
219
+ + ωp
220
+
221
+
222
+ +Tµν
223
+
224
+ 1+ ω
225
+
226
+
227
+ .
228
+ (9)
229
+ Calculating the covariant derivative of the energy-
230
+ momentum tensor given by Equation (7), we obtain the
231
+ following result
232
+ ∇µTνµ =
233
+ 1
234
+
235
+ 4π + (1/2)ω
236
+
237
+ �ω
238
+ 4 (∂νT ) − ω
239
+ 2 ∂νp
240
+
241
+ .
242
+ (10)
243
+
244
+ 3
245
+ In a cosmological context, equation 10 can be associated
246
+ to creation or destruction of matter throughout the uni-
247
+ verse evolution. As discussed in [26], the interpretation of
248
+ creation or destruction of matter particles in the NS level
249
+ encounters difficulties in a static framework as occurs
250
+ in the study of the hydrostatic equilibrium expression,
251
+ i.e, the Tolman-Oppenheimer-Volkof equation. Also, it
252
+ usually implies in the presence of a fifth force and non-
253
+ geodesic trajectory for free particles. Naturally, results
254
+ that depend on such imput would also be modified corre-
255
+ spondingly. However, this is not the case analyzed in the
256
+ present paper. In the next section we use Equations (8)
257
+ to (10) to obtain and analyse the mass-radius relation of
258
+ NS in the context of modified teleparallel gravity.
259
+ III.
260
+ STELLAR STRUCTURE EQUATIONS
261
+ In this section, we discuss some of the main procedures
262
+ that leads to the deduction of the hydrostatic equilibrium
263
+ equation in the context of f(T, T ) gravity.
264
+ To study compact stars, such as NS, magnetars and
265
+ other astrophysical structures, we assume these objects
266
+ as being homogeneous, static (no rotation), isotropic and
267
+ spherically symmetric [34]. Therefore, we must use the
268
+ appropriate metric in a convenient coordinate system
269
+ that describes the object being studied. The most gen-
270
+ eral metric describing the space-time under consideration
271
+ is given by the line element
272
+ ds2 = eν(r)dt2 − eλ(r)dr2 − r2(dθ2 + sin θ2dφ2),
273
+ (11)
274
+ where ν and λ are radial functions that we want to de-
275
+ termine based on the field equations (8).
276
+ Thus, using
277
+ Equation (11) and substituting appropriately into Equa-
278
+ tion (8),we obtain the following results
279
+ e−λ�λ′
280
+ r − 1
281
+ r2
282
+
283
+ + 1
284
+ r2 = 8π
285
+
286
+
287
+
288
+
289
+
290
+
291
+ − ω(ρ − 3p) + 2Λ
292
+
293
+ 16π
294
+ + ωp
295
+
296
+
297
+  + ρ
298
+
299
+ 1 + ω
300
+
301
+ �
302
+
303
+  = 8π¯ρ,
304
+ (12)
305
+ e−λ�ν′
306
+ r + 1
307
+ r2
308
+
309
+ − 1
310
+ r2 = −8π
311
+
312
+
313
+
314
+
315
+
316
+
317
+ − ω(ρ − 3p) + 2Λ
318
+
319
+ 16π
320
+ + ωp
321
+
322
+
323
+  − p
324
+
325
+ 1 + ω
326
+
327
+ �
328
+
329
+  = 8π¯p,
330
+ (13)
331
+ e−λ
332
+ 4r
333
+
334
+ 2
335
+
336
+ λ′ − ν′�
337
+
338
+
339
+ 2ν′′ + ν′2 − ν′λ′�
340
+ r
341
+
342
+ = −8π
343
+
344
+
345
+
346
+
347
+
348
+
349
+ − ω(ρ − 3p) + 2Λ
350
+
351
+ 16π
352
+ + ωp
353
+
354
+
355
+  − p
356
+
357
+ 1 + ω
358
+
359
+ �
360
+
361
+  = 8π¯p,
362
+ (14)
363
+ where, the prime denotes a derivative with respect to
364
+ the radial coordinate r. The quantities ¯ρ and ¯p are the
365
+ effective pressure and energy density, defined as
366
+ ¯ρ = ρ + ωρ
367
+ 16π + 5ω p
368
+ 16π + Λ
369
+ 8π,
370
+ (15)
371
+ ¯p = p + ωρ
372
+ 16π − 3ω p
373
+ 16π − Λ
374
+ 8π .
375
+ (16)
376
+ In addition to the field equations, we also need to consider
377
+ the conservation equation (10) in f(T, T ) gravity so that
378
+ we have a complete set of equations to be solved.
379
+ In
380
+ the case we are studying, Equation (10) has the form as
381
+ follows
382
+ −p′− ν′
383
+ 2 (ρ+p) =
384
+ 1
385
+
386
+ 4π + (1/2)ω
387
+
388
+ �ωρ′
389
+ 4
390
+ − 5ω p′
391
+ 4
392
+
393
+ . (17)
394
+ Redefining the function λ(r) as
395
+ e−λ(r) = 1 − 2M(r)
396
+ r
397
+ ,
398
+ (18)
399
+ and rearranging Equations (12) and and (17), we get the
400
+ equations required to describe static spherically symmet-
401
+ ric stellar structures in f(T, T ) gravity theory, which are
402
+ given by
403
+ dM
404
+ dr = 4πr2 ¯ρ,
405
+ (19)
406
+ and
407
+ d¯p
408
+ dr = −M ¯ρ
409
+ r2
410
+
411
+ 1 + ¯p
412
+ ¯ρ
413
+ � �
414
+ 1 + 4πr3¯p
415
+ M
416
+ � �
417
+ 1 − 2M
418
+ r
419
+ �−1
420
+ .
421
+ (20)
422
+ In the next section we show some results obtained by
423
+ solving Equations (19) and (20) for realistic EoS of NS.
424
+
425
+ 4
426
+ IV.
427
+ RESULTS
428
+ In this section, we present the results obtained from the
429
+ solution of the field equations in the context of f(T, T )
430
+ modified theory of gravity applied to NS.
431
+ As an input to the stellar hydrostatic equilibrium equa-
432
+ tions, we use two realistic EoS obtained from a relativis-
433
+ tic mean field (RMF) approach. Firstly, we consider the
434
+ IU-FSU [35] parametrization because it is able to explain
435
+ reasonably well both nuclear [36] and stellar matter prop-
436
+ erties [37]. We then compare the IU-FSU results with the
437
+ ones obtained with a stiffer EoS calculated with a model
438
+ of coupling of mesons and quarks, the quark–meson cou-
439
+ pling (QMC) model [38]. (For the EoS with the QMC
440
+ model, we refer the reader to refs. [38–42].) It is well
441
+ known that a stiffer EoS leads to a bigger NS maximum
442
+ mass in contrast to a softer one. In fact, using the EoS
443
+ QMC as an input to the stellar equilibrium equations
444
+ yields a maximum mass greater than 2.0 M⊙, and, there-
445
+ fore, we want to verify that we get the same qualitative
446
+ behavior for macroscopic properties (such as mass and
447
+ radius) with parameterizations that are substantially dif-
448
+ ferent. For the NS crust, we use the full BPS [43] EoS.
449
+ After defining the EoS, some boundary conditions are
450
+ required to solve the equations (19) and (20) along the
451
+ radial coordinate r, from the center towards the surface
452
+ of the star. At the star’s center r = 0 we take:
453
+ M(0) = 0 ;
454
+ ¯ρ(0) = ¯ρc ;
455
+ ¯p(0) = ¯pc.
456
+ (21)
457
+ The radius of the star (r = R) is determined as the
458
+ point where the pressure vanishes, i.e, ¯p(R) = 0.
459
+ At
460
+ this point, the interior solution connects softly with the
461
+ Schwarzschild vacuum solution, indicating that the po-
462
+ tential metrics of the interior and the exterior metric are
463
+ related as eν(R) =
464
+ 1
465
+ eλ(R) = 1 − 2M/R, being M the total
466
+ mass of the star.
467
+ Let us discuss and compare our results with recent
468
+ astrophysical observations and nuclear physics experi-
469
+ ments. At first, the NS in LMXB NGC 6397, depicted as
470
+ a green shaded area in all figures, provides a constraint
471
+ at 68% confidence level over the possible values of the
472
+ masses and corresponding radii of the NS [44, 45]. Simi-
473
+ larly, the millisecond pulsars are among the most useful
474
+ astrophysical objects in the Universe for testing funda-
475
+ mental physics, because they impose some of the most
476
+ stringent constraints on high-density nuclear physics in
477
+ the stellar interior [46].
478
+ Recent measurements coming
479
+ from the Neutron Star Interior Composition Explorer
480
+ (NICER) mission reported pulsar observations for canon-
481
+ ical (1.4 M⊙) and massive (2.0 M⊙) NS. The mass mea-
482
+ surement and radius estimates provided for these objects,
483
+ are 11.80 km ≤ R1.4 ≤ 13.1 km for the 1.4M⊙ NS PSR
484
+ J0030+0451 (horizontal line segment in red colour shown
485
+ in all Figures) and 11.60 km ≤ R ≤ 13.1 km for a NS with
486
+ mass between 2.01M⊙ ≤ M ≤ 2.15M⊙ PSR J0740+6620
487
+ (the rectangular region in orange colour shown in all Fig-
488
+ ures).
489
+ However, the authors of Ref.
490
+ [47] used the re-
491
+ cent measurement of neutron skin on 208Pb by PREX-2
492
+ 0.5
493
+ 1
494
+ 1.5
495
+ 2
496
+ 2.5
497
+ 4
498
+ 6
499
+ 8
500
+ 10
501
+ 12
502
+ 14
503
+ 16
504
+ IU-FSU
505
+ M /MO•
506
+ R(km)
507
+ ϖ = 0.0
508
+ ϖ = 0.01
509
+ ϖ = 0.02
510
+ ϖ = 0.08
511
+ ϖ = 0.1
512
+ ϖ = 0.2
513
+ ϖ = - 0.01
514
+ ϖ = - 0.02
515
+ ϖ = - 0.2
516
+ 1.9
517
+ 1.95
518
+ 10.5
519
+ 11
520
+ 11.5
521
+ 12
522
+ 12.5
523
+ IU-FSU
524
+ FIG. 1. Mass-radius relation for families of NS’s described
525
+ by the IU-FSU EoS. We analyse the effect of varying the pa-
526
+ rameter ω of the f(T, T ) theory. The red and green line seg-
527
+ ment represent the radius range of the 1.4M⊙ NS for PSR
528
+ J0030 + 0451 and PREX-2, respectively. The orange rectan-
529
+ gular region corresponds to the range of radius estimates for
530
+ 2.08 ± 0.07M⊙ NS PSR J0740+6620. Similarly, the blue and
531
+ pink horizontal lines stand, respectively, for the mass mea-
532
+ surements of NS PSR J1614 + 2230 and NS PSR J0348 +
533
+ 0432.
534
+ The purple solid line curve is solution for the usual
535
+ TOV equation from GR.
536
+ to constrain the radius of NS, which leads to a predic-
537
+ tion of the radius of the canonical 1.4 M⊙ of 13.25 km
538
+ ≲ R1.4 ≲ 14.26 km (horizontal line segment in green
539
+ colour shown in all Figures).
540
+ Likewise, we also com-
541
+ pare our results with two massive stars that had been
542
+ discovered in 2010 and 2013, namely, PSR J1614+2230
543
+ [48] with mass 1.97 ± 0.04 M⊙ (horizontal line in blue
544
+ colour shown in all Figures) and PSR J0348+0432 [49]
545
+ with mass 2.01 ± 0.04 M⊙ (horizontal line in pink colour
546
+ shown in all Figures). Our results are discussed in the
547
+ next paragraphs.
548
+ We modelled the function f(T, T ) according to equa-
549
+ tion (6). This function model has already been used in
550
+ recent works as, for example, in [32, 33]. We explore the
551
+ values of the parameter ω which range from −0.2 to 0.2.
552
+ On the other hand, we check that the Λ parameter has no
553
+ significant effect on the mass-radius profiles of NS, since
554
+ it appears as a constant in the f(T, T ) function that we
555
+ have chosen. Therefore, we use Λ = 0. Note that we
556
+ recover the GR solution from f(T, T ) theory by assum-
557
+ ing that ω = Λ = 0. These plots are represented by the
558
+ continuous purple lines in the Figures.
559
+ In Figure 1 we show the effects of f(T, T ) theory on
560
+ NS properties obtained with the IU-FSU EoS. We can
561
+ see that the value of ω has a very small influence on the
562
+ maximum mass of the stars. The radius of the canon-
563
+ ical NS (M = 1.4M⊙) is considerably affected. Note a
564
+ bigger (smaller) radius for the most positive (negative)
565
+ values of ω. We can observe that the results of PREX-2
566
+
567
+ 5
568
+ 0.5
569
+ 1
570
+ 1.5
571
+ 2
572
+ 2.5
573
+ 4
574
+ 6
575
+ 8
576
+ 10
577
+ 12
578
+ 14
579
+ 16
580
+ QMC
581
+ M /MO•
582
+ R(km)
583
+ ϖ = 0.0
584
+ ϖ = 0.01
585
+ ϖ = 0.02
586
+ ϖ = 0.08
587
+ ϖ = 0.1
588
+ ϖ = 0.2
589
+ ϖ = - 0.01
590
+ ϖ = - 0.02
591
+ ϖ = - 0.2
592
+ 1.92
593
+ 2
594
+ 2.08
595
+ 2.16
596
+ 10.5
597
+ 12
598
+ 13.5
599
+ QMC
600
+ FIG. 2. Mass-radius relation for families of NS’s described by
601
+ the QMC EoS. We analyse the effect of varying the parameter
602
+ ω of the f(T, T ) theory. The red and green line segment repre-
603
+ sent the radius range of the 1.4M⊙ NS for PSR J0030 + 0451
604
+ and PREX-2, respectively. The orange rectangular region cor-
605
+ responds to the range of radius estimates for 2.08 ± 0.07M⊙
606
+ NS PSR J0740+6620. Similarly, the blue and pink horizontal
607
+ lines stand, respectively, for the mass measurements of NS
608
+ PSR J1614 + 2230 and NS PSR J0348 + 0432. The purple
609
+ solid line curve is the solution for the usual TOV equation
610
+ from GR.
611
+ cannot be described with IU-FSU EoS in the GR, but in
612
+ f(T, T ) theory the solutions with ω = 0.08 and ω = 0.1
613
+ produce mass and radius that agree with this constraint.
614
+ However, the solutions obtained with IU-FSU EoS can-
615
+ not describe the mass and radius of PSR J0740+6620,
616
+ PSR J1614+2230 and NS PSR J0348+0432 neither on
617
+ GR nor on f(T, T ) theory.
618
+ In Figure 2 we show the mass-radius relation obtained
619
+ for QMC EoS in f(T, T ) gravity. Again, the effect of the
620
+ parameter ω is to increase the radius when its values in-
621
+ crease positively and to decrease the radius when its val-
622
+ ues increase negatively. At the same time, the maximum
623
+ mass changes very little with the variation of ω. We can
624
+ also see that the solutions obtained with the QMC EoS
625
+ in f(T, T ) can accommodate almost all the constraints
626
+ we are taking into consideration, and with a smaller ra-
627
+ dius than in GR, if we take ω = −0.01 or ω = −0.02.
628
+ The exception is NS PSR J0030+0451 which only can be
629
+ described with QMC EoS in f(T, T ) gravity if we take
630
+ ω = −0.2. We can note that for both EoS analysed we
631
+ could not find a configuration that satisfies all the con-
632
+ straints at the same time.
633
+ We can see that for both EoS’s the value of ω has a
634
+ very small influence on the maximum mass of the stars,
635
+ on the other hand, the value of the radius of the star with
636
+ maximum mass increases when we increase the value of
637
+ ω and decreases when ω decreases. Also for both EoS’s,
638
+ the case ω = −0.2 produces mass-radius curves that are
639
+ typical of quark stars.
640
+ V.
641
+ FINAL REMARKS
642
+ We have investigated the effects of f(T, T ) gravity on
643
+ NS assuming these compact objects as being homoge-
644
+ neous, static and isotropic. In this way, we have consid-
645
+ ered a spherically symmetric space-time and solved the
646
+ field equations and the hydrostatic equilibrium equation
647
+ in the context of this modified theory of gravity. This
648
+ type of system can be transformed into a system with
649
+ effective pressure and energy density which permitted
650
+ that the hydrostatic equilibrium equation was obtained
651
+ through known techniques. For the choice of the f(T, T )
652
+ function used here, we obtained that this theory can pre-
653
+ dict NS with almost the same mass and smaller radius
654
+ than in GR, for a given EoS, that is an interesting result
655
+ in view of the recent observations. Considering the low-
656
+ mass X-ray binary (LMXB) NGC 6397 and the pulsar of
657
+ millisecond PSR J0740+6620, the results obtained using
658
+ the modified hydrostatic equilibrium equations present
659
+ good agreement with the observed masses and radii.
660
+ We particularize f(T, T ) gravity according to equation
661
+ (6).
662
+ The good results obtained in comparison to GR
663
+ suggest future extensions of this work, as for example, by
664
+ taking into consideration different choices of the f(T, T )
665
+ function, which should be done in a near future. It can be
666
+ interesting to test, for example, high powers in T besides
667
+ and new couplings between T and T . In addition, we
668
+ can use different EoS as input to the stellar hydrostatic
669
+ equilibrium equations along the aforementioned choices
670
+ of f(T, T ) function.
671
+ ACKNOWLEDGEMENTS
672
+ L.C.N.S. would like to thank Conselho Nacional de
673
+ Desenvolvimento Cient´ıfico e Tecnol´ogico (CNPq) for
674
+ partial financial support through the research Project
675
+ No.
676
+ 164762/2020-5 and F.M.S. would like to thank
677
+ CNPq for financial support through the research Project
678
+ No.
679
+ 165604/2020-4.
680
+ I. P. L. was partially supported
681
+ by the National Council for Scientific and Technologi-
682
+ cal Development - CNPq grant 306414/2020-1 and by
683
+ the grant 3197/2021, Para´ıba State Research Foundation
684
+ (FAPESQ). I. P. L. would like to acknowledge the contri-
685
+ bution of the COST Action CA18108. V.B.B. is partially
686
+ supported by CNPq through the Research Project No.
687
+ 307211/2020-7.
688
+ [1] R. Utiyama and B. S. DeWitt, “Renormalization of a
689
+ classical gravitational field interacting with quantized
690
+ matter fields,” Journal of Mathematical Physics, vol. 3,
691
+ no. 4, pp. 608–618, 1962.
692
+
693
+ 6
694
+ [2] T. P. Sotiriou and V. Faraoni, “f(R) Theories Of Grav-
695
+ ity,” Reviews of Modern Physics, vol. 82, pp. 451–497,
696
+ 2010.
697
+ [3] V. C. Rubin and W. K. Ford Jr, “Rotation of the An-
698
+ dromeda nebula from a spectroscopic survey of emission
699
+ regions,” The Astrophysical Journal, vol. 159, p. 379,
700
+ 1970.
701
+ [4] F. Zwicky, “Die rotverschiebung von extragalaktischen
702
+ nebeln,” Helvetica Physica Acta, vol. 6, pp. 110–127,
703
+ 1933.
704
+ [5] S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop,
705
+ P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goo-
706
+ bar, D. E. Groom, et al., “Measurements of Ω and Λ from
707
+ 42 high-redshift supernovae,” The Astrophysical Journal,
708
+ vol. 517, no. 2, p. 565, 1999.
709
+ [6] V. Sahni, “5 dark matter and dark energy,” The Physics
710
+ of the Early Universe, pp. 141–179, 2004.
711
+ [7] S. Capozziello and M. De Laurentis, “Extended theories
712
+ of gravity,” Physics Reports, vol. 509, no. 4-5, pp. 167–
713
+ 321, 2011.
714
+ [8] A. De Felice and S. Tsujikawa, “f(R) theories,” Living
715
+ Reviews in Relativity, vol. 13, no. 1, pp. 1–161, 2010.
716
+ [9] S. Nojiri and S. D. Odintsov, “Unified cosmic history
717
+ in modified gravity: from F(R) theory to Lorentz non-
718
+ invariant models,” Physics Reports, vol. 505, no. 2-4,
719
+ pp. 59–144, 2011.
720
+ [10] F. S. N. Lobo, “The dark side of gravity: Modified the-
721
+ ories of gravity,” arXiv preprint arXiv:0807.1640, 2008.
722
+ [11] T. Harada, “Neutron stars in scalar-tensor theories of
723
+ gravity and catastrophe theory,” Physical Review D,
724
+ vol. 57, no. 8, p. 4802, 1998.
725
+ [12] M. Orellana, F. Garc´ıa, F. A. T. Pannia, and G. E.
726
+ Romero, “Structure of neutron stars in R-squared grav-
727
+ ity,” General Relativity and Gravitation, vol. 45, no. 4,
728
+ pp. 771–783, 2013.
729
+ [13] D.
730
+ Momeni
731
+ and
732
+ R.
733
+ Myrzakulov,
734
+ “Tol-
735
+ man–Oppenheimer–Volkoff
736
+ equations
737
+ in
738
+ modified
739
+ Gauss–Bonnet
740
+ gravity,”
741
+ International
742
+ Journal
743
+ of
744
+ Geometric Methods in Modern Physics, vol. 12, no. 02,
745
+ p. 1550014, 2015.
746
+ [14] A. Oliveira, H. Velten, J. Fabris, and L. Casarini, “Neu-
747
+ tron stars in Rastall gravity,” Physical Review D, vol. 92,
748
+ no. 4, p. 044020, 2015.
749
+ [15] S. Hendi, G. Bordbar, B. E. Panah, and S. Panahiyan,
750
+ “Modified TOV in gravity’s Rainbow: properties of neu-
751
+ tron stars and dynamical stability conditions,” Journal of
752
+ Cosmology and Astroparticle Physics, vol. 2016, no. 09,
753
+ p. 013, 2016.
754
+ [16] K. N. Singh, F. Rahaman, and A. Banerjee, “Einstein’s
755
+ cluster mimicking compact star in the teleparallel equiv-
756
+ alent of general relativity,” Physical Review D, vol. 100,
757
+ no. 8, p. 084023, 2019.
758
+ [17] S. K. Maurya and F. Tello-Ortiz, “Charged anisotropic
759
+ compact star in f(R, T ) gravity: A minimal geometric
760
+ deformation gravitational decoupling approach,” Physics
761
+ of the Dark Universe, vol. 27, p. 100442, 2020.
762
+ [18] C. E. Mota, L. C. N. Santos, G. Grams, F. M. da Silva,
763
+ and D. P. Menezes, “Combined Rastall and Rainbow
764
+ theories of gravity with applications to neutron stars,”
765
+ Physical Review D, vol. 100, no. 2, p. 024043, 2019.
766
+ [19] C. E. Mota, L. C. N. Santos, F. M. da Silva, C. V. Flo-
767
+ res, T. J. N. da Silva, and D. P. Menezes, “Anisotropic
768
+ compact stars in Rastall–Rainbow gravity,” Classical and
769
+ Quantum Gravity, vol. 39, no. 8, p. 085008, 2022.
770
+ [20] F. M. da Silva, L. C. N. Santos, and C. C. Bar-
771
+ ros, “Rapidly rotating compact stars in Rastall’s grav-
772
+ ity,” Classical and Quantum Gravity, vol. 38, no. 16,
773
+ p. 165011, 2021.
774
+ [21] A. Cooney, S. DeDeo, and D. Psaltis, “Neutron stars
775
+ in f(R) gravity with perturbative constraints,” Physical
776
+ Review D, vol. 82, no. 6, p. 064033, 2010.
777
+ [22] S. Capozziello, M. De Laurentis, R. Farinelli, and S. D.
778
+ Odintsov, “Mass-radius relation for neutron stars in f(R)
779
+ gravity,” Physical Review D, vol. 93, no. 2, p. 023501,
780
+ 2016.
781
+ [23] S. Arapo˘glu, C. Deliduman, and K. Y. Ek¸si, “Constraints
782
+ on perturbative f(R) gravity via neutron stars,” Journal
783
+ of Cosmology and Astroparticle Physics, vol. 2011,
784
+ no. 07, p. 020, 2011.
785
+ [24] P. H. R. S. Moraes, J. D. V. Arba˜nil, and M. Malheiro,
786
+ “Stellar equilibrium configurations of compact stars in
787
+ f(R, T ) theory of gravity,” Journal of Cosmology and
788
+ Astroparticle Physics, vol. 2016, no. 06, p. 005, 2016.
789
+ [25] J. M. Z. Pretel, S. E. Jor´as, R. R. R. Reis, and J. D. V.
790
+ Arba˜nil, “Neutron stars in f(R, T ) gravity with con-
791
+ served energy-momentum tensor:
792
+ Hydrostatic equilib-
793
+ rium and asteroseismology,” Journal of Cosmology and
794
+ Astroparticle Physics, vol. 2021, no. 08, p. 055, 2021.
795
+ [26] S. I. dos Santos, G. A. Carvalho, P. H. R. S. Moraes,
796
+ C. H. Lenzi, and M. Malheiro, “A conservative energy-
797
+ momentum tensor in the f(R, T ) gravity and its impli-
798
+ cations for the phenomenology of neutron stars,” The
799
+ European Physical Journal Plus, vol. 134, no. 8, pp. 1–8,
800
+ 2019.
801
+ [27] M. Sharif and A. Waseem, “Anisotropic quark stars
802
+ in f(R, T ) gravity,” The European Physical Journal C,
803
+ vol. 78, no. 10, pp. 1–10, 2018.
804
+ [28] D. Deb, S. V. Ketov, M. Khlopov, and S. Ray, “Study
805
+ on charged strange stars in f(R, T ) gravity,” Journal of
806
+ Cosmology and Astroparticle Physics, vol. 2019, no. 10,
807
+ p. 070, 2019.
808
+ [29] P. Rastall,
809
+ “Generalization of the Einstein theory,”
810
+ Physical Review D, vol. 6, no. 12, p. 3357, 1972.
811
+ [30] C. E. Mota, L. C. N. Santos, F. M. da Silva, G. Grams,
812
+ I. P. Lobo, and D. P. Menezes, “Generalized Rastall’s
813
+ gravity and its effects on compact objects,” International
814
+ Journal of Modern Physics D, vol. 31, no. 04, p. 2250023,
815
+ 2022.
816
+ [31] H. Velten and T. R. P. Caramˆes, “To conserve, or not to
817
+ conserve: A review of nonconservative theories of grav-
818
+ ity,” Universe, vol. 7, no. 2, p. 38, 2021.
819
+ [32] T. Harko, F. S. N. Lobo, G. Otalora, and E. N. Saridakis,
820
+ “f(T, T ) gravity and cosmology,” Journal of Cosmology
821
+ and Astroparticle Physics, vol. 2014, no. 12, p. 021, 2014.
822
+ [33] I. G. Salako, M. Khlopov, S. Ray, M. Arouko, P. Saha,
823
+ and U. Debnath, “Study on anisotropic strange stars in
824
+ f(T, T ) gravity,” Universe, vol. 6, no. 10, p. 167, 2020.
825
+ [34] S. Carroll, Spacetime and Geometry. Cambridge Univer-
826
+ sity Press, 2019.
827
+ [35] F. J. Fattoyev, C. J. Horowitz, J. Piekarewicz, and
828
+ G. Shen, “Relativistic effective interaction for nuclei, gi-
829
+ ant resonances, and neutron stars,” Physical Review C,
830
+ vol. 82, no. 5, p. 055803, 2010.
831
+ [36] O. Louren¸co, M. Dutra, C. H. Lenzi, C. V. Flores, and
832
+ D. P. Menezes, “Consistent relativistic mean-field models
833
+ constrained by GW170817,” Physical Review C, vol. 99,
834
+ no. 4, p. 045202, 2019.
835
+
836
+ 7
837
+ [37] M. Dutra, O. Louren¸co, and D. P. Menezes, “Stel-
838
+ lar properties and nuclear matter constraints,” Physical
839
+ Review C, vol. 93, no. 2, p. 025806, 2016.
840
+ [38] P. A. M. Guichon, “A possible quark mechanism for the
841
+ saturation of nuclear matter,” Physics Letters B, vol. 200,
842
+ pp. 235–240, 1988.
843
+ [39] K. Saito and A. W. Thomas, “A quark-meson coupling
844
+ model for nuclear and neutron matter,” Physics Letters
845
+ B, vol. 327, no. 1-2, pp. 9–16, 1994.
846
+ [40] K. Saito and A. W. Thomas, “Composite nucleons in
847
+ scalar and vector mean fields,” Physical Review C,
848
+ vol. 52, no. 5, p. 2789, 1995.
849
+ [41] S. Pal,
850
+ M. Hanauske,
851
+ I. Zakout,
852
+ H. St¨ocker,
853
+ and
854
+ W. Greiner, “Neutron star properties in the quark-meson
855
+ coupling model,” Physical Review C, vol. 60, no. 1,
856
+ p. 015802, 1999.
857
+ [42] G. Grams, A. M. Santos, and D. P. Menezes, “Equation
858
+ of State Grid with the Quark-Meson-Coupling Model,”
859
+ Brazilian Journal of Physics, vol. 46, no. 1, pp. 111–119,
860
+ 2016.
861
+ [43] G. Baym, C. Pethick, and P. Sutherland, “The Ground
862
+ state of matter at high densities: Equation of state and
863
+ stellar models,” The Astrophysical Journal, vol. 170,
864
+ pp. 299–317, 1971.
865
+ [44] F. ¨Ozel and P. Freire, “Masses, Radii, and the Equation
866
+ of State of Neutron Stars,” Annual Review of Astronomy
867
+ and Astrophysics, vol. 54, pp. 401–440, 2016.
868
+ [45] A. W. Steiner, C. O. Heinke, S. Bogdanov, C. K. Li,
869
+ W. C. Ho, A. Bahramian, and S. Han, “Constrain-
870
+ ing the mass and radius of neutron stars in globular
871
+ clusters,” Monthly Notices of the Royal Astronomical
872
+ Society, vol. 476, no. 1, pp. 421–435, 2018.
873
+ [46] H. T. Cromartie, E. Fonseca, S. M. Ransom, P. B.
874
+ Demorest, Z. Arzoumanian, H. Blumer, P. R. Brook,
875
+ M. E. DeCesar, T. Dolch, J. A. Ellis, et al., “Relativistic
876
+ Shapiro delay measurements of an extremely massive mil-
877
+ lisecond pulsar,” Nature Astronomy, vol. 4, no. 1, pp. 72–
878
+ 76, 2020.
879
+ [47] B. T. Reed,
880
+ F. J. Fattoyev,
881
+ C. J. Horowitz,
882
+ and
883
+ J. Piekarewicz, “Implications of PREX-2 on the equa-
884
+ tion of state of neutron-rich matter,” Physical Review
885
+ Letters, vol. 126, no. 17, p. 172503, 2021.
886
+ [48] P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E.
887
+ Roberts,
888
+ and J. W. T. Hessels,
889
+ “A two-solar-mass
890
+ neutron star measured using Shapiro delay,” Nature,
891
+ vol. 467, no. 7319, pp. 1081–1083, 2010.
892
+ [49] J. Antoniadis, P. C. C. Freire, N. Wex, T. M. Tauris,
893
+ R. S. Lynch, M. H. Van Kerkwijk, M. Kramer, C. Bassa,
894
+ V. S. Dhillon, T. Driebe, et al., “A massive pulsar in a
895
+ compact relativistic binary,” Science, vol. 340, no. 6131,
896
+ p. 1233232, 2013.
897
+
4NE1T4oBgHgl3EQfSgOT/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
4tFAT4oBgHgl3EQfFByL/content/tmp_files/2301.08425v1.pdf.txt ADDED
@@ -0,0 +1,488 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Graphene as Infrared Light Sensor Material
2
+ Ahalapitiya H. Jayatissaa) and Madhav Gautam
3
+ Mechanical, Industrial, and Manufacturing Engineering (MIME) Department
4
+ The University of Toledo, OH 43606, USA
5
+ a)Correspondence: [email protected]
6
+
7
+
8
+ Abstract: The infrared (IR) photoresponse of graphene synthesized by atmospheric chemical vapor
9
+ deposition (CVD) system using a mixture of hydrogen and methane gases was studied. The IR sensor
10
+ devices were fabricated using graphene films transferred on to a SiO2 substrate by a lift off process. The
11
+ quality of graphene was investigated with the Raman spectroscopy and optical microscopy. The
12
+ photoresponse was recorded under the illumination of IR light of wavelength 850 nm and intensity of
13
+ around 2.16 µW/mm2. The effects of temperature and hydrogenation on photoconductivity were also
14
+ studied. It was found that the transient response and recovery times decreased with the increase of the
15
+ temperature. Hydrogenation effect also caused the significant decrease in the photoresponse of the device.
16
+ Although the net change in the photoresponse for IR light was lower at low illumination intensity levels,
17
+ the transient responses were observed around 100 times faster than the recently reported CNT-based IR
18
+ sensors.
19
+
20
+ Key words: CVD graphene, single layer, Infra-Red light, photoconductivity, 2D sensor materials
21
+
22
+
23
+ 1. Introduction
24
+
25
+ Optoelectronic devices working in near infra-red (NIR) (800 - 2000 nm) are always demanding for
26
+ different applications [1-4]. There has been significant works reported on the fabrication of optoelectronic
27
+ devices using NIR materials [5-12]. In recent years, single walled carbon nanotubes (SWCNTs) have
28
+ been investigated extensively as a semiconducting material for IR sensors because of its strong absorption
29
+ behavior in NIR region [7-12]. One of the key challenges in developing NIR detectors is the finding of
30
+ ultra fast optical response in the sensor material [5-8]. Recently, strong absorption behavior in NIR region
31
+ has been reported for thermally reduced graphene oxides [1,2]. This provides a pathway to use graphene
32
+ as an optoelectronic material for IR detection. Although the optical properties of graphene in visible
33
+ region have been reported by many researchers [13-15], we have not found any research work related to
34
+ the photoresponse of graphene in IR region of the spectrum. In this paper, photoresponse of graphene film
35
+ on macro-scale has been reported in different conditions.
36
+ Graphene is a monolayered carbon film with a film thickness of around 0.32Å [13 - 15], where carbon
37
+ atoms are arranged in a two-dimensional hexagonal lattice structure. It can be thought of as a single layer
38
+ peeled off from the graphite stack. It has evolved as an interesting material due to its unique physical and
39
+ electrical properties [16]. This material is different from most of the conventional semiconductors because
40
+ of its zero bandgap semi-conducting behavior [17]. For example, graphene-based transistor devices may
41
+ operate very faster than traditional silicon devices due to high intrinsic carrier mobility (~ 2x105 cm2v-1s-1)
42
+ [1, 2, 18]. Being the material of high mechanical stress and low density (2.2 gm/cm3), it may lead to the
43
+ application in nano-robotics [19, 20].
44
+ We have investigated the photoconductivity of graphene layers synthesized in atmospheric chemical
45
+ vapor deposition (CVD) of CH4 on a copper substrate. The devices were fabricated by transferred CVD
46
+ graphene onto a SiO2/Si substrate. The investigations were carried out to understand the temperature
47
+ dependence and hydrogenation effect on photoconductivity of graphene in NIR region. Although the net
48
+ change in the photoresponse for IR light was lower at low illumination intensity levels (2.16 µW/mm2),
49
+
50
+ the transient responses were observed around 100 times faster than photoconductivity of CNT for NIR
51
+ lights.
52
+
53
+ 2. Experimental Procedures
54
+
55
+ The growth of graphene films was carried out on a copper (Cu) substrate (25 µm thick) in an alumina
56
+ tube furnace system under the flow of methane (CH4) and hydrogen (H2) gases. Copper substrate
57
+ (99.999% pure, Alfa Aesar) was heated in a tube furnace under the 150 standard cubic centimeters per
58
+ minute (sccm) flow of mixture of hydrogen and Argon (10% H2, 90% Ar) and annealed at 1100 0C for
59
+ one hour. After annealing, graphene deposition was carried out by passing a mixture of methane and
60
+ argon (5% CH4, 95% Ar) followed by the immediate cooling. Graphene deposited on copper by CVD
61
+ method was transferred to SiO2/Si substrate by wet etching of Cu [15, 21-23]. The thickness of the
62
+ thermally-grown SiO2 was 118 nm as confirmed by UV spectrometry [24]. The Raman spectra of these
63
+ films were recorded with the excitation wavelength of 530 nm.
64
+ In order to fabricate the IR sensors, a thin layer of gold (about 100 nm) was coated onto the
65
+ transferred graphene film by a vacuum evaporation method. The gold electrodes were patterned by
66
+ lithography followed by etching of gold with aqueous KI/I2 solution. The spacing and the length of these
67
+ electrodes were 6 mm and 4 mm, respectively. Fig. 1 shows the schematic diagram of the fabricated IR
68
+ sensor and photoresponse measurement circuit. The device was biased with a constant voltage (1.0 V)
69
+ during collection of the data. To understand the reflection of light from graphene, reflectance from bi-
70
+ layer substrate (SiO2/Si) and tri-layer substrate (graphene/SiO2/Si) were measured with a double beam
71
+ UV/Visible spectrometer (Shimadzu). The reflectance spectra were investigated in the spectral range 300-
72
+ 1100 nm.
73
+
74
+ Au
75
+ A
76
+ V0
77
+ Graphene
78
+ SiO2
79
+ IR
80
+ Light
81
+ Si
82
+
83
+ Fig.1: Schematic of photoresponse measurement system (V0= 1.0 V).
84
+
85
+ 3. Results and Discussions
86
+
87
+ 3.1. Surface Characterization
88
+ The Raman spectroscopy has been used to characterize the quality of graphene. The Raman spectrum
89
+ of Graphene gives for main bands corresponding to the vibration mode of graphene. Fig. 2 shows the as-
90
+ measured Raman spectra of graphene films produced on SiO2 surface. The spectrum was normalized with
91
+ respect to the intensity level of 2D band. The peak at around 1580 cm-1 and 2660 cm-1, respectively,
92
+ indicate the G band and the 2D band, which are characteristics Raman peaks of graphene. It has been
93
+ reported that the defect free monolayer graphene can be identified with characteristic features of Raman
94
+ band intensities [25]. The intensity of 2D band is ~2 times larger than the intensity of G band suggesting
95
+ that the presence of less defective graphene on SiO2 surface. This fact is also supported by the weak
96
+ intensity of D-band (1350 cm-1).
97
+
98
+
99
+
100
+ Fig. 2: Raman spectra of graphene transferred to silicon wafer (SiO2 + Si) scaled with respect to
101
+ the maximum peak.
102
+
103
+
104
+ 3.2. Photoconductivity
105
+
106
+ 3.2.1. Dynamic response
107
+ Fig. 3 shows the dynamic response of photoconductivity of graphene film for the NIR light at room
108
+ temperature. Fig. 3(a) shows the response and recovery of the device when the IR light was turned on and
109
+ off, respectively, whereas Fig. 3(b) indicates the same characteristic for one cycle only. The intensity of
110
+ the IR light source used was 2.16 µW/mm2 at the device surface. Although the intensity level was very
111
+ low, a clear photoresponse of device was measured. The photogeneration of carriers can be primarily
112
+ attributed to the creation of bands at the defect of graphene sheets. When graphene is deposited on a
113
+ copper plate, defects are developed at the grain boundary of polycrystalline copper films. We believe that
114
+ these defects are responsible for the creation of localized photoactive regions, which contribute to the
115
+ photogeneration of carriers [26,27]. The photoresponse could be characterized with a time step function.
116
+ In both the photocurrent increase and drop cases, the experimental data were fitted well into the
117
+ exponential form as [10],
118
+
119
+
120
+
121
+ 
122
+
123
+
124
+ 
125
+
126
+  −
127
+ +
128
+ =
129
+
130
+ t
131
+ A
132
+ I
133
+ I
134
+ o
135
+ o
136
+ exp
137
+ .
138
+
139
+
140
+
141
+
142
+
143
+
144
+ (1)
145
+
146
+ Here, I is the current, t is the response time and Io,  and A0 are constants. Fig. 4(a) and 4(b) show the fit
147
+ of the response in the form explained above. The data analysis indicated that the time constants were 10
148
+ ms and 31 ms for rise and fall of the photocurrent, respectively.
149
+
150
+
151
+ 1.2
152
+ 2D
153
+ nsityRatio (ll)
154
+ 1
155
+ 8'0
156
+ 0.6
157
+ G
158
+ 0.4
159
+ 0.2
160
+ D
161
+ G
162
+
163
+ 0
164
+ 1000
165
+ 1500
166
+ 2000
167
+ 2500
168
+ 3000
169
+ Raman Shift (anl)
170
+ Fig. 3: The photoresponse of the device due to IR light for (a) different cycles and (b) for one cycle.
171
+
172
+
173
+
174
+ Fig. 4: The photoresponse of the device due to IR light for (a) response and (b) recovery.
175
+
176
+
177
+
178
+
179
+
180
+
181
+
182
+
183
+
184
+
185
+
186
+
187
+
188
+
189
+
190
+ Fig. 5: The photoresponse of the device due to IR light at (a) 50 0C and (b) 100 0C.
191
+
192
+
193
+ 3.2.2. The effect of temperature on photoconductivity
194
+ Fig. 6 shows the effect of temperature on the photoconductivity of graphene. The photoconductivity
195
+ was tested at 50 0C and 100 0C, respectively. During the experiment, the device was heated to the desired
196
+
197
+ (a)1,252
198
+ 1.2515
199
+ b)
200
+ 1.251
201
+ 1.2505
202
+ 1.25
203
+ 1.2495
204
+ 1.249
205
+ 0
206
+ 50
207
+ 100
208
+ 150
209
+ 200
210
+ 250
211
+ 300
212
+ Time (ms):(a)(b)1.2888
213
+ (a)
214
+ 1.2882
215
+ (vu)
216
+ 1.2864
217
+ 20
218
+ 40
219
+ 60
220
+ 80
221
+ 100
222
+ 120
223
+ 140
224
+ Time (ms)(b)temperature for 30 minutes to ensure the thermal equilibrium. Transient responses of the device were
225
+ 10.26 ms and 6.57 ms and the transient recovery times were 12.55 ms and 5.91 ms at 50 0C and 100 0C,
226
+ respectively. A significant difference in transient response of the device was not found when the device
227
+ temperature was increased from room temperature to 50 0C and transient response time decreased by 40%
228
+ when the temperature was changed from 50 0C to 100 0C. Similarly, the transient recovery time decreased
229
+ by 60% when the temperature was changed from room temperature to 50 0C and it decreased by 50%
230
+ when the temperature was changed from 50 0C to 100 0C.
231
+ On the other hand, the amplitude of the photocurrent didn’t show any significant difference when the
232
+ temperature was changed from room temperature to 50 0C whereas it decreased by 50% when the
233
+ temperature was changed from 50 0C to 100 0C. A slight change in photocurrent at high temperature
234
+ measurement (100 0C) from low temperature (50 0C) can be attributed to the career generation is
235
+ influenced by thermal effect associated with defects. Furthermore, the increase in current due to the
236
+ thermal effect of IR light is less pronounced at elevated temperatures because the change in the
237
+ temperature by IR heating is negligible. Therefore, the total photocurrent generation can be attributed to
238
+ the photo generation of carriers in the graphene.
239
+
240
+
241
+
242
+
243
+
244
+
245
+
246
+
247
+
248
+
249
+
250
+
251
+ Fig. 6: The photoresponse of the device in IR light due to hydrogenation at 100sccm of hydrogen
252
+ flow for (a) difference cycle and (b) one cycle.
253
+
254
+ On the other hand, the amplitude of the photocurrent didn’t show any significant difference when the
255
+ temperature was changed from room temperature to 50 0C whereas it decreased by 50% when the
256
+ temperature was changed from 50 0C to 100 0C. Smaller change in low temperature gradient can be
257
+ attributed to the fact that small bandgap in graphene. Furthermore, the increase in current due to the
258
+ thermal effect of IR light is less pronounced at elevated temperatures because the change in the
259
+ temperature by IR heating is negligible. Therefore, the total photocurrent generation can be attributed to
260
+ the photo generation of carriers in the graphene.
261
+
262
+ 3.2.3. The effect of hydrogenation on photoconductivity
263
+ The effect of hydrogenation on photoresponse of the device was tested at 100 0C for different
264
+ concentrations of hydrogen flow rates. The device was heated at 100 0C for 30 min to ensure the thermal
265
+ equilibrium followed by the constant hydrogen flow for more than one hour until reach of the saturation
266
+ of surface of graphene by hydrogen by adsorption. The saturation was confirmed by monitoring resistance
267
+ changes against time using two-point probe method.
268
+
269
+
270
+
271
+
272
+
273
+
274
+ 0.15026
275
+ LtzosT'o
276
+ (a)
277
+ 0.150234
278
+ 0.150221
279
+ 0.150208
280
+ 0.150195
281
+ 400
282
+ 600
283
+ 800
284
+ 10000.15026
285
+ (b)
286
+ (mA)
287
+ 0.150221
288
+ 0.150208
289
+ 0.150195
290
+ 460
291
+ 500
292
+ Time (ms)Fig. 7 shows the photoresponse of the device at different flow rates of hydrogen. Transient responses
293
+ of the device were 6.05 ms and 7.27 ms in 50 sccm and 100 sccm flow rate of hydrogen gas, respectively,
294
+ and the corresponding values during recovery process were 7.1 ms and 7.81 ms, respectively. The
295
+ transient response of the device was found to differ by 17% in going from 50 to 100 sccm of hydrogen
296
+ flow rates. Table 1 lists the transient response and recovery times at different temperatures to compare the
297
+ effect of hydrogenation.
298
+
299
+
300
+
301
+ Fig. 7: The photoresponse of the device in IR light due to hydrogenation at (a) 50 sccm
302
+ and (b) 100 sccm flow rate of hydrogen gas at 100 0C.
303
+
304
+ Table 1: Transient response and recovery times at different temperatures.
305
+ Temperature
306
+ (0C)
307
+ Transient response (1)
308
+ (ms)
309
+ Transient recovery (2)
310
+ (ms)
311
+ In vacuum
312
+ In hydrogen
313
+ (100 sccm)
314
+ In vacuum In hydrogen
315
+ (100 sccm)
316
+ Room Tem.
317
+ 10.04
318
+ 13.90
319
+ 31.26
320
+ 44.29
321
+ 100
322
+ 6.57
323
+ 7.24
324
+ 5.91
325
+ 7.81
326
+
327
+ The photoresponse of the device in hydrogen was also calculated and compared with that of the
328
+ device in vacuum at different temperatures. Response of the device was calculated using the formula
329
+ given by [25],
330
+
331
+ %
332
+ 100
333
+ *
334
+ 2
335
+ 2
336
+ 1
337
+ 
338
+
339
+
340
+ 
341
+
342
+
343
+
344
+ =
345
+ I
346
+ I
347
+ I
348
+ S
349
+ .
350
+
351
+
352
+
353
+
354
+
355
+
356
+
357
+
358
+ (2)
359
+
360
+ Where, I1 and I2 are the currents with and without IR light, respectively. Generally, response is calculated
361
+ in percentage.
362
+ Fig. 8 shows the comparison of the responses due to hydrogenation effect at 100 0C. The response
363
+ was found to decrease by around 57% when the device was hydrogenated at 50 sccm flow rate of
364
+ hydrogen gas while it decreased by around 68% when the flow rate was increased to 100 sccm. The effect
365
+ of hydrogenation was even seen substantial at room temperature compared with hydrogenation at 100 0C.
366
+ The flow of hydrogen was continued during cooling. The decrease in the response of the device due to
367
+ hydrogenation effect was observed as expected. The semiconducting Behaviour of graphene is attributed
368
+
369
+ 1.4933
370
+ 1.4932
371
+ (a)
372
+ 1.4931
373
+ L.493
374
+ mo
375
+ 1.4929
376
+ 1.4928
377
+ 1.492
378
+ 1L.4926
379
+ 0
380
+ 10
381
+ 28
382
+ 30
383
+ 40
384
+ Time (ws)1.5025
385
+ 1.5024
386
+ (b)
387
+ 1.5021
388
+ 1.502
389
+ 1.5019
390
+ .0
391
+ 10
392
+ 20.
393
+ 30
394
+ 40
395
+ 50
396
+ Tine (ms)to the formation of bands at the defect sites [26]. When hydronation is occurred, the conductivity can be
397
+ reduced to a certain extent due to the passivation of defect sites with hydrogen.
398
+
399
+
400
+
401
+ Fig. 8: The photoresponse of the device in IR light at 100 0C in (a) hydrogenation at 100 sccm of
402
+ hydrogen flow and (b) in ambient condition.
403
+
404
+ 4. Conclusion
405
+ In this paper, a graphene-based IR sensor was investigated in different conditions in terms of the
406
+ photoresponse in the presence of light. The device was fabricated between electrode materials and the
407
+ presence of a monolayer of graphene was confirmed by Raman Spectroscopy. The effect of temperature
408
+ on photoconductivity was recorded at different temperature conditions. The photoconductivity of
409
+ graphene films was interpreted as due to the creation of localized bands in defect sites at the gran
410
+ boundaries of CVD graphene. The device exhibited a temperature-dependent effect on the photoresponse
411
+ behavior. The transient response and recovery times were seen reduced in the high-temperature region,
412
+ indicating that the thermal effect due to heating was more pronounced than the heating effect caused by
413
+ the IR light. It also revealed the fact that the net photocurrent change due to IR light decreases as the
414
+ charge carriers responsible for conduction are already excited to the conduction band due to thermal
415
+ heating before IR light was used. The hydrogenation effect on photoconductivity was also studied. The
416
+ hydrogenation caused a significant decrease in the photoresponse of the device at high temperature as
417
+ expected because the hydrogen ions were believed to be adsorbed at the grain boundaries and passivate
418
+ the defects that are responsible for photoconductivity. As the device was illuminated with a low intensity
419
+ (~ 2.16 µW/mm2) of IR light, the net change in the photocurrent was not significant. However, the
420
+ transient responses were observed around 100 times faster than the recently reported CNT-based IR
421
+ sensor, which may lead to the application of graphene towards ultra-fast optical response devices.
422
+
423
+ Acknowledgements: This research was supported by a grant (Grant #: ECCS 0925783) from National
424
+ Science Foundation (NSF) of USA.
425
+
426
+ References
427
+ [1]
428
+ S A McDonald et al. Nat. Mater. 4 (2005) 138.
429
+ [2] B Pradhan, K Setyowati, H Liu, D H Waldeck and J Chen Nano Letters 8 (2008) 1142.
430
+ [3]
431
+ M Acik, G Lee, C Mattevi, M Chhowalla, K Cho and Y J Chabal Nature Mater. 9 (2010) 840.
432
+ [4]
433
+ M E Itkis, F Borondics, A Yu and R C Haddon Science 312 (2003) 413.
434
+ [5]
435
+ K Yoshino et al. Adv. Mater. 11 (1999) 1382.
436
+ [6]
437
+ C J Barber, C Winder, N S Sariciftci, J C Hummelen, A Dhanabalan and P A Hal Adv. Funct. Mater. 12
438
+ (2002) 709.
439
+ [7]
440
+ Y Yao, Y Liang, V Shrotriya, S Xiao, L Yu and Y Yang Adv. Mater 19 (2007) 3979.
441
+ [8]
442
+ K Wai, C Lai, N Xi, K Carmen, F Fung, H Chen and T Tarn Appl. Phys. Lett. 95 (2009) 221107.
443
+ [9]
444
+ M Freitag, Y Martin, J A Misewich, R Martel and P Avouris Nano Letters 3 (2003) 1067.
445
+
446
+ 0.035
447
+ (t)
448
+ 0.02
449
+ 0.015
450
+ 0.01
451
+ 0.005
452
+ 0
453
+ 20
454
+ 40
455
+ 60
456
+ 80
457
+ Time.(ms)0.06
458
+ (b)
459
+ Response
460
+ 0.04
461
+ 0.02
462
+ 0
463
+ 30
464
+ 60
465
+ 06
466
+ 120
467
+ 150
468
+ Time (ms)[10] S Lu and B Panchapakesan Nanotechnolgy 17 (2003) 1843.
469
+ [11] X Qiu, M Freitag, V Perebeinos and P Avouris Nano Letters 5 (2005) 749.
470
+ [12] B Pradhan, R R Kohlmeyer, K Setyowati, H A Owen and J Chen Carbon 47 (2009) 1686.
471
+ [13] E Song at al. Appl. Phys. Let. 96 (2001) 081911.
472
+ [14] Z H Ni at al. Nano Letters l (2007) 2758.
473
+ [15] M Gautam, Z Shi, and AH Jayatissa, Solar Energy Materials and Solar Cells 163 (2017) 1.
474
+ [16] L Xuesong et al. Science 324 (2009) 1312.
475
+ [17] O K Varghese et al. Sensors and Actuators B 81 (2001) 32.
476
+ [18] T Gupta and A H Jayatissa, Third IEEE Conference on Nanotechnology, IEEE-NANO. 2 (2003) 469.
477
+ [19] L Dong and Q Chen Front. Mater. Sci. China 4 (2010) 45.
478
+ [20] A H Neto, F Guinea, N M R Peres, K S Novoselov and A K Geim Rev. Modern Phys. 81 (2009) 45.
479
+ [21] A Reina et al. J. Phys. Chem. C 112 (2008) 17741.
480
+ [22] D Wei, Y Liu, Y Wang, H Zhang, L Huang and G Yu Nano Letters 9 (2009) 1752.
481
+ [23] L Xuesong et al. Nano letters 9 (2009) 4359.
482
+ [24] A. Ferrari et al. Phys. Rev. Let. 97 (2006) 187401.
483
+ [25] M Gautam, AH Jayatissa, Materials Science and Engineering: C 31 (2011) 1405
484
+ [26] L Liu, M Qing, Y Wang and S Chen J. Mater. Science & Technol. 31 (2015) 599 .
485
+ [27] J Sun, N Lin, Z Li, H Ren, C Tang and X Zhao Royal Soc. of Chemistry Adv. 6 (2016) 1090.
486
+
487
+
488
+
4tFAT4oBgHgl3EQfFByL/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,290 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf,len=289
2
+ page_content='Graphene as Infrared Light Sensor Material Ahalapitiya H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
3
+ page_content=' Jayatissaa) and Madhav Gautam Mechanical, Industrial, and Manufacturing Engineering (MIME) Department The University of Toledo, OH 43606, USA a)Correspondence: ahalapitiya.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
4
+ page_content='jayatissa@utoledo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
5
+ page_content='edu Abstract: The infrared (IR) photoresponse of graphene synthesized by atmospheric chemical vapor deposition (CVD) system using a mixture of hydrogen and methane gases was studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
6
+ page_content=' The IR sensor devices were fabricated using graphene films transferred on to a SiO2 substrate by a lift off process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
7
+ page_content=' The quality of graphene was investigated with the Raman spectroscopy and optical microscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
8
+ page_content=' The photoresponse was recorded under the illumination of IR light of wavelength 850 nm and intensity of around 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
9
+ page_content='16 µW/mm2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
10
+ page_content=' The effects of temperature and hydrogenation on photoconductivity were also studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
11
+ page_content=' It was found that the transient response and recovery times decreased with the increase of the temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
12
+ page_content=' Hydrogenation effect also caused the significant decrease in the photoresponse of the device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
13
+ page_content=' Although the net change in the photoresponse for IR light was lower at low illumination intensity levels, the transient responses were observed around 100 times faster than the recently reported CNT-based IR sensors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
14
+ page_content=' Key words: CVD graphene, single layer, Infra-Red light, photoconductivity, 2D sensor materials 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
15
+ page_content=' Introduction Optoelectronic devices working in near infra-red (NIR) (800 - 2000 nm) are always demanding for different applications [1-4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
16
+ page_content=' There has been significant works reported on the fabrication of optoelectronic devices using NIR materials [5-12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
17
+ page_content=' In recent years, single walled carbon nanotubes (SWCNTs) have been investigated extensively as a semiconducting material for IR sensors because of its strong absorption behavior in NIR region [7-12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
18
+ page_content=' One of the key challenges in developing NIR detectors is the finding of ultra fast optical response in the sensor material [5-8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
19
+ page_content=' Recently, strong absorption behavior in NIR region has been reported for thermally reduced graphene oxides [1,2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
20
+ page_content=' This provides a pathway to use graphene as an optoelectronic material for IR detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
21
+ page_content=' Although the optical properties of graphene in visible region have been reported by many researchers [13-15], we have not found any research work related to the photoresponse of graphene in IR region of the spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
22
+ page_content=' In this paper, photoresponse of graphene film on macro-scale has been reported in different conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
23
+ page_content=' Graphene is a monolayered carbon film with a film thickness of around 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
24
+ page_content='32Å [13 - 15], where carbon atoms are arranged in a two-dimensional hexagonal lattice structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
25
+ page_content=' It can be thought of as a single layer peeled off from the graphite stack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
26
+ page_content=' It has evolved as an interesting material due to its unique physical and electrical properties [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
27
+ page_content=' This material is different from most of the conventional semiconductors because of its zero bandgap semi-conducting behavior [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
28
+ page_content=' For example, graphene-based transistor devices may operate very faster than traditional silicon devices due to high intrinsic carrier mobility (~ 2x105 cm2v-1s-1) [1, 2, 18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
29
+ page_content=' Being the material of high mechanical stress and low density (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
30
+ page_content='2 gm/cm3), it may lead to the application in nano-robotics [19, 20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
31
+ page_content=' We have investigated the photoconductivity of graphene layers synthesized in atmospheric chemical vapor deposition (CVD) of CH4 on a copper substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
32
+ page_content=' The devices were fabricated by transferred CVD graphene onto a SiO2/Si substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
33
+ page_content=' The investigations were carried out to understand the temperature dependence and hydrogenation effect on photoconductivity of graphene in NIR region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
34
+ page_content=' Although the net change in the photoresponse for IR light was lower at low illumination intensity levels (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
35
+ page_content='16 µW/mm2), the transient responses were observed around 100 times faster than photoconductivity of CNT for NIR lights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
36
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
37
+ page_content=' Experimental Procedures The growth of graphene films was carried out on a copper (Cu) substrate (25 µm thick) in an alumina tube furnace system under the flow of methane (CH4) and hydrogen (H2) gases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
38
+ page_content=' Copper substrate (99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
39
+ page_content='999% pure, Alfa Aesar) was heated in a tube furnace under the 150 standard cubic centimeters per minute (sccm) flow of mixture of hydrogen and Argon (10% H2, 90% Ar) and annealed at 1100 0C for one hour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
40
+ page_content=' After annealing, graphene deposition was carried out by passing a mixture of methane and argon (5% CH4, 95% Ar) followed by the immediate cooling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
41
+ page_content=' Graphene deposited on copper by CVD method was transferred to SiO2/Si substrate by wet etching of Cu [15, 21-23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
42
+ page_content=' The thickness of the thermally-grown SiO2 was 118 nm as confirmed by UV spectrometry [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
43
+ page_content=' The Raman spectra of these films were recorded with the excitation wavelength of 530 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
44
+ page_content=' In order to fabricate the IR sensors, a thin layer of gold (about 100 nm) was coated onto the transferred graphene film by a vacuum evaporation method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
45
+ page_content=' The gold electrodes were patterned by lithography followed by etching of gold with aqueous KI/I2 solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
46
+ page_content=' The spacing and the length of these electrodes were 6 mm and 4 mm, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
47
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
48
+ page_content=' 1 shows the schematic diagram of the fabricated IR sensor and photoresponse measurement circuit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
49
+ page_content=' The device was biased with a constant voltage (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
50
+ page_content='0 V) during collection of the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
51
+ page_content=' To understand the reflection of light from graphene, reflectance from bi- layer substrate (SiO2/Si) and tri-layer substrate (graphene/SiO2/Si) were measured with a double beam UV/Visible spectrometer (Shimadzu).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
52
+ page_content=' The reflectance spectra were investigated in the spectral range 300- 1100 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
53
+ page_content=' Au A V0 Graphene SiO2 IR Light Si Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
54
+ page_content='1: Schematic of photoresponse measurement system (V0= 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
55
+ page_content='0 V).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
56
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
57
+ page_content=' Results and Discussions 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
58
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
59
+ page_content=' Surface Characterization The Raman spectroscopy has been used to characterize the quality of graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
60
+ page_content=' The Raman spectrum of Graphene gives for main bands corresponding to the vibration mode of graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
61
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
62
+ page_content=' 2 shows the as- measured Raman spectra of graphene films produced on SiO2 surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
63
+ page_content=' The spectrum was normalized with respect to the intensity level of 2D band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
64
+ page_content=' The peak at around 1580 cm-1 and 2660 cm-1, respectively, indicate the G band and the 2D band, which are characteristics Raman peaks of graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
65
+ page_content=' It has been reported that the defect free monolayer graphene can be identified with characteristic features of Raman band intensities [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
66
+ page_content=' The intensity of 2D band is ~2 times larger than the intensity of G band suggesting that the presence of less defective graphene on SiO2 surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
67
+ page_content=' This fact is also supported by the weak intensity of D-band (1350 cm-1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
68
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
69
+ page_content=' 2: Raman spectra of graphene transferred to silicon wafer (SiO2 + Si) scaled with respect to the maximum peak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
70
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
71
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
72
+ page_content=' Photoconductivity 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
73
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
74
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
75
+ page_content=' Dynamic response Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
76
+ page_content=' 3 shows the dynamic response of photoconductivity of graphene film for the NIR light at room temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
77
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
78
+ page_content=' 3(a) shows the response and recovery of the device when the IR light was turned on and off, respectively, whereas Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
79
+ page_content=' 3(b) indicates the same characteristic for one cycle only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
80
+ page_content=' The intensity of the IR light source used was 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
81
+ page_content='16 µW/mm2 at the device surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
82
+ page_content=' Although the intensity level was very low, a clear photoresponse of device was measured.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
83
+ page_content=' The photogeneration of carriers can be primarily attributed to the creation of bands at the defect of graphene sheets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
84
+ page_content=' When graphene is deposited on a copper plate, defects are developed at the grain boundary of polycrystalline copper films.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
85
+ page_content=' We believe that these defects are responsible for the creation of localized photoactive regions, which contribute to the photogeneration of carriers [26,27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
86
+ page_content=' The photoresponse could be characterized with a time step function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
87
+ page_content=' In both the photocurrent increase and drop cases, the experimental data were fitted well into the exponential form as [10], \uf0f7\uf0f7 \uf0f8 \uf0f6 \uf0e7\uf0e7 \uf0e8 \uf0e6 − + = \uf074 t A I I o o exp .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
88
+ page_content=' (1) Here, I is the current, t is the response time and Io, \uf074 and A0 are constants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
89
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
90
+ page_content=' 4(a) and 4(b) show the fit of the response in the form explained above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
91
+ page_content=' The data analysis indicated that the time constants were 10 ms and 31 ms for rise and fall of the photocurrent, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
92
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
93
+ page_content="2 2D nsityRatio (ll) 1 8'0 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
94
+ page_content='6 G 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
95
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
96
+ page_content='2 D G 人 0 1000 1500 2000 2500 3000 Raman Shift (anl) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
97
+ page_content=' 3: The photoresponse of the device due to IR light for (a) different cycles and (b) for one cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
98
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
99
+ page_content=' 4: The photoresponse of the device due to IR light for (a) response and (b) recovery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
100
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
101
+ page_content=' 5: The photoresponse of the device due to IR light at (a) 50 0C and (b) 100 0C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
102
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
103
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
104
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
105
+ page_content=' The effect of temperature on photoconductivity Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
106
+ page_content=' 6 shows the effect of temperature on the photoconductivity of graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
107
+ page_content=' The photoconductivity was tested at 50 0C and 100 0C, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
108
+ page_content=' During the experiment, the device was heated to the desired (a)1,252 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
109
+ page_content='2515 b) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
110
+ page_content='251 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
111
+ page_content='2505 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
112
+ page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
113
+ page_content='2495 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
114
+ page_content='249 0 50 100 150 200 250 300 Time (ms):(a)(b)1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
115
+ page_content='2888 (a) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
116
+ page_content='2882 (vu) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
117
+ page_content='2864 20 40 60 80 100 120 140 Time (ms)(b)temperature for 30 minutes to ensure the thermal equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
118
+ page_content=' Transient responses of the device were 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
119
+ page_content='26 ms and 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
120
+ page_content='57 ms and the transient recovery times were 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
121
+ page_content='55 ms and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
122
+ page_content='91 ms at 50 0C and 100 0C, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
123
+ page_content=' A significant difference in transient response of the device was not found when the device temperature was increased from room temperature to 50 0C and transient response time decreased by 40% when the temperature was changed from 50 0C to 100 0C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
124
+ page_content=' Similarly, the transient recovery time decreased by 60% when the temperature was changed from room temperature to 50 0C and it decreased by 50% when the temperature was changed from 50 0C to 100 0C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
125
+ page_content=' On the other hand, the amplitude of the photocurrent didn’t show any significant difference when the temperature was changed from room temperature to 50 0C whereas it decreased by 50% when the temperature was changed from 50 0C to 100 0C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
126
+ page_content=' A slight change in photocurrent at high temperature measurement (100 0C) from low temperature (50 0C) can be attributed to the career generation is influenced by thermal effect associated with defects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
127
+ page_content=' Furthermore, the increase in current due to the thermal effect of IR light is less pronounced at elevated temperatures because the change in the temperature by IR heating is negligible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
128
+ page_content=' Therefore, the total photocurrent generation can be attributed to the photo generation of carriers in the graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
129
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
130
+ page_content=' 6: The photoresponse of the device in IR light due to hydrogenation at 100sccm of hydrogen flow for (a) difference cycle and (b) one cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
131
+ page_content=' On the other hand, the amplitude of the photocurrent didn’t show any significant difference when the temperature was changed from room temperature to 50 0C whereas it decreased by 50% when the temperature was changed from 50 0C to 100 0C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
132
+ page_content=' Smaller change in low temperature gradient can be attributed to the fact that small bandgap in graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
133
+ page_content=' Furthermore, the increase in current due to the thermal effect of IR light is less pronounced at elevated temperatures because the change in the temperature by IR heating is negligible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
134
+ page_content=' Therefore, the total photocurrent generation can be attributed to the photo generation of carriers in the graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
135
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
136
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
137
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
138
+ page_content=' The effect of hydrogenation on photoconductivity The effect of hydrogenation on photoresponse of the device was tested at 100 0C for different concentrations of hydrogen flow rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
139
+ page_content=' The device was heated at 100 0C for 30 min to ensure the thermal equilibrium followed by the constant hydrogen flow for more than one hour until reach of the saturation of surface of graphene by hydrogen by adsorption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
140
+ page_content=' The saturation was confirmed by monitoring resistance changes against time using two-point probe method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
141
+ page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
142
+ page_content="15026 LtzosT'o (a) 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
143
+ page_content='150234 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
144
+ page_content='150221 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
145
+ page_content='150208 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
146
+ page_content='150195 400 600 800 10000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
147
+ page_content='15026 (b) (mA) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
148
+ page_content='150221 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
149
+ page_content='150208 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
150
+ page_content='150195 460 500 Time (ms)Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
151
+ page_content=' 7 shows the photoresponse of the device at different flow rates of hydrogen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
152
+ page_content=' Transient responses of the device were 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
153
+ page_content='05 ms and 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
154
+ page_content='27 ms in 50 sccm and 100 sccm flow rate of hydrogen gas, respectively, and the corresponding values during recovery process were 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
155
+ page_content='1 ms and 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
156
+ page_content='81 ms, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
157
+ page_content=' The transient response of the device was found to differ by 17% in going from 50 to 100 sccm of hydrogen flow rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
158
+ page_content=' Table 1 lists the transient response and recovery times at different temperatures to compare the effect of hydrogenation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
159
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
160
+ page_content=' 7: The photoresponse of the device in IR light due to hydrogenation at (a) 50 sccm and (b) 100 sccm flow rate of hydrogen gas at 100 0C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
161
+ page_content=' Table 1: Transient response and recovery times at different temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
162
+ page_content=' Temperature (0C) Transient response (\uf0741) (ms) Transient recovery (\uf0742) (ms) In vacuum In hydrogen (100 sccm) In vacuum In hydrogen (100 sccm) Room Tem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
163
+ page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
164
+ page_content='04 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
165
+ page_content='90 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
166
+ page_content='26 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
167
+ page_content='29 100 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
168
+ page_content='57 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
169
+ page_content='24 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
170
+ page_content='91 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
171
+ page_content='81 The photoresponse of the device in hydrogen was also calculated and compared with that of the device in vacuum at different temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
172
+ page_content=' Response of the device was calculated using the formula given by [25], % 100 2 2 1 \uf0f7\uf0f7 \uf0f8 \uf0f6 \uf0e7\uf0e7 \uf0e8 \uf0e6 − = I I I S .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
173
+ page_content=' (2) Where, I1 and I2 are the currents with and without IR light, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
174
+ page_content=' Generally, response is calculated in percentage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
175
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
176
+ page_content=' 8 shows the comparison of the responses due to hydrogenation effect at 100 0C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
177
+ page_content=' The response was found to decrease by around 57% when the device was hydrogenated at 50 sccm flow rate of hydrogen gas while it decreased by around 68% when the flow rate was increased to 100 sccm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
178
+ page_content=' The effect of hydrogenation was even seen substantial at room temperature compared with hydrogenation at 100 0C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
179
+ page_content=' The flow of hydrogen was continued during cooling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
180
+ page_content=' The decrease in the response of the device due to hydrogenation effect was observed as expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
181
+ page_content=' The semiconducting Behaviour of graphene is attributed 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
182
+ page_content='4933 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
183
+ page_content='4932 (a) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
184
+ page_content='4931 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
185
+ page_content='493 mo 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
186
+ page_content='4929 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
187
+ page_content='4928 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
188
+ page_content='492 1L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
189
+ page_content='4926 0 10 28 30 40 Time (ws)1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
190
+ page_content='5025 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
191
+ page_content='5024 (b) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
192
+ page_content='5021 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
193
+ page_content='502 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
194
+ page_content='5019 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
195
+ page_content='0 10 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
196
+ page_content=' 30 40 50 Tine (ms)to the formation of bands at the defect sites [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
197
+ page_content=' When hydronation is occurred, the conductivity can be reduced to a certain extent due to the passivation of defect sites with hydrogen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
198
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
199
+ page_content=' 8: The photoresponse of the device in IR light at 100 0C in (a) hydrogenation at 100 sccm of hydrogen flow and (b) in ambient condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
200
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
201
+ page_content=' Conclusion In this paper, a graphene-based IR sensor was investigated in different conditions in terms of the photoresponse in the presence of light.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
202
+ page_content=' The device was fabricated between electrode materials and the presence of a monolayer of graphene was confirmed by Raman Spectroscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
203
+ page_content=' The effect of temperature on photoconductivity was recorded at different temperature conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
204
+ page_content=' The photoconductivity of graphene films was interpreted as due to the creation of localized bands in defect sites at the gran boundaries of CVD graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
205
+ page_content=' The device exhibited a temperature-dependent effect on the photoresponse behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
206
+ page_content=' The transient response and recovery times were seen reduced in the high-temperature region, indicating that the thermal effect due to heating was more pronounced than the heating effect caused by the IR light.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
207
+ page_content=' It also revealed the fact that the net photocurrent change due to IR light decreases as the charge carriers responsible for conduction are already excited to the conduction band due to thermal heating before IR light was used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
208
+ page_content=' The hydrogenation effect on photoconductivity was also studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
209
+ page_content=' The hydrogenation caused a significant decrease in the photoresponse of the device at high temperature as expected because the hydrogen ions were believed to be adsorbed at the grain boundaries and passivate the defects that are responsible for photoconductivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
210
+ page_content=' As the device was illuminated with a low intensity (~ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
211
+ page_content='16 µW/mm2) of IR light, the net change in the photocurrent was not significant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
212
+ page_content=' However, the transient responses were observed around 100 times faster than the recently reported CNT-based IR sensor, which may lead to the application of graphene towards ultra-fast optical response devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
213
+ page_content=' Acknowledgements: This research was supported by a grant (Grant #: ECCS 0925783) from National Science Foundation (NSF) of USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
214
+ page_content=' References [1] S A McDonald et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
215
+ page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
216
+ page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
217
+ page_content=' 4 (2005) 138.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
218
+ page_content=' [2] B Pradhan, K Setyowati, H Liu, D H Waldeck and J Chen Nano Letters 8 (2008) 1142.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
219
+ page_content=' [3] M Acik, G Lee, C Mattevi, M Chhowalla, K Cho and Y J Chabal Nature Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
220
+ page_content=' 9 (2010) 840.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
221
+ page_content=' [4] M E Itkis, F Borondics, A Yu and R C Haddon Science 312 (2003) 413.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
222
+ page_content=' [5] K Yoshino et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
223
+ page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
224
+ page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
225
+ page_content=' 11 (1999) 1382.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
226
+ page_content=' [6] C J Barber, C Winder, N S Sariciftci, J C Hummelen, A Dhanabalan and P A Hal Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
227
+ page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
228
+ page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
229
+ page_content=' 12 (2002) 709.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
230
+ page_content=' [7] Y Yao, Y Liang, V Shrotriya, S Xiao, L Yu and Y Yang Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
231
+ page_content=' Mater 19 (2007) 3979.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
232
+ page_content=' [8] K Wai, C Lai, N Xi, K Carmen, F Fung, H Chen and T Tarn Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
233
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
234
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
235
+ page_content=' 95 (2009) 221107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
236
+ page_content=' [9] M Freitag, Y Martin, J A Misewich, R Martel and P Avouris Nano Letters 3 (2003) 1067.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
237
+ page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
238
+ page_content='035 (t) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
239
+ page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
240
+ page_content='015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
241
+ page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
242
+ page_content='005 0 20 40 60 80 Time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
243
+ page_content=' (ms)0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
244
+ page_content='06 (b) Response 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
245
+ page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
246
+ page_content='02 0 30 60 06 120 150 Time (ms)[10] S Lu and B Panchapakesan Nanotechnolgy 17 (2003) 1843.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
247
+ page_content=' [11] X Qiu, M Freitag, V Perebeinos and P Avouris Nano Letters 5 (2005) 749.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
248
+ page_content=' [12] B Pradhan, R R Kohlmeyer, K Setyowati, H A Owen and J Chen Carbon 47 (2009) 1686.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
249
+ page_content=' [13] E Song at al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
250
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
251
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
252
+ page_content=' Let.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
253
+ page_content=' 96 (2001) 081911.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
254
+ page_content=' [14] Z H Ni at al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
255
+ page_content=' Nano Letters l (2007) 2758.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
256
+ page_content=' [15] M Gautam, Z Shi, and AH Jayatissa, Solar Energy Materials and Solar Cells 163 (2017) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
257
+ page_content=' [16] L Xuesong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
258
+ page_content=' Science 324 (2009) 1312.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
259
+ page_content=' [17] O K Varghese et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
260
+ page_content=' Sensors and Actuators B 81 (2001) 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
261
+ page_content=' [18] T Gupta and A H Jayatissa, Third IEEE Conference on Nanotechnology, IEEE-NANO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
262
+ page_content=' 2 (2003) 469.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
263
+ page_content=' [19] L Dong and Q Chen Front.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
264
+ page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
265
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
266
+ page_content=' China 4 (2010) 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
267
+ page_content=' [20] A H Neto, F Guinea, N M R Peres, K S Novoselov and A K Geim Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
268
+ page_content=' Modern Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
269
+ page_content=' 81 (2009) 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
270
+ page_content=' [21] A Reina et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
271
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
272
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
273
+ page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
274
+ page_content=' C 112 (2008) 17741.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
275
+ page_content=' [22] D Wei, Y Liu, Y Wang, H Zhang, L Huang and G Yu Nano Letters 9 (2009) 1752.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
276
+ page_content=' [23] L Xuesong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
277
+ page_content=' Nano letters 9 (2009) 4359.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
278
+ page_content=' [24] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
279
+ page_content=' Ferrari et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
280
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
281
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
282
+ page_content=' Let.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
283
+ page_content=' 97 (2006) 187401.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
284
+ page_content=' [25] M Gautam, AH Jayatissa, Materials Science and Engineering: C 31 (2011) 1405 [26] L Liu, M Qing, Y Wang and S Chen J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
285
+ page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
286
+ page_content=' Science & Technol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
287
+ page_content=' 31 (2015) 599 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
288
+ page_content=' [27] J Sun, N Lin, Z Li, H Ren, C Tang and X Zhao Royal Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
289
+ page_content=' of Chemistry Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
290
+ page_content=' 6 (2016) 1090.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFAT4oBgHgl3EQfFByL/content/2301.08425v1.pdf'}
6dAyT4oBgHgl3EQfcvcQ/content/tmp_files/2301.00287v1.pdf.txt ADDED
@@ -0,0 +1,624 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Marked Graph Mosaics
2
+ Seonmi Choi∗
3
+ Sam Nelson†
4
+ Abstract
5
+ We consider the notion of mosaic diagrams for surface-links using marked graph diagrams. We estab-
6
+ lish bounds, in some cases tight, on the mosaic numbers for the surface-links with ch-index up to 10. As
7
+ an application, we use mosaic diagrams to enhance the kei counting invariant for unoriented surface-links
8
+ as well as classical knots and links.
9
+ Keywords: Mosaic knots, Surface-links, Marked graph diagrams, kei homset enhancements
10
+ 2020 MSC: 57K12
11
+ 1
12
+ Introduction
13
+ Surface-links are compact surfaces smoothly embedded in R4 or S4, i.e. surfaces which are knotted and
14
+ linked in 4-space. Surface-links include many more distinct topological types of unknotted objects – spheres,
15
+ tori, projective planes, Klein bottles, etc. – compared with classical knots, and additionally include both
16
+ orientable and non-orientable cases.
17
+ Introduced in [12], marked graph diagrams are knot diagrams with marked vertices representing saddle
18
+ points of a surface-link. A marked graph diagram satisfying certain mild conditions determines a surface-
19
+ link up to ambient isotopy in R4, and marked graph diagrams together with the Yoshikawa moves provide
20
+ a convenient diagrammatic calculus for combinatorial computation with surface-links. Moreover, marked
21
+ graph diagrams and their Yoshikawa equivalence classes provide a diagrammatic way to represent cobordisms
22
+ between classical knots and links.
23
+ A mosaic diagram for a classical knot K is a rectangular (usually square) arrangement of square tiles
24
+ containing crossings, arcs or nothing such that the arcs join to form a diagram of K. Mosaics were used in
25
+ [11] to define quantum knots, elements of Hilbert spaces generated by mosaic diagrams.
26
+ In this paper we take the first steps toward extending these constructions to the case of surface-links by
27
+ considering mosaic presentations for surface-links using marked graph diagrams. We establish a set of tiles
28
+ and Yoshikawa moves for marked graph mosaics and provide mosaic diagrams for each of the surface-links in
29
+ the Yoshikawa table of surface-links with up to ch-index 10, establishing an upper bound on mosaic number
30
+ for these surface-links. As an application we use mosaic presentations to define a new enhancement of the kei
31
+ counting invariant for classical knots and links as well as for surface-links. As with mosaic number, we can
32
+ compute an upper bound with respect to a certain ordering on the new enhancement from a given diagram
33
+ of a surface-link or classical knot or link.
34
+ The paper is organized as follows. In Section 2 we review some preliminaries about knot mosaics and
35
+ marked graph diagrams. In Section 3 we introduce marked graph mosaics and obtain some results including
36
+ upper bounds, some tight, on the the mosaic numbers of both orientable and non-orientable surface-links
37
+ with ch-index less than or equal to 10. In Section 5 we define kei-colored mosaics and use them to enhance
38
+ the kei counting invariant for classical knots and links as well as surface-links. We conclude in Section 6 with
39
+ some questions for future research.
40
+ ∗Email: [email protected]. Partially supported by Basic Science Research Program through the National Research Founda-
41
+ tion of Korea(NRF) funded by the Ministry of Education(2021R1I1A1A01049100) and the National Research Foundation of
42
+ Korea (NRF) grant funded by the Korean government (MSIT) (No. 2022R1A5A1033624).
43
+ †Email: [email protected]. Partially supported by Simons Foundation Collaboration Grant 702597.
44
+ 1
45
+ arXiv:2301.00287v1 [math.GT] 31 Dec 2022
46
+
47
+ 2
48
+ Preliminaries
49
+ We review knot mosaics and recall surface-links, marked graph diagrams and their relationships.
50
+ 2.1
51
+ Surface-links and marked graph diagrams
52
+ A surface-link is the image of a closed surface smoothly (piecewise linear and locally flatly) embedded in R4
53
+ (or S4). If it is called a surface-knot, then the underlying surface is connected. A surface-link is orientable
54
+ if the underlying surface is orientable; otherwise, it is nonorientable or unorientable. An unoriented surface-
55
+ link is either an unorientable surface-link or an orientable surface link without a specified orientation. Two
56
+ surface-links F and F ′ are equivalent if there exists an orientation-preserving homeomorphism h : R4 → R4
57
+ such that h(F) = F ′. There are many useful schemes for describing for surface-links since it is difficult to
58
+ directly deal with surface-links in 4-space for research. For example, broken surface diagrams, marked graph
59
+ diagrams, motion pictures etc. See [2, 5, 6, 15] for more information.
60
+ We use an effective tool for handling surface-links known as a marked graph diagram. A marked graph is
61
+ a spatial graph embedded in R3 possibly with 4-valent vertices decorated by a line segment like
62
+ . We call
63
+ such a line segment a marker and a vertex with a marker a marked vertex.
64
+ An orientation of edges incident with a marked vertex is one of two types of the orientation, such as
65
+ or
66
+ . A marked graph is said to be orientable if it admits an orientation. Otherwise, it is non-orientable. Two
67
+ (oriented) marked graphs are said to be equivalent if they are ambient isotopic in R3 keeping the rectangular
68
+ neighborhoods and markers (with orientation). In the same way as a link diagram, one can define a marked
69
+ graph diagram which is a diagram in R2 with classical crossings and marked vertices.
70
+ For each marked vertex
71
+ of a marked graph diagram D, the local diagram obtained by splicing in
72
+ a direction consistent with its marker (say + direction), looks like
73
+ . By applying this in the opposite
74
+ direction (called − direction), the resulting local diagram looks like
75
+ . Therefore one can obtain two classical
76
+ link diagrams, denoted by L+(D) and L−(D), from D by splicing every marked vertices in + direction and
77
+ − direction, respectively. We call L+(D) and L−(D) the positive and negative resolutions of D, respectively.
78
+ A marked graph diagram D is said to be admissible if both resolutions L−(D) and L+(D) are trivial. A
79
+ marked graph is said to be admissible if it has an admissible marked graph diagram. For example, it is easy
80
+ to check that a marked graph diagram D of the spun trefoil as follows is admissible.
81
+ D
82
+ L_(D)
83
+ L+(D)
84
+ Let D be a admissible marked graph diagram. Then a surface-link F(D) can be constructed and it is
85
+ uniquely determined from D up to equivalence. Conversely, every surface-link F can be expressed by an
86
+ admissible marked graph diagram D, that is, F(D) is equivalent to F. See [7, 12, 15] for more details.
87
+ For example, the correspondence between the marked graph diagram and the standard projective plane are
88
+ illustrated in the following figure.
89
+ R3×{0}
90
+ R3×{1}
91
+ R3×{-1}
92
+ R3×[1,∞)
93
+ R3×[-1,∞)
94
+ R4
95
+ 2
96
+
97
+ The equivalence moves Γ1, · · · , Γ8 for marked graph diagrams is called Yoshikawa moves [15].
98
+ Γ1
99
+ Γ2
100
+ Γ3
101
+ Γ4
102
+ Γ5
103
+ Γ8
104
+ Γ'4
105
+ Γ6
106
+ Γ7
107
+ Γ'6
108
+ Proposition 1 ([8, 14, 15]). Two marked graph diagrams D and D′ present equivalent oriented surface-
109
+ links if and only if D can be obtained from D′ by a finite sequence of ambient isotopies in R2 and Yoshikawa
110
+ moves.
111
+ Definition 1. Let K be a marked graph diagram. The ch-index of K, denoted ch(K), is the total number
112
+ of crossings and marked vertices in K.
113
+ 2.2
114
+ Mosaic Knots
115
+ A mosaic (unoriented) tile is one of rectangles with arcs and possibly with one crossing, depicted as follows.
116
+ The set of mosaic tiles T0, T1, · · · , T10 is denoted by T(u) and there are exactly 5 tiles, up to rotation. The
117
+ endpoints of an arc on a mosaic tile are called connection points of the tile and are also located the center
118
+ of an edge. There are tiles with 0, 2 and 4 connection points in T(u).
119
+ 4 connection points
120
+ 0 connection points
121
+ 2 connection points
122
+ An (m, n)-mosaic is an m × n matrix whose entries are mosaic tiles in T(u). If m = n, then it is simply
123
+ called an n-mosaic. The sets of (m, n)-mosaics and n-mosaics are denoted by M(m,n) and M(n), respectively.
124
+ Two tiles in a mosaic are said to be contiguous if they lie immediately next to each other in the same either
125
+ row or column. A tile in a mosaic is said to be suitably connected if all its connection points touch the
126
+ 3
127
+
128
+ connection points of contiguous tiles. all its connection points meet the connection points of contiguous tiles.
129
+ Note that for 4-mosaic illustrated above, its (2, 2)-entry tile is suitably connected, but its (3, 3)-entry tile is
130
+ not suitably connected.
131
+ Definition 2. A knot (m, n)-mosaic is an (m, n)-mosaic in which all tiles are suitably connected. The set of
132
+ all knot (m, n)-mosaic is the subset of M(m,n), denoted by K(m,n). If m = n, then it is called a knot n-mosaic
133
+ and its set is denoted by K(n).
134
+ Example 1. The trefoil 31 has a knot 5-mosaic and 4-mosaic, as follows.
135
+ For the equivalence for mosaic knots, there are planar isotopy moves and Reidemeister moves by using
136
+ mosaic tiles. The non-deterministic tiles are necessary to define the moves, as follows :
137
+ Each non-deterministic tile means two types of tiles.
138
+ or
139
+ or
140
+ Non-deterministic tiles labeled by the same letter A or B are synchronized.
141
+ A
142
+ A
143
+ A
144
+ B
145
+ B
146
+ B
147
+ B
148
+ A
149
+ The equivalence of mosaic knots consists of 11 moves for planar isotopy, 2 moves for Reidemeister moves
150
+ I, 4 moves for Reidemeister moves II and 6 moves for Reidemeister moves III.
151
+ 0. Planar isotopy moves : 11 types
152
+ P1
153
+ P4
154
+ P2
155
+ P3
156
+ P7
157
+ P5
158
+ P6
159
+ P10
160
+ P11
161
+ P8
162
+ P9
163
+ 4
164
+
165
+ 1. Reidemeister moves I : 2 types
166
+ 2. Reidemeister moves II : 4 types
167
+ 3. Reidemeister moves III : 6 types
168
+ A
169
+ B
170
+ B
171
+ A
172
+ A
173
+ B
174
+ B
175
+ A
176
+ A
177
+ B
178
+ B
179
+ A
180
+ A
181
+ B
182
+ B
183
+ A
184
+ A
185
+ B
186
+ B
187
+ A
188
+ A
189
+ B
190
+ B
191
+ A
192
+ All mosaic moves are permutations on the set M(n) of n-mosaics. Indeed, they are also in the group of
193
+ all permutations of the set K(n) of knot n-mosaics.
194
+ Definition 3. The ambient isotopy group A(n) is the subgroup of the group of all permutations of the set
195
+ K(n) generated by all planar isotopy moves and all Reidemeister moves.
196
+ Two n-mosaics M and M ′ are said to be of the same knot n-type, denoted by M
197
+ n∼ M ′, if there exists an
198
+ element of A(n) such that it transforms M into M ′. Two n-mosaics M and M ′ are said to be of the same
199
+ knot type if there exists a non-negative integer k such that
200
+ ikM
201
+ n+k
202
+ ∼ ikM ′,
203
+ where i : M(j) → M(j+1) is the mosaic injection by adding a row and a column consisting of only empty tiles.
204
+ In [11], Lomonaco and Kauffman conjectured that tame knot theory is equivalent to knot mosaic theory
205
+ and in [9], Kuriya and Shehab proved the conjecture.
206
+ Proposition 2. Let K and K′ be two knot mosaics of two tame knots k and k′, respectively. Then K and
207
+ K′ are of the same knot mosaic type if and only if k and k′ are of the same knot type.
208
+ Definition 4. The mosaic number of a knot (or a link) K, denoted by m(K), is the smallest integer n for
209
+ which K can be represented by a n-mosaic.
210
+ It is obvious that the mosaic number is an invariant for knots and links. For example, the mosaic number
211
+ of 31 is 4 and it is easy to show this. In the papers [13, 10], they calculated the mosaic number of knots up
212
+ to 8 crossings.
213
+ 5
214
+
215
+ 3
216
+ Marked Graph Mosaics
217
+ Let T(u)
218
+ M denote the set of 2 Symbols, called mosaic (unoriented) tiles with markers, as follows :
219
+ Note that the two tiles are the same up to rotation and have 4 connection points. For constructing an
220
+ n-mosaic for marked graph diagrams, consider all tiles of T(u) ∪ T(u)
221
+ M as elementary tiles.
222
+ Other definitions can be defined in a manner such as mosaic knots, for instance, connection points,
223
+ contiguous, suitably connected. An (m, n)-mosaic is an m × n matrix M = (Mij) of tiles, with rows and
224
+ columns indexed 0, 1, · · · , m − 1 where each (i, j)-entry Mij is an element of T(u) ∪ T(u)
225
+ M . The set of (m, n)-
226
+ mosaics is denoted by M(m,n)
227
+ M
228
+ . It m = n, then an (n, n)-mosaic is a n-mosaic and its set is denoted by
229
+ M(n)
230
+ M .
231
+ Definition 5. A marked graph (m, n)-mosaic is a (m, n)-mosaic in which all tiles are suitably connected.
232
+ The set of all marked graph (m, n)-mosaic is the subset of M(m,n)
233
+ M
234
+ , denoted by K(m,n)
235
+ M
236
+ . If m = n, then it is
237
+ called a marked graph n-mosaic and its set is denoted by K(n)
238
+ M .
239
+ Example 2. The marked graph diagrams 01, 21
240
+ 1 and 60,1
241
+ 1
242
+ have the marked graph mosaics as follows.
243
+ 21
244
+ 1
245
+ 01
246
+ 61
247
+ 0,1
248
+ For the equivalence for marked graph mosaics, there are planar isotopy moves and Yoshikawa moves by
249
+ using mosaic tiles in T(u) ∪ T(u)
250
+ M . The mosaic moves for planar isotopy are the same P1, · · · , P11 with knot
251
+ mosaic moves and 4 additional moves P ′
252
+ 8, P ′
253
+ 9, P ′
254
+ 10, P ′
255
+ 11 depicted as follows.
256
+ P10'
257
+ P11'
258
+ P8'
259
+ P9'
260
+ 6
261
+
262
+ Yoshikawa moves Γ1, Γ2, Γ3 are the same with Reidemeister moves I, II, III. The mosaic moves for Yoshikawa
263
+ moves Γ4, · · · , Γ8 are as follows.
264
+ A
265
+ B
266
+ B
267
+ A
268
+ A
269
+ B
270
+ B
271
+ A
272
+ A
273
+ B
274
+ B
275
+ A
276
+ A
277
+ B
278
+ B
279
+ A
280
+ All marked graph mosaic moves are permutations on the set M(n)
281
+ M of n-mosaics. Indeed, they are also in
282
+ the group of all permutations of the set K(n)
283
+ M of marked graph n-mosaics.
284
+ Definition 6. The ambient isotopy group A(n)
285
+ M is the subgroup of the group of all permutations of the set
286
+ K(n)
287
+ M generated by all planar isotopy moves and all Yoshikawa moves.
288
+ Two marked graph n-mosaics M and M ′ are said to be of the same marked graph n-type, denoted by
289
+ M
290
+ n∼ M ′, if there exists an element of A(n)
291
+ M such that it transforms M into M ′. Two marked graph n-mosaics
292
+ M and M ′ are said to be of the same marked graph type if there exists a non-negative integer k such that
293
+ ikM
294
+ n+k
295
+ ∼ ikM ′,
296
+ where i : M(j) → M(j+1) is the mosaic injection by adding a row and a column consisting of only empty
297
+ tiles. Therefore, we can obtain the following result.
298
+ Theorem 3. Let M and M ′ be two marked graph mosaics of two marked graphs K and K′, respectively.
299
+ Then M and M ′ are of the same marked graph mosaic type if and only if K and K′ are equivalent.
300
+ For oriented surface-links, consider original oriented mosaic tiles in T(o) (see in [11]) and add 4 oriented
301
+ mosaic tiles with markers as follows. Then we can deal with oriented marked graph mosaics similar to oriented
302
+ knot mosaics.
303
+ 7
304
+
305
+ The definition of suitably connected when an orientation is given also considers only cases where the orien-
306
+ tation is well matched. Therefore, the oriented marked graph mosaics can also follow the same flow.
307
+ 4
308
+ Mosaic numbers
309
+ The marked graph diagram 81 can reduce the size of its marked graph mosaic using mosaic moves.
310
+ Definition 7. The mosaic number of a marked graph diagram K, denoted by m(K), is the smallest integer
311
+ n for which K can be represented by a marked graph n-mosaic.
312
+ It is obvious that the smallest number of the mosaic size of a marked graph diagram is an invariant for
313
+ surface-links.
314
+ Theorem 4. The mosaic number of a marked graph diagram is an invariant for surface-links.
315
+ It is obvious that the mosaic number of the standard sphere 01 is 2 and the mosaic numbers of both 21
316
+ 1
317
+ and 2−1
318
+ 1
319
+ are 4.
320
+ For finding the mosaic numbers, one can use twofold rule, introduced in [13]. For a given (m, n)-mosaic
321
+ D, since there are exactly two ways to connect adjacent connection points in the boundary of D, one can
322
+ obtain exactly two marked graph (m + 2, n + 2)-mosaics �D1 and �D2, where D is suitably connected except
323
+ the connection point of its boundary. The entry tiles of D are called inner tiles of �D1 or �D2. It is obvious
324
+ that a crossing and a marked vertex must be located in the position of inner tiles for the suitably connected
325
+ condition.
326
+ or
327
+ It is clear that if one of four inner corners has a crossing or a marked vertex and if one of two mosaics
328
+ by the twofold rule makes a kink, then the crossing or the marked vertex can be removed by Γ1 or Γ6, Γ′
329
+ 6,
330
+ respectively.
331
+ Γ'6
332
+ Γ1
333
+ Γ6
334
+ Theorem 5. Let K be a marked graph K. If ch(K) ≥ 7, then m(K) ≥ 6 where ch(K) denotes the ch-index
335
+ of K.
336
+ 8
337
+
338
+ Proof. Let K be a marked graph whose ch-index is greater than or equal to 7. If ch(K) ≥ 10, then m(K) ≥ 6
339
+ because the number of inner tiles of a 5-mosaic diagram is 9. Similarly, it is easy to check that m(K) ≥ 5 if
340
+ ch(K) ≥ 7.
341
+ In the case that ch(K) = 8, we will show that m(K) ̸= 5. Suppose that m(K) = 5, that is, there is a
342
+ marked graph 5-mosaic diagram D of K such that the ch-index of D is 8. Since the number of inner tiles of
343
+ D is 9, there are 9 types for inner tiles. All cases have at least 1 row in the boundary of inner tiles, whose
344
+ all mosaic tiles are crossings or marked vertices, as follows up to rotation.
345
+ ?
346
+ ?
347
+ ?
348
+ ?
349
+ ?
350
+ ?
351
+ ? ?
352
+ ?
353
+ ?
354
+ ? ?
355
+ ?
356
+ ?
357
+ ?
358
+ ?
359
+ ? ?
360
+ or
361
+ By applying the twofold rule, the resulting mosaics have always at least one kink. Therefore, one can
362
+ remove the corresponding crossing or marked vertex. It contradicts that the ch-index is 8. Hence, m(K) ≥ 6.
363
+ Similar that ch(K) = 7, suppose that m(K) = 5. Let D be a marked graph 5-mosaic diagram of K with
364
+ ch-index 7. Then there are 36 cases of its inner tiles and they have at least 1 row as depicted above except 2
365
+ cases. By applying the same argument of the case of ch(K) = 8, 34 cases are contradictory. In the remaining
366
+ 2 cases, both have exactly two corners with no crossings and no marked vertices. Then for each cases, there
367
+ are 4 subcases as follows.
368
+ ?
369
+ ?
370
+ By the twofold rule, for each subcase, there two marked graph mosaics; one of them has always at least one
371
+ kink. Since we can reduce the ch-index of D, it contradicts that the ch-index is 7 and then m(K) ≥ 6.
372
+ or
373
+ or
374
+ or
375
+ or
376
+ 9
377
+
378
+ The remaining diagrams of 4 subcase are the same shown as follows.
379
+ It has exactly one component. It contradicts that the number of components of 70,−2
380
+ 1
381
+ has two components.
382
+ Hence, m(K) ≥ 6.
383
+ The following diagrams are marked graph mosaics of surface-links with ch-index ≤ 10. The size of some
384
+ mosaic diagrams are 6 as follows. By Theorem 5, we know that their mosaic numbers are exactly 6.
385
+ 101
386
+ 1
387
+ 101
388
+ 0,0,1
389
+ 101
390
+ 1,1
391
+ 101
392
+ 0,1
393
+ 102
394
+ 0,1
395
+ 91
396
+ 91
397
+ 0,1
398
+ 101
399
+ 103
400
+ 91
401
+ 1,-2
402
+ 102
403
+ 81
404
+ 21
405
+ 1
406
+ 01
407
+ 61
408
+ 0,1
409
+ 81
410
+ 1,1
411
+ 21
412
+ -1
413
+ 81
414
+ -1,-1
415
+ 71
416
+ 0,-2
417
+ 101
418
+ -2,-2
419
+ 101
420
+ -1,-1
421
+ 101
422
+ 0,-2
423
+ 102
424
+ 0,-2
425
+ We conclude this section with a table of mosaic numbers for surface-links of small ch-index.
426
+ 10
427
+
428
+ K
429
+ m(K)
430
+ 01
431
+ 2
432
+ 21
433
+ 1, 2−1
434
+ 1
435
+ 4
436
+ 60,1
437
+ 1
438
+ 5, 6
439
+ 70,−2
440
+ 1
441
+ , 81,1
442
+ 1 , 8−1,−1
443
+ 1
444
+ , 100,1
445
+ 2
446
+ 6
447
+ 81, 91, 90,1
448
+ 1 , 91,−2
449
+ 1
450
+ , 101, 102, 100,1
451
+ 1 , 101,1
452
+ 1 , 100,−2
453
+ 2
454
+ , 10−1,−1
455
+ 1
456
+ 6, 7
457
+ 103, 101
458
+ 1, 100,0,1
459
+ 1
460
+ , 100,−2
461
+ 1
462
+ , 10−2,−2
463
+ 1
464
+ 6, 7, 8
465
+ 5
466
+ Kei-Colored Mosaic Diagrams
467
+ Recall that a kei is a set X with a binary operation ∗ satisfying the axioms
468
+ (i) For all x ∈ X, x ∗ x = x,
469
+ (ii) For all x, y ∈ X, we have (x ∗ y) ∗ y = x, and
470
+ (iii) For all x, y, z ∈ X we have (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z).
471
+ A map f : X → X′ between kei is a kei homomorphism if it satisfies
472
+ f(x ∗ y) = f(x) ∗ f(y)
473
+ for all x, y ∈ X. Kei are also called involutory quandles; see [3] for more.
474
+ Example 3. Every group is a kei under the operation x ∗ y = yx−1y, called the core kei of the group.
475
+ Every surface-link L (including classical knots and links, which can be regarded as trivial cobordisms) has
476
+ a fundamental kei K(L) whose presentation can be read from a diagram of the surface-link. More precisely,
477
+ the fundamental kei of a surface-link has generators corresponding to sheets, i.e., connected components of
478
+ a marked graph diagram representing L where we divide at classical undercrossings, together with relations
479
+ at the crossings as shown (suggestively as mosaic tiles)
480
+ The elements of the fundamental kei are then equivalence classes of kei words in these generators modulo
481
+ the equivalence relation generated by the crossing relations and the kei axioms. The isomorphism class of
482
+ the fundamental kei is a well-known invariant of unoriented surface-links.
483
+ Given a finite kei X, an assignment of elements of X to the sheets of an oriented marked graph diagram
484
+ (i.e., segments ending at undercrossing points or marked vertices) is a kei coloring (also called an X-coloring)
485
+ of the diagram if it satisfies the crossing condition pictured above at every crossing.
486
+ An X-coloring of a diagram D of a surface-link L defines and is defined by a unique element of the set
487
+ of kei homomorphisms Hom(K(L), X). This homset is an invariant of surface-links for every finite kei X,
488
+ from which useful computable invariants can be extracted. The simplest example is the cardinality of the
489
+ set, known as the kei counting invariant, denoted ΦZ
490
+ X(L) = |Hom(K(L), X)|.
491
+ Generally speaking, any invariant of kei-colored diagrams (or equivalently, homset elements) yields an
492
+ invariant known as an enhancement of the kei counting invariant. Examples include the celebrated cocyle
493
+ invariants studied in [1] and the more recent kei module invariants introduced in [4].
494
+ We will use mosaic diagrams to enhance the kei counting invariant in the following way. Let L be a
495
+ surface-link with mosaic diagram D and let X be a finite kei. Assigning elements of X (called “kei colors”)
496
+ 11
497
+
498
+ y
499
+ h*
500
+ C
501
+ yto each of the arcs on the tiles in D such that the colors match at connection points and satisfy the kei
502
+ coloring conditions at the crossings and marked vertices, we obtain an X-colored mosaic diagram. If we let
503
+ f ∈ Hom(K(L), X) be the homset element represented by this coloring, we may denote the colored diagram
504
+ by Df.
505
+ Definition 8. Let L be a surface-link represented by a marked graph diagram D and let X be a finite kei.
506
+ For each kei coloring f ∈ Hom(K(L), X) let us define the kei deficiency of Df as the difference between the
507
+ cardinality of the image subkei of f and the number of kei colors appearing in Df. Let φf be the minimal
508
+ kei deficiency over the set of minimal mosaic number diagrams Df representing f. Then the multiset
509
+ ΦMos,M
510
+ X
511
+ (L) = {φf | f ∈ Hom(K(L), X)}
512
+ is the mosaic deficiency enhancement multiset of the kei homset invariant. For ease of comparison we may
513
+ also convert this to polynomial form by summing over the multiset terms of the form uφf to define the
514
+ mosaic deficiency enhancement polynomial
515
+ ΦMos
516
+ X
517
+ (L) =
518
+
519
+ f∈Hom(K(L),X)
520
+ uφf .
521
+ Since there may be many distinct equivalent diagrams of L with minimal mosaic number, to get an
522
+ invariant we take for each coloring the minimal kei deficiency over the (finite) set of all diagrams of L with
523
+ minimal mosaic number. Then by construction, the multiset of φf-values forms an invariant of surface-links.
524
+ From a given minimal-mosaic number diagram of L we can obtain an upper bound on each of the φf-values;
525
+ to compute the invariant in general requires finding the complete set of minimal-mosaic number diagrams of
526
+ L, which can be computationally difficult.
527
+ Let us order the set of polynomials with nonnegative integer coefficients lexicographically by exponent.
528
+ That is, to compare two polynomials we first compare their constant terms and in case of a tie, we use
529
+ the linear term as a tiebreaker; if the constant and linear terms are equal, we use the quadratic term as
530
+ a tiebreaker etc. Then finding a new diagram which reduces the deficiency moves a coloring representative
531
+ from a higher exponent into a lower exponent, yielding a smaller lexicographical position; hence it follows
532
+ that any particular diagram yields an upper bound on the invariant.
533
+ To prove tightness of this bound, one can check exhaustively (which we have not done in the Example
534
+ below) that all other mosaic diagrams with the same or lesser mosaic number of the link or surface-link in
535
+ question have the same deficiencies for their colorings representing the nontrivial homset elements.
536
+ Remark 1. We observe that we can similarly define deficiency enhancements using crossing number or
537
+ ch-index in place of mosaic number. Generally speaking, on any diagram with nonzero deficiency we can
538
+ perform Reidemeister II moves to reveal “missing” colors in the image subkei. Since these moves increase
539
+ ch-index without changing the mosaic number, we expect that these should be different invariants.
540
+ Example 4. Consider the surface-knot 101 and the kei Core(Z5). Our python computations show that 101
541
+ has 25 colorings by the kei Core(Z5). These include five monochromatic colorings which have deficiency zero
542
+ 12
543
+
544
+ and 20 nontrivial colorings, each of which is surjective with deficiency 1 on this diagram, e.g.
545
+ .
546
+ Then from this diagram we obtain an upper bound 5 + 20u on the kei deficiency polynomial.
547
+ We end this section by defining another easy-to-define but difficult-to-compute invariant us surface-links
548
+ using mosaics and kei.
549
+ Definition 9. Let L be a surface-link and X a finite kei. For each f ∈ Hom(K(L), X) and each positive
550
+ integer n ≥ 2, let ρn
551
+ f be the minimal kei deficiency value over all n-mosaic diagrams of L. Then the sequence
552
+ {ρn
553
+ f }∞
554
+ n=2 is the kei deficiency spectrum for f, and as before we have an invariant multiset of such spectra.
555
+ Remark 2. We note that since classical knots can be understood as surface-links with an empty set of
556
+ marked vertices (i.e., trivial cobordisms between two copies of the knot), the invariants defined in this
557
+ section are also invariants of classical knots and links.
558
+ 6
559
+ Questions
560
+ There remains much to be done on the topic of mosaic surface-links. Finding efficient ways to prove tightness
561
+ of bounds is of interest, as is extending the quantum knot constructions in [11].
562
+ Say a surface-link L is X-deficiency heterogeneous if it has at least two homset elements which require
563
+ different minimal-mosaic number diagrams to realize their minimal X-deficiencies. Is there any such surface-
564
+ link? For a given kei X, which is the smallest ch-index of any link which is X-deficiency heterogeneous? For
565
+ a fixed surface-link L, for which finite kei X, if any, is L X-deficiency heterogeneous?
566
+ A question raised by Seiichi Kamada at a talk on this topic while this paper was in preparation is whether
567
+ the ordering of surface-links by ch-number agrees with that induced by mosaic number – e.g., does there
568
+ exist a surface-link whose minimal ch-diagram has greater mosaic number than its minimal mosaic diagram.
569
+ As mentioned in Remark 1, since there are moves which change the ch-index without changing the mosaic
570
+ number, it is not clear what is the relationship between these two notations of complexity of surface-links.
571
+ References
572
+ [1] J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford, and M. Saito. State-sum invariants of knotted
573
+ curves and surfaces from quandle cohomology. Electron. Res. Announc. Amer. Math. Soc., 5:146–156
574
+ (electronic), 1999.
575
+ 13
576
+
577
+ 4
578
+ 5
579
+ 2
580
+ 101
581
+ 4
582
+ 5[2] S. Carter, S. Kamada, and M. Saito. Surfaces in 4-space. Encyclopaedia of Mathematical Sciences.
583
+ Springer-Verlag, 2004.
584
+ [3] M. Elhamdadi and S. Nelson. Quandles—an introduction to the algebra of knots, volume 74 of Student
585
+ Mathematical Library. American Mathematical Society, Providence, RI, 2015.
586
+ [4] Y. Joung and S. Nelson. Biquandle module invariants of oriented surface-links. Proc. Amer. Math. Soc.,
587
+ 148(7):3135–3148, 2020.
588
+ [5] S. Kamada. Braid and knot theory in dimension four. Mathematical Surveys and Monographs. American
589
+ Mathematical Society, 2002.
590
+ [6] S. Kamada.
591
+ Surface-knots in 4-space.
592
+ Springer Monographs in Mathematics. Springer, 2017.
593
+ An
594
+ introduction.
595
+ [7] A. Kawauchi, T. Shibuya, and S. Suzuki. Descriptions on surfaces in four-space. i. normal forms. Math.
596
+ Sem. Notes Kobe Univ., 10:75–125, 1982.
597
+ [8] C. Kearton and V. Kurlin.
598
+ All 2-dimensional links in 4-space live inside a universal 3-dimensional
599
+ polyhedron. Algebr. Geom. Topol., 8:1223–1247, 2008.
600
+ [9] T. Kuriya and O. Shehab.
601
+ The lomonaco-kauffman conjecture.
602
+ J. Knot Theory Ramifications,
603
+ 23:1450003, 20 pp., 2014.
604
+ [10] H. J. Lee, L. Ludwig, J. Paat, and A. Peiffer. Knot mosaic tabulation. Involve, 11:13–26, 2018.
605
+ [11] S. J. Lomonaco and L. H. Kauffman. Quantum knots and mosaics. In Quantum information science
606
+ and its contributions to mathematics, pages 177–208. American Mathematical Society, 2010.
607
+ [12] S. J. Lomonaco, Jr. The homotopy groups of knots. I. How to compute the algebraic 2-type. Pacific J.
608
+ Math., 95(2):349–390, 1981.
609
+ [13] S. Oh, K. Hong, H. Lee, and H. J. Lee. Quantum knots and the number of knot mosaics. Quantum Inf.
610
+ Process., 14:801–811, 2015.
611
+ [14] F. J. Swenton.
612
+ On a calculus for 2-knots and surfaces in 4-space.
613
+ J. Knot Theory Ramifications,
614
+ 10:1133–1141, 2001.
615
+ [15] K. Yoshikawa. An enumeration of surfaces in four-space. Osaka J. Math., 31:497–522, 1994.
616
+ Nonlinear Dynamics and Mathematical Application Center
617
+ Kyungpook National University
618
+ Daegu, 41566, Republic of Korea
619
+ Department of Mathematical Sciences
620
+ Claremont McKenna College
621
+ 850 Columbia Ave.
622
+ Claremont, CA 91711 USA
623
+ 14
624
+
6dAyT4oBgHgl3EQfcvcQ/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,440 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf,len=439
2
+ page_content='Marked Graph Mosaics Seonmi Choi∗ Sam Nelson† Abstract We consider the notion of mosaic diagrams for surface-links using marked graph diagrams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
3
+ page_content=' We estab- lish bounds, in some cases tight, on the mosaic numbers for the surface-links with ch-index up to 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
4
+ page_content=' As an application, we use mosaic diagrams to enhance the kei counting invariant for unoriented surface-links as well as classical knots and links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
5
+ page_content=' Keywords: Mosaic knots, Surface-links, Marked graph diagrams, kei homset enhancements 2020 MSC: 57K12 1 Introduction Surface-links are compact surfaces smoothly embedded in R4 or S4, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
6
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
7
+ page_content=' surfaces which are knotted and linked in 4-space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
8
+ page_content=' Surface-links include many more distinct topological types of unknotted objects – spheres, tori, projective planes, Klein bottles, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
9
+ page_content=' – compared with classical knots, and additionally include both orientable and non-orientable cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
10
+ page_content=' Introduced in [12], marked graph diagrams are knot diagrams with marked vertices representing saddle points of a surface-link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
11
+ page_content=' A marked graph diagram satisfying certain mild conditions determines a surface- link up to ambient isotopy in R4, and marked graph diagrams together with the Yoshikawa moves provide a convenient diagrammatic calculus for combinatorial computation with surface-links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
12
+ page_content=' Moreover, marked graph diagrams and their Yoshikawa equivalence classes provide a diagrammatic way to represent cobordisms between classical knots and links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
13
+ page_content=' A mosaic diagram for a classical knot K is a rectangular (usually square) arrangement of square tiles containing crossings, arcs or nothing such that the arcs join to form a diagram of K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
14
+ page_content=' Mosaics were used in [11] to define quantum knots, elements of Hilbert spaces generated by mosaic diagrams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
15
+ page_content=' In this paper we take the first steps toward extending these constructions to the case of surface-links by considering mosaic presentations for surface-links using marked graph diagrams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
16
+ page_content=' We establish a set of tiles and Yoshikawa moves for marked graph mosaics and provide mosaic diagrams for each of the surface-links in the Yoshikawa table of surface-links with up to ch-index 10, establishing an upper bound on mosaic number for these surface-links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
17
+ page_content=' As an application we use mosaic presentations to define a new enhancement of the kei counting invariant for classical knots and links as well as for surface-links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
18
+ page_content=' As with mosaic number, we can compute an upper bound with respect to a certain ordering on the new enhancement from a given diagram of a surface-link or classical knot or link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
19
+ page_content=' The paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
20
+ page_content=' In Section 2 we review some preliminaries about knot mosaics and marked graph diagrams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
21
+ page_content=' In Section 3 we introduce marked graph mosaics and obtain some results including upper bounds, some tight, on the the mosaic numbers of both orientable and non-orientable surface-links with ch-index less than or equal to 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
22
+ page_content=' In Section 5 we define kei-colored mosaics and use them to enhance the kei counting invariant for classical knots and links as well as surface-links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
23
+ page_content=' We conclude in Section 6 with some questions for future research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
24
+ page_content=' ∗Email: smchoi@knu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
25
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
26
+ page_content='kr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
27
+ page_content=' Partially supported by Basic Science Research Program through the National Research Founda- tion of Korea(NRF) funded by the Ministry of Education(2021R1I1A1A01049100) and the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
28
+ page_content=' 2022R1A5A1033624).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
29
+ page_content=' †Email: Sam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
30
+ page_content='Nelson@cmc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
31
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
32
+ page_content=' Partially supported by Simons Foundation Collaboration Grant 702597.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
33
+ page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
34
+ page_content='00287v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
35
+ page_content='GT] 31 Dec 2022 2 Preliminaries We review knot mosaics and recall surface-links, marked graph diagrams and their relationships.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
36
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
37
+ page_content='1 Surface-links and marked graph diagrams A surface-link is the image of a closed surface smoothly (piecewise linear and locally flatly) embedded in R4 (or S4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
38
+ page_content=' If it is called a surface-knot, then the underlying surface is connected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
39
+ page_content=' A surface-link is orientable if the underlying surface is orientable;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
40
+ page_content=' otherwise, it is nonorientable or unorientable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
41
+ page_content=' An unoriented surface- link is either an unorientable surface-link or an orientable surface link without a specified orientation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
42
+ page_content=' Two surface-links F and F ′ are equivalent if there exists an orientation-preserving homeomorphism h : R4 → R4 such that h(F) = F ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
43
+ page_content=' There are many useful schemes for describing for surface-links since it is difficult to directly deal with surface-links in 4-space for research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
44
+ page_content=' For example, broken surface diagrams, marked graph diagrams, motion pictures etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
45
+ page_content=' See [2, 5, 6, 15] for more information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
46
+ page_content=' We use an effective tool for handling surface-links known as a marked graph diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
47
+ page_content=' A marked graph is a spatial graph embedded in R3 possibly with 4-valent vertices decorated by a line segment like .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
48
+ page_content=' We call such a line segment a marker and a vertex with a marker a marked vertex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
49
+ page_content=' An orientation of edges incident with a marked vertex is one of two types of the orientation, such as or .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
50
+ page_content=' A marked graph is said to be orientable if it admits an orientation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
51
+ page_content=' Otherwise, it is non-orientable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
52
+ page_content=' Two (oriented) marked graphs are said to be equivalent if they are ambient isotopic in R3 keeping the rectangular neighborhoods and markers (with orientation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
53
+ page_content=' In the same way as a link diagram, one can define a marked graph diagram which is a diagram in R2 with classical crossings and marked vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
54
+ page_content=' For each marked vertex of a marked graph diagram D, the local diagram obtained by splicing in a direction consistent with its marker (say + direction), looks like .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
55
+ page_content=' By applying this in the opposite direction (called − direction), the resulting local diagram looks like .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
56
+ page_content=' Therefore one can obtain two classical link diagrams, denoted by L+(D) and L−(D), from D by splicing every marked vertices in + direction and − direction, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
57
+ page_content=' We call L+(D) and L−(D) the positive and negative resolutions of D, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
58
+ page_content=' A marked graph diagram D is said to be admissible if both resolutions L−(D) and L+(D) are trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
59
+ page_content=' A marked graph is said to be admissible if it has an admissible marked graph diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
60
+ page_content=' For example, it is easy to check that a marked graph diagram D of the spun trefoil as follows is admissible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
61
+ page_content=' D L_(D) L+(D) Let D be a admissible marked graph diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
62
+ page_content=' Then a surface-link F(D) can be constructed and it is uniquely determined from D up to equivalence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
63
+ page_content=' Conversely, every surface-link F can be expressed by an admissible marked graph diagram D, that is, F(D) is equivalent to F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
64
+ page_content=' See [7, 12, 15] for more details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
65
+ page_content=' For example, the correspondence between the marked graph diagram and the standard projective plane are illustrated in the following figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
66
+ page_content=' R3×{0} R3×{1} R3×{-1} R3×[1,∞) R3×[-1,∞) R4 2 The equivalence moves Γ1, · · · , Γ8 for marked graph diagrams is called Yoshikawa moves [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
67
+ page_content=" Γ1 Γ2 Γ3 Γ4 Γ5 Γ8 Γ'4 Γ6 Γ7 Γ'6 Proposition 1 ([8, 14, 15])." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
68
+ page_content=' Two marked graph diagrams D and D′ present equivalent oriented surface- links if and only if D can be obtained from D′ by a finite sequence of ambient isotopies in R2 and Yoshikawa moves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
69
+ page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
70
+ page_content=' Let K be a marked graph diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
71
+ page_content=' The ch-index of K, denoted ch(K), is the total number of crossings and marked vertices in K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
72
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
73
+ page_content='2 Mosaic Knots A mosaic (unoriented) tile is one of rectangles with arcs and possibly with one crossing, depicted as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
74
+ page_content=' The set of mosaic tiles T0, T1, · · · , T10 is denoted by T(u) and there are exactly 5 tiles, up to rotation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
75
+ page_content=' The endpoints of an arc on a mosaic tile are called connection points of the tile and are also located the center of an edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
76
+ page_content=' There are tiles with 0, 2 and 4 connection points in T(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
77
+ page_content=' 4 connection points 0 connection points 2 connection points An (m, n)-mosaic is an m × n matrix whose entries are mosaic tiles in T(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
78
+ page_content=' If m = n, then it is simply called an n-mosaic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
79
+ page_content=' The sets of (m, n)-mosaics and n-mosaics are denoted by M(m,n) and M(n), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
80
+ page_content=' Two tiles in a mosaic are said to be contiguous if they lie immediately next to each other in the same either row or column.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
81
+ page_content=' A tile in a mosaic is said to be suitably connected if all its connection points touch the 3 connection points of contiguous tiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
82
+ page_content=' all its connection points meet the connection points of contiguous tiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
83
+ page_content=' Note that for 4-mosaic illustrated above, its (2, 2)-entry tile is suitably connected, but its (3, 3)-entry tile is not suitably connected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
84
+ page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
85
+ page_content=' A knot (m, n)-mosaic is an (m, n)-mosaic in which all tiles are suitably connected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
86
+ page_content=' The set of all knot (m, n)-mosaic is the subset of M(m,n), denoted by K(m,n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
87
+ page_content=' If m = n, then it is called a knot n-mosaic and its set is denoted by K(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
88
+ page_content=' Example 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
89
+ page_content=' The trefoil 31 has a knot 5-mosaic and 4-mosaic, as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
90
+ page_content=' For the equivalence for mosaic knots, there are planar isotopy moves and Reidemeister moves by using mosaic tiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
91
+ page_content=' The non-deterministic tiles are necessary to define the moves, as follows : Each non-deterministic tile means two types of tiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
92
+ page_content=' or or Non-deterministic tiles labeled by the same letter A or B are synchronized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
93
+ page_content=' A A A B B B B A The equivalence of mosaic knots consists of 11 moves for planar isotopy, 2 moves for Reidemeister moves I, 4 moves for Reidemeister moves II and 6 moves for Reidemeister moves III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
94
+ page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
95
+ page_content=' Planar isotopy moves : 11 types P1 P4 P2 P3 P7 P5 P6 P10 P11 P8 P9 4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
96
+ page_content=' Reidemeister moves I : 2 types 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
97
+ page_content=' Reidemeister moves II : 4 types 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
98
+ page_content=' Reidemeister moves III : 6 types A B B A A B B A A B B A A B B A A B B A A B B A All mosaic moves are permutations on the set M(n) of n-mosaics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
99
+ page_content=' Indeed, they are also in the group of all permutations of the set K(n) of knot n-mosaics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
100
+ page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
101
+ page_content=' The ambient isotopy group A(n) is the subgroup of the group of all permutations of the set K(n) generated by all planar isotopy moves and all Reidemeister moves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
102
+ page_content=' Two n-mosaics M and M ′ are said to be of the same knot n-type, denoted by M n∼ M ′, if there exists an element of A(n) such that it transforms M into M ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
103
+ page_content=' Two n-mosaics M and M ′ are said to be of the same knot type if there exists a non-negative integer k such that ikM n+k ∼ ikM ′, where i : M(j) → M(j+1) is the mosaic injection by adding a row and a column consisting of only empty tiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
104
+ page_content=' In [11], Lomonaco and Kauffman conjectured that tame knot theory is equivalent to knot mosaic theory and in [9], Kuriya and Shehab proved the conjecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
105
+ page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
106
+ page_content=' Let K and K′ be two knot mosaics of two tame knots k and k′, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
107
+ page_content=' Then K and K′ are of the same knot mosaic type if and only if k and k′ are of the same knot type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
108
+ page_content=' Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
109
+ page_content=' The mosaic number of a knot (or a link) K, denoted by m(K), is the smallest integer n for which K can be represented by a n-mosaic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
110
+ page_content=' It is obvious that the mosaic number is an invariant for knots and links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
111
+ page_content=' For example, the mosaic number of 31 is 4 and it is easy to show this.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
112
+ page_content=' In the papers [13, 10], they calculated the mosaic number of knots up to 8 crossings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
113
+ page_content=' 5 3 Marked Graph Mosaics Let T(u) M denote the set of 2 Symbols, called mosaic (unoriented) tiles with markers, as follows : Note that the two tiles are the same up to rotation and have 4 connection points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
114
+ page_content=' For constructing an n-mosaic for marked graph diagrams, consider all tiles of T(u) ∪ T(u) M as elementary tiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
115
+ page_content=' Other definitions can be defined in a manner such as mosaic knots, for instance, connection points, contiguous, suitably connected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
116
+ page_content=' An (m, n)-mosaic is an m × n matrix M = (Mij) of tiles, with rows and columns indexed 0, 1, · · · , m − 1 where each (i, j)-entry Mij is an element of T(u) ∪ T(u) M .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
117
+ page_content=' The set of (m, n)- mosaics is denoted by M(m,n) M .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
118
+ page_content=' It m = n, then an (n, n)-mosaic is a n-mosaic and its set is denoted by M(n) M .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
119
+ page_content=' Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
120
+ page_content=' A marked graph (m, n)-mosaic is a (m, n)-mosaic in which all tiles are suitably connected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
121
+ page_content=' The set of all marked graph (m, n)-mosaic is the subset of M(m,n) M , denoted by K(m,n) M .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
122
+ page_content=' If m = n, then it is called a marked graph n-mosaic and its set is denoted by K(n) M .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
123
+ page_content=' Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
124
+ page_content=' The marked graph diagrams 01, 21 1 and 60,1 1 have the marked graph mosaics as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
125
+ page_content=' 21 1 01 61 0,1 For the equivalence for marked graph mosaics, there are planar isotopy moves and Yoshikawa moves by using mosaic tiles in T(u) ∪ T(u) M .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
126
+ page_content=' The mosaic moves for planar isotopy are the same P1, · · · , P11 with knot mosaic moves and 4 additional moves P ′ 8, P ′ 9, P ′ 10, P ′ 11 depicted as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
127
+ page_content=" P10' P11' P8' P9' 6 Yoshikawa moves Γ1, Γ2, Γ3 are the same with Reidemeister moves I, II, III." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
128
+ page_content=' The mosaic moves for Yoshikawa moves Γ4, · · · , Γ8 are as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
129
+ page_content=' A B B A A B B A A B B A A B B A All marked graph mosaic moves are permutations on the set M(n) M of n-mosaics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
130
+ page_content=' Indeed, they are also in the group of all permutations of the set K(n) M of marked graph n-mosaics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
131
+ page_content=' Definition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
132
+ page_content=' The ambient isotopy group A(n) M is the subgroup of the group of all permutations of the set K(n) M generated by all planar isotopy moves and all Yoshikawa moves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
133
+ page_content=' Two marked graph n-mosaics M and M ′ are said to be of the same marked graph n-type, denoted by M n∼ M ′, if there exists an element of A(n) M such that it transforms M into M ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
134
+ page_content=' Two marked graph n-mosaics M and M ′ are said to be of the same marked graph type if there exists a non-negative integer k such that ikM n+k ∼ ikM ′, where i : M(j) → M(j+1) is the mosaic injection by adding a row and a column consisting of only empty tiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
135
+ page_content=' Therefore, we can obtain the following result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
136
+ page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
137
+ page_content=' Let M and M ′ be two marked graph mosaics of two marked graphs K and K′, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
138
+ page_content=' Then M and M ′ are of the same marked graph mosaic type if and only if K and K′ are equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
139
+ page_content=' For oriented surface-links, consider original oriented mosaic tiles in T(o) (see in [11]) and add 4 oriented mosaic tiles with markers as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
140
+ page_content=' Then we can deal with oriented marked graph mosaics similar to oriented knot mosaics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
141
+ page_content=' 7 The definition of suitably connected when an orientation is given also considers only cases where the orien- tation is well matched.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
142
+ page_content=' Therefore, the oriented marked graph mosaics can also follow the same flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
143
+ page_content=' 4 Mosaic numbers The marked graph diagram 81 can reduce the size of its marked graph mosaic using mosaic moves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
144
+ page_content=' Definition 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
145
+ page_content=' The mosaic number of a marked graph diagram K, denoted by m(K), is the smallest integer n for which K can be represented by a marked graph n-mosaic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
146
+ page_content=' It is obvious that the smallest number of the mosaic size of a marked graph diagram is an invariant for surface-links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
147
+ page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
148
+ page_content=' The mosaic number of a marked graph diagram is an invariant for surface-links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
149
+ page_content=' It is obvious that the mosaic number of the standard sphere 01 is 2 and the mosaic numbers of both 21 1 and 2−1 1 are 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
150
+ page_content=' For finding the mosaic numbers, one can use twofold rule, introduced in [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
151
+ page_content=' For a given (m, n)-mosaic D, since there are exactly two ways to connect adjacent connection points in the boundary of D, one can obtain exactly two marked graph (m + 2, n + 2)-mosaics �D1 and �D2, where D is suitably connected except the connection point of its boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
152
+ page_content=' The entry tiles of D are called inner tiles of �D1 or �D2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
153
+ page_content=' It is obvious that a crossing and a marked vertex must be located in the position of inner tiles for the suitably connected condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
154
+ page_content=' or It is clear that if one of four inner corners has a crossing or a marked vertex and if one of two mosaics by the twofold rule makes a kink, then the crossing or the marked vertex can be removed by Γ1 or Γ6, Γ′ 6, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
155
+ page_content=" Γ'6 Γ1 Γ6 Theorem 5." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
156
+ page_content=' Let K be a marked graph K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
157
+ page_content=' If ch(K) ≥ 7, then m(K) ≥ 6 where ch(K) denotes the ch-index of K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
158
+ page_content=' 8 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
159
+ page_content=' Let K be a marked graph whose ch-index is greater than or equal to 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
160
+ page_content=' If ch(K) ≥ 10, then m(K) ≥ 6 because the number of inner tiles of a 5-mosaic diagram is 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
161
+ page_content=' Similarly, it is easy to check that m(K) ≥ 5 if ch(K) ≥ 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
162
+ page_content=' In the case that ch(K) = 8, we will show that m(K) ̸= 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
163
+ page_content=' Suppose that m(K) = 5, that is, there is a marked graph 5-mosaic diagram D of K such that the ch-index of D is 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
164
+ page_content=' Since the number of inner tiles of D is 9, there are 9 types for inner tiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
165
+ page_content=' All cases have at least 1 row in the boundary of inner tiles, whose all mosaic tiles are crossings or marked vertices, as follows up to rotation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
166
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
167
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
168
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
169
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
170
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
171
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
172
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
173
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
174
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
175
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
176
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
177
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
178
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
179
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
180
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
181
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
182
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
183
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
184
+ page_content=' or By applying the twofold rule, the resulting mosaics have always at least one kink.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
185
+ page_content=' Therefore, one can remove the corresponding crossing or marked vertex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
186
+ page_content=' It contradicts that the ch-index is 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
187
+ page_content=' Hence, m(K) ≥ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
188
+ page_content=' Similar that ch(K) = 7, suppose that m(K) = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
189
+ page_content=' Let D be a marked graph 5-mosaic diagram of K with ch-index 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
190
+ page_content=' Then there are 36 cases of its inner tiles and they have at least 1 row as depicted above except 2 cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
191
+ page_content=' By applying the same argument of the case of ch(K) = 8, 34 cases are contradictory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
192
+ page_content=' In the remaining 2 cases, both have exactly two corners with no crossings and no marked vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
193
+ page_content=' Then for each cases, there are 4 subcases as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
194
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
195
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
196
+ page_content=' By the twofold rule, for each subcase, there two marked graph mosaics;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
197
+ page_content=' one of them has always at least one kink.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
198
+ page_content=' Since we can reduce the ch-index of D, it contradicts that the ch-index is 7 and then m(K) ≥ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
199
+ page_content=' or or or or 9 The remaining diagrams of 4 subcase are the same shown as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
200
+ page_content=' It has exactly one component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
201
+ page_content=' It contradicts that the number of components of 70,−2 1 has two components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
202
+ page_content=' Hence, m(K) ≥ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
203
+ page_content=' The following diagrams are marked graph mosaics of surface-links with ch-index ≤ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
204
+ page_content=' The size of some mosaic diagrams are 6 as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
205
+ page_content=' By Theorem 5, we know that their mosaic numbers are exactly 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
206
+ page_content=' 101 1 101 0,0,1 101 1,1 101 0,1 102 0,1 91 91 0,1 101 103 91 1,-2 102 81 21 1 01 61 0,1 81 1,1 21 1 81 1,-1 71 0,-2 101 2,-2 101 1,-1 101 0,-2 102 0,-2 We conclude this section with a table of mosaic numbers for surface-links of small ch-index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
207
+ page_content=' 10 K m(K) 01 2 21 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
208
+ page_content=' 2−1 1 4 60,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
209
+ page_content='1 1 5,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
210
+ page_content=' 6 70,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
211
+ page_content='−2 1 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
212
+ page_content=' 81,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
213
+ page_content='1 1 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
214
+ page_content=' 8−1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
215
+ page_content='−1 1 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
216
+ page_content=' 100,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
217
+ page_content='1 2 6 81,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
218
+ page_content=' 91,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
219
+ page_content=' 90,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
220
+ page_content='1 1 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
221
+ page_content=' 91,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
222
+ page_content='−2 1 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
223
+ page_content=' 101,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
224
+ page_content=' 102,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
225
+ page_content=' 100,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
226
+ page_content='1 1 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
227
+ page_content=' 101,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
228
+ page_content='1 1 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
229
+ page_content=' 100,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
230
+ page_content='−2 2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
231
+ page_content=' 10−1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
232
+ page_content='−1 1 6,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
233
+ page_content=' 7 103,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
234
+ page_content=' 101 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
235
+ page_content=' 100,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
236
+ page_content='0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
237
+ page_content='1 1 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
238
+ page_content=' 100,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
239
+ page_content='−2 1 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
240
+ page_content=' 10−2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
241
+ page_content='−2 1 6,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
242
+ page_content=' 7,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
243
+ page_content=' 8 5 Kei-Colored Mosaic Diagrams Recall that a kei is a set X with a binary operation ∗ satisfying the axioms (i) For all x ∈ X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
244
+ page_content=' x ∗ x = x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
245
+ page_content=' (ii) For all x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
246
+ page_content=' y ∈ X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
247
+ page_content=' we have (x ∗ y) ∗ y = x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
248
+ page_content=' and (iii) For all x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
249
+ page_content=' y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
250
+ page_content=' z ∈ X we have (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
251
+ page_content=' A map f : X → X′ between kei is a kei homomorphism if it satisfies f(x ∗ y) = f(x) ∗ f(y) for all x, y ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
252
+ page_content=' Kei are also called involutory quandles;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
253
+ page_content=' see [3] for more.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
254
+ page_content=' Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
255
+ page_content=' Every group is a kei under the operation x ∗ y = yx−1y, called the core kei of the group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
256
+ page_content=' Every surface-link L (including classical knots and links, which can be regarded as trivial cobordisms) has a fundamental kei K(L) whose presentation can be read from a diagram of the surface-link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
257
+ page_content=' More precisely, the fundamental kei of a surface-link has generators corresponding to sheets, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
258
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
259
+ page_content=', connected components of a marked graph diagram representing L where we divide at classical undercrossings, together with relations at the crossings as shown (suggestively as mosaic tiles) The elements of the fundamental kei are then equivalence classes of kei words in these generators modulo the equivalence relation generated by the crossing relations and the kei axioms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
260
+ page_content=' The isomorphism class of the fundamental kei is a well-known invariant of unoriented surface-links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
261
+ page_content=' Given a finite kei X, an assignment of elements of X to the sheets of an oriented marked graph diagram (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
262
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
263
+ page_content=', segments ending at undercrossing points or marked vertices) is a kei coloring (also called an X-coloring) of the diagram if it satisfies the crossing condition pictured above at every crossing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
264
+ page_content=' An X-coloring of a diagram D of a surface-link L defines and is defined by a unique element of the set of kei homomorphisms Hom(K(L), X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
265
+ page_content=' This homset is an invariant of surface-links for every finite kei X, from which useful computable invariants can be extracted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
266
+ page_content=' The simplest example is the cardinality of the set, known as the kei counting invariant, denoted ΦZ X(L) = |Hom(K(L), X)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
267
+ page_content=' Generally speaking, any invariant of kei-colored diagrams (or equivalently, homset elements) yields an invariant known as an enhancement of the kei counting invariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
268
+ page_content=' Examples include the celebrated cocyle invariants studied in [1] and the more recent kei module invariants introduced in [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
269
+ page_content=' We will use mosaic diagrams to enhance the kei counting invariant in the following way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
270
+ page_content=' Let L be a surface-link with mosaic diagram D and let X be a finite kei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
271
+ page_content=' Assigning elements of X (called “kei colors”) 11 y h* C yto each of the arcs on the tiles in D such that the colors match at connection points and satisfy the kei coloring conditions at the crossings and marked vertices, we obtain an X-colored mosaic diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
272
+ page_content=' If we let f ∈ Hom(K(L), X) be the homset element represented by this coloring, we may denote the colored diagram by Df.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
273
+ page_content=' Definition 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
274
+ page_content=' Let L be a surface-link represented by a marked graph diagram D and let X be a finite kei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
275
+ page_content=' For each kei coloring f ∈ Hom(K(L), X) let us define the kei deficiency of Df as the difference between the cardinality of the image subkei of f and the number of kei colors appearing in Df.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
276
+ page_content=' Let φf be the minimal kei deficiency over the set of minimal mosaic number diagrams Df representing f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
277
+ page_content=' Then the multiset ΦMos,M X (L) = {φf | f ∈ Hom(K(L), X)} is the mosaic deficiency enhancement multiset of the kei homset invariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
278
+ page_content=' For ease of comparison we may also convert this to polynomial form by summing over the multiset terms of the form uφf to define the mosaic deficiency enhancement polynomial ΦMos X (L) = � f∈Hom(K(L),X) uφf .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
279
+ page_content=' Since there may be many distinct equivalent diagrams of L with minimal mosaic number, to get an invariant we take for each coloring the minimal kei deficiency over the (finite) set of all diagrams of L with minimal mosaic number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
280
+ page_content=' Then by construction, the multiset of φf-values forms an invariant of surface-links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
281
+ page_content=' From a given minimal-mosaic number diagram of L we can obtain an upper bound on each of the φf-values;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
282
+ page_content=' to compute the invariant in general requires finding the complete set of minimal-mosaic number diagrams of L, which can be computationally difficult.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
283
+ page_content=' Let us order the set of polynomials with nonnegative integer coefficients lexicographically by exponent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
284
+ page_content=' That is, to compare two polynomials we first compare their constant terms and in case of a tie, we use the linear term as a tiebreaker;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
285
+ page_content=' if the constant and linear terms are equal, we use the quadratic term as a tiebreaker etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
286
+ page_content=' Then finding a new diagram which reduces the deficiency moves a coloring representative from a higher exponent into a lower exponent, yielding a smaller lexicographical position;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
287
+ page_content=' hence it follows that any particular diagram yields an upper bound on the invariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
288
+ page_content=' To prove tightness of this bound, one can check exhaustively (which we have not done in the Example below) that all other mosaic diagrams with the same or lesser mosaic number of the link or surface-link in question have the same deficiencies for their colorings representing the nontrivial homset elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
289
+ page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
290
+ page_content=' We observe that we can similarly define deficiency enhancements using crossing number or ch-index in place of mosaic number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
291
+ page_content=' Generally speaking, on any diagram with nonzero deficiency we can perform Reidemeister II moves to reveal “missing” colors in the image subkei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
292
+ page_content=' Since these moves increase ch-index without changing the mosaic number, we expect that these should be different invariants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
293
+ page_content=' Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
294
+ page_content=' Consider the surface-knot 101 and the kei Core(Z5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
295
+ page_content=' Our python computations show that 101 has 25 colorings by the kei Core(Z5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
296
+ page_content=' These include five monochromatic colorings which have deficiency zero 12 and 20 nontrivial colorings, each of which is surjective with deficiency 1 on this diagram, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
297
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
298
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
299
+ page_content=' Then from this diagram we obtain an upper bound 5 + 20u on the kei deficiency polynomial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
300
+ page_content=' We end this section by defining another easy-to-define but difficult-to-compute invariant us surface-links using mosaics and kei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
301
+ page_content=' Definition 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
302
+ page_content=' Let L be a surface-link and X a finite kei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
303
+ page_content=' For each f ∈ Hom(K(L), X) and each positive integer n ≥ 2, let ρn f be the minimal kei deficiency value over all n-mosaic diagrams of L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
304
+ page_content=' Then the sequence {ρn f }∞ n=2 is the kei deficiency spectrum for f, and as before we have an invariant multiset of such spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
305
+ page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
306
+ page_content=' We note that since classical knots can be understood as surface-links with an empty set of marked vertices (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
307
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
308
+ page_content=', trivial cobordisms between two copies of the knot), the invariants defined in this section are also invariants of classical knots and links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
309
+ page_content=' 6 Questions There remains much to be done on the topic of mosaic surface-links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
310
+ page_content=' Finding efficient ways to prove tightness of bounds is of interest, as is extending the quantum knot constructions in [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
311
+ page_content=' Say a surface-link L is X-deficiency heterogeneous if it has at least two homset elements which require different minimal-mosaic number diagrams to realize their minimal X-deficiencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
312
+ page_content=' Is there any such surface- link?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
313
+ page_content=' For a given kei X, which is the smallest ch-index of any link which is X-deficiency heterogeneous?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
314
+ page_content=' For a fixed surface-link L, for which finite kei X, if any, is L X-deficiency heterogeneous?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
315
+ page_content=' A question raised by Seiichi Kamada at a talk on this topic while this paper was in preparation is whether the ordering of surface-links by ch-number agrees with that induced by mosaic number – e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
316
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
317
+ page_content=', does there exist a surface-link whose minimal ch-diagram has greater mosaic number than its minimal mosaic diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
318
+ page_content=' As mentioned in Remark 1, since there are moves which change the ch-index without changing the mosaic number, it is not clear what is the relationship between these two notations of complexity of surface-links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
319
+ page_content=' References [1] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
320
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
321
+ page_content=' Carter, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
322
+ page_content=' Jelsovsky, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
323
+ page_content=' Kamada, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
324
+ page_content=' Langford, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
325
+ page_content=' Saito.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
326
+ page_content=' State-sum invariants of knotted curves and surfaces from quandle cohomology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
327
+ page_content=' Electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
328
+ page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
329
+ page_content=' Announc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
330
+ page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
331
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
332
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
333
+ page_content=', 5:146–156 (electronic), 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
334
+ page_content=' 13 4 5 2 101 4 5[2] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
335
+ page_content=' Carter, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
336
+ page_content=' Kamada, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
337
+ page_content=' Saito.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
338
+ page_content=' Surfaces in 4-space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
339
+ page_content=' Encyclopaedia of Mathematical Sciences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
340
+ page_content=' Springer-Verlag, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
341
+ page_content=' [3] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
342
+ page_content=' Elhamdadi and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
343
+ page_content=' Nelson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
344
+ page_content=' Quandles—an introduction to the algebra of knots, volume 74 of Student Mathematical Library.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
345
+ page_content=' American Mathematical Society, Providence, RI, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
346
+ page_content=' [4] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
347
+ page_content=' Joung and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
348
+ page_content=' Nelson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
349
+ page_content=' Biquandle module invariants of oriented surface-links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
350
+ page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
351
+ page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
352
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
353
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
354
+ page_content=', 148(7):3135–3148, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
355
+ page_content=' [5] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
356
+ page_content=' Kamada.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
357
+ page_content=' Braid and knot theory in dimension four.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
358
+ page_content=' Mathematical Surveys and Monographs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
359
+ page_content=' American Mathematical Society, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
360
+ page_content=' [6] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
361
+ page_content=' Kamada.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
362
+ page_content=' Surface-knots in 4-space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
363
+ page_content=' Springer Monographs in Mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
364
+ page_content=' Springer, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
365
+ page_content=' An introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
366
+ page_content=' [7] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
367
+ page_content=' Kawauchi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
368
+ page_content=' Shibuya, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
369
+ page_content=' Suzuki.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
370
+ page_content=' Descriptions on surfaces in four-space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
371
+ page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
372
+ page_content=' normal forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
373
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
374
+ page_content=' Sem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
375
+ page_content=' Notes Kobe Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
376
+ page_content=', 10:75–125, 1982.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
377
+ page_content=' [8] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
378
+ page_content=' Kearton and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
379
+ page_content=' Kurlin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
380
+ page_content=' All 2-dimensional links in 4-space live inside a universal 3-dimensional polyhedron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
381
+ page_content=' Algebr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
382
+ page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
383
+ page_content=' Topol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
384
+ page_content=', 8:1223–1247, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
385
+ page_content=' [9] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
386
+ page_content=' Kuriya and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
387
+ page_content=' Shehab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
388
+ page_content=' The lomonaco-kauffman conjecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
389
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
390
+ page_content=' Knot Theory Ramifications, 23:1450003, 20 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
391
+ page_content=', 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
392
+ page_content=' [10] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
393
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
394
+ page_content=' Lee, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
395
+ page_content=' Ludwig, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
396
+ page_content=' Paat, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
397
+ page_content=' Peiffer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
398
+ page_content=' Knot mosaic tabulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
399
+ page_content=' Involve, 11:13–26, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
400
+ page_content=' [11] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
401
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
402
+ page_content=' Lomonaco and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
403
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
404
+ page_content=' Kauffman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
405
+ page_content=' Quantum knots and mosaics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
406
+ page_content=' In Quantum information science and its contributions to mathematics, pages 177–208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
407
+ page_content=' American Mathematical Society, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
408
+ page_content=' [12] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
409
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
410
+ page_content=' Lomonaco, Jr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
411
+ page_content=' The homotopy groups of knots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
412
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
413
+ page_content=' How to compute the algebraic 2-type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
414
+ page_content=' Pacific J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
415
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
416
+ page_content=', 95(2):349–390, 1981.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
417
+ page_content=' [13] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
418
+ page_content=' Oh, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
419
+ page_content=' Hong, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
420
+ page_content=' Lee, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
421
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
422
+ page_content=' Lee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
423
+ page_content=' Quantum knots and the number of knot mosaics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
424
+ page_content=' Quantum Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
425
+ page_content=' Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
426
+ page_content=', 14:801–811, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
427
+ page_content=' [14] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
428
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
429
+ page_content=' Swenton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
430
+ page_content=' On a calculus for 2-knots and surfaces in 4-space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
431
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
432
+ page_content=' Knot Theory Ramifications, 10:1133–1141, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
433
+ page_content=' [15] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
434
+ page_content=' Yoshikawa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
435
+ page_content=' An enumeration of surfaces in four-space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
436
+ page_content=' Osaka J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
437
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
438
+ page_content=', 31:497–522, 1994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
439
+ page_content=' Nonlinear Dynamics and Mathematical Application Center Kyungpook National University Daegu, 41566, Republic of Korea Department of Mathematical Sciences Claremont McKenna College 850 Columbia Ave.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
440
+ page_content=' Claremont, CA 91711 USA 14' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf'}
6tAyT4oBgHgl3EQfpvgE/content/tmp_files/2301.00529v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
6tAyT4oBgHgl3EQfpvgE/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
7dE4T4oBgHgl3EQf2Q2c/content/tmp_files/2301.05297v1.pdf.txt ADDED
@@ -0,0 +1,1046 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Towards Dependable Autonomous Systems
2
+ Based on Bayesian Deep Learning Components
3
+ Fabio Arnez∗, Huascar Espinoza†, Ansgar Radermacher∗ and Franc¸ois Terrier∗
4
+ ∗Universit´e Paris-Saclay, CEA, List, F-91120, Palaiseau, France
5
+ {name.lastname}@cea.fr
6
+ †KDT JU, TO 56 05/16, B-1049 Brussels, Belgium
7
8
+ Abstract—As
9
+ autonomous
10
+ systems
11
+ increasingly
12
+ rely
13
+ on
14
+ Deep Neural Networks (DNN) to implement the navigation
15
+ pipeline functions, uncertainty estimation methods have be-
16
+ come paramount for estimating confidence in DNN predictions.
17
+ Bayesian Deep Learning (BDL) offers a principled approach to
18
+ model uncertainties in DNNs. However, in DNN-based systems,
19
+ not all the components use uncertainty estimation methods
20
+ and typically ignore the uncertainty propagation between them.
21
+ This paper provides a method that considers the uncertainty
22
+ and the interaction between BDL components to capture the
23
+ overall system uncertainty. We study the effect of uncertainty
24
+ propagation in a BDL-based system for autonomous aerial
25
+ navigation. Experiments show that our approach allows us to
26
+ capture useful uncertainty estimates while slightly improving the
27
+ system’s performance in its final task. In addition, we discuss the
28
+ benefits, challenges, and implications of adopting BDL to build
29
+ dependable autonomous systems.
30
+ Index Terms—Bayesian Deep Learning, Uncertainty Propaga-
31
+ tion, Unmanned Aerial Vehicle, Navigation, Dynamic Depend-
32
+ ability
33
+ I. INTRODUCTION
34
+ Navigation in complex environments still represents a big
35
+ challenge for autonomous systems (AS). Particular instances
36
+ of this problem are autonomous driving and autonomous aerial
37
+ navigation in the context of self-driving cars and Unmanned
38
+ Aerial Vehicles (UAVs), respectively. In both cases, the naviga-
39
+ tion task is addressed by first acquiring rich and complex raw
40
+ sensory information (e.g., from camera, radar, LiDAR, etc.),
41
+ which is then processed to drive the autonomous agent towards
42
+ its goal. Usually, this process is done in sequence, where tasks
43
+ and specific software components are linked together in the so-
44
+ called perception-planning-control software pipeline [1], [2].
45
+ Over the last decade, Deep Neural Networks (DNNs) have
46
+ become a popular choice to implement navigation pipeline
47
+ components thanks to their effectiveness in processing com-
48
+ plex sensory inputs, and their powerful representation learning
49
+ that surpasses the performance of traditional methods. Cur-
50
+ rently, three main paradigms exist to develop and train navi-
51
+ gation components based on DNNs: Modular (isolated), End-
52
+ to-End (E2E) learning, and mixed or hybrid approaches [2].
53
+ Preprint version. Accepted and presented at the 18th European Depend-
54
+ able Computing Conference (EDCC), Zaragoza, Spain, 2022. Digital Object
55
+ Identifier (DOI) is available in the preprint description.
56
+ Fig. 1. UAV BDL-based Aerial Navigation Pipeline: The downstream control
57
+ component gets predictions of the previous perception component as input and
58
+ must take their uncertainty into account.
59
+ Despite the remarkable progress in representation learning,
60
+ DNNs should also represent the confidence in their predictions
61
+ to deploy them in safety-critical systems. McAllister et al. [2]
62
+ proposed using Bayesian Deep Learning (BDL) to implement
63
+ the components from navigation pipelines or stacks. Bayesian
64
+ methods offer a principled framework to model and capture
65
+ system uncertainty. However, if the Bayesian approach is
66
+ followed, all the components in the system pipeline should
67
+ use BDL to enable uncertainty propagation in the pipeline.
68
+ Hence, BDL components should admit uncertainty information
69
+ as an input to account for the uncertainty from the outputs of
70
+ preceding BDL components (See Fig. 1).
71
+ In recent years, a large body of literature has employed
72
+ uncertainty estimation methods in robotic tasks thanks to
73
+ its potential to improve the safety of automated functions
74
+ [3], and the capacity to increase the task performance [4],
75
+ [5]. However, uncertainty is captured partially in navigation
76
+ pipelines that utilize DNNs. BDL methods are used mainly in
77
+ perception tasks, and downstream components (e.g., planning
78
+ and control) usually ignore the uncertainty from the preceding
79
+ components or do not capture uncertainty in their predictions.
80
+ Although some works propagate downstream perceptual
81
+ uncertainty from intermediate representations [6]–[8], the
82
+ overall system output does not take into account all the
83
+ uncertainty sources from DNN components in the pipeline.
84
+ Moreover, proposed frameworks for dynamic dependability
85
+ management that use uncertainty information focus only on
86
+ DNN-based perception tasks [9], [10], ignoring uncertainty
87
+ propagation through the system pipeline, the interactions be-
88
+ arXiv:2301.05297v1 [cs.RO] 12 Jan 2023
89
+
90
+ Perception
91
+ Controltween uncertainty-aware components, and the potential impact
92
+ on system performance and safety.
93
+ Quantifying uncertainty in a BDL-based system (i.e., a
94
+ pipeline of BDL components) still remains a challenging task.
95
+ Uncertainties from BDL components must be assembled in
96
+ a principled way to provide a reliable measure of overall
97
+ system uncertainty, based on which safe decisions can be
98
+ made [2], [11]. In this paper, we propose to capture the
99
+ uncertainty along a pipeline of BDL components and study
100
+ the impact of uncertainty propagation on the aerial navigation
101
+ task in a UAV. In addition, we propose an uncertainty-centric
102
+ dynamic dependability management framework to cope with
103
+ the challenges that arise from propagating uncertainty through
104
+ BDL-based systems.
105
+ II. RELATED WORK
106
+ A. Neural Network Uncertainty Estimation
107
+ Bayesian neural networks (BNN) have been widely used
108
+ to represent the confidence in the predictions. A proper con-
109
+ fidence representation in DNN predictions can be achieved
110
+ by modeling two sources of uncertainty: aleatoric (data)
111
+ and epistemic (model) uncertainty. For epistemic uncertainty,
112
+ Bayesian inference is used to estimate the posterior predic-
113
+ tive distribution. In practice, approximate Bayesian inference
114
+ methods are often used [12]–[15] since the posterior on the
115
+ model parameters p(θ | D) is intractable in DNNs.
116
+ To model data uncertainty, [14], [16] propose to incorporate
117
+ additional outputs to represent the parameters (mean and vari-
118
+ ance) of a Gaussian distribution. Loquercio et al. [17] forward
119
+ propagate sensor noise through the DNN. This approach does
120
+ not require retraining, however, it assumes a fixed uncertainty
121
+ value for the sensor noise at the input. Another family of
122
+ methods aim to capture complex stochastic patterns such
123
+ as multimodality or heteroscedasticity (aleatoric uncertainty)
124
+ using latent variables (LV) as input. When BNNs are used with
125
+ LV (BNN+LV), both types of uncertainty can be captured [18],
126
+ [19]. In this approach, a BNN receives an input combined with
127
+ a random disturbance coming from an LV (i.e., features are
128
+ partially stochastic). In contrast, this paper considers that a
129
+ BNN can receive a complete stochastic features at the input.
130
+ B. Uncertainty in DNN-Based Navigation
131
+ In an autonomous driving context, perception uncertainty is
132
+ captured from implicit [8] and explicit representations [7] and
133
+ used downstream for scene motion forecasting and trajectory
134
+ planning respectively. In reinforcement learning, input uncer-
135
+ tainty has been employed for model-based [20] and model-free
136
+ control policies [21]. In the former case, a collision predictor
137
+ uncertainty is passed to a model predictive controller. In the
138
+ latter, perception uncertainty is mapped to the control policy
139
+ uncertainty using heuristics. In the context of aerial navigation,
140
+ a few works have considered uncertainty. [17] uses a fixed
141
+ uncertainty value for sensors as an input to a control policy.
142
+ [6] extends the work from [22] to use the uncertainty from
143
+ perception noisy representations downstream in a BNN control
144
+ policy. Although these approaches use perception uncertainty
145
+ in downstream components, not all the DNN components in
146
+ the pipeline employ uncertainty estimation methods.
147
+ C. Uncertainty-based Dependability Frameworks
148
+ For the deployment of dependable autonomous systems that
149
+ use machine learning (ML) components, Trapp et al. [23] and
150
+ Henne et al. [9] conceptualized the use and runtime monitoring
151
+ of perception uncertainty to ensure safe behavior on AS. To
152
+ model system behavior, probabilistic graphical models (PGMs)
153
+ and, in particular, Bayesian Networks (BNs) have been used in
154
+ dependability research for safety and reliability analyses and
155
+ risk assessment applications [24]. BNs allow incorporating ex-
156
+ pert domain knowledge, model complex relationships between
157
+ components, and enable decision-making under uncertainty.
158
+ In the context of autonomous aviation systems, [10] proposes
159
+ a method for quantifying system assurance using perception
160
+ component uncertainty and dynamic BNs. For autonomous
161
+ vehicles, [25] offers a framework for dynamic risk assessment,
162
+ using BNs to predict the behavior intents of other traffic par-
163
+ ticipants. Unlike these works, this paper considers uncertainty
164
+ from Bayesian deep learning components beyond perception.
165
+ III. SYSTEM TASK FORMULATION
166
+ In this paper, we address the problem of autonomous aerial
167
+ navigation. The goal of the autonomous agent (i.e., UAV) is
168
+ to navigate through a set of gates with unknown locations
169
+ disposed in a circular track. Following prior work from [6],
170
+ [22], the navigation architecture consists of two DNN-based
171
+ components: one for perception and the other for control
172
+ (see Fig. 2). Both DNNs are trained following the hybrid
173
+ paradigm. To achieve the agent goal, the navigation task is
174
+ formulated as a sequential-decision making problem, where
175
+ a sequence of control actions are produced given environ-
176
+ ment observations. In this regard, the simulation environment
177
+ provides at each time step an observation comprised of an
178
+ RGB image x acquired from a front-facing camera on the
179
+ UAV. The perception component defines an encoder function
180
+ qφ : X → Z that maps the input image x to a rich low
181
+ dimensional representation z ��� R10. Next, a control policy
182
+ πw : Z → Y maps the compact representation z to control
183
+ commands y = [ ˙x, ˙y, ˙z, ˙ψ] ∈ R4, corresponding to linear and
184
+ angular (yaw) velocities in the UAV body frame.
185
+ In the perception component, a cross-modal variational
186
+ autoencoder (CMVAE) [22], [26] is used to learn a rich and
187
+ robust compact representation. A CMVAE is a variant of the
188
+ traditional variational autoencoder (VAE) [27] that learns a
189
+ single latent representation for multiple data modalities. In
190
+ this case, the perception dataset Dp has two data modalities:
191
+ the RGB images and the pose of the gate relative to the UAV
192
+ body-frame. During training, the CMVAE encoder qφ maps an
193
+ input image x to a noisy representation with mean µφ(x) and
194
+ variance σ2
195
+ φ(x) in the latent space, from where latent vectors
196
+ z are sampled, z ∼ N(µφ, σ2
197
+ φ). Next, a latent vector z is used
198
+ to reconstruct the input image and estimate the gate pose (i.e.,
199
+ recover the two data modalities) using two DNNs, a decoder
200
+ and a feed-forward network. The CMVAE encoder qφ is based
201
+
202
+ Fig. 2. System architecture for aerial navigation
203
+ on the Dronet architecture [28], and additional constraints
204
+ on the latent space are imposed through the loss function to
205
+ promote the learning of robust disentangled representations.
206
+ Once the perception component is trained, the downstream
207
+ control task (control policy π) uses a feed-forward network to
208
+ operate on the latent vectors z at the output of the CMVAE
209
+ encoder qφ to predict UAV velocities. To this end, the control
210
+ policy network is added at the output of the perception
211
+ encoder qφ, forming the navigation pipeline DNN. The control
212
+ component π uses a control imitation learning dataset (Dc).
213
+ During training, we freeze the perception encoder qφ to update
214
+ only the control policy network. For more information about
215
+ the general architecture for aerial navigation, datasets, and
216
+ training procedures, we refer the reader to [6], [22].
217
+ IV. METHODOLOGY
218
+ A. Uncertainty from Perception Representations
219
+ Although the CMVAE encoder qφ employs Bayesian in-
220
+ ference to obtain latent vectors z, CMVAE does not capture
221
+ epistemic uncertainty since the encoder lacks a distribution
222
+ over parameters φ. To capture uncertainty in the perception
223
+ encoder we follow prior work from [29], [30] that attempts to
224
+ capture epistemic uncertainty in VAEs. We adapt the CMVAE
225
+ to capture the posterior qΦ(z | x, Dp) as shown in (1).
226
+ qΦ(z | x, Dp) =
227
+
228
+ q(z | x, φ)p(φ | Dp)dφ
229
+ (1)
230
+ To approximate (1), we take a set Φ = {φm}M
231
+ m of encoder
232
+ parameters samples φm ∼ p(φ | Dp), to obtain a set of
233
+ latent samples {zm}M
234
+ m=1 ∼ qΦ(z | x, Dp) at the output
235
+ of the encoder. In practice, we modify CMVAE by adding
236
+ a dropout layer in the encoder. Then, we use Monte Carlo
237
+ Dropout (MCD) [12] to approximate the posterior on the
238
+ encoder weights p(φ | Dp). Finally, for a given input image x
239
+ we perform M stochastic forward passes (with dropout “turned
240
+ on”) to compute a set of M latent vector samples z at runtime.
241
+ B. Input Uncertainty for Control
242
+ In BDL, downstream uncertainty propagation assumes that
243
+ a neural network component is able to handle or admit uncer-
244
+ tainty at the input. In our navigation case, this implies that the
245
+ DNN-based controller is able to handle the uncertainty coming
246
+ from the perception encoder qΦ. To capture the navigation
247
+ model uncertainty (overall system uncertainty at the output
248
+ of the controller), we use the Bayesian approach to compute
249
+ the posterior predictive distribution for target variable y∗
250
+ associated with a new input image x∗, as shown in (2).
251
+ p(y∗ | x∗, Dc, Dp) =
252
+ ��
253
+ π(y | z, w)p(w | Dc)qΦ(z | x∗, Dp)dwdz
254
+ (2)
255
+ The integrals from (2) are intractable, and we rely on
256
+ approximations to obtain an estimation of the predictive dis-
257
+ tribution. The posterior p(w | Dc) is difficult to evaluate,
258
+ thus we can approximate the inner integral using an ensemble
259
+ of neural networks [15]. In practice, we train an ensemble
260
+ of N probabilistic control policies {πn(y | z, wn)}N
261
+ n=1,
262
+ with weights {wn}N
263
+ n=1 ∼ p(w|D). Each control policy πn
264
+ in the ensemble predicts the mean µ and variance σ2 for
265
+ each velocity command, i.e., yµ
266
+ =
267
+ [µ ˙x, µ ˙y, µ ˙z, µ ˙ψ] and
268
+ yσ2 = [σ2
269
+ ˙x, σ2
270
+ ˙y, σ2
271
+ ˙z, σ2
272
+ ˙ψ]. For training the control policy we
273
+ use imitation learning and the heteroscedastic loss function,
274
+ as suggested by [14], [16].
275
+ The outer integral is approximated by taking a set of
276
+ samples from the perception component latent space. In
277
+ [6] latent samples are drawn using the encoder mean and
278
+ variance z ∼ N(µφ, σ2
279
+ φ). For the sake of simplicity, we
280
+ directly use the samples obtained in the perception component
281
+ {zm}M
282
+ m ∼ qΦ(z | x, Dp) to take into account the epistemic
283
+ uncertainty from the previous stage. Finally, the predictions
284
+ that we get from passing each latent vector z through each
285
+ ensemble member are used to estimate the posterior predictive
286
+ distribution in (2). From the control policy perspective, using
287
+ multiple latent samples z can be seen as taking a better
288
+ “picture” of the latent space (perception representation) to
289
+ gather more information about the environment.
290
+ V. EXPERIMENTS & DISCUSSION
291
+ For our experiments, we seek to study the impact of
292
+ uncertainty propagation in the navigation pipeline. In par-
293
+ ticular, we seek to answer the following research questions:
294
+ RQ1. How does uncertainty from perception representations
295
+ affect downstream component uncertainty estimation quality?
296
+ RQ2. Can uncertainty propagation improve system perfor-
297
+ mance? RQ3. Could uncertainty-aware components in the
298
+ pipeline help detect challenging scenes that can threaten the
299
+ system mission? To answer these questions we perform a
300
+ quantitative and qualitative comparison between uncertainty-
301
+ aware aerial navigation models.
302
+ A. Experimental setup
303
+ 1) Navigation Model Baselines: All the navigation archi-
304
+ tectures are based on [22] and are implemented using PyTorch.
305
+ Table I shows the uncertainty-aware navigation architectures
306
+ used in our experiments, detailing the type of perception
307
+ component, the number of latent variable samples (LVS), the
308
+ type of control policy, and the number of control prediction
309
+
310
+ TrainingOnly
311
+ Ensemble
312
+ Probabilistic NeuralNetworks
313
+ 2
314
+ CMVAE
315
+ Yμl
316
+ 2
317
+ 元1
318
+ Yol
319
+ Z1
320
+ Yμ3
321
+ Z2
322
+ :
323
+ 元3
324
+ Yo3
325
+ p(y* I x*, Dc, Dp)
326
+ 2
327
+ Yμ5
328
+ Yo5
329
+ 元5
330
+ q(z / x, Dp)
331
+ [Tn(y I z, Wn))N
332
+ Perception
333
+ ControlTABLE I
334
+ UNCERTAINTY-AWARE NAVIGATION MODELS IN THE EXPERIMENTS
335
+ Model
336
+ Perception (qφ)
337
+ LVS
338
+ Control Policy (π)
339
+ CPS
340
+ M0
341
+ MCD-CMVAE
342
+ 32
343
+ Ensemble (N = 5) Prob.
344
+ 160
345
+ M1
346
+ CMVAE
347
+ 32
348
+ Ensemble (N = 5) Prob.
349
+ 160
350
+ M2
351
+ CMVAE
352
+ 1
353
+ Ensemble (N = 5) Prob.
354
+ 5
355
+ M3
356
+ CMVAE
357
+ 32
358
+ Deterministic
359
+ 32
360
+ M4
361
+ CMVAE
362
+ 1
363
+ Prob.
364
+ 1
365
+ samples (CPS) at the output of the system. For instance, M0
366
+ represents our Bayesian navigation pipeline. M0 perception
367
+ component captures epistemic uncertainty using MCD with
368
+ 32 forward passes for each input to get 32 latent variable pre-
369
+ dictions. For the sake of simplicity, perception predictions are
370
+ directly used as latent variable samples in downstream control.
371
+ The control component uses an ensemble of 5 probabilistic
372
+ control policies obtaining 160 control prediction samples. M1
373
+ to M4 partially capture uncertainty in the pipeline since
374
+ they use a deterministic perception component (CMVAE). For
375
+ the control component, M1 and M2 take 32 and 1 latent
376
+ variable samples (LVS) respectively, and use the samples later
377
+ with an ensemble of 5 probabilistic control policies capturing
378
+ epistemic and aleatoric uncertainty; M3 uses 32 LVS, and
379
+ the control component is completely deterministic; M4 uses
380
+ 1 LVS with a probabilistic control policy to capture aleatoric
381
+ uncertainty. For UAV control, we use the expected value of
382
+ the predicted velocities means at the output of the control
383
+ component [14], i.e., ˆyµ = E([µ ˙x, µ ˙y, µ ˙z, µ ˙ψ]).
384
+ 2) Datasets: We use two independent datasets for each
385
+ component in the navigation pipeline. The perception CMVAE
386
+ uses a dataset (Dp) of 300k images where a gate is visible and
387
+ gate-pose annotations area available. The control component
388
+ uses a dataset (Dc) of 17k images with UAV velocity anno-
389
+ tations. Dc is collected by flying the UAV in a circular track
390
+ with gates, using traditional methods for trajectory planning
391
+ and control (see [22] for more details). The perception dataset
392
+ is divided into 80% for training, and the remaining 20% for
393
+ validation and testing. The control dataset uses a split of 90%
394
+ for training and the remaining for validation and testing. In
395
+ both cases the image size is 64x64 pixels. In addition, using the
396
+ validation data from Dp and Dc, we generate refined validation
397
+ sub-datasets with images that have: exactly one visible gate
398
+ (ideal situation), no visible gate in front, and multiple gates
399
+ visible. The last two types of images represent situations that
400
+ can pose a risk to the system task. Each sub-dataset contains
401
+ 200 images.
402
+ B. Experiments
403
+ In the context of RQ2, we use the validation dataset from the
404
+ control component to measure the regression Expected Cali-
405
+ bration Error (ECE) [31] to compare the quality of uncertainty
406
+ estimates from navigation models at the output of the system,
407
+ (i.e., the control component output).
408
+ In order to answer RQ2, we evaluate our navigation archi-
409
+ tecture under controlled simulations using the AirSim simu-
410
+ (a) Circular track view without noise (left) and with noise (right).
411
+ (b) UAV mission scenes
412
+ Fig. 3. UAV Mission: Navigation tracks and scenes from birds-eye view, and
413
+ view from UAV perspective
414
+ lation environment. The UAV mission resembles the scenario
415
+ and the conditions observed in the training dataset. Therefore,
416
+ we use a circular track with eight equally spaced gates posi-
417
+ tioned initially in a radius of 8m and constant height. To assess
418
+ the system performance to perturbations in the environment,
419
+ we generate new tracks adding random noise to each gate
420
+ radius and height.
421
+ In the context of the AirSim [32] simulation environment, a
422
+ track is entirely defined by a set of gates, their poses in three-
423
+ dimensional space, and the expected navigation direction of
424
+ the agent. For perception-based navigation, the complexity of
425
+ a track resides in the “gate-visibility” difficulty [33], [34], i.e.,
426
+ how well the camera Field-of-View (FoV) captures the gate. A
427
+ natural way to increase track complexity is by adding a random
428
+ displacement to the position of each gate. A track without
429
+ random displacement in the gates has a circular fashion. Gate
430
+ position randomness alters the shape of the track, affecting the
431
+ gate visibility, i.e., gates are: not visible, partially visible, or
432
+ multiple gates can be captured in the UAV FoV as presented
433
+ in Fig. 3. The images from these scenarios are challenging
434
+ given its potential impact on system performance.
435
+ To measure the system performance we take the average
436
+ number of gates passed in all generated tracks. For track
437
+ generation we use a random seed to produce circular tracks
438
+ with two levels of noise in the gates offset, i.e., each random
439
+ seed generates two (reproducible) noisy tracks. In total, we use
440
+ 6 random seeds to produce 12 tracks, 6 tracks per noise level.
441
+ The two noise levels are a combination of Gate Radius Noise
442
+ (GRN) and Gate Height Noise (GHN). Finally, all navigation
443
+ models are tested in the same generated tracks for a fair
444
+ comparison, and each model has 3 trials per track.
445
+ To address RQ3, we perform a qualitative comparison of
446
+ the component predicted densities using scenes (images) from
447
+ challenging situations during the UAV mission. To this end,
448
+ we first use the images from the generated sub-datasets. Next,
449
+ we use the scenes from Fig. 3b as an input to the Bayesian
450
+ navigation model M0 to analyze the effect uncertainty prop-
451
+ agation under specific situations.
452
+
453
+ 口口
454
+
455
+
456
+ 口TABLE II
457
+ UNCERTAINTY-AWARE NAVIGATION MODELS:
458
+ ECE & AVG. NUMBER OF GATES PASSED
459
+ Model
460
+ ECE (↓)
461
+ Performance with Track Gate Noise (↑)
462
+ GRN ∼ U[−1.0, 1.0)
463
+ GHN ∼ U[0, 2.0)
464
+ GRN ∼ U[−1.5, 1.5)
465
+ GHN ∼ U[0, 3.0)
466
+ M0
467
+ 0.00700
468
+ 19.77
469
+ 9.22
470
+ M1
471
+ 0.00129
472
+ 17.67
473
+ 6.0
474
+ M2
475
+ 0.00136
476
+ 17.33
477
+ 4.0
478
+ M3
479
+ 0.05709
480
+ 8.33
481
+ 5.0
482
+ M4
483
+ 0.00050
484
+ 15.16
485
+ 4.38
486
+ C. Results
487
+ Table II summarizes the ECE for all the navigation models
488
+ using the validation dataset from the control component. M4
489
+ has the best uncertainty quality since the model learned to
490
+ predict the noise from the data using the heteroscedastic
491
+ loss function. On the contrary, M2 has the worst calibration
492
+ results caused by the deterministic control choice and its
493
+ inability to learn the data uncertainty. M1 and M2 have
494
+ similar values since both receive the one noisy encoding from
495
+ perception. However, M1 takes multiple samples from the
496
+ noisy perception encoding which causes a reduction of the
497
+ ECE value. Finally, M0 shows a higher ECE value compared
498
+ to the previous models. This is caused by applying MCD in
499
+ the perception CMVAE and the dispersion of the latent codes
500
+ at the output of the perception encoder qΦ. The uncertainty
501
+ quality of the downstream control is slightly affected because
502
+ the control component did not see the same perception encod-
503
+ ing dispersion (uncertainty) during training.
504
+ For RQ2, Table II presents the navigation performance
505
+ results for all the navigation models. In general, learning to
506
+ predict uncertainty in the control component can boost the
507
+ performance significantly. However, for M3, sampling from a
508
+ noisy perception representation adds sufficient diversity to the
509
+ downstream control predictions, resulting in better decisions
510
+ than M2 in tracks with higher noise levels. In M4, the good
511
+ performance suggests that the track noise observed at test time
512
+ (lower noise level), resembles the data noise observed during
513
+ the training of the single probabilistic model.
514
+ In case of M0, the diversity from perception prediction
515
+ samples improves the performance. Interestingly, the perfor-
516
+ mance difference with other models is not significant. This
517
+ situation can make us wonder if an uncertainty estimation is
518
+ needed along the whole pipeline. Nonetheless, we believe that
519
+ performance similarity is rooted in how we use our model
520
+ predictions and uncertainties. The control output is computed
521
+ by taking the mean and variance of the policy ensemble
522
+ mixture, and only the mean values are passed to the UAV
523
+ control. However, the multimodal predictions in Fig. 5 show
524
+ that admitting perception uncertainty (samples) at the input of
525
+ the control component permits the representation of ambiguity
526
+ in the predictions. Hence, a proper use of predictions and
527
+ associated uncertainties is needed. For example, in a bi-modal
528
+ predictive distribution at the output, we can use the modes
529
+ (a) Visible gate sub-dataset
530
+ (b) No visible gate sub-dataset
531
+ (c) Multiple gates visible sub-dataset
532
+ Fig. 4. Navigation model standard deviation (ˆσ) prediction comparison
533
+ (i.e., distribution peaks) instead of the expected value to avoid
534
+ sub-optimal control decisions (e.g., near distribution valleys).
535
+ In the context of RQ3, Fig. 4 shows the estimated uncer-
536
+ tainty densities (ˆσ) for each velocity command at the output
537
+ of the system, using the images from the generated datasets.
538
+ In this case, M0 allows higher uncertainty estimates while
539
+ reducing the dispersion in the sub-datasets from each situation.
540
+ Fig. 5 shows M0 predictions at the output of the perception
541
+ (z) and control (ˆµ, ˆσ) components. Predictions are made using
542
+ the three sample images from Fig. 3b, using the LVS and CPS
543
+ to estimate the densities.
544
+ M0 perception and control outputs show high uncertainty
545
+ (dispersion) values when a gate is not visible (mid-right). The
546
+ ˆµ ˙y density suggests that the UAV control predictions will
547
+ follow the training dataset (Dc) bias, rotating clockwise and
548
+ moving to the right when no gate is in-front. Interestingly,
549
+ the predicted densities in the bottom plots show that M0 is
550
+ able to represent the ambiguity in the input, i.e. sample image
551
+
552
+ DoubleorMultipleVisibleGatesSubdataset:PredictedStandardDeviationDensities
553
+ 1.2
554
+ Navigation Model
555
+ Velocity (m/s) or (deg/s)
556
+ Mo
557
+ 1.0
558
+ Mi
559
+ M2
560
+ 0.8
561
+ 0.2
562
+ 0.0
563
+ ox
564
+ ModelPredictionVisibleGate Subdataset:Predicted Standard DeviationDensities
565
+ 1.2
566
+ Navigation Model
567
+ Mo
568
+ 1.0
569
+ Mi
570
+ M2
571
+ 0.8
572
+ 0.2
573
+ 0.0
574
+ ox
575
+ Mode/PredictionNoVisibleGate Subdataset:Predicted Standard DeviationDensities
576
+ 1.2
577
+ Navigation Model
578
+ Velocity (m/s) or (deg/s)
579
+ Mo
580
+ 1.0
581
+ M1
582
+ M2
583
+ 0.8
584
+ 0.6
585
+ 0.4
586
+ 0.2
587
+ 0.0
588
+ x
589
+ ModelPrediction(a) Single gate prediction densities
590
+ (b) No visible gate prediction densities
591
+ (c) Double gate prediction densities
592
+ Fig. 5. Bayesian navigation model M0: Perception qΦ predictions z density (left); Predicted velocity ˆµ density (mid); Predicted velocity ˆσ (right)
593
+ .
594
+ with two gates. The predicted densities have a multimodal
595
+ distribution (two peaks) for ˆµ ˙y and ˆσ ˙y commands. Further,
596
+ the predicted densities for the latent vector z show that
597
+ the uncertainty from perception outputs is different for each
598
+ type of sample, which is suitable for the early detection
599
+ of anomalies based on uncertainty information. In addition,
600
+ detecting multi-modality in prediction distributions can help
601
+ expressing situations where decisions must be made.
602
+ D. Dynamic Dependability Management using Uncertainty
603
+ from DNN-Based Systems
604
+ Based on the results and observations in the previous
605
+ sub-sections, uncertainty propagation through a DNN-based
606
+ can impact downstream component predictions and their per-
607
+ formance. Thus, using uncertainty information to improve
608
+ system dependability or safety can be a challenging task. For
609
+ example, building monitoring functions based on uncertainty
610
+ information is no simple task. The uncertainty intervals we ob-
611
+ served for different situations present overlaps that can lead to
612
+ false-positive or false-negative verdicts. Moreover, the multi-
613
+ modal nature of some predictions under specific conditions or
614
+ scenes demands knowledge of multiple intervals around the
615
+ monitored uncertainty value. Therefore dependable and safe
616
+ automated systems require more than a simple composition of
617
+ predicates around some confidence measures.
618
+ Towards building dependable autonomous systems, we pro-
619
+ pose to align with previous frameworks that leverage percep-
620
+ tion uncertainty (cf. subsection II-C). However existing frame-
621
+ works for system dependability do not consider the impact
622
+ of uncertainty propagation in uncertainty-aware systems. To
623
+ overcome these new challenges, we propose to capture and
624
+ use uncertainty beyond perception and consider as well the
625
+ uncertainty from downstream components along the navigation
626
+ pipeline, as presented in Fig.6 1 . Our approach for dynamic
627
+ dependability management takes inspiration from [35] and
628
+ focuses on safety. Therefore, we propose an architecture for
629
+ dynamic risk assessment and management where we devise
630
+ three functional blocks, as shown in Fig. 6 2 : Monitoring
631
+ functions, risk estimation and behavior arbitration modules.
632
+ 1) Monitoring Functions: Monitoring is a widely-known
633
+ dependability technique for runtime verification intended to
634
+ track system variables (e.g. component inputs and outputs).
635
+ In the automotive domain, SOTIF and ISO26262 suggest the
636
+ use of monitoring functions as a solution for error detection in
637
+ hardware and software components [36]. Monitoring functions
638
+ are designed using a set of rules, based on a model of the
639
+ system and its environment, and the properties they should
640
+ guarantee. Hence, monitors basically perform a binary classi-
641
+ fication task to check if a property holds or not.
642
+ Designing monitoring functions for ML components is
643
+ different given the probabilistic nature of the outputs and
644
+ the difficulty in specifying the component behavior at design
645
+ time. For ML-based components in general, typical monitoring
646
+
647
+ PerceptionCMVAEEncodergoPredictionDensities
648
+ value
649
+ iable
650
+ vari
651
+ .atent
652
+ Zo
653
+ Z1
654
+ Z2
655
+ Z3
656
+ Z4
657
+ Z5
658
+ Z6
659
+ Z7
660
+ Z8
661
+ Z9
662
+ LatentvectorzvariablesControl EnsembleMixtureVelocity μPredictionDensities
663
+ Mo Prediction
664
+ 1.75
665
+ μx
666
+ 1.50
667
+ py
668
+ 1.25
669
+ 1.00
670
+ 0.75
671
+ 0.50
672
+ 0.25
673
+ 0.00
674
+ -1.0
675
+ 0.5
676
+ 0.0
677
+ 0.5
678
+ 1.0
679
+ 1.5
680
+ 2.0
681
+ 2.5
682
+ 3.0
683
+ 3.5
684
+ Predictedvelocityμ(m/s)or(deg/s)Control Ensemble Mixture Velocity Prediction Densities
685
+ 3.5
686
+ Mo Prediction
687
+ 3.0
688
+ ox
689
+ oy
690
+ 2.5
691
+ Density
692
+ 02
693
+ 2.0
694
+ 1.5
695
+ 1.0
696
+ 0.5
697
+ 0.0
698
+ 0.0
699
+ 0.2
700
+ 0.4
701
+ 0.6
702
+ 0.8
703
+ 1.0
704
+ Predicted velocity (m/s)or (deg/s)Perception CMVAE Encoder go Prediction Densities
705
+ value
706
+ variable
707
+ .atent
708
+ -3
709
+ Zo
710
+ Z1
711
+ Z2
712
+ Z3
713
+ Z4
714
+ Z5
715
+ Z6
716
+ Z7
717
+ Z8
718
+ Zg
719
+ LatentvectorzvariablesControl Ensemble MixtureVelocity μPredictionDensities
720
+ 2.00
721
+ Mo Prediction
722
+ μx
723
+ 1.75
724
+ ily
725
+ 1.50
726
+ 1.25
727
+ 1.00
728
+ 0.75
729
+ 0.50
730
+ 0.25
731
+ 0.00
732
+ 1.0
733
+ 0.5
734
+ 0.0
735
+ 0.5
736
+ 1.0
737
+ 1.5
738
+ 2.0
739
+ 2.5
740
+ 3.0
741
+ 3.5
742
+ Predictedvelocityμ (m/s)or(deg/s)ControlEnsembleMixtureVelocityoPredictionDensities
743
+ Mo Prediction
744
+ 3.0
745
+ 0x
746
+ 2.5
747
+ oy
748
+ 02
749
+ 1.5
750
+ 1.0
751
+ 0.5
752
+ 0.0
753
+ 0.0
754
+ 0.2
755
+ 0.4
756
+ 0.6
757
+ 0.8
758
+ 1.0
759
+ Predicted velocity (m/s)or (deg/s)Perception CMVAE Encoder go Prediction Densities
760
+ value
761
+ variable
762
+ .atent
763
+ Zo
764
+ Z1
765
+ Z2
766
+ Z3
767
+ Z4
768
+ Z5
769
+ Z6
770
+ Z7
771
+ Z8
772
+ Zg
773
+ LatentvectorzvariablesControl Ensemble Mixture Velocityμ Prediction Densities
774
+ 3.5
775
+ Mo Prediction
776
+ 3.0
777
+ px
778
+ 2.5
779
+ Density
780
+ 2.0
781
+ 1.5
782
+ 1.0
783
+ 0.5
784
+ 0.0
785
+ 0.5
786
+ 0.0
787
+ 0.5
788
+ 1.0
789
+ 1.5
790
+ 2.0
791
+ 2.5
792
+ 3.0
793
+ Predicted velocity μ(m/s)or(deg/s)Control Ensemble Mixture Velocity Prediction Densities
794
+ 4.0
795
+ Mo Prediction
796
+ ox
797
+ 3.5
798
+ <
799
+ 3.0
800
+ 02
801
+ 2.0
802
+ 1.5
803
+ 1.0
804
+ 0.5
805
+ 0.0
806
+ 0.0
807
+ 0.2
808
+ 0.4
809
+ 0.6
810
+ 0.8
811
+ 1.0
812
+ Predicted velocity (m/s)or (deg/s)Fig. 6. Runtime risk assessment & management framework
813
+ function tasks include Out-of-Distribution (OoD) detection or
814
+ Out-of-Boundary (OoB) detection and can be implemented
815
+ with rules, data-driven methods or a mix of both.
816
+ 2) Probabilistic Inference for Risk Assessment: To enable
817
+ dynamic uncertainty-aware reasoning and provide context to
818
+ risk estimates, we propose to use Bayesian networks. Fol-
819
+ lowing the methodology described in [24], BNs for risk
820
+ assessment and safety can be constructed using a combination
821
+ of expert domain knowledge and data. The experts provide a
822
+ model of causal relations and can have support from traditional
823
+ dependability analysis (e.g., fault tree analysis) to build the BN
824
+ structure while system data is used to provide the conditional
825
+ probabilities between random variables.
826
+ In our framework, the BN of the system can receive
827
+ the predictions from components in the pipeline (probability
828
+ distributions) and the verdicts from monitoring functions ap-
829
+ plied to system sensors, component predictions, and relevant
830
+ environmental variables. The output of the BN is represented
831
+ by all the critical events identified by experts. Hence, during
832
+ inference, the BN estimates the probability of a critical event,
833
+ which is used along with its severity to compute the system’s
834
+ risk at runtime [37]. Though we focus on risk assessment, in a
835
+ general way the output of BNs can be any assurance measure
836
+ variables linked to dependability attributes [10]. Further, the
837
+ BN should handle uncertain evidence [38] to preserve the
838
+ probabilistic nature of component and monitor predictions.
839
+ 3) Behavior Arbitration: The last building block in our
840
+ framework aims at keeping the system in a safe state by
841
+ taking or discarding navigation pipeline predictions. Safe
842
+ decisions must be made in the presence of high-risk values in
843
+ a given context caused by erroneous component predictions or
844
+ associated uncertainties and external environmental variables.
845
+ To this end, we propose using Behavior Trees (BTs) to adopt
846
+ different system behaviors while facing high-risk situations.
847
+ BTs are sophisticated modular decision-making engines for
848
+ reactive and fault-tolerant task execution [39]. Compositions
849
+ of BTs can preserve safety and robustness properties [40] and
850
+ are widely adopted tools in robotics. In the context of our
851
+ system, we can have a dedicated behavior to search for a gate
852
+ when we detect that there are no gates in the UAV FoV. This
853
+ behavior will put the system back into a state where the levels
854
+ of uncertainty do not represent a risk.
855
+ VI. CONCLUSION
856
+ We presented a method to capture and propagate uncertainty
857
+ along a navigation pipeline implemented with Bayesian deep
858
+ learning components for UAV aerial navigation. We analyzed
859
+ the effect of uncertainty propagation regarding system com-
860
+ ponent predictions and performance. Our experiments show
861
+ that our approach to capturing and propagating uncertainty
862
+ along the system can provide valuable predictions for decision-
863
+ making and identifying situations that are critical for the
864
+ system. However, proper use and management of component
865
+ predictions and uncertainty estimates are needed to create
866
+ dependable and highly-performant systems. In this sense and
867
+ based on our observations, we also proposed a framework for
868
+ system dependability management using system uncertainty
869
+ and focused on safety. In future work, we aim to implement
870
+ our proposed dependability framework and explore sampling-
871
+ free methods [41] for uncertainty estimation to reduce the
872
+ computational budget and memory footprint in our approach.
873
+ ACKNOWLEDGMENT
874
+ This work has received funding from the COMP4DRONES
875
+ project, under ECSEL Joint Undertaking (JU) grant agreement
876
+ N°826610. The ECSEL JU receives support from the European
877
+ Union’s Horizon 2020 research and innovation programme and
878
+ from Spain, Austria, Belgium, Czech Republic, France, Italy,
879
+ Latvia, Netherlands.
880
+ REFERENCES
881
+ [1] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey
882
+ of deep learning techniques for autonomous driving,” Journal of Field
883
+ Robotics, vol. 37, no. 3, pp. 362–386, 2020.
884
+ [2] R. McAllister, Y. Gal, A. Kendall, M. Van Der Wilk, A. Shah, R. Cipolla,
885
+ and A. Weller, “Concrete problems for autonomous vehicle safety: Ad-
886
+ vantages of bayesian deep learning,” in Proceedings of the Twenty-Sixth
887
+ International Joint Conference on Artificial Intelligence.
888
+ International
889
+ Joint Conferences on Artificial Intelligence, Inc., 2017.
890
+ [3] R. Michelmore, M. Kwiatkowska, and Y. Gal, “Evaluating uncertainty
891
+ quantification in end-to-end autonomous driving control,” arXiv preprint
892
+ arXiv:1811.06817, 2018.
893
+ [4] F. Nozarian, C. M¨uller, and P. Slusallek, “Uncertainty quantification
894
+ and calibration of imitation learning policy in autonomous driving.” in
895
+ TAILOR, 2020, pp. 146–162.
896
+ [5] E. Ohn-Bar, A. Prakash, A. Behl, K. Chitta, and A. Geiger, “Learning
897
+ situational driving,” in Proceedings of the IEEE/CVF Conference on
898
+ Computer Vision and Pattern Recognition, 2020, pp. 11 296–11 305.
899
+ [6] F. Arnez, H. Espinoza, A. Radermacher, and F. Terrier, “Improving
900
+ robustness of deep neural networks for aerial navigation by incorporating
901
+ input uncertainty,” in International Conference on Computer Safety,
902
+ Reliability, and Security.
903
+ Springer, 2021, pp. 219–225.
904
+ [7] B. Ivanovic, K.-H. Lee, P. Tokmakov, B. Wulfe, R. McAllister,
905
+ A. Gaidon, and M. Pavone, “Heterogeneous-agent trajectory forecasting
906
+ incorporating class uncertainty,” arXiv preprint arXiv:2104.12446, 2021.
907
+ [8] S. Casas, C. Gulino, S. Suo, K. Luo, R. Liao, and R. Urtasun,
908
+ “Implicit latent variable model for scene-consistent motion forecasting,”
909
+ in Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
910
+ UK, August 23–28, 2020, Proceedings, Part XXIII 16.
911
+ Springer, 2020,
912
+ pp. 624–641.
913
+ [9] M. Henne, A. Schwaiger, and G. Weiss, “Managing uncertainty of ai-
914
+ based perception for autonomous systems.” in AISafety@ IJCAI, 2019.
915
+
916
+ Bayesian Deep Learning-Based Navigation Pipeline
917
+ (Uncertainty Propagation Between Components)
918
+ Sensors
919
+ Perception
920
+ Planning
921
+ Control
922
+ Monitoring Functions
923
+ (Data-Driven / STL / Mixed)
924
+ Environment
925
+ Graphical Model
926
+ Probabilistic
927
+ Behavior
928
+ Arbitration
929
+
930
+
931
+ Expertknowledge&Data
932
+ Risk Estimation
933
+ 2
934
+ Risk Assessment & Management[10] E. Asaadi, E. Denney, and G. Pai, “Quantifying assurance in learning-
935
+ enabled systems,” in International Conference on Computer Safety,
936
+ Reliability, and Security.
937
+ Springer, 2020, pp. 270–286.
938
+ [11] A. Lavin, C. M. Gilligan-Lee, A. Visnjic, S. Ganju, D. Newman,
939
+ S. Ganguly, D. Lange, A. G. Baydin, A. Sharma, A. Gibson et al.,
940
+ “Technology readiness levels for machine learning systems,” arXiv
941
+ preprint arXiv:2101.03989, 2021.
942
+ [12] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
943
+ Representing model uncertainty in deep learning,” in international
944
+ conference on machine learning, 2016, pp. 1050–1059.
945
+ [13] Y. Gal, J. Hron, and A. Kendall, “Concrete dropout,” in Advances in
946
+ neural information processing systems, 2017, pp. 3581–3590.
947
+ [14] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
948
+ predictive uncertainty estimation using deep ensembles,” in Advances in
949
+ neural information processing systems, 2017, pp. 6402–6413.
950
+ [15] F. K. Gustafsson, M. Danelljan, and T. B. Sch¨on, “Evaluating scalable
951
+ bayesian deep learning methods for robust computer vision,” arXiv
952
+ preprint arXiv:1906.01620, 2019.
953
+ [16] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian
954
+ deep learning for computer vision?” in Advances in neural information
955
+ processing systems, 2017, pp. 5574–5584.
956
+ [17] A. Loquercio, M. Segu, and D. Scaramuzza, “A general framework for
957
+ uncertainty estimation in deep learning,” IEEE Robotics and Automation
958
+ Letters, vol. 5, no. 2, pp. 3153–3160, 2020.
959
+ [18] S. Depeweg, J. Hern´andez-Lobato, F. Doshi-Velez, and S. Udluft,
960
+ “Learning and policy search in stochastic dynamical systems with
961
+ bayesian neural networks,” in 5th International Conference on Learning
962
+ Representations, ICLR 2017-Conference Track Proceedings, 2017.
963
+ [19] S. Depeweg, J.-M. Hernandez-Lobato, F. Doshi-Velez, and S. Udluft,
964
+ “Decomposition of uncertainty in bayesian deep learning for efficient
965
+ and risk-sensitive learning,” in International Conference on Machine
966
+ Learning.
967
+ PMLR, 2018, pp. 1184–1193.
968
+ [20] B. L¨utjens, M. Everett, and J. P. How, “Safe reinforcement learning
969
+ with model uncertainty estimates,” in 2019 International Conference on
970
+ Robotics and Automation (ICRA).
971
+ IEEE, 2019, pp. 8662–8668.
972
+ [21] T. Fan, P. Long, W. Liu, J. Pan, R. Yang, and D. Manocha, “Learning
973
+ resilient behaviors for navigation under uncertainty,” in 2020 IEEE
974
+ International Conference on Robotics and Automation (ICRA).
975
+ IEEE,
976
+ 2020, pp. 5299–5305.
977
+ [22] R. Bonatti, R. Madaan, V. Vineet, S. Scherer, and A. Kapoor, “Learning
978
+ visuomotor policies for aerial navigation using cross-modal representa-
979
+ tions,” arXiv preprint arXiv:1909.06993, 2019.
980
+ [23] M. Trapp, D. Schneider, and G. Weiss, “Towards safety-awareness
981
+ and dynamic safety management,” in 2018 14th European Dependable
982
+ Computing Conference (EDCC).
983
+ IEEE, 2018, pp. 107–111.
984
+ [24] S. Kabir and Y. Papadopoulos, “Applications of bayesian networks and
985
+ petri nets in safety, reliability, and risk assessments: A review,” Safety
986
+ science, vol. 115, pp. 154–175, 2019.
987
+ [25] J. Reich, M. Wellstein, I. Sorokos, F. Oboril, and K.-U. Scholl, “Towards
988
+ a software component to perform situation-aware dynamic risk assess-
989
+ ment for autonomous vehicles,” in Dependable Computing–EDCC 2021
990
+ Workshops: DREAMS, DSOGRI, SERENE 2021, Munich, Germany,
991
+ September 13, 2021, Proceedings.
992
+ Springer Nature, 2021, p. 3.
993
+ [26] A. Spurr, J. Song, S. Park, and O. Hilliges, “Cross-modal deep varia-
994
+ tional hand pose estimation,” in Proceedings of the IEEE Conference on
995
+ Computer Vision and Pattern Recognition, 2018, pp. 89–98.
996
+ [27] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
997
+ preprint arXiv:1312.6114, 2013.
998
+ [28] A. Loquercio, A. I. Maqueda, C. R. Del-Blanco, and D. Scaramuzza,
999
+ “Dronet: Learning to fly by driving,” IEEE Robotics and Automation
1000
+ Letters, vol. 3, no. 2, pp. 1088–1095, 2018.
1001
+ [29] E. Daxberger and J. M. Hern´andez-Lobato, “Bayesian variational
1002
+ autoencoders for unsupervised out-of-distribution detection,” arXiv
1003
+ preprint arXiv:1912.05651, 2019.
1004
+ [30] A. Jesson, S. Mindermann, U. Shalit, and Y. Gal, “Identifying causal-
1005
+ effect inference failure with uncertainty-aware models,” Advances in
1006
+ Neural Information Processing Systems, vol. 33, pp. 11 637–11 649,
1007
+ 2020.
1008
+ [31] V. Kuleshov, N. Fenner, and S. Ermon, “Accurate uncertainties for deep
1009
+ learning using calibrated regression,” arXiv preprint arXiv:1807.00263,
1010
+ 2018.
1011
+ [32] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual
1012
+ and physical simulation for autonomous vehicles,” in Field and service
1013
+ robotics.
1014
+ Springer, 2018, pp. 621–635.
1015
+ [33] R. Madaan, N. Gyde, S. Vemprala, M. Brown, K. Nagami, T. Taubner,
1016
+ E. Cristofalo, D. Scaramuzza, M. Schwager, and A. Kapoor, “Airsim
1017
+ drone racing lab,” arXiv preprint arXiv:2003.05654, 2020.
1018
+ [34] Y. Song, M. Steinweg, E. Kaufmann, and D. Scaramuzza, “Autonomous
1019
+ drone racing with deep reinforcement learning,” in 2021 IEEE/RSJ
1020
+ International Conference on Intelligent Robots and Systems (IROS).
1021
+ IEEE, 2021, pp. 1205–1212.
1022
+ [35] P. Moosbrugger, K. Y. Rozier, and J. Schumann, “R2u2: monitoring
1023
+ and diagnosis of security threats for unmanned aerial systems,” Formal
1024
+ Methods in System Design, vol. 51, no. 1, pp. 31–61, 2017.
1025
+ [36] S. Mohseni, M. Pitale, V. Singh, and Z. Wang, “Practical solutions
1026
+ for machine learning safety in autonomous vehicles,” arXiv preprint
1027
+ arXiv:1912.09630, 2019.
1028
+ [37] J. Eggert, “Risk estimation for driving support and behavior planning
1029
+ in intelligent vehicles,” at-Automatisierungstechnik, vol. 66, no. 2, pp.
1030
+ 119–131, 2018.
1031
+ [38] A. B. Mrad, V. Delcroix, S. Piechowiak, P. Leicester, and M. Abid,
1032
+ “An explication of uncertain evidence in bayesian networks: likelihood
1033
+ evidence and probabilistic evidence,” Applied Intelligence, vol. 43, no. 4,
1034
+ pp. 802–824, 2015.
1035
+ [39] M. Colledanchise and L. Natale, “On the implementation of behavior
1036
+ trees in robotics,” IEEE Robotics and Automation Letters, vol. 6, no. 3,
1037
+ pp. 5929–5936, 2021.
1038
+ [40] M. Colledanchise and P. ¨Ogren, “How behavior trees modularize ro-
1039
+ bustness and safety in hybrid systems,” in 2014 IEEE/RSJ International
1040
+ Conference on Intelligent Robots and Systems.
1041
+ IEEE, 2014, pp. 1482–
1042
+ 1488.
1043
+ [41] B. Charpentier, O. Borchert, D. Z¨ugner, S. Geisler, and S. G¨unnemann,
1044
+ “Natural posterior network: Deep bayesian predictive uncertainty for ex-
1045
+ ponential family distributions,” arXiv preprint arXiv:2105.04471, 2021.
1046
+
89FST4oBgHgl3EQfajh_/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8NE4T4oBgHgl3EQf2w06/content/tmp_files/2301.05300v1.pdf.txt ADDED
@@ -0,0 +1,942 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ DEEP REINFORCEMENT LEARNING FOR ASSET ALLOCATION:
2
+ REWARD CLIPPING
3
+ Jiwon Kim
4
+ SK Inc.(SK C&C)
5
6
+ MOON-JU KANG
7
8
+ KangHun Lee
9
+ SK Inc.(SK C&C)
10
11
+ HyungJun Moon
12
+ SK Inc.(SK C&C)
13
14
+ BO-KWAN JEON
15
+ SK Inc.(SK C&C)
16
17
+ ABSTRACT
18
+ Recently, there are many trials to apply reinforcement learning in asset allocation for earning
19
+ more stable profits. In this paper, we compare performance between several reinforcement learning
20
+ algorithms - actor-only, actor-critic and PPO models. Furthermore, we analyze each models’ character
21
+ and then introduce the advanced algorithm, so called Reward clipping model. It seems that the
22
+ Reward Clipping model is better than other existing models in finance domain, especially portfolio
23
+ optimization - it has strength both in bull and bear markets. Finally, we compare the performance for
24
+ these models with traditional investment strategies during decreasing and increasing markets.
25
+ Keywords DEEP REINFORCEMENT LEARNING · PORTFOLIO MANAGEMENT · POLICY GRADIENT ·
26
+ PROXIMAL POLICY OPTIMIZATION · REWARD CLIPPING
27
+ 1
28
+ Introduction
29
+ In recent years, AI algorithms-deep or machine learnings are used in financial market for various fields like stock
30
+ prediction, auto trading, deep hedging, [1]. At the same time, passing through the bull market right after COVID-19, we
31
+ are currently experiencing difficulties in dealing with market by inflation and the rising interest rate. In this situation, to
32
+ get more return with less risk, asset allocation(portfolio optimization) using Robo-Advisor with reinforcement learning
33
+ is in the spotlight.
34
+ Zhipeng Liang et al. implement three reinforcement learning algorithm - DDPG, PPO and Adversarial PG in portfolio
35
+ management in [2]. They showed PG algorithm outperforms URCP in China stock market. Also, in [3], Farzan
36
+ Soleymani and Eric Paquet present a deep reinforcement learning combined with a restricted stacked autoencoder and a
37
+ convolutional neural network in portfolio management. Here they apply SARSA algorithm which is enforced with a
38
+ CNN. Jung hoon Kim proposed reinforcement learning to make a short position especially in downward trends of stock
39
+ markets ([4]).
40
+ This paper is composed of three parts. Firstly, we conduct existing three reinforcement algorithms: actor-only, actor-
41
+ critic and PPO. In several research, it is shown that PPO has potential in portfolio management, [5], [6]. Especially,
42
+ Amine Mohamed Aboussalah et al. provide the stability of several RL models including PPO with a cross-sectional
43
+ analysis ([7]).
44
+ Here, our all three models are based on policy gradient method. Note that from [8] chapter13, in a policy gradient
45
+ method, the reward function is defined by
46
+ J(θ) = Σs∈Sµπ(s)Σa∈Aπθ(a|s)qπ(s, a)
47
+ (1)
48
+ where µπ(s) = limt→∞P(st = s|s0, πθ) the stationary distribution for the policy πθ.
49
+ Furthermore (see [8])
50
+ arXiv:2301.05300v1 [q-fin.CP] 2 Jan 2023
51
+
52
+ Reinforcement Learning in Asset Allocation
53
+ ∇θJ(θ) ∝ µπ(s)Σa∈Aqπ(s, a)∇θπθ(a|s)
54
+ (2)
55
+ Our actor-critic model contains this policy gradient method, and actor-only model has the only actor part of the
56
+ actor-critic model.
57
+ Also, from [9], for PPO algorithm we use
58
+ LCLIP (θ) = ˆEt[min(rt(θ) ˆAt, clip(rt(θ), 1 − ϵ, 1 + ϵ) ˆAt)]
59
+ (3)
60
+ where ˆEt indicates the empirical average over a finite batch of samples, in an algorithm that alternates between sampling
61
+ and optimization and ˆAt is an estimator of the advantage function at timestep t. And
62
+ LCLIP ′(θ) = ˆEt[LCLIP (θ) − c1(Vθ(s) − Vtarget)2 + c2H(s, πθ)]
63
+ (4)
64
+ where c1 and c2 are hyperparameter constants. Here, the equation(4) means that when applying PPO for policy (actor)
65
+ as well as value (critic) functions, besides the clipped reward, the objective function is strengthened with an error term
66
+ on the value estimation and an entropy term to incentivize sufficient exploration [6].
67
+ Secondly, after checking the performance of three existing RL models and analyzing the characteristics of them, we
68
+ introduce the modified new model which is called Reward Clipping model. When we test three RL models, actor-only
69
+ and actor-critic models show high-risk and high-return. They gain high profitability in a bull market, but also have a big
70
+ loss rate during a bear market. On the other hand, PPO model moves opposite way. It shows good defensive movement
71
+ when a stock market is decreasing, but it cannot get enough return when a stock market is growing. So we combine
72
+ these models to get advantages only - the result model gets high return during bull market but also good defense in a
73
+ bear market. For this, we use modified PPO algorithm:
74
+ LCLIP (θ)NEW = ˆEt[min( ˆAt, clip( ˆAt, 1 − ϵ1, 1 + ϵ2)]
75
+ (5)
76
+ In original PPO algorithm (equation (3)), clipping is given for the probability ratio rt(θ) =
77
+ πθ(at|st)
78
+ πθold(at|st), i.e. in our case
79
+ for the proportion of each asset(product). But in financial market stability is needed for advantages- return, MDD and
80
+ so on, not for portions of portfolio. Furthermore, bigger return and sharpe ratio are better, we set different values ϵ1, ϵ2
81
+ saying lower and upper bounds. So we modify the clipping logic in PPO to equation (5). This is more intuitive since by
82
+ controlling the advantage function directly, we can get immediate effects in our rewards. And it looks that this is more
83
+ fittable model in finance area.
84
+ Finally, we compare performance of RL models with traditional quant investment strategies - All Weather Portfolio, 6:4
85
+ (equity:bond) and equal weight rules. These results can suggest us the direction of our RL models and give necessity of
86
+ use of AI models in financial portfolio optimization.
87
+ In the following experiments, we use two sets of products. The first set is composed of 68 products, 22 in Europe,
88
+ Korea, US bond, 44 in US, Europe, Korea, Japan equity and 2 in gold. From this we can see that the RL models give us
89
+ not only an optimal asset allocation but also a product selection. For the second set, we use 25 products, 16 in US and
90
+ KOREA stocks, 4 in intermediate-term treasuries, 2 in long-term treasuries, 2 in commodities including REITs and
91
+ gold. With the second product set, we compare the performance of RL models to ALL Weather Portfolio strategy.
92
+ 2
93
+ Existing Models
94
+ In this section, we implement three different existing methodologies, actor-only, actor-critic and PPO in asset opti-
95
+ mization. We show how each models work, especially in the view of returns, sharpe ratio, standard deviation and
96
+ MDD.
97
+ 2.1
98
+ Construction and Experiments
99
+ In our experiments, one state includes previous closing price, volume or some other financial indices in a fixed window.
100
+ And an action is the desired allocating weights.
101
+ The actor-only model is the actor part of the actor-critic model. And PPO model is the model constructed from the
102
+ actor-critic model by replacing actor part to PPO algorithm. Hence all three models have the same architecture for the
103
+ actor part. The following Figure 1 is the common architecture of three models and the output after doing softmax is the
104
+ proportion for each asset.
105
+ 2
106
+
107
+ Reinforcement Learning in Asset Allocation
108
+ Figure 1: Architecture
109
+ Note that Q-value function is estimated using a function approximator with weight vector θ : Q(s, a; θ) for action
110
+ values. And DQN iteratively improves an estimate of Q∗ by minimizing the sequence of loss functions:
111
+ Li(θi) = Es,a,r,s′[(yDQN
112
+ i
113
+ − Q(s, a; θi))2],
114
+ (6)
115
+ with
116
+ yDQN
117
+ i
118
+ = r + γmaxa′Q(s′, a′; θi−1)
119
+ (7)
120
+ Harm van Seijen et al. proposed in [10] to decompose the reward function Renv into n reward functions (see Figure 1
121
+ in [10]):
122
+ Renv(s, a, s′) =
123
+ n
124
+
125
+ k=1
126
+ Rk(s, a, s′),
127
+ (8)
128
+ for all s, a, s′, and to train a separate reinforcement-learning agent on each of these reward functions. Hence the
129
+ associated sequence of loss function is:
130
+ Li(θi)′ = Es,a,r,s′[
131
+ n
132
+
133
+ k=1
134
+ (yk,i − Qk(s, a; θi))2],
135
+ (9)
136
+ with
137
+ yk,i = Rk(s, a, s′) + γ
138
+
139
+ a′∈A
140
+ 1
141
+ |A|Qk(s′, a′; θi−1).
142
+ (10)
143
+ (See [10]) Here, we use return, sharpe ratio and antibias as our rewards.
144
+ 2.2
145
+ Experimental Results
146
+ Following is the result for three RL models: actor-only, actor-critic(AC) and PPO. We train the models from 2010-01-01
147
+ to 2019-06-10, and test them from 2019-07-18 to 2021-06-16. We want to see the movement of models for sharp
148
+ drawing down and increasing stock market during the COVID-19. For this experiment, the first data set is used (a
149
+ product selection of 68 products is also reflected).
150
+ From the Table 1 and Figure 2, we can see that Actor-only and AC models have big draw down(MDD) but AC has good
151
+ return. On the other hand, PPO model has less MDD than other two models, but small return too. Also, Figure 2 shows
152
+ 3
153
+
154
+ CNN
155
+ CNN
156
+ CNN
157
+ Conv1
158
+ Canv1
159
+ Conv1
160
+ Conv2
161
+ Cov2
162
+ Conv2
163
+ BatchNormallzation
164
+ BatchNormalization
165
+ BatchNormallzation
166
+ Max Pooling
167
+ Max Pooling
168
+ Max Pooling
169
+ Q
170
+ Dropout
171
+ Dropout
172
+ Dropout
173
+ R
174
+ .
175
+ .
176
+ Conv
177
+ Con
178
+ Conv
179
+ Q:
180
+ BatchNormalization
181
+ BathNomalization
182
+ BahNgwalanon
183
+ Fc1
184
+ Fc1
185
+ Fc1
186
+ DNN
187
+ Fc2 (Dropout)
188
+ Fc3 (Dropout)
189
+ 10 1m =I=0
190
+ Softmax
191
+ 0.1
192
+ 0.3
193
+ 0.4
194
+ 0.2Reinforcement Learning in Asset Allocation
195
+ Model
196
+ Annual Return
197
+ Sharpe Ratio
198
+ Standard Deviation
199
+ MDD
200
+ Sortino
201
+ Actor-only
202
+ 13.61
203
+ 0.8068
204
+ 0.1670
205
+ -24.65
206
+ 1.1432
207
+ Actor-critic
208
+ 18.64
209
+ 1.0635
210
+ 0.1616
211
+ -27.12
212
+ 1.6766
213
+ PPO
214
+ 10.25
215
+ 1.0160
216
+ 0.0966
217
+ -18.36
218
+ 1.4575
219
+ Table 1: Performance of Actor-only vs AC vs PPO
220
+ Figure 2: Actor-only vs AC vs PPO
221
+ some patterns for these three models as well. As we can see in the graph, general policy gradient actor(for AC and
222
+ actor-only model) makes big drop. But if we compare AC and actor-only model, critic part makes the model get more
223
+ returns although it cannot defense the crash. On the other hand, PPO model has smooth movement in its returns. From
224
+ this, we infer that AC model works for bull-market and PPO model is good for bear market.
225
+ 3
226
+ Reward Clipping Model
227
+ As we can see in the previous section, Actor-critic and PPO algorithm have its own characteristic. The previous one
228
+ has a strength for increasing market but failing to defense in the depressed stock market. On the other hand, the PPO
229
+ algorithm operates the other way around. So here, we introduce the new algorithm so called Reward Clipping model
230
+ which is strong both in increasing and decreasing stock markets.
231
+ 3.1
232
+ Idea
233
+ Note that from the PPO equation([9]), it ensures that the update is not too large, that is the old policy is not too different
234
+ from the new policy. We guess this logic makes PPO move smoothly by giving clipping on the main object, in our
235
+ case proportion for each asset in a portfolio. But in a financial market, especially in an asset allocation, big changes in
236
+ proportions of assets between old and new portfolio is not a problem if we get enough benefit to the point where we can
237
+ ignore a turnover. Since our main purpose is return or sharp ratio even though our output is the portfolio, we apply
238
+ clipping logic to our rewards, not to the main object-asset portfolio.
239
+ With simple experiment(not with full products) , we can see the effect of upper and lower bound in reward clipping (see
240
+ Figure 3). Here, RC_-0.4_0.4 model is the reward clipping model with both upper and lower bounds which are -0.4 and
241
+ 0.4. The model RC_0.4 is the reward clipping model with upper bound only which is 0.4. It says RC_0.4 model has no
242
+ restriction moving downward on its rewards. Similarly, RC_-0.4 means the reward clipping has lower bound -0.4 only
243
+ (no upper bound so it can move upward freely).
244
+ As you can see the result in Figure 3, if models have the upper clipping bound on their rewards, it seems that they have a
245
+ limitation to go up, so they cannot get enough return. On the other hands, if a model has no upper clipping bound (lower
246
+ 4
247
+
248
+ 2019-07-18-2021-06-16
249
+ 140000
250
+ Actor-only
251
+ Actor-critic
252
+ 130000
253
+ PPO
254
+ 120000
255
+ 110000
256
+ 100000
257
+ 90000
258
+ 80000
259
+ 2019-07-18
260
+ 2019-12-05
261
+ 2020-04-23
262
+ 2020-09-10
263
+ 2021-01-28Reinforcement Learning in Asset Allocation
264
+ Figure 3: Reward Clipping Upper and Lower bound effects
265
+ bound only, RC_-0.4), it moves go up (gets more profit) more than other models, but less down (than other models
266
+ move). Hence we can conclude that if we don’t set a upper reward clipping, we can get more rewards and prevent loss
267
+ of reward by giving a lower reward clipping.
268
+ Especially, we can find if the model has an upper bound on its reward clipping, it cannot be converged. It is because
269
+ that since the model was constructed to purchase more rewards (higher reward is better), if we set up the upper bound,
270
+ it seems to make confliction with the model’s pursuit. The followings are the figures of the convergence for the three
271
+ models. The leftmost is the convergence of RC_-0.4_0.4, the middle is for RC_-0.4 and the rightmost is for RC_0.4.
272
+ Figure 4: Convergence for RC_-0.4_0.4, RC_-0.4, RC_0.4
273
+ 3.2
274
+ Construction
275
+ The basic construction for the Reward Clipping model is same with Figure 1. The only different part is that we apply
276
+ clipping logic in PPO onto reward parts in Actor-Only model. For example, for the return reward, our formula is
277
+ max(avg(Σn
278
+ i=1(Wi · daily returni)))
279
+ where Wi is the weight and daily returni = (Ai,t, ...Ai,t+T ) and Ai,t is the daily return at time t of i asset.
280
+ The following pseudo-codes show that which parts are modified from original PPO algorithm to Reward Clipping one.
281
+ 5
282
+
283
+ 2019-06-10-2021-07-30
284
+ 160000
285
+ RC_-0.4_0.4
286
+ RC_-0.4
287
+ 150000
288
+ wy
289
+ RC_0.4
290
+ 140000
291
+ 130000
292
+ 120000
293
+ 110000
294
+ 100000
295
+ 90000
296
+ 2019-06-10
297
+ 2019-10-28
298
+ 2020-03-16
299
+ 2020-08-03
300
+ 2020-12-21
301
+ 2021-05-101.26
302
+ 1.24
303
+ 1.22
304
+ 1.20
305
+ 118
306
+ 1.16
307
+ 114
308
+ 1.12
309
+ 0
310
+ 2500
311
+ 5000
312
+ 7500
313
+ 10000
314
+ 12500
315
+ 15000175001.40
316
+ 135
317
+ 1.30
318
+ 1.25
319
+ 1.20
320
+ 0
321
+ 2500
322
+ 5000
323
+ 7500
324
+ 1000012500 15000175001.24
325
+ 1.23
326
+ 1.22
327
+ 121
328
+ 1.20
329
+ 119
330
+ 2500
331
+ 5000
332
+ 7500
333
+ 10000
334
+ 12500
335
+ 15000
336
+ 17500Reinforcement Learning in Asset Allocation
337
+ Algorithm 1 PPO-Clip
338
+ 1: for iteration = 1, 2, . . . do
339
+ 2:
340
+ for actor = 1, 2, . . . , N do
341
+ 3:
342
+ Run policy πθold in environment for T time steps
343
+ 4:
344
+ Compute advantage estimates ˆA1, . . . , ˆAT where ˆAt = Wi · Ai,t
345
+ 5:
346
+ end for
347
+ 6:
348
+ Update the policy by maximizing the PPO-Clip objective:
349
+ θk+1 = argmaxθ
350
+ 1
351
+ T
352
+ T
353
+
354
+ t=0
355
+ min( πθ(at|st)
356
+ πθk(at|st)Aπθk (st, at), g(ϵ, Aπθk (st, at)))
357
+ 7:
358
+ Optimize surrogate L wrt. θ, with K epochs and minibatch size M ≤ NT
359
+ 8:
360
+ θold ← θ
361
+ 9: end for
362
+ Algorithm 2 Reward-Clip
363
+ 1: for iteration = 1, 2, . . . do
364
+ 2:
365
+ for actor = 1, 2, . . . , N do
366
+ 3:
367
+ Run policy πθold in environment for T time steps
368
+ 4:
369
+ Compute advantage estimates ˆA1, . . . , ˆAT where ˆAt = Wi · Ai,t
370
+ 5:
371
+ end for
372
+ 6:
373
+ Update the policy by maximizing the Reward-Clip objective:
374
+ θk+1 = argmaxθ
375
+ 1
376
+ T
377
+ T
378
+
379
+ t=0
380
+ min( At
381
+ At−1
382
+ , ϵ1, ϵ2)
383
+ (11)
384
+ where ϵ1, ϵ2 are lower and upper bounds.
385
+ 7:
386
+ Optimize surrogate L wrt. θ, with K epochs and minibatch size M ≤ NT
387
+ 8:
388
+ θold ← θ
389
+ 9: end for
390
+ The Equation 11 in 2 is the biggest changed part in our new model.
391
+ Note that in PPO algorithm, the clipping object is the result of the action-portfolio, but the Reward-Clip object is the
392
+ reward. Since we apply reward clipping to actor-only, in the above pseudo-code, the critic part is excluded.
393
+ With the simple experiment introduced in the previous section, we only consider the model with a lower clipping bound
394
+ in its rewards.
395
+ 3.3
396
+ Experimental Results and Model Comparisons
397
+ In the next two subsections, we give two experimental results and comparisons. To see that the reward clipping model
398
+ has strength in a bear market but has enough profit in a bull market, we conduct two experiments during two period-
399
+ falling and increasing markets and compare its performance with other models.
400
+ 3.3.1
401
+ Reward Clipping in a falling market
402
+ Here, we check the effect of the Reward Clipping model in a falling market. We train the model from 2010-01-01 to
403
+ 2021-06-10 and test it from 2021-07-26 to 2022-07-22. We pick this test period to see how the reward clipping model
404
+ with lower bound work in current market situation. Since we apply the reward clipping logic on actor-only model, to
405
+ see the effect of lower bounded reward clipping, we compare performance with actor-only model. As you can see in
406
+ Figure 5, reward clipping with lower bound (and no upper bound) is effective for a falling market but the same return
407
+ with actor-only model when a market is increasing. The detail is given in Table 2.
408
+ To see the market trend like the degree of decline, we put KOSPI and S&P500 indices too.
409
+ 6
410
+
411
+ Reinforcement Learning in Asset Allocation
412
+ Model
413
+ Annual Return
414
+ Sharpe Ratio
415
+ Standard Deviation
416
+ MDD
417
+ Sortino
418
+ Actor-only
419
+ -6.95
420
+ -0.3616
421
+ 0.1633
422
+ -20.86
423
+ -0.5544
424
+ Reward Clipping
425
+ -4.21
426
+ -0.2809
427
+ 0.1256
428
+ -14.54
429
+ -0.4422
430
+ KOSPI
431
+ -24.80
432
+ -1.6585
433
+ 0.1653
434
+ -30.13
435
+ -2.5470
436
+ S&P500
437
+ -10.02
438
+ -0.4394
439
+ 0.1972
440
+ -23.39
441
+ -0.6689
442
+ Table 2: Table for Reward Clipping effect in a falling market
443
+ Figure 5: Reward Clipping effect in a falling market
444
+ In this test(in a falling market), to compare the results with All weather portfolio (in the next section), we use the second
445
+ set of products (16 products in equity, 6 in bond, 2 in commodities and 1 gold). With the above MDD and sortino (and
446
+ Annual Return) in Table 2, we can see that the reward clipping model with a lower bound has a good defense in a falling
447
+ market situation.
448
+ The following Figure 6 is shown the proportion of asset classes for Actor-only and RC models.
449
+ Figure 6: Proportion of asset classes in bear market
450
+ Here, we can see that RC model defense the bear market better than the Actor-only model (especially after April, 2022)
451
+ by increasing the portion of Intermediate-term bond (ITBOND).
452
+ 7
453
+
454
+ 2021-07-26 -2022-07-22
455
+ 110000
456
+ Actor-Only
457
+ 105000
458
+ KOSPI
459
+ S&P500
460
+ 100000
461
+ Reward Clipping
462
+ 95000
463
+ 90000
464
+ 85000
465
+ 80000
466
+ 75000
467
+ 70000
468
+ 2021-07-26
469
+ 2021-10-04
470
+ 2021-12-13
471
+ 2022-02-21
472
+ 2022-05-02
473
+ 2022-07-11100
474
+ Actor-only : 2021-07-26 - 2022-07-22
475
+ 08
476
+ 60
477
+ 40
478
+ 20
479
+ 0
480
+ 2021-07-26
481
+ 2021-08-23
482
+ 2021-09-20
483
+ 2021-10-18
484
+ 2021-11-15
485
+ 2021-12-13
486
+ 2022-01-10
487
+ 2022-03-07
488
+ 2022-04-04,
489
+ 2022-05-02
490
+ 2022-05-30
491
+ 2022-06-27Reward-Clipping : 2021-07-26 - 2022-07-22
492
+ 100
493
+ COMMODITIES_MT
494
+ COMMODITIES_REITS
495
+ 80
496
+ EQUITY-KR
497
+ EQUITY-US
498
+ GOLD
499
+ 60
500
+ ITBOND
501
+ LTBOND
502
+ 40
503
+ 0 -
504
+ 2021-07-26
505
+ 2021-08-23
506
+ 2021-09-20
507
+ 2021-10-18
508
+ 2021-11-15
509
+ 2021-12-13
510
+ 2022-01-10
511
+ 2022-02-07
512
+ L0-E0-7
513
+ 2022-04-04
514
+ 2022-05-30
515
+ 2022-06-27
516
+ 2022-Reinforcement Learning in Asset Allocation
517
+ 3.3.2
518
+ Model Comparison for four models
519
+ The below Table 3 and Figure 7 show comparison of four models- Actor-only, AC, PPO and Reward Clipping. In
520
+ section 2.2 we’ve already seen the result for existing three models, so we just add the performance of Reward Clipping
521
+ model.
522
+ Model
523
+ Annual Return
524
+ Sharpe Ratio
525
+ Standard Deviation
526
+ MDD
527
+ Sortino
528
+ Actor-only
529
+ 13.61
530
+ 0.8068
531
+ 0.1670
532
+ -24.65
533
+ 1.1432
534
+ Actor-critic
535
+ 18.64
536
+ 1.0635
537
+ 0.1616
538
+ -27.12
539
+ 1.6766
540
+ PPO
541
+ 10.25
542
+ 1.0160
543
+ 0.0966
544
+ -18.36
545
+ 1.4575
546
+ Reward Clipping
547
+ 18.45
548
+ 1.2746
549
+ 0.1301
550
+ -21.45
551
+ 2.0391
552
+ Table 3: Comparison four models
553
+ Figure 7: comparison four models
554
+ If you compare Actor-only and Reward clipping models in Figure 7, we can see that Reward clipping has less draw
555
+ down but more benefits in increasing situation. You can check this in Table 3 by comparing MDD, sortino and Annual
556
+ Return - Reward clipping model has less MDD but bigger Annual Return and sortino than Actor-only model. It has
557
+ the almost same bottom point to PPO but the same top point to AC at the end. It has the same increasing strength
558
+ with Actor-critic but also the same defensive power with the PPO algorithm. This means by clipping onto reward in
559
+ Actor-only model, we can get advantages of both Actor-critic and PPO algorithms - strength both in increasing and
560
+ decreasing stock markets. Furthermore, as you can see in Figure 4, reward clipping model with lower bound doesn’t
561
+ much resource (actually it turns out that the reward clipping model requires less resources than PPO model) so we have
562
+ benefit in the point of view of resources and time saving.
563
+ The following Figure 8 shows the change of proportion of asset classes. Note that we apply rebalancing every month
564
+ regularly. As we can see in Figure 8 the existing three models - Actor only, Actor critic and PPO have stable movement.
565
+ Especially, PPO shows almost constant movement - it is almost the same with equal weight. On the other hand, Reward
566
+ Clipping model moves actively that is supposed the basis why the model has good performance in both bull and bear
567
+ markets.
568
+ Furthermore, since PPO model needs more resources - for example, time for convergence, in the above result we can
569
+ see not only the goodness of the performance but also resource effectiveness (Figure 4) of the reward clipping model.
570
+ 8
571
+
572
+ 2019-07-18-2021-06-16
573
+ 140000
574
+ Actor-only
575
+ Actor-critic
576
+ 130000
577
+ PPO
578
+ Reward Clipping
579
+ 120000
580
+ 110000
581
+ 100000
582
+ 90000
583
+ 80000
584
+ 2019-07-18
585
+ 2019-12-05
586
+ 2020-04-23
587
+ 2020-09-10
588
+ 2021-01-28Reinforcement Learning in Asset Allocation
589
+ Figure 8: Proportion of asset classes in bull market
590
+ 4
591
+ Further work
592
+ There are still many interesting further work using deep reinforcement learning in asset allocation. Firstly, we deal with
593
+ ETF(Exchange Traded Fund)s only since each of them has representative index so AI models can train the indices - and
594
+ so we can also contain ETF’s which are launched recently although there are not enough time to train a model. But
595
+ many financial corporation or customers require to expand products to several financial products - stocks, funds and so
596
+ on. Secondly, in this paper we have applied reward clipping algorithm to actor-only model. So, the next step is to apply
597
+ reward clipping algorithm to actor-critic model. Since actor-critic model has higher return than actor-only model and
598
+ similar draw down, by defending the fall of actor-critic model, we expect that actor-critic model with lower bounded
599
+ reward clipping has better performance. Thirdly, in our tests, we execute rebalancing every month regularly, but in a
600
+ real situation, risk management system is also a necessary requisite. Actually there are several trials to apply AI to
601
+ detect and react risks. In [11] Yang-Yu Liu et al. show a phenomenon called "loss aversion" which says that people
602
+ are much more sensitive to losses than to gains of the same magnitude. And it will affect individual decision-makings
603
+ and portfolio asset prices in financial markets ([12], [13]). With this prior research outcomes, Qing Yang Eddy Lim et
604
+ al. provide an alternative view in maximising portfolio returns using RL by considering dynamic risks appropriate to
605
+ market conditions through dynamic portfolio rebalancing ([14]). Finally, we can still try other RL algorithms. Although
606
+ we select Actor-critic and PPO models by limitations of resources in this paper, there are many other trials to apply RL
607
+ algorithms in asset allocation ([15]). In [16], Ricard Durall conduct 9 different algorithms including A2C, PPO, DDPG,
608
+ SAC and TD3.
609
+ 5
610
+ Conclusion
611
+ In this paper, we apply deep reinforcement learning algorithms to portfolio optimization. At first, we compare the
612
+ performances of existing models- Actor-only, Actor-critic and PPO. And then analyze the characteristics of three models.
613
+ Finally, we introduce a new model which has strengths only of each models - the new model, Reward Clipping model
614
+ has out-performed return in a bull market but also a good defense in a bear market. To see the model’s performance, we
615
+ compare them with the traditional approaches - Equal Weight, 6:4(equity:bond) and All-Weather portfolio ([17]). Here
616
+ we apply All-Weather portfolio only to the second product set (in a bear market) because the second set is consisted of
617
+ proper asset classes for All-Weather method.
618
+ In Table 4, Figure 9 and Table 5, we can see that Equal weight has less MDD than other models, but small return in a
619
+ 9
620
+
621
+ Actor-only : 2019-07-18 - 2021-06-16
622
+ 100
623
+ 08
624
+ 60
625
+ 40
626
+ 20
627
+ 2019-07-18
628
+ 2019-08-15
629
+ 2019-09-12
630
+ 2019-10-10
631
+ 2019-11-07
632
+ -05
633
+ 2020-01-30
634
+ 2020-02-27
635
+ 2020-03-26
636
+ 020-04-23
637
+ 0-05-21
638
+ 020-06-18
639
+ 020-07-16
640
+ 020-08-13
641
+ 2020-09-10
642
+ 2020-10-08
643
+ -05
644
+ 2020-12-03
645
+ LE*
646
+ 019-12-
647
+ 0-11-
648
+ 020-12-
649
+ TO-
650
+ 021-02-
651
+ 2020
652
+ 021Actor-critic : 2019-07-18 - 2021-06-16
653
+ 100
654
+ USA_BOND
655
+ USA_EQUIT
656
+ 80
657
+ GOLD
658
+ KOR_EQUIT
659
+ 60
660
+ KOR_BOND
661
+ JP_EQUIT
662
+ UK_EQUIT
663
+ 40
664
+ UK_BOND
665
+ DX_EQUIT
666
+ DX_BOND
667
+ 20
668
+ 0
669
+ 2019-07-18
670
+ 019-08-15
671
+ 2019-09-12
672
+ 2019-10-10
673
+ 2019-11-07
674
+ 020-01-30
675
+ Z~
676
+ -06-18
677
+ 09-10
678
+ 10-08
679
+ -05
680
+ 12-03
681
+ LE*
682
+ 5
683
+ -25
684
+ 2021-04-22
685
+ 2021-05-20
686
+ 2019-12-
687
+ 020-02-
688
+ LO
689
+ 20-11-
690
+ 0-12-
691
+ 1-01-
692
+ 2021-03-
693
+ 020-
694
+ -0z
695
+ 020-
696
+ 021
697
+ 2021PPO : 2019-07-18 - 2021-06-16
698
+ 100
699
+ 08
700
+ 60
701
+ 40
702
+ 20
703
+ 2019-07-18
704
+ 2019-08-15
705
+ 2019-09-12
706
+ 2019-10-10
707
+ 2019-11-07
708
+ 2020-01-02
709
+ 0E-T0-0Z0
710
+ 020-02-27
711
+ 2020-03-26
712
+ 2020-04-23
713
+ 2020-05-21
714
+ 2020-06-18
715
+ 2020-07-16
716
+ 020-08-13
717
+ 020-09-1(
718
+ 2020-10-08
719
+ 2020-11-05
720
+ 020.12-03
721
+ 2021-01-28
722
+ 2021-02-25
723
+ 2021-03-25
724
+ 021-04-
725
+ N
726
+ -05Reward Clipping : 2019-07-18 - 2021-06-16
727
+ 100
728
+ USA_BOND
729
+ USA_EQUIT
730
+ 08
731
+ GOLD
732
+ KOR_EQUIT
733
+ 60
734
+ KOR_BOND
735
+ JP_EQUIT
736
+ UK_EQUIT
737
+ 40
738
+ UK_BOND
739
+ DX_EQUIT
740
+ DX_BOND
741
+ 20
742
+ 2019-07-18
743
+ 2019-08-15
744
+ 2019-09-12
745
+ 2019-10-10
746
+ 2019-11-07
747
+ 2019-12-05
748
+ Z0-T0-0Z02
749
+ 2020-01-30
750
+ 2020-02-27
751
+ 2020-03-26
752
+ 2020-04-23
753
+ 2020-05-21
754
+ 2020-06-18
755
+ 2020-07-16
756
+ 2020-08-13
757
+ 2020-09-10
758
+ 2020-10-08
759
+ 2
760
+ 2021-05-20
761
+ 020-11
762
+ -t0-Reinforcement Learning in Asset Allocation
763
+ bull market. When we consider Return, MDD, and sortino rate, Reward Clipping model works best for both bull and
764
+ bear markets.
765
+ Model
766
+ Annual Return
767
+ Sharpe Ratio
768
+ Standard Deviation
769
+ MDD
770
+ Sortino
771
+ Actor-only
772
+ 13.61
773
+ 0.8068
774
+ 0.1670
775
+ -24.65
776
+ 1.1432
777
+ Actor-critic
778
+ 18.64
779
+ 1.0635
780
+ 0.1616
781
+ -27.12
782
+ 1.6766
783
+ PPO
784
+ 10.25
785
+ 1.0160
786
+ 0.0966
787
+ -18.36
788
+ 1.4575
789
+ Reward Clipping
790
+ 18.45
791
+ 1.2746
792
+ 0.1301
793
+ -21.45
794
+ 2.0391
795
+ Equal weight
796
+ 10.10
797
+ 1.0012
798
+ 0.0968
799
+ -18.44
800
+ 1.4386
801
+ 6:4
802
+ 10.70
803
+ 0.9588
804
+ 0.1074
805
+ -20.36
806
+ 1.3811
807
+ Table 4: models vs traditional approaches during COVID-19
808
+ Model
809
+ Annual Return
810
+ Sharpe Ratio
811
+ Standard Deviation
812
+ MDD
813
+ Sortino
814
+ Actor-only
815
+ -6.95
816
+ -0.3616
817
+ 0.1633
818
+ -20.86
819
+ -0.5544
820
+ Reward Clipping
821
+ -4.21
822
+ -0.2809
823
+ 0.1256
824
+ -14.54
825
+ -0.4422
826
+ Equal weight
827
+ -10.23
828
+ -1.0956
829
+ 0.0950
830
+ -15.27
831
+ -1.5984
832
+ 6:4
833
+ -13.53
834
+ -1.5420
835
+ 0.0921
836
+ -17.43
837
+ -2.2477
838
+ All-Weather
839
+ -14.73
840
+ -1.7794
841
+ 0.0880
842
+ -19.39
843
+ -2.4975
844
+ KOSPI
845
+ -24.80
846
+ -1.6585
847
+ 0.1653
848
+ -30.13
849
+ -2.5470
850
+ S&P500
851
+ -10.02
852
+ -0.4394
853
+ 0.1972
854
+ -23.39
855
+ -0.6689
856
+ Table 5: models vs traditional approaches in a bear market
857
+ Figure 9: models vs traditional approaches during COVID-19(bull market) and a bear market
858
+ In our experiments, the existing models have its own characteristics - some have an advantage in defense for drawing
859
+ down and others have a strength for profits but not in both. And also depending on the direction of each model, it seems
860
+ that each model selects two or three main products/asset classes to achieve their purpose. But Reward Clipping model
861
+ which the model has advantages of existing models we introduced has a strong strength for both in two opposite market
862
+ situations (Table 4, Table 5, and Figure 9). And it turns out that the Reward Clipping model has dynamics to select
863
+ products/asset classes to pursue more profits managing a draw-down.
864
+ 6
865
+ Acknowledgment
866
+ We appreciate Seongjae Huh for his advice about traditional investment strategies. We also would like to say thanks to
867
+ Yong Qu Lee, team leader of SK C&C for his support.
868
+ 10
869
+
870
+ 2019-07-18-2021-06-16
871
+ 140000
872
+ Actor-critic
873
+ Reward Clipping
874
+ 130000
875
+ Actor-only
876
+ PPO
877
+ 120000
878
+ 60:40
879
+ Equal weight
880
+ 110000
881
+ 100000
882
+ 90000
883
+ 80000
884
+ 2019-07-18
885
+ 2019-12-05
886
+ 2020-04-23
887
+ 2020-09-10
888
+ 2021-01-282021-07-26-2022-07-22
889
+ Actor-only
890
+ 105000
891
+ Reward-Clipping
892
+ 60:40
893
+ All whether
894
+ 100000
895
+ Equal weight
896
+ 95000
897
+ 90000
898
+ 85000
899
+ 2021-07-26
900
+ 2021-10-04
901
+ 2021-12-13
902
+ 2022-02-21
903
+ 2022-05-02
904
+ 2022-07-11Reinforcement Learning in Asset Allocation
905
+ References
906
+ [1] Thomas G. Fischer. Reinforcement learning in financial markets - a survey. FAU Discussion Papers in Economics,
907
+ (12/2018), October 2018.
908
+ [2] Zipeng Liang, Hao Chen, Junhao Zhu, Kangkang Jiang, and Yanran Li. Adversarial deep reinforcement learning
909
+ in portfolio management. arXiv:1808.09940v3 [q-fin.PM], November 2018.
910
+ [3] Farzan Soleymani and Eric Paquet. Financial portfolio optimization with online deep reinforcement learning and
911
+ restricted stacked autoencoder-deepbreath. Expert Systems with Applications, 156(113456), October 2020.
912
+ [4] Jung hoon Kim. Efficient portfolio management using deep reinforcement learning. Seoul National University,
913
+ December 2020.
914
+ [5] Andres Heurtas. A reinforcement learning application for portfolio optimization in the stock market. UNIVERSITY
915
+ OF HELSINKI, June 2020.
916
+ [6] Amine Mohamed Aboussalah, Ziyun Xu, and Chi-Guhn Lee. What is the value of the cross-sectional approach to
917
+ deep reinforcement learning? Quantitative Finance, 22(Issue 6):1091–1111, 2022.
918
+ [7] Jeffrey M. Wooldridge. Part 1: Regression analysis with cross sectional data. Introductory Econometrics A
919
+ Modern Approach. 4th edition, 2009.
920
+ [8] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press, 2nd edition,
921
+ 2018.
922
+ [9] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
923
+ algorithms. arXiv:1707.06347v2 [cs.LG], August 2017.
924
+ [10] Harm van Seijen, Mehdi Fatemi, Joshua Romoff, Romain Laroche, Tavian Barnes, and Jeffrey Tsang. Hybrid
925
+ reward architecture for reinforcement learning. arxiv:1706.04208v2 [cs.LG], November 2017.
926
+ [11] Yang-Yu Liu, Jose C. Nacher, Tomoshiro Ochiai, Mauro Martino, and Yaniv Altshuler. Prospect theory for online
927
+ financial trading. PLOS ONE, 9(Issue 10, e109458), 2014.
928
+ [12] Donghyun Cheong, Young Min Kim, Hyun Woo Byun, Kyong Joo Oh, and Tae Yoon Kim. Using genetic
929
+ algorithm to support clustering-based portfolio optimization by investor information. Applied Soft Computing,
930
+ 61:593–602, December 2017.
931
+ [13] Liyan Yang. Loss aversion in financial markets. Journal of Mechanism and Institution Design, 4(1):119–137,
932
+ 2019.
933
+ [14] Qing Yang Eddy Lim, Qi Cao, and Chai Quek. Dynamic portfolio rebalancing through reinforcement learning.
934
+ Neural Computing and Applications, 34:7125–7139, 2022.
935
+ [15] Miquel Noguer i Alonso and Sonam Srivastava. Deep reinforcement learning for asset allocation in us equities.
936
+ arXiv:2010.04404v1 [q-fin.PM], October 2020.
937
+ [16] Ricard Durall. Asset allocation: From markowitz to deep reinforcement learning. arXiv:2208.07158v1 [q-fin.PM],
938
+ July 2022.
939
+ [17] Youssef Louraoui. The all-weather portfolio approach: The holy grail of portfolio management. SSRN, (4021133),
940
+ 2022.
941
+ 11
942
+
99FJT4oBgHgl3EQfpCw2/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1aa21446e57d0451ddd4a93e627a48cf9e24d88a8141f5ca37cc350c98f48a5f
3
+ size 5308461
9tAyT4oBgHgl3EQfQ_bX/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
9tAyT4oBgHgl3EQfqPjX/content/tmp_files/2301.00541v1.pdf.txt ADDED
@@ -0,0 +1,372 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00541v1 [math.AP] 2 Jan 2023
2
+ BOUNDARY REGULARITY FOR AN EVEN ORDER ELLIPTIC SYSTEM IN
3
+ THE CRITICAL DIMENSION
4
+ MING-LUN LIU AND YAO-LAN TIAN*
5
+ Abstract. In this short note, we consider the Dirichlet problem associated to an even
6
+ order elliptic system with antisymmetric first order potential.
7
+ Given any continuous
8
+ boundary data, we show that weak solutions are continuous up to boundary.
9
+ Keywords: Polyharmonic maps, higher order elliptic system, Boudary continuity, Dirichlet prob-
10
+ lem
11
+ 2010 Mathematics Subject Classification: 35J48, 35B65, 35G35
12
+ 1. Introduction
13
+ In this paper, we consider the Dirichlet problem for the following even order elliptic
14
+ system for u ∈ W k,2(Ω, Rm):
15
+ (1.1)
16
+ ∆ku =
17
+ k−1
18
+
19
+ l=0
20
+ ∆l ⟨Vl, du⟩ +
21
+ k−2
22
+
23
+ l=0
24
+ ∆lδ(wldu)
25
+ in Ω ⊂ R2k
26
+ with the following regularity assumptions on the coefficients:
27
+ (1.2)
28
+ wi ∈ W 2i+2−k,2 �
29
+ Ω, Rm×m�
30
+ for i ∈ {0, . . . , k − 2},
31
+ Vi ∈ W 2i+1−k,2 �
32
+ Ω, Rm×m ⊗ ∧1R2k�
33
+ for i ∈ {1, . . . , k − 1},
34
+ and
35
+ V0 = dη + F
36
+ with
37
+ (1.3)
38
+ η ∈ W 2−k,2 (Ω, so(m))
39
+ and
40
+ F ∈ W 2−k, 2k
41
+ k+1,1 �
42
+ Ω, Rm×m ⊗ ∧1R2k�
43
+ .
44
+ This system was initially introduced by de Longueville and Gastel [2], aiming at
45
+ a further extesion of the second order theory by Rivi`ere [11] (corresponding to the case
46
+ k = 1) and the fourth order theory by Lamm-Rivi`ere [7] (corresponding to the case k = 2),
47
+ addressing an open problem of Rivi`ere. It includes the Euler-Lagrange equations of many
48
+ interesting classes of geometric mappings such as the harmonic mappings, biharmonic
49
+ mappings, polyharmonic mappings and so on; see [1, 12, 11, 7, 3, 5, 6].
50
+ A distinguished feature of this system is the criticality. To see it, we consider the
51
+ simpler case k = 1. Then system (1.1) reduces to the second order Rivi`ere system
52
+ (1.4)
53
+ ∆u = Ω′ · ∇u,
54
+ Corresponding author: Yao-Lan Tian.
55
+ Both authors are partially supported by the Young Scientist Program of the Ministry of Sci-
56
+ ence and Technology of China (No. 2021YFA1002200), the National Natural Science Foundation of
57
+ China (No. 12101362) and the Natural Science Foundation of Shandong Province (No. ZR2022YQ01,
58
+ ZR2021QA003).
59
+ 1
60
+
61
+ 2
62
+ M.-L. LIU AND Y.-L. TIAN
63
+ where u ∈ W 1,2(Ω, Rm) and Ω′ ∈ L2(Ω, so(m) ⊗ Λ1R2). The right hand side of (1.4)
64
+ is merely in L1 by H¨older’s inequality and so standard Lp regularity theory for elliptic
65
+ equations fails to apply here. In the celebrated work [11], Rivi`ere succeeded in rewriting
66
+ (1.4) into an equivalent conservation law, from which the continuity of weak solutions
67
+ follows. The techniques were further extended to fourth order system in [7] and finally to
68
+ general even order systems in [2].
69
+ In this paper, we shall consider the Dirichlet boundary value problem for (1.1). Recall
70
+ that we say that u ∈ W k,2(Ω, Rm) has Dirichlet boundary value g ∈ Ck−1(Ω, Rm) if
71
+ ∇αu = ∇αg
72
+ on ∂Ω
73
+ holds in the sense of traces for all 2k-dimensional multi-indices α with |α| ≤ k − 1.
74
+ Similarly, we say that u has Navier boundary value hi ∈ C(Ω, Rm), i = 0, · · · , k − 1, if for
75
+ all i ∈ {0, · · · , k − 1}
76
+ ∆iu = hi
77
+ on ∂Ω.
78
+ Now, we can state our main theorem.
79
+ Theorem 1.1. Fix k ∈ N and Ω ⊂ R2k a bounded smooth domain.
80
+ Suppose u ∈
81
+ W k,2(Ω, Rm) is a solution of (1.1) with (1.2) and (1.3). If either the Dirichlet bound-
82
+ ary value g ∈ Ck−1(Ω, Rm) or the Navier boundary value hi for i = 0, · · · , k − 1, then
83
+ u ∈ C(Ω, Rm).
84
+ Theorem 1.1 can be viewed as a natural extension of the corresponding boundary
85
+ continuity results of M¨uller-Schikorra [9] for second order system, and Guo-Xiang [4] for
86
+ fourth order system. As a special case of Theorem 1.1, we infer that every (extrinsic or
87
+ intrinsic) polyharmonic mapping from the unit ball B2k ⊂ R2k into a closed manifold
88
+ N ֒→ Rm is continuous up the boundary, under the Dirichlet boundary value condition.
89
+ This partially extends the corrosponding boundary continuity reuslt of Lamm-Wang [8].
90
+ The approach to Theorem 1.1 is similar to that of Lamm and Wang [8], relying on
91
+ interior H¨older regularity and a boundary maximal principle.
92
+ As noticed in [4], this
93
+ approach only requies zero order boundary assumption “u = g” or “u = h0” on ∂Ω for
94
+ some continuous function g or h0. This observation extends to the general even order
95
+ system (1.1).
96
+ Our natations are rather standard. We write Br(x) for a ball centred at x with radius
97
+ r in R2k. The notation C denotes various constants that may be different from line to line.
98
+ We sometimes write A ≲ B meaning that A ≤ CB for some constant C > 0 depending
99
+ only on the quantitative data.
100
+ 2. The proof of main result
101
+ 2.1. Interior regularity. Continuity of weak solutions for (1.1) was first obtained in [2].
102
+ But for boundary continuity, we need the stronger interior H¨older regularity. We first
103
+ recall the following interior H¨older regularity result for (1.1) from [5, Theorem 1.3] or [6,
104
+ Theorem 1.1].
105
+ Theorem 2.1 (Interior Regularity). Suppose u ∈ W k,2(B2k, Rm) is a solution of (1.1) with
106
+ (1.2) and (1.3). Then there exist α ∈ (0, 1), C > 0 and r0, depending only on k, m and
107
+ the data from (1.2) and (1.3), such that u is locally α-H¨older continuous and
108
+ oscBr(x)u ≤ Crα∥u∥W k,2(B2k)
109
+
110
+ BOUNDARY REGULARITY
111
+ 3
112
+ for all x ∈ B 1
113
+ 4(0) and all 0 < r < r0.
114
+ We shall use the following version of Theorem 2.1 in our later proofs. There exists
115
+ R0 > 0 sufficiently small, such that, if x ∈ Ω and 0 < r < min{R0, dist(x, ∂Ω)/4}, then
116
+ u ∈ C0,α(Br(x0), Rm) for some α ∈ (0, 1) and
117
+ (2.1)
118
+ oscBτr(x)u ≲ τ α∥u∥W k,2(B4r(x0))
119
+ for 0 < τ ≤ 1.
120
+ By [6, Theorem 1.1], one can indeed infer that (2.1) holds for all α ∈ (0, 1). But for our
121
+ purpose, the current estimate is sufficient.
122
+ 2.2. Boundary Maximum Principle. Another ingredient for boundary regularity is a
123
+ boundary maximum principle, originally discovered by Qing [10] in his proof of boundary
124
+ regularity for weakly harmonic maps and was later adapted to the polyharmonic case in
125
+ Lamm-Wang [8].
126
+ For x ∈ Ω and R > 0, denote by ΩR(x) = Ω ∩ BR(x). We shall prove the following
127
+ boundary maximal principle for solutions of (1.1).
128
+ Proposition 2.2 (Boundary Maximum Principle). There exists a constant C > 0 such that
129
+ for any x ∈ Ω and 0 < R < R0/4, for any q ∈ Rm, there holds
130
+ (2.2)
131
+ max
132
+ ΩR(x) |u − q| ≤ C
133
+
134
+ max
135
+ ∂ΩR(x) |u − q| + ∥u∥W k,2(Ω4R(x))
136
+
137
+ .
138
+ To prove Proposition 2.2, we need the following version of Courant-Lebesgue lemma,
139
+ which was essentially established in [8]. Since the formulation is slightly different from
140
+ there, for the convenience of the readers, we recall the proofs here.
141
+ Lemma 2.3. There exists C > 0 such that for any R > 0 and any x0 ∈ Ω, there exists
142
+ R1 ∈ (R, 2R) so that
143
+ osc∂BR1(x0)∩Ωu ≤ C∥u∥W k,2(Ω4R(x0)).
144
+ Proof. For x ∈ B2R(x0), set r = |x − x0| ∈ [0, 2R]. By Fubini’s theorem, we have
145
+
146
+ Ω2R(x0)
147
+ |∇u|2kdx ≥
148
+ � 2R
149
+ R
150
+ dr
151
+
152
+ ∂Br(x0)∩Ω
153
+ |∇Tu|2kdH2k−1
154
+
155
+ �� 2R
156
+ R
157
+ 1
158
+ rdr
159
+
160
+ inf
161
+ R≤r≤2R
162
+
163
+ r
164
+
165
+ ∂Br(x0)∩Ω
166
+ |∇Tu|2kdH2k−1
167
+
168
+ = ln 2
169
+ inf
170
+ R≤r≤2R
171
+
172
+ r
173
+
174
+ ∂Br(x0)∩Ω
175
+ |∇Tu|2kdH2k−1
176
+
177
+ ,
178
+ where ∇T denotes the gradient operator on ∂Br(x0) and dH2k−1 is the volume element
179
+ on ∂Br(x0). Then there exists R1 ∈ (R, 2R) such that
180
+ R1
181
+
182
+ ∂BR1(x0)∩Ω
183
+ |∇Tu|2kdH2k−1 ≤
184
+ 1
185
+ ln 2
186
+
187
+ Ω2R(x0)
188
+ |∇u|2kdx.
189
+ Hence u(R1, ·) ∈ W 1,2k(∂BR1(x0) ∩ Ω, Rm) and the Sobolev embedding theorem implies
190
+ that u(R1, ·) ∈ C
191
+ 1
192
+ 2k (∂BR1(x0) ∩ Ω, Rm) and
193
+ osc∂BR1(x0)∩Ωu ≲ R1
194
+
195
+ ∂BR1(x0)∩Ω
196
+ |∇Tu|2kdH2k−1 ≲ ∥u∥W k,2(Ω4R(x0)).
197
+
198
+
199
+ 4
200
+ M.-L. LIU AND Y.-L. TIAN
201
+ Proof of Proposition 2.2. Denote M = max
202
+ ΩR(x) |u−q|, here q ∈ Rm is fixed. We may assume
203
+ that
204
+ (2.3)
205
+ M ≥ ∥u∥W k,2(ΩR(x)).
206
+ Choose x0 ∈ ΩR(x) such that
207
+ (2.4)
208
+ |u(x0) − q| ≥ 3
209
+ 4M.
210
+ Let r0 = dist(x0, ∂ΩR(x0)). Note that r0 ≤ R ≤ R0. Thus (2.1) implies that for any
211
+ r ∈ (0, r0
212
+ 4 ), we have
213
+ (2.5)
214
+ oscBr(x0)u ≤ C
215
+ � r
216
+ r0
217
+ �α0
218
+ ∥u∥W k,2(ΩR(x)) ≤ CM
219
+ � r
220
+ r0
221
+ �α0
222
+ .
223
+ Pick r1 = r0/(4C)1/α in the above, and we obtain
224
+ oscBr1(x0)u ≤ 1
225
+ 4M
226
+ This together with (2.4) yields
227
+ (2.6)
228
+ inf
229
+ Br1(x0) |u − q| ≥ |u(x0) − q| − oscBr1(x0)u ≥ 1
230
+ 2M.
231
+ By Lemma 2.3, there exists r2 ∈ (r0, 2r0) such that
232
+ (2.7)
233
+ osc∂Br2(x0)∩ΩR(x)u ≤ C∥u∥W k,2(Ω4R(x)).
234
+ Note that ∂Br2(x0)∩∂ΩR(x) ̸= ∅. Using polar coordinates centered at x0, we estimate
235
+ inf
236
+
237
+ |u(r1, θ)−u(r2, θ)| : (ri, θ) ∈ ∂Bri(x0) ∩ ΩR(x), i = 1, 2
238
+
239
+ ≤C
240
+
241
+ S2k−1 dθ
242
+ � r2
243
+ r1
244
+ |ur|χ[r1,r2]×S2k−1(r, θ)dr
245
+ ≤ C
246
+ r2k−1
247
+ 1
248
+
249
+ S2k−1 dθ
250
+ � r2
251
+ r1
252
+ |ur|χ[r1,r2]×S2k−1(r, θ)r2k−1dr
253
+ ≤ C
254
+ r2k−1
255
+ 1
256
+
257
+ B2r0(x)∩ΩR(x)
258
+ |ur|dx
259
+ ≤ C
260
+ r2k−1
261
+ 1
262
+ |B2r0(x)|
263
+ 2k−1
264
+ 2k
265
+ ��
266
+ ΩR(x)
267
+ |∇u|2kdx
268
+ � 1
269
+ 2k
270
+ ≤C r2k−1
271
+ 0
272
+ r2k−1
273
+ 1
274
+ ∥u∥W k,2(Ω4R(x)) ≤ C∥u∥W k,2(Ω4R(x)).
275
+ This implies that there exists θ0 ∈ ∂B1(x0) such that
276
+ (2.8)
277
+ |u(r1, θ0) − u(r2, θ0)| ≤ C∥u∥W k,2(Ω4R(x)).
278
+
279
+ BOUNDARY REGULARITY
280
+ 5
281
+ Hence, by choosing an arbitrary x∗ ∈ ∂Br2(x0) ∩ ∂ΩR(x), we obtain from (2.6), (2.7) and
282
+ (2.8) that
283
+ M
284
+ 2 ≤
285
+ inf
286
+ Br1(x0) |u − q| ≤ |u(r1, θ0) − q|
287
+ ≤|u(r1, θ0) − u(r2, θ0)| + |u(r2, θ0) − u(x∗)| + |u(x∗) − q|
288
+ ≤C∥u∥W k,2(Ω4R(x)) + osc∂Br2(x0)∩ΩR(x)u + sup
289
+ ∂ΩR(x)
290
+ |u − q|
291
+ ≤C
292
+
293
+ sup
294
+ ∂ΩR(x)
295
+ |u − q| + ∥u∥W k,2(Ω4R(x))
296
+
297
+ .
298
+ The proof is complete.
299
+
300
+ 2.3. Proof of Theorem 1.1. Now we are ready to prove Theorem 1.1.
301
+ Proof of Theorem 1.1. Let x0 ∈ ∂Ω and take q = g(x0) = u(x0) in Proposition 2.2. Note
302
+ that
303
+ max
304
+ ∂ΩR(x0) |u − u(x0)| ≤
305
+ max
306
+ ∂ΩR(x0)∩∂Ω |u − u(x0)| + osc∂ΩR(x0)∩Ωu
307
+ =
308
+ max
309
+ ∂ΩR(x0)∩∂Ω |g − g(x0)| + osc∂ΩR(x0)∩Ωu.
310
+ The first term tends to 0 as R → 0 since g ∈ C(∂Ω). The second term tends to 0 as
311
+ R → 0 by Lemma 2.3. This implies the continuity of u as desired.
312
+
313
+ Remark 2.4. The proof above extends to solutions to the following inhomogeneous elliptic
314
+ system
315
+ (2.9)
316
+ ∆ku =
317
+ k−1
318
+
319
+ l=0
320
+ ∆l ⟨Vl, du⟩ +
321
+ k−2
322
+
323
+ l=0
324
+ ∆lδ(wldu) + f
325
+ in Ω ⊂ R2k
326
+ with f ∈ Lp for some p > 1 and (1.2), (1.3). Indeed, by [6, Theorem 1.1], in this case, the
327
+ interior regularity estimate (2.1) becomes
328
+ (2.10)
329
+ oscBτr(x)u ≲ τ α �
330
+ ∥u∥W k,2(B4r(x0)) + ∥f∥Lp(B4r(x0))
331
+
332
+ for 0 < τ ≤ 1.
333
+ With this, the buondary maximal principle (2.2) remains valid with an extra term ∥f∥Lp(Ω4R(x))
334
+ on the right hand side. The proof of Theorem 1.1 then works with obvious modifications.
335
+ Acknowledgements. The authors would like to Prof. Chang-Lin Xiang and Chang-Yu
336
+ Guo for posing this question to them and for many useful conservations.
337
+ References
338
+ [1] S.-Y.A. Chang, L. Wang and P.C. Yang, A regularity theory of biharmonic maps. Commun.
339
+ Pure Appl. Math. 52(9) (1999), 1113-1137.
340
+ [2] F.L. de Longueville and A. Gastel, Conservation laws for even order systems of polyharmonic
341
+ map type. Calc. Var. Partial Differential Equations 60, 138 (2021).
342
+ [3] A. Gastel and C. Scheven, Regularity of polyharmonic maps in the critical dimension. Comm.
343
+ Anal. Geom. 17 (2009), no. 2, 185-226.
344
+ [4] C.-Y. Guo and C.-L. Xiang, Regularity of solutions for a fourth order linear system via conser-
345
+ vation law. J. Lond. Math. Soc. (2) 101 (2020), no. 3, 907-922.
346
+ [5] C.-Y. Guo and C.-L. Xiang, Regularity of weak solutions to higher order elliptic systems in critical
347
+ dimensions. Tran. Amer. Math. Soc. 374 (2021), no. 5, 3579-3602.
348
+
349
+ 6
350
+ M.-L. LIU AND Y.-L. TIAN
351
+ [6] C.-Y. Guo, C.-L. Xiang and G.-F. Zheng, Lp regularity theory for even order elliptic systems
352
+ with antisymmetric first order potentials., J. Math. Pures Appl. 165 (2022) 286-324.
353
+ [7] T. Lamm and T. Rivi`ere, Conservation laws for fourth order systems in four dimensions. Comm.
354
+ Partial Differential Equations 33 (2008), 245-262.
355
+ [8] T. Lamm and C.Y. Wang, Boundary regularity for polyharmonic maps in the critical dimension.
356
+ Adv. Calc. Var. 2 (2009), 1-16.
357
+ [9] F. M¨uller and A. Schikorra, Boundary regularity via Uhlenbeck-Rivi`ere decomposition. Analysis
358
+ (Munich) 29 (2009), 199-220.
359
+ [10] J. Qing, Boundary regularity of weakly harmonic maps from surfaces, J. Funct. Anal. 114 (1993)
360
+ 458-466.
361
+ [11] T. Rivi`ere, Conservation laws for conformally invariant variational problems. Invent. Math. 168
362
+ (2007), 1-22.
363
+ [12] C.Y. Wang, Stationary biharmonic maps from Rm into a Riemannian manifold. Comm. Pure Appl.
364
+ Math. 57 (2004), 419-444.
365
+ (Ming-Lun Liu) Research Center for Mathematics and Interdisciplinary Sciences, Shan-
366
+ dong University, Qingdao 266237, P. R. China and Frontiers Science Center for Nonlin-
367
+ ear Expectations, Ministry of Education, Qingdao, P. R. China
368
+ Email address: [email protected]
369
+ (Yao-Lan Tian) Center for Optics Research and Engineering, Shandong University,
370
+ Qingdao 266237, P. R. China
371
+ Email address: [email protected]
372
+
9tAyT4oBgHgl3EQfqPjX/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,285 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf,len=284
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
3
+ page_content='00541v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
4
+ page_content='AP] 2 Jan 2023 BOUNDARY REGULARITY FOR AN EVEN ORDER ELLIPTIC SYSTEM IN THE CRITICAL DIMENSION MING-LUN LIU AND YAO-LAN TIAN* Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
5
+ page_content=' In this short note, we consider the Dirichlet problem associated to an even order elliptic system with antisymmetric first order potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
6
+ page_content=' Given any continuous boundary data, we show that weak solutions are continuous up to boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
7
+ page_content=' Keywords: Polyharmonic maps, higher order elliptic system, Boudary continuity, Dirichlet prob- lem 2010 Mathematics Subject Classification: 35J48, 35B65, 35G35 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
8
+ page_content=' Introduction In this paper, we consider the Dirichlet problem for the following even order elliptic system for u ∈ W k,2(Ω, Rm): (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
9
+ page_content='1) ∆ku = k−1 � l=0 ∆l ⟨Vl, du⟩ + k−2 � l=0 ∆lδ(wldu) in Ω ⊂ R2k with the following regularity assumptions on the coefficients: (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
10
+ page_content='2) wi ∈ W 2i+2−k,2 � Ω, Rm×m� for i ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
11
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
12
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
13
+ page_content=' , k − 2}, Vi ∈ W 2i+1−k,2 � Ω, Rm×m ⊗ ∧1R2k� for i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
14
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
15
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
16
+ page_content=' , k − 1}, and V0 = dη + F with (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
17
+ page_content='3) η ∈ W 2−k,2 (Ω, so(m)) and F ∈ W 2−k, 2k k+1,1 � Ω, Rm×m ⊗ ∧1R2k� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
18
+ page_content=' This system was initially introduced by de Longueville and Gastel [2], aiming at a further extesion of the second order theory by Rivi`ere [11] (corresponding to the case k = 1) and the fourth order theory by Lamm-Rivi`ere [7] (corresponding to the case k = 2), addressing an open problem of Rivi`ere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
19
+ page_content=' It includes the Euler-Lagrange equations of many interesting classes of geometric mappings such as the harmonic mappings, biharmonic mappings, polyharmonic mappings and so on;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
20
+ page_content=' see [1, 12, 11, 7, 3, 5, 6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
21
+ page_content=' A distinguished feature of this system is the criticality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
22
+ page_content=' To see it, we consider the simpler case k = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
23
+ page_content=' Then system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
24
+ page_content='1) reduces to the second order Rivi`ere system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
25
+ page_content='4) ∆u = Ω′ · ∇u, Corresponding author: Yao-Lan Tian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
26
+ page_content=' Both authors are partially supported by the Young Scientist Program of the Ministry of Sci- ence and Technology of China (No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
27
+ page_content=' 2021YFA1002200), the National Natural Science Foundation of China (No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
28
+ page_content=' 12101362) and the Natural Science Foundation of Shandong Province (No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
29
+ page_content=' ZR2022YQ01, ZR2021QA003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
30
+ page_content=' 1 2 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
31
+ page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
32
+ page_content=' LIU AND Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
33
+ page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
34
+ page_content=' TIAN where u ∈ W 1,2(Ω, Rm) and Ω′ ∈ L2(Ω, so(m) ⊗ Λ1R2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
35
+ page_content=' The right hand side of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
36
+ page_content='4) is merely in L1 by H¨older’s inequality and so standard Lp regularity theory for elliptic equations fails to apply here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
37
+ page_content=' In the celebrated work [11], Rivi`ere succeeded in rewriting (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
38
+ page_content='4) into an equivalent conservation law, from which the continuity of weak solutions follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
39
+ page_content=' The techniques were further extended to fourth order system in [7] and finally to general even order systems in [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
40
+ page_content=' In this paper, we shall consider the Dirichlet boundary value problem for (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
41
+ page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
42
+ page_content=' Recall that we say that u ∈ W k,2(Ω, Rm) has Dirichlet boundary value g ∈ Ck−1(Ω, Rm) if ∇αu = ∇αg on ∂Ω holds in the sense of traces for all 2k-dimensional multi-indices α with |α| ≤ k − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
43
+ page_content=' Similarly, we say that u has Navier boundary value hi ∈ C(Ω, Rm), i = 0, · · · , k − 1, if for all i ∈ {0, · · · , k − 1} ∆iu = hi on ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
44
+ page_content=' Now, we can state our main theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
45
+ page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
46
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
47
+ page_content=' Fix k ∈ N and Ω ⊂ R2k a bounded smooth domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
48
+ page_content=' Suppose u ∈ W k,2(Ω, Rm) is a solution of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
49
+ page_content='1) with (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
50
+ page_content='2) and (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
51
+ page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
52
+ page_content=' If either the Dirichlet bound- ary value g ∈ Ck−1(Ω, Rm) or the Navier boundary value hi for i = 0, · · · , k − 1, then u ∈ C(Ω, Rm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
53
+ page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
54
+ page_content='1 can be viewed as a natural extension of the corresponding boundary continuity results of M¨uller-Schikorra [9] for second order system, and Guo-Xiang [4] for fourth order system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
55
+ page_content=' As a special case of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
56
+ page_content='1, we infer that every (extrinsic or intrinsic) polyharmonic mapping from the unit ball B2k ⊂ R2k into a closed manifold N ֒→ Rm is continuous up the boundary, under the Dirichlet boundary value condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
57
+ page_content=' This partially extends the corrosponding boundary continuity reuslt of Lamm-Wang [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
58
+ page_content=' The approach to Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
59
+ page_content='1 is similar to that of Lamm and Wang [8], relying on interior H¨older regularity and a boundary maximal principle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
60
+ page_content=' As noticed in [4], this approach only requies zero order boundary assumption “u = g” or “u = h0” on ∂Ω for some continuous function g or h0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
61
+ page_content=' This observation extends to the general even order system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
62
+ page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
63
+ page_content=' Our natations are rather standard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
64
+ page_content=' We write Br(x) for a ball centred at x with radius r in R2k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
65
+ page_content=' The notation C denotes various constants that may be different from line to line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
66
+ page_content=' We sometimes write A ≲ B meaning that A ≤ CB for some constant C > 0 depending only on the quantitative data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
67
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
68
+ page_content=' The proof of main result 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
69
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
70
+ page_content=' Interior regularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
71
+ page_content=' Continuity of weak solutions for (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
72
+ page_content='1) was first obtained in [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
73
+ page_content=' But for boundary continuity, we need the stronger interior H¨older regularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
74
+ page_content=' We first recall the following interior H¨older regularity result for (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
75
+ page_content='1) from [5, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
76
+ page_content='3] or [6, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
77
+ page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
78
+ page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
79
+ page_content='1 (Interior Regularity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
80
+ page_content=' Suppose u ∈ W k,2(B2k, Rm) is a solution of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
81
+ page_content='1) with (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
82
+ page_content='2) and (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
83
+ page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
84
+ page_content=' Then there exist α ∈ (0, 1), C > 0 and r0, depending only on k, m and the data from (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
85
+ page_content='2) and (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
86
+ page_content='3), such that u is locally α-H¨older continuous and oscBr(x)u ≤ Crα∥u∥W k,2(B2k) BOUNDARY REGULARITY 3 for all x ∈ B 1 4(0) and all 0 < r < r0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
87
+ page_content=' We shall use the following version of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
88
+ page_content='1 in our later proofs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
89
+ page_content=' There exists R0 > 0 sufficiently small, such that, if x ∈ Ω and 0 < r < min{R0, dist(x, ∂Ω)/4}, then u ∈ C0,α(Br(x0), Rm) for some α ∈ (0, 1) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
90
+ page_content='1) oscBτr(x)u ≲ τ α∥u∥W k,2(B4r(x0)) for 0 < τ ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
91
+ page_content=' By [6, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
92
+ page_content='1], one can indeed infer that (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
93
+ page_content='1) holds for all α ∈ (0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
94
+ page_content=' But for our purpose, the current estimate is sufficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
95
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
96
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
97
+ page_content=' Boundary Maximum Principle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
98
+ page_content=' Another ingredient for boundary regularity is a boundary maximum principle, originally discovered by Qing [10] in his proof of boundary regularity for weakly harmonic maps and was later adapted to the polyharmonic case in Lamm-Wang [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
99
+ page_content=' For x ∈ Ω and R > 0, denote by ΩR(x) = Ω ∩ BR(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
100
+ page_content=' We shall prove the following boundary maximal principle for solutions of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
101
+ page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
102
+ page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
103
+ page_content='2 (Boundary Maximum Principle).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
104
+ page_content=' There exists a constant C > 0 such that for any x ∈ Ω and 0 < R < R0/4, for any q ∈ Rm, there holds (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
105
+ page_content='2) max ΩR(x) |u − q| ≤ C � max ∂ΩR(x) |u − q| + ∥u∥W k,2(Ω4R(x)) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
106
+ page_content=' To prove Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
107
+ page_content='2, we need the following version of Courant-Lebesgue lemma, which was essentially established in [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
108
+ page_content=' Since the formulation is slightly different from there, for the convenience of the readers, we recall the proofs here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
109
+ page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
110
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
111
+ page_content=' There exists C > 0 such that for any R > 0 and any x0 ∈ Ω, there exists R1 ∈ (R, 2R) so that osc∂BR1(x0)∩Ωu ≤ C∥u∥W k,2(Ω4R(x0)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
112
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
113
+ page_content=' For x ∈ B2R(x0), set r = |x − x0| ∈ [0, 2R].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
114
+ page_content=' By Fubini’s theorem, we have � Ω2R(x0) |∇u|2kdx ≥ � 2R R dr � ∂Br(x0)∩Ω |∇Tu|2kdH2k−1 ≥ �� 2R R 1 rdr � inf R≤r≤2R � r � ∂Br(x0)∩Ω |∇Tu|2kdH2k−1 � = ln 2 inf R≤r≤2R � r � ∂Br(x0)∩Ω |∇Tu|2kdH2k−1 � , where ∇T denotes the gradient operator on ∂Br(x0) and dH2k−1 is the volume element on ∂Br(x0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
115
+ page_content=' Then there exists R1 ∈ (R, 2R) such that R1 � ∂BR1(x0)∩Ω |∇Tu|2kdH2k−1 ≤ 1 ln 2 � Ω2R(x0) |∇u|2kdx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
116
+ page_content=' Hence u(R1, ·) ∈ W 1,2k(∂BR1(x0) ∩ Ω, Rm) and the Sobolev embedding theorem implies that u(R1, ·) ∈ C 1 2k (∂BR1(x0) ∩ Ω, Rm) and osc∂BR1(x0)∩Ωu ≲ R1 � ∂BR1(x0)∩Ω |∇Tu|2kdH2k−1 ≲ ∥u∥W k,2(Ω4R(x0)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
117
+ page_content=' □ 4 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
118
+ page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
119
+ page_content=' LIU AND Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
120
+ page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
121
+ page_content=' TIAN Proof of Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
122
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
123
+ page_content=' Denote M = max ΩR(x) |u−q|, here q ∈ Rm is fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
124
+ page_content=' We may assume that (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
125
+ page_content='3) M ≥ ∥u∥W k,2(ΩR(x)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
126
+ page_content=' Choose x0 ∈ ΩR(x) such that (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
127
+ page_content='4) |u(x0) − q| ≥ 3 4M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
128
+ page_content=' Let r0 = dist(x0, ∂ΩR(x0)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
129
+ page_content=' Note that r0 ≤ R ≤ R0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
130
+ page_content=' Thus (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
131
+ page_content='1) implies that for any r ∈ (0, r0 4 ), we have (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
132
+ page_content='5) oscBr(x0)u ≤ C � r r0 �α0 ∥u∥W k,2(ΩR(x)) ≤ CM � r r0 �α0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
133
+ page_content=' Pick r1 = r0/(4C)1/α in the above, and we obtain oscBr1(x0)u ≤ 1 4M This together with (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
134
+ page_content='4) yields (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
135
+ page_content='6) inf Br1(x0) |u − q| ≥ |u(x0) − q| − oscBr1(x0)u ≥ 1 2M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
136
+ page_content=' By Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
137
+ page_content='3, there exists r2 ∈ (r0, 2r0) such that (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
138
+ page_content='7) osc∂Br2(x0)∩ΩR(x)u ≤ C∥u∥W k,2(Ω4R(x)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
139
+ page_content=' Note that ∂Br2(x0)∩∂ΩR(x) ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
140
+ page_content=' Using polar coordinates centered at x0, we estimate inf � |u(r1, θ)−u(r2, θ)| : (ri, θ) ∈ ∂Bri(x0) ∩ ΩR(x), i = 1, 2 � ≤C � S2k−1 dθ � r2 r1 |ur|χ[r1,r2]×S2k−1(r, θ)dr ≤ C r2k−1 1 � S2k−1 dθ � r2 r1 |ur|χ[r1,r2]×S2k−1(r, θ)r2k−1dr ≤ C r2k−1 1 � B2r0(x)∩ΩR(x) |ur|dx ≤ C r2k−1 1 |B2r0(x)| 2k−1 2k �� ΩR(x) |∇u|2kdx � 1 2k ≤C r2k−1 0 r2k−1 1 ∥u∥W k,2(Ω4R(x)) ≤ C∥u∥W k,2(Ω4R(x)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
141
+ page_content=' This implies that there exists θ0 ∈ ∂B1(x0) such that (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
142
+ page_content='8) |u(r1, θ0) − u(r2, θ0)| ≤ C∥u∥W k,2(Ω4R(x)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
143
+ page_content=' BOUNDARY REGULARITY 5 Hence, by choosing an arbitrary x∗ ∈ ∂Br2(x0) ∩ ∂ΩR(x), we obtain from (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
144
+ page_content='6), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
145
+ page_content='7) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
146
+ page_content='8) that M 2 ≤ inf Br1(x0) |u − q| ≤ |u(r1, θ0) − q| ≤|u(r1, θ0) − u(r2, θ0)| + |u(r2, θ0) − u(x∗)| + |u(x∗) − q| ≤C∥u∥W k,2(Ω4R(x)) + osc∂Br2(x0)∩ΩR(x)u + sup ∂ΩR(x) |u − q| ≤C � sup ∂ΩR(x) |u − q| + ∥u∥W k,2(Ω4R(x)) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
147
+ page_content=' The proof is complete.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
148
+ page_content=' □ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
149
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
150
+ page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
151
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
152
+ page_content=' Now we are ready to prove Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
153
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
154
+ page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
155
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
156
+ page_content=' Let x0 ∈ ∂Ω and take q = g(x0) = u(x0) in Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
157
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
158
+ page_content=' Note that max ∂ΩR(x0) |u − u(x0)| ≤ max ∂ΩR(x0)∩∂Ω |u − u(x0)| + osc∂ΩR(x0)∩Ωu = max ∂ΩR(x0)∩∂Ω |g − g(x0)| + osc∂ΩR(x0)∩Ωu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
159
+ page_content=' The first term tends to 0 as R → 0 since g ∈ C(∂Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
160
+ page_content=' The second term tends to 0 as R → 0 by Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
161
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
162
+ page_content=' This implies the continuity of u as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
163
+ page_content=' □ Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
164
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
165
+ page_content=' The proof above extends to solutions to the following inhomogeneous elliptic system (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
166
+ page_content='9) ∆ku = k−1 � l=0 ∆l ⟨Vl, du⟩ + k−2 � l=0 ∆lδ(wldu) + f in Ω ⊂ R2k with f ∈ Lp for some p > 1 and (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
167
+ page_content='2), (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
168
+ page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
169
+ page_content=' Indeed, by [6, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
170
+ page_content='1], in this case, the interior regularity estimate (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
171
+ page_content='1) becomes (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
172
+ page_content='10) oscBτr(x)u ≲ τ α � ∥u∥W k,2(B4r(x0)) + ∥f∥Lp(B4r(x0)) � for 0 < τ ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
173
+ page_content=' With this, the buondary maximal principle (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
174
+ page_content='2) remains valid with an extra term ∥f∥Lp(Ω4R(x)) on the right hand side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
175
+ page_content=' The proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
176
+ page_content='1 then works with obvious modifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
177
+ page_content=' Acknowledgements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
178
+ page_content=' The authors would like to Prof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
179
+ page_content=' Chang-Lin Xiang and Chang-Yu Guo for posing this question to them and for many useful conservations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
180
+ page_content=' References [1] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
181
+ page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
182
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
183
+ page_content=' Chang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
184
+ page_content=' Wang and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
185
+ page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
186
+ page_content=' Yang, A regularity theory of biharmonic maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
187
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
188
+ page_content=' Pure Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
189
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
190
+ page_content=' 52(9) (1999), 1113-1137.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
191
+ page_content=' [2] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
192
+ page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
193
+ page_content=' de Longueville and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
194
+ page_content=' Gastel, Conservation laws for even order systems of polyharmonic map type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
195
+ page_content=' Calc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
196
+ page_content=' Var.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
197
+ page_content=' Partial Differential Equations 60, 138 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
198
+ page_content=' [3] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
199
+ page_content=' Gastel and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
200
+ page_content=' Scheven, Regularity of polyharmonic maps in the critical dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
201
+ page_content=' Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
202
+ page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
203
+ page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
204
+ page_content=' 17 (2009), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
205
+ page_content=' 2, 185-226.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
206
+ page_content=' [4] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
207
+ page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
208
+ page_content=' Guo and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
209
+ page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
210
+ page_content=' Xiang, Regularity of solutions for a fourth order linear system via conser- vation law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
211
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
212
+ page_content=' Lond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
213
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
214
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
215
+ page_content=' (2) 101 (2020), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
216
+ page_content=' 3, 907-922.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
217
+ page_content=' [5] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
218
+ page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
219
+ page_content=' Guo and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
220
+ page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
221
+ page_content=' Xiang, Regularity of weak solutions to higher order elliptic systems in critical dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
222
+ page_content=' Tran.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
223
+ page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
224
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
225
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
226
+ page_content=' 374 (2021), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
227
+ page_content=' 5, 3579-3602.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
228
+ page_content=' 6 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
229
+ page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
230
+ page_content=' LIU AND Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
231
+ page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
232
+ page_content=' TIAN [6] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
233
+ page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
234
+ page_content=' Guo, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
235
+ page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
236
+ page_content=' Xiang and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
237
+ page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
238
+ page_content=' Zheng, Lp regularity theory for even order elliptic systems with antisymmetric first order potentials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
239
+ page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
240
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
241
+ page_content=' Pures Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
242
+ page_content=' 165 (2022) 286-324.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
243
+ page_content=' [7] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
244
+ page_content=' Lamm and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
245
+ page_content=' Rivi`ere, Conservation laws for fourth order systems in four dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
246
+ page_content=' Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
247
+ page_content=' Partial Differential Equations 33 (2008), 245-262.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
248
+ page_content=' [8] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
249
+ page_content=' Lamm and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
250
+ page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
251
+ page_content=' Wang, Boundary regularity for polyharmonic maps in the critical dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
252
+ page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
253
+ page_content=' Calc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
254
+ page_content=' Var.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
255
+ page_content=' 2 (2009), 1-16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
256
+ page_content=' [9] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
257
+ page_content=' M¨uller and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
258
+ page_content=' Schikorra, Boundary regularity via Uhlenbeck-Rivi`ere decomposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
259
+ page_content=' Analysis (Munich) 29 (2009), 199-220.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
260
+ page_content=' [10] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
261
+ page_content=' Qing, Boundary regularity of weakly harmonic maps from surfaces, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
262
+ page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
263
+ page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
264
+ page_content=' 114 (1993) 458-466.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
265
+ page_content=' [11] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
266
+ page_content=' Rivi`ere, Conservation laws for conformally invariant variational problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
267
+ page_content=' Invent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
268
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
269
+ page_content=' 168 (2007), 1-22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
270
+ page_content=' [12] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
271
+ page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
272
+ page_content=' Wang, Stationary biharmonic maps from Rm into a Riemannian manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
273
+ page_content=' Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
274
+ page_content=' Pure Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
275
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
276
+ page_content=' 57 (2004), 419-444.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
277
+ page_content=' (Ming-Lun Liu) Research Center for Mathematics and Interdisciplinary Sciences, Shan- dong University, Qingdao 266237, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
278
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
279
+ page_content=' China and Frontiers Science Center for Nonlin- ear Expectations, Ministry of Education, Qingdao, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
280
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
281
+ page_content=' China Email address: minglunliu2021@163.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
282
+ page_content='com (Yao-Lan Tian) Center for Optics Research and Engineering, Shandong University, Qingdao 266237, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
283
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
284
+ page_content=' China Email address: tianylbnu@126.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
285
+ page_content='com' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf'}
BtE4T4oBgHgl3EQfeA0g/content/tmp_files/2301.05095v1.pdf.txt ADDED
@@ -0,0 +1,1577 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Electron cooling in graphene enhanced by plasmon-hydron resonance
2
+ Xiaoqing Yu1, Alessandro Principi2, Klaas-Jan Tielrooij3,4, Mischa Bonn1 and Nikita Kavokine1,5
3
+ 1Max Planck Institute for Polymer Research,
4
+ Ackermannweg 10, Mainz 55128, Germany
5
+ 2School of Physics and Astronomy, University of Manchester, M13 9PL Manchester, U.K.
6
+ 3Catalan Institute of Nanoscience and Nanotechnology (ICN2),
7
+ BIST and CSIC, Campus UAB, Bellaterra, Barcelona, 08193, Spain
8
+ 4Department of Applied Physics, TU Eindhoven,
9
+ Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands and
10
+ 5Center for Computational Quantum Physics,
11
+ Flatiron Institute, 162 5th Avenue, New York, NY 10010, USA
12
+ Evidence is accumulating for the crucial role of a solid’s free electrons in the
13
+ dynamics of solid-liquid interfaces.
14
+ Liquids induce electronic polarization and
15
+ drive electric currents as they flow; electronic excitations, in turn, participate in
16
+ hydrodynamic friction. Yet, the underlying solid-liquid interactions have been
17
+ lacking a direct experimental probe. Here, we study the energy transfer across
18
+ liquid-graphene interfaces using ultrafast spectroscopy. The graphene electrons
19
+ are heated up quasi-instantaneously by a visible excitation pulse, and the time
20
+ evolution of the electronic temperature is then monitored with a terahertz pulse.
21
+ We observe that water accelerates the cooling of the graphene electrons, whereas
22
+ other polar liquids leave the cooling dynamics largely unaffected. A quantum
23
+ theory of solid-liquid heat transfer accounts for the water-specific cooling en-
24
+ hancement through a resonance between the graphene surface plasmon mode
25
+ and the so-called hydrons – water charge fluctuations –, particularly the water
26
+ libration modes, that allows for efficient energy transfer.
27
+ Our results provide
28
+ direct experimental evidence of a solid-liquid interaction mediated by collective
29
+ modes and support the theoretically proposed mechanism for quantum friction.
30
+ They further reveal a particularly large thermal boundary conductance for the
31
+ water-graphene interface and suggest strategies for enhancing the thermal con-
32
+ ductivity in graphene-based nanostructures.
33
+ arXiv:2301.05095v1 [cond-mat.mes-hall] 12 Jan 2023
34
+
35
+ 2
36
+ Free electrons in graphene exhibit rather unique dynamics in the terahertz (THz) frequency
37
+ range, including a highly non-linear response to photoexcitation by THz pulses [1, 2]. Graphene’s
38
+ distinctive dynamical properties on picosecond timescales have found several applications in, e.g.,
39
+ ultrafast photodetectors, modulators, and receivers [3–5]. The THz frequency range acquires par-
40
+ ticular importance at room temperature T, where it corresponds to the typical frequency of thermal
41
+ fluctuations: kBT/ℏ ∼ 6 THz, with kB Boltzmann’s constant and ℏ Planck’s constant. One may
42
+ therefore expect non-trivial couplings between the graphene electrons and the thermal fluctuations
43
+ of their environment. These couplings have been intensively studied in the case of a solid environ-
44
+ ment: for instance, non-adiabatic effects have been shown to arise in the graphene electron-phonon
45
+ interaction [6], and plasmon-phonon coupling between graphene and a polar substrate has been
46
+ demonstrated [7–9]. More recently, it has been theoretically proposed that similar effects are at
47
+ play when graphene has a liquid environment: then, the interaction between the liquid’s charge
48
+ fluctuations – dubbed hydrons – and graphene’s electronic excitations tunes the hydrodynamic
49
+ friction at the carbon surface [10, 11]. This "quantum friction" mechanism holds the potential of
50
+ entirely new strategies for controlling liquid flows at nanometer scales [12, 13].
51
+ Obtaining an experimental signature of the quantum friction mechanism would involve directly
52
+ visualizing momentum transfer between a solid and a liquid: that is, measuring a force. Force
53
+ measurements at solid-liquid interfaces suffer from a strong sensitivity to the surface state, coupled
54
+ with enormous technical challenges [14–16]. In this Article, we overcome this obstacle by measuring
55
+ energy transfer as a proxy for momentum transfer. Specifically, we use a femtosecond visible pulse to
56
+ introduce a quasi-instantaneous temperature difference between the graphene electrons and their
57
+ environment. The cooling rate of the electronic system is followed in real-time using terahertz
58
+ pulses. Such Optical Pump - Terahertz Probe (OPTP) spectroscopy is a well-established tool for
59
+ probing electron relaxation in 2D materials [17–21]. In high-quality graphene, it has been used to
60
+ identify the interaction of hot carriers with optical phonons [19, 20] and with substrate phonons
61
+ as the main electron cooling mechanisms [22].
62
+ Here, we measure the electron relaxation time in the presence of different polar liquids to probe
63
+ the electron-liquid interaction, which we find to be significant compared to the electron - optical
64
+ phonon interaction only when the liquid is water. A complete theoretical analysis shows that this
65
+ specificity of water is explained by the strong coupling of its THz (libration) modes to the graphene
66
+ surface plasmon, with the electron-electron interactions in graphene playing a crucial role.
67
+
68
+ 3
69
+ a
70
+ b
71
+ Liquid
72
+ Solid
73
+ Quantum friction
74
+ Liquid
75
+ Solid
76
+ Quantum heat transfer
77
+ c
78
+ FIG. 1. From friction to heat transfer. a. Artist’s view of the system under study: the interface
79
+ between a liquid and a graphene sheet. The liquid, at temperature T, may flow with an interfacial velocity
80
+ v, while the graphene electrons (depicted by the orange cloud) may be heated up to a temperature T + ∆T.
81
+ b. Schematic of the solid-liquid quantum friction mechanism: momentum is transferred directly through
82
+ quasiparticle tunneling at a rate γ between surface modes of the solid and the liquid (depicted by the blue
83
+ parabolas), at wavevector q and frequency ωq. The Bose distribution nB predicts a higher occupation of the
84
+ liquid mode (filling of the blue parabola) due to a flow-induced Doppler shift. c. Schematic, with the same
85
+ notations as in b, of solid-liquid quantum heat transfer. Here, the solid’s mode has a higher occupation
86
+ due to a higher temperature than the liquid. Energy and momentum transfer involve the same interaction
87
+ between surface modes.
88
+ Solid-liquid heat transfer
89
+ The energy transfer between a solid and a liquid is usually considered to be mediated by
90
+ molecular vibrations at the interface, as most of a solid’s heat capacity is contained in its phonon
91
+ modes [23]. Even if an optical excitation of the solid’s electrons is used to create the temperature
92
+ difference, the electrons are typically assumed to thermalize with phonons on a very short time
93
+ scale, so that the solid’s phonons ultimately mediate the energy transfer to the liquid’s vibrational
94
+ modes [24, 25]. However, if the electrons were to transfer energy to the liquid faster than to the
95
+ phonons, the interfacial thermal conductivity would contain a non-negligible contribution from
96
+ near-field radiative heat transfer [26, 27]. Such an electronic or "quantum" contribution to heat
97
+ transfer is in close analogy with the quantum contribution to hydrodynamic friction (Fig.
98
+ 1).
99
+ Quantum hydrodynamic friction relies on momentum being transferred directly between the solid’s
100
+ and the liquid’s charge fluctuation modes.
101
+ In a simplified Fermi golden rule picture [10], the
102
+ corresponding friction force can be written as
103
+ FQ =
104
+
105
+ dqdω ℏq ∆γq(ω).
106
+ (1)
107
+
108
+ 4
109
+ SiO2 cell
110
+ THz probe
111
+ Liquid
112
+ Graphene
113
+ Optical pump
114
+ ∆E(t)
115
+ a
116
+ Te = 623 K
117
+ Pump-probe delay (ps)
118
+ Normalized ∆T
119
+ b
120
+ N2
121
+ H2O
122
+ D2O
123
+ Methanol
124
+ Ethanol
125
+ 1.4
126
+ 1.6
127
+ 1.8
128
+ 2.0
129
+ 2.2
130
+ 2.4
131
+
132
+
133
+ Te= 1241 K
134
+ Te = 1023 K
135
+ Te = 770 K
136
+ Te = 623 K
137
+ Cooling time (ps)
138
+ c
139
+ 0
140
+ 1
141
+ 2
142
+ 3
143
+ 4
144
+ 5
145
+ 6
146
+ 0.0
147
+ 0.2
148
+ 0.4
149
+ 0.6
150
+ 0.8
151
+ 1.0
152
+ N2
153
+ H2O
154
+ Methanol
155
+ Ethanol
156
+ D2O
157
+ FIG. 2. Measurement of picosecond hot electron relaxation in graphene. a. Schematic of the
158
+ experimental setup. A graphene sample is placed in contact with a liquid inside a fused silica flow cell. An
159
+ optical excitation pulse impulsively heats up the graphene electrons, and the electron temperature dynamics
160
+ are then monitored with a THz probe. b. Normalized electron temperature as a function of time after
161
+ photoexcitation. The dotted lines represent raw data and the full lines are exponential fits. c. Electron
162
+ cooling time obtained through exponential fitting (see b) for the different liquids that have been placed in
163
+ the flow cell and different initial electron temperatures, set by the excitation laser fluence. Faster cooling
164
+ is observed in the presence of water and heavy water. Error bars represent 95% confidence intervals of the
165
+ exponential fits.
166
+ It is a sum over all the in-plane wavevectors q and frequencies ω of the elementary momentum
167
+ ℏq, multiplied by the net quasiparticle tunneling rate ∆γq(ω) between the solid’s and the liquid’s
168
+ modes at wavevector q and frequency ω. The quantum contribution to the solid-liquid energy
169
+ transfer rate then reads
170
+ QQ =
171
+
172
+ dqdω ℏω ∆γq(ω),
173
+ (2)
174
+ with the momentum quantum ℏq being replaced by the energy quantum ℏω.
175
+ Thus, quantum
176
+ friction and quantum energy transfer rely on the same solid-liquid interactions, contained in the
177
+ tunneling rates ∆γq(ω). In the same way that probing quantum friction requires it to dominate
178
+ over the surface roughness contribution, the quantum energy transfer needs to exceed the classical
179
+ phonon-based energy transfer in order to become measurable. We now show that this condition is
180
+ met upon optically exciting of a graphene-water interface, owing, in particular, to graphene’s weak
181
+ electron-phonon coupling [28].
182
+ Time-resolved electron cooling
183
+ Our experimental setup is schematically represented in Fig. 2a. A monolayer graphene sample
184
+
185
+ 5
186
+ was transferred onto a fused silica flow cell, filled with either nitrogen gas or a liquid of our choice
187
+ (SI Sec.
188
+ 1.1).
189
+ In a typical experiment, the graphene electrons were excited using a ∼ 50 fs
190
+ laser pulse with 800 nm central wavelength. Then, the attenuation of a ∼ 1 ps THz probe pulse
191
+ (precisely, the modulation of the peak electric field) was monitored as a function of the pump-
192
+ probe delay (SI Sec.
193
+ 1.2).
194
+ After absorption of the exciting pump pulse, the non-equilibrium
195
+ electron distribution typically thermalizes over a sub-100 fs timescale through electron-electron
196
+ scattering [29]: it can then be described as a Fermi-Dirac distribution at a given temperature. A
197
+ hotter electron distribution results in a lower THz photoconductivity, since hotter electrons are less
198
+ efficient at screening charged impurities [30, 31]. The pump-probe measurement thus gives access
199
+ to the electron temperature dynamics after photoexcitation (Fig. 2b).
200
+ Regardless of the medium that the graphene is in contact with, the electronic temperature T(t)
201
+ exhibits a relaxation that can be approximated by an exponential function : ∆T(t) = T(t) − T0 =
202
+ ∆T0e−t/τ. This allows us to extract the cooling times τ for the different liquids and different initial
203
+ electronic temperatures (determined by the excitation laser fluence), displayed in Fig. 2c. We
204
+ observe that the cooling time is longer for an initially hotter electron distribution, in agreement
205
+ with previous reports [20]. Now, for all initial temperatures, we consistently observe the same
206
+ dependence of the cooling time on the sample’s liquid environment.
207
+ In the presence of water
208
+ (H2O) and heavy water (D2O), the graphene electrons cool faster than they do intrinsically, in an
209
+ inert nitrogen atmosphere. Conversely, methanol and ethanol have almost no effect on the electron
210
+ cooling time. Interestingly, we observe an isotope effect in the electron cooling process: there is
211
+ a difference in the cooling times in the presence of H2O and D2O that well exceeds experimental
212
+ uncertainties.
213
+ We are thus led to hypothesize, as anticipated above, that the liquid provides the electrons with
214
+ a supplementary cooling pathway, which, in the case of water, has an efficiency comparable to the
215
+ intrinsic cooling pathway. We then interpret the faster cooling as a signature of "quantum" electron-
216
+ liquid energy transfer. We assess the pertinence of this hypothesis by developing a complete theory
217
+ of quantum energy transfer at the solid-liquid interface.
218
+ Theoretical framework
219
+ In order to tackle the interaction between a classical liquid and an electronic system whose
220
+ behavior is intrinsically quantum, we describe the liquid in a formally quantum way. Following
221
+ ref. [10], we represent the liquid’s charge density as a free fluctuating field with prescribed corre-
222
+
223
+ 6
224
+ lation functions. This naturally leads to a Fourier-space description of the solid-liquid interface
225
+ in terms of its collective modes, rather than the usual molecular scale interactions. Within this
226
+ description, the quantum solid-liquid energy transfer amounts to electron relaxation upon coupling
227
+ to a bosonic bath, a problem that has been extensively studied in condensed matter systems [32].
228
+ Interestingly, in the case of graphene, many of these studies are carried out within a single-particle
229
+ Boltzmann formalism, which may incorporate multiple screening effects only in an ad hoc fash-
230
+ ion [20, 28, 33]. These effects turn out to be crucial for the solid-liquid system under consideration:
231
+ we have therefore developed an ab initio theory of solid-liquid heat transfer based on the non-
232
+ equilibrium Keldysh formalism [34], which has only very recently been considered for problems of
233
+ interfacial heat transfer [35]. Our computation, detailed in the SI Sec. 2.2, is closely analogous to
234
+ the one carried out for quantum friction in ref. [10]. The theoretical framework can formally apply
235
+ to fully non-equilibrium situations and take interactions into account to arbitrary order. However,
236
+ to obtain a closed-form result, we restrict ourselves to a two-temperature model, where the liquid
237
+ and the solid are assumed to be internally equilibrated at temperatures Tℓ and Te respectively. Fur-
238
+ thermore, we take electron-electron and electron-liquid Coulomb interactions into account at the
239
+ Random Phase Approximation (RPA) level. We these assumptions, we obtain the electron-liquid
240
+ energy transfer rate as
241
+ QQ =
242
+ 1
243
+ 2π3
244
+
245
+ dq
246
+ � +∞
247
+ 0
248
+ dω ℏω[nB(ω, Te) − nB(ω, Tℓ)]Im [ge(q, ω)]Im [gℓ(q, ω)]
249
+ |1 − ge(q, ω)gℓ(q, ω)|2 ,
250
+ (3)
251
+ consistently with the general form anticipated in Eq. (2). Here, nB(ω, T) = 1/(eℏω/T − 1) is the
252
+ Bose distribution and the ge,ℓ are surface response functions of the solid and the liquid, respectively.
253
+ These are analogues of the dielectric function for semi-infinite media, whose precise definition is
254
+ given in the SI, Sec.
255
+ 2.3.
256
+ For the liquids under consideration, it will be sufficient to use the
257
+ long-wavelength-limit expression of the surface response function:
258
+ gℓ(q → 0, ω) = ϵℓ(ω) − 1
259
+ ϵℓ(ω) + 1,
260
+ (4)
261
+ where ϵℓ(ω) is the liquid’s bulk dielectric function. For two-dimensional graphene, we show in the
262
+ SI (Sec. 2.3) that the surface response function can be expressed as
263
+ ge(q, ω) = − e2
264
+ 2ϵ0qχ(q, ω),
265
+ (5)
266
+ where χ(q, ω) is graphene’s charge susceptibility. We note that the result in Eq. (3) has been derived
267
+ for two solids separated by a vacuum gap in the framework of fluctuation-induced electromagnetic
268
+ phenomena [26, 36, 37]; we believe, however, that the framework we provide is better suited to the
269
+ solid-liquid system under consideration.
270
+
271
+ 7
272
+ Coulomb
273
+ interaction
274
+ Surface
275
+ plasmon
276
+ Electron
277
+ cloud
278
+ Hindered rotation
279
+ (libration)
280
+ a
281
+ 0
282
+ 0.1
283
+ 0.2
284
+ 0.3
285
+ 0.4
286
+ 0.5
287
+ Wavevector (nm-1)
288
+ 0
289
+ 0.05
290
+ 0.1
291
+ 0.15
292
+ 0.2
293
+ Frequency (eV)
294
+ Dirac cone
295
+ Plasmon-hydron
296
+ resonance
297
+ Te = 623 K
298
+ Cooling rate (1/ps)
299
+ Total rate (experiment)
300
+ Liquid contribution (theory)
301
+ N2
302
+ H2O
303
+ D2O
304
+ Methanol
305
+ Ethanol
306
+ 0
307
+ 0.1
308
+ 0.2
309
+ 0.3
310
+ 0.4
311
+ 0.5
312
+ Wavevector (nm-1)
313
+ 0
314
+ 0.05
315
+ 0.1
316
+ 0.15
317
+ 0.2
318
+ Frequency (eV)
319
+ Te = 623 K
320
+ Dirac cone
321
+ 0.05
322
+ 0.1
323
+ 0.15
324
+ 0.2
325
+ Frequency (eV)
326
+ 0
327
+ 0.1
328
+ 0.2
329
+ 0.3
330
+ 0.4
331
+ Surface excitation spectrum
332
+ H2O
333
+ D2O
334
+ Methanol
335
+ Ethanol
336
+ b
337
+ c
338
+ 0.5
339
+ 0.6
340
+ 0.7
341
+ 0.8
342
+ 0
343
+ 0.2
344
+ 0.4
345
+ 0.6
346
+ 0.8
347
+ 1
348
+ Cooling rate (1/ps)
349
+ N2
350
+ H2O
351
+ D2O
352
+ Methanol
353
+ Ethanol
354
+ d
355
+ e
356
+ f
357
+ Plasmon
358
+ 10
359
+ 20
360
+ 30
361
+ 40
362
+ 50
363
+ Frequency (THz)
364
+ FIG. 3. Mechanism of electron-liquid heat transfer. a. Surface excitation spectra Im [gℓ(ω)] of the
365
+ different liquids under study obtained according to Eq. (4) from the experimentally-measured bulk dielectric
366
+ permittivities. The arrows indicate the libration modes of H2O and D2O. b. Graphene surface excitation
367
+ spectrum Im [ge(q, ω)], calculated at a chemical potential µ = 100 meV and temperature Te = 623 K.
368
+ The main feature is the collective plasmon mode. c. Theoretical prediction for the graphene-water energy
369
+ transfer rate resolved in frequency-wavevector space. The main contribution originates from a resonance
370
+ between the graphene plasmon mode and the water libration mode. d. Experimentally-measured electron
371
+ cooling rate in the presence of the various liquids. e. Theoretical prediction for the liquid contribution
372
+ to the electron cooling rate, reproducing the experimentally-observed trend in terms of the nature of the
373
+ liquid. The symbol size in the vertical direction represents the variation in the theoretical prediction when
374
+ the graphene chemical potential spans the range [100 meV, 180 meV]. f. Schematic of the water-mediated
375
+ electron cooling mechanism inferred from the combination of theoretical and experimental results.
376
+ The
377
+ cooling proceeds through the Coulomb interaction between the graphene plasmon mode and the hindered
378
+ molecular rotations (librations) in water.
379
+ Plasmon-hydron resonance
380
+ If the interaction with the liquid is the only mechanism for electron relaxation, our result in
381
+ Eq. (3) determines the time evolution of the electron temperature according to
382
+ C(Te)dTe(t)
383
+ dt
384
+ = −QQ(Te, Tℓ),
385
+ (6)
386
+
387
+ 8
388
+ where C(Te) is the graphene electronic heat capacity at temperature Te. This allows us to de-
389
+ fine the liquid contribution to the electron cooling rate as 1/τ = QQ(Te, Tℓ)/(C(Te) × (Te − Tℓ)),
390
+ which may be compared with the experimental results. The quantitative evaluation of τ requires
391
+ the surface response functions of graphene and of the various liquids. We compute the graphene
392
+ surface response function according to Eq. (5) by numerical integration [38], at the chemical po-
393
+ tential determined for our samples by Raman spectroscopy (SI Sec.
394
+ 1.4).
395
+ For the liquids, we
396
+ use the expression in Eq. (4), with the bulk dielectric function determined by infrared absorption
397
+ spectroscopy (Fig. 3a and SI Sec. 1.3).
398
+ Our theoretical prediction for the various liquids’ contribution to the electron cooling rate is
399
+ shown in Fig. 3e. Quantitatively, we obtain cooling rates of the order of 1 ps−1, in excellent
400
+ agreement with the experimentally observed range (Fig.
401
+ 3d) : our theory indicates that the
402
+ quantum electron-liquid cooling is a sufficiently efficient process to compete with intrinsic electron
403
+ relaxation mechanisms. Moreover, our theory reproduces the experimentally observed trend in
404
+ cooling rates, with a significant liquid contribution arising only for water and heavy water; the
405
+ dependence of the cooling rate on initial electron temperature is also well-reproduced (Fig. S7).
406
+ Finally, the theory reproduces the isotope effect, that is, the slightly slower cooling observed with
407
+ D2O as compared to H2O.
408
+ We may now exploit the theory to gain insight into the microscopic mechanism of the liquid-
409
+ mediated cooling process. In Eq. (3), the difference of Bose distributions decreases exponentially
410
+ at frequencies above Te/ℏ ∼ 100 meV. At frequencies below 100 meV, the graphene spectrum is
411
+ dominated by a plasmon mode, that corresponds to the collective oscillation of electrons in the
412
+ plane of the graphene layer [38] (Fig. 3b). In this same frequency range, water and heavy water
413
+ have a high spectral density due to their libration mode, that corresponds to hindered molecular
414
+ rotations [39] (Fig. 3a). As a result, the energy transfer rate resolved in frequency-momentum
415
+ space (the integrand in Eq. (3), plotted in Fig. 3c) has its main contribution from the spectral
416
+ region where the two modes overlap. We conclude that the particularly efficient electron-water
417
+ cooling is due to a resonance between the graphene plasmon mode and the water libration mode.
418
+ This conclusion is further supported by the isotope effect. Indeed, the libration of the heavier D2O
419
+ is at slightly lower frequency than that of the lighter H2O, and a higher frequency mode makes a
420
+ larger contribution to the cooling rate due to the factor ℏω in Eq. (3). Physically, the quasiparticle
421
+ tunneling rates are almost the same for the graphene-H2O and graphene-D2O systems, but in the
422
+ case of H2O each quasiparticle carries more energy. Overall, our experiments evidence a direct
423
+ interaction between the graphene plasmon and water libration, as shown schematically in Fig. 3f.
424
+
425
+ 9
426
+ Cooling rate (1/ps)
427
+ Renormalized
428
+ No e-e interactions
429
+ Bare
430
+ 0
431
+ 0.1
432
+ 0.2
433
+ 0.3
434
+ 0.4
435
+ 0.5
436
+ Wavevector (nm-1)
437
+ 0
438
+ 0.05
439
+ 0.1
440
+ 0.15
441
+ 0.2
442
+ Frequency (eV)
443
+ Te = 623 K
444
+ b
445
+ Full theory
446
+ First order
447
+ a
448
+ 0
449
+ 0.1
450
+ 0.2
451
+ 0
452
+ 20
453
+ 40
454
+ 60
455
+ Energy transfer rate (meV·Å2·s-1)
456
+ First order
457
+ Full theory
458
+ Frequency (eV)
459
+ c
460
+ H2O
461
+ D2O
462
+ Methanol
463
+ Ethanol
464
+ 10-1
465
+ 100
466
+ 101
467
+ 0
468
+ 0.1
469
+ 0.2
470
+ Frequency (eV)
471
+ FIG. 4. Strong plasmon-hydron coupling. a. Theoretical prediction for the graphene electron cooling
472
+ rate in contact with different liquids, within different treatments of interactions. The cooling rate is strongly
473
+ overestimated if no electron-electron interactions are taken into account (blue symbols), and underestimated
474
+ if the electron-liquid interactions are considered only to first order (orange symbols). b. Graphene surface
475
+ excitation spectrum Im [ge(q, ω)], calculated at a chemical potential µ = 180 meV and temperature Te =
476
+ 623 K, renormalized by the presence of water according to Eq. (7). The white dashed lines are guides to
477
+ the eye showing the strongly-coupled plasmon-hydron mode. Inset: bare and renormalized graphene spectra
478
+ at fixed wavevector q0 = 0.15 nm−1. c. Comparison between the spectrally resolved energy transfer rates
479
+ obtained to first order and to arbitrary order in the solid-liquid interaction. Higher-order effects enhance
480
+ the energy transfer rate at low frequencies.
481
+ Interactions and strong coupling
482
+ The combination of theory and experiment allows us to identify the key physical ingredients
483
+ that are required to account for energy transfer at the water-graphene interface. First, our results
484
+ reveal that electron-electron interactions are crucial, since they produce the plasmon mode that
485
+ is instrumental to the energy transfer mechanism. Indeed, applying our theory to non-interacting
486
+ graphene would result in a strongly overestimated liquid contribution to the cooling rate (Fig. 4a).
487
+ This precludes single-particle Boltzmann approaches – such as those that have been used for the
488
+ electron-phonon interaction in graphene [20, 28] – for accurately describing the water-graphene
489
+ interaction.
490
+ Furthermore, the detailed examination of our theoretical result reveals that the efficiency of the
491
+ electron-water cooling is enhanced by the formation of a strongly-coupled plasmon-hydron mode.
492
+ Indeed, the result in Eq. (3) involves bare surface response functions, without any renormalization
493
+ due to the presence of the other medium.
494
+ However, the denominator |1 − gegℓ|2 accounts for
495
+ solid-liquid interactions to arbitrary order (at the RPA level) and contains the signature of any
496
+
497
+ 10
498
+ potential strong coupling effects. We find that these effects are indeed important, as removing the
499
+ denominator in Eq. (3) (that is, treating the electron-liquid interactions only to first order) results
500
+ in under-estimation of the liquid-mediated cooling rate by about 30% (Fig. 4a) . In order to gain
501
+ physical insight into the nature of these higher order effects, we may compute the graphene surface
502
+ response function renormalized by the presence of water, which is given by (see SI Sec. 2.3)
503
+ ˜ge(q, ω) =
504
+ ge(q, ω)
505
+ 1 − ge(q, ω)gℓ(q, ω).
506
+ (7)
507
+ The renormalized surface excitation spectrum Im [˜ge(q, ω)] is plotted in Fig. 4b, for a chemical
508
+ potential µ = 180 meV. We observe that the graphene plasmon now splits into two modes, which
509
+ are both a mixture of the the bare plasmon and water libration. These are in fact analogous to
510
+ the coupled plasmon-phonon modes that have been predicted [7] and measured [8, 9] for graphene
511
+ on a polar substrate. It can be seen in the inset of Fig. 4b that coupling to the water modes also
512
+ increases the spectral density at low frequencies (below the plasmon peak), compared to the bare
513
+ graphene response function. This is in fact the higher-order effect that is mainly responsible for
514
+ the enhancement of the electron cooling rate. As shown in Fig. 4c, taking into account solid-liquid
515
+ interactions to arbitrary order mainly enhances the contribution of low frequencies to the energy
516
+ transfer.
517
+ Conclusions
518
+ We have carried out ultrafast measurements of electron relaxation in graphene, revealing signa-
519
+ tures of direct energy transfer between the graphene electrons and the surrounding liquid. These
520
+ results speak to the importance of electronic degrees of freedom in the dynamics of solid-liquid
521
+ interfaces, particularly interfaces between water and carbon-based materials. Despite conventional
522
+ theories and simulations that describe the interface in terms of atomic-scale Lennard-Jones poten-
523
+ tials [24, 25], or with electronic degrees of freedom in the Born-Oppenheimer approximation [40, 41],
524
+ here we demonstrate experimentally that the dynamics of the water-graphene interface need to be
525
+ considered at the level of collective modes in the terahertz frequency range. In particular, our semi-
526
+ quantitative theoretical analysis attributes the observed cooling dynamics to the strong coupling
527
+ between the graphene plasmon and water libration modes.
528
+ The experimental observation of such a collective mode interaction supports the proposed mech-
529
+ anism for quantum friction at the water-carbon interface, which is precisely based on momentum
530
+ transfer between collective modes [10]. The near-quantitative agreement between the experiment
531
+
532
+ 11
533
+ and theory obtained for energy transfer suggests that a similar agreement should be achieved for
534
+ momentum transfer. We note, however, that quantum friction of water on graphene is typically
535
+ negligible compared to the classical surface roughness contribution, and it is only expected to play
536
+ a role in the presence of a phonon wind [12]. Quantum friction has been predicted to be much
537
+ more important for water on graphite due to the difference in plasmon dispersion between the two
538
+ materials [10]: the investigation of electron-water energy transfer in the case of carbon multilayers
539
+ will be the subject of future work.
540
+ Our results provide yet another example of the water-carbon interface outperforming other solid-
541
+ liquid systems [42]. Indeed, the electronic contribution to the graphene-water thermal boundary
542
+ conductance is as high as λ = 0.25 MW · m−2 · K−1, exceeding the value obtained with the
543
+ other investigated liquids by at least a factor of 2.
544
+ This even exceeds the thermal boundary
545
+ conductance obtained for the graphene-hBN interface, at which particularly fast "super-Planckian"
546
+ energy transfer was observed [33]. Our investigation thus suggests that the density of modes in the
547
+ terahertz frequency range is a key determinant for the thermal conductivity of graphene-containing
548
+ composite materials.
549
+ Acknowledgements
550
+ We acknowledge financial support from the MaxWater initiative of the Max Planck Society. We
551
+ thank Xiaoyu Jia and Hai Wang for carrying out preliminary experiments, and Maksim Grechko
552
+ and Detlev-Walter Scholdei for assisting with the FTIR measurements. X.Y. is grateful for support
553
+ from the China Scholarship Council. K.J.T. acknowledges funding from the European Union’s
554
+ Horizon 2020 research and innovation program under Grant Agreement No. 804349 (ERC StG
555
+ CUHL), RYC fellowship No. RYC-2017-22330, and IAE project PID2019-111673GB-I00. N.K.
556
+ acknowledges support from a Humboldt fellowship.
557
+ The Flatiron Institute is a division of the
558
+ Simons Foundation. We thank Lucy Reading-Ikkanda (Simons Foundation) for help with figure
559
+ preparation.
560
+ [1] Hwang, H. Y. et al. Nonlinear Thz conductivity dynamics in p-type CVD-grown graphene. Journal of
561
+ Physical Chemistry B 117, 15819–15824 (2013).
562
+ [2] Hafez, H. A. et al. Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac
563
+ fermions. Nature 561, 507–511 (2018).
564
+
565
+ 12
566
+ [3] Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).
567
+ [4] Romagnoli, M. et al. Graphene-based integrated photonics for next-generation datacom and telecom.
568
+ Nature Reviews Materials 3, 392–414 (2018).
569
+ [5] Muench, J. E. et al. Waveguide-integrated, plasmonic enhanced graphene photodetectors. Nano Letters
570
+ 19, 7632–7644 (2019).
571
+ [6] Pisana, S. et al. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nature
572
+ Materials 6, 198–201 (2007).
573
+ [7] Hwang, E. H., Sensarma, R. & Sarma, S. D. Plasmon-phonon coupling in graphene. Physical Review
574
+ B 82, 195406 (2010).
575
+ [8] Dai, S. et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nature
576
+ Nanotechnology 10, 682–686 (2015).
577
+ [9] Koch, R. et al. Robust phonon-plasmon coupling in quasifreestanding graphene on silicon carbide.
578
+ Physical Review Letters 116, 106802 (2016).
579
+ [10] Kavokine, N., Bocquet, M.-L. & Bocquet, L. Fluctuation-induced quantum friction in nanoscale water
580
+ flows. Nature 602, 84–90 (2022).
581
+ [11] Bui, A. T., Thiemann, F. L., Michaelides, A. & Cox, S. J. Classical quantum friction at water-carbon
582
+ interfaces. arXiv 2210.14040 .
583
+ [12] Coquinot, B., Bocquet, L. & Kavokine, N. Quantum feedback at the solid-liquid interface: flow-induced
584
+ electronic current and negative friction. arXiv 2205.03250 .
585
+ [13] Marcotte, A. et al.
586
+ Strong electronic winds blowing under liquid flows on carbon surfaces.
587
+ arXiv
588
+ 2205.05037 .
589
+ [14] Maali, A., Cohen-Bouhacina, T. & Kellay, H. Measurement of the slip length of water flow on graphite
590
+ surface. Applied Physics Letters 92, 053101 (2008).
591
+ [15] Secchi, E. et al. Massive radius-dependent flow slippage in carbon nanotubes. Nature 537, 210–213
592
+ (2016).
593
+ [16] Xie, Q. et al.
594
+ Fast water transport in graphene nanofluidic channels.
595
+ Nature Nanotechnology 13,
596
+ 238–245 (2018).
597
+ [17] George, P. A. et al. Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and
598
+ recombination dynamics in epitaxial graphene. Nano Letters 8, 4248–4251 (2008).
599
+ [18] Kar, S., Su, Y., Nair, R. R. & Sood, A. K. Probing photoexcited carriers in a few-layer MoS2 laminate
600
+ by time-resolved optical pump terahertz probe spectroscopy. ACS Nano 9, 12004–12010 (2015).
601
+ [19] Mihnev, M. T. et al. Microscopic origins of the terahertz carrier relaxation and cooling dynamics in
602
+ graphene. Nature Communications 7, 11617 (2016).
603
+ [20] Pogna, E. A. et al.
604
+ Hot-carrier cooling in high-quality graphene is intrinsically limited by optical
605
+ phonons. ACS Nano 15, 11285–11295 (2021).
606
+ [21] Zheng, W. et al. Band transport by large Fröhlich polarons in MXenes. Nature Physics 18, 544–550
607
+ (2022).
608
+
609
+ 13
610
+ [22] Tielrooij, K. J. et al. Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic
611
+ phonon coupling. Nature Nanotechnology 13, 41–46 (2018).
612
+ [23] Phillpot, S. R. & McGaughey, A. J. Introduction to thermal transport. Materials Today 8, 18–20
613
+ (2005).
614
+ [24] Gutierrez-Varela, O., Merabia, S. & Santamaria, R. Size-dependent effects of the thermal transport at
615
+ gold nanoparticle-water interfaces. The Journal of Chemical Physics 157, 084702 (2022).
616
+ [25] Herrero, C., Joly, L. & Merabia, S. Ultra-high liquid-solid thermal resistance using nanostructured gold
617
+ surfaces coated with graphene. Applied Physics Letters 120, 171601 (2022).
618
+ [26] Volokitin, A. I. & Persson, B. N. Near-field radiative heat transfer and noncontact friction. Reviews of
619
+ Modern Physics 79, 1291–1329 (2007).
620
+ [27] Biehs, S.-A. et al. Near-field radiative heat transfer in many-body systems. Reviews of Modern Physics
621
+ 93, 025009 (2021).
622
+ [28] Bistritzer, R. & MacDonald, A. H. Electronic cooling in graphene. Physical Review Letters 102, 206410
623
+ (2009).
624
+ [29] Brida, D. et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nature Commu-
625
+ nications 4, 1987 (2013).
626
+ [30] Tomadin, A. et al. The ultrafast dynamics and conductivity of photoexcited graphene at different
627
+ Fermi energies. Science Advances 4, eaar5313 (2018).
628
+ [31] Massicotte, M., Soavi, G., Principi, A. & Tielrooij, K. J. Hot carriers in graphene-fundamentals and
629
+ applications. Nanoscale 13, 8376–8411 (2021).
630
+ [32] Mahan, G. D. Many-Particle Physics, chap. 7 (Springer, 2000).
631
+ [33] Principi, A. et al. Super-Planckian electron cooling in a van der Waals stack. Physical Review Letters
632
+ 118, 126804 (2017).
633
+ [34] Rammer, J. & Smith, H. Quantum field-theoretical methods in transport theory of metals. Reviews of
634
+ Modern Physics 58, 323–359 (1986).
635
+ [35] Wise, J. L., Roubinowitz, N., Belzig, W. & Basko, D. M. Signature of resonant modes in radiative heat
636
+ current noise spectrum. Physical Review B 106, 165407 (2022).
637
+ [36] Pendry, J. B. Radiative exchange of heat between nanostructures. Journal of Physics: Condensed
638
+ Matter 11, 6621–6633 (1999).
639
+ [37] Volokitin, A. I. & Persson, B. N. J. Radiative heat transfer between nanostructures. Physical Review
640
+ B 63, 205404 (2001).
641
+ [38] Wunsch, B., Stauber, T., Sols, F. & Guinea, F. Dynamical polarization of graphene at finite doping.
642
+ New Journal of Physics 8, 318–318 (2006).
643
+ [39] Carlson, S., Brunig, F. N., Loche, P., Bonthuis, D. J. & Netz, R. R. Exploring the absorption spectrum
644
+ of simulated water from MHz to infrared. Journal of Physical Chemistry A 124, 5599–5605 (2020).
645
+ [40] Tocci, G., Joly, L. & Michaelides, A. Friction of water on graphene and hexagonal boron nitride from
646
+ ab initio methods: Very different slippage despite very similar interface structures. Nano Letters 14,
647
+
648
+ 14
649
+ 6872–6877 (2014).
650
+ [41] Tocci, G., Bilichenko, M., Joly, L. & Iannuzzi, M. Ab initio nanofluidics: disentangling the role of
651
+ the energy landscape and of density correlations on liquid/solid friction. Nanoscale 12, 10994–11000
652
+ (2020).
653
+ [42] Bocquet, L. Nanofluidics coming of age. Nature materials 19, 254–256 (2020).
654
+
655
+ Supplementary information for:
656
+ Electron cooling in graphene
657
+ enhanced by plasmon-hydron resonance
658
+ X. Yu, A. Principi, K.-J. Tielrooij, M. Bonn and N. Kavokine
659
+ -
660
+ Contents
661
+ 1
662
+ Experimental methods
663
+ 1
664
+ 1.1
665
+ Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
666
+ 1
667
+ 1.2
668
+ OPTP measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
669
+ 1
670
+ 1.3
671
+ FTIR measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
672
+ 3
673
+ 1.4
674
+ Raman measurements
675
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
676
+ 5
677
+ 2
678
+ Theoretical methods
679
+ 5
680
+ 2.1
681
+ Interaction Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
682
+ 6
683
+ 2.2
684
+ General theory of electron-boson heat transfer . . . . . . . . . . . . . . . . . . . . .
685
+ 7
686
+ 2.3
687
+ Application to the graphene-liquid system . . . . . . . . . . . . . . . . . . . . . . .
688
+ 8
689
+ arXiv:2301.05095v1 [cond-mat.mes-hall] 12 Jan 2023
690
+
691
+ Figure S1: Schematic of the OPTP setup.
692
+ 1
693
+ Experimental methods
694
+ 1.1
695
+ Sample preparation
696
+ CVD-grown graphene samples supported on 1 mm-thick copper substrates were purchased from
697
+ Grolltex Inc. The MilliQ water (18.2 MΩ · cm) was used as obtained from the machine. Cellulose
698
+ acetate butyrate (CAB, average Mn ∼ 12000, Sigma-Aldrich), ammonium persulfate (APS, ACS
699
+ reagent, ≥ 98%, Honeywell FlukaTM) are used as received. CAB was dissolved in ethyl acetate
700
+ (Sigma-Aldrich), producing a 30 mg/mL solution. APS was dissolved in MilliQ water to prepare
701
+ 1 M and 0.1 M solutions. The detachable fused silica flow cell was ordered from FireflySci, Inc.
702
+ The flow cell was cleaned by sonication in a hot acetone and ethanol baths for 10 minutes each
703
+ before using.
704
+ We transferred graphene onto the front substrate of the flow cell following a wet transfer
705
+ procedure [1, 2].
706
+ First, we spin-coated graphene samples with CAB at 4000 rpm and baked
707
+ them at 180◦C for 3 minutes. Then, to remove unnecessary graphene on the backside of copper
708
+ substrates, the CAB-coated graphene samples were immersed into a 1 M solution of APS for 10
709
+ minutes and subsequently rinsed with MilliQ water five times. The copper substrates were then
710
+ fully etched by 0.1 M APS solution for 2 hours, followed by a five times rinse with MilliQ water
711
+ to remove the attached ions. Then, the floating CAB-graphene monolayers were "fished" onto the
712
+ flow cell, and the CAB coating was removed by soaking in acetone for 2 hours and in isopropanol
713
+ for one hour.
714
+ 1.2
715
+ OPTP measurements
716
+ We probed electron relaxation in graphene using optical pump - terahertz probe (OPTP) spec-
717
+ troscopy. A schematic of the OPTP setup is shown in Fig. S1. The fundamental laser output was
718
+ generated by a regenerative Ti:sapphire amplifier system, which produces 5 W, 50 fs pulses at a
719
+ repetition rate of 1 kHz and a central wavelength of 800 nm. The generated pulses were then split
720
+ into three branches for THz generation, sampling, and optical excitation. A single-cycle THz pulse
721
+ of ∼ 1 ps duration was generated by pumping a 1 mm thick (110) ZnTe crystal with the 800 nm
722
+ fundamental pulses via optical rectification.
723
+ We photoexcited graphene to generate hot carriers by using 800 nm pulses with a diameter of
724
+ 1
725
+
726
+ X
727
+ Polarizer
728
+ Delay stage
729
+ Beam splitter
730
+ P
731
+ Chopper
732
+ ZnTe 入/4
733
+ Wollaston
734
+ sample
735
+ prism
736
+ White foam
737
+ ZnTe
738
+ Differential
739
+ detector0
740
+ 2
741
+ 4
742
+ 6
743
+ 8
744
+ 0.00
745
+ 0.02
746
+ 0.04
747
+ 0.06
748
+ 0.08
749
+ Pump-probe delay (ps)
750
+ N2
751
+ Fluence (
752
+ 2)
753
+ 5.86
754
+ 4.32
755
+ 2.85
756
+ 1.50
757
+ 0.89
758
+ 0.29
759
+ c
760
+ b
761
+ a
762
+ 0.00
763
+ 0.02
764
+ 0.04
765
+ 0.06
766
+ 0.08
767
+ 0
768
+ 200
769
+ 400
770
+ 600
771
+ 800
772
+ 1000
773
+ 1200
774
+ Peak value of
775
+ 0
776
+ 1
777
+ 2
778
+ 3
779
+ 4
780
+ 5
781
+ 6
782
+ 0.00
783
+ 0.02
784
+ 0.04
785
+ 0.06
786
+ 0.08
787
+
788
+
789
+ Peak value of
790
+ Fluence (μJ/cm2)
791
+ 0
792
+ 200
793
+ 400
794
+ 600
795
+ 800
796
+ 1000
797
+ 1200
798
+ T e-T l (K)
799
+ T e-T l (K)
800
+ ∆E/E
801
+ ∆E/E
802
+ ∆E/E
803
+ μJ/cm
804
+ Figure S2: Electron temperature of the pumped graphene layer. a.The OPTP traces
805
+ of graphene in a nitrogen atmosphere with various excitation fluences. b. Peak value of ∆E/E
806
+ as a function of laser fluence and corresponding electron temperature. c. Increase in electron
807
+ temperature (Te) with respect to ambient temperature Tℓ as a function of ∆E/E: a linear relation
808
+ is observed.
809
+ 5 mm to ensure a homogeneously photoexcited region. The transmitted THz wave was then recol-
810
+ limated and focused onto a ZnTe detection crystal together with an 800 nm sampling beam, where
811
+ the THz electrical field waveform was detected using the electro-optic sampling method [3]. The
812
+ THz pulse induces birefringence in the ZnTe detection crystal, and the polarization of the sampling
813
+ beam is thus changed. After passing through a quarter-wave plate, the sampling beam changes
814
+ from perfectly circular to slightly elliptical shape. The s and p components of this elliptically
815
+ polarized pulse are separated by a Wollaston prism, and the difference of these two components
816
+ is detected by a balance diode. The signal is collected by a lock-in amplifier that is phase-locked
817
+ to an optical chopper that modulates either the THz generation beam or the pump beam at a
818
+ frequency of 500 Hz. The ultrafast time evolution of the peak intensity of the THz field is tracked
819
+ by varying the time delay between optical pump and THz probe [3, 4]. The setup was purged with
820
+ dry nitrogen during the measurement to avoid the absorption of water vapor.
821
+ The raw data consists in time traces of the pump-induced transmission change at the peak of
822
+ the THz waveform (∆E), normalized by the peak value of the THz transmission without excitation
823
+ (E) (Fig. S2a). Assuming that a fraction γ = 1.6% of the pump pulse energy is absorbed by the
824
+ graphene electrons [5], the maximum electron temperature reached after photoexcitation can be
825
+ related to the pump laser fluence F according to γF = C(Te)Te, where C(Te) is the graphene heat
826
+ capacity at temperature Te. In the limit where the graphene Fermi energy µ is larger than kBTe
827
+ (as relevant for our samples), we may use the approximate expression [6, 7, 8]
828
+ C(Te) = αTe,
829
+ with
830
+ α = 2π
831
+ 3
832
+ k2
833
+
834
+ (ℏvF)2 ,
835
+ (1)
836
+ where vF is graphene’s constant Fermi velocity. Then,
837
+ Te = T0
838
+
839
+ 1 + 2γF
840
+ αT 2
841
+ 0
842
+ �1/2
843
+ ,
844
+ (2)
845
+ where T0 is ambient temperature. The peak value of ∆E/E after photoexcitation increases with
846
+ laser fluence.
847
+ Upon rescaling, we find that the plots of ∆E/E vs.
848
+ F and Te vs.
849
+ F collapse
850
+ upon each other (Fig. S2b), so that we may consider that ∆E/E is proportional to the electron
851
+ temperature within the range of temperatures probed in the experiment, as shown explicitly in
852
+ Fig. S2c.
853
+ The thickness of the liquid layer was set to 50 µm by the geometry of the flow cell. The liquids
854
+ were exchanged using a syringe and the spectroscopic measurement was always carried out at
855
+ 2
856
+
857
+ 0
858
+ 2
859
+ 4
860
+ 6
861
+ 8
862
+ 10
863
+ 0.0
864
+ 0.2
865
+ 0.4
866
+ 0.6
867
+ 0.8
868
+ 1.0
869
+ no cover
870
+ with cover
871
+ 10 μm
872
+ 20 μm
873
+ 30 μm
874
+ 40 μm
875
+ 50 μm
876
+ 60 μm
877
+
878
+ 1.50
879
+ 1.55
880
+ 1.60
881
+ 1.65
882
+ 1.70
883
+ 1.75
884
+ 1.80
885
+ Day 1
886
+ Day 2
887
+ Day 3
888
+
889
+
890
+ no cover
891
+ with cover
892
+ 10 μm
893
+ 20 μm
894
+ 30 μm
895
+ 40 μm
896
+ 50 μm
897
+ 60 μm
898
+ Cooling time (ps)
899
+ Normalized ∆E/E
900
+ b
901
+ a
902
+ Pump-probe delay (ps)
903
+ Figure S3: Control experiments. a. The OPTP traces of graphene with varying water layer
904
+ thickness. b. Cooling times obtained by exponential fitting of the data in panel a.
905
+ the same spot of the graphene sample. To exclude the effect of beam dispersion in the different
906
+ liquids on the results, we repeated the measurement with different water layer thickness and using
907
+ different Teflon spacers between two fused silica windows (Fig. S3).
908
+ 1.3
909
+ FTIR measurements
910
+ We measured the dielectric functions of water, heavy water, ethanol and methanol using Fourier-
911
+ transform infrared (FTIR) spectroscopy.
912
+ We measured the transmitted and reflected infrared
913
+ intensities both for an empty cell (It,cell, Ir,cell) and for a cell filled with liquid (It,liquid, Ir,liquid)
914
+ thanks to an A510/Q-T Reflectance and Transmittance accessory placed in a commercial VERTEX
915
+ 70 FTIR spectrometer (Fig. S4a). In order to avoid disassembling the cell when changing liquids,
916
+ we carried out the measurements inside a flow cell, made out of two-silicon wafers separated by a
917
+ 10 µm Teflon spacer. We calculated the absorbance A(ω) according to
918
+ A(ω) = − log10
919
+
920
+ It,solution(ω)
921
+ It,cell(ω) + Ir,cell(ω) − Ir,solution(ω)
922
+
923
+ .
924
+ (3)
925
+ The H2O and D2O show saturated absorption in the range of 3100-3600 and 2200-2700 cm−1,
926
+ respectively. We obtained the data in this frequency range by measuring the spectra without any
927
+ spacer between two CaF2 windows and then rescaled the spectra to overlap with the data with
928
+ spacer (Fig. S4b). The imaginary part k(ω) of the refractive index is related to the absorbance by
929
+ k(ω) = A(ω)ln(10)
930
+ 4πωℓ ,
931
+ (4)
932
+ where ℓ is the sample thickness. To accurately determine the thickness of the cell, we calculate
933
+ the absorbance of the empty cell without correction for multiple reflections,
934
+ A2(ω) = − log10
935
+
936
+ It,cell(ω)
937
+ It,lamp(ω)
938
+
939
+ .
940
+ (5)
941
+ where It,lamp(ω) is the intensity of the lamp of the FTIR source (Fig. S5a). Fourier transformation
942
+ of this spectrum yields a peak at the time ∆t that light takes to travel twice through the cell (Fig.
943
+ S5b), so that ℓ = c∆t/2 = 10.29 µm. We then obtained the real part of the refractive index
944
+ through a numerical Kramers-Krönig transformation:
945
+ n(ω) = n∞ + 2
946
+ π
947
+ � ∞
948
+ 0
949
+ dω′ k(ω′)
950
+ ω′ − ω,
951
+ (6)
952
+ 3
953
+
954
+ Figure S4: FTIR data analysis. a. Raw intensity data of empty cell and water-filled cell. b.
955
+ Absorbance of H2O and D2O, measured with spacer and without spacer (the latter is rescaled to
956
+ overlap with the former).
957
+ Figure S5: Determination of the cell thickness. a. Absorbance of empty cell. b. Fourier
958
+ transform of the data in panel a.
959
+ 4
960
+
961
+ a 0.20
962
+ celltransmission
963
+ cellreflection
964
+ 0.15
965
+ solutiontransmission
966
+ (a.u.
967
+ solutionreflection
968
+ 0.05
969
+ 0.00
970
+ 1000
971
+ 2000
972
+ 3000
973
+ 4000
974
+ 5000
975
+ 6000
976
+ 7000
977
+ Frequency (cm-1)
978
+ 6
979
+ H,0
980
+ b
981
+ :D20
982
+ 5
983
+ -H,Owospacer(X5.0)
984
+ bsorbance
985
+ -D,Owospacer(X3.3)
986
+ H,O combined
987
+ 3
988
+ D,o combined
989
+ 0
990
+ 1000
991
+ 2000
992
+ 3000
993
+ 4000
994
+ Frequency (cm-1)a
995
+ 1.2
996
+ 007
997
+ 0.06863ps
998
+ 1.0.
999
+ 0.06
1000
+ 0.05
1001
+ Absorbance
1002
+ itensity
1003
+ 0.04
1004
+ 0.6
1005
+ 0.03
1006
+ 0.4
1007
+ 0.02
1008
+ 0.2.
1009
+ 0.01.
1010
+ 0.00
1011
+ 0.0
1012
+ 0
1013
+ 2000
1014
+ 4000
1015
+ 6000
1016
+ 0.04
1017
+ 0.05
1018
+ 0.06
1019
+ 0.07
1020
+ 0.08
1021
+ 0.09
1022
+ Frequency(cm")
1023
+ Time (ps)a
1024
+ b
1025
+ Figure S6: Raman characterization of graphene sample. a. Spatial map of Raman G
1026
+ band frequency for graphene sample in air. b. Distribution of the Raman G band frequency with
1027
+ different liquids placed on the graphene surface.
1028
+ where n∞ is the refractive index in the high frequency limit, which is obtained by the ATAGO
1029
+ Digital Handheld Refractometer: PAL-RI. The measured values for H2O, D2O, methanol, ethanol
1030
+ and isopropanol are 1.333, 1.3291, 1.3285, 1.3604, and 1.3706 respectively.
1031
+ We then obtain the dielectric function ϵ(ω) = ϵ′(ω) + iϵ′′(ω) according to
1032
+
1033
+ ϵ′(ω) = n(ω)2 − k(ω)2
1034
+ ϵ′′(ω) = 2n(ω)k(ω)
1035
+ .
1036
+ (7)
1037
+ 1.4
1038
+ Raman measurements
1039
+ We estimated the Fermi level µ in our liquid-covered graphene samples from the Raman G-band
1040
+ frequency, according to the empirical equation [6]
1041
+ |µ|(eV) = ωG − 1580 cm−1
1042
+ 42 cm−1
1043
+ .
1044
+ (8)
1045
+ An example of a spatial map of the Raman G-band frequency is shown in Fig. S6a. The fre-
1046
+ quency shows spatial inhomogeneities on the µm scale with an amplitude around 10 cm−1. The
1047
+ corresponding distributions are shown in Fig. S6b. The average G-band frequency is essentially
1048
+ independent of the nature of the liquid, which excludes a change in charge carrier density as a
1049
+ possible mechanism for the liquid effect on the electron cooling rate. To take into account the
1050
+ broadness of the distribution, in the theoretical analysis we considered chemical potentials in the
1051
+ range µ = 100 − 180 meV. The theoretical prediction is independent of the electron or hole nature
1052
+ of the charge carriers.
1053
+ 2
1054
+ Theoretical methods
1055
+ In this section, we develop a description of energy transfer between the Dirac fermion charge
1056
+ carriers in graphene and a liquid, treated as a bosonic bath, within the non-equilibrium Keldysh
1057
+ framework of perturbation theory. For the sake of completeness, and in order to show consistency
1058
+ with previous theoretical approaches, we apply the same description to energy transfer between
1059
+ the graphene electrons and its optical phonon modes, showing that our formalism recovers the
1060
+ results that were previously obtained within a Boltzmann equation approach [9].
1061
+ 5
1062
+
1063
+ We use SI units throughout the text. We adopt the following convention for the n-dimensional
1064
+ Fourier transform:
1065
+ ˜f(q) =
1066
+ � +∞
1067
+ −∞
1068
+ dnr f(r)e−iq·r
1069
+ and
1070
+ f(r) =
1071
+ 1
1072
+ (2π)n
1073
+ � +∞
1074
+ −∞
1075
+ dnq ˜f(q)eiq·r.
1076
+ (9)
1077
+ 2.1
1078
+ Interaction Hamiltonian
1079
+ 2.1.1
1080
+ Electron-hydron interaction
1081
+ In this section, r represents a vector in 3D space, and ρ a vector in 2D space.
1082
+ The charge
1083
+ fluctuations of the liquid in the z > 0 half-space couple to the graphene electrons via the Coulomb
1084
+ potential V . In real space, the corresponding Hamiltonian is
1085
+ Hew(t) =
1086
+
1087
+ drdr′nw(r, t)V (r − r′)ne(r, t),
1088
+ (10)
1089
+ where nw and ne are the liquid and graphene instantaneous charge density, respectively.
1090
+ Let
1091
+ c†
1092
+ k,ν, ck,ν be the Dirac fermion creation and annihilation operators in the chiral basis (ν = ±1). A
1093
+ 2D Fourier transformation then yields
1094
+ Hint =
1095
+
1096
+ dq
1097
+ (2π)2
1098
+ e2
1099
+ 2ϵ0qns(q, t)
1100
+
1101
+ k,ν,ν′
1102
+ ⟨k + q, ν|eiqρeqz|k, ν′⟩c†
1103
+ k+q,ν(t)ck,ν′(t),
1104
+ (11)
1105
+ with
1106
+ ns(q) =
1107
+
1108
+
1109
+ � +∞
1110
+ 0
1111
+ dz e−iqρe−qznw(ρ, z, t).
1112
+ (12)
1113
+ As long as we consider wavevectors q such that q−1 is large compared to the extension of the
1114
+ carbon pz orbitals perpendicular to the graphene plane, we may approximate
1115
+ |⟨k + q, ν|eiqρeqz|k, ν′⟩|2 ≈ |⟨k + q, ν|eiqρ|k, ν′⟩|2 = 1
1116
+ 2
1117
+ �1 + νν′ cos(φk+q − φq)
1118
+ � .
1119
+ (13)
1120
+ 2.1.2
1121
+ Electron-phonon interaction
1122
+ Let d†
1123
+ q,α, dq,α be the creation and annihilation operators of phonons in the mode α with frequency
1124
+ ωα. The non-interacting electron-phonon system’s Hamiltonian is
1125
+ H0 =
1126
+
1127
+ k,ν
1128
+ Ek,νc†
1129
+ k,νck,ν +
1130
+
1131
+ q,α
1132
+ ℏωαd†
1133
+ q,αdq,α,
1134
+ (14)
1135
+ where Ek,ν are the band energies, and �
1136
+ k ≡ (1/ABZ)
1137
+
1138
+ BZ dk (ABZ is the area of the 2D Brillouin
1139
+ zone). The electron-phonon interaction Hamiltonian has the general form [10]
1140
+ Hep =
1141
+
1142
+ α
1143
+
1144
+ BZ
1145
+ dq
1146
+ (2π)2
1147
+
1148
+ k,ν,ν′
1149
+ gνν′
1150
+ α,k,k+qc†
1151
+ k+qck(d†
1152
+ q,α + d−q,α),
1153
+ (15)
1154
+ Following [9], we consider the Γ point LO and TO phonons that scatter electrons within one valley,
1155
+ and the K, K’ point LO phonons that scatter electrons between valleys. The electron-phonon
1156
+ matrix elements read
1157
+ |gνν′
1158
+ Γ,k,k+q|2 = g2
1159
+ Γ(1 ± νν′ cos(φk + φk+q − 2φq)),
1160
+ (16)
1161
+ where the + (−) sign is for LO (TO) phonons; and
1162
+ |gνν′
1163
+ Γ,k,k+q|2 = g2
1164
+ K(1 ∓ νν′ cos(φk − φk+q)),
1165
+ (17)
1166
+ where the − (+) sign corresponds to scattering from K to K’ (from K’ to K); here, φv is the polar
1167
+ angle of the vector v. The values of the coupling constants are gΓ = 0.55 eV·Å and gK = 0.85 eV·Å,
1168
+ according to GW calculations [11].
1169
+ 6
1170
+
1171
+ 2.1.3
1172
+ General form
1173
+ We find that for both types of interactions the Hamiltonian has the general form
1174
+ Heb =
1175
+
1176
+ dq
1177
+ (2π)2 nq(t)ϕq(t),
1178
+ (18)
1179
+ where nq is an electronic two-particle operator and ϕq is a free bosonic field. In the electron-phonon
1180
+ case, we define
1181
+ nq =
1182
+
1183
+ k,ν,ν′
1184
+ gνν′
1185
+ α,k,k+q
1186
+ √ℏωα
1187
+ c†
1188
+ k+q,νck,ν′
1189
+ and
1190
+ ϕq =
1191
+
1192
+ ℏωα(d†
1193
+ q,α + d−q,α);
1194
+ (19)
1195
+ in the electron-hydron case
1196
+ nq =
1197
+
1198
+ Vq
1199
+
1200
+ k,ν,ν′
1201
+ ⟨k + q, ν|eiqρ|k, ν′⟩c†
1202
+ k+q,νck,ν′
1203
+ and
1204
+ ϕq =
1205
+
1206
+ Vqns(q),
1207
+ (20)
1208
+ where Vq ≡ e2/(2ϵ0q) is the 2D Fourier-transformed Coulomb potential. With these definitions,
1209
+ both nq and φq have dimensionless correlation functions in frequency space.
1210
+ 2.2
1211
+ General theory of electron-boson heat transfer
1212
+ 2.2.1
1213
+ Non-equilibrium perturbation theory
1214
+ We consider an initial state of the electron-boson system where the electrons are at a temperature
1215
+ Te and the bosons at a temperature Tb. We wish to study the subsequent dynamics. In particular,
1216
+ we are interested in the heat flux per unit surface from the electrons to the bosons:
1217
+ Q(t) = − 1
1218
+ A
1219
+ d
1220
+ dt⟨Heb(t)⟩.
1221
+ (21)
1222
+ Since the system is under non-equilibrium conditions, this average value needs to be computed in
1223
+ the Keldysh framework. In particular, we may define the Keldysh component of the electron-boson
1224
+ correlation function:
1225
+ χK
1226
+ eb(q, t, t′) = − 1
1227
+ A
1228
+ i
1229
+ ℏ⟨{nq(t), ϕ−q(t′)}⟩.
1230
+ (22)
1231
+ Then,
1232
+ Q(t) = −iℏ
1233
+ 2
1234
+
1235
+ dq
1236
+ (2π)2
1237
+ dχK
1238
+ eb(q, t, t)
1239
+ dt
1240
+ .
1241
+ (23)
1242
+ Form this point on, the computation of the electron-boson correlation function follows the exact
1243
+ same steps as in the theory of quantum friction [12], and we reproduce here only the main equations.
1244
+ Diagramatically, the correlation function satisfies the following Dyson equation:
1245
+ (24)
1246
+ where the "bubble" represents the propagator of n (denoted χe), and the dashed line the propagator
1247
+ of ϕ (denoted χb). When made explicit in terms of the R, A, K components, the Dyson equation
1248
+ becomes
1249
+
1250
+
1251
+
1252
+
1253
+
1254
+ χK
1255
+ eb = χR
1256
+ e ⊗ χK
1257
+ b + χK
1258
+ e ⊗ χA
1259
+ b + χR
1260
+ e ⊗ χR
1261
+ b ⊗ χK
1262
+ eb + (χR
1263
+ e ⊗ χK
1264
+ b + χK
1265
+ e ⊗ χA
1266
+ b ) ⊗ χA
1267
+ eb
1268
+ χR,A
1269
+ eb
1270
+ = χR,A
1271
+ e
1272
+ ⊗ χR,A
1273
+ b
1274
+ + χR,A
1275
+ e
1276
+ ⊗ χR,A
1277
+ b
1278
+ ⊗ χR,A
1279
+ eb
1280
+ ,
1281
+ (25)
1282
+ where ⊗ represents time convolution.
1283
+ While these equations are extremely general, they are
1284
+ impractical to manipulate analytically, unless a number of assumptions are made. In order to
1285
+ 7
1286
+
1287
+ proceed, we will restrict ourselves to cooling dynamics that are slow enough for time-translation
1288
+ invariance to hold when it comes to determining the cooling rate. This assumption is expected
1289
+ to hold for small enough temperature differences, such that the cooling rate is approximately
1290
+ temperature-independent. We will further assume that, in line with experimental observations,
1291
+ that electron thermalization is much faster than electron-boson energy transfer, so that the electron
1292
+ and boson propagators may be considered as equilibrium propagators, satisfying the fluctuation-
1293
+ dissipation theorem: we work within a two-temperature model. We may then carry out Fourier
1294
+ transforms in time, so that Eq. (23) becomes
1295
+ Q = 1
1296
+ 2
1297
+ � dqdω
1298
+ (2π)3 ℏω χK
1299
+ eb(q, ω).
1300
+ (26)
1301
+ The convolutions in Eq. (25) become products in Fourier space. Before proceeding, it is convenient
1302
+ to flip the signs of all the correlation functions: we introduce, for all the labels, g ≡ −χ. Then,
1303
+ after some algebra, we obtain an explicit expression for Q:
1304
+ Q =
1305
+ 1
1306
+ 2π3
1307
+
1308
+ dq
1309
+ � +∞
1310
+ 0
1311
+ dω ℏω[nB(ω, Te) − nB(ω, Tb)]Im [gR
1312
+ e (q, ω)]Im [gR
1313
+ b (q, ω)]
1314
+ |1 − gR
1315
+ e (q, ω)gR
1316
+ b (q, ω)|2 ,
1317
+ (27)
1318
+ where nB(ω, T) ≡ 1/(eℏω/kBT − 1) is the Bose distribution at temperature T. We recover Eq. (3)
1319
+ of the main text.
1320
+ 2.2.2
1321
+ Cooling rate
1322
+ The cooling dynamics are governed by the equation
1323
+ dE(Te)
1324
+ dt
1325
+ = −Q(Te, Tb),
1326
+ (28)
1327
+ where E is the total energy per unit surface of the electronic system. We follow ref. [9] in de-
1328
+ termining the electronic heat capacity (per unit surface) at constant density C(Te), such that
1329
+ dtE = C(Te)dtTe. We may then define the instantaneous cooling rate
1330
+ τ(Te, Tb) = C(Te)(Te − Tb)
1331
+ Q(Te, Tb)
1332
+ .
1333
+ (29)
1334
+ 2.3
1335
+ Application to the graphene-liquid system
1336
+ 2.3.1
1337
+ Liquid-mediated cooling
1338
+ We first consider electron cooling through the electron-hydron coupling. Using eqs. (12) and (20),
1339
+ we find that
1340
+ gR
1341
+ b (q, t, t′) = − 1
1342
+ AVq
1343
+ � +∞
1344
+ 0
1345
+ dzdz′ e−q(z+z′)
1346
+
1347
+ − i
1348
+ ℏθ(t − t′)⟨[ns(q, z, t), ns(−q, z′, t′)]⟩
1349
+
1350
+ .
1351
+ (30)
1352
+ This is the microscopic definition of the liquid’s surface response function. In the long wavelength
1353
+ limit, it can be expressed in terms of the liquid’s bulk dielectric function ϵ(ω) [12]:
1354
+ gR
1355
+ b (q, ω) = ϵ(ω) − 1
1356
+ ϵ(ω) + 1,
1357
+ (31)
1358
+ as stated in the main text. The electronic response function gR
1359
+ e (q, ω) simply amount to (minus)
1360
+ the density-density response function. Taking into account electron-electron interactions at the
1361
+ RPA level [13],
1362
+ gR
1363
+ e (q, ω) = −
1364
+ Vqχ0
1365
+ e(q, ω)
1366
+ 1 − Vqχ0e(q, ω).
1367
+ (32)
1368
+ 8
1369
+
1370
+ 600
1371
+ 800
1372
+ 1000
1373
+ 1200
1374
+ Electron temperature (K)
1375
+ 1
1376
+ 1.5
1377
+ 2
1378
+ 2.5
1379
+ Cooling time (ps)
1380
+ Theory
1381
+ Experiment
1382
+ Figure S7: Dependence of water-mediated cooling time on initial electron temperature. The red
1383
+ dots are experimental data for graphene in contact with water and the red dots correspond to the
1384
+ prediction of Eq. (29) (with µ = 180 meV).
1385
+ The non-interacting response function χ0
1386
+ e is given by [13]
1387
+ χ0
1388
+ e(q, ω) = gsgv
1389
+
1390
+ dk
1391
+ (2π)2
1392
+
1393
+ ν,ν′
1394
+ |⟨k + q, ν|eiqρ|k, ν′⟩|2 nF(Eν
1395
+ k, Te) − nF(Eν′
1396
+ k+q, Te)
1397
+
1398
+ k − Eν′
1399
+ k+q + ω + iδ
1400
+ ,
1401
+ (33)
1402
+ where gs = gv = 2 are the spin and valley degeneracies of graphene, respectively, Eν
1403
+ k = νvF k are
1404
+ the band energies in the Dirac fermion approximation, nF(E, T) = 1/(e(E−µ)/kBT +1) is the Fermi
1405
+ distribution at chemical potential µ and temperature T, and δ → 0+. The integral is evaluated
1406
+ numerically at non-zero temperature.
1407
+ With all the above, we may compute theoretical predictions for the liquid-mediated cooling rate
1408
+ by numerical integration according to Eq. (27). We considered a graphene chemical potential µ in
1409
+ the range 100 − 180 meV (see section 1.4) and an electron temperature Te = 623 K, corresponding
1410
+ to the lowest pump laser fluence. Our model is further able to reproduce the dependence of the
1411
+ electron cooling time on Te, as shown in Fig. S7.
1412
+ We note that Eq. (27) involves bare surface response functions, that contain no effect of the
1413
+ presence of the neighboring medium, at least at the RPA level. Nevertheless, the physical response
1414
+ function of graphene in the presence of water undergoes RPA renormalization according to
1415
+ (34)
1416
+ In this diagrammatic equation, when the propagators are interpreted as surface response functions,
1417
+ the vertices reduce to unity, so that we obtain the renormalized graphene response function ˜ge as
1418
+ ˜ge(q, ω) =
1419
+ ge(q, ω)
1420
+ 1 − ge(q, ω)gb(q, ω),
1421
+ (35)
1422
+ which is Eq. (7) of the main text.
1423
+ 2.3.2
1424
+ Phonon-mediated cooling
1425
+ In the phonon case, the boson response function is proportional to the usual phonon propagator:
1426
+ gR
1427
+ b (q, ω) =
1428
+ 2ω2
1429
+ α
1430
+ ω2α − ω2 .
1431
+ (36)
1432
+ 9
1433
+
1434
+ The non-interacting electronic response function now involves the electron-phonon matrix elements:
1435
+ gR
1436
+ e (q, ω) = −gs
1437
+
1438
+ BZ
1439
+ dk
1440
+ (2π)2
1441
+
1442
+ ν,ν′
1443
+ |gνν′
1444
+ α,k,k+q|2
1445
+ ℏωα
1446
+ nF(Eν
1447
+ k, Te) − nF(Eν′
1448
+ k+q, Te)
1449
+
1450
+ k − Eν′
1451
+ k+q + ω + iδ
1452
+ .
1453
+ (37)
1454
+ We now show that we recover the results of ref. [9] for the electron-phonon cooling rate obtained in
1455
+ a Boltzamann equation framework, if we neglect electron-electron interactions and treat electron-
1456
+ phonon interactions to first order. Under these assumptions, Eq. (27) reduces to
1457
+ Q =
1458
+ 1
1459
+ 2π3
1460
+
1461
+ dq
1462
+ � +∞
1463
+ 0
1464
+ dω ℏω[nB(ω, Te) − nB(ω, Tb)]Im [gR
1465
+ e (q, ω)]Im [gR
1466
+ b (q, ω)].
1467
+ (38)
1468
+ We notice that
1469
+ Im [gR
1470
+ b (q, ω)] = πω2
1471
+ α[δ(ω − ωα) − δ(ω + ωα)]
1472
+ (39)
1473
+ and
1474
+ Im [gR
1475
+ e (q, ω)] = πgs
1476
+
1477
+ BZ
1478
+ dk
1479
+ (2π)2
1480
+
1481
+ ν,ν′
1482
+ |gνν′
1483
+ α,k,k+q|2
1484
+ ℏωα
1485
+ [nF(Eν
1486
+ k, Te) − nF(Eν′
1487
+ k+q, Te)]δ(Eν
1488
+ k − Eν′
1489
+ k+q + ω). (40)
1490
+ Moreover, upon integration over k and q in Eq. (38), the angle-dependent parts of the electron-
1491
+ phonon matrix elements vanish, and the intervalley phonons become formally identical to the
1492
+ intravalley phonons: we may introduce the valley degeneracy and carry out integrations over a
1493
+ single Dirac cone. Altogether, we obtain
1494
+ Q = 2πgsgvωαg2
1495
+ α[nB(ωα, Te) − nB(ωα, Tb)] . . .
1496
+ · · ·
1497
+
1498
+ ν,ν′
1499
+ � dqdk
1500
+ (2π)4 [nF(Eν
1501
+ k, Te) − nF(Eν′
1502
+ q , Te)]δ(Eν
1503
+ k − Eν′
1504
+ q + ωα).
1505
+ (41)
1506
+ If we introduce another delta function, according to
1507
+ Q = 2πgsgvωαg2
1508
+ α[nB(ωα, Te) − nB(ωα, Tb)] . . .
1509
+ · · ·
1510
+
1511
+ ν,ν′
1512
+ � dqdk
1513
+ (2π)4
1514
+ � +∞
1515
+ −∞
1516
+ dϵ[nF(ϵ − ωα, Te) − nF(ϵ, Te)]δ(Eν
1517
+ k − ϵ + ωα)δ(ϵ − Eν′
1518
+ q ),
1519
+ (42)
1520
+ we recognize the graphene density of states,
1521
+ ν(ϵ) = gsgv
1522
+
1523
+ ν
1524
+
1525
+ dk
1526
+ (2π)2 δ(ϵ − Ek,ν) = 2|ϵ|
1527
+ πv2
1528
+ F
1529
+ .
1530
+ (43)
1531
+ Our result then simplifies according to
1532
+ Q = 2πωαg2
1533
+ α
1534
+ gsgv
1535
+ [nB(ωα, Te) − nB(ωα, Tb)]
1536
+ � +∞
1537
+ −∞
1538
+ dϵ[nF(ϵ − ωα, Te) − nF(ϵ, Te)]ν(ϵ)ν(ϵ − ωα),
1539
+ (44)
1540
+ which is Eq. (18) in the supplementary information of ref. [9].
1541
+ References
1542
+ [1] Yogeswaran, N. et al. Piezoelectric graphene field effect transistor pressure sensors for tactile
1543
+ sensing. Applied Physics Letters 113, 014102 (2018).
1544
+ [2] Burwell, G., Smith, N. & Guy, O. Investigation of the utility of cellulose acetate butyrate
1545
+ in minimal residue graphene transfer, lithography, and plasma treatments. Microelectronic
1546
+ Engineering 146, 81–84 (2015).
1547
+ 10
1548
+
1549
+ [3] Ulbricht, R., Hendry, E., Shan, J., Heinz, T. F. & Bonn, M. Carrier dynamics in semicon-
1550
+ ductors studied with time-resolved terahertz spectroscopy. Reviews of Modern Physics 83,
1551
+ 543–586 (2011).
1552
+ [4] Lee, Y.-S. Principles of Terahertz Science and Technology (Springer US, 2009).
1553
+ [5] Fu, S. et al.
1554
+ Long-lived charge separation following pump-wavelength-dependent ultrafast
1555
+ charge transfer in graphene/ws2 heterostructures. Science Advances 7, eabd9061 (2021).
1556
+ [6] Shi, S. F. et al.
1557
+ Controlling graphene ultrafast hot carrier response from metal-like to
1558
+ semiconductor-like by electrostatic gating. Nano Letters 14, 1578–1582 (2014).
1559
+ [7] Tielrooij, K. J. et al. Photoexcitation cascade and multiple hot-carrier generation in graphene.
1560
+ Nature Physics 9, 248–252 (2013).
1561
+ [8] Lui, C. H., Mak, K. F., Shan, J. & Heinz, T. F. Ultrafast photoluminescence from graphene.
1562
+ Physical Review Letters 105, 127404 (2010).
1563
+ [9] Pogna, E. A. et al. Hot-carrier cooling in high-quality graphene is intrinsically limited by
1564
+ optical phonons. ACS Nano 15, 11285–11295 (2021).
1565
+ [10] Neto, A. H. C. & Guinea, F. Electron-phonon coupling and raman spectroscopy in graphene.
1566
+ Physical Review B 75, 045404 (2007).
1567
+ [11] Sohier, T. et al.
1568
+ Phonon-limited resistivity of graphene by first-principles calculations:
1569
+ Electron-phonon interactions, strain-induced gauge field, and boltzmann equation. Physical
1570
+ Review B 90, 125414 (2014).
1571
+ [12] Kavokine, N., Bocquet, M.-L. & Bocquet, L.
1572
+ Fluctuation-induced quantum friction in
1573
+ nanoscale water flows. Nature 602, 84–90 (2022).
1574
+ [13] Wunsch, B., Stauber, T., Sols, F. & Guinea, F. Dynamical polarization of graphene at finite
1575
+ doping. New Journal of Physics 8, 318–318 (2006).
1576
+ 11
1577
+
BtE4T4oBgHgl3EQfeA0g/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
BtE5T4oBgHgl3EQfTQ-D/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
CtAyT4oBgHgl3EQfR_f1/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
DdAyT4oBgHgl3EQf4vob/content/tmp_files/2301.00790v1.pdf.txt ADDED
@@ -0,0 +1,2521 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ROBUST MACHINE LEARNING PIPELINES FOR TRADING
2
+ MARKET-NEUTRAL STOCK PORTFOLIOS ∗
3
+ THOMAS WONG† AND MAURICIO BARAHONA‡
4
+ Abstract. The application of deep learning algorithms to financial data is difficult due to heavy
5
+ non-stationarities which can lead to over-fitted models that underperform under regime changes.
6
+ Using the Numerai tournament data set as a motivating example, we propose a machine learning
7
+ pipeline for trading market-neutral stock portfolios based on tabular data which is robust under
8
+ changes in market conditions.
9
+ We evaluate various machine-learning models, including Gradient
10
+ Boosting Decision Trees (GBDTs) and Neural Networks with and without simple feature engineer-
11
+ ing, as the building blocks for the pipeline. We find that GBDT models with dropout display high
12
+ performance, robustness and generalisability with relatively low complexity and reduced computa-
13
+ tional cost. We then show that online learning techniques can be used in post-prediction processing
14
+ to enhance the results.
15
+ In particular, dynamic feature neutralisation, an efficient procedure that
16
+ requires no retraining of models and can be applied post-prediction to any machine learning model,
17
+ improves robustness by reducing drawdown in volatile market conditions. Furthermore, we demon-
18
+ strate that the creation of model ensembles through dynamic model selection based on recent model
19
+ performance leads to improved performance over baseline by improving the Sharpe and Calmar ra-
20
+ tios. We also evaluate the robustness of our pipeline across different data splits and random seeds
21
+ with good reproducibility of results.
22
+ Key words.
23
+ Robust Machine Learning, Online Learning, Gradient Boosting Decision Trees,
24
+ Deep Learning, Stock Trading, Tabular Data
25
+ 1. Introduction. As investors explore new ways to generate profit, machine
26
+ learning (ML) models are increasingly used as part of trading strategies, e.g., to pre-
27
+ dict the future return of stocks or stock portfolios. In particular, deep learning models
28
+ for time-series data, such as Recurrent Neural Networks (RNNs) and Convolutional
29
+ Neural Networks (CNNs), have been applied to the prediction of future stock re-
30
+ turns [1–3]. However, a major challenge for such methods is the highly stochastic,
31
+ non-stationary and non-ergodic nature of financial data, which violates the assump-
32
+ tions of many algorithms. Furthermore, deep learning models are over-parameterised,
33
+ with numbers of parameters orders of magnitude larger than typical sizes of time series
34
+ data. Therefore, deep models can be easily over-fitted to specific patterns in historical
35
+ market data not present in future market data, and the over-fitting worsens with the
36
+ more complicated neural network architectures, such as Long Short Term Memory
37
+ (LSTM) or Transformer networks. In addition, the continuous influx of data, coupled
38
+ with possible regime changes, requires costly updating and retraining of such models.
39
+ Therefore, such methods can lack reproducibility and robustness for the prediction of
40
+ future market data.
41
+ As pointed out in recent reviews [4,5], replication of ML studies is often difficult
42
+ due to several issues, including data leakage [5], program bugs [6], data and code
43
+ usability [7], and model representation and evaluation [4]. These problems and are
44
+ currently hindering the usage of ML in high-risk decision processes, such as healthcare
45
+ and finance. For trading applications in particular, these issues can have critical effects
46
+ on the validity of results. Data leakage, in the form of look-ahead bias or overlap
47
+ ∗Funding: This work is supported by the Wellcome Trust under Grant 108908/B/15/Z and by
48
+ the EPSRC under grant EP/N014529/1.
49
+ †Department of Mathematics,
50
+ Imperial College London,
51
+ London SW7 2AZ, U.K (ming-
52
53
+ ‡Department
54
+ of
55
+ Mathematics,
56
+ Imperial
57
+ College
58
+ London,
59
+ London
60
+ SW7
61
+ 2AZ,
62
+ U.K
63
64
+ 1
65
+ arXiv:2301.00790v1 [q-fin.CP] 30 Dec 2022
66
+
67
+ 2
68
+ THOMAS WONG AND MAURICIO BARAHONA
69
+ of training/test sets [8], can inflate in-sample performance with poor performance
70
+ when deployed live. Furthermore, black-box ML models, such as neural networks,
71
+ can lack robustness as they are highly sensitive to small changes in parameters and
72
+ data, thus resulting in volatile predictions. The non-stationary data and the presence
73
+ of regime changes also mean that ML models need to be re-trained with the latest
74
+ financial data, a task that is not only computationally costly but also introduces
75
+ further uncertainty to the trading models. Yet most studies do not consider model
76
+ performance when trained on different segments of historical market data [1–3,9,10].
77
+ Although reinforcement learning (RL) in online learning settings allows ML models
78
+ to adapt to changing environments, deep reinforcement learning models are complex
79
+ and require large computational resources [11]. Indeed, applying RL to stock trading
80
+ is difficult since the complexity of the action space increases exponentially with the
81
+ number of stocks in the portfolio.
82
+ The above issues suggest the need to further develop robust ML pipelines for
83
+ trading applications possibly based on simpler models that can still operate on non-
84
+ stationary, highly stochastic data under regime changes. Here we consider such a
85
+ pipeline based on tabular data, which allows the use of traditional ML models, such
86
+ as Gradient Boosting Decision Trees (GBDT) and other ensemble methods, to predict
87
+ trading stocks and stock indices [12, 13]. This approach also allows the integration
88
+ of additional sources of data, such as sentiment analysis of news articles to improve
89
+ the prediction accuracy of the direction of stock returns [14]. In particular, we find
90
+ that Gradient Boosting models, which are known to be robust to data perturbations,
91
+ outperform neural network models. Finally, we show that improved robustness of ML
92
+ models and adaptation to regime changes can be attained without the use of deep
93
+ reinforcement learning by employing: (i) dynamic feature neutralisation, a simple
94
+ approach that reduces the linear correlation to a subset of features evolving in time,
95
+ and (ii) dynamic model selection of optimal models from an ensemble based on recent
96
+ performance. These approaches robustly improve trading performances by reducing
97
+ volatility and drawdown during adversarial market regimes.
98
+ To exemplify the above issues, we consider a benchmark financial data platform
99
+ that is continuously updated and curated under the Numerai tournament of stock
100
+ portfolio prediction [15]. Numerai is a hedge fund that organises a data science com-
101
+ petition (as of Oct 2022) and provides free, open-source, high quality standardised
102
+ financial data to all participants. As discussed below in more detail, the data set is
103
+ given in the form of pre-processed temporal tabular data and the task is the predic-
104
+ tion of the relative performances of stocks within an evolving trading universe without
105
+ access to the identity of individual stocks. Unlike other financial research papers that
106
+ use proprietary data sets which can be difficult to validate [9,10], this open financial
107
+ data competition allows researchers to replicate findings transparently and allows us
108
+ to focus on establishing ML end-to-end pipelines to achieve consistent profits trad-
109
+ ing a market-neutral portfolio under changing market regimes. Our pipeline, shown
110
+ in Figure 1, is built upon simple, yet robust methodologies that avoid some of the
111
+ problems of over-fitting and high computational cost inherent to deep methods. The
112
+ robustness of the pipeline is enhanced since each step is implemented independently
113
+ avoiding data leakage, which is common in other methods such as neural networks,
114
+ where the pre-processing and the actual model often share data.
115
+ Key ingredients
116
+ are the post-prediction processing and feature engineering steps, which allow easy
117
+ adaptation of models towards regime changes without expensive retraining.
118
+ The paper is organised as follows. Section 2 introduces the Numerai datasets
119
+ used in this paper. Section
120
+ 3 describes and discusses the different computational
121
+
122
+ ROBUST ML MODELS IN FINANCE
123
+ 3
124
+ Fig. 1: Schematic of the Machine Learning pipeline. Starting with the Numerai
125
+ data set, we consider feature engineering methods to augment the dataset and train an
126
+ ML model (several are evaluated, including neural networks, but we settle for gradient
127
+ boosting trees) to obtain the raw predictions. These then go through post-prediction
128
+ processing (e.g., dynamic feature neutralisation) to provide normalised predictions,
129
+ which are then combined through model ensembling and dynamic model selection
130
+ methods to output the predictions that are submitted to the Numerai tournament.
131
+ methods, including online cross-validation, feature engineering and the different ML
132
+ models considered and evaluated for the pipeline. Section 4 presents the results from
133
+ our ML pipeline, including the impact of different design choices on the robustness of
134
+ trading performance. Performances of ML models under different market regimes are
135
+ discussed in Section 5. In Section 6, we introduce adaptations to our ML models
136
+ based on online learning approaches, which can work well under regime changes,
137
+ noting that these adaptations are generic and not limited to specific families of ML
138
+ models. Lastly, we discuss the results of the method, open directions and alternatives
139
+ and provide a study of the robustness of our ML pipeline in Section 9.4.
140
+ 2. Numerai dataset and prediction task. Financial data are often available
141
+ in the form of time series. These time series can be treated directly using classic meth-
142
+ ods such as ARIMA models [16] and more recently through deep learning methods
143
+ such as Temporal Fusion Transformers [17]. However, such methods are easily over-
144
+ fitted and lead to expensive retraining for financial data, which are inherently affected
145
+ by regime changes and high stochasticity. Alternatively, one can use various feature
146
+ engineering methods to transform these time series into tabular form through a pro-
147
+ cess sometimes called ‘de-trending’ in the financial industry, where the characteristics
148
+ of a financial asset at a particular time point, including features from its history, are
149
+ represented by a single dimensional data row (i.e., a vector). In this representation,
150
+ the time dimension is not considered explicitly, as the state of the system is captured
151
+ through transformed features at each time point and the continuity of the temporal
152
+ dimension is not used. For example, we can summarise the time series of the return
153
+ of a stock with the mean and standard deviation over different look-back periods.
154
+ Grouping these data rows for different financial assets into a table at a given time
155
+ point we obtain a tabular dataset. If the features are informative, this representation
156
+ can be used for prediction tasks at each time point, and allow us to employ robust
157
+ and widely tested ML algorithms that are applicable to tabular data. The Numerai
158
+ competition is based on a curated tabular data set with high-quality features made
159
+ available to the research community.
160
+ Description of the dataset:. The Numerai dataset is a temporal tabular dataset.
161
+ A temporal tabular dataset is a collection of matrices {Xi}1≤i≤T collected over time
162
+ eras 1 to T. Each matrix Xi represents data available at era i with shape Ni × M,
163
+
164
+ Machine
165
+ Dataset Creation
166
+ Feature
167
+ Post-Prediction
168
+ Model
169
+ Learning
170
+ (Numerai)
171
+ Engineering
172
+ Processing
173
+ Ensemble
174
+ Model Training4
175
+ THOMAS WONG AND MAURICIO BARAHONA
176
+ where Ni is the number of data samples (number of stocks here) in era i and M
177
+ is the number of features describing the samples. Note that the features are fixed
178
+ throughout the eras, in the sense that the same computational formula is used to
179
+ compute the features in each week. On the other hand, the number of data samples
180
+ (stocks) Ni does not have to be constant across time.
181
+ In the Numerai dataset, the matrices Xi contain M obfuscated global stock mar-
182
+ ket features (computed by Numerai) for Ni stocks, which are updated weekly (i.e., the
183
+ eras are in our case weeks). It is important to remark that the dataset is obfuscated,
184
+ i.e., it is not possible for participants to know the identity of stocks or even which
185
+ stocks are present each week. Each data row is indexed by a hash index, known only
186
+ to Numerai, that maps the data rows to the stocks. As a result, it is not possible
187
+ for participants to concatenate different data rows to create a continuous history of
188
+ a stock. The matrix Xi thus provides a snapshot of the market at week i presented
189
+ as an unknown set of stocks described by a common set of features, such that the
190
+ features are computed consistently across all stocks in the week and also computed
191
+ consistently across different weeks.
192
+ The Numerai dataset starts on 2003-01-03 (Era 1). The tabular set has 1191
193
+ features, which are already normalised into 5 equal-sized integer bins, from 0 to 4.
194
+ There are 28 target labels which are derived from stock returns using 14 proprietary
195
+ normalisation methods (nomi, jerome, janet, ben, alan, paul, george, william, arthur,
196
+ thomas, ralph, tyler, victor, waldo ) over 2 forward-looking periods (20 trading days,
197
+ 60 trading days). The main target label to evaluate performance is target-nomi-v4-
198
+ 20, i.e., forward 20 trading days return obtained by the nomi normalisation method.
199
+ Other targets are named similarly. The target labels are all scaled between 0 to 1,
200
+ where a smaller value represents a lower forward return, and are also grouped into
201
+ bins. For each normalisation method, the number of bins could be different, 5 to 7 bins
202
+ are created for each target with the bin sizes following a Gaussian-like distribution,
203
+ so that most stocks are within the central bin of 0.5 while only a small amount of
204
+ stocks are in the tail bins of 0 and 1. We transform the features and labels so that
205
+ both become zero-mean. (For features, we subtract 2 from the integer bins so that
206
+ the transformed bins are -2,-1,0,1,2. For the target labels, we subtract 0.5 so that the
207
+ new targets are in the range -0.5 to 0.5).
208
+ Prediction task:. The tournament task is to predict the stock rankings each week,
209
+ ordered from lowest to highest expected return. The scoring is based on Spearman’s
210
+ rank correlation of the predicted rankings with the main target label (target-nomi-v4-
211
+ 20). Hence there is a single overall score each week regardless of the number of stocks
212
+ to predict each week. Participants are not scored on the accuracy of the ranking of
213
+ each stock individually. Numerai uses the predicted rankings to construct a market-
214
+ neutral portfolio which is traded every week (As of Sep 2022), i.e., the hedge fund
215
+ buys and short-sells the same dollar amount of stocks. Therefore the relative return
216
+ of stocks is more relevant than the absolute return, hence the prediction task is a
217
+ ranking problem instead of a forecast problem.
218
+ 3. Methods.
219
+ 3.1. Robustness in Machine Learning pipelines. In this paper, we aim to
220
+ design an ML pipeline focusing on its robustness. Table 1 details issues related to
221
+ robustness and reproducibility, as listed in a recent review [5], and how they are
222
+ addressed in this paper. By preventing look-ahead bias and other data leakage issues,
223
+ our pipeline can be robustly applied to live trading setups.
224
+ In addition to avoiding data leakage, the following design choices are used to im-
225
+
226
+ ROBUST ML MODELS IN FINANCE
227
+ 5
228
+ Issues
229
+ affecting
230
+ robust-
231
+ ness of ML algorithms
232
+ How the issue is addressed here
233
+ ‘No test set’
234
+ A robust cross-validation scheme is used.
235
+ ‘Pre-processing on train-
236
+ ing and test set’
237
+ Numerai features are already standardised; hence
238
+ minimal pre-processing.
239
+ ‘Feature
240
+ selection
241
+ on
242
+ training and test set’
243
+ Feature Engineering is applied to each data row in-
244
+ dependently
245
+ ‘Duplicates in datasets’
246
+ A unique id for each data row reduces the chance of
247
+ duplicates in dataset
248
+ ‘Model uses features that
249
+ are not legitimate’
250
+ Only data provided by Numerai is used to train ML
251
+ models—no extra features from other resources, and
252
+ no cherry-picking of features.
253
+ ‘Temporal leakage’
254
+ We use Grouped Time-Series Cross-Validation with
255
+ no overlap between training/validation/test (Fig. 2).
256
+ Feature Engineering is applied to each data row in-
257
+ dependently, i.e., no data leakage between eras.
258
+ ‘Non-independence
259
+ be-
260
+ tween training and test’
261
+ Training and test samples are market data at different
262
+ periods without overlap.
263
+ ‘Sampling bias in test dis-
264
+ tribution’
265
+ The stocks trading each week are decided by Numerai
266
+ based on operational and risk considerations.
267
+ Table 1: Data analysis design. Some common issues regarding data leakage in
268
+ machine learning research [4,5] and how these issues are dealt with in this study.
269
+ prove the robustness and reliability of the results. Firstly, the impact of random seeds
270
+ is reduced by reporting results from average predictions over 10 different random seeds
271
+ for each machine learning method. Secondly, the metrics used for model evaluation
272
+ are the same as in the Numerai tournament to avoid researcher bias in discounting
273
+ unfavourable results. Finally, cross-validation is independent of the effects of random
274
+ seeds and other human selection, thus reducing the chance of overfitting models to a
275
+ particular data split.
276
+ For datasets that involve time, standard cross-validation schemes cannot be used
277
+ directly, as a random split of data eras could lead to the training set including data that
278
+ appears later in time than the validation and test sets, hence introducing look-ahead
279
+ bias. To avoid this problem, we use grouped time-series cross-validation, which splits
280
+ data eras according to their chronological order (Figure 2). Note that for financial
281
+ datasets, the target labels often involve future asset returns and are reported with a
282
+ lag. Therefore, we add a gap between the training and validation sets and similarly
283
+ between the validation and test sets.
284
+ 3.2. Feature Engineering methods. Feature engineering is a crucial step in
285
+ enhancing the power of tabular methods for the analysis of time series data. Therefore,
286
+ we evaluate different feature engineering methods that can be applied to temporal
287
+ tabular data sets with numerical features, as the Numerai data set only contains
288
+ normalised numerical features.
289
+ New features can be created by applying polynomial transformations such as
290
+ multiplication and addition to the original features. Here we create new features by
291
+ multiplying two features that can be thought of as modelling the joint distribution
292
+
293
+ 6
294
+ THOMAS WONG AND MAURICIO BARAHONA
295
+ Training Data
296
+ V alidation Data
297
+ Test Data
298
+ Time
299
+ gap
300
+ gap
301
+ Fig. 2: Illustration of data split using grouped time-series cross-validation
302
+ of feature pairs. When the number of features is large, we draw a random subset of
303
+ feature pairs to create new features to alleviate the computational cost. Note that
304
+ the computation of these features can be done in parallel for data from each era.
305
+ A simple way of data augmentation is to add randomness to the feature matrix
306
+ with different dropout methods, which are used extensively to reduce over-fitting of
307
+ neural network models [18]. Here we apply dropout by multiplying the original data
308
+ with a Boolean mask so that some numerical features are set to zero. The dropout is
309
+ characterised by its sparsity level (how many features are set to zero) and its sparsity
310
+ structure (how to choose the features set to zero). Since our tabular dataset has no
311
+ local spatial structure, we use a random Boolean matrix with uniform probability.
312
+ This encourages the machine learning methods to learn multiple feature relationships
313
+ and reduces reliance on a small set of important features.
314
+ For our dataset, we first augment the feature matrix by creating additional fea-
315
+ tures obtained by multiplying feature pairs, and then apply dropout with a random
316
+ Boolean mask on the augmented feature matrix. A grid search is used to find optimal
317
+ hyper-parameters for the feature engineering methods, in particular the number of
318
+ feature products and the sparsity level of dropout.
319
+ 3.3. Machine Learning algorithms for tabular datasets. Numerous ma-
320
+ chine learning models have been proposed for tabular datasets, and different bench-
321
+ marking studies have shown conflicting views on their performance [18, 19].
322
+ The
323
+ biggest disagreement in the literature is whether gradient-boosting decision trees or
324
+ neural networks are superior in regression and classification tasks of tabular datasets.
325
+ Whereas one paper claims gradient boosting models (XGBoost) outperformed deep
326
+ learning models in 8 out of 11 datasets and none of the deep learning models consis-
327
+ tently outperform others [19], another paper suggests that well-tuned multi-layer per-
328
+ ceptron (MLP) models with regularisation can outperform different gradient boosting
329
+ models such as XGBoost and CatBoost [18]. Both these studies, however, share the
330
+ same view that neural networks with complicated designs, such as attention layers and
331
+ other transformer layers, tend to generalise poorly with a strong drop in performance
332
+ when applied to data sets beyond their original study.
333
+ Importantly, the Numerai
334
+ data set is different from the data sets in the above benchmarking studies in that it
335
+ is growing instead of fixed. Hence the data distribution varies across time periods
336
+ due to market regime effects, and we do not have a homogeneous distribution across
337
+ cross-validation splits. With such a different problem setup, it is thus not possible to
338
+ use the above benchmarking studies to guide our choice of ML method.
339
+ In this study, we benchmark a wide range of machine learning models, including
340
+ different variants of gradient-boosting decision tree models and different neural net-
341
+ work models. The choice of ML models is based on the popularity of usage in data
342
+
343
+ ROBUST ML MODELS IN FINANCE
344
+ 7
345
+ science competitions and code quality, as one of our aims, is the replicability of results.
346
+ We train all machine learning models with a single GPU, the standard setup for most
347
+ participants in data science competitions. Some brief details of the ML models used
348
+ are provided in the following.
349
+ Gradient Boosting Decision Trees. Boosting can be seen as a generalisation of
350
+ generalized additive models (GAM) where the additive components of smooth para-
351
+ metric functions can be replaced by any weak learners such as decision trees [20].
352
+ Historically, various boosting algorithms have been proposed for different loss func-
353
+ tions. For example, AdaBoost [21] was proposed for binary classification problems
354
+ with exponential loss, whereas Gradient Boosting was first proposed by Friedman in
355
+ 2001 [22] for any smooth loss functions. Algorithm 9.1 in the SI outlines the iterative
356
+ update equations of gradient boosting.
357
+ Of the various implementations of gradient boosting decision (GBDT) trees in
358
+ Python, we use LightGBM [23] in this paper. CatBoost [24] is not used here as the
359
+ Numerai dataset has no categorical features. XGBoost [25] is not used due to slower
360
+ computation and more memory consumption. Algorithm 9.2 in the SI shows how the
361
+ gradient boosting algorithm is implemented with decision trees being the weak learners
362
+ in LightGBM. LightGBM implements GBDT models with several computational and
363
+ numerical improvements from XGBoost and other implementations. In addition to
364
+ traditional gradient boosting decision trees (LightGBM-gbdt), we consider two other
365
+ implementations of GBDT models:
366
+ • Dropouts meet Multiple Additive Regression Trees (LightGBM-dart) ignores a
367
+ portion of trees when computing the gradient for subsequent trees [26], thus
368
+ avoiding over-specialisation where the later learned trees can only affect a
369
+ few data instances. This reduces the sensitivity of models towards decisions
370
+ made by the first few trees.
371
+ • Gradient-based One-Side Sampling (LightGBM-goss) reduces the number of
372
+ data instances used to build each tree: it keeps data instances with large
373
+ absolute gradients and randomly samples a subset of data with small absolute
374
+ gradients.
375
+ The approximation error of the gradient using LightGBM-goss
376
+ converges to the standard method when the number of data is large, and it
377
+ outperforms other data sampling (e.g., uniform sampling) in most cases.
378
+ For all LightGBM models, we use mean squared error (L2 loss) as the loss function
379
+ for the regression problems. The number of gradients boosting trees and learning rate
380
+ is optimised by hyper-parameter searches. To prevent the over-fitting of trees, the
381
+ maximum depth and number of leaves in each tree and the minimal number of data
382
+ samples in the leaves are tuned for each model. L1 and L2 regularisation are also
383
+ applied. Data and feature sub-sampling are used to reduce similarities between trees:
384
+ before building each tree, a random part of data is selected without re-sampling and
385
+ a random subset of features is chosen to build the tree. For LightGBM-dart models,
386
+ both the probability to apply dropout during the tree-building process and the portion
387
+ of trees to be dropped out are tuned. Early stopping is applied using the validation
388
+ dataset for LightGBM-gbdt models to further prevent the over-fitting of models.
389
+ Neural Networks. The most basic architecture of neural networks, multi-layer
390
+ perceptron (MLP), failed to outperform gradient boosting models in many benchmark
391
+ studies of tabular datasets [19].
392
+ Recently, more complex network architectures have been proposed for tabular
393
+ data sets, as surveyed in
394
+ [27] These new architectures can be classified into two
395
+ major groups:
396
+ • Hybrid models that combine neural networks with other traditional ML meth-
397
+
398
+ 8
399
+ THOMAS WONG AND MAURICIO BARAHONA
400
+ ods, e.g., decision trees. Neural Oblivious Decision Ensembles (NODE) [28] is
401
+ a generalisation of gradient boosting models into differentiable deep decision
402
+ trees allowing end-to-end training with gradient descent optimisers such as
403
+ PyTorch [29]. DeepGBM [30] combines two neural networks, CatNN to han-
404
+ dle sparse categorical features and GBDT2NN to distil tree structures from
405
+ a pre-trained GBDT model to handle numerical features. A major limitation
406
+ of these models is the large memory consumption, which makes them run out
407
+ of memory on the NVIDIA 3080ti GPU. Therefore we do not use them in our
408
+ benchmark analysis.
409
+ • Transformer-based models that use deep attention mechanisms to model com-
410
+ plex feature relationships. TabNet [31] uses sequential attention to perform
411
+ instance-wise feature selection at each decision step, enabling interpretability
412
+ and better learning. AutoInt [32] maps and models feature interactions in a
413
+ low-dimensional space with a multi-head self-attentive neural network with
414
+ residual connections. AutoInt runs out of memory on a single GPU and is
415
+ thus not used in our benchmark. Tabnet also had similar memory issues,
416
+ hence we down-sampled the data by keeping every fifth week of data (i.e.,
417
+ 20% of the original data) for the training/validation periods, so that Tab-
418
+ net could be trained on the single GPU used in this study. Our aim is to
419
+ compare performance under modest computational resources attainable by a
420
+ wide class of users.
421
+ In summary, our benchmark analysis includes two NN models: MLP and TabNet
422
+ implemented in PyTorch.
423
+ We use Adam [33] as the gradient optimiser, with the
424
+ learning rate automatically determined by PyTorch. We use mean squared error (L2
425
+ loss) for the regression problems.
426
+ 4. Evaluation of Machine Learning methods for the Numerai temporal
427
+ tabular data set. In this section, we study different ML methods applied to the
428
+ Numerai temporal tabular data set for the prediction of stock rankings aimed at
429
+ market-neutral stock portfolios.
430
+ Data Split. We use the latest version (v4) of the Numerai dataset. The training
431
+ period is fixed between 2003-01-03 (Era 1) to 2012-07-27 (Era 500), and the validation
432
+ period is fixed between 2012-12-21 (Era 521) and 2014-11-14 (Era 620). The test
433
+ period starts on 2015-05-15 (Era 646) and ends on 2022-09-23 (Era 1030). We apply a
434
+ 1-year gap between training and validation periods to reduce the effect of recency bias
435
+ so that the performance of the validation period will better reflect future performance.
436
+ The gap between the validation period and test period is set to 26 weeks to allow for
437
+ sufficient time to deploy trained machine learning models.
438
+ Evaluation of performance. For each configuration of each ML method, we aver-
439
+ age over the predictions of different targets before scoring. The predictions are scored
440
+ in each era by calculating the correlation (Corr) between the rank-normalised pre-
441
+ dictions and the actual (binned) stock ranking. The mean and standard deviation
442
+ (volatility) of Corr are reported for both the validation and test periods. To measure
443
+ the downside risk of the model, we also compute the Maximum Drawdown, defined
444
+ as the largest drop suffered by an investor starting at any time during the valida-
445
+ tion/test period. As summary measures, we compute two standard ratios: (i) the
446
+ Sharpe ratio, defined as the ratio of the mean and standard deviation of Corr; and
447
+ (ii) the Calmar ratio, defined as the ratio of mean Corr over Maximum Drawdown.
448
+ Good performance is characterised by large values of both of these ratios,
449
+
450
+ ROBUST ML MODELS IN FINANCE
451
+ 9
452
+ Model Training. We use Optuna [34] to perform the hyper-parameter search (see
453
+ section 9.3 in Supplementary Information) and select the hyper-parameters with the
454
+ highest Sharpe ratio for the main target (target-nomi-v4-20) in the validation period.
455
+ The optimised hyper-parameters for each ML method are so fixed, and we then train
456
+ 10 models, starting the algorithms from 10 different random seeds. We report the
457
+ average prediction from these 10 models for evaluation.
458
+ Baseline Model. As a baseline, we consider a factor momentum model which is
459
+ created by linear combinations of signed features, where the sign of each feature is
460
+ determined by the sign of the 52-week moving average of correlations of that feature
461
+ with the target. This simple baseline linear model is then compared with the ML
462
+ models, which can capture non-linearity in the data.
463
+ Comparative results of the ML algorithms and Feature Engineering. Table 2 shows
464
+ the performance on the validation and test sets for the different algorithms.
465
+ We
466
+ concentrate on methods that achieve the highest mean Corr, and Sharpe and Calmar
467
+ ratios.
468
+ (a) Performance over the validation period (2012-12-21 to 2014-11-14)
469
+ Method
470
+ Mean
471
+ Volatility
472
+ Max Draw
473
+ Sharpe
474
+ Calmar
475
+ Factor Momentum (baseline)
476
+ 0.0229
477
+ 0.0170
478
+ 0.0691
479
+ 1.3495
480
+ 0.3314
481
+ MLP with FE
482
+ 0.0423
483
+ 0.0208
484
+ 0.0241
485
+ 2.0338
486
+ 1.7552
487
+ MLP without FE
488
+ 0.0443
489
+ 0.0201
490
+ 0.0065
491
+ 2.2058
492
+ 6.8154
493
+ TabNet without FE
494
+ 0.0362
495
+ 0.0189
496
+ 0.0199
497
+ 1.9125
498
+ 1.8191
499
+ LightGBM-gbdt with FE
500
+ 0.0483
501
+ 0.0229
502
+ 0.0307
503
+ 2.1144
504
+ 1.5733
505
+ LightGBM-gbdt without FE
506
+ 0.0500
507
+ 0.0224
508
+ 0.0235
509
+ 2.2335
510
+ 2.1277
511
+ LightGBM-dart with FE
512
+ 0.0496
513
+ 0.0223
514
+ 0.0215
515
+ 2.2274
516
+ 2.3070
517
+ LightGBM-dart without FE
518
+ 0.0475
519
+ 0.0199
520
+ 0.0079
521
+ 2.3883
522
+ 6.0127
523
+ LightGBM-goss with FE
524
+ 0.0288
525
+ 0.0219
526
+ 0.0687
527
+ 1.3136
528
+ 0.4192
529
+ LightGBM-goss without FE
530
+ 0.0302
531
+ 0.0234
532
+ 0.0877
533
+ 1.2877
534
+ 0.3444
535
+ (b) Performance over the test period (2015-05-15 to 2022-09-23)
536
+ Method
537
+ Mean
538
+ Volatility
539
+ Max Draw
540
+ Sharpe
541
+ Calmar
542
+ Factor Momentum (baseline)
543
+ 0.0080
544
+ 0.0275
545
+ 0.7877
546
+ 0.2923
547
+ 0.0102
548
+ MLP with FE
549
+ 0.0237
550
+ 0.0330
551
+ 0.2912
552
+ 0.7189
553
+ 0.0814
554
+ MLP without FE
555
+ 0.0258
556
+ 0.0289
557
+ 0.1668
558
+ 0.8931
559
+ 0.1547
560
+ TabNet without FE
561
+ 0.0161
562
+ 0.0296
563
+ 0.5811
564
+ 0.5431
565
+ 0.0277
566
+ LightGBM-gbdt with FE
567
+ 0.0253
568
+ 0.0327
569
+ 0.3064
570
+ 0.7731
571
+ 0.0826
572
+ LightGBM-gbdt without FE
573
+ 0.0262
574
+ 0.0321
575
+ 0.2378
576
+ 0.8140
577
+ 0.1102
578
+ LightGBM-dart with FE
579
+ 0.0265
580
+ 0.0319
581
+ 0.2151
582
+ 0.8313
583
+ 0.1232
584
+ LightGBM-dart without FE
585
+ 0.0278
586
+ 0.0284
587
+ 0.1622
588
+ 0.9791
589
+ 0.1714
590
+ LightGBM-goss with FE
591
+ 0.0169
592
+ 0.0297
593
+ 0.5539
594
+ 0.5695
595
+ 0.0305
596
+ LightGBM-goss without FE
597
+ 0.0156
598
+ 0.0318
599
+ 0.7528
600
+ 0.4896
601
+ 0.0207
602
+ Table 2: Performance of different machine learning methods with and without feature
603
+ engineering on the Numerai dataset for (a) validation period and (b) test period.
604
+ The three top methods according to Sharpe ratio and Maximum Drawdown over
605
+ the validation period are shown in italics in (a). The top method according to the
606
+ Sharpe ratio and Maximum Drawdown over the test period is shown in boldface in
607
+ (b). For TabNet, the pipeline with feature engineering cannot be run due to memory
608
+ constraints.
609
+
610
+ 10
611
+ THOMAS WONG AND MAURICIO BARAHONA
612
+ Firstly, we see that almost all ML models performed substantially better than the
613
+ factor momentum model (baseline), in both validation and test periods. Whereas the
614
+ factor momentum model relies on linear relationships, the capability of ML models
615
+ to learn non-linear relationships, in addition to linear ones, adds to their robustness
616
+ and improved performance under different, often volatile, market regimes.
617
+ Secondly, we observe that Feature Engineering does not improve the performance
618
+ of ML models. Although, in principle, Feature Engineering allows GBDT-based meth-
619
+ ods to model feature interactions more easily, our results suggest that these interac-
620
+ tions are over-fitted during the training process. For neural network-based models,
621
+ feature engineering is not strictly necessary, as dropout is already embedded in net-
622
+ work architectures.
623
+ Thirdly, we note that all ML models scored better in the validation period than
624
+ the test period. This is expected, as it is well known that the performance of trading
625
+ models deteriorates over time due to overcrowding and regime changes (a phenomenon
626
+ known as alpha decay). Models that are over-fitted to recent training data will ex-
627
+ perience greater alpha decay than properly regularised models.
628
+ To select the ML
629
+ method, we consider the top models according to the Sharpe and Calmar ratios over
630
+ the validation period: a high Sharpe ratio ensures the model has good overall perfor-
631
+ mance, whereas a high Calmar ratio ensures good performance against the worst-case
632
+ scenario, thus capturing the tail risks of the trading model.
633
+ Indeed, we find that
634
+ LightGBM-dart without feature engineering generalises well to the test period further
635
+ into the future.
636
+ Finally, we note that LightGBM-gbdt has better generalisation to the test period
637
+ than neural network-based models (TabNet), suggesting over-fitting in these complex
638
+ deep NN models. This indicates that although over-parameterised models can learn
639
+ non-linear relationships in temporal tabular data sets, these relationships may be
640
+ difficult to generalise under non-stationary data environments. On the other hand, our
641
+ results suggest that, despite their relative simplicity, gradient Boosting models capture
642
+ non-linearity in a more robust and controlled manner, with early trees capturing linear
643
+ relationships and non-linear relationships captured by the later trees, thus reducing
644
+ the risk of catastrophic forgetting [35].
645
+ In summary, we find that the best performing model in our set is LightGBM-
646
+ dart without feature engineering. In the rest of the paper, we will use this model to
647
+ illustrate how the pipeline can be further modified with online learning to account
648
+ for regime effects. To demonstrate the robustness of our pipeline, and how it can
649
+ be applied to improve the performance of any ML model, we will also report the
650
+ performance of two other models: a similar GBDT model (LightGBM-gbdt without
651
+ feature engineering) and a neural network model (MLP without feature engineering).
652
+ 5. Dealing with regime effects in the ML pipeline. Financial data are
653
+ heavily influenced by regime changes.
654
+ Growth (‘Bull’) markets are characterised
655
+ by low volatility and positive expected return, whereas high volatility and negative
656
+ expected returns are characteristic of adverse (‘bear’) markets.
657
+ Switches between
658
+ regimes can be triggered by externalities, such as pandemics, economic recessions,
659
+ etc. From the perspective of the Numerai data set, such regime effects affect model
660
+ performance. Volatility is detrimental to long-term performance due to the negative
661
+ compounding of investment losses, a phenomenon known as ‘volatility tax’. Given
662
+ that hedge funds are leveraged, we consider consistent models with reasonably good
663
+ performance under different market regimes, rather than models that have excellent
664
+ performance in one market regime but fail in others.
665
+
666
+ ROBUST ML MODELS IN FINANCE
667
+ 11
668
+ In this section, we focus on how to deal with regime effects when using ML
669
+ models for financial tabular temporal data sets.
670
+ Specifically, we consider feature
671
+ neutralisation, and reducing the dependence on the initial trees in gradient boosting
672
+ models.
673
+ Classification into high and low volatility regimes. To classify the financial market
674
+ into regimes, we consider an intrinsic measure derived directly from the Numerai
675
+ dataset. In particular, we first compute the Numerai Market Index (NMI), i.e., the
676
+ weekly performance of the baseline (linear) factor momentum portfolio, and we then
677
+ calculate the Numerai Realised Volatility Index (NRVIX), defined as the standard
678
+ deviation of NMI rolling over 52 weeks (Fig. 3). The eras are then classified into high
679
+ and low volatility, based on a threshold of NRVIX=0.025, the mean over the first 7
680
+ years of data (2003-01-03 to 2010-02-26). According to this intrinsic characterisation,
681
+ low volatility regimes have stable linear relationships of features to stock returns, often
682
+ associated with a good performance by ML models. On the other hand, high Volatility
683
+ regimes correspond to unstable linear relationships of features to stock returns leading
684
+ to poor model performance. Figure 3 shows that high/low NRVIX regimes are well
685
+ aligned with macroeconomic events: high volatility regimes include the financial crisis
686
+ (2007-2009), the Euro crisis (2011-2012), and the Covid pandemic (2020), whereas low
687
+ volatility regimes correspond to benign market conditions with no significant macro
688
+ event risks, during which the factor momentum baseline portfolio had good returns.
689
+ 2005-01-28
690
+ 2008-11-28
691
+ 2012-09-28
692
+ 2016-07-29
693
+ 2020-05-29
694
+ 0.050
695
+ 0.025
696
+ 0.000
697
+ 0.025
698
+ 0.050
699
+ 0.075
700
+ 0.100
701
+ (a) NMI
702
+ 2005-01-28
703
+ 2008-11-28
704
+ 2012-09-28
705
+ 2016-07-29
706
+ 2020-05-29
707
+ 0.015
708
+ 0.020
709
+ 0.025
710
+ 0.030
711
+ 0.035
712
+ 0.040
713
+ (b) NRVIX
714
+ Fig. 3: High and low volatility regimes in the Numerai data. (a) Numerai
715
+ Market Index (NMI) for the period between 2005-01-28 (Era 109) and 2022-09-23
716
+ (Era 1016); (b) the computed Numerai Realised Volatility Index (NRVIX) used to
717
+ identify the high and low volatility regimes. The high volatility regime refers to weeks
718
+ where NRVIX is higher than 0.25 and the low volatility regime refers to weeks where
719
+ NRVIX is lower than 0.25.
720
+ 5.1. Feature Neutralisation. Feature neutralisation is the general term to
721
+ denote the elimination of the effect of particular features in the model, thus reducing
722
+ the risk of over-relying on certain individual features. Because the predictive ability
723
+ of individual features is highly dependent on market regimes, this can lead to long
724
+ periods of drawdown when there is a regime change. It is therefore undesirable to
725
+ have ML models that could have heavy (linear)-dependence on certain features.
726
+ We start by evaluating here the feature neutralisation suggested by the Numerai
727
+ tournament. Numerai recommends that participants reduce model exposure to 420
728
+
729
+ 12
730
+ THOMAS WONG AND MAURICIO BARAHONA
731
+ ‘risky features’ (out of the 1191 features).
732
+ This list of risky features can be used
733
+ for feature neutralisation by subtracting the linear correlation using the formula for
734
+ Feature Neutral Correlation (FNC). Specifically, given a week of data with n stocks,
735
+ let X ∈ Rn×420 be the matrix of risky features and y ∈ Rn the predicted rankings ob-
736
+ tained from a model. For a given neutralisation strength β, 0 ≤ β ≤ 1, the neutralised
737
+ predicted ranking ˆy is calculated as ˆy = y − β XX†y, where X† is the pseudo-inverse
738
+ of X. FNC is then calculated as the correlation of the neutralised predicted rankings.
739
+ Using this procedure, we reduce the linear dependencies of predictions on features.
740
+ (a) LightGBM-dart without FE
741
+ Regime
742
+ Feature Neutral
743
+ Mean
744
+ Volatility
745
+ Max Draw
746
+ Sharpe
747
+ Calmar
748
+ All
749
+ Yes
750
+ 0.0215
751
+ 0.0182
752
+ 0.1153
753
+ 1.1806
754
+ 0.1865
755
+ No
756
+ 0.0278
757
+ 0.0284
758
+ 0.1622
759
+ 0.9791
760
+ 0.1714
761
+ High Vol
762
+ Yes
763
+ 0.0227
764
+ 0.0163
765
+ 0.0223
766
+ 1.3888
767
+ 1.0179
768
+ No
769
+ 0.0314
770
+ 0.0251
771
+ 0.0657
772
+ 1.2510
773
+ 0.4779
774
+ Low Vol
775
+ Yes
776
+ 0.0206
777
+ 0.0195
778
+ 0.1153
779
+ 1.0576
780
+ 0.1787
781
+ No
782
+ 0.0252
783
+ 0.0305
784
+ 0.1622
785
+ 0.8257
786
+ 0.1554
787
+ (b) LightGBM-gbdt without FE
788
+ Regime
789
+ Feature Neutral
790
+ Mean
791
+ Volatility
792
+ Max Draw
793
+ Sharpe
794
+ Calmar
795
+ All
796
+ Yes
797
+ 0.0204
798
+ 0.0211
799
+ 0.1998
800
+ 0.9665
801
+ 0.1021
802
+ No
803
+ 0.0262
804
+ 0.0321
805
+ 0.2378
806
+ 0.8140
807
+ 0.1102
808
+ High Vol
809
+ Yes
810
+ 0.0217
811
+ 0.0198
812
+ 0.0364
813
+ 1.0953
814
+ 0.5962
815
+ No
816
+ 0.0308
817
+ 0.0293
818
+ 0.1123
819
+ 1.0497
820
+ 0.2743
821
+ Low Vol
822
+ Yes
823
+ 0.0194
824
+ 0.0220
825
+ 0.1998
826
+ 0.8820
827
+ 0.0971
828
+ No
829
+ 0.0227
830
+ 0.0338
831
+ 0.2378
832
+ 0.6727
833
+ 0.0955
834
+ (c) MLP without FE
835
+ Regime
836
+ Feature Neutral
837
+ Mean
838
+ Volatility
839
+ Max Draw
840
+ Sharpe
841
+ Calmar
842
+ All
843
+ Yes
844
+ 0.0179
845
+ 0.0203
846
+ 0.2606
847
+ 0.8798
848
+ 0.0687
849
+ No
850
+ 0.0258
851
+ 0.0289
852
+ 0.1668
853
+ 0.8931
854
+ 0.1547
855
+ High Vol
856
+ Yes
857
+ 0.0196
858
+ 0.0193
859
+ 0.0326
860
+ 1.0191
861
+ 0.6012
862
+ No
863
+ 0.0298
864
+ 0.0276
865
+ 0.1247
866
+ 1.0802
867
+ 0.2390
868
+ Low Vol
869
+ Yes
870
+ 0.0165
871
+ 0.0210
872
+ 0.2606
873
+ 0.7875
874
+ 0.0633
875
+ No
876
+ 0.0228
877
+ 0.0296
878
+ 0.1668
879
+ 0.7721
880
+ 0.1367
881
+ Table 3: The effect of feature neutralisation. Performance of different ML meth-
882
+ ods on the Numerai v4 dataset over the test period (2014-06-27 to 2022-09-23) with
883
+ and without feature neutralisation under different market regimes: the whole test
884
+ period (all), high volatility regime (high-vol), and low volatility regime (low-vol).
885
+ In Table 3, we compare the performance of the LightGBM-dart, LightGBM-gbdt
886
+ and MLP with and without feature neutralisation under different market regimes (all,
887
+ high volatility, low volatility). The neutralisation strength β is set to 1 throughout.
888
+ We find that the variance of models is consistently reduced by feature neutralisa-
889
+ tion, suggesting an overall reduction of risk. Further, feature neutralisation improves
890
+ the Sharpe and Calmar ratios of LightGBM-dart and LightGBM-gbdt under different
891
+ market regimes, but does not improve the performance of MLP models.
892
+ Importantly, this default feature neutralisation procedure suggested by Numerai
893
+
894
+ ROBUST ML MODELS IN FINANCE
895
+ 13
896
+ is not optimal, and we will show in Section 6 how online learning approaches can be
897
+ used to improve the procedure.
898
+ 5.2. Pruning initial trees in Gradient Boosting models. For gradient-
899
+ boosting tree models, we also consider a specific procedure consisting of pruning
900
+ initial trees during prediction to reduce feature dependencies. Specifically, we perform
901
+ a grid search over the number of initial trees to be pruned off in the trained LightGBM
902
+ models, and we cap the number of trees to be pruned to not more than half of the
903
+ trees to ensure our models do not degenerate.
904
+ Table 4 compares the performance of LightGBM-dart and LightGBM-gbdt models
905
+ pruning different numbers of initial trees before feature neutralisation. Pruning ini-
906
+ tial trees during prediction improves the Sharpe and Calmar ratios of both LightGBM
907
+ models, but LightGBM-gbdt models see a bigger improvement than LightGBM-dart
908
+ models. This is expected as LightGBM-dart models already employ a similar fun-
909
+ damental idea during training, i.e., the trained trees in LightGBM-dart models are
910
+ already optimised. Our numerics also suggest that there is a limit of trees to be pruned
911
+ such that there is little improvement in model performance once over a threshold of
912
+ around 100-250 trees.
913
+ (a) LightGBM-dart without FE
914
+ Prune Trees
915
+ Mean
916
+ Volatility
917
+ Max Draw
918
+ Sharpe
919
+ Calmar
920
+ 0
921
+ 0.0278
922
+ 0.0284
923
+ 0.1622
924
+ 0.9791
925
+ 0.1714
926
+ 100
927
+ 0.0272
928
+ 0.0264
929
+ 0.1384
930
+ 1.0293
931
+ 0.1965
932
+ 250
933
+ 0.0264
934
+ 0.0255
935
+ 0.1299
936
+ 1.0336
937
+ 0.2032
938
+ 500
939
+ 0.0249
940
+ 0.0238
941
+ 0.1166
942
+ 1.0459
943
+ 0.2136
944
+ (b) LightGBM-gbdt without FE
945
+ Prune Trees
946
+ Mean
947
+ Volatility
948
+ Max Draw
949
+ Sharpe
950
+ Calmar
951
+ 0
952
+ 0.0262
953
+ 0.0321
954
+ 0.2378
955
+ 0.8140
956
+ 0.1102
957
+ 100
958
+ 0.0265
959
+ 0.0291
960
+ 0.1835
961
+ 0.9106
962
+ 0.1444
963
+ 250
964
+ 0.0253
965
+ 0.0259
966
+ 0.1490
967
+ 0.9769
968
+ 0.1698
969
+ 500
970
+ 0.0253
971
+ 0.0259
972
+ 0.1490
973
+ 0.9765
974
+ 0.1698
975
+ Table 4: The effect of tree pruning. Strategy Performance of different LightGBM
976
+ models in the test period (2014-06-27 to 2022-09-23) when pruning different numbers
977
+ of initial trees.
978
+ 5.3. Joint effect of feature neutralisation and tree pruning. We then
979
+ considered the joint effect of feature neutralisation and pruning initial trees. Table
980
+ 5 compares the performance (FNC) of LightGBM-dart and LightGBM-gbdt models
981
+ pruning a different number of initial trees after feature neutralisation. The effect of
982
+ pruning on model performance for both LightGBM models after feature neutralisation
983
+ is at best modest. As FNC is a measure of the effect of non-linear relationships, this
984
+ suggests that in gradient boosting models, early weak learners (trees) mostly capture
985
+ linear relationships whereas most of the non-linear relationships are captured in the
986
+ later weak learners (trees). Therefore, pruning initial trees can be thought of as a
987
+ model-dependent feature neutralisation method.
988
+
989
+ 14
990
+ THOMAS WONG AND MAURICIO BARAHONA
991
+ (a) LightGBM-dart without FE with Feature Neutralisation
992
+ Prune Trees
993
+ Mean
994
+ Volatility
995
+ Max Draw
996
+ Sharpe
997
+ Calmar
998
+ 0
999
+ 0.0215
1000
+ 0.0182
1001
+ 0.1153
1002
+ 1.1806
1003
+ 0.1865
1004
+ 100
1005
+ 0.0208
1006
+ 0.0174
1007
+ 0.1079
1008
+ 1.1998
1009
+ 0.1928
1010
+ 250
1011
+ 0.0200
1012
+ 0.0168
1013
+ 0.1103
1014
+ 1.1918
1015
+ 0.1813
1016
+ 500
1017
+ 0.0183
1018
+ 0.0156
1019
+ 0.1044
1020
+ 1.1748
1021
+ 0.1753
1022
+ (b) LightGBM-gbdt without FE with Feature Neutralisation
1023
+ Prune Trees
1024
+ Mean
1025
+ Volatility
1026
+ Max Draw
1027
+ Sharpe
1028
+ Calmar
1029
+ 0
1030
+ 0.0204
1031
+ 0.0211
1032
+ 0.1998
1033
+ 0.9665
1034
+ 0.1021
1035
+ 100
1036
+ 0.0206
1037
+ 0.0200
1038
+ 0.1912
1039
+ 1.0293
1040
+ 0.1077
1041
+ 250
1042
+ 0.0194
1043
+ 0.0188
1044
+ 0.2058
1045
+ 1.0307
1046
+ 0.0943
1047
+ 500
1048
+ 0.0193
1049
+ 0.0188
1050
+ 0.2063
1051
+ 1.0301
1052
+ 0.0936
1053
+ Table 5: The joint effect of feature neutralisation and tree pruning. Perfor-
1054
+ mance of different LightGBM models after neutralisation in the test period (2014-06-
1055
+ 27 to 2022-09-23) when pruning different numbers of initial trees.
1056
+ 6. Online Learning to improve post-prediction processing and model
1057
+ ensembles. As a further improvement to the ML pipeline, we apply online learning
1058
+ approaches to both feature neutralisation and model ensembles to produce improved
1059
+ versions called dynamic feature neutralisation and dynamic model selection. Dynamic
1060
+ feature neutralisation acts by applying statistical rules to determine subsets of fea-
1061
+ tures to neutralise predictions in each era. Dynamic model selection acts by updating
1062
+ regularly the choice of model(s) from a model ensemble based on recent model per-
1063
+ formance.
1064
+ The aim of online learning is to derive an optimal procedure to select ML mod-
1065
+ els and parameters as data arrives continuously. In a continuous time setting, the
1066
+ Hamilton-Jacobi-Bellman (HJB) equation is solved to find the optimal determinis-
1067
+ tic control for the decision problem [36]. The discrete-time equivalent, the Bellman
1068
+ equation, is used in reinforcement learning to derive optimal policies of agents [37].
1069
+ For the Numerai tournament, we consider online learning in the discrete-time
1070
+ setting, since data and predictions are required once per week.
1071
+ For each week t
1072
+ (1 ≤ t ≤ T), we have a state (data) process Xt, which contains all the infor-
1073
+ mation we know about the environment (Numerai datasets and trained ML model
1074
+ parameters) up to week t. Our task is then to derive a deterministic decision pro-
1075
+ cess Dt(βt) described by parameters βt := βt(Xt), subject to the objective function
1076
+ VT = maxDt
1077
+ �T
1078
+ t=1 q(Xt, Dt), where q(Xt, Dt) represents the utility at time instant t
1079
+ given the data and decision process.
1080
+ (Deep) Reinforcement learning algorithms are commonly used to solve online
1081
+ learning problems. However, they are not used here due to the following reasons:
1082
+ 1. Limited data: Available data is not enough to train reinforcement learning
1083
+ models, such as Deep Q Networks (DQN) [38], Proximal Policy Optimisation
1084
+ (PPO) [39] and Soft Actor-Critic (SAC) [40]). Generating a large number of
1085
+ samples is difficult here since we must avoid look-ahead bias.
1086
+ 2. Expanding action space: Most implementations of reinforcement learning al-
1087
+
1088
+ ROBUST ML MODELS IN FINANCE
1089
+ 15
1090
+ gorithms, as found in Ray-RLlib [11], cannot adapt naturally to an expanding
1091
+ action space. For the dynamic model selection problem, the number of po-
1092
+ tential models is unbounded, as newer models can be trained with the latest
1093
+ data available and added to the candidate list. Rule-based models, on the
1094
+ other hand, can handle the issue of expanding action space easily.
1095
+ 3. Actions have negligible impact on environment: Highly successful reinforce-
1096
+ ment learning algorithms are usually targetted at robotics and Atari games
1097
+ [41], where agent actions can modify the environment. However, for the trad-
1098
+ ing models considered here, the trading activities are assumed to have zero or
1099
+ negligible market impact, and reinforcement learning algorithms thus reduce
1100
+ to an online learning prediction problem.
1101
+ 4. Large, correlated feature sets for neutralisation: To improve feature neutral-
1102
+ isation, we use a different subset of features to neutralise predictions in each
1103
+ era. Yet the size of the set of risky features (420 features) makes it computa-
1104
+ tionally infeasible to learn feature subsets through supervised ML methods or
1105
+ reinforcement learning, as it is difficult to construct a robust reward function
1106
+ for correlated features. Heuristic methods thus provide suitable alternatives
1107
+ to learn interpretable and robust feature neutralisation schemes.
1108
+ 5. Model ensembling can be simplified in the Numerai problem: The model en-
1109
+ semble step of the pipeline assigns portfolio weightings to different ML mod-
1110
+ els. Although similar to a multi-armed bandit problem, in our problem ex-
1111
+ ploration is not needed for the agent to learn the distribution of rewards from
1112
+ different choices since the performance of all ML models up to the decision
1113
+ time are known to the Numerai tournament participant. Hence there is less
1114
+ need to employ trial-and-error as in multi-armed bandit algorithms.
1115
+ As a consequence, instead of reinforcement learning algorithms, we use heuristics
1116
+ which are shown to be effective in improving the robustness of the ML pipeline. These
1117
+ heuristics can be interpreted as strong priors in Bayesian learning that greatly simplify
1118
+ our problem.
1119
+ 6.1. Dynamic Feature neutralisation. In Section 5, the subset of ‘risky fea-
1120
+ tures’ that are used to neutralise ML models is fixed throughout the whole validation
1121
+ and test periods. As market conditions are variable, we suggest choosing a different
1122
+ set of features to neutralise in each era to adapt our ML models without the need for
1123
+ expensive re-training of models. Specifically, each week we update the set of features
1124
+ to neutralise based on rolling statistical properties of features, as follows. For each
1125
+ feature in the dataset, we calculate the correlation of the feature with the target (fea-
1126
+ ture Corr) and then compute lagged moving average statistics, with a lag of 6 weeks
1127
+ to account for the lagged reporting of future performance. The look-back window to
1128
+ compute statistical properties of feature Corr is 52 weeks. We consider 5 different
1129
+ criteria to select the subset of features to be neutralised:
1130
+ 1. ‘Fixed’: 420 features provided by the portfolio optimiser in Numerai, as in
1131
+ Section 5 above
1132
+ 2. ‘Low Mean’: 420 features that are least correlated to the target recently
1133
+ 3. ‘High Mean’: 420 features that are most correlated to the target recently
1134
+ 4. ‘Low Volatility’: 420 features that have correlations least volatile recently
1135
+ 5. ‘High Volatility’: 420 features that have correlations most volatile recently
1136
+ Table 6 compares the performance obtained by the different dynamic feature
1137
+ neutralisation schemes on LightGBM-dart, LightGBM-gbdt and MLP models. All
1138
+ Dynamic Feature Neutralisation methods perform better than using a fixed set of
1139
+
1140
+ 16
1141
+ THOMAS WONG AND MAURICIO BARAHONA
1142
+ features but the ‘Low Mean’ neutralisation method has the best Sharpe and Calmar
1143
+ ratios for all ML models, followed by neutralisation of ‘High Volatility’ features. The
1144
+ worse performance of ‘High Mean’ and ’Low Volatility’ neutralisations suggests that a
1145
+ large part of the model risks can be attributed to recently underperforming and high
1146
+ volatility features.
1147
+ (a) LightGBM-dart without FE
1148
+ Dynamic Feature Neutral.
1149
+ Mean
1150
+ Volatility
1151
+ Max Draw
1152
+ Sharpe
1153
+ Calmar
1154
+ Fixed
1155
+ 0.0215
1156
+ 0.0182
1157
+ 0.1153
1158
+ 1.1806
1159
+ 0.1865
1160
+ Low Mean
1161
+ 0.0240
1162
+ 0.0164
1163
+ 0.0350
1164
+ 1.4595
1165
+ 0.6857
1166
+ High Mean
1167
+ 0.0218
1168
+ 0.0185
1169
+ 0.0986
1170
+ 1.1783
1171
+ 0.2211
1172
+ Low Vol
1173
+ 0.0244
1174
+ 0.0200
1175
+ 0.0538
1176
+ 1.2220
1177
+ 0.4535
1178
+ High Vol
1179
+ 0.0226
1180
+ 0.0169
1181
+ 0.0341
1182
+ 1.3411
1183
+ 0.6628
1184
+ (b) LightGBM-gbdt without FE
1185
+ Dynamic Feature Neutral.
1186
+ Mean
1187
+ Volatility
1188
+ Max Draw
1189
+ Sharpe
1190
+ Calmar
1191
+ Fixed
1192
+ 0.0204
1193
+ 0.0211
1194
+ 0.1998
1195
+ 0.9665
1196
+ 0.1021
1197
+ Low Mean
1198
+ 0.0234
1199
+ 0.0184
1200
+ 0.0495
1201
+ 1.2737
1202
+ 0.4727
1203
+ High Mean
1204
+ 0.0199
1205
+ 0.0212
1206
+ 0.1469
1207
+ 0.9381
1208
+ 0.1355
1209
+ Low Vol
1210
+ 0.0224
1211
+ 0.0228
1212
+ 0.1852
1213
+ 0.9797
1214
+ 0.1210
1215
+ High Vol
1216
+ 0.0182
1217
+ 0.1633
1218
+ 0.0487
1219
+ 1.1986
1220
+ 0.4476
1221
+ (c) MLP without FE
1222
+ Dynamic Feature Neutral.
1223
+ Mean
1224
+ Volatility
1225
+ Max Draw
1226
+ Sharpe
1227
+ Calmar
1228
+ Fixed
1229
+ 0.0179
1230
+ 0.0203
1231
+ 0.2606
1232
+ 0.8798
1233
+ 0.0687
1234
+ Low Mean
1235
+ 0.0211
1236
+ 0.0185
1237
+ 0.0806
1238
+ 1.1387
1239
+ 0.2618
1240
+ High Mean
1241
+ 0.0186
1242
+ 0.0201
1243
+ 0.1283
1244
+ 0.9256
1245
+ 0.1450
1246
+ Low Vol
1247
+ 0.0206
1248
+ 0.0215
1249
+ 0.0878
1250
+ 0.9598
1251
+ 0.2346
1252
+ High Vol
1253
+ 0.0191
1254
+ 0.0172
1255
+ 0.0730
1256
+ 1.1150
1257
+ 0.2616
1258
+ Table 6: The effect of Dynamic Feature Neutralisation. Performance of differ-
1259
+ ent ML models in the test period (2014-06-27 to 2022-09-23) with different dynamic
1260
+ feature neutralisation methods
1261
+ Next we compared the performance obtained by different dynamic feature neu-
1262
+ tralisations under different market regimes, as defined in Section
1263
+ 5.
1264
+ The results
1265
+ can be found in Tables 9 and 8 in the Supplementary Information. Neutralisation
1266
+ by ‘Low Mean’ performs better than Neutralisation by ‘High Mean’ in low volatility
1267
+ regimes, but not in high volatility regimes. Under high volatility regimes, neutralisa-
1268
+ tion by ‘Low Volatility’ features in the models performs better than neutralisation by
1269
+ ‘Low Mean’. Under a low volatility regime, neutralisation by ‘Low Mean’ performs
1270
+ significantly better than others.
1271
+ Based on the above, we make the following observations: In a low volatility
1272
+ regime, factors that are performing well recently continue to do so in the near future
1273
+ as the feature correlation structure is more stable in low volatility regime.
1274
+ This
1275
+ works until there is a regime change. In a high volatility regime, the ML models
1276
+ after neutralisation of ‘Low Volatility’ features have a much higher Mean Corr than
1277
+ models obtained by other neutralisation methods. ‘Low Volatility’ represents features
1278
+
1279
+ ROBUST ML MODELS IN FINANCE
1280
+ 17
1281
+ that have a low variance, and stable performance in the last 52 weeks. During volatile
1282
+ regimes, these features will underperform. Models that neutralise these features can
1283
+ then outperform when there is market stress.
1284
+ 6.2. Dynamic model selection. In practice, it is not possible to know the best
1285
+ dynamic feature engineering methods in advance. Therefore, we propose an online
1286
+ learning procedure to select the dynamic feature engineering method during the test
1287
+ period consisting of two steps. The first step is to have a warm-up period to collect
1288
+ data on model performances, during which all 5 feature neutralisation methods (fixed,
1289
+ low mean, high mean, low vol, high vol) have equal weighting. The second step is to
1290
+ allocate weights to the optimal model based on recent performance according to the
1291
+ following criteria:
1292
+ • ‘Average’: Using all five feature neutralisation methods with equal weighting
1293
+ • ‘Momentum’: Using the feature neutralisation method with the highest Mean
1294
+ Corr in the last 52 weeks
1295
+ • ‘Sharpe’: Using the feature neutralisation method with the highest Sharpe
1296
+ Ratio in the last 52 weeks
1297
+ • ‘Calmar’: Using the feature neutralisation method with the highest Calmar
1298
+ ratio in the last 52 weeks
1299
+ In Table 7, we use these criteria to select the optimal dynamic feature engineering
1300
+ method based on recent performance. As above, a lag of 6 weeks is applied to account
1301
+ for data delays.
1302
+ The online learning procedure can thus select the optimal dynamic feature engi-
1303
+ neering method to outperform the ‘Average’ selection in most cases. For all three ML
1304
+ models (LightGBM-dart/LightGBM-gbdt/MLP), the ‘Momentum’ selection method
1305
+ has higher mean Corr and Calmar ratio than the‘Average’ (baseline) and ‘Sharpe’
1306
+ methods. This shows that the ‘Momentum’ method, a very simple model selection
1307
+ method that chooses the recent best-performing model, can adapt a trained ML model
1308
+ towards different market regimes efficiently. For LightGBM-dart and LightGBM-gbdt
1309
+ models, the ‘Calmar’ selection method gives a higher Calmar ratio than the ‘Momen-
1310
+ tum’ method but with a lower mean Corr. For MLP models, the ‘Calmar’ selection
1311
+ method significantly under-performs other model selection methods, with a much
1312
+ higher Max Drawdown. This suggests that selection based on historical drawdown is
1313
+ not robust, especially under situations with regime changes.
1314
+ In summary, the proposed online learning procedure to select optimal dynamic
1315
+ feature engineering methods can significantly reduce trading risks and improve the
1316
+ robustness of trading models, outperforming the baseline selection method that takes
1317
+ a simple average of all available models.
1318
+ 7. Discussion. Motivated by the Numerai tournament, we have designed here
1319
+ an ML pipeline that can be applied to tabular temporal data of stock prices to under-
1320
+ pin strategies for trading of market-neutral stock portfolios. The various steps in the
1321
+ ML pipeline are carefully designed for robustness against regime changes and to avoid
1322
+ information leakage through time. We thus aim to obtain models with relatively low
1323
+ complexity, so as to reduce the danger of over-fitting, and with high robustness to
1324
+ changes in hyper-parameters and other choices in the algorithms. Another aim is to
1325
+ Regarding the choice of ML models, we find that gradient-boosting decision tree
1326
+ models are both more robust and interpretable than neural network-based models,
1327
+ and they allow more consistent performance under different market regimes.
1328
+ We also find that post-prediction processing, which is model-agnostic, is an effec-
1329
+ tive means of adapting trained ML models towards new situations without the need
1330
+
1331
+ 18
1332
+ THOMAS WONG AND MAURICIO BARAHONA
1333
+ (a) LightGBM-dart without FE
1334
+ Model Selection
1335
+ Mean
1336
+ Volatility
1337
+ Max Draw
1338
+ Sharpe
1339
+ Calmar
1340
+ Average
1341
+ 0.0229
1342
+ 0.0160
1343
+ 0.0619
1344
+ 1.4323
1345
+ 0.3700
1346
+ Momentum
1347
+ 0.0246
1348
+ 0.0180
1349
+ 0.0533
1350
+ 1.3654
1351
+ 0.4615
1352
+ Sharpe
1353
+ 0.0234
1354
+ 0.0165
1355
+ 0.0533
1356
+ 1.4148
1357
+ 0.4390
1358
+ Calmar
1359
+ 0.0225
1360
+ 0.0171
1361
+ 0.0350
1362
+ 1.3122
1363
+ 0.6429
1364
+ (b) LightGBM-gbdt without FE
1365
+ Model Selection
1366
+ Mean
1367
+ Volatility
1368
+ Max Draw
1369
+ Sharpe
1370
+ Calmar
1371
+ Average
1372
+ 0.0216
1373
+ 0.0177
1374
+ 0.0710
1375
+ 1.2165
1376
+ 0.3042
1377
+ Momentum
1378
+ 0.0228
1379
+ 0.0201
1380
+ 0.0729
1381
+ 1.1342
1382
+ 0.3128
1383
+ Sharpe
1384
+ 0.0224
1385
+ 0.0187
1386
+ 0.0729
1387
+ 1.1966
1388
+ 0.3073
1389
+ Calmar
1390
+ 0.0216
1391
+ 0.0195
1392
+ 0.0508
1393
+ 1.1102
1394
+ 0.4252
1395
+ (c) MLP without FE
1396
+ Model Selection
1397
+ Mean
1398
+ Volatility
1399
+ Max Draw
1400
+ Sharpe
1401
+ Calmar
1402
+ Average
1403
+ 0.0195
1404
+ 0.0175
1405
+ 0.0918
1406
+ 1.1149
1407
+ 0.2124
1408
+ Momentum
1409
+ 0.0212
1410
+ 0.0191
1411
+ 0.0878
1412
+ 1.1124
1413
+ 0.2415
1414
+ Sharpe
1415
+ 0.0207
1416
+ 0.0186
1417
+ 0.0878
1418
+ 1.1110
1419
+ 0.2358
1420
+ Calmar
1421
+ 0.0187
1422
+ 0.0201
1423
+ 0.1973
1424
+ 0.9309
1425
+ 0.0948
1426
+ Table 7: The effect of dynamic model selection. Performance of different ML
1427
+ models in the test period (2014-06-27 to 2022-09-23) with different online learning
1428
+ procedures selecting the optimal dynamic feature neutralisation method.
1429
+ to re-train ML models and introduce additional model uncertainty. Using dynamic
1430
+ feature neutralisation produces models with different flavours in an interpretable way,
1431
+ which also have better risk-adjusted performance than models with fixed feature neu-
1432
+ tralisation.
1433
+ Staking is commonly used in ML competitions to improve the robustness of mod-
1434
+ els. The method suggested in this study, dynamic model selection can be applied to
1435
+ online ML problems in guiding the selection of an optimal model(s) from a growing
1436
+ model ensemble. We find that a simple design, such as equal-weighted models, has
1437
+ a robust performance under different market regimes, but selecting the best model
1438
+ based on recent performance provides an improvement compared to the baseline as
1439
+ it switches to a lower-risk model during more volatile market regimes. It remains an
1440
+ open research area into how reinforcement learning or other online learning methods
1441
+ can be used to learn optimal staking weights between different ML models, given their
1442
+ historical performance and correlations.
1443
+ We also studied the robustness of our ML pipeline under different random seeds
1444
+ and changes in data splits for cross-validation. The results are presented in Section
1445
+ 9.4 in the Supplementary Information, where we show that LightGBM dart mod-
1446
+ els are robust against these changes. The statistical rules used in dynamic feature
1447
+ neutralisation are also shown to perform better than features chosen at random.
1448
+ In the following, we discuss some ideas for further work to improve the ML pipeline
1449
+
1450
+ ROBUST ML MODELS IN FINANCE
1451
+ 19
1452
+ we designed. The diversity of models within a model ensemble is a key ingredient
1453
+ for dynamic model selection and other model ensemble/staking methods.
1454
+ A new
1455
+ metric could be designed to study the impact of a new ML model on an existing
1456
+ model ensemble. This metric could then be used to train new ML models that are
1457
+ uncorrelated to existing ones.
1458
+ The simple feature engineering methods used in our present study could not
1459
+ improve the performance of ML models.
1460
+ Identifying robust relationships between
1461
+ features over different market regimes is difficult but generative models, such as Vari-
1462
+ ational Autoencoders [42], could be used to create new features that summarise non-
1463
+ linear relationships in existing features.
1464
+ The Gradient Boosting models used in our pipeline are suitable for distributed
1465
+ learning, where large datasets are split into smaller batches to train on different ma-
1466
+ chines, often with various computational resource constraints. Data science compe-
1467
+ titions like the Numerai tournament rely on community efforts of individual data
1468
+ scientists to create a meta-model. This approach to crowd sourcing depends on the
1469
+ assumption that a complicated ML model that needs to be trained with advanced
1470
+ hardware can be approximated by combining a number of ML models (each trained
1471
+ with fewer data or features). Studying the convergence of model performance would
1472
+ be important for organising the data science competition as it decides how many
1473
+ participants are needed to maintain a well-diverse pool of models to create the meta-
1474
+ model.
1475
+ Overall, our results suggest using simple, well-established ML models such as
1476
+ gradient-boosting decision trees instead of specialised neural network models for this
1477
+ tasks.
1478
+ Rather than using a single neural network to perform feature engineering,
1479
+ model training/inference and post-prediction transformations, the modularised de-
1480
+ sign of the ML pipeline in this study offers increased robustness and transparency.
1481
+ Researchers can add, modify or delete a component without affecting the rest of the
1482
+ pipeline. Creating model ensembles improves model performances by reducing id-
1483
+ iosyncratic variance from individual ML models. The simple model selection rules
1484
+ based on recent performances provide a baseline that works well under different mar-
1485
+ ket regimes, whereas various portfolio metrics such as Sharpe and Calmar ratios are
1486
+ improved by using the recently best-performing models.
1487
+ 8. Data and Code Availability . The data and code used in this paper is
1488
+ available at https://github.com/ThomasWong2022/numerai-benchmark.
1489
+ REFERENCES
1490
+ [1] J. Arosemena, N. Perez, D. Benitez, D. Riofrio, and R. Flores-Moyano, “Stock price analy-
1491
+ sis with deep-learning models,” in 2021 IEEE Colombian Conference on Applications of
1492
+ Computational Intelligence (ColCACI), 2021, pp. 1–6.
1493
+ [2] S. Selvin, R. Vinayakumar, E. A. Gopalakrishnan, V. K. Menon, and K. P. Soman, “Stock price
1494
+ prediction using lstm, rnn and cnn-sliding window model,” in 2017 International Confer-
1495
+ ence on Advances in Computing, Communications and Informatics (ICACCI), 2017, pp.
1496
+ 1643–1647.
1497
+ [3] K. A. Althelaya, E.-S. M. El-Alfy, and S. Mohammed, “Evaluation of bidirectional lstm for
1498
+ short-and long-term stock market prediction,” in 2018 9th International Conference on
1499
+ Information and Communication Systems (ICICS), 2018, pp. 151–156.
1500
+ [4] J. Hullman, S. Kapoor, P. Nanayakkara, A. Gelman, and A. Narayanan, “The worst of both
1501
+ worlds: A comparative analysis of errors in learning from data in psychology and machine
1502
+ learning,” 2022. [Online]. Available: https://arxiv.org/abs/2203.06498
1503
+ [5] S. Kapoor and A. Narayanan, “Leakage and the reproducibility crisis in ml-based science,”
1504
+ 2022. [Online]. Available: https://arxiv.org/abs/2207.07048
1505
+
1506
+ 20
1507
+ THOMAS WONG AND MAURICIO BARAHONA
1508
+ [6] E. Rivera-Landos, F. Khomh, and A. Nikanjam, “The challenge of reproducible ml: an empirical
1509
+ study on the impact of bugs,” 2021. [Online]. Available: https://arxiv.org/abs/2109.03991
1510
+ [7] [Online]. Available: https://arxiv.org/abs/2006.12117
1511
+ [8] J. Bollen, H. Mao, and X. Zeng, “Twitter mood predicts the stock market,” Journal
1512
+ of
1513
+ Computational
1514
+ Science,
1515
+ vol.
1516
+ 2,
1517
+ no.
1518
+ 1,
1519
+ pp.
1520
+ 1–8,
1521
+ 2011.
1522
+ [Online].
1523
+ Available:
1524
+ https://www.sciencedirect.com/science/article/pii/S187775031100007X
1525
+ [9] J. P. N and B. Vasudevan, “Effective implementation of neural network model with tune pa-
1526
+ rameter for stock market predictions,” in 2021 2nd International Conference on Smart
1527
+ Electronics and Communication (ICOSEC), 2021, pp. 1038–1042.
1528
+ [10] S. Singh and S. Sharma, “Forecasting stock price using partial least squares regression,” in
1529
+ 2018 8th International Conference on Cloud Computing, Data Science & Engineering
1530
+ (Confluence), 2018, pp. 587–591.
1531
+ [11] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol, Z. Yang,
1532
+ W. Paul, M. I. Jordan, and I. Stoica, “Ray: A distributed framework for emerging ai
1533
+ applications,” 2017. [Online]. Available: https://arxiv.org/abs/1712.05889
1534
+ [12] F.
1535
+ Zhou,
1536
+ Q.
1537
+ Zhang,
1538
+ D.
1539
+ Sornette,
1540
+ and
1541
+ L.
1542
+ Jiang,
1543
+ “Cascading
1544
+ logistic
1545
+ regression
1546
+ onto
1547
+ gradient
1548
+ boosted
1549
+ decision
1550
+ trees
1551
+ for
1552
+ forecasting
1553
+ and
1554
+ trading
1555
+ stock
1556
+ indices,”
1557
+ Applied
1558
+ Soft
1559
+ Computing,
1560
+ vol.
1561
+ 84,
1562
+ p.
1563
+ 105747,
1564
+ 2019.
1565
+ [Online].
1566
+ Available:
1567
+ https:
1568
+ //www.sciencedirect.com/science/article/pii/S1568494619305289
1569
+ [13] C. Bockel-Rickermann,
1570
+ “Predicting day-ahead stock returns using search engine query
1571
+ volumes:
1572
+ An application of gradient boosted decision trees to the s&p 100,” 2022.
1573
+ [Online]. Available: https://arxiv.org/abs/2205.15853
1574
+ [14] R. Akita, A. Yoshihara, T. Matsubara, and K. Uehara, “Deep learning for stock prediction using
1575
+ numerical and textual information,” in 2016 IEEE/ACIS 15th International Conference
1576
+ on Computer and Information Science (ICIS), 2016, pp. 1–6.
1577
+ [15] Numerai. Numerai Hedge Fund. (2022, Apr 12). [Online]. Available: https://numerai.fund/
1578
+ [16] D. B. Percival and A. T. Walden, Spectral Analysis for Univariate Time Series, ser. Cambridge
1579
+ Series in Statistical and Probabilistic Mathematics.
1580
+ Cambridge University Press, 2020.
1581
+ [17] B.
1582
+ Lim,
1583
+ S.
1584
+ O.
1585
+ Arik,
1586
+ N.
1587
+ Loeff,
1588
+ and
1589
+ T.
1590
+ Pfister,
1591
+ “Temporal
1592
+ fusion
1593
+ transformers
1594
+ for
1595
+ interpretable
1596
+ multi-horizon
1597
+ time
1598
+ series
1599
+ forecasting,”
1600
+ 2019.
1601
+ [Online].
1602
+ Available:
1603
+ https://arxiv.org/abs/1912.09363
1604
+ [18] A. Kadra, M. Lindauer, F. Hutter, and J. Grabocka, “Well-tuned simple nets excel on tabular
1605
+ datasets,” 2021. [Online]. Available: https://arxiv.org/abs/2106.11189
1606
+ [19] R. Shwartz-Ziv and A. Armon, “Tabular data:
1607
+ Deep learning is not all you need,” 2021.
1608
+ [Online]. Available: https://arxiv.org/abs/2106.03253
1609
+ [20] S. B. Kotsiantis, “Decision trees: a recent overview,” Artificial Intelligence Review, vol. 39, pp.
1610
+ 261–283, 2011.
1611
+ [21] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and
1612
+ an application to boosting,” Journal of Computer and System Sciences, vol. 55, no. 1,
1613
+ pp. 119–139, 1997. [Online]. Available:
1614
+ https://www.sciencedirect.com/science/article/
1615
+ pii/S002200009791504X
1616
+ [22] J. H. Friedman, “Greedy function approximation: A gradient boosting machine,” The Annals
1617
+ of statistics, vol. 29, no. 5, pp. 1189–1232, 2001.
1618
+ [23] G.
1619
+ Ke,
1620
+ Q.
1621
+ Meng,
1622
+ T.
1623
+ Finley,
1624
+ T.
1625
+ Wang,
1626
+ W.
1627
+ Chen,
1628
+ W.
1629
+ Ma,
1630
+ Q.
1631
+ Ye,
1632
+ and
1633
+ T.-Y.
1634
+ Liu,
1635
+ “Lightgbm:
1636
+ A highly efficient gradient boosting decision tree,”
1637
+ in Advances
1638
+ in Neural Information Processing Systems,
1639
+ I. Guyon,
1640
+ U. V. Luxburg,
1641
+ S. Bengio,
1642
+ H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30.
1643
+ Curran
1644
+ Associates, Inc., 2017. [Online]. Available:
1645
+ https://proceedings.neurips.cc/paper/2017/
1646
+ file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
1647
+ [24] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, “Catboost: unbiased
1648
+ boosting with categorical features,”
1649
+ in Advances in Neural Information Processing
1650
+ Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
1651
+ R. Garnett, Eds., vol. 31.
1652
+ Curran Associates, Inc., 2018. [Online]. Available:
1653
+ https:
1654
+ //proceedings.neurips.cc/paper/2018/file/14491b756b3a51daac41c24863285549-Paper.pdf
1655
+ [25] T. Chen and C. Guestrin, “Xgboost:
1656
+ A scalable tree boosting system,” in Proceedings of
1657
+ the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
1658
+ Mining, ser. KDD ’16.
1659
+ New York, NY, USA: Association for Computing Machinery,
1660
+ 2016, p. 785-794. [Online]. Available: https://doi.org/10.1145/2939672.2939785
1661
+ [26] R. Korlakai Vinayak and R. Gilad-Bachrach, “DART: Dropouts meet Multiple Additive
1662
+ Regression Trees,” in Proceedings of the Eighteenth International Conference on Artificial
1663
+ Intelligence and Statistics, ser. Proceedings of Machine Learning Research, G. Lebanon
1664
+ and S. V. N. Vishwanathan, Eds., vol. 38.
1665
+ San Diego, California, USA: PMLR,
1666
+
1667
+ ROBUST ML MODELS IN FINANCE
1668
+ 21
1669
+ 09–12 May 2015, pp. 489–497. [Online]. Available:
1670
+ https://proceedings.mlr.press/v38/
1671
+ korlakaivinayak15.html
1672
+ [27] V.
1673
+ Borisov,
1674
+ T.
1675
+ Leemann,
1676
+ K.
1677
+ Se¨uler,
1678
+ J.
1679
+ Haug,
1680
+ M.
1681
+ Pawelczyk,
1682
+ and
1683
+ G.
1684
+ Kasneci,
1685
+ “Deep
1686
+ neural
1687
+ networks
1688
+ and
1689
+ tabular
1690
+ data:
1691
+ A
1692
+ survey,”
1693
+ 2021.
1694
+ [Online].
1695
+ Available:
1696
+ https://arxiv.org/abs/2110.01889
1697
+ [28] S. Popov, S. Morozov, and A. Babenko, “Neural oblivious decision ensembles for deep learning
1698
+ on tabular data,” 2019. [Online]. Available: https://arxiv.org/abs/1909.06312
1699
+ [29] [Online]. Available: https://arxiv.org/abs/1912.01703
1700
+ [30] G. Ke, Z. Xu, J. Zhang, J. Bian, and T.-Y. Liu, “Deepgbm:
1701
+ A deep learning framework
1702
+ distilled by gbdt for online prediction tasks,” in Proceedings of the 25th ACM SIGKDD
1703
+ International Conference on Knowledge Discovery & Data Mining, ser. KDD ’19.
1704
+ New
1705
+ York, NY, USA: Association for Computing Machinery, 2019, p. 384-394. [Online].
1706
+ Available: https://doi.org/10.1145/3292500.3330858
1707
+ [31] S. ˜A. Arik and T. Pfister, “Tabnet: Attentive interpretable tabular learning,” Proceedings of
1708
+ the AAAI Conference on Artificial Intelligence, vol. 35, no. 8, pp. 6679–6687, May 2021.
1709
+ [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/16826
1710
+ [32] W. Song, C. Shi, Z. Xiao, Z. Duan, Y. Xu, M. Zhang, and J. Tang, “AutoInt,” in Proceedings
1711
+ of the 28th ACM International Conference on Information and Knowledge Management.
1712
+ ACM, nov 2019. [Online]. Available: https://doi.org/10.11452F3357384.3357925
1713
+ [33] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2014. [Online].
1714
+ Available: https://arxiv.org/abs/1412.6980
1715
+ [34] T.
1716
+ Akiba,
1717
+ S.
1718
+ Sano,
1719
+ T.
1720
+ Yanase,
1721
+ T.
1722
+ Ohta,
1723
+ and
1724
+ M.
1725
+ Koyama,
1726
+ “Optuna:
1727
+ A
1728
+ next-
1729
+ generation hyperparameter optimization framework,” 2019. [Online]. Available:
1730
+ https:
1731
+ //arxiv.org/abs/1907.10902
1732
+ [35] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan,
1733
+ J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran, and
1734
+ R. Hadsell, “Overcoming catastrophic forgetting in neural networks,” Proceedings of the
1735
+ National Academy of Sciences, vol. 114, no. 13, pp. 3521–3526, 2017. [Online]. Available:
1736
+ https://www.pnas.org/doi/abs/10.1073/pnas.1611835114
1737
+ [36] D. E. Kirk, Optimal control theory : an introduction.
1738
+ Mineola, N.Y: Dover Publications, 2004
1739
+ - 1970.
1740
+ [37] R. S. Sutton, Reinforcement learning : an introduction, second edition. ed., ser. Adaptive
1741
+ computation and machine learning series.
1742
+ Cambridge, Massachusetts: The MIT Press,
1743
+ 2018.
1744
+ [38] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
1745
+ M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
1746
+ I. Antonoglou,
1747
+ H. King,
1748
+ D. Kumaran,
1749
+ D. Wierstra,
1750
+ S. Legg,
1751
+ and D. Hassabis,
1752
+ “Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540,
1753
+ pp. 529–533, Feb 2015. [Online]. Available: https://doi.org/10.1038/nature14236
1754
+ [39] J. Schulman,
1755
+ F. Wolski,
1756
+ P. Dhariwal,
1757
+ A. Radford,
1758
+ and O. Klimov,
1759
+ “Proximal policy
1760
+ optimization algorithms,” 2017. [Online]. Available: https://arxiv.org/abs/1707.06347
1761
+ [40] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic:
1762
+ Off-policy maximum
1763
+ entropy deep reinforcement learning with a stochastic actor,” in Proceedings of the 35th
1764
+ International Conference on Machine Learning, ser. Proceedings of Machine Learning
1765
+ Research, J. Dy and A. Krause, Eds., vol. 80.
1766
+ PMLR, 10–15 Jul 2018, pp. 1861–1870.
1767
+ [Online]. Available: https://proceedings.mlr.press/v80/haarnoja18b.html
1768
+ [41] J.
1769
+ Schulman,
1770
+ P.
1771
+ Moritz,
1772
+ S.
1773
+ Levine,
1774
+ M.
1775
+ Jordan,
1776
+ and
1777
+ P.
1778
+ Abbeel,
1779
+ “High-dimensional
1780
+ continuous control using generalized advantage estimation,” 2015. [Online]. Available:
1781
+ https://arxiv.org/abs/1506.02438
1782
+ [42] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in 2nd International
1783
+ Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16,
1784
+ 2014, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2014. [Online].
1785
+ Available: http://arxiv.org/abs/1312.6114
1786
+ [43] P. Buhlmann and T. Hothorn,
1787
+ “Boosting algorithms:
1788
+ Regularization,
1789
+ prediction and
1790
+ model fitting,”
1791
+ Statistical Science,
1792
+ vol. 22,
1793
+ no. 4,
1794
+ nov 2007. [Online]. Available:
1795
+ https://doi.org/10.1214%2F07-sts242
1796
+
1797
+ 22
1798
+ THOMAS WONG AND MAURICIO BARAHONA
1799
+ 9. Supplementary Information.
1800
+ 9.1. Additional results for dynamic feature neutralisation. Here we show
1801
+ the performance of dynamic feature neutralisation for low and high volatility regimes.
1802
+ (a) LightGBM-dart without FE
1803
+ Feature Neutralisation
1804
+ Mean
1805
+ Volatility
1806
+ Max Draw
1807
+ Sharpe
1808
+ Calmar
1809
+ Fixed
1810
+ 0.0206
1811
+ 0.0195
1812
+ 0.1153
1813
+ 1.0576
1814
+ 0.1787
1815
+ Low Mean
1816
+ 0.0255
1817
+ 0.0175
1818
+ 0.0350
1819
+ 1.4578
1820
+ 0.7286
1821
+ High Mean
1822
+ 0.0207
1823
+ 0.0206
1824
+ 0.0986
1825
+ 1.0033
1826
+ 0.2099
1827
+ Low Vol
1828
+ 0.0238
1829
+ 0.0221
1830
+ 0.0538
1831
+ 1.0793
1832
+ 0.4424
1833
+ High Vol
1834
+ 0.0235
1835
+ 0.0180
1836
+ 0.0341
1837
+ 1.3069
1838
+ 0.6891
1839
+ (b) LightGBM-gbdt without FE
1840
+ Feature Neutralisation
1841
+ Mean
1842
+ Volatility
1843
+ Max Draw
1844
+ Sharpe
1845
+ Calmar
1846
+ Fixed
1847
+ 0.0194
1848
+ 0.0220
1849
+ 0.1998
1850
+ 0.8820
1851
+ 0.0971
1852
+ Low Mean
1853
+ 0.0251
1854
+ 0.0188
1855
+ 0.0495
1856
+ 1.3328
1857
+ 0.5071
1858
+ High Mean
1859
+ 0.0184
1860
+ 0.0228
1861
+ 0.1469
1862
+ 0.8053
1863
+ 0.1253
1864
+ Low Vol
1865
+ 0.0214
1866
+ 0.0247
1867
+ 0.1852
1868
+ 0.8657
1869
+ 0.115
1870
+ High Vol
1871
+ 0.0225
1872
+ 0.0188
1873
+ 0.0487
1874
+ 1.1939
1875
+ 0.4620
1876
+ (c) MLP without FE
1877
+ Feature Neutralisation
1878
+ Mean
1879
+ Volatility
1880
+ Max Draw
1881
+ Sharpe
1882
+ Calmar
1883
+ Fixed
1884
+ 0.0165
1885
+ 0.0210
1886
+ 0.2606
1887
+ 0.7875
1888
+ 0.0633
1889
+ Low Mean
1890
+ 0.0215
1891
+ 0.0187
1892
+ 0.0496
1893
+ 1.1496
1894
+ 0.4335
1895
+ High Mean
1896
+ 0.0170
1897
+ 0.0210
1898
+ 0.1283
1899
+ 0.8118
1900
+ 0.1325
1901
+ Low Vol
1902
+ 0.0194
1903
+ 0.0229
1904
+ 0.0878
1905
+ 0.8487
1906
+ 0.2210
1907
+ High Vol
1908
+ 0.0194
1909
+ 0.0177
1910
+ 0.0730
1911
+ 1.0990
1912
+ 0.2658
1913
+ Table 8: Performance of ML models in the test period (2014-06-27 to 2022-09-23)
1914
+ with different dynamic feature neutralisation methods in low volatility regime
1915
+
1916
+ ROBUST ML MODELS IN FINANCE
1917
+ 23
1918
+ (a) LightGBM-dart without FE
1919
+ Feature Neutralisation
1920
+ Mean
1921
+ Volatility
1922
+ Max Draw
1923
+ Sharpe
1924
+ Calmar
1925
+ Fixed
1926
+ 0.0227
1927
+ 0.0163
1928
+ 0.0223
1929
+ 1.3888
1930
+ 1.0179
1931
+ Low Mean
1932
+ 0.0220
1933
+ 0.0148
1934
+ 0.0199
1935
+ 1.4907
1936
+ 1.1055
1937
+ High Mean
1938
+ 0.0233
1939
+ 0.0151
1940
+ 0.0206
1941
+ 1.5372
1942
+ 1.1311
1943
+ Low Vol
1944
+ 0.0252
1945
+ 0.0168
1946
+ 0.0330
1947
+ 1.4980
1948
+ 0.7636
1949
+ High Vol
1950
+ 0.0215
1951
+ 0.0152
1952
+ 0.0143
1953
+ 1.4077
1954
+ 1.5035
1955
+ (b) LightGBM-gbdt without FE
1956
+ Feature Neutralisation
1957
+ Mean
1958
+ Volatility
1959
+ Max Draw
1960
+ Sharpe
1961
+ Calmar
1962
+ Fixed
1963
+ 0.0217
1964
+ 0.0198
1965
+ 0.0364
1966
+ 1.0953
1967
+ 0.5962
1968
+ Low Mean
1969
+ 0.0212
1970
+ 0.0176
1971
+ 0.0380
1972
+ 1.2039
1973
+ 0.5579
1974
+ High Mean
1975
+ 0.0218
1976
+ 0.0186
1977
+ 0.0334
1978
+ 1.1728
1979
+ 0.6527
1980
+ Low Vol
1981
+ 0.0237
1982
+ 0.0201
1983
+ 0.0306
1984
+ 1.1792
1985
+ 0.7745
1986
+ High Vol
1987
+ 0.0209
1988
+ 0.0173
1989
+ 0.0308
1990
+ 1.2068
1991
+ 0.6786
1992
+ (c) MLP without FE
1993
+ Feature Neutralisation
1994
+ Mean
1995
+ Volatility
1996
+ Max Draw
1997
+ Sharpe
1998
+ Calmar
1999
+ Fixed
2000
+ 0.0196
2001
+ 0.0193
2002
+ 0.0326
2003
+ 1.0191
2004
+ 0.6012
2005
+ Low Mean
2006
+ 0.0205
2007
+ 0.0183
2008
+ 0.0806
2009
+ 1.1212
2010
+ 0.2543
2011
+ High Mean
2012
+ 0.0170
2013
+ 0.0210
2014
+ 0.1283
2015
+ 0.8118
2016
+ 0.1325
2017
+ Low Vol
2018
+ 0.0222
2019
+ 0.0194
2020
+ 0.0397
2021
+ 1.1442
2022
+ 0.5592
2023
+ High Vol
2024
+ 0.0187
2025
+ 0.0165
2026
+ 0.0336
2027
+ 1.1368
2028
+ 0.5565
2029
+ Table 9: Performance of ML models in the test period (2014-06-27 to 2022-09-23)
2030
+ with different dynamic feature neutralisation methods in high volatility regime
2031
+ 9.2. Pseudocode for algorithms in the text. For completeness, we present
2032
+ here brief pseudocode for some of the main methods in the paper with the appropriate
2033
+ references.
2034
+ Algorithm 9.1 Gradient boosting algorithm [22,43]
2035
+ Given N data samples (xi, yi), 1 ≤ i ≤ N with the aim to find an increasing better
2036
+ estimate ˆf(x) of the minimising function f(x) which minimise the loss L(f) between
2037
+ targets and predicted values. L(f) = �
2038
+ i l(yi, f(xi)) where l is a given loss function
2039
+ such as mean square losses for regression problems. Function f is restricted to the
2040
+ class of additive models f(x) = �K
2041
+ k=1 wkh(x, αk) where h(·, α) is a weak learner
2042
+ with parameters α and wk are the weights.
2043
+ Initialise f0(x) = arg minα0
2044
+ �N
2045
+ i=1 l(yi, h(xi, α0))
2046
+ For k = 1 : K Compute the gradient residual using gik = −
2047
+
2048
+ ∂l(yi,fk−1(xi))
2049
+ ∂fk−1(xi)
2050
+
2051
+ Use the weak learner to compute αk which minimises �N
2052
+ i=1(gik − h(xi, αk))2
2053
+ Update with learning rate λ fk(x) = fk−1(x) + λh(x, αk)
2054
+ Return f(x) = fK(x)
2055
+
2056
+ 24
2057
+ THOMAS WONG AND MAURICIO BARAHONA
2058
+ Algorithm 9.2 Gradient boosting tree algorithm implemented in LightGBM [22,23,
2059
+ 43]
2060
+ Initialise f0(x) = arg minα0
2061
+ �N
2062
+ i=1 l(yi, x, α0)
2063
+ For k = 1 :
2064
+ K For i
2065
+ =
2066
+ 1, 2, . . . N,
2067
+ compute the gradient residual using
2068
+ gik = −
2069
+
2070
+ ∂l(yi,fk−1(xi))
2071
+ ∂fk−1(xi)
2072
+
2073
+ Fit a decision tree to the targets gik giving terminal leaves Rkj, j = 1, 2, . . . Jk, where
2074
+ Jk is the number of terminal leaves.
2075
+ For j = 1, 2, . . . Jk, compute αjk = arg minα
2076
+
2077
+ xi∈Rkj l(yi, fk−1(xi) + α)
2078
+ Update boosting trees with learning rate λ fk(x) = fk−1(x) + λ �Jk
2079
+ j=1 αkjI(x ∈ Rkj)
2080
+ Return fK(x)
2081
+
2082
+ ROBUST ML MODELS IN FINANCE
2083
+ 25
2084
+ 9.3. Hyper-parameter search space for different ML models. We ran all
2085
+ experiments on a GPU cluster, each node of which contains a NVIDIA GeForce RTX
2086
+ 2080 Ti GPU, running with 4352 CUDA cores and 11GB memory. Hyper-parameter
2087
+ search is performed using Optuna [34]. For each Feature Engineering/ML pipeline,
2088
+ hyper-parameter search is ran for at most 8 hours or at most 100 configurations,
2089
+ whichever came first. The default TPE sampler in Optuna is used to perform the
2090
+ hyper-parameter search. In Figure 4 and 5, we list the Hyper-parameter search pa-
2091
+ rameters defined in Optuna [34] for different ML models used in the main text to
2092
+ train the models.
2093
+ • Feature Engineering
2094
+ – Numerai Basic Feature Engineering
2095
+ ∗ dropout pct: low:0.05, high:0.25, step:0.05,
2096
+ ∗ no product features: low:50, high:1000, step:50,
2097
+ • ML Models
2098
+ – LightGBM-gbdt
2099
+ ∗ n estimators: low:50, high:1000, step:50
2100
+ ∗ learning rate: low:0.005, high:0.1, log:True
2101
+ ∗ min data in leaf: low:2500, high:40000, step:2500
2102
+ ∗ lambda l1: low:0.01, high: 1, log:True
2103
+ ∗ lambda l2: low:0.01, high: 1, log:True
2104
+ ∗ feature fraction: low:0.1, high:1, step:0.05
2105
+ ∗ bagging fraction: low:0.5, high:1, step:0.05
2106
+ ∗ bagging freq: low:10, high:50, step:10
2107
+ – LightGBM-dart
2108
+ ∗ n estimators: low:50, high:1000, step:50
2109
+ ∗ learning rate: low:0.005, high:0.1, log:True
2110
+ ∗ min data in leaf: low:2500, high:40000, step:2500
2111
+ ∗ lambda l1: low:0.01, high: 1, log:True
2112
+ ∗ lambda l2: low:0.01, high: 1, log:True
2113
+ ∗ feature fraction: low:0.1, high:1, step:0.05
2114
+ ∗ bagging fraction: low:0.5, high:1, step:0.05
2115
+ ∗ bagging freq: low:10, high:50, step:10
2116
+ ∗ drop rate: low:0.1, high:0.5, step:0.1
2117
+ ∗ skip drop: low:0.1, high:0.8, step:0.1
2118
+ – LightGBM-goss
2119
+ ∗ n estimators: low:50, high:1000, step:50
2120
+ ∗ learning rate: low:0.005, high:0.1, log:True
2121
+ ∗ min data in leaf: low:2500, high:40000, step:2500
2122
+ ∗ lambda l1: low:0.01, high: 1, log:True
2123
+ ∗ lambda l2: low:0.01, high: 1, log:True
2124
+ ∗ feature fraction: low:0.1, high:1, step:0.05
2125
+ ∗ bagging fraction: low:0.5, high:1, step:0.05
2126
+ ∗ bagging freq: low:10, high:50, step:10
2127
+ ∗ top rate: low:0.1, high:0.4, step:0.05
2128
+ ∗ other rate: low:0.05, high:0.2, step:0.05
2129
+ Fig. 4: Hyper-parameter Space for ML models
2130
+
2131
+ 26
2132
+ THOMAS WONG AND MAURICIO BARAHONA
2133
+ • Machine Learning
2134
+ – MLP
2135
+ ∗ max epochs: low:10, high:100, step:5
2136
+ ∗ patience: low:5, high:20, step:5
2137
+ ∗ num layers: low:2, high:7, step:1
2138
+ ∗ neurons: low:64, high:1024, step:64
2139
+ ∗ neuron scale: low:0.3, high:1, log:True
2140
+ ∗ dropout: low:0.1, high:0.9, log:True
2141
+ ∗ batch size: low:10240, high:40960, step:10240
2142
+ – TabNet
2143
+ ∗ max epochs: low:10, high:100, step:5
2144
+ ∗ patience: low:5, high:20, step:5
2145
+ ∗ batch size: low:1024, high:4096, step:1024
2146
+ ∗ num d: low:4, high:16, step:4
2147
+ ∗ num a: low:4, high:16, step:4
2148
+ ∗ num steps: low:1, high:3, step:1
2149
+ ∗ num shared: low:1, high:3, step:1
2150
+ ∗ num independent: low:1, high:3, step:1
2151
+ ∗ gamma : low:1, high:2, step:0.1
2152
+ ∗ momentum: low:0.01, high:0.4, step:0.01
2153
+ ∗ lambda sparse: low:0.0001, high:0.01, log:True
2154
+ Fig. 5: Hyper-parameter Space for ML models
2155
+
2156
+ ROBUST ML MODELS IN FINANCE
2157
+ 27
2158
+ 9.4. Robustness of ML pipeline. One of the aims in this work was to provide
2159
+ a robust pipeline for tabular temporal data under regime changes. Here we present
2160
+ additional results of the robustness of the method under different scenarios and sources
2161
+ of variability.
2162
+ Robustness under changes of random seeds in the learning algorithms. In Ta-
2163
+ ble 10, we report the variability of the performance of the LightGBM-dart, LightGBM-
2164
+ gbdt and MLP models trained starting from 10 different initial random seeds. The
2165
+ performance is generally robust to the change in random seeds, with small variances
2166
+ in the prediction of the mean Corr and volatility and moderate for the Maximum
2167
+ Drawdown.
2168
+ Model
2169
+ Mean
2170
+ Volatility
2171
+ Max Draw
2172
+ Sharpe
2173
+ Calmar
2174
+ LightGBM-dart without FE
2175
+ mean
2176
+ 0.0254
2177
+ 0.0266
2178
+ 0.1567
2179
+ 0.9593
2180
+ 0.1639
2181
+ sd
2182
+ 0.0006
2183
+ 0.0007
2184
+ 0.0158
2185
+ 0.0365
2186
+ 0.0175
2187
+ LightGBM-gbdt without FE
2188
+ mean
2189
+ 0.0253
2190
+ 0.0312
2191
+ 0.2338
2192
+ 0.8104
2193
+ 0.1100
2194
+ sd
2195
+ 0.0006
2196
+ 0.0006
2197
+ 0.0296
2198
+ 0.0278
2199
+ 0.0153
2200
+ MLP without FE
2201
+ mean
2202
+ 0.0233
2203
+ 0.0271
2204
+ 0.1643
2205
+ 0.8600
2206
+ 0.1446
2207
+ sd
2208
+ 0.0009
2209
+ 0.0011
2210
+ 0.0248
2211
+ 0.0365
2212
+ 0.0219
2213
+ Table 10: Variability of the performance of ML models in the test period (2014-06-
2214
+ 27 to 2022-09-23). The mean and standard deviation of each portfolio metrics are
2215
+ calculated over models with 10 different random seeds for each method
2216
+ A general strategy to reduce the variance is to combine different ML models.
2217
+ There are two ways to do so: (i) averaging over models, by calculating the average
2218
+ performance of different models, and (ii) averaging over predictions, by calculating the
2219
+ average predictions from each model and then scoring the average predictions against
2220
+ the target. Table 11 shows that averaging over predictions gives higher mean Corr
2221
+ and Sharpe/Calmar ratios than averaging over models.
2222
+ Therefore, this averaging
2223
+ method is used to compute model performances in Table 2 in the main text.
2224
+ Model
2225
+ Average
2226
+ Mean
2227
+ Volatility
2228
+ Max Draw
2229
+ Sharpe
2230
+ Calmar
2231
+ LightGBM-dart without FE
2232
+ Over models
2233
+ 0.0254
2234
+ 0.0266
2235
+ 0.1567
2236
+ 0.9593
2237
+ 0.1639
2238
+ Over predictions
2239
+ 0.0278
2240
+ 0.0284
2241
+ 0.1622
2242
+ 0.9791
2243
+ 0.1714
2244
+ LightGBM-gbdt without FE
2245
+ Over models
2246
+ 0.0253
2247
+ 0.0312
2248
+ 0.2338
2249
+ 0.8104
2250
+ 0.1100
2251
+ Over predictions
2252
+ 0.0262
2253
+ 0.0321
2254
+ 0.2378
2255
+ 0.8140
2256
+ 0.1102
2257
+ MLP without FE
2258
+ Over models
2259
+ 0.0233
2260
+ 0.0271
2261
+ 0.1643
2262
+ 0.8600
2263
+ 0.1446
2264
+ Over predictions
2265
+ 0.0258
2266
+ 0.0289
2267
+ 0.1668
2268
+ 0.8931
2269
+ 0.1547
2270
+ Table 11: Performance of different ML methods on Numerai v4 dataset in the test
2271
+ period (2014-06-27 to 2022-09-23) with different averaging methods
2272
+ Robustness under different cross-validation data splits. As financial data are regime
2273
+ dependent, an important measure of model robustness is to measure the performance
2274
+ of ML models that have been trained using different cross-validation splits of the data
2275
+ and compute how much the model performance changes over different test periods.
2276
+ To ascertain the robustness of data splits, we have carried out 3 cross-validation
2277
+ splits (CV 1, CV 2, CV 3) as shown in Table 12. The hyper-parameters are optimised
2278
+ under CV 1, which is the cross-validation used to generate the model performances
2279
+ in the main text. These hyper-parameters are fixed for the models trained under
2280
+ the CV 2 and CV 3 splits. For ML methods that require early stopping, the data
2281
+
2282
+ 28
2283
+ THOMAS WONG AND MAURICIO BARAHONA
2284
+ in the validation period (different for each split) are used to regularise the models.
2285
+ Therefore, by reusing the optimised hyper-parameters across all splits, we evaluate
2286
+ the robustness of the model performance to the optimisation of hyper-parameters. We
2287
+ then compute the performance when applying the models to shifted cross-validation
2288
+ datasets in the walk-forward CV 2 and CV 3 data splits.
2289
+ Our results show good
2290
+ consistency in performance across CV 2 and CV 3, with only a small deterioration of
2291
+ the results as compared to CV 1 (over which the hyperparameters were optimised).
2292
+ We also find that LightGBM-dart with FE, the ML method that has the highest
2293
+ mean Corr in CV 1, has the greatest return and best Sharpe and Calmar ratios also
2294
+ in other cross-validations, as seen in Table 13.
2295
+ Train Start
2296
+ Train End
2297
+ Validation Start
2298
+ Validation End
2299
+ Enter Ensemble
2300
+ CV 1
2301
+ 2003-01-03
2302
+ 2012-07-27
2303
+ 2012-12-21
2304
+ 2014-11-14
2305
+ 2015-05-15
2306
+ CV 2
2307
+ 2003-01-03
2308
+ 2014-06-27
2309
+ 2014-11-21
2310
+ 2016-10-14
2311
+ 2017-04-14
2312
+ CV 3
2313
+ 2003-01-03
2314
+ 2016-05-27
2315
+ 2016-10-21
2316
+ 2018-09-14
2317
+ 2019-03-15
2318
+ Table 12: Various cross-validation schemes to train ML models on different parts of
2319
+ the data. CV 1 is the cross-validation used for hyper-parameter optimisation and
2320
+ training ML models in the main text.
2321
+ (a) CV 1 (2015-05-15 to 2022-09-23)
2322
+ Method
2323
+ Mean
2324
+ Volatility
2325
+ Max Draw
2326
+ Sharpe
2327
+ Calmar
2328
+ LightGBM-dart without FE
2329
+ 0.0278
2330
+ 0.0284
2331
+ 0.1622
2332
+ 0.9791
2333
+ 0.1714
2334
+ LightGBM-gbdt without FE
2335
+ 0.0262
2336
+ 0.0321
2337
+ 0.2378
2338
+ 0.8140
2339
+ 0.1102
2340
+ MLP without FE
2341
+ 0.0258
2342
+ 0.0289
2343
+ 0.1668
2344
+ 0.8931
2345
+ 0.1547
2346
+ (b) CV 2 (2017-04-14 to 2022-09-23)
2347
+ Method
2348
+ Mean
2349
+ Volatility
2350
+ Max Draw
2351
+ Sharpe
2352
+ Calmar
2353
+ LightGBM-dart without FE
2354
+ 0.0250
2355
+ 0.0278
2356
+ 0.1817
2357
+ 0.8990
2358
+ 0.1376
2359
+ LightGBM-gbdt without FE
2360
+ 0.0231
2361
+ 0.0324
2362
+ 0.3227
2363
+ 0.7104
2364
+ 0.0716
2365
+ MLP without FE
2366
+ 0.0215
2367
+ 0.0289
2368
+ 0.2307
2369
+ 0.7446
2370
+ 0.0932
2371
+ (c) CV 3 (2019-03-15 to 2022-09-23)
2372
+ Method
2373
+ Mean
2374
+ Volatility
2375
+ Max Draw
2376
+ Sharpe
2377
+ Calmar
2378
+ LightGBM-dart without FE
2379
+ 0.0264
2380
+ 0.0297
2381
+ 0.1380
2382
+ 0.8140
2383
+ 0.1913
2384
+ LightGBM-gbdt without FE
2385
+ 0.0261
2386
+ 0.0336
2387
+ 0.1584
2388
+ 0.7772
2389
+ 0.1648
2390
+ MLP without FE
2391
+ 0.0224
2392
+ 0.0240
2393
+ 0.1171
2394
+ 0.9339
2395
+ 0.1913
2396
+ Table 13: Performance of selected machine learning methods on the Numerai dataset
2397
+ in the test period for various walk-forward cross-validation schemes, (a) CV 1, (b)
2398
+ CV 2 and (c) CV 3
2399
+ Robustness under feature selection for dynamic feature neutralisation. A fixed
2400
+ set of 420 features to be neutralised was given by the Numerai organisers based on
2401
+ internal evaluations of parameters. In Section 6, we introduce several statistical rules
2402
+ that allow us to select a varying subset of features to be neutralised in each era based
2403
+ on empirical heuristic criteria motivated by financial modelling.
2404
+
2405
+ ROBUST ML MODELS IN FINANCE
2406
+ 29
2407
+ To evaluate the robustness of the proposed statistical rules, we draw 100 subsets
2408
+ of 420 features selected at random. and use each set to neutralise the raw predictions
2409
+ from ML models. We then evaluate the performance of ML models based on each of
2410
+ the random subsets. Using the procedure described in section 6.2 we then select the
2411
+ optimal dynamic feature neutralisation method and compute the performance of the
2412
+ top 10 models of the highest mean Corr, Sharpe and Calmar ratio over the test period.
2413
+ The results are reported in Table 14 and should be compared to the performance of
2414
+ the same models in Table 7, which were obtained with dynamic feature neutralisation
2415
+ using the statistical rules defined in section 6.2.
2416
+ The mean Corr of models obtained with random feature neutralisation for each
2417
+ rule (Momentum/Sharpe/Calmar) are lower than those obtained using the statistical
2418
+ rules in Table 7. On the other hand, the Sharpe ratio of models for models with
2419
+ random feature neutralisation is slightly higher, as expected due to the variance re-
2420
+ duction effect by averaging over 10 different models. For models selected based on the
2421
+ Calmar rule, the models obtained with statistical rules have a much higher Calmar
2422
+ ratio than random feature neutralisation. It suggests the statistical rules defined can
2423
+ effectively reduce model risks by reducing linear exposure to undesirable features.
2424
+ (a) LightGBM-dart without FE
2425
+ Feature Neutralisation
2426
+ Mean
2427
+ Volatility
2428
+ Max Draw
2429
+ Sharpe
2430
+ Calmar
2431
+ Average
2432
+ 0.0214
2433
+ 0.0147
2434
+ 0.0482
2435
+ 1.4547
2436
+ 0.4440
2437
+ Momentum
2438
+ 0.0216
2439
+ 0.0149
2440
+ 0.0472
2441
+ 1.4522
2442
+ 0.4576
2443
+ Sharpe
2444
+ 0.0213
2445
+ 0.0147
2446
+ 0.0459
2447
+ 1.4474
2448
+ 0.4641
2449
+ Calmar
2450
+ 0.0214
2451
+ 0.0148
2452
+ 0.0453
2453
+ 1.4504
2454
+ 0.4724
2455
+ (b) LightGBM-gbdt without FE
2456
+ Feature Neutralisation
2457
+ Mean
2458
+ Volatility
2459
+ Max Draw
2460
+ Sharpe
2461
+ Calmar
2462
+ Average
2463
+ 0.0203
2464
+ 0.0167
2465
+ 0.0664
2466
+ 1.2140
2467
+ 0.3057
2468
+ Momentum
2469
+ 0.0208
2470
+ 0.0167
2471
+ 0.0641
2472
+ 1.2457
2473
+ 0.3245
2474
+ Sharpe
2475
+ 0.0206
2476
+ 0.0168
2477
+ 0.0618
2478
+ 1.2267
2479
+ 0.3333
2480
+ Calmar
2481
+ 0.0216
2482
+ 0.0195
2483
+ 0.0508
2484
+ 1.1102
2485
+ 0.2743
2486
+ (c) MLP without FE
2487
+ Feature Neutralisation
2488
+ Mean
2489
+ Volatility
2490
+ Max Draw
2491
+ Sharpe
2492
+ Calmar
2493
+ Average
2494
+ 0.0176
2495
+ 0.0165
2496
+ 0.0831
2497
+ 1.0658
2498
+ 0.2118
2499
+ Momentum
2500
+ 0.0179
2501
+ 0.0165
2502
+ 0.0790
2503
+ 1.0842
2504
+ 0.2266
2505
+ Sharpe
2506
+ 0.0177
2507
+ 0.0164
2508
+ 0.0762
2509
+ 1.0751
2510
+ 0.2323
2511
+ Calmar
2512
+ 0.0175
2513
+ 0.0167
2514
+ 0.0825
2515
+ 1.0511
2516
+ 0.2121
2517
+ Table 14: Performance of different ML models in the test period (2015-05-15 to 2022-
2518
+ 09-23) obtained with random feature neutralisation. These are averages obtained by
2519
+ selecting the top 10 models under the different online learning procedures over the
2520
+ test period.
2521
+
DdAyT4oBgHgl3EQf4vob/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
F9FKT4oBgHgl3EQfbS5P/content/tmp_files/2301.11811v1.pdf.txt ADDED
@@ -0,0 +1,944 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Indonesian Journal of Electrical Engineering and Computer Science
2
+ Vol. 28, No. 1, October 2022, pp. 328~338
3
+ ISSN: 2502-4752, DOI: 10.11591/ijeecs.v28.i1.pp328-338
4
+  328
5
+
6
+
7
+ Journal homepage: http://ijeecs.iaescore.com
8
+ A systematic review of structural equation modeling in
9
+ augmented reality applications
10
+
11
+
12
+ Vinh The Nguyen1, Chuyen Thi Hong Nguyen2
13
+ 1Faculty of Information Technology, TNU-University of Information and Communication Technology, Thai Nguyen, Vietnam
14
+ 2Faculty of Primary Education, Thai Nguyen University of Education, Thai Nguyen, Vietnam
15
+
16
+
17
+ Article Info
18
+
19
+ ABSTRACT
20
+ Article history:
21
+ Received Mar 26, 2022
22
+ Revised Jun 21, 2022
23
+ Accepted Jul 14, 2022
24
+
25
+
26
+ The purpose of this study is to present a comprehensive review of the use of
27
+ structural equation modeling (SEM) in augmented reality (AR) studies in the
28
+ context of the COVID-19 pandemic. IEEE Xplore Scopus, Wiley Online
29
+ Library, Emerald Insight, and ScienceDirect are the main five data sources
30
+ for data collection from Jan 2020 to May 2021. The preferred reporting
31
+ items for systematic reviews and meta-analyses (PRISMA) approach was
32
+ used to conduct the analysis. At the final stage, 53 relevant publications were
33
+ included for analysis. Variables such as the number of participants in the
34
+ study,
35
+ original
36
+ or
37
+ derived
38
+ hypothesized
39
+ model,
40
+ latent
41
+ variables,
42
+ direct/indirect contact with users, country, limitation/suggestion, and
43
+ keywords were extracted. The results showed that a variety of external
44
+ factors were used to construct the SEM models rather than using the
45
+ parsimonious ones. The reports showed a fair balance between the direct and
46
+ indirect methods to contact participants. Despite the COVID-19 pandemic,
47
+ few publications addressed the issue of data collection and evaluation
48
+ methods, whereas video demonstrations of the augmented reality (AR) apps
49
+ were utilized. The current work influences new AR researchers who are
50
+ searching for a theory-based research model in their studies.
51
+ Keywords:
52
+ Augmented reality
53
+ COVID-19
54
+ External factors
55
+ Structural equation modeling
56
+ Theory-based research
57
+ This is an open access article under the CC BY-SA license.
58
+
59
+ Corresponding Author:
60
+ Vinh The Nguyen
61
+ Faculty of Information Technology, TNU-University of Information and Communication Technology
62
+ Z115 Street, Quyet Thang Commune, Thai Nguyen, Vietnam
63
64
+
65
+
66
+ 1.
67
+ INTRODUCTION
68
+ Augmented reality (AR) is a technology that has attracted a lot of attention in various domains [1]-
69
+ [3]. Unlike virtual reality (VR) which allows users to be totally immersed in a virtual environment, AR
70
+ enriches the real world with virtual artifacts [4]. The primary value of AR is that it allows digital objects to
71
+ be blended more seamlessly into a person’s perception of the real world than simply displaying data on a
72
+ screen. Market research [5] anticipates that AR’s market will reach USD 88.4 billion, growing 31.5% from
73
+ 2021 to 2026. In addition, in response to the COVID-19 pandemic, more companies and organizations have
74
+ adopted remote work and are utilizing augmented reality technology [6]. What that means is that a huge
75
+ number of AR applications are being developed, especially in electrical engineering and computer science
76
+ [1]-[3], [7], [8].
77
+ Assessment is one of the key factors in ensuring the success of an AR application, especially when it
78
+ is involved with end-users. However, literature work reported that only a few studies afforded time for this
79
+ type of evaluation (only 8% of published papers) [9]. One plausible explanation was that AR
80
+ researchers/developers had to devote their time to solving technical issues [10]. Moreover, the lack of
81
+ methods or theory-driven research on evaluating AR apps, considering end users’ involvement, contributed
82
+
83
+ cC
84
+ BY
85
+ SAIndonesian J Elec Eng & Comp Sci
86
+ ISSN: 2502-4752
87
+
88
+
89
+ A systematic review of structural equation modeling in augmented reality applications (Vinh The Nguyen)
90
+ 329
91
+ to the scarcity of AR evaluation [11]. In addition, after the COVID-19 outbreak, many conferences (e.g.,
92
+ ISMAR) encouraged researchers to find alternative means of evaluating AR apps rather than canceling the
93
+ submissions due to social distancing. There has been no study addressing this issue so far, thus it remains a
94
+ gap in the literature. To close this gap, this paper-based on prior AR studies–provided an overview of theory-
95
+ based methods that can effectively be used for AR assessment. Among many other end-user evaluation
96
+ methods, the scope of the current study focused on structural equation modeling (SEM), a model commonly
97
+ used in behavioral science. SEM is a comprehensive statistical method that examines relationships between
98
+ observed and latent factors [12]. It has been widely used in confirmatory factory analysis in many topics and
99
+ fields [13]-[15].
100
+ A number of review studies on SEM applications have been conducted in various research domains,
101
+ including ecology [16], social science [17], psychological research [18], and strategic management [19]. It
102
+ indicated that a review study would be valuable for new researchers to quickly acquire knowledge in the field
103
+ effectively. Yet, it also implies that it would be important to look at SEM from AR’s perspective since AR is
104
+ one of the emerging trends in the digital transformation era. However, there is no study of SEM for AR
105
+ applications other than previously mentioned review studies. Thus, the current research is unique on its own
106
+ by the AR’s topic and the outcomes of this study can be used as a referencguidene for researchers in similar
107
+ studies, particularly in electrical engineering and computer science. More specifically, the present study tries
108
+ to answer to following research questions: i) What are the preferred theory-driven models being used in prior
109
+ AR studies amid the COVID-19 pandemic? ii) What are the dimensions or variables being investigated by
110
+ AR researchers so far? iii) How do researchers of prior AR studies communicate with end-users for
111
+ evaluation? vi) How many participants are typically involved in a study? Would this number still be
112
+ considered appropriate from the literature? v) What are the main drawbacks of tR studies? Do they suffer
113
+ from the COVID-19 pandemic?
114
+
115
+
116
+ 2.
117
+ METHOD
118
+ This study involves a review of SEM in AR applications; thus, the preferred reporting items for
119
+ systematic reviews and meta-analyses (PRISMA) statement was applied [20]. The PRISMA statement aims
120
+ to assist scholars in improving the reporting of scientific reviews and meta-analyses. It is an evidence-based
121
+ minimum set of elements for systematic review reports that are intended to assist systematic reviewers in
122
+ clearly explaining why the review was conducted and what the authors performed. It has previously been
123
+ used to target comparable research objectives [21], [22].
124
+
125
+ 2.1. Source selection
126
+ IEEE Xplore, Scopus, Wiley Online Library, Emerald Insight, and ScienceDirect databases were
127
+ used to build the corpus, encompassing titles, abstracts, and keywords. These five databases are regarded as
128
+ essential and dependable sources of high-quality articles in the fields of computer science and engineering
129
+ [21], [23]. Although, some other indexing databases are available (i.e., Scholar) but they are out of scope in
130
+ the current study.
131
+
132
+ 2.2. Search criteria
133
+ To add articles to our corpus, both of the following related criteria need to be fulfilled, i) Structural
134
+ equation modeling search term: at least one SEM-related term must appear in an article’s title, abstract, or
135
+ author keywords (i.e., structural equation modeling, SEM, planned behavior, theory of planned behaviour
136
+ (TPB), motivational model, Michaelis–Menten (MM), reasoned action, theory of reasoned action (TRA),
137
+ social cognitive, SCT, diffusion of innovation, IDT); and ii) Augmented Reality search term: terms include
138
+ augmented reality, AR. Using the aforementioned criteria, 16 articles were discovered in IEEE Xplore, 107
139
+ articles in Scopus, 197 papers in Wiley Online Library, 68 papers in Emerald Insight, and 695 papers in
140
+ ScienceDirect. The corpus was collected between June 3, 2021, and June 12, 2021.
141
+
142
+ 2.3. Eligibility assessment for the final analysis corpus
143
+ To determine the acceptability of the obtained papers, the first researcher personally reviewed the
144
+ entry criteria mentioned below by reviewing the titles and abstracts of the obtained publications. When a
145
+ clear judgment could not be reached, other aspects of the publication, particularly the method and data
146
+ acquisition descriptions, were discussed in conjunction with the second author. Only items that meet the
147
+ following criteria are retained in the corpus: i) Peer-reviewed: The paper was peer-reviewed in the two
148
+ indexing databases. This is due to the trustworthiness of peer-reviewed journals and the rigorous peer-review
149
+ processes, only articles in these databases are considered for this review; ii) Topic relevant: The topic of an
150
+ article is pertinent to the applications of SEM in AR; iii) Language: Publication was reported in English; and
151
+ vi) Duration: Paper was published between Jan 2020 and May 2021.
152
+
153
+
154
+
155
+
156
+ ISSN: 2502-4752
157
+ Indonesian J Elec Eng & Comp Sci, Vol. 28, No. 1, October 2022: 328-338
158
+ 330
159
+ If the article meets any of the following criteria, it will be excluded from the corpus: i) Books and
160
+ cover page, abstract only, poster; ii) The paper was not written in English; iii) Application of SEM is not for
161
+ AR; and vi) Paper was published before Jan 2020 and after May 2021.
162
+ Figure 1 depicts the flow of information through the different phases of the systematic review
163
+ utilizing PRISMA approach. 1,083 records were found in all data sources. Duplications were removed based
164
+ on the titles. Each paper was screened individually to remove items that are out of scope. Then 230 records
165
+ were excluded. As such, 309 candidates left for full-text retrieval. Of these remaining items, 9 records cannot
166
+ be retrieved due to access restrictions. The authors examined each report for eligibility and removed 247
167
+ studies. In the end, 53 items were included in this research. The remaining papers were examined
168
+ individually to extract interesting variables such as the number of participants, original or derived
169
+ hypothesized model, latent variables, direct/indirect contact with the user, country of origin,
170
+ limitation/suggestion (if any), and keywords.
171
+
172
+
173
+
174
+
175
+ Figure 1. The flow diagram represents the movement of information through the various stages of a
176
+ systematic review
177
+
178
+
179
+ 2.4. Data coding and analysis
180
+ To extract the data, all articles were loaded into NVivo software, and a coding scheme was created.
181
+ NVivo is a program that facilitates qualitative analytical method research. This tool enables researchers to
182
+ organize, analyze and explore unstructured or qualitative data, including interviews, reviews, articles, social
183
+ media, and web content. Codes included authors, journal name, year of publication, countries of authorship,
184
+ title, abstract, author keywords, method, objectives, findings and limitations on how SEM was used.
185
+
186
+
187
+ 3.
188
+ RESULTS AND DISCUSSION
189
+ 3.1. What are the preferred theory-based driven models being used in prior AR studies amid the
190
+ COVID-19 pandemic?
191
+ Figure 2 depicts the distribution of papers over hypothesized models. Most publications fall into the
192
+ SEM category (accounted for 58.49%), followed by eTAM and TAM with 20.76% and 11.32% respectively.
193
+ Although the UTAUT model was developed recently, the result shows less popularity of adopting this model
194
+ (only 3.77%), which is the same as the SOR model.
195
+ Technology acceptance model (TAM): originally developed by Davis [24], TAM is known as a
196
+ theory of information systems that describes how consumers come to accept and use technology. Real system
197
+ usage is the point at which people interact with technology. People utilize technology because of their
198
+ behavioral intentions. In this survey, 6 articles (11.32%) used original TAM for their research.
199
+ Extended technology acceptance model (eTAM): In this category, 11 publications (20.75%)
200
+ extended TAM with external variables such as perceived task-technology fit [25]-[28]–which asserted that
201
+
202
+ Identification ofnew studies viadatabases
203
+ Recordsidentifiedfromdatabases:
204
+ Recordsremovedbeforescreening:
205
+ N=1.083
206
+ N=544
207
+ Records screened:
208
+ Records excluded:
209
+ N=539
210
+ N=230
211
+ Reports soughtfor retrieval
212
+ Reports not retrieved:
213
+ N=309
214
+ N=9
215
+ Reports excluded:247
216
+ Reports assessed for eligibility:
217
+ NotinvolveSEM(N=27)
218
+ N=300
219
+ NotinvolveAR(N=127)
220
+ ReviewOnly(N=93)
221
+ Reports of included studies:
222
+ N=53Indonesian J Elec Eng & Comp Sci
223
+ ISSN: 2502-4752
224
+
225
+
226
+ A systematic review of structural equation modeling in augmented reality applications (Vinh The Nguyen)
227
+ 331
228
+ the technology must be utilized and a good fit with the tasks it supports to have positive impacts on
229
+ individual performance, perceived visual design/appeal [25]-[31] which assumed that beauty is important,
230
+ and it impacts decisions that should not be influenced by aesthetics, perceived enjoyment [32]-[35]-which
231
+ refers to the hedonic value of new technology and expresses how pleasurable a person finds its use.
232
+
233
+
234
+
235
+
236
+ Figure 2. Models distribution across prior studies
237
+
238
+
239
+ The unified theory of acceptance and use of technology (UTAUT): Venkatesh et al. [36] developed
240
+ the UTAUT after reviewing and consolidating the components of eight previous models used to describe
241
+ information system user behavior. In this review, several external variables were incorporated into the
242
+ existing UTAUT model (eUTAUT) such as innovativeness, reward, trust, enjoyment, hedonic motivation,
243
+ habit, and gamification [37], [38].
244
+ Stimulus-organism-response (SOR): Mehrabian-stimulus Russell's model [39] depicts the
245
+ occurrence of a person's response to environmental stimuli. Qin et al. [40] decomposed stimulus into two
246
+ external factors (i.e., Interactivity, Virtuality), Organism into 4 variables (i.e., Hedonic, Utilitarian,
247
+ Informativeness, and Ease of Use), and Response into 2 factors including Attitude and Behavioral Intention.
248
+ Similarly in the scope of this review, Qin et al. [40] also included (critical mass, social interaction,
249
+ information timelines, content richness) into stimulus, (attachment, conformity) into Organism, and (visiting
250
+ intention, continue intention) into Response.
251
+ Structural equation modeling (SEM): This category contains the largest portion of the papers
252
+ included in our investigation (58.49%). Authors in this group mainly adapted constructs, measures in the
253
+ literature to form hypothesis. As such, PLS-SEM was utilized as an analytical method to conduct
254
+ confirmatory factor analysis and path analysis. Confirmatory factor analysis, which originates in
255
+ psychometrics, aims to quantify underlying psychological characteristics such as attitude and satisfaction.
256
+ Path analysis, on the other hand, has its origins in biometrics and is intended to discover the causal link
257
+ between variables by drawing a path diagram [41].
258
+
259
+
260
+ 3.2. What are dimensions or variables being investigated by AR researchers so far?
261
+ Figure 3 depicts 77 unique constructs/latent variables from hypothesized models. There are 184
262
+ unique constructs found in this study. Behavioral intention, usefulness, ease of use, attitude, user behavior,
263
+ and enjoyment are the most frequent items used in the hypothesized models.
264
+
265
+
266
+
267
+
268
+ Figure 3. Wordcloud depicts 77 unique constructs from all hypothesized models
269
+
270
+ Count of SEM
271
+ 35
272
+ 31
273
+ 30
274
+ 25
275
+ 20
276
+ 15
277
+ 11
278
+ 10
279
+ 6
280
+ 5
281
+ 2
282
+ 0
283
+ eTAM
284
+ eUTAUT
285
+ SEM
286
+ SOR
287
+ TAMHedonic
288
+ EaseOf Use
289
+ Novelty ConceptualUnderstanding
290
+ Performance Anxiety Quality
291
+ Technology
292
+ SocialInteraction
293
+ Enjoyment
294
+ Responses
295
+ ntention
296
+ Interactivity
297
+ UseBehavior
298
+ Knowledge Gain
299
+ Immersion
300
+ Voluntariness TaskSatisfaction Aesthetics
301
+ Reievance
302
+ Sublective Norms
303
+ Control
304
+ Behavioral Intentionsli-Efiacy
305
+ TaskTechnologyFit
306
+ Embedding
307
+ Environmental Motivation
308
+ Trust Fit
309
+ Learning
310
+ Playfulness
311
+ Behaviora
312
+ Game
313
+ Involvement
314
+ Value
315
+ BenefitJob
316
+ Attitude
317
+ ExperienceVisual
318
+ Presence
319
+ Effort Richness
320
+ Perceived
321
+ Informativeness Soclal ActualUsage
322
+ Engagement
323
+ Simulated
324
+ Purchase Intention
325
+ Behavior
326
+ System
327
+ Augmentation
328
+ information
329
+ Education
330
+ Usefulness
331
+ Expectancy
332
+ Service
333
+ Image Entertainment
334
+
335
+
336
+ ISSN: 2502-4752
337
+ Indonesian J Elec Eng & Comp Sci, Vol. 28, No. 1, October 2022: 328-338
338
+ 332
339
+ Figure 4 captures the top 14 dominant keywords in the collection of papers in this study. Aside from
340
+ “augmented reality”, TAM is the most popular term that the authors used for indexing their papers. In total,
341
+ this study extracted 319 keywords with 230 unique terms, indicating that there is a high variation of
342
+ topics/techniques used. However, in terms of their broad contents, the major theme of these collected papers
343
+ can be categorized as the “social marketing” theme as they were mainly focused on “Intention to Purchase”
344
+ or “Intention to Visit”.
345
+
346
+
347
+
348
+
349
+ Figure 4. Frequency of keywords extracted from publications
350
+
351
+
352
+ 3.3. How do researchers of prior AR studies communicate with end-users for evaluation?
353
+ Table 1 reports the communication channels used to gather data from respondents. Results showed
354
+ that there is a fair balance between the direct (45.28%) and indirect (50.94%) methods. Here, the indirect
355
+ method means that the research teams did not contact participants directly (e.g., lab setting, or field study).
356
+ Instead, they contact users via online channels (e.g., social network, email, discussion group). On the other
357
+ hand, the direct method requires subjects to be at the site of the study for the experiment.
358
+
359
+
360
+ Table 1. Communication channels to collect data from respondents
361
+ Communication channel
362
+ Count
363
+ Percentage
364
+ Indirect
365
+ 27
366
+ 50.94
367
+ Direct
368
+ 24
369
+ 45.28
370
+ Direct and Indirect
371
+ 2
372
+ 3.77
373
+ Total
374
+ 53
375
+ 100
376
+
377
+
378
+ Figure 5 depicts the spatial locations of authors researching AR utilizing the SEM method across the
379
+ globe. It can be observed that most publications were conducted in the United States although this country
380
+ was suffered heavily from the COVID-19 pandemic. However, 8 out of 10 papers utilized the indirect
381
+ research method to recruit and gather data, meaning that the study was conducted remotely, and opinions
382
+ were collected through online tools.
383
+
384
+
385
+
386
+ 'SocialMarketing':AugmentedRealityappearsmostoften.
387
+ AugmentedReality
388
+ TechnologyAcceptance Model
389
+ BehavioralIntentions
390
+ Pokemon Go
391
+ VirtualReality
392
+ Social Marketing
393
+ GeneralizedStructuredComponentAnalysis
394
+ Presence
395
+ TAM
396
+ TechnologyAdoption
397
+ Interactivity
398
+ User Experience
399
+ MobileAugmented Reality
400
+ A-Frame
401
+ MobileAugmented RealityApplications
402
+ 0
403
+ 5
404
+ 10
405
+ 15
406
+ 20
407
+ 25
408
+ 30
409
+ 35
410
+ 40
411
+ Social MarketingIndonesian J Elec Eng & Comp Sci
412
+ ISSN: 2502-4752
413
+
414
+
415
+ A systematic review of structural equation modeling in augmented reality applications (Vinh The Nguyen)
416
+ 333
417
+
418
+
419
+ Figure 5. Spatial locations of authors researching on AR utilizing SEM in 2020-2021
420
+
421
+
422
+ 3.4. How many participants are typically involved in a study? Would this number still be considered
423
+ appropriate from the literature?
424
+ Figure 6 shows the distribution of sample size across peer-reviewed papers. The whisker plot
425
+ indicates that on average the sample size (the number of participants) who took part in the studies was
426
+ approximately 300 subjects considering 4 extreme values (or outliers). The minimum sample size is 9 and the
427
+ maximum is 1,566. The median indicates that most papers recruited around 200 users for their studies. When
428
+ the four extreme values were not considered, the average sample size for direct communication with
429
+ participant was 142 (median=113, range=340, min=24, max=364), and indirect method was 286
430
+ (median=302, range=710, min=9, max=719).
431
+
432
+
433
+
434
+
435
+ Figure 6. Distribution of sample size in the peer-reviewed papers
436
+
437
+
438
+ Sample size is a debating subject in the literature. As such, the determination of sample size varies
439
+ from study to study. Some researchers advocate a minimum sample size of 100–200 per a study, an
440
+ acceptable sample size can range between 300 and 500, or with criteria such as acceptable of five cases per
441
+ free parameter, moderate of ten cases per free parameter [12], and ideal of 20 instances per free parameter in
442
+ the model. Kock and Hadaya [42] proposed a technique for determining an adequate sample size based on
443
+ “inverse square root” and “gamma-exponential” approaches which were adapted by Nikhashemi et al. [43]
444
+ included in this study. To some extent, Figure 6 reflects the balance of sample size recommendation in the
445
+ literature. Interestingly, the median sample size calculated in this study (Median=200) was aligned with the
446
+ findings based on reviews of studies in different research areas, including operations management, education
447
+ and psychology.
448
+
449
+ 3.5. What are the main drawbacks of the AR studies? Do they suffer from the COVID-19 pandemic
450
+ Table 2 reports the frequency of limitations addressed by authors in the collected publications. The
451
+ most common flaw that needs to be examined further in future studies is the failure to incorporate additional
452
+ external components (39.62%) in the postulated model, followed by convenience sampling (35.85%), multi-
453
+ level analysis (32.08%) and limited to one region (30.19%). In terms of convenience sampling drawback,
454
+
455
+ United States
456
+ 10
457
+ Germany
458
+ n
459
+ Taiwan
460
+ 4
461
+ Greece
462
+ 4
463
+ UnitedKingdom
464
+ China.
465
+ SouthKorea
466
+ Indonesia
467
+ 2
468
+ Thailand
469
+ 2
470
+ Romania
471
+ 2
472
+ Vietnam
473
+ 2
474
+ Australia
475
+ 2
476
+ France
477
+ 1
478
+ Italy
479
+ 1
480
+ Spain
481
+ 1
482
+ HongKong
483
+ 1
484
+ Ireland
485
+ 1
486
+ Turkey
487
+ Netherlands
488
+ 1
489
+ India
490
+ 1
491
+ Oman
492
+ 1
493
+ Portugal
494
+ 1
495
+ Malaysia
496
+ 1
497
+ Powered by Bing
498
+ Tom,WikipediaDistribution of sample size across publications
499
+ 1800
500
+ 1600
501
+ ·1566
502
+ 1400
503
+ 1200
504
+ :1183
505
+ :1192
506
+ 1000
507
+ 800
508
+ 719
509
+ 600
510
+ 400
511
+ 412
512
+ X298.8113208
513
+ 200
514
+ 200
515
+ 68
516
+
517
+
518
+ ISSN: 2502-4752
519
+ Indonesian J Elec Eng & Comp Sci, Vol. 28, No. 1, October 2022: 328-338
520
+ 334
521
+ many authors acknowledged that they used the non-probability method to acquire sample data through their
522
+ networks of interest. As such, their reports/findings cannot be generalized to the population.
523
+
524
+
525
+ Table 2. Frequency of limitations addressed by the authors in the collected publications
526
+ Limitations
527
+ References
528
+ Not consider other factors (21)
529
+ [25], [26], [30], [31], [32], [38], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53], [54],
530
+ [55], [56], [57]
531
+ Convenience sampling (19)
532
+ [32], [35], [37], [40], [43], [45], [46], [50], [52], [53], [55], [57], [58], [59], [60], [61], [62], [63],
533
+ [64]
534
+ Multi levels analysis (17)
535
+ [25], [37], [44], [45], [46], [48], [49], [51], [55], [56], [59], [62], [65], [66], [67], [68], [69]
536
+ Limited to one region (16)
537
+ [30], [32], [33], [37], [38], [46], [47], [48], [49], [54], [56], [58], [59], [63], [68], [70]
538
+ Tailored to a specific AR product
539
+ (14)
540
+ [45], [46], [47], [52], [53], [54], [57], [61], [62], [64], [65], [67], [68], [70]
541
+ Small Sample Size (10)
542
+ [30], [32], [33], [38], [40], [47], [50], [54], [60], [71]
543
+ Short term effect (10)
544
+ [29], [31], [38], [43], [45], [58], [63], [65], [69], [72]
545
+ Not specified (9)
546
+ [34], [41], [50], [73], [74], [75], [76], [77], [78]
547
+ Only Intention Model (6)
548
+ [31], [51], [52], [56], [58], [79]
549
+ Lack of AR features (6)
550
+ [25], [29], [32], [48], [63], [71]
551
+ Lack of functions (4)
552
+ [25], [26], [29], [32]
553
+ Self-Administered Survey (3)
554
+ [58], [66], [79]
555
+ Use Videos for demonstrations (3)
556
+ [25], [26], [65]
557
+ Technical challenges (2)
558
+ [27], [28]
559
+ Standardized tools (2)
560
+ [29], [52]
561
+ Single Analysis technique (2)
562
+ [33], [48]
563
+ Lab setting (2)
564
+ [55], [64]
565
+ Not consider privacy concerns (2)
566
+ [25], [60]
567
+ Others (8)
568
+ [25], [26], [29], [32], [56], [59], [58], [70]
569
+
570
+
571
+ Along with convenience sampling, limited study to one region is another shortcoming that is often
572
+ mentioned with non-probability method limitation. Unlike convenience sampling drawback that subjects may
573
+ come from different parts of the world, the regional issue was arising where the study was intentionally
574
+ designed for a specific region through a case study or in the lab setting [55], [64]. A large portion of the
575
+ published work was carried out with the help of pre-existing AR products. This evaluation includes examples
576
+ such as IKEA Place, YouCam Makeup, and Pokémon Go. Participants were asked if they had any experience
577
+ with these AR apps, and if so, they were encouraged to take part in the survey. Furthermore, the authors'
578
+ capacity to extend the study to additional products/services was limited because they did not have control or
579
+ flexibility over the AR apps.
580
+ The results show that though the sample size was a sufficiently addressed problem by the
581
+ researchers, the proportion of this limitation was just 18.87%. Without considering publications that did not
582
+ report limitations in their work (i.e., not specified (9)), 77.27% (34/44 papers) of the research group justified
583
+ their sample size using an analytical tool/method, a sample size recommendation in the literature, and the use
584
+ of PLS-SEM, which can work with small sample sizes. As a result, sample estimation was deemed sufficient.
585
+ Another issue worth mentioning is the short-term effect addressed by 10 author groups (18.87%). The short-
586
+ term impact was explained by the fact that the experiments were only conducted for a limited period. As a
587
+ result, the theorized models can only explain variables impacting user behavior at that point in time. The
588
+ authors emphasized that because technology has evolved drastically over the years, the question of whether
589
+ their proposed models stand up remained unresolved. In addition, people's perspectives shift throughout time
590
+ as they gain experience [36], as a consequence, long-term research was suggested to validate the models.
591
+ In terms of the indirect method to conduct an experiment with users, four studies administered their
592
+ AR applications through video demonstrations [25], [26], [31], [65]. In this regard, instead of asking
593
+ participants to download or use the AR apps directly, the authors created videos demonstrating the features of
594
+ their studied AR apps. Based on the evidence of previous studies using video depictions of AR prototypes
595
+ [80], [81], these authors argued that the technology itself was not available for participants to interact with at
596
+ the time, and the purpose of the hypothesized models was to examine the influential factors that affect
597
+ behavioral intention before releasing the actual AR product to the market. As such in this category, studies in
598
+ [26], [29], [52] recommended that there is a need to have a tool or new evaluation method to overcome the
599
+ current issue.
600
+ In summary, compared with previous studies [16]-[19], this study has some similarities and
601
+ differences as: First, it is the selection of model, our report also shows similar results, that is, many different
602
+ types of models and variables are applied to the research. There has not yet been a general consensus set to
603
+ guide new researchers to follow. The difference is that the variables in this study revolve around technology
604
+
605
+ Indonesian J Elec Eng & Comp Sci
606
+ ISSN: 2502-4752
607
+
608
+
609
+ A systematic review of structural equation modeling in augmented reality applications (Vinh The Nguyen)
610
+ 335
611
+ rather than ecology, social science, psychology, and management. Second is the issue of limitations. While
612
+ similar studies only listed restrictions that exist in articles, our study quantified these limitations by specific
613
+ numbers and arranges them in descending order. As such, interested researchers can rely on it to cover the
614
+ information more broadly. The third consideration is the study’s time span. This investigation was carried out
615
+ in the context of digital transformation and the influence of COVID-19. Many new factors emerge and exert
616
+ effect that have received little consideration in prior research (see Figure 3). Summarizing these factors will
617
+ help researchers have more options instead of reading different articles. And finally, by synthesizing how the
618
+ experiments were carried out during the pandemic, not only new researchers can adapt prior evaluation
619
+ approach in the current situations but also improve them in the subsequent studies.
620
+
621
+
622
+ 4.
623
+ CONCLUSION
624
+ This paper presented a systematic review of the use of SEM in AR studies during the COVID-19
625
+ pandemic. The PRISMA model was adapted as a guideline for doing the research. Five data sources were
626
+ used for data retrieval. After a series of preprocessing steps, 53 publications were included in the study. The
627
+ results showed that authors used a variety of external factors to form the generative hypothesized models
628
+ (SEM), followed by the extension of TAM. The diversity of external factors indicated that there is no
629
+ consensus among AR scholars for using common factors influencing AR adoption, thus opening a huge
630
+ potential research gap for the AR community. Interestingly, United States was the most active country in
631
+ conducting AR studies during the Covid-19 pandemic, however 80% of its studies were conducted through
632
+ indirect communication channels. Hence, they were not affected by the pandemic. A large portion of AR
633
+ studies focused on understanding factors influencing user behavioral toward using third-party AR apps. As
634
+ such, participants were required to download and use the apps then answer the survey questionnaires. Sample
635
+ size, in this regard, cannot be excused due to social distancing. Only few studies examined user behavioral
636
+ through developed AR apps and the corresponding authors suggested that there is a need to have an
637
+ alternative approach to conduct user study rather than the traditional face-to-face fashion. Watching two
638
+ separate videos (one with AR and one without AR) was currently be used as an alternative method to
639
+ alleviate the issue but not a plausible approach in the long run. Therefore, this research gap remains open and
640
+ needs to be addressed in further studies. Thus, the outcomes of this study can be used as a reference guideline
641
+ for researchers in similar studies where there is a lack of theoretical framework for assessment, particular in
642
+ electrical engineering and computer science.
643
+
644
+
645
+ ACKNOWLEDGEMENTS
646
+ This research is supported by project T2022-07-09 undertaken at the TNU–University of
647
+ Information and Communication Technology, Thai Nguyen, Vietnam.
648
+
649
+
650
+ REFERENCES
651
+ [1]
652
+ K. Awang, S. N. W. Shamsuddin, I. Ismail, N. A. Rawi, and M. M. Amin, “The usability analysis of using augmented reality for
653
+ linus students,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 13, no. 1, pp. 58–64, 2019, doi:
654
+ 10.11591/ijeecs.v13.i1.pp58-64.
655
+ [2]
656
+ A. Ihsan, N. Fadillah, and C. R. Gunawan, “Acehnese traditional clothing recognition based on augmented reality using hybrid
657
+ tracking method,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 20, no. 2, pp. 1030–1036, 2020, doi:
658
+ 10.11591/ijeecs.v20.i2.pp1030-1036.
659
+ [3]
660
+ A. N. Rosman, N. A. Samsudin, A. Ismail, M. S. Aripin, and S. K. A. Khalid, “Augmented reality application for location finder
661
+ guidance,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 13, no. 3, pp. 1237–1242, 2019, doi:
662
+ 10.11591/ijeecs.v13.i3.pp1237-1242.
663
+ [4]
664
+ R. T. Azuma, “A survey of augmented reality,” Foundations and Trends in Human-Computer Interaction, vol. 8, no. 2–3, pp. 73–
665
+ 272, 2014, doi: 10.1561/1100000049.
666
+ [5]
667
+ reportthinker.com, “Augmented Reality Market with COVID-19 Impact Analysis, by Device Type, Offering, Application,
668
+ Technology
669
+ And
670
+ Geography
671
+ -
672
+ Global
673
+ Forecast
674
+ to
675
+ 2026,”
676
+ 2021.
677
+ [Online].
678
+ Available:
679
+ https://www.reportlinker.com/p05026084/Augmented-Reality-Market-by-Offering-and-Software-Device-Type-Application-and-
680
+ Geography-Global-forecast-to.html.
681
+ [6]
682
+ K. Nesenbergs, V. Abolins, J. Ormanis, and A. Mednis, “Use of augmented and virtual reality in remote higher education: a
683
+ systematic umbrella review,” Education Sciences, vol. 11, no. 1, p. 8, Dec. 2020, doi: 10.3390/educsci11010008.
684
+ [7]
685
+ F. Redzuan, A.-N. A. Khairuddin, and N. A. Daud, “Emotional augmented reality-based mobile learning design elements: a
686
+ kansei engineering approach,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 14, no. 1, p. 413, Apr.
687
+ 2019, doi: 10.11591/ijeecs.v14.i1.pp413-420.
688
+ [8]
689
+ S. Nasir, M. N. Zahid, T. A. Khan, K. Kadir, and S. Khan, “Augmented reality an economical solution for engineers and
690
+ designers,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 17, no. 2, pp. 833–844, 2019, doi:
691
+ 10.11591/ijeecs.v17.i2.pp834-844.
692
+ [9]
693
+ A. Dünser, R. Grasset, and M. Billinghurst, “Survey of evaluation techniques used in augmented studies,” in ACM SIGGRAPH
694
+ ASIA 2008 Courses, SIGGRAPH Asia’08, 2008, no. 64 3, pp. 766–792, doi: 10.1145/1508044.1508049.
695
+
696
+
697
+
698
+
699
+
700
+ ISSN: 2502-4752
701
+ Indonesian J Elec Eng & Comp Sci, Vol. 28, No. 1, October 2022: 328-338
702
+ 336
703
+ [10] A. Dünser and M. Billinghurst, “Evaluating Augmented reality systems,” in Handbook of Augmented Reality, New York, NY:
704
+ Springer New York, 2011, pp. 289–307.
705
+ [11] D. Zhang, M. Wang, and J. G. Wu, “Design and Implementation of augmented reality for english language education,” in
706
+ Springer Series on Cultural Computing, 2020, pp. 217–234.
707
+ [12] R. B. Kline, “Principles and practice of structural equation modeling,” in Methodology in the Social Sciences, Guilford
708
+ publications, 2005, pp. 1–554.
709
+ [13] A. Aramja, O. Kamach, and R. Elmeziane, “Companies’ perception toward manufacturing execution systems,” International
710
+ Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 4, p. 3347, Aug. 2021, doi: 10.11591/ijece.v11i4.pp3347-
711
+ 3355.
712
+ [14] V. T. Nguyen, “The perceptions of social media users of digital detox apps considering personality traits,” Education and
713
+ Information Technologies, pp. 1–24, Mar. 2022, doi: 10.1007/s10639-022-11022-7.
714
+ [15] M. S. Arman, R. Akter, I. Mahmud, and T. Ramayah, “Modelling turn away intention of information technology professionals in
715
+ Bangladesh: A partial least squares approach,” International Journal of Electrical and Computer Engineering, vol. 10, no. 5, pp.
716
+ 4973–4981, 2020, doi: 10.11591/IJECE.V10I5.PP4973-4981.
717
+ [16] Y. Fan et al., “Applications of structural equation modeling (SEM) in ecological studies: an updated review,” Ecological
718
+ Processes, vol. 5, no. 1, p. 19, Dec. 2016, doi: 10.1186/s13717-016-0063-3.
719
+ [17] de J. Carvalho and O. F. Chima, “Applications of structural equation modeling in social sciences research,” American
720
+ International Journal of Contemporary Research, vol. Vol. 4, no. 1, pp. 6–11, 2014.
721
+ [18] R. C. MacCallum and J. T. Austin, “Applications of structural equation modeling in psychological research,” Annual Review of
722
+ Psychology, vol. 51, pp. 201–226, 2000, doi: 10.1146/annurev.psych.51.1.201.
723
+ [19] L. J. Williams, M. B. Gavin, and N. S. Hartman, “Structural equation modeling methods in strategy research: Applications and
724
+ issues, in Research methodology in strategy and management,” in Research Methodology in Strategy and Management, vol. 1,
725
+ 2004, pp. 303–346.
726
+ [20] D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman, “Preferred reporting items for systematic reviews and meta-analyses: the
727
+ PRISMA statement,” Journal of clinical epidemiology, vol. 62, no. 10, pp. 1006–1012, 2009, doi: 10.1016/j.jclinepi.2009.06.005.
728
+ [21] H. Yousuf, M. Lahzi, S. A. Salloum, and K. Shaalan, “A systematic review on sequence-to-sequence learning with neural network
729
+ and its models,” International Journal of Electrical and Computer Engineering, vol. 11, no. 3, pp. 2315–2326, 2021, doi:
730
+ 10.11591/ijece.v11i3.pp2315-2326.
731
+ [22] V. T. Nguyen, K. Jung, and V. Gupta, “Examining data visualization pitfalls in scientific publications,” Visual Computing for
732
+ Industry, Biomedicine, and Art, vol. 4, no. 1, p. 27, Dec. 2021, doi: 10.1186/s42492-021-00092-y.
733
+ [23] C. W. Okonkwo and A. Ade-Ibijola, “Chatbots applications in education: A systematic review,” Computers and Education:
734
+ Artificial Intelligence, vol. 2, p. 100033, 2021, doi: 10.1016/j.caeai.2021.100033.
735
+ [24] F. D. Davis, “A technology acceptance model for empirically testing new end-user information systems: Theory and results,”
736
+ Massachusetts Institute of Technology, 1985.
737
+ [25] V. T. Nguyen, K. Jung, and T. Dang, “BlocklyAR: A visual programming interface for creating augmented reality experiences,”
738
+ Electronics, vol. 9, no. 8, p. 1205, Jul. 2020, doi: 10.3390/electronics9081205.
739
+ [26] K. Jung, V. T. Nguyen, and J. Lee, “BlocklyXR: An interactive extended reality toolkit for digital storytelling,” Applied Sciences,
740
+ vol. 11, no. 3, p. 1073, Jan. 2021, doi: 10.3390/app11031073.
741
+ [27] K. Jung, V. T. Nguyen, D. Piscarac, and S.-C. Yoo, “Meet the virtual jeju dol harubang—the mixed vr/ar application for cultural
742
+ immersion in korea’s main heritage,” ISPRS International Journal of Geo-Information, vol. 9, no. 6, p. 367, Jun. 2020, doi:
743
+ 10.3390/ijgi9060367.
744
+ [28] K. Jung, V. T. Nguyen, S.-C. Yoo, S. Kim, S. Park, and M. Currie, “PalmitoAR: the last battle of the U.S. civil war reenacted
745
+ using augmented reality,” ISPRS International Journal of Geo-Information, vol. 9, no. 2, p. 75, Jan. 2020, doi:
746
+ 10.3390/ijgi9020075.
747
+ [29] T. A. Mikropoulos et al., “Acceptance and user experience of an augmented reality system for the simulation of sensory overload
748
+ in children with autism,” in 2020 6th International Conference of the Immersive Learning Research Network (iLRN), Jun. 2020,
749
+ pp. 86–92, doi: 10.23919/iLRN47897.2020.9155113.
750
+ [30] M. Yavuz, E. Çorbacıoğlu, A. N. Başoğlu, T. U. Daim, and A. Shaygan, “Augmented reality technology adoption: Case of a
751
+ mobile application in Turkey,” Technology in Society, vol. 66, 2021, doi: 10.1016/j.techsoc.2021.101598.
752
+ [31] C. Goebert and G. P. Greenhalgh, “A new reality: Fan perceptions of augmented reality readiness in sport marketing,” Computers
753
+ in Human Behavior, vol. 106, p. 106231, May 2020, doi: 10.1016/j.chb.2019.106231.
754
+ [32] R. G. Boboc, R. L. Chiriac, and C. Antonya, “How augmented reality could improve the student’s attraction to learn
755
+ mechanisms,” Electronics (Switzerland), vol. 10, no. 2, pp. 1–24, Jan. 2021, doi: 10.3390/electronics10020175.
756
+ [33] A. Elshafey, C. C. Saar, E. B. Aminudin, M. Gheisari, and A. Usmani, “Technology acceptance model for Augmented Reality and
757
+ Building Information Modeling integration in the construction industry,” Journal of Information Technology in Construction, vol.
758
+ 25, pp. 161–172, Mar. 2020, doi: 10.36680/j.itcon.2020.010.
759
+ [34] E. Holdack, K. Lurie-Stoyanov, and H. F. Fromme, “The role of perceived enjoyment and perceived informativeness in assessing
760
+ the acceptance of AR wearables,” Journal of Retailing and Consumer Services, vol. 65, p. 102259, Mar. 2022, doi:
761
+ 10.1016/j.jretconser.2020.102259.
762
+ [35] C. Papakostas, C. Troussas, A. Krouska, and C. Sgouropoulou, “User acceptance of augmented reality welding simulator in
763
+ engineering training,” Education and Information Technologies, vol. 27, no. 1, pp. 791–817, Jan. 2022, doi: 10.1007/s10639-020-
764
+ 10418-7.
765
+ [36] V. Venkatesh, M. G. Morris, G. B. Davis, and F. D. Davis, “User acceptance of information technology: Toward a unified view,”
766
+ MIS Quarterly: Management Information Systems, vol. 27, no. 3, pp. 425–478, 2003, doi: 10.2307/30036540.
767
+ [37] V. Saprikis, G. Avlogiaris, and A. Katarachia, “Determinants of the intention to adopt mobile augmented reality apps in shopping
768
+ malls among university students,” Journal of Theoretical and Applied Electronic Commerce Research, vol. 16, no. 3, pp. 491–
769
+ 512, Nov. 2021, doi: 10.3390/jtaer16030030.
770
+ [38] H. Alqahtani, M. Kavakli-Thorne, and M. Alrowaily, “The impact of gamification factor in the acceptance of cybersecurity
771
+ awareness augmented reality game (cybar),” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
772
+ Intelligence and Lecture Notes in Bioinformatics), vol. 12210 LNCS, pp. 16–31, 2020, doi: 10.1007/978-3-030-50309-3_2.
773
+ [39] A. Mehrabian and J. A. Russell, An Approach to Environmental Psychology. MIT Press, 1974.
774
+ [40] H. Qin, D. A. Peak, and V. Prybutok, “A virtual market in your pocket: How does mobile augmented reality (MAR) influence
775
+ consumer decision making?,” Journal of Retailing and Consumer Services, vol. 58, p. 102337, Jan. 2021, doi:
776
+ 10.1016/j.jretconser.2020.102337.
777
+
778
+ Indonesian J Elec Eng & Comp Sci
779
+ ISSN: 2502-4752
780
+
781
+
782
+ A systematic review of structural equation modeling in augmented reality applications (Vinh The Nguyen)
783
+ 337
784
+ [41] C. Pasalidou and N. Fachantidis, “Teachers’ perceptions towards the use of mobile augmented reality: the case of greek
785
+ educators,” in Advances in Intelligent Systems and Computing, vol. 1192 AISC, 2021, pp. 1039–1050.
786
+ [42] K. N and H. P, “Minimum sample size estimation in PLS-SEM: the inverse square root and gamma-exponential methods,”
787
+ Information Systems Journal, vol. 28, no. 1, p. 227, 2018.
788
+ [43] S. R. Nikhashemi, H. H. Knight, K. Nusair, and C. B. Liat, “Augmented reality in smart retailing: A (n) (A) Symmetric Approach
789
+ to continuous intention to use retail brands’ mobile AR apps,” Journal of Retailing and Consumer Services, vol. 60, p. 102464,
790
+ May 2021, doi: 10.1016/j.jretconser.2021.102464.
791
+ [44] X. Fan, Z. Chai, N. Deng, and X. Dong, “Adoption of augmented reality in online retailing and consumers’ product attitude: A
792
+ cognitive perspective,” Journal of Retailing and Consumer Services, vol. 53, p. 101986, Mar. 2020, doi:
793
+ 10.1016/j.jretconser.2019.101986.
794
+ [45] P. Kowalczuk, C. Siepmann (née Scheiben), and J. Adler, “Cognitive, affective, and behavioral consumer responses to augmented
795
+ reality in e-commerce: A comparative study,” Journal of Business Research, vol. 124, pp. 357–373, 2021, doi:
796
+ 10.1016/j.jbusres.2020.10.050.
797
+ [46] M.
798
+ Thongmak,
799
+ “Determinants
800
+ of
801
+ intention
802
+ to
803
+ play
804
+ Pokémon
805
+ Go,”
806
+ Heliyon,
807
+ vol.
808
+ 6,
809
+ no.
810
+ 12,
811
+ 2020,
812
+ doi:
813
+ 10.1016/j.heliyon.2020.e03895.
814
+ [47] Mailizar and R. Johar, “Examining students’ intention to use augmented reality in a project-based geometry learning
815
+ environment,” International Journal of Instruction, vol. 14, no. 2, pp. 773–790, 2021, doi: 10.29333/iji.2021.14243a.
816
+ [48] C. L. Chiu, H. C. Ho, T. Yu, Y. Liu, and Y. Mo, “Exploring information technology success of Augmented Reality Retail
817
+ Applications in retail food chain,” Journal of Retailing and Consumer Services, vol. 61, p. 102561, Jul. 2021, doi:
818
+ 10.1016/j.jretconser.2021.102561.
819
+ [49] R. Vongurai, “Factors influencing experiential value toward using cosmetic AR try-on feature in Thailand,” Journal of
820
+ Distribution Science, vol. 19, no. 1, pp. 75–87, 2021, doi: 10.15722/jds.19.1.202101.75.
821
+ [50] F. Schuster, B. Engelmann, U. Sponholz, and J. Schmitt, “Human acceptance evaluation of AR-assisted assembly scenarios,”
822
+ Journal of Manufacturing Systems, vol. 61, pp. 660–672, Oct. 2021, doi: 10.1016/j.jmsy.2020.12.012.
823
+ [51] S. Han, J. H. Yoon, and J. Kwon, “Impact of experiential value of augmented reality: The context of heritage tourism,”
824
+ Sustainability (Switzerland), vol. 13, no. 8, p. 4147, Apr. 2021, doi: 10.3390/su13084147.
825
+ [52] M. Daassi and S. Debbabi, “Intention to reuse AR-based apps: The combined role of the sense of immersion, product presence
826
+ and perceived realism,” Information and Management, vol. 58, no. 4, 2021, doi: 10.1016/j.im.2021.103453.
827
+ [53] T. T. Haile and M. Kang, “Mobile Augmented reality in electronic commerce: investigating user perception and purchase intent
828
+ amongst educated young adults,” Sustainability, vol. 12, no. 21, p. 9185, Nov. 2020, doi: 10.3390/su12219185.
829
+ [54] T. Jung, M. Claudia Tom Dieck, H. Lee, and N. Chung, “Relationships among beliefs, attitudes, time resources, subjective norms,
830
+ and intentions to use wearable augmented reality in art galleries,” Sustainability (Switzerland), vol. 12, no. 20, pp. 1–17, Oct.
831
+ 2020, doi: 10.3390/su12208628.
832
+ [55] A. R. Smink, E. A. van Reijmersdal, G. van Noort, and P. C. Neijens, “Shopping in augmented reality: The effects of spatial
833
+ presence, personalization and intrusiveness on app and brand responses,” Journal of Business Research, vol. 118, pp. 474–485,
834
+ Sep. 2020, doi: 10.1016/j.jbusres.2020.07.018.
835
+ [56] T. H. Jung, S. Bae, N. Moorhouse, and O. Kwon, “The impact of user perceptions of AR on purchase intention of location-based
836
+ AR navigation systems,” Journal of Retailing and Consumer Services, vol. 61, p. 102575, Jul. 2021, doi:
837
+ 10.1016/j.jretconser.2021.102575.
838
+ [57] S. Bueno, M. D. Gallego, and J. Noyes, “Uses and gratifications on augmented reality games: an examination of Pokémon Go,”
839
+ Applied Sciences, vol. 10, no. 5, p. 1644, Mar. 2020, doi: 10.3390/app10051644.
840
+ [58] P. Saleme, T. Dietrich, B. Pang, and J. Parkinson, “A gamified approach to promoting empathy in children,” Journal of Social
841
+ Marketing, vol. 10, no. 3, pp. 321–337, Jun. 2020, doi: 10.1108/JSOCM-11-2019-0204.
842
+ [59] Y. Qin, “Attractiveness of game elements, presence, and enjoyment of mobile augmented reality games: The case of Pokémon
843
+ Go,” Telematics and Informatics, vol. 62, p. 101620, Sep. 2021, doi: 10.1016/j.tele.2021.101620.
844
+ [60] H. Lee, Y. Xu, and A. Porterfield, “Consumers’ adoption of AR-based virtual fitting rooms: from the perspective of theory of
845
+ interactive media effects,” Journal of Fashion Marketing and Management: An International Journal, vol. 25, no. 1, pp. 45–62,
846
+ Feb. 2021, doi: 10.1108/JFMM-05-2019-0092.
847
+ [61] M. Park and J. Yoo, “Effects of perceived interactivity of augmented reality on consumer responses: A mental imagery
848
+ perspective,” Journal of Retailing and Consumer Services, vol. 52, p. 101912, Jan. 2020, doi: 10.1016/j.jretconser.2019.101912.
849
+ [62] E. (Christine) Sung, “The effects of augmented reality mobile app advertising: Viral marketing via shared social experience,”
850
+ Journal of Business Research, vol. 122, pp. 75–87, Jan. 2021, doi: 10.1016/j.jbusres.2020.08.034.
851
+ [63] M. Dehghani, S. H. (Mark) Lee, and A. Mashatan, “Touching holograms with windows mixed reality: Renovating the consumer
852
+ retailing services,” Technology in Society, vol. 63, p. 101394, Nov. 2020, doi: 10.1016/j.techsoc.2020.101394.
853
+ [64] A. Leopardi et al., “X-reality technologies for museums: a comparative evaluation based on presence and visitors experience
854
+ through user studies,” Journal of Cultural Heritage, vol. 47, pp. 188–198, Jan. 2021, doi: 10.1016/j.culher.2020.10.005.
855
+ [65] J. Brannon Barhorst, G. McLean, E. Shah, and R. Mack, “Blending the real world and the virtual world: Exploring the role of
856
+ flow in augmented reality experiences,” Journal of Business Research, vol. 122, pp. 423–436, Jan. 2021, doi:
857
+ 10.1016/j.jbusres.2020.08.041.
858
+ [66] X.-F. Lin, D. Tang, W. Shen, Z.-M. Liang, Y. Tang, and C.-C. Tsai, “Exploring the relationship between perceived technology-
859
+ assisted teacher support and technology-embedded scientific inquiry: the mediation effect of hardiness,” International Journal of
860
+ Science Education, vol. 42, no. 8, pp. 1225–1252, May 2020, doi: 10.1080/09500693.2020.1755475.
861
+ [67] T. L. Huang, “Restorative experiences and online tourists’ willingness to pay a price premium in an augmented reality
862
+ environment,” Journal of Retailing and Consumer Services, vol. 58, 2021, doi: 10.1016/j.jretconser.2020.102256.
863
+ [68] C.-H. Hsiao and K.-Y. Tang, “Who captures whom – Pokémon or tourists? A perspective of the Stimulus-Organism-Response
864
+ model,” International Journal of Information Management, vol. 61, p. 102312, Dec. 2021, doi: 10.1016/j.ijinfomgt.2021.102312.
865
+ [69] S. Park and B. Stangl, “Augmented reality experiences and sensation seeking,” Tourism Management, vol. 77, p. 104023, Apr.
866
+ 2020, doi: 10.1016/j.tourman.2019.104023.
867
+ [70] C. Hinsch, R. Felix, and P. A. Rauschnabel, “Nostalgia beats the wow-effect: Inspiration, awe and meaningful associations in
868
+ augmented reality marketing,” Journal of Retailing and Consumer Services, vol. 53, 2020, doi: 10.1016/j.jretconser.2019.101987.
869
+ [71] H. C. K. Lin, Y. H. Lin, T. H. Wang, L. K. Su, and Y. M. Huang, “Effects of incorporating augmented reality into a board game
870
+ for high school students’ learning motivation and acceptance in health education,” Sustainability (Switzerland), vol. 13, no. 6, p.
871
+ 3333, Mar. 2021, doi: 10.3390/su13063333.
872
+
873
+
874
+
875
+
876
+
877
+
878
+ ISSN: 2502-4752
879
+ Indonesian J Elec Eng & Comp Sci, Vol. 28, No. 1, October 2022: 328-338
880
+ 338
881
+ [72] D. Urbano, M. de Fátima Chouzal, and M. T. Restivo, “Evaluating an online augmented reality puzzle for DC circuits: Students’
882
+ feedback and conceptual knowledge gain,” Computer Applications in Engineering Education, vol. 28, no. 5, pp. 1355–1368,
883
+ 2020, doi: 10.1002/cae.22306.
884
+ [73] E. Lacka, “Assessing the impact of full-fledged location-based augmented reality games on tourism destination visits," Current
885
+ Issues in Tourism ", vol. 28, no. 5, pp. 1355–1368, 2020.
886
+ [74] S. H. Hadi et al., “Developing augmented reality-based learning media and users’ intention to use it for teaching accounting
887
+ ethics,” Education and Information Technologies, vol. 27, no. 1, pp. 643–670, 2022, doi: 10.1007/s10639-021-10531-1.
888
+ [75] G. D. Voinea, C. C. Postelnicu, M. Duguleana, G. L. Mogan, and R. Socianu, “Driving performance and technology acceptance
889
+ evaluation in real traffic of a smartphone-based driver assistance system,” International Journal of Environmental Research and
890
+ Public Health, vol. 17, no. 19, pp. 1–20, 2020, doi: 10.3390/ijerph17197098.
891
+ [76] H.-N. Do, W. Shih, and Q.-A. Ha, “Effects of mobile augmented reality apps on impulse buying behavior: An investigation in the
892
+ tourism field,” Heliyon, vol. 6, no. 8, p. e04667, Aug. 2020, doi: 10.1016/j.heliyon.2020.e04667.
893
+ [77] A. Kumar and A. Mantri, “Evaluating the attitude towards the intention to use ARITE system for improving laboratory skills by
894
+ engineering educators,” Education and Information Technologies, vol. 27, no. 1, pp. 671–700, Jan. 2022, doi: 10.1007/s10639-
895
+ 020-10420-z.
896
+ [78] H. Y. Chang, J. C. Liang, and C. C. Tsai, “Students’ context-specific epistemic justifications, prior knowledge, engagement, and
897
+ socioscientific reasoning in a mobile augmented reality learning environment,” Journal of Science Education and Technology,
898
+ vol. 29, no. 3, pp. 399–408, 2020, doi: 10.1007/s10956-020-09825-9.
899
+ [79] D. Harborth and S. Pape, “Investigating privacy concerns related to mobile augmented reality Apps – A vignette based online
900
+ experiment,” Computers in Human Behavior, vol. 122, p. 106833, Sep. 2021, doi: 10.1016/j.chb.2021.106833.
901
+ [80] A. C. Haugstvedt and J. Krogstie, “Mobile augmented reality for cultural heritage: A technology acceptance study,” ISMAR 2012
902
+ - 11th IEEE International Symposium on Mixed and Augmented Reality 2012, Science and Technology Papers, pp. 247–255,
903
+ 2012, doi: 10.1109/ISMAR.2012.6402563.
904
+ [81] J. Cheon, S. Lee, S. M. Crooks, and J. Song, “An investigation of mobile learning readiness in higher education based on the
905
+ theory of planned behavior,” Computers & Education, vol. 59, no. 3, pp. 1054–1064, Nov. 2012, doi:
906
+ 10.1016/j.compedu.2012.04.015.
907
+
908
+
909
+ BIOGRAPHIES OF AUTHORS
910
+
911
+
912
+ Dr. Vinh The Nguyen
913
+
914
+
915
+
916
+ is currently a lecturer at the Faculty of Information
917
+ Technology, University of Information and Communication Technology. He is also a senior
918
+ visiting lecturer at FPT University Greenwich, Hanoi branch. He graduated with a master's
919
+ degree in information systems management from Oklahoma State University, USA (under
920
+ scholarship 322). He completed his PhD program under Project 911 in 2020 at Texas Tech
921
+ University, USA. His main research interests are Computer Vision, Computer Visualization,
922
+ and Computer in Human Behavior. He has authored or coauthored more than 35 publications
923
+ with 10 H-index and more than 250 citations. He can be contacted at email:
924
925
+
926
+
927
+
928
+ Chuyen Thi Hong Nguyen
929
+
930
+
931
+
932
+ is currently a lecturer at the Faculty of Primary
933
+ Education, Thai Nguyen University of Education, Vietnam. She graduated with a master's
934
+ degree in Theory and History of Education from Hanoi University of Education, Vietnam
935
+ (2008). She completed her PhD program in 2016 at The Vietnam Institute of educational
936
+ Sciences, Vietnam. Her main research interests are method teaching, assessment in primary
937
+ education, computational thinking, learning style, and augmented reality in education. She can
938
+ be contacted at email: [email protected].
939
+
940
+
941
+
942
+
943
+
944
+ pp
FtE3T4oBgHgl3EQftQtg/content/tmp_files/2301.04674v1.pdf.txt ADDED
@@ -0,0 +1,1488 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Prepared for submission to JHEP
2
+ IPARCOS-23-002
3
+ Late vacuum choice and slow roll approximation in
4
+ gravitational particle production during reheating
5
+ Jose A. R. Cembranos,a Luis J. Garay,a Álvaro Parra-Lópeza and Jose M. Sánchez
6
+ Velázquezb
7
+ aDepartamento de Física Teórica and IPARCOS, Facultad de Ciencias Físicas,
8
+ Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
9
+ bInstituto de Física Teórica UAM/CSIC, c/ Nicolás Cabrera 13-15,
10
+ Cantoblanco, 28049, Madrid, Spain
11
12
13
+ Abstract: In the transition between inflation and reheating, the curvature scalar typically
14
+ undergoes oscillations which have significant impact on the density of gravitationally
15
+ produced particles. The commonly used adiabatic vacuum prescription for the extraction
16
+ of produced particle spectra becomes a non-reliable definition of vacuum in the regimes for
17
+ which this oscillatory behavior is important. In this work, we study particle production for
18
+ a scalar field non-minimally coupled to gravity, taking into account the complete dynamics
19
+ of spacetime during inflation and reheating. We derive an approximation for the solution
20
+ to the mode equation during the slow-roll of the inflaton and analyze the importance of
21
+ Ricci scalar oscillations in the resulting spectra. Additionally, we propose a prescription for
22
+ the vacuum that allows to safely extrapolate the result to the present, given that the test
23
+ field interacts only gravitationally. Lastly, we calculate the abundance of dark matter this
24
+ mechanism yields and compare it to observations.
25
+ Keywords: Cosmology of Theories beyond the SM, Effective Field Theories, Classical
26
+ Theories of Gravity
27
+ arXiv:2301.04674v1 [gr-qc] 11 Jan 2023
28
+
29
+ Contents
30
+ 1
31
+ Introduction
32
+ 1
33
+ 2
34
+ Dynamics of a scalar field in flat FLRW cosmologies
35
+ 3
36
+ 3
37
+ Background dynamics
38
+ 5
39
+ 3.1
40
+ Inflationary era - Slow-roll approximation
41
+ 6
42
+ 3.2
43
+ Late reheating
44
+ 7
45
+ 4
46
+ Particle production
47
+ 8
48
+ 4.1
49
+ Solution to the mode equation
50
+ 8
51
+ 4.2
52
+ Choice of reference vacua
53
+ 9
54
+ 4.3
55
+ Slow-roll approximation for the solution to the mode equation
56
+ 11
57
+ 4.4
58
+ Adiabaticity and oscillations
59
+ 16
60
+ 5
61
+ Spectra of particles and total density
62
+ 17
63
+ 6
64
+ Conclusions
65
+ 21
66
+ A Parameters
67
+ 23
68
+ 1
69
+ Introduction
70
+ The theory of quantum fields in curved spacetimes accommodates a plethora of unexpected
71
+ phenomena such as Hawking radiation [1], the Unruh effect [2], or entanglement across
72
+ horizons [3–6], that have changed our perspective on the interplay between quantum fields
73
+ and gravity. Gravitational particle production due to the spacetime dynamics [7, 8] is one of
74
+ these phenomena and can be particularly important during the early stages of the universe,
75
+ since it may be able to explain the dark matter abundance, as it has been extensively
76
+ discussed in the literature. The rapidly evolving spacetime during inflation [9–11] and
77
+ the consequent transient to reheating [12–16] produce a significant abundance of particles
78
+ for any field that is coupled to the geometry. Since this is the only requirement for this
79
+ process to occur, it is of particular interest to analyze it from the perspective of dark
80
+ matter production mechanisms. Because of the absence of interactions with other fields, the
81
+ abundance of dark matter produced in the early universe due to the expansion of spacetime
82
+ is not diluted as a consequence of thermalization with other fields. It remains then as a relic
83
+ abundance, so that this mechanism alone can in fact explain current observations. This
84
+ has been mostly explored for scalar fields that are non-minimally coupled to gravity in a
85
+ myriad of works, such as [17–20] for supermassive dark matter candidates (WIMPZillas),
86
+ or, more recently, in references [21–24], where the importance of the oscillatory behavior of
87
+ – 1 –
88
+
89
+ the background geometry was incorporated. On the other hand, gravitational production
90
+ of more general fields, such as fermion and vector fields, has also been analyzed in [25, 26].
91
+ Usually, the dark matter candidate is regarded as a spectator field [27, 28] which does not
92
+ source gravity, and with no direct coupling to the inflationary fields. However, it is generally
93
+ non-minimally coupled to the geometry via the curvature scalar, and interactions with
94
+ other fields are disregarded. In all these works, it is customary to make use of the adiabatic
95
+ prescription to define the vacuum state of the dark matter field in order to calculate the
96
+ gravitational production. This definition seems to hold after a few oscillations of the
97
+ inflaton in the reheating stage, but only in the case of very large masses of the dark matter
98
+ candidate. In the regime of low masses, however, this vacuum provides a correct prediction
99
+ only when considering very late times, after many oscillations have occured. Importantly,
100
+ this oscillating behavior influences gravitational production [24]. It is worth mentioning
101
+ that the type of dark matter produced in this way is adiabatic [23, 29], and therefore the
102
+ observational constraints on isocurvature perturbations [30] do not have to be considered.
103
+ In this work, we study the gravitational production of a massive scalar field ϕ described
104
+ by a Klein-Gordon action that includes a non-minimal coupling to the Ricci curvature scalar
105
+ R through a term of the form ξRϕ2. The strength of this coupling is determined by the
106
+ parameter ξ. In an attempt to accommodate the arguments put forward in refs. [24, 31–33]
107
+ concerning vacuum instability, overproduction, and quantum cosmology analyses, we restrict
108
+ ourselves to the range 1/6 ≤ ξ ≤ 1 for the coupling constant ξ. As inflationary model, we
109
+ consider a single inflaton field φ that slowly rolls down a quadratic potential and starts
110
+ oscillating around its minimum, leading then to a reheating phase. The dynamics for the
111
+ inflaton is analytically solved at the onset of inflation, while the transition to the reheating
112
+ epoch is modeled numerically. Our scalar field is assumed to be in the Bunch-Davies
113
+ vacuum state when inflation starts. In order to extract the gravitational production, the
114
+ Klein-Gordon equation of the field ϕ is solved from that point in time until well inside
115
+ the reheating era. This moment effectively corresponds to the time where the dynamics
116
+ enters the adiabatic regime and particle production becomes negligible. Moreover, one also
117
+ needs to provide a definition of vacuum for this instant, for which the adiabatic prescription
118
+ is usually adopted. We discuss its validity and introduce as well an averaged vacuum
119
+ that produces the same density of particles but allows to obtain the correct result much
120
+ earlier than the time at which adiabaticity is reached. This is particularly helpful when
121
+ considering masses way below the inflaton mass for our scalar field, which are of great
122
+ interest concerning dark matter candidates. Also, we stress the importance of taking into
123
+ account the first few hundreds of oscillations of the inflaton in the final prediction and
124
+ present the results in the form of spectra and total density of produced particles for different
125
+ values of the scalar field mass m and its coupling ξ to the Ricci scalar.
126
+ The remainder of this paper is organized as follows. In section 2, we introduce the field
127
+ that is coupled to the expanding geometry, and work out the formalities of Bogoliubov-
128
+ like particle production in this context. In order to determine the complete form of the
129
+ mode equation, we need to provide the background dynamics coming from the particular
130
+ inflationary model in consideration, which we do in section 3. With all these ingredients, we
131
+ explore the gravitational production for the scalar field in section 4, analyzing the solution
132
+ – 2 –
133
+
134
+ to the mode equation in the different regimes and studying the influence of the oscillations
135
+ of the curvature scalar in the final result. Moreover, we discuss the importance of the
136
+ vacuum choice when obtaining the numer density of produced particles. Lastly, we present
137
+ our results in the form of spectra and total density of particles in section 5 and elaborate
138
+ our conclusions in section 6.
139
+ Notation. We set MP =
140
+
141
+ G, ℏ = c = kB = 1, and use the metric signature (−, +, +, +).
142
+ Furthermore, greek indices µ, ν run from 0 to 3, while latin indices i, j run from 1 to 3.
143
+ 2
144
+ Dynamics of a scalar field in flat FLRW cosmologies
145
+ We will consider a massive scalar field ϕ non-minimally coupled to gravity in a Friedmann-
146
+ Lemaître-Robertson-Walker (FLRW) spacetime with vanishing spatial curvature [34–40].
147
+ We will not consider here any coupling of the derivatives of the scalar field (see [41]).
148
+ The dynamics of our scalar field is encoded in the action
149
+ S = −1
150
+ 2
151
+
152
+ d4x√−g
153
+
154
+ ∂µϕ∂µϕ +
155
+
156
+ m2 + ξR
157
+
158
+ ϕ2�
159
+ ,
160
+ (2.1)
161
+ where g is the determinant of the metric, m is the bare mass of the field, and ξ is the
162
+ coupling to the Ricci curvature scalar R. The geometry is determined by the spatially flat
163
+ FLRW line element
164
+ ds2 = a2(η)
165
+
166
+ −dη2 + dx2 + dy2 + dz2�
167
+ ,
168
+ (2.2)
169
+ where we have considered Cartesian coordinates for the flat spatial sections, and η is the
170
+ conformal time, related to cosmological time by a(η)dη = dt.
171
+ It is convenient to work with the auxiliary field
172
+ χ(η, x) = a(η)ϕ(η, x),
173
+ (2.3)
174
+ whose equation of motion can be obtained from the action (2.1),
175
+ χ′′(η, x) −
176
+
177
+ ∆ + a′′(η)
178
+ a(η) − a2(η)
179
+
180
+ m2 + ξR
181
+ ��
182
+ χ(η, x) = 0,
183
+ (2.4)
184
+ where ∆ is the Laplace operator, the prime denotes derivative with respect to conformal
185
+ time, and R = 6a′′/a3.
186
+ We can use the eigenfunctions of the Laplace operator, which in our case are Fourier
187
+ modes, as a basis of functions to expand the scalar field χ,
188
+ χ(η, x) =
189
+
190
+ d3k
191
+ (2π)2/3
192
+ �akvk(η) + a∗
193
+ −kv∗
194
+ k(η)
195
+ � eikx,
196
+ (2.5)
197
+ where the coefficients ak, a∗
198
+ k become creation and annihilation operators upon quantization
199
+ of the field, with the standard commutation relations [42–45]. The time-dependent mode
200
+ functions vk(η) and v∗
201
+ k(η) satisfy a harmonic oscillator equation
202
+ v′′
203
+ k(η) + ω2
204
+ k(η)vk(η) = 0,
205
+ (2.6)
206
+ – 3 –
207
+
208
+ with k =
209
+
210
+ k2 and a time-dependent frequency
211
+ ω2
212
+ k(η) = k2 + a2(η)
213
+
214
+ m2 + (ξ − 1/6)R(η)
215
+
216
+ .
217
+ (2.7)
218
+ The solutions to (2.6) have to fulfill the normalization condition
219
+ vkv′ ∗
220
+ k − v′
221
+ kv∗
222
+ k = i,
223
+ (2.8)
224
+ so that they are compatible with the standard commutation relations of creation and
225
+ annihilation operators.
226
+ For a given evolution of the background geometry, encoded in the scale factor a(η) and
227
+ the Ricci scalar R(η), both (2.8) and (2.6) are sufficient to determine vk(η), v∗
228
+ k(η), which is
229
+ a basis of the space of solutions of the mode equations. Since any other solution can be
230
+ expressed as a linear combination of vk(η) and v∗
231
+ k(η), any two sets of solutions vk(η) and
232
+ uk(η) must be related by uk = αkvk + βkv∗
233
+ k, where normalization (2.8) on the temporal
234
+ modes implies the relation |αk|2 − |βk|2 = 1 for the complex coefficients αk and βk, which
235
+ are known as Bogoliubov coefficients [42]. Note that the expansion (2.5) can be carried out
236
+ using either basis of solutions.
237
+ Upon quantization of the field, both sets of coefficients ak and bk (associated with the
238
+ basis vk and uk, respectively) and their complex conjugates become operators that give rise
239
+ to two different definitions on quanta and vacua [43],
240
+ ˆak |0a⟩ = 0
241
+ and
242
+ ˆbk |0b⟩ = 0,
243
+ ∀ k.
244
+ (2.9)
245
+ These two quantizations are related by the Bogoliubov transformation ˆbk = α∗
246
+ kˆak − β∗
247
+ kˆa†
248
+ k.
249
+ The mean number density of b-particles in the a-vacuum, which will be, in general, a
250
+ non-vacuum state according to the ˆbk operators, is given by
251
+ ⟨0a| ˆnb
252
+ k |0a⟩ = |βk|2.
253
+ (2.10)
254
+ Integrating over all modes, we find the total mean density
255
+ � d3k |βk|2, which will remain
256
+ finite as long as |βk|2 → 0 faster than k−3 for increasing k.
257
+ Let us now associate each basis of solutions to two observers living at different times
258
+ ta < tb. If spacetime is static, the frequency (2.7) is constant, so that the solution to (2.6)
259
+ takes the same form at all times. As a consequence, observers at different times have
260
+ the same notion of particle, and therefore βk = 0. However, if geometry undergoes an
261
+ expansion, two observers living at different times (before and after the expansion) have
262
+ different notions of vacuum. Thus, βk ̸= 0 and therefore nb ̸= 0, which can be understood
263
+ as the number density of particles produced out of the original vacuum state due to the
264
+ expansion of spacetime.
265
+ For the problem at hand, the goal is to extract the number of produced particles after
266
+ the evolution of the universe during inflation and reheating, once these stages have finished.
267
+ Then, as long as the test particle is not (strongly) interacting, this will be related to the
268
+ abundance one observer would measure today only by the expansion dilution. Hence, we
269
+ will take the Bunch-Davies vacuum as initial state, as defined by the solution of the mode
270
+ – 4 –
271
+
272
+ equation at very early times. In our case, we will take the geometry to approach de Sitter
273
+ spacetime at the beginning of inflation. On the other hand, the notion of vacuum for an
274
+ inertial observer after reheating will be different. If the evolution of spacetime is sufficiently
275
+ adiabatic after this phase, we can assume this is the same vacuum we observe nowadays.
276
+ Therefore, the corresponding operators will measure the number of particles created in the
277
+ evolution.
278
+ The specific form of the scale factor and the Ricci scalar will be determined by the
279
+ specific inflationary model under consideration, which we describe in the next section.
280
+ 3
281
+ Background dynamics
282
+ We will describe the early epoch of the universe with a chaotic inflationary model consisting
283
+ of a single scalar field φ with a quadratic potential of the form V (φ) = 1
284
+ 2m2
285
+ φφ2, where
286
+ mφ denotes the inflaton mass. The equation of motion for the inflaton is, if we assume
287
+ homogeneity and isotropy,
288
+ 0 = ¨φ + 3H(t) ˙φ + ∂φV (φ),
289
+ (3.1)
290
+ where H(t) ≡ ˙a(t)/a(t) is the Hubble parameter. Note that in this context it is customary
291
+ to work with cosmological time t. We will assume that the inflaton contribution to the
292
+ total energy-momentum tensor is dominant when deriving the corresponding Friedmann
293
+ equation,
294
+ H2 =
295
+
296
+ 3M2
297
+ P
298
+ � ˙φ2 + 2V (φ)
299
+
300
+ .
301
+ (3.2)
302
+ We will also need the Ricci curvature scalar in order to properly describe the frequency of
303
+ the mode equation (2.6), which in terms of the inflaton field reads
304
+ R = 8π
305
+ M2
306
+ P
307
+
308
+ 4V (φ) − ˙φ2�
309
+ .
310
+ (3.3)
311
+ Equation (3.1), together with (3.2), has no analytic solution in general. However,
312
+ one can find approximations for certain regimes. When this is not possible, we must rely
313
+ on numerical computation. We analyze two different regions which, in conformal time,
314
+ correspond to
315
+ η =
316
+
317
+
318
+
319
+ ηi ≤ η < η∗,
320
+ Slow-roll approximation,
321
+ η∗ ≤ η ≤ ηf,
322
+ Numerical solution.
323
+ (3.4)
324
+ For the inflationary period, we can use the well-known slow-roll approximation to obtain a
325
+ solution to the inflaton equation of motion, as we describe in subsection (3.1). However,
326
+ during the transition between inflation and reheating, the dynamics of the inflaton has to
327
+ be obtained numerically. Both the inflaton field φ and the Ricci scalar R start to oscillate
328
+ with decreasing amplitude, as can be observed in figure 1, where φ(η) and R(η) are depicted
329
+ for an interval of time during the transition phase. This is the epoch in which most of the
330
+ particles are produced and the inflaton dynamics is solved until a numerically accessible time
331
+ ηf is reached, when production becomes negligible. For late times, deep in the reheating
332
+ era, we can also use an analytic approximation for the solution of the inflaton equation of
333
+ – 5 –
334
+
335
+ -3
336
+ -2
337
+ -1
338
+ 0
339
+ 1
340
+ 2
341
+ 3
342
+ 0
343
+ 2
344
+ 4
345
+ 6
346
+ -2
347
+ -1
348
+ 0
349
+ 1
350
+ 2
351
+ 3
352
+ 4
353
+ 0
354
+ 5
355
+ 10
356
+ 15
357
+ 20
358
+ 1
359
+ 2
360
+ 3
361
+ -0.25
362
+ 0
363
+ 0.25
364
+ 0.5
365
+ Figure 1. Inflaton field φ(η) (left panel) and curvature scalar R(η) (right panel) as functions of
366
+ conformal time. The range of time corresponds to the end of inflation and the beginning of reheating.
367
+ The parameters used for all figures in this article are given in Appendix A.
368
+ motion, given in subsection 3.2, which —although not used in our calculations— will be
369
+ used to make some remarks in section 4.
370
+ 3.1
371
+ Inflationary era - Slow-roll approximation
372
+ We will choose the inflationary period to start at the negative, initial time ti. Inflation
373
+ requires that the inflaton field changes slowly in comparison to the potential. Within the
374
+ slow-roll approximation [46, 47], we can neglect the derivative of the field in favor of the
375
+ potential, namely ˙φ2 ≪ |V (φ)|. When this condition is satisfied, the field slowly rolls over
376
+ until it falls to a minimum and starts oscillating. At this point, inflation ends. With this
377
+ assumption, we can approximately write (3.2) during the slow roll as
378
+ H ≃
379
+
380
+
381
+ 3M2
382
+ P
383
+ V (φ).
384
+ (3.5)
385
+ A slowly-varying inflaton implies that H ∼ constant for this regime. Hence, the expansion
386
+ of spacetime is said to be quasi-exponential, as it resembles the pure de Sitter solution.
387
+ Usually, one also assumes a small rate of change for the (already slow) velocity of φ, such
388
+ that |¨φ| ≪ 3H| ˙φ|. This allows the slow-roll condition to be maintained long enough to solve
389
+ the flatness and horizon problems. With these assumptions, equation (3.1) becomes easily
390
+ solvable,
391
+ ˙φ ≃ −∂φV (φ)
392
+ 3H
393
+ ≃ −∂φV (φ)
394
+ MP
395
+
396
+ 24πV (φ).
397
+ (3.6)
398
+ – 6 –
399
+
400
+ For the particular potential V (φ) = 1
401
+ 2m2
402
+ φφ2, the solution to (3.6) is
403
+ φSR(t) = φ0 − MP
404
+
405
+ 12πmφt,
406
+ (3.7)
407
+ where t < 0 corresponds to the inflationary period. Note that t = 0 and φ0 are the ending
408
+ time of inflation and the value of the field at this instant, respectively. From here, it is
409
+ straightforward to obtain an explicit expression for the Ricci scalar, introducing the solution
410
+ into (3.3).
411
+ The scale factor is obtained by integrating the Hubble rate, and in the slow-roll
412
+ approximation it reads
413
+ aSR(t) ≃ a0e
414
+ −� φ(t)
415
+ φ0
416
+ dφ 8π
417
+ M2
418
+ P
419
+ V (φ)
420
+ ∂φV (φ) ,
421
+ (3.8)
422
+ which for the quadratic potential becomes
423
+ aSR(t) = a0e
424
+ − 2π
425
+ M2
426
+ P [φ2
427
+ SR(t)−φ2
428
+ 0].
429
+ (3.9)
430
+ Lastly, we need the relation between cosmological and conformal time in order to write
431
+ both a(η) and R(η). This relation can be obtained numerically from η = η0 +
432
+ � t
433
+ 0 dt/a(t).
434
+ These are the necessary ingredients for determining the frequency of the mode equation in
435
+ this region, under the slow-roll approximation.
436
+ This regime is valid as long as the slow-roll parameter, ϵH = − ˙H/H2, is much smaller
437
+ than one. When this no longer holds, at, say, t > t∗ with t∗ < 0, the equation of motion (3.1)
438
+ has to be solved numerically. The field begins to exit the inflationary regime and t = η = 0
439
+ marks both the end of inflation and the beginning of reheating. At this point, the scale
440
+ factor reaches the value a0, which merely sets the scale and hence we take it to be a0 = 1.
441
+ 3.2
442
+ Late reheating
443
+ For late times, well into the reheating epoch (η∗ ≪ η ≲ ηf), one can find an approximate
444
+ solution to (3.1) [24]. We do not use it for obtaining our results, but it will be important
445
+ for the discussion in subsection 4.2. In this approximation, the Hubble rate reads
446
+ H(t) ≃ 2
447
+ 3t
448
+
449
+ 1 − sin (2mφt − 2ϕ)
450
+ 2mφt
451
+ + O(m−2
452
+ φ t−2)
453
+ �−1
454
+ ,
455
+ (3.10)
456
+ whereas the inflaton field is given by the expression
457
+ φ = Φ0
458
+ t sin mφt
459
+
460
+ 1 − cos 2mφt
461
+ 2mφt
462
+ + O(m−2
463
+ φ t−2)
464
+
465
+ ,
466
+ (3.11)
467
+ with Φ0 ≡ MP /(
468
+
469
+ 3πmφ). This solution is valid as long as mφt ≫ 1, condition which is
470
+ fulfilled during reheating, since, as we will see, the scale factor behaves as that of a matter
471
+ dominated universe. Indeed, we can integrate H(t) in order to approximately obtain the
472
+ scale factor a(t),
473
+ a(t) = Ct2/3 �
474
+ 1 + O(m−2
475
+ φ t−2)
476
+
477
+ .
478
+ (3.12)
479
+ – 7 –
480
+
481
+ The constant C is determined by requiring that the value of the scale factor at late times
482
+ coincides with the one obtained from the numerical simulation in the previous region. One
483
+ can now integrate the scale factor in order to obtain t(η) = (Cη/3)3.
484
+ Now that we have a solution for the inflaton field and the scale factor valid for late
485
+ times, we can obtain the Ricci scalar from (3.3) by taking the solution for φ(t) to first order
486
+ in (mφt)−1. We end up with
487
+ R = 8
488
+ 3t2
489
+
490
+ �2 sin2 mφt −
491
+
492
+ cos mφt − sin mφt
493
+ mφt
494
+ �2
495
+ + O(m−3
496
+ φ t−3)
497
+
498
+ � .
499
+ (3.13)
500
+ With this, we are able to describe the frequency of the mode equation until very late
501
+ times, for which the approximations derived in this subsection behave even better. The
502
+ density of produced particles will be calculated at a sufficiently large time ηf, such that the
503
+ particle production is negligible from that point in time onwards. (3.13).
504
+ 4
505
+ Particle production
506
+ Once we have determined the behavior of the background geometry during inflation and
507
+ reheating, we can solve the mode equation in order to extract the Bogoliubov coefficients
508
+ after the evolution.
509
+ 4.1
510
+ Solution to the mode equation
511
+ In order to compute the gravitational production once reheating has ended, we need to
512
+ solve equation (2.6) from the onset of inflation at ti until a time tf well inside the adiabatic
513
+ regime at the end of reheating, with the frequency of the oscillator determined by the
514
+ background geometry described in the previous section. In a similar way as we did for the
515
+ background dynamics in section 3, the mode equation is solved in the regions
516
+ η =
517
+
518
+
519
+
520
+ ηi ≤ η ≤ η∗,
521
+ Slow-roll approximation,
522
+ η∗ ≤ η ≤ ηf,
523
+ Numerical solution.
524
+ (4.1)
525
+ Let us start with the slow-roll era. In a de Sitter geometry, the Hubble rate is exactly
526
+ constant, H0, the Ricci scalar is R = 12H0, and the scale factor reads a(η) = 1/(1 − H0η).
527
+ Therefore, the frequency (2.7) takes the form
528
+ ω2
529
+ k,dS = k2 +
530
+ µ2
531
+ (η − η0)2 ,
532
+ with
533
+ µ2 = m2/H2
534
+ 0 + 12(ξ − 1/6),
535
+ (4.2)
536
+ where H0 = H(ηi) = 1/η0 is the Hubble rate at the beginning of inflation. The solution to
537
+ equation (2.6) in this simplified scenario which assimptotically at η → −∞ behaves as a
538
+ positive frequency plane wave is given by
539
+ vk,dS(η) =
540
+
541
+ π|η − η0|/2 eiπνH(1)
542
+ ν
543
+ (k|η − η0|) ,
544
+ ν =
545
+
546
+ 1/4 − µ2.
547
+ (4.3)
548
+ This is the so-called Bunch-Davies solution [42]. Note that there is a critical value µ2 = 1/4
549
+ for which ν = 0, which separates the regimes of real and imaginary ν. In particular, for
550
+ – 8 –
551
+
552
+ m2/H2
553
+ 0 ≪ 1, we can approximately write µ2 ≈ 12 (ξ − 1/6), and therefore µ2 = 1/4 for
554
+ ξ = 3/16. At this point, there is no gravitational pair production in a de Sitter geometry
555
+ [41], and this fact will be important for the analysis in section 4.
556
+ However, our background geometry is not exactly de Sitter, but given by the inflaton
557
+ dynamics derived in section 3. Within the slow-roll approximation, valid from the start of
558
+ inflation at ηi until η∗, the mode equation to solve is
559
+ v′′
560
+ k(η) + ω2
561
+ k,SR(η)vk(η) = 0,
562
+ (4.4)
563
+ where the scale factor and the Ricci scalar in ωk,SR(η) correspond to the analysis in
564
+ subsection 3.1. Nevertheless, in the slow-roll regime, and for a certain range in k, m,
565
+ and ξ, we can approximate the solution satisfying Bunch-Davies initial conditions by (see
566
+ subsection 4.3 for details)
567
+ vk,SR(η) ≃
568
+
569
+ π|τk|/2eiπνH(1)
570
+ ν
571
+ (k|τk|) ,
572
+ τk = ωk,SR(η)
573
+ ωk,dS(η) (η − η∗,k) + η∗,k − η0,
574
+ (4.5)
575
+ where η∗,k marks the limit of validity of the approximation. From this point on, equation (2.6)
576
+ has to be solved numerically, independently of the background dynamics being numerical or
577
+ analytical, taking as initial condition solution (4.5) and its derivative at η∗,k. The frequency
578
+ one has to use in this case is that in (2.7).
579
+ 4.2
580
+ Choice of reference vacua
581
+ The solution vk(η) to the mode equation is associated with a particular choice of vacuum:
582
+ the one that behaves as a plane wave at η → −∞. The procedure in subsection 4.1 allows
583
+ us to evaluate vk(ηf). However, in order to obtain the Bogoliubov coefficient βk, we also
584
+ need uk(ηf), which is the solution to the mode equation associated with the vacuum at this
585
+ point in time. Then, from the Bogoliubov coefficients αk and βk, we will be able to extract
586
+ the number density of produced particles at ηf. This time is chosen such that particle
587
+ production becomes negligible for later times, condition that is fulfilled in the adiabatic
588
+ regime, i.e., when
589
+ �����
590
+ ω′
591
+ k(ηf)
592
+ ω2
593
+ k(ηf)
594
+ ����� ≪ 1.
595
+ (4.6)
596
+ The value of ηf highly depends on the parameters of the scalar field, and in particular, it
597
+ becomes larger as the mass m decreases. This is why, for certain regions in parameter space,
598
+ it may be convenient to use the late-time approximation for the background dynamics
599
+ described in 3.2, instead of solving numerically the equation of motion of the inflaton field.
600
+ It is worth mentioning that at the same time, a smaller coupling ξ to the curvature implies
601
+ that the Ricci scalar oscillations, which are the main source of non-adiabaticity, are less
602
+ important, therefore resulting in an earlier ηf at which (4.6) holds true.
603
+ As long as the background is not static, the meaning of vacuum will change in time.
604
+ Nevertheless, if the evolution is adiabatic enough, namely condition (4.6) is fulfilled, one
605
+ can use the so-called adiabatic prescription to define the instantaneous vacuum at a given
606
+ – 9 –
607
+
608
+ instant ηf,
609
+ uk(ηf) =
610
+ 1
611
+
612
+ ωk(ηf)
613
+ ,
614
+ u′
615
+ k(ηf) = −
616
+ 1
617
+ √ωk
618
+
619
+ iωk(ηf) + 1
620
+ 2
621
+ ω′
622
+ k(ηf)
623
+ ωk(ηf)
624
+
625
+ .
626
+ (4.7)
627
+ In fact, it is this feature that allows us to extrapolate the results obtained at ηf to the
628
+ present when considering fields that interact only gravitationally [22, 24].
629
+ When the mass of the field ϕ is above mφ, particle production is governed by the mass
630
+ term of the frequency (2.7), namely
631
+ ω2
632
+ k(η) ≃ k2 + a2(η)m2.
633
+ (4.8)
634
+ Since the scale factor at late times behaves as a(η) ∼ η2, condition (4.6) is fulfilled after few
635
+ oscillations of the inflaton. In other words, in this case we have that ηf is small enough that
636
+ we do not need to invoke the late-time solution for the background, since everything can be
637
+ calculated numerically in an efficient way. This is not the case for masses smaller than the
638
+ inflaton, for which production stabilizes after many, many oscillations. As a consequence, if
639
+ we want to use the adiabatic vacuum description, we need to go up to a very large ηf, and
640
+ therefore we need to use the analytic approximation for the inflaton dynamics described
641
+ in (3.11).
642
+ Alternatively, we can take a different definition for the vacuum that allows us to
643
+ calculate the number density of produced particles at ¯η ≪ ηf, even for m ≪ mφ. Because
644
+ the oscillating term in (2.7) becomes negligible at sufficiently large (numerically accessible) ¯η,
645
+ we can define the frequency
646
+ ω(avg) 2
647
+ k
648
+ (η) = k2 + a2(η)
649
+
650
+ m2 + (ξ − 1/6) ⟨R⟩ (η)
651
+
652
+ ,
653
+ (4.9)
654
+ where the Ricci scalar oscillations are averaged. We can take this frequency to calculate the
655
+ averaged vacuum
656
+ u(avg)
657
+ k
658
+ (¯η) =
659
+ 1
660
+
661
+ ω(avg)
662
+ k
663
+ (¯η)
664
+ ,
665
+ u(avg) ′
666
+ k
667
+ (¯η) = −
668
+ 1
669
+
670
+ ω(avg)
671
+ k
672
+ (η)
673
+
674
+ iω(avg)
675
+ k
676
+ (¯η) + 1
677
+ 2
678
+ ω(avg) ′
679
+ k
680
+ (¯η)
681
+ ω(avg)
682
+ k
683
+ (¯η)
684
+
685
+ .
686
+ (4.10)
687
+ This prescription of vacuum is such that the spectrum of produced particles obtained at ¯η
688
+ essentially concides with the one given by the adiabatic vacuum at the time where we reach
689
+ the adiabatic regime, ηf, namely
690
+ n(avg)
691
+ k
692
+ ���
693
+ η=¯η ≃ n(ad)
694
+ k
695
+ ���
696
+ η=ηf
697
+ .
698
+ (4.11)
699
+ The larger discrepancies will reside in low wavenumbers, for which k ∼ a2(η) ⟨R⟩, but this
700
+ region of momentum space is supressed in the total density of produced particles by a factor
701
+ k2 (for details see next subsection), since
702
+ n(m, ξ) =
703
+
704
+ d3k
705
+ (2π)3 ⟨0| ˆnk |0⟩ =
706
+
707
+ dk
708
+ 2π2 k2|βk|2.
709
+ (4.12)
710
+ – 10 –
711
+
712
+ As a consequence, no differences are appreciated at the chosen ¯η.
713
+ This procedure has a limitation: It is valid up to the smallest mass m for which
714
+ the dynamics presented here remain the same until ηf. If reheating ends before ηf for
715
+ a particular mass, the result provided by the averaged vacuum will not be the particles
716
+ produced after this period is over. Nevertheless, a simple estimation shows that masses
717
+ above the order of m ∼ 10−30 eV would reach adiabaticity early enough. This is many
718
+ orders of magnitude below the mass of fuzzy cold dark matter, and hence all the interesting
719
+ range of masses lie within the regime of validity of our method.
720
+ 4.3
721
+ Slow-roll approximation for the solution to the mode equation
722
+ During inflation, spacetime expands quasi-exponentially. More specifically, the number of
723
+ e-folds
724
+ a(t0)
725
+ a(ti) = eN
726
+ (4.13)
727
+ is required to be such that N ≈ 50 − 60 [9–11].
728
+ Because eq. (2.6) cannot be solved
729
+ analytically, even considering a slowly rolling inflaton field, one would need to use numerical
730
+ methods in order to find a solution. However, the large amount of e-folds to cover makes
731
+ it more interesting and feasible to rely on an analytic approximation, such as (4.5). We
732
+ dedicate this subsection to formally develop the approximation and to test its validity. For
733
+ notational convenience, in the calculations that follow we will write η − η0 as η, and drop
734
+ the mode index k. Let us start by defining the following small parameters for given values
735
+ of k, m and ξ which will be useful in the following.
736
+ • First, we have
737
+ ϵ(m, ξ) = max
738
+ η∈I1
739
+ �����1 − ωSR(η; m, ξ)
740
+ ωdS(η; m, ξ)
741
+ �����,
742
+ with
743
+ I1 = (−∞, η1),
744
+ (4.14)
745
+ where η1 is chosen such that ϵ ≪ 1. Then, we can define f(η; m, ξ) by
746
+ ωSR
747
+ ωdS
748
+ = 1 + ϵf.
749
+ (4.15)
750
+ By construction, |f(η)| ≤ 1 for η ∈ I1. Moreover, f′(η) ≥ 0.
751
+ • It will also be convenient to define
752
+ σ(m, ξ) = max
753
+ η∈I2
754
+ ���f′(η; m, ξ)η
755
+ ���,
756
+ with
757
+ I2 = (−∞, η2),
758
+ (4.16)
759
+ and choose η2 such that σ ≤ ϵ. Then, we introduce g(η; m, ξ) as
760
+ f′(η) = σg(η)
761
+ η
762
+ ,
763
+ (4.17)
764
+ for which again we have that |gk(η)| ≤ 1 for η ∈ I2.
765
+ – 11 –
766
+
767
+ • Similarly, we define
768
+ ρ(m, ξ) = max
769
+ η∈I3
770
+ �����
771
+ ω′
772
+ dS(η)
773
+ ωdS(η)η
774
+ �����,
775
+ with
776
+ I3 = (−∞, η3),
777
+ (4.18)
778
+ and choose η3 such that ρ ≤ ϵ.
779
+ Now, we take η∗ = min(η1, η2, η3) and I = (−∞, η∗), where I is the interval for which
780
+ the three parameters ϵ, σ, ρ are small. Note that η∗ < 0 since inflation ends at η = 0.
781
+ • We also need |η∗/η0| > 1.
782
+ The task is to solve equation (4.4), for which we define a new time coordinate ζ within
783
+ the interval I,
784
+ dζ = ωSR(η)
785
+ ωdS(η) dη = [1 + ϵf(η)] dη.
786
+ (4.19)
787
+ After integration until η ∈ I and taking the absolute value, this becomes
788
+ |(ζ − ζ∗) − (η − η∗)| = ϵ
789
+ �����
790
+ � η∗
791
+ η
792
+ f(t)dt
793
+ ����� = O(ϵ)(η − η∗).
794
+ (4.20)
795
+ Then, choosing ζ∗ = η∗, this can be expressed as
796
+ ζ = η [1 + O(ϵ)] .
797
+ (4.21)
798
+ We change time coordinates η → ζ in the mode equation, which takes the form
799
+ ¨w(ζ) + ω2
800
+ dS [η(ζ)] w(ζ) + ϵf′ [η(ζ)] ω2
801
+ dS [η(ζ)]
802
+ ω2
803
+ SR [η(ζ)] ˙w(ζ) = 0,
804
+ (4.22)
805
+ where w(ζ) = v [η(ζ)] and the dot denotes here derivative with respect to ζ.
806
+ Let us analyze the last term. With this aim, we introduce the dimensionless time
807
+ ¯ζ = ζ/η0. Then, in terms of ¯ζ, the equation above has the same form except for the last
808
+ term that acquires an extra factor. Using the definition of f′ and σ above, the coefficient of
809
+ this term is
810
+ ϵf′ ω2
811
+ dS
812
+ ω2
813
+ SR
814
+ η0 = ϵσg(1 + ϵf)η0
815
+ η = O(ϵ2)η0
816
+ η
817
+ (4.23)
818
+ If we choose η∗ such that |η∗/η0| > 1, as mentioned above, this coefficient is of order O(ϵ2).
819
+ Furthermore, the frequency in the second term of (4.22) is
820
+ ω2
821
+ dS(η(ζ)) = ω2
822
+ dS (ζ [1 + O(ϵ)])
823
+ (4.24)
824
+ = ω2
825
+ dS(ζ)
826
+
827
+ �1 + 2ω′
828
+ dS
829
+ ωdS
830
+ �����
831
+ ζ
832
+ · ζ O(ϵ)
833
+
834
+
835
+ (4.25)
836
+ = ω2
837
+ dS (ζ)
838
+
839
+ 1 + O(ϵ2)
840
+
841
+ ,
842
+ (4.26)
843
+ provided that |ζ ω′
844
+ dS(ζ)/ωdS(ζ)| ≤ ρ = O(ϵ). This is satisfied for ζ = η [1 + O(ϵ)] < η∗, i.e.,
845
+ for η < η∗. Thus, the equation for w can finally be written as
846
+ ¨w(ζ) + ω2
847
+ dS(ζ)w(ζ) = O(ϵ2
848
+ k).
849
+ (4.27)
850
+ – 12 –
851
+
852
+ We can perturbatively solve the differential equation by writting w = w0 + ϵw1 + O(ϵ2).
853
+ The solution to order ϵ0 is nothing but the de Sitter modes (4.3),
854
+ w0(ζ) =
855
+
856
+ π|ζ| eiπνH(1)
857
+ ν
858
+ (k|ζ|) ,
859
+ ν =
860
+
861
+ 1/4 − µ2,
862
+ (4.28)
863
+ and as a consequence, wk,0 behaves asymptotically (ζ → −∞) as a plane wave. On the
864
+ other hand, the coefficients of the solution to order ϵ1 will satisfy the same original equation
865
+ but with the initial conditions that w1(−∞) = 0 and therefore w1 is identically zero. We
866
+ can then write w as
867
+ w(ζ) = w0(ζ)
868
+
869
+ 1 + O(ϵ2)
870
+
871
+ =
872
+
873
+ π|ζ| eiπνH(1)
874
+ ν
875
+ (k|ζ|)
876
+
877
+ 1 + O(ϵ2)
878
+
879
+ .
880
+ (4.29)
881
+ In order to undo the coordinate transformation ζ → η while keeping the error up to
882
+ O(ϵ2), we need to consider the O(ϵ1) terms in ζ = η [1 + O(ϵ)]. For this, we note that
883
+ ����� (ζ − η∗) − ωSR(η)
884
+ ωdS(η) (η − η∗)
885
+ ����� =
886
+ ����� (η − η∗) + ϵ
887
+ � η
888
+ η∗
889
+ f(t)dt − [1 + ϵf(η)] (η − η∗)
890
+ �����
891
+ = ϵ
892
+ �����
893
+ � η
894
+ η∗
895
+ f(t)dt −
896
+ � η
897
+ η∗ f(η)dt
898
+ �����
899
+ ≤ ϵ
900
+ � η
901
+ η∗
902
+ |f(t) − f(η)|dt
903
+ = ϵ
904
+ � η
905
+ η∗
906
+ ����f′(η)(t − η) + 1
907
+ 2!f′′(η)(t − η)2 + · · ·
908
+ ���� dt
909
+ ≤ ϵ
910
+ �����
911
+ 1
912
+ 2f′(η)(η − η∗)2
913
+ ���� +
914
+ ����
915
+ 1
916
+ 3!f′′ (η − η∗)3
917
+ ���� + · · ·
918
+
919
+ .
920
+ (4.30)
921
+ This means that, as long as the terms in curly brackets are of order O(ϵ), we can write
922
+ ζ = η∗ +
923
+ �ωSR(η)
924
+ ωdS(η) + O(ϵ2)
925
+
926
+ (η − η∗) = η∗ + ωSR(η)
927
+ ωdS(η) (η − η∗)
928
+
929
+ 1 + O(ϵ2)
930
+
931
+ .
932
+ (4.31)
933
+ The first term is equal to
934
+ 1
935
+
936
+ ����g(η)η − η∗
937
+ η
938
+ ���� = O(ϵ).
939
+ (4.32)
940
+ The next terms are of the form f(n) (η − η∗)n+1 /n!, which numerically can be seen to be
941
+ smaller than the first one.
942
+ Therefore, undoing the translation of η to η − η0 that we did at the beginning of this
943
+ calculation, the solution to the mode equation can be written as (4.5) up to terms of order
944
+ O(ϵ2). With fixed ξ, and choosing η∗ independent of k, the error ϵk increases with increasing
945
+ m and decreasing k.
946
+ When we numerically solve the mode equation (2.6) from η∗, the error in the initial
947
+ condition coming from the slow-roll solution (4.5) carries through as
948
+ vk(η) = vk,0(η)
949
+
950
+ 1 + O(ϵ2
951
+ k)
952
+
953
+ ,
954
+ (4.33)
955
+ – 13 –
956
+
957
+ 0.01
958
+ 0.1
959
+ 1
960
+ 10
961
+ 100
962
+ 0.01
963
+ 0.1
964
+ 1
965
+ 10
966
+ 100
967
+ 0.01
968
+ 0.1
969
+ 1
970
+ 10
971
+ 100
972
+ 0.01
973
+ 0.1
974
+ 1
975
+ 10
976
+ 100
977
+ -2.5
978
+ -2.0
979
+ -1.5
980
+ -1.0
981
+ -0.5
982
+ 0
983
+ Figure 2. Maximum of the errors squared as function of the wave number k and the field mass m,
984
+ for ξ = 0.2 (left) and ξ = 0.8 (right). We take η∗ = −500mφ for all values of k, m and ξ.
985
+ 0.01
986
+ 0.1
987
+ 1
988
+ 10
989
+ 100
990
+ 0.01
991
+ 0.1
992
+ 1
993
+ 10
994
+ 100
995
+ 0.01
996
+ 0.1
997
+ 1
998
+ 10
999
+ 100
1000
+ 0.01
1001
+ 0.1
1002
+ 1
1003
+ 10
1004
+ 100
1005
+ -2.5
1006
+ -2.0
1007
+ -1.5
1008
+ -1.0
1009
+ -0.5
1010
+ 0
1011
+ Figure 3. Maximum of the errors squared times k2 as function of the wave number k and the field
1012
+ mass m, for ξ = 0.2 (left) and ξ = 0.8 (right). We take η∗ = −500mφ for all values of k, m and ξ.
1013
+ such that vk(η) → vk,SR(η) as η → η∗. Therefore, we have for the total density defined
1014
+ in (4.12) that
1015
+ n(m, ξ) =
1016
+ � ∞
1017
+ 0
1018
+ dk
1019
+ 2π2 k2|βk|2 = n0
1020
+
1021
+ 1 + 1
1022
+ n0
1023
+ � ∞
1024
+ 0
1025
+ dk
1026
+ 2π2 k2|βk,0|2O(ϵ2
1027
+ k)
1028
+
1029
+ ,
1030
+ (4.34)
1031
+ where n0 =
1032
+ � ∞
1033
+ 0
1034
+ dk
1035
+ 2π2 k2|βk,0|2. Although the error ϵk increases as k decreases, the factor k2
1036
+ compensates this increase for low k. Essentially, although ϵ2
1037
+ k increases for k < mφ, the
1038
+ quantity k2ϵ2
1039
+ k remains small, whereas |βk,0|2 is roughly of the same order. More explicitly,
1040
+ for the calculations in this paper, we take η∗ = −500mφ, for which the maximum of the
1041
+ – 14 –
1042
+
1043
+ -800
1044
+ -600
1045
+ -400
1046
+ 10-5
1047
+ 10-4
1048
+ 0.001
1049
+ 0.010
1050
+ -800
1051
+ -600
1052
+ -400
1053
+ 10-8
1054
+ 10-6
1055
+ 10-4
1056
+ 0.010
1057
+ Figure 4. Relative error in the absolute value (left panel) and the phase (right panel) of the
1058
+ numerical solution to the exact mode equation (2.6) compared to the analytical approximation (4.5),
1059
+ for wavenumbers ranging from k = 0.01mφ to k = 100mφ, and m = mφ, ξ = 0.5. Here, we take
1060
+ ηdS = −1000/mφ and η∗ = −500/mφ.
1061
+ three small parameters squared, ϵ2
1062
+ k, σ2
1063
+ k, ρ2
1064
+ k, as function of mass and wavenumber, for two
1065
+ different choices of coupling ξ, is shown in figure 2. For m ≤ mφ and k ≥ 0.1mφ, the
1066
+ error is of order O(0.01) or smaller for the various values of ξ considered, and thus the
1067
+ approximation is controlled in this regime. At the same time, we can observe in figure 3 that
1068
+ k2ϵ2
1069
+ k decreases as we move to the low-part of the momentum range. This guarantees that
1070
+ this region of the spectrum is robust against errors in the mode equation approximation we
1071
+ used.
1072
+ On the other hand, from figure 3 we observe that the quantity k2ϵ2
1073
+ k grows with k for
1074
+ k > mφ, since the decrease in ϵ2
1075
+ k (c.f. figure 2) can not compensate the power k2. However,
1076
+ gravitational production for high-momentum particles is very small, namely |βk|2 ≈ 0 for
1077
+ k ≫ mφ. As a consequence, n(m, ξ) ≈ n0 approximates well the total number density of
1078
+ particles produced, since the weight of wavenumbers k ≫ mφ is very small when compared
1079
+ to the rest of the spectrum.
1080
+ Furthermore, we can test the validity of (4.5) when compared to the numerical solution
1081
+ of (2.6) by putting ourselves in the following scenario: Let us assume that the geometry
1082
+ can be approximated by a de Sitter spacetime during the early stages of inflation, such
1083
+ that the solution (4.3) is valid for a region ηi ≤ η < ηdS. At ηdS, slow-roll starts to matter,
1084
+ and deviations from the de Sitter solution vk,dS(η) occur. In this scenario, we explore two
1085
+ different paths to continue continuing solving the equation:
1086
+ 1. We assume slow-roll inflation is a good description for the background dynamics in
1087
+ the region ηdS ≤ η < η∗, and take as solution the approximation (4.5).
1088
+ 2. We solve numerically the exact equation of motion for the inflaton, eq. (3.1), obtaining
1089
+ the frequency corresponding to (2.6), equation which we again solve numerically. This
1090
+ – 15 –
1091
+
1092
+ solution, vk(η), will be valid even for η ≥ η∗.
1093
+ In figure 4, we compare the analytical slow-roll solution with the exact numerical solution
1094
+ by plotting the relative difference between their absolute values,
1095
+ ∆rAbs [vk,SR(η)] ≡
1096
+ �����
1097
+ Abs [vk(η)] − Abs [vk,SR(η)]
1098
+ Abs [vk(η)]
1099
+ �����,
1100
+ (4.35)
1101
+ as well as their phase difference,
1102
+ ∆rArg [vk,SR(η)] ≡
1103
+ �����
1104
+ Arg [vk(η)] − Arg [vk,SR(η)]
1105
+ π
1106
+ �����.
1107
+ (4.36)
1108
+ We do so for different wavenumbers, ranging from k = 0.01mφ to k = 100mφ, denoted by
1109
+ the different shapes in figure 4. We have taken ηdS = −1000/mφ as start of the slow-roll
1110
+ and η∗ = −500/mφ as the time when the slow-roll approximation breaks down. For k = mφ,
1111
+ the relative error is very small, of order ∼ 10−4 at η∗. For wavenumbers larger than the
1112
+ mass of the inflaton, k > mφ, the approximation is still good, although it worsens. On
1113
+ the other hand, the error for k = 0.01mφ starts becoming significant, and gets worse for
1114
+ k < 0.01mφ. However, the corresponding region of the spectrum of produced particles is
1115
+ highly suppressed, as discussed above, and therefore the contribution to the total density of
1116
+ particles is negligible. Similarly, particle production is very small for wavenumbers larger
1117
+ than k > 100mφ, and therefore the range of interest in k is under control. Hence, we can
1118
+ assume the approximation is valid in the region ηdS ≤ η < η∗.
1119
+ Note that if this solution behaves well in this region, it has to become an even better
1120
+ approximation before ηdS, since the further towards the past we go, the more de Sitter-like
1121
+ is the geometry. Thus, eq. (4.5) can be taken as well as a solution to the mode equation in
1122
+ the region ηi ≤ η < ηdS. Under this approximations, eq. (2.6) can be solved analytically
1123
+ from the start of inflation, ηi, until η∗, for which the slow-roll approximation starts to fail.
1124
+ From there, the mode equation is solved numerically.
1125
+ 4.4
1126
+ Adiabaticity and oscillations
1127
+ In order to illustrate the importance of the choice of vacuum, we studied the evolution
1128
+ of spectra when calculated using prescription (4.7) before the dynamics has entered the
1129
+ adiabatic regime. As an example, we plotted in figure 5 the spectra of particles with mass
1130
+ m = 10−3mφ obtained at two different times. The dots correspond to η = 40/mφ, whereas
1131
+ the solid lines denote η = ηf = 100/mφ. For this particular choice of mass, the latter time
1132
+ lies within the adiabatic regime, and this is the reason why the non-adiabatic dots relax to
1133
+ their final value as we approach this limit. As expected, the effect is less noticeable the
1134
+ lower the coupling to the geometry is, as it is the main source of non-adiabaticity in the
1135
+ frequency.
1136
+ At the same time, we also characterized the importance of the first oscillations of the
1137
+ curvature scalar in the final spectrum of produced particles, obtained with the averaged
1138
+ vacuum defined in eq. (4.10). As can be seen in figure 6, even after several oscillations of
1139
+ – 16 –
1140
+
1141
+ 0.01
1142
+ 0.1
1143
+ 1
1144
+ 10
1145
+ 100
1146
+ 0
1147
+ 0.2
1148
+ 0.4
1149
+ 0.6
1150
+ 0.8
1151
+ Figure 5. Spectra of produced particles of mass m = 10−3mφ and different values of ξ, obtained with
1152
+ the adiabatic prescription of the vacuum. The dots correspond to η = 40/mφ, before the adiabatic
1153
+ regime has been reached for this value of the mass. The solid lines correspond to η = ηf = 100/mφ,
1154
+ when most of the particles have been produced.
1155
+ R(η) (for example, at η = 2/mφ), the production changes greatly if one compares with the
1156
+ obtained spectra at ¯η. Even when looking only at the total number of produced particles in
1157
+ eq. (4.12), differences are still significant. We observe that the spectrum does not stabilize
1158
+ until η ≃ 5/mφ, which for our model means after hundreds of oscillations of the curvature
1159
+ scalar R(η). With this, we want to stress that obtaning the particle production after one or
1160
+ two oscillations does not account for the whole process.
1161
+ 5
1162
+ Spectra of particles and total density
1163
+ Let us finally give the results for the spectra of produced particles as function of the
1164
+ parameters of the field, the mass m, and the coupling to the curvature ξ.
1165
+ We explore first the regime of masses below the inflaton mass. Represented by the solid
1166
+ line in figure 7, we have masses m ≤ 10−4mφ. For these values, the mass contribution to
1167
+ the frequency becomes negligible, and the dynamics is entirely given by the coupling to the
1168
+ geometry. The spectra lie on top of each other, with very small differences in the low values
1169
+ of k ∼ a(η)m. We observe, however, slight differences in the shape of the spectrum when
1170
+ increasing the mass, especially for small wavenumbers, as the rest of the curves in figure
1171
+ 7 show. We can choose a mass in this regime, m = 10−1mφ, and explore the influence of
1172
+ the coupling ξ in the final result. This is shown in figure 8, where one observes increasing
1173
+ production of particles with larger values of the coupling. Lastly, let us come to the mass
1174
+ of the inflaton, whose corresponding spectra are shown in figure 9. In such a case, it is
1175
+ – 17 –
1176
+
1177
+ 0.01
1178
+ 0.1
1179
+ 1
1180
+ 10
1181
+ 100
1182
+ 0
1183
+ 2
1184
+ 4
1185
+ 6
1186
+ Figure 6. Spectra for m = 10−4mφ and ξ = 1, obtained with the averaged vacuum prescription,
1187
+ for different instants of time. The spectrum stabilises after very many oscillations of the curvature
1188
+ scalar.
1189
+ 0.001
1190
+ 0.01
1191
+ 0.1
1192
+ 1
1193
+ 10
1194
+ 100
1195
+ 0
1196
+ 0.1
1197
+ 0.2
1198
+ Figure 7.
1199
+ Spectrum of particles for masses below the mass of the inflaton, with ξ = 0.26.
1200
+ For very small masses (m ≤ 10−4mφ), production is dominated by curvature.
1201
+ In the region
1202
+ 10−3 ≤ m ≤ 10−1mφ, differences in production due to the mass can be noticed, especially for low
1203
+ values of k/mφ ≃ 0.1 − 1.
1204
+ harder to characterize the behavior with ξ. It is clear, nevertheless, that particle production
1205
+ decreases as the mass of particles becomes larger.
1206
+ – 18 –
1207
+
1208
+ 0.01
1209
+ 0.1
1210
+ 1
1211
+ 10
1212
+ 100
1213
+ 0
1214
+ 0.2
1215
+ 0.4
1216
+ 0.6
1217
+ Figure 8. Spectra for m = 10−1mφ and several values of the coupling ξ. Particle production
1218
+ increases when the curvature term becomes more important, and the maximum of the spectrum is
1219
+ shifted towards higher values of k.
1220
+ 0.01
1221
+ 0.1
1222
+ 1
1223
+ 10
1224
+ 100
1225
+ 0
1226
+ 0.01
1227
+ 0.02
1228
+ Figure 9. Spectra of particles with the mass of the inflaton, for different values of the coupling. In
1229
+ this particular case, increasing the coupling does not translate directly into an increase of particle
1230
+ production. This can be more clearly seen by examining the total density of particles.
1231
+ It is easier to characterize particle production in this regime using the total number
1232
+ density of particles (4.12), which we show in figure 10 as function of the two parameters of
1233
+ the field, m and ξ. Here, one clearly sees that the prediction is independent of the value of
1234
+ – 19 –
1235
+
1236
+ Figure 10. Logarithm of the total density of produced particles for different values of m and ξ. In
1237
+ order to give the mass and density in units of GeV, we took mφ = 1.2 × 1013 GeV for the mass of
1238
+ the inflaton. We explore a wide range of masses in the left panel while we focus on a smaller region
1239
+ close to the mass of the inflaton on the right panel in order to appreciate the dependence of the
1240
+ total density with the coupling ξ.
1241
+ the mass as long as it is below m ∼ 10−2mφ, in particular for a sufficiently high value of
1242
+ the coupling, ξ ≳ 0.2. In this case, the mass is completely negligible when compared to
1243
+ the dynamics of the curvature scalar. Only when the coupling to the curvature is close
1244
+ to ξ ∼ 1/6, the production of particles is still sensible to m, up to m ∼ 10−7mφ. For this
1245
+ value, even in the conformal case, the relevant wavenumbers, k ∼ a(η)m, are too suppressed
1246
+ to make a difference. In all these regime of low masses, the number of produced particles
1247
+ increases with larger coupling ξ. Closer to the mass of the inflaton, 10−2mφ < m < mφ,
1248
+ the fact that a heavier particle translates into a lower production becomes apparent. Lastly,
1249
+ in the region around the mass of the inflaton, m ∼ mφ, the behavior with the coupling is
1250
+ different, and production may even decrease when raising the value of ξ. In fact, there
1251
+ appears to exist a critical value ξc ≃ 0.22 which separates two qualitatively different regimes.
1252
+ As we commented previously, this value is related to the parameter µ2 = 1/4 of the Hankel
1253
+ functions, which were a good approximation of the mode functions of our problem. For
1254
+ m < mφ, the number density drops very rapidly if ξ < ξc. For m ∼ mφ, ξc is the value below
1255
+ which production decreases with ξ, and above which it increases. This is also illustrated
1256
+ in figure 9, where production for ξ = 1/6 is larger than for ξ = 0.26, and from there it
1257
+ increases again with the coupling. Moreover, we observe the expected strong suppression in
1258
+ the number density of produced particles for masses above the mass of the inflaton. We
1259
+ can confirm this behaviour by calculating the spectra for even higher masses, provided we
1260
+ select a negative enough η∗ — and therefore leading to a very heavy computation — in
1261
+ this case, as explained in 4.3. Note that we took mφ = 1.2 × 1013 GeV for the mass of the
1262
+ inflaton, and as a consequence, the density in figure 10 is given in units of GeV3.
1263
+ – 20 –
1264
+
1265
+ 10-3
1266
+ 101
1267
+ 105
1268
+ 109
1269
+ 1013
1270
+ 1/6
1271
+ 0.2
1272
+ 0.4
1273
+ 0.6
1274
+ 0.8
1275
+ 1.0
1276
+ 10-3
1277
+ 101
1278
+ 105
1279
+ 109
1280
+ 1013
1281
+ 1/6
1282
+ 0.2
1283
+ 0.4
1284
+ 0.6
1285
+ 0.8
1286
+ 1.0
1287
+ -7.5
1288
+ -3.0
1289
+ 1.5
1290
+ 6.0
1291
+ 10.5
1292
+ 15.0
1293
+ Figure 11. Logarithm of the predicted abundance of dark matter today for different values of m
1294
+ and ξ, and a reheating temperature of Treh = 1015 GeV (left) and Treh = 1013 GeV (right). In order
1295
+ to give the mass and density in units of GeV, we took mφ = 1.2 × 1013 GeV for the mass of the
1296
+ inflaton.
1297
+ Finally, one can consider these gravitationally produced scalar particles as dark matter.
1298
+ In this case, it is interesting to compare the resulting abundance with observations. Assuming
1299
+ that the scalar field is non-interacting, the evolution of the particle density showed in figure 10
1300
+ is only due to the expansion of the universe. Then, the predicted abundance can be written
1301
+ in terms of the background radiation temperature [24] as
1302
+ Ω(m, ξ) =
1303
+
1304
+ 3M2
1305
+ P H2
1306
+ today
1307
+ gtoday
1308
+ ∗S
1309
+ grh
1310
+ ∗S
1311
+ �Ttoday
1312
+ Trh
1313
+ �3
1314
+ m n(m, ξ),
1315
+ (5.1)
1316
+ where Ttoday and Trh are the radiation temperature today and at the end of reheating,
1317
+ respectively, and gtoday
1318
+ ∗S
1319
+ and grh
1320
+ ∗S are the corresponding relativistic degrees of freedom. This is
1321
+ represented in figure 11 for two different reheating temperatures, together with the observed
1322
+ abundance given by the dashed line. We observe that the proposed mechanism can explain
1323
+ observations if the dark matter candidate is light enough (m ≲ 108 GeV), independently of
1324
+ the value of the coupling ξ for the range that we considered. In addition, heavier particles
1325
+ can also reach the observed dark matter abundance since their production is strongly
1326
+ suppressed above the inflaton mass.
1327
+ 6
1328
+ Conclusions
1329
+ Gravitational particle production is a very interesting process due to its universality. It
1330
+ only requires the studied field to interact with gravity. Even without a direct coupling to
1331
+ the inflaton, as it is the case of spectator fields such as the one we have studied, it can
1332
+ – 21 –
1333
+
1334
+ give rise to a significant abundance for the species considered after the heavy expansion of
1335
+ spacetime during the early stages of the universe. However, predictions need for a definition
1336
+ of vacuum after reheating, since the non-static geometry leads to certain ambiguity in the
1337
+ meaning of particle.
1338
+ In this manuscript, we studied the production of massive, scalar particles whose
1339
+ dynamics is described by a non-minimally coupled to gravity action. However, the discussion
1340
+ on the validity of the definition of vacuum is pertinent when considering any other field
1341
+ as well. First, we have provided a method for solving in a complete form the background
1342
+ dynamics, governed by a single scalar inflaton field. For this, we did not have to assume a
1343
+ de Sitter geometry of spacetime, which would significantly change the amount of particles
1344
+ produced. Although we make a choice of potential, this procedure can be extended to other
1345
+ cases as well. We provided an analytic approximation to the solution of the slow-roll mode
1346
+ equation where the error is well under control in our parameter region of interest. More
1347
+ importantly, we showed that, for masses smaller than the inflaton mass, the commonly
1348
+ used adiabatic prescription for the vacuum determines correctly the production of particles
1349
+ after reheating only when calculated at very late times. Moreover, we define an alternative
1350
+ vacuum choice that allows one to obtain the right abundance when calculating particle
1351
+ production at a much earlier time. This allowed us to explore the contribution of the
1352
+ first oscillations to the total number of produced particles, revealing that the spectra only
1353
+ stabilizes after hundreds of periods. Lastly, after all these considerations have been taken
1354
+ into account, we analyzed both the spectra and the total density of particles for different
1355
+ values of the mass of the field and its coupling to the curvature scalar. When regarded as
1356
+ dark matter, the production of the spectator field can be directly related to the abundance
1357
+ that would be observed today if one assumes no couplings to any other fields also after
1358
+ reheating. In particular, we find agreement with the observed dark matter abundance for a
1359
+ certain range of masses and couplings of the spectator field. Moreover, this analysis can be
1360
+ used to constrain the values of the field parameters by demanding that the predicted dark
1361
+ matter abundance does not exceed observations.
1362
+ Acknowledgements
1363
+ This work was partially supported by the MICINN (Ministerio de Ciencia e Innovación,
1364
+ Spain) projects PID2019-107394GB-I00/AEI/10.13039/501100011033 (AEI/FEDER, UE)
1365
+ and PID2020-118159GBC44. Additionally, Á.P.-L. is supported by the MIU (Ministerio
1366
+ de Universidades, Spain) fellowship FPU20/0560. Finally, JARC acknowledges support by
1367
+ Institut Pascal at Université Paris-Saclay during the Paris-Saclay Astroparticle Symposium
1368
+ 2022, with the support of the P2IO Laboratory of Excellence (program “Investissements
1369
+ d’avenir” ANR-11-IDEX-0003-01 Paris-Saclay and ANR-10-LABX-0038), the P2I axis of
1370
+ the Graduate School of Physics of Université Paris-Saclay, as well as IJCLab, CEA, APPEC,
1371
+ IAS, OSUPS, and the IN2P3 master projet UCMN.
1372
+ – 22 –
1373
+
1374
+ A
1375
+ Parameters
1376
+ In the majority of the analyses, we have left all the quantities expressed in terms of the mass
1377
+ of the inflaton, mφ, which sets up the scale of the problem. When it has been necessary to
1378
+ assume a numerical value for such a mass, we have taken mφ = 1.2 × 1013 GeV. Accordingly,
1379
+ the Planck mass MP has the value MP = 1.02 × 106mφ.
1380
+ The initial value for the inflaton field, under the slow-roll assumption, is taken to
1381
+ be φSR(ti) = φi = 3MP . When inflation ends, at t = 0, the field value is φSR(t = 0) =
1382
+ φ0 = 0.5MP . The slow-roll approximation can then be used to extract ti ≃ −15.35/mφ as
1383
+ the time when inflation starts. Equation of motion (3.1) can also be solved numerically
1384
+ taking as initial conditions the same as for slow-roll, φ(ti) = φi, and the derivative of the
1385
+ approximate solution at this point, φ′(ti) = φ′
1386
+ SR(ti). Both solutions will be very close up to
1387
+ t∗, where the slow-roll approximation starts to break down. Then, φ(t = 0) slightly deviates
1388
+ from φ0. The scale factor is chosen such that a(t = 0) = a0 = 1. Slow-roll is a assumed to
1389
+ be a good approximation until η∗ = −500/mφ.
1390
+ Unless the contrary is expressly stated, particle production is calculated using the
1391
+ averaged vacuum prescription at ¯η = 16.33/mφ. The range of masses explored is 10−7mφ ≤
1392
+ m ≤ 100.5mφ, although for obtaining figure 11 it is assumed that production is the same
1393
+ for m ≤ 10−7mφ. On the other hand, the coupling ξ is such that 1/6 ≤ ξ ≤ 1.
1394
+ References
1395
+ [1] S.W. Hawking, Particle creation by black holes, Comm. Math. Phys. 43 (1975) 199.
1396
+ [2] W.G. Unruh, Experimental Black-Hole Evaporation?, Phys. Rev. Lett. 46 (1981) 1351.
1397
+ [3] G.W. Gibbons and S.W. Hawking, Cosmological event horizons, thermodynamics, and particle
1398
+ creation, Phys. Rev. D 15 (1977) 2738.
1399
+ [4] L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin, Quantum source of entropy for black holes,
1400
+ Phys. Rev. D 34 (1986) 373.
1401
+ [5] D.N. Page, Information in black hole radiation, Phys. Rev. Lett. 71 (1993) 3743.
1402
+ [6] M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666.
1403
+ [7] L. Parker, Quantized Fields and Particle Creation in Expanding Universes. I, Phys. Rev. 183
1404
+ (1969) 1057.
1405
+ [8] L.H. Ford, Gravitational particle creation and inflation, Phys. Rev. D 35 (1987) 2955.
1406
+ [9] A. Starobinsky, A new type of isotropic cosmological models without singularity, Physics
1407
+ Letters B 91 (1980) 99.
1408
+ [10] A.H. Guth, Inflationary universe: A possible solution to the horizon and flatness problems,
1409
+ Phys. Rev. D 23 (1981) 347.
1410
+ [11] A. Linde, A new inflationary universe scenario: A possible solution of the horizon, flatness,
1411
+ homogeneity, isotropy and primordial monopole problems, Physics Letters B 108 (1982) 389.
1412
+ [12] E.W. Kolb and M.S. Turner, The Early Universe, vol. 69 (1990), 10.1201/9780429492860.
1413
+ [13] L. Kofman, A.D. Linde and A.A. Starobinsky, Reheating after inflation, Phys. Rev. Lett. 73
1414
+ (1994) 3195 [hep-th/9405187].
1415
+ – 23 –
1416
+
1417
+ [14] L. Kofman, A. Linde and A.A. Starobinsky, Towards the theory of reheating after inflation,
1418
+ Phys. Rev. D 56 (1997) 3258.
1419
+ [15] R. Allahverdi, R. Brandenberger, F.-Y. Cyr-Racine and A. Mazumdar, Reheating in
1420
+ inflationary cosmology: Theory and applications, Annual Review of Nuclear and Particle
1421
+ Science 60 (2010) 27.
1422
+ [16] D. Baumann and L. McAllister, Inflation and String Theory, Cambridge Monographs on
1423
+ Mathematical Physics, Cambridge University Press (5, 2015), 10.1017/CBO9781316105733,
1424
+ [1404.2601].
1425
+ [17] D.J.H. Chung, E.W. Kolb and A. Riotto, Superheavy dark matter, Phys. Rev. D 59 (1998)
1426
+ 023501.
1427
+ [18] D.J.H. Chung, P. Crotty, E.W. Kolb and A. Riotto, Gravitational production of superheavy
1428
+ dark matter, Phys. Rev. D 64 (2001) 043503.
1429
+ [19] D.J.H. Chung, E.W. Kolb and A.J. Long, Gravitational production of super-hubble-mass
1430
+ particles: an analytic approach, Journal of High Energy Physics 2019 (2019) .
1431
+ [20] S. Hashiba and J. Yokoyama, Gravitational particle creation for dark matter and reheating,
1432
+ Phys. Rev. D 99 (2019) 043008.
1433
+ [21] Y. Ema, R. Jinno, K. Mukaida and K. Nakayama, Gravitational particle production in
1434
+ oscillating backgrounds and its cosmological implications, Phys. Rev. D 94 (2016) 063517.
1435
+ [22] Y. Ema, K. Nakayama and Y. Tang, Production of purely gravitational dark matter, Journal of
1436
+ High Energy Physics 2018 (2018) .
1437
+ [23] T. Markkanen and S. Nurmi, Dark matter from gravitational particle production at reheating,
1438
+ Journal of Cosmology and Astroparticle Physics 2017 (2017) 008.
1439
+ [24] J.A. Cembranos, L.J. Garay and J.M.S. Velázquez, Gravitational production of scalar dark
1440
+ matter, Journal of High Energy Physics 2020 (2020) .
1441
+ [25] Y. Ema, K. Nakayama and Y. Tang, Production of purely gravitational dark matter: the case
1442
+ of fermion and vector boson, Journal of High Energy Physics 2019 (2019) .
1443
+ [26] M. Bastero-Gil, J. Santiago, L. Ubaldi and R. Vega-Morales, Vector dark matter production at
1444
+ the end of inflation, Journal of Cosmology and Astroparticle Physics 2019 (2019) 015.
1445
+ [27] T. Markkanen, A. Rajantie and T. Tenkanen, Spectator dark matter, Phys. Rev. D 98 (2018)
1446
+ 123532.
1447
+ [28] N. Herring, D. Boyanovsky and A.R. Zentner, Nonadiabatic cosmological production of
1448
+ ultralight dark matter, Phys. Rev. D 101 (2020) 083516.
1449
+ [29] T. Tenkanen, Dark matter from scalar field fluctuations, Physical Review Letters 123 (2019) .
1450
+ [30] Planck collaboration, Planck 2018 results. X. Constraints on inflation, Astron. Astrophys.
1451
+ 641 (2020) A10 [1807.06211].
1452
+ [31] T. Markkanen, Vacuum stability in the early universe and the backreaction of classical gravity,
1453
+ Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
1454
+ Sciences 376 (2018) 20170115.
1455
+ [32] M. Fairbairn, K. Kainulainen, T. Markkanen and S. Nurmi, Despicable dark relics: generated
1456
+ by gravity with unconstrained masses, Journal of Cosmology and Astroparticle Physics 2019
1457
+ (2019) 005.
1458
+ – 24 –
1459
+
1460
+ [33] S.-J. Wang, M. Yamada and A. Vilenkin, Constraints on non-minimal coupling from quantum
1461
+ cosmology, Journal of Cosmology and Astroparticle Physics 2019 (2019) 025.
1462
+ [34] A. Friedman, Über die Krümmung des Raumes, Z. Phys. 10 (1922) 377.
1463
+ [35] A. Friedman, Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des
1464
+ Raumes, Z. Phys. 21 (1924) 326.
1465
+ [36] A.G. Lemaître, A Homogeneous Universe of Constant Mass and Increasing Radius accounting
1466
+ for the Radial Velocity of Extra-galactic Nebulæ, Mon. Not. R. Astron. Soc. 91 (1931) 483.
1467
+ [37] H.P. Robertson, Kinematics and World-Structure, Astrophys. J. 82 (1935) 284.
1468
+ [38] H.P. Robertson, Kinematics and World-Structure II, Astrophys. J. 83 (1936) 187.
1469
+ [39] H.P. Robertson, Kinematics and World-Structure III, Astrophys. J. 83 (1936) 257.
1470
+ [40] A.G. Walker, On Milne’s Theory of World-Structure*, Proc. London Math. Soc. s2-42 (1937)
1471
+ 90.
1472
+ [41] D.E. Borrajo Gutiérrez, J.A.R. Cembranos, L.J. Garay and J.M. Sánchez Velázquez, Derivative
1473
+ couplings in gravitational production in the early universe, JHEP 09 (2020) 069 [2006.08546].
1474
+ [42] N.D. Birrell and P.C.W. Davies, Quantum Fields in Curved Space, Cambridge Monographs on
1475
+ Mathematical Physics, Cambridge University Press, Cambridge (1982),
1476
+ 10.1017/CBO9780511622632.
1477
+ [43] V. Mukhanov and S. Winitzki, Introduction to Quantum Effects in Gravity, Cambridge
1478
+ University Press, Cambridge (2007), 10.1017/CBO9780511809149.
1479
+ [44] E.A. Calzetta and B.-L.B. Hu, Nonequilibrium Quantum Field Theory, Cambridge Monographs
1480
+ on Mathematical Physics, Cambridge University Press (2008), 10.1017/CBO9780511535123.
1481
+ [45] L.E. Parker and D. Toms, Quantum Field Theory in Curved Spacetime: Quantized Field and
1482
+ Gravity, Cambridge Monographs on Mathematical Physics, Cambridge University Press (8,
1483
+ 2009), 10.1017/CBO9780511813924.
1484
+ [46] V. Mukhanov, Physical Foundations of Cosmology, Cambridge University Press, Oxford
1485
+ (2005), 10.1017/CBO9780511790553.
1486
+ [47] S. Weinberg, Cosmology, Oxford University Press, Oxford (2008).
1487
+ – 25 –
1488
+
GdE1T4oBgHgl3EQfrAWz/content/tmp_files/2301.03350v1.pdf.txt ADDED
@@ -0,0 +1,785 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ mRpostman: An IMAP Client for R
2
+ Allan V. C. Quadros
3
+ Department of Statistics
4
+ Kansas State University
5
+ Manhattan, KS 66506, United States
6
+ Abstract
7
+ Internet Message Access Protocol (IMAP) clients are a common feature in
8
+ several programming languages. Despite having some packages for electronic
9
+ messages retrieval, the R language, until recently, lacked a broader solution,
10
+ capable of coping with different IMAP servers and providing a wide spec-
11
+ trum of features. mRpostman covers most of the IMAP 4rev1 functionalities
12
+ by implementing tools for message searching, selective fetching of message
13
+ attributes, mailbox management, attachment extraction, and several other
14
+ IMAP features that can be executed in virtually any mail provider. By doing
15
+ so, it enables users to perform data analysis based on e-mail content. The
16
+ goal of this article is to showcase the toolkit provided with the mRpostman
17
+ package, to describe its key features and provide some application examples.
18
+ Keywords:
19
+ IMAP, e-mail, R
20
+ 1. Motivation and significance
21
+ The acknowledgement of the R programming language[1] as having re-
22
+ markable statistical capabilities is much due to the excellence brought by
23
+ its statistical and data analysis packages. This reputation also stands on
24
+ the capabilities of a myriad of utility packages, which extends the use of the
25
+ language by facilitating the integration of the steps involved in data collec-
26
+ tion, analysis, and communication. With that in mind, and considering the
27
+ amount of data transmitted daily through e-mail, mRpostman was conceived
28
+ to fill the absence of an Internet Message Access Protocol (IMAP) client in
29
+ the R statistical environment; therefore, providing an appropriate toolkit for
30
+ electronic messages retrieval, and paving the way for e-mail data analysis in
31
+ R.
32
+ Email address: [email protected] (Allan V. C. Quadros)
33
+ Preprint submitted to SoftwareX
34
+ January 10, 2023
35
+ arXiv:2301.03350v1 [cs.NI] 11 Dec 2022
36
+
37
+ The Comprehensive R Archive Network (CRAN) has at least seven pack-
38
+ ages for sending emails (Table 1). Whereas some of these packages aim to
39
+ provide a plain Simple Mail Transport Protocol (SMTP) client for R (e.g.
40
+ sendmailR and emayili), others focus on more sophisticated implementations,
41
+ using Application Program Interfaces (API), or providing seamless integra-
42
+ tion between SMTP and other R features such as rmarkdown[2]. However,
43
+ despite the surplus of available clients in R, the SMTP protocol is not suit-
44
+ able for receiving e-mails. It only allows clients to communicate with servers
45
+ to deliver their messages.
46
+ For the purpose of message retrieval, there are the Post Office Protocol 3
47
+ (POP3) and the Internet Message Access Protocol (IMAP). In comparison
48
+ with IMAP, POP3 is a very limited protocol, working as a simple interface
49
+ for clients to download e-mails from servers. IMAP, on the other hand, is
50
+ a much more complex protocol, and can be considered as the evolution of
51
+ POP3, with a very different and broader set of functionalities. In contrast to
52
+ POP3, all the messages are kept on the IMAP server and not locally. This
53
+ means that a user can access the same mail account using parallel connections
54
+ from different clients[3]. Besides the mail folders structure and management,
55
+ the capacity of issuing sophisticated search queries also contribute to the
56
+ level of complexity of the IMAP protocol.
57
+ Amid CRAN packages for e-mail communication, only gmailr and edeR
58
+ have IMAP capabilities (Table 1). However, those capabilities are restricted
59
+ to Gmail accounts and few IMAP functionalities. Although gmailr supports
60
+ both protocols, the package is more SMTP-focused, which explains its low
61
+ number of IMAP features. Therefore, R was clearly lacking a broader IMAP
62
+ client solution. It was in that mainstay that mRpostman was conceived.
63
+ 2
64
+
65
+ Features
66
+ protocol
67
+ mail
68
+ providers
69
+ search
70
+ queries
71
+ message
72
+ fetch
73
+ attachment
74
+ extrac-
75
+ tion
76
+ mailbox
77
+ manage-
78
+ ment
79
+ active
80
+ develop-
81
+ ment
82
+ sendmailR[4]
83
+ SMTP
84
+ -
85
+ -
86
+ -
87
+ -
88
+ -
89
+ -
90
+ mailR[5]
91
+ SMTP
92
+ -
93
+ -
94
+ -
95
+ -
96
+ -
97
+ -
98
+ mail[6]
99
+ SMTP
100
+ -
101
+ -
102
+ -
103
+ -
104
+ -
105
+ -
106
+ blatr[7]
107
+ SMTP
108
+ -
109
+ -
110
+ -
111
+ -
112
+ -
113
+ -
114
+ gmailr[8]
115
+ SMTP/IMAP Gmail
116
+ no
117
+ limited
118
+ limited
119
+ no
120
+ yes
121
+ blastula[9]
122
+ SMTP
123
+ -
124
+ -
125
+ -
126
+ -
127
+ -
128
+ -
129
+ emayili[10]
130
+ SMTP
131
+ -
132
+ -
133
+ -
134
+ -
135
+ -
136
+ -
137
+ edeR[11]
138
+ IMAP
139
+ Gmail
140
+ no
141
+ limited
142
+ no
143
+ no
144
+ no
145
+ mRpostman
146
+ IMAP
147
+ all
148
+ yes
149
+ yes
150
+ yes
151
+ yes
152
+ yes
153
+ Table 1: Comparison of the current available CRAN packages for e-mail communica-
154
+ tion. The following attributes are evaluated: protocol - the supported protocol (SMTP
155
+ or IMAP); mail providers - if the IMAP protocol is supported, which mail providers are
156
+ supported by the package; Features - which type of IMAP features are available in the
157
+ package; active development - if the package is currently under active development. If the
158
+ package does not provide IMAP support, the remaining fields do not apply.
159
+ In this article, we present a brief view of the main functionalities of the
160
+ package and its applications.
161
+ 2. Software description
162
+ mRpostman is conceived to be an easy-to-use session-based IMAP client
163
+ for R. The package implements intuitive methods for executing the major-
164
+ ity of the IMAP commands described in the Request for Comments 35011,
165
+ such as mailbox management, and selectively search and fetch of message at-
166
+ tributes. The package also implements complementary functions for decoding
167
+ quoted-printable and base 64 content, following the MIME specification2.
168
+ All these methods and functions play an important role in facilitating e-
169
+ mail data analysis. We shall not overlook the amount of data analyses daily
170
+ performed on e-mail content. The package has proved to be very useful as an
171
+ 1The RFC 3501[12] is a formal document from the Internet Engineering Task Force
172
+ (IETF) specifying standards for the IMAP, Version 4rev1 (IMAP4rev1).
173
+ 2The RFC 2047[13] specifies rules for encoding and decoding non-ASCII characters in
174
+ electronic messages.
175
+ 3
176
+
177
+ additional feature in this workflow by, for instance, enabling the possibility
178
+ of automating the attachments retrieval step. Also, by fetching other mes-
179
+ sage contents, users are able to apply statistical techniques for analysing the
180
+ frequency of e-mails with regard to some message aspect, running sentiment
181
+ analysis on e-mail content, etc.
182
+ Since mRpostman works as a session-based IMAP client, one can think
183
+ of the provided methods following a natural order in which the steps shall be
184
+ organised in the event of an IMAP session (Fig. 1). For instance, if the goal
185
+ is to search messages within a specific period of time and/or containing a
186
+ specific word, first we need to configure the connection to the IMAP server;
187
+ then, choose a mail folder where the search is to be performed; and execute
188
+ the single criteria (left) or the custom multi-criteria search (right). If the
189
+ user intends to fetch the matched message(s) or its parts, additional fetch
190
+ steps can be chained to the described schema.
191
+ con <- configure imap()
192
+ con$select folder()
193
+ con$fetch *()
194
+ con$search *()
195
+ con$search()
196
+ a connection
197
+ object is configured
198
+ a mailbox
199
+ is
200
+ selected
201
+ a mailbox
202
+ is
203
+ selected
204
+ return message ids
205
+ return message ids
206
+ Fig. 1: Basic schema for fetching the full content of a message or its parts after a search
207
+ query.
208
+ mRpostman is flexible in the sense that the aforementioned steps can be
209
+ used either under the tidy framework, with pipes[14], or via the conventional
210
+ base R approach.
211
+ 4
212
+
213
+ 3. Software architeture
214
+ The software was designed following the object-oriented framework from
215
+ the R6 package[15]. A class called ImapCon is implemented to retain and
216
+ organize the necessary IMAP connection parameters. All the methods that
217
+ derive from this class will serve one of the two following purposes: to issue a
218
+ request toward the IMAP server (request methods) or re-configure an existing
219
+ IMAP connection (reset methods).
220
+ In order to execute IMAP commands, this package makes extensive use
221
+ of the curl[16] R package3. All mRpostman’s request methods are built on
222
+ top of the so-called curl handles. Under the hood, a curl handle consists
223
+ of a C pointer variable that gathers the necessary parameters to execute a
224
+ request to the server. As a matter of fact, the handle itself does not issue
225
+ any command, but is used as a parameter inside a curl’s fetch function. This
226
+ last object is the one that actually triggers the request to the server, ranging
227
+ from mail folder selection to search queries, or message fetch requests.
228
+ The object-oriented framework combined with the use of one curl handle
229
+ per session enables mRpostman to elegantly run as a session based IMAP
230
+ client, without demanding a connection reconfiguration between commands.
231
+ For example, if a mail folder is selected on the current session, all requests
232
+ using the same connection token will be performed on the selected folder,
233
+ unless the user re-selects a different one.
234
+ 3.1. Software functionalities
235
+ 3.1.1. Configuring an IMAP connection
236
+ As we demonstrated in Fig. 1, the first step for using mRpostman is to
237
+ configure an IMAP connection. It consists of creating a connection token
238
+ object of class ImapCon that will retain all the relevant information to issue
239
+ requests toward the server.
240
+ configure imap is the function used to configure and create a new IMAP
241
+ connection.
242
+ The mandatory arguments are three character strings: url,
243
+ username, and password for plain authentication; or url, username, and
244
+ xoauth2 bearer for OAuth2.0 authentication4.
245
+ The following example illustrates how to configure a connection to a Mi-
246
+ crosoft Exchange IMAP 4 server; more specifically, to an Office 365 Outlook
247
+ account using plain authentication.
248
+ library("mRpostman")
249
+ 3The curl package is a binding for the libcurl[17] C library.
250
+ 4Please refer to the “IMAP OAuth2.0 authentication in mRpostman” vignette in [18].
251
+ 5
252
+
253
+ con <- configure_imap(url = "imaps://outlook.office365.com",
254
+ username = "[email protected]",
255
+ password = rstudioapi::askForPassword())
256
+ We opted for using an Outlook Office 365 account as an example in order
257
+ to highlight the difference between mRpostman and the other two CRAN
258
+ packages which, although also capable of receiving e-mails, are restricted to
259
+ Gmail accounts and fewer IMAP functionalities. Although mRpostman is
260
+ able to theoretically connect to any mail provider5, the Outlook Office 365
261
+ service is broadly used by universities and companies. This enriches the range
262
+ of data analyses applications of this package, thus justifying our choice.
263
+ In a hypothetical situation where the user needs to simultaneously con-
264
+ nect to more than one e-mail account (in different providers or not) in the
265
+ same R session, it can be easily attained by creating and configuring multiple
266
+ connection tokens, such as con1, con2, and so on.
267
+ 3.1.2. Selecting a mail folder
268
+ Mailboxes are structured as folders in the IMAP protocol. This allows us
269
+ to replicate many of the operations done in a local folder such as creating,
270
+ renaming or deleting folders. As messages are kept inside the mail folders,
271
+ users need to select one of them whenever they intend to execute a search,
272
+ fetch or other message-related operation, as presented in Fig. 1.
273
+ In this sense, the select folder method is one of the key features of
274
+ this package. It selects a mail folder for the current IMAP section. The
275
+ mandatory argument is a character string containing the name of the folder
276
+ to be selected.
277
+ Supposing that we want to select the "INBOX" folder and considering that
278
+ we are going to use the same connection object (con) that has been previously
279
+ created, the command would be:
280
+ con$select_folder(name = "INBOX")
281
+ Further details on other important mailbox management features are pro-
282
+ vided in [18].
283
+ 3.1.3. Message search
284
+ The IMAP protocol is designed to allow the execution of single or multi-
285
+ criteria queries on the mailboxes. This package implements a vast range of
286
+ 5Besides Outlook Office 365, the package has been already successfully tested with
287
+ Gmail, Yahoo, Yandex, AOL, and Hotmail accounts.
288
+ 6
289
+
290
+ IMAP search commands, which consist of a critical feature for performing
291
+ data analysis on email content.
292
+ As of its version 1.0.0, mRpostman has five types of single-criterion
293
+ search methods implemented: by date; string; flag, size; and span of time
294
+ (WITHIN extension)6.
295
+ The custom-search, on the other hand, enables the
296
+ execution of multi-criteria queries by allowing the combination of two or
297
+ more types of search. However, in this article, we will focus on the single-
298
+ criterion search-by-string type.
299
+ The search string method searches messages that contain a specific
300
+ string or expression. One or more specific sections of a message, such as the
301
+ TEXT section or the TO header field, for example, must be specified.
302
+ In the following code snippet, we search for messages from senders whose
303
+ mail domain is "@ksu.edu".
304
+ ids <- con$search_string(expr = "@ksu.edu", where = "FROM")
305
+ The resulting object is a vector containing the matched unique ids (UID)
306
+ or the message sequence numbers7 such as presented below:
307
+ [1]
308
+ 60 145 147 159 332 333 336 338 341 428
309
+ Further details on the other single-search methods and the custom-search
310
+ method available in this package are provided in [18].
311
+ 3.1.4. Message fetch
312
+ After executing a search query, users may be interested in fetching the
313
+ full content or some part of the messages indicated in the search results. In
314
+ this regard, mRpostman implements six types of fetch features:
315
+ fetch body Fetches the message body (message’s full content), or an
316
+ specified MIME level, which can refer to the text or the attachments if there
317
+ are any.
318
+ fetch header Fetches the message header, which comprises all the com-
319
+ ponents of the HEADER section of a message. Besides the traditional ones
320
+ (from, to, cc, subject), it may include several more fields.
321
+ fetch metadata Fetches the message metadata, which consists of some
322
+ message’s attributes such as the internal date, and the envelope (from, to,
323
+ cc, and subject fields).
324
+ 6The WITHIN extension is not supported by all IMAP servers. A call to the list -
325
+ server capabilities method will present all the IMAP extensions supported by the
326
+ mail provider[18].
327
+ 7More details on the message identification methodology deployed by the IMAP pro-
328
+ tocol are provided in [19, 12, 18].
329
+ 7
330
+
331
+ fetch text Fetches the message text section, which can comprise attach-
332
+ ment MIME levels if applicable.
333
+ Each of these methods can be seamlessly integrated into a previous search
334
+ operation so that the returned ids are used as input for the fetch method.
335
+ Above all, these methods consist of a powerful source of information for
336
+ performing data analysis on e-mail content. Here, we mimic the extraction
337
+ of the TEXT portion of a message. Although there is a fetch text method,
338
+ the recommended approach is to use fetch body(..., mime level = 1L)
339
+ because the former may collect attachment parts along with the message
340
+ text.
341
+ out <- ids %>%
342
+ fetch_body(mime_level = 1L)
343
+ Once the messages are fetched, the text can be cleaned and decoded with
344
+ the clean msg text helper function. A subsequent call to the writeLines
345
+ base R function produces a clean printing of the fetched text:
346
+ cleaned_text <- clean_msg_text(msg_list = out)
347
+ writeLines(cleaned_text[[1]])
348
+ Receipt Number: XXXXXXX
349
+ Customer: Vieira de Castro Quadros, Allan
350
+ Kansas State University
351
+ Current Date: 04/15/2020
352
+ Description
353
+ Amount
354
+ --------------------------------------------------------------------------------
355
+ HOUSING & DINING
356
+ $30.00
357
+ User Number: XXXXXXXXX
358
+ Total
359
+ $30.00
360
+ Payments Received
361
+ Amount
362
+ --------------------------------------------------------------------------------
363
+ 07 CREDIT CARD PAYMENTS
364
+ $30.00
365
+ Visa XXXXXXXXXXXX8437
366
+ Authorization # XXXXXX
367
+ Total
368
+ $30.00
369
+ Thank you for the payment.
370
+ Besides other applications, the exported function clean msg text can be
371
+ used to decode hexadecimal and base 64 characters in the text and other
372
+ parts of the message. In some locales such as French, German or Portuguese
373
+ speaking countries, message parts may contain non-ASCII characters. SMTP
374
+ servers, then, encode it using the RFC 2047 specifications when sending the
375
+ e-mail. In these cases, clean msg text is capable of correctly decoding the
376
+ non-ASCII characters.
377
+ 8
378
+
379
+ 3.1.5. Attachment extraction
380
+ In its pretension to be an IMAP client for R, mRpostman provides meth-
381
+ ods that enable users to list and download message payloads. This feature
382
+ can be particularly critical for automating the analysis of attachment data
383
+ files, for instance.
384
+ Attachments can be downloaded using two different approaches in this
385
+ package: extending the fetch text/body operation by adding an attach-
386
+ ment extraction step at the end of the workflow with get attachments; or
387
+ directly fetching attachment parts via the fetch attachments method. In
388
+ this article, we focus on the first type of attachment methods, adding a step
389
+ to our previous workflow.
390
+ The get attachments method extracts attachment files from the fetched
391
+ messages and saves these files to the disk. In the following code excerpt, we
392
+ extract attachments in a unique pipeline that gathers fetching and search
393
+ steps.
394
+ con$search_string(expr = "@ksu.edu", where = "FROM") %>%
395
+ con$fetch_text() %>%
396
+ con$get_attachments()
397
+ During the execution, the software locally saves the extracted attach-
398
+ ments into sub-folders inside the user’s working directory. These sub-folders
399
+ are named following the messages’ ids.
400
+ The attachments are placed into
401
+ their respective messages’ sub-folders as demonstrated in Fig. 2. Note that
402
+ the parent levels are named after the informed username and the selected
403
+ mail folder.
404
+ For more information on the other attachment-related methods, the reader
405
+ should refer to the documentation in [18].
406
+ 4. Illustrative Examples
407
+ To demonstrate the capabilities of the proposed software, we explore two
408
+ use cases of this package in support of data analysis tasks: a simple study
409
+ of the frequency of e-mails grouped by senders; and a sentiment analysis
410
+ run on a set of e-mails received during a period. The R scripts needed for
411
+ reproducing these examples are provided in the appendixes. Although the
412
+ results cannot be exactly reproduced once it reflects the author’s mailbox
413
+ contents, they can be easily adapted to the reader’s context.
414
+ 9
415
+
416
+ . (working directory)
417
418
+ INBOX
419
+ 141
420
+ final.zip
421
+ prob plot.svg
422
+ staa2072.pdf
423
+ 144
424
+ app.R
425
+ image001.png
426
+ recording.mp4
427
+ Fig. 2: Local directory tree for the extracted attachment files
428
+ 4.1. Frequency analysis of e-mail data
429
+ In the first example, we run a simple analysis of the e-mail frequency with
430
+ regard to senders. This can be especially useful in professional fields, such
431
+ as marketing and customer service offices. A period of analysis was defined,
432
+ and a search-by-date is performed using the search period method. Then,
433
+ senders’ information for the returned ids are fetched via fetch metadata,
434
+ using the ENVELOPE attribute. After some basic manipulation with regular
435
+ expressions, the data is ready to be plotted as shown in Fig. 3.
436
+ 10
437
+
438
+ omitted@tbs−education.fr
439
440
441
442
443
+ E−mail Frequency (by sender)
444
+ count
445
+ 0
446
+ 2
447
+ 4
448
+ 6
449
+ 8
450
+ 10
451
+ 12
452
+ 14
453
+ ResearchGate
454
+ Cortana
455
+ Claudio Piga
456
+ Chen, Daqing
457
+ MANTOVANI Andrea
458
+ Period: 01−Nov to 01−Dec−2020
459
+ Fig. 3: An example of e-mail frequency analysis grouped by sender
460
+ The same kind of analysis can be replicated for the messages’ subjects
461
+ with only a few modifications in the regular expressions code chunks. Con-
462
+ sidering that some companies/users deal with subject-standardized e-mails,
463
+ this approach can be useful to analyze the frequency of e-mails with regard
464
+ to different categories of subjects.
465
+ 4.2. Sentiment analysis on e-mail data
466
+ For the sentiment analysis example, we also define a period of analysis and
467
+ run a search period query. Then, we retrieve the text part of the messages
468
+ by fetching the first MIME level with fetch body(..., mime level = 1L).
469
+ The texts go trough a first cleaning step with a call to the clean msg text
470
+ function.
471
+ After further cleaning procedures, we use a lexicon[20] via the
472
+ syuzhet package[21] to evaluate the sentiment of each e-mail. The output
473
+ below is a subset of the resulting data frame. The last two columns indicate,
474
+ respectively, the counts of negative and positive words for each message.
475
+ The other columns provide counts related to detailed emotions, which are
476
+ not necessarily positive nor negative.
477
+ anger anticipation disgust fear joy sadness surprise trust negative positive
478
+ body91
479
+ 1
480
+ 5
481
+ 1
482
+ 1
483
+ 2
484
+ 2
485
+ 0
486
+ 9
487
+ 1
488
+ 13
489
+ body92
490
+ 0
491
+ 1
492
+ 0
493
+ 0
494
+ 1
495
+ 0
496
+ 0
497
+ 3
498
+ 0
499
+ 1
500
+ body93
501
+ 0
502
+ 3
503
+ 0
504
+ 2
505
+ 0
506
+ 1
507
+ 2
508
+ 2
509
+ 1
510
+ 3
511
+ body94
512
+ 0
513
+ 1
514
+ 0
515
+ 1
516
+ 0
517
+ 0
518
+ 1
519
+ 4
520
+ 1
521
+ 4
522
+ body95
523
+ 0
524
+ 5
525
+ 0
526
+ 0
527
+ 3
528
+ 0
529
+ 2
530
+ 8
531
+ 0
532
+ 13
533
+ body96
534
+ 0
535
+ 0
536
+ 0
537
+ 0
538
+ 0
539
+ 0
540
+ 0
541
+ 0
542
+ 0
543
+ 0
544
+ body97
545
+ 4
546
+ 20
547
+ 4
548
+ 11
549
+ 13
550
+ 11
551
+ 4
552
+ 25
553
+ 16
554
+ 51
555
+ 11
556
+
557
+ body98
558
+ 0
559
+ 3
560
+ 0
561
+ 0
562
+ 2
563
+ 0
564
+ 1
565
+ 4
566
+ 0
567
+ 6
568
+ body99
569
+ 3
570
+ 9
571
+ 1
572
+ 6
573
+ 1
574
+ 5
575
+ 2
576
+ 16
577
+ 14
578
+ 24
579
+ body100
580
+ 4
581
+ 15
582
+ 1
583
+ 13
584
+ 6
585
+ 7
586
+ 6
587
+ 15
588
+ 16
589
+ 31
590
+ 5. Impact
591
+ As we have demonstrated, mRpostman clearly fills an existent gap of a
592
+ broad, complete, and, at the same time, easy-to-use IMAP client for the
593
+ R language. The package has consolidated itself as an important tool for
594
+ collecting massive e-mail content, thus contributing to data analysis tasks in
595
+ R.
596
+ Although all sort of users have been taking advantage of this package,
597
+ we are inclined to think that its use has been prevailing amid companies.
598
+ We have received a considerable number of feedback from enterprise users
599
+ who deploy mRpostman as an additional feature for automatically produc-
600
+ ing daily reports based on attachment data files.
601
+ Besides this, there are
602
+ important applications for marketing and post-sales departments, for exam-
603
+ ple. They can also deploy this package to collect e-mail data for analyzing
604
+ e-mail frequency, or performing sentiment analysis, as we have demonstrated
605
+ in Section 4.
606
+ 6. Conclusions
607
+ mRpostman aims to provide an easy-to-use IMAP client for R. Its design
608
+ allows the efficient, elegant, and intuitive execution of several IMAP com-
609
+ mands on a wide range of mail providers. Consequently, users cannot only
610
+ manage their mailboxes but also conduct e-mail data analysis from inside R.
611
+ Finally, because IMAP is such a complex protocol, this package is in con-
612
+ stant development, which means that new features are to be implemented in
613
+ future versions.
614
+ 7. Conflict of Interest
615
+ No conflict of interest exists: We wish to confirm that there are no known
616
+ conflicts of interest associated with this publication and there has been no
617
+ significant financial support for this work that could have influenced its out-
618
+ come.
619
+ Acknowledgements
620
+ The author would like to acknowledge the Department of Statistics at
621
+ Kansas State University (K-State) for the assistantship provided for his doc-
622
+ torate studies. He wants to especially thank Dr. Christopher Vahl and Dr.
623
+ 12
624
+
625
+ Michael Higgins for the academic support. The author also acknowledges the
626
+ academic guidance of Dr. George von Borries at the University of Brasilia
627
+ (UnB). The contents of this article are the responsibility of the author and
628
+ do not reflect the views of K-State or UnB.
629
+ Appendix A. Code for example 1
630
+ library(mRpostman)
631
+ con <- configure_imap(
632
+ url="imaps://outlook.office365.com",
633
+ username="[email protected]",
634
+ password=rstudioapi::askForPassword()
635
+ )
636
+ con$select_folder(name = "INBOX")
637
+ meta_res <- con$search_period(since_date_char = "01-Nov-2020",
638
+ before_date_char = "01-Dec-2020") %>%
639
+ con$fetch_metadata(attribute = "ENVELOPE")
640
+ # cleaning
641
+ # step 1
642
+ clean_meta <- lapply(meta_res, function(x){
643
+ regmatches(x, regexpr(pattern = "\\(\\(.*\"(.*?)\"\\)\\)", x, perl = TRUE))
644
+ })
645
+ # step 2
646
+ # cleaning Ccs
647
+ senders1 <- lapply(clean_meta, function(x){
648
+ gsub(")) NIL .*$|)) .*$|))$", "", x)
649
+ })
650
+ # step 3
651
+ senders1 <- lapply(senders1, function(x){
652
+ gsub(’^\\(\\(|\"+’, "", x)
653
+ })
654
+ # splitting
655
+ name <- c()
656
+ email <- c()
657
+ for (i in seq_along(senders1)){
658
+ # i = 1
659
+ out <- unlist(strsplit(senders1[[i]], " NIL "))
660
+ name <- c(name, out[1])
661
+ email <- c(email, gsub(" ", "@", out[2]))
662
+ }
663
+ df <- data.frame(name, email)
664
+ df$name <- decode_mime_header(string = as.character(df$name))
665
+ df2 <- as.data.frame(table(df$email))
666
+ colnames(df2) <- c("email", "count")
667
+ df2 <- df2[order(-df2[,2]), ][1:5,]
668
+ df2$name <- unique(df$name[df$email %in% df2$email])
669
+ par(mar=c(5,13,4,1)+.1)
670
+ pal_cols <- c(’#3B4992FF’, ’#EE0000FF’, ’#008B45FF’, ’#631879FF’, ’#008280FF’)
671
+ barplot(rev(df2$count),
672
+ main = "E-mail Frequency (by sender)",
673
+ xlab = "count",
674
+ names.arg = rev(df2$email),
675
+ las = 1,
676
+ col = pal_cols,
677
+ horiz = TRUE)
678
+ mysubtitle <- "Period: 01-Nov to 01-Dec-2020"
679
+ legend(x = "bottomright", legend = df2$name, fill = rev(pal_cols), bty = "n", y.intersp = 1)
680
+ mtext(side=3, line=0.3, at=-0.07, adj=0, cex=0.9, mysubtitle)
681
+ 13
682
+
683
+ Appendix B. Code for example2
684
+ library(mRpostman)
685
+ con <- configure_imap(url="imaps://outlook.office365.com",
686
+ username="[email protected]",
687
+ password=rstudioapi::askForPassword(),
688
+ timeout_ms = 20000
689
+ )
690
+ con$select_folder("INBOX")
691
+ ids <- con$search_period(since_date_char = "10-Oct-2020", before_date_char = "20-Dec-2020")
692
+ fetch_res2 <- ids %>%
693
+ con$fetch_body(mime_level = 1L)
694
+ cleaned_text_list <- clean_msg_text(msg_list = fetch_res2)
695
+ cleaned_text_list[[4]]
696
+ for (i in seq_along(cleaned_text_list)) {
697
+ clean_text <- gsub("\r\n", " ", cleaned_text_list[[i]])
698
+ clean_text <- unlist(strsplit(clean_text, " "))
699
+ words <- clean_text[!grepl("\\d|_|http|www|nbsp|@|(?<=[[:lower:]])(?=[[:upper:]])",
700
+ clean_text, perl = TRUE)]
701
+ words <- tolower(gsub("\\W+", "", words))
702
+ words <- gsub(’[^a-zA-Z|[:blank:]]’, "", words)
703
+ cleaned_text_list[[i]] <- paste(words, collapse = " ")
704
+ }
705
+ cleaned_text_df <- do.call(’rbind’, cleaned_text_list)
706
+ library(syuzhet)
707
+ email_sentiment_df <-get_nrc_sentiment(cleaned_text_df)
708
+ rownames(email_sentiment_df) <- rownames(cleaned_text_df)
709
+ head(email_sentiment_df,10)
710
+ References
711
+ [1] R Core Team, R: A Language and Environment for Statistical Comput-
712
+ ing, R Foundation for Statistical Computing, Vienna, Austria (2020).
713
+ URL https://www.R-project.org/
714
+ [2] J. Allaire, Y. Xie, J. McPherson, J. Luraschi, K. Ushey, A. Atkins,
715
+ H. Wickham, J. Cheng, W. Chang, R. Iannone, rmarkdown: Dynamic
716
+ Documents for R, r package version 2.5 (2020).
717
+ URL https://github.com/rstudio/rmarkdown
718
+ [3] P. Heinlein, P. Hartleben, The Book of IMAP: Building a Mail Server
719
+ with Courier and Cyrus, No Starch Press, 2008.
720
+ [4] O. Mersmann, sendmailR: send email using R, r package version 1.2-1
721
+ (2014).
722
+ URL https://CRAN.R-project.org/package=sendmailR
723
+ [5] R. Premraj, mailR: A Utility to Send Emails from R, r package version
724
+ 0.4.1 (2015).
725
+ URL https://CRAN.R-project.org/package=mailR
726
+ 14
727
+
728
+ [6] L. Himmelmann, mail: Sending Email Notifications from R, r package
729
+ version 1.0 (2011).
730
+ URL https://CRAN.R-project.org/package=mail
731
+ [7] S. M. Bache, blatr: Send Emails Using ’Blat’ for Windows, r package
732
+ version 1.0.1 (2015).
733
+ URL https://CRAN.R-project.org/package=blatr
734
+ [8] J. Hester, gmailr: Access the ’Gmail’ ’RESTful’ API, r package version
735
+ 1.0.0 (2019).
736
+ URL https://CRAN.R-project.org/package=gmailr
737
+ [9] R. Iannone, J. Cheng, blastula: Easily Send HTML Email Messages, r
738
+ package version 0.3.2 (2020).
739
+ URL https://CRAN.R-project.org/package=blastula
740
+ [10] A. B. Collier, emayili: Send Email Messages, r package version 0.4.4
741
+ (2020).
742
+ URL https://CRAN.R-project.org/package=emayili
743
+ [11] A. B. Collier, edeR: Email Data Extraction Using R, r package version
744
+ 1.0.0 (2014).
745
+ URL https://CRAN.R-project.org/package=edeR
746
+ [12] M. Crispin, Internet message access protocol - version 4rev1, request for
747
+ Comments 3501 (RFC 3501), Internet Engineering Task Force (IETF)
748
+ (2003).
749
+ URL https://tools.ietf.org/html/rfc3501
750
+ [13] K. Moore, Multipurpose Internet Mail Extensions (MIME), part three:
751
+ Message header extensions for non-ascii text, request for Comments 2047
752
+ (RFC 2047), Internet Engineering Task Force (IETF) (1996).
753
+ URL https://tools.ietf.org/html/rfc2047
754
+ [14] S. M. Bache, H. Wickham, magrittr: A Forward-Pipe Operator for R, r
755
+ package version 1.5 (2014).
756
+ URL https://CRAN.R-project.org/package=magrittr
757
+ [15] W. Chang, R6: Encapsulated Classes with Reference Semantics, r pack-
758
+ age version 2.5.0 (2020).
759
+ URL https://CRAN.R-project.org/package=R6
760
+ [16] J. Ooms, curl: A Modern and Flexible Web Client for R, r package
761
+ version 4.3 (2020).
762
+ URL https://CRAN.R-project.org/package=curl
763
+ 15
764
+
765
+ [17] D. Stenberg, libcurl - the multiprotocol file transfer library, version
766
+ 7.69.1 (2020).
767
+ URL https://curl.haxx.se/
768
+ [18] A. Quadros, mRpostman: An IMAP Client for R, r package version
769
+ 1.0.0 (2020).
770
+ URL https://allanvc.github.io/
771
+ [19] P. Resnick, Internet message format, request for Comments 5322 (RFC
772
+ 5322), Internet Engineering Task Force (IETF) (2008).
773
+ URL https://tools.ietf.org/html/rfc5322
774
+ [20] S. Mohammad, P. Turney, Emotions evoked by common words and
775
+ phrases:
776
+ Using mechanical turk to create an emotion lexicon, in:
777
+ CAAGET ’10: Proceedings of the NAACL HLT 2010 Workshop on
778
+ Computational Approaches to Analysis and Generation of Emotion in
779
+ Text, Los Angeles, California, 2010, p. 26–34, june, 2010.
780
+ URL http://saifmohammad.com/WebPages/lexicons.html
781
+ [21] M. L. Jockers, Syuzhet: Extract Sentiment and Plot Arcs from Text, r
782
+ package version 1.0.4 (2015).
783
+ URL https://github.com/mjockers/syuzhet
784
+ 16
785
+
GdE1T4oBgHgl3EQfrAWz/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,392 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf,len=391
2
+ page_content='mRpostman: An IMAP Client for R Allan V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
3
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
4
+ page_content=' Quadros Department of Statistics Kansas State University Manhattan, KS 66506, United States Abstract Internet Message Access Protocol (IMAP) clients are a common feature in several programming languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
5
+ page_content=' Despite having some packages for electronic messages retrieval, the R language, until recently, lacked a broader solution, capable of coping with different IMAP servers and providing a wide spec- trum of features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
6
+ page_content=' mRpostman covers most of the IMAP 4rev1 functionalities by implementing tools for message searching, selective fetching of message attributes, mailbox management, attachment extraction, and several other IMAP features that can be executed in virtually any mail provider.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
7
+ page_content=' By doing so, it enables users to perform data analysis based on e-mail content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
8
+ page_content=' The goal of this article is to showcase the toolkit provided with the mRpostman package, to describe its key features and provide some application examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
9
+ page_content=' Keywords: IMAP, e-mail, R 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
10
+ page_content=' Motivation and significance The acknowledgement of the R programming language[1] as having re- markable statistical capabilities is much due to the excellence brought by its statistical and data analysis packages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
11
+ page_content=' This reputation also stands on the capabilities of a myriad of utility packages, which extends the use of the language by facilitating the integration of the steps involved in data collec- tion, analysis, and communication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
12
+ page_content=' With that in mind, and considering the amount of data transmitted daily through e-mail, mRpostman was conceived to fill the absence of an Internet Message Access Protocol (IMAP) client in the R statistical environment;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
13
+ page_content=' therefore, providing an appropriate toolkit for electronic messages retrieval, and paving the way for e-mail data analysis in R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
14
+ page_content=' Email address: quadros@k-state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
15
+ page_content='edu (Allan V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
16
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
17
+ page_content=' Quadros) Preprint submitted to SoftwareX January 10, 2023 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
18
+ page_content='03350v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
19
+ page_content='NI] 11 Dec 2022 The Comprehensive R Archive Network (CRAN) has at least seven pack- ages for sending emails (Table 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
20
+ page_content=' Whereas some of these packages aim to provide a plain Simple Mail Transport Protocol (SMTP) client for R (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
21
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
22
+ page_content=' sendmailR and emayili), others focus on more sophisticated implementations, using Application Program Interfaces (API), or providing seamless integra- tion between SMTP and other R features such as rmarkdown[2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
23
+ page_content=' However, despite the surplus of available clients in R, the SMTP protocol is not suit- able for receiving e-mails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
24
+ page_content=' It only allows clients to communicate with servers to deliver their messages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
25
+ page_content=' For the purpose of message retrieval, there are the Post Office Protocol 3 (POP3) and the Internet Message Access Protocol (IMAP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
26
+ page_content=' In comparison with IMAP, POP3 is a very limited protocol, working as a simple interface for clients to download e-mails from servers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
27
+ page_content=' IMAP, on the other hand, is a much more complex protocol, and can be considered as the evolution of POP3, with a very different and broader set of functionalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
28
+ page_content=' In contrast to POP3, all the messages are kept on the IMAP server and not locally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
29
+ page_content=' This means that a user can access the same mail account using parallel connections from different clients[3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
30
+ page_content=' Besides the mail folders structure and management, the capacity of issuing sophisticated search queries also contribute to the level of complexity of the IMAP protocol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
31
+ page_content=' Amid CRAN packages for e-mail communication, only gmailr and edeR have IMAP capabilities (Table 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
32
+ page_content=' However, those capabilities are restricted to Gmail accounts and few IMAP functionalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
33
+ page_content=' Although gmailr supports both protocols, the package is more SMTP-focused, which explains its low number of IMAP features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
34
+ page_content=' Therefore, R was clearly lacking a broader IMAP client solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
35
+ page_content=' It was in that mainstay that mRpostman was conceived.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
36
+ page_content=' 2 Features protocol mail providers search queries message fetch attachment extrac- tion mailbox manage- ment active develop- ment sendmailR[4] SMTP mailR[5] SMTP mail[6] SMTP blatr[7] SMTP gmailr[8] SMTP/IMAP Gmail no limited limited no yes blastula[9] SMTP emayili[10] SMTP edeR[11] IMAP Gmail no limited no no no mRpostman IMAP all yes yes yes yes yes Table 1: Comparison of the current available CRAN packages for e-mail communica- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
37
+ page_content=' The following attributes are evaluated: protocol - the supported protocol (SMTP or IMAP);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
38
+ page_content=' mail providers - if the IMAP protocol is supported, which mail providers are supported by the package;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
39
+ page_content=' Features - which type of IMAP features are available in the package;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
40
+ page_content=' active development - if the package is currently under active development.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
41
+ page_content=' If the package does not provide IMAP support, the remaining fields do not apply.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
42
+ page_content=' In this article, we present a brief view of the main functionalities of the package and its applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
43
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
44
+ page_content=' Software description mRpostman is conceived to be an easy-to-use session-based IMAP client for R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
45
+ page_content=' The package implements intuitive methods for executing the major- ity of the IMAP commands described in the Request for Comments 35011, such as mailbox management, and selectively search and fetch of message at- tributes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
46
+ page_content=' The package also implements complementary functions for decoding quoted-printable and base 64 content, following the MIME specification2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
47
+ page_content=' All these methods and functions play an important role in facilitating e- mail data analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
48
+ page_content=' We shall not overlook the amount of data analyses daily performed on e-mail content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
49
+ page_content=' The package has proved to be very useful as an 1The RFC 3501[12] is a formal document from the Internet Engineering Task Force (IETF) specifying standards for the IMAP, Version 4rev1 (IMAP4rev1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
50
+ page_content=' 2The RFC 2047[13] specifies rules for encoding and decoding non-ASCII characters in electronic messages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
51
+ page_content=' 3 additional feature in this workflow by, for instance, enabling the possibility of automating the attachments retrieval step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
52
+ page_content=' Also, by fetching other mes- sage contents, users are able to apply statistical techniques for analysing the frequency of e-mails with regard to some message aspect, running sentiment analysis on e-mail content, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
53
+ page_content=' Since mRpostman works as a session-based IMAP client, one can think of the provided methods following a natural order in which the steps shall be organised in the event of an IMAP session (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
54
+ page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
55
+ page_content=' For instance, if the goal is to search messages within a specific period of time and/or containing a specific word, first we need to configure the connection to the IMAP server;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
56
+ page_content=' then, choose a mail folder where the search is to be performed;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
57
+ page_content=' and execute the single criteria (left) or the custom multi-criteria search (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
58
+ page_content=' If the user intends to fetch the matched message(s) or its parts, additional fetch steps can be chained to the described schema.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
59
+ page_content=' con <- configure imap() con$select folder() con$fetch *() con$search *() con$search() a connection object is configured a mailbox is selected a mailbox is selected return message ids return message ids Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
60
+ page_content=' 1: Basic schema for fetching the full content of a message or its parts after a search query.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
61
+ page_content=' mRpostman is flexible in the sense that the aforementioned steps can be used either under the tidy framework, with pipes[14], or via the conventional base R approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
62
+ page_content=' 4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
63
+ page_content=' Software architeture The software was designed following the object-oriented framework from the R6 package[15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
64
+ page_content=' A class called ImapCon is implemented to retain and organize the necessary IMAP connection parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
65
+ page_content=' All the methods that derive from this class will serve one of the two following purposes: to issue a request toward the IMAP server (request methods) or re-configure an existing IMAP connection (reset methods).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
66
+ page_content=' In order to execute IMAP commands, this package makes extensive use of the curl[16] R package3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
67
+ page_content=' All mRpostman’s request methods are built on top of the so-called curl handles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
68
+ page_content=' Under the hood, a curl handle consists of a C pointer variable that gathers the necessary parameters to execute a request to the server.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
69
+ page_content=' As a matter of fact, the handle itself does not issue any command, but is used as a parameter inside a curl’s fetch function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
70
+ page_content=' This last object is the one that actually triggers the request to the server, ranging from mail folder selection to search queries, or message fetch requests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
71
+ page_content=' The object-oriented framework combined with the use of one curl handle per session enables mRpostman to elegantly run as a session based IMAP client, without demanding a connection reconfiguration between commands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
72
+ page_content=' For example, if a mail folder is selected on the current session, all requests using the same connection token will be performed on the selected folder, unless the user re-selects a different one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
73
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
74
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
75
+ page_content=' Software functionalities 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
76
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
77
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
78
+ page_content=' Configuring an IMAP connection As we demonstrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
79
+ page_content=' 1, the first step for using mRpostman is to configure an IMAP connection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
80
+ page_content=' It consists of creating a connection token object of class ImapCon that will retain all the relevant information to issue requests toward the server.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
81
+ page_content=' configure imap is the function used to configure and create a new IMAP connection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
82
+ page_content=' The mandatory arguments are three character strings: url, username, and password for plain authentication;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
83
+ page_content=' or url, username, and xoauth2 bearer for OAuth2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
84
+ page_content='0 authentication4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
85
+ page_content=' The following example illustrates how to configure a connection to a Mi- crosoft Exchange IMAP 4 server;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
86
+ page_content=' more specifically, to an Office 365 Outlook account using plain authentication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
87
+ page_content=' library("mRpostman") 3The curl package is a binding for the libcurl[17] C library.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
88
+ page_content=' 4Please refer to the “IMAP OAuth2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
89
+ page_content='0 authentication in mRpostman” vignette in [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
90
+ page_content=' 5 con <- configure_imap(url = "imaps://outlook.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
91
+ page_content='office365.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
92
+ page_content='com", username = "user@agency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
93
+ page_content='gov", password = rstudioapi::askForPassword()) We opted for using an Outlook Office 365 account as an example in order to highlight the difference between mRpostman and the other two CRAN packages which, although also capable of receiving e-mails, are restricted to Gmail accounts and fewer IMAP functionalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
94
+ page_content=' Although mRpostman is able to theoretically connect to any mail provider5, the Outlook Office 365 service is broadly used by universities and companies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
95
+ page_content=' This enriches the range of data analyses applications of this package, thus justifying our choice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
96
+ page_content=' In a hypothetical situation where the user needs to simultaneously con- nect to more than one e-mail account (in different providers or not) in the same R session, it can be easily attained by creating and configuring multiple connection tokens, such as con1, con2, and so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
97
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
98
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
99
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
100
+ page_content=' Selecting a mail folder Mailboxes are structured as folders in the IMAP protocol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
101
+ page_content=' This allows us to replicate many of the operations done in a local folder such as creating, renaming or deleting folders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
102
+ page_content=' As messages are kept inside the mail folders, users need to select one of them whenever they intend to execute a search, fetch or other message-related operation, as presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
103
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
104
+ page_content=' In this sense, the select folder method is one of the key features of this package.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
105
+ page_content=' It selects a mail folder for the current IMAP section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
106
+ page_content=' The mandatory argument is a character string containing the name of the folder to be selected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
107
+ page_content=' Supposing that we want to select the "INBOX" folder and considering that we are going to use the same connection object (con) that has been previously created, the command would be: con$select_folder(name = "INBOX") Further details on other important mailbox management features are pro- vided in [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
108
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
109
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
110
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
111
+ page_content=' Message search The IMAP protocol is designed to allow the execution of single or multi- criteria queries on the mailboxes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
112
+ page_content=' This package implements a vast range of 5Besides Outlook Office 365, the package has been already successfully tested with Gmail, Yahoo, Yandex, AOL, and Hotmail accounts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
113
+ page_content=' 6 IMAP search commands, which consist of a critical feature for performing data analysis on email content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
114
+ page_content=' As of its version 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
115
+ page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
116
+ page_content='0, mRpostman has five types of single-criterion search methods implemented: by date;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
117
+ page_content=' string;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
118
+ page_content=' flag, size;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
119
+ page_content=' and span of time (WITHIN extension)6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
120
+ page_content=' The custom-search, on the other hand, enables the execution of multi-criteria queries by allowing the combination of two or more types of search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
121
+ page_content=' However, in this article, we will focus on the single- criterion search-by-string type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
122
+ page_content=' The search string method searches messages that contain a specific string or expression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
123
+ page_content=' One or more specific sections of a message, such as the TEXT section or the TO header field, for example, must be specified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
124
+ page_content=' In the following code snippet, we search for messages from senders whose mail domain is "@ksu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
125
+ page_content='edu".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
126
+ page_content=' ids <- con$search_string(expr = "@ksu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
127
+ page_content='edu", where = "FROM") The resulting object is a vector containing the matched unique ids (UID) or the message sequence numbers7 such as presented below: [1] 60 145 147 159 332 333 336 338 341 428 Further details on the other single-search methods and the custom-search method available in this package are provided in [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
128
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
129
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
130
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
131
+ page_content=' Message fetch After executing a search query, users may be interested in fetching the full content or some part of the messages indicated in the search results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
132
+ page_content=' In this regard, mRpostman implements six types of fetch features: fetch body Fetches the message body (message’s full content), or an specified MIME level, which can refer to the text or the attachments if there are any.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
133
+ page_content=' fetch header Fetches the message header, which comprises all the com- ponents of the HEADER section of a message.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
134
+ page_content=' Besides the traditional ones (from, to, cc, subject), it may include several more fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
135
+ page_content=' fetch metadata Fetches the message metadata, which consists of some message’s attributes such as the internal date, and the envelope (from, to, cc, and subject fields).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
136
+ page_content=' 6The WITHIN extension is not supported by all IMAP servers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
137
+ page_content=' A call to the list - server capabilities method will present all the IMAP extensions supported by the mail provider[18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
138
+ page_content=' 7More details on the message identification methodology deployed by the IMAP pro- tocol are provided in [19, 12, 18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
139
+ page_content=' 7 fetch text Fetches the message text section, which can comprise attach- ment MIME levels if applicable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
140
+ page_content=' Each of these methods can be seamlessly integrated into a previous search operation so that the returned ids are used as input for the fetch method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
141
+ page_content=' Above all, these methods consist of a powerful source of information for performing data analysis on e-mail content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
142
+ page_content=' Here, we mimic the extraction of the TEXT portion of a message.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
143
+ page_content=' Although there is a fetch text method, the recommended approach is to use fetch body(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
144
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
145
+ page_content=', mime level = 1L) because the former may collect attachment parts along with the message text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
146
+ page_content=' out <- ids %>% fetch_body(mime_level = 1L) Once the messages are fetched, the text can be cleaned and decoded with the clean msg text helper function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
147
+ page_content=' A subsequent call to the writeLines base R function produces a clean printing of the fetched text: cleaned_text <- clean_msg_text(msg_list = out) writeLines(cleaned_text[[1]]) Receipt Number: XXXXXXX Customer: Vieira de Castro Quadros, Allan Kansas State University Current Date: 04/15/2020 Description Amount -------------------------------------------------------------------------------- HOUSING & DINING $30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
148
+ page_content='00 User Number: XXXXXXXXX Total $30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
149
+ page_content='00 Payments Received Amount -------------------------------------------------------------------------------- 07 CREDIT CARD PAYMENTS $30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
150
+ page_content='00 Visa XXXXXXXXXXXX8437 Authorization # XXXXXX Total $30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
151
+ page_content='00 Thank you for the payment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
152
+ page_content=' Besides other applications, the exported function clean msg text can be used to decode hexadecimal and base 64 characters in the text and other parts of the message.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
153
+ page_content=' In some locales such as French, German or Portuguese speaking countries, message parts may contain non-ASCII characters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
154
+ page_content=' SMTP servers, then, encode it using the RFC 2047 specifications when sending the e-mail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
155
+ page_content=' In these cases, clean msg text is capable of correctly decoding the non-ASCII characters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
156
+ page_content=' 8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
157
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
158
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
159
+ page_content=' Attachment extraction In its pretension to be an IMAP client for R, mRpostman provides meth- ods that enable users to list and download message payloads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
160
+ page_content=' This feature can be particularly critical for automating the analysis of attachment data files, for instance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
161
+ page_content=' Attachments can be downloaded using two different approaches in this package: extending the fetch text/body operation by adding an attach- ment extraction step at the end of the workflow with get attachments;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
162
+ page_content=' or directly fetching attachment parts via the fetch attachments method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
163
+ page_content=' In this article, we focus on the first type of attachment methods, adding a step to our previous workflow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
164
+ page_content=' The get attachments method extracts attachment files from the fetched messages and saves these files to the disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
165
+ page_content=' In the following code excerpt, we extract attachments in a unique pipeline that gathers fetching and search steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
166
+ page_content=' con$search_string(expr = "@ksu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
167
+ page_content='edu", where = "FROM") %>% con$fetch_text() %>% con$get_attachments() During the execution, the software locally saves the extracted attach- ments into sub-folders inside the user’s working directory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
168
+ page_content=' These sub-folders are named following the messages’ ids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
169
+ page_content=' The attachments are placed into their respective messages’ sub-folders as demonstrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
170
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
171
+ page_content=' Note that the parent levels are named after the informed username and the selected mail folder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
172
+ page_content=' For more information on the other attachment-related methods, the reader should refer to the documentation in [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
173
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
174
+ page_content=' Illustrative Examples To demonstrate the capabilities of the proposed software, we explore two use cases of this package in support of data analysis tasks: a simple study of the frequency of e-mails grouped by senders;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
175
+ page_content=' and a sentiment analysis run on a set of e-mails received during a period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
176
+ page_content=' The R scripts needed for reproducing these examples are provided in the appendixes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
177
+ page_content=' Although the results cannot be exactly reproduced once it reflects the author’s mailbox contents, they can be easily adapted to the reader’s context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
178
+ page_content=' 9 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
179
+ page_content=' (working directory) user@company.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
180
+ page_content='com INBOX 141 final.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
181
+ page_content='zip prob plot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
182
+ page_content='svg staa2072.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
183
+ page_content='pdf 144 app.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
184
+ page_content='R image001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
185
+ page_content='png recording.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
186
+ page_content='mp4 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
187
+ page_content=' 2: Local directory tree for the extracted attachment files 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
188
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
189
+ page_content=' Frequency analysis of e-mail data In the first example, we run a simple analysis of the e-mail frequency with regard to senders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
190
+ page_content=' This can be especially useful in professional fields, such as marketing and customer service offices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
191
+ page_content=' A period of analysis was defined, and a search-by-date is performed using the search period method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
192
+ page_content=' Then, senders’ information for the returned ids are fetched via fetch metadata, using the ENVELOPE attribute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
193
+ page_content=' After some basic manipulation with regular expressions, the data is ready to be plotted as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
194
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
195
+ page_content=' 10 omitted@tbs−education.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
196
+ page_content='fr omitted@lsbu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
197
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
198
+ page_content='uk omitted@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
199
+ page_content='com cortana@microsoft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
200
+ page_content='com no−reply@researchgatemail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
201
+ page_content='net E−mail Frequency (by sender) count 0 2 4 6 8 10 12 14 ResearchGate Cortana Claudio Piga Chen, Daqing MANTOVANI Andrea Period: 01−Nov to 01−Dec−2020 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
202
+ page_content=' 3: An example of e-mail frequency analysis grouped by sender The same kind of analysis can be replicated for the messages’ subjects with only a few modifications in the regular expressions code chunks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
203
+ page_content=' Con- sidering that some companies/users deal with subject-standardized e-mails, this approach can be useful to analyze the frequency of e-mails with regard to different categories of subjects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
204
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
205
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
206
+ page_content=' Sentiment analysis on e-mail data For the sentiment analysis example, we also define a period of analysis and run a search period query.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
207
+ page_content=' Then, we retrieve the text part of the messages by fetching the first MIME level with fetch body(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
208
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
209
+ page_content=', mime level = 1L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
210
+ page_content=' The texts go trough a first cleaning step with a call to the clean msg text function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
211
+ page_content=' After further cleaning procedures, we use a lexicon[20] via the syuzhet package[21] to evaluate the sentiment of each e-mail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
212
+ page_content=' The output below is a subset of the resulting data frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
213
+ page_content=' The last two columns indicate, respectively, the counts of negative and positive words for each message.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
214
+ page_content=' The other columns provide counts related to detailed emotions, which are not necessarily positive nor negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
215
+ page_content=' anger anticipation disgust fear joy sadness surprise trust negative positive body91 1 5 1 1 2 2 0 9 1 13 body92 0 1 0 0 1 0 0 3 0 1 body93 0 3 0 2 0 1 2 2 1 3 body94 0 1 0 1 0 0 1 4 1 4 body95 0 5 0 0 3 0 2 8 0 13 body96 0 0 0 0 0 0 0 0 0 0 body97 4 20 4 11 13 11 4 25 16 51 11 body98 0 3 0 0 2 0 1 4 0 6 body99 3 9 1 6 1 5 2 16 14 24 body100 4 15 1 13 6 7 6 15 16 31 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
216
+ page_content=' Impact As we have demonstrated, mRpostman clearly fills an existent gap of a broad, complete, and, at the same time, easy-to-use IMAP client for the R language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
217
+ page_content=' The package has consolidated itself as an important tool for collecting massive e-mail content, thus contributing to data analysis tasks in R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
218
+ page_content=' Although all sort of users have been taking advantage of this package, we are inclined to think that its use has been prevailing amid companies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
219
+ page_content=' We have received a considerable number of feedback from enterprise users who deploy mRpostman as an additional feature for automatically produc- ing daily reports based on attachment data files.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
220
+ page_content=' Besides this, there are important applications for marketing and post-sales departments, for exam- ple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
221
+ page_content=' They can also deploy this package to collect e-mail data for analyzing e-mail frequency, or performing sentiment analysis, as we have demonstrated in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
222
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
223
+ page_content=' Conclusions mRpostman aims to provide an easy-to-use IMAP client for R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
224
+ page_content=' Its design allows the efficient, elegant, and intuitive execution of several IMAP com- mands on a wide range of mail providers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
225
+ page_content=' Consequently, users cannot only manage their mailboxes but also conduct e-mail data analysis from inside R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
226
+ page_content=' Finally, because IMAP is such a complex protocol, this package is in con- stant development, which means that new features are to be implemented in future versions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
227
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
228
+ page_content=' Conflict of Interest No conflict of interest exists: We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its out- come.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
229
+ page_content=' Acknowledgements The author would like to acknowledge the Department of Statistics at Kansas State University (K-State) for the assistantship provided for his doc- torate studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
230
+ page_content=' He wants to especially thank Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
231
+ page_content=' Christopher Vahl and Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
232
+ page_content=' 12 Michael Higgins for the academic support.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
233
+ page_content=' The author also acknowledges the academic guidance of Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
234
+ page_content=' George von Borries at the University of Brasilia (UnB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
235
+ page_content=' The contents of this article are the responsibility of the author and do not reflect the views of K-State or UnB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
236
+ page_content=' Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
237
+ page_content=' Code for example 1 library(mRpostman) con <- configure_imap( url="imaps://outlook.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
238
+ page_content='office365.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
239
+ page_content='com", username="user@company.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
240
+ page_content='com", password=rstudioapi::askForPassword() ) con$select_folder(name = "INBOX") meta_res <- con$search_period(since_date_char = "01-Nov-2020", before_date_char = "01-Dec-2020") %>% con$fetch_metadata(attribute = "ENVELOPE") # cleaning # step 1 clean_meta <- lapply(meta_res, function(x){ regmatches(x, regexpr(pattern = "\\\\(\\\\(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
241
+ page_content='*\\"(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
242
+ page_content='*?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
243
+ page_content=' )\\"\\\\)\\\\)", x, perl = TRUE)) }) # step 2 # cleaning Ccs senders1 <- lapply(clean_meta, function(x){ gsub(")) NIL .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
244
+ page_content=' *$|)) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
245
+ page_content=' *$|))$", "", x) }) # step 3 senders1 <- lapply(senders1, function(x){ gsub(’^\\\\(\\\\(|\\"+’, "", x) }) # splitting name <- c() email <- c() for (i in seq_along(senders1)){ # i = 1 out <- unlist(strsplit(senders1[[i]], " NIL ")) name <- c(name, out[1]) email <- c(email, gsub(" ", "@", out[2])) } df <- data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
246
+ page_content='frame(name, email) df$name <- decode_mime_header(string = as.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
247
+ page_content='character(df$name)) df2 <- as.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
248
+ page_content='data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
249
+ page_content='frame(table(df$email)) colnames(df2) <- c("email", "count") df2 <- df2[order(-df2[,2]), ][1:5,] df2$name <- unique(df$name[df$email %in% df2$email]) par(mar=c(5,13,4,1)+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
250
+ page_content='1) pal_cols <- c(’#3B4992FF’, ’#EE0000FF’, ’#008B45FF’, ’#631879FF’, ’#008280FF’) barplot(rev(df2$count), main = "E-mail Frequency (by sender)", xlab = "count", names.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
251
+ page_content='arg = rev(df2$email), las = 1, col = pal_cols, horiz = TRUE) mysubtitle <- "Period: 01-Nov to 01-Dec-2020" legend(x = "bottomright", legend = df2$name, fill = rev(pal_cols), bty = "n", y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
252
+ page_content='intersp = 1) mtext(side=3, line=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
253
+ page_content='3, at=-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
254
+ page_content='07, adj=0, cex=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
255
+ page_content='9, mysubtitle) 13 Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
256
+ page_content=' Code for example2 library(mRpostman) con <- configure_imap(url="imaps://outlook.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
257
+ page_content='office365.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
258
+ page_content='com", username="user@company.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
259
+ page_content='com",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
260
+ page_content=' password=rstudioapi::askForPassword(),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
261
+ page_content=' timeout_ms = 20000 ) con$select_folder("INBOX") ids <- con$search_period(since_date_char = "10-Oct-2020",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
262
+ page_content=' before_date_char = "20-Dec-2020") fetch_res2 <- ids %>% con$fetch_body(mime_level = 1L) cleaned_text_list <- clean_msg_text(msg_list = fetch_res2) cleaned_text_list[[4]] for (i in seq_along(cleaned_text_list)) { clean_text <- gsub("\\r\\n",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
263
+ page_content=' " ",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
264
+ page_content=' cleaned_text_list[[i]]) clean_text <- unlist(strsplit(clean_text,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
265
+ page_content=' " ")) words <- clean_text[!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
266
+ page_content='grepl("\\\\d|_|http|www|nbsp|@|(?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
267
+ page_content='<=[[:lower:]])(?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
268
+ page_content='=[[:upper:]])", clean_text, perl = TRUE)] words <- tolower(gsub("\\\\W+", "", words)) words <- gsub(’[^a-zA-Z|[:blank:]]’, "", words) cleaned_text_list[[i]] <- paste(words, collapse = " ") } cleaned_text_df <- do.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
269
+ page_content='call(’rbind’, cleaned_text_list) library(syuzhet) email_sentiment_df <-get_nrc_sentiment(cleaned_text_df) rownames(email_sentiment_df) <- rownames(cleaned_text_df) head(email_sentiment_df,10) References [1] R Core Team, R: A Language and Environment for Statistical Comput- ing, R Foundation for Statistical Computing, Vienna, Austria (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
270
+ page_content=' URL https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
271
+ page_content='R-project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
272
+ page_content='org/ [2] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
273
+ page_content=' Allaire, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
274
+ page_content=' Xie, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
275
+ page_content=' McPherson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
276
+ page_content=' Luraschi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
277
+ page_content=' Ushey, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
278
+ page_content=' Atkins, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
279
+ page_content=' Wickham, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
280
+ page_content=' Cheng, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
281
+ page_content=' Chang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
282
+ page_content=' Iannone, rmarkdown: Dynamic Documents for R, r package version 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
283
+ page_content='5 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
284
+ page_content=' URL https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
285
+ page_content='com/rstudio/rmarkdown [3] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
286
+ page_content=' Heinlein, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
287
+ page_content=' Hartleben, The Book of IMAP: Building a Mail Server with Courier and Cyrus, No Starch Press, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
288
+ page_content=' [4] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
289
+ page_content=' Mersmann, sendmailR: send email using R, r package version 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
290
+ page_content='2-1 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
291
+ page_content=' URL https://CRAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
292
+ page_content='R-project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
293
+ page_content='org/package=sendmailR [5] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
294
+ page_content=' Premraj, mailR: A Utility to Send Emails from R, r package version 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
295
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
296
+ page_content='1 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
297
+ page_content=' URL https://CRAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
298
+ page_content='R-project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
299
+ page_content='org/package=mailR 14 [6] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
300
+ page_content=' Himmelmann, mail: Sending Email Notifications from R, r package version 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
301
+ page_content='0 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
302
+ page_content=' URL https://CRAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
303
+ page_content='R-project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
304
+ page_content='org/package=mail [7] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
305
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
306
+ page_content=' Bache, blatr: Send Emails Using ’Blat’ for Windows, r package version 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
307
+ page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
308
+ page_content='1 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
309
+ page_content=' URL https://CRAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
310
+ page_content='R-project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
311
+ page_content='org/package=blatr [8] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
312
+ page_content=' Hester, gmailr: Access the ’Gmail’ ’RESTful’ API, r package version 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
313
+ page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
314
+ page_content='0 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
315
+ page_content=' URL https://CRAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
316
+ page_content='R-project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
317
+ page_content='org/package=gmailr [9] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
318
+ page_content=' Iannone, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
319
+ page_content=' Cheng, blastula: Easily Send HTML Email Messages, r package version 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
320
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
321
+ page_content='2 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
322
+ page_content=' URL https://CRAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
323
+ page_content='R-project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
324
+ page_content='org/package=blastula [10] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
325
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
326
+ page_content=' Collier, emayili: Send Email Messages, r package version 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
327
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
328
+ page_content='4 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
329
+ page_content=' URL https://CRAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
330
+ page_content='R-project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
331
+ page_content='org/package=emayili [11] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
332
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
333
+ page_content=' Collier, edeR: Email Data Extraction Using R, r package version 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
334
+ page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
335
+ page_content='0 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
336
+ page_content=' URL https://CRAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
337
+ page_content='R-project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
338
+ page_content='org/package=edeR [12] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
339
+ page_content=' Crispin, Internet message access protocol - version 4rev1, request for Comments 3501 (RFC 3501), Internet Engineering Task Force (IETF) (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
340
+ page_content=' URL https://tools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
341
+ page_content='ietf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
342
+ page_content='org/html/rfc3501 [13] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
343
+ page_content=' Moore, Multipurpose Internet Mail Extensions (MIME), part three: Message header extensions for non-ascii text, request for Comments 2047 (RFC 2047), Internet Engineering Task Force (IETF) (1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
344
+ page_content=' URL https://tools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
345
+ page_content='ietf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
346
+ page_content='org/html/rfc2047 [14] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
347
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
348
+ page_content=' Bache, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
349
+ page_content=' Wickham, magrittr: A Forward-Pipe Operator for R, r package version 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
350
+ page_content='5 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
351
+ page_content=' URL https://CRAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
352
+ page_content='R-project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
353
+ page_content='org/package=magrittr [15] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
354
+ page_content=' Chang, R6: Encapsulated Classes with Reference Semantics, r pack- age version 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
355
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
356
+ page_content='0 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
357
+ page_content=' URL https://CRAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
358
+ page_content='R-project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
359
+ page_content='org/package=R6 [16] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
360
+ page_content=' Ooms, curl: A Modern and Flexible Web Client for R, r package version 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
361
+ page_content='3 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
362
+ page_content=' URL https://CRAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
363
+ page_content='R-project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
364
+ page_content='org/package=curl 15 [17] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
365
+ page_content=' Stenberg, libcurl - the multiprotocol file transfer library, version 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
366
+ page_content='69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
367
+ page_content='1 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
368
+ page_content=' URL https://curl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
369
+ page_content='haxx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
370
+ page_content='se/ [18] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
371
+ page_content=' Quadros, mRpostman: An IMAP Client for R, r package version 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
372
+ page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
373
+ page_content='0 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
374
+ page_content=' URL https://allanvc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
375
+ page_content='github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
376
+ page_content='io/ [19] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
377
+ page_content=' Resnick, Internet message format, request for Comments 5322 (RFC 5322), Internet Engineering Task Force (IETF) (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
378
+ page_content=' URL https://tools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
379
+ page_content='ietf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
380
+ page_content='org/html/rfc5322 [20] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
381
+ page_content=' Mohammad, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
382
+ page_content=' Turney, Emotions evoked by common words and phrases: Using mechanical turk to create an emotion lexicon, in: CAAGET ’10: Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, Los Angeles, California, 2010, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
383
+ page_content=' 26–34, june, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
384
+ page_content=' URL http://saifmohammad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
385
+ page_content='com/WebPages/lexicons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
386
+ page_content='html [21] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
387
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
388
+ page_content=' Jockers, Syuzhet: Extract Sentiment and Plot Arcs from Text, r package version 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
389
+ page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
390
+ page_content='4 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
391
+ page_content=' URL https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
392
+ page_content='com/mjockers/syuzhet 16' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf'}
I9FAT4oBgHgl3EQfux7Z/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
ItFJT4oBgHgl3EQfFyzw/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
JdAyT4oBgHgl3EQffviy/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b9ac8305deaec0f6c7246bd2c401c1e5a8c78e60d5c9c05865af58b838daf7b
3
+ size 78949
LNAyT4oBgHgl3EQfgPhD/content/tmp_files/2301.00354v1.pdf.txt ADDED
@@ -0,0 +1,1714 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ RiskProp: Account Risk Rating on Ethereum via De-anonymous
2
+ Score and Network Propagation
3
+ Dan Lin
4
+ School of Software Engineering,
5
+ Sun Yat-sen University
6
+ Zhuhai, China
7
8
+ Jiajing Wu∗
9
+ School of Computer Science and
10
+ Engineering, Sun Yat-sen University
11
+ Guangzhou, China
12
13
+ Qishuang Fu
14
+ School of Computer Science and
15
+ Engineering, Sun Yat-sen University
16
+ Guangzhou, China
17
18
+ Zibin Zheng
19
+ School of Software Engineering,
20
+ Sun Yat-sen University
21
+ Zhuhai, China
22
23
+ Ting Chen
24
+ University of Electronic Science and
25
+ Technology of China
26
+ Guangzhou, China
27
28
+ ABSTRACT
29
+ As one of the most popular blockchain platforms supporting smart
30
+ contracts, Ethereum has caught the interest of both investors and
31
+ criminals. Differently from traditional financial scenarios, executing
32
+ Know Your Customer verification on Ethereum is rather difficult
33
+ due to the pseudonymous nature of the blockchain. Fortunately,
34
+ as the transaction records stored in the Ethereum blockchain are
35
+ publicly accessible, we can understand the behavior of accounts or
36
+ detect illicit activities via transaction mining. Existing risk control
37
+ techniques have primarily been developed from the perspectives of
38
+ de-anonymizing address clustering and illicit account classification.
39
+ However, these techniques cannot be used to ascertain the potential
40
+ risks for all accounts and are limited by specific heuristic strate-
41
+ gies or insufficient label information. These constraints motivate
42
+ us to seek an effective rating method for quantifying the spread
43
+ of risk in a transaction network. To the best of our knowledge,
44
+ we are the first to address the problem of account risk rating on
45
+ Ethereum by proposing a novel model called RiskProp, which in-
46
+ cludes a de-anonymous score to measure transaction anonymity
47
+ and a network propagation mechanism to formulate the relation-
48
+ ships between accounts and transactions. We demonstrate the ef-
49
+ fectiveness of RiskProp in overcoming the limitations of existing
50
+ models by conducting experiments on real-world datasets from
51
+ Ethereum. Through case studies on the detected high-risk accounts,
52
+ we demonstrate that the risk assessment by RiskProp can be used
53
+ to provide warnings for investors and protect them from possible
54
+ financial losses, and the superior performance of risk score-based
55
+ account classification experiments further verifies the effectiveness
56
+ of our rating method.
57
+ KEYWORDS
58
+ Abnormal detection, network propagation, Ethereum, risk control,
59
+ de-anonymization
60
+ 1
61
+ INTRODUCTION
62
+ Ethereum [30] has the second-largest market cap in the blockchain
63
+ ecosystem. The account model is adopted on Ethereum, and the
64
+ native cryptocurrency on Ethereum is named Ether (abbreviated as
65
+ ∗Corresponding author.
66
+ “ETH”), which is widely accepted as payments and transferred from
67
+ one account to another. It is known that Ethereum accounts are
68
+ indexed according to pseudonyms, and the creation of accounts is
69
+ almost cost-free. This anonymous nature and the lack of regulation
70
+ result in the bad reputation of Ethereum and other blockchain sys-
71
+ tems for breeding malicious behaviors and enabling fraud, thereby
72
+ resulting in large property losses for investors. As reported in a
73
+ Chainalysis Crime Report, the illicit share of all cryptocurrency
74
+ activities was valued at nearly USD 2.7 billion in 2020. These losses
75
+ illustrate that Know-Your-Customer (KYC) and risk control of ac-
76
+ counts are critical and necessary. Risk control [23] not only helps
77
+ wallet customers identify risky accounts and avoid losses but also
78
+ plays a vital role in the anti-money laundering of virtual asset
79
+ service providers, such as cryptocurrency exchanges.
80
+ Therefore, a wealth of efforts have been expended in risk con-
81
+ trol on Ethereum in recent years. In September 2020, the Financial
82
+ Action Task Force (FATF) published a recommendation report on
83
+ virtual assets and released information on Red Flag Indicators [11]
84
+ related to transactions, anonymity, senders or recipients, the source
85
+ of funds, and geographical risks. In addition, researchers in the aca-
86
+ demic community have proposed various techniques from the per-
87
+ spectives of address clustering and illicit account classification. Ad-
88
+ dress clustering techniques perform entity identification of anony-
89
+ mous accounts. For example, Victor [27] proposes several clustering
90
+ heuristics for Ethereum accounts and clusters 17.9% of all active ex-
91
+ ternally owned accounts. Illicit account detection techniques focus
92
+ on training classifiers based on well-designed features extracted
93
+ from transactions [8, 10, 32]. Moreover, some researchers have de-
94
+ veloped methods for automatic feature extraction incorporating
95
+ structural information [19, 21, 29, 33].
96
+ However, there are still some limitations (L) associated with
97
+ these techniques. L1: Account clustering techniques can only be
98
+ applied to part of accounts and therefore have limited applicability,
99
+ and most accounts beyond heuristic rules cannot thus be identified.
100
+ L2: In the existing methods for illicit account detection, binary
101
+ classifiers are usually trained via supervised learning. However, as
102
+ only a very small percentage of risky nodes have clear labels, which
103
+ are required for these methods, the vast majority of accounts that
104
+ may be involved in malicious events are unlabeled. In particular,
105
+ arXiv:2301.00354v1 [cs.SI] 1 Jan 2023
106
+
107
+ WWW ’23, April 30–May 4, 2023, Austin, TX, US
108
+ Anonymous author(s)
109
+ TxnHash: 0x0bf742...
110
+ From: 0x3da2b...
111
+ To: 0x41b53...
112
+ Timestamp: 1525153486
113
+ Value: 0.1 Ether
114
+ TxnFee: 0.000861 Ether
115
+ Customer
116
+ ...
117
+ ...
118
+ Scammer
119
+ Scammer
120
+ Exchange
121
+ Txns
122
+ Txns
123
+ Txns
124
+ ...
125
+ Account risk rating
126
+ Public transactions
127
+ Ethereum blockchain
128
+ 0x3da2b...
129
+ 0x41b53...
130
+ Figure 1: The procedure of ETH transfer in Ethereum.
131
+ “From” denotes the sender, “To” denotes the receiver, and
132
+ “Txn” denotes “Transaction”.
133
+ risky accounts with few transactions or unseen patterns are likely
134
+ to be misidentified in practical use.
135
+ To address the limitations presented above, we explore risk con-
136
+ trol on Ethereum from a new perspective: Account risk rating. In
137
+ traditional financial scenarios, credit scoring is usually conducted
138
+ by authorized financial institutions, which perform audits on their
139
+ customers to fully understand their identity, background, and fi-
140
+ nancial credit standing. Similarly to credit scoring, risk rating on
141
+ Ethereum can help us quantify the latent risk of a transaction or
142
+ account with a quantitative score, thereby combating money laun-
143
+ dering and identifying potential scams before new victims emerge.
144
+ In terms of the abovementioned L1, in contrast to the traditional
145
+ account clustering method, which can only de-anonymize a small
146
+ number of accounts, the account risk method proposed in this paper
147
+ can obtain quantitative risk indicators for all accounts. Regarding
148
+ L2, the proposed risk rating method can achieve decent perfor-
149
+ mance in an unsupervised manner without feeding labels. The
150
+ output of the proposed method is risk values, which are provided
151
+ continuously and allow evaluation of the severity of risk.
152
+ Compared with traditional financial scenarios, several unique
153
+ challenges (C) are encountered in the task of account risk rating on
154
+ Ethereum. C1: Nature of anonymity. Transactions on Ethereum
155
+ do not require real-name verification. Even worse, perpetrators of
156
+ some malicious activities deliberately enhance their anonymity to
157
+ counter the impact of de-anonymizing clustering techniques [29].
158
+ C2: Complex transaction relationship. Compared with tradi-
159
+ tional financial scenarios, a user or entity on Ethereum may control
160
+ a large number of accounts at almost no cost, and the transaction
161
+ relationship between accounts is also more complex. How to quan-
162
+ tify the impact of trading behavior between accounts on account
163
+ risk is a challenging core problem.
164
+ To overcome the challenges mentioned above, we propose a
165
+ novel approach called Risk Propagation (RiskProp) for Ethereum ac-
166
+ count rating. It comprises two core designs, namely de-anonymous
167
+ score and a network propagation mechanism. To resolve C1, de-
168
+ anonymous score measures the degree to which transactions remain
169
+ anonymous. For example, both the payer and the payee of an illicit
170
+ transaction prefer to have a small number of transactions to en-
171
+ sure anonymity-preserving protection. In contrast, both sides of a
172
+ licit transaction may participate in numerous interactions without
173
+ evading the impact of the de-anonymized clustering algorithm. Af-
174
+ terward, to resolve C2, we model the massive transaction records
175
+ as a directed bipartite graph and introduce a network propagation
176
+ mechanism with three interdependent metrics, namely Confidence
177
+ of the de-anonymous score, Trustiness of the payee, and Reliability
178
+ of the payer. Intuitively, payees with higher trustiness receive trans-
179
+ actions with higher de-anonymous scores, and payers with higher
180
+ reliability will send transactions with higher confidence. Clearly,
181
+ reliability, trustiness, and confidence are related to each other, so
182
+ we define five items of prior knowledge that these metrics should
183
+ satisfy and propose three mutually recursive equations to estimate
184
+ the values of these metrics. To verify the effectiveness of the pro-
185
+ posed risk rating method and further illustrate the significance of
186
+ rating for risk control on Ethereum, we evaluate the effect of the
187
+ risk rating system via experiments from two aspects, i.e., analysis of
188
+ risk rating results and rating score-based illicit/licit classification.
189
+ Overall, our contributions are summarized as follows:
190
+ • A new perspective for Ethereum risk control. This paper is
191
+ the first to propose tackling the problem of Ethereum risk control
192
+ via the perspective of account risk rating.
193
+ • A novel risk metric for transactions. We creatively develop a
194
+ metric called de-anonymous score for transactions, which measures
195
+ the degree of de-anonymization to quantify the risk of a transaction.
196
+ • An effective method and interesting insights. We implement
197
+ a novel risk rating method called RiskProp and demonstrate its su-
198
+ perior effectiveness and efficiency via experiments on a real-world
199
+ Ethereum transaction dataset together with theoretical analysis. By
200
+ analyzing the rating results and case studies on high-risk accounts,
201
+ we obtain interesting insights into the Ethereum ecosystem and
202
+ further show how our method could prevent financial losses ahead
203
+ of blacklisting malicious accounts.
204
+ 2
205
+ PRELIMINARY
206
+ 2.1
207
+ Ethereum Financial Background
208
+ Ether is the native “currency” on Ethereum and plays a fundamen-
209
+ tal part in the Ethereum payment system. Ether can be paid or
210
+ received in financial activities, just like currency in real life. In
211
+ conventional financial scenarios, a Know Your Customer (KYC)
212
+ check is the mandatory process to identify and verify a customer’s
213
+ identity when opening an account and to periodically understand
214
+ the legitimacy of the involved funds over time. However, unlike
215
+ traditional transaction systems, where customers’ identity informa-
216
+ tion is required and obtained in KYC checks, Ethereum accounts
217
+ are designed as pseudonymous addresses identified by 20 bytes of
218
+ public key information generated by cryptographic algorithms, for
219
+ example, “0x99f154f6a393b088a7041f1f5d0a7cbfa795d301”.
220
+ Figure 1 depicts the risky scenario of Ether transfer in aspects of
221
+ data acquisition. It includes three layers: 1) Ethereum blockchain.
222
+ The Ethereum historical data are irreversible and publicly trace-
223
+ able on the chain. 2) Public transactions. The transaction denotes
224
+ a signed data package from an account to another account, in-
225
+ cluding the sending address, receiver address, transferred Ether
226
+ amount, etc. 3) Account risk rating. Usually, the identities who con-
227
+ trol the accounts are not labeled. Customers may become involved
228
+ in suspicious financial crimes or be vulnerable to frauds and scams.
229
+ Furthermore, the illicit funds can be laundered and cashed out via
230
+ exchanges. In this procedure, our proposed RiskProp is implemented
231
+ to measure the risk of unlabeled accounts that may have ill inten-
232
+ tions and alert customers when engaging in suspicious, potentially
233
+ illegal transactions.
234
+
235
+ RiskProp
236
+ WWW ’23, April 30–May 4, 2023, Austin, TX, US
237
+ 2.2
238
+ The Nature of Blockchain: Anonymity
239
+ It is known that the Ethereum account is identified as a pseudony-
240
+ mous address. However, if customers repeatedly use the same ad-
241
+ dress as on-chain identification, the relationship between addresses
242
+ becomes linkable via public transaction records. Accounts that
243
+ participate in more transactions and connect with more accounts
244
+ experience degrading anonymity [29]. To reduce the likelihood
245
+ of exposure, criminals naturally tend to initiate transactions with
246
+ fewer accounts. Here is an example on Ethereum: The two accounts
247
+ of transaction 0x9a9d have only three transactions and became in-
248
+ active thereafter. These two accounts are considered suspicious and
249
+ reported as relevant accounts of Upbit exchange hack. On the con-
250
+ trary, entities who do not deliberately take anonymity-preserving
251
+ measures are likely to be normal [29]. Thus, the transaction is
252
+ scored based on the fact of whether the accounts are trying to hide
253
+ or not, which is the de-anonymous score.
254
+ Definition 1 (De-anonymous score, abbreviated as “score”).
255
+ The de-anonymous score of a transaction from account𝑢 to 𝑣 where
256
+ there is no intention to hide is defined as
257
+ 𝑆𝑐𝑜𝑟𝑒(𝑢, 𝑣) =1
258
+ 2 ( 2 log |𝑂𝑢𝑡𝑇𝑥𝑛(𝑢)| − log𝑚𝑎𝑥𝑂𝑢𝑡
259
+ log𝑚𝑎𝑥𝑂𝑢𝑡
260
+ + 2 log |𝐼𝑛𝑇𝑥𝑛(𝑣)| − log𝑚𝑎𝑥𝐼𝑛
261
+ log𝑚𝑎𝑥𝐼𝑛
262
+ ),
263
+ (1)
264
+ where 𝑂𝑢𝑡𝑇𝑥𝑛(𝑢) represents the outgoing transactions (payments)
265
+ of payer 𝑢, 𝐼𝑛𝑇𝑥𝑛(𝑣) represents the incoming transactions (recep-
266
+ tions) of payee 𝑣, and | × | denotes the size of a set. The minimum
267
+ value of |𝑂𝑢𝑡𝑇𝑥𝑛(𝑢)| and |𝐼𝑛𝑇𝑥𝑛(𝑣)| is 1. Let 𝑚𝑎𝑥𝑂𝑢𝑡 and 𝑚𝑎𝑥𝐼𝑛
268
+ be the largest number of payments and receptions, respectively. The
269
+ de-anonymous scores of a transaction (𝑢, 𝑣) range from −1 (very
270
+ high anonymity, abnormal) to 1 (very low anonymity, normal).
271
+ Intuitively, the score of (𝑢, 𝑣) increases as the transaction num-
272
+ bers of either payer or payee grow. Note that tricky criminals may
273
+ camouflage themselves by deliberately conducting low-anonymity
274
+ transactions [20].
275
+ 2.3
276
+ Transaction Network Construction
277
+ First, each transaction on Ethereum has one payer (i.e., sender) and
278
+ one payee (i.e., receiver). Any account can be the role of payer or
279
+ payee, just as a person in real life has different roles. The payee is a
280
+ passive role and, therefore, we consider the incoming transactions
281
+ to indicate the trustiness of an account. For instance, exchange
282
+ accounts that receive more transactions are considered to be more
283
+ trustworthy. In contrast, the payer is an active role and, thus, the
284
+ outgoing transactions embody the intention of an account. For ex-
285
+ ample, a scam account subjectively wants to transfer stolen money
286
+ to its partners.
287
+ Next, the transaction records are modeled as a directed bipartite
288
+ graph 𝐺 = (𝑈,𝑉,𝑆), where 𝑈 , 𝑉 , and 𝑆 represent the set of all
289
+ payers, payees, and scores, respectively. A weighted edge (𝑢, 𝑣)
290
+ denotes the transfer of Ethers from account 𝑢 ∈ 𝑈 to account 𝑣 ∈ 𝑉
291
+ with 𝑆𝑐𝑜𝑟𝑒(𝑢, 𝑣) ∈ 𝑆. The graph construction procedure is shown
292
+ in Figure 2.
293
+ Then, the ego network of a payer 𝑢 is introduced. It is formed by
294
+ its outgoing scores and corresponding payee neighbors, formulated
295
+ Money transfer
296
+ Accounts
297
+ Tnx Score
298
+ Accounts
299
+ Payer
300
+ Payee
301
+ Tnx Score
302
+ Accounts
303
+ (A) Ethereum
304
+ transaction records
305
+ (B) De-anonymous
306
+ score calculation
307
+ (C) Payer-payee graph
308
+ Figure 2: The transformation from the raw transaction
309
+ records to the directed bipartite graph. “Txn” denotes
310
+ “Transaction”.
311
+ Payee set
312
+ V
313
+ Payer A
314
+ Payer B
315
+ Payee X
316
+ Payee Y
317
+ Score(A, X)
318
+ Score(B, Y)
319
+ Payer set
320
+ U
321
+ Score(B, X)
322
+ In( ) = { Score(A, X), Score(B, X) }
323
+ Payee X
324
+ Out( ) = { Score(B, X), Score(B, Y) }
325
+ Payer B
326
+ Figure 3: A toy example of the directed bipartite graph estab-
327
+ lished from transactions and the illustration of functions 𝐼𝑛
328
+ and 𝑂𝑢𝑡.
329
+ as 𝑂𝑢𝑡(𝑢) ∪ {𝑣|(𝑢, 𝑣) ∈ 𝑂𝑢𝑡(𝑢)}, where 𝑂𝑢𝑡(𝑢) is the set of scores
330
+ connected with 𝑢. It is similar for the ego network of a payee,
331
+ formulated as 𝐼𝑛(𝑣)∪{𝑢|(𝑢, 𝑣) ∈ 𝐼𝑛(𝑣)}. Figure 3 shows an example
332
+ in which there are two payers, two payees, and three transactions.
333
+ 3
334
+ MODEL
335
+ In this section, we describe the prior knowledge that establishes the
336
+ relationships among accounts and transactions and then propose
337
+ risk propagation formulations that satisfy the prior knowledge. It
338
+ is worth noticing that the proposed algorithm does not require
339
+ handcraft feature engineering.
340
+ 3.1
341
+ Problem Definition and Model Overview
342
+ Given raw transaction records of Ethereum, we model the transac-
343
+ tion relationships between accounts as a directed bipartite graph
344
+ 𝐺 = (𝑈,𝑉,𝑆) with payers and payees as nodes and prepossessed
345
+ de-anonymous scores as weights of edges. We believe that accounts
346
+ have intrinsic metrics to quantify their reliability and trustworthi-
347
+ ness and transactions have intrinsic metrics to measure the con-
348
+ fidence of their calculated de-anonymous scores. Naturally, those
349
+ metrics are interdependent and interplay with each other via the
350
+ risk propagation mechanism:
351
+ • Payers vary in terms of their Reliability, which indicates how
352
+ motivated they are. A licit payer without malicious intent usually
353
+ does not hide himself or disguise its intentions during transactions.
354
+ Specifically, a reliable payer has harmless intentions regardless of
355
+ whether it is transferring money to an exchange or to a scammer
356
+ account (being gypped). In contrast, a perpetrator (e.g., a scammer)
357
+ hopes to cover up its traces [27]. The reliability metric 𝑅(𝑢) of a
358
+ payer 𝑢 lies in [0, 1], ∀𝑢 ∈ 𝑈 . A value of 1 denotes a 100% reliable
359
+ payer and 0 denotes a 0% reliable payer.
360
+
361
+ WWW ’23, April 30–May 4, 2023, Austin, TX, US
362
+ Anonymous author(s)
363
+ Table 1: An example of propagation. 𝑅0 is initial value, 𝑅𝑓 𝑖𝑛𝑎𝑙
364
+ and Risk𝑓 𝑖𝑛𝑎𝑙 are the results after convergence.
365
+ Account
366
+ Label
367
+ 𝑅0
368
+ 𝑅𝑓 𝑖𝑛𝑎𝑙
369
+ Risk𝑓 𝑖𝑛𝑎𝑙
370
+ 0xa768
371
+ Contract-deployer
372
+ 0.7
373
+ 0.8575
374
+ 1.425
375
+ 0x8271
376
+ Exchange
377
+ 0.7
378
+ 0.9526
379
+ 0.474
380
+ 0xebdc
381
+ Phish-hack
382
+ 0.7
383
+ 0.1195
384
+ 8.805
385
+ 0xfe34
386
+ Phish-hack
387
+ 0.7
388
+ 0.2330
389
+ 7.670
390
+ • Payees vary in their trustworthiness level, measured by a metric
391
+ called Trustiness, which indicates how trustworthy they are. Intu-
392
+ itively, a cryptocurrency service provider with a better reputation
393
+ will receive more licit transactions (with higher scores) from well-
394
+ motivated payers. Trustiness of a payee 𝑇 (𝑣) ranges from 0 (very
395
+ untrustworthy) to 1 (very trustworthy) ∀𝑣 ∈ 𝑉 .
396
+ • De-anonymous scores vary in terms of Confidence, which re-
397
+ flects the confidence in the estimated risk probability of a trans-
398
+ action. The confidence metric 𝐶𝑜𝑛𝑓 (𝑢, 𝑣) ranges from 0 (lack of
399
+ confidence) to 1 (very confident).
400
+ The connection between the reliability and risk of accounts: We
401
+ define Reliability to characterize the risk rating of accounts because
402
+ an account’s intention can be inferred by its (active) sending be-
403
+ havior, rather than by its (passive) receiving behavior. A scammer
404
+ transferring stolen money to its gang is a better reflection of its
405
+ evil intention than the receipt of stolen money from victims. In the
406
+ later section, we calculate the risk rating of accounts based on the
407
+ Reliability of payer roles.
408
+ 3.2
409
+ Network Propagation Mechanism
410
+ Given a cryptocurrency payer–payee graph, all intrinsic metrics
411
+ are unknown but are interdependent. Here, we introduce five items
412
+ of prior knowledge that establish the relationships and how the net-
413
+ work propagation mechanism is specially designed for our problem.
414
+ The first two items of prior knowledge reflect the interdependency
415
+ between a payee and the de-anonymous scores that they receive.
416
+ [Prior knowledge 1] Payees with higher trustiness receive trans-
417
+ actions with higher de-anonymous scores. Intuitively, a payee
418
+ receiving transactions with high de-anonymous scores is more
419
+ likely to be trustworthy. Formally, if two payees 𝑣1 and 𝑣2 have
420
+ a one-to-one mapping, ℎ : 𝐼𝑛(𝑣1) → 𝐼𝑛(𝑣2) and 𝑆𝑐𝑜𝑟𝑒(𝑢, 𝑣1) >
421
+ 𝑆𝑐𝑜𝑟𝑒(ℎ(𝑢), 𝑣2) ∀(𝑢, 𝑣1) ∈ 𝐼𝑛(𝑣1), then 𝑇 (𝑣1) > 𝑇 (𝑣2).
422
+ [Prior knowledge 2] Payees with higher trustiness receive trans-
423
+ actions with more positive confident scores. For two payees 𝑣1 and
424
+ 𝑣2 with identical de-anonymous score networks, if the confidence
425
+ of the in-transactions of payee 𝑣1 is higher than that of payee 𝑣2,
426
+ the trustiness of payee 𝑣1 should be higher. Formally, if two pay-
427
+ ees 𝑣1 and 𝑣2 have a one-to-one mapping, ℎ : 𝐼𝑛(𝑣1) → 𝐼𝑛(𝑣2)
428
+ and 𝐶𝑜𝑛𝑓 (𝑢, 𝑣1) > 𝐶𝑜𝑛𝑓 (ℎ(𝑢), 𝑣2) ∀(𝑢, 𝑣1) ∈ 𝐼𝑛(𝑣1), then 𝑇 (𝑣1) >
429
+ 𝑇 (𝑣2).
430
+ According to the above prior knowledge, we develop the Trusti-
431
+ ness formulation for ∀𝑣 ∈ 𝑉 of our RiskProp algorithm:
432
+ 𝑇 (𝑣) =
433
+
434
+ (𝑢,𝑣) ∈𝐼𝑛(𝑣) 𝑆𝑐𝑜𝑟𝑒(𝑢, 𝑣) × 𝐶𝑜𝑛𝑓 (𝑢, 𝑣)
435
+ |𝐼𝑛(𝑣)|
436
+ .
437
+ (2)
438
+ The next item of prior knowledge defines the relationship be-
439
+ tween the score of a transaction and the connected payer–payee
440
+ pair using the anonymous nature of cryptocurrency.
441
+ Algorithm 1 RiskProp Algorithm
442
+ 1: Input: Directed Bipartite Graph 𝐺 = (𝑈,𝑉,𝑆)
443
+ 2: Output: Risk of accounts
444
+ 3: Initialize 𝑇 0 = 0.5, 𝑅0 = 0.7,𝐶𝑜𝑛𝑓 0 = 0.5,𝑡 = 0, Δ = 1
445
+ 4: while Δ ≥ 0.01 do
446
+ 5:
447
+ 𝑡 = 𝑡 + 1
448
+ 6:
449
+ Update 𝑡𝑟𝑢𝑠𝑡𝑖𝑛𝑒𝑠𝑠 of payees using Equation 2
450
+ 7:
451
+ Update 𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑖𝑡𝑦 of payers using Equation 4
452
+ 8:
453
+ Update 𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 of transactions using Equation 3
454
+ 9:
455
+ Δ𝑇 = �
456
+ 𝑣∈𝑉 |𝑇 𝑡 (𝑣) −𝑇 𝑡−1(𝑣) |
457
+ 10:
458
+ Δ𝑅 = �
459
+ 𝑢∈𝑈 |𝑅𝑡 (𝑢) − 𝑅𝑡−1(𝑢) |
460
+ 11:
461
+ Δ𝐶 = �
462
+ (𝑢,𝑣)∈𝑆 |𝐶𝑜𝑛𝑓 𝑡 (𝑢, 𝑣) − 𝐶𝑜𝑛𝑓 𝑡−1(𝑢, 𝑣) |
463
+ 12:
464
+ Δ = max{Δ𝑇 , Δ𝑅, Δ𝐶 }
465
+ 13: end while
466
+ 14: 𝑅𝑖𝑠𝑘 (𝑢) = (1 − 𝑅(𝑢)) × 10, ∀𝑢 ∈ 𝑈
467
+ 15: return
468
+ [Prior knowledge 3] Confident de-anonymous scores of transac-
469
+ tions are closely linked with the connected payee’s trustiness. For-
470
+ mally, if two scores (𝑢1, 𝑣1) and (𝑢2, 𝑣2) are such that𝑆𝑐𝑜𝑟𝑒(𝑢1, 𝑣1) =
471
+ 𝑆𝑐𝑜𝑟𝑒(𝑢2, 𝑣2),𝑅(𝑢1) = 𝑅(𝑢2), and |𝑆𝑐𝑜𝑟𝑒(𝑢1, 𝑣1) −𝑇 (𝑣1)| ⩽ |𝑆𝑐𝑜𝑟𝑒(𝑢2, 𝑣2)
472
+ −𝑇 (𝑣2)|, then 𝐶𝑜𝑛𝑓 (𝑢1, 𝑣1) ⩾ 𝐶𝑜𝑛𝑓 (𝑢2, 𝑣2).
473
+ We imply that different transactions sent by the same payers
474
+ can have different intentions and anonymity. Even scammers on
475
+ Ethereum can have transactions that seem normal.
476
+ [Prior knowledge 4] Transactions with higher confidence de-
477
+ anonymous scores are sent by more reliable payers. Formally, if two
478
+ scores (𝑢1, 𝑣1) and (𝑢2, 𝑣2) are such that𝑆𝑐𝑜𝑟𝑒(𝑢1, 𝑣1) = 𝑆𝑐𝑜𝑟𝑒(𝑢2, 𝑣2),
479
+ 𝑇 (𝑣1) = 𝑇 (𝑣2), and𝑅(𝑢1) ⩾ 𝑅(𝑢2), then𝐶𝑜𝑛𝑓 (𝑢1, 𝑣1) ⩾ 𝐶𝑜𝑛𝑓 (𝑢2, 𝑣2).
480
+ This prior knowledge incorporates the payer’s intention in mea-
481
+ suring the confidence of transaction scores. In this way, payees
482
+ may have different confidence in receiving transactions with the
483
+ same anonymity. For instance, exchanges on Ethereum receive
484
+ funds from payers with different motivations—some are ordinary
485
+ investors and some are suspicious accounts.
486
+ Below, we propose the Confidence formulation that satisfies the
487
+ above items of prior knowledge:
488
+ 𝐶𝑜𝑛𝑓 (𝑢, 𝑣) = 𝑅(𝑢) + (1 − |𝑆𝑐𝑜𝑟𝑒(𝑢, 𝑣) −𝑇 (𝑣)|)
489
+ 2
490
+ .
491
+ (3)
492
+ Then, we describe how to quantify the Reliability metric of a
493
+ payer by the transactions it sends.
494
+ [Prior knowledge 5] Payers with higher reliability send transac-
495
+ tions with higher confidence. For two payers 𝑢1 and 𝑢2 with equal
496
+ scores, if payer 𝑢1 has higher confidence for all out transaction
497
+ scores than𝑢2, then payer𝑢1 has a higher reliability. Formally, if two
498
+ payers 𝑢1 and 𝑢2 have ℎ : 𝑂𝑢𝑡(𝑢1) → 𝑂𝑢𝑡(𝑢2) and 𝐶𝑜𝑛𝑓 (𝑢1, 𝑣1) >
499
+ 𝐶𝑜𝑛𝑓 (𝑢2,ℎ(𝑣)) ∀(𝑢1, 𝑣) ∈ 𝑂𝑢𝑡(𝑢1), then 𝑅(𝑢1) > 𝑅(𝑢2). The corre-
500
+ sponding formulation of Reliability metric for ∀𝑢 ∈ 𝑈 is defined
501
+ as
502
+ 𝑅(𝑢) =
503
+
504
+ (𝑢,𝑣) ∈𝑂𝑢𝑡 (𝑢) 𝐶𝑜𝑛𝑓 (𝑢, 𝑣)
505
+ |𝑂𝑢𝑡(𝑢)|
506
+ .
507
+ (4)
508
+ Finally, the risk rating of an account is calculated by 𝑅𝑖𝑠𝑘(𝑢) =
509
+ (1 − 𝑅(𝑢)) × 10. The pseudo-code of RiskProp network propagation
510
+ is described in Algorithm 1. Let 𝑇 0, 𝐶𝑜𝑛𝑓 0, 𝑅0 be initial values
511
+ and 𝑡 be the number of interactions. In the beginning, we have
512
+ initial reliability 𝑅0 ∀𝑢 ∈ 𝑈 , initial trustiness 𝑇 0 = 0.5 ∀𝑣 ∈ 𝑉 , and
513
+
514
+ RiskProp
515
+ WWW ’23, April 30–May 4, 2023, Austin, TX, US
516
+ Account Risk Rating
517
+ Trustiness
518
+ Confidence
519
+ Risk
520
+ Reliability
521
+ Update
522
+ Propagation Mechanism
523
+ Risk Rating
524
+ Results Analysis
525
+ Ablation
526
+ Study
527
+ Risk
528
+ Threshold
529
+ Guarantees
530
+ for Practice
531
+ Comparative
532
+ Evaluation
533
+ Further
534
+
535
+ Analysis
536
+ Results Analysis
537
+ Data Acquisition
538
+ Labeled data
539
+ Etherscan
540
+ Ethereum
541
+ Transactions
542
+ Data Pre-processing
543
+ Directed Bipartite Graph
544
+ Construction
545
+ De-anonymous Score
546
+ Calculation
547
+ Figure 4: The workflow of account risk rating on Ethereum.
548
+ initial confidence 𝐶𝑜𝑛𝑓 0 = 0.5 for all transactions. Then, we keep
549
+ updating metrics using Equations 2–4 until Δ is less than 0.01.
550
+ RiskProp+: A Semi-supervised Version. Sometimes, we have
551
+ partial information about the labels of fraudulent accounts (verified,
552
+ phishing scams, etc.) and licit accounts. We can take advantage of
553
+ such prior information and incorporate them into our approach
554
+ in a semi-supervised manner. In the semi-supervised RiskProp+,
555
+ we initialize the Reliability metrics only for the training accounts.
556
+ According to the risk levels of services reported by Chainalysis [26],
557
+ we set 𝑅0 = 0.9 for ICO wallet, Converter, and Mining, 𝑅0 = 0.7 for
558
+ Exchange, 𝑅0 = 0.4 for Gambling, 𝑅0 = 0 for Phish/Hack, and set
559
+ 𝑅0 = 0.7 for testing accounts. The reliability values of labeled illicit
560
+ accounts are unchanged during the training procedure.
561
+ Example. Here, we use a small real-world dataset on Ethereum
562
+ to intuitively show the results of RiskProp+ after interactions. We
563
+ collect transactions of 10 accounts (6 for training and 4 for testing),
564
+ including 28,598 accounts and 52,733 transactions in total. Table 1
565
+ shows how the reliability of the 4 testing accounts varies over
566
+ interactions (we omit trustiness and confidence for brevity). These
567
+ testing accounts have the same reliability values at the beginning
568
+ (𝑅0 = 0.7). After convergence, accounts labeled as “phish/hack”
569
+ get a lower value of reliability, and other licit accounts get higher
570
+ reliability. Confirming our intuition, RiskProp learns that accounts
571
+ 0xebdc and 0xfe34 are high-risk accounts that investors need to be
572
+ aware of.
573
+ Workflow for Account Risk Rating. Figure 4 shows the work-
574
+ flow of account risk rating on Ethereum, which contains four mod-
575
+ ules: (i) Data acquisition collects accounts, transactions, and la-
576
+ bels from Ethereum and Etherscan. Only a few labels are provided,
577
+ and these labels are not available in the unsupervised setting. (ii)
578
+ Data pre-processing of raw transaction data described in Fig-
579
+ ure 1 is conducted in two steps: de-anonymous score calculation
580
+ and directed bipartite graph construction (i.e., payer–payee net-
581
+ work). (iii) Account risk rating recursively calculates the Relia-
582
+ bility, Trustiness of accounts, and Confidence of transaction scores
583
+ until convergence, updated by the propagation mechanism. (iv) Re-
584
+ sults analysis contains risk rating results analysis, comparative
585
+ evaluation, and further analysis.
586
+ 4
587
+ EXPERIMENTS
588
+ To investigate the effectiveness of RiskProp, we conduct experi-
589
+ ments on a real-world Ethereum transaction dataset. As risk rating
590
+ is an issue without any ground truth, we verify the effectiveness
591
+ and significance of the risk rating results of RiskProp via three tasks:
592
+ 1) risk rating analysis, which includes distribution of risk rating
593
+ results and case studies of transaction pattern; 2) comparative
594
+ evaluation, which reports on the classification performance of
595
+ labeled accounts compared with various baselines; and 3) further
596
+ analysis, which contains ablation study, impact of risk threshold,
597
+ and guarantees for practical use. RiskProp is open source and repro-
598
+ ducible, and the code and dataset are publicly available after the
599
+ paper is accepted.
600
+ 4.1
601
+ Data Collection
602
+ We first obtain 803 ground truth account labels from an official
603
+ Ethereum explorer and then include all the accounts and transac-
604
+ tions that are within the one-hop and two-hop neighborhood of
605
+ each labeled account. Next, we filter out the zero-ETH transactions
606
+ and construct the records into a graph, retaining the largest weakly
607
+ connected component for experiments. As a result, there are 1.19
608
+ million accounts and 4.13 million transactions in the network. In the
609
+ dataset, 0.02 percent (243) are labeled illicit (e.g., phishing scam),
610
+ whereas 0.05 percent (560) are labeled licit (e.g., exchanges). The
611
+ remaining unknown accounts are not labeled with regards to licit
612
+ versus illicit.
613
+ 4.2
614
+ Effectiveness of De-anonymous Score
615
+ We use one-way analysis of variance (ANOVA) to assess whether
616
+ there is a significant difference between illicit and licit transactions
617
+ in the proposed de-anonymous score in Equation (1). We consider
618
+ a transaction as illicit (versus licit) if its payer is marked as illicit
619
+ (versus licit). Table 2 shows that compared with the random score,
620
+ our proposed score achieves a larger mean square (MS) between
621
+ groups and smaller MS within groups; in addition, our proposed
622
+ score has a higher F value, and the 𝑝-value equals 0. These results
623
+ suggest that the de-anonymous score is a useful metric for assessing
624
+ the quality of transactions.
625
+ Table 2: ANOVA of random scores and de-anonymous
626
+ scores.
627
+ Random scores
628
+ De-anonymous score
629
+ Src of var.
630
+ MS
631
+ F
632
+ 𝑝-value
633
+ MS
634
+ F
635
+ 𝑝-value
636
+ Between groups
637
+ 8.8 × 10−1
638
+ 2.6 × 101
639
+ 1.0 × 10−1
640
+ 7.8 × 102
641
+ 7.7 × 103
642
+ 0
643
+ Within groups
644
+ 3.3 × 10−1
645
+ -
646
+ -
647
+ 1.0 × 10−1
648
+ -
649
+ -
650
+ 4.3
651
+ Analysis of Risk Rating Results
652
+ The principal task of RiskProp is to rate Ethereum accounts based on
653
+ how ill-disposed they are. Given the account risk rating obtained by
654
+ RiskProp, we first review the results and investigate the capability
655
+ of RiskProp in discovering new risky accounts. Then, we dig deeper
656
+ into the predicted high-risk accounts and obtain some insights.
657
+ 4.3.1
658
+ Distribution of risk rating results. The risk value of an account
659
+ ranges from 0 (low risk) to 10 (high risk). The distribution of the
660
+ predicted risk scores is as follows: 33.58% are located at (0,2], 63.45%
661
+
662
+ WWW ’23, April 30–May 4, 2023, Austin, TX, US
663
+ Anonymous author(s)
664
+ (b)
665
+ (a)
666
+ (c)
667
+ (d)
668
+ Exchange
669
+ (e)
670
+ Phish_contract
671
+ Victims
672
+ Victims
673
+ Exchange
674
+ Scammer
675
+ Scammers
676
+ (f)
677
+ 16 ETH
678
+ 16 ETH
679
+ 37 ETH
680
+ 37 ETH
681
+ 8 ETH
682
+ 8 ETH
683
+ 8 ETH
684
+ Create
685
+ 0.29 ETH
686
+ 0.29 ETH
687
+ Figure 5: Visualization showing some typical transaction
688
+ patterns of risky accounts (in red circles).
689
+ are located at (2,4], 2.03% are located at (4,6], 0.78% are located
690
+ at (6, 8], and 0.19% are located at (8, 10]. This is consistent with
691
+ expectations: The risk value of the Ethereum transaction network
692
+ meets the power distribution law, indicating that the overwhelming
693
+ majority of accounts act normally, and only very few accounts have
694
+ abnormal behaviors. We are interested in whether the high-risk
695
+ accounts predicted by RiskProp are actually questionable. Thus, we
696
+ first manually check the top 150 accounts with the highest risk
697
+ (with both in-coming and out-going transactions). The finding is
698
+ that 119 out of 150 (approximately 80%) accounts have abnormal
699
+ behaviors. Among these 119 illicit accounts, 43 accounts are already
700
+ labeled as “phish/hack” by Etherscan, whereas the remaining 76
701
+ are newly discovered suspicious accounts that are not marked in
702
+ the existing label library. This result indicates the capabilities of
703
+ RiskProp in predicting undiscovered risky accounts and reducing
704
+ financial losses.
705
+ 4.3.2
706
+ Case studies of transaction pattern. We then manually veri-
707
+ fied the predicted risky accounts by investigating their abnormal
708
+ behaviors and find that there are many suspicious transaction pat-
709
+ terns in the network. In order to save space, we show 6 typical
710
+ patterns in Figure 5. These patterns are summarized from the real-
711
+ world Ethereum transaction data and guided by current research
712
+ and recommendation reports.
713
+ (a) Hacking scammers are a list of addresses related to phish-
714
+ ing and hacks. Figure 5(a) shows a pattern of phishing accounts
715
+ reported by users who suffered financial loss. A typical phishing
716
+ scam on Ethereum is the “Bee Token ICO Scam” attack, in which
717
+ the phishers sent fake emails to the investors of an ICO with a fake
718
+ Ethereum address to deposit their contributions into. For example,
719
+ account 0xe336 has been confirmed to be part of this “Bee Token”
720
+ scam, and 243 ETH has been sent to this address by 165 victims.
721
+ (b) Fund source of hacking scammers are the upstream ac-
722
+ counts of the known illicit accounts, which are collusion scam ac-
723
+ counts to attract victims or provide money for hacking. As shown
724
+ in Figure 5(b), the behaviors of collusion scam accounts may look
725
+ similar to victims. Nevertheless, we find that the upstream collusion
726
+ accounts appear to participate in fewer transactions with shorter
727
+ time intervals, and there are attempts to transfer the entire ETH
728
+ balance of the scammers according to the Red Flag Indicators of
729
+ FATF [11].
730
+ (c) Money laundering of scammers are the downstream ac-
731
+ counts of the known illicit accounts, which are collusion scam
732
+ accounts to accept and transfer the stolen money, obfuscating the
733
+ true sources. As shown in Figure 5(c), account 0x78f1 received
734
+ stolen funds from several known hacking scammers, appearing
735
+ to be the account used in the “placement” stage of money laun-
736
+ dering. Another example is 0xcfdd, which receives stolen funds
737
+ from the Fake Starbase Crowdsale Contribution account 0x122c. (d)
738
+ Zero-out middle accounts are the middle accounts that serve as
739
+ a bridge defined by Li et al. [20]. As shown in Figure 5(d), most of
740
+ the received funds will be transferred out in short succession (such
741
+ as within 24 hours). See 0x126e for an example.
742
+ (e) Round transfers among exchanges denote a pattern that
743
+ an account withdraws ETH without additional activity to a pri-
744
+ vate wallet and then deposits back to the exchange, as shown in
745
+ Figure 5(e). Account 0x886e withdraws 0.4 ETH from Cryptopia
746
+ exchange and then deposits the same amount of ETH back to Cryp-
747
+ topia, which is an unnecessary step and incurs transaction fees [11].
748
+ Such a phenomenon indicates that the exchange is misused as a
749
+ money-laundering mixer or is conducting wash trading [28].
750
+ (f) Creators of illicit contracts are often the manipulators
751
+ behind the scenes. The Origin Protocol phishing scam contact ac-
752
+ count 0x9819 was created by account 0xff1a. After victims deposited
753
+ money into the phishing contract, the creator transfers the stolen
754
+ funds back to himself via internal transactions, which deliberately
755
+ enhances anonymity.
756
+ We observe that many illicit accounts are outside the label li-
757
+ brary and are still considered risk-free. Based on the results, we
758
+ infer that our RiskProp is able to expose unlabeled illicit accounts.
759
+ This is crucial on Ethereum, which lacks authorized and effective
760
+ regulation. In addition, the newly identified illicit accounts can
761
+ complete the current label collection for additional analysis.
762
+ 4.4
763
+ Comparative Evaluation Settings
764
+ To further evaluate the performance of our method and show the
765
+ potential application, we employ the rating scores to conduct clas-
766
+ sification experiments that divide Ethereum accounts into illicit
767
+ and licit accounts, and we compare the results with the existing
768
+ baseline methods for further verification. We wish to investigate if
769
+ RiskProp can give a higher risk rating for the known illicit accounts
770
+ and a lower rating for known licit accounts.
771
+ 4.4.1
772
+ Compared Methods. As mentioned earlier, RiskProp is the
773
+ first algorithm that explores the risk rating of blockchain accounts.
774
+ We chose a variety of methods (unsupervised and supervised) as
775
+ baselines, which are similar to the problem we want to solve. We
776
+ compare unsupervised RiskProp with (i) web page ranking, such
777
+ as PageRank [6], and (ii) bipartite graph-based fraud detection,
778
+ such as FraudEagle [2], BIRDNEST [12], and REV2 [16], which are
779
+ also unsupervised methods.
780
+ The (semi-)supervised approaches are as follows. (i) Machine
781
+ learning methods, e.g., logistic regression (LR), naïve Bayes (NB),
782
+ decision tree (DT), support vector machine (SVM), random for-
783
+ est (RF), extreme gradient boosting (XGBoost), and LightGBM.
784
+ These methods are used by [1, 4, 8, 19] for detection of abnor-
785
+ mal Ethereum accounts. (ii) Traditional graph neural network,
786
+ including DeepWalk, Node2Vec, and graph convolutional network
787
+
788
+ RiskProp
789
+ WWW ’23, April 30–May 4, 2023, Austin, TX, US
790
+ 50 100 150 200 250 300 350 400
791
+ Top k
792
+ 0
793
+ 20
794
+ 40
795
+ 60
796
+ 80
797
+ 100
798
+ Precision@k (%)
799
+ (a)
800
+ 50 100 150 200 250 300 350 400
801
+ Top k
802
+ 0
803
+ 20
804
+ 40
805
+ 60
806
+ 80
807
+ 100
808
+ Recall@k (%)
809
+ (b)
810
+ RiskProp
811
+ PageRank
812
+ Birdnest
813
+ FraudEagle
814
+ REV2
815
+ Figure 6: The 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 and 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 of illicit account pre-
816
+ diction with different rating methods.
817
+ (GCN) were conducted by Chen et al. [7] for detection of Ethereum
818
+ phishing scams. (iii) Graph neural network for graphs with
819
+ heterophily, such as CPGNN [34]. The application of this type of
820
+ algorithms is a recent research advancement in the task of Ethereum
821
+ account classification [14].
822
+ 4.4.2
823
+ Evaluation Metrics. To evaluate the performance of the mod-
824
+ els, we calculate the following metrics: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛,𝑅𝑒𝑐𝑎𝑙𝑙, 𝐹1,𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦,
825
+ and 𝐴𝑈𝐶. As we know, there are only 6 out of 10,000 (0.067 percent)
826
+ accounts labeled in the entire dataset. To measure the order of the
827
+ risk rating, we employ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 and 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 to evaluate the
828
+ ranking order of the algorithm (@𝑘 means the top 𝑘 accounts). All
829
+ baseline methods are tested using the original codes published by
830
+ the authors. We repeat experiments 10 times and report the average
831
+ results.
832
+ 4.4.3
833
+ Implementation Details. We evaluate the methods with bi-
834
+ nary labeled accounts (illicit verse licit) and, thus, we assume ac-
835
+ counts in the top 1% to be the illicit accounts (corresponding thresh-
836
+ old: 6 for RiskProp). The reason for this threshold and percentage
837
+ setting is discussed in Section 4.7. The split of the dataset in the
838
+ (semi-)supervised setting is 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 : 𝑡𝑒𝑠𝑡 = 8 : 2.
839
+ 4.5
840
+ Comparative Evaluation Results
841
+ We report the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 and 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 curves of the compared
842
+ algorithms, as shown in Figure 6. We observe that RiskProp obtains
843
+ superior precision and recall than that of baseline with different
844
+ 𝑘. Up to 𝑘 = 100, the precision of RiskProp is almost 1 for illicit
845
+ account prediction, which is surprising for an unsupervised setting.
846
+ The 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 curve of RiskProp is significantly higher than the
847
+ compared methods, and also increases steadily with 𝑘. Table 3
848
+ shows the performance of unsupervised and supervised methods
849
+ separately. We observe that RiskProp remarkably outperforms the
850
+ unsupervised graph rating baselines in terms of accuracy and AUC,
851
+ improving by 38.90% and 34.16%, respectively. Meanwhile, for the
852
+ licit account prediction, we observe that RiskProp beats the best
853
+ baseline (FraudEagle) with a 10.48% improvement in its F1-score.
854
+ These demonstrate the effectiveness of our account risk rating
855
+ method without labeling information.
856
+ Next, we turn our attention to the results of the semi-supervised
857
+ RiskProp+ compared with the existing (semi-)supervised classifica-
858
+ tion in Table 3, from which we derive the following conclusions:
859
+ 1) RiskProp+ outperforms all baseline methods by 12.32% in terms
860
+ of F1-score, 13.62% in terms of AUC, and 10.56% in terms of accu-
861
+ racy. 2) The precision of licit accounts prediction is improved from
862
+ Table 3: The classification results (%) of unsupervised and
863
+ (semi-)supervised methods.
864
+ Illicit account
865
+ Licit account
866
+ Total
867
+ Methods
868
+ P
869
+ R
870
+ F1
871
+ P
872
+ R
873
+ F1
874
+ Acc.
875
+ AUC
876
+ PageRank
877
+ 29.13
878
+ 67.49
879
+ 40.69
880
+ 67.08
881
+ 28.75
882
+ 40.25
883
+ 40.47
884
+ 48.12
885
+ FraudEagle
886
+ 12.28
887
+ 2.88
888
+ 4.670
889
+ 68.36
890
+ 91.07
891
+ 78.10
892
+ 64.38
893
+ 46.98
894
+ BIRDNEST
895
+ 22.24
896
+ 47.32
897
+ 30.26
898
+ 55.24
899
+ 28.21
900
+ 37.35
901
+ 34.00
902
+ 37.77
903
+ REV2
904
+ 14.10
905
+ 4.527
906
+ 6.854
907
+ 68.00
908
+ 88.04
909
+ 76.73
910
+ 62.76
911
+ 46.28
912
+ RiskProp
913
+ 71.48
914
+ 71.48
915
+ 76.15
916
+ 91.44
917
+ 85.89
918
+ 88.58
919
+ 84.56
920
+ 83.69
921
+ Illicit account
922
+ Licit account
923
+ Total
924
+ Methods
925
+ P
926
+ R
927
+ F1
928
+ P
929
+ R
930
+ F1
931
+ Acc.
932
+ AUC
933
+ LR
934
+ 65.67
935
+ 74.58
936
+ 69.84
937
+ 83.87
938
+ 77.23
939
+ 80.41
940
+ 76.25
941
+ 75.90
942
+ NB
943
+ 59.79
944
+ 98.31
945
+ 74.36
946
+ 98.41
947
+ 61.39
948
+ 75.61
949
+ 75.00
950
+ 79.85
951
+ DT
952
+ 62.66
953
+ 54.07
954
+ 58.04
955
+ 75.79
956
+ 81.19
957
+ 78.40
958
+ 71.75
959
+ 68.39
960
+ SVM
961
+ 90.00
962
+ 45.76
963
+ 60.67
964
+ 75.38
965
+ 97.03
966
+ 84.85
967
+ 78.12
968
+ 71.40
969
+ RF
970
+ 71.52
971
+ 53.39
972
+ 61.14
973
+ 75.55
974
+ 86.93
975
+ 80.84
976
+ 74.00
977
+ 69.40
978
+ XGBoost
979
+ 67.35
980
+ 55.95
981
+ 61.11
982
+ 76.58
983
+ 84.16
984
+ 80.19
985
+ 70.05
986
+ 73.75
987
+ LightGBM
988
+ 75.77
989
+ 65.19
990
+ 69.93
991
+ 84.23
992
+ 92.57
993
+ 88.21
994
+ 81.86
995
+ 77.75
996
+ DeepWalk
997
+ 66.85
998
+ 66.30
999
+ 66.54
1000
+ 86.48
1001
+ 86.75
1002
+ 86.61
1003
+ 83.13
1004
+ 81.03
1005
+ Node2Vec
1006
+ 62.36
1007
+ 63.26
1008
+ 62.76
1009
+ 85.10
1010
+ 84.56
1011
+ 84.82
1012
+ 78.13
1013
+ 72.78
1014
+ GCN
1015
+ 20.83
1016
+ 27.78
1017
+ 23.81
1018
+ 79.46
1019
+ 68.99
1020
+ 73.86
1021
+ 60.63
1022
+ 47.40
1023
+ CPGNN
1024
+ 52.17
1025
+ 61.54
1026
+ 56.47
1027
+ 86.84
1028
+ 81.82
1029
+ 84.26
1030
+ 76.88
1031
+ 71.68
1032
+ RiskProp+
1033
+ 70.91
1034
+ 84.78
1035
+ 77.23
1036
+ 93.33
1037
+ 85.96
1038
+ 89.49
1039
+ 85.63
1040
+ 85.37
1041
+ Table 4: Illicit account prediction of ablation studies.
1042
+ Methods
1043
+ Precision
1044
+ Recall
1045
+ F1-score
1046
+ RiskProp+
1047
+ 0.7091
1048
+ 0.8478
1049
+ 0.7723
1050
+ RiskProp+ (w/o label)
1051
+ 0.7148
1052
+ 0.8148
1053
+ 0.7615
1054
+ RiskProp+ (w/o NP)
1055
+ 0.3811
1056
+ 0.9959
1057
+ 0.5513
1058
+ RiskProp+ (w/o DS)
1059
+ 0.4737
1060
+ 0.1957
1061
+ 0.2769
1062
+ 82.52% (i.e., the average precision in baselines) to 93.33%, which
1063
+ means more licit accounts can be correctly identified. 3) The supe-
1064
+ rior performance of RiskProp is more significant in the prediction of
1065
+ illicit accounts. The recall of illicit accounts prediction is improved
1066
+ from 60.56% (i.e., the average recall of illicit accounts prediction in
1067
+ baselines) to 84.78%. This shows the effectiveness of our framework
1068
+ in the prediction of both illicit and licit accounts.
1069
+ 4.6
1070
+ Ablation Study
1071
+ To further validate the contribution of each component of the pro-
1072
+ posed RiskProp+, we conduct an ablation study as follows.
1073
+ • RiskProp+ (Full model): All components of the model and label
1074
+ data are included.
1075
+ • w/o label: Labels are unavailable in the learning procedure, and
1076
+ the model is trained in an unsupervised manner.
1077
+ • w/o network propagation (NP): Remove the NP procedure
1078
+ and calculate the average de-anonymous scores (𝐴𝐷𝑆) for each ac-
1079
+ counts’ outgoing transactions (payer role). An account is predicted
1080
+ as abnormal if its 𝐴𝐷𝑆 ⩽ 0.
1081
+ • w/o de-anonymous score (DS): Replace DS with random scores,
1082
+ ranging from −1 to 1.
1083
+ We derive the following findings from Table 4: 1) Without the
1084
+ labels, the F1-score drops only slightly, indicating that our RiskProp
1085
+ does not rely on label data and can obtain good results in an un-
1086
+ supervised manner. To our surprise, the full model outperforms
1087
+ the RiskProp (w/o label), with a 3.3% increase in recall and 0.51%
1088
+
1089
+ WWW ’23, April 30–May 4, 2023, Austin, TX, US
1090
+ Anonymous author(s)
1091
+ decrease in precision. This may be possibly explained by the re-
1092
+ liability values of labeled illicit accounts remaining unchanged
1093
+ during training in the supervised setting. 2) RiskProp (w/o NP)
1094
+ has a only lower precision but a greatly improved recall, revealing
1095
+ that most of the illicit accounts are correctly predicted as illicit
1096
+ but that some licit accounts are misjudged to be illicit. This result
1097
+ demonstrates that de-anonymous score is an effective indicator of
1098
+ illicit transactions but their confidence varies among transactions.
1099
+ This result also confirms why we need to consider the confidence
1100
+ of the score in the propagation mechanism. 3) RiskProp (w/o DS)
1101
+ yields low precision (47.37%) and severely low recall (19.57%). This
1102
+ result demonstrates that, even if the network propagation model is
1103
+ retained, the wrong scores of transactions will be spread through-
1104
+ out the entire Ethereum transaction network, resulting in poor
1105
+ prediction results.
1106
+ 4.7
1107
+ Risk Threshold of RiskProp
1108
+ Given accounts in the reversed order of their risk ratings, a natural
1109
+ question is how to classify licit or illicit accounts according to their
1110
+ risk ratings for the classification task? One possible option is to
1111
+ determine the percentage of known illicit labels in the dataset
1112
+ and set the risk value of this percentage as a demarcation line
1113
+ for account classification. However, the percentage is imprecise
1114
+ because some of the illicit accounts remain unrevealed according
1115
+ to the experimental results in Section 4.3.2. Therefore, we try to
1116
+ establish a suitable risk threshold (𝑅𝑇𝐻) of RiskProp by conducting
1117
+ classification experiments. Figure 7(a) demonstrates the results of
1118
+ illicit account prediction with different risk thresholds, ranging
1119
+ from 1 to 10. As expected, the precision increases while the recall
1120
+ decreases with increasing 𝑅𝑇𝐻. In addition, F1, accuracy, and AUC
1121
+ first increase and then decrease with the increase in 𝑅𝑇𝐻. The best
1122
+ performance for F1 and AUC is when 𝑅𝑇𝐻 = 6. Thus, we set the
1123
+ risk threshold 𝑅𝑇𝐻 = 6 for RiskProp.
1124
+ 4.8
1125
+ Guarantees for Practical Use
1126
+ Here, we present guarantees for RiskProp in practical use regard-
1127
+ ing the following aspects: 1) guarantee of convergence; 2) time
1128
+ complexity; and 3) linear scalability.
1129
+ Convergence and Uniqueness. We present the theoretical prop-
1130
+ erties of RiskProp, including the proofs of prior knowledge, con-
1131
+ vergence, and uniqueness of the proposed metrics, i.e., reliability,
1132
+ trustiness, and confidence. Proofs are shown in the Appendix due to
1133
+ lack of space.
1134
+ Time complexity. In each interaction, the RiskProp updates the
1135
+ reliability, Trustiness metrics of accounts and Confidence metric of
1136
+ transactions. Therefore, the complexity of each iteration is O(|𝑈 | +
1137
+ |𝑆|) = O(|𝑆|), |𝑆| is the total edges in the payer–payee network.
1138
+ Thus, for 𝑘 iterations, the total running time is O(𝑘|𝑆|).
1139
+ Linear scalability. We have shown that RiskProp is linear in run-
1140
+ ning time in the number of nodes. To show this experimentally as
1141
+ well, we create random networks of an increasing number of nodes
1142
+ and edges and compute the running time of the algorithm until
1143
+ convergence. Figure 7(b) shows that the running time increases lin-
1144
+ early with the number of nodes in the network. Therefore, we can
1145
+ conclude that RiskProp is a scalable rating method that is suitable
1146
+ for applications on large-scale transaction networks.
1147
+ 1 2 3 4 5 6 7 8 9 10
1148
+ RTH
1149
+ 0
1150
+ 20
1151
+ 40
1152
+ 60
1153
+ 80
1154
+ 100
1155
+ Performance(%)
1156
+ Precision
1157
+ Recall
1158
+ F1
1159
+ Accuracy
1160
+ AUC
1161
+ (a) Impact of different RTH
1162
+ 103
1163
+ 104
1164
+ 105
1165
+ 106
1166
+ 107
1167
+ Number of nodes
1168
+ 10
1169
+ 1
1170
+ 100
1171
+ 101
1172
+ 102
1173
+ 103
1174
+ 104
1175
+ Run time (seconds)
1176
+ (b) Scalability of RiskProp
1177
+ Figure 7: Further analysis of RiskProp.
1178
+ Analysis of incorrect predictions. Furthermore, the results of the
1179
+ RiskProp+ experiment showed that 39 out of 46 (85%) phishing ac-
1180
+ counts were correctly predicted as illicit accounts. To understand
1181
+ why the remaining accounts failed to be detected as illicit by our
1182
+ model, we manually checked their transactions and neighbors and
1183
+ obtained the following results: (i) For one of the accounts, we have
1184
+ a risk score of 5.72, and in practice, the system will also warn about
1185
+ such accounts that are close to the risk threshold (𝑅𝑇𝐻 = 6). (ii)
1186
+ One account is set as the default risk value because the phishing
1187
+ account has no outgoing transactions for the time being, and in
1188
+ practice, we can make correct predictions as soon as the phish-
1189
+ ing account starts laundering money. (iii) Among the remaining
1190
+ five accounts, one account has a high transaction volume of 154.
1191
+ The remaining four accounts have a high volume of transactions
1192
+ along with withdrawals of ETH from exchanges, which directly
1193
+ contributed to the high de-anonymity score of transactions. How-
1194
+ ever, there are two sides to the story: regulation and fraud are a
1195
+ game of confrontation. For hackers, reusing accounts reduces the
1196
+ probability of being identified as high risk and, at the same time,
1197
+ reusing accounts and withdrawing money from exchanges increase
1198
+ the risk of exposure and fund freezing.
1199
+ 5
1200
+ RELATED WORK
1201
+ Risk control studies in cryptocurrency. In recent years, there
1202
+ has been growing interest in account clustering and detecting il-
1203
+ licit activities (e.g., financial scams, money laundering) in cryp-
1204
+ tocurrency transaction networks [31]. Victor [27] is the first to
1205
+ propose clustering heuristics for the Ethereum’s account model,
1206
+ including deposit address reuse, airdrop multi-participation, and
1207
+ self-authorization. A recent review of the literature on cryptocur-
1208
+ rency scams [5] showed that the existing methods (e.g., [9], [10],
1209
+ and [15]) are mainly based on supervised classifiers fed with hand-
1210
+ crafted features. Many attempts have been made [25, 29, 32] to
1211
+ incorporate structural information by learning the latent repre-
1212
+ sentations of accounts. Some researchers have investigated and
1213
+ modeled the money flow from a network perspective [18, 21] to
1214
+ better identify illicit activities. After all, there is still a black area
1215
+ regarding the estimation of the risk value of Ethereum accounts,
1216
+ which is the key task in alerting about suspicious accounts and
1217
+ transactions on the chain.
1218
+ Rating and ranking on graph data. The aim of ratings and
1219
+ rankings on graph data is to provide a score or an order for each
1220
+ node in a graph. Currently, the main solutions are based on link
1221
+ analysis technique [24], Bayesian model [12], and iterative learn-
1222
+ ing [13], etc. Similarly to the proposed RiskProp algorithm, [16]
1223
+
1224
+ RiskProp
1225
+ WWW ’23, April 30–May 4, 2023, Austin, TX, US
1226
+ proposed axioms and iterative formulations to establish the rela-
1227
+ tionship between ratings. In [22], the authors measured the bias
1228
+ and prestige of nodes in networks based on trust scores. In [17], the
1229
+ authors highlighted that graph-based approaches provide unique
1230
+ solution opportunities for financial crime and fraud detection. A
1231
+ review on this topic [3] described the problems in current studies:
1232
+ lack of ground truths, imbalanced class, and large-scale network.
1233
+ These challenges also exist in our risk rating problem on Ethereum
1234
+ transaction networks.
1235
+ 6
1236
+ CONCLUSIONS AND FUTURE WORK
1237
+ In this paper, we present the first systematic study to assess the
1238
+ account risk via a rating system named RiskProp. In RiskProp, we
1239
+ modeled transaction records of Ethereum as a bipartite graph, pro-
1240
+ posed a novel metric called de-anonymous score to quantify the
1241
+ transaction risk, and designed a network propagation mechanism
1242
+ based on transaction semantics. By analyzing the rating results and
1243
+ manually checking the accounts with high risk, we evaluated the
1244
+ performance of RiskProp and obtained new insights about transac-
1245
+ tion risks on Ethereum. In addition, we employed the obtained risk
1246
+ scores to conduct illicit/licit account classification experiments on
1247
+ labeled data, and the superiority of this method over baseline meth-
1248
+ ods further verified the effectiveness of RiskProp in risk estimation.
1249
+ For future work, we plan to integrate the transaction amounts and
1250
+ temporal information in our model, develop a web page or online
1251
+ tool for querying risk values of accounts, and share the details of
1252
+ risky cases with the Ethereum community.
1253
+ REFERENCES
1254
+ [1] Rachit Agarwal, Shikhar Barve, and Sandeep Kumar Shukla. 2021. Detecting ma-
1255
+ licious accounts in permissionless blockchains using temporal graph properties.
1256
+ Applied Network Science 6, 1 (Dec. 2021), 9.
1257
+ [2] Leman Akoglu, Rishi Chandy, and Christos Faloutsos. 2013. Opinion fraud
1258
+ detection in online reviews by network effects. In Proceedings of the International
1259
+ AAAI Conference on Web and Social Media, Vol. 7. 2–11.
1260
+ [3] Leman Akoglu, Hanghang Tong, and Danai Koutra. 2015. Graph based anomaly
1261
+ detection and description: A survey. Data Mining and Knowledge Discovery 29, 3
1262
+ (2015), 626–688.
1263
+ [4] Salam Al-E’mari, Mohammed Anbar, Yousef Sanjalawe, and Selvakumar Man-
1264
+ ickam. 2021. A Labeled Transactions-Based Dataset on the Ethereum Network.
1265
+ Communications in Computer and Information Science 1347 (2021), 61–79.
1266
+ [5] Massimo Bartoletti, Stefano Lande, Andrea Loddo, Livio Pompianu, and Sergio
1267
+ Serusi. 2021. Cryptocurrency scams: Analysis and perspectives. IEEE Access 9
1268
+ (2021), 148353–148373.
1269
+ [6] Sergey Brin and Lawrence Page. 1998. The anatomy of a large-scale hypertextual
1270
+ Web search engine. Computer Networks and ISDN Systems 30, 1 (1998), 107–117.
1271
+ [7] Liang Chen, Jiaying Peng, Yang Liu, Jintang Li, Fenfang Xie, and Zibin Zheng.
1272
+ 2021. Phishing Scams Detection in Ethereum Transaction Network. ACM Trans-
1273
+ actions on Internet Technology 21, 1 (Feb. 2021), 1–16.
1274
+ [8] Weili Chen, Xiongfeng Guo, Zhiguang Chen, Zibin Zheng, and Yutong Lu. 2020.
1275
+ Phishing scam detection on Ethereum: Towards financial security for blockchain
1276
+ ecosystem. In IJCAI. 4506–4512.
1277
+ [9] Weili Chen, Zibin Zheng, Jiahui Cui, Edith Ngai, Peilin Zheng, and Yuren Zhou.
1278
+ 2018. Detecting ponzi schemes on Ethereum: Towards healthier blockchain
1279
+ technology. In WWW. ACM, 1409–1418.
1280
+ [10] Steven Farrugia, Joshua Ellul, and George Azzopardi. 2020. Detection of illicit
1281
+ accounts over the Ethereum blockchain. Expert Systems with Applications 150
1282
+ (Jul. 2020), 113318.
1283
+ [11] FATF.
1284
+ 2022.
1285
+ Money
1286
+ Laundering
1287
+ and
1288
+ Terrorist
1289
+ Financing
1290
+ Red
1291
+ Flag
1292
+ Indicators
1293
+ Associated
1294
+ with
1295
+ Virtual
1296
+ Assets.
1297
+ http://www.fatf-
1298
+ gafi.org/publications/fatfrecommendations/documents/Virtual-Assets-Red-
1299
+ Flag-Indicators.html.
1300
+ [12] Bryan Hooi, Neil Shah, Alex Beutel, Stephan Günnemann, Leman Akoglu, Mohit
1301
+ Kumar, Disha Makhija, and Christos Faloutsos. 2016. Birdnest: Bayesian inference
1302
+ for ratings-fraud detection. In ICDM. SIAM, 495–503.
1303
+ [13] Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, and Christos
1304
+ Faloutsos. 2016. FRAUDAR: Bounding graph fraud in the face of camouflage. In
1305
+ SIGKDD. ACM, 895–904.
1306
+ [14] Tao Huang, Dan Lin, and Jiajing Wu. 2022. Ethereum Account Classification
1307
+ Based on Graph Convolutional Network. IEEE Transactions on Circuits and
1308
+ Systems II: Express Briefs 69, 5 (2022), 2528–2532.
1309
+ [15] Rahmeh Fawaz Ibrahim, Aseel Mohammad Elian, and Mohammed Ababneh. 2021.
1310
+ Illicit account detection in the Ethereum blockchain using machine learning. In
1311
+ ICIT. IEEE, 488–493.
1312
+ [16] Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos, and
1313
+ V.S. Subrahmanian. 2018. REV2: Fraudulent user prediction in rating platforms.
1314
+ In WSDM. ACM, 333–341.
1315
+ [17] Eren Kurshan and Hongda Shen. 2020. Graph computing for financial crime
1316
+ and fraud detection: Trends, challenges and outlook. International Journal of
1317
+ Semantic Computing 14, 4 (2020), 565–589.
1318
+ [18] Banwari Lal, Rachit Agarwal, and Sandeep Kumar Shukla. 2021. Understanding
1319
+ money trails of suspicious activities in a cryptocurrency-based blockchain. arXiv
1320
+ preprint arXiv:2108.11818 (2021).
1321
+ [19] Sijia Li, Gaopeng Gou, Chang Liu, Chengshang Hou, Zhenzhen Li, and Gang
1322
+ Xiong. 2022. TTAGN: Temporal Transaction Aggregation Graph Network for
1323
+ Ethereum Phishing Scams Detection. In Proceedings of the ACM Web Conference.
1324
+ ACM, 661–669.
1325
+ [20] Xiangfeng Li, Shenghua Liu, Zifeng Li, Xiaotian Han, Chuan Shi, Bryan Hooi, He
1326
+ Huang, and Xueqi Cheng. 2020. Flowscope: Spotting money laundering based
1327
+ on graphs. In AAAI, Vol. 34. 4731–4738.
1328
+ [21] Dan Lin, Jiajing Wu, Qi Yuan, and Zibin Zheng. 2020. Modeling and understanding
1329
+ Ethereum transaction records via a complex network approach. IEEE Transactions
1330
+ on Circuits and Systems II: Express Briefs 67, 11 (2020), 2737–2741.
1331
+ [22] Abhinav Mishra and Arnab Bhattacharya. 2011. Finding the bias and prestige of
1332
+ nodes in networks based on trust scores. In WWW. ACM, 567–576.
1333
+ [23] Malte Möser, Rainer Böhme, and Dominic Breuker. 2014. Towards risk scoring
1334
+ of Bitcoin transactions. In FC. Springer, 16–32.
1335
+ [24] Alex Sangers, Maran van Heesch, Thomas Attema, Thijs Veugen, Mark Wigger-
1336
+ man, Jan Veldsink, Oscar Bloemen, and Daniël Worm. 2019. Secure multiparty
1337
+ pageRank algorithm for collaborative fraud detection. In FC. Springer, 605–623.
1338
+ [25] Da Sun Handason Tam, Wing Cheong Lau, Bin Hu, Qiu Fang Ying, Dah Ming Chiu,
1339
+ and Hong Liu. 2019. Identifying illicit accounts in large scale e-payment networks
1340
+ – A graph representation learning approach. arXiv preprint arXiv:1906.05546
1341
+ (2019).
1342
+ [26] Chainalysis Team. 2021.
1343
+ Report: Key Players of the Cryptocurrency Ecosys-
1344
+ tem. Retrieved January 11, 2022 from https://go.chainalysis.com/rs/503-FAP-
1345
+ 074/images/Key-players-in-crypto-report.pdf
1346
+ [27] Friedhelm Victor. 2020.
1347
+ Address clustering heuristics for Ethereum. In FC.
1348
+ Springer, 617–633.
1349
+ [28] Friedhelm Victor and Andrea Marie Weintraud. 2021. Detecting and quantifying
1350
+ wash trading on decentralized cryptocurrency exchanges. In WWW. ACM, 23–
1351
+ 32.
1352
+ [29] Mark Weber, Giacomo Domeniconi, Jie Chen, Daniel Karl I. Weidele, Claudio
1353
+ Bellei, Tom Robinson, and Charles E. Leiserson. 2019. Anti-money laundering in
1354
+ Bitcoin: Experimenting with graph convolutional networks for financial forensics.
1355
+ arXiv preprint arXiv:1908.02591 (2019).
1356
+ [30] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction
1357
+ ledger. Ethereum Project Yellow Paper 151 (2014), 1–32.
1358
+ [31] Jiajing Wu, Jieli Liu, Yijing Zhao, and Zibin Zheng. 2021. Analysis of cryptocur-
1359
+ rency transactions from a network perspective: An overview. Journal of Network
1360
+ and Computer Applications 190 (2021), 103139.
1361
+ [32] Jiajing Wu, Qi Yuan, Dan Lin, Wei You, Weili Chen, Chuan Chen, and Zibin
1362
+ Zheng. 2022. Who are the phishers? Phishing scam detection on Ethereum via
1363
+ network embedding. IEEE Transactions on Systems, Man, and Cybernetics: Systems
1364
+ 52, 2 (2022), 1156–1166.
1365
+ [33] Zihao Yuan, Qi Yuan, and Jiajing Wu. 2020. Phishing detection on ethereum via
1366
+ learning representation of transaction subgraphs. In Blocksys. Springer, 178–191.
1367
+ [34] Jiong Zhu, Ryan A Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K Ahmed,
1368
+ and Danai Koutra. 2021. Graph neural networks with heterophily. In Proceedings
1369
+ of the AAAI Conference on Artificial Intelligence, Vol. 35. 11168–11176.
1370
+
1371
+ WWW ’23, April 30–May 4, 2023, Austin, TX, US
1372
+ Anonymous author(s)
1373
+ A
1374
+ APPENDIX
1375
+ A.1
1376
+ Proof for Prior Knowledge
1377
+ In this part, we provide proofs that the proposed metrics, i.e., Re-
1378
+ liability, Trustiness, and Confidence satisfy Prior knowledge 1 - 5.
1379
+ Prior knowledge 1 in the main paper is the following:
1380
+ [Prior knowledge 1] Payees with higher trustiness receive trans-
1381
+ actions with higher de-anonymous scores. Formally, if two pay-
1382
+ ees 𝑣1 and 𝑣2 have a one-to-one mapping, ℎ : 𝐼𝑛(𝑣1) → 𝐼𝑛(𝑣2)
1383
+ and 𝑆𝑐𝑜𝑟𝑒(𝑢, 𝑣1) > 𝑆𝑐𝑜𝑟𝑒(ℎ(𝑢), 𝑣2) ∀(𝑢, 𝑣1) ∈ 𝐼𝑛(𝑣1), then 𝑇 (𝑣1) >
1384
+ 𝑇 (𝑣2).
1385
+ The formulation to be used to show that the prior knowledge is
1386
+ satisfied is Equations 2, 3, and 4 in the main paper.
1387
+ 𝑇 (𝑣) =
1388
+
1389
+ (𝑢,𝑣)∈𝐼𝑛(𝑣) 𝑆𝑐𝑜𝑟𝑒 (𝑢, 𝑣) × 𝐶𝑜𝑛𝑓 (𝑢, 𝑣)
1390
+ |𝐼𝑛(𝑣) |
1391
+ 𝑅(𝑢) =
1392
+
1393
+ (𝑢,𝑣)∈𝑂𝑢𝑡 (𝑢) 𝐶𝑜𝑛𝑓 (𝑢, 𝑣)
1394
+ |𝑂𝑢𝑡 (𝑢) |
1395
+ 𝐶𝑜𝑛𝑓 (𝑢, 𝑣) = 𝑅(𝑢) + (1 − |𝑆𝑐𝑜𝑟𝑒 (𝑢, 𝑣) −𝑇 (𝑣) |)
1396
+ 2
1397
+ Proof. To prove the Prior Knowledge 1, let us take two payees 𝑣1
1398
+ and 𝑣2 that have identically ego networks and a one-to-one mapping
1399
+ ℎ, such that |𝐼𝑛(𝑣1)| = |𝐼𝑛(𝑣2)|, 𝐶𝑜𝑛𝑓 (𝑢, 𝑣1) = 𝐶𝑜��𝑓 (ℎ(𝑢), 𝑣2), and
1400
+ 𝑆𝑐𝑜𝑟𝑒(𝑢, 𝑣1) > 𝑆𝑐𝑜𝑟𝑒(ℎ(𝑢), 𝑣2) ∀(𝑢, 𝑣1) ∈ 𝐼𝑛(𝑣1).
1401
+ According to Equation 2, we have
1402
+ 𝑇 (𝑣1) −𝑇 (𝑣2) =
1403
+
1404
+ (𝑢,𝑣1)∈𝐼𝑛(𝑣1) 𝑆𝑐𝑜𝑟𝑒 (𝑢, 𝑣1) × 𝐶𝑜𝑛𝑓 (𝑢, 𝑣1)
1405
+ |𝐼𝑛(𝑣1) |
1406
+
1407
+
1408
+ (𝑢,𝑣2)∈𝐼𝑛(𝑣2) 𝑆𝑐𝑜𝑟𝑒 (ℎ(𝑢), 𝑣2) × 𝐶𝑜𝑛𝑓 (ℎ(𝑢), 𝑣2)
1409
+ |𝐼𝑛(𝑣2) |
1410
+ =
1411
+
1412
+ (𝑢,𝑣1)∈𝐼𝑛(𝑣1) (𝑆𝑐𝑜𝑟𝑒 (𝑢, 𝑣1) − 𝑆𝑐𝑜𝑟𝑒 (ℎ(𝑢), 𝑣2)) × 𝐶𝑜𝑛𝑓 (𝑢, 𝑣1)
1413
+ |𝐼𝑛(𝑣1) |
1414
+ As 𝑆𝑐𝑜𝑟𝑒(𝑢, 𝑣1) > 𝑆𝑐𝑜𝑟𝑒(ℎ(𝑢), 𝑣2), so
1415
+ 𝑇 (𝑣1) −𝑇 (𝑣2) >
1416
+
1417
+ (𝑢,𝑣1)∈𝐼𝑛(𝑣1) 𝐶𝑜𝑛𝑓 (𝑢, 𝑣1)
1418
+ |𝐼𝑛(𝑣1) |
1419
+ As 𝐶𝑜𝑛𝑓 (𝑢, 𝑣1) ≥ 0 because Confidence are non-negative,
1420
+ 𝑇 (𝑣1) −𝑇 (𝑣2) > 0 ⇒ 𝑇 (𝑣1) > 𝑇 (𝑣2)
1421
+ The other items of prior knowledge have very similar and straight-
1422
+ forward proof.
1423
+
1424
+ A.2
1425
+ Proof for Convergence
1426
+ Before the proof of convergence, we first discuss the boundary of
1427
+ proposed metrics. At the end of iteration 𝑡 of Algorithm 1, and by
1428
+ equation 2, 3, and 4, we get,
1429
+ 𝑇 𝑡 (𝑣) =
1430
+
1431
+ (𝑢,𝑣)∈𝐼𝑛(𝑣) 𝑆𝑐𝑜𝑟𝑒 (𝑢, 𝑣) × 𝐶𝑜𝑛𝑓 𝑡−1(𝑢, 𝑣)
1432
+ |𝐼𝑛(𝑣) |
1433
+ 𝑅𝑡 (𝑢) =
1434
+
1435
+ (𝑢,𝑣)∈𝑂𝑢𝑡 (𝑢) 𝐶𝑜𝑛𝑓 𝑡−1(𝑢, 𝑣)
1436
+ |𝑂𝑢𝑡 (𝑢) |
1437
+ 𝐶𝑜𝑛𝑓 𝑡 (𝑢, 𝑣) = 𝑅𝑡 (𝑢) + (1 − |𝑆𝑐𝑜𝑟𝑒 (𝑢, 𝑣) −𝑇 𝑡 (𝑣) |
1438
+ 2
1439
+ )
1440
+ 𝑇 ∞(𝑣), 𝑅(∞) (𝑢),𝐶𝑜𝑛𝑓 (∞) (𝑢, 𝑣) are their final values after con-
1441
+ vergence.
1442
+ Lemma A.1. (Boundary discussion) Set the maximum score in the
1443
+ transaction network as 𝑀, namely:
1444
+ 𝑀 = max
1445
+ (𝑢,𝑣) 𝑆𝑐𝑜𝑟𝑒 (𝑢, 𝑣)
1446
+ then |𝑀| < 1.
1447
+ The difference between a payee𝑣’s final Trustiness and its Trustiness
1448
+ after the first iteration is
1449
+ |𝑇 ∞(𝑢) −𝑇 1(𝑢) | ≤ |𝑀 |
1450
+ Similarly,
1451
+ |𝑅∞(𝑢) − 𝑅1(𝑢) | ≤ 1
1452
+ |𝐶𝑜𝑛𝑓 ∞(𝑢, 𝑣) − 𝐶𝑜𝑛𝑓 1(𝑢, 𝑣) | ≤ 1 + |𝑀 |
1453
+ 2
1454
+ = 𝛼 (𝛼 ≤ 1)
1455
+ Proof. First, we state that |𝑀| is strictly less than 1 in prac-
1456
+ tice. According to the formulation of 𝑆𝑐𝑜𝑟𝑒 of the main paper, we
1457
+ can see that 𝑆𝑐𝑜𝑟𝑒(𝑢, 𝑣) = 1 when 𝑂𝑢𝑡𝑇𝑥𝑛(𝑢) = 𝑚𝑎𝑥𝑂𝑢𝑡 and
1458
+ 𝐼𝑛𝑇𝑥𝑛(𝑣) = 𝑚𝑎𝑥𝐼𝑛, it is an extreme situation where the largest
1459
+ number of payments and receptions of the entire network appears
1460
+ in one transaction. The other case is 𝑆𝑐𝑜𝑟𝑒(𝑢, 𝑣) = −1 when that
1461
+ 𝑂𝑢𝑡𝑇𝑥𝑛(𝑢) = 1 and 𝐼𝑛𝑇𝑥𝑛(𝑣) = 1 at the same time. This situation
1462
+ presents to be some isolated transactions, however, they do not
1463
+ propagate risk and thus do not influence convergence. These situa-
1464
+ tions are out of our consideration. So we get |𝑀| is strictly smaller
1465
+ than 1.
1466
+ Then, we prove that 𝑇 (𝑣) is bounded during the iterations:
1467
+ |𝑇 ∞(𝑣) −𝑇 1(𝑣) | = |
1468
+
1469
+ (𝑢,𝑣)∈𝐼𝑛(𝑣) 𝑆𝑐𝑜𝑟𝑒 (𝑢, 𝑣) × 𝐶𝑜𝑛𝑓 ∞(𝑢, 𝑣)
1470
+ |𝐼𝑛(𝑣) |
1471
+
1472
+
1473
+ (𝑢,𝑣)∈𝐼𝑛(𝑣) 𝑆𝑐𝑜𝑟𝑒 (𝑢, 𝑣) × 𝐶𝑜𝑛𝑓 0(𝑢, 𝑣)
1474
+ |𝐼𝑛(𝑣) |
1475
+ |
1476
+ Since |𝑥 + 𝑦| ≤ |𝑥| + |𝑦|, we get,
1477
+ |𝑇 ∞ (𝑣) −𝑇 1 (𝑣) | ≤
1478
+
1479
+ (𝑢,𝑣)∈𝐼𝑛(𝑣) |𝑆𝑐𝑜𝑟𝑒 (𝑢, 𝑣) × (𝐶𝑜𝑛𝑓 ∞ (𝑢, 𝑣) − 𝐶𝑜𝑛𝑓 0 (𝑢, 𝑣)) |
1480
+ |𝐼𝑛(𝑣) |
1481
+ Since |𝑥 × 𝑦| = |𝑥| × |𝑦|, we have,
1482
+ |𝑇 ∞ (𝑣) −𝑇 1 (𝑣) | ≤
1483
+
1484
+ (𝑢,𝑣)∈𝐼𝑛(𝑣) |𝑆𝑐𝑜𝑟𝑒 (𝑢, 𝑣) | × (𝐶𝑜𝑛𝑓 ∞ (𝑢, 𝑣) − 𝐶𝑜𝑛𝑓 0 (𝑢, 𝑣)) |
1485
+ |𝐼𝑛(𝑣) |
1486
+ (5)
1487
+ Since |𝑆𝑐𝑜𝑟𝑒(𝑢, 𝑣)| ≤ |𝑀| ≤ 1, and |(𝐶𝑜𝑛𝑓 ∞(𝑢, 𝑣)−𝐶𝑜𝑛𝑓 0(𝑢, 𝑣))| ≤
1488
+ 1, we get,
1489
+ |𝑇 ∞ (𝑣) −𝑇 1 (𝑣) | ≤ |𝑀 | × |𝐼𝑛(𝑣) |
1490
+ |𝐼𝑛(𝑣) | = |𝑀 |
1491
+ Next, we conduct the proof on 𝑅(𝑢):
1492
+ |𝑅∞ (𝑢) − 𝑅1 (𝑢) | =
1493
+ | �
1494
+ (𝑢,𝑣)∈𝑂𝑢𝑡 (𝑢) 𝐶𝑜𝑛𝑓 ∞ (𝑢, 𝑣) − �
1495
+ (𝑢,𝑣)∈𝑂𝑢𝑡 (𝑢) 𝐶𝑜𝑛𝑓 0 (𝑢, 𝑣) |
1496
+ |𝑂𝑢𝑡 (𝑢) |
1497
+ Again, since |𝑥 × 𝑦| = |𝑥| × |𝑦|, we get,
1498
+ |𝑅∞ (𝑢) − 𝑅1 (𝑢) | ≤
1499
+
1500
+ (𝑢,𝑣)∈𝑂𝑢𝑡 (𝑢) |𝐶𝑜𝑛𝑓 ∞ (𝑢, 𝑣) − 𝐶𝑜𝑛𝑓 0 (𝑢, 𝑣) |
1501
+ |𝑂𝑢𝑡 (𝑢) |
1502
+ (6)
1503
+ Similarly, since |(𝐶𝑜𝑛𝑓 ∞(𝑢, 𝑣) − 𝐶𝑜𝑛𝑓 0(𝑢, 𝑣))| ≤ 1, we have,
1504
+ |𝑅∞ (𝑢) − 𝑅1 (𝑢) | ≤ |𝑂𝑢𝑡 (𝑢) |
1505
+ |𝑂𝑢𝑡 (𝑢) | = 1
1506
+
1507
+ RiskProp
1508
+ WWW ’23, April 30–May 4, 2023, Austin, TX, US
1509
+ Finally, we calculate the bound of 𝐶𝑜𝑛𝑓 (𝑢, 𝑣):
1510
+ |𝐶𝑜𝑛𝑓 ∞ (𝑢, 𝑣) − 𝐶𝑜𝑛𝑓 1 (𝑢, 𝑣) | =
1511
+ |𝑅∞ (𝑢) − 𝑅1 (𝑢) + |𝑆𝑐𝑜𝑟𝑒 (𝑢, 𝑣) −𝑇 1 (𝑣) | − |𝑆𝑐𝑜𝑟𝑒 (𝑢, 𝑣) −𝑇 ∞ (𝑣) ||
1512
+ 2
1513
+ Since |𝑥 + 𝑦| ≤ |𝑥| + |𝑦|, we have
1514
+ |𝐶𝑜𝑛𝑓 ∞ (𝑢, 𝑣) − 𝐶𝑜𝑛𝑓 1 (𝑢, 𝑣) | ≤
1515
+ |𝑅∞ (𝑢) − 𝑅1 (𝑢) | + ( ||𝑆𝑐𝑜𝑟𝑒 (𝑢, 𝑣) −𝑇 1 (𝑣) | − |𝑆𝑐𝑜𝑟𝑒 (𝑢, 𝑣) −𝑇 ∞ (𝑣) ||)
1516
+ 2
1517
+ Since ||𝑥| − |𝑦|| ≤ |𝑥 − 𝑦|, it follows that,
1518
+ |𝐶𝑜𝑛𝑓 ∞ (𝑢, 𝑣) − 𝐶𝑜𝑛𝑓 1 (𝑢, 𝑣) | ≤ |𝑅∞ (𝑢) − 𝑅1 (𝑢) | + |𝑇 ∞ (𝑣) −𝑇 1 (𝑣) |
1519
+ 2
1520
+ (7)
1521
+ Since |𝑅∞(𝑢) − 𝑅1(𝑢)| ≤ 1, and|𝑇 ∞(𝑣) −𝑇 1(𝑣)| ≤ |𝑀|, we get,
1522
+ |𝐶𝑜𝑛𝑓 ∞ (𝑢, 𝑣) − 𝐶𝑜𝑛𝑓 1 (𝑢, 𝑣) | ≤ 1 + |𝑀 |
1523
+ 2
1524
+ For convenience, we let 1+|𝑀 |
1525
+ 2
1526
+ = 𝛼. Since |𝑀| < 1, then 𝛼 < 1.
1527
+
1528
+ Theorem A.2. Convergence of Propagation: The difference during
1529
+ iterations is bounded as as |𝐶𝑜𝑛𝑓 ∞(𝑢, 𝑣) − 𝐶𝑜𝑛𝑓 𝑡 (𝑢, 𝑣)| ≤ 𝛼𝑡 (𝛼 =
1530
+ 1+|𝑀 |
1531
+ 2
1532
+ < 1), ∀(𝑢, 𝑣) ∈ 𝑆. As 𝑡 increases, the difference decreases and
1533
+ 𝐶𝑜𝑛𝑓 𝑡 (𝑢, 𝑣) converges to |𝐶𝑜𝑛𝑓 ∞(𝑢, 𝑣). Similarly, |𝑇 ∞(𝑣) −𝑇𝑡 (𝑣)| ≤
1534
+ 𝛼𝑡−1, ∀𝑣 ∈ 𝑉 , |𝑅∞(𝑢) − 𝑅𝑡 (𝑢)| ≤ 𝛼𝑡−1, ∀𝑢 ∈ 𝑈 .
1535
+ Proof. Similar to Equations 5, 6, and 7, we have,
1536
+ |𝐶𝑜𝑛𝑓 ∞ (𝑢, 𝑣) − 𝐶𝑜𝑛𝑓 𝑡 (𝑢, 𝑣) | ≤ |𝑅∞ (𝑢) − 𝑅𝑡 (𝑢) | + |𝑇 ∞ (𝑣) −𝑇𝑡 (𝑣) |
1537
+ 2
1538
+ (8)
1539
+ |𝑅∞ (𝑢) − 𝑅𝑡 (𝑢) | ≤
1540
+
1541
+ (𝑢,𝑣,)∈𝑂𝑢𝑡 (𝑢) |𝐶𝑜𝑛𝑓 ∞ (𝑢, 𝑣) − 𝐶𝑜𝑛𝑓 𝑡−1 (𝑢, 𝑣) |
1542
+ |𝑂𝑢𝑡 (𝑢) |
1543
+ (9)
1544
+ |𝑇 ∞ (𝑣) −𝑇𝑡 (𝑣) |
1545
+
1546
+
1547
+ (𝑢,𝑣)∈𝐼𝑛(𝑣) |𝑆𝑐𝑜𝑟𝑒 (𝑢, 𝑣) | × |(𝐶𝑜𝑛𝑓 ∞ (𝑢, 𝑣) − 𝐶𝑜𝑛𝑓 𝑡−1 (𝑢, 𝑣)) |
1548
+ |𝐼𝑛(𝑣) |
1549
+ (10)
1550
+ First, we will prove the convergence of Confidence using mathe-
1551
+ matical induction.
1552
+ Base case of induction.
1553
+ When 𝑡 = 1, as we proved in Lemma A.1, we get:
1554
+ |𝐶𝑜𝑛𝑓 ∞(𝑢, 𝑣) − 𝐶𝑜𝑛𝑓 1(𝑢, 𝑣) | ≤ 𝛼1
1555
+ Induction step.
1556
+ We assume by hypothesis that
1557
+ |𝐶𝑜𝑛𝑓 ∞(𝑢, 𝑣) − 𝐶𝑜𝑛𝑓 𝑡−1(𝑢, 𝑣) | ≤ 𝛼𝑡−1,
1558
+ which is consistent with the base case already.
1559
+ Then, by substituting Equations 9 and 10 into Equation 8, for the
1560
+ case in the next iteration where time is 𝑡, we have,
1561
+ |𝐶𝑜𝑛𝑓 ∞ (𝑢, 𝑣) − 𝐶𝑜𝑛𝑓 𝑡 (𝑢, 𝑣) |
1562
+
1563
+
1564
+ (𝑢,𝑣)∈𝑂𝑢𝑡 (𝑢) |𝐶𝑜𝑛𝑓 ∞ (𝑢, 𝑣) − 𝐶𝑜𝑛𝑓 𝑡−1 (𝑢, 𝑣) |
1565
+ 2 × |𝑂𝑢𝑡 (𝑢) |
1566
+ )
1567
+ +
1568
+
1569
+ (𝑢,𝑣)∈𝐼𝑛(𝑣) |𝑆𝑐𝑜𝑟𝑒 (𝑢, 𝑣) | × |(𝐶𝑜𝑛𝑓 ∞ (𝑢, 𝑣) − 𝐶𝑜𝑛𝑓 𝑡−1 (𝑢, 𝑣) |
1570
+ 2 × |𝐼𝑛(𝑣) |
1571
+ ≤ 1
1572
+ 2 ×
1573
+
1574
+ ( 1 + |𝑀 |
1575
+ 2
1576
+ )𝑡−1 +
1577
+ |𝑀 | × �
1578
+ (𝑢,𝑣)∈𝐼𝑛(𝑣) |𝐶𝑜𝑛𝑓 ∞ (𝑢, 𝑣) − 𝐶𝑜𝑛𝑓 𝑡−1 (𝑢, 𝑣) |
1579
+ |𝐼𝑛(𝑣) |
1580
+
1581
+ ≤ 1
1582
+ 2 ×
1583
+
1584
+ ( 1 + |𝑀 |
1585
+ 2
1586
+ )𝑡−1 + |𝑀 | × ( 1 + |𝑀 |
1587
+ 2
1588
+ )𝑡−1
1589
+
1590
+ ≤ ( 1 + |𝑀 |
1591
+ 2
1592
+ )𝑡 = 𝛼𝑡
1593
+ Therefore, |𝐶𝑜𝑛𝑓 ∞(𝑢, 𝑣) − 𝐶𝑜𝑛𝑓 𝑡 (𝑢, 𝑣)| ≤ 𝛼𝑡.
1594
+ |𝑅∞ (𝑢) − 𝑅𝑡 (𝑢) | ≤
1595
+
1596
+ (𝑢,𝑣)∈𝑂𝑢𝑡 (𝑢) |𝐶𝑜𝑛𝑓 ∞ (𝑢, 𝑣) − 𝐶𝑜𝑛𝑓 𝑡−1 (𝑢, 𝑣) |
1597
+ |𝑂𝑢𝑡 (𝑢) |
1598
+
1599
+
1600
+ (𝑢,𝑣)∈𝑂𝑢𝑡 (𝑢) ( 1+|𝑀|
1601
+ 2
1602
+ )𝑡−1
1603
+ |𝑂𝑢𝑡 (𝑢) |
1604
+ ≤ ( 1 + |𝑀 |
1605
+ 2
1606
+ )𝑡−1 = 𝛼𝑡−1
1607
+ |𝑇 ∞ (𝑣) −𝑇 (𝑣)𝑡 |
1608
+
1609
+
1610
+ (𝑢,𝑣)∈𝐼𝑛(𝑣) |𝑆𝑐𝑜𝑟𝑒 (𝑢, 𝑣) | × |(𝐶𝑜𝑛𝑓 ∞ (𝑢, 𝑣) − 𝐶𝑜𝑛𝑓 𝑡−1 (𝑢, 𝑣)) |
1611
+ |𝐼𝑛(𝑣) |
1612
+
1613
+
1614
+ (𝑢,𝑣)∈𝐼𝑛(𝑣) |(𝐶𝑜𝑛𝑓 ∞ (𝑢, 𝑣) − 𝐶𝑜𝑛𝑓 𝑡−1 (𝑢, 𝑣)) |
1615
+ |𝐼𝑛(𝑣) |
1616
+
1617
+
1618
+ (𝑢,𝑣)∈𝐼𝑛(𝑣) ( 1+|𝑀|
1619
+ 2
1620
+ )𝑡−1
1621
+ |𝐼𝑛(𝑣) |
1622
+ ≤ ( 1 + |𝑀 |
1623
+ 2
1624
+ )𝑡−1 = 𝛼𝑡−1
1625
+ As discussed in the Lemma A.1. we know that |𝑀| is strictly
1626
+ smaller than 1, then we have 𝛼 < 1. As 𝑡 increases, 𝛼𝑡−1 → 0
1627
+ and 𝛼𝑡 → 0, so after t iterations, 𝐶𝑜𝑛𝑓 (𝑢, 𝑣)𝑡 → 𝐶𝑜𝑛𝑓 ∞(𝑢, 𝑣),
1628
+ 𝑅(𝑢)𝑡 → 𝑅∞(𝑢), and 𝑇 (𝑣)𝑡 → 𝑇 ∞(𝑣), the algorithm converges.
1629
+
1630
+ A.3
1631
+ Proof for Uniqueness
1632
+ In this part, we provides proofs that Reliability, Trustiness, and
1633
+ Confidence are unique.
1634
+ Theorem A.3. Confidence, Reliability, and Trustiness converge to
1635
+ the unique value.
1636
+ Proof. First, we consider the uniqueness of Confidence using
1637
+ mathematical contradiction.
1638
+ Let the 𝐶𝑜𝑛𝑓 (𝑢, 𝑣) converges to different values. So, let (���, 𝑣)
1639
+ be the transaction with maximum Confidence difference, 𝐷 (with
1640
+ 𝐷 ≥ 0), between its two possible 𝐶𝑜𝑛𝑓1(𝑢, 𝑣) and 𝐶𝑜𝑛𝑓2(𝑢, 𝑣).
1641
+ According to Equation 8, we get,
1642
+ 𝐷 = |𝐶𝑜𝑛𝑓 ∞
1643
+ 1 (𝑢, 𝑣) − 𝐶𝑜𝑛𝑓 ∞
1644
+ 2 (𝑢, 𝑣) |
1645
+ ≤ |𝑅∞
1646
+ 1 (𝑢) − 𝑅∞
1647
+ 2 (𝑢) | + |𝑇 ∞
1648
+ 1 (𝑣) −𝑇 ∞
1649
+ 2 (𝑣) |
1650
+ 2
1651
+ (11)
1652
+ Then, according to Equation 9 and 10, we have,
1653
+ |𝑅∞
1654
+ 1 (𝑢) − 𝑅∞
1655
+ 2 (𝑢) | ≤
1656
+
1657
+ (𝑢,𝑣)∈𝑂𝑢𝑡 (𝑢) |𝐶𝑜𝑛𝑓 ∞
1658
+ 1 (𝑢, 𝑣) − 𝐶𝑜𝑛𝑓 ∞
1659
+ 2 (𝑢, 𝑣) |
1660
+ |𝑂𝑢𝑡 (𝑢) |
1661
+ ≤ 𝐷
1662
+ (12)
1663
+
1664
+ WWW ’23, April 30–May 4, 2023, Austin, TX, US
1665
+ Anonymous author(s)
1666
+ |𝑇 ∞
1667
+ 1 (𝑣) −𝑇 ∞
1668
+ 2 (𝑣) | ≤
1669
+
1670
+ (𝑢,𝑣)∈𝐼𝑛(𝑣) |𝑆𝑐𝑜𝑟𝑒 (𝑢, 𝑣) | × |𝐶𝑜𝑛𝑓 ∞
1671
+ 1 (𝑢, 𝑣) − 𝐶𝑜𝑛𝑓 ∞
1672
+ 2 (𝑢, 𝑣) |
1673
+ |𝐼𝑛(𝑣) |
1674
+ ≤ |𝑀 | × 𝐷
1675
+ (13)
1676
+ We substitute Equation 12 and 13 into Equation (11), and get,
1677
+ 𝐷 = |𝐶𝑜𝑛𝑓 ∞
1678
+ 1 (𝑢, 𝑣) − 𝐶𝑜𝑛𝑓 ∞
1679
+ 2 (𝑢, 𝑣) |
1680
+ ≤ 1
1681
+ 2 × (
1682
+
1683
+ (𝑢,𝑣)∈𝑂𝑢𝑡 (𝑢) |𝐶𝑜𝑛𝑓 ∞
1684
+ 1 (𝑢, 𝑣) − 𝐶𝑜𝑛𝑓 ∞
1685
+ 2 (𝑢, 𝑣) |
1686
+ |𝑂𝑢𝑡 (𝑢) |
1687
+ +
1688
+
1689
+ (𝑢,𝑣)∈𝐼𝑛(𝑣) |𝑆𝑐𝑜𝑟𝑒 (𝑢, 𝑣) | × |𝐶𝑜𝑛𝑓 ∞
1690
+ 1 (𝑢, 𝑣) − 𝐶𝑜𝑛𝑓 ∞
1691
+ 2 (𝑢, 𝑣) |
1692
+ |𝐼𝑛(𝑣) |
1693
+ ≤ 1
1694
+ 2 ×
1695
+
1696
+ 𝐷 +
1697
+ |𝑀 | × �
1698
+ (𝑢,𝑣)∈𝐼𝑛(𝑣) |𝐶𝑜𝑛𝑓 ∞(𝑢, 𝑣) − 𝐶𝑜𝑛𝑓 ∞(𝑢, 𝑣) |
1699
+ |𝐼𝑛(𝑣) |
1700
+
1701
+ ≤ 1
1702
+ 2 × (𝐷 + |𝑀 | × 𝐷)
1703
+ ≤ ( 1 + |𝑀 |
1704
+ 2
1705
+ ) × 𝐷
1706
+ = 𝛼 × 𝐷
1707
+ Thus, by solving 𝐷 ≤ 𝛼 × 𝐷(𝛼 ≠ 0) and with the condition that
1708
+ 𝐷 ≥ 0, we obtain 𝐷 = 0. Then, |𝐶𝑜𝑛𝑓 ∞
1709
+ 1 (𝑢, 𝑣) − 𝐶𝑜𝑛𝑓 ∞
1710
+ 2 (𝑢, 𝑣)| = 0
1711
+ and converge value of Confidence is unique. The uniqueness of
1712
+ Trustiness and Reliability have similar proof.
1713
+
1714
+
LNAyT4oBgHgl3EQfgPhD/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
PNE3T4oBgHgl3EQfxguY/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
QNE0T4oBgHgl3EQfkQEN/content/tmp_files/2301.02469v1.pdf.txt ADDED
@@ -0,0 +1,795 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ Cox Point Processes for Multi-Altitude LEO
3
+ Satellite Networks
4
+ Chang-Sik Choi and Franc¸ois Baccelli
5
+ Abstract—We propose a simple analytical approach to describe
6
+ the locations of low earth orbit (LEO) satellites based on a
7
+ Cox point process. We develop a variable-altitude Poisson orbit
8
+ process by accounting for the fact that satellites are always
9
+ located on circular orbits and these orbits may have different
10
+ altitudes. Then, the satellites on these orbits are modeled as
11
+ the Poisson point processes conditionally on the orbit process.
12
+ For this model, we derive the distribution of the distance to
13
+ the nearest visible satellite, the outage probability, the Laplace
14
+ functional of the proposed satellite Cox point process, and the
15
+ Laplace transform of the interference under a general fading. The
16
+ derived statistics allow one to evaluate the performance of such
17
+ LEO satellite communication systems as functions of network
18
+ parameters.
19
+ Index Terms—LEO satellite communications, Stochastic geom-
20
+ etry, Cox point process, Nearest distance, Total interference
21
+ I. INTRODUCTION
22
+ A. Motivation and Background
23
+ LEO satellites provide global connectivity to millions of
24
+ devices on earth [1]–[5]. The applications of LEO satellite net-
25
+ works are numerous [1]: they provide Internet connections to
26
+ devices where ground infrastructure is unavailable [2]; local-
27
+ ization and emergency communications of aerial and ground
28
+ devices can be enabled by LEO satellites [3]; LEO satellite
29
+ networks provide cheaper Internet connections to developing
30
+ countries [4]. LEO satellite networks can even be integrated
31
+ with terrestrial networks to enable reliable connections to
32
+ devices in a small area [5]. To support these applications, LEO
33
+ satellite networks will have a very large number of satellites.
34
+ The viability and performance of LEO satellite communi-
35
+ cations are significantly determined by the way satellites are
36
+ distributed in space. Various evaluation methodologies have
37
+ been proposed to obtain the performance of LEO satellite
38
+ communication networks. For satellite layout, some studies
39
+ used probabilistic approaches including a binomial point pro-
40
+ cess [6]–[9]. In contrast to the simulation-based approach,
41
+ the benefits of employing such analytical models lie in the
42
+ fact that they presents large-scale behaviors as functions of
43
+ network key parameters such as the mean number of satel-
44
+ lites, their altitudes, etc. Nevertheless, the binomial satellite
45
+ point processes in [6]–[9] were not able to incorporate the
46
+ fact that the satellites are located on approximately circular
47
+ trajectories around the earth, namely their orbits. In this paper,
48
+ we provide a tractable model that incorporates this fact in the
49
+ multi-altitude LEO satellite case, by generalizing the work in
50
+ Chang-Sik Choi is with Hongik University, South Korea. Franc¸ois
51
+ Baccelli is with Inria Paris and Telecom Paris, France. (email: chang-
52
53
+ [10] where all orbits are at the same altitude. Specifically,
54
+ we present an analytical framework leveraging a Cox point
55
+ process so that orbits are created first according to a Poisson
56
+ point process on a cuboid and then satellites are distributed
57
+ as Poisson point processes conditionally on these orbits. We
58
+ derive key statistical properties of the proposed network model
59
+ that are critical to obtain the performance of such satellite
60
+ networks as functions of the altitude distribution, of the mean
61
+ number of orbits, of the number of satellites, and of the
62
+ Laplace transform of the random variable representing fading.
63
+ B. Contributions
64
+ Modeling of variable orbit LEO satellite constellations:
65
+ This paper accounts for the geometric properties of practical
66
+ LEO satellite systems that (i) satellites are always on orbits
67
+ around the earth and (ii) such orbits are possibly at different
68
+ altitudes. By developing a nonhomogeneous Poisson point
69
+ process of mean λ in a cuboid, we creates a Poisson orbit
70
+ process of orbits in the Euclidean space. Then, conditionally
71
+ on the orbit process, satellites are distributed as linear Poisson
72
+ point processes of mean µ on these orbits. Our motivation is
73
+ to represent a general LEO satellite network where satellites
74
+ are located at different altitude bands.
75
+ Statistical properties of the proposed Cox point pro-
76
+ cess: The proposed satellite Cox point process is built to be
77
+ invariant by all rotations of the reference plane. This makes
78
+ the statistical properties of the network to be the same for all
79
+ perspectives seen from all points on earth. Leveraging this, we
80
+ obtain the probability distribution function of the distance from
81
+ the typical user to its nearest visible satellite and then derive
82
+ the outage probability of the proposed network model. Using
83
+ it, we derive the Laplace functional of the proposed satellite
84
+ Cox point process and then give an integral expression for the
85
+ Laplace transform of the total interference. These formulas
86
+ are directly used to assess the network performance metrics
87
+ such as the Signal-to-interference-plus-noise ratio (SINR) of
88
+ the typical user.
89
+ II. COX-MODELED SATELLITES
90
+ A. Satellite Distribution
91
+ The center of the earth is O = (0, 0, 0) and it is of radius
92
+ re. The xy-plane is the reference plane and the x-axis is
93
+ longitude reference direction. In this paper, we only focus on
94
+ the snapshot of the network geometry and the movement of
95
+ satellites is out of the scope.
96
+ Consider a cuboid C = [ra, rb] × [0, π) × [0, π) where ra ≤
97
+ rb the minimum and maximum altitudes and a Poisson point
98
+ arXiv:2301.02469v1 [eess.SP] 6 Jan 2023
99
+
100
+ 2
101
+ Reference: xy-plane
102
+ x-axis
103
+ A
104
+ θ
105
+ l(ρ,θ,φ)
106
+ φ
107
+ X: satellite
108
+ ω
109
+ O
110
+ ~
111
+ y-axis
112
+ ρ
113
+ z-axis
114
+ Fig. 1.
115
+ The orbital plane meets the reference plane at two points and the
116
+ point with angle less than π is A. The angle θ is measured from the x-axis
117
+ to the segment OA. The inclination ˜ϕ is measured from the reference plane
118
+ to the orbital plane and the azimuth ϕ is given by π/2 − ˜ϕ. The angle ω for
119
+ satellite X is measured from OA to OX over the orbital plane.
120
+ process Ξ of intensity measure λν(dρ)/π2 in the cuboid C.
121
+ We have
122
+ � rb
123
+ ra ν(dρ) = 1. Then, we build an orbit process by
124
+ mapping each point of Ξ, say (ρ, θ, ϕ) into an orbit l(ρ, θ, ϕ)
125
+ in the Euclidean space. Specifically, the first coordinate ρ is the
126
+ orbit’s radius, θ is the orbit’s longitude, and ϕ is the orbit’s
127
+ azimuth. See Fig. 1. For the Poisson point process on the
128
+ cuboid, we write Ξ = �
129
+ i Zi, where Zi is the point of Ξ.
130
+ Since there are on average λ points of Ξ, there are on average
131
+ λ orbits. The orbit process O in R3 is given by
132
+ O =
133
+
134
+ Zi∈Ξ
135
+ l(ρi, θi, ϕi).
136
+ (1)
137
+ Conditionally on Ξ, the locations of satellites on each orbit
138
+ l(ρi, θi, ϕi) are modeled as a homogeneous Poisson point
139
+ process ψi of intensity µ/(2πρi) on this orbit. Equivalently,
140
+ the orbital angles of satellites on each orbit are modeled as
141
+ a 1-dim homogeneous Poisson point process φi on segment
142
+ [0, 2π) of intensity µ/(2π). Since the satellites are distributed
143
+ conditionally on Ξ, the satellite point process Ψ is a Cox point
144
+ process. The satellite Cox point process is
145
+ Ψ =
146
+
147
+ i
148
+ ψi.
149
+ (2)
150
+ Figs. 2 – 4 depict the proposed satellite Cox point process with
151
+ λ, µ, ra and rb. In the figures, we use ν(dρ) =
152
+
153
+ rb−ra , i.e.,
154
+ the radii of orbits are uniformly distributed on the interval
155
+ [ra, rb]. The proposed model can be used to represent e.g.,
156
+ multiple operators of LEO satellite networks where orbits are
157
+ at different altitudes. The case of all satellites are located at
158
+ the same altitude in [10] is a special case of the proposed
159
+ model by taking ν(dρ) = δra(dρ), where ra is the radius of
160
+ orbits.
161
+ B. User Distribution
162
+ Users are located on the surface of the earth {(x, y, z)|x2 +
163
+ y2 +z2 = r2
164
+ e} and the locations of network users are assumed
165
+ to be independent of the locations of the LEO satellites.
166
+ III. STATISTICAL RESULTS
167
+ In this section, we derive/prove (i) the mean number of
168
+ LEO satellites, (ii) the isotropy of Ψ, (iii) the distances from
169
+ Fig. 2. The proposed Cox satellite model with ra = 7000 km, rb = 7100
170
+ km. We use λ = 60, µ = 40, and ν(dρ) = dρ/(rb − ra).
171
+ Fig. 3. The Cox-modeled satellite with ra = 7000 km and rb = 7500 km.
172
+ We use λ = 30, µ = 60, and ν(dρ) = dρ/(rb − ra).
173
+ Fig. 4. The Cox-modeled satellite with ra = 7000 km and rb = 8500 km.
174
+ We use λ = 70, µ = 30, and ν(dρ) = dρ/(rb − ra).
175
+
176
+ 3
177
+ the LEO satellites to an arbitrarily located user, (iv) the
178
+ distribution of the distance to the nearest visible satellite, (v)
179
+ the outage probability, (vi) the Laplace functional of Ψ, and
180
+ (vii) the Laplace transform of the total interference under
181
+ general fading. These statistical properties directly determine
182
+ the performance of downlink LEO satellite communications
183
+ in this context.
184
+ Lemma 1. The average number of the proposed Cox satellite
185
+ point process is λµ.
186
+ Proof: The average number of satellites is given by
187
+ E [Ψ(S)] = E
188
+
189
+ � �
190
+ Zi∈Ξ
191
+ E
192
+
193
+ � �
194
+ Xj∈ψi
195
+ 1
196
+ ������
197
+ Ξ
198
+
199
+
200
+
201
+
202
+ = E
203
+ � �
204
+ Zi∈Ξ
205
+ � 2π
206
+ 0
207
+ µ
208
+ 2π dx
209
+ ����� Ξ
210
+
211
+ = µ
212
+
213
+ C
214
+ λ
215
+ π2 ν(dρ) dθ dϕ = λµ,
216
+ where we use Campbell’s mean value theorem [11].
217
+ Below we show that O is invariant w.r.t. rotations. This
218
+ allows one to evaluate the performance of network seen by a
219
+ typical user at the north pole.
220
+ Lemma 2. The distribution of O and Ψ are invariant by all
221
+ rotations of the reference space (O, x, y, z).
222
+ Proof: The intensity measure of the proposed orbit pro-
223
+ cess Ξ has the product form: ν(dρ) ×
224
+
225
+ λ/π2�
226
+ dθ dϕ. This
227
+ shows that the angles (θ, ϕ) form a homogeneous Poisson
228
+ point process on the rectangle [0, π) × [0, π). [10] proved
229
+ that the orbit process mapped by the very intensity measure
230
+
231
+ λ/π2�
232
+ dθ dϕ is invariant by all rotations of the reference
233
+ space. Hence, the law of O is also invariant by all rotations of
234
+ the reference space (O, x, y, z). In the same vein, the law of
235
+ Ψ is invariant by all rotations of the reference space as well.
236
+ Lemma 3. Consider a satellite X of orbital angle ωj on the
237
+ orbit l(ρi, θi, ϕi). The distance from (0, 0, re) to the satellite
238
+ X(ρi, θi, ϕi, ωj) is given by
239
+
240
+ ρ2
241
+ i − 2ρire sin(ωj) cos(ϕi) + r2e.
242
+ (3)
243
+ Proof: The coordinates (x, y, z) ∈ R3 of the satellite that
244
+ has the orbital angle ωj on the orbit l(ρi, θi, ϕi) are given by
245
+ x =
246
+
247
+ ρ2
248
+ i cos2(ωj) + ρ2
249
+ i sin2(ωj) cos2( ˜ϕi) cos
250
+
251
+ ˜θ + θi
252
+
253
+ , (4)
254
+ y =
255
+
256
+ ρ2
257
+ i cos2(ωj) + ρ2
258
+ i sin2(ωj) cos2( ˜ϕi) sin
259
+
260
+ ˜θ + θi
261
+
262
+ , (5)
263
+ z = ρi sin(ωj) sin( ˜ϕi),
264
+ (6)
265
+ ˜θ = arctan (tan(ωj) cos( ˜ϕi)) ,
266
+ (7)
267
+ where ˜ϕ is the inclination: ˜ϕ = π/2 − ϕ.
268
+ As a result, the distance from (0, 0, re) to the satellite is
269
+ ∥(x, y, z) − (0, 0, re)∥ =
270
+
271
+ ρ2
272
+ i − 2ρire sin(ωj) cos(ϕi) + r2e.
273
+ Note the distance is independent of the variable θ.
274
+ U=(0,0,re)
275
+ O
276
+ A
277
+ C
278
+ E
279
+ B
280
+ F
281
+ A`
282
+ D
283
+ ρ
284
+ re
285
+ Bottom of spherical cap
286
+ Fig. 5. The arc of orbit l(ρ, θ, ϕ) in spherical cap C(ρ, d).
287
+ A. The Lengths of Orbits’ Arcs
288
+ Since (i) users are independent of Ψ and (ii) Ψ is invariant
289
+ by rotations (Lemma 2 ), one can consider a typical user at
290
+ (0, 0, re) and study the network performance it experiences,
291
+ which will be typical.
292
+ Let C(d) be the subset of S such that the distances from
293
+ the typical observer u to the satellites on C(d) are less than
294
+ a distance d. For any ra ≤ ρ ≤ rb, we define
295
+ C(d) =
296
+
297
+ ra≤ρ≤rb
298
+ C(ρ, d)
299
+ =
300
+
301
+ ra≤ρ≤rb
302
+
303
+ (x, y, z) ∈ R3 |z ≥ re, x2 + y2 + z2 = ρ2,
304
+ x2 + y2 + (z − re)2 ≤ d2�
305
+ ,
306
+ where z ≥ re, since satellites with z-coordinates less than re
307
+ are invisible to the user at (0, 0, re). C(ρ, d) is a spherical cap
308
+ associated with the orbit of radius ρ. See Fig. 5.
309
+ Lemma 4. The length of the arc given by the intersection of
310
+ the spherical cap C(ρ, d) and the orbit l(ρ, θ, ϕ) is
311
+ 2ρ arcsin
312
+
313
+
314
+
315
+ 1 −
316
+ �ρ2 + r2e − d2
317
+ 2ρre cos(ϕ)
318
+ �2
319
+
320
+ � ,
321
+ (8)
322
+ for ρ − re ≤ d ≤
323
+
324
+ ρ2 − r2e.
325
+ Proof: Consider C(ρ, d). Let ξ be the angle ∠AOU in
326
+ Fig. 5. Then, we use the law of Cosine to obtain cos(ξ) =
327
+ (ρ2 + r2
328
+ e − d2)/(2ρre).
329
+ For the triangle △BCD, we have CD = ρ cos(ξ) tan(ϕ).
330
+ Since the angle ∠BDC is π/2, we obtain
331
+ BD =
332
+
333
+ ρ2 sin2(ξ) − ρ2 cos2(ξ) tan2(ϕ).
334
+ For △BOD, OB = ρ and let κ′ = ∠BOD. Then we have
335
+ sin(κ′) = BD/ρ =
336
+
337
+ sin2(ξ) − cos2(ξ) tan2(ϕ).
338
+ Finally, the length of the arc >
339
+ BF is given by
340
+ ν(>
341
+ BF) = 2ρ arcsin(
342
+
343
+ 1 − cos2(ξ) sec2(ϕ)).
344
+ where cos(ξ) = (ρ2 + r2
345
+ e − d2)/(2ρre).
346
+ In downlink LEO satellite communication networks, net-
347
+ work users are meant to receive signals from their closest or
348
+
349
+ 4
350
+ P(D > d) = exp
351
+
352
+ −2λ
353
+ π
354
+ � rb
355
+ ra
356
+ � ξ
357
+ 0
358
+
359
+ 1 − e
360
+ −µπ−1 arcsin
361
+ �√
362
+ 1−cos2(ξ) sec2(ϕ)
363
+ ��
364
+ dϕν(dρ)
365
+
366
+ ,
367
+ (9)
368
+ P(D = ∞) = exp
369
+
370
+ −2λ
371
+ π
372
+ � rb
373
+ ra
374
+ � arccos(re/ρ)
375
+ 0
376
+
377
+ 1 − e
378
+ −µπ−1 arcsin
379
+ �√
380
+ 1−r2e sec2(ϕ)/ρ2
381
+ ��
382
+ dϕν(dρ)
383
+
384
+ ,
385
+ (10)
386
+ L(f) = exp
387
+
388
+ − λ
389
+ π2
390
+
391
+ C
392
+
393
+ 1 − e− µ
394
+
395
+ � 2π
396
+ 0
397
+ 1−exp (− ¯
398
+ f(ρ,θ,ϕ,ω)) dω�
399
+ ν(dρ) dθ dϕ
400
+
401
+ ,
402
+ (11)
403
+ LΨ(f)f=sH∥X−U∥−α = exp
404
+
405
+ − λ
406
+ π2
407
+
408
+ ¯C
409
+
410
+ 1 − e− µ
411
+
412
+
413
+ ¯
414
+ ω 1−LH(s(ρ2−2ρre sin(ω) cos(ϕ)+r2
415
+ e)− α
416
+ 2 ) dω�
417
+ ν(dρ) dθ dϕ
418
+
419
+ .
420
+ (12)
421
+ nearest satellites [9]. The distance D from a network user to
422
+ its closest LEO satellite is a random variable. When there is
423
+ no visible satellite, D
424
+ def
425
+ = ∞.
426
+ Lemma 5. The cumulative distribution function of D is given
427
+ by Eq. (9) where cos(ξ) = (ρ2 + r2
428
+ e − d2)/(2ρre).
429
+ Proof: For ra − re ≤ d ≤
430
+
431
+ r2
432
+ b − r2e, we have
433
+ P(D > d)
434
+ (a)
435
+ = P(∥X − u∥ > d, ∀X ∈ Ψ)
436
+ (b)
437
+ = P(∥Xj − u∥ > d, ∀Xj ∈ ψi, ∀Zi ∈ Ξ)
438
+ = P
439
+
440
+ � �
441
+ Zi∈Ξ
442
+ P
443
+
444
+ � �
445
+ Xj∈ψi
446
+ ∥Xj − u∥ > d
447
+ ������
448
+ Ξ
449
+
450
+
451
+
452
+ � .
453
+ To get (a), we use the fact that for R > r, all satellites should
454
+ be at distances greater than r. We have (b) by using that the
455
+ Cox satellite point process is comprised of the Poisson point
456
+ processes conditionally on orbits. We have
457
+ P
458
+
459
+ � �
460
+ Xj∈ψi
461
+ ∥Xj − u∥ > r
462
+ ������
463
+ Ξ
464
+
465
+
466
+ = exp
467
+
468
+ −µπ−1 arcsin
469
+ ��
470
+ 1 − cos2(ξ)sec2(ϕi)
471
+ ��
472
+ ,
473
+ where cos(ξ) = (ρ2
474
+ i + r2
475
+ e − d2)/(2ρire), as a function of the
476
+ orbits’ radius. We use the facts that (i) in order to have no point
477
+ at distance less than r, the arc created by the orbit l(ρi, ϕi, θi)
478
+ and the set C(ρi, d) has to be empty of satellite points and (ii)
479
+ the void probability of the Poisson point process of intensity
480
+ µ on the arc is given by the negative exponential of µ times
481
+ the arc length. Leveraging the facts that only the orbits with
482
+ azimuth angles ϕ < ξ1, π − ξ1 < ϕ < π meet the spherical
483
+ cap C(d), we have
484
+ P(D > d)
485
+ = P
486
+ �ϕi<ξ1,π−ξ1<ϕi<π
487
+
488
+ Zi∈Ξ
489
+ e
490
+ −µπ−1 arcsin
491
+ �√
492
+ 1−cos2(ξ) sec2(ϕi)
493
+ ��
494
+ = exp
495
+
496
+ −2λ
497
+ π
498
+ � rb
499
+ ra
500
+ � ξ
501
+ 0
502
+
503
+ 1 − e
504
+ −µπ−1 arcsin
505
+ �√
506
+ 1−cos2(ξ) sec2(ϕ)
507
+ ��
508
+ dϕν(dρ)
509
+
510
+ ,
511
+ where cos(ξ) = (ρ2 + r2
512
+ e − d2)/(2ρre). Above, we use the
513
+ probability generating functional of the Poisson point process
514
+ Ξ of intensity measure λν(dρ)/π2 in C .
515
+ Definition 1. Outage occurs if the typical network user has
516
+ no visible satellite. Equivalently, outage occurs if D = ∞.
517
+ Lemma 6. The outage probability is given by Eq. (10).
518
+ Proof: When there is no visible satellite, D = ∞. By
519
+ using Lemma 5, the outage probability is given by
520
+ P(D = ∞)
521
+ = P(∥Xj − u∥ >
522
+
523
+ ρ2
524
+ i − r2e, ∀Xj ∈ ψi, ∀Zi ∈ Ξ)
525
+ = P
526
+
527
+ � �
528
+ Zi∈Ξ
529
+ P
530
+
531
+ � �
532
+ Xj∈ψi
533
+ ∥Xj − u∥ >
534
+
535
+ ρ2
536
+ i − r2e
537
+ ������
538
+ Ξ
539
+
540
+
541
+
542
+ � ,
543
+ where we have
544
+ P
545
+
546
+ � �
547
+ Xj∈ψi
548
+ ∥Xj − u∥ >
549
+
550
+ ρ2
551
+ i − r2e
552
+ ������
553
+ Ξ
554
+
555
+
556
+ = exp
557
+
558
+ −µπ−1 arcsin
559
+ ��
560
+ 1 − r2e sec2(ϕi)/ρ2
561
+ i
562
+ ��
563
+ .
564
+ We use that when d =
565
+
566
+ ρ2
567
+ i − r2e, cos(ξ) = re/ρi. In other
568
+ words, for a given ρ, the orbits with azimuth angles less than
569
+ arccos(re/ρ) meet the spherical cap C(ρ,
570
+
571
+ ρ2 − r2e). The
572
+ outage probability is then given by
573
+ P
574
+ � �
575
+ Zi∈Ξ
576
+ e−µπ−1 arcsin(√
577
+ 1−r2
578
+ e sec2(ϕi)/ρ2
579
+ i )
580
+
581
+ = exp
582
+
583
+ −2λ
584
+ π
585
+ � rb
586
+ ra
587
+ � arccos(re/ρ)
588
+ 0
589
+
590
+ 1 − e
591
+ −µπ−1 arcsin
592
+ �√
593
+ 1−r2e sec2(ϕ)/ρ2
594
+ ��
595
+ dϕν(dρ)
596
+
597
+ ,
598
+ where we use the probability generating functional of Ξ of
599
+ intensity measure λν(dρ)/π2.
600
+ Fig. 6 shows the outage probability obtained by Lemma 6.
601
+ Lemma 7. Consider a function f(X) : R3 → R. The Laplace
602
+ functional of the Cox point process is defined by LΨ(f) =
603
+
604
+
605
+ exp
606
+
607
+ − �
608
+ Xi∈Ψ f(Xi)
609
+ ��
610
+ . The Laplace functional is given
611
+ by Eq. (11) where C = [ra, rb] × [0, π) × [0, π).
612
+
613
+ 5
614
+ Fig. 6. The outage probability with ra = 7000 km and rb = 7500 km. We
615
+ use λ = 72, µ = 22, and ν(dρ) = dρ/(rb − ra).
616
+ Proof: The Laplace functional of the satellite Cox point
617
+ process is given by
618
+ LΨ(f)
619
+ = E
620
+
621
+ e− �
622
+ X∈Ψ f(X)�
623
+ = EΞ
624
+
625
+
626
+
627
+ e
628
+ − �
629
+ Zi∈Ξ
630
+
631
+ Xj ∈ψi f(X)��� Ξ
632
+ ��
633
+ = EΞ
634
+ � �
635
+ Zi∈Ξ
636
+ exp
637
+
638
+ − µ
639
+
640
+ � 2π
641
+ 0
642
+ 1 − e− ¯
643
+ f(ρi,θi,ϕi,ω) dω
644
+ ��
645
+ = exp
646
+
647
+ − λ
648
+ π2
649
+ � rb
650
+ ra
651
+ � π
652
+ 0
653
+ � π
654
+ 0
655
+
656
+ 1 − e− µ
657
+
658
+ � 2π
659
+ 0
660
+ 1−exp (− ¯
661
+ f(ρ,θ,ϕ,ω)) dω�
662
+ dϕ dθν(dρ)
663
+
664
+ ,
665
+ where we use the function ¯f(ρ, θ, ϕ, ω)=f(X) for any satellite
666
+ X on the orbit l(ρ, θ, ϕ) with its orbital angle ω. Then, we
667
+ use the probability generating functional of the Poisson point
668
+ process of intensity measure λν(dρ)/π2 to get the result.
669
+ Consider a random variable H modeling general fading. A
670
+ received signal power of a user at u is then given by f(X) =
671
+ H∥X −u∥−α where X is the location of the satellite and α is
672
+ the path loss exponent. The total interference S is then given
673
+ by the sum of the received signal powers from all satellites.
674
+ S =
675
+
676
+ X∈ ¯Ψ
677
+ H∥X − u∥−α, ¯Ψ = Ψ
678
+
679
+
680
+
681
+ ra<ρ≤rb
682
+ C(ρ,
683
+
684
+ ρ2 − r2e)
685
+
686
+ � .
687
+ Corollary 1. The Laplace transform of the total interference
688
+ is given by Eq. (12) where ¯C = {(ρ, θ, ϕ) ∈ |l(ρ, θ, ϕ) ∩
689
+ C(
690
+
691
+ r2
692
+ b − r2a) ̸= ∅} and ¯ω = {ω ∈ [0, 2π]|X(ρ, θ, ϕ, ω) ∈
693
+ C(
694
+
695
+ r2
696
+ b − r2a), ∀(ρ, θ, ϕ) ∈ ¯C}.
697
+ Proof: The Laplace transform in question is
698
+ LΨ(f)f=sH∥X−U∥−α
699
+ = EΞ
700
+
701
+
702
+
703
+ e
704
+ − �
705
+ Zi∈Ξ
706
+
707
+ Xj ∈ψ sH∥Xj−u∥−α��� Ξ
708
+ ��
709
+ = EΞ
710
+
711
+ � �
712
+ Zi∈Ξ
713
+
714
+
715
+ � �
716
+ Xj∈ψi
717
+ LH(s∥Xj − u∥−α)
718
+
719
+
720
+
721
+ � ,
722
+ where LH(κ) is the Laplace transform of the random variable
723
+ H. Using a technique similar to Lemmas 3 and 7, we obtain
724
+ the final result.
725
+ IV. CONCLUSION
726
+ This paper presents a stochastic geometry framework to
727
+ model the locations of LEO satellites with multiple altitudes
728
+ using a Cox point process. It provides analytical expressions
729
+ for essential statistical properties such as the distribution of the
730
+ distance from a typical user to the nearest satellite, the Laplace
731
+ functional of the Cox point process, and the Laplace transform
732
+ of the total interference, experienced by a typical user. These
733
+ results can directly be used to determine the performance of
734
+ multi-altitude LEO satellite communication networks. Future
735
+ work will include (i) the analysis of the coverage probability of
736
+ the typical user, (ii) the evaluation of the satellite coverage area
737
+ underneath the Cox-modeled satellites, and (iii) an extension
738
+ to a fixed-inclination orbit process.
739
+ ACKNOWLEDGMENT
740
+ The work of Chang-Sik Choi was supported by the NRF-
741
+ 2021R1F1A1059666. The work of Franc¸ois Baccelli was
742
+ supported by the ERC NEMO grant 788851 to INRIA.
743
+ REFERENCES
744
+ [1] Y. Su, Y. Liu, Y. Zhou, J. Yuan, H. Cao, and J. Shi, “Broadband LEO
745
+ satellite communications: Architectures and key technologies,” IEEE
746
+ Wireless Commn., vol. 26, no. 2, pp. 55–61, 2019.
747
+ [2] Z. Qu, G. Zhang, H. Cao, and J. Xie, “LEO satellite constellation for
748
+ Internet of Things,” IEEE Access, vol. 5, pp. 18 391–18 401, 2017.
749
+ [3] J. Khalife, M. Neinavaie, and Z. M. Kassas, “The first carrier phase
750
+ tracking and positioning results with starlink LEO satellite signals,”
751
+ IEEE Trans. Aerospace and Electronic Syst., vol. 58, no. 2, pp. 1487–
752
+ 1491, 2022.
753
+ [4] A. Guidotti, A. Vanelli-Coralli, M. Conti, S. Andrenacci, S. Chatzinotas,
754
+ N. Maturo, B. Evans, A. Awoseyila, A. Ugolini, T. Foggi, L. Gaudio,
755
+ N. Alagha, and S. Cioni, “Architectures and key technical challenges for
756
+ 5G systems incorporating satellites,” IEEE Trans. Veh. Technol., vol. 68,
757
+ no. 3, pp. 2624–2639, 2019.
758
+ [5] 3GPP TR 38.821, “Solutions for NR to support non-terrestrial networks
759
+ (NTN),” 3GPP TR 38.821.
760
+ [6] N. Okati, T. Riihonen, D. Korpi, I. Angervuori, and R. Wichman,
761
+ “Downlink coverage and rate analysis of low earth orbit satellite con-
762
+ stellations using stochastic geometry,” IEEE Trans. Commun., vol. 68,
763
+ no. 8, pp. 5120–5134, 2020.
764
+ [7] A. Talgat, M. A. Kishk, and M.-S. Alouini, “Stochastic geometry-based
765
+ analysis of LEO satellite communication systems,” IEEE Commun. Lett.,
766
+ vol. 25, no. 8, pp. 2458–2462, 2021.
767
+ [8] D.-H. Na, K.-H. Park, Y.-C. Ko, and M.-S. Alouini, “Performance
768
+ analysis of satellite communication systems with randomly located
769
+ ground users,” IEEE Trans. Wireless Commun., vol. 21, no. 1, pp. 621–
770
+ 634, 2022.
771
+ [9] D.-H. Jung, J.-G. Ryu, W.-J. Byun, and J. Choi, “Performance analysis
772
+ of satellite communication system under the shadowed-rician fading: A
773
+ stochastic geometry approach,” IEEE Trans. Commun., vol. 70, no. 4,
774
+ pp. 2707–2721, 2022.
775
+ [10] C.-S. Choi and F. Baccelli, “An analytical framework for downlink LEO
776
+ satellite communications based on Cox point processes,” arXiv preprint
777
+ arXiv:2212.03549, 2022.
778
+ [11] F. Baccelli and B. Błaszczyszyn, “Stochastic geometry and wireless
779
+ networks: volume I theory,” Foundations and Trends in Networking,
780
+ vol. 3, no. 3–4, pp. 249–449, 2010.
781
+
782
+ 10-2
783
+ outage probability
784
+ 10-4
785
+ 10-6
786
+ 10
787
+ 20
788
+ 10
789
+ 20
790
+ 30
791
+ 30
792
+ 40
793
+ 50
794
+ μ
795
+
QNE0T4oBgHgl3EQfkQEN/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,307 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf,len=306
2
+ page_content='1 Cox Point Processes for Multi-Altitude LEO Satellite Networks Chang-Sik Choi and Franc¸ois Baccelli Abstract—We propose a simple analytical approach to describe the locations of low earth orbit (LEO) satellites based on a Cox point process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
3
+ page_content=' We develop a variable-altitude Poisson orbit process by accounting for the fact that satellites are always located on circular orbits and these orbits may have different altitudes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
4
+ page_content=' Then, the satellites on these orbits are modeled as the Poisson point processes conditionally on the orbit process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
5
+ page_content=' For this model, we derive the distribution of the distance to the nearest visible satellite, the outage probability, the Laplace functional of the proposed satellite Cox point process, and the Laplace transform of the interference under a general fading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
6
+ page_content=' The derived statistics allow one to evaluate the performance of such LEO satellite communication systems as functions of network parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
7
+ page_content=' Index Terms—LEO satellite communications, Stochastic geom- etry, Cox point process, Nearest distance, Total interference I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
8
+ page_content=' INTRODUCTION A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
9
+ page_content=' Motivation and Background LEO satellites provide global connectivity to millions of devices on earth [1]–[5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
10
+ page_content=' The applications of LEO satellite net- works are numerous [1]: they provide Internet connections to devices where ground infrastructure is unavailable [2];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
11
+ page_content=' local- ization and emergency communications of aerial and ground devices can be enabled by LEO satellites [3];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
12
+ page_content=' LEO satellite networks provide cheaper Internet connections to developing countries [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
13
+ page_content=' LEO satellite networks can even be integrated with terrestrial networks to enable reliable connections to devices in a small area [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
14
+ page_content=' To support these applications, LEO satellite networks will have a very large number of satellites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
15
+ page_content=' The viability and performance of LEO satellite communi- cations are significantly determined by the way satellites are distributed in space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
16
+ page_content=' Various evaluation methodologies have been proposed to obtain the performance of LEO satellite communication networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
17
+ page_content=' For satellite layout, some studies used probabilistic approaches including a binomial point pro- cess [6]–[9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
18
+ page_content=' In contrast to the simulation-based approach, the benefits of employing such analytical models lie in the fact that they presents large-scale behaviors as functions of network key parameters such as the mean number of satel- lites, their altitudes, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
19
+ page_content=' Nevertheless, the binomial satellite point processes in [6]–[9] were not able to incorporate the fact that the satellites are located on approximately circular trajectories around the earth, namely their orbits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
20
+ page_content=' In this paper, we provide a tractable model that incorporates this fact in the multi-altitude LEO satellite case, by generalizing the work in Chang-Sik Choi is with Hongik University, South Korea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
21
+ page_content=' Franc¸ois Baccelli is with Inria Paris and Telecom Paris, France.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
22
+ page_content=' (email: chang- sik.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
23
+ page_content='choi@hongik.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
24
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
25
+ page_content='kr, francois.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
26
+ page_content='baccelli@inria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
27
+ page_content='fr) [10] where all orbits are at the same altitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
28
+ page_content=' Specifically, we present an analytical framework leveraging a Cox point process so that orbits are created first according to a Poisson point process on a cuboid and then satellites are distributed as Poisson point processes conditionally on these orbits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
29
+ page_content=' We derive key statistical properties of the proposed network model that are critical to obtain the performance of such satellite networks as functions of the altitude distribution, of the mean number of orbits, of the number of satellites, and of the Laplace transform of the random variable representing fading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
30
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
31
+ page_content=' Contributions Modeling of variable orbit LEO satellite constellations: This paper accounts for the geometric properties of practical LEO satellite systems that (i) satellites are always on orbits around the earth and (ii) such orbits are possibly at different altitudes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
32
+ page_content=' By developing a nonhomogeneous Poisson point process of mean λ in a cuboid, we creates a Poisson orbit process of orbits in the Euclidean space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
33
+ page_content=' Then, conditionally on the orbit process, satellites are distributed as linear Poisson point processes of mean µ on these orbits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
34
+ page_content=' Our motivation is to represent a general LEO satellite network where satellites are located at different altitude bands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
35
+ page_content=' Statistical properties of the proposed Cox point pro- cess: The proposed satellite Cox point process is built to be invariant by all rotations of the reference plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
36
+ page_content=' This makes the statistical properties of the network to be the same for all perspectives seen from all points on earth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
37
+ page_content=' Leveraging this, we obtain the probability distribution function of the distance from the typical user to its nearest visible satellite and then derive the outage probability of the proposed network model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
38
+ page_content=' Using it, we derive the Laplace functional of the proposed satellite Cox point process and then give an integral expression for the Laplace transform of the total interference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
39
+ page_content=' These formulas are directly used to assess the network performance metrics such as the Signal-to-interference-plus-noise ratio (SINR) of the typical user.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
40
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
41
+ page_content=' COX-MODELED SATELLITES A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
42
+ page_content=' Satellite Distribution The center of the earth is O = (0, 0, 0) and it is of radius re.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
43
+ page_content=' The xy-plane is the reference plane and the x-axis is longitude reference direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
44
+ page_content=' In this paper, we only focus on the snapshot of the network geometry and the movement of satellites is out of the scope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
45
+ page_content=' Consider a cuboid C = [ra, rb] × [0, π) × [0, π) where ra ≤ rb the minimum and maximum altitudes and a Poisson point arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
46
+ page_content='02469v1 [eess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
47
+ page_content='SP] 6 Jan 2023 2 Reference: xy-plane x-axis A θ l(ρ,θ,φ) φ X: satellite ω O ~ y-axis ρ z-axis Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
48
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
49
+ page_content=' The orbital plane meets the reference plane at two points and the point with angle less than π is A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
50
+ page_content=' The angle θ is measured from the x-axis to the segment OA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
51
+ page_content=' The inclination ˜ϕ is measured from the reference plane to the orbital plane and the azimuth ϕ is given by π/2 − ˜ϕ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
52
+ page_content=' The angle ω for satellite X is measured from OA to OX over the orbital plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
53
+ page_content=' process Ξ of intensity measure λν(dρ)/π2 in the cuboid C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
54
+ page_content=' We have � rb ra ν(dρ) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
55
+ page_content=' Then, we build an orbit process by mapping each point of Ξ, say (ρ, θ, ϕ) into an orbit l(ρ, θ, ϕ) in the Euclidean space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
56
+ page_content=' Specifically, the first coordinate ρ is the orbit’s radius, θ is the orbit’s longitude, and ϕ is the orbit’s azimuth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
57
+ page_content=' See Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
58
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
59
+ page_content=' For the Poisson point process on the cuboid, we write Ξ = � i Zi, where Zi is the point of Ξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
60
+ page_content=' Since there are on average λ points of Ξ, there are on average λ orbits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
61
+ page_content=' The orbit process O in R3 is given by O = � Zi∈Ξ l(ρi, θi, ϕi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
62
+ page_content=' (1) Conditionally on Ξ, the locations of satellites on each orbit l(ρi, θi, ϕi) are modeled as a homogeneous Poisson point process ψi of intensity µ/(2πρi) on this orbit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
63
+ page_content=' Equivalently, the orbital angles of satellites on each orbit are modeled as a 1-dim homogeneous Poisson point process φi on segment [0, 2π) of intensity µ/(2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
64
+ page_content=' Since the satellites are distributed conditionally on Ξ, the satellite point process Ψ is a Cox point process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
65
+ page_content=' The satellite Cox point process is Ψ = � i ψi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
66
+ page_content=' (2) Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
67
+ page_content=' 2 – 4 depict the proposed satellite Cox point process with λ, µ, ra and rb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
68
+ page_content=' In the figures, we use ν(dρ) = dρ rb−ra , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
69
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
70
+ page_content=', the radii of orbits are uniformly distributed on the interval [ra, rb].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
71
+ page_content=' The proposed model can be used to represent e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
72
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
73
+ page_content=', multiple operators of LEO satellite networks where orbits are at different altitudes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
74
+ page_content=' The case of all satellites are located at the same altitude in [10] is a special case of the proposed model by taking ν(dρ) = δra(dρ), where ra is the radius of orbits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
75
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
76
+ page_content=' User Distribution Users are located on the surface of the earth {(x, y, z)|x2 + y2 +z2 = r2 e} and the locations of network users are assumed to be independent of the locations of the LEO satellites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
77
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
78
+ page_content=' STATISTICAL RESULTS In this section, we derive/prove (i) the mean number of LEO satellites, (ii) the isotropy of Ψ, (iii) the distances from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
79
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
80
+ page_content=' The proposed Cox satellite model with ra = 7000 km, rb = 7100 km.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
81
+ page_content=' We use λ = 60, µ = 40, and ν(dρ) = dρ/(rb − ra).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
82
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
83
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
84
+ page_content=' The Cox-modeled satellite with ra = 7000 km and rb = 7500 km.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
85
+ page_content=' We use λ = 30, µ = 60, and ν(dρ) = dρ/(rb − ra).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
86
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
87
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
88
+ page_content=' The Cox-modeled satellite with ra = 7000 km and rb = 8500 km.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
89
+ page_content=' We use λ = 70, µ = 30, and ν(dρ) = dρ/(rb − ra).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
90
+ page_content=' 3 the LEO satellites to an arbitrarily located user, (iv) the distribution of the distance to the nearest visible satellite, (v) the outage probability, (vi) the Laplace functional of Ψ, and (vii) the Laplace transform of the total interference under general fading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
91
+ page_content=' These statistical properties directly determine the performance of downlink LEO satellite communications in this context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
92
+ page_content=' Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
93
+ page_content=' The average number of the proposed Cox satellite point process is λµ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
94
+ page_content=' Proof: The average number of satellites is given by E [Ψ(S)] = E � � � Zi∈Ξ E � � � Xj∈ψi 1 ������ Ξ � � � � = E � � Zi∈Ξ � 2π 0 µ 2π dx ����� Ξ � = µ � C λ π2 ν(dρ) dθ dϕ = λµ, where we use Campbell’s mean value theorem [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
95
+ page_content=' Below we show that O is invariant w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
96
+ page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
97
+ page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
98
+ page_content=' rotations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
99
+ page_content=' This allows one to evaluate the performance of network seen by a typical user at the north pole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
100
+ page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
101
+ page_content=' The distribution of O and Ψ are invariant by all rotations of the reference space (O, x, y, z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
102
+ page_content=' Proof: The intensity measure of the proposed orbit pro- cess Ξ has the product form: ν(dρ) × � λ/π2� dθ dϕ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
103
+ page_content=' This shows that the angles (θ, ϕ) form a homogeneous Poisson point process on the rectangle [0, π) × [0, π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
104
+ page_content=' [10] proved that the orbit process mapped by the very intensity measure � λ/π2� dθ dϕ is invariant by all rotations of the reference space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
105
+ page_content=' Hence, the law of O is also invariant by all rotations of the reference space (O, x, y, z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
106
+ page_content=' In the same vein, the law of Ψ is invariant by all rotations of the reference space as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
107
+ page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
108
+ page_content=' Consider a satellite X of orbital angle ωj on the orbit l(ρi, θi, ϕi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
109
+ page_content=' The distance from (0, 0, re) to the satellite X(ρi, θi, ϕi, ωj) is given by � ρ2 i − 2ρire sin(ωj) cos(ϕi) + r2e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
110
+ page_content=' (3) Proof: The coordinates (x, y, z) ∈ R3 of the satellite that has the orbital angle ωj on the orbit l(ρi, θi, ϕi) are given by x = � ρ2 i cos2(ωj) + ρ2 i sin2(ωj) cos2( ˜ϕi) cos � ˜θ + θi � , (4) y = � ρ2 i cos2(ωj) + ρ2 i sin2(ωj) cos2( ˜ϕi) sin � ˜θ + θi � , (5) z = ρi sin(ωj) sin( ˜ϕi), (6) ˜θ = arctan (tan(ωj) cos( ˜ϕi)) , (7) where ˜ϕ is the inclination: ˜ϕ = π/2 − ϕ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
111
+ page_content=' As a result, the distance from (0, 0, re) to the satellite is ∥(x, y, z) − (0, 0, re)∥ = � ρ2 i − 2ρire sin(ωj) cos(ϕi) + r2e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
112
+ page_content=' Note the distance is independent of the variable θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
113
+ page_content=' U=(0,0,re) O A C E B F A` D ρ re Bottom of spherical cap Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
114
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
115
+ page_content=' The arc of orbit l(ρ, θ, ϕ) in spherical cap C(ρ, d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
116
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
117
+ page_content=' The Lengths of Orbits’ Arcs Since (i) users are independent of Ψ and (ii) Ψ is invariant by rotations (Lemma 2 ), one can consider a typical user at (0, 0, re) and study the network performance it experiences, which will be typical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
118
+ page_content=' Let C(d) be the subset of S such that the distances from the typical observer u to the satellites on C(d) are less than a distance d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
119
+ page_content=' For any ra ≤ ρ ≤ rb, we define C(d) = � ra≤ρ≤rb C(ρ, d) = � ra≤ρ≤rb � (x, y, z) ∈ R3 |z ≥ re, x2 + y2 + z2 = ρ2, x2 + y2 + (z − re)2 ≤ d2� , where z ≥ re, since satellites with z-coordinates less than re are invisible to the user at (0, 0, re).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
120
+ page_content=' C(ρ, d) is a spherical cap associated with the orbit of radius ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
121
+ page_content=' See Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
122
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
123
+ page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
124
+ page_content=' The length of the arc given by the intersection of the spherical cap C(ρ, d) and the orbit l(ρ, θ, ϕ) is 2ρ arcsin � � � 1 − �ρ2 + r2e − d2 2ρre cos(ϕ) �2 � � , (8) for ρ − re ≤ d ≤ � ρ2 − r2e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
125
+ page_content=' Proof: Consider C(ρ, d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
126
+ page_content=' Let ξ be the angle ∠AOU in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
127
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
128
+ page_content=' Then, we use the law of Cosine to obtain cos(ξ) = (ρ2 + r2 e − d2)/(2ρre).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
129
+ page_content=' For the triangle △BCD, we have CD = ρ cos(ξ) tan(ϕ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
130
+ page_content=' Since the angle ∠BDC is π/2, we obtain BD = � ρ2 sin2(ξ) − ρ2 cos2(ξ) tan2(ϕ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
131
+ page_content=' For △BOD, OB = ρ and let κ′ = ∠BOD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
132
+ page_content=' Then we have sin(κ′) = BD/ρ = � sin2(ξ) − cos2(ξ) tan2(ϕ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
133
+ page_content=' Finally, the length of the arc > BF is given by ν(> BF) = 2ρ arcsin( � 1 − cos2(ξ) sec2(ϕ)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
134
+ page_content=' where cos(ξ) = (ρ2 + r2 e − d2)/(2ρre).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
135
+ page_content=' In downlink LEO satellite communication networks,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
136
+ page_content=' net- work users are meant to receive signals from their closest or 4 P(D > d) = exp � −2λ π � rb ra � ξ 0 � 1 − e −µπ−1 arcsin �√ 1−cos2(ξ) sec2(ϕ) �� dϕν(dρ) � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
137
+ page_content=' (9) P(D = ∞) = exp � −2λ π � rb ra � arccos(re/ρ) 0 � 1 − e −µπ−1 arcsin �√ 1−r2e sec2(ϕ)/ρ2 �� dϕν(dρ) � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
138
+ page_content=' (10) L(f) = exp � − λ π2 � C � 1 − e− µ 2π � 2π 0 1−exp (− ¯ f(ρ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
139
+ page_content='θ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
140
+ page_content='ϕ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
141
+ page_content='ω)) dω� ν(dρ) dθ dϕ � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
142
+ page_content=' (11) LΨ(f)f=sH∥X−U∥−α = exp � − λ π2 � ¯C � 1 − e− µ 2π � ¯ ω 1−LH(s(ρ2−2ρre sin(ω) cos(ϕ)+r2 e)− α 2 ) dω� ν(dρ) dθ dϕ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
143
+ page_content=' (12) nearest satellites [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
144
+ page_content=' The distance D from a network user to its closest LEO satellite is a random variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
145
+ page_content=' When there is no visible satellite, D def = ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
146
+ page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
147
+ page_content=' The cumulative distribution function of D is given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
148
+ page_content=' (9) where cos(ξ) = (ρ2 + r2 e − d2)/(2ρre).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
149
+ page_content=' Proof: For ra − re ≤ d ≤ � r2 b − r2e, we have P(D > d) (a) = P(∥X − u∥ > d, ∀X ∈ Ψ) (b) = P(∥Xj − u∥ > d, ∀Xj ∈ ψi, ∀Zi ∈ Ξ) = P � � � Zi∈Ξ P � � � Xj∈ψi ∥Xj − u∥ > d ������ Ξ � � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
150
+ page_content=' To get (a), we use the fact that for R > r, all satellites should be at distances greater than r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
151
+ page_content=' We have (b) by using that the Cox satellite point process is comprised of the Poisson point processes conditionally on orbits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
152
+ page_content=' We have P � � � Xj∈ψi ∥Xj − u∥ > r ������ Ξ � � = exp � −µπ−1 arcsin �� 1 − cos2(ξ)sec2(ϕi) �� , where cos(ξ) = (ρ2 i + r2 e − d2)/(2ρire), as a function of the orbits’ radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
153
+ page_content=' We use the facts that (i) in order to have no point at distance less than r, the arc created by the orbit l(ρi, ϕi, θi) and the set C(ρi, d) has to be empty of satellite points and (ii) the void probability of the Poisson point process of intensity µ on the arc is given by the negative exponential of µ times the arc length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
154
+ page_content=' Leveraging the facts that only the orbits with azimuth angles ϕ < ξ1, π − ξ1 < ϕ < π meet the spherical cap C(d), we have P(D > d) = P �ϕi<ξ1,π−ξ1<ϕi<π � Zi∈Ξ e −µπ−1 arcsin �√ 1−cos2(ξ) sec2(ϕi) �� = exp � −2λ π � rb ra � ξ 0 � 1 − e −µ��−1 arcsin �√ 1−cos2(ξ) sec2(ϕ) �� dϕν(dρ) � , where cos(ξ) = (ρ2 + r2 e − d2)/(2ρre).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
155
+ page_content=' Above, we use the probability generating functional of the Poisson point process Ξ of intensity measure λν(dρ)/π2 in C .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
156
+ page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
157
+ page_content=' Outage occurs if the typical network user has no visible satellite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
158
+ page_content=' Equivalently, outage occurs if D = ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
159
+ page_content=' Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
160
+ page_content=' The outage probability is given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
161
+ page_content=' (10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
162
+ page_content=' Proof: When there is no visible satellite, D = ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
163
+ page_content=' By using Lemma 5, the outage probability is given by P(D = ∞) = P(∥Xj − u∥ > � ρ2 i − r2e, ∀Xj ∈ ψi, ∀Zi ∈ Ξ) = P � � � Zi∈Ξ P � � � Xj∈ψi ∥Xj − u∥ > � ρ2 i − r2e ������ Ξ � � � � , where we have P � � � Xj∈ψi ∥Xj − u∥ > � ρ2 i − r2e ������ Ξ � � = exp � −µπ−1 arcsin �� 1 − r2e sec2(ϕi)/ρ2 i �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
164
+ page_content=' We use that when d = � ρ2 i − r2e, cos(ξ) = re/ρi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
165
+ page_content=' In other words, for a given ρ, the orbits with azimuth angles less than arccos(re/ρ) meet the spherical cap C(ρ, � ρ2 − r2e).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
166
+ page_content=' The outage probability is then given by P � � Zi∈Ξ e−µπ−1 arcsin(√ 1−r2 e sec2(ϕi)/ρ2 i ) � = exp � −2λ π � rb ra � arccos(re/ρ) 0 � 1 − e −µπ−1 arcsin �√ 1−r2e sec2(ϕ)/ρ2 �� dϕν(dρ) � , where we use the probability generating functional of Ξ of intensity measure λν(dρ)/π2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
167
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
168
+ page_content=' 6 shows the outage probability obtained by Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
169
+ page_content=' Lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
170
+ page_content=' Consider a function f(X) : R3 → R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
171
+ page_content=' The Laplace functional of the Cox point process is defined by LΨ(f) = EΨ � exp � − � Xi∈Ψ f(Xi) �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
172
+ page_content=' The Laplace functional is given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
173
+ page_content=' (11) where C = [ra, rb] × [0, π) × [0, π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
174
+ page_content=' 5 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
175
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
176
+ page_content=' The outage probability with ra = 7000 km and rb = 7500 km.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
177
+ page_content=' We use λ = 72, µ = 22, and ν(dρ) = dρ/(rb − ra).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
178
+ page_content=' Proof: The Laplace functional of the satellite Cox point process is given by LΨ(f) = E � e− � X∈Ψ f(X)� = EΞ � Eψ � e − � Zi∈Ξ � Xj ∈ψi f(X)��� Ξ �� = EΞ � � Zi∈Ξ exp � − µ 2π � 2π 0 1 − e− ¯ f(ρi,θi,ϕi,ω) dω �� = exp � − λ π2 � rb ra � π 0 � π 0 � 1 − e− µ 2π � 2π 0 1−exp (− ¯ f(ρ,θ,ϕ,ω)) dω� dϕ dθν(dρ) � , where we use the function ¯f(ρ, θ, ϕ, ω)=f(X) for any satellite X on the orbit l(ρ, θ, ϕ) with its orbital angle ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
179
+ page_content=' Then, we use the probability generating functional of the Poisson point process of intensity measure λν(dρ)/π2 to get the result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
180
+ page_content=' Consider a random variable H modeling general fading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
181
+ page_content=' A received signal power of a user at u is then given by f(X) = H∥X −u∥−α where X is the location of the satellite and α is the path loss exponent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
182
+ page_content=' The total interference S is then given by the sum of the received signal powers from all satellites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
183
+ page_content=' S = � X∈ ¯Ψ H∥X − u∥−α, ¯Ψ = Ψ � � � ra<ρ≤rb C(ρ, � ρ2 − r2e) � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
184
+ page_content=' Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
185
+ page_content=' The Laplace transform of the total interference is given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
186
+ page_content=' (12) where ¯C = {(ρ, θ, ϕ) ∈ |l(ρ, θ, ϕ) ∩ C( � r2 b − r2a) ̸= ∅} and ¯ω = {ω ∈ [0, 2π]|X(ρ, θ, ϕ, ω) ∈ C( � r2 b − r2a), ∀(ρ, θ, ϕ) ∈ ¯C}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
187
+ page_content=' Proof: The Laplace transform in question is LΨ(f)f=sH∥X−U∥−α = EΞ � Eψ � e − � Zi∈Ξ � Xj ∈ψ sH∥Xj−u∥−α��� Ξ �� = EΞ � � � Zi∈Ξ Eψ � � � Xj∈ψi LH(s∥Xj − u∥−α) � � � � , where LH(κ) is the Laplace transform of the random variable H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
188
+ page_content=' Using a technique similar to Lemmas 3 and 7, we obtain the final result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
189
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
190
+ page_content=' CONCLUSION This paper presents a stochastic geometry framework to model the locations of LEO satellites with multiple altitudes using a Cox point process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
191
+ page_content=' It provides analytical expressions for essential statistical properties such as the distribution of the distance from a typical user to the nearest satellite, the Laplace functional of the Cox point process, and the Laplace transform of the total interference, experienced by a typical user.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
192
+ page_content=' These results can directly be used to determine the performance of multi-altitude LEO satellite communication networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
193
+ page_content=' Future work will include (i) the analysis of the coverage probability of the typical user, (ii) the evaluation of the satellite coverage area underneath the Cox-modeled satellites, and (iii) an extension to a fixed-inclination orbit process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
194
+ page_content=' ACKNOWLEDGMENT The work of Chang-Sik Choi was supported by the NRF- 2021R1F1A1059666.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
195
+ page_content=' The work of Franc¸ois Baccelli was supported by the ERC NEMO grant 788851 to INRIA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
196
+ page_content=' REFERENCES [1] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
197
+ page_content=' Su, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
198
+ page_content=' Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
199
+ page_content=' Zhou, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
200
+ page_content=' Yuan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
201
+ page_content=' Cao, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
202
+ page_content=' Shi, “Broadband LEO satellite communications: Architectures and key technologies,” IEEE Wireless Commn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
203
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
204
+ page_content=' 26, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
205
+ page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
206
+ page_content=' 55–61, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
207
+ page_content=' [2] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
208
+ page_content=' Qu, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
209
+ page_content=' Zhang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
210
+ page_content=' Cao, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
211
+ page_content=' Xie, “LEO satellite constellation for Internet of Things,” IEEE Access, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
212
+ page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
213
+ page_content=' 18 391–18 401, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
214
+ page_content=' [3] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
215
+ page_content=' Khalife, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
216
+ page_content=' Neinavaie, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
217
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
218
+ page_content=' Kassas, “The first carrier phase tracking and positioning results with starlink LEO satellite signals,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
219
+ page_content=' Aerospace and Electronic Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
220
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
221
+ page_content=' 58, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
222
+ page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
223
+ page_content=' 1487– 1491, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
224
+ page_content=' [4] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
225
+ page_content=' Guidotti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
226
+ page_content=' Vanelli-Coralli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
227
+ page_content=' Conti, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
228
+ page_content=' Andrenacci, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
229
+ page_content=' Chatzinotas, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
230
+ page_content=' Maturo, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
231
+ page_content=' Evans, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
232
+ page_content=' Awoseyila, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
233
+ page_content=' Ugolini, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
234
+ page_content=' Foggi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
235
+ page_content=' Gaudio, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
236
+ page_content=' Alagha, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
237
+ page_content=' Cioni, “Architectures and key technical challenges for 5G systems incorporating satellites,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
238
+ page_content=' Veh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
239
+ page_content=' Technol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
240
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
241
+ page_content=' 68, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
242
+ page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
243
+ page_content=' 2624–2639, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
244
+ page_content=' [5] 3GPP TR 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
245
+ page_content='821, “Solutions for NR to support non-terrestrial networks (NTN),” 3GPP TR 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
246
+ page_content='821.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
247
+ page_content=' [6] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
248
+ page_content=' Okati, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
249
+ page_content=' Riihonen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
250
+ page_content=' Korpi, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
251
+ page_content=' Angervuori, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
252
+ page_content=' Wichman, “Downlink coverage and rate analysis of low earth orbit satellite con- stellations using stochastic geometry,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
253
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
254
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
255
+ page_content=' 68, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
256
+ page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
257
+ page_content=' 5120–5134, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
258
+ page_content=' [7] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
259
+ page_content=' Talgat, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
260
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
261
+ page_content=' Kishk, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
262
+ page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
263
+ page_content=' Alouini, “Stochastic geometry-based analysis of LEO satellite communication systems,” IEEE Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
264
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
265
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
266
+ page_content=' 25, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
267
+ page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
268
+ page_content=' 2458–2462, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
269
+ page_content=' [8] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
270
+ page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
271
+ page_content=' Na, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
272
+ page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
273
+ page_content=' Park, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
274
+ page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
275
+ page_content=' Ko, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
276
+ page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
277
+ page_content=' Alouini, “Performance analysis of satellite communication systems with randomly located ground users,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
278
+ page_content=' Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
279
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
280
+ page_content=' 21, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
281
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
282
+ page_content=' 621– 634, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
283
+ page_content=' [9] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
284
+ page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
285
+ page_content=' Jung, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
286
+ page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
287
+ page_content=' Ryu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
288
+ page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
289
+ page_content=' Byun, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
290
+ page_content=' Choi, “Performance analysis of satellite communication system under the shadowed-rician fading: A stochastic geometry approach,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
291
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
292
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
293
+ page_content=' 70, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
294
+ page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
295
+ page_content=' 2707–2721, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
296
+ page_content=' [10] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
297
+ page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
298
+ page_content=' Choi and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
299
+ page_content=' Baccelli, “An analytical framework for downlink LEO satellite communications based on Cox point processes,” arXiv preprint arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
300
+ page_content='03549, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
301
+ page_content=' [11] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
302
+ page_content=' Baccelli and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
303
+ page_content=' Błaszczyszyn, “Stochastic geometry and wireless networks: volume I theory,” Foundations and Trends in Networking, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
304
+ page_content=' 3, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
305
+ page_content=' 3–4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
306
+ page_content=' 249–449, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
307
+ page_content=' 10-2 outage probability 10-4 10-6 10 20 10 20 30 30 40 50 μ 入' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNE0T4oBgHgl3EQfkQEN/content/2301.02469v1.pdf'}
QdAzT4oBgHgl3EQfW_xa/content/tmp_files/2301.01310v1.pdf.txt ADDED
@@ -0,0 +1,2302 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ An atomistic insight to moiré reconstruction in Twisted Bilayer Graphene beyond magic angle
2
+ An atomistic insight to moiré reconstruction in Twisted Bilayer Graphene
3
+ beyond magic angle
4
+ Aditya Dey∗,1, a) Shoieb Ahmed Chowdhury,1, a) Tara Peña,2 Sobhit Singh,1 Stephen M. Wu,2, b) and Hesam
5
+ Askari1
6
+ 1) Department of Mechanical Engineering, University of Rochester, New York
7
+ 2) Department of Electrical and Computer Engineering, University of Rochester, Rochester,
8
+ New York
9
+ (*Electronic mail: [email protected])
10
+ Twisted bilayer graphene exhibits electronic properties that are highly correlated with the size and arrangement of
11
+ moiré patterns. While rigid rotation of two layers creates the topology of moiré patterns, local rearrangements of the
12
+ atoms due to interlayer van der Waals interactions result in atomic reconstruction within the moiré cells. The ability to
13
+ manipulate these patterns by controlling twist angle and/or externally applied strain provides a promising route to tune
14
+ their properties. While this phenomenon has been extensively studied for angles close to or smaller than the magic angle
15
+ (θm=1.1°), its extent for higher angles and how it evolves with strain is unknown and is believed to be mostly absent at
16
+ high angles. We use theoretical and numerical analyses to resolve reconstruction in angles above θm using interpretive
17
+ and fundamental physical measures. In addition, we propose a method to identify local regions within moiré cells and
18
+ track their evolution with strain for a range of representative high twist angles. Our results show that reconstruction is
19
+ actively present beyond the magic angle and its contribution to the evolution of the moiré cells is major. Our theoretical
20
+ method to correlate local and global phonon behavior provides further validation on the role of reconstruction at higher
21
+ angles. Our findings provide a better understanding of moiré reconstruction in large twist angles and the evolution of
22
+ moiré cells in the presence of strain, that might be very crucial for twistronics-based applications.
23
+
24
+ I.
25
+ Introduction
26
+ Engineering two-dimensional (2D) materials by control-
27
+ ling the stacking orientation of atomic layers have emerged
28
+ as a powerful technique to manipulate their mechanical and
29
+ opto-electronic properties. Bilayer graphene (BLG) is one of
30
+ the simplest van der Waals (vdW) structures that display di-
31
+ verse physical properties such as contrasting electronic struc-
32
+ tures depending on the stacking arrangement1–4. Introduc-
33
+ ing a relative rotation between the layers forms the Twisted
34
+ Bilayer Graphene (TBG) in which the atoms create a peri-
35
+ odic hexagonal superlattice called ‘moiré pattern’ (MP)5–7.
36
+ Emergence of this pattern is due to the atoms occupying dif-
37
+ ferent relative interlayer positions compared to BLG with a
38
+ global size that is inversely correlated with the twist angle
39
+ (θ ) as Lm = a/(2 sin(θ /2)) where a is the lattice constant of
40
+ graphene. Application of other mechanical stimuli such as in-
41
+ equivalent strain to the individual layers of TBG can further
42
+ manipulate the shape of the pattern. Thus, the combination of
43
+ hetero-straining process and twist provides a promising out-
44
+ look for creating unique shapes and geometries of MPs for
45
+ exciting opto-electronic applications8–10.
46
+ The atomic arrangements within MPs are influenced by
47
+ the interlayer vdW forces between the atoms that consider-
48
+ ably influence the atomic arrangement landscape. To manifest
49
+ this influence, we can consider a hypothetical intermediate
50
+ configuration where atoms are rigidly twisted in their plane
51
+ and consequently, the well-defined BLG stacking configura-
52
+ tions of AA, AB and SP types with their spatial variations
53
+ will emerge11,12. Upon allowing atomic reconfiguration, an
54
+
55
+
56
+ a)These authors contributed equally to this work
57
+ b)Department of Physics and Astronomy, University of Rochester, Rochester,
58
+ New York
59
+ atomic-scale reconstruction occurs and local stacked regions
60
+ evolve to their true minimum local energy configuration. This
61
+ process is known as moiré reconstruction13,14. Previous stud-
62
+ ies have reported this phenomenon for low angle TBGs, es-
63
+ pecially in the vicinity of or below the ’magic angle’ (θm =
64
+ 1.1°)15,16. As the size of MP shrinks with an increase in θ and
65
+ leaves less space for reconfiguration of atoms, experimental
66
+ observation of moiré reconstruction becomes a challenge and
67
+ is generally assumed to be absent for θ > 2°15,17,18. Since the
68
+ large angle TBGs contain the same atomic registry but only
69
+ over a smaller region compared to the small twist angles, it is
70
+ unreasonable to expect moiré reconstruction should suddenly
71
+ become absent. The interplay between the in-plane elastic en-
72
+ ergy and interlayer vdW energy is still expected to contribute
73
+ to reconstruction at higher angles due to the same fundamen-
74
+ tal physics. Nevertheless, its extent remains unknown due to
75
+ the current limitations of experimental methods.
76
+ Recent experimental studies have demonstrated the abil-
77
+ ity to control TBGs with and without strain and characterize
78
+ moiré reconstruction for smaller θ systems8,14,19–23. Imag-
79
+ ing techniques such as STM and TEM become challenging
80
+ when feature size becomes comparable to their resolution. As
81
+ the size of MP decreases with increasing twist, imaging for
82
+ θ > 2° systems become unfeasible11,24. Therefore, the cur-
83
+ rent understanding of reconstruction through experimental vi-
84
+ sualization is limited to low angle twists and largely based
85
+ on image analysis techniques rather than physical measurable
86
+ quantities. Optical procedures such as Raman spectroscopy
87
+ offer an expedient method to characterize TBGs irrespective
88
+ of their size and twist angle25–28 but such methods predomi-
89
+ nantly extract the collective behavior of TBGs spanning nu-
90
+ merous MPs. Therefore the global vibrational behavior ob-
91
+ tained by Raman cannot be readily used to infer stacking and
92
+ the extent of reconstruction without an interrelation of phonon
93
+
94
+
95
+ i
96
+ An atomistic insight to moiré reconstruction in Twisted Bilayer Graphene beyond magic angle
97
+ 2
98
+
99
+ FIG. 1: Atomistic model. Relaxed atomistic structures illustrate how periodic moiré superlattice is formed and how its shape
100
+ evolves with strain (a & b). Unlike BLG where a single interlayer distancing is expected, twist results in spatial variations of
101
+ interlayer distancing with as shown for (c) unstrained and (d) strained TBGs. Data presented for the twist angle of θ = 6° and
102
+ uniaxial strain of 1% . (e) Real space geometric analysis demonstrating the distortion of MPs with applied uniaxial tension to
103
+ the top layer.
104
+
105
+
106
+ behavior between local sub-domains and the bulk of TBG.
107
+ Atomistic analyses offer an alternative tool to study atomic ar-
108
+ rangements locally with a fine resolution and allow for track-
109
+ ing of atomistic evolution with varying twist angle11,20,29–31.
110
+ Current works are heavily concentrated on or below the magic
111
+ angle and do not explain the correlation of local and global be-
112
+ havior of TBGs and moreover, have not studied the evolution
113
+ of MPs with strain. As a result, there remains an outstanding
114
+ question about the viability and the role of reconstruction at
115
+ higher angles and how local and global vibrational properties
116
+ are correlated.
117
+ In this work, we utilized a combination of first-principles
118
+ and molecular statics atomistic simulations to examine the lo-
119
+ cal domains in TBGs and how global vibrational behavior is
120
+ tied to changes in local atomic registries. Based on physi-
121
+ cal parameters that include interlayer spacing and interlayer
122
+ energy, our method associates each atom to known stacking
123
+ types of the constituent bi-layer graphene and calculates their
124
+ resultant area fraction and traces the evolution of local sub-
125
+ domains, and demonstrates evidence of moiré reconstruction
126
+ for larger θ TBG systems. This paper presents an effective set
127
+ of criteria for the identification of local stacking and recon-
128
+ struction phenomena in TBGs that are valid with or without
129
+ the application of strain. In addition, we demonstrate the cor-
130
+ relation between local and global vibrational characteristics of
131
+ TBGs and how it validates our results on reconstructed struc-
132
+ tures, especially at higher angles. The methods presented in
133
+ this paper are devised for graphene but further adaptations are
134
+
135
+ possible for other 2D materials.
136
+
137
+ II. Methods
138
+ A.Atomistic modeling.
139
+ All the TBG structures are constructed by rotating the top
140
+ layer of Bernal stacked bilayer graphene with respect to its
141
+ bottom layer. The moiré lattice is created by identifying a
142
+ common periodic lattice for the two layers. Using the TBG
143
+ commensurability conditions, we have modeled their real and
144
+ reciprocal space lattice parameters32,33. The ⃗q vector or re-
145
+ ciprocal lattice parameter of TBG moirlattice is given as ⃗q =
146
+ ⃗b′ ⃗b, where ⃗b and ⃗b′ denote the reciprocal lattice vectors
147
+ of the bottom layer and rotated top layer respectively. When
148
+ heterostrain is applied, the strained ⃗q vector is expressed as
149
+ q⃗ε = b⃗ε −⃗b, where b⃗ε denotes the strained top layer. The
150
+ mathematical expressions of b⃗ε are deduced in Supplementary
151
+ section II. All the atomistic models are relaxed using density
152
+ functional theory (DFT) simulations, except for θ = 1.08° sys-
153
+ tem. Because of a large moiré lattice for this structure (11164
154
+ atoms), DFT becomes forbiddingly inefficient and thus, we
155
+ use force-field potentials for relaxing this structure.
156
+ B.DFT calculations.
157
+ The real space lattices of TBG systems were constructed us-
158
+ ing ATOMISTIX TOOLKIT (QuantumATK) package34. All
159
+ the first-principles simulations were conducted with gener-
160
+ alized gradient approximation (GGA) assimilated in Quan-
161
+ tum Espresso open source package35,36. The Perdew-Burke-
162
+
163
+ 3.55
164
+ 3.5
165
+
166
+ 3.45
167
+
168
+ 3.4
169
+ 3.35±
170
+ ±
171
+ An atomistic insight to moiré reconstruction in Twisted Bilayer Graphene beyond magic angle
172
+ 3
173
+
174
+ FIG. 2: Local stacking identification method. (a) Path PQ along the center of one moiré pattern to the other (θ = 6°) (b)
175
+ Illustration of interlayer energy (ILE) which is the energy contribution of vdW interactions. (c) ILE contour plot for unstrained
176
+ θ = 6° system. (d) Variation of interlayer spacing (ILS) with respect to moiré twist angles; Horizontal dotted line (magenta)
177
+ shows the minima of maximum ILS (dmax) obtained throughout a span of low and high angles TBGs. (e) Variation of ILE
178
+ difference for five representative θ (the dotted line shows the energy difference at soliton width boundary) (f) Contour plot
179
+ demonstrating individual stacking type locally, obtained after implementing classification method.
180
+
181
+
182
+ Ernzerhof (PBE) form along with GGA has been used as the
183
+ exchange-correlation functional37. Ion-electron interactions
184
+ for carbon atoms in TBGs have been described by ultrasoft
185
+ pseudopotentials38. All technical details about DFT parame-
186
+ ters are given in Supplementary information-Section I.
187
+
188
+ C.MS simulations.
189
+ Molecular statics simulations were done using LAMMPS
190
+ open source software39,40. The unstrained, DFT relaxed TBG
191
+ moiré lattice was transformed into an orthogonal cell for per-
192
+ forming MS simulations. The simulation box is considered
193
+ with free surface boundary conditions allowing us to account
194
+ for the aperiodic crystal geometry (or moiré lattice mismatch)
195
+ due to strain applied to one of the layers. The uniaxial strain
196
+ was incremented by 0.1% up to the final strain magnitude of
197
+ 1%. The snapshots of the structure at different strain mag-
198
+ nitudes were taken in Ovito open visualization tool. Further
199
+ computational details are mentioned in Supplementary section
200
+ I.
201
+
202
+ III. Results and Discussions
203
+ A. Global structural analysis of pristine and strained TBGs.
204
+ We have studied a number of TBG systems between θ =
205
+ 1.08° and 13.2° to perform our analysis on MPs close to θm
206
+ as well as outside the limit of small angles. For simplic-
207
+ ity, most of the presented data include three representative
208
+ TBG systems θ = 1.08°, 6° and 13.2°. The MP geometries
209
+
210
+ are modeled using the well-defined commensurability con-
211
+ ditions of TBG systems and relaxed using first-principles or
212
+ force field optimization techniques (see Methods) (Fig. 1(a)).
213
+ Since the local domains in TBG evolve through high symme-
214
+ try BLG stacking, we can observe topographical variation in
215
+ the structure41,42 represented by interlayer spacing (ILS) con-
216
+ tour plot (Fig. 1(c)). The centers of hexagonal MPs have re-
217
+ gions of atoms where AA stacking exists13,43. These central
218
+ regions are surrounded by two domains, AB and BA stack-
219
+ ing, which are energetically degenerate but topologically in-
220
+ equivalent. Since both of these stacking represent the Bernal
221
+ graphene, they can be categorized as one44,45. The boundaries
222
+ of these AB/BA regions are separated by segments referred
223
+ as strain solitons. The shear strain which generates due to
224
+ two inequivalent stacking domains facing each other is con-
225
+ fined within those segments with characteristic width referred
226
+ to as the soliton width43. The atomic structure in the soliton
227
+ regions corresponds to SP stacking which is an intermediate
228
+ configuration between AB (or BA) and AA. A TBG system
229
+ displays an out-of-plane corrugation in its structure caused by
230
+ local ILS variation with AA regions having the highest spac-
231
+ ing followed by SP and AB regions11,12,30.
232
+ On employing heterostrain, we observed a similar topo-
233
+ graphical feature with distorted MPs due to the inequiva-
234
+ lence of strain in each layer that resulted in an oblique moiré
235
+ arrangement8 (Fig. 1(b), (d) for tension and Fig. S1 for com-
236
+
237
+ (LE (meV/atom)
238
+ 28
239
+ 17
240
+ 14
241
+ 3.6
242
+ dmax (AA stacking)
243
+ 12
244
+ 10
245
+ 3.5
246
+ dmin (AB stacking)
247
+ 8
248
+ 6
249
+ 1.10
250
+ 3.4
251
+ 3.48°
252
+ 4
253
+ 4.410
254
+ d max
255
+ 60
256
+ d min
257
+ 7.34°
258
+ 3.3
259
+ 4
260
+ 8
261
+ 12
262
+ 16
263
+ 20
264
+ 24
265
+ 28
266
+ 0
267
+ 0.2
268
+ 0.4
269
+ 0.6
270
+ 0.8
271
+ Twist angle (00)
272
+ Normalized distance|
273
+ |
274
+ |
275
+ |
276
+ |
277
+ | ̸
278
+ |
279
+ |
280
+ An atomistic insight to moiré reconstruction in Twisted Bilayer Graphene beyond magic angle
281
+ 4
282
+
283
+ pression). A geometric analysis is represented to explicate
284
+ the angular change due to distortion and rigid rotation (Fig.
285
+ 1(e)) by deducing the expressions of their reciprocal lattice
286
+ (⃗q) vectors (see Supplementary). The change in ⃗q vector with
287
+ uniaxial strain triggers the distortion in MPs27,46. As shown
288
+ in Fig. 1(e), the boundaries of MPs resemble a hexagon. On
289
+ connecting the centers of adjacent MPs, we can draw a tri-
290
+ angle (∆ABC) with A⃗B and B⃗C as the moiré lattice vectors
291
+ and α being the angle between them. In unstrained condition,
292
+ the magnitude of vectors A⃗B = B⃗C = Lm (Lm = Length of
293
+ MP) and the angles are α = 60°, φ = 120°. As the ⃗q vector
294
+ changes with uniaxial heterostrain, ∆ABC transforms to ∆A′B
295
+ ′C′ such that A⃗′B′ = B⃗′C′ . The deformed moiré lattice can
296
+ be quantified with a change in α with the applied strain (Fig.
297
+ S2). The expressions of moiré reciprocal lattice vectors, show
298
+ the geometrical changes enforced upon hetero-straining these
299
+ systems (Supplementary section II).
300
+
301
+ B. Classification method to identify local domains.
302
+ The deformation of MP with strain gives rise to changes in
303
+ their local sub-domains and it is important to examine them
304
+ for quantifying their contribution to global physical behavior.
305
+ Traversing along a diagonal of MP (path PQ in Fig. 2(a)),
306
+ i.e., from the center of one moiré pattern to the center of its
307
+ second nearest neighbor, we expect to cross all the locally
308
+ stacked regions: AA, AB, SP, BA, and AA11,43,45. Since we
309
+ aim to develop a criteria to classify each atom into one of these
310
+ stacking, we first examined the atoms along the path PQ. To
311
+ perform the stacking identification, we initially used the ILS
312
+ parameter d because the local domains in TBGs vary in in-
313
+ terlayer distancing. Since pristine BLG stacking follows an
314
+ increasing ILS trend from AB to SP and finally the AA re-
315
+ gion, dmax (maximum ILS) and dmin (minimum ILS) in TBGs
316
+ can be respectively understood as the ILS of AA and AB re-
317
+ gions. By examining the range of ILS (dmax and dmin) over
318
+ different possible twist angles (Fig. 2(d)) we identify the min-
319
+ imum value of dmax (3.475Å) and classify atoms above this
320
+ ILS threshold as AA. It should be noted that this does not mis-
321
+ classify AB and SP because this threshold is quite above the
322
+ ILS of pristine AB (3.33Å) and SP (3.38Å). Due to the small
323
+ ILS difference between AB and SP, the same ILS parameter
324
+ cannot be used to identify the rest of the stackings.
325
+ We introduced another parameter called ′interlayer energy′
326
+ (ILE) to distinguish between AB and SP according to their
327
+ energy, rather than ILS. The ILE is a physical measure of
328
+ vdW interaction between atoms in two different layers, as il-
329
+ lustrated by the schematic in Fig. 2(b). It is obtained by com-
330
+ puting the vdW part of the total potential energy between C-
331
+ atoms in different layers Fig. 2(c). Since these local domains
332
+ have indistinguishable and strong in-plane covalent bonds,
333
+ their total potential energy is predominantly sourced from the
334
+ in-plane interactions, which show little variance risen from
335
+ their interlayer configuration. Moreover, with applied strain,
336
+ the changes in total potential energy due to stretching and
337
+ compressing of the in-plane bonds are orders of magnitude
338
+ higher than their interlayer vdw counterparts. This motivates
339
+ the use of vdW interaction energy and its variations for iden-
340
+ tification purposes. However, being a per-atom quantity there
341
+
342
+ are a lot of fluctuations in ILE magnitudes, most prominently
343
+ observed in AB regions (2(c)). Moreover, if the average ILE
344
+ magnitude is used with respect to their bonded neighbors, it
345
+ will result in an insignificant difference between AB and SP
346
+ sub-domains. Hence to account for this, we calculated the av-
347
+ erage ILE difference (∆EILE ) of each atom with its bonded
348
+ neighbors. Although it can be difficult to separate AA and
349
+ SP regions since they have minimal fluctuations in ILE, this
350
+ parameter easily allows to classify AB stacked atoms as they
351
+ have the highest variations in energy with neighbors. Based
352
+ on the ∆EILE analysis for five representative TBGs (Fig. 2e),
353
+ we have identified the ∆EILE threshold at the soliton bound-
354
+ ary (SP width) and classified atoms above that threshold as
355
+ AB. The infinitesimal difference in these thresholds allowed
356
+ us to define a θ -independent ∆EILE value for identifying the
357
+ two stackings (see Supplementary for details). It is important
358
+ to note that the same approach can be used for classification
359
+ in the presence of strain because the physical parameters used
360
+ do not depend on strain. Although the magnitude of inter-
361
+ layer energy can be expected to vary, we observed a negligible
362
+ change in ∆EILE threshold with strain (see Supplementary).
363
+ Thus using these criterion based on ILS and ILE, we could
364
+ classify atoms into their local stacking as shown in Fig. 2(f),
365
+ which applies to TBGs with any twist angle and strain (Fig.
366
+ 3(a)).
367
+
368
+
369
+ On implementing the classification method, we obtained
370
+ area fractions (AF) of each sub-domains present in a TBG
371
+ structure. Using this measure to monitor the evolution of lo-
372
+ cal domains in the presence of strain, we observed that the
373
+ sub-domains’ AF remain almost unchanged (Fig. 3(b), Fig.
374
+ S4 for tension and Fig S5 for compression). It demonstrates
375
+ a characteristic tendency of these local regions to retain their
376
+ registry with an external strain applied globally. The varia-
377
+ tion of AF as a function of twist angle (Fig. 3(c)) shows that
378
+ area fraction of AB (AFAB) and SP (AFSP) increases whereas
379
+ that of AA (AFAA) decreases with decreasing θ . This can
380
+ be attributed to the potential energy of soliton (SP) regions
381
+ contributing to in-plane forces, that displace atoms to max-
382
+ imize the area of AB/BA (most stable BLG-stacking) local
383
+ domains30. Such observations are well-interpreted in exper-
384
+ iments, particularly for systems close to θm (1.08°). Hence
385
+ we compared our theoretically estimated AF for θ = 1.08°
386
+ (and additional θ = 1.21°, 1.37°) systems with experimen-
387
+ tally interpreted area fractions from graphical analysis of STM
388
+ images19, as marked in Fig. 3(c). The close similitude be-
389
+ tween these sets of area fraction values provides a valida-
390
+ tion of our stacking classification method. We believe our
391
+ approach interprets the physical behavior of sub-domains at
392
+ atomic-level and with high accuracy. Besides, as our method
393
+ is based on physical parameters such as energy, it directly en-
394
+ capsulates the underlying physics while in contrast, the previ-
395
+ ously reported data rely on a graphical interpretation of gradi-
396
+ ent in image intensity and contrast from experiments. Hence,
397
+ our methodology is more accurate and able to resolve atom-
398
+ istic insights even at a higher twist angle where the moiré cell
399
+ size shrinks drastically.
400
+
401
+ An atomistic insight to moiré reconstruction in Twisted Bilayer Graphene beyond magic angle
402
+ 5
403
+
404
+ FIG. 3: Evolution of local regions with twist angle and strain. (a) Contour plot demonstrating local stacking type for
405
+ heterostrained θ = 6° system (1% tension). Area fractions of individual stacking domain with respect to (b) strain (tension) and
406
+ (c) twist angle. The red markings in (c) are extracted from reported work by Kazmierczak et. al.19 to compare our results with
407
+ data obtained by analyzing experimental measurements .
408
+
409
+
410
+ C. Detecting moiré reconstruction in high twist angle TBGs.
411
+ We further utilized this method to study the extent of atomic
412
+ reconstruction in TBG systems. Moiré reconstruction can be
413
+ studied by examining local regions in rigidly twisted (R-TBG)
414
+ structure and comparing with their relaxed geometry13–16.
415
+ The rigidly twisted TBG refers to its unrelaxed geometry, con-
416
+ sidered in a conceptual intermediate configuration, in which
417
+ the layers of BLG are twisted by a certain angle but the
418
+ atoms are not allowed to reconfigure to form their true equi-
419
+ librium structure. During reconstruction, local sites in the
420
+ structure prefer to diverge from energetically unfavorable AA
421
+ stacking by atomic displacements. This is achieved by rear-
422
+ rangement of the atoms to minimize vdW energy and obtain-
423
+ ing the nearly commensurate Bernal-stacked (AB/BA) BLG
424
+ structure partitioned by the SP segments after reconstruction.
425
+ The emergence of soliton (SP) domains is one of the pre-
426
+ dominant features of reconstruction phenomena in 2D mate-
427
+ rials. Previous studies have attributed the minor atomic dis-
428
+ placements of large θ relaxed TBGs to insignificant change
429
+ in atomic registry of local domains indicating the absence
430
+ of reconstruction15–17,47. However, examining TBG systems
431
+ with an atomistic insight and employing our sub-domain iden-
432
+
433
+ tification method, we show considerable changes in the local
434
+ registries for larger θ TBGs. We utilized the area fraction
435
+ measure to capture the structural changes in local domains of
436
+ relaxed and unrelaxed geometries. The stacking identification
437
+ assessment of R-TBG is conducted similarly to the relaxed
438
+ TBG (see Supplementary). For θ = 6° structure (4(a)-(c)), the
439
+ AA regions shrink upon relaxation and conversely, the AB/BA
440
+ regions expand to approximate triangular domains. Undoubt-
441
+ edly, this structural change was expected and prominently ob-
442
+ served for θ = 1.08° system (4(d)-(f)). But we encountered
443
+ a similar observation for a large θ structure. Hence, contrary
444
+ to the general idea that reconstruction diminishes at higher
445
+ angles, we show clear evidence demonstrating moiré recon-
446
+ struction in higher θ (>2°) TBG systems. This observation
447
+ indicates that irrespective of how small the atomic displace-
448
+ ments are, the change in AF of local domains for higher θ
449
+ TBGs show pronounced variation in atomic registries upon
450
+ relaxation.
451
+
452
+ 0.5
453
+ AA
454
+ SP
455
+ 0.4
456
+ AB
457
+ fraction
458
+ 0.3
459
+ 0.2
460
+ 0.1
461
+ 0%strain
462
+ 0.5%strain
463
+ 1%strain
464
+ 0.5
465
+ 0.4
466
+ Area fraction
467
+ 0.3
468
+ 0.2
469
+ -→AB
470
+ -CAA
471
+ --SP
472
+ 0.1
473
+ AB(Kazmierczaket.al.)
474
+ AA(Kazmierczaket.al.)
475
+ SP(Kazmierczaket.al.)
476
+ 0
477
+ 0
478
+ 2
479
+ 4
480
+ 6
481
+ 8
482
+ 10
483
+ 12
484
+ Twist Angle (0)AFrigid
485
+ An atomistic insight to moiré reconstruction in Twisted Bilayer Graphene beyond magic angle
486
+ 6
487
+
488
+
489
+ FIG. 4: Demonstration of moiré reconstruction. Stacking contour plot for rigid (a) θ = 6°, (d) θ = 1.08° and relaxed (b) θ =
490
+ 6°, (e) θ = 1.08° TBG systems. (c), (f) Comparison of area fractions for each stacking , showing the change in local atomic
491
+ registries before and after relaxation that signifies the extent of reconstruction.
492
+
493
+
494
+ D. Analyzing extent of reconstruction in strained and
495
+ unstrained TBGs.
496
+ Using this approach, we have also studied the extent of
497
+ moiré reconstruction in high angle TBGs in the presence
498
+ of heterostrain. Lattice deformation due to heterostrain in-
499
+ duces distortion in MPs, which is minimized by sustaining the
500
+ formed domain-wall-like boundary lines (SP regions) due to
501
+ superlattice reconstruction15,23,48. Similar to the unstrained
502
+ case, we have compared the local AF of rigid and relaxed
503
+ systems under heterostrain (Fig. 5). The rigid system for
504
+ strained TBGs refers to its unrelaxed structure obtained af-
505
+ ter employing strain to the relaxed geometry of pristine TBG
506
+ structure (see Supplementary). We observed that our assess-
507
+ ment could capture the variations in local atomic registry of
508
+ strained TBGs (Fig. 5(a)-(c)). The substantial change in AF
509
+ of AA and AB regions and perpetual of SP domains, signifies
510
+ the tendency of preserving the SP boundaries with change in
511
+ local atomic registry of AA and AB domains, thus indicating
512
+ the presence of atomic reconstruction in large θ strained TBG
513
+ systems. To assess the extent of change in local registries, we
514
+ have calculated the percentage change in local AF upon re-
515
+ laxing the structures, i.e., ∆AF(%) = (
516
+ AFrelaxed−AFrigid ) × 100.
517
+ On examining the variation of ∆AF over unstrained (Fig 5(c))
518
+ and strained (tensile Fig. 5(e) and compressive Fig. 5(f))
519
+ TBGs spanning a wide range of twist angles, it is observed
520
+ that ∆AF for all local stackings monotonically decreases with
521
+ increasing θ . Although this implies that, as expected, the ef-
522
+
523
+ fect of reconstruction reduces with increasing twist angle, AFs
524
+ data shows that it can not be disregarded. It is noticed that
525
+ for both pristine and strained cases, the AB stacked domains
526
+ show ample variation in rigid and relaxed configurations even
527
+ for higher angles. This variation rapidly decreases for AA and
528
+ SP regions, especially at very high twist angles. Nonetheless,
529
+ this analysis reveals the existence of local atomic reconstruc-
530
+ tion for both unstrained and strained large θ TBG systems.
531
+ It has been previously argued that for a large twist angle,
532
+ the gaining vdW energy cannot compensate for the losing in-
533
+ tralayer elastic energy15,17,23. This results in no change of
534
+ vdW stacking energy between rigid and relaxed structures, ul-
535
+ timately indicating the absence of reconstruction. However,
536
+ our analysis of ILE over different θ (Fig. S6) clearly shows
537
+ a small but relatively significant difference between the rigid
538
+ and relaxed structures of higher θ TBGs. Although we ob-
539
+ served a quick increase and gradual decrease in energies of re-
540
+ laxed and R-TBG respectively with increasing θ , the relaxed
541
+ (or reconstructed) system has the lower energy throughout.
542
+ Thus, even for large twist angles the reconstructed structure
543
+ formed as a consequence of local atomic changes is their en-
544
+ ergetically favorable configuration, which directly establishes
545
+ the presence of reconstruction. It is not surprising that such
546
+ minor changes in atomic registries for large twist angles are
547
+ challenging to capture in experiments given the length scale
548
+ limitations. But based on our results, reconstruction should
549
+ not be neglected for higher angles and motivate the study of
550
+ the implications of reconstruction for large θ TBGs.
551
+
552
+ 0.5
553
+ RigidTBLG
554
+ RelaxedTBLG
555
+ Area Fraction
556
+ 0.4
557
+ 0.3
558
+ 0.2
559
+ 0.1
560
+ AA
561
+ AB
562
+ SP
563
+ Stackings
564
+ RigidTBLG
565
+ 0.5
566
+ RelaxedTBLG
567
+ 0.4
568
+ 0.1
569
+ AA
570
+ AB
571
+ SP
572
+ Stackings−
573
+ An atomistic insight to moiré reconstruction in Twisted Bilayer Graphene beyond magic angle
574
+ 7
575
+
576
+ FIG. 5: Moiré reconstruction in hetero-strained TBGs. Stacking contour plot of (a) rigid and (b) relaxed θ = 6° structure in
577
+ the presence of 0.5% uniaxial tension. (c) Change in local stacking area fractions before and after relaxation for the strained
578
+ structure. Percentage change in local AF of rigid and relaxed θ = 6° structures (∆AF) with respect to twist angle for (d) pristine
579
+ (unstrained), (e) 1% strained (uniaxial tension) and (f) -1% strained (uniaxial compression) TBGs. Positive and negative values
580
+ of ∆AF (%) respectively indicates increase and decrease in respective local AFs
581
+
582
+ E. Mapping local and global physical property (phonon
583
+ behavior) to changes in local atomic registry.
584
+ Further validation on the presence of reconstruction at high
585
+ angles lies within an interrelation of local stacking domains
586
+ and global vibrational properties. To accomplish this, we
587
+ have studied their phonon behavior that can be directly trans-
588
+ lated to Raman scattering frequencies, which is an efficient
589
+ experimental technique for examining these systems, espe-
590
+ cially under strain49–52. We have examined the phonon dis-
591
+ persion spectra of TBGs and their local domains with ab-inito
592
+ simulations. Initially, we obtained the phonon spectra of un-
593
+ strained TBG systems using DFT (See Methods and Supple-
594
+ mentary). As compared to phonon spectrum of BLG, the
595
+ difference in phonon modes for TBG is quite small due to
596
+ weaker interlayer interaction (Fig. S7). Although we noticed
597
+ some differences in low-frequency acoustic phonons, the ef-
598
+ fect is substantially feeble for optical modes that correspond
599
+ to the experimentally observed Raman peaks53,54. Pertaining
600
+ to our goal of probing Raman spectra of TBGs, we analyzed
601
+ the high frequency optical (Longitudinal (LO) and Transverse
602
+ (TO)) branches of its phonon spectra55. We have indepen-
603
+ dently computed the phonon behavior of each sub-domain for
604
+ comparing them to the global optical vibrational behavior (see
605
+ Supplementary) as shown in Fig. 6(a). To analyze the minute
606
+ difference between phonon frequencies of all the structures,
607
+ we have plotted the optical phonon frequency difference (∆ω)
608
+ of each stacking with respect to the whole TBG structure,
609
+ ∆ω = ωTBG ωstacking (Fig. 6(b) shows ∆ω for LO). We ob-
610
+ served that the phonon frequency magnitude of AA and AB
611
+ regions are smaller than TBG, whereas larger for SP region.
612
+ A similar trend is observed while comparing the TO phonon
613
+ modes (Fig. S8). The optical phonon behavior of AB stacking
614
+ is the closest to that of TBG which indicates that AB-stacked
615
+ domains predominantly control the overall phonon behavior
616
+ in TBGs. This is because unfolded phonon branches of TBG
617
+ exhibit an infinitesimal difference when compared to that of
618
+ Bernal stacked BLG49,54. The correlation of AF measure with
619
+ local and global phonon behavior is discussed in the following
620
+ sub-sections.
621
+
622
+ 1. Correlating local area fraction measure and phonon
623
+ behavior using Bond-Order-Length-Strength theory
624
+ To further establish a connection between the optical
625
+ phonons modes of TBG and phonon frequencies of its sub-
626
+ domains with individual stacking AF, we utilized the Bond
627
+ Order Length Strength (BOLS) theory56. BOLS can correlate
628
+ Raman peaks and their shifts in terms of constitutive struc-
629
+ tural parameters such as bond length and bond energy56–58.
630
+ It explains that the intrinsic association of bonds with their
631
+ physical properties can describe the extrinsic process of opti-
632
+ cal electron scattering captured by their phonon spectra. This
633
+ theory provides an independent method of calculating phonon
634
+
635
+ 0.5
636
+ Rigid
637
+ 0.4
638
+ Relaxed
639
+ 0.1
640
+ AE
641
+ AA
642
+ AB
643
+ SP
644
+ 100
645
+ 100
646
+ 100
647
+ &XX
648
+ 0%
649
+ &XX
650
+ -0.5%
651
+ 50
652
+ 50
653
+ 50
654
+ AAF (%)
655
+ AAF (%)
656
+ △AF (%)
657
+ 0
658
+ 0
659
+ -50
660
+ .·AA
661
+ -50
662
+ AA
663
+ -50
664
+ -AA
665
+ .--AB
666
+ .--AB
667
+ .--AB
668
+ .-SP
669
+ +SP
670
+ -100
671
+ 1
672
+ -1005
673
+ -100
674
+ 0
675
+ 2
676
+ 4
677
+ 6
678
+ 8
679
+ 10
680
+ 12
681
+ 14
682
+ 0
683
+ 2
684
+ 4
685
+ 6
686
+ 8
687
+ 10
688
+ 12
689
+ 14
690
+ 0
691
+ 2
692
+ 4
693
+ 6
694
+ 8
695
+ 10
696
+ 12
697
+ 14
698
+ Twist angle (00)
699
+ Twist angle (00)
700
+ Twist angle (00)dz
701
+ ε=0
702
+ ε= 1%
703
+ 2g
704
+
705
+
706
+ An atomistic insight to moiré reconstruction in Twisted Bilayer Graphene beyond magic angle
707
+ 8
708
+ frequencies of TBG based on the AFs of each sub-domain.
709
+ TABLE I: List of β (eV 1/2Å−1) pre-factor values
710
+ Therefore, the comparison of the results from BOLS theory
711
+
712
+
713
+ and ab-initio phonon frequencies of TBG can further validate
714
+ the accuracy of our sub-domain categorizations. The details of
715
+ BOLS formulation and the parameters involved are explained
716
+ in Supplementary section I. To obtain the vibrational prop-
717
+ erties of various structures using BOLS correlation, we can
718
+ deduce the phonon frequency shift based on bond length (dz),
719
+ bond energy (Ez), reduced mass (µ) and atomic coordination
720
+ number (z) using the following relation:
721
+ ∆ω ∝ z
722
+
723
+ Ez
724
+ (1)
725
+ analyzed both the βTBG values using a times improvement ba-
726
+ sis (mi). Using this we compared the weighted βTBG, first by
727
+ dz
728
+ µ
729
+ taking our calculated local reconstructed AF as the weights
730
+ and second by randomly assigning equal AF (33.33% weight
731
+ for three regions) to each individual stacking. We calculated
732
+ ∆ω = k
733
+ z
734
+ Ez
735
+
736
+ (2)
737
+ ∆ω = ωstructure −ωbulk = k (β )
738
+ (3)
739
+ where, k is the proportionality constant in Eq. 1 (µ is con-
740
+ stant because we have only carbon-based systems). ∆ω is the
741
+ difference of the optical phonon frequency of a system and a
742
+ reference material considered in bulk form (see Supplemen-
743
+ tary). Hence ∆ω = kβ , where β is the pre-factor containing
744
+ the variable parameters, such that β = Ez(z/dz). The mag-
745
+ nitude of this pre-factor directly relates to the optical phonon
746
+ frequency of a structure ωstructure, and thus can help in calcu-
747
+ lating its phonon behavior in terms of the associated physical
748
+ parameters (i.e., z, dz and Ez). Hence, we have utilized this
749
+ BOLS theory based pre-factor β to study the phonon behav-
750
+ ior of TBGs and their local domains, including their strained
751
+ configurations.
752
+ The calculated β magnitudes for global TBG structure
753
+ (βTBG) and its sub-domains are listed in Table I and values
754
+ of all the parameters such as, d, z and E are listed in Table
755
+ SI. Although the β magnitudes are numerically close, they
756
+ follow a trend as βSP > βTBG > βAB > βAA, on careful in-
757
+ spection. This trend also aligns with the observation made
758
+ while comparing the optical frequencies of these structures
759
+ (6(b)). Interestingly, this shows how effectively the BOLS
760
+ theory could endorse the characteristic trend in their phonon
761
+ behavior. Furthermore, we employed the local stacking AF
762
+ values of reconstructed structures in BOLS expression to in-
763
+ still an alternate estimation of phonon frequencies in an at-
764
+ tempt to authenticate our classification method, as explained
765
+ hereon. We analyzed the phonon behavior of global TBG
766
+ their error % with actual βTBG and obtained the relative er-
767
+ ror comparison or times improvement with respect to actual
768
+ βTBG values. The mi values in Table II show significant times
769
+ improvement on considering our estimated AF values of re-
770
+ constructed structures. The similitude between global βTBG
771
+ and weighted βTBG using local AFs signify that the physical
772
+ attributes of local regions in a TBG structure directly correlate
773
+ with the global vibrational comportment. Besides, this analy-
774
+ sis shows another evidence that our stacking classification is
775
+ an effective method for wide-ranging θ and strain magnitudes,
776
+ which is shown to detect reconstruction in these structures.
777
+
778
+ 2. Comparison of BOLS-estimated phonon frequencies with
779
+ experimental Raman to validate sub-domain area fraction
780
+ measure
781
+ To authenticate our reconstructed AF measures with DFT-
782
+ based phonon calculations and AFs driven BOLS theory, we
783
+ first calculated the phonon spectra of strained TBGs using
784
+ DFT simulations followed by calculating Raman frequencies
785
+ using BOLS (see Supplementary). Figure 6(c) shows the op-
786
+ tical phonon branches of TBG (θ = 6°) including tensile and
787
+ compressive uniaxial heterostrain. We have considered Ra-
788
+ man G band frequency in this study, which can be obtained
789
+ at Γ point in high symmetry Brillouin Zone path55,59. We ob-
790
+ served strain-induced phonon band splitting due to inequiv-
791
+ alent strain present in both the layers59–62 (supplementary
792
+ section IV). This phenomenon is observed in Raman spec-
793
+ troscopy as represented by the schematic of G-band Raman
794
+ peaks in hetero-strained TBGs (Fig. 6(d)). Due to weak inter-
795
+ layer vdW interaction in TBGs, their interlayer shear strength
796
+ is negligible which results in slippage between the layers.
797
+ Hence, the bottom layer remains mostly unstrained when
798
+ structure based on two approaches, the first being βTBG cal-
799
+ straining the top layer62,63. The Raman spectra of heteros-
800
+ trained TBG show significant individual peaks of unstrained
801
+ culated directly from BOLS expression. For the other ap-
802
+ proach, we have taken a weighted average of β values of in-
803
+ bottom layer (p1
804
+ ) and strained top layer (p2′
805
+ ± ). The
806
+ dividual stacking with their reconstructed AF as the weights,
807
+ i.e., βTBG = AFAAβAA + AFABβAB + AFSPβSP. On comparing
808
+ the actual and weighted βTBG, i.e., eactual = (βTBG(weighted)
809
+ βTBG(actual))/βTBG(actual), we observed that they align very
810
+ peak of strained layer redshifts or blueshifts depending on the
811
+ nature of strain. Also, for the case of graphene, an increase in
812
+ the magnitude of strain further splits the G-band peaks cor-
813
+ responding to the doubly degenerate E+ and E2
814
+
815
+ g phonons
816
+ well with a small error %, including for strained systems (Ta-
817
+ ble II). However, given the seemingly small difference in β
818
+ 2′′
819
+ ε=±1% in Fig 6(d)-(f))8,64.
820
+ AF values of reconstructed systems
821
+ values of the structures, it may be argued that these small er-
822
+ rors are not much intriguing. Therefore, we have additionally
823
+ We then used the local
824
+ in BOLS expression to estimate Raman G-band frequencies
825
+ for comparison with experiments. and establish a connec-
826
+ (p
827
+ Stacking
828
+ θ = 1.08°
829
+ θ = 6°
830
+ θ = 13.2°
831
+ AA
832
+ 3.084
833
+ 3.198
834
+ 3.418
835
+ AB
836
+ 3.126
837
+ 3.294
838
+ 3.450
839
+ SP
840
+ 3.180
841
+ 3.376
842
+ 3.491
843
+ TBG(βBOLS)
844
+ 3.135
845
+ 3.306
846
+ 3.474
847
+ TBG(βweighted )
848
+ 3.141
849
+ 3.292
850
+ 3.466
851
+
852
+
853
+ An atomistic insight to moiré reconstruction in Twisted Bilayer Graphene beyond magic angle
854
+ 9
855
+
856
+ TABLE II: Error table for BOLS-estimated β pre-factors based on actual and weighted βTBG, for systems with and without
857
+ strain.
858
+
859
+
860
+ Strain (%)
861
+
862
+ eactual
863
+ θ = 1.08°
864
+
865
+ mi
866
+
867
+ eactual
868
+ θ = 6°
869
+
870
+ mi
871
+
872
+ eactual
873
+ θ = 13.2°
874
+
875
+ mi
876
+ 0
877
+ 0.38
878
+ 6
879
+ 0.27
880
+
881
+ 5
882
+ 0.22
883
+ 5
884
+ 0.2%
885
+ -
886
+
887
+ -
888
+ 0.42
889
+
890
+ 5
891
+ 0.29
892
+ 4
893
+ 0.5%
894
+ -
895
+
896
+ -
897
+ 0.60
898
+
899
+ 5
900
+ 0.35
901
+ 4
902
+ 0.7%
903
+ -
904
+
905
+ -
906
+ 0.51
907
+
908
+ 5
909
+ 0.49
910
+ 4
911
+ 1%
912
+ -
913
+
914
+ -
915
+ 0.69
916
+ 5
917
+ 0.45
918
+ 3
919
+
920
+ FIG. 6: Phonon behavior of TBGs with respect to its local domains. (a) Optical phonon modes of TBLG (θ = 6°) and its
921
+ individual counterparts. (b) Longitudinal optical (LO) phonon frequency difference with respect to TBG system, (c) Phonon
922
+ band splitting with heterostrain (tension and compression) (d) Schematic of a typical Raman G-peak splitting with inequivalent
923
+ strain employed in a bilayer system. Comparison of G-band frequencies for (e) θ = 6° with uniaxial compression and (f) θ =
924
+ 13.2° with uniaxial tension. Solid lines in (e), (f) denote the Raman G-peak data obtained from DFT-based phonon calculations.
925
+ Heterostrain-assisted peak splitting of top and bottom layer (as shown in the schematic) is also denoted. Sub-figures(e)-(f) also
926
+ shows the close alignment of Bond Order Length Strength (BOLS)-estimated data using reconstructed AFs with
927
+ DFT-calculated and experimental data (reported by Peña et. al.65) as compared to that using rigid TBG AFs.
928
+
929
+
930
+ tion between global and local vibrational behavior. We first
931
+ extracted the G-band frequency (ωG) from DFT-simulated
932
+ phonon spectra for both unstrained and strained structures.
933
+ Figure 6(e) and 6(f) respectively shows the variation of ωG
934
+ for 6° and 13.2° with strain. To demonstrate both directions
935
+ of uniaxial strain, we showed the case of compression for 6°
936
+ and tension for 13.2°. In both cases, we observed that ωG at
937
+ zero strain is 1588 cm−1, which changes negligibly for the
938
+ unstrained bottom layer. In Fig. 6(e) due to compression, we
939
+ observed blueshift in ωG and redshift for tensile strain in Fig.
940
+ 6(f) (see Supplementary section V). On comparing our results
941
+ for 6° and 13.2° systems with the experimental data reported
942
+ by Pena et. al.65 and Gao et. al.8 respectively, we found a
943
+ good agreement between them (magenta data points in Fig.
944
+
945
+ 6(e) and (f)). Finally, to achieve an experimental validation of
946
+ our stacking identification method as well as to highlight that
947
+ the global behavior such as Raman scattering is tied to local
948
+ structural configurations, we used our calculated AFs of re-
949
+ constructed TBGs in BOLS to predict the Raman G-band fre-
950
+ quencies of heterostrained systems (see Supplementary sec-
951
+ tion I for details).
952
+ We found a qualitative agreement between BOLS estimated
953
+ and DFT calculated ωG Raman peaks shown in Fig. 6(e) and
954
+ Fig. 6(f) (green dots). It must be noted that since BOLS ap-
955
+ proach encompasses mathematical interpolation for project-
956
+ ing the phonon frequencies, it can not resolve the further band
957
+ splitting of the strained top layer. We have also used the rigid
958
+ TBG AFs to check how it compares with the estimated G-
959
+
960
+ 20
961
+ 1650
962
+ LO
963
+ SP stacking
964
+ 1650
965
+ (cm
966
+ ABstacking
967
+ (cm
968
+ 10
969
+ AAstacking
970
+ Phonon frequency
971
+ TO
972
+ Phonon frequency
973
+ 1500
974
+ 1500
975
+ AOLO
976
+ 1350
977
+ 1350
978
+ TBG(0=6°)
979
+ AB stacking
980
+ -10
981
+ Bottom layer (g=0%)
982
+ AAstacking
983
+ Top layer (=+1%)
984
+ SP stacking
985
+ 1200
986
+ 1200
987
+ - Top layer (c=-1%)
988
+ K
989
+ M
990
+ -20
991
+ K
992
+ M
993
+ K
994
+ M
995
+ BOLSo.(reconstructedAF)
996
+ 1600
997
+ Tension
998
+ Compression
999
+ BOLS . (rigidAF)
1000
+ Bottomlayerp
1001
+ 1650
1002
+ Experimental o(Pena et. al.)
1003
+ Top layer p
1004
+ 1575
1005
+ Top layer p
1006
+ Intensity
1007
+ (cm
1008
+ Top layer p
1009
+ 1550
1010
+ p=0
1011
+ 1600
1012
+ (Bottomlayer)
1013
+ BOLSo.(reconstructedAF)
1014
+ =-1%
1015
+ Bottomlayerp
1016
+ Experimental o. (Gao et. al.)
1017
+ =1%
1018
+ 8-1%
1019
+ p--1%p
1020
+ 1525
1021
+ (Top layer)(Top layer)
1022
+ (Toplayer)(Toplayer)
1023
+ 1575
1024
+ Ramano
1025
+ peak frequencies
1026
+ 0
1027
+ 0.2
1028
+ 0.4
1029
+ 0.6
1030
+ 0.8
1031
+ 1
1032
+ 0
1033
+ 0.2
1034
+ 0.4
1035
+ 0.6
1036
+ 0.8
1037
+ Uniaxial compressive strain (%)
1038
+ Uniaxial tensile strain (%)An atomistic insight to moiré reconstruction in Twisted Bilayer Graphene beyond magic angle
1039
+ 10
1040
+
1041
+ band frequencies. We observed a distinct misalignment of
1042
+ BOLS-estimated Raman data using rigid AFs with that us-
1043
+ ing reconstructed AFs and experimentally obtained data as
1044
+ well. Hence, our analysis clearly demonstrates the difference
1045
+ in vibrational behavior of reconstructed and rigid structures
1046
+ and also shows that the reconstructed systems align closely
1047
+ with the experimentally obtained measurements. This cer-
1048
+ tainly implies that the physical behavior of TBGs such as
1049
+ their vibrational properties is governed by their reconstructed
1050
+ phases even for a large θ system and hence establishes an
1051
+ additional validation on the presence of moiré reconstruc-
1052
+ tion in their structures. Moreover, an agreement between the
1053
+ AF utilized BOLS-estimated Raman data and DFT-calculated
1054
+ phonon shows a theoretical approach to calculate Raman fre-
1055
+ quencies at a comparatively lower computational cost. We
1056
+ have calculated the G-band data for the heterostrained 1.08°
1057
+ system using BOLS formulation (Fig. S9). As a whole uti-
1058
+ lizing our stacking classification method and analyzing their
1059
+ Raman signature using BOLS, we established a precise au-
1060
+ thentication about reconstruction in high twist angles and also
1061
+ demonstrated a connection of the global phonon shift of a
1062
+ TBG system with changes in its local atomic registries.
1063
+
1064
+ IV. Conclusion
1065
+ Using atomistic simulations, we studied the characteristics
1066
+ of locally stacked domains in TBG moiré patterns and demon-
1067
+ strated a comprehensive approach to study atomic reconstruc-
1068
+ tion phenomena in these structures, including the presence of
1069
+ heterostrain. We proposed a way to classify TBGs into their
1070
+ stacking types (AA, AB, and SP) and calculated their area
1071
+ fractions to track structural evolution as a function of θ and
1072
+ strain. Our classification scheme allowed us to exhibit the
1073
+ existence of moiré reconstruction even for larger twist angle
1074
+ (>2°) TBG systems, which is difficult to detect experimen-
1075
+ tally. We showed how the moiré patterns of these large-angle
1076
+ TBGs can be distorted by applying strain. Besides, the atomic
1077
+ reconstruction in the presence of strain (in terms of area frac-
1078
+ tion change of commensurate domain) can be manipulated by
1079
+ an amount between 55% to 73% (for θ = 6°) with an applied
1080
+ strain of only 0.5%, opening up a massive opportunity for
1081
+ large angle TBGs to be used in strain engineering applica-
1082
+ tions.
1083
+ We studied the extent of reconstruction over a wide range
1084
+ of θ and realized how it evolves in the presence of strain.
1085
+ To further analyze this finding and validate the AF measure,
1086
+ we utilized DFT-based phonon calculations and a theoretical
1087
+ approach (BOLS theory) to deduce Raman frequencies and
1088
+ compare them with experimental data. Using BOLS theory,
1089
+ we discovered that global phonon behavior is directly related
1090
+ to the physical features of local regions. Further, we real-
1091
+ ized that the Raman data using reconstructed AFs in BOLS
1092
+ aligns closely with DFT-calculated as well as experimental
1093
+ data. Moreover, on comparing the Raman data with rigid AFs,
1094
+ our results show a clear difference with that using the recon-
1095
+ structed sub-domains and hence imply that the latter governs
1096
+ the physical behavior in TBGs even for higher angles. Hence,
1097
+ our study shows a self-consistent approach to characterize lo-
1098
+ cal regions in TBGs and utilize them to examine as well as
1099
+
1100
+ validate moiré reconstruction phenomena, based on physical
1101
+ measures. Our findings on the presence of reconstruction in
1102
+ large θ TBGs might open up an interesting research outlook
1103
+ in twistronics. Moreover, our methodologies can be utilized to
1104
+ identify stacking types and perform similar analyses in other
1105
+ twisted vdW systems, especially in the presence of strain.
1106
+
1107
+ Acknowledgments
1108
+ We wish to acknowledge the support from the National
1109
+ Science Foundation (OMA-1936250) and National Science
1110
+ Foundation Graduate Research Fellowship Program (DGE-
1111
+ 1939268).
1112
+
1113
+ Data Availability Statement
1114
+ The data that support the findings of this study are available
1115
+ from the corresponding author upon reasonable request.
1116
+
1117
+ References
1118
+
1119
+ 1X.-J. Zhao, H. Hou, X.-T. Fan, Y. Wang, Y.-M. Liu, C. Tang, S.-H. Liu, P.-
1120
+ P. Ding, J. Cheng, D.-H. Lin, et al., “Molecular bilayer graphene,” Nature
1121
+ communications 10, 1–7 (2019).
1122
+ 2K. Lee, B. Fallahazad, J. Xue, D. C. Dillen, K. Kim, T. Taniguchi,
1123
+ K. Watanabe, and E. Tutuc, “Chemical potential and quantum hall fer-
1124
+ romagnetism in bilayer graphene,” Science 345, 58–61 (2014).
1125
+ 3T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, “Controlling
1126
+ the electronic structure of bilayer graphene,” Science 313, 951–954 (2006).
1127
+ 4E. McCann and M. Koshino, “The electronic properties of bilayer
1128
+ graphene,” Reports on Progress in physics 76, 056503 (2013).
1129
+ 5A. Luican, G. Li, A. Reina, J. Kong, R. Nair, K. S. Novoselov, A. K.
1130
+ Geim, and E. Andrei, “Single-layer behavior and its breakdown in twisted
1131
+ graphene layers,” Physical review letters 106, 126802 (2011).
1132
+ 6A. Luican, G. Li, A. Reina, J. Kong, R. R. Nair, K. S. Novoselov, A. K.
1133
+ Geim, and E. Y. Andrei, “Single-layer behavior and its breakdown in
1134
+ twisted graphene layers,” Phys. Rev. Lett. 106, 126802 (2011).
1135
+ 7Y. Yu, K. Zhang, H. Parks, M. Babar, S. Carr, I. M. Craig, M. Van Winkle,
1136
+ A. Lyssenko, T. Taniguchi, K. Watanabe, et al., “Tunable angle-dependent
1137
+ electrochemistry at twisted bilayer graphene with moiré flat bands,” Nature
1138
+ Chemistry 14, 267–273 (2022).
1139
+ 8X. Gao, H. Sun, D.-H. Kang, C. Wang, Q. J. Wang, and D. Nam,
1140
+ “Heterostrain-enabled dynamically tunable moiré superlattice in twisted bi-
1141
+ layer graphene,” Scientific reports 11, 1–8 (2021).
1142
+ 9L. Huder, A. Artaud, T. Le Quang, G. T. De Laissardiere, A. G. Jansen,
1143
+ G. Lapertot, C. Chapelier, and V. T. Renard, “Electronic spectrum of
1144
+ twisted graphene layers under heterostrain,” Physical review letters 120,
1145
+ 156405 (2018).
1146
+ 10J.-B. Qiao, L.-J. Yin, and L. He, “Twisted graphene bilayer around the first
1147
+ magic angle engineered by heterostrain,” Physical Review B 98, 235402
1148
+ (2018).
1149
+ 11F. Gargiulo and O. V. Yazyev, “Structural and electronic transformation in
1150
+ low-angle twisted bilayer graphene,” 2D Materials 5, 015019 (2017).
1151
+ 12N. N. Nam and M. Koshino, “Lattice relaxation and energy band modula-
1152
+ tion in twisted bilayer graphene,” Physical Review B 96, 075311 (2017).
1153
+ 13K. Zhang and E. B. Tadmor, “Structural and electron diffraction scaling of
1154
+ twisted graphene bilayers,” Journal of the Mechanics and Physics of Solids
1155
+ 112, 225–238 (2018).
1156
+ 14Y.-W. Liu, Y. Su, X.-F. Zhou, L.-J. Yin, C. Yan, S.-Y. Li, W. Yan, S. Han,
1157
+ Z.-Q. Fu, Y. Zhang, Q. Yang, Y.-N. Ren, and L. He, “Tunable lattice recon-
1158
+ struction, triangular network of chiral one-dimensional states, and band-
1159
+ width of flat bands in magic angle twisted bilayer graphene,” Phys. Rev.
1160
+ Lett. 125, 236102 (2020).
1161
+ 15H. Yoo, R. Engelke, S. Carr, S. Fang, K. Zhang, P. Cazeaux, S. H. Sung,
1162
+ R. Hovden, A. W. Tsen, T. Taniguchi, et al., “Atomic and electronic recon-
1163
+ struction at the van der waals interface in twisted bilayer graphene,” Nature
1164
+ materials 18, 448–453 (2019).
1165
+
1166
+ An atomistic insight to moiré reconstruction in Twisted Bilayer Graphene beyond magic angle
1167
+ 11
1168
+
1169
+ 16Y. Choi, J. Kemmer, Y. Peng, A. Thomson, H. Arora, R. Polski, Y. Zhang,
1170
+ H. Ren, J. Alicea, G. Refael, et al., “Electronic correlations in twisted
1171
+ bilayer graphene near the magic angle,” Nature Physics 15, 1174–1180
1172
+ (2019).
1173
+ 17T. A. de Jong, T. Benschop, X. Chen, E. E. Krasovskii, M. J. de Dood, R. M.
1174
+ Tromp, M. P. Allan, and S. J. Van der Molen, “Imaging moiré deformation
1175
+ and dynamics in twisted bilayer graphene,” Nature Communications 13, 1–
1176
+ 8 (2022).
1177
+ 18A. C. Gadelha, D. A. Ohlberg, C. Rabelo, E. G. Neto, T. L. Vasconcelos,
1178
+ J. L. Campos, J. S. Lemos, V. Ornelas, D. Miranda, R. Nadas, et al., “Local-
1179
+ ization of lattice dynamics in low-angle twisted bilayer graphene,” Nature
1180
+ 590, 405–409 (2021).
1181
+ 19N. P. Kazmierczak, M. Van Winkle, C. Ophus, K. C. Bustillo, S. Carr, H. G.
1182
+ Brown, J. Ciston, T. Taniguchi, K. Watanabe, and D. K. Bediako, “Strain
1183
+ fields in twisted bilayer graphene,” Nature materials 20, 956–963 (2021).
1184
+ 20T. C. Barbosa, A. C. Gadelha, D. A. Ohlberg, K. Watanabe, T. Taniguchi,
1185
+ G. Medeiros-Ribeiro, A. Jorio, and L. C. Campos, “Raman spectra of
1186
+ twisted bilayer graphene close to the magic angle,” 2D Materials 9, 025007
1187
+ (2022).
1188
+ 21Z.-B. Dai, Y. He, and Z. Li, “Effects of heterostrain and lattice relaxation
1189
+ on the optical conductivity of twisted bilayer graphene,” Phys. Rev. B 104,
1190
+ 045403 (2021).
1191
+ 22L. Zhang, Y. Wang, R. Hu, P. Wan, O. Zheliuk, M. Liang, X. Peng, Y.-J.
1192
+ Zeng, and J. Ye, “Correlated states in strained twisted bilayer graphenes
1193
+ away from the magic angle,” Nano letters 22, 3204–3211 (2022).
1194
+ 23A. Kerelsky, L. J. McGilly, D. M. Kennes, L. Xian, M. Yankowitz, S. Chen,
1195
+ K. Watanabe, T. Taniguchi, J. Hone, C. Dean, et al., “Maximized electron
1196
+ interactions at the magic angle in twisted bilayer graphene,” Nature 572,
1197
+ 95–100 (2019).
1198
+ 24J. Campos-Delgado, G. Algara-Siller, C. Santos, U. Kaiser, and J.-P.
1199
+ Raskin, “Twisted bi-layer graphene: Microscopic rainbows,” Small 9,
1200
+ 3247–3251 (2013).
1201
+ 25Y. Wang, Z. Su, W. Wu, S. Nie, N. Xie, H. Gong, Y. Guo, J. Hwan Lee,
1202
+ S. Xing, X. Lu, et al., “Resonance raman spectroscopy of g-line and folded
1203
+ phonons in twisted bilayer graphene with large rotation angles,” Applied
1204
+ Physics Letters 103, 123101 (2013).
1205
+ 26A. Jorio and L. G. Cançado, “Raman spectroscopy of twisted bilayer
1206
+ graphene,” Solid State Communications 175, 3–12 (2013).
1207
+ 27J. Campos-Delgado, L. G. Cançado, C. A. Achete, A. Jorio, and J.-P.
1208
+ Raskin, “Raman scattering study of the phonon dispersion in twisted bi-
1209
+ layer graphene,” Nano Research 6, 269–274 (2013).
1210
+ 28R. He, T.-F. Chung, C. Delaney, C. Keiser, L. A. Jauregui, P. M. Shand,
1211
+ C. Chancey, Y. Wang, J. Bao, and Y. P. Chen, “Observation of low en-
1212
+ ergy raman modes in twisted bilayer graphene,” Nano letters 13, 3594–3601
1213
+ (2013).
1214
+ 29M. Koshino and Y.-W. Son, “Moiré phonons in twisted bilayer graphene,”
1215
+ Physical Review B 100, 075416 (2019).
1216
+ 30S. Dai, Y. Xiang, and D. J. Srolovitz, “Twisted bilayer graphene: Moiré
1217
+ with a twist,” Nano letters 16, 5923–5927 (2016).
1218
+ 31M. Koshino, “Electronic transmission through a b-b a domain boundary in
1219
+ bilayer graphene,” Physical Review B 88, 115409 (2013).
1220
+ 32M. Van Wijk, A. Schuring, M. Katsnelson, and A. Fasolino, “Relaxation
1221
+ of moiré patterns for slightly misaligned identical lattices: graphene on
1222
+ graphite,” 2D Materials 2, 034010 (2015).
1223
+ 33V. Carozo, C. M. Almeida, E. H. Ferreira, L. G. Cancado, C. A. Achete,
1224
+ and A. Jorio, “Raman signature of graphene superlattices,” Nano letters 11,
1225
+ 4527–4534 (2011).
1226
+ 34W. Hou, S. A. Chowdhury, A. Dey, C. Watson, T. Peña, A. Azizimanesh,
1227
+ H. Askari, and S. M. Wu, “Nonvolatile ferroelastic strain from flexoelectric
1228
+ internal bias engineering,” Physical Review Applied 17, 024013 (2022).
1229
+ 35P. Kumar, A. Dey, J. Roques, L. Assaud, S. Franger, P. Parida, and V. Biju,
1230
+ “Photoexfoliation synthesis of 2d materials,” ACS Materials Letters 4, 263–
1231
+ 270 (2022).
1232
+ 36V. Kumar, A. Dey, S. Thomas, M. A. Zaeem, and D. R. Roy, “Hydrogen-
1233
+ induced tunable electronic and optical properties of a two-dimensional
1234
+ penta-pt 2 n 4 monolayer,” Physical Chemistry Chemical Physics 23,
1235
+ 10409–10417 (2021).
1236
+ 37A. Dey, R. Sharma, and S. A. Dar, “An extensive investigation of structural,
1237
+ electronic, thermoelectric and optical properties of bi-based half-huesler
1238
+ alloys by first principles calculations,” Materials Today Communications
1239
+
1240
+ 25, 101647 (2020).
1241
+ 38A. Dey, B. A. Baraiya, S. Adhikary, and P. K. Jha, “First-principles calcu-
1242
+ lations of the effects of edge functionalization and size on the band gap of
1243
+ be3n2 nanoribbons: Implications for nanoelectronic devices,” ACS Applied
1244
+ Nano Materials 4, 493–502 (2020).
1245
+ 39A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M.
1246
+ Brown, P. S. Crozier, P. J. in’t Veld, A. Kohlmeyer, S. G. Moore, T. D.
1247
+ Nguyen, et al., “Lammps-a flexible simulation tool for particle-based ma-
1248
+ terials modeling at the atomic, meso, and continuum scales,” Computer
1249
+ Physics Communications 271, 108171 (2022).
1250
+ 40S. A. Chowdhury, K. Inzani, T. Peña, A. Dey, S. M. Wu, S. M. Griffin, and
1251
+ H. Askari, “Mechanical properties and strain transfer behavior of molybde-
1252
+ num ditelluride (mote2) thin films,” Journal of Engineering Materials and
1253
+ Technology 144 (2022).
1254
+ 41L. J. McGilly, A. Kerelsky, N. R. Finney, K. Shapovalov, E.-M. Shih,
1255
+ A. Ghiotto, Y. Zeng, S. L. Moore, W. Wu, Y. Bai, et al., “Visualization
1256
+ of moiré superlattices,” Nature Nanotechnology 15, 580–584 (2020).
1257
+ 42J. Lin, W. Fang, W. Zhou, A. R. Lupini, J. C. Idrobo, J. Kong, S. J.
1258
+ Pennycook, and S. T. Pantelides, “Ac/ab stacking boundaries in bilayer
1259
+ graphene,” Nano letters 13, 3262–3268 (2013).
1260
+ 43X. Lin, D. Liu, and D. Tománek, “Shear instability in twisted bilayer
1261
+ graphene,” Physical Review B 98, 195432 (2018).
1262
+ 44L. Gong, R. J. Young, I. A. Kinloch, S. J. Haigh, J. H. Warner, J. A. Hinks,
1263
+ Z. Xu, L. Li, F. Ding, I. Riaz, et al., “Reversible loss of bernal stacking dur-
1264
+ ing the deformation of few-layer graphene in nanocomposites,” Acs Nano
1265
+ 7, 7287–7294 (2013).
1266
+ 45R. Miwa, P. Venezuela, and E. S. Morell, “Periodic arrays of intercalated
1267
+ atoms in twisted bilayer graphene: An ab initio investigation,” Physical
1268
+ Review B 92, 115419 (2015).
1269
+ 46Y. Hou, S. Zhang, Q. Li, L. Liu, X. Wu, and Z. Zhang, “Evaluation local
1270
+ strain of twisted bilayer graphene via moiré pattern,” Optics and Lasers in
1271
+ Engineering 152, 106946 (2022).
1272
+ 47M. Koshino and N. N. Nam, “Effective continuum model for relaxed
1273
+ twisted bilayer graphene and moiré electron-phonon interaction,” Physical
1274
+ Review B 101, 195425 (2020).
1275
+ 48L. Zhang, Y. Wang, R. Hu, P. Wan, O. Zheliuk, M. Liang, X. Peng, Y.-J.
1276
+ Zeng, and J. Ye, “Correlated states in strained twisted bilayer graphenes
1277
+ away from the magic angle,” Nano Letters 22, 3204–3211 (2022), pMID:
1278
+ 35385281, https://doi.org/10.1021/acs.nanolett.1c04400.
1279
+ 49F. Wu, A. H. MacDonald, and I. Martin, “Theory of phonon-mediated su-
1280
+ perconductivity in twisted bilayer graphene,” Physical review letters 121,
1281
+ 257001 (2018).
1282
+ 50R. W. Havener, H. Zhuang, L. Brown, R. G. Hennig, and J. Park, “Angle-
1283
+ resolved raman imaging of interlayer rotations and interactions in twisted
1284
+ bilayer graphene,” Nano letters 12, 3162–3167 (2012).
1285
+ 51A. C. Gadelha, D. A. Ohlberg, F. C. Santana, G. S. Eliel, J. S. Lemos,
1286
+ V. Ornelas, D. Miranda, R. B. Nadas, K. Watanabe, T. Taniguchi, et al.,
1287
+ “Twisted bilayer graphene: a versatile fabrication method and the detection
1288
+ of variable nanometric strain caused by twist-angle disorder,” ACS Applied
1289
+ Nano Materials 4, 1858–1866 (2021).
1290
+ 52M. Huang, H. Yan, T. F. Heinz, and J. Hone, “Probing strain-induced elec-
1291
+ tronic structure change in graphene by raman spectroscopy,” Nano letters
1292
+ 10, 4074–4079 (2010).
1293
+ 53A. I. Cocemasov, D. L. Nika, and A. A. Balandin, “Phonons in twisted
1294
+ bilayer graphene,” Physical Review B 88, 035428 (2013).
1295
+ 54M. Lamparski, B. Van Troeye, and V. Meunier, “Soliton signature in the
1296
+ phonon spectrum of twisted bilayer graphene,” 2D Materials 7, 025050
1297
+ (2020).
1298
+ 55H. Wang, Y. Wang, X. Cao, M. Feng, and G. Lan, “Vibrational properties of
1299
+ graphene and graphene layers,” Journal of Raman Spectroscopy: An Inter-
1300
+ national Journal for Original Work in all Aspects of Raman Spectroscopy,
1301
+ Including Higher Order Processes, and also Brillouin and Rayleigh Scatter-
1302
+ ing 40, 1791–1796 (2009).
1303
+ 56X. Yang, Y. Wang, J. Li, W. Liao, Y. Liu, and C. Q. Sun, “Graphene phonon
1304
+ softening and splitting by directional straining,” Applied Physics Letters
1305
+ 107, 203105 (2015).
1306
+ 57C. Q. Sun, “Size dependence of nanostructures: Impact of bond order defi-
1307
+ ciency,” Progress in solid state chemistry 35, 1–159 (2007).
1308
+ 58C. Q. Sun, “Relaxation of the chemical bond,” Springer Ser. Chem. Phys
1309
+ 108, 807 (2014).
1310
+
1311
+ An atomistic insight to moiré reconstruction in Twisted Bilayer Graphene beyond magic angle
1312
+ 12
1313
+
1314
+ 59D. Yoon, Y.-W. Son, and H. Cheong, “Strain-dependent splitting of the
1315
+ double-resonance raman scattering band in graphene,” Physical review let-
1316
+ ters 106, 155502 (2011).
1317
+ 60O. Frank, M. Bousa, I. Riaz, R. Jalil, K. S. Novoselov, G. Tsoukleri,
1318
+ J. Parthenios, L. Kavan, K. Papagelis, and C. Galiotis, “Phonon and struc-
1319
+ tural changes in deformed bernal stacked bilayer graphene,” Nano Letters
1320
+ 12, 687–693 (2012).
1321
+ 61T. Sohier, M. Gibertini, M. Calandra, F. Mauri, and N. Marzari, “Break-
1322
+ down of optical phonons’ splitting in two-dimensional materials,” Nano let-
1323
+ ters 17, 3758–3763 (2017).
1324
+ 62C. Androulidakis, E. N. Koukaras, G. Paterakis, G. Trakakis, and C. Galio-
1325
+ tis, “Tunable macroscale structural superlubricity in two-layer graphene via
1326
+ strain engineering,” Nature communications 11, 1–11 (2020).
1327
+ 63K. Wang, C. Qu, J. Wang, W. Ouyang, M. Ma, and Q. Zheng, “Strain engi-
1328
+ neering modulates graphene interlayer friction by moiré pattern evolution,”
1329
+
1330
+ ACS applied materials & interfaces 11, 36169–36176 (2019).
1331
+ 64Y. Lu, L. Yan, S. Hussain, M. Sun, Z. Zhang, and H. Zheng, “Interlayer
1332
+ coulomb interaction in twisted bilayer graphene nanofragments character-
1333
+ ized by the vibrational mode of gr+ band,” Applied Physics Letters 120,
1334
+ 083103 (2022).
1335
+ 65T. Peña, A. Dey, S. A. Chowdhury, A. Azizimanesh, W. Hou, A. Sewaket,
1336
+ C. L. Watson, H. Askari, and S. M. Wu, “Moiré engineering in 2d het-
1337
+ erostructures with process-induced strain,” arXiv (2022).
1338
+ 66Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras,
1339
+ and P. Jarillo-Herrero, “Unconventional superconductivity in magic-angle
1340
+ graphene superlattices,” Nature 556, 43–50 (2018).
1341
+ 67A. Nimbalkar and H. Kim, “Opportunities and challenges in twisted bilayer
1342
+ graphene: a review,” Nano-Micro Letters 12, 1–20 (2020).
1343
+
1344
+ 1
1345
+
1346
+ An atomistic insight to moir´e reconstruction in Twisted Bilayer Graphene beyond
1347
+ magic angle
1348
+ Aditya Dey,1, a) Shoieb Ahmed Chowdhury,1, a) Tara Pen˜a,2 Sobhit Singh,1 Stephen M.
1349
+ Wu,2, b) and Hesam Askari1
1350
+ 1)Department of Mechanical Engineering, University of Rochester,
1351
+ New York
1352
+ 2)Department of Electrical and Computer Engineering, University of Rochester,
1353
+ Rochester, New York
1354
+
1355
+ Supplementary information
1356
+
1357
+
1358
+
1359
+
1360
+
1361
+
1362
+
1363
+
1364
+
1365
+
1366
+
1367
+
1368
+
1369
+
1370
+
1371
+
1372
+
1373
+
1374
+
1375
+
1376
+
1377
+
1378
+
1379
+
1380
+
1381
+
1382
+
1383
+
1384
+
1385
+
1386
+
1387
+
1388
+
1389
+
1390
+
1391
+
1392
+
1393
+
1394
+ a)These authors contributed equally to this work
1395
+ b)Department of Physics and Astronomy, University of Rochester, Rochester, New York
1396
+
1397
+ 2
1398
+
1399
+ I.
1400
+ COMPUTATIONAL AND THEORETICAL METHODS
1401
+
1402
+ A.
1403
+ DFT calculations
1404
+
1405
+ The real space lattices of TBG systems were constructed using ATOMISTIX TOOLKIT
1406
+ (QuantumATK) commercial package. All the first principles simulations were conducted
1407
+ with generalized gradient approximation (GGA)1,2 assimilated in Quantum Espresso open
1408
+ source package. The Perdew-Burke-Ernzerhof (PBE) form along with GGA has been used
1409
+ as the exchange-correlation functional3. Ion-electron interactions for carbon atoms in TBGs
1410
+ have been described by ultrasoft pseudopotentials. The vdW interaction has been incor-
1411
+ porated as well using the semi-empirical Grimme functional4. Wavefunctions are expanded
1412
+ using a plane wave basis set with an energy cutoff and charge density of 55 Ry and 450 Ry
1413
+ respectively. We used 14 × 14 × 1 k-point grid within Monkhorst-Pack5,6 scheme to sample
1414
+ the reciprocal space Brillouin zone. The structures were optimized until all the atomic forces
1415
+ were less than 0.01 eV/˚A. The in-plane lattice constants were relaxed including the non-
1416
+ periodic out-of plane lattice (25 ˚A space) to elude interactions in that direction. Phonon
1417
+ dispersion spectra of all TBG structures were simulated using self-consistent density func-
1418
+ tional perturbation theory (DFPT)7,8. The dynamical matrices were first computed on an
1419
+ adequate q-point grid. The inter-atomic constants used in computing the phonon dispersion
1420
+ were obtained from the Fourier interpolation of these dynamical matrices.
1421
+
1422
+
1423
+ B. MS simulations
1424
+
1425
+ Molecular statics simulations were done using LAMMPS open source software. The
1426
+ unstrained, DFT-relaxed TBG moir´e lattice was transformed into an orthogonal cell with
1427
+ approximate dimensions of 32 nm × 20 nm for all the TBG structures. The number of MPs
1428
+ generated in each structure is dependent on the twist angle, for example θ = 6◦has 72 MPs,
1429
+ and θ = 13.2◦has 288 MPs respectively. A vacuum space of 50 ˚A is inserted along the out-
1430
+ plane-direction to avoid interactions with the periodic images. Hydrogen passivation was
1431
+ done along the free surfaces to obtain the most stable structure. The TBG structures were
1432
+ minimized using a conjugate gradient energy minimization method to have minimum energy
1433
+ configurations. A reactive empirical bond order (REBO) potential was used for the intra-
1434
+ lyer covalent bonds9 and for the interlayer van der Waals interaction a registry-dependent
1435
+
1436
+ 3
1437
+
1438
+ 8z
1439
+ C
1440
+ =
1441
+ Kolmogorov-Crespi (KC) potential10 was selected. As TBG contains different local stacking
1442
+ configurations, an interatomic potential that considers registry different than equilibrium
1443
+ minimum energy stacking is needed11,12. Subsequently, we loaded the structure with con-
1444
+ stant incremental strain to the top layer. We limit the magnitude of applied strain to 1%
1445
+ for impeding our analysis within the contended boundaries of the experimental capability of
1446
+ straining such systems13,14. Between each loading step, the atoms of the top layer were kept
1447
+ stationary at the applied strain level and energy minimization was performed. The snap-
1448
+ shots of the structure at different strain magnitudes were taken in Ovito open visualization
1449
+ tool15.
1450
+
1451
+ C.
1452
+ BOLS formulation
1453
+
1454
+ The BOLS notion explains the bond contraction and bond strengthening phenomena
1455
+ using the following expressions16:
1456
+ dz
1457
+ = Cz
1458
+ b
1459
+ 2
1460
+ = 1 + exp[ 12−z ]
1461
+
1462
+ (1)
1463
+
1464
+
1465
+ Eb
1466
+ z
1467
+ m
1468
+ (2)
1469
+ z
1470
+ Here, the subscripts z and b respectively represent the coordination number (CN) of
1471
+ a particular atomic structure and its bulk counterpart as a standard. The terms d and
1472
+ E denote bond length and bond energy respectively. Cz represents the bond contraction
1473
+ coefficient that varies with atomic structures having different z. The bond nature index
1474
+ is denoted by m which is 2.56 for carbon bonds17. Since we are dealing with graphitic
1475
+ structures in this study, we consider the bulk counterpart as diamond. Using the bond
1476
+ length of the diamond (db = 1.54˚A) and bond lengths dz for each stacking configuration, we
1477
+ can calculate Cz and z for each configuration using equations (1) and (2). Again using the
1478
+ relation given in equation (2), we can calculate the bond energy for each individual stacking.
1479
+ For diamond, the single C-C bond energy can be obtained from its total cohesive energy,
1480
+ which is known to us, i.e., Eb = 0.614 eV17. Having known z, dz and Ez, we calculate the
1481
+ β pre-factor values for each stacking using equation (2). The relation stated in equation 1
1482
+ in the main text can be derived by equating the vibrational energy of a harmonic system to
1483
+ the first-order approximated Taylor series of its interatomic potential as16:
1484
+ d
1485
+ E
1486
+
1487
+ 4
1488
+
1489
+ TBG
1490
+ G
1491
+ ref
1492
+ ref
1493
+ G
1494
+ ref
1495
+ TBG
1496
+ − ω
1497
+ β ϵ
1498
+ TBG
1499
+ i
1500
+ | |
1501
+ i
1502
+ dz
1503
+ µ
1504
+ =
1505
+ i
1506
+ 1µ(∆ω)2x2 ∼= 1 δu(r) x2 ∝ 1 Ez x2
1507
+ (3)
1508
+ 2
1509
+ 2 δr2
1510
+ 2 dz2
1511
+ ⇒ ∆ω ∝ z /
1512
+ Ez
1513
+
1514
+
1515
+ The BOLS correlation is also used to estimate the phonon frequencies pertaining to
1516
+ Raman G-band peaks. To achieve this, we perform some steps of mathematical interpolation
1517
+ for equation (3). We can write the equation as ∆ωG = ωG
1518
+ − ωref = k (β), where ωG is
1519
+ the G band frequency of any reference material. Now we can calculate ωG
1520
+ for each TBG
1521
+ system with respect to their bulk counterpart (diamond) by comparing respective β pre-
1522
+ factors as,
1523
+ G
1524
+ TBG − ωref
1525
+ = βTBG . After obtaining ωG , we can exercise ωG,ϵ=0 (ωG
1526
+ ωdiamond − ωG
1527
+ βdiamond
1528
+ ref
1529
+ TBG
1530
+ TBG
1531
+ at zero strain) and β pre-factors of strained and unstrained TBG systems to estimate their
1532
+ ωG,ϵ=0 − ωG
1533
+ βϵ=0
1534
+ G-band frequency in strained configuration (ωG,ϵ ), as
1535
+ TBG
1536
+ G,ϵ
1537
+ TBG
1538
+ ref
1539
+ G
1540
+ ref
1541
+ = T BG . Operating
1542
+ TBG
1543
+ this individually for top and bottom layers, we can obtain their G-peak frequencies for both
1544
+ directions and various magnitudes of applied strain. The βϵ
1545
+ values for the strained top
1546
+ layer are listed in Table SIV. Since the bottom layer remains unstrained, we observe negligible
1547
+ differences between their β pre-factor values for strained and unstrained configurations.
1548
+
1549
+ II.
1550
+ GEOMETRIC ANALYSIS OF STRAINED MSCS
1551
+
1552
+ We deduce the expressions of their reciprocal lattice (⃗q ) vectors to quantify the structural
1553
+ changes in strained MSCs18,19. The reciprocal lattice vectors of TBG moir´e lattices20 (⃗q) is
1554
+ given as ⃗q = b⃗′ − ⃗b, where b⃗′ and ⃗b denote the reciprocal lattice vectors of the rotated top
1555
+ layer and bottom layer in a TBG structure respectively. The length of moir´e pattern (MP),
1556
+
1557
+ Lm can be derived using the magnitude of ⃗q vector as Lm = √3 ⃗q . When strain is applied
1558
+ to the top layer, the mathematical expression of its reciprocal lattice vector19 (b⃗ε) can be
1559
+ written as b⃗ε = (I⃗ + S⃗ )
1560
+ −1
1561
+ b⃗′ , where I⃗ is the identity matrix and S⃗ denotes the strain tensor
1562
+ i
1563
+ i
1564
+ which can be written as the following for the case of uniaxial tension,
1565
+ S⃗ =
1566
+ ε
1567
+ 0
1568
+
1569
+ 0 −νε
1570
+ Here, ε is the nominal strain applied and ν denotes the Poisson’s ratio. So, the reciprocal
1571
+ lattice vector of TBG with heterostrain can be expressed as ⃗ε
1572
+ b⃗ε − b⃗i. As shown in
1573
+ ω
1574
+ ω
1575
+ q
1576
+
1577
+ 5
1578
+
1579
+ Fig 1(e) in the main text, the boundaries of MPs resemble a hexagon and we can draw a
1580
+ triangle (∆ABC) with A⃗B and B⃗C as the MP lattice vectors and α being the angle between
1581
+ them (α = 60°, ϕ = 120°). The variation of α and ϕ with the applied strain is shown in
1582
+ Fig. S2. With uniaxial tension, we see a monotonic decrease in these angles and vice-versa
1583
+ for uniaxial compression. The changes in expressions of ⃗q vectors are associated with the
1584
+ geometrical changes enforced upon hetero-straining these systems.
1585
+
1586
+
1587
+ III.
1588
+ EXPLANATION OF STACKING IDENTIFICATION METHOD (FOR
1589
+ UNSTRAINED AND STRAINED SYSTEMS)
1590
+ Firstly, we performed the identification of atoms that should be classified as ’AA’ type
1591
+ using ILS. As observed in main text Fig. 1(c) and (d), the spacing between two layers of
1592
+ TBG varies due to out-of-plane displacements of atoms. The ILS of equilibrium structures
1593
+ follows this trend: AA > SP > AB. Hence, in a TBG system, the maximum ILS (dmax)
1594
+ corresponds to AA region and the minimum distance (dmin) represents AB region. It is
1595
+ observed that dmax and dmin vary with increasing twist angle up to 21°, after which we
1596
+ noticed a plateaued regime21. This results due to the depletion of perfectly stacked AA and
1597
+ AB configurations, as the length of the MPs, reduces with increasing θ. We obtained the
1598
+ maximum and minimum magnitudes of dmax (3.589˚A and 3.475˚A) and dmin (3.456˚A and
1599
+ 3.338˚A). Using the lower bound of dmax for all the twist angles, i.e., 3.475˚A, we classified
1600
+ the atoms with local ILS greater than 3.475˚A as ’AA’ stacking type. On the other hand,
1601
+ considering the upper bound of dmin and identifying the regions with ILS below that value
1602
+ as AB stacking can lead to the misclassification of AB and SP types. For the wide range of
1603
+ twist angle considered in this study, the ILS alone cannot provide a margin of separation for
1604
+ classifying AB and SP stacked atoms. To address this issue, we considered interlayer energy
1605
+ or ILE (per atom) in the structure. Perusing the ILE contour plot, we observed that the
1606
+ center of MPs has the highest energy followed by the SP segments. The AB (or BA) has
1607
+ the lowest energy corresponding to the ground state configuration of BLG. But, being a per
1608
+ atom quantity, the C atoms in AB stacking that are present directly on top of a C atom on
1609
+ the other layer show the highest ILE value as shown in main text Fig. 2(c).
1610
+ To obtain the same measure of energy for AB stacked atoms whether they are located
1611
+ at the center of a lattice hexagon or at the corner, we calculated the difference of interlayer
1612
+
1613
+ 6
1614
+
1615
+ energy of each atom with its three bonded neighbors and consider their average. The
1616
+ interlayer energy difference with neighboring atoms allows us to easily classify AB stacked
1617
+ atoms as they have the highest fluctuation of energy with neighbors compared to AA or SP
1618
+ stacked regions where the quantity is quite uniform. To obtain a classification threshold of
1619
+ interlayer energy difference for AB stacking, we first calculated the soliton width of different
1620
+ TBG systems, i.e., the width of SP regions similarly as explained by Gargiulo et al21. On
1621
+ analyzing the path from the center of AB domain to the center of another AB (or BA)
1622
+ region, we traverse across the SP segment. Calculating the ILS and plotting it along the
1623
+ centers of triangular (AB) regions, we observed a small peak (Fig S3). This peak corresponds
1624
+ to the SP region and its full width at half maxima (FWHM) gives us the soliton width21.
1625
+ Considering this soliton width (varies with twist angle), we obtained the interlayer energy
1626
+ difference value at the boundary of SP domains. This process is repeated for different twist
1627
+ angles to establish a unique threshold that can be applied to any TBG system. The energy
1628
+ difference threshold lies in a diminutive range, 8.22-8.31 meV for the angles considered (Fig
1629
+ 2(e) in main text). On averaging these magnitudes, we defined a ∆EILE threshold of 8.24
1630
+ meV/atom, above which an atom is classified as AB stacking type. The contour plot of TBG
1631
+ (θ = 6◦) system in main Fig 2(f) shows the outcome of applying the method where each atom
1632
+ has been classified as belonging to either AA or AB or SP stacked. We utilized the same
1633
+ approach for classifying the local domains in strained systems. Since the ILS parameter
1634
+ defines the out-of-plane distancing of pristine structures, it is not affected by an in-plane
1635
+ applied strain. However, the interlayer energy of the structure is expected to change because
1636
+ an externally applied strain disturbs the interlayer interactions. But since the mechanical
1637
+ deformation is applied globally, the local regions will experience a similar change in ILE
1638
+ with respect to their nearest neighbors and hence ∆EILE remains approximately unchanged
1639
+ (see Table S1).
1640
+
1641
+
1642
+ IV.
1643
+ STACKING IDENTIFICATION OF RIGID STRUCTURES
1644
+
1645
+ We followed the same approach used for reconstructed or relaxed systems to classify local
1646
+ regions in rigid structures. The atomistic structure of rigid TBGs (R-TBGs) is different
1647
+ from reconstructed systems. Since they are created by simply employing a rigid twist to a
1648
+ Bernal stacked bilayer graphene, they do not have a variation of interlayer spacing, which is
1649
+
1650
+ 7
1651
+
1652
+ present in reconstructed TBGs pertaining to the formation of local stackings in the structure.
1653
+ When a R-TBG is modeled from Bernal stacked (or AB) graphene, it has an ILS equal to
1654
+ that of AB stacked graphene throughout its structure. Hence to account for this we defined
1655
+ their uniform ILS, which is different from their initial geometry. We first considered their
1656
+ relaxed structure and obtained an average ILS value considering all the interlayer distances
1657
+ throughout the structure. Then, we re-modeled the rigid TBG structure by adjusting the
1658
+ layers with respect to the average ILS value. Since different structures have varying fractions
1659
+ of local interlayer regions, this average ILS changes for systems with certain twist angles.
1660
+ It must be noted that we have not utilized this average ILS to define any threshold to
1661
+ classify local atoms, rather it is used only to define the respective rigid structures. Further,
1662
+ following the same method as relaxed systems we obtained their interlayer energy followed by
1663
+ calculating the ILE difference (∆EILE) per atom. Now to classify the individual stackings,
1664
+ we referred back to the ILS and ∆EILE thresholds obtained for relaxed systems. Having
1665
+ known the ILS threshold for AA region (3.475 ˚A ) , we then identified the ∆EILE value at the
1666
+ location corresponding to that ILS value by traversing along path PQ (Fig. 2(a) main text).
1667
+ Then, we employed this value in ∆EILE calculation for R-TBG and specified atoms above
1668
+ that threshold (6.88 meV/atom) as AA. For identifying AB type, we have considered the
1669
+ ∆EILE threshold (8.24 meV/atom) corresponding to its location on the path PQ. Similarly,
1670
+ we then used that location to detect ∆EILE threshold for AB type in R-TBG structure
1671
+ (5.92 meV/atom, so it lies between 5.92 and 6.88 meV/atom). After classifying AB and
1672
+ AA, we have assigned the remaining atoms as SP. Further, we have used this same method
1673
+ to identify the local stackings in rigid structures of strained configurations. To model rigid
1674
+ systems of strained TBGs in a way that physically makes sense, we first considered the
1675
+ relaxed or reconstructed structure of pristine TBG. Now the top layer is stretched such
1676
+ that an unrelaxed hetero-strained TBG system is generated, which is referred to as the
1677
+ rigid structure in the presence of strain. Relaxing this strained structure results in a fully
1678
+ optimized system, pertaining to the reconstructed TBG configuration with strain.
1679
+
1680
+ 8
1681
+
1682
+ V.
1683
+ PHONON DISPERSION SPECTRA OF TBG AND ITS LOCAL
1684
+ DOMAINS
1685
+ The simulations for phonon dispersion spectra were performed for θ = 6° and 13.2°
1686
+ sys- tems. Due to the computational cost of DFT-based phonon simulations for large
1687
+ MPs, we computed phonon spectra only for θ > 4.41° systems. We discussed an approach
1688
+ using BOLS correlation to predict the Raman peaks pertaining to optical phonon modes
1689
+ for larger TBG systems. As described by Cocemasov et al, TBGs contain hybrid folded
1690
+ phonon branches that require to be unfolded onto the single layer first BZ22. Using the
1691
+ PhononUnfolding package23, we simplified the phonon spectra of TBGs along Γ-K-M-Γ
1692
+ high symmetry path (Fig S7 shows unfolded spectra of θ = 6°). To obtain the phonon
1693
+ spectra of local sub- domains, we first identified the atomic positions of each local
1694
+ stacking as defined by our identification method and extract the data from the main
1695
+ structure. Then, we calculated the average bond length lavg of each configuration and
1696
+ deduce their respective lattice con-
1697
+ stant as a
1698
+ stacking = √3l
1699
+ avg . With the calculated unit cell parameters, we have computed
1700
+ their phonon spectrum.
1701
+
1702
+
1703
+ VI.
1704
+ PHONON BAND SPLITTING WITH HETEROSTRAIN
1705
+
1706
+ A combination of Molecular statics and first principles simulations has been used to
1707
+ compute phonon dispersion spectra of TBGs with heterostrain. By freezing the obtained
1708
+ configuration from LAMMPS, we have extracted the atomic data of strained periodic moir´e
1709
+ lattice and further minimized the supercell in DFT to obtain first-principles-level fidelity,
1710
+ followed by phonon spectra calculations. We observed strain-induced phonon band splitting
1711
+ due to inequivalent strain present in both layers. With tension, the atomic bonds in a crystal
1712
+ are stretched relative to their unstrained condition. When the bond length is increased,
1713
+ and the force constant remains unchanged, as a result, the vibrational frequency decreases.
1714
+ Conversely for compression, the bond length reduces which leads to an increase in vibrational
1715
+ frequency. That is why we observe redshift and blueshift in phonon frequencies for tensile
1716
+ and compressive strain respectively24. The redshift and blueshift of Raman G-band for θ =
1717
+ 1.08°, shown in Fig. S9 is a good demonstration of this phenomenon.
1718
+
1719
+ 9
1720
+
1721
+
1722
+
1723
+
1724
+ FIG. 1: (a) Relaxed atomistic structure and (b) interlayer spacing contour plot of θ= 6°
1725
+ TBG system under 1% uniaxial compressive strain.
1726
+
1727
+
1728
+
1729
+
1730
+ TABLE I: Average ∆EILE threshold value considering five representative TBG systems (θ
1731
+ = 1.1°, 3.48°, 4.41°, 6° and 7.34°) in the presence of strain.
1732
+
1733
+ Strain (%) ∆EILE (meV/atom)
1734
+ 0
1735
+ 8.24
1736
+ +0.5
1737
+ 8.223
1738
+ -0.5
1739
+ 8.21
1740
+ +1
1741
+ 8.23
1742
+ -1
1743
+ 8.207
1744
+
1745
+ 3.6
1746
+ Spacing (A)
1747
+
1748
+
1749
+ 3.5
1750
+ cocal Interlayer
1751
+
1752
+ 3.45
1753
+ 3.4
1754
+ .3510
1755
+
1756
+
1757
+
1758
+
1759
+ FIG. 2: Variation of angles α and ϕ with strain demonstrating the deformation of moir´e
1760
+ patterns (for TBG system θ= 6°)
1761
+
1762
+
1763
+
1764
+
1765
+ TABLE II: Evolution of area fractions f of local stacking domains with uniaxial tension
1766
+ and compression applied to the top layer
1767
+
1768
+
1769
+
1770
+
1771
+ Strain (%)
1772
+
1773
+ θ = 1.1°
1774
+
1775
+ θ = 6°
1776
+
1777
+ θ = 13.2°
1778
+ fAA
1779
+ fAB
1780
+ fSP
1781
+ fAA
1782
+ fAB
1783
+ fSP
1784
+ fAA
1785
+ fAB
1786
+ fSP
1787
+ 0
1788
+ 0.135
1789
+ 0.474
1790
+ 0.391
1791
+ 0.25
1792
+ 0.39
1793
+ 0.36
1794
+ 0.272
1795
+ 0.379
1796
+ 0.349
1797
+ +0.2
1798
+ -
1799
+ -
1800
+ -
1801
+ 0.261
1802
+ 0.376
1803
+ 0.363
1804
+ 0.293
1805
+ 0.338
1806
+ 0.369
1807
+ -0.2
1808
+ -
1809
+ -
1810
+ -
1811
+ 0.239
1812
+ 0.407
1813
+ 0.354
1814
+ 0.257
1815
+ 0.399
1816
+ 0.344
1817
+ +0.5
1818
+ -
1819
+ -
1820
+ -
1821
+ 0.274
1822
+ 0.356
1823
+ 0.37
1824
+ 0.309
1825
+ 0.317
1826
+ 0.374
1827
+ -0.5
1828
+ -
1829
+ -
1830
+ -
1831
+ 0.218
1832
+ 0.432
1833
+ 0.35
1834
+ 0.239
1835
+ 0.419
1836
+ 0.342
1837
+ +0.7
1838
+ -
1839
+ -
1840
+ -
1841
+ 0.289
1842
+ 0.339
1843
+ 0.372
1844
+ 0.322
1845
+ 0.301
1846
+ 0.377
1847
+ -0.7
1848
+ -
1849
+ -
1850
+ -
1851
+ 0.2
1852
+ 0.455
1853
+ 0.345
1854
+ 0.218
1855
+ 0.443
1856
+ 0.339
1857
+ +1
1858
+ -
1859
+ -
1860
+ -
1861
+ 0.302
1862
+ 0.319
1863
+ 0.379
1864
+ 0.330
1865
+ 0.291
1866
+ 0.379
1867
+ -1
1868
+ -
1869
+ -
1870
+ -
1871
+ 0.188
1872
+ 0.471
1873
+ 0.341
1874
+ 0.2
1875
+ 0.462
1876
+ 0.338
1877
+
1878
+ EUniaxial tension
1879
+ EUniaxialtension
1880
+ 64
1881
+ 124
1882
+ G Uniaxial compression
1883
+ G Uniaxial compression
1884
+ 62
1885
+ 122
1886
+ (c)0
1887
+ (o)
1888
+ Angle
1889
+ 60
1890
+ e
1891
+ 120
1892
+ 58
1893
+ 118
1894
+ 56
1895
+ 116
1896
+ 0
1897
+ 0.2
1898
+ 0.4
1899
+ 0.6
1900
+ 0.8
1901
+ 1
1902
+ 0
1903
+ 0.2
1904
+ 0.4
1905
+ 0.6
1906
+ 0.8
1907
+ 1
1908
+ Strain(%)
1909
+ Strain(%)11
1910
+
1911
+ θ = 1.1°
1912
+ θ = 6°
1913
+ θ = 13.2°
1914
+
1915
+
1916
+
1917
+ FIG. 3: Normalized spatial interlayer spacing difference (∆d) profiles traversing between
1918
+ centers of moir´e pattern, i.e., path PQ in Fig. 2(a) (for TBG system θ= 6°)
1919
+
1920
+
1921
+
1922
+
1923
+ TABLE III: Parameters for calculating βBOLS pre-factors for TBGs and their respective
1924
+ sub-domains.
1925
+
1926
+
1927
+
1928
+ Parameters TBG
1929
+ AA
1930
+ AB
1931
+ SP
1932
+ TBG
1933
+ AA
1934
+ AB
1935
+ SP
1936
+ TBG
1937
+ AA
1938
+ AB
1939
+ SP
1940
+ dz (˚A )
1941
+ 1.406 1.40 1.405 1.411 1.424 1.417 1.423 1.43
1942
+ 1.438 1.431 1.437 1.441
1943
+ z
1944
+ 5.008 4.88 4.987 5.12
1945
+ 5.43 5.185 5.409 5.612 5.851 5.67 5.792 5.911
1946
+ Cz
1947
+ 0.913 0.909 0.912 0.916 0.926 0.918 0.924 0.929 0.933 0.929 0.933 0.935
1948
+ Ez (eV)
1949
+ 0.775 0.783 0.776 0.768 0.752 0.764 0.751 0.741
1950
+ 0.73 0.743 0.733 0.727
1951
+
1952
+ AA
1953
+ AA
1954
+ 3.6
1955
+ 3.55
1956
+ 3.5
1957
+ 3.45
1958
+ SP
1959
+ 3.4
1960
+ AB
1961
+ AB
1962
+ 3.35
1963
+ P
1964
+ Q12
1965
+
1966
+
1967
+
1968
+ FIG. 4: Variation of area fractions of individual stacking domain with respect to
1969
+ heterostrain (tension) for different twist angles
1970
+
1971
+ 0.5
1972
+ 0.5
1973
+ 0 = 3.48°
1974
+ AA
1975
+ 0 = 4.410
1976
+ AA
1977
+ ■SP
1978
+ SP
1979
+ AB
1980
+ AB
1981
+ 0.4
1982
+ 0.4
1983
+ 0.3
1984
+ Area
1985
+ 0.2
1986
+ 0.1
1987
+ 0.1
1988
+ 0% strain
1989
+ 0.5% strain
1990
+ 1%strain
1991
+ 0% strain
1992
+ 0.5% strain
1993
+ 1% strain
1994
+ (a)
1995
+ (b)
1996
+ 0.5
1997
+ 0.5
1998
+ 0 = 5.08°
1999
+ AA
2000
+ 0 = 7.34°
2001
+ AA
2002
+ ■SP
2003
+ SP
2004
+ AB
2005
+ AB
2006
+ 0.4
2007
+ 0.4
2008
+ uo
2009
+ 0.3
2010
+ 0.1
2011
+ 0.1
2012
+ 0% strain
2013
+ 0.5% strain
2014
+ 1% strain
2015
+ 0%strain
2016
+ 0.5% strain
2017
+ 1%strain
2018
+ (c)
2019
+ (d)
2020
+ 0.5
2021
+ 0.5
2022
+ 0 = 9.349
2023
+ AA
2024
+ 0 = 13.10
2025
+ AA
2026
+ -SP
2027
+ ■SP
2028
+ AB
2029
+ AB
2030
+ 0.4
2031
+ 0.4
2032
+ ion
2033
+ on
2034
+ cti
2035
+ 0.3
2036
+ fra
2037
+ 0.1
2038
+ 0.1
2039
+ 0% strain
2040
+ 0.5%strain
2041
+ 1%strain
2042
+ 0%strain
2043
+ 0.5%strain
2044
+ 1%strain
2045
+ (e)
2046
+ (f)13
2047
+
2048
+
2049
+
2050
+
2051
+ FIG. 5: Variation of area fractions of individual stacking domain with respect to
2052
+ heterostrain (compression) for θ = 3.48°, 6° and 13.2°
2053
+
2054
+
2055
+
2056
+
2057
+
2058
+
2059
+ FIG. 6: Interlayer energy or vdW stacking energy for rigid and relaxed TBG systems. The
2060
+ ILE of relaxed TBG system is always lower than rigid TBG even for larger twist angles.
2061
+
2062
+ 0.5
2063
+ 0.5
2064
+ 0.5
2065
+ 0=3.48°
2066
+ AA
2067
+ 0 = 60
2068
+ AA
2069
+ 0 = 13.29
2070
+ AA
2071
+ ■SP
2072
+ SP
2073
+ SP
2074
+ 0.4
2075
+ AB
2076
+ 0.4
2077
+ AB
2078
+ 0.4
2079
+ AB
2080
+ fract
2081
+ 0.1
2082
+ 0.1
2083
+ 0% strain
2084
+ -0.5% strain
2085
+ -1% strain
2086
+ 0% strain
2087
+ 0.5% strain
2088
+ -1% strain
2089
+ 0% strain
2090
+ -0.5% strain
2091
+ -1% strain-10
2092
+ ILE (meV/atom)
2093
+ -15
2094
+ Interlayer energy, 1
2095
+ 20
2096
+ 25
2097
+ Rigid TBG
2098
+ Relaxed TBG
2099
+ -30
2100
+ 0
2101
+ 2
2102
+ 4
2103
+ 6
2104
+ 8
2105
+ 10
2106
+ 12
2107
+ 14
2108
+ Twist angle (0o)14
2109
+
2110
+
2111
+
2112
+
2113
+
2114
+ FIG. 7: Unfolded phonon spectra of TBG system θ = 6° along high symmetry points of its
2115
+ Brillouin zone. Phonon dispersion spectra of Bernal stacked BLG is also shown for
2116
+ comparison.
2117
+
2118
+ 1500
2119
+ (cm
2120
+ 1200
2121
+ Phonon frequency (
2122
+ 900
2123
+ 600
2124
+ 300
2125
+ Bernal stackedpristine BLG
2126
+ TBG (0 = 6)
2127
+ K
2128
+ M15
2129
+
2130
+
2131
+
2132
+
2133
+ FIG. 8: Transverse optical (TO) phonon frequency difference with respect to TBG system
2134
+ θ = 6°
2135
+
2136
+ 20
2137
+ 10
2138
+ -10
2139
+ AA stacking
2140
+ AB stacking
2141
+ SP stacking
2142
+ -20
2143
+ K
2144
+ M16
2145
+
2146
+
2147
+
2148
+ FIG. 9: BOLS predicted Raman G band frequencies of θ = 1.1° TBG system as a function
2149
+ of applied heterostrain (tension and compression)
2150
+
2151
+ 1610
2152
+ Bottom layer (unstrained)
2153
+ Top layer (tension)
2154
+ 1600
2155
+ Top layer (compression)
2156
+ 1590
2157
+ (cm
2158
+ 1580
2159
+ 1570
2160
+ 1560
2161
+ 0
2162
+ 0.1
2163
+ 0.2
2164
+ 0.3
2165
+ 0.4
2166
+ 0.5
2167
+ Strain(%)17
2168
+
2169
+ TBG
2170
+ TABLE IV: Calculated βϵ
2171
+ pre-factor values of strained top layer using BOLS
2172
+ parameters with respect to strain
2173
+
2174
+
2175
+ Strain (%)
2176
+ θ = 1.1°
2177
+ θ = 6°
2178
+ θ = 13.2°
2179
+ 0
2180
+ 3.135
2181
+ 3.306
2182
+
2183
+ 3.466
2184
+ +0.2
2185
+ 3.207
2186
+ 3.355
2187
+
2188
+ 3.527
2189
+ -0.2
2190
+ 3.078
2191
+ 3.214
2192
+
2193
+ 3.421
2194
+ +0.5
2195
+ 3.311
2196
+ 3.451
2197
+
2198
+ 3.619
2199
+ -0.5
2200
+ 2.988
2201
+ 3.064
2202
+
2203
+ 3.356
2204
+ +0.7
2205
+ 3.398
2206
+ 3.506
2207
+
2208
+ 3.674
2209
+ -0.7
2210
+ 2.732
2211
+ 2.961
2212
+
2213
+ 3.312
2214
+ +1
2215
+ 3.475
2216
+ 3.592
2217
+
2218
+ 3.773
2219
+ -1
2220
+ 2.602
2221
+ 2.795
2222
+
2223
+ 3.248
2224
+
2225
+
2226
+ 18
2227
+
2228
+ REFERENCES
2229
+
2230
+ 1A. Dey, R. Sharma, S. A. Dar, and H. H. Raza, “A computational investigation on struc-
2231
+ tural, mechanical, electronic, magnetic, thermoelectric, and optical properties of crxpb
2232
+ (x= sc, ti) half-heusler alloys,” Journal of Superconductivity and Novel Magnetism 34,
2233
+ 781–796 (2021).
2234
+ 2A. Dey, B. A. Baraiya, S. Adhikary, and P. K. Jha, “First-principles calculations of the ef-
2235
+ fects of edge functionalization and size on the band gap of be3n2 nanoribbons: Implications
2236
+ for nanoelectronic devices,” ACS Applied Nano Materials 4, 493–502 (2020).
2237
+ 3R. Sharma, A. Dey, S. A. Dar, and V. Srivastava, “A dft investigation of csmgx3 (x= cl,
2238
+ br) halide perovskites: Electronic, thermoelectric and optical properties,” Computational
2239
+ and Theoretical Chemistry 1204, 113415 (2021).
2240
+ 4 E´ . D. Murray, K. Lee, and D. C. Langreth, “Investigation of exchange energy density func-
2241
+ tional accuracy for interacting molecules,” Journal of Chemical Theory and Computation
2242
+ 5, 2754–2762 (2009).
2243
+ 5A. Dey, R. Sharma, S. A. Dar, and I. H. Wani, “Cubic pbgeo3 perovskite oxide: A
2244
+ compound with striking electronic, thermoelectric and optical properties, explored using
2245
+ dft studies,” Computational Condensed Matter 26, e00532 (2021).
2246
+ 6A. Dey and D. Chakraborty, “Engineering the band structures of zigzag blue phosphorene
2247
+ and arsenene nanoribbons by incorporating edge corrugations: A first principles explo-
2248
+ ration,” Journal of Nanoscience and Nanotechnology 21, 5929–5936 (2021).
2249
+ 7V. Kumar, A. Dey, S. Thomas, M. A. Zaeem, and D. R. Roy, “Hydrogen-induced tunable
2250
+ electronic and optical properties of a two-dimensional penta-pt 2 n 4 monolayer,” Physical
2251
+ Chemistry Chemical Physics 23, 10409–10417 (2021).
2252
+ 8J. A. Abraham, R. Sharma, S. Ahmad, and A. Dey, “Dft investigation on the electronic,
2253
+ optical and thermoelectric properties of novel half-heusler compounds scaux (x= si, ge, sn,
2254
+ pb) for energy harvesting technologies,” The European Physical Journal Plus 136, 1091
2255
+ (2021).
2256
+ 9D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott,
2257
+ “A second-generation reactive empirical bond order (rebo) potential energy expression for
2258
+ hydrocarbons,” Journal of Physics: Condensed Matter 14, 783 (2002).
2259
+ 10A. N. Kolmogorov and V. H. Crespi, “Registry-dependent interlayer potential for graphitic
2260
+
2261
+ 19
2262
+
2263
+ systems,” Physical Review B 71, 235415 (2005).
2264
+ 11K. Zhang and E. B. Tadmor, “Energy and moir´e patterns in 2d bilayers in translation and
2265
+ rotation: A study using an efficient discrete–continuum interlayer potential,” Extreme
2266
+ Mechanics Letters 14, 16–22 (2017).
2267
+ 12S. A. Chowdhury, K. Inzani, T. Pen˜a, A. Dey, S. M. Wu, S. M. Griffin, and H. Askari,
2268
+ “Mechanical properties and strain transfer behavior of molybdenum ditelluride (mote2)
2269
+ thin films,” Journal of Engineering Materials and Technology 144 (2022).
2270
+ 13X. Gao, H. Sun, D.-H. Kang, C. Wang, Q. J. Wang, and D. Nam, “Heterostrain-enabled
2271
+ dynamically tunable moir´e superlattice in twisted bilayer graphene,” Scientific reports 11,
2272
+ 1–8 (2021).
2273
+ 14C. Androulidakis, E. N. Koukaras, G. Paterakis, G. Trakakis, and C. Galiotis, “Tunable
2274
+ macroscale structural superlubricity in two-layer graphene via strain engineering,” Nature
2275
+ communications 11, 1–11 (2020).
2276
+ 15A. Stukowski, “Visualization and analysis of atomistic simulation data with ovito–the open
2277
+ visualization tool,” Model. Simul. Mater. Sci. Eng 18, 015012 (2009).
2278
+ 16W. Zheng and C. Sun, “Energy environ. sci. 4, 627 (2011),”.
2279
+ 17X. Yang, Y. Wang, J. Li, W. Liao, Y. Liu, and C. Q. Sun, “Graphene phonon softening
2280
+ and splitting by directional straining,” Applied Physics Letters 107, 203105 (2015).
2281
+ 18J. Campos-Delgado, L. G. Can¸cado, C. A. Achete, A. Jorio, and J.-P. Raskin, “Raman
2282
+ scattering study of the phonon dispersion in twisted bilayer graphene,” Nano Research 6,
2283
+ 269–274 (2013).
2284
+ 19Y. Hou, S. Zhang, Q. Li, L. Liu, X. Wu, and Z. Zhang, “Evaluation local strain of twisted
2285
+ bilayer graphene via moir´e pattern,” Optics and Lasers in Engineering 152, 106946 (2022).
2286
+ 20V. Carozo, C. M. Almeida, E. H. Ferreira, L. G. Cancado, C. A. Achete, and A. Jorio,
2287
+ “Raman signature of graphene superlattices,” Nano letters 11, 4527–4534 (2011).
2288
+ 21F. Gargiulo and O. V. Yazyev, “Structural and electronic transformation in low-angle
2289
+ twisted bilayer graphene,” 2D Materials 5, 015019 (2017).
2290
+ 22A. I. Cocemasov, D. L. Nika, and A. A. Balandin, “Phonons in twisted bilayer graphene,”
2291
+ Physical Review B 88, 035428 (2013).
2292
+ 23F. Zheng and P. Zhang, “Phonon unfolding: A program for unfolding phonon dispersions
2293
+ of materials,” Computer Physics Communications 210, 139–144 (2017).
2294
+ 24D. Yoon, Y.-W. Son, and H. Cheong, “Strain-dependent splitting of the double-resonance
2295
+
2296
+ 20
2297
+
2298
+ raman scattering band in graphene,” Physical review letters 106, 155502 (2011).
2299
+ 25A. Dey, R. Sharma, and S. A. Dar, “An extensive investigation of structural, electronic,
2300
+ thermoelectric and optical properties of bi-based half-huesler alloys by first principles cal-
2301
+ culations,” Materials Today Communications 25, 101647 (2020).
2302
+
QdAzT4oBgHgl3EQfW_xa/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
QtE3T4oBgHgl3EQfDAk3/content/tmp_files/2301.04281v1.pdf.txt ADDED
@@ -0,0 +1,3385 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 3D photophoretic aircraft made from ultralight porous
2
+ materials can carry kg-scale payloads in the mesosphere
3
+ Thomas Celenza, Andy Eskenazi and Igor Bargatin
4
+
5
+
6
+ We show that photophoretic aircraft would greatly benefit from a three-dimensional (3D) hollow geometry
7
+ that pumps ambient air through sidewalls to create a high-speed jet. To identify optimal geometries, we
8
+ developed a theoretical expression for the lift force based on both Stokes (low-Re) and momentum (high-
9
+ Re) theory and validated it using finite-element fluid-dynamics simulations. We then systematically varied
10
+ geometric parameters, including Knudsen pump porosity, to minimize the operating altitude or maximize
11
+ the payload. Assuming that the large vehicles can be made from previously demonstrated nanocardboard
12
+ material, the minimum altitude is 55 km while the payload can reach 1 kilogram for 3D structures with 10-
13
+ meter diameter at 80 km altitude. In all cases, the maximum areal density of the sidewalls cannot exceed a
14
+ few grams per square meter, demonstrating the need for ultralight porous materials.
15
+
16
+
17
+ For centuries, humans have been exploring Earth’s atmosphere and outer space, a quest that has
18
+ led to discoveries in fields ranging from aerodynamics to astronomy and climate modeling [1-3]. However,
19
+ the study of certain regions of the atmosphere is hindered by available propulsion technologies. For instance,
20
+ in Earth’s mesosphere, anthropogenic emissions of carbon dioxide are counterintuitively producing rapid
21
+ cooling [4]. The shrinking of the atmosphere resulting from this cooling [5] can be problematic, given that
22
+ a contracting mesosphere can result in reduced satellite drag, which could translate into a greater
23
+ accumulation of space debris [6]. Unfortunately, uncertainties in calculations of these effects are currently
24
+ large because experimental observations within the mesosphere are challenging [7], given that this region,
25
+ extending from fifty to eighty kilometers above the surface of Earth, has air pressures too low to sustain
26
+ planes or balloons and too high for orbiting satellites.
27
+
28
+ Another region of significant interest is the Martian atmosphere, where most recently the
29
+ helicopter Ingenuity achieved near-surface flight [8]. Even with this milestone, sustained flight at high
30
+ altitudes in Mars, e.g., from Olympus Mons, is not yet possible due to decreasing atmospheric density
31
+ [9,10]. Like the study of Earth’s mesosphere, the exploration of Mars’ atmosphere at high altitudes is
32
+ limited by the lack of long-duration methods of flight and propulsion at ambient pressures below ~1 mbar
33
+ (100 Pa). As a result, developing an airborne platform that can operate in a very thin atmosphere, both on
34
+ Mars and on Earth, would be extremely useful in helping collect valuable and atmospheric data related to
35
+ wind patterns, temperature and pressure variations, as well as the concentrations of atmospheric gases.
36
+
37
+ One promising concept, based on the lightweight light-powered centimeter-scale microflyers
38
+ developed by Cortes et al. [11], can potentially overcome the issues faced by the current propulsion
39
+ mechanisms and achieve sustained flight in Earth’s mesosphere and the Martian atmosphere. These devices,
40
+ composed of porous plates, can levitate due to photophoresis, a light-driven propulsion mechanism where
41
+ a jet is created using Knudsen pumping of ambient gas [12]. Knudsen pumps have no moving parts and
42
+ instead exploit temperature gradients to induce gas flows through these plates. Known as “nanocardboard”,
43
+ these ultralight porous plates are composed of nanometer-thick (25–400 nm) aluminum oxide face sheets
44
+ that are connected by channels with micrometer-scale width and height. They offer an areal density of only
45
+ ~1 g/m2 and a bending stiffness orders of magnitude higher relative to solid plates of the same mass [13].
46
+
47
+ Photophoretic levitation is typically enabled by a difference in physical properties between the top
48
+ and bottom of the plate. For instance, in the study performed by Cortes et al. [12], the bottom side of the
49
+ nanocardboard was coated with carbon nanotubes (CNTs), which absorbed the incident light and
50
+ subsequently increased in temperature relative to the top side. This difference in temperatures caused the
51
+ Knudsen pumping, which pushed air down through the channels of nanocardboard from the cold to the hot
52
+ side and thus creating a downward jet below the nanocardboard that levitated plates with centimeter-scale
53
+ sizes [11]. This mechanism works best in low pressure environments (1-100 Pa) [14], such as in Earth’s
54
+ mesosphere or near the top of Olympus Mons on Mars [15]. If the lift forces are large enough to carry tiny
55
+ “smart dust” sensor payloads [16], many such microflyers can be deployed on Earth or on Mars to record
56
+ data in these regions of the atmosphere.
57
+
58
+ In this work, we propose much larger photophoretic vehicles, which are many meters in diameter,
59
+ three-dimensional rather than planar, and use porous sidewalls that push air into an inner chamber and out
60
+
61
+ of a small nozzle (Fig. 1). Using the nozzle increases the speed of the air jet, and such 3D photophoretic
62
+ vehicles can not only increase the resulting lift force but also widen the range of operating pressures.
63
+ Combining design concepts from the previously demonstrated photophoretic levitation of planar
64
+ nanocardboard [11] and analytical tools we used for solid mylar-CNT composite disks [17], we analyzed
65
+ 3D geometries with porous alumina nanocardboard walls and CNTs deposited on their inner side. Because
66
+ alumina is transparent, CNTs on the inside of the structure would absorb the incident light, inducing the
67
+ Knudsen pumping of air from the outside into the interior chamber through the pores and then out of the
68
+ chamber through the exit nozzle, producing a jet as illustrated in Fig. 1.
69
+
70
+
71
+ Figure 1: A hollow sphere with porous alumina-CNT composite walls flying in Earth’s mesosphere (a) and over the
72
+ top of Olympus Mons in Mars (b). The cross-sectional view (c) of the sphere shows the air flow in, with velocity 𝑣𝑓𝑡,
73
+ due to Knudsen pumping (across the nanocardboard walls, as seen on the zoomed-in view) and out as a jet through
74
+ the exit nozzle, with velocity 𝑣𝑗𝑒𝑡. As depicted in (c), A is the nanocardboard channel width, L the nanocardboard
75
+ channel height, and r the structure’s outlet radius, while D the structure’s overall size dimension. Background Earth
76
+ and Mars Image Credits: NASA.
77
+
78
+ To identify the optimal 3D geometry that maximized payload, we considered three representative
79
+ geometries (a sphere, a cone, and a rocket), and performed a series of simulations to determine the
80
+ parameters that would yield the greatest lift forces. However, first, it was necessary to develop an analytical
81
+ expression that predicted the lift forces produced by such structures across a wide range of Reynold
82
+ numbers. To determine this expression, we modeled these 3D structures with outlet jet velocities as small
83
+ as 10-6 m/s to as large as ~100 m/s and at various atmospheric altitudes up to 80 km using computational
84
+ fluid dynamics simulations in ANSYS Fluent, as detailed in the supplementary information. For each fluid-
85
+ flow simulation, we found the reaction forces induced from the air flow (equal and opposite to the lift force),
86
+ and then fitted the collected data using the equation
87
+
88
+
89
+ 𝐹 = 𝐶18𝜇𝐷𝑣𝑓𝑡 + 𝐶2𝜌𝐴𝑣jet
90
+ 2 .
91
+ (1)
92
+
93
+
94
+ a
95
+ Exterior
96
+ Vft
97
+ Vft
98
+ Interior
99
+ Vft
100
+ Cross-
101
+ sectional
102
+ viewHere, 𝜇 corresponded to the fluid viscosity, 𝜌 to the density, 𝐴 = 𝜋𝑟2 is the area of a nozzle with radius r,
103
+ D is the geometry’s characteristic (i.e., largest) dimension, while 𝑣𝑓𝑡 is the flow-through velocity of the
104
+ fluid flow through the porous material and 𝑣𝑗𝑒𝑡 is the velocity of the fluid exiting the structure through the
105
+ small nozzle. As outlined in the supplementary information, 𝑣𝑓𝑡 depends on the light intensity, I, the
106
+ altitude dependent air pressure, P, and the geometric parameters of the nanocardboard. The upper limit of
107
+ the flow-through velocity typically scales as 𝑣𝑓𝑡 ≈ 0.03 𝐼/𝑃 (see supplementary information), resulting in
108
+ velocities of less than 1 mm/s under natural sunlight (~1000 W/m2) and standard atmospheric pressure (105
109
+ Pa) but increasing by many orders of magnitude as the pressure drops at higher altitudes.
110
+
111
+ In Eqn. (1), the first term is based on Stokes’ drag on a disk, obtained from a linearization of the
112
+ steady-state Navier-Stokes equations in the case of dominating viscous forces, i.e., in the low-Re limit.
113
+ Cortes et al. previously showed that at vanishingly low air flow speeds, the lift of a stationary
114
+ nanocardboard plate with air flowing through it was equal to the Stokes drag for a solid disk [11]. In contrast,
115
+ at high jet speeds, the inertial terms dominate, and the lift is mostly dependent on the velocity of the jet
116
+ exiting the nozzle. The helicopter-momentum theory equation, which can be derived from a simple
117
+ application of Reynolds Transport Theorem and represents the second term in Eqn. (1), can model the lift
118
+ in this high-Re limit. Summing both terms results in a simple interpolation between the two operating
119
+ regimes that gives an estimate for the lift force at all pressures and velocities (and, therefore, all values of
120
+ Re). Table 1 summarizes the average fitted C1 and C2 parameters, both on the order of 1, obtained from
121
+ fitting the results for 27 ANSYS Fluent simulations using 3 different altitudes (0 km, 40 km and 70 km), 3
122
+ geometry types (sphere, cone, and rocket), and 3 different structure sizes (1cm, 5cm and 10cm).
123
+
124
+ Fitting Parameters for Each Geometry
125
+ Geometry
126
+ Cone
127
+ Sphere
128
+ Rocket
129
+ C1
130
+ 1.2
131
+ 1.3
132
+ 1.4
133
+ C2
134
+ 0.9
135
+ 0.9
136
+ 0.4
137
+
138
+ Table 1: Fitting parameters for the three geometries in addition to key dimensions. Notice that these ANSYS
139
+ simulations were performed assuming a 100% porosity along each one of these structures’ walls.
140
+
141
+ After determining the coefficients C1 and C2, we proceeded to numerically optimize the various
142
+ parameters controlling the overall 3D shape and nanocardboard porous microstructure to maximize the
143
+ payload capabilities. The developed MATLAB code [18] was based on the photophoretic levitation theory
144
+ for nanocardboard [11] adapted to axisymmetric 3D structures, as detailed in the supplementary
145
+ information. The code also took into account how temperature and pressure depend on the altitude in the
146
+ atmosphere, employing empirical relations developed from standard atmospheric data [19]. Our
147
+ optimization sought the combination of A (nanocardboard channel width), L (nanocardboard channel
148
+ height), and r (the structure’s outlet/nozzle radius) that resulted in the highest payload or achieved flight at
149
+ the lowest altitude as a function of the overall aircraft size D (diameter for sphere and cone, and length for
150
+ the rocket). All these geometric parameters are illustrated in Fig. 1c.
151
+
152
+ Our numerical optimizations revealed that the optimal nanocardboard porosity parameters A and
153
+ L were of the same order of magnitude across all geometries and dimensions D. When optimized for
154
+ achieving flight at the minimum altitude (55 km with zero-payload), A and L were ≈ 0.20 mm and ≈ 0.21
155
+ mm, respectively. When optimized for maximum payload (achieved at 80 km altitude), A and L were 0.90
156
+ mm and 0.91 mm, or about a factor of 4 greater. Because these parameters are of the same order of
157
+ magnitude despite the approximately 40-fold change in ambient pressure at the minimum possible altitude
158
+ of 55 km and the max payload altitude of 80 km, we can make structures that simultaneously achieve
159
+ levitation at low altitudes while carrying significant payload at higher altitudes.
160
+
161
+ The maximum areal densities, i.e., the maximum lift force divided by specific gravity g and the
162
+ area of nanocardboard, were also comparable for all structures. Table 2 shows that the typical value of
163
+ maximum areal density was ≈ 7.1 g/m2 (grams per square meter) for small aircraft (D = 10 cm) compared
164
+ to ≈ 5.5 g/m2 for large aircraft (D = 10 m). Both these densities are in the same order of magnitude as the
165
+ theoretical upper limit derived for the high-Re case in the supplementary information, of 0.016 𝐼/
166
+ (𝑣𝑎𝑣𝑔𝑔) ≈ 0.004 kg/m2 = 4 g/m2. Here, 𝑣𝑎𝑣𝑔 = √8𝑅𝑎𝑖𝑟𝑇/𝜋 ≈ 400 m/s is average speed of air
167
+ molecules at 55-80 km altitudes, while 𝑅𝑎𝑖𝑟 = 𝑅𝑢/𝑀𝑎𝑖𝑟 = 287 𝐽/(𝑘𝑔 ∙ 𝐾) is the gas-specific ideal constant
168
+ of air, equal to the universal gas constant 𝑅𝑢 divided by the average molar mass of air 𝑀𝑎𝑖𝑟. Fig 2a shows
169
+ how the maximum areal densities varies with aircraft size D and, therefore, the airflow’s Reynolds number.
170
+
171
+ The permissible areal densities of each structure decrease with increasing size and Re and stabilize at ~5.5
172
+ g/m2 for larger aircraft that carry payloads of 1 gram or more.
173
+
174
+ Areal Densities and Areas Ratio
175
+ Geometry
176
+ Cone
177
+ Sphere
178
+ Rocket
179
+ D = 10 cm
180
+ D = 10 m
181
+ D = 10 cm
182
+ D = 10 m
183
+ D = 10 cm
184
+ D = 10 m
185
+ Max Areal
186
+ Density
187
+ For Max.
188
+ Payload
189
+ 6.6 g/m2
190
+ 5.4 g/m2
191
+ 7.8 g/m2
192
+ 5.5 g/m2
193
+ 6.9 g/m2
194
+ 5.7 g/m2
195
+ Area
196
+ Ratios
197
+ For Min.
198
+ Altitude
199
+ 18
200
+ 26
201
+ 26
202
+ 27
203
+ 23
204
+ 25
205
+ For Max.
206
+ Payload
207
+ 5
208
+ 5
209
+ 5
210
+ 6
211
+ 6
212
+ 6
213
+
214
+ Table 2: Summary of the parametric studies results for the Cone, Sphere and Rocket, for values of D = 10 cm and D
215
+ = 10 m (full data for all the probed values of D can be found in the supplementary information section). Here, the area
216
+ ratio refers to the 𝐴𝑡𝑜𝑡𝑎𝑙/𝐴𝑜𝑢𝑡 ratio, of the structure’s total surface area to its outlet area.
217
+
218
+ Figure 2: Areal Density versus Characteristic Size (a) and Maximum Payload versus Surface Area (b) for the three
219
+ considered 3D geometries at 80-km altitude. Each data point corresponds to the optimized geometry at each of the
220
+ probed values of the parameter D. The overlap between the curves, in particular starting at surface areas larger than
221
+ 0.01 m2, suggests that the geometries have similar areal densities and maximum payload capabilities.
222
+
223
+ Plotting maximum payloads against the structure surface area in Fig. 2b revealed that, for a given
224
+ surface area, the maximum payload was very similar across all three geometries. While the sphere
225
+ outperformed at smallest sizes, all three shapes (cone, sphere, and rocket) offered essentially the same
226
+ performance at the largest sizes, i.e., for sizes that maximize the payload and are most promising for
227
+ practical applications. Fig. 3 below illustrates optimized shapes for the 10-meter cone (a), sphere (b) and
228
+ rocket (c), which could carry 780, 540, and 1020 grams of payload, respectively. This is sufficient capacity
229
+ to carry modern communication devices [20] and similar to the payload of a typical CubeSat [21].
230
+ a
231
+ b
232
+ 𝑅𝑒 = 𝜌𝑣𝑓𝑡𝐷
233
+ 𝜇
234
+
235
+
236
+ D=10m
237
+ a
238
+ b
239
+ c
240
+ D= 10m
241
+ D=
242
+ 10m
243
+ r=4.97m
244
+ r=3.67m
245
+ r=4.97m
246
+ Payload: 780 g
247
+ Payload: 540 g
248
+ Payload: 1020 gMax.Payload againstGeometrySurfaceArea
249
+ 100
250
+ Max. Payload (kg)
251
+ 0
252
+ 10°
253
+ Sphere
254
+ Cone
255
+ Rocket
256
+ 10-4
257
+ 10~2
258
+ 100
259
+ 102
260
+ Surface Area (m3)Max.Areal Density against characteristic D
261
+ ReynoldsNumber
262
+ 100
263
+ 10l
264
+ 102
265
+ 103
266
+ 25
267
+ Sphere
268
+ Cone
269
+ 20
270
+ Rocket
271
+ 15
272
+ 10
273
+ 10-2
274
+ 10~1
275
+ 100
276
+ 10l
277
+ D (m)
278
+ Figure 3: Geometrically optimized cone (a), sphere (b) and rocket (c) for maximum payload capabilities with a fixed
279
+ characteristic dimension of D = 10 meters. D represents the cone and sphere diameter, and the rocket length. Achieving
280
+ a payload of 1kg required a D of 11.5 and 14 m for the cone and sphere, respectively.
281
+
282
+ Finally, as demonstrated in Table 2 and the supplementary information section, we noticed that
283
+ the 𝐴𝑡𝑜𝑡𝑎𝑙/𝐴𝑜𝑢𝑡 ratio, of the total surface area to the outlet area, was approximately constant for the optimal
284
+ geometries. For the minimum altitude case, this ratio ranged from 17 to 42, averaging ≈ 23 across the three
285
+ geometries and sizes. For the maximum payload case, the typical value of this ratio was approximately 6,
286
+ resulting in relative nozzle sizes shown in Fig. 3. Due to mass conservation, the outlet jet speed needs to
287
+ be larger than the flow-through velocity by the same factor as precisely the 𝐴𝑖𝑛/𝐴𝑜𝑢𝑡 area ratio. Therefore,
288
+ recalling the 𝑣𝑓𝑡 ≈ 0.03 𝐼/𝑃 relationship, at the maximum payload altitude of 80 km, we can approximate
289
+ 𝑣𝑗𝑒𝑡 = 𝑣𝑓𝑡𝐴𝑡𝑜𝑡𝑎𝑙/𝐴𝑜𝑢𝑡 ≈ 0.18 𝐼/𝑃 ≈ 0.18 × 1300 𝑊 𝑚−2/1 𝑃𝑎 = 234 𝑚/𝑠 , while at the minimum
290
+ altitude of 55 km (i.e., for zero payload), 𝑣𝑗𝑒𝑡 = 𝑣𝑓𝑡𝐴𝑡𝑜𝑡𝑎𝑙/𝐴𝑜𝑢𝑡 ≈ 0.70 𝐼/𝑃 ≈ 0.70 × 1200 𝑊 𝑚−2/
291
+ 10 𝑃𝑎 = 84 𝑚/𝑠. Notice that for the payload altitude of 80 km, the jet speed approaches but remains below
292
+ the speed of sound, given by 𝑣𝑠𝑜𝑢𝑛𝑑 = √𝛾𝑅𝑎𝑖𝑟𝑇80𝑘𝑚 ≈ √1.4 × 287 𝐽/(𝑘𝑔 𝐾) × 200 𝐾 ≈ 280 m/s,
293
+ where 𝛾 is the adiabatic constant of air, while 𝑇80𝑘𝑚 ≈ 200 𝐾 is the air temperature at 80 km altitude.
294
+ Achieving kg-scale payloads in the mesosphere will therefore require building 10m-scale photophoretic
295
+ aircraft out of ultralight materials that simultaneously possess low areal densities (≈ 1 g/m2) and sufficient
296
+ structural integrity. However, these aircraft do not necessarily have to be rigid; instead, it is possible to
297
+ make use of flexible parachute or balloon-like structures with overall dimensions similar to those shown in
298
+ Fig. 3.
299
+
300
+ In the calculations above, we assumed that all surfaces are illuminated with 1000 W/m2 light
301
+ intensity, which is not always realistic. The direct sunlight intensity in the mesosphere is similar to that in
302
+ outer space, ~1360 W/m2. Additional ~500 W/m2 of sunlight will be reflected from the clouds and Earth
303
+ below the aircraft due to Earth’s planetary albedo of approximately 0.3. Depending on the elevation of the
304
+ Sun in the sky and the orientation of the surface, it may be exposed to anywhere between essentially zero
305
+ and almost 2000 W/m2 of combined direct and reflected sunlight. If the aircraft ends up rotating as balloons
306
+ often do, all walls will experience an average flux on the order of 1000 W/ m2 or slightly less. For reference,
307
+ we also performed simulations at a reduced intensity of 500 W/m2, which results in payloads ~4 times lower
308
+ than those shown above. One last important aspect to note about these photophoretic aircraft is that they
309
+ only create lift when exposed to light (i.e., during the day), limiting the steady operation to ~12 hours at
310
+ most latitudes, after which the aircraft will start to descend to the ground. However, near the poles, the
311
+ polar day can last many months and extended operations of up to several months may be possible.
312
+
313
+ To conclude, we show that 3D photophoretic aircraft with porous walls made of ultralight,
314
+ ultrathin materials are capable of carrying kg-scale payloads, comparable to those of typical CubeSats. The
315
+ results presented above can be easily generalized for high-altitude operation on Mars using a Martian
316
+ atmospheric model [22]. This work opens the way to creating persistent, low-cost, sensor-carrying aircraft
317
+ in the previously inaccessible atmospheric regions at 55-80 km altitudes on Earth and 20-40 km altitudes
318
+ on Mars, enabling a greater understanding of our planet and the worlds beyond.
319
+
320
+
321
+ References
322
+
323
+ [1] Baum, S. D. (2009). Cost–benefit analysis of space exploration: Some ethical considerations. Space
324
+ Policy, 25(2), 75-80. 8
325
+
326
+ [2] Bainbridge, W. S. (2009). Motivations for space exploration. Futures, 41(8), 514-522.
327
+
328
+ [3] Lindgren, E. A., Sheshadri, A., Podglajen, A., & Carver, R. W. (2020). Seasonal and latitudinal
329
+ variability of the gravity wave spectrum in the lower stratosphere. Journal of Geophysical Research:
330
+ Atmospheres, 125(18), e2020JD032850.
331
+
332
+ [4] Laštovička, J. (2017). A review of recent progress in trends in the upper atmosphere. Journal of
333
+ Atmospheric and Solar-Terrestrial Physics, 163, 2-13.
334
+
335
+
336
+ [5] Bailey, S. M., Thurairajah, B., Hervig, M. E., Siskind, D. E., Russell III, J. M., & Gordley, L. L. (2021).
337
+ Trends in the polar summer mesosphere temperature and pressure altitude from satellite observations.
338
+ Journal of Atmospheric and Solar-Terrestrial Physics, 220, 105650.
339
+
340
+ [6] Tran, L. “NASA Satellites See Upper Atmosphere Cooling and Contracting.” NASA. Goddard Space
341
+ Flight Center, June 28, 2021. https://www.nasa.gov/feature/goddard/2021/nasa-satellites-see-upper-
342
+ atmosphere-cooling-contracting-climate-change.
343
+
344
+ [7] Goessling, H. F., & Bathiany, S. (2016). Why CO 2 cools the middle atmosphere–a consolidating model
345
+ perspective. Earth System Dynamics, 7(3), 697-715.
346
+
347
+ [8] Gohd, C. “Mars Helicopter Ingenuity: First Aircraft to Fly on Red Planet.” Space.com. Space, May 22,
348
+ 2021. https://www.space.com/ingenuity-mars-helicopter-perseverance-rover.
349
+
350
+ [9] Squyres, S. W., Arvidson, R. E., Baumgartner, E. T., Bell III, J. F., Christensen, P. R., Gorevan, S., ...
351
+ & Romero, R. A. (2003). Athena Mars rover science investigation. Journal of Geophysical Research:
352
+ Planets, 108(E12).
353
+
354
+ [10] Young, L. A., Delaune, J., Johnson, W., Withrow, S., Cummings, H., Sklyanskiy, E., ... & Bhagwat,
355
+ R. (2020). Design Considerations for a Mars Highland Helicopter. In ASCEND 2020 (p. 4027).
356
+
357
+ [11] Cortes, J., Stanczak, C., Azadi, M., Narula, M., Nicaise, S. M., Hu, H., & Bargatin, I. (2020).
358
+ Photophoretic levitation of macroscopic nanocardboard plates. Advanced Materials, 32(16), 1906878.
359
+
360
+ [12] Pharas, K., & McNamara, S. (2010). Knudsen pump driven by a thermoelectric material. Journal of
361
+ Micromechanics and Microengineering, 20(12), 125032.
362
+
363
+ [13] Lin, C., Nicaise, S. M., Lilley, D. E., Cortes, J., Jiao, P., Singh, J., ... & Bargatin, I. (2018).
364
+ Nanocardboard as a nanoscale analog of hollow sandwich plates. Nature communications, 9(1), 1-8.
365
+
366
+ [14] Horvath, H. (2014). Photophoresis–a forgotten force??? KONA Powder and Particle Journal, 31, 181-
367
+ 199.
368
+
369
+ [15]
370
+ European
371
+ Space
372
+ Agency.
373
+ “Facts
374
+ about
375
+ Mars.”
376
+ https://www.esa.int/Science_Exploration/Space_Science/Mars_Express/Facts_about_Mars.
377
+
378
+ [16] Niccolai, L., Bassetto, M., Quarta, A. A., & Mengali, G. (2019). A review of Smart Dust architecture,
379
+ dynamics, and mission applications. Progress in Aerospace Sciences, 106, 1-14.
380
+
381
+ [17] Azadi, M., Popov, G. A., Lu, Z., Eskenazi, A. G., Bang, A. J. W., Campbell, M. F., ... & Bargatin, I.
382
+ (2021). Controlled levitation of nanostructured thin films for sun-powered near-space flight. Science
383
+ Advances, 7(7), eabe1127.
384
+
385
+ [18] Eskenazi, A., Celenza, T., & Bargatin, I. (2022). MATLAB-fluid-flow-parametric-studies.
386
+ https://github.com/andyeske/MATLAB-fluidflow-parametric-studies
387
+
388
+ [19]
389
+ Engineering
390
+ ToolBox.
391
+ (2003). U.S.
392
+ Standard
393
+ Atmosphere
394
+ vs.
395
+ Altitude.
396
+ https://www.engineeringtoolbox.com/standard-atmosphere-d_604.html
397
+
398
+ [20] Saeed, N., Elzanaty, A., Almorad, H., Dahrouj, H., Al-Naffouri, T. Y., & Alouini, M. S. (2020).
399
+ Cubesat communications: Recent advances and future challenges. IEEE Communications Surveys &
400
+ Tutorials, 22(3), 1839-1862.
401
+
402
+ [21] NASA. (2017). CubeSat 101: Basic Concepts and Processes for First-Time CubeSat Developers.
403
+ https://www.nasa.gov/sites/default/files/atoms/files/nasa_csli_cubesat_101_508.pdf
404
+
405
+ [22] Justh, H. L., Cianciolo, A. D., & Hoffman, J. (2021). Mars Global Reference Atmospheric Model
406
+ (Mars-GRAM): User Guide (No. NASA/TM-20210023957).
407
+
408
+
409
+
410
+ Page
411
+ 1
412
+ 3D photophoretic aircraft made from ultralight porous
413
+ materials can carry kg-scale payloads in the mesosphere
414
+ Supplementary Information
415
+ Thomas Celenza, Andy Eskenazi and Igor Bargatin
416
+
417
+ In this document, we present and expand on the computational and theoretical framework behind our work.
418
+ The first section is devoted to the ANSYS Fluent simulations, covering the solver set-up and the theory
419
+ behind the force calculations. The second section of this document focuses on the MATLAB code,
420
+ specifically the derivation of the equations used in the optimization of the geometrical and channel
421
+ parameters of the 3D geometries, including the rocket, cone and sphere.
422
+
423
+ 1. ANSYS Fluent Simulations
424
+
425
+ The goal of the ANSYS Fluent simulations was to determine an analytical expression to estimate the lift
426
+ forces produced by various types of 3D structures. Because we sought geometries that operated across a
427
+ wide range of velocities and altitudes (and thus air pressures, densities, temperatures and viscosities), the
428
+ expression for the lift force needed to be valid across a wide range of Reynolds (Re) numbers as well. In
429
+ particular, this equation needed to reasonably accurately model the transition between the low-Re (Stokes)
430
+ regime to the high-Re regime. As the main paper argues, an appropriate expression is
431
+
432
+
433
+ 𝐹 = 𝐶18𝜇𝐷𝑣𝑓𝑡 + 𝐶2𝜌𝐴𝑣jet
434
+ 2 .
435
+ (S1)
436
+
437
+ Here, 𝜇 corresponds to the fluid viscosity, 𝜌 to the density, 𝐴 = 𝜋𝑟2 is the area of a nozzle with radius r, D
438
+ is the geometry’s characteristic (usually largest) dimension, while 𝑣𝑓𝑡 is the flow-through velocity of the
439
+ fluid through the porous material and 𝑣𝑗𝑒𝑡 is the velocity of the fluid exiting the structure through the small
440
+ nozzle. The fitting parameters 𝐶1 and 𝐶2 depended on the geometry and were determined using ANSYS
441
+ simulations. In this work, we considered three geometries, a cone, sphere, and rocket, shown in Figure S1.
442
+ Figure S1: Main geometric parameters for the cone (a), rocket (b) and sphere (c). Notice that here, the variable D
443
+ serves as an overall indicator of the size of the geometry, while the variable r controls the outlet radii of the nozzle.
444
+
445
+ Isometric
446
+ View
447
+ Isometric
448
+ View
449
+ Side
450
+ View
451
+ 121
452
+ h
453
+ a
454
+ Side
455
+ View
456
+ Isometric
457
+ View
458
+ Side
459
+ View
460
+ 2r
461
+ bPage
462
+ 2
463
+ Through the ANSYS Simulations, we determined the average 𝐶1 and 𝐶2 coefficients for each structure and
464
+ examined how these would evolve with overall size of the structure or the altitude. We performed 9 sets of
465
+ simulations for each geometry, where we varied three different inlet/outlet area ratios at three different
466
+ altitudes, resulting in flow-through velocities as small as 10-6 m/s or as large as 1 m/s.
467
+
468
+ Figure S2 shows boundary conditions
469
+ employed in our simulations using a sphere
470
+ as an example. To make our simulations
471
+ computationally more efficient, we took
472
+ advantage of the axial symmetry of our
473
+ three geometries and thus constructed our
474
+ models
475
+ in
476
+ a
477
+ 2D,
478
+ axisymmetric
479
+ environment, which allowed us to only
480
+ simulate fluid flow on the top half of each
481
+ structure. We formed these geometries
482
+ using ANSYS’ “Design Modeler” module,
483
+ and they were essentially composed of
484
+ three spaces: an outer air box, and inner air
485
+ box, and the nanocardboard geometry itself
486
+ (whose interior was “subtracted” from the
487
+ inner air box, as seen in Figure S2).
488
+
489
+ The next step was to specify mesh
490
+ elements, shown in Figure S3. Plot (a)
491
+ shows the larger, outer air box with coarser
492
+ mesh elements, while plot (b) is a zoomed-
493
+ in view into the smaller, inner air box,
494
+ containing smaller mesh elements. By
495
+ dividing the air box into these two regions, we optimized the overall number of mesh elements in the
496
+ simulation by providing a higher resolution just in the area close to the geometry. We created the mesh by
497
+ selecting edges and dividing them into a discrete number of points; to enforce a uniform grid pattern, we
498
+ used the quadrilaterals face meshing command. For the sphere, this resulted in 184,180 elements (185,408
499
+ nodes); for the cone, 194,322 elements (195,865 nodes); for the rocket, 293,053 elements (294,616 nodes).
500
+ These were the final numbers of mesh elements obtained as a result of performing a convergence analysis
501
+ until observing negligible changes in the computed lift forces.
502
+
503
+
504
+ The final step was to establish Fluent’s “set-up” module parameters. For the model, we chose the viscous
505
+ k-omega, with the low-Re (viscous) corrections feature enabled. Next, we fixed the boundary conditions as
506
+ described by Figure S2, and manually modified operating conditions (environment pressure, fluid density
507
+ and fluid viscosity) matching the chosen altitude. Since our fluid was air, we extracted its properties as
508
+ tabulated in altitude-dependent standard atmospheric tables, summarized in Table 1 below for 0 km, 40 km
509
+ and 70 km (our probed altitudes). Last, we specified the inlet velocity as a variable parameter, since that
510
+ Figure S2: ANSYS Simulations boundary conditions. As the
511
+ illustration shows, the inner wall of the geometry (red) was chosen
512
+ as the flow-velocity inlet (inducing the air to flow from the into the
513
+ structure), while the outer wall (violet) was selected as the outlet
514
+ (mass outflow in Fluent, inducing the air to pass through the
515
+ structure’s walls). For the purposes of these simulations, we are
516
+ assuming we have 100% porous walls through which the air flows
517
+ at velocity 𝑣𝑓𝑡 (an idealization of the actual nanocardboard
518
+ geometry).
519
+ b
520
+ a
521
+ Figure S3: Sample meshing of the axisymmetric sphere simulation in ANSYS Fluent. Here, plot (a) provides an
522
+ overall picture of the air box (which is more than ten times larger than the geometry in question in each dimension),
523
+ while plot (b) shows a zoomed-in image of the area immediately surrounding the sphere. The size of the outer air
524
+ box was not arbitrary, but rather resulted from a series of simulations that gradually increased its dimensions until
525
+ force values converged.
526
+
527
+
528
+ OuterAir BoX
529
+ (coarsemeshelements
530
+ -InerAirBox
531
+ Cfimrmcsh clements
532
+ -AirOut
533
+ Airiln
534
+ -Axis of SymmetryPage
535
+ 3
536
+ allowed us to sweep through values ranging from 10-6 m/s to 1 m/s in 7 logarithmically equally spaced
537
+ points.
538
+
539
+ Summary of Altitude-Dependent Atmospheric Properties
540
+ Altitude
541
+ 0 km
542
+ 40 km
543
+ 70 km
544
+ Atmospheric Pressure (Pa)
545
+ 101300
546
+ 275.47
547
+ 4.66
548
+ Atmospheric Temperature (K)
549
+ 288
550
+ 251
551
+ 220
552
+ Air Density (kg/m3)
553
+ 1.23
554
+ 3.83*10-3
555
+ 7.38*10-5
556
+ Air Viscosity (Pa * s)
557
+ 1.796*10-5
558
+ 1.610*10-5
559
+ 1.447*10-5
560
+
561
+ Table 1: Tabulated altitude-dependent atmospheric conditions for 0 km, 40 km and 70 km. These values were manually
562
+ inputted for each simulation set into the Fluent solver.
563
+
564
+ We repeated this process 36 times, to construct 18 simulations for the cone, 9 for the sphere and 9 for the
565
+ rocket, using operating conditions corresponding to 3 different altitudes (0 km, 40 km and 70 km) and 3
566
+ different geometry sizes. In each case, we computed the reaction force in the axisymmetric direction using
567
+ a line integral along the walls of the outer air box, resulting in the force values shown in Figures S4–S7.
568
+ This computation made use of the fact that under steady-state operation, the reaction force is equal to the
569
+ lift force. The 𝐶1 and 𝐶2 coefficients were then determined by performing a non-linear fitting in MATLAB
570
+ to equation (S1), resulting in the values that are shown in the same figures and tabulated in Tables 2-5. In
571
+ general, most curves of Figures S4–S7 (in the logarithmic scale) show a transition from the viscous, low-
572
+ Re regime to the high-Re regime that is manifested through a change in the slopes of the force curves.
573
+ However, at 70 km in altitude, the lift force stayed in the Stokes (low-Re) regime and the high-Re 𝐶2
574
+ coefficients remained uncertain at this particular altitude. Thus, when computing the overall average 𝐶1 and
575
+ 𝐶2, we did not incorporate the 𝐶2 corresponding to the 70 km altitude.
576
+
577
+
578
+ Fitting Parameters for the Rocket, Dia. = 2 cm
579
+ Altitude
580
+ Length = 1 cm
581
+ Length = 5 cm
582
+ Length = 10 cm
583
+ C1
584
+ C2
585
+ C1
586
+ C2
587
+ C1
588
+ C2
589
+ 0 km
590
+ 2.0
591
+ (1.6–2.4)
592
+ 1.1
593
+ (0.9–1.3)
594
+ 1.0
595
+ (0.8–1.2)
596
+ 1.1
597
+ (0.9–1.2)
598
+ 0.9
599
+ (0.7–1.1)
600
+ 1.1
601
+ (0.9–1.2)
602
+ 40 km
603
+ 2.24
604
+ (2.12–2.38)
605
+ 0.73
606
+ (0.62–0.85)
607
+ 1.1
608
+ (1.0–1.3)
609
+ 0.8
610
+ (0.6–1.0)
611
+ 1.0
612
+ (0.9–1.2)
613
+ 0.8
614
+ (0.6–1.0)
615
+ 70 km
616
+ 2.361
617
+ (2.353–2.368)
618
+
619
+ 1.20
620
+ (1.20–1.20)
621
+
622
+ 1.08
623
+ (1.08–1.10)
624
+
625
+ Average
626
+ 2.22
627
+ 0.91
628
+ 1.12
629
+ 0.92
630
+ 1.00
631
+ 0.95
632
+
633
+ Table 2: 𝐶1 and 𝐶2 coefficients computed for the rocket geometry of different lengths (1 cm, 5 cm and 10 cm), alongside
634
+ the 66% confidence intervals for each fitting parameter (tabulated below each coefficient entry).
635
+
636
+
637
+
638
+
639
+
640
+
641
+
642
+ a
643
+ b
644
+ c
645
+ Figure S4: Results from the altitude-dependent rocket simulations in ANSYS Fluent; each data point corresponds
646
+ to a different flow-through velocity, ranging from 10-6 m/s to 1 m/s, while plots (a), (b) and (c) correspond to
647
+ different rocket lengths.
648
+
649
+ Reactionforcesforvariousflow-throughvelocities
650
+ RocketGeometry:Dia.=2cm,Len.=1cm
651
+ 102
652
+ ANSYS Force (Altitude: 0 km)
653
+ Fit:C1-2.00,C2=1.10
654
+ 104
655
+ ANSYSForce (Altitude: 40km)
656
+ Fit:C1=2.24,C2=0.73
657
+ ANSYSForce (Altitude:70km)
658
+ Force (N)
659
+ Fit:C1=2.36,C2=0.06
660
+ 10-6
661
+ 10-8
662
+ 10-10
663
+ 10-12
664
+ 10~6
665
+ 104
666
+ 102
667
+ 100Reactionforcesforvariousflow-throughvelocities
668
+ 100
669
+ RocketGeometry:Dia.=2cm,Len.5cm
670
+ ANSYSForce (Altitude:0km)
671
+ Fit:C1-1.04,C2=1.10
672
+ ANSYSForce (Altitude:40km)
673
+ Fit:C1=1.14,C2=0.77
674
+ ANSYSForce(Altitude:70km)
675
+ Force (N)
676
+ Fit:C1=1.20,C2=0.17
677
+ 10-5
678
+ 10-10
679
+ 10-6
680
+ 104
681
+ 102
682
+ 100
683
+ V, (m/s)Reactionforcesforvariousflow-throughvelocities
684
+ 100
685
+ RocketGeometry:Dia=2cm,Len.=10cm
686
+ ANSYSForce (Altitude:0km)
687
+ Fit:C1-0.90,C2=1.08
688
+ ANSYSForce(Altitude:40km)
689
+ Fit:C1=1.02,C2=0.82
690
+ ANSYSForce(Altitude:70km)
691
+ Force (N)
692
+ Fit:C1=1.08,C2=0.19
693
+ 105
694
+ 10-10
695
+ 10-6
696
+ 104
697
+ 102
698
+ V, (m/s)
699
+ 100Page
700
+ 4
701
+
702
+ Fitting Parameters for the Sphere, Dia. = 2 cm
703
+ Altitude
704
+ rout = 0.1 cm
705
+ rout = 0.5 cm
706
+ rout = 1 cm
707
+ C1
708
+ C2
709
+ C1
710
+ C2
711
+ C1
712
+ C2
713
+ 0 km
714
+ 1.4
715
+ (0.7–2.0)
716
+ 0.29
717
+ (0.21–0.37)
718
+ 1.5
719
+ (1.3–1.7)
720
+ 1.06
721
+ (0.95–1.18)
722
+ 0.9
723
+ (0.8–1.0)
724
+ 1.5
725
+ (1.4–1.7)
726
+ 40 km
727
+ 1.4
728
+ (1.0–1.9)
729
+ 0.6
730
+ (0.4–0.8)
731
+ 1.5
732
+ (1.3–1.6)
733
+ 0.9
734
+ (0.7–1.0)
735
+ 0.91
736
+ (0.89–0.93)
737
+ 0.99
738
+ (0.91–1.08)
739
+ 70 km
740
+ 1.65
741
+ (1.63–1.67)
742
+
743
+ 1.58
744
+ (1.52–1.64)
745
+
746
+ 0.95
747
+ (0.94–0.96)
748
+
749
+ Average
750
+ 1.48
751
+ 0.45
752
+ 1.50
753
+ 0.97
754
+ 0.91
755
+ 1.26
756
+
757
+ Table 3: 𝐶1 and 𝐶2 coefficients computed for the sphere geometry of different outlet radii (0.1 cm, 0.5 cm and 1 cm),
758
+ alongside the 66% confidence intervals for each fitting parameter (tabulated below each coefficient entry).
759
+
760
+
761
+
762
+
763
+
764
+ Fitting Parameters for the Cone, Dia. = 2 cm
765
+ Altitude
766
+ Length = 2 cm
767
+ Length = 5 cm
768
+ Length = 10 cm
769
+ C1
770
+ C2
771
+ C1
772
+ C2
773
+ C1
774
+ C2
775
+ 0 km
776
+ 0.7
777
+ (0.5–1.0)
778
+ 0.9
779
+ (0.7–1.1)
780
+ 0.7
781
+ (0.5–0.9)
782
+ 0.9
783
+ (0.8–1.1)
784
+ 0.7
785
+ (0.4–1.0)
786
+ 0.9
787
+ (0.7–1.1)
788
+ 40 km
789
+ 1.0
790
+ (0.8–1.2)
791
+ 0.6
792
+ (0.3–0.8)
793
+ 0.9
794
+ (0.7–1.1)
795
+ 0.6
796
+ (0.4–0.8)
797
+ 0.8
798
+ (0.7–1.0)
799
+ 0.7
800
+ (0.6–0.9)
801
+ 70 km
802
+ 1.07
803
+ (0.98–1.16)
804
+
805
+ 1.01
806
+ (0.94–1.07)
807
+
808
+ 0.98
809
+ (0.95–1.02)
810
+
811
+ Average
812
+ 0.94
813
+ 0.72
814
+ 0.88
815
+ 0.76
816
+ 0.84
817
+ 0.82
818
+
819
+ Table 4: 𝐶1 and 𝐶2 coefficients computed for the cone geometry (2 cm diameter) of different lengths (2 cm, 5 cm and
820
+ 10 cm), alongside the 66% confidence intervals for each fitting parameter (tabulated below each coefficient entry).
821
+
822
+ a
823
+ b
824
+ c
825
+ Figure S5: Results from the altitude-dependent sphere simulations in ANSYS Fluent; each data point corresponds
826
+ to a different flow-through velocity, ranging from 10-6 m/s to 1 m/s, while plots (a), (b) and (c) correspond to
827
+ different sphere outlet radii.
828
+ a
829
+ b
830
+ c
831
+ Figure S6: Results from the altitude-dependent cone (2 cm diameter) simulations in ANSYS Fluent; each data point
832
+ corresponds to a different flow-through velocity, ranging from 10-6 m/s to 1 m/s, while plots (a), (b) and (c)
833
+ correspond to different cone lengths.
834
+
835
+ Reactionforcesfor various flow-through velocities
836
+ Sphere Geometry:Dia.=2 cm,r
837
+ out
838
+ =0.1 cm
839
+ 100
840
+ ANSYSForce (Altitude:0km)
841
+ Fit:C1-1.35,C2=0.29
842
+ ANSYSForce (Altitude; 40km)
843
+ Fit:CI-1.43,C2=0.62
844
+ ANSYS Force (Altitude: 70 km)
845
+ Fit:C1 1.65,C20.08
846
+ 10-5
847
+ Force
848
+ 1o-to
849
+ 10-6
850
+ 10-4
851
+ 102
852
+ 100Reactionforcesforvariousflow-throughvelocities
853
+ SphereGeometry:Dia.=2cm,r
854
+ =0.5 cm
855
+ 100
856
+ ou
857
+ ANSYSForce (Altitude:0km)
858
+ Fit:C1=1.46,C2-1.06
859
+ ANSYSForce (Altitude:40km)
860
+ Fit:C1=1.47,C2=0.87
861
+ ANSYS Force (Altitude: 70km)
862
+ Force (N)
863
+ Fit:C1 1.58,C2.0.41
864
+ 10-s
865
+ 10-10
866
+ 10~6
867
+ 104
868
+ 102
869
+ 100
870
+ Va(m/s)Reactionforcesforvariousflow-throughvelocities
871
+ SphereGeometry:Dia,=2 cm,r
872
+ =1 cm
873
+ 102
874
+ out
875
+ ANSYSForce (Altitude:0km)
876
+ Fit:C1=0.88,C2=1.54
877
+ 104
878
+ ANSYSForce (Altitude:40km)
879
+ Fit:C1=0.91,C2=0.99
880
+ "
881
+ ANSYSForce (Altitude:70km)
882
+ Force (N)
883
+ 10*6
884
+ Fit:CI=0.95,C2=0.47
885
+ 10-8
886
+ 10-10
887
+ 10~/2
888
+ 10-6
889
+ 104
890
+ 10-2
891
+ 100Reaction forcesfor various flow-through velocities
892
+ 100
893
+ Cone Geometry:Dia.=2 cm, Len.=2cm
894
+ ANSYSForce(Altitude:0km)
895
+ Fit: C1 =0.74, C2=0.87
896
+ ANSYSForce(Altitude:40km)
897
+ Fit:C11.00,C2-0.56
898
+ ANSYSForce(Altitude:70km)
899
+ Fit:C1-1.07.C2-0.01
900
+ Force(
901
+ 10-5
902
+ 10-10
903
+ 10-6
904
+ 104
905
+ 10-2
906
+ 100Reactionforcesfor various flow-through velocities
907
+ 100
908
+ Cone Geometry:Dia.=2 cm, Len.=5cm
909
+ ANSYSForce (Altitude:0km)
910
+ Fit:C1=0.71,C2=0.92
911
+ ANSYSForce(Altitude:40km)
912
+ Fit:C10.93,C2-0.60
913
+ ANSYSForce(Altitude:70km)
914
+ Fit:C1-1.01.C2-0.01
915
+ Force(
916
+ 10-5
917
+ 10-10
918
+ 10-6
919
+ 104
920
+ 10-2
921
+ 100
922
+ Va (m/s)Reactionforcesfor various flow-through velocities
923
+ ConeGeometry:Dia.=2cm,l/日@Q价
924
+ 100
925
+ ANSYSForce(Altitude:0km)
926
+ FitCI=0.69,C2=0.90
927
+ ANSYSForce (Altitude:40km)
928
+ Fit:C10.84,C2-0.74
929
+ ANSYSForce(Altitude:70km)
930
+ Fit:C10.98,C2-0.10
931
+ Force(
932
+ 10-5
933
+ 10-lo
934
+ 106
935
+ 104
936
+ 102
937
+ 100Page
938
+ 5
939
+
940
+ Fitting Parameters for the Cone, Dia. = 4 cm
941
+ Altitude
942
+ Length = 2 cm
943
+ Length = 5 cm
944
+ Length = 10 cm
945
+ C1
946
+ C2
947
+ C1
948
+ C2
949
+ C1
950
+ C2
951
+ 0 km
952
+ 0.9
953
+ (0.7–1.1)
954
+ 1.0
955
+ (0.8–1.2)
956
+ 1.0
957
+ (0.8–1.2)
958
+ 1.0
959
+ (0.8–1.1)
960
+ 1.0
961
+ (0.7–1.3)
962
+ 1.0
963
+ (0.8–1.1)
964
+ 40 km
965
+ 1.4
966
+ (1.1–1.7)
967
+ 0.6
968
+ (0.4–0.9)
969
+ 1.2
970
+ (1.0–1.3)
971
+ 0.7
972
+ (0.6–0.9)
973
+ 1.1
974
+ (1.0–1.2)
975
+ 0.8
976
+ (0.7–1.0)
977
+ 70 km
978
+ 1.5
979
+ (1.3–1.6)
980
+
981
+ 1.24
982
+ (1.22–1.25)
983
+
984
+ 1.19
985
+ (1.18–1.20)
986
+
987
+ Average
988
+ 1.27
989
+ 0.82
990
+ 1.13
991
+ 0.86
992
+ 1.09
993
+ 0.89
994
+
995
+ Table 5: 𝐶1 and 𝐶2 coefficients computed for the cone geometry (4 cm diameter) of different lengths (2 cm, 5 cm and
996
+ 10 cm), alongside the 66% confidence intervals for each fitting parameter (tabulated below each coefficient entry).
997
+
998
+
999
+ As we increased in altitude, the value of the 𝐶1 parameter increased while that of 𝐶2 decreased. All in all,
1000
+ Table 6 below summarizes the average 𝐶1 and 𝐶2 coefficients obtained for each geometry. In all cases, the
1001
+ coefficients are on the order of 1.
1002
+
1003
+ Average Fitting Parameters for Each Geometry
1004
+ Geometry
1005
+ Cone
1006
+ Sphere
1007
+ Rocket
1008
+ D = 2 cm
1009
+ D = 4 cm
1010
+ D = 2 cm
1011
+ D = 2 cm
1012
+ C1
1013
+ 0.9
1014
+ 1.2
1015
+ 1.3
1016
+ 1.4
1017
+ C2
1018
+ 0.8
1019
+ 0.9
1020
+ 0.9
1021
+ 0.9
1022
+
1023
+ Table 6: Fitting parameters for the analytical theory for standard atmospheric conditions on Earth, for each geometry.
1024
+
1025
+ To verify our simulations were based on realistic boundary conditions, we examined the streamline plots
1026
+ generated in ANSYS Fluent’s results module, a sample of which is shown in Figure S8 below.
1027
+
1028
+ a
1029
+ b
1030
+ c
1031
+ d
1032
+ Figure S8: Velocity streamlines corresponding to the cone (a, c) and rocket (b, d) geometries simulations in
1033
+ ANSYS, for a flow-through velocity of 1 m/s and atmospheric conditions corresponding to 0 km in altitude. Both
1034
+ the cone and rocket have a characteristic dimension (D) of 5 cm. (c) and (d) denote a zoomed-in view of plots (a)
1035
+ and (b), respectively.
1036
+ a
1037
+ b
1038
+ c
1039
+ Figure S7: Results from the altitude-dependent cone (4 cm diameter) simulations in ANSYS Fluent; each data
1040
+ point corresponds to a different flow-through velocity, ranging from 10-6 m/s to 1 m/s, while plots (a), (b) and (c)
1041
+ correspond to different cone lengths.
1042
+
1043
+ Velocity
1044
+ 24.059
1045
+ 18.044
1046
+ 12.029
1047
+ 6.015
1048
+ 0.000
1049
+ [ms^-1]19:076
1050
+ 14307
1051
+ 4.769
1052
+ 0.000
1053
+ [ms>-1]Reactionforcesforvariousflow-throughvelocities
1054
+ 100
1055
+ ConeGeometry:Dia.=4cm, Len.=2cm
1056
+ ANSYSForce(Altitude:0km)
1057
+ FitC1=0.90,C2=0.99
1058
+ ANSYSForce (Altitude:40km)
1059
+ Fit:CI=1.42,C2=0.64
1060
+ ANSYSForce (Altitude:70km)
1061
+ Force (N)
1062
+ Fit:C1-1.48.C2-0.05
1063
+ 10'5
1064
+ 10-10
1065
+ 10-6
1066
+ 104
1067
+ 102
1068
+ 100
1069
+ Va(m/s)Reactionforcesforvariousflow-throughvelocities
1070
+ ConeGeometry:Dia.=4cm,Len.=5cm
1071
+ 100
1072
+ ANSYSForce(Altitude:0km)
1073
+ Fit:CI=0.98,C20.98
1074
+ ANSYSForce(Altitude:40km)
1075
+ FitC=1.16,C2=0.73
1076
+ ANSYSForee (Altitude:70km)
1077
+ Fit:C1=1.24,C2=0.20
1078
+ 10-5
1079
+ Force
1080
+ 10-lo
1081
+ 10-6
1082
+ 104
1083
+ 102
1084
+ 100
1085
+ Va (m/s)Reactionforcesforvariousflow-throughvelocities
1086
+ ConeGeometry:Dia,=4 cm,Len,=10cm
1087
+ 100
1088
+ ANSYSForce(Altitude:0km)
1089
+ Fit:C1-0.97,C2=0.95
1090
+ ANSYSForce (Altitude:40km)
1091
+ Fit:C1=1.11C2=0.83
1092
+ ANSYSForce(Altitude:70km)
1093
+ Fit:CI-1.19,C2-0.22
1094
+ 10~5
1095
+ Force(
1096
+ 10-lo
1097
+ 106
1098
+ 104
1099
+ 102
1100
+ 100Page
1101
+ 6
1102
+ As expected, a jet of high-speed air exited the geometries as a result of the air flowing in through the porous
1103
+ structures. Once the air left the geometry, it interacted with the walls of the outer air box by forming large
1104
+ vortices, as anticipated for a fluid circulating in a contained box.
1105
+
1106
+ The next section of this document takes the force fitting parameters found from the ANSYS Fluent
1107
+ simulations and focuses on MATLAB-based parametric optimization of our three different geometries.
1108
+
1109
+
1110
+ 2. MATLAB Code and Extension of Theoretical Framework
1111
+
1112
+ In this section of the supplementary information, we present the extension to 3D structures of the original
1113
+ nanocardboard fluid mechanic theory developed by [R3]. The equations derived below were implemented
1114
+ in a MATLAB code to perform a series of parametric studies that seek to optimize the geometric and porous
1115
+ parameters of our three study geometries, a cone, a sphere and a rocket. More information about our code
1116
+ can be found in our publicly available repository [R4].
1117
+
1118
+ 2.1. Derivation of Equations
1119
+
1120
+ 2.1.1 General Overview
1121
+
1122
+ For a general 3D porous structure, conservation of mass establishes that
1123
+
1124
+
1125
+ 𝐴𝑡𝑜𝑡𝑎𝑙𝑣𝑓𝑡 = 𝐴𝑜𝑢𝑡𝑣𝑜𝑢𝑡 .
1126
+ (S2)
1127
+
1128
+ Here, 𝐴𝑡𝑜𝑡𝑎𝑙 represents the total surface area of the structure (as if the structure had no pores/channels) and
1129
+ 𝑣𝑓𝑡 is the flow-through velocity of the fluid across this surface. Similarly, 𝐴𝑜𝑢𝑡 corresponds to the area
1130
+ covered by the outlet, while 𝑣𝑜𝑢𝑡 is the exit velocity of the fluid out of the structure. Adding Bernoulli’s
1131
+ equation, we get the relationship that
1132
+
1133
+
1134
+ 𝑃𝑖𝑛 − 𝑃𝑜𝑢𝑡
1135
+ 𝜌
1136
+ = ∆𝑃
1137
+ 𝜌 = 𝑣𝑜𝑢𝑡
1138
+ 2 − 𝑣𝑓𝑡
1139
+ 2
1140
+ 2
1141
+ .
1142
+ (S3)
1143
+
1144
+ In (S5), 𝑃𝑖𝑛 is the pressure right at the inlet of the structure, 𝑃𝑜𝑢𝑡 is the pressure right as the jet of fluid is
1145
+ leaving the structure, located around the space close to 𝐴𝑜𝑢𝑡, while 𝜌 is the fluid density. This equation can
1146
+ be rearranged to yield an expression for the pressure difference across both ends of the structure, resulting
1147
+ in
1148
+
1149
+
1150
+ ∆𝑃 = 𝜌(𝑣𝑜𝑢𝑡
1151
+ 2 − 𝑣𝑓𝑡
1152
+ 2)
1153
+ 2
1154
+ .
1155
+ (S4)
1156
+
1157
+ Assuming that the porosity of the 3D structure originates from using the nanocardboard geometry
1158
+ developed by [R3] as the wall material, then we can model the mass flow rate of the fluid across one of the
1159
+ structure’s pores (or more properly said, channels) using the following equation
1160
+
1161
+
1162
+ 𝑚̇ = −𝛼 ∗ ∆𝑃 + 𝛾 ∗ ∆𝑇 .
1163
+ (S5)
1164
+
1165
+ In (S5), 𝛼 and 𝛾 represent two constants, which take the following forms1:
1166
+
1167
+
1168
+ 𝛼 = (𝛿
1169
+ 6 + 1) (1 + 0.25
1170
+ √𝛿
1171
+ ) 𝐴2𝐵𝛽∗
1172
+ 𝐿
1173
+ ,
1174
+ (S6)
1175
+
1176
+ and
1177
+
1178
+ 𝛾 = (
1179
+ 1.1
1180
+ 1.5 + 𝛿) 𝐴2𝐵𝑃∗𝛽∗
1181
+ 𝑇∗𝐿
1182
+ .
1183
+ (S7)
1184
+
1185
+
1186
+ 1 The variables 𝛼 and 𝛾 come from curve-fitting the data from by [R7] and transforming the non-dimensional flow rate equation into
1187
+ a dimensional form again, with both pressure and temperature contributions. For more information, please see [R2].
1188
+
1189
+ Page
1190
+ 7
1191
+ Here, the variable 𝑃∗ denotes the average pressure2 between the two sides of the structure’s nanocardboard
1192
+ wall, 𝑇∗ analogously describes the average temperature between both sides of the wall’s surface, while 𝛽∗
1193
+ is an inverse velocity parameter. Specifically, this last one is given by
1194
+
1195
+
1196
+ 𝛽∗ = √
1197
+ 𝑚
1198
+ 2𝑘𝐵𝑇∗
1199
+ ,
1200
+ (S8)
1201
+
1202
+ where 𝑘𝐵 is the Boltzmann constant (equal to 1.38 * 10-23 J/K), and m is the mass of an air molecule3. Lastly,
1203
+ the parameter 𝛿 is the gas rarefaction coefficient, which [R7] defines as
1204
+
1205
+
1206
+ 𝛿 = √𝜋𝐴
1207
+ 2𝜆 = √𝜋
1208
+ 2𝐾𝑛 .
1209
+ (S9)
1210
+
1211
+ In this expression, 𝜆 is the molecular mean free path, defined as the average distance traveled by a molecule
1212
+ between collisions with other molecules, and Kn is the Knudsen number, which is characterized in terms
1213
+ the of channel width. In essence, higher values of the 𝛿 parameter designates flows in the continuum regime,
1214
+ while smaller values indicate flows taking place in the free molecular regime. As for the molecular mean
1215
+ free path, mathematically it is usually expressed as
1216
+
1217
+
1218
+ 𝜆 = 𝜇(𝑇)
1219
+ 𝑃(𝑇) √𝜋𝑘𝐵𝑇
1220
+ 2𝑚 = 𝜇(𝑇)
1221
+ 𝑃(𝑇) √𝜋𝑅𝑎𝑖𝑟𝑇
1222
+ 2
1223
+ ,
1224
+ (S10)
1225
+
1226
+ where 𝜇(𝑇) is the fluid’s viscosity and P(T) is the operating pressure, both given as a function of T, the
1227
+ operating temperature. In addition, from equation (S9), we see the Knudsen number is defined as
1228
+
1229
+
1230
+ 𝐾𝑛 = 𝜆
1231
+ 𝐴 .
1232
+ (S11)
1233
+
1234
+ Additionally, as seen in Figure S9 below, the variables A and B characterize the nanocardboard channel’s
1235
+ width and length, respectively, yielding a cross-sectional area of A x B. In addition, L denotes the channel’s
1236
+ height. Note that in [R3], A is assumed to be much smaller than B.
1237
+
1238
+ After defining these variables and introducing the expression for the mass flow rate, 𝑚̇ , across one of
1239
+ nanocardboard’s channels, then an equation can be derived for the average flow-through velocity across
1240
+ the structure’s surface, which is simply described by
1241
+
1242
+
1243
+ 𝑣𝑓𝑡 = 𝜑𝑚̇
1244
+ 𝜌𝐴𝐵 = 𝜑(−𝛼∆𝑃 + 𝛾∆𝑇)
1245
+ 𝜌𝐴𝐵
1246
+ .
1247
+ (S12)
1248
+
1249
+ Here, 𝑚̇ /𝜌 is no other than the volumetric flow rate 𝑉̇ , while the term 𝜑 denotes the geometric fill factor,
1250
+ which is defined in terms of 𝐴𝑖𝑛 (porous area) and 𝐴𝑡𝑜𝑡𝑎𝑙4, or the channel parameters, and takes the form
1251
+
1252
+
1253
+ 𝜑 =
1254
+ 𝐴𝑖𝑛
1255
+ 𝐴𝑡𝑜𝑡𝑎𝑙
1256
+ =
1257
+ 𝐴𝐵𝑋
1258
+ (𝐴𝐵𝑋 + 𝑆𝐵𝑋) =
1259
+ 𝐴
1260
+ (𝐴 + 𝑆) .
1261
+ (S13)
1262
+
1263
+ The latter two equivalencies in (S13) originates from analyzing a single nanocardboard unit cell as opposed
1264
+ to the full 3D structure. Indeed, as Figure S9 shows, the total cross-sectional area of the cell (if no channels
1265
+ were present) is given by
1266
+
1267
+
1268
+ 𝐴𝑐𝑒𝑙𝑙 = (𝐴𝐵𝑋 + 𝑆𝐵𝑋) = (𝐴 + 𝑆)𝐵𝑋 ,
1269
+ (S14)
1270
+
1271
+ where the variable X is just the number of channels in a unit cell.
1272
+
1273
+ 2 The value of this variable may be found from performing CFD simulations but will be simply approximated as the operating pressure.
1274
+ 3 The molar mass of air is 0.02896 kg/mol, so then the approximated mass of an air molecule would be 0.02896/(6.022*1023 )
1275
+ (Avogadro’s number), or 4.8089 * 10-26 kg.
1276
+ 4 This area is essentially the total 3D structure wall area if there were no channels present. This is analogous to 𝐴𝑐𝑒𝑙𝑙 in the single
1277
+ nanocardboard unit cell.
1278
+
1279
+ Page
1280
+ 8
1281
+
1282
+
1283
+ However, this number (X) is not arbitrarily chosen, and is dictated by A, B and S in the following way
1284
+
1285
+
1286
+ 𝑋 = 𝐵 − 𝑆
1287
+ 𝑆 + 𝐴 .
1288
+ (S15)
1289
+
1290
+ This expression considers the channel width A and spacing S as a unit, and tries to fit as many of those A
1291
+ +S units into the channel length B. Nonetheless, we need to consider an additional S for spacing against the
1292
+ perpendicular channels. This can be seen more clearly in Figure S10 below, where the yellow bars represent
1293
+ the A +S units, and as drawn, five of these fit in the length of B, after subtracting one S.
1294
+
1295
+ Overall, the flow-through velocity expression provided in (S12) is a step closer towards calculating the lift
1296
+ force that a 3D structure could generate for a given combination of geometric and channel parameters.
1297
+ However, computing lift will not be possible until we solve for 𝑣𝑜𝑢𝑡. Therefore, (S12) can be rearranged to
1298
+ instead solve for another unknown, ∆𝑃 , and obtain
1299
+
1300
+
1301
+ ∆𝑃 = 𝛾∆𝑇
1302
+ 𝛼
1303
+ − 𝑣𝑓𝑡𝜌𝐴𝐵
1304
+ 𝛼𝜑
1305
+ .
1306
+ (S16)
1307
+
1308
+ Since both (S16) and (S4) from above provide two distinct expressions for the pressure difference, it is
1309
+ possible to equate them, giving rise to yet another relationship between 𝑣𝑓𝑡 and 𝑣𝑜𝑢𝑡, giving
1310
+
1311
+ Figure S9: Main nanocardboard channel parameters.
1312
+ Figure S10: Illustration of equation (S15), with the yellow bars showing the A + S units fitted into the channel length B.
1313
+
1314
+ Top
1315
+ Isometric
1316
+ View
1317
+ View
1318
+ Key
1319
+ Pi, T1
1320
+ Air
1321
+ A:ChannelWidth
1322
+ Trapped
1323
+ Side
1324
+ B:Channel Length
1325
+ A
1326
+ Air
1327
+ View
1328
+ S:Channel Spacing
1329
+ L: Channel Height
1330
+ P2, T2
1331
+ Air
1332
+ t: Alumina ThicknessTop
1333
+ View
1334
+ Key
1335
+ A: Channel Width
1336
+ B: Channel Length
1337
+ S:Channel SpacingPage
1338
+ 9
1339
+
1340
+ 𝜌(𝑣𝑜𝑢𝑡
1341
+ 2 − 𝑣𝑓𝑡
1342
+ 2)
1343
+ 2
1344
+ = ∆𝑃 = 𝛾∆𝑇
1345
+ 𝛼
1346
+ − 𝑣𝑓𝑡𝜌𝐴𝐵
1347
+ 𝛼𝜑
1348
+ .
1349
+ (S17)
1350
+
1351
+ Rearranging this expression further, we get
1352
+
1353
+
1354
+ 𝑣𝑜𝑢𝑡
1355
+ 2 = 2
1356
+ 𝜌 (𝛾∆𝑇
1357
+ 𝛼
1358
+ − 𝑣𝑓𝑡𝜌𝐴𝐵
1359
+ 𝛼𝜑
1360
+ ) + 𝑣𝑓𝑡
1361
+ 2 .
1362
+ (S18)
1363
+
1364
+ Now, recalling the conservation of mass relationship provided in (S2), it is possible to write 𝑣𝑓𝑡, the flow-
1365
+ through velocity across the channels, in terms of 𝑣𝑜𝑢𝑡
1366
+
1367
+
1368
+ 𝑣𝑓𝑡 = 𝐴𝑜𝑢𝑡
1369
+ 𝐴𝑡𝑜𝑡𝑎𝑙
1370
+ 𝑣𝑜𝑢𝑡 = 𝜑𝐴𝑜𝑢𝑡
1371
+ 𝐴𝑖𝑛
1372
+ 𝑣𝑜𝑢𝑡.
1373
+ (S19)
1374
+
1375
+ Thus, (S19) can replace the 𝑣𝑓𝑡 term in (S18), leaving everything in terms of just 𝑣𝑜𝑢𝑡
1376
+
1377
+
1378
+ 𝑣𝑜𝑢𝑡
1379
+ 2 = 2
1380
+ 𝜌 (𝛾∆𝑇
1381
+ 𝛼
1382
+ − 𝐴𝑜𝑢𝑡𝑣𝑜𝑢𝑡𝜌𝐴𝐵
1383
+ 𝐴𝑡𝑜𝑡𝑎𝑙𝛼𝜑
1384
+ ) + ( 𝐴𝑜𝑢𝑡
1385
+ 𝐴𝑡𝑜𝑡𝑎𝑙
1386
+ )
1387
+ 2
1388
+ 𝑣𝑜𝑢𝑡
1389
+ 2.
1390
+ (S20)
1391
+
1392
+ Further manipulating (S20), we get the following quadratic
1393
+
1394
+
1395
+ 𝑣𝑜𝑢𝑡
1396
+ 2 (1− ( 𝐴𝑜𝑢𝑡
1397
+ 𝐴𝑡𝑜𝑡𝑎𝑙
1398
+ )
1399
+ 2
1400
+ ) + 𝑣𝑜𝑢𝑡 (2𝐴𝑜𝑢𝑡𝐴𝐵
1401
+ 𝐴𝑡𝑜𝑡𝑎𝑙𝛼𝜑) − 2𝛾∆𝑇
1402
+ 𝜌𝛼
1403
+ = 0 ,
1404
+ (S21)
1405
+
1406
+ which has precisely 𝑣𝑜𝑢𝑡 as its only unknown. The coefficients of this polynomial are
1407
+
1408
+
1409
+ 𝑎 = 1− ( 𝐴𝑜𝑢𝑡
1410
+ 𝐴𝑡𝑜𝑡𝑎𝑙
1411
+ )
1412
+ 2
1413
+ ,
1414
+ ���� = 2𝐴𝑜𝑢𝑡𝐴𝐵
1415
+ 𝐴𝑡𝑜𝑡𝑎𝑙𝛼𝜑 ,
1416
+ 𝑐 = − 2𝛾∆𝑇
1417
+ 𝜌𝛼 ,
1418
+ (S22)
1419
+
1420
+ making it a fairly straightforward process to solve for the roots of the equation, provided by
1421
+
1422
+
1423
+ 𝑣𝑜𝑢𝑡 =
1424
+ − (2𝐴𝑜𝑢𝑡𝐴𝐵
1425
+ 𝐴𝑡𝑜𝑡𝑎𝑙𝛼𝜑) ± √(2𝐴𝑜𝑢𝑡𝐴𝐵
1426
+ 𝐴𝑡𝑜𝑡𝑎𝑙𝛼𝜑)
1427
+ 2
1428
+ + 8𝛾∆𝑇
1429
+ 𝜌𝛼 (1− ( 𝐴𝑜𝑢𝑡
1430
+ 𝐴𝑡𝑜𝑡𝑎𝑙)
1431
+ 2
1432
+ )
1433
+ 2 (1− ( 𝐴𝑜𝑢𝑡
1434
+ 𝐴𝑡𝑜𝑡𝑎𝑙)
1435
+ 2
1436
+ )
1437
+ .
1438
+ (S23)
1439
+
1440
+ One underlying advantage of this derivation was that it removed the need to know the pressure difference,
1441
+ ∆𝑃, while providing us with enough information to solve for 𝑣𝑜𝑢𝑡 and 𝑣𝑓𝑡. In the following sub-section, we
1442
+ deliver more details on the heat conduction modeling across the nanocardboard’s thickness, which enabled
1443
+ obtaining an expression for the temperature difference, ∆𝑇, necessary to solve for 𝑣𝑜𝑢𝑡 in (S23).
1444
+
1445
+ 2.1.2 Heat Conduction Modeling
1446
+
1447
+ 2.1.2.1 Full Analytical Derivation for ∆𝑻
1448
+
1449
+ In order to compute ∆𝑇, the temperature difference between both sides of the structure’s walls, we needed
1450
+ to model the heat conduction across the structure’s thickness. We performed a heat energy balance that
1451
+ considered heat transfer across three distinct cross-sectional areas: the channel’s column of air, across the
1452
+ alumina thickness of the channel, and across the air trapped within the structure, as shown in Figure S11
1453
+ below. As a result, we can let 𝑄𝑡, the total heat transfer, be
1454
+
1455
+
1456
+ 𝑄𝑡 = ∆𝑇
1457
+ 𝑅𝑡1
1458
+ + ∆𝑇
1459
+ 𝑅𝑡2
1460
+ + ∆𝑇
1461
+ 𝑅𝑡3
1462
+ ,
1463
+ (S24)
1464
+
1465
+ where the 𝑅𝑡1, 𝑅𝑡2 and 𝑅𝑡3 represent the thermal resistances under the three scenarios detailed above.
1466
+
1467
+ Page 10
1468
+
1469
+ For the first of these areas (A1), the column of air in the channel, we define its thermal resistance as
1470
+
1471
+
1472
+ 𝑅𝑡1 =
1473
+ 𝐿
1474
+ 𝑘𝑎𝑖𝑟𝐴1𝑋 =
1475
+ 𝐿
1476
+ 𝑘𝑎𝑖𝑟𝐴𝐵𝑋 ,
1477
+ (S25)
1478
+
1479
+ where 𝑘𝑎𝑖𝑟 is the thermal conductivity of air, L is as usual the channel height, and 𝐴𝐵𝑋 is the cross-sectional
1480
+ area of the individual channels multiplied by the number of channels in a unit cell, as shown in Figure S9
1481
+ above. Notice that 𝜅𝑎𝑖𝑟 is both temperature and pressure dependent, as the equation developed by [R10]
1482
+ captures, specifically for the small MEMS scale:
1483
+
1484
+
1485
+ 𝜅𝑎𝑖𝑟 =
1486
+ 𝜅0
1487
+ (1 + 0.00076𝑇
1488
+ 𝑃𝐿
1489
+ )
1490
+ .
1491
+ (S26)
1492
+
1493
+ In this expression, 𝜅0 is the air conductivity at standard atmospheric conditions, normally quoted as 𝜅0 =
1494
+ 0.024
1495
+ 𝑊
1496
+ 𝑚 𝐾. Another comparable and slightly more succinct model for the conductivity of air is from [R8]:
1497
+
1498
+
1499
+ 𝜅𝑎𝑖𝑟 =
1500
+ 𝜅0
1501
+ (1 + 3.116𝜆
1502
+ 𝐿
1503
+ )
1504
+
1505
+ (S27)
1506
+
1507
+ As the pressure decrease, the mean free path eventually becomes comparable to the channel length, and the
1508
+ effective conductivity starts to decrease below the continuum value. Both equations (S26) and (S27) yielded
1509
+ very similar values for the conductivity of air as a function of the channel thickness L, although we used
1510
+ Eq. S27 in the simulations.
1511
+
1512
+ Continuing with the heat conduction modeling, the corresponding expression for the thermal resistance
1513
+ across the alumina thickness on the channels (area A2 in Figure S11) is given by
1514
+
1515
+
1516
+ 𝑅𝑡2 =
1517
+ 𝐿
1518
+ 𝑘𝑎𝑙𝑑𝐴2𝑋 =
1519
+ 𝐿
1520
+ 𝑘𝑎𝑙𝑑[(𝐴 + 2𝑡)(𝐵 + 2𝑡) − 𝐴𝐵]𝑋 ,
1521
+ (S28)
1522
+
1523
+ where [(𝐴 + 2𝑡)(𝐵 + 2𝑡) − 𝐴𝐵]𝑋 is the cross-sectional area occupied by the alumina thickness of the
1524
+ channels, which is denoted as 𝑡. In (S28), 𝑘𝑎𝑙𝑑 is the thermal conductivity of alumina, which has a constant
1525
+ value of 1.8
1526
+ 𝑊
1527
+ 𝑚 𝐾 [R2]. Lastly, the thermal resistance of the air trapped within the structure (area A3) is
1528
+
1529
+
1530
+ 𝑅𝑡3 = 𝐿 − 2𝑡
1531
+ 𝑘𝑎𝑖𝑟𝐴3
1532
+ =
1533
+ 𝐿 − 2𝑡
1534
+ 𝑘𝑎𝑖𝑟 [𝐴𝐵
1535
+ 𝜑 − (𝐴 + 2𝑡)(𝐵 + 2𝑡)] 𝑋
1536
+ ,
1537
+ (S29)
1538
+
1539
+ Figure S11: Main nanocardboard cross-sectional areas for which thermal resistance is calculated.
1540
+
1541
+ Isometric
1542
+ View
1543
+ Top
1544
+ View
1545
+ Key
1546
+ Ai:Channelcross-sectionalarea
1547
+ A2:ChannelAluminathicknesscross-sectionalarea
1548
+ SectionCut
1549
+ As:Cross-sectional area oftrappedairwithinnanocardboardPage 11
1550
+ where recall from (S13) that
1551
+ 𝐴𝐵𝑋
1552
+ 𝜑 is the full area of the cell, from which we subtract the combined cross-
1553
+ sectional area of the channels with thickness 𝑡 of alumina. Now, performing an energy balance, the heat
1554
+ flow through the structure’s walls must be equal to that from the absorbed irradiation of the sun, which in
1555
+ this case is given by
1556
+
1557
+ 𝑄𝑡 = 𝜀𝜓𝐼𝑠𝑢𝑛 (𝐴𝐵𝑋
1558
+ 𝜑 ) (1 − 𝜑) .
1559
+ (S30)
1560
+
1561
+ In equation (S30), 𝜀 denotes the absorption coefficient (approximated to 0.9 based-off the measurements
1562
+ from [R3]), 𝜓 the proportion of absorbed optical flux dissipated upward through the nanocardboard (which
1563
+ is assumed to be 0.5 or 50%), and 𝐼𝑠𝑢𝑛 the intensity of the sun at a particular altitude. In particular, this last
1564
+ term can be modeled using the following equation
1565
+
1566
+
1567
+ 𝐼𝑠𝑢𝑛 = 1000 + 3.8ℎ ,
1568
+ (S31)
1569
+
1570
+ where the variable h refers to the elevation above sea level in kilometers. Notice that this expression returns
1571
+ the sun’s intensity in units of Watts per meter square. Furthermore, in equation (S30),
1572
+ (𝐴𝐵𝑋/𝜑)(1 − 𝜑) corresponds to the solid area of the nanocardboard, 𝐴𝑠𝑜𝑙𝑖𝑑, where the sun’s irradiation
1573
+ is absorbed. In any case, (S24) through (S31) were combined to write a general expression for ∆𝑇, which
1574
+ is summarized by
1575
+
1576
+
1577
+ ∆𝑇 = 𝑇2 − 𝑇1 =
1578
+ 𝜀𝜓𝐼𝑠𝑢𝑛 (𝐴𝐵𝑋
1579
+ 𝜑 ) (1 − 𝜑)
1580
+ 1
1581
+ 𝑅𝑡1 + 1
1582
+ 𝑅𝑡2 + 1
1583
+ 𝑅𝑡3
1584
+ =
1585
+
1586
+ =
1587
+ 𝜀𝜓𝐼𝑠𝑢𝑛 (𝐴𝐵𝑋
1588
+ 𝜑 ) (1 − 𝜑)
1589
+ 𝑘𝑎𝑖𝑟𝐴𝐵𝑋
1590
+ 𝐿
1591
+ + 𝑘𝑎𝑙𝑑[(𝐴 + 2𝑡)(𝐵 + 2𝑡) − 𝐴𝐵]𝑋
1592
+ 𝐿
1593
+ +
1594
+ 𝑘𝑎𝑖𝑟 [𝐴𝐵
1595
+ 𝜑 − (𝐴 + 2𝑡)(𝐵 + 2𝑡)] 𝑋
1596
+ 𝐿 − 2𝑡
1597
+ .
1598
+
1599
+ (S32)
1600
+
1601
+ In (S32), 𝑇1 and 𝑇2 represent the average temperatures outside and inside the 3D structure, respectively.
1602
+ However, these might not necessarily be known beforehand, reason why calculating ∆𝑇 or 𝑇∗, the average
1603
+ temperature between both sides of the surface, may not be as trivial. In particular, to compute 𝑇∗, we make
1604
+ use of the fact that we know what ∆𝑇 is from (S32) and take the following expression
1605
+
1606
+
1607
+ 𝑇∗ = 𝑇1 + 𝑇2
1608
+ 2
1609
+ = (𝑇2 − 𝑇1) + 2 ∗ 𝑇1
1610
+ 2
1611
+ = ∆𝑇 + 2 ∗ 𝑇1
1612
+ 2
1613
+ .
1614
+ (S33)
1615
+
1616
+ Here, notice that 𝑇1 is simply equal to the temperature corresponding to the particular operating conditions
1617
+ (altitude, pressure, density) of the fluid. Overall, ∆𝑇 allows us to solve for 𝑇∗ (which is needed to compute
1618
+ 𝛾 and 𝛽∗ in (S7) and (S9), respectively) and the last part of the puzzle in (S23), the 𝑣𝑜𝑢𝑡 expression.
1619
+
1620
+ 2.1.2.2 Simplified Expression for ∆𝑻 in the limit of zero alumina thickness
1621
+
1622
+ Beyond the derivation provided in 1.2.1, notice that one could potentially also approximate ∆𝑇 through a
1623
+ more simplified expression given by
1624
+
1625
+
1626
+ ∆𝑇~ 𝐿𝐼𝑠𝑢𝑛(1 − 𝜑)
1627
+ 2𝜅𝑎𝑖𝑟
1628
+ .
1629
+ (S34)
1630
+
1631
+ The origin of (S34) comes from taking the limit as t, the alumina thickness, approaches zero, in equation
1632
+ (S32). Indeed,
1633
+
1634
+
1635
+ lim
1636
+ 𝑡→0
1637
+ 𝜀𝜓𝐼𝑠𝑢𝑛 (𝐴𝐵𝑋
1638
+ 𝜑 ) (1 − 𝜑)
1639
+ 𝑘𝑎𝑖𝑟𝐴𝐵𝑋
1640
+ 𝐿
1641
+ + 𝑘𝑎𝑙𝑑[(𝐴 + 2𝑡)(𝐵 + 2𝑡) − 𝐴𝐵]𝑋
1642
+ 𝐿
1643
+ +
1644
+ 𝑘𝑎𝑖𝑟 [𝐴𝐵
1645
+ 𝜑 − (𝐴 + 2𝑡)(𝐵 + 2𝑡)] 𝑋
1646
+ 𝐿 − 2𝑡
1647
+
1648
+
1649
+ (S35)
1650
+
1651
+ Page 12
1652
+ = lim
1653
+ 𝑡→0
1654
+ 𝐿𝜀𝜓𝐼𝑠𝑢𝑛 (𝐴𝐵𝑋
1655
+ 𝜑 ) (1 − 𝜑)
1656
+ 𝑘𝑎𝑖𝑟𝐴𝐵𝑋 + 𝑘𝑎𝑙𝑑[(𝐴 + 2𝑡)(𝐵 + 2𝑡) − 𝐴𝐵]𝑋 + 𝑘𝑎𝑖𝑟 [𝐴𝐵
1657
+ 𝜑 − (𝐴 + 2𝑡)(𝐵 + 2𝑡)] 𝑋
1658
+
1659
+
1660
+ = lim
1661
+ 𝑡→0
1662
+ 𝐿𝜀𝜓𝐼𝑠𝑢𝑛 (𝐴𝐵𝑋
1663
+ 𝜑 ) (1 − 𝜑)
1664
+ 𝑘𝑎𝑖𝑟𝐴𝐵𝑋 + 𝑘𝑎𝑙𝑑[𝐴𝐵 − 𝐴𝐵]𝑋 + 𝑘𝑎𝑖𝑟 [𝐴𝐵
1665
+ 𝜑 − 𝐴𝐵] 𝑋
1666
+
1667
+
1668
+ = lim
1669
+ 𝑡→0
1670
+ 𝐿𝜀𝜓𝐼𝑠𝑢𝑛 (𝐴𝐵𝑋
1671
+ 𝜑 ) (1 − 𝜑)
1672
+ 𝑘𝑎𝑖𝑟𝐴𝐵𝑋 + 𝑘𝑎𝑖𝑟 𝐴𝐵𝑋
1673
+ 𝜑
1674
+ − 𝑘𝑎𝑖𝑟𝐴𝐵𝑋
1675
+ =
1676
+ 𝐿𝜀𝜓𝐼𝑠𝑢𝑛 (𝐴𝐵𝑋
1677
+ 𝜑 ) (1 − 𝜑)
1678
+ 𝑘𝑎𝑖𝑟 𝐴𝐵𝑋
1679
+ 𝜑
1680
+
1681
+
1682
+ = 𝐿𝜀𝜓𝐼𝑠𝑢𝑛(1 − 𝜑)
1683
+ 𝑘𝑎𝑖𝑟
1684
+ .
1685
+
1686
+
1687
+ Furthermore, letting 𝜀 = 1 and 𝜓 = 0.5, then (S37) indeed becomes equation (S34) from above. As
1688
+ evidenced by its compressed form, using (S36) to approximate ∆𝑇 simplifies the process of solving for the
1689
+ flow-through velocity, 𝑣𝑓𝑡. This is especially true if we were to also neglect the pressure term, assuming its
1690
+ contribution is negligible. As a result, the mass flow rate from (S5) can be re-written as
1691
+
1692
+
1693
+ 𝑚̇ ~𝛾 ∗ ∆𝑇 .
1694
+ (S36)
1695
+
1696
+ This helps reduce the flow-through velocity expression to
1697
+
1698
+
1699
+ 𝑣𝑓𝑡 = 𝜑𝑚̇
1700
+ 𝜌𝐴𝐵 = 𝜑 𝛾∆𝑇
1701
+ 𝜌𝐴𝐵 = 𝜑 𝛾
1702
+ 𝜌𝐴𝐵
1703
+ 𝐿𝐼𝑠𝑢𝑛(1 − 𝜑)
1704
+ 2𝜅𝑎𝑖𝑟
1705
+ .
1706
+ (S37)
1707
+
1708
+ Even this expression can be further simplified by reducing the 𝛾 term from (S7) to
1709
+
1710
+
1711
+ 𝛾~ 1.1𝐴2𝐵𝑃∗𝛽∗
1712
+ 𝛿𝑇∗𝐿
1713
+ = 1.1𝐴2𝐵𝑃𝛽∗
1714
+ 𝑇𝐿𝐴√𝜋/(2𝜆) = 2.2𝜆𝐴𝐵𝑃
1715
+ √𝜋𝑇𝐿
1716
+
1717
+ 𝑚
1718
+ 2𝑘𝐵𝑇 .
1719
+ (S38)
1720
+
1721
+ From the ideal gas law, we have that 𝑃 = 𝜌𝑅𝑎𝑖𝑟𝑇, so the pressure term can be replaced in (S38) to obtain
1722
+
1723
+
1724
+ 𝛾~ 2.2𝜆𝐴𝐵𝜌𝑅𝑎𝑖𝑟𝑇
1725
+ √𝜋𝑇𝐿
1726
+
1727
+ 𝑚
1728
+ 2𝑘𝐵𝑇 = 2.2𝜆𝐴𝐵𝜌𝑅𝑎𝑖𝑟
1729
+ √𝜋𝐿
1730
+
1731
+ 𝑚
1732
+ 2𝑘𝐵𝑇 .
1733
+ (S39)
1734
+
1735
+ Combining equations (S37) and (S39), we resultant expression turns out as
1736
+
1737
+
1738
+ 𝑣𝑓𝑡 = 𝜑
1739
+ 𝜌𝐴𝐵
1740
+ 𝐿𝐼(1 − 𝜑)
1741
+ 2𝜅𝑎𝑖𝑟
1742
+ 2.2𝜆𝐴𝐵𝜌𝑅���𝑖𝑟
1743
+ √𝜋𝐿
1744
+
1745
+ 𝑚
1746
+ 2𝑘𝐵𝑇 = 1.1𝜑𝐼(1 − 𝜑)𝜆𝑅𝑎𝑖𝑟
1747
+ 𝜅𝑎𝑖𝑟
1748
+
1749
+ 𝑚
1750
+ 2𝑘𝐵𝑇𝜋
1751
+ (S40)
1752
+
1753
+ Now, recall that the average molecular velocity is equal to
1754
+
1755
+
1756
+ 𝑣𝑎𝑣𝑔 = √8𝑅𝑎𝑖𝑟𝑇
1757
+ 𝜋
1758
+ ,
1759
+ (S41)
1760
+
1761
+ and the relationship between viscosity and velocity, as provided by [R6], is equal to
1762
+
1763
+
1764
+ 𝜇 = 𝜆𝜌𝑣𝑎𝑣𝑔
1765
+ 2
1766
+ .
1767
+ (S42)
1768
+
1769
+
1770
+ Page 13
1771
+ Hence, combining both (S41) and (S42) and solving for 𝜆, we obtain an expression which can be
1772
+ incorporated in (S40) to yield
1773
+
1774
+
1775
+ 𝑣𝑓𝑡 = 1.1𝜑𝐼(1 − 𝜑)𝑅𝑎𝑖𝑟
1776
+ 𝜅𝑎𝑖𝑟
1777
+ 𝜇
1778
+ 𝑃 √𝜋𝑘𝐵𝑇
1779
+ 2𝑚 √
1780
+ 𝑚
1781
+ 2𝑘𝐵𝑇𝜋 = 1.1𝜑𝐼(1 − 𝜑)𝑅𝑎𝑖𝑟
1782
+ 𝜅𝑎𝑖𝑟
1783
+ 𝜇
1784
+ 𝑃 √ 𝑚𝜋𝑘𝐵𝑇
1785
+ 4𝑘𝐵𝑇𝜋𝑚
1786
+
1787
+ = 1.1𝜑𝐼(1 − 𝜑)𝑅𝑎𝑖𝑟
1788
+ 𝜅𝑎𝑖𝑟
1789
+ 𝜇
1790
+ 𝑃 √ 1
1791
+ 4 = 1.1𝜑𝐼(1 − 𝜑)𝑅𝑎𝑖𝑟
1792
+ 2𝜅𝑎𝑖𝑟
1793
+ 𝜇
1794
+ 𝑃 .
1795
+ (S43)
1796
+
1797
+ Now, according to [R6], the conductivity of air can be often approximated as 𝜅𝑎𝑖𝑟 =
1798
+ 2𝜇𝐶𝑣′
1799
+ 𝑀
1800
+ = 2𝜇𝐶𝑣, where
1801
+ M is the molar mass of air and 𝐶𝑣′ is the specific heat capacity at constant volume, in units of J/k mol. Thus,
1802
+ equation (S43) can further simplify into
1803
+
1804
+
1805
+ 𝑣𝑓𝑡 = 1.1𝜑𝐼(1 − 𝜑)𝑀𝑅𝑎𝑖𝑟
1806
+ 4𝜇𝐶𝑣′
1807
+ 𝜇
1808
+ 𝑃 = 1.1𝜑𝐼(1 − 𝜑)𝑅𝑎𝑖𝑟
1809
+ 4𝑃𝐶𝑣
1810
+ = 1.1𝜑(1 − 𝜑)𝑅𝑎𝑖𝑟
1811
+ 4𝐶𝑣
1812
+ 𝐼
1813
+ 𝑃 = 𝐶 𝐼
1814
+ 𝑃 .
1815
+ (S44)
1816
+
1817
+ where the constant C is simply given by
1818
+
1819
+
1820
+ 𝐶 = 1.1𝜑(1 − 𝜑)𝑅𝑎𝑖𝑟
1821
+ 4𝐶𝑣
1822
+ = 1.1 ∗ 0.5 ∗ (1 − 0.5) ∗ 0.287
1823
+ 4 ∗ 0.718
1824
+ = 0.0275 .
1825
+ (S45)
1826
+
1827
+ Hence, what these series of derivations shows is that it is possible to approximate and obtain order-of-
1828
+ magnitude estimations of the flow-through velocity by using
1829
+
1830
+
1831
+ 𝑣𝑓𝑡 = 0.0275 𝐼
1832
+ 𝑃 .
1833
+ (S46)
1834
+
1835
+ 2.2. Lift-Force Calculations and Temperature-dependencies
1836
+
1837
+ Once we knew how to calculate 𝑣𝑓𝑡 and 𝑣𝑜𝑢𝑡 using the equations derived above (whether it is in the
1838
+ simplified or full analytical form), we used the following equation to calculate the lift forces produced by
1839
+ each geometry, as outlined in the ANSYS simulations section at the beginning of this document:
1840
+
1841
+
1842
+ ∑𝐹 = 𝐶1 ∗ 8 ∗ 𝜇 ∗ 𝐷 ∗ 𝑣𝑓𝑡 + 𝐶2 ∗ 𝜌 ∗ 𝐴𝑜𝑢𝑡 ∗ 𝑣𝑜𝑢𝑡
1843
+ 2 .
1844
+ (S47)
1845
+
1846
+ Here, R is the characteristic radius of the geometry (usually the inlet radius), while 𝜇 is the viscosity and 𝜌
1847
+ the fluid density. In addition, C1 and C2 are the geometry dependent coefficients summarized in Table 6.
1848
+
1849
+ As the derivation of equations above evidences, all of the geometric (𝐴𝑡𝑜𝑡𝑎𝑙 and 𝐴𝑜𝑢𝑡) and channel (A, B,
1850
+ L, S, t) variables are present in (S23), meaning that it was possible to construct parametric studies exploring
1851
+ the dependency of 𝑣𝑓𝑡, and consequentially lift, on all of these. Notice, all of these variables were largely
1852
+ independent of each other, making it possible to modify each separately. However, some other parameters
1853
+ within (S23), such as 𝐼𝑠𝑢𝑛, density 𝜌, and air viscosity 𝜇, were actually dependent on temperature, which
1854
+ in turn was also altitude dependent. As a result, in order to accurately calculate the flow-through velocities
1855
+ 𝑣𝑓𝑡 experienced by a 3D geometry in a range of altitudes, we needed to derive expressions for
1856
+ approximating the air temperature, air pressure, air viscosity and air density as a function of altitude itself.
1857
+
1858
+ 2.2.1 Temperature-dependent Relations
1859
+
1860
+ We developed the relations characterizing the dependency between temperature and the fluid variable in
1861
+ question by using standard atmospheric5 empirical data and fitting equations to it. For instance, for the data
1862
+ describing the dependency between air temperature and altitude, we fit both a 6th, 10th and 15th order
1863
+
1864
+ 5 The specific standard atmospheric data was taken from the following three websites:
1865
+ https://www.engineeringtoolbox.com/standard-atmosphere-d_604.html | https://www.pdas.com/atmosTable1SI.html
1866
+ https://www.pdas.com/bigtables.html
1867
+
1868
+ Page 14
1869
+ polynomial, as Figure S12 to the below shows. Overall, the 15th order polynomial provided the best
1870
+ empirical fit, which was why we decided to use it for the rest of this analysis. However, one interesting
1871
+ aspect of this fit was that we actually fitted at the inverse of the temperature, the reason for which will
1872
+ become clearer in the derivation of the altitude-pressure dependency. In any case, equation (S48) below
1873
+ shows this explicit relation, with h (the altitude) being in kilometers, and all terms in the column added.
1874
+
1875
+
1876
+ 𝑇−1(ℎ) =
1877
+ −4.592 ∗ 10−29
1878
+ 4.023 ∗ 10−27
1879
+ 1.491 ∗ 10−23
1880
+ −7.942 ∗ 10−21
1881
+ 2.021 ∗ 10−18
1882
+ −3.152 ∗ 10−16
1883
+ 3.271 ∗ 10−14
1884
+ −2.332 ∗ 10−12
1885
+ 1.150 ∗ 10−10
1886
+ −3.862 ∗ 10−09
1887
+ 8.525 ∗ 10−08
1888
+ −1.150 ∗ 10−06
1889
+ 8.154 ∗ 10−06
1890
+ −2.283 ∗ 10−05
1891
+ 9.912 ∗ 10−05
1892
+ 3.473 ∗ 10−03
1893
+
1894
+ ℎ15
1895
+ ℎ14
1896
+ ℎ13
1897
+ ℎ12
1898
+ ℎ11
1899
+ ℎ10
1900
+ ℎ9
1901
+ ℎ8
1902
+ ℎ7
1903
+ ℎ6
1904
+ ℎ5
1905
+ ℎ4
1906
+ ℎ3
1907
+ ℎ2
1908
+ ℎ1
1909
+ 1 .
1910
+
1911
+ (S48)
1912
+
1913
+ Having derived the empirical relation between temperature (its inverse) and altitude, it was possible to
1914
+ determine a similar expression for pressure. In essence, the differential equation describing the pressure-
1915
+ altitude relationship is given by
1916
+
1917
+
1918
+ 𝑑𝑃(ℎ) = −𝑔 ∗ 𝜌(ℎ) ∗ 𝑑ℎ ,
1919
+ (S49)
1920
+
1921
+ where 𝑔 is the gravitational constant on earth, and 𝜌(ℎ) the density of air at a particular altitude h. Using
1922
+ the ideal gas law, 𝜌(ℎ) can be substituted to yield the following expression for the above differential in
1923
+ equation (S49)
1924
+
1925
+
1926
+ 𝑑𝑃(ℎ) = −𝑔 ∗
1927
+ 𝑃(ℎ)
1928
+ 𝑅𝑎𝑖𝑟 ∗ 𝑇(ℎ) ∗ 𝑑ℎ ,
1929
+ (S50)
1930
+
1931
+ where now 𝑅𝑎𝑖𝑟 is the ideal gas constant of air and is equal to 287 𝐽/𝑘𝑔 ∗ 𝑚3. Easily enough, one can
1932
+ utilize the technique of separation of variables to obtain that
1933
+
1934
+
1935
+ 𝑑𝑃(ℎ)
1936
+ 𝑃(ℎ) =
1937
+ −𝑔
1938
+ 𝑅𝑎𝑖𝑟 ∗ 𝑇(ℎ) ∗ 𝑑ℎ ,
1939
+ (S51)
1940
+
1941
+ which leaves all of the pressure terms on one side, and the rest on the other. As a result, it is possible to see
1942
+ with more clarity why the above polynomial fit was done for the inverse of temperature. Indeed, equation
1943
+ (S51) can be equivalently written as
1944
+
1945
+
1946
+ 𝑑𝑃(ℎ)
1947
+ 𝑃(ℎ) = −𝑔 ∗ 𝑇−1(ℎ)
1948
+ 𝑅𝑎𝑖𝑟
1949
+ ∗ 𝑑ℎ .
1950
+ (S52)
1951
+
1952
+ This expression can be easily integrated to obtain the following logarithm:
1953
+
1954
+
1955
+ ln(𝑃) = −𝑔
1956
+ 𝑅𝑎𝑖𝑟
1957
+ ∗ ∫ 𝑇−1(ℎ) ∗ 𝑑ℎ .
1958
+ (S53)
1959
+
1960
+ Letting 𝜁(ℎ) = ∫ 𝑇−1(ℎ) ∗ 𝑑ℎ be a placeholder for the integral of the inverse temperature polynomial and
1961
+ C be simply a constant of integration, we obtain that
1962
+
1963
+
1964
+ ln(𝑃(ℎ)) = −𝑔
1965
+ 𝑅𝑎𝑖𝑟
1966
+ ∗ 𝜁(ℎ) + 𝐶 .
1967
+ (S54)
1968
+
1969
+ Figure S12: Modeled temperature dependency on altitude.
1970
+
1971
+ Fitsto altitude-dependentT
1972
+ 5.5+10~3
1973
+ 5
1974
+ 4.5
1975
+ 4
1976
+ 3.5
1977
+ Data
1978
+ 3
1979
+ Order6polynomial
1980
+ Order10polynomial
1981
+ Order15polynomial
1982
+ 2.5
1983
+ 0
1984
+ 20
1985
+ 40
1986
+ 60
1987
+ 80
1988
+ 100
1989
+ 120
1990
+ A/titude(km)Page 15
1991
+ Figure S13: Modeled pressure dependency on altitude.
1992
+ Now, in order to remove the logarithm from the pressure, we can raise both sides of the expression to the
1993
+ Euler’s number power, and get
1994
+
1995
+ 𝑃(ℎ) = 𝑒
1996
+ −𝑔
1997
+ 𝑅𝑎𝑖𝑟∗𝜁(ℎ)+𝐶 .
1998
+ (S55)
1999
+
2000
+ After applying exponent rules, (S55) decomposes into the product given by
2001
+
2002
+
2003
+ 𝑃(ℎ) = 𝑒𝐶 ∗ 𝑒
2004
+ −𝑔
2005
+ 𝑅𝑎𝑖𝑟∗𝜁(ℎ) ,
2006
+ (S56)
2007
+
2008
+ and can be further simplified, upon application of boundary conditions, into
2009
+
2010
+
2011
+ 𝑃(ℎ) = 101300 𝑃𝑎 ∗ 𝑒
2012
+ −𝑔
2013
+ 𝑅𝑎𝑖𝑟∗𝜁(ℎ) ,
2014
+
2015
+ (S57)
2016
+
2017
+ which takes the following full form:
2018
+
2019
+ 𝑃(ℎ) = 101300 𝑃𝑎 ∗ exp
2020
+ [
2021
+
2022
+
2023
+
2024
+
2025
+
2026
+
2027
+
2028
+
2029
+
2030
+
2031
+
2032
+
2033
+
2034
+
2035
+
2036
+ −𝑔
2037
+ 𝑅𝑎𝑖𝑟
2038
+
2039
+ (
2040
+
2041
+
2042
+
2043
+
2044
+
2045
+
2046
+
2047
+
2048
+
2049
+
2050
+
2051
+
2052
+
2053
+ −2.870 ∗ 10−30
2054
+ 2.682 ∗ 10−28
2055
+ 1.064 ∗ 10−24
2056
+ −6.109 ∗ 10−22
2057
+ 1.684 ∗ 10−19
2058
+ −2.865 ∗ 10−17
2059
+ 3.271 ∗ 10−15
2060
+ −2.591 ∗ 10−13
2061
+ 1.437 ∗ 10−11
2062
+ −5.518 ∗ 10−10
2063
+ 1.421 ∗ 10−08
2064
+ −2.299 ∗ 10−07
2065
+ 2.0385 ∗ 10−06
2066
+ −7.608 ∗ 10−06
2067
+ 4.955 ∗ 10−05
2068
+ 3.473 ∗ 10−03
2069
+
2070
+ ℎ16
2071
+ ℎ15
2072
+ ℎ14
2073
+ ℎ13
2074
+ ℎ12
2075
+ ℎ11
2076
+ ℎ10
2077
+ ℎ9
2078
+ ℎ8
2079
+ ℎ7
2080
+ ℎ6
2081
+ ℎ5
2082
+ ℎ4
2083
+ ℎ3
2084
+ ℎ2
2085
+ ℎ1 )
2086
+
2087
+
2088
+
2089
+
2090
+
2091
+
2092
+
2093
+
2094
+
2095
+
2096
+
2097
+
2098
+
2099
+ ]
2100
+
2101
+
2102
+
2103
+
2104
+
2105
+
2106
+
2107
+
2108
+
2109
+
2110
+
2111
+
2112
+
2113
+
2114
+
2115
+ .
2116
+ (S58)
2117
+
2118
+
2119
+
2120
+ As Figure S13 above shows, the agreement of this equation with the empirical data is very reasonable,
2121
+ especially below 80 km altitude. Above 80 km, the atmosphere is no longer well mixed, has increasing
2122
+ concentrations of atomic oxygen, and the simple ideal gas law we used above no longer applies. For this
2123
+ reason, the results that will be presented below correspond to altitudes below 80 km.
2124
+
2125
+ The next step was modelling the air density dependency on altitude. With expressions for T(h) and P(h)
2126
+ above, we could use the ideal gas law to write
2127
+
2128
+
2129
+ Finally, the last dependency that remained to be defined was the air viscosity and altitude relation. To that
2130
+ end, we could use Sutherland’s law, which relates viscosity and temperature through the following equation:
2131
+
2132
+
2133
+ 𝜇(ℎ) = 𝜇𝑟𝑒𝑓 ∗ (𝑇(ℎ)
2134
+ 𝑇𝑟𝑒𝑓
2135
+ )
2136
+ 1.5
2137
+ ∗ (
2138
+ 𝑇𝑟𝑒𝑓 + 𝑆
2139
+ 𝑇(ℎ) + 𝑆) ,
2140
+ (S60)
2141
+
2142
+ where 𝜇𝑟𝑒𝑓 is the reference dynamic viscosity and 𝑇𝑟𝑒𝑓 the reference temperature. In this work, for air, at
2143
+ 𝑇𝑟𝑒𝑓 = 20 𝐶, we have that 𝜇𝑟𝑒𝑓 = 0.000018205 𝑃𝑎 ∗ 𝑠. Finally, S is a constant, known as Sutherland’s
2144
+ temperature, which is given by 110.4 K.
2145
+
2146
+
2147
+
2148
+
2149
+
2150
+
2151
+ 𝜌(ℎ) =
2152
+ 𝑃(ℎ)
2153
+ 𝑅𝑎𝑖𝑟 ∗ 𝑇(ℎ) .
2154
+ (S59)
2155
+
2156
+ DerivedEquationforPressure
2157
+ 106
2158
+ Data
2159
+ DerivedEquation
2160
+ 104
2161
+ (Pa)
2162
+ Pressure
2163
+ 100
2164
+ 102
2165
+ 104
2166
+ 0
2167
+ 20
2168
+ 40
2169
+ 60
2170
+ 80
2171
+ 100
2172
+ 120
2173
+ A/titude (km)Page 16
2174
+ 2.2.2 Payload Calculations
2175
+
2176
+ Once all of the required equations and relationships were derived, it was possible to calculate 𝑣𝑓𝑡 and 𝑣𝑜𝑢𝑡
2177
+ for a specific set of geometric and channel parameters defining unique 3D structures. By calculating these
2178
+ velocities, we determined the total force produced by each geometry, as outlined by equation (S47), from
2179
+ which it was possible to perform some payload estimates. However, in order to obtain the payload estimates,
2180
+ it was paramount to first determine the surface areas of each one of the 3D geometries in question, the
2181
+ reason being that density of these structure was defined in areal terms as opposed to volumetric terms. As
2182
+ was mentioned in the main paper, this work considered a truncated cone, truncated sphere, and a rocket,
2183
+ and their defining equations are shown in Table 7 below.
2184
+
2185
+ Main Geometrical Area Definitions
2186
+ Area
2187
+ Truncated Cone
2188
+ Truncated Sphere
2189
+ Rocket
2190
+ 𝐴𝑡𝑜𝑡𝑎𝑙
2191
+ 𝜋 (𝐷
2192
+ 2)
2193
+ 2
2194
+ + 𝜋 (𝐷
2195
+ 2)ℎ2 − 𝜋𝑟(ℎ2 − ℎ1)
2196
+ 𝜋(𝐷2 − 2𝑟ℎ)
2197
+ 2𝜋𝑟(𝑟 + 𝐷)
2198
+ 𝐴𝑜𝑢𝑡
2199
+ 𝜋𝑟2
2200
+ 𝐴𝑖𝑛
2201
+ 𝜑𝐴𝑡𝑜𝑡𝑎𝑙
2202
+ 𝐴𝑠𝑜𝑙𝑖𝑑
2203
+ (1 − 𝜑)𝐴𝑡𝑜𝑡𝑎𝑙
2204
+ Special
2205
+ Variables
2206
+ ℎ1 = √(𝐷
2207
+ 2 − 𝑟)
2208
+ 2
2209
+ + 𝐷2
2210
+ ℎ2 = √(𝐷
2211
+ 2)
2212
+ 2
2213
+ + ℎ3
2214
+ ℎ3 =
2215
+ 𝐷2
2216
+ (𝐷 − 2𝑟)
2217
+ ℎ = (𝐷
2218
+ 2) − √(𝐷
2219
+ 2)
2220
+ 2
2221
+ − 𝑟2
2222
+ N/A
2223
+
2224
+ Table 7: Area definitions used across this work for the cone, sphere and rocket. Notice that here, the variable ℎ3
2225
+ follows from using similar triangles analysis, and letting ℎ3/(D/2) = D/(D/2 – r). For all three geometries, the variable
2226
+ D represents the overall scale of the structure while r their outlet radius. Notice that 𝐴𝑖𝑛 is the porous area, while
2227
+ 𝐴𝑠𝑜𝑙𝑖𝑑 is the solid area in which the sun’s irradiance is absorbed, and it follows that 𝐴𝑡𝑜𝑡𝑎𝑙 = 𝐴𝑠𝑜𝑙𝑖𝑑 + 𝐴𝑖𝑛.
2228
+
2229
+ As a result, having defined these surface areas (using the parameters established in Figure S1), we
2230
+ calculated the mass of our three 3D structures. In particular, since the cross-sectional area of a channel is
2231
+ simply 𝐴𝐵, then one can define the number of channels as the following integer floor:
2232
+
2233
+
2234
+ 𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 = ⌊𝐴𝑖𝑛
2235
+ 𝐴𝐵⌋ .
2236
+ (S61)
2237
+
2238
+ The number of channels, 𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠, is an important parameter, given that now it is possible to calculate the
2239
+ volume of the structure that is occupied by the deposited alumina around each channel, which has thickness
2240
+ t and relatively high density 𝜌𝑎𝑙𝑑 of 3950 kg/m3 [R9]. Indeed, similarly to equation (S28) above, we can
2241
+ define this volume as
2242
+
2243
+
2244
+ 𝑉𝑎𝑙𝑑,𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 = 𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(𝐿 − 2𝑡)[(𝐴 + 2𝑡)(𝐵 + 2𝑡) − 𝐴𝐵] .
2245
+ (S62)
2246
+
2247
+ Experimentally, it has already been found that the areal density of nanocardboard, 𝜎𝑛𝑐𝑏, is about 1 g/m2
2248
+ [R5], but this corresponds to a value of L (nanocardboard thickness) equal to 50 μm. However, in our
2249
+ parametric studies, as we sweep through various values of L, especially those that are larger than 50 μm,
2250
+ this areal density alone is not enough to estimate the weight of the structure. As a result, calculating the
2251
+ volume of alumina around each of the channels is paramount, since the structure naturally becomes heavier
2252
+ with increasing thickness. Hence, the overall mass of any one of these geometries will be given by
2253
+
2254
+
2255
+ 𝑚𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦 = 𝜎𝑔𝑒𝑜𝑚(𝐴𝑠𝑜𝑙𝑖𝑑 − 𝐴𝑖𝑛) + 𝜌𝑎𝑙𝑑𝑉𝑎𝑙𝑑,𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 ,
2256
+ (S63)
2257
+
2258
+ where this expression accounts both for the areal density (𝜎𝑔𝑒𝑜𝑚) and the increases in the amount of the
2259
+ deposited alumina as a result of changes in the wall thickness L. Thus, the net lift produced by the geometry
2260
+ is simply given by subtracting the structure’s weight from the force expression in (S47), or
2261
+
2262
+
2263
+ Page 17
2264
+
2265
+ 𝐿𝑖𝑓𝑡𝑛𝑒𝑡 = 𝐹 − 𝑔𝑚𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦 .
2266
+ (S64)
2267
+
2268
+ While we know from simulations what 𝜎𝑔𝑒𝑜𝑚 is, notice that it is also possible to use our equations and a
2269
+ series of approximations to obtain a theoretical upper bound for this value. In essence, we can start by
2270
+ letting the force be equal to the expression below
2271
+
2272
+
2273
+ 𝐹 = 𝑚̇ 𝑣𝑜𝑢𝑡 = (𝐴𝑖𝑛𝜌𝑎𝑖𝑟𝑣𝑓𝑡)𝑣𝑜𝑢𝑡 = (𝐴𝑖𝑛
2274
+ 𝑃
2275
+ 𝑅𝑎𝑖𝑟𝑇 𝑣𝑓𝑡)𝑣𝑜𝑢𝑡 ,
2276
+ (S65)
2277
+
2278
+ which incorporates mass flow rate and the ideal gas law. Now, recall that equation (S4) provides an
2279
+ expression relating 𝑣𝑓𝑡 and 𝑣𝑜𝑢𝑡, while (S46) provides a simplified approximation for 𝑣𝑓𝑡. As a result,
2280
+ taking a conservative approach that lets 𝑣𝑜𝑢𝑡 = 0.2𝑣𝑎𝑣𝑔, a fifth of the average molecular velocity of a gas,
2281
+ shown in (S41) above, and incorporating (S2) and (S46), it is possible to re-write (S68) to obtain
2282
+
2283
+
2284
+ 𝐹 = 𝐴𝑖𝑛
2285
+ 𝑃
2286
+ 𝑅𝑎𝑖𝑟𝑇 𝑣𝑓𝑡0.2√8𝑅𝑎𝑖𝑟𝑇
2287
+ 𝜋
2288
+ =
2289
+ = 0.0055𝐴𝑖𝑛
2290
+ 𝑃
2291
+ 𝑅𝑎𝑖𝑟𝑇
2292
+ 𝐼
2293
+ 𝑃 √8𝑅𝑎𝑖𝑟𝑇
2294
+ 𝜋
2295
+ = 0.0055𝐴𝑖𝑛
2296
+ 𝐼
2297
+ 𝑅𝑎𝑖𝑟𝑇 √8𝑅𝑎𝑖𝑟𝑇
2298
+ 𝜋
2299
+ .
2300
+
2301
+ (S66)
2302
+
2303
+ Upon further simplification, equation (S69) reduces to
2304
+
2305
+
2306
+ 𝐹 = 0.0055𝐴𝑖𝑛
2307
+ 𝐼
2308
+ 𝑅𝑎𝑖𝑟𝑇 √8𝑅𝑎𝑖𝑟𝑇
2309
+ 𝜋
2310
+ = 0.0055√8
2311
+ 𝜋 𝐴𝑖𝑛𝐼√
2312
+ 1
2313
+ 𝑅𝑎𝑖𝑟𝑇 .
2314
+ (S67)
2315
+
2316
+ Thus, the maximum areal density that can be entertained by these 3D structures can be approximated by
2317
+
2318
+
2319
+ 𝜎𝑔𝑒𝑜𝑚 =
2320
+ 𝐹
2321
+ 𝐴𝑖𝑛𝑔 = 0.0055√8
2322
+ 𝜋
2323
+ 𝐼
2324
+ 𝑔 √
2325
+ 1
2326
+ 𝑅𝑎𝑖𝑟𝑇 = 𝐾𝐼√
2327
+ 1
2328
+ 𝑅𝑎𝑖𝑟𝑇 = 0.016
2329
+ 𝐼
2330
+ 𝑣𝑎𝑣𝑔𝑔 ,
2331
+ (S68)
2332
+
2333
+ where 𝐾 =
2334
+ 0.0055
2335
+ 𝑔
2336
+
2337
+ 8
2338
+ 𝜋 = 0.0009 and 𝑣𝑎𝑣𝑔 = √8𝑅𝑎𝑖𝑟𝑇/𝜋 ≈ 400 m/s is the average velocity of air
2339
+ molecules. Upon inserting the parameters, we find that 𝜎𝑔𝑒𝑜𝑚 can have an average value of 0.004 kg/m2,
2340
+ four times of what the areal density of nanocardboard typically is in experiments. The main paper provides
2341
+ additional areal density calculations based off from the parametric studies (detailed below) as well as cloud
2342
+ plots denoting the maximum areal density for each of the study geometries. They are generally of the same
2343
+ order of magnitude as the estimate (S68).
2344
+
2345
+ 2.2.3 Parametric Studies
2346
+
2347
+ In this section, we provide four tables that accompany the presentation of the results shown in the main
2348
+ paper. In essence, Table 8 both summarizes the chosen optimization ranges and discretization for the
2349
+ variables that were varied (A, L and r) and specifies the values that the remaining variables (B, N, X, S and
2350
+ t) took. Similarly, Table 9 through Table 11 present the results for the performed parametric optimization
2351
+ on the three geometries, detailing the specific combination of A, L and r that first, yielded the maximum
2352
+ payload capabilities and second, achieved flight at the lower altitude. In addition, Table 9 through Table
2353
+ 11 also provide the areal density of each structure for when the maximum payload was achieved. Notice
2354
+ that this process was repeated for multiple values of D, as to explore the dependency of the overall
2355
+ optimization results with the scale of the geometries.
2356
+
2357
+ Parametric Optimization Variables
2358
+ Variable
2359
+ Range
2360
+ Truncated Cone
2361
+ Truncated Sphere
2362
+ Rocket
2363
+ Discretization
2364
+ 𝐴
2365
+ Min.
2366
+ 10 nm
2367
+ 80 equally spaced points
2368
+ (log scale)
2369
+ Max.
2370
+ 5 mm
2371
+ 𝐿
2372
+ Min.
2373
+ 1 μm
2374
+ 80 equally spaced points
2375
+
2376
+ Page 18
2377
+
2378
+ Table 8: Main values used across the various variables during the parametric optimization. As can be seen, the search
2379
+ range for the optimal A, L and r was discretized in all three cases in 100 points, following a log scale. Changing the
2380
+ granularity of the discretization or the bounds of the search range did not significantly modify the results seen in Table
2381
+ 9 through Table 11 below.
2382
+
2383
+
2384
+ Table 9: Combinations of A, L and r that returned the spheres capable of carrying the greatest payload and achieving
2385
+ flight at the lowest altitude, for various values of D, as specified in Figure S1.
2386
+
2387
+
2388
+ Table 10: Combinations of A, L and r that returned the cones capable of carrying the greatest payload and achieving
2389
+ flight at the lowest altitude, for various values of D, as specified in Figure S1.
2390
+
2391
+
2392
+ Max.
2393
+ 1 cm
2394
+ (log scale)
2395
+ 𝑟
2396
+ Min.
2397
+ rmin = D/20 (see Table 9 through Table 12)
2398
+ 80 equally spaced points
2399
+ (log scale)
2400
+ Max.
2401
+ rmax = D/2.01 (see Table 9 through Table 12)
2402
+ Altitude
2403
+ Min.
2404
+ 0 km
2405
+ 17 equally spaced points
2406
+ (5 km intervals)
2407
+ Max.
2408
+ 80 km
2409
+
2410
+ 𝐵
2411
+ 10𝐴
2412
+ 𝑁
2413
+ 1 sun
2414
+ 𝑋
2415
+ 𝐵 − 𝑆
2416
+ 𝑆 + 𝐴
2417
+ 𝑆
2418
+ 𝐴
2419
+ 𝑡
2420
+ 50 nm
2421
+ Parametric Optimization Results – Various Sphere Sizes
2422
+ Variable
2423
+ Case
2424
+ D = 2 cm
2425
+ D = 0.1 m
2426
+ D = 0.5 m
2427
+ D = 1 m
2428
+ D = 2 m
2429
+ D = 5 m
2430
+ rmin = D/20, rmax = D/2.01, with a discretization of 80 points (log scale)
2431
+ 𝐴
2432
+ Max. Payload
2433
+ 0.90 mm
2434
+ 0.90 mm
2435
+ 0.90 mm
2436
+ 0.90 mm
2437
+ 0.90 mm
2438
+ 0.90 mm
2439
+ Min. Altitude
2440
+ 0.13 mm
2441
+ 0.13 mm
2442
+ 0.20 mm
2443
+ 0.20 mm
2444
+ 0.20 mm
2445
+ 0.20 mm
2446
+ 𝐿
2447
+ Max. Payload
2448
+ 0.91 mm
2449
+ 0.91 mm
2450
+ 0.91 mm
2451
+ 0.91 mm
2452
+ 0.91 mm
2453
+ 0.91 mm
2454
+ Min. Altitude
2455
+ 0.14 mm
2456
+ 0.14 mm
2457
+ 0.21 mm
2458
+ 0.21 mm
2459
+ 0.21 mm
2460
+ 0.21 mm
2461
+ 𝑟
2462
+ Max. Payload
2463
+ 9.95 mm
2464
+ 4.07 cm
2465
+ 19.05 cm
2466
+ 36.85 cm
2467
+ 73.70 cm
2468
+ 1.84 m
2469
+ Min. Altitude
2470
+ 4.05 mm
2471
+ 1.89 cm
2472
+ 10.82 cm
2473
+ 21.63 cm
2474
+ 43.27 cm
2475
+ 1.08 m
2476
+
2477
+ Max.
2478
+ Payload
2479
+ Payload (mg)
2480
+ 8.34
2481
+ 79.11
2482
+ 1 445
2483
+ 5 526
2484
+ 21 612
2485
+ 133 242
2486
+ Altitude (km)
2487
+ 80
2488
+ 80
2489
+ 80
2490
+ 80
2491
+ 80
2492
+ 80
2493
+ A. Density (g/m2)
2494
+ 25.48
2495
+ 7.81
2496
+ 5.91
2497
+ 5.64
2498
+ 5.54
2499
+ 5.49
2500
+ Sphere Area (m2)
2501
+ 0.0007
2502
+ 0.025
2503
+ 0.64
2504
+ 2.63
2505
+ 10.52
2506
+ 65.82
2507
+ 𝐴𝑡𝑜𝑡𝑎𝑙/𝐴𝑜𝑢𝑡 ratio
2508
+ 2.22
2509
+ 4.77
2510
+ 5.68
2511
+ 6.17
2512
+ 6.17
2513
+ 6.17
2514
+
2515
+ Min.
2516
+ Altitude
2517
+ Payload (mg)
2518
+ 0.24
2519
+ 0.58
2520
+ 223.94
2521
+ 872.33
2522
+ 3 442
2523
+ 21 339
2524
+ Altitude (km)
2525
+ 55
2526
+ 55
2527
+ 60
2528
+ 60
2529
+ 60
2530
+ 60
2531
+ 𝐴𝑡𝑜����𝑎𝑙/𝐴𝑜𝑢𝑡 ratio
2532
+ 23.34
2533
+ 26.96
2534
+ 20.30
2535
+ 20.32
2536
+ 20.31
2537
+ 20.38
2538
+ Parametric Optimization Results – Various Cone Sizes
2539
+ Variable
2540
+ Case
2541
+ D = 2 cm
2542
+ D = 0.1 m
2543
+ D = 0.5 m
2544
+ D = 1 m
2545
+ D = 2 m
2546
+ D = 5 m
2547
+ rmin = D/20, rmax = D/2.01, with a discretization of 80 points (log scale)
2548
+ 𝐴
2549
+ Max. Payload
2550
+ 0.90 mm
2551
+ 0.90 mm
2552
+ 0.90 mm
2553
+ 0.90 mm
2554
+ 0.90 mm
2555
+ 0.90 mm
2556
+ Min. Altitude
2557
+ 0.13 mm
2558
+ 0.35 mm
2559
+ 0.35 mm
2560
+ 0.35 mm
2561
+ 0.35 mm
2562
+ 0.35 mm
2563
+ 𝐿
2564
+ Max. Payload
2565
+ 0.91 mm
2566
+ 0.91 mm
2567
+ 0.91 mm
2568
+ 0.91 mm
2569
+ 0.91 mm
2570
+ 0.91 mm
2571
+ Min. Altitude
2572
+ 0.14 mm
2573
+ 0.36 mm
2574
+ 0.36 mm
2575
+ 0.36 mm
2576
+ 0.36 mm
2577
+ 0.36 mm
2578
+ 𝑟
2579
+ Max. Payload
2580
+ 9.95 mm
2581
+ 4.97 cm
2582
+ 24.86 cm
2583
+ 49.73 cm
2584
+ 99.45 cm
2585
+ 2.49 m
2586
+ Min. Altitude
2587
+ 4.05 mm
2588
+ 2.39 cm
2589
+ 11.56 cm
2590
+ 23.12 cm
2591
+ 46.25 cm
2592
+ 1.16 m
2593
+
2594
+ Max.
2595
+ Payload
2596
+ Payload (mg)
2597
+ 7.96
2598
+ 101.26
2599
+ 2 043
2600
+ 7 929
2601
+ 31 228
2602
+ 193 348
2603
+ Altitude (km)
2604
+ 80
2605
+ 80
2606
+ 80
2607
+ 80
2608
+ 80
2609
+ 80
2610
+ A. Density (g/m2)
2611
+ 11.59
2612
+ 6.61
2613
+ 5.61
2614
+ 5.48
2615
+ 5.42
2616
+ 5.38
2617
+ Cone Area (m2)
2618
+ 0.0016
2619
+ 0.039
2620
+ 0.98
2621
+ 3.92
2622
+ 15.67
2623
+ 97.97
2624
+ 𝐴𝑡𝑜𝑡𝑎𝑙/𝐴𝑜𝑢𝑡 ratio
2625
+ 5.04
2626
+ 5.05
2627
+ 5.05
2628
+ 5.04
2629
+ 5.04
2630
+ 5.03
2631
+
2632
+ Min.
2633
+ Altitude
2634
+ Payload (mg)
2635
+ 0.18
2636
+ 10.12
2637
+ 208.65
2638
+ 812.97
2639
+ 3 209
2640
+ 19 892
2641
+ Altitude (km)
2642
+ 55
2643
+ 60
2644
+ 60
2645
+ 60
2646
+ 60
2647
+ 60
2648
+ 𝐴𝑡𝑜𝑡𝑎𝑙/𝐴𝑜𝑢𝑡 ratio
2649
+ 23.97
2650
+ 17.75
2651
+ 18.84
2652
+ 18.84
2653
+ 18.83
2654
+ 18.72
2655
+
2656
+ Page 19
2657
+
2658
+ Table 11: Combinations of A, L and r that returned the rockets capable of carrying the greatest payload and achieving
2659
+ flight at the lowest altitude, for various values of D, as specified in Figure S1.
2660
+
2661
+ The results from these tables are discussed in greater detail in the main paper. However, there are four
2662
+ important points to highlight. First, changing D (the scaling of the overall geometries) did not affect
2663
+ significantly the optimal channel parameters A and L that yielded the maximum payload capabilities and
2664
+ achieved flight at the lowest altitude. Secondly, the obtained maximum areal densities were similar across
2665
+ the three geometries (as seen in Figure S14 (a) below) and had average values of 9.31 g/m2, 6.68 g/m2 and
2666
+ 6.96 g/m2, for the sphere, cone, and rocket, respectively. Notice that these are above the theoretical order-
2667
+ of-magnitude estimation for the upper limit of 4 g/m2 in (S71). Thirdly, the optimized 𝐴𝑡𝑜𝑡𝑎𝑙/𝐴𝑜𝑢𝑡 ratios
2668
+ for the three geometries were relatively invariant across the various values of D and the two missions (max.
2669
+ payload and minimum altitude). For instance, for the maximum payload optimization, 𝐴𝑡𝑜𝑡𝑎𝑙/𝐴𝑜𝑢𝑡
2670
+ averaged 5.20, 5.04, and 6.02 for the sphere, cone and rocket, respectively, while for the minimum altitude
2671
+ case, this ratio averaged 21.94, 19.49 and 28.65, respectively. Lastly, for a given surface area, the amount
2672
+ of payload that each geometry could carry was comparable, as can be seen in Figure S14 (b) below. As a
2673
+ result, 1 m2 of a porous and geometrically optimized cone has a similar maximum payload capability than
2674
+ 1 m2 of an optimized rocket and sphere.
2675
+ Finally, Figure S15 through Figure S20 present cloud plots that permit visualizing the results from the
2676
+ parametric studies, in particular how different combinations of A, L and r enabled geometries with various
2677
+ altitude (a), payload (b) and areal density (c) capabilities. These plots correspond to the D = 10 cm and D
2678
+ = 10 m cone, sphere and rocket, and are accompanied with illustrations of the optimized geometries that
2679
+ achieved flight at minimum altitude (d) and carried the most payload (e). These figures were generated by
2680
+ discretizing the search ranges of A, L and r in 500 equally spaced, and the results from the optimized
2681
+ geometries are shown in Table 12 through Table 14). Despite the increase in discretization points (from 80
2682
+ to 500) in each dimension, the results were comparable.
2683
+ Parametric Optimization Results – Various Rocket Sizes
2684
+ Variable
2685
+ Case
2686
+ D = 2 cm
2687
+ D = 10 cm
2688
+ D = 0.5 m
2689
+ D = 1 m
2690
+ D = 2 m
2691
+ D = 5 m
2692
+ rmin = D/20, rmax = D/2.01, with a discretization of 80 points (log scale)
2693
+ 𝐴
2694
+ Max. Payload
2695
+ 0.90 mm
2696
+ 0.90 mm
2697
+ 0.90 mm
2698
+ 0.90 mm
2699
+ 0.90 mm
2700
+ 0.90 mm
2701
+ Min. Altitude
2702
+ 0.092 mm
2703
+ 0.13 mm
2704
+ 0.13 mm
2705
+ 0.13 mm
2706
+ 0.13 mm
2707
+ 0.13 mm
2708
+ 𝐿
2709
+ Max. Payload
2710
+ 0.91 mm
2711
+ 0.91 mm
2712
+ 0.91 mm
2713
+ 0.91 mm
2714
+ 0.91 mm
2715
+ 0.91 mm
2716
+ Min. Altitude
2717
+ 0.094 mm
2718
+ 0.14 mm
2719
+ 0.14 mm
2720
+ 0.14 mm
2721
+ 0.14 mm
2722
+ 0.14 mm
2723
+ 𝑟
2724
+ Max. Payload
2725
+ 9.95 mm
2726
+ 4.97 cm
2727
+ 24.86 cm
2728
+ 49.73 cm
2729
+ 99.45 cm
2730
+ 2.49 m
2731
+ Min. Altitude
2732
+ 1.00 mm
2733
+ 0.94 cm
2734
+ 4.12 cm
2735
+ 8.24 cm
2736
+ 15.94 cm
2737
+ 0.40 m
2738
+
2739
+ Max.
2740
+ Payload
2741
+ Payload (mg)
2742
+ 9.51
2743
+ 127.59
2744
+ 2 639
2745
+ 10 281
2746
+ 40 573
2747
+ 251 516
2748
+ Altitude (km)
2749
+ 80
2750
+ 80
2751
+ 80
2752
+ 80
2753
+ 80
2754
+ 80
2755
+ A. Density (g/m2)
2756
+ 11.60
2757
+ 6.89
2758
+ 5.95
2759
+ 5.83
2760
+ 5.77
2761
+ 5.74
2762
+ Rocket Area (m2)
2763
+ 0.0019
2764
+ 0.047
2765
+ 1.17
2766
+ 4.68
2767
+ 18.71
2768
+ 117.12
2769
+ 𝐴𝑡𝑜𝑡𝑎𝑙/𝐴𝑜𝑢𝑡 ratio
2770
+ 6.02
2771
+ 6.02
2772
+ 6.02
2773
+ 6.02
2774
+ 6.02
2775
+ 6.02
2776
+
2777
+ Min.
2778
+ Altitude
2779
+ Payload (mg)
2780
+ 0.03
2781
+ 1.54
2782
+ 8.29
2783
+ 18.57
2784
+ 45.37
2785
+ 175.67
2786
+ Altitude (km)
2787
+ 45
2788
+ 55
2789
+ 55
2790
+ 55
2791
+ 55
2792
+ 55
2793
+ 𝐴𝑡���𝑡𝑎𝑙/𝐴𝑜𝑢𝑡 ratio
2794
+ 42
2795
+ 23.28
2796
+ 26.27
2797
+ 26.27
2798
+ 27.09
2799
+ 27
2800
+ Figure S14: D against Areal Density (a) and Surface Area against Payload (b) for the 3D geometries.
2801
+ a
2802
+ b
2803
+
2804
+ Max.PayloadagainstGeometrySurfaceArea
2805
+ 100
2806
+ Max.Payload (kg)
2807
+ 10
2808
+ Sphere
2809
+ -Cone
2810
+ Rocket
2811
+ 9-01
2812
+ 10-4
2813
+ 102
2814
+ 100
2815
+ 102Max.Areal Density against characteristic D
2816
+ 25
2817
+ Sphere
2818
+ Cone
2819
+ 20
2820
+ Rocket
2821
+ 15
2822
+ 10
2823
+ 102
2824
+ 10-1
2825
+ 100
2826
+ 101
2827
+ D (m)Page 20
2828
+
2829
+
2830
+ Comparison of D = 10 cm and D = 10 m Cone Geometries
2831
+ Case
2832
+ A
2833
+ L
2834
+ r
2835
+ Surface
2836
+ Area (m2)
2837
+ 𝑨𝒕𝒐𝒕𝒂𝒍/
2838
+ 𝑨𝒐𝒖𝒕 ratio
2839
+ Payload
2840
+ (mg)
2841
+ Altitude
2842
+ (km)
2843
+ Discretization of 500 points
2844
+ D =
2845
+ 10 cm
2846
+ Min. Altitude
2847
+ 0.15 mm
2848
+ 0.16 mm
2849
+ 1.94 cm
2850
+ 0.03
2851
+ 25.92
2852
+ 0.52
2853
+ 55
2854
+ Max. Payload
2855
+ 1.24 mm
2856
+ 1.25 mm
2857
+ 4.97 cm
2858
+ 0.04
2859
+ 5.05
2860
+ 102.31
2861
+ 80
2862
+ D =
2863
+ 10 m
2864
+ Min. Altitude
2865
+ 0.21 mm
2866
+ 0.22 mm
2867
+ 2.36 m
2868
+ 317.52
2869
+ 18.16
2870
+ 95 288
2871
+ 60
2872
+ Max. Payload
2873
+ 1.24 mm
2874
+ 1.25 mm
2875
+ 4.97 m
2876
+ 391.56
2877
+ 5.05
2878
+ 780 408
2879
+ 80
2880
+
2881
+ Table 12: Combinations of A, L and r that returned the optimal cone geometries described in Figure S15 and Figure
2882
+ S16 above.
2883
+
2884
+ Figure S15: Minimum Altitude (a), Maximum Payload (b) and Areal Density (c) plots for the D = 10 cm Cone
2885
+ Geometry. Here, the geometry that was able to levitate payload at minimum altitude (0.52 mg at 55 km) is shown in
2886
+ (d), while that which was able to levitate the maximum payload (102.31 mg at 80 km) is shown in (e).
2887
+
2888
+ a
2889
+ c
2890
+ b
2891
+ d
2892
+ e
2893
+ Figure S16: Minimum Altitude (a), Maximum Payload (b) and Areal Density (c) plots for the D = 10 m Cone
2894
+ Geometry. Here, the geometry that was able to levitate payload at minimum altitude (95 288 mg at 60 km) is shown
2895
+ in (d), while that which was able to levitate the maximum payload (780 408 mg at 80 km) is shown in (e).
2896
+
2897
+ a
2898
+ c
2899
+ b
2900
+ d
2901
+ e
2902
+
2903
+ 0.045
2904
+ 0.04
2905
+ 0.035
2906
+ 0.03
2907
+
2908
+ Aerial Densities: Cone Geometry
2909
+ 0.025
2910
+ 5.8g/m²99%percentile density
2911
+ 0.02
2912
+ 4.49g/m~190%percentile density
2913
+ 2.84g/m150%percentile density
2914
+ 2.35g/m|25%percentiledensity
2915
+ -01
2916
+ 10-3
2917
+ 102
2918
+ A [m]
2919
+ 104
2920
+ L [m]0.04
2921
+ 0.03
2922
+ [m]
2923
+ MinimumAltitudes:ConeGeometry
2924
+ 0.02
2925
+ 55km
2926
+ 60 km
2927
+ 65km
2928
+ 70km
2929
+ 10~2
2930
+ 104
2931
+ 103
2932
+ 102
2933
+ A [m]
2934
+ 104
2935
+ L[m]0.045
2936
+ 0.04
2937
+ 0.035
2938
+ 0.03
2939
+ Maximum Payloads:Cone Geometry
2940
+ 101.29mg/99%max.payload
2941
+ 0.025
2942
+ 92.08 mg/90% max.payload
2943
+ 51.15 mg/50% max.payload
2944
+ 30.69mg|30%max.payload
2945
+ 0.02
2946
+ 10~
2947
+ 104
2948
+ 103
2949
+ 102
2950
+ A [m]
2951
+ L[m]r=1.94cm
2952
+ r=4.97cmAerial Densities:ConeGeometry
2953
+ 4.85g/m199%percentile density
2954
+ 2
2955
+ 3.88g/m²90%percentile density
2956
+ 2.58g/m50%percentiledensity
2957
+ 2.19g/m25%percentile density
2958
+ 102
2959
+ 10-3
2960
+ 103
2961
+ 10-2
2962
+ A[m]
2963
+ o1
2964
+ 104
2965
+ L [m]3
2966
+ [u]
2967
+ MinimumAltitudes:Cone Geometry
2968
+ 2
2969
+ 60km
2970
+ 65 km
2971
+ 70km
2972
+ 75km
2973
+ 102
2974
+ 102
2975
+ A [m]
2976
+ -01
2977
+ 104
2978
+ L[m]4.5
2979
+ 4.
2980
+ 3.5
2981
+ 3
2982
+ MaximumPayloads:ConeGeometry
2983
+ 772603.92mg/99%max.payload
2984
+ 2.53
2985
+ 702367.2mg/90%max.payload
2986
+ 390204mg/50%max.payload
2987
+ 2
2988
+ 234122.4mg/30%max.payload
2989
+ 102
2990
+ 10-3
2991
+ 104
2992
+ 103
2993
+ 102
2994
+ A[m]
2995
+ 104
2996
+ L [m]r=2.36m
2997
+ r=4.97mPage 21
2998
+
2999
+ Comparison of D = 10 cm and D = 10 m Rocket Geometries
3000
+ Case
3001
+ A
3002
+ L
3003
+ r
3004
+ Surface
3005
+ Area (m2)
3006
+ 𝑨𝒕𝒐𝒕𝒂𝒍/
3007
+ 𝑨𝒐𝒖𝒕 ratio
3008
+ Payload
3009
+ (mg)
3010
+ Altitude
3011
+ (km)
3012
+ Discretization of 500 points
3013
+ D =
3014
+ 10 cm
3015
+ Min. Altitude
3016
+ 0.11 mm
3017
+ 0.12 mm
3018
+ 0.50 cm
3019
+ 0.001
3020
+ >100
3021
+ 0.01
3022
+ 50
3023
+ Max. Payload
3024
+ 1.24 mm
3025
+ 1.25 mm
3026
+ 4.97 cm
3027
+ 0.05
3028
+ 6.02
3029
+ 129.56
3030
+ 80
3031
+ D =
3032
+ 10 m
3033
+ Min. Altitude
3034
+ 0.15 mm
3035
+ 0.16 mm
3036
+ 0.87 m
3037
+ 59.39
3038
+ 24.98
3039
+ 2132.57
3040
+ 55
3041
+ Max. Payload
3042
+ 1.24 mm
3043
+ 1.25 mm
3044
+ 4.97 m
3045
+ 467.23
3046
+ 6.02
3047
+ 1021162
3048
+ 80
3049
+
3050
+ Table 13: Combinations of A, L and r that returned the optimal rocket geometries described in Figure S17 and Figure
3051
+ S18 above.
3052
+ Figure S17: Minimum Altitude (a), Maximum Payload (b) and Areal Density (c) plots for the D = 10 cm Rocket
3053
+ Geometry. Here, the geometry that was able to levitate payload at minimum altitude (0.01 mg at 50 km) is shown in (d),
3054
+ while that which was able to levitate the maximum payload (129.56 mg at 80 km) is shown in (e).
3055
+
3056
+ a
3057
+ c
3058
+ b
3059
+ d
3060
+ r = 5.00 mm
3061
+ e
3062
+ r = 4.97 cm
3063
+ Figure S18: Minimum Altitude (a), Maximum Payload (b) and Areal Density (c) plots for the D = 10 m Rocket
3064
+ Geometry. Here, the geometry that was able to levitate payload at minimum altitude (2 132.57 mg at 55 km) is shown
3065
+ in (d), while that which was able to levitate the maximum payload (1 021 162 mg at 80 km) is shown in (e).
3066
+
3067
+ a
3068
+ c
3069
+ b
3070
+ r = 0.87 m
3071
+ r = 4.97 m
3072
+ d
3073
+ e
3074
+
3075
+ 0.04
3076
+ 0.03
3077
+ 0.02
3078
+ AerialDensities:RocketGeometry
3079
+ 6.64g/m²99%percentiledensity
3080
+ 0.01
3081
+ 5.78g/m|90%percentiledensity
3082
+ 4.33g/m/50%percentiledensity
3083
+ 3.36g/m²|25%percentile density
3084
+ 102
3085
+ A [m]
3086
+ 104
3087
+ 103
3088
+ 102
3089
+ 104
3090
+ L [m]0.04
3091
+ 0.03
3092
+ 0.02
3093
+ [m]
3094
+ MinimumAltitudes:Rocket Geometry
3095
+ 50km
3096
+ 0.01
3097
+ 55km
3098
+ 60km
3099
+ 65km
3100
+ 102
3101
+ 104
3102
+ 102
3103
+ A[m]
3104
+ 104
3105
+ L[m]0.045
3106
+ 0.04
3107
+ 0.035
3108
+ 0.03
3109
+ MaximumPayloads:RocketGeometry
3110
+ 128.26mg|99%max.payload
3111
+ 0.025
3112
+ 116.6mg/90%max.payload
3113
+ 64.78mg|50% max.payload
3114
+ 38.87mg|30%max.payload
3115
+ 0.02
3116
+ 102
3117
+ 103
3118
+ 10~
3119
+ 10-3
3120
+ 10~2
3121
+ A [m]
3122
+ 104
3123
+ L[m]41
3124
+ 3
3125
+ 2
3126
+ [u]
3127
+ Aerial Densities:RocketGeometry
3128
+ 5.18g/m²199%percentile density
3129
+ 1.
3130
+ 4.15g/m90%percentiledensity
3131
+ 2.78g/m150%percentiledensity
3132
+ 2.37g/m²25%percentiledensity
3133
+ 102
3134
+ 10-3
3135
+ 104
3136
+ 10-3
3137
+ 10-2
3138
+ A [m]
3139
+ 104
3140
+ L[m]4
3141
+ 3
3142
+ 2
3143
+
3144
+ MinimumAltitudes:Rocket Geometry
3145
+ 55km
3146
+ 1
3147
+ 60km
3148
+ 65km
3149
+ 70km
3150
+ 102
3151
+ 10-4
3152
+ 102
3153
+ A [m]
3154
+ -01
3155
+ L [m]4.5
3156
+ 43
3157
+ 3.5,
3158
+ MaximumPayloads:RocketGeometry
3159
+ 3
3160
+ 1010951.02mg|99%max.payload
3161
+ 919046.38mg|90%max.payload
3162
+ 2.53
3163
+ 510581.32mg|50%max.payload
3164
+ 306348.79mg30%max.payload
3165
+ 102
3166
+ 103
3167
+ 104
3168
+ 10-3
3169
+ 102
3170
+ A[m]
3171
+ 104
3172
+ L [m]Page 22
3173
+
3174
+ Comparison of D = 10 cm and D = 10 m Sphere Geometries
3175
+ Case
3176
+ A
3177
+ L
3178
+ r
3179
+ Surface
3180
+ Area (m2)
3181
+ 𝑨𝒕𝒐𝒕𝒂𝒍/
3182
+ 𝑨𝒐𝒖𝒕 ratio
3183
+ Payload
3184
+ (mg)
3185
+ Altitude
3186
+ (km)
3187
+ Discretization of 500 points
3188
+ D =
3189
+ 10 cm
3190
+ Min. Altitude
3191
+ 0.15 mm
3192
+ 0.16 mm
3193
+ 1.93 cm
3194
+ 0.03
3195
+ 25.81
3196
+ 1.41
3197
+ 55
3198
+ Max. Payload
3199
+ 1.03 mm
3200
+ 1.04 mm
3201
+ 4.02 cm
3202
+ 0.03
3203
+ 4.93
3204
+ 79.86
3205
+ 80
3206
+ D =
3207
+ 10 m
3208
+ Min. Altitude
3209
+ 0.15 mm
3210
+ 0.16 mm
3211
+ 1.90 m
3212
+ 302.22
3213
+ 26.66
3214
+ 831.92
3215
+ 55
3216
+ Max. Payload
3217
+ 1.24 mm
3218
+ 1.25 mm
3219
+ 3.67 m
3220
+ 263.63
3221
+ 6.23
3222
+ 540 528
3223
+ 80
3224
+
3225
+ Table 14: Combinations of A, L and r that returned the optimal sphere geometries described in Figure S19 and Figure
3226
+ S20 above.
3227
+ Figure S19: Minimum Altitude (a), Maximum Payload (b) and Areal Density (c) plots for the D = 10 cm Sphere
3228
+ Geometry. Here, the geometry that was able to levitate payload at minimum altitude (1.41 mg at 55 km) is shown in
3229
+ (d), while that which was able to levitate the maximum payload (79.86 mg at 80 km) is shown in (e).
3230
+
3231
+ a
3232
+ c
3233
+ b
3234
+ d
3235
+ e
3236
+ Figure S20: Minimum Altitude (a), Maximum Payload (b) and Areal Density (c) plots for the D = 10 m Sphere
3237
+ Geometry. Here, the geometry that was able to levitate payload at minimum altitude (831.92 mg at 55 km) is shown
3238
+ in (d), while that which was able to levitate the maximum payload (540 528 mg at 80 km) is shown in (e).
3239
+
3240
+ a
3241
+ c
3242
+ b
3243
+ d
3244
+ e
3245
+
3246
+ 0.043
3247
+ 0.03
3248
+ AerialDensities:SphereGeometry
3249
+ 7.05g/m²|99% percentile density
3250
+ 0.02
3251
+ 5.13g/m²190%percentile density
3252
+ 3.01g/m/50%percentiledensity
3253
+ 2.43g/m²25%percentiledensity
3254
+ 102
3255
+ 103
3256
+ 102
3257
+ A [m]
3258
+ 10~4
3259
+ 104
3260
+ 10-3
3261
+ L[m]0.043
3262
+ 0.03
3263
+ [m]
3264
+ MinimumAltitudes:SphereGeometry
3265
+ 0.02
3266
+ 55km
3267
+ 60km
3268
+ 65km
3269
+ 70km
3270
+ 102
3271
+ 102
3272
+ A[m]
3273
+ -01
3274
+ 104
3275
+ L [m]0.04
3276
+ MaximumPayloads:SphereGeometry
3277
+ 79.06mg/99%max.payload
3278
+ 71.87mg90%max.payload
3279
+ 0.02
3280
+ 39.93mg/50%max.payload
3281
+ 23.96mg|30%max.payload
3282
+ 102
3283
+ 103
3284
+ 102
3285
+ A [m]
3286
+ 104
3287
+ 104
3288
+ 10-3
3289
+ L[m]r=1.90
3290
+ r=3.67
3291
+ m
3292
+ u4.5
3293
+ 4.
3294
+ 3.5
3295
+ 3
3296
+ AerialDensities:SphereGeometry
3297
+ 2.5
3298
+ 5.03g/m199%percentile density
3299
+ 2
3300
+ 3.99g/m90%percentiledensity
3301
+ 2.61g/m|50%percentile density
3302
+ 2.2g/m²25%percentiledensity
3303
+ 10~2
3304
+ 10-3
3305
+ 104
3306
+ 10-3
3307
+ 102
3308
+ A [m]
3309
+ 10-4
3310
+ L[m]43
3311
+ m
3312
+ [m]
3313
+ MinimumAltitudes: Sphere Geometry
3314
+ 2
3315
+ 55km
3316
+ 60km
3317
+ 65km
3318
+ 70km
3319
+ 102
3320
+ 102
3321
+ A [m]
3322
+ 104
3323
+ 104
3324
+ L[m]4.5
3325
+ 4
3326
+ 3.5
3327
+ E
3328
+ 3
3329
+ MaximumPavloads: Sphere Geometry
3330
+ 2.53
3331
+ 535122.95mg/99%max:payload
3332
+ 486475.41mg/90%max.payload
3333
+ 23
3334
+ 270264.11mg/50%max.payload
3335
+ 162158.47mg/30%max.payload
3336
+ 102
3337
+ 10-
3338
+ 104
3339
+ 103
3340
+ 102
3341
+ A [m]
3342
+ 104
3343
+ L [m]r=1.93
3344
+ r=4.02
3345
+ cm
3346
+ cmPage 23
3347
+ References
3348
+
3349
+ [R1] Azadi, Mohsen, George A. Popov, Zhipeng Lu, Andy G. Eskenazi, Avery Ji Won Bang, Matthew F.
3350
+ Campbell, Howard Hu, and Igor Bargatin. "Controlled levitation of nanostructured thin films for sun-
3351
+ powered near-space flight." Science Advances 7, no. 7 (2021): eabe1127.
3352
+
3353
+ [R2] Cappella, Andrea, Jean‐Luc Battaglia, Vincent Schick, Andrzej Kusiak, Alessio Lamperti, Claudia
3354
+ Wiemer, and Bruno Hay. "High Temperature Thermal Conductivity of Amorphous Al2 O 3 Thin Films
3355
+ Grown by Low Temperature ALD." Advanced Engineering Materials 15, no. 11 (2013): 1046-1050.
3356
+
3357
+ [R3] Cortes, John, Christopher Stanczak, Mohsen Azadi, Maanav Narula, Samuel M. Nicaise, Howard Hu,
3358
+ and Igor Bargatin. "Photophoretic levitation of macroscopic nanocardboard plates." Advanced Materials 32,
3359
+ no. 16 (2020): 1906878.
3360
+
3361
+ [R4] Eskenazi, Andy, Tom Celenza, and Igor Bargatin. “MATLAB-fluid-flow-parametric-studies.” (2022)
3362
+ https://github.com/andyeske/MATLAB-fluidflow-parametric-studies
3363
+
3364
+ [R5] Lin, Chen, Samuel M. Nicaise, Drew E. Lilley, Joan Cortes, Pengcheng Jiao, Jaspreet Singh, Mohsen
3365
+ Azadi et al. "Nanocardboard as a nanoscale analog of hollow sandwich plates." Nature communications 9,
3366
+ no. 1 (2018): 1-8.
3367
+
3368
+ [R6] O'Neal Jr, Cleveland, and Richard S. Brokaw. "Relation between thermal conductivity and viscosity
3369
+ for some nonpolar gases." The Physics of Fluids 5, no. 5 (1962): 567-574.
3370
+
3371
+ [R7] Sharipov, Felix, and Vladimir Seleznev. "Data on internal rarefied gas flows." Journal of Physical
3372
+ and Chemical Reference Data 27, no. 3 (1998): 657-706.
3373
+
3374
+ [R8] Teagan, William P., and George S. Springer. "Heat‐Transfer and Density‐Distribution Measurements
3375
+ between Parallel Plates in the Transition Regime." The Physics of Fluids 11, no. 3 (1968): 497-506.
3376
+
3377
+ [R9] Wagiman, Abdullah, Mohammad Sukri Mustapa, Mohd Amri Lajis, Shazarel Shamsudin, Mahmod
3378
+ Abd Hakim, and Rosli Asmawi. "Effect of Thermally Formed Alumina on Density of AlMgSi Alloys
3379
+ Extrudate Recycled Via Solid State Technique." Journal of Advanced Research in Fluid Mechanics and
3380
+ Thermal Sciences 87, no. 2 (2021): 137-144.
3381
+
3382
+ [R10] Wu, H., S. Grabarnik, A. Emadi, G. De Graaf, and R. F. Wolffenbuttel. "Characterization of thermal
3383
+ cross-talk in a MEMS-based thermopile detector array." Journal of Micromechanics and
3384
+ Microengineering 19, no. 7 (2009): 074022.
3385
+
QtE3T4oBgHgl3EQfDAk3/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
SdAyT4oBgHgl3EQfuPmB/content/tmp_files/2301.00609v1.pdf.txt ADDED
@@ -0,0 +1,2307 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Generalized Uncertainty Principle Impact on Nonextensive Black Hole Thermodynamics
2
+ Ilim Çimdiker,1, ∗ Mariusz P. Da¸browski,1, 2, 3, † and Hussain Gohar1, ‡
3
+ 1Institute of Physics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin, Poland
4
+ 2National Centre for Nuclear Research, Andrzeja Sołtana 7, 05-400 Otwock, Poland
5
+ 3Copernicus Center for Interdisciplinary Studies, Szczepa´nska 1/5, 31-011 Kraków, Poland
6
+ (Dated: January 3, 2023)
7
+ The effect of the generalized uncertainty principle (GUP) on nonextensive thermodynamics ap-
8
+ plied to black holes, as well as the sparsity of radiation at different temperatures associated with
9
+ each nonextensive entropy, is investigated. We examine the Rényi, Tsallis-Cirto, Kaniadakis, Sharma
10
+ Mittal, and Barrow entropies, temperatures, and heat capacities and show that, in each case, due to
11
+ GUP corrections, the temperature and entropy have finite values, implying that the final state of the
12
+ black hole is a remnant at the end of the evaporation process and that the sparsity of the radiation at
13
+ each temperature depends on the mass of the black hole. We also find that GUP reduces the value of
14
+ the sparsity parameter for each case as compared to the sparsity parameter at Hawking temperature,
15
+ which is always constant throughout the evaporation.
16
+ I.
17
+ INTRODUCTION
18
+ Black holes emit radiation due to the Hawking evap-
19
+ oration process, and therefore, there is an established
20
+ concept of Hawking temperature [1] and Bekenstein
21
+ entropy [2] connected with the black hole horizon.
22
+ The black hole evaporation process operates within the
23
+ purview of quantum field theory, and one of its more in-
24
+ triguing aspects may be that it appears to indicate a non-
25
+ unitary evolution, which gives rise to the well-known is-
26
+ sue of the information loss paradox [3–5]. In this regard,
27
+ black holes behave like thermodynamic objects, and the
28
+ laws of black hole thermodynamics [6–10] are analogous
29
+ to the conventional thermodynamic laws. The thermo-
30
+ dynamics of black holes have been extensively studied
31
+ and used in a variety of cosmological and gravitational
32
+ applications [11–20].
33
+ Entropy measures how difficult it is for an outside ob-
34
+ server to get information about the underlying structure
35
+ of the system. This is a clear reflection of the macro-
36
+ scopic features that result from the quantum statisti-
37
+ cal mechanics that govern the behavior of quantum mi-
38
+ crostates. For the case of black holes, there is no defi-
39
+ nition of Bekenstein entropy in quantum statistical me-
40
+ chanics and it only relies on Hawking’s area theorem
41
+ [21], therefore, it would be required to have a complete
42
+ theory of quantum gravity in order to fully comprehend
43
+ the origin of this entropy and the nature of microstates
44
+ in the case of black holes. Therefore, we rely on the defi-
45
+ nition of Bekenstein entropy for black holes. For the case
46
+ of a Schwarzschild black hole with mass M, the Hawk-
47
+ ing temperature TH and Bekenstein entropy SB are given
48
+ by [1, 2]
49
+ TH =
50
+ ¯hκ
51
+ 2πkBc , SB = kBc3A
52
+ 4G¯h
53
+ ,
54
+ (1)
55
56
57
58
+ where ¯h, G, kB, and c are the reduced Planck constant,
59
+ the Newton gravitational constant, the Boltzmann con-
60
+ stant, and the speed of light, respectively. The area A of
61
+ the event horizon is defined as A = 4πr2
62
+ h in the above
63
+ equation (1), where rh = 2GM/c2 is the Schwarzschild
64
+ radius and κ = c4/4πGM is the surface gravity defined
65
+ on the event horizon of the Schwarzschild black hole.
66
+ The core assumption of Gibbs thermodynamics and
67
+ statistical mechanics is that entropy is extensive and ad-
68
+ ditive. Nonextensive statistical mechanics, such as Tsal-
69
+ lis nonextensive statistical mechanics [22–31], is the out-
70
+ come of removing this assumption.
71
+ The assumption
72
+ of the extensive nature of entropy is connected to ig-
73
+ noring the long-range forces between thermodynamic
74
+ sub-systems. Since the size of the system exceeds the
75
+ range of the interaction between the system’s compo-
76
+ nents, Gibbs thermodynamics ignores these long-range
77
+ forces. Because of this, the total entropy of a composite
78
+ system equals the sum of the entropies of the individ-
79
+ ual subsystems and entropy grows with the size of the
80
+ system. However, long-range forces are important in
81
+ various unique thermodynamic systems. For instance,
82
+ if we think of a black hole as a (3 + 1) dimensional ob-
83
+ ject, it is vital to note that Bekenstein entropy scales with
84
+ the area and is thus regarded as a nonextensive quan-
85
+ tity [32–38]. Furthermore, because of the area scaling,
86
+ Bekenstein entropy is nonadditive.
87
+ Therefore, Gibbs
88
+ thermodynamics or statistical mechanics may not be the
89
+ appropriate choice for studying the thermodynamics of
90
+ black holes. In order to understand the nonextensive
91
+ and nonadditive nature of Bekenstein entropy, several
92
+ extensions [22, 39–44] of standard Gibbs thermodynam-
93
+ ics have been applied to black holes and cosmologi-
94
+ cal horizons [45–70]. One of the main proposals is the
95
+ Tsallis-Cirto’s black hole entropy definition [32], which
96
+ makes the black entropy extensive and compatible with
97
+ the Legendre structure. Rényi entropy [39], being a mea-
98
+ sure of entanglement, is another definition of entropy
99
+ applied to black holes and cosmological horizons which
100
+ is nonextensive, but additive (by assumption). There
101
+ arXiv:2301.00609v1 [gr-qc] 2 Jan 2023
102
+
103
+ 2
104
+ have been some other nonextensive forms of entropy
105
+ suggested such as the Sharma-Mittal entropy [40, 41]
106
+ as a generalization of Rényi entropy, the Kaniadakis en-
107
+ tropy [42] which takes inspiration from Lorentz group
108
+ transformations and the Barrow entropy [44] which is
109
+ based on a hypothetical fractal structure of black hole
110
+ horizon as a result of quantum fluctuations.
111
+ Due to the prevalence of quantum gravity effects, it is
112
+ anticipated that the semiclassical technique would fail
113
+ during the last phases of Hawking evaporation. There is
114
+ currently no satisfactory theory of quantum gravity that
115
+ enables us to completely explain that regime, despite the
116
+ development of several quite diverse proposals [71–77].
117
+ Investigating the phenomenological consequences of an
118
+ underlying theory of quantum gravity is one technique
119
+ to explore the quantum gravity effects at those scales.
120
+ The generalized uncertainty principle (GUP) [76–79] is
121
+ one approach that has the benefit of being sufficiently
122
+ generic to be compatible with several quantum gravity
123
+ theories. The Bekenstein entropy and Hawking temper-
124
+ ature of a black hole in its last phases of evaporation
125
+ are modified within this framework [73].
126
+ Because of
127
+ these modifications, black holes do not entirely evapo-
128
+ rate during the evaporation process, and the final state
129
+ of the black hole is a remnant of the order of Planck mass
130
+ Sparsity [80–91] is an important feature of Hawking
131
+ radiation. It is defined as the average time between the
132
+ emission of successive quanta over the timescales set by
133
+ the energies of the emitted quanta. It was shown that
134
+ Hawking radiation is very sparse during the black hole
135
+ evaporation process [84], which is one of the key char-
136
+ acteristics that distinguish it from black-body radiation.
137
+ However, it has been found that when GUP corrections
138
+ are incorporated [87–89], the sparsity decreases toward
139
+ the late stages of evaporation. When nonextensivity is
140
+ considered in the context of Rényi temperature [90], the
141
+ Rényi radiation is initially not sparse, but as evaporation
142
+ progresses, it begins to become sparse and eventually
143
+ approaches the case of Hawking radiation.
144
+ In this paper, we are interested in exploring the GUP
145
+ modifications to the nonextensive entropies and corre-
146
+ sponding thermodynamic quantities in Rényi, Tsallis-
147
+ Cirto, Sharma-Mittal, Kaniadakis, and Barrow nonex-
148
+ tensive statistics. Furthermore, the sparsity of the radia-
149
+ tion is analyzed at different temperatures corresponding
150
+ to different nonextensive entropies.
151
+ The following is the outline of the paper. In Sec. II, we
152
+ introduce the notion of GUP and apply it to the case of
153
+ standard thermodynamic black hole quantities. In Sec.
154
+ III, we introduce nonextensive entropies and accompa-
155
+ nying nonextensive thermodynamic quantities, as well
156
+ as GUP modifications to nonextensive black hole ther-
157
+ modynamics. Finally, in Sec. IV, we summarize and
158
+ discuss our findings.
159
+ II.
160
+ GUP AND BLACK HOLE THERMODYNAMICS
161
+ A.
162
+ Generalized Uncertainty Principle
163
+ One common aspect of several quantum gravity the-
164
+ ories is that they all predict a minimum measurable
165
+ length [77, 92].
166
+ For example, the notion of minimal
167
+ length is defined in string theory as the string length
168
+ [72, 93], in loop quantum gravity [74] it is the expec-
169
+ tation value of the length operator, and this notion
170
+ can also be developed by the phenomenological aspects
171
+ coming from black hole physics [77]. Because of the ap-
172
+ pearance of a minimum length at the Planck scale in var-
173
+ ious quantum gravity approaches, it has been proposed
174
+ that the Heisenberg Uncertainty Principle (HUP)
175
+ ∆x0∆p ≥ ¯h, or ∆x0 ∼
176
+ ¯h
177
+ ∆p
178
+ (2)
179
+ where ∆x0 and ∆p are position and momentum uncer-
180
+ tainties can be modified when gravitational interaction
181
+ is introduced. The simplest argument for the modifica-
182
+ tion of HUP within the framework of Newtonian theory
183
+ is that there is a gravitational acceleration⃗a of an electron
184
+ due to photon of mass E/c2 [73], where E is the pho-
185
+ ton energy and r is the photon-electron distance, which
186
+ reads
187
+ ⃗a = ¨⃗r = − G(E/c2)
188
+ r2
189
+ ⃗r
190
+ r,
191
+ (3)
192
+ and the interaction takes place in a characteristic region
193
+ of length L ∼ r and in characteristic time t ∼ L/c. Then,
194
+ the velocity acquired by an electron ∆v is
195
+ ∆v ∼ GE
196
+ c2r2
197
+ L
198
+ c ,
199
+ (4)
200
+ and the (extra due to gravity) distance ∆x1 it is shifted
201
+ reads
202
+ ∆x1 ∼ GE
203
+ c2r2
204
+ L2
205
+ c2 ∼ G∆p
206
+ c3
207
+ = c∆p
208
+ 4Fmax
209
+ = l2
210
+ p
211
+ ∆p
212
+ ¯h ,
213
+ (5)
214
+ where lp =
215
+
216
+ G¯h/c3 is the Planck length, and Fmax =
217
+ c4/4G is the maximum force [94–97]. Extra uncertainty (5)
218
+ adds to the standard HUP uncertainty of position ∆x0 as
219
+ in (2) giving
220
+ ∆x = ∆x0 + ∆x1 ∼
221
+ ¯h
222
+ ∆p + l2
223
+ p
224
+ ∆p
225
+ ¯h ,
226
+ (6)
227
+ leading to the generalized uncertainty principle (GUP)
228
+ ∆x∆p ≥ ¯h
229
+
230
+ 1 +
231
+ l2
232
+ p
233
+ ¯h2 (∆p)2
234
+
235
+ .
236
+ (7)
237
+ Taking an algebraic point of view, GUP can be derived
238
+ from the deformed commutation relation between the
239
+
240
+ 3
241
+ position operator ˆx and the momentum operator ˆp such
242
+ that
243
+ [ ˆx, ˆp] = i¯h f ( ˆp),
244
+ (8)
245
+ where f ( ˆp) is a general function of momentum operator
246
+ ˆp and there exist different proposed functions for f ( ˆp).
247
+ In order to make the function f ( ˆp) compatible with (7),
248
+ following the literature, we choose
249
+ f ( ˆp) = 1 + α
250
+ l2
251
+ p
252
+ ¯h2 ˆp2,
253
+ (9)
254
+ where we the introduce GUP parameter α – a dimen-
255
+ sionless parameter predicted to be an order of unity, but
256
+ in reality bounded by different experiments and obser-
257
+ vations to be much larger than that [98–102]. By intro-
258
+ ducing α, the equation (10), now, reads as
259
+ ∆x∆p ≥ ¯h
260
+
261
+ 1 + α
262
+ l2
263
+ p
264
+ ¯h2 (∆p)2
265
+
266
+ .
267
+ (10)
268
+ 1.
269
+ GUP Modified Hawking Temperature and Bekenstein Entropy
270
+ An interesting application of (10) to black hole physics
271
+ is the modification to the Hawking temperature, which
272
+ can be derived by solving it for ∆p, which gives
273
+ ∆p = ∆x ¯h
274
+ αl2p
275
+
276
+ �1 ±
277
+
278
+ 1 −
279
+ αl2p
280
+ (∆x)2
281
+
282
+ � .
283
+ (11)
284
+ We consider the + sign in (11), following the discus-
285
+ sion in [87]. Considering the minimum position uncer-
286
+ tainty near the event horizon of the Schwarzschild black
287
+ hole as ∆x = 2lp = 4GM/c2, where lp is taken as the
288
+ Schwarzschild radius rh, the GUP modified Hawking
289
+ temperature TGUP reads
290
+ TGUP =
291
+ m2
292
+ pc2
293
+ 8πkBM
294
+
295
+ ���
296
+ 4
297
+ 2 +
298
+
299
+ 4 − α
300
+ m2p
301
+ M2
302
+
303
+ ��� .
304
+ (12)
305
+ By introducing a correction term due to GUP, K(α, M),
306
+ TGUP can be written in terms of TH and K, such that
307
+ TGUP = TH(M)K(α, M),
308
+ (13)
309
+ where the GUP correction term is defined as
310
+ K(α, M) =
311
+ 4
312
+ 2 +
313
+
314
+ 4 − α
315
+ m2p
316
+ M2
317
+ .
318
+ (14)
319
+ This provides us with a more compact form of TGUP,
320
+ which will be used in the next sections for GUP mod-
321
+ ifications to the thermodynamic quantities. Using the
322
+ Clausius relation, the GUP modified Bekenstein entropy
323
+ SGUP in terms of SB and the correction term K(α, M) can
324
+ be written as
325
+ SGUP = SB
326
+ K − απkB
327
+ 2
328
+ ln
329
+ � 4M
330
+ m0K
331
+
332
+ ,
333
+ (15)
334
+ where m0 is a dimensionful constant of unit mass, which
335
+ is introduced in order to make the logarithm dimension-
336
+ less. Note that in the limit α → 0, the correction term K
337
+ goes to one, and hence TGUP and SGUP reduce to TH and
338
+ SB. The plots of (12) and (15) are given in Figs. 1 and 2.
339
+ It is important to mention that all the plots in the pa-
340
+ per, unless explicitly stated, are given in natural units
341
+ ¯h = c = G = 1 and also with the GUP parameter α = 1.
342
+ TH
343
+ TGUP,α=1
344
+ TGUP,α=-1
345
+ 0.0
346
+ 0.5
347
+ 1.0
348
+ 1.5
349
+ 2.0
350
+ 2.5
351
+ 3.0
352
+ 0.0
353
+ 0.1
354
+ 0.2
355
+ 0.3
356
+ 0.4
357
+ 0.5
358
+ M
359
+ T
360
+ Figure 1. Temperature vs mass for the Hawking temperature
361
+ TH and the GUP corrected temperature with positive and neg-
362
+ ative values of α. Threshold with positive α for mass lies at the
363
+ remnant mass M2r = (α/4)m2p (cf. formula (16)).
364
+ SB
365
+ SGUP,α=1
366
+ SGUPα=-1
367
+ 0.0
368
+ 0.5
369
+ 1.0
370
+ 1.5
371
+ 2.0
372
+ 0
373
+ 10
374
+ 20
375
+ 30
376
+ 40
377
+ 50
378
+ M
379
+ S
380
+ Figure 2. Entropy vs mass for the Hawking temperature and
381
+ GUP corrected temperatures with positive and negative val-
382
+ ues of α. The threshold for mass lies at the remnant mass given
383
+ by M2r = (α/4)m2p.
384
+ It is interesting to note that, for real physical situa-
385
+ tions, the equation (14) gives a bound on the mass which
386
+ reads: M2 ≥ αm2
387
+ p/4. This means that for positive values
388
+ of α, the black hole evaporation stops when the mass of
389
+ the black hole reaches some critical value of mass
390
+ Mr =
391
+ √αmp
392
+ 2
393
+ = 2lp
394
+ √α
395
+ c2
396
+ Fmax,
397
+ (16)
398
+ which is called the black hole remnant mass. Therefore,
399
+ we can say that the final state of the black hole evapora-
400
+ tion is a remnant having the mass Mr. In fact, without
401
+
402
+ 4
403
+ a well-defined quantum gravity theory, we cannot pre-
404
+ dict what happens if the mass of a black hole is smaller
405
+ than this critical value. For the critical mass value Mr,
406
+ the formulas (12) and (15) for TGUP and SGUP, give the
407
+ temperature Tr and the entropy Sr for the remnant as
408
+ [90]
409
+ Tr =
410
+ mpc2
411
+ 2πkB
412
+ √α, Sr = παkB
413
+ 2
414
+
415
+ 1 − ln
416
+ �√αmp
417
+ m0
418
+ ��
419
+ ,
420
+ (17)
421
+ provided that α > 0. For α < 0 in (14), we have a smooth
422
+ correction function defined for all black hole mass val-
423
+ ues.
424
+ In this case, the black hole continues to radiate
425
+ slowly and yields an infinite lifetime [89]. When M ap-
426
+ proaches zero, interestingly, the temperature is still fi-
427
+ nite, and for this case, in [103], it is referred to as a rem-
428
+ nant with zero rest mass.
429
+ 2.
430
+ GUP Modified Heat Capacity
431
+ In order to investigate the GUP modifications to the
432
+ heat capacity of a black hole with mass M, we use the
433
+ definition of heat capacity C, which reads
434
+ C = −S′2(M)
435
+ S′′(M) ,
436
+ (18)
437
+ where S is the black hole entropy and prime and dou-
438
+ ble prime denote the first and second derivative with
439
+ respect to the mass M. For the case of Schwarzschild
440
+ black hole, we have (denoting C as CSc)
441
+ CSc = −8πkB
442
+ M2
443
+ m2p
444
+ ,
445
+ (19)
446
+ and we can see that it is negative for all mass values.
447
+ This means that the Schwarzschild black hole is thermo-
448
+ dynamically unstable. In order to introduce GUP cor-
449
+ rections, we introduce the quantity
450
+ βGUP =
451
+ 1
452
+ kBTGUP
453
+ ,
454
+ (20)
455
+ which after using (12) gives
456
+ S′
457
+ GUP(M)
458
+ kBc2
459
+ = βGUP = β
460
+ K ,
461
+ (21)
462
+ where β = 1/kBTH is the inverse Hawking tempera-
463
+ ture. Differentiating βGUP once more, and using equa-
464
+ tions (18) and (21), we obtain the GUP modified heat
465
+ capacity CGUP, which can be written as (cf. Fig. 3)
466
+ CGUP = CSc
467
+ �2 − K
468
+ K2
469
+
470
+ .
471
+ (22)
472
+ This means that the GUP corrections still yield a nega-
473
+ tive heat capacity for M > Mr, and when the black hole
474
+ mass approaches the critical mass Mr, we have K = 2
475
+ and interestingly, we get the zero heat capacity for the
476
+ remnant. In such a case, from the thermodynamic point
477
+ of view, a small amount of heat would then increase the
478
+ temperature of the remnant by an infinite amount.
479
+ CSc
480
+ CGUP,α=1
481
+ CGUP,α=-1
482
+ 0.0
483
+ 0.2
484
+ 0.4
485
+ 0.6
486
+ 0.8
487
+ 1.0
488
+ -30
489
+ -25
490
+ -20
491
+ -15
492
+ -10
493
+ -5
494
+ 0
495
+ M
496
+ C
497
+ Figure 3. Specific heat capacity of the Hawking radiation for
498
+ GUP corrected black holes. For positive α, there is a remnant
499
+ with zero heat capacity.
500
+ 3.
501
+ GUP Modified Sparsity of Hawking Radiation
502
+ One of the most important aspects of Hawking radia-
503
+ tion is that it is extremely sparse as compared to black-
504
+ body radiation. The sparsity can be defined by using the
505
+ parameter η [84, 87, 90],
506
+ η = C
507
+ g
508
+
509
+ λ2
510
+ t
511
+ Ae f f
512
+
513
+ ,
514
+ (23)
515
+ where C is a dimensionless constant associated with dif-
516
+ ferent physical cases [84], g is the spin degeneracy fac-
517
+ tor of the particle, λt = 2π¯hc/kBT is the thermal wave-
518
+ length in terms of the temperature T and Ae f f = 27A/4
519
+ [80, 84] is the effective area with A being the horizon
520
+ area for the case of black holes. For the Schwarzschild
521
+ black hole, one can find the thermal wavelength λt by
522
+ taking T = TH = 1/kBβ as
523
+ λt = 2π¯hc
524
+ kBTH
525
+ = 2π¯hcβ,
526
+ (24)
527
+ and the sparsity parameter for the Hawking radiation
528
+ reads [84]
529
+ ηH = 64π3
530
+ 27
531
+ ≈ 73.38,
532
+ (25)
533
+ which is constant and is much greater than one. Note
534
+ that for standard black body radiation, the value of η
535
+ is less than one. This implies that the sparsity param-
536
+ eter clearly differentiates the Hawking radiation from
537
+ blackbody radiation. One can obtain the GUP effects on
538
+ the sparsity by replacing the Hawking temperature with
539
+ the GUP corrected temperature TGUP given by (12) [87].
540
+ However, it is assumed that GUP also modifies the black
541
+ hole horizon area [87, 90]. Thus, it is logical to take the
542
+ effective area that GUP modifies. In fact, the GUP mod-
543
+ ifications to A can be derived from the equation (15) by
544
+ writing it as
545
+ SGUP = kBc3AGUP
546
+ 4¯hG
547
+ ,
548
+ (26)
549
+
550
+ 5
551
+ ηH
552
+ ηGUP,α=1
553
+ ηGUP,α=-1
554
+ 0
555
+ 1
556
+ 2
557
+ 3
558
+ 4
559
+ 0
560
+ 20
561
+ 40
562
+ 60
563
+ 80
564
+ 100
565
+ M
566
+ η
567
+ Figure 4. Sparsity of Hawking vs GUP corrected black holes in
568
+ natural units. For positive values of α, we observe that sparsity
569
+ decreases when a black hole is near the final evaporation state.
570
+ where the GUP modified area AGUP reads
571
+ AGUP = A
572
+ K − απl2
573
+ p ln
574
+ � 16A
575
+ A0K2
576
+
577
+ ,
578
+ (27)
579
+ and A0 = 16πm2
580
+ 0G2/c4 is a constant having the dimen-
581
+ sion of area. Note that in [90], corrections are only in the
582
+ first order of α, while in the above equation (27) the area
583
+ is corrected to all orders in α. Now, the GUP modified
584
+ sparsity can be found by replacing T by TGUP and A by
585
+ AGUP in (23), which now reads
586
+ ηGUP = ηH
587
+ K2
588
+
589
+ A
590
+ AGUP
591
+
592
+ .
593
+ (28)
594
+ Interestingly, GUP modified sparsity ηGUP, depends on
595
+ the mass of the black hole and the GUP parameter α.
596
+ For the negative values of α, the sparsity parameter in-
597
+ creases as M goes to zero. For the positive values of
598
+ α, the sparsity parameter decreases below the values of
599
+ sparsity for the Hawking radiation until it reaches the
600
+ critical mass Mr. In Fig. 4, we can see that the GUP
601
+ corrected sparsity is not a constant and it increases first
602
+ before M approaches Mr for α > 0 and then it decreases
603
+ to finite value when M approaches to Mr. For the case
604
+ of α < 0, first, it decreases, and then it goes to plus in-
605
+ finity when M approaches zero. It is due to the fact that
606
+ A/AGUP > 1 for α > 0 and ηH/K2 turns back the spar-
607
+ sity from a maximum value to a constant value, which
608
+ is less than ηH. Therefore, we can clearly see the effects
609
+ of GUP on sparsity due to TGUP and AGUP as depicted
610
+ in Fig. 4. Similarly, A/AGUP < 1 for α < o and K goes
611
+ to zero when M approaches zero, therefore, sparsity de-
612
+ creases first, and then it goes to infinity. Note that in
613
+ [89], the GUP corrected area is not taken into account,
614
+ therefore, there is no bump in the sparsity parameter.
615
+ III.
616
+ GUP AND NONEXTENSIVE BLACK HOLE
617
+ THERMODYNAMICS
618
+ A.
619
+ Tsallis Nonextensive Entropy
620
+ Entropy plays a significant role in Gibbs thermody-
621
+ namics or statistical mechanics.
622
+ It is extensive and
623
+ adheres to the additive composition rule.
624
+ However,
625
+ Gibbs statistical mechanics ignores long-range forces.
626
+ On the other hand, there are some physical systems for
627
+ which Gibbs thermodynamics cannot be the appropri-
628
+ ate choice to apply [24] since they are subject to long-
629
+ range forces.
630
+ Important examples are the some self-
631
+ gravitating systems such as black holes, since for them
632
+ long-range forces play significant role. For that reason
633
+ Constantino Tsallis in Refs. [22, 24] generalized the con-
634
+ ventional Gibbs entropy for nonextensive systems in or-
635
+ der to encompass and address this issue. Tsallis entropy
636
+ ST was one of the earliest proposals to extend Gibbs en-
637
+ tropy and the suggested new form of it reads
638
+ ST = −kB ∑
639
+ i
640
+ [p(i)]q lnq p(i),
641
+ (29)
642
+ where p(i) is the probability distribution defined on a
643
+ set of microstates Ω, with the parameter q determining
644
+ the degree of nonextensivity, and we consider it positive
645
+ to ensure the concavity of Sq. The q-logarithmic function
646
+ lnq p is given by
647
+ lnq p = p1−q − 1
648
+ 1 − q
649
+ ,
650
+ (30)
651
+ where, in the limit q → 1, Tsallis entropy Sq given by
652
+ (29), reduces to Gibbs entropy SG
653
+ SG = −kB ∑
654
+ i
655
+ p(i) ln p(i).
656
+ (31)
657
+ In fact, the Tsallis entropy (29) satisfies quite general,
658
+ nonadditive composition rule of the following form
659
+ ST 12 = ST 1 + ST 2 + λ
660
+ kB
661
+ ST 1ST 2,
662
+ (32)
663
+ for a composite system ”12”, made up of two subsys-
664
+ tems ”1” and ”2”. In above equation, we have defined a
665
+ new nonextensivity parameter λ = 1 − q.
666
+ B.
667
+ Rényi Entropy
668
+ The Rényi entropy [39], a measure of entanglement
669
+ in quantum information that is additive and preserves
670
+ event independence, is another important generaliza-
671
+ tion of the Gibbs-Shannon entropy. It is defined as
672
+ SR = kB
673
+ ln ∑i pq(i)
674
+ 1 − q
675
+ .
676
+ (33)
677
+
678
+ 6
679
+ It is important that SR can be written in terms of ST by
680
+ using the formal logarithm approach [30], and both en-
681
+ tropies are related as follows
682
+ SR = kB
683
+ λ ln[1 + λ
684
+ kB
685
+ ST ].
686
+ (34)
687
+ It is interesting to mention here that SR is the equilib-
688
+ rium entropy which corresponds to an equilibrium tem-
689
+ perature TR defined from the equilibrium condition by
690
+ maximizing the Tsallis entropy (32), which is given by
691
+ [53]
692
+ TR = (1 + λ
693
+ kB
694
+ ST ) 1
695
+ kBβ.
696
+ (35)
697
+ Here, kBβ = ∂ST /∂U, where U is the internal energy of
698
+ the nonextensive system.
699
+ 1.
700
+ Rényi black hole Entropy and Temperature
701
+ For the case of a Schwarzschild black hole, assuming
702
+ that the Bekenstein entropy SB is just the Tsallis entropy
703
+ ST , and replacing internal energy U with the mass of
704
+ the black hole M in equations (34) and (35), the Rényi
705
+ entropy can be defined on the horizon of a black hole as
706
+ [33–37]
707
+ SR = kB
708
+ λ ln[1 + λ
709
+ kB
710
+ SB],
711
+ (36)
712
+ and the associated Rényi temperature reads
713
+ TR = (1 + λ
714
+ kB
715
+ SB)TH.
716
+ (37)
717
+ Furthermore, we can write down the GUP corrected
718
+ Rényi entropy using GUP corrected Bekenstein entropy
719
+ as follows [90] (cf. Fig. 5)
720
+ SRgup = kB
721
+ λ ln
722
+
723
+ 1 + λ
724
+ kB
725
+ (SGUP)
726
+
727
+ ,
728
+ (38)
729
+ and corresponding GUP modified Rényi temperature
730
+ TRgup can be written as (cf. Fig. 6)
731
+ TRgup =
732
+
733
+ 1 + λ
734
+ kB
735
+ (SGUP)
736
+
737
+ KTH.
738
+ (39)
739
+ The Rényi entropy increases logarithmically (for 0 <
740
+ λ < 1), whereas the Bekenstein entropy (λ → 0) in-
741
+ creases quadratically, as shown in Fig. 5. Furthermore,
742
+ for the GUP corrections, the Rényi black holes do not
743
+ completely evaporate; rather, evaporation stops at the
744
+ critical mass Mr, leaving a remnant with finite entropy
745
+ and temperature as the Rényi black hole’s final state.
746
+ Using (37) and (39), we can write the inverse Rényi
747
+ temperature parameters, βR and βRgup, which will fur-
748
+ ther be used in calculating the heat capacities, such that
749
+ kBβR = S′
750
+ B(M)/c2
751
+ 1 + λ
752
+ kB SB
753
+ =
754
+ kBβ
755
+ 1 + λ
756
+ kB SB
757
+ ,
758
+ (40)
759
+ λ=0
760
+ λ=0.5
761
+ λ=1
762
+ λ=0
763
+ λ=0.5
764
+ λ=1
765
+ 0.0
766
+ 0.5
767
+ 1.0
768
+ 1.5
769
+ 2.0
770
+ 2.5
771
+ 3.0
772
+ 0
773
+ 2
774
+ 4
775
+ 6
776
+ 8
777
+ 10
778
+ M
779
+ SR
780
+ Figure 5.
781
+ Rényi entropy SR of a black hole vs its mass M.
782
+ Dashed lines represent GUP corrected cases, λ → 0 limit is
783
+ the Bekenstein-Hawking case.
784
+ λ=0
785
+ λ=0.5
786
+ λ=1
787
+ λ=0
788
+ λ=0.5
789
+ λ=1
790
+ 0.0
791
+ 0.5
792
+ 1.0
793
+ 1.5
794
+ 2.0
795
+ 2.5
796
+ 3.0
797
+ 0.0
798
+ 0.5
799
+ 1.0
800
+ 1.5
801
+ 2.0
802
+ M
803
+ TR
804
+ Figure 6. Rényi temperature TR of a black hole vs its mass M.
805
+ Dashed lines represent GUP corrected cases, λ → 0 limit is the
806
+ Bekenstein-Hawking case.
807
+ and the GUP-corrected inverse Rényi temperature reads
808
+ kBβRgup = S′
809
+ GUP(M)/c2
810
+ 1 + λ
811
+ kB SGUP
812
+ =
813
+ kBβGUP
814
+ 1 + λ
815
+ kB SGUP
816
+ .
817
+ (41)
818
+ One may determine the characteristic length scale LR
819
+ for λ [49, 50, 52], which reveals the impact of nonexten-
820
+ sive parameter λ in SR and SRgup, and in TR and TRgup.
821
+ As a result, it can be concluded that below this charac-
822
+ teristic length scale LR, the Rényi temperature behaves
823
+ like TH, and that above LR, the nonextensive effects in-
824
+ crease and TR grows linearly with M. The precise value
825
+ for the length scale is found in the following subsection.
826
+ 2.
827
+ Heat Capacity for the Rényi black hole
828
+ In order to investigate the thermodynamic stability of
829
+ Rényi black holes, we define the heat capacity CR of the
830
+ Rényi black hole as
831
+ CR = −S′2
832
+ R(M)
833
+ S′′
834
+ R(M) .
835
+ (42)
836
+
837
+ 7
838
+ Inserting (40) and (41) into (42), the heat capacity for the
839
+ non-GUP case reads
840
+ CR =
841
+ CSc
842
+ 1 + λ
843
+ kB SB + λ
844
+ kB CSc
845
+ ,
846
+ (43)
847
+ and for the GUP case, we have
848
+ CRgup =
849
+ CGUP
850
+ 1 + λ
851
+ kB SGUP + λ
852
+ kB CGUP
853
+ .
854
+ (44)
855
+ We plot the heat capacity in Fig.
856
+ (7), where we can
857
+ λ=0
858
+ λ=0.5
859
+ λ=1
860
+ λ=0
861
+ λ=0.5
862
+ λ=1
863
+ 0.0
864
+ 0.5
865
+ 1.0
866
+ 1.5
867
+ 2.0
868
+ -10
869
+ -5
870
+ 0
871
+ 5
872
+ 10
873
+ M
874
+ CR
875
+ Figure 7. Heat capacity CR of a Rényi black hole vs its mass M.
876
+ Dashed lines represent GUP corrected cases, λ → 0 limit is the
877
+ Bekenstein-Hawking case.
878
+ see that L differentiates two regions for non-GUP and
879
+ GUP cases. In order to understand the behavior of CR in
880
+ both regions, we find LR in terms of λ from the singular
881
+ points of equation (43) for the case Schwarzschild black
882
+ hole. We find, for the non-GUP case
883
+ λ = −
884
+ kB
885
+ [SB + CSc] =
886
+ m2
887
+ p
888
+ 4πM2 ,
889
+ (45)
890
+ and for the GUP case, we have
891
+ λ = −
892
+ kB
893
+ [SGUP + CGUP]
894
+ (46)
895
+
896
+ m2
897
+ p
898
+ 4πM2 +
899
+ 3αm4
900
+ p
901
+ 64πM4 +
902
+ αm4
903
+ p log
904
+
905
+ 4M
906
+ mp
907
+
908
+ 32πM4
909
+ by ignoring the higher order terms in α. This means that
910
+ for the non-GUP case, we define the mass scale
911
+ Mc =
912
+ mp
913
+ 2
914
+
915
+ πλ
916
+ ,
917
+ (47)
918
+ which differentiates the two regions and can be further
919
+ used to define the characteristic length scale LR, which
920
+ can be written as
921
+ LR = 2lp
922
+
923
+ πλ,
924
+ (48)
925
+ where we have defined LR = GMc/c2. For the GUP
926
+ case, we would expect the characteristic length scale
927
+ LRgup ≈ LR + α f (λ) by using equation (47), where f is
928
+ a function of the nonextensivity parameter λ. However,
929
+ we can not solve it exactly, and it again shows the effects
930
+ of α and λ for the values of M greater than the GUP cor-
931
+ rected mass scale. Interestingly, for the non-GUP case,
932
+ the heat capacity is positive for the values greater than
933
+ this scale, and below this scale, black holes have neg-
934
+ ative heat capacity. This means that black holes with
935
+ higher masses than Mc are thermodynamically stable
936
+ and with masses lower than Mc, they are unstable. Note
937
+ that, if we exclude quantum gravity effects, LR should
938
+ be greater than lp. This puts a numerical constraint on
939
+ the nonextensive parameter λ > 1/4π and this can also
940
+ be derived by considering Mc > mp by excluding the
941
+ quantum gravity effects. In [49, 50, 52], the authors de-
942
+ rived this constraint as λ > 1/π because they consid-
943
+ ered LR = 2GMc/c2 as characteristic length scale for λ,
944
+ where the extra 2 in LR is motivated by Schwarzschild
945
+ radius rh = 2GM/c2. We believe that the proper way to
946
+ introduce the length or mass scale for λ should be irre-
947
+ spective of the definition which is motivated by rh.
948
+ 3.
949
+ Sparsity of the Rényi Radiation
950
+ In order to calculate the sparsity of Rényi radiation,
951
+ we replace T with TR in (23), and so the sparsity param-
952
+ eter ηR reads
953
+ ηR =
954
+ ηH
955
+ [1 + λ
956
+ kB SB]2 .
957
+ (49)
958
+ Replacing T with TRgup and using GUP modified area
959
+ AGUP in equation (23), the GUP modified sparsity pa-
960
+ rameter ηRgup reads
961
+ ηRgup =
962
+ ηGUP
963
+ [1 + λ
964
+ kB SGUP]2 .
965
+ (50)
966
+ From (49), we conclude that the sparsity parameter ηR
967
+ λ=0
968
+ λ=0.5
969
+ λ=1
970
+ λ=0
971
+ λ=0.5
972
+ λ=1
973
+ 0.0
974
+ 0.5
975
+ 1.0
976
+ 1.5
977
+ 2.0
978
+ 0
979
+ 20
980
+ 40
981
+ 60
982
+ 80
983
+ M
984
+ ηR
985
+ Figure 8.
986
+ Sparsity ηR of a Rényi blackhole vs its mass M.
987
+ Dashed lines represent GUP corrected cases, λ → 0 limit is
988
+ the Bekenstein-Hawking case.
989
+ depends on both the mass of the black hole and the
990
+ nonextensivity parameter λ.
991
+ From Fig.
992
+ (8), we can
993
+ easily see that the radiation is not sparse initially and
994
+ then, at the final stages of the evaporation, the sparsity
995
+
996
+ 8
997
+ grows, reaching the value of ηH, when M approaches to
998
+ zero. For the GUP case, initially, the behavior of spar-
999
+ sity is similar to the non-GUP case, however, when M
1000
+ approaches Mr, it has a finite value which is much less
1001
+ than the sparsity of Hawking radiation for the non-GUP
1002
+ and GUP cases. Again, we can see the bump before M
1003
+ reaches Mr, which is due to the effect of GUP correc-
1004
+ tions to the Rényi temperature and GUP corrections to
1005
+ the area.
1006
+ C.
1007
+ Tsallis-Cirto Black Hole Entropy
1008
+ Tsallis-Cirto black hole entropy [32] is based on key
1009
+ principles of Gibbs thermodynamics. First, the entropy
1010
+ must be extensive and additive, and second, the entropy
1011
+ and associated temperature for a thermodynamic sys-
1012
+ tem must satisfy the Legendre structure. For the case
1013
+ of black holes, if we rely on the definition of Beken-
1014
+ stein entropy, then black holes are considered to be
1015
+ two-dimensional thermodynamic objects since Beken-
1016
+ stein entropy scales with area and Bekenstein entropy
1017
+ and Hawking temperature fulfill the Legendre struc-
1018
+ ture. However, if we consider a black hole as a (3 + 1)
1019
+ dimensional thermodynamic object, then the Bekenstein
1020
+ entropy is thought to be nonextensive due to its area
1021
+ scaling and also because it follows a nonadditive com-
1022
+ position rule S12 = S1 + S2 + 2√S1
1023
+ √S2 (see e.g. [90]),
1024
+ whereas Gibbs statistical mechanics or thermodynam-
1025
+ ics is based on the extensive and additive properties of
1026
+ the entropy. This indicates that Bekenstein entropy vio-
1027
+ lates a key principle of classical Gibbs thermodynamics
1028
+ and that new definitions of entropy and temperature for
1029
+ black holes are required in order to comply with the fun-
1030
+ damental principles of thermodynamics in the case of
1031
+ (3 + 1)-dimensional black holes. Therefore, Tsallis and
1032
+ Cirto proposed the following entropy definition [32, 38].
1033
+
1034
+ kB
1035
+ =
1036
+ �SB
1037
+ kB
1038
+ �δ
1039
+ ,
1040
+ (51)
1041
+ where δ > 0 is a real parameter and it follows the com-
1042
+ position rule for a composite thermodynamic system,
1043
+ which is given by
1044
+ Sδ12 = kB
1045
+ ��Sδ1
1046
+ kB
1047
+ �1/δ
1048
+ +
1049
+ �Sδ2
1050
+ kB
1051
+ �1/δ�δ
1052
+ .
1053
+ (52)
1054
+ In this context, the SB is additive, and Sδ is nonadditive.
1055
+ For δ = 3/2, Sδ is proportional to the volume for the
1056
+ case of the Schwarzschild black hole, and so it is an ex-
1057
+ tensive quantity. The corresponding Tsallis-Cirto tem-
1058
+ perature can be written by using the Clausius relation
1059
+ [53]
1060
+ Tδ = TH
1061
+ δ
1062
+ �SB
1063
+ kB
1064
+ �1−δ
1065
+ ,
1066
+ (53)
1067
+ and it scales with 1/M2 for δ = 3/2, i.e., Tδ ∝ 1/M2, for
1068
+ the case of Schwarzschild black hole. GUP corrections
1069
+ to the Tsallis-Cirto black hole entropy can be obtained
1070
+ by the GUP corrected Bekenstein entropy SGUP given
1071
+ by (15) into (51), which results in
1072
+ Sδgup
1073
+ kB
1074
+ =
1075
+ �SGUP
1076
+ kB
1077
+ �δ
1078
+ ,
1079
+ (54)
1080
+ and the corresponding GUP-modified Tsallis-Cirto tem-
1081
+ perature can be derived from the Clausius relation, giv-
1082
+ ing
1083
+ Tδgup = TGUP
1084
+ δ
1085
+ �SGUP
1086
+ kB
1087
+ �1−δ
1088
+ .
1089
+ (55)
1090
+ From the Figs.
1091
+ (9) and (10), it shows that the evap-
1092
+ δ=0.4
1093
+ δ=0.7
1094
+ δ=1.5
1095
+ δ=0.4
1096
+ δ=0.7
1097
+ δ=1.5
1098
+ 0.0
1099
+ 0.5
1100
+ 1.0
1101
+ 1.5
1102
+ 2.0
1103
+ 0
1104
+ 5
1105
+ 10
1106
+ 15
1107
+ 20
1108
+ M
1109
+
1110
+ Figure 9. Tsallis-Cirto entropy ST of a black hole vs its mass
1111
+ M. Dashed lines represent GUP-corrected cases in this figure
1112
+ oration process stops at the critical value Mr for the
1113
+ Tsallis-Cirto case when GUP corrections are included.
1114
+ This means that the final state of the black hole for the
1115
+ Tsallis-Cirto case is also a remnant with finite entropy
1116
+ and temperature. Generally, for the non-GUP case, the
1117
+ parameter δ plays a significant role. For δ > 1/2, the
1118
+ Tsallis-Cirto entropy behaves similarly to Bekenstein en-
1119
+ tropy and increases exponentially with mass, whereas
1120
+ for δ < 1/2, it increases with mass sub-linearly. For
1121
+ δ = 1/2, the entropy depends linearly on mass, and
1122
+ in this case, Tsallis-Cirto temperature becomes constant.
1123
+ Furthermore, the behavior of the Tsallis temperature is
1124
+ similar to the Hawking temperature for δ > 1/2 while
1125
+ for δ < 1/2, the behavior is completely different for the
1126
+ non-GUP case and, interestingly, it behaves like Rényi
1127
+ temperature for the GUP-corrected case. Note that, un-
1128
+ like λ parameter of the Rényi entropy, δ is not associated
1129
+ with the length scale for the non-GUP case. On the other
1130
+ hand, introducing GUP corrections to Tsallis-Cirto en-
1131
+ tropy, one can define a characteristic length scale for δ
1132
+ as well.
1133
+ 1.
1134
+ Heat Capacity for Tsallis-Cirto black holes
1135
+ Following the previous subsection, the heat capacity
1136
+ for the Tsallis-Cirto case can be written in terms of Csc,
1137
+
1138
+ 9
1139
+ δ=0.4
1140
+ δ=0.7
1141
+ δ=1.5
1142
+ δ=0.4
1143
+ δ=0.7
1144
+ δ=1.5
1145
+ 0.0
1146
+ 0.5
1147
+ 1.0
1148
+ 1.5
1149
+ 2.0
1150
+ 0.0
1151
+ 0.1
1152
+ 0.2
1153
+ 0.3
1154
+ 0.4
1155
+ 0.5
1156
+ 0.6
1157
+ M
1158
+
1159
+ Figure 10.
1160
+ Temperature Tδ vs the mass M for Tsallis-Cirto
1161
+ black hole entropy. Dashed lines correspond to a GUP case.
1162
+ and SB
1163
+ Cδ = CSc
1164
+
1165
+ SB
1166
+ SB − (δ − 1)CSc
1167
+
1168
+ ,
1169
+ (56)
1170
+ where for the Schwarzschild black hole, we have CSc =
1171
+ −2SB. For δ = 1/2, we have infinite heat capacity for
1172
+ all masses. For δ < 1/2, we have positive heat capac-
1173
+ ity values and negative heat capacity for δ > 1/2. This
1174
+ means that black holes are thermodynamically stable for
1175
+ δ < 1/2, and unstable for δ > 1/2. For the GUP correc-
1176
+ δ=0.4
1177
+ δ=0.7
1178
+ δ=1.5
1179
+ δ=0.4
1180
+ δ=0.7
1181
+ δ=1.5
1182
+ 0.0
1183
+ 0.5
1184
+ 1.0
1185
+ 1.5
1186
+ 2.0
1187
+ -20
1188
+ -10
1189
+ 0
1190
+ 10
1191
+ 20
1192
+ M
1193
+
1194
+ Figure 11. Heat Capacity Cδ for Tsallis-Cirto black hole en-
1195
+ tropy. Dashed lines correspond to a GUP case.
1196
+ tions, we can write the GUP-corrected heat capacity as
1197
+ Cδgup = CGUP
1198
+
1199
+ SGUP
1200
+ SGUP − (δ − 1)CGUP
1201
+
1202
+ .
1203
+ (57)
1204
+ Note that from equations (15) and (22), we have
1205
+ −2SGUP ̸= CGUP, therefore, we can find an associated
1206
+ characteristic length scale Lδgup for the δ parameter, for
1207
+ which, we have two regions, which corresponds to pos-
1208
+ itive and negative values of GUP corrected heat capac-
1209
+ ities. The length scale Lδgup can be found by using the
1210
+ singular points of the above equation (57) for δ, which is
1211
+ given by
1212
+ δ = SGUP
1213
+ CGUP
1214
+ + 1.
1215
+ (58)
1216
+ One could solve the above equation (58) for mass M,
1217
+ which gives Lδgup as a function of δ. However, it is ana-
1218
+ lytically not possible. One may use the perturbative ap-
1219
+ proach to solve the equation for M and define the corre-
1220
+ sponding length scale or mass scale. From the Figs. (9)
1221
+ and (11), for δ < 1/2, and below Lδgup, the GUP cor-
1222
+ rected Tsallis-Cirto entropy behaves like SR and it gives
1223
+ positive GUP modified heat capacity for the GUP case.
1224
+ For values δ > 1/2, Lδgup does not exist as (58) yields
1225
+ imaginary numbers. Thus, it gives negative heat capac-
1226
+ ity, implying that GUP-corrected Tsallis black holes are
1227
+ thermodynamically stable for δ < 1/2, and unstable for
1228
+ δ > 1/2.
1229
+ 2.
1230
+ Sparsity of the Tsallis-Cirto Radiation
1231
+ By following the previous subsection, and using the
1232
+ Tsallis-Cirto temperature, we can write the sparsity pa-
1233
+ rameter ηδ for Tsallis-Cirto radiation as
1234
+ ηδ = ηHδ2
1235
+ �SB
1236
+ kB
1237
+ �2δ−2
1238
+ ,
1239
+ (59)
1240
+ and the GUP-corrected sparsity ηδgup, by using (23) and
1241
+ (55), it can be written as
1242
+ ηδgup = ηGUPδ2
1243
+ �SGUP
1244
+ kB
1245
+ �2δ−2
1246
+ .
1247
+ (60)
1248
+ Fig. (12) depicts the sparsity vs. mass relationship. For
1249
+ δ=0.8
1250
+ δ=1
1251
+ δ=1.1
1252
+ δ=0.8
1253
+ δ=1
1254
+ δ=1.1
1255
+ 0.0
1256
+ 0.5
1257
+ 1.0
1258
+ 1.5
1259
+ 2.0
1260
+ 0
1261
+ 50
1262
+ 100
1263
+ 150
1264
+ 200
1265
+ M
1266
+ ηδ
1267
+ Figure 12.
1268
+ Sparsity ηδ for Tsallis-Cirto black hole entropy.
1269
+ Dashed lines correspond to a GUP case.
1270
+ the Tsallis-Cirto temperature, the sparsity scales with
1271
+ M4δ−4. Again, the value of δ, significantly changes the
1272
+ behavior of the sparsity. It should be noted that the spar-
1273
+ sity parameter is now affected by mass as well as δ and
1274
+ the GUP-parameter α. In the non-GUP case, ηδ = ηH
1275
+ for δ = 1. When δ > 1, the value of ηδ is initially very
1276
+ high and approaches zero at the end of the black hole
1277
+ evaporation. This means that, initially, the Tsallis-Cirto
1278
+ radiation is highly sparse, and during the final stages of
1279
+ evaporation, it is not sparse at all. In this way, for δ < 1,
1280
+ Tsallis-Cirto radiation is initially not sparse, but at the
1281
+ end of the evaporation, it is extremely sparse with the
1282
+ sparsity parameter infinite. For the GUP case, initially,
1283
+ the behavior is the same as for the non-GUP case, but
1284
+
1285
+ 10
1286
+ when the mass approaches the order of Planck mass,
1287
+ i.e., the remnant mass Mr, the sparsity parameter de-
1288
+ creases to some finite values for each case. Note that all
1289
+ these finite values of sparsity parameters are less than
1290
+ the standard sparsity parameter ηH.
1291
+ D.
1292
+ Sharma-Mittal Entropy
1293
+ Sharma-Mittal (SM) is an entropic form [40, 104] that
1294
+ generalizes the Rényi and Tsallis entropies. It is defined
1295
+ as
1296
+ SSM = 1
1297
+ R
1298
+
1299
+
1300
+
1301
+ W
1302
+
1303
+ i=1
1304
+ p1−λ
1305
+ i
1306
+ � R
1307
+ λ
1308
+ − 1
1309
+
1310
+
1311
+ (61)
1312
+ where R is another free parameter that is introduced in
1313
+ SM entropy. Under the equiprobability condition of the
1314
+ states [69], the above equation (61) reduces to
1315
+ SSM = kB
1316
+ R
1317
+
1318
+ (1 + λ
1319
+ kB
1320
+ ST)R/λ − 1
1321
+
1322
+ ,
1323
+ (62)
1324
+ where R → λ limit yields the Tsallis entropy, and R → 0
1325
+ yields Rényi entropy. The Sharma-Mittal entropy obeys
1326
+ the same general nonextensive composition rule (32).
1327
+ Assuming that the Bekenstein entropy SB is the same
1328
+ as the Tsallis entropy ST , we can write SSM for the case
1329
+ of a Schwarzschild black hole as
1330
+ SSM = kB
1331
+ R
1332
+
1333
+ (1 + λ
1334
+ kB
1335
+ SB)R/λ − 1
1336
+
1337
+ ,
1338
+ (63)
1339
+ and replacing SGUP with ST in equation (62), the GUP
1340
+ corrected SM entropy SSMgup reads as
1341
+ SSMgup = kB
1342
+ R
1343
+
1344
+ (1 + λ
1345
+ kB
1346
+ SGUP)R/λ − 1
1347
+
1348
+ .
1349
+ (64)
1350
+ The corresponding temperatures can be found by using
1351
+ the Clausius relation, as
1352
+ TSM = TH(1 + λ
1353
+ kB
1354
+ SB)1− R
1355
+ λ ,
1356
+ (65)
1357
+ and the GUP corrected SM temperature TSMgup reads as
1358
+ TSMgup = TGUP(1 + λ
1359
+ kB
1360
+ SGUP)1− R
1361
+ λ .
1362
+ (66)
1363
+ We can now define the inverse temperature parameters
1364
+ for GUP and non-GUP cases by using the above equa-
1365
+ tions (65) and (66), which are given, for the non-GUP
1366
+ case, as
1367
+ βSM = S′
1368
+ SM
1369
+ kBc2 = β(1 + λ
1370
+ kB
1371
+ SB)
1372
+ R
1373
+ λ −1,
1374
+ (67)
1375
+ and for the GUP case, as
1376
+ βSMgup =
1377
+ S′
1378
+ SMgup
1379
+ kBc2
1380
+ = βGUP(1 + λ
1381
+ kB
1382
+ SGUP)
1383
+ R
1384
+ λ −1.
1385
+ (68)
1386
+ R=0.2
1387
+ R=0.6
1388
+ R=0.9
1389
+ R=0.2
1390
+ R=0.6
1391
+ R=0.9
1392
+ 0.0
1393
+ 0.5
1394
+ 1.0
1395
+ 1.5
1396
+ 2.0
1397
+ 0
1398
+ 10
1399
+ 20
1400
+ 30
1401
+ 40
1402
+ 50
1403
+ M
1404
+ SSM
1405
+ Figure 13.
1406
+ Plot of the Sharma-Mittal entropy for λ = 0.7.
1407
+ Dashed lines correspond to a GUP case.
1408
+ Since SM entropy is the generalization of the Tsallis and
1409
+ Rényi entropy, the behavior of the temperature and the
1410
+ entropy are similar to that of SB and SR and TH and TR
1411
+ for different values of Sharma-Mittal parameter R. Also,
1412
+ the black hole does not evaporate in this case as well,
1413
+ and the evaporation process stops at Mr, leaving the fi-
1414
+ nal state of the black hole as a remnant having finite en-
1415
+ tropy and temperature. The plots of SM entropy and
1416
+ temperature are given in Figs. 13 and 14.
1417
+ R=0.2
1418
+ R=0.6
1419
+ R=0.9
1420
+ R=0.2
1421
+ R=0.6
1422
+ R=0.9
1423
+ 0.0
1424
+ 0.5
1425
+ 1.0
1426
+ 1.5
1427
+ 2.0
1428
+ 0.00
1429
+ 0.05
1430
+ 0.10
1431
+ 0.15
1432
+ 0.20
1433
+ 0.25
1434
+ 0.30
1435
+ M
1436
+ TSM
1437
+ Figure 14. Sharma-Mittal temperature for λ = 0.7. Dashed
1438
+ lines correspond to a GUP case.
1439
+ 1.
1440
+ Heat Capacity for Sharma-Mittal Black Holes
1441
+ By following the previous subsections, we can calcu-
1442
+ late the heat capacity CSM for the SM black holes as
1443
+ CSM =
1444
+ CSc(1 + λ
1445
+ kB SB)
1446
+ R
1447
+ λ
1448
+ (1 + λ
1449
+ kB SB) − λ
1450
+ kB CSc
1451
+
1452
+ R
1453
+ λ − 1
1454
+ � ,
1455
+ (69)
1456
+ and for the GUP SM black holes case, it reads as
1457
+ CSMgup =
1458
+ CGUP(1 + λ
1459
+ kB SGUP)
1460
+ R
1461
+ λ
1462
+ (1 + λ
1463
+ kB SGUP) − λ
1464
+ kB CGUP
1465
+
1466
+ R
1467
+ λ − 1
1468
+ � . (70)
1469
+ The plots of (69) and (70) are given in Fig. 15. Similarly
1470
+ as for the Rényi case, we define the characteristic length
1471
+ scale LSM in terms of λ and R by employing the singular
1472
+
1473
+ 11
1474
+ point of CSM. For the non-GUP case, we have such a
1475
+ singular point for
1476
+ λ = RCSc − kB
1477
+ CSc + SB
1478
+ .
1479
+ (71)
1480
+ From (71), we can easily define the following character-
1481
+ istic relation by solving it for M, which reads
1482
+ LSM = 2lp
1483
+
1484
+ π(λ − 2R),
1485
+ (72)
1486
+ where LSM = GMc/c2, and the mass scale Mc is defined
1487
+ as
1488
+ Mc =
1489
+ mp
1490
+ 2
1491
+
1492
+ π(λ − 2R)
1493
+ .
1494
+ (73)
1495
+ Similarly, one can define LSMgup for the GUP case by
1496
+ using the following singular point at
1497
+ λ = RCGUP − kB
1498
+ CGUP + SGUP
1499
+ ,
1500
+ (74)
1501
+ and solve it for M. Since the analytic solution is not pos-
1502
+ sible, one could use a perturbative approach to find the
1503
+ GUP corrections to LSM up to the first order in α. Note
1504
+ that R → 0 limit yields the LR for the Rényi case. For
1505
+ λ − 2R > 0 and M > Mc, the heat capacity is positive
1506
+ for both non-GUP and GUP cases, and for M < Mc,
1507
+ the heat capacity is negative for both non-GUP and GUP
1508
+ cases.
1509
+ R=0.2
1510
+ R=0.6
1511
+ R=0.9
1512
+ R=0.2
1513
+ R=0.6
1514
+ R=0.9
1515
+ 0.0
1516
+ 0.5
1517
+ 1.0
1518
+ 1.5
1519
+ 2.0
1520
+ -30
1521
+ -20
1522
+ -10
1523
+ 0
1524
+ 10
1525
+ 20
1526
+ 30
1527
+ M
1528
+ CSM
1529
+ Figure 15. Heat capacity CSM for Sharma-Mittal entropy for
1530
+ λ = 0.7. Dashed lines correspond to a GUP case.
1531
+ 2.
1532
+ Sparsity of the Sharma-Mittal Radiation
1533
+ The sparsity parameter ηSM can be derived by apply-
1534
+ ing the Sharma-Mittal temperature to (23), and reads
1535
+ ηSM = ηH(1 + λ
1536
+ kB
1537
+ SB)2( R
1538
+ λ −1),
1539
+ (75)
1540
+ and for the GUP case, substituting equations (66) and
1541
+ (27) in (23), the GUP modified sparsity parameter for the
1542
+ Sharma-Mittal radiation reads as
1543
+ ηSMgup = ηGUP(1 + λ
1544
+ kB
1545
+ SGUP)2( R
1546
+ λ −1).
1547
+ (76)
1548
+ R=0.45
1549
+ R=0.5
1550
+ R=0.6
1551
+ R=0.45
1552
+ R=0.5
1553
+ R=0.6
1554
+ R=0.3
1555
+ R=0.3
1556
+ 0.0
1557
+ 0.5
1558
+ 1.0
1559
+ 1.5
1560
+ 2.0
1561
+ 0
1562
+ 100
1563
+ 200
1564
+ 300
1565
+ 400
1566
+ 500
1567
+ 600
1568
+ M
1569
+ ηSM
1570
+ Figure 16. Sparsity for Sharma-Mittal entropy for λ = 0.4.
1571
+ Dashed lines correspond to a GUP case.
1572
+ The plots of the sparsity for SM (75) and SM GUP (76)
1573
+ cases are given in Fig. 16. The behavior of the sparsity
1574
+ parameter again depends on the Sharma-Mittal param-
1575
+ eter R in addition to the nonextensive parameter λ and
1576
+ also the GUP parameter α in the case of GUP corrections.
1577
+ For the values of λ and R, which satisfy the inequality
1578
+ λ + 2R > 0, the sparsity of the Sharma-Mittal radiation
1579
+ behaves like the sparsity of the Rényi radiation for both
1580
+ non-GUP and GUP cases. This means that, initially, the
1581
+ Sharma-Mittal radiation is not sparse, and at the end
1582
+ of the evaporation, its value approaches the value of
1583
+ Hawking’s case, i.e., ηH, for the non-GUP case. For the
1584
+ GUP case, when M approaches Mr, the Sharma-Mittal
1585
+ sparsity parameter approaches some finite value, which
1586
+ is less than ηH. For λ > R, initially, the Sharma-Mittal
1587
+ sparsity parameter is higher than ηH and its value ex-
1588
+ actly approaches ηH at the end of the evaporation, while
1589
+ for the case of GUP, it approaches to some finite value
1590
+ less than ηH. It is interesting to note that, for α > 0, the
1591
+ GUP modified sparsity parameter is always less than the
1592
+ standard Hawking case.
1593
+ E.
1594
+ Kaniadakis Entropy
1595
+ Kaniadakis entropy [42, 70] is a type of nonextensive
1596
+ entropy that results from the Lorentz transformation of
1597
+ special relativity. It is a single parameter deformation of
1598
+ Gibbs entropy in which The standard Gibbs entropy is
1599
+ generalized to the relativistic regime with the help of a
1600
+ new parameter K that is connected to the dimensionless
1601
+ rest energy of the various parts of a multibody relativis-
1602
+ tic system. The Kaniadakis entropy SK is defined as
1603
+ SK = kB logK Ω
1604
+ (77)
1605
+ where
1606
+ logK(Ω) = ΩK − Ω−K
1607
+ 2K
1608
+ .
1609
+ (78)
1610
+ Considering SB = kB ln Ω, which means that the num-
1611
+ ber of microstates Ω for a black hole is proportional to
1612
+
1613
+ 12
1614
+ eSB/kB, the above equation (77) can be written in the fol-
1615
+ lowing form
1616
+ SK = kB
1617
+ K sinh
1618
+
1619
+ K SB
1620
+ kB
1621
+
1622
+ ,
1623
+ (79)
1624
+ where we have used equation (78) for the sinh x function
1625
+ and used the relation Ω = eSB/kB. Replacing SB with
1626
+ SGUP, the GUP modified Kaniadakis entropy SKGUP
1627
+ reads as
1628
+ SKGUP = kB
1629
+ K sinh
1630
+
1631
+ K SGUP
1632
+ kB
1633
+
1634
+ .
1635
+ (80)
1636
+ Note that, in the limit K → 0, SK reduces to Gibbs en-
1637
+ K=0.1
1638
+ K=0.5
1639
+ K=0.9
1640
+ K=0.1
1641
+ K=0.5
1642
+ K=0.9
1643
+ 0.0
1644
+ 0.5
1645
+ 1.0
1646
+ 1.5
1647
+ 2.0
1648
+ 0
1649
+ 20
1650
+ 40
1651
+ 60
1652
+ 80
1653
+ 100
1654
+ M
1655
+ SK
1656
+ Figure 17. Kaniadakis Entropy SK vs mass M. Dashed lines
1657
+ correspond to a GUP case.
1658
+ tropy. In Fig. (17), one can see the characteristic form of
1659
+ sine hyperbolic (sinh) function for different small val-
1660
+ ues of K which shows the similar behaviour like the
1661
+ Bekenstein entropy.
1662
+ As expected, for the GUP case,
1663
+ black holes do not evaporate completely and the final
1664
+ state of the black hole is a remnant like for the case of
1665
+ standard GUP modified Bekenstein-Hawking case. Fur-
1666
+ thermore, as K increases, the entropy increases sharply.
1667
+ By using the Clausius relation, the corresponding Kani-
1668
+ adakis black black hole temperature TK reads as
1669
+ TK = TH sech
1670
+
1671
+ K SB
1672
+ kB
1673
+
1674
+ ,
1675
+ (81)
1676
+ and the GUP modified Kaniadakis temperature TKGUP
1677
+ can be written as
1678
+ TKgup = TGUP sech
1679
+
1680
+ K SGUP
1681
+ kB
1682
+
1683
+ .
1684
+ (82)
1685
+ By using (81) and (82), one can write the following in-
1686
+ verse temperature parameters βK as follows
1687
+ kBβK = kBβ cosh
1688
+
1689
+ K SB
1690
+ kB
1691
+
1692
+ ,
1693
+ (83)
1694
+ and for the GUP case, βKGUP reads
1695
+ kBβKgup = kBβGUP cosh
1696
+
1697
+ K SGUP
1698
+ kB
1699
+
1700
+ ,
1701
+ (84)
1702
+ K=0.1
1703
+ K=0.5
1704
+ K=0.9
1705
+ K=0.1
1706
+ K=0.5
1707
+ K=0.9
1708
+ 0.0
1709
+ 0.5
1710
+ 1.0
1711
+ 1.5
1712
+ 2.0
1713
+ 0.00
1714
+ 0.05
1715
+ 0.10
1716
+ 0.15
1717
+ 0.20
1718
+ M
1719
+ TK
1720
+ Figure 18. Kaniadakis temprature TK vs mass. Dashed lines
1721
+ correspond to a GUP case.
1722
+ which can further be used to find the heat capacities
1723
+ for Kaniadiakis black holes. Fig. (18) shows that Ka-
1724
+ niadakis temperature behaves as Hawking temperature
1725
+ with a slight change depending on the parameter K. For
1726
+ the GUP case, it stops at some finite value, when M ap-
1727
+ proaches to Mr during the final stages of the black hole
1728
+ evaporation process.
1729
+ 1.
1730
+ Heat capacity for Kaniadakis Black Holes
1731
+ The heat capacities for Kaniadakis entropy can be
1732
+ calculated by following the previous subsections. For
1733
+ the non-GUP case, the heat capacity CK for Kaniadakis
1734
+ black hole reads as
1735
+ CK = CSc
1736
+ cosh2[K SB
1737
+ kB ]
1738
+ cosh[K SB
1739
+ kB ] − CSc sinh[K SB
1740
+ kB ]
1741
+ ,
1742
+ (85)
1743
+ and for the GUP modified heat capacity, CKgup, it can
1744
+ written as
1745
+ CKgup = CGUP
1746
+ cosh2[K SGUP
1747
+ kB ]
1748
+ cosh[K SGUP
1749
+ kB ] − CGUP sinh[K SGUP
1750
+ kB ]
1751
+ . (86)
1752
+ From Fig. (19), one can easily notice the negative heat
1753
+ K=0.1
1754
+ K=0.5
1755
+ K=0.9
1756
+ K=0.1
1757
+ δ=0.5
1758
+ K=0.9
1759
+ 0.0
1760
+ 0.5
1761
+ 1.0
1762
+ 1.5
1763
+ 2.0
1764
+ -100
1765
+ -80
1766
+ -60
1767
+ -40
1768
+ -20
1769
+ 0
1770
+ M
1771
+ CK
1772
+ Figure 19. Kaniadakis heat capacity CK vs mass M. Dashed
1773
+ lines correspond to a GUP case.
1774
+ capacities for all values of K.
1775
+ This means that Kani-
1776
+ adakis black holes are thermodynamically unstable for
1777
+ all M.
1778
+
1779
+ 13
1780
+ K=0.1
1781
+ K=0.5
1782
+ K=0.7
1783
+ K=0.1
1784
+ K=0.5
1785
+ K=0.7
1786
+ 0.0
1787
+ 0.2
1788
+ 0.4
1789
+ 0.6
1790
+ 0.8
1791
+ 1.0
1792
+ 1.2
1793
+ 1.4
1794
+ 0
1795
+ 50
1796
+ 100
1797
+ 150
1798
+ 200
1799
+ 250
1800
+ 300
1801
+ M
1802
+ ηK
1803
+ Figure 20. Sparsity ηK for Kaniadakis radiation vs mass M
1804
+ of Kaniadakis black hole. Dashed lines correspond to a GUP
1805
+ case.
1806
+ 2.
1807
+ Sparsity of the Kaniadakis Radiation
1808
+ The sparsity parameter ηK for the Kaniadakis radia-
1809
+ tion can be derived by applying (81) into (23), and reads
1810
+ ηK = ηH cosh2
1811
+
1812
+ K SB
1813
+ kB
1814
+
1815
+ ,
1816
+ (87)
1817
+ and for the GUP modified sparsity parameter ηKGUP, we
1818
+ apply (82) and (27) into (23), to obtain
1819
+ ηKGUP = ηGUP cosh2
1820
+
1821
+ K SGUP
1822
+ kB
1823
+
1824
+ .
1825
+ (88)
1826
+ From Fig.
1827
+ (20), the sparsity parameter for the Kani-
1828
+ adakis case is always high from the beginning of the
1829
+ evaporation process as compared to the standard Beken-
1830
+ stein Hawking case. However, for the non-GUP case, ηK
1831
+ approaches to the value of ηH at the end of the evapo-
1832
+ ration. For the GUP case, again, it approaches to some
1833
+ finite value of sparsity when M approaches Mr, which
1834
+ is always less than the sparsity parameter ηH. Further-
1835
+ more, we see that increasing value of K directly results
1836
+ in sparser Kaniadakis radiation.
1837
+ F.
1838
+ Barrow entropy
1839
+ Barrow entropy [44] is an entropic form that has no
1840
+ statistical roots, but is closely tied to black hole hori-
1841
+ zon geometry.
1842
+ It is proposed to replace the smooth
1843
+ black hole horizon with a fractal of spheres known as
1844
+ a sphereflake. This structure is distinguished by its frac-
1845
+ tal dimension d f , where 3 ≥ d f ≥ 2, and results in an
1846
+ effective horizon area of r+d f , where r+ is the horizon
1847
+ radius. As a result, in this scenario, the horizon area is
1848
+ modified, yielding Barrow entropy as below SBarrow
1849
+ SBarrow = kB
1850
+ � A
1851
+ Ap
1852
+ �1+ ∆
1853
+ 2
1854
+ (89)
1855
+ where A is the horizon area, Ap is the Planck area, and
1856
+ ∆ is the parameter directly tied to the fractal dimension
1857
+ d f through ∆ = d f − 2. In this form, ∆ can take values
1858
+ between 0 and 1, and ∆ → 1 limit yields maximally frac-
1859
+ tal structure, where the horizon area effectively behaves
1860
+ like a 3−dimensional volume, while ∆ → 0 limit yields
1861
+ the well-known Bekenstein area law where no fractal-
1862
+ ization occurs. Although Barrow entropy offers a dif-
1863
+ ferent picture in the geometrical sense, in its essence,
1864
+ it has the same form as Tsallis-Cirto entropy. We can
1865
+ see that they are equivalent by making the following
1866
+ parametrization in Tsallis-Cirto entropy [105]
1867
+ δ → 1 + ∆
1868
+ 2
1869
+ (90)
1870
+ Thus, qualitatively, both entropic forms yield the same
1871
+ temperatures and heat capacities as a function of black
1872
+ hole mass. Similarly, the Tsallis-Cirto entropy limit ∆ =
1873
+ 1 (δ = 3/2 for Sδ) yields an extensive, but still nonaddi-
1874
+ tive entropy for black holes.
1875
+ IV.
1876
+ SUMMARY AND DISCUSSION
1877
+ We have investigated the nonextensive thermody-
1878
+ namics of black holes, the impact of the generalized
1879
+ uncertainty principle on nonextensive thermodynamics
1880
+ quantities, and the sparsity and GUP-modified sparsity
1881
+ of the radiation in the nonextensive scenario. We have
1882
+ found that all nonextensive black hole entropies and as-
1883
+ sociated temperatures have finite values at the end of
1884
+ the black hole evaporation process due to GUP modifi-
1885
+ cations, indicating the existence of a remnant at the end
1886
+ of the evaporation. This means that black holes do not
1887
+ evaporate fully in the nonextensive setup as well. We
1888
+ have also investigated the sparsity parameter in each
1889
+ nonextensive configuration. Despite the fact that the be-
1890
+ havior of the sparsity parameter varies for each nonex-
1891
+ tensive scenario, GUP consistently lowers the radiation
1892
+ sparsity in all circumstances toward the end of the evap-
1893
+ oration process.
1894
+ Even though multiple nonextensive
1895
+ scenarios have the same temperatures and entropic pro-
1896
+ files, we have demonstrated that the sparsity parameter
1897
+ can be used to distinguish between them.
1898
+ We have introduced GUP and GUP-corrected thermo-
1899
+ dynamic parameters and have revised otherwise well-
1900
+ known GUP corrected quantities to a better form in
1901
+ which the two crucial limits - the extensivity limit for
1902
+ λ → 0 and the HUP limit for α → 0 - are easily iden-
1903
+ tified. Even though GUP corrections on Rényi entropy
1904
+ in black hole thermodynamics have been researched in
1905
+ the literature, we presented a full discussion of it in or-
1906
+ der to help readers distinguish between various sorts of
1907
+ nonextensive scenarios. Additionally, we have provided
1908
+ non-perturbative results for each quantity, with a focus
1909
+ on the Rényi sparsity parameter, which rises (as shown
1910
+ by the "bump" in Fig. (8)) before the value of the rem-
1911
+ nant mass. This is because it is assumed that the area
1912
+ can change as a result of the GUP-modified Bekenstein
1913
+ entropy, which is explicitly shown in (28). This indi-
1914
+
1915
+ 14
1916
+ cates that AGUP as well as TGUP have an impact on the
1917
+ sparsity parameter. Furthermore, we have introduced
1918
+ black hole mass scale Mc = mp/2
1919
+
1920
+ πλ for the nonexten-
1921
+ sive parameter λ for the Rényi black hole quantities and
1922
+ we defined corresponding characteristic length for λ in
1923
+ terms of Mc, i.e. LR = GMc/c2 = 2lp
1924
+
1925
+ πλ. We have
1926
+ shown that, for M > Mc, the heat capacity is positive
1927
+ and hence black holes in Rényi scenario are thermody-
1928
+ namically stable, while for M < Mc, the heat capacity is
1929
+ negative and SR and TR behave like Bekenstein entropy
1930
+ SB and Hawking temperature TH, hence unstable black
1931
+ holes.
1932
+ Similarly, we have also analyzed the thermodynamic
1933
+ black hole quantities associated with Tsallis-Cirto black
1934
+ hole entropy.
1935
+ Particularly, we have focused on GUP
1936
+ corrections and the sparsity of the Tsallis-Cirto radia-
1937
+ tion. We have shown that, when GUP corrections are
1938
+ included, Tsallis-Cirto entropy and associated temper-
1939
+ ature have a finite value, and this proves that the fi-
1940
+ nal state of the black hole is also a remnant with finite
1941
+ entropy and temperature. It is interesting to note that
1942
+ the Tsallis-Cirto parameter δ plays a significant role. We
1943
+ have found that, for δ > 1/2, Tsallis-Cirto entropy and
1944
+ temperature behave similarly to Bekenstein entropy and
1945
+ Hawking temperature, and hence have negative heat ca-
1946
+ pacity. For the GUP case, Tsallis-Cirto temperature be-
1947
+ haves like Rényi temperature and has positive heat ca-
1948
+ pacity for δ < 1/2. This means that, in this framework,
1949
+ we must have δ < 1/2 for thermodynamic stability of
1950
+ black holes. In this way, we have shown that the Tsallis-
1951
+ Cirto sparsity parameter is very high during the start of
1952
+ the evaporation for δ > 1, but it approaches zero at the
1953
+ the end of the black hole evaporation. On the contrary,
1954
+ for δ < 1, we have shown that the Tsallis-Cirto radi-
1955
+ ation is not sparse during the start of the evaporation,
1956
+ but at the end of the evaporation, the sparsity parame-
1957
+ ter becomes infinite and hence shows the highly sparse
1958
+ Tsallis-Cirto radiation. The behavior of the GUP case is
1959
+ initially the same as that of the non-GUP case, but as the
1960
+ mass approaches the order of Planck mass, i.e., Mr, the
1961
+ Tsallis-Cirto sparsity parameter for each case reduces to
1962
+ some finite values. It should be noted that all of these fi-
1963
+ nite sparsity parameter values are less than the sparsity
1964
+ parameter ηH for the standard Hawking case.
1965
+ We have also shown that the behavior of the tempera-
1966
+ ture and the entropy for the Sharma-Mittal case is com-
1967
+ parable to that of SB and SR and TH and TR for differ-
1968
+ ent values of the Sharma-Mittal parameter R since the
1969
+ Sharma-Mittal entropy is the extension of the Tsallis and
1970
+ Rényi entropy. Also, in this instance, the black hole does
1971
+ not evaporate, and the evaporation process stops at Mr,
1972
+ leaving the black hole in its ultimate state as a remnant
1973
+ of mass Mr with finite entropy and temperature. We
1974
+ have analysed the sparsity of the Sharma-Mittal radia-
1975
+ tion and compared it with the standard Hawking case.
1976
+ We have found that the sparsity of the Sharma-Mittal ra-
1977
+ diation behaves similarly to the Rényi radiation in both
1978
+ non-GUP and GUP instances for values of λ and R that
1979
+ fulfill the condition λ − 2R > 0.
1980
+ This indicates that
1981
+ the Sharma-Mittal radiation is initially not sparse and
1982
+ that by the end of the evaporation, its value approaches
1983
+ that of Hawking’s scenario, or ηH, for the non-GUP case.
1984
+ When M approaches Mr for the GUP case, the Sharma-
1985
+ Mittal sparsity parameter approaches a finite value that
1986
+ is smaller than ηH. For the case, R > λ, we have shown
1987
+ that the Sharma-Mittal sparsity parameter is initially
1988
+ larger than ηH and its value exactly approaches ηH by
1989
+ the end of the evaporation whereas for the case of GUP,
1990
+ it approaches a finite value that is smaller than ηH. It is
1991
+ noteworthy to notice that, for α > 0, the GUP modified
1992
+ sparsity parameter is always lower than the standard
1993
+ Hawking case. Moreover, we have also introduced the
1994
+ characteristic mass scale, Mc = mp/2
1995
+
1996
+ π(λ − 2R), for
1997
+ the Sharma-Mittal scenario and also, defined the corre-
1998
+ sponding characteristic length scale LSM = GMc/c2 =
1999
+ 2lp
2000
+
2001
+ π(λ − 2R). We have shown that, for M > Mc with
2002
+ λ − 2R > 0, the black holes are thermodynamically sta-
2003
+ ble in the Sharma-Mittal scenario for both GUP and non-
2004
+ GUP cases, while for M < Mc, black holes are thermo-
2005
+ dynamically unstable.
2006
+ We have also examined the Kaniadakis thermody-
2007
+ namic black hole quantities, and the results demonstrate
2008
+ that, with a little variation depending on the parame-
2009
+ ter K, Kaniadakis entropy and temperature behave sim-
2010
+ ilarly to Bekenstein entropy and Hawking temperature.
2011
+ In the case of the GUP, both quantities reach a finite
2012
+ value as black hole mass approaches Mr during the late
2013
+ stages of the black hole evaporation process. It results in
2014
+ negative heat capacity for all values of K, indicating that
2015
+ Kaniadakis black holes are thermodynamically unstable
2016
+ for all values of black hole mass. Furthermore, in con-
2017
+ trast to the typical Hawking example, the sparsity pa-
2018
+ rameter for the Kaniadakis instance is consistently high
2019
+ from the beginning of the evaporation process. For the
2020
+ non-GUP example, however, ηK approaches the value of
2021
+ ηH at the end of the evaporation. In the GUP situation,
2022
+ it approaches some finite value of sparsity when M ap-
2023
+ proaches Mr, which is always smaller than the sparsity
2024
+ parameter ηH. Additionally, it is clear that a rise in the
2025
+ value of K causes the Kaniadakis radiation to become
2026
+ sparser.
2027
+ Finally, our short look onto the Barrow entropy has
2028
+ proven its equivalence (though in a restricted range of
2029
+ parameters) to the Tsallis-Cirto entropy. In view of that,
2030
+ all the discussion of termodynamical quantities for Bar-
2031
+ row entropy should be the same as for Tsallis-Cirto.
2032
+ ACKNOWLEDGMENTS
2033
+ The work of I.C. and M.P.D. was supported by
2034
+ the Polish National Science Centre grant No.
2035
+ DEC-
2036
+ 2020/39/O/ST2/02323.
2037
+
2038
+ 15
2039
+ [1] S. W. Hawking, Nature 248, 30 (1974).
2040
+ [2] J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).
2041
+ [3] S. W. Hawking, Phys. Rev. D 14, 2460 (1976).
2042
+ [4] P. Chen, Y. C. Ong, and D.-h. Yeom, Phys. Rept. 603, 1
2043
+ (2015), arXiv:1412.8366 [gr-qc].
2044
+ [5] W. G. Unruh and R. M. Wald, Rept. Prog. Phys. 80,
2045
+ 092002 (2017), arXiv:1703.02140 [hep-th].
2046
+ [6] J. M. Bardeen, B. Carter, and S. W. Hawking, Commun.
2047
+ Math. Phys. 31, 161 (1973).
2048
+ [7] G. W. Gibbons and M. J. Perry, Proc. Roy. Soc. Lond. A
2049
+ 358, 467 (1978).
2050
+ [8] S. W. Hawking and D. N. Page, Commun. Math. Phys.
2051
+ 87, 577 (1983).
2052
+ [9] S. W. Hawking, Phys. Rev. D 13, 191 (1976).
2053
+ [10] S. W. Hawking, Commun. Math. Phys. 43, 199 (1975),
2054
+ [Erratum: Commun.Math.Phys. 46, 206 (1976)].
2055
+ [11] T. Jacobson, Phys. Rev. Lett. 75, 1260 (1995), arXiv:gr-
2056
+ qc/9504004.
2057
+ [12] E. P. Verlinde, JHEP 04, 029 (2011), arXiv:1001.0785 [hep-
2058
+ th].
2059
+ [13] T. Padmanabhan, Mod. Phys. Lett. A 25, 1129 (2010),
2060
+ arXiv:0912.3165 [gr-qc].
2061
+ [14] D. Kubiznak and R. B. Mann, Can. J. Phys. 93, 999 (2015),
2062
+ arXiv:1404.2126 [gr-qc].
2063
+ [15] M. Cvetic, G. W. Gibbons, D. Kubiznak, and C. N. Pope,
2064
+ Phys. Rev. D 84, 024037 (2011), arXiv:1012.2888 [hep-th].
2065
+ [16] M. M. Caldarelli, G. Cognola,
2066
+ and D. Klemm, Class.
2067
+ Quant. Grav. 17, 399 (2000), arXiv:hep-th/9908022.
2068
+ [17] R.-G. Cai and S. P. Kim, JHEP 02, 050 (2005), arXiv:hep-
2069
+ th/0501055.
2070
+ [18] P. C. W. Davies, Proc. Roy. Soc. Lond. A 353, 499 (1977).
2071
+ [19] B. P. Dolan, “Where Is the PdV in the First Law
2072
+ of Black Hole Thermodynamics?”
2073
+ (INTECH, 2012)
2074
+ arXiv:1209.1272 [gr-qc].
2075
+ [20] D. A. Easson, P. H. Frampton, and G. F. Smoot, Phys.
2076
+ Lett. B 696, 273 (2011), arXiv:1002.4278 [hep-th].
2077
+ [21] S. W. Hawking, Phys. Rev. Lett. 26, 1344 (1971).
2078
+ [22] C. Tsallis, J. Statist. Phys. 52, 479 (1988).
2079
+ [23] C. Tsallis, R. Mendes, and A. Plastino, Physica A: Statis-
2080
+ tical Mechanics and its Applications 261, 534 (1998).
2081
+ [24] C. Tsallis, Introduction to Nonextensive Statistical Mechan-
2082
+ ics: Approaching a Complex World (Springer New York,
2083
+ NY, 2009).
2084
+ [25] S. Abe, S. Martınez, F. Pennini, and A. Plastino, Physics
2085
+ Letters A 281, 126 (2001).
2086
+ [26] S. Abe and A. K. Rajagopal, Europhysics Letters (EPL)
2087
+ 55, 6 (2001).
2088
+ [27] S. Abe, Physical Review E 63 (2001), 10.1103/phys-
2089
+ reve.63.061105.
2090
+ [28] T. S. Biró and P. Ván, Physical Review E 83 (2011),
2091
+ 10.1103/physreve.83.061147.
2092
+ [29] M. Nauenberg, Phys. Rev. E 67, 036114 (2003).
2093
+ [30] T. S. Biró and P. Ván, Phys. Rev. E 83, 061147 (2011).
2094
+ [31] A. S. Parvan and T. S. Biro, Phys. Lett. A 340, 375 (2005),
2095
+ arXiv:hep-ph/0407131.
2096
+ [32] C. Tsallis and L. J. L. Cirto, Eur. Phys. J. C 73, 2487 (2013),
2097
+ arXiv:1202.2154 [cond-mat.stat-mech].
2098
+ [33] T. S. Biró and V. G. Czinner, Phys. Lett. B 726, 861 (2013),
2099
+ arXiv:1309.4261 [gr-qc].
2100
+ [34] V. G. Czinner, Int. J. Mod. Phys. D 24, 1542015 (2015).
2101
+ [35] V. G. Czinner and H. Iguchi, Universe 3, 14 (2017).
2102
+ [36] V. G. Czinner and H. Iguchi, Phys. Lett. B 752, 306 (2016),
2103
+ arXiv:1511.06963 [gr-qc].
2104
+ [37] V. G. Czinner and H. Iguchi, Eur. Phys. J. C 77, 892 (2017),
2105
+ arXiv:1702.05341 [gr-qc].
2106
+ [38] C. Tsallis, Entropy 22, 17 (2019).
2107
+ [39] A. Rényi, Acta Mathematica Academiae Scientiarum
2108
+ Hungaricae 10, 193–215 (1959).
2109
+ [40] B. D. Sharma and D. P. Mittal, J.Comb.Inf.Syst.Sci. 2, 122
2110
+ (1977).
2111
+ [41] B. D. Sharma and D. P. Mittal, J. Math. Sci 10, 28.
2112
+ [42] G.
2113
+ Kaniadakis,
2114
+ Phys.
2115
+ Rev.
2116
+ E
2117
+ 66,
2118
+ 056125
2119
+ (2002),
2120
+ arXiv:cond-mat/0210467.
2121
+ [43] G.
2122
+ Kaniadakis,
2123
+ Phys.
2124
+ Rev.
2125
+ E
2126
+ 72,
2127
+ 036108
2128
+ (2005),
2129
+ arXiv:cond-mat/0507311.
2130
+ [44] J. D. Barrow, Physics Letters B 808, 135643 (2020).
2131
+ [45] S. Nojiri, S. D. Odintsov, and V. Faraoni, Phys. Rev. D
2132
+ 104, 084030 (2021), arXiv:2109.05315 [gr-qc].
2133
+ [46] S. Nojiri, S. D. Odintsov, and V. Faraoni, Phys. Rev. D
2134
+ 105, 044042 (2022), arXiv:2201.02424 [gr-qc].
2135
+ [47] S. Nojiri, S. D. Odintsov, and V. Faraoni, Int. J. Geom.
2136
+ Meth. Mod. Phys. 19, 2250210 (2022), arXiv:2207.07905
2137
+ [gr-qc].
2138
+ [48] S. Nojiri, S. D. Odintsov, and T. Paul, Phys. Lett. B 825,
2139
+ 136844 (2022), arXiv:2112.10159 [gr-qc].
2140
+ [49] C. Promsiri, E. Hirunsirisawat, and W. Liewrian, Phys.
2141
+ Rev. D 102, 064014 (2020), arXiv:2003.12986 [hep-th].
2142
+ [50] C. Promsiri, E. Hirunsirisawat, and W. Liewrian, Phys.
2143
+ Rev. D 104, 064004 (2021), arXiv:2106.02406 [hep-th].
2144
+ [51] L.
2145
+ Tannukij,
2146
+ P.
2147
+ Wongjun,
2148
+ E.
2149
+ Hirunsirisawat,
2150
+ T. Deesuwan,
2151
+ and C. Promsiri, Eur. Phys. J. Plus
2152
+ 135, 500 (2020), arXiv:2002.00377 [gr-qc].
2153
+ [52] R.
2154
+ Nakarachinda,
2155
+ E.
2156
+ Hirunsirisawat,
2157
+ L.
2158
+ Tannukij,
2159
+ and P. Wongjun, Phys. Rev. D 104, 064003 (2021),
2160
+ arXiv:2106.02838 [gr-qc].
2161
+ [53] I. Çimdiker, M. P. Da¸browski,
2162
+ and H. Gohar, (2022),
2163
+ arXiv:2208.04473 [gr-qc].
2164
+ [54] C. Promsiri, E. Hirunsirisawat,
2165
+ and R. Nakarachinda,
2166
+ Phys. Rev. D 105, 124049 (2022), arXiv:2204.13023 [hep-
2167
+ th].
2168
+ [55] R. Nakarachinda,
2169
+ C. Promsiri,
2170
+ L. Tannukij,
2171
+ and
2172
+ P. Wongjun, (2022), arXiv:2211.05989 [gr-qc].
2173
+ [56] E. N. Saridakis, Phys. Rev. D 102, 123525 (2020),
2174
+ arXiv:2005.04115 [gr-qc].
2175
+ [57] M. P. Dabrowski and V. Salzano, Phys. Rev. D 102, 064047
2176
+ (2020), arXiv:2009.08306 [astro-ph.CO].
2177
+ [58] S. Nojiri, S. D. Odintsov,
2178
+ and V. Faraoni,
2179
+ (2022),
2180
+ arXiv:2208.10235 [gr-qc].
2181
+ [59] N.
2182
+ Komatsu,
2183
+ Eur.
2184
+ Phys.
2185
+ J.
2186
+ C
2187
+ 77,
2188
+ 229
2189
+ (2017),
2190
+ arXiv:1611.04084 [gr-qc].
2191
+ [60] N. Komatsu and S. Kimura, Phys. Rev. D 93, 043530
2192
+ (2016), arXiv:1511.04364 [gr-qc].
2193
+ [61] R. C. Nunes, E. M. Barboza, Jr., E. M. C. Abreu, and J. A.
2194
+ Neto, JCAP 08, 051 (2016), arXiv:1509.05059 [gr-qc].
2195
+ [62] Y. Liu, (2022), arXiv:2203.01814 [gr-qc].
2196
+ [63] A. Majhi, Phys. Lett. B 775, 32 (2017), arXiv:1703.09355
2197
+ [gr-qc].
2198
+ [64] G. G. Luciano and M. Blasone, Phys. Rev. D 104, 045004
2199
+ (2021), arXiv:2104.00395 [hep-th].
2200
+ [65] S. Di Gennaro and Y. C. Ong, (2022), arXiv:2205.09311
2201
+ [gr-qc].
2202
+
2203
+ 16
2204
+ [66] S. Di Gennaro, H. Xu,
2205
+ and Y. C. Ong,
2206
+ (2022),
2207
+ arXiv:2207.09271 [gr-qc].
2208
+ [67] M. Asghari and A. Sheykhi, Eur. Phys. J. C 82, 388 (2022),
2209
+ arXiv:2110.00059 [gr-qc].
2210
+ [68] E. M. C. Abreu and J. A. Neto, Phys. Lett. B 835, 137565
2211
+ (2022), arXiv:2207.13652 [gr-qc].
2212
+ [69] A. Sayahian Jahromi, S. A. Moosavi, H. Moradpour, J. P.
2213
+ Morais Graça, I. P. Lobo, I. G. Salako,
2214
+ and A. Jawad,
2215
+ Phys. Lett. B 780, 21 (2018), arXiv:1802.07722 [gr-qc].
2216
+ [70] N. Drepanou, A. Lymperis, E. N. Saridakis,
2217
+ and
2218
+ K. Yesmakhanova, Eur. Phys. J. C 82, 449 (2022),
2219
+ arXiv:2109.09181 [gr-qc].
2220
+ [71] S. Carlip, Rept. Prog. Phys. 64, 885 (2001), arXiv:gr-
2221
+ qc/0108040.
2222
+ [72] K. Konishi, G. Paffuti, and P. Provero, Phys. Lett. B 234,
2223
+ 276 (1990).
2224
+ [73] R. J. Adler and D. I. Santiago, Mod. Phys. Lett. A 14, 1371
2225
+ (1999), arXiv:gr-qc/9904026.
2226
+ [74] C. Rovelli, Phys. Rev. Lett. 77, 3288 (1996), arXiv:gr-
2227
+ qc/9603063.
2228
+ [75] K. A. Meissner, Class. Quant. Grav. 21, 5245 (2004),
2229
+ arXiv:gr-qc/0407052.
2230
+ [76] F. Scardigli, Phys. Lett. B 452, 39 (1999), arXiv:hep-
2231
+ th/9904025.
2232
+ [77] S.
2233
+ Hossenfelder,
2234
+ Living
2235
+ Rev.
2236
+ Rel.
2237
+ 16,
2238
+ 2
2239
+ (2013),
2240
+ arXiv:1203.6191 [gr-qc].
2241
+ [78] M. Maggiore, Phys. Lett. B 319, 83 (1993), arXiv:hep-
2242
+ th/9309034.
2243
+ [79] S. B. Giddings, Phys. Rev. D 46, 1347 (1992), arXiv:hep-
2244
+ th/9203059.
2245
+ [80] D. N. Page, Phys. Rev. D 13, 198 (1976).
2246
+ [81] D. N. Page, Phys. Rev. D 14, 3260 (1976).
2247
+ [82] D. N. Page, Phys. Rev. D 16, 2402 (1977).
2248
+ [83] S. Schuster, Black Hole Evaporation: Sparsity in Analogue
2249
+ and General Relativistic Space-Times, Ph.D. thesis, Victoria
2250
+ U., Wellington (2018), arXiv:1901.05648 [gr-qc].
2251
+ [84] F. Gray, S. Schuster, A. Van-Brunt, and M. Visser, Class.
2252
+ Quant. Grav. 33, 115003 (2016), arXiv:1506.03975 [gr-qc].
2253
+ [85] S. Schuster, Class. Quant. Grav. 38, 047002 (2021),
2254
+ arXiv:1910.07256 [gr-qc].
2255
+ [86] A. Paul and B. R. Majhi, Int. J. Mod. Phys. A 32, 1750088
2256
+ (2017), arXiv:1601.07310 [gr-qc].
2257
+ [87] A. Alonso-Serrano, M. P. Da¸browski,
2258
+ and H. Gohar,
2259
+ Phys. Rev. D 97, 044029 (2018).
2260
+ [88] A. Alonso-Serrano, M. P. Da¸browski, and H. Gohar, Int.
2261
+ J. Mod. Phys. D 27, 1847028 (2018), arXiv:1805.07690 [gr-
2262
+ qc].
2263
+ [89] Y. C. Ong, JHEP 10, 195 (2018), arXiv:1806.03691 [gr-qc].
2264
+ [90] A. Alonso-Serrano, M. P. Da¸browski,
2265
+ and H. Gohar,
2266
+ Phys. Rev. D 103, 026021 (2021), arXiv:2009.02129 [gr-qc].
2267
+ [91] Z.-W. Feng, X. Zhou, S.-Q. Zhou, and D.-D. Feng, An-
2268
+ nals Phys. 416, 168144 (2020), arXiv:1808.09958 [gr-qc].
2269
+ [92] D. Amati, M. Ciafaloni, and G. Veneziano, Phys. Lett. B
2270
+ 216, 41 (1989).
2271
+ [93] A. Kempf, G. Mangano, and R. B. Mann, Phys. Rev. D
2272
+ 52, 1108 (1995), arXiv:hep-th/9412167.
2273
+ [94] C. Schiller, International Journal of Theoretical Physics
2274
+ 44, 1629 (2005).
2275
+ [95] J.
2276
+ D.
2277
+ Barrow
2278
+ and
2279
+ G.
2280
+ W.
2281
+ Gibbons,
2282
+ Monthly
2283
+ No-
2284
+ tices of the Royal Astronomical Society 446, 3874
2285
+ (2014),
2286
+ https://academic.oup.com/mnras/article-
2287
+ pdf/446/4/3874/9388063/stu2378.pdf.
2288
+ [96] M. P. Da¸browski and H. Gohar, Physics Letters B 748, 428
2289
+ (2015).
2290
+ [97] Y. C. Ong, Phys. Lett. B 785, 217 (2018), arXiv:1809.00442
2291
+ [gr-qc].
2292
+ [98] D. Gao and M. Zhan, Phys. Rev. A 94, 013607 (2016),
2293
+ arXiv:1607.04353 [gr-qc].
2294
+ [99] Z.-W. Feng, S.-Z. Yang, H.-L. Li, and X.-T. Zu, Phys. Lett.
2295
+ B 768, 81 (2017), arXiv:1610.08549 [hep-ph].
2296
+ [100] P. Bosso, S. Das, and R. B. Mann, Phys. Lett. B 785, 498
2297
+ (2018), arXiv:1804.03620 [gr-qc].
2298
+ [101] D. Gao, J. Wang, and M. Zhan, Phys. Rev. A 95, 042106
2299
+ (2017), arXiv:1704.02037 [gr-qc].
2300
+ [102] S. Giardino and V. Salzano, Eur. Phys. J. C 81, 110 (2021),
2301
+ arXiv:2006.01580 [gr-qc].
2302
+ [103] P. Jizba, H. Kleinert, and F. Scardigli, Phys. Rev. D 81,
2303
+ 084030 (2010), arXiv:0912.2253 [hep-th].
2304
+ [104] M. Masi, Physics Letters A 338, 217 (2005).
2305
+ [105] E. M. C. Abreu and J. A. Neto, Phys. Lett. B 810, 135805
2306
+ (2020), arXiv:2009.10133 [gr-qc].
2307
+
TNFAT4oBgHgl3EQf2R4K/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
U9E3T4oBgHgl3EQfawpi/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
V9AzT4oBgHgl3EQfJ_vP/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
W9FQT4oBgHgl3EQfcjYS/content/tmp_files/2301.13327v1.pdf.txt ADDED
@@ -0,0 +1,1839 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.13327v1 [math.OC] 30 Jan 2023
2
+ Optimization Over the Pareto Front of Nonconvex
3
+ Multi-objective Optimal Control Problems
4
+ C. Yal¸cın Kaya∗
5
+ Helmut Maurer†
6
+ February 1, 2023
7
+ Abstract
8
+ Simultaneous optimization of multiple objective functions results in a set of trade-off, or
9
+ Pareto, solutions. Choosing a, in some sense, best solution in this set is in general a challenging
10
+ task: In the case of three or more objectives the Pareto front is usually difficult to view, if not
11
+ impossible, and even in the case of just two objectives constructing the whole Pareto front
12
+ so as to visually inspect it might be very costly. Therefore, optimization over the Pareto (or
13
+ efficient) set has been an active area of research. Although there is a wealth of literature
14
+ involving finite dimensional optimization problems in this area, there is a lack of problem
15
+ formulation and numerical methods for optimal control problems, except for the convex case.
16
+ In this paper, we formulate the problem of optimizing over the Pareto front of nonconvex
17
+ constrained and time-delayed optimal control problems as a bi-level optimization problem.
18
+ Motivated by existing solution differentiability results, we propose an algorithm incorporating
19
+ (i) the Chebyshev scalarization, (ii) a concept of the essential interval of weights, and (iii) the
20
+ simple but effective bisection method, for optimal control problems with two objectives. We
21
+ illustrate the working of the algorithm on two example problems involving an electric circuit
22
+ and treatment of tuberculosis and discuss future lines of research for new computational
23
+ methods.
24
+ Key words: Multi-objective optimization, Optimal control, Optimization over Pareto
25
+ front, Optimization over efficient set, Numerical methods, Rayleigh problem, Tu-
26
+ berculosis, Time-delay problems.
27
+ 1
28
+ Introduction
29
+ We continue our study of optimal control problems where one wishes to minimize simul-
30
+ taneously a number of conflicting objective functionals. These problems are referred to as
31
+ multi-objective optimal control problems and can be expressed in the following concise form:
32
+ (P)
33
+ min
34
+ (x,u,tf)∈X (ϕ1(x(tf), tf), . . . , ϕr(x(tf), tf)) .
35
+ The constraint or the feasible set X in Problem (P) involves a system of differential equations
36
+ (DEs) in the state and control variables x(·) and u(·), respectively, over a time horizon [0, tf].
37
+ The set X also typically involves point and path equality and inequality constraints. The
38
+ DEs and constraints in X might even include time delays in the variables x(·) and u(·). It is
39
+ ∗Mathematics, UniSA STEM, University of South Australia, Mawson Lakes, S.A. 5095, Australia. E-mail:
40
41
+ †Institut f¨ur Numerische und Angewandte Mathematik, Westf¨alische Wilhelms-Universit¨at M¨unster,
42
+ M¨unster, Germany. E-mail: [email protected] .
43
+
44
+ Optimization Over the Pareto Front of Multi-objective Optimal Control Problems by C. Y. Kaya and H. Maurer
45
+ 2
46
+ worth noting that although each of the objective functionals ϕi(x(tf), tf), i = 1, . . . , r, in (P)
47
+ above constitutes the so-called Mayer form, other forms (Bolza and Lagrange) can easily be
48
+ converted into this form conveniently. Therefore, the general model in (P) caters for a wide
49
+ range of conflicting objectives; for instance, minimization of the energy, the terminal time,
50
+ the deviations from a reference state trajectory, or the uncertainty in measurements, to name
51
+ just a few.
52
+ Broadly speaking, the simultaneous or Pareto minimization in Problem (P) is the process of
53
+ finding a compromise solution, referred to as a Pareto minimum, where the value of some cost
54
+ cannot be improved (i.e., reduced) further, without making the value of some other cost worse
55
+ (i.e., higher). One typical example is the case when one wants to minimize simultaneously
56
+ the fuel expenditure of an airplane travelling from one given city to another and the time the
57
+ airplane takes for this travel: A shorter travel time often requires a higher fuel consumption.
58
+ The set of all such compromise or trade-off solutions form the Pareto set in the optimization
59
+ space, or the Pareto front in the value space. Pareto set and Pareto front are also commonly
60
+ referred to as the efficient set and the efficient front, respectively1.
61
+ The authors of this paper have studied in [27] the problem of constructing the Pareto
62
+ front of Problem (P) involving ODEs and constraints of general form. They discussed and
63
+ demonstrated that for the nonconvex optimal control problems like the one in Problem (P),
64
+ it is better to use the so-called weighted Chebyshev-norm scalarization (or just Chebyshev
65
+ scalarization) to guarantee that the whole Pareto front can be constructed, instead of using
66
+ the traditional weighted-sum scalarization, i.e., a convex combination of the objective func-
67
+ tionals. They discretized the scalarized problem directly and utilized large-scale optimization
68
+ software (the AMPL–Ipopt suite [23,46]) to find the Pareto fronts of two constrained optimal
69
+ control problems as examples, one involving tumour anti-angiogenesis and the other a fed-
70
+ batch bioreactor, by means of what they called a scalarize–discretize–then–optimize approach.
71
+ This approach is in contrast with the other existing discretize–scalarize–then–optimize ap-
72
+ proach (see e.g. [28–30,39]) which scalarizes the discretized problem rather than the original
73
+ (continuous-time) problem.
74
+ An additional benefit of the Chebyshev scalarization is also reported and illustrated in [27]:
75
+ One can compute the whole Pareto front by using only those weights of the objective func-
76
+ tionals within what they name as the essential subinterval of weights, instead of the whole
77
+ interval. Having to compute fewer Pareto solutions over a smaller number of grid points in a
78
+ subinterval is obviously a computational advantage. For further details and an extensive list
79
+ of references on multi-objective optimal control the reader is referred to [27]. Other relevant
80
+ studies on the topic in more recent years have appeared in [13,16].
81
+ Apart from certain trivial or special cases, the Pareto front consists of infinitely many
82
+ solutions to choose from. When a discrete approximation of the front is found the number
83
+ of solutions to choose from is still relatively large since the approximate front is required to
84
+ be accurate enough. Making a decision as to which Pareto solution in the front is the most
85
+ suitable (to the needs of a practitioner) is often very hard for the following reasons.
86
+ • In the case of three or more objectives, the Pareto front might be difficult (if not
87
+ impossible) to view and to carry out a visual inspection (or “eyeballing”) for a decision.
88
+ • Even with two objectives, a visual inspection alone may not be enough to choose a
89
+ desirable solution.
90
+ • Constructing the whole Pareto front might just be too costly a thing to do numerically.
91
+ 1These and other definitions will be given in more precise terms in Section 2.
92
+
93
+ Optimization Over the Pareto Front of Multi-objective Optimal Control Problems by C. Y. Kaya and H. Maurer
94
+ 3
95
+ Motivated by these drawbacks, minimization of an additional (single) objective function over
96
+ the Pareto front has been of great interest to many researchers over the past decades—see,
97
+ for example, [2, 3, 5, 6, 14, 15, 25, 26, 31, 41, 47]. Despite this rich collection of works, to the
98
+ knowledge of the authors, it was not before the reference [7] that optimization over the Pareto
99
+ front was studied and a numerical method proposed for convex multi-objective optimal control
100
+ problems. In the current paper, we extend the works in [7,27] to nonconvex multi-objective
101
+ optimal control problems and propose a numerical method for carrying out optimization over
102
+ the Pareto front.
103
+ We set the optimal control problem as a bi-level optimization problem as in [7]: One has
104
+ to minimize a master objective functional subject to the minimization of a scalarization of
105
+ Problem (P). The lower level problem uses the Chebyshev scalarization as in [27], as opposed
106
+ to the weighted-sum scalarization in [7]. The problems we consider is in much more general
107
+ form in this paper: We consider nonconvex instead of convex problems compared to [7] and
108
+ we consider problems with time-delay instead of those without time delay compared to [27].
109
+ Just to re-iterate, [27] only proposes a technique to construct the Pareto front, otherwise it
110
+ does not carry out optimization over the Pareto front.
111
+ As the optimization technique over the Pareto front, we propose the simplest possible
112
+ technique, namely the bisection method, over the set of weights for the bi-objective problem,
113
+ which are the parameters of the lower level optimal control problem. Even in this simplest
114
+ case, it is necessary to obtain derivatives with respect to the weight, for which we employ
115
+ difference approximations.
116
+ However, is it guaranteed that these derivatives exist?
117
+ This
118
+ question is answered by [32, 33, 36, 37] which studied the differentiability of a solution of a
119
+ parametric optimal control problem with respect to the parameters. We add a discussion
120
+ concerning these studies in the paper.
121
+ The main algorithm first finds the essential interval of weights over which the first step of
122
+ the bisection method is taken to find a new subinterval. Then the subsequent steps of the
123
+ bisection method are carried out until the stopping criterion is met.
124
+ The algorithm is illustrated on two challenging numerical examples: the Rayleigh problem,
125
+ which comes from an electric circuit, and a compartmental optimal control model for tuber-
126
+ culosis. In the first problem there are constraints on the control variables, and the second
127
+ problem not only has constraints on the two control variables but also time delays on both
128
+ the control and state variables.
129
+ The paper is organized as follows. In Section 2, we introduce the multi-objective optimal
130
+ control problem, discuss scalarization, introduce the problem of optimization over the Pareto
131
+ front, and elaborate on solution differentiability. In Section 3, we first define and explain
132
+ the essential interval of weights, and then introduce the bisection method for our problem
133
+ and provide the detailed algorithm. In Section 4, we illustrate the algorithm on two example
134
+ optimal control problems. Finally, in Section 5, we provide concluding remarks.
135
+ 2
136
+ Problem Statement and Preliminaries
137
+ 2.1
138
+ Multi-objective optimal control problem
139
+ We consider the following general multi-objective optimal control problem (similar to that
140
+ in [27] but made look slightly more general here) to underlie our study on minimization over
141
+ its Pareto front. The ensuing notation and definitions can also be found in [27] but given
142
+
143
+ Optimization Over the Pareto Front of Multi-objective Optimal Control Problems by C. Y. Kaya and H. Maurer
144
+ 4
145
+ here for completeness as well as convenience.
146
+ (OCP)
147
+
148
+
149
+
150
+
151
+
152
+
153
+
154
+
155
+
156
+
157
+
158
+
159
+
160
+
161
+
162
+
163
+
164
+
165
+
166
+
167
+
168
+
169
+
170
+
171
+
172
+ min
173
+ (ϕ1(x(tf), tf), . . . , ϕr(x(tf), tf))
174
+ subject to
175
+ ˙x(t) = f(x(t), u(t), t) ,
176
+ for a.e. t ∈ [0, tf] ,
177
+ θ(x(0), x(tf), tf) = 0 ,
178
+ �θ(x(0), x(tf ), tf) ≤ 0 ,
179
+ C(x(t), u(t), t) ≤ 0 ,
180
+ for a.e. t ∈ [0, tf] ,
181
+ S(x(t), t) ≤ 0 ,
182
+ for all t ∈ [0, tf] ,
183
+ where r ∈ {2, 3, 4, . . .} is fixed, the state variable x ∈ W 1,∞(0, tf; IRn), ˙x := dx/dt, and
184
+ the control variable u ∈ L∞(0, tf; IRm), with x(t) := (x1(t), . . . , xn(t)) ∈ IRn and u(t) :=
185
+ (u1(t), . . . , um(t)) ∈ IRm. The functions ϕi : IRn × IR+ → IR, f : IRn × IRm × IR+ → IRn,
186
+ θ : IRn × IRn × IR+ → IRp1, �θ : IRn × IRn × IR+ → IRp2, C : IRn × IRm × IR+ → IRp3, and
187
+ S : IRn × IR+ → IRp4, are continuous in their arguments. In this problem, tf is either fixed
188
+ or free. Here, L∞(0, tf; IRm) corresponds to the space of essentially bounded, measurable
189
+ functions equipped with the essential supremum norm. Furthermore, W 1,∞(0, tf; Rn) is the
190
+ Sobolev space consisting of functions x : [0, tf] → Rn whose first derivatives lie in L∞.
191
+ Assume that ϕi(x(tf), tf) ≥ 0, for all i = 1, . . . , r. Note that this assumption can easily be
192
+ met by adding a large enough positive number to each objective functional.
193
+ Note that Problem (OCP) is in general a nonsmooth problem, because it does not require
194
+ differentiability of the objective functionals or the constraints. Moreover, although we have
195
+ stated Problem (OCP) in very broad terms, it can further be generalized, for example by
196
+ adding multi-point constraints, partial differential equations, time delays, etc. In other words,
197
+ although Problem (OCP) is already in a more general form than what one usually encounters
198
+ in applications, it can be further made look more general.
199
+ Of the possible extensions mentioned above, time delays in the state and control vari-
200
+ ables, for instance, can be incorporated into Problem (OCP) by replacing the ODEs in
201
+ Problem (OCP) with
202
+ ˙x(t) = f(x(t), x(t − dx), u(t), u(t − du), t) ,
203
+ for a.e. t ∈ [0, tf] ,
204
+ (1a)
205
+ x(t) = x0(t) ,
206
+ for all t ∈ [−dx, 0) ,
207
+ (1b)
208
+ u(t) = u0(t) ,
209
+ for all t ∈ [−du, 0) ,
210
+ (1c)
211
+ where dx, du > 0 are the time delays in the state and control variables, respectively.
212
+ For technical convenience, let tf ≤ tmax
213
+ f
214
+ , where tmax
215
+ f
216
+ > 0 is some constant. Next, we define
217
+ the feasible set, X ⊂ W 1,∞(0, tf; IRn) × L∞(0, tf; IRm) × IR+, such that
218
+ X := {(x, u, tf) : ˙x(t) = f(x(t), x(t − dx), u(t), u(t − du), t) ,
219
+ for a.e. t ∈ [0, tf] ;
220
+ x(t) = x0(t) ,
221
+ for all t ∈ [−dx, 0];
222
+ u(t) = u0(t) ,
223
+ for all t ∈ [−du, 0) ;
224
+ θ(x(0), x(tf), tf) = 0 ; �θ(x(0), x(tf ), tf) ≤ 0 ;
225
+ C(x(t), u(t), t) ≤ 0 , for a.e. t ∈ [0, tf]; S(x(t), t) ≤ 0, for all t ∈ [0, tf]} .
226
+ Note that, for the case of time delays in the state and control variables, we have included
227
+ Equations (1a)–(1c) instead of the ODEs
228
+ ˙x(t) = f(x(t), u(t), t) in the set X.
229
+ Define the vector of objective functionals, ϕ(x(tf), tf) := (ϕ1(x(tf), tf), . . . , ϕr(x(tf), tf)).
230
+ The triplet (x∗, u∗, t∗
231
+ f) ∈ X is said to be a Pareto minimum if there exists no (x, u, tf) ∈ X
232
+
233
+ Optimization Over the Pareto Front of Multi-objective Optimal Control Problems by C. Y. Kaya and H. Maurer
234
+ 5
235
+ such that ϕ(x(tf), tf) ̸= ϕ(x∗(t∗
236
+ f), t∗
237
+ f) and
238
+ ϕi(x(tf), tf)) ≤ ϕi(x∗(t∗
239
+ f), t∗
240
+ f) ,
241
+ for all i = 1, . . . , r .
242
+ On the other hand, (x∗, u∗, t∗
243
+ f) ∈ X is said to be a weak Pareto minimum if there exists no
244
+ (x, u, tf) ∈ X such that
245
+ ϕi(x(tf), tf)) < ϕi(x∗(t∗
246
+ f), t∗
247
+ f) ,
248
+ for all i = 1, . . . , r .
249
+ The set of all the Pareto and weak Pareto minima is said to be the Pareto set. On the other
250
+ hand, the set of all vectors of objective functional values at the Pareto and weak Pareto min-
251
+ ima is said to be the Pareto front (or the efficient set) of Problem (OCP) in the r-dimensional
252
+ objective value, or outcome, space. Note that the coordinates of a point in the Pareto front
253
+ are simply ϕi(x∗(t∗
254
+ f), t∗
255
+ f), i = 1, . . . , r. Obviously, when r = 2 the Pareto front is in general a
256
+ curve; and when r = 3 the Pareto front is in general a surface.
257
+ 2.2
258
+ Scalarization
259
+ In [27], to compute a solution of Problem (OCP), the following single-objective problem (Pw),
260
+ i.e., scalarization, was employed.
261
+ (Pw)
262
+ min
263
+ (x,u,tf)∈X max{w1 ϕ1(x(tf), tf), . . . , wr ϕr(x(tf), tf)} ,
264
+ where wi, i = 1, . . . , r, are referred to as weights, with the vector of weights w defined
265
+ as w := (w1, . . . , wr) ∈ IRr, such that �r
266
+ i=1 wi = 1.
267
+ Problem (Pw) is referred to as the
268
+ weighted Chebyshev problem (or Chebyshev scalarization) because of the weighted Chebyshev
269
+ norm, maxi |wi ϕi(x(tf), tf)| = maxi wi ϕi(x(tf), tf), appearing in the objective. This type of
270
+ scalarization is typically used for nonconvex multi-objective finite-dimensional optimization
271
+ problems, as opposed to the weighted sum scalarization which is effective for convex problems
272
+ but not the nonconvex ones—see, for example, [38].
273
+ Define the set of weights
274
+ Y :=
275
+
276
+ w ∈ IRr |
277
+ r
278
+
279
+ i=1
280
+ wi = 1
281
+
282
+ .
283
+ The following theorem was originally presented in [27, Theorem 1] for the case when there
284
+ was no delay in the state and control variables. It still holds with the set X modified with
285
+ the delayed state equations.
286
+ Theorem 1 (Bijection between sets of weights and Pareto minima [27]) The triplet
287
+ (x∗, u∗, t∗
288
+ f) is a weak Pareto minimum of (OCP) if, and only if, (x∗, u∗, t∗
289
+ f) is a solution of
290
+ (Pw) for some w1, . . . , wr > 0.
291
+ Remark 1 Suppose that Z ⊂ X denotes the Pareto set, namely the set of all Pareto minima
292
+ of (OCP). Then Theorem 1 establishes that there is a bijection between the set of weights
293
+ Y and the Pareto set Z. This implies that by solving (Pw) for all w ∈ Y , one can obtain
294
+ the whole Pareto set Z and in turn get the Pareto front. With numerical computations on
295
+ the other hand, one would of course carry out some discretization of the weight space Y and
296
+ typically get a discrete approximation of the Pareto front. The bijection between Y and Z
297
+ will also help us devise our algorithm for optimization over the Pareto front.
298
+
299
+
300
+ Optimization Over the Pareto Front of Multi-objective Optimal Control Problems by C. Y. Kaya and H. Maurer
301
+ 6
302
+ An ideal cost ϕ∗
303
+ i , i = 1, . . . , r, associated with Problem (Pw) is the optimal value of the
304
+ optimal control problem,
305
+ min
306
+ (x,u,tf )∈X ϕi(x(tf), tf) .
307
+ (2)
308
+ Let (x, u, tf) be a minimizer of the single-objective problem in (2). Then ϕ∗
309
+ i := ϕi(x(tf), tf)
310
+ and we also define ϕj := ϕj(x(tf), tf), for j ̸= i and j = 1, . . . , r.
311
+ In the case when ϕ∗
312
+ i is negative, one can simply add a large enough positive number to the
313
+ ith objective, to make the objective positive. In general, it is useful to add a positive number
314
+ to each objective in order to obtain an even spread of the Pareto points approximating the
315
+ Pareto front – see for example [21] for further discussion and geometric illustration. To serve
316
+ this purpose, it is common practice to define the so-called utopian objective values.
317
+ A utopian objective vector associated with Problem (OCP) is given as β∗ := (β∗
318
+ 1, . . . , β∗
319
+ r),
320
+ with β∗
321
+ i := ϕ∗
322
+ i − ηi and ηi > 0 for all i = 1, . . . , r. Problem (Pw) can then be equivalently
323
+ written as
324
+ min
325
+ (x,u,tf)∈X max{w1 (ϕ1(x(tf), tf) − β∗
326
+ 1), . . . , wr (ϕr(x(tf), tf) − β∗
327
+ r)} .
328
+ In the case when the objective functionals and the constraints in Problem (OCP) are
329
+ differentiable in their arguments, it is worth reformulating Problem (Pw) using a standard
330
+ technique from mathematical programming in the following (smooth) form.
331
+ (OCPw)
332
+
333
+
334
+
335
+
336
+
337
+
338
+
339
+
340
+
341
+
342
+
343
+
344
+
345
+ min
346
+ α≥0
347
+ (x,u,tf )∈X
348
+ α
349
+ subject to
350
+ w1 (ϕ1(x(tf), tf) − β∗
351
+ 1) ≤ α ,
352
+ ...
353
+ wr (ϕr(x(tf), tf) − β∗
354
+ r) ≤ α .
355
+ Problem (OCPw) is referred to as goal attainment method [38], as well as Pascoletti-Serafini
356
+ scalarization [22]. We will solve Problem (OCPw) in an algorithm we present in the next
357
+ section, for the two examples we want to study.
358
+ We re-iterate that the “popular” weighted-sum scalarization, given below, fails to generate
359
+ the “nonconvex parts” of a Pareto front.
360
+ (Pws)
361
+ min
362
+ (x,u,tf)∈X
363
+ r
364
+
365
+ i=1
366
+ wi ϕi(x(tf), tf) .
367
+ This deficiency is illustrated with a multi-objective optimal control problem, for example, in
368
+ the fed-batch bioreactor problem in [27].
369
+ 2.3
370
+ Optimization over the Pareto front
371
+ The main task in this paper is to devise a numerical algorithm for solving the problem of
372
+ decision making as to which Pareto point should be chosen.
373
+ This obviously depends on
374
+ the criterion a decision maker uses in making his/her choice. As pointed in Remark 1, the
375
+ whole Pareto front can be parameterized in terms of the vector of weights w. Therefore,
376
+ Problem (Pw), or equivalently (OCPw), can be regarded as a parametric optimal control
377
+ problem, and it also makes sense to express the decision maker’s objective as the minimization
378
+ of a function of w.
379
+
380
+ Optimization Over the Pareto Front of Multi-objective Optimal Control Problems by C. Y. Kaya and H. Maurer
381
+ 7
382
+ Before going ahead with the statement of this problem, we re-write the variables of the
383
+ optimal control problem, with a slight abuse of notation, as xw(t) := x(t, w), uw(t) := u(t, w),
384
+ and tw
385
+ f := tf(w) to emphasize their dependence on the vector of weights w.
386
+ We call the decision maker’s objective function the master objective function, expressed by
387
+ ϕ0(xw, uw, tw
388
+ f ). With the weight vector w of the scalarization treated now as a variable, the
389
+ problem of optimization over the Pareto front reduces to the problem of finding an optimal
390
+ weight w∗. Then the corresponding Pareto minimum is a solution of Problem (OCPw∗).
391
+ The problem of optimizing a master objective function over the Pareto front of (OCP)
392
+ with r ≥ 2 objectives is nothing but a bilevel programming problem and can be written as
393
+ (OPF)
394
+
395
+
396
+
397
+
398
+
399
+
400
+
401
+
402
+
403
+
404
+
405
+
406
+
407
+
408
+
409
+
410
+
411
+
412
+
413
+ min
414
+ w∈Y
415
+ ϕ0(xw, uw, tw
416
+ f )
417
+ subject to
418
+ min
419
+ α≥0
420
+ (x,u,tf )∈X
421
+ α
422
+ subject to w1 (ϕ1(x(tf, w), tf) − β∗
423
+ 1) ≤ α ,
424
+ ...
425
+ wr (ϕr(x(tf, w), tf) − β∗
426
+ r) ≤ α .
427
+ Remark 2 The lower-level problem in (OPF) for some given w is simply Problem (OCPw).
428
+ A solution of (OCPw) is nothing but a point in the Pareto set Z of (OCP) and is described
429
+ by the triplet Zw := (x∗(t, w), u∗(t, w), t∗
430
+ f(w)). Then the (whole) Pareto set can be expressed
431
+ as Z = ∪w∈Y Zw. Now Problem (OPF) can equivalently be written as
432
+
433
+ min
434
+ w∈Y
435
+ ϕ0(xw, uw, tw
436
+ f )
437
+ subject to
438
+ (xw, uw, tw
439
+ f ) ∈ Zw .
440
+ We note that the optimization variable of the upper-level problem is the “unknown” param-
441
+ eter w. If the solution (x∗(t, w), u∗(t, w), t∗
442
+ f(w)) of Problem (OCPw) is differentiable in the
443
+ parameter w, then powerful differentiable optimization techniques can be employed in solving
444
+ Problem (OPF) (or in a more concise form the above problem). This is what was done in [7]
445
+ for convex multi-objective optimal control problems. In this paper, we are extending the
446
+ work in [7] to the nonconvex setting by also incorporating the Chebyshev scalarization and
447
+ the concept of essential interval of weights given in [27].
448
+
449
+ 2.4
450
+ Solution differentiability
451
+ We briefly review results on solution differentiability or C1-sensitivity of solutions to the
452
+ following parametric optimal control problems depending on a parameter p ∈ P, where P is
453
+ a Banach space:
454
+ (OCP(p))
455
+
456
+
457
+
458
+
459
+
460
+
461
+
462
+
463
+
464
+
465
+
466
+
467
+
468
+
469
+
470
+
471
+
472
+ min x,u,p g(x(tf), tf, p)
473
+ subject to ˙x(t) = �f(x(t), u(t), p) ,
474
+ for a.e. t ∈ [0, tf] ,
475
+ ψ(x(0), x(tf), tf, p) = 0 ,
476
+ ˜ψ(x(0), x(tf), tf, p) ≤ 0 ,
477
+ ˜C(x(t), u(t), p) ≤ 0 ,
478
+ for a.e. t ∈ [0, tf] ,
479
+ ˜S(x(t), p) ≤ 0 ,
480
+ for a.e. t ∈ [0, tf] .
481
+ We note that problem (OCPw) is a special case of the parametric problem (OCP(p)) by
482
+ simply taking the parameter as the weight, p = w, which then appears only in the terminal
483
+ inequality constraints. The problem (OCP(p0)) corresponding to a reference parameter p0
484
+ is considered as the nominal or unperturbed problem. It is assumed that a local solution
485
+
486
+ Optimization Over the Pareto Front of Multi-objective Optimal Control Problems by C. Y. Kaya and H. Maurer
487
+ 8
488
+ (x0, u0) of the reference solution exists. Let p be a parameter in a neighbourhood of the
489
+ nominal parameter p0 and denote the solution to (OCP(p)) by (x(t, p), u(t, p)). Dontchev
490
+ and Hager [17] gave conditions under which the mapping p �→ (x(·, p), u(·, p)) is Lipschitz.
491
+ Malanowski and Maurer [32, 33] and Maurer and Pesch [36, 37] investigated the solution
492
+ differentiability or C1-sensitivity of the optimal solution.
493
+ The authors derived conditions
494
+ such that an optimal solution (x(·, p), u(·, p)) of the perturbed control problem OCP(p) exists
495
+ for all parameters p in a neighborhood of p0 and, moreover, the solution (x(t, p), u(t, p)) is
496
+ a C1 function with respect to both arguments (t, p). In broad descriptions, these conditions
497
+ include certain smoothness of the functions in Problem (OCP1), satisfaction of the strict
498
+ Legendre–Clebsch condition, uniqueness of the optimal control minimizing the Hamiltonian,
499
+ nonsingularity of the Jacobian of an associated boundary-value problem, and boundedness
500
+ of the symmetric solution of an associated Riccati ODE.
501
+ Fixing an increment d ∈ P, the differentials
502
+ zd(t, p0) = ∂x
503
+ ∂p(t, p0)d,
504
+ vd(t, p0) = ∂u
505
+ ∂p(t, p0)d,
506
+ satisfy a linear boundary value problem that contains only information obtained in the process
507
+ of computing the unperturbed solution. The computations of these sensitivity differentials
508
+ can also be performed by discretization methods applied to the parametric optimal control
509
+ problem; see B¨uskens [11] and B¨uskens and Maurer [12]. The sensitivity differentials can be
510
+ conveniently used in the minimization of a master function defined on the Pareto front; see
511
+ Section 2.3.
512
+ The above mentioned conditions for showing solution differentiability exclude optimal con-
513
+ trol problems with control appearing linearly, since for this class of problems the strict
514
+ Legendre-Clebsch condition does not hold. Here, optimal controls are combinations of bang-
515
+ bang and singular arcs. In case of finitely many switching times and junction times with
516
+ the boundary of a mixed control-state constraint or a pure state constraint, one can set up
517
+ a finite-dimensional optimization problem, the Induced Optimization Problem, where the
518
+ switching and junction times are optimized directly; see Maurer et al. [34] and Osmolovskii
519
+ and Maurer [40].
520
+ If second-order sufficient conditions hold for the Induced Optimization
521
+ Problem (see [40]), one immediately obtains the result that the switching and junction times
522
+ locally are differentiable functions of the parameter p.
523
+ To our knowledge extensions of these results on solution differentiability to optimal control
524
+ problems with control and state delays can not be found in the literature.
525
+ 3
526
+ An Algorithm For Optimization Over the Pareto Front
527
+ As discussed in Section 2.4, the results [36, Theorem 3.1] and [37, Theorem 5.1] lay the ground
528
+ for devising and implementing numerical methods for solving Problem (OPF). Bonnel and
529
+ Kaya propose in [7] a barrier method for convex bi-objective optimal control problems with
530
+ pure control constraints.
531
+ Their method relies on twice continuous differentiability of the
532
+ solution (class C2) in the weight w, using the result in [36, Theorem 3.1].
533
+ In this paper, we propose a bisection method also for the case of two objectives, which
534
+ relies on the solution of Problem (OCPw) being of class C1 w.r.t. the weight w, and thus
535
+ taking the result in [37, Theorem 5.1] as a basis.
536
+ Although a mathematical justification
537
+ of the applicability of our proposed method, i.e., solution differentiability, is given only for
538
+ Problem (OCPw), the working of the method will also be illustrated on problems of more
539
+ general class as in Problem (OCPw).
540
+
541
+ Optimization Over the Pareto Front of Multi-objective Optimal Control Problems by C. Y. Kaya and H. Maurer
542
+ 9
543
+ PSfrag replacements
544
+ Pareto front
545
+ ϕ1
546
+ ϕ2
547
+ (ϕ∗
548
+ 1, ϕ2)
549
+ (ϕ1, ϕ∗
550
+ 2)
551
+ wf (ϕ1 − β∗
552
+ 1) = (1 − wf) (ϕ2 − β∗
553
+ 2)
554
+ w0 (ϕ1 − β∗
555
+ 1) = (1 − w0) (ϕ2 − β∗
556
+ 2)
557
+ (β∗
558
+ 1, β∗
559
+ 2)
560
+ Figure 1: Determination of the essential subinterval of weights [w0, wf] [27].
561
+ In the scalarized problem (OCPw) with two objectives (r = 2), by choosing w1 = w, and
562
+ w2 = 1 − w, where w ∈ [0, 1], one can simply consider the single parameter w.
563
+ 3.1
564
+ Essential interval of weights
565
+ With the Chebyshev scalarization, it would usually be enough for the weight w to take values
566
+ over a (smaller) subinterval [w0, wf] ⊂ [0, 1], with w0 > 0 and wf < 1, for the generation of
567
+ the whole front. Figure 3.1 illustrates the geometry to compute the subinterval end-points,
568
+ w0 and wf. In the illustration, the points (ϕ∗
569
+ 1, ϕ2) and (ϕ1, ϕ∗
570
+ 2) represent the boundary of
571
+ the Pareto front. The equations of the “rays” which emanate from the utopia point (β∗
572
+ 1, β∗
573
+ 2)
574
+ and pass through the boundary points are also shown. By substituting the boundary values
575
+ of the Pareto curve into the respective equations, and solving each equation for w0 and wf
576
+ one simply gets
577
+ w0 =
578
+ (ϕ∗
579
+ 2 − β∗
580
+ 2)
581
+ (ϕ1 − β∗
582
+ 1) + (ϕ∗
583
+ 2 − β∗
584
+ 2)
585
+ and
586
+ wf =
587
+ (ϕ2 − β∗
588
+ 2)
589
+ (ϕ∗
590
+ 1 − β∗
591
+ 1) + (ϕ2 − β∗
592
+ 2) .
593
+ (3)
594
+ From the geometry depicted in Figure 3.1, as also discussed in [27], one can deduce that
595
+ with every w ∈ [0, w0] the solution of (OCPw) will yield the same boundary point (ϕ1, ϕ∗
596
+ 2)
597
+ on the Pareto front. Likewise with every w ∈ [wf, 1] the same boundary point (ϕ∗
598
+ 1, ϕ2) is
599
+ generated. This observation justifies the avoidance of the weights w ∈ [0, w0) ∪ (wf, 1] in
600
+ order not to keep getting the boundary points of the Pareto front, as otherwise one would
601
+ end up wasting valuable computational effort and time.
602
+ As a result of the above argument, the bisection method, implemented in the algorithm
603
+ described in the next section, starts with the essential interval [w0, wf] rather than [0, 1]. It
604
+ is worth re-iterating that our main concern here, unlike in [27], is not really to construct the
605
+ Pareto front, but rather do a search (in this case using the bisection method) over the Pareto
606
+ front, at the same time avoiding the task of constructing the front, so as to find in some sense
607
+ the best solution point in the Pareto front.
608
+
609
+ Optimization Over the Pareto Front of Multi-objective Optimal Control Problems by C. Y. Kaya and H. Maurer
610
+ 10
611
+ 3.2
612
+ Bisection method for solving Problem (OPF)
613
+ The problem of finding a best point in the Pareto front/set has now been transformed into
614
+ a problem of finding best w, by virtue of the surjection from the set of weights to the set of
615
+ Pareto minima furnished by Theorem 1. This has resulted in Problem (OPF) and its concise
616
+ form: Find some weight w ∈ [w0, wf] such that the master objective function ϕ0(xw, uw, tw
617
+ f ) is
618
+ minimized, where (xw, uw, tw
619
+ f ) is found by solving (OCPw) for that w. For a simpler setting, it
620
+ is helpful to define a function F : [0, 1] → IR+ representing the function we want to minimize
621
+ over the Pareto front:
622
+ F(w) := ϕ0(xw, uw, tw
623
+ f ) ,
624
+ (4)
625
+ such that (xw, uw, tw
626
+ f ) solves (OCPw). In other words, an evaluation of the function F(·) at
627
+ w requires the solution of Problem (OCPw) with that w.
628
+ Problem (OPF) can now be re-written in an even more concise form as
629
+ min
630
+ w∈[w0,wf] F(w) ,
631
+ (5)
632
+ where F(·) is evaluated as in (4). In [7], a log-barrier method is proposed and implemented
633
+ to solve (5), with an underlying convex and smooth optimal control problem with no state
634
+ constraints for which the solution can be assumed to be of class C2, and so Newton-like
635
+ methods are used with heuristic barrier parameter updates. For the general form we have in
636
+ Problem (OCP), which is nonconvex and has state constraints, we assume that the solution
637
+ is of class C1. As elaborated in Section 2.4, under certain regularity conditions which can
638
+ in many cases be checked, this assumption is guaranteed to hold. Therefore we apply the
639
+ bisection method [10] as an effective and simple approach to solving (5) in the case of this
640
+ paper.
641
+ Albeit elementary and standard, a statement of the optimality conditions in the fact below
642
+ will be useful in formulating a computational algorithm later in this section.
643
+ Fact 1 Consider the minimization problem in (5) with F(·) of class C1.
644
+ (a) The interior point w∗ ∈ (w0, wf) is a strict local minimizer of F(·) if, and only if,
645
+ F ′(w∗) = 0 ,
646
+ (6)
647
+ and, for arbitrarily small ε > 0,
648
+ F ′(w∗ − ε) < 0
649
+ and
650
+ F ′(w∗ + ε) > 0 .
651
+ (7)
652
+ (b) The end point w0 (resp. wf) is a strict local minimizer of F(·) if, and only if, either
653
+ (i) F ′(w0) > 0 (resp. F ′(wf) < 0) or
654
+ (ii) F ′(w0) = 0 (resp. F ′(wf) = 0) and, for arbitrarily small ε > 0, F ′(w0 + ε) > 0
655
+ (resp. F ′(wf − ε) < 0).
656
+ Remark 3 (Three Cases for the End Points of [w0, wf]) We will apply the bisection
657
+ method starting with the essential interval [w0, wf]. Before introducing the pertaining algo-
658
+ rithm, we consider below the cases for the end points of this interval.
659
+ Case I. F ′(w0)F ′(wf) < 0 : Since F ′(·) is assumed to be continuous the bisection method
660
+ is guaranteed to find a numerical solution to (6) by the intermediate value theorem.
661
+ Condition (7) needs to be check to see if w∗ is a strict local minimizer.
662
+
663
+ Optimization Over the Pareto Front of Multi-objective Optimal Control Problems by C. Y. Kaya and H. Maurer
664
+ 11
665
+ Case II. F ′(w0)F ′(wf) > 0 : By the conditions in Fact 1(b)(i), at least one of w0 and wf is
666
+ a strict local minimizer.
667
+ Case III. F ′(w0)F ′(wf) = 0 : If one of the inequalities in Fact 1(b)(ii) is satisfied, then w0
668
+ or wf is a strict local minimizer. It is possible that both w0 and wf are, or only one or
669
+ neither is, a local minimizer.
670
+ In Case I, the bisection method starts with the interval [w0, wf] and terminates with an
671
+ approximate solution in the interior of the interval. In Case II, a local minimum is found
672
+ immediately, and so in principle there is no need to do a further search. In Case III, however,
673
+ the conclusion might be that neither w0 nor wf is a strict local minimizer, in which case it
674
+ would be necessary to start the bisection method with a subinterval of [w0, wf], and consider
675
+ Cases I–III again.
676
+
677
+ Remark 4 In any of the scenarios elaborated in Remark 3, consideration of another subin-
678
+ terval of [w0, wf] might as well yield a better (lower-value) solution, since the problem is
679
+ nonconvex and we can only hope to get a locally optimal solution. In our approach here,
680
+ however, we do not endeavour to obtain a global minimum. As a result of our discussion
681
+ in Remark 3, we will consider only Case I, which clearly prompts us to use the bisection
682
+ method directly. As suggested above, in the event of Case III not yielding a solution, the
683
+ new subinterval could be chosen in such a way that one would fall into Case I.
684
+
685
+ The derivative of F(·) is defined at the end points of the interval [w0, wf] as one-sided
686
+ limits,
687
+ F ′(w0) := lim
688
+ δ→0+
689
+ F(w0 + δ) − F(w0)
690
+ δ
691
+ and
692
+ F ′(wf) := lim
693
+ δ→0−
694
+ F(wf + δ) − F(wf)
695
+ δ
696
+ ,
697
+ and in the interior, i.e., for w ∈ (w0, wf), as
698
+ F ′(w) := lim
699
+ δ→0
700
+ F(w + δ) − F(w)
701
+ δ
702
+ ,
703
+ where F(·) is evaluated as in (4). In computations, we will use the forward, and backward,
704
+ finite difference approximations of F ′(·). Namely, for some small δ > 0, we will set
705
+ F ′(w) ≈
706
+
707
+
708
+
709
+
710
+
711
+
712
+
713
+ F(w + δ) − F(w)
714
+ δ
715
+ ,
716
+ if w ∈ [w0, wf − δ) ,
717
+ F(w) − F(w − δ)
718
+ δ
719
+ ,
720
+ if w ∈ [wf − δ, wf] .
721
+ (8)
722
+ The step δ in the difference approximation formula (8) is small for an accurate estimation of
723
+ the derivative but not too small in order not to divide one very small number by another and
724
+ cause numerical instabilities.
725
+ In what follows we provide an algorithm to solve Problem (OPF). The algorithm first finds
726
+ the essential interval [w0, wf], computes the signs of F ′(w0) and F ′(wf) and checks the cases
727
+ I–III in Remark 3, and then if F ′(w0)F ′(wf) < 0 it uses the bisection method, to find a
728
+ numerical solution to Problem (OPF).
729
+ Algorithm 1
730
+ Step 0.0 (Initialization)
731
+ Choose utopia parameters, η1, η2 > 0, a small numerical differ-
732
+ entiation step δ > 0, a stopping tolerance ǫ > 0, and a maximum number of iterations
733
+ kmax . Set k := 1.
734
+
735
+ Optimization Over the Pareto Front of Multi-objective Optimal Control Problems by C. Y. Kaya and H. Maurer
736
+ 12
737
+ Step 0.1 (Boundary points of the front) Solve (2) to get (xi, ui, ti
738
+ f), i = 1, 2. Set
739
+ (ϕ∗
740
+ 1, ϕ2) := (ϕ1(x1(t1
741
+ f), t1
742
+ f), ϕ2(x1(t1
743
+ f), t1
744
+ f)), (ϕ1, ϕ∗
745
+ 2) := (ϕ1(x2(t2
746
+ f), t2
747
+ f), ϕ2(x2(t2
748
+ f), t2
749
+ f)) .
750
+ Step 0.2 (Utopia point) Set β∗ := (β∗
751
+ 1, β∗
752
+ 2) with β∗
753
+ i := ϕ∗
754
+ i − ηi, i = 1, 2.
755
+ Step 0.3 (Essential interval) Determine the subinterval [w0, wf] ⊂ [0, 1] using (3).
756
+ Step 0.4 (Signs at end points) Compute F ′(w0) and F ′(wf) using (8), with F(·) evaluated
757
+ as in (4).
758
+ • If Fact 1(b)(i) or (ii) is satisfied then w∗ = w0 or w∗ = wf appropriately; STOP.
759
+ • If F ′(w0)F ′(wf) = 0 and neither of the inequalities in Fact 1(b)(ii) is satisfied then
760
+ declare “Algorithm failed. Change the interval [w0, wf].” and STOP.
761
+ Let a := w0 and b := wf.
762
+ Step k.1 (Bisection) Find the midpoint c := a + (b − a)/2 of the interval [a, b].
763
+ Step k.2 (Stopping criterion) Compute F ′(c) using (8), with F(·) evaluated as in (4).
764
+ • If F ′(c) = 0 or (b − a)/2 < ǫ then set w∗ = c and STOP.
765
+ • If k = kmax then declare “Maximum number of iterations exceeded.” and STOP.
766
+ Step k.3 (New subinterval)
767
+ Set k := k + 1 . If F ′(a)F ′(c) > 0 then update the subinterval
768
+ as [a, b] := [c, b]; otherwise, set [a, b] := [a, c]. GO TO Step k.1.
769
+ 4
770
+ Numerical Examples
771
+ In this section, we illustrate the working of Algorithm 1 on two optimal control problems,
772
+ one involving an electric circuit in Section 4.1 and the other a tuberculosis (TB) epidemic in
773
+ Section 4.2.
774
+ In computations, we use direct discretization of optimal control problems for which con-
775
+ vergence theory has been an active topic of research in the literature (see for example
776
+ [1,4,18–20,42], and see [27] for additional references and discussion).
777
+ We employ the scalarize–discretize–then–optimize approach that was previously used in [27].
778
+ Under this approach, one first scalarizes the multi-objective problem in the infinite-dimensional
779
+ space, and then discretizes the scalarized problem directly and applies a usually large-scale
780
+ finite-dimensional optimization method to find a discrete approximate solution of the scalar-
781
+ ized problem. By the existing theory of discretization mentioned above, under certain as-
782
+ sumptions, the discrete approximate solution converges to a solution of the continuous-time
783
+ scalarization of the original problem, yielding a Pareto minimum of the original problem.
784
+ When possible, we will also check a posteriori to see if the necessary optimality conditions
785
+ are satisfied by an accurate-enough numerical solution.
786
+ In Step 0.4 of Algorithm 1, a direct discretization of Problem (OCPw), for example em-
787
+ ploying a Runge–Kutta scheme, such as Euler’s method or the Trapezoidal rule, is solved by
788
+ using Ipopt, version 3.12.13, four times. In Step k.2, Problem (OCPw) is solved in a similar
789
+ way two times. Ipopt is a popular optimization software based on an interior point method;
790
+ see [46]. We use AMPL [23] as an optimization modelling language, which employs Ipopt as
791
+ a solver.
792
+
793
+ Optimization Over the Pareto Front of Multi-objective Optimal Control Problems by C. Y. Kaya and H. Maurer
794
+ 13
795
+ 4.1
796
+ Example: Tunnel-diode oscillator (Rayleigh problem)
797
+ The tunnel-diode oscillator problem, also referred to as the Rayleigh problem in the literature,
798
+ involves dynamics represented by the following differential equations.
799
+ ˙x1(t) = x2(t) ,
800
+ ˙x2(t) = −x1(t) + x2(t) (1.4 − 0.14 x2
801
+ 2(t)) + 4 u(t) ,
802
+ for a.e. t ∈ [0, tf] ,
803
+ where the state variable x1(t) denotes electric current, and the control variable u(t) stands
804
+ for a suitable transformation of the voltage at a generator, both at time t ∈ [0, tf]—see [35]
805
+ for a detailed exposition of the problem. In this particular instance of the problem, the initial
806
+ and terminal values of the state variables are specified as
807
+ (x1(0), x2(0)) = (−5, −5)
808
+ and
809
+ (x1(tf), x2(tf)) = (0, 0) ,
810
+ and the dynamics are subject to constraints on the control variable such that
811
+ −1 ≤ u(t) ≤ 1 ,
812
+ for a.e. t ∈ [0, tf] .
813
+ The optimal control problem is posed as a bi-objective problem with
814
+ min
815
+
816
+ tf ,
817
+ � tf
818
+ 0
819
+
820
+ x2
821
+ 1(t) + u2(t)
822
+
823
+ dt
824
+
825
+ ,
826
+ where the competing objectives are the minimization of the final time tf and the minimization
827
+ of the sum of the square L2-norms, or in some sense the magnitudes, of the current and the
828
+ generator voltage. Define a new state variable x3 such that
829
+ ˙x3(t) = x2
830
+ 1(t) + u2(t) ,
831
+ for a.e. t ∈ [0, tf] ,
832
+ x3(0) = 0 .
833
+ Then the two objective functionals as in Problem (OCP), or Problem (OCPw), can be ex-
834
+ pressed as
835
+ ϕ1(x(tf), tf) = tf
836
+ and
837
+ ϕ2(x(tf), tf) = x3(tf) .
838
+ As we have stated above, the bi-objective Rayleigh problem is in the same form as Prob-
839
+ lem (OCP) and, in particular, Problem (OCPw). The decision maker’s objective for this
840
+ problem will be to minimize a weighted distance to the origin of the value space. We choose
841
+ ϕ0(xw, uw, tw
842
+ f ) := 100 ϕ2
843
+ 1(xw(tf), tw
844
+ f ) + ϕ2
845
+ 2(xw(tf), tw
846
+ f ) ,
847
+ where the scaling multiplier 100 is used to make the orders of magnitudes of ϕ1 and ϕ2 the
848
+ same. We aim to solve Problem (OPF), to determine a scalar w ∈ (0, 1) with w1 := w and
849
+ w2 := 1 − w that results in the best Pareto solution in the sense that ϕ0(·, ·, ·) is minimized,
850
+ subject to the solution of Problem (OCPw).
851
+ In [35], Maurer and Oberle numerically illustrate that an optimal solution does not exist
852
+ for the single objective problem minimizing the quadratic functional ϕ2(x(tf), tf), in that tf
853
+ tends to infinity. They carry out a numerical test for checking the second-order sufficient
854
+ conditions (SSC) of optimality and show that the test fails to confirm the SSC. Therefore,
855
+ we will impose a bound on the terminal time, namely set tf ≤ 5. On the other hand, they
856
+ illustrate also in [35] that for certain instances of the weighted-sum problem, the SSC of
857
+ optimality are satisfied.
858
+
859
+ Optimization Over the Pareto Front of Multi-objective Optimal Control Problems by C. Y. Kaya and H. Maurer
860
+ 14
861
+ Problem (OCPw) can now explicitly be written for the Rayleigh problem as
862
+
863
+
864
+
865
+
866
+
867
+
868
+
869
+
870
+
871
+
872
+
873
+
874
+
875
+
876
+
877
+
878
+
879
+
880
+
881
+
882
+
883
+
884
+
885
+
886
+
887
+
888
+
889
+
890
+
891
+
892
+
893
+
894
+
895
+ min
896
+ α≥0
897
+ x(·),u(·),tf
898
+ α
899
+ subject to
900
+ ˙x1(t) = x2(t) ,
901
+ x1(0) = −5 , x1(tf) = 0 ,
902
+ ˙x2(t) = −x1(t) + x2(t) (1.4 − 0.14 x2
903
+ 2(t)) + 4 u(t) , x2(0) = −5 , x2(tf) = 0 ,
904
+ ˙x3(t) = x2
905
+ 1(t) + u2(t) ,
906
+ x3(0) = 0 ,
907
+ −1 ≤ u(t) ≤ 1 ,
908
+ for a.e. t ∈ [0, tf] ,
909
+ tf ≤ 5 ,
910
+ w (tf − β∗
911
+ 1) ≤ α ,
912
+ (1 − w) (x3(tf) − β∗
913
+ 2) ≤ α .
914
+ The Hamiltonian H : IR3 × IR × IR3 → IR for this problem simply is
915
+ H(x, u, λ) := λ1x2 + λ2
916
+
917
+ (−x1 + x2 (1.4 − 0.14 x2
918
+ 2) + 4u
919
+
920
+ + λ3(x2
921
+ 1 + u2) ,
922
+ where λ(t) := (λ1(t), λ2(t), λ3(t)) ∈ IR3 is referred to as the adjoint variable vector. Using
923
+ the convenient notation H[t] := H(x(t), u(t), λ(t)), suppose that
924
+ ˙λ1(t) := −Hx1[t] = λ2(t) − 2λ3(t)x1(t) ,
925
+ (9a)
926
+ ˙λ2(t) := −Hx2[t] = −λ1(t) − λ2(t)(1.4 − 0.42x2
927
+ 2(t)) ,
928
+ (9b)
929
+ ˙λ3(t) := −Hx3[t] = 0 ,
930
+ (9c)
931
+ for all t ∈ [0, tf], with certain transversality conditions as required by the maximum principle.
932
+ In (9a)–(9c), Hxi := ∂H/∂xi, i = 1, 2, 3. We will not go into the details of these (boundary)
933
+ conditions here. However we note that λ3(t) = λ3, a constant, for all t ∈ [0, tf]. Then the
934
+ maximum principle states that if (x, u, tf) is an optimal solution triplet then there exists
935
+ a continuous function λ(·) satisfying (9a)–(9c), along with certain transversality conditions,
936
+ such that λ(t) ̸= 0, for all t ∈ [0, tf], and
937
+ u(t) = argmin
938
+ v∈[−1,1]
939
+ H(x(t), v, λ(t)) = argmin
940
+ v∈[−1,1]
941
+
942
+ 4λ2(t)v + λ3(t)v2�
943
+ .
944
+ (10)
945
+ for a.e. t ∈ [0, tf]. If w = 1, then the problem is a single-objective one, referred to as a
946
+ time-optimal control problem, and the condition (10) reduces to
947
+ u(t) = argmin
948
+ v∈[−1,1]
949
+ λ2(t)v ,
950
+ resulting in
951
+ uw(t) =
952
+
953
+
954
+
955
+
956
+
957
+ 1 ,
958
+ if λw
959
+ 2 (t) < 0 ,
960
+ −1 ,
961
+ if λw
962
+ 2 (t) > 0 ,
963
+ undetermined ,
964
+ if λw
965
+ 2 (t) = 0 ,
966
+ (11)
967
+ for a.e.
968
+ t ∈ [0, tf]. By the discussion given in Section 3.1 (also see [27]), uw(t) given in
969
+ (11) is the same for all w ∈ [wf, 1].
970
+ Recall that if one does not have λw
971
+ 2 (t) = 0 for all
972
+ [t′, t′′] ⊂ [0, tf], where t′ < t′′, then uw(t) in (11) is referred to as optimal control of bang–bang
973
+ type. We assume (and therefore will numerically double-check) that the optimal control for
974
+ the particular instance of the problem is of bang–bang type.
975
+ The optimality condition (10) can be shown to yield, for any given w ∈ [w0, wf),
976
+ uw(t) =
977
+
978
+
979
+
980
+
981
+
982
+
983
+
984
+ 1 ,
985
+ if 2λw
986
+ 2 (t) < −λ
987
+ w
988
+ 3 ,
989
+ −2λw
990
+ 2 (t)/λ
991
+ w
992
+ 3 ,
993
+ if
994
+ − λ
995
+ w
996
+ 3 ≤ 2λw
997
+ 2 (t) ≤ λ
998
+ w
999
+ 3 ,
1000
+ −1 ,
1001
+ if 2λw
1002
+ 2 (t) > λ
1003
+ w
1004
+ 3 ,
1005
+ (12)
1006
+
1007
+ Optimization Over the Pareto Front of Multi-objective Optimal Control Problems by C. Y. Kaya and H. Maurer
1008
+ 15
1009
+ for all t ∈ [0, tf], provided λ
1010
+ w
1011
+ 3 ̸= 0. Again by virtue of the discussion in Section 3.1, uw(t) in
1012
+ (12) is the same for all w ∈ [0, w0]. We define the switching function as
1013
+ σw(t) :=
1014
+
1015
+ 2 λw
1016
+ 2 (t)/λ
1017
+ w
1018
+ 3 ,
1019
+ if 0 ≤ w < wf ,
1020
+ 16 λw
1021
+ 2 (t) ,
1022
+ if wf ≤ w ≤ 1 .
1023
+ (13)
1024
+ The constant coefficients 2 and 16 above are used for scaling purposes, so that the graphs in
1025
+ Figure 2(b) can be viewed more easily. Now, using (13), we can summarize and combine the
1026
+ expressions for the optimal control in (11) and (12) as follows.
1027
+ uw(t) =
1028
+
1029
+
1030
+
1031
+
1032
+
1033
+
1034
+
1035
+
1036
+
1037
+
1038
+
1039
+
1040
+
1041
+
1042
+
1043
+
1044
+
1045
+
1046
+
1047
+
1048
+
1049
+
1050
+ 1 ,
1051
+ if σw(t) < −1
1052
+ −2λw
1053
+ 2 (t)/λ
1054
+ w
1055
+ 3 ,
1056
+ if
1057
+ − 1 ≤ σw(t) ≤ 1 ,
1058
+ −1 ,
1059
+ if σw(t) > 1 .
1060
+
1061
+
1062
+
1063
+
1064
+
1065
+ ,
1066
+ if 0 ≤ w < wf ,
1067
+
1068
+ 1 ,
1069
+ if σw(t) < 0 ,
1070
+ −1 ,
1071
+ if σw(t) > 0 .
1072
+
1073
+ ,
1074
+ if wf ≤ w ≤ 1 .
1075
+ (14)
1076
+ As to why σw(·) is referred to as the switching function should now be more clear from (14):
1077
+ the value of σw(·) determines when to switch from one case of the control function uw(·) to
1078
+ another.
1079
+ For Problem (OCPw) written for the Rayleigh problem above, we have chosen the utopia
1080
+ vector as (β∗
1081
+ 1, β∗
1082
+ 2) = (0, 0), since ϕi(x(tf), tf) > 0, for i = 1, 2.
1083
+ Figure 2(a) depicts the
1084
+ Pareto front for the instance of the multi-objective Rayleigh problem we consider here. It
1085
+ also displays the iterations of Algorithm 1. The Rayleigh problem is discretized using the
1086
+ trapezoidal rule, the number of grid points is set to be N = 5000, and the Ipopt’s tolerance
1087
+ to 10−10, so as to get solutions for w accurate at least up to four decimal places (dp).
1088
+ The essential interval is found to be [w0, wf] = [0.8994, 0.9269], with
1089
+ (ϕw0
1090
+ 1 , ϕw0
1091
+ 2 ) = (5.000, 44.71)
1092
+ and
1093
+ (ϕwf
1094
+ 1 , ϕwf
1095
+ 2 ) = (3.668, 46.50) ,
1096
+ correct to four significant figures, where ϕw
1097
+ i := ϕi(xw(tf), tw
1098
+ f ), i = 1, 2, with w = w0 or wf, or
1099
+ as will be the case below, w = w∗. Optimization over the Pareto front results in w∗ = 0.9247,
1100
+ after 14 iterations of Algorithm 1, yielding
1101
+ ϕw∗
1102
+ 0
1103
+ = 58.71
1104
+ and
1105
+ (ϕw∗
1106
+ 1 , ϕw∗
1107
+ 2 ) = (3.709, 45.51) .
1108
+ If there is a need to save the computational resources further, the algorithm can be asked to
1109
+ yield a less accurate result, say correct to three dp, which then yields w∗ = 0.925 in eight
1110
+ iterations with (ϕw∗
1111
+ 1 , ϕw∗
1112
+ 2 ) = (3.71, 45.5). In Figure 2(a) only five iterations are displayed
1113
+ (labels 1–5 appearing to the right of each iteration) for clarity in viewing.
1114
+ The Pareto
1115
+ (master) solution with w = w∗ is represented by a square.
1116
+ The numerical Pareto-optimal state and control variable solutions are presented in Fig-
1117
+ ures 2(c)–(d) for w = w0, w∗, wf. One of the boundary Pareto-optimal solutions is shown
1118
+ using solid (blue) curves for w = w0, which is the same solution for all w ∈ [0, w0], as pre-
1119
+ viously discussed in Section 3.1.
1120
+ On the other hand, the other boundary Pareto-optimal
1121
+ solution for w = wf, which holds for all w ∈ [wf, 1], is shown using dashed (green) curves.
1122
+ The latter is nothing but a time-optimal control solution for the Rayleigh problem (a solu-
1123
+ tion with the smallest tf), resulting in a bang–bang type function with the sequence of values
1124
+ {1, −1, 1}, namely with two switchings. The master Pareto solution is given for w = w∗ using
1125
+ dashed-and-dotted (red) curves.
1126
+ The switching function σw(·) plotted in Figure 2(b) by using (13) (recall that discrete
1127
+ approximations of λw
1128
+ 2 (t) and λw
1129
+ 3 (t) can readily be obtained from AMPL) furnishes the means
1130
+
1131
+ Optimization Over the Pareto Front of Multi-objective Optimal Control Problems by C. Y. Kaya and H. Maurer
1132
+ 16
1133
+ 3.6
1134
+ 3.8
1135
+ 4
1136
+ 4.2
1137
+ 4.4
1138
+ 4.6
1139
+ 4.8
1140
+ 5
1141
+ 45
1142
+ 45.5
1143
+ 46
1144
+ 46.5
1145
+ 1
1146
+ 2
1147
+ 3
1148
+ 4
1149
+ 5
1150
+ (a) Pareto front, and iterations of Algorithm 1:
1151
+ Master solution is depicted by a (red) square and
1152
+ iterates by (light blue) circles.
1153
+ 0
1154
+ 1
1155
+ 2
1156
+ 3
1157
+ 4
1158
+ 5
1159
+ -3
1160
+ -2
1161
+ -1
1162
+ 0
1163
+ 1
1164
+ 2
1165
+ 3
1166
+ (b) Switching function as defined in (13).
1167
+ -8
1168
+ -6
1169
+ -4
1170
+ -2
1171
+ 0
1172
+ 2
1173
+ -6
1174
+ -4
1175
+ -2
1176
+ 0
1177
+ 2
1178
+ 4
1179
+ 6
1180
+ PSfrag replacements
1181
+ singular control switching curve
1182
+ (c) Phase plane trajectories.
1183
+ 0
1184
+ 1
1185
+ 2
1186
+ 3
1187
+ 4
1188
+ 5
1189
+ -1
1190
+ -0.5
1191
+ 0
1192
+ 0.5
1193
+ 1
1194
+ (d) Control variable.
1195
+ Figure 2: Rayleigh problem—Boundary Pareto solutions, corresponding to w0 = 0.8994 and
1196
+ wf = 0.9269, are shown with (blue) solid curves and (green) dashed curves, respectively. Master
1197
+ Pareto solution, corresponding to w∗ = 0.9247, is shown with dashed-and-dotted (red) curves.
1198
+ to verify the optimality condition for uw(·) expressed in (14). It is evident from the dashed
1199
+ (green) plot of the switching function that, for w ∈ [wf, 1], when σw(·) crosses the time
1200
+ axis there is a jump (from 1 to −1 or vice versa) in the value of the corresponding uw(·)
1201
+ plot. Likewise, for w ∈ [0, w0] and for w = w∗ ∈ [w0, wf), whenever σw(·) crosses one of the
1202
+ lines σw(t) = 1 and σw(t) = −1 (shown by two black lines in Figure 2(b) for convenience)
1203
+ the expression for the control function uw(·) switches from one case in (14) to another, as
1204
+ required.
1205
+ 4.2
1206
+ Example: Compartmental model for tuberculosis
1207
+ In 2020 and 2021, tuberculosis (TB) was the second leading cause of death from an infectious
1208
+ disease worldwide after COVID-19 [44]. Active TB refers to disease that occurs in someone
1209
+ infected with Mycobacterium tuberculosis. It is characterized by signs or symptoms of active
1210
+ disease, or both, and is distinct from latent tuberculosis infection, which occurs without signs
1211
+ or symptoms of active disease. Only individuals with active TB can transmit the infection.
1212
+ Many people with active TB do not experience typical TB symptoms in the early stages of the
1213
+
1214
+ Optimization Over the Pareto Front of Multi-objective Optimal Control Problems by C. Y. Kaya and H. Maurer
1215
+ 17
1216
+ disease. These individuals are unlikely to seek care early, and may not be properly diagnosed
1217
+ when seeking care. Delays to diagnosis of active TB present a major obstacle to the control of
1218
+ a TB epidemic, it may worsen the disease, increase the risk of death and enhance tuberculosis
1219
+ transmission to the community. Both patient and the health system may be responsible for
1220
+ the diagnosis delay.
1221
+ We study the control model with control and state delays presented in Silva et al. [43]. In
1222
+ this model, reinfection and post-exposure interventions for tuberculosis are considered. The
1223
+ population is divided into five categories (compartments) (i.e., the control system has five
1224
+ state variables):
1225
+ S
1226
+ :
1227
+ susceptible individuals,
1228
+ L1
1229
+ :
1230
+ early latent individuals, recently infected (less than two years),
1231
+ I
1232
+ :
1233
+ infectious individuals, who have active TB,
1234
+ L2
1235
+ :
1236
+ persistent latent individuals,
1237
+ R
1238
+ :
1239
+ recovered individuals,
1240
+ N
1241
+ :
1242
+ total population N = S + L1 + I + L2 + R , assumed constant.
1243
+ The model has two control variables and three delays:
1244
+ u1
1245
+ :
1246
+ effort on early detection and treatment of recently infected individuals L1,
1247
+ du1
1248
+ :
1249
+ delay on the diagnosis of latent TB, and commencement of latent TB treatment,
1250
+ u2
1251
+ :
1252
+ chemotherapy or post-exposure vaccine to persistent latent individuals L2,
1253
+ du2
1254
+ :
1255
+ delay in the prophylactic treatment of persistent latent L2,
1256
+ dI
1257
+ :
1258
+ delay in I, i.e., delay in diagnosis.
1259
+ The dynamical system is given by
1260
+
1261
+
1262
+
1263
+
1264
+
1265
+
1266
+
1267
+
1268
+
1269
+
1270
+
1271
+
1272
+
1273
+
1274
+
1275
+
1276
+
1277
+
1278
+
1279
+
1280
+
1281
+ ˙S(t) = µN − β
1282
+ N I(t)S(t) − µS(t),
1283
+ ˙L1(t) = β
1284
+ N I(t) (S(t) + σL2(t) + σRR(t)) − (δ + τ1 + ǫ1u1(t − du1) + µ) L1(t),
1285
+ ˙I(t) = φ δ L1(t) + ωL2(t) + ωRR(t) − τ0I(t − dI) + µI(t),
1286
+ ˙L2(t) = (1 − φ)δL1(t) − σ β
1287
+ N I(t)L2(t) − (ω + ǫ2u2(t − du2) + τ2 + µ)L2(t).
1288
+ (15)
1289
+ The recovered population is defined by
1290
+ R(t) := N − S(t) − L1(t) − I(t) − L2(t) ,
1291
+ (16)
1292
+ with N = 30000. The system and delay parameters in the model (15) along with their values
1293
+ are listed in Table 1. In view of the delays the initial conditions and functions are:
1294
+ S(0) = 76 N/120, L1(0) = 36 N/120, L2(0) = 2 N/120, R(0) = N/120,
1295
+ I(t) = 5 N/120
1296
+ for −dI ≤ t ≤ 0,
1297
+ uk(t) = 0
1298
+ for −duk ≤ t < 0,
1299
+ (k = 1, 2).
1300
+ (17)
1301
+ The control constraints are given by
1302
+ 0 ≤ uk(t) ≤ 1 ,
1303
+ ∀t ∈ [0, tf] ,
1304
+ (k = 1, 2).
1305
+ (18)
1306
+ We consider the following parametric objective functional with control weights a1, a2 ≥ 0:
1307
+ tf
1308
+
1309
+ 0
1310
+ (I(t) + L2(t) + a1u1(t) + a2u2(t)) dt .
1311
+ (19)
1312
+
1313
+ Optimization Over the Pareto Front of Multi-objective Optimal Control Problems by C. Y. Kaya and H. Maurer
1314
+ 18
1315
+ Symbol
1316
+ Description
1317
+ Value
1318
+ β
1319
+ Transmission coefficient
1320
+ variable
1321
+ µ
1322
+ Death and birth rate
1323
+ 1/70 yr−1
1324
+ δ
1325
+ Rate at which individuals leave L1
1326
+ 12 yr−1
1327
+ φ
1328
+ Proportion of individuals going to I
1329
+ 0.05
1330
+ ω
1331
+ Endogenous reactivation rate for persistent latent infections
1332
+ 0.0002 yr−1
1333
+ ωR
1334
+ Endogenous reactivation rate for treated individuals
1335
+ 0.00002 yr−1
1336
+ σ
1337
+ Factor reducing the risk of infection as a result of acquired
1338
+ immunity to a previous infection for L2
1339
+ 0.25
1340
+ σR
1341
+ Rate of exogenous reinfection of treated patients
1342
+ 0.25
1343
+ τ0
1344
+ Rate of recovery under treatment of active TB
1345
+ 2 yr−1
1346
+ τ1
1347
+ Rate of recovery under treatment of early latent individuals L1
1348
+ 2 yr−1
1349
+ τ2
1350
+ Rate of recovery under treatment of persistent latent individuals L2
1351
+ 1 yr−1
1352
+ N
1353
+ Total population
1354
+ 30, 000
1355
+ ǫ1
1356
+ Efficacy of treatment of early latent L1
1357
+ 0.5
1358
+ ǫ2
1359
+ Efficacy of treatment of persistent latent TB L2
1360
+ 0.5
1361
+ tf
1362
+ Total simulation duration
1363
+ 5 years
1364
+ dI
1365
+ delay in the diagnosis of I
1366
+ 0.1 years
1367
+ du1
1368
+ delay in the diagnosis of early latent individuals L1
1369
+ 0.2 years
1370
+ du2
1371
+ delay in the prophylactic treatment of persistent latent individuals L2
1372
+ 0.2 years
1373
+ Table 1: Parameter values for the TB control model.
1374
+ Depending on the priorities, the weights a1, a2 can be chosen in different ways (for example,
1375
+ both can be chosen to be very small or very large) giving rise to competing objectives. Namely,
1376
+ x5(tf) :=
1377
+ tf
1378
+
1379
+ 0
1380
+
1381
+ I(t) + L2(t) + a11 u1(t) + a12 u2(t)
1382
+
1383
+ dt ,
1384
+ x6(tf) :=
1385
+ tf
1386
+
1387
+ 0
1388
+
1389
+ I(t) + L2(t) + a21 u1(t) + a22 u2(t)
1390
+
1391
+ dt .
1392
+ (20)
1393
+ with control weights a11, a12, a21, a22 ≥ 0, constitute two competing objective functionals.
1394
+ Both functionals are given in Lagrange form. The standard method to obtain an optimal
1395
+ control problem of Bolza type is to introduce additional state variables x5 and x6 defined by
1396
+ ˙x5(t) = I(t) + L2(t) + a11 u1(t) + a12 u2(t) ,
1397
+ x5(0) = 0 ,
1398
+ ˙x6(t) = I(t) + L2(t) + a21 u1(t) + a22 u2(t) ,
1399
+ x6(0) = 0 .
1400
+ (21)
1401
+ Denoting the (augmented) state vector by x(t) = (S(t), L1(t), I(t), L2(t), x5(t), x6(t)) ∈ R6
1402
+ and the control vector u(t) := (u1(t), u2(t)) ∈ R2, the two competing objectives in the general
1403
+ problem (P) are given by
1404
+ ϕ1(x(tf), tf) = x5(tf) =: F1(x, u)
1405
+ and
1406
+ ϕ2(x(tf), tf) = x6(tf) =: F2(x, u) ,
1407
+ where F1(x, u) and F2(x, u) denote the two functionals in Lagrange form.
1408
+ The bi-objective TB problem is now in the same form as Problem (OCP) and, in particular,
1409
+ Problem (OCPsd). The decision maker’s objective for this problem will be to minimize the
1410
+ distance to the origin of the value space. We therefore choose
1411
+ ϕ0(xw, uw, tw
1412
+ f ) := ϕ2
1413
+ 1(xw(tf), tw
1414
+ f ) + ϕ2
1415
+ 2(xw(tf), tw
1416
+ f ) ,
1417
+
1418
+ Optimization Over the Pareto Front of Multi-objective Optimal Control Problems by C. Y. Kaya and H. Maurer
1419
+ 19
1420
+ Our aim is to solve Problem (OPF), to determine a scalar w ∈ (0, 1) with w1 := w and
1421
+ w2 := 1 − w that results in the best Pareto solution in the sense that ϕ0(·, ·, ·) is minimized,
1422
+ subject to the solution of Problem (OCPw).
1423
+ Next we focus on the solution of Problem (OCPw): We aim to find a pair of functions
1424
+ (x, u) ∈ W 1,∞([0, tf], R6) × L∞([0, tf], R2) that minimizes the parameter α subject to the
1425
+ time-delayed dynamics (15) and the auxiliary dynamics (21), initial conditions (17), control
1426
+ constraints (18) and auxiliary weighted inequalities involving ϕ1 and ϕ2.
1427
+ We consider the necessary optimality conditions for the time-delayed optimal control
1428
+ problem (OCPw); see G¨ollmann and Maurer [24], Vinter [45].
1429
+ For this purpose we in-
1430
+ troduce the delayed state variable y3(t) = x3(t − dI) = I(t − dI) and delayed control
1431
+ variables vk(t) = uk(t − duk), k = 1, 2.
1432
+ Denoting the adjoint variable vector by λ(t) :=
1433
+ (λS(t), λL1(t), λI(t), λL2(t), λ5(t), λ6(t)) ∈ R6 the Hamiltonian or Pontryagin function is given
1434
+ by
1435
+ H(x, y3, λ, u1, v1, u2, v2) = λs (µN − β
1436
+ N IS − µS)
1437
+ + λL1 ( β
1438
+ N I (S + σL2 + σRR) − (δ + τ1 + ǫ1v1 + µ) L1)
1439
+ + λI ( φ δL1 + ωL2 + ωR R − τ0y3 + µI)
1440
+ + λL2 ((1 − φ)δL1 − σ β
1441
+ N IL2 − (ω + ǫ2v2 + τ2 + µ)L2)
1442
+ + λ5 (I + L2 + a11u1 + a12u2)
1443
+ + λ6 (I + L2 + a21u1 + a22u2) ,
1444
+ (22)
1445
+ where R is given as in (16). The Minimum Principle [24,45] yields the adjoint equations
1446
+ ˙λS(t) = −∂H
1447
+ ∂S [t],
1448
+ ˙λL1(t) = − ∂H
1449
+ ∂L1
1450
+ [t],
1451
+ ˙λL2(t) = − ∂H
1452
+ ∂L2
1453
+ [t],
1454
+ ˙λx5(t) = − ∂H
1455
+ ∂x5
1456
+ [t] = 0 ,
1457
+ ˙λx6(t) = − ∂H
1458
+ ∂x6
1459
+ [t] = 0 ,
1460
+ and the advanced adjoint equation
1461
+ ˙λI(t) = −∂H
1462
+ ∂I [t] − χ[0,tf −dI](t)∂H
1463
+ ∂I [t + dI] ,
1464
+ where the argument [t] stands for evaluating all arguments at time t. We note that λw
1465
+ 5 (t) = λ
1466
+ w
1467
+ 5
1468
+ and λw
1469
+ 6 (t) = λ
1470
+ w
1471
+ 5 , constants, for any fixed w ∈ [0, 1]. In the last equation, the term χ[0,tf −dI](t)
1472
+ denotes the characteristic function of the interval [0, tf − dI] at time t. The minimization of
1473
+ the Hamiltonian with respect to the controls u1, u2 and delayed controls v1, v2 involves the
1474
+ switching functions σk(t) for k = 1, 2:
1475
+ σw
1476
+ k (t) = ∂H
1477
+ ∂uk
1478
+ [t] + χ[0,tf −duk](t)∂H
1479
+ ∂vk
1480
+ [t + duk]
1481
+ =
1482
+
1483
+ a1kλ
1484
+ w
1485
+ 5 + a2kλ
1486
+ w
1487
+ 6 − ǫkλw
1488
+ Lk(t + duk)Lw
1489
+ k (t + duk) , if 0 ≤ t ≤ tf − duk ,
1490
+ a1kλ
1491
+ w
1492
+ 5 + a2kλ
1493
+ w
1494
+ 6 ,
1495
+ if tf − duk ≤ t ≤ tf .
1496
+ (23)
1497
+ As in the Rayleigh problem, the superscript “w” above denotes dependence on the scalariza-
1498
+ tion parameter/weight w. Then the controls minimizing the Hamiltonian are characterized
1499
+ by the switching conditions (control law)
1500
+ uw
1501
+ k (t) =
1502
+ � 0 ,
1503
+ if σw
1504
+ k (t) > 0 ,
1505
+ 1 ,
1506
+ if σw
1507
+ k (t) < 0 ,
1508
+ k = 1, 2.
1509
+ (24)
1510
+
1511
+ Optimization Over the Pareto Front of Multi-objective Optimal Control Problems by C. Y. Kaya and H. Maurer
1512
+ 20
1513
+ Figure 3: TB problem—Pareto front, and iterations of Algorithm 1: Master solution is depicted
1514
+ by a (red) square and iterates by (light blue) circles..
1515
+ for all w ∈ [0, 1]. In particular, for positive weights a1 > 0, a2 > 0, the switching functions
1516
+ (23) and the control law (24) imply
1517
+ uw
1518
+ k (t) = 0
1519
+ ∀ tf − duk ≤ t ≤ tf ,
1520
+ for all w ∈ [0, 1].
1521
+ In what follows we choose the control weights as a11 = a12 = 10 (small) and a21 = a22 =
1522
+ 1000 (large) in the objective functionals ϕ1 and ϕ2.
1523
+ For Problem (OCPw) written for the TB problem, we have chosen the utopia vector as
1524
+ (β∗
1525
+ 1, β∗
1526
+ 2) = (0, 0). Figure 3 depicts the Pareto front for the TB problem we consider here.
1527
+ The plot also displays the iterations of Algorithm 1. The TB problem is discretized using the
1528
+ trapezoidal rule, the number of grid points is set to be N = 5000, and the Ipopt’s tolerance
1529
+ to 10−10, so as to get solutions for w accurate at least up to four decimal places (dp).
1530
+ The essential interval in this case is found to be [w0, wf] = [0.5251, 0.5709], with
1531
+ (ϕw0
1532
+ 1 , ϕw0
1533
+ 2 ) = (28155, 31133)
1534
+ and
1535
+ (ϕwf
1536
+ 1 , ϕwf
1537
+ 2 ) = (26459, 35205) ,
1538
+ where ϕw
1539
+ i := ϕi(xw(tf), tw
1540
+ f ), i = 1, 2, with w = w0 or wf, or as will be the case below, w = w∗.
1541
+ Optimization over the Pareto front results in w∗ = 0.5358, after 10 iterations of Algorithm 1,
1542
+ yielding
1543
+ ϕw∗
1544
+ 0
1545
+ = 41621
1546
+ and
1547
+ (ϕw∗
1548
+ 1 , ϕw∗
1549
+ 2 ) = (27255, 31455) .
1550
+ In Figure 3 only five iterations are displayed (labelled 1–5) for clarity in viewing. The Pareto
1551
+ (master) solution with w = w∗ is represented by a square.
1552
+ The numerical Pareto-optimal control variable solutions uw
1553
+ 1 (·) and uw
1554
+ 2 (·) are presented
1555
+ in Figures 4(a)–(b) for w = w0, w∗, wf.
1556
+ As with Rayleigh, one of the boundary Pareto-
1557
+ optimal solutions is shown using solid (blue) curves for w = w0, the same solution for all
1558
+ w ∈ [0, w0]. The other boundary Pareto-optimal solution for w = wf, which holds for all
1559
+ w ∈ [wf, 1], is shown using dashed (green) curves. Both of the control solutions are of bang–
1560
+ bang type (as required by (24)), with one switching (the number of switchings not dictated
1561
+
1562
+ X10
1563
+ 0
1564
+ 3.5
1565
+ 3.4
1566
+ P2
1567
+ 3.35
1568
+ 3
1569
+ 0
1570
+ 4
1571
+ 2.75
1572
+ 2.8
1573
+ P13.2
1574
+ 1
1575
+ 2
1576
+ 3.1
1577
+ 2.65
1578
+ 2.7Optimization Over the Pareto Front of Multi-objective Optimal Control Problems by C. Y. Kaya and H. Maurer
1579
+ 21
1580
+ 0
1581
+ 1
1582
+ 2
1583
+ 3
1584
+ 4
1585
+ 5
1586
+ -0.5
1587
+ 0
1588
+ 0.5
1589
+ 1
1590
+ (a) Control variable uw
1591
+ 1 (24) and scaled
1592
+ switching function σw
1593
+ 1 (23) superposed.
1594
+ 0
1595
+ 1
1596
+ 2
1597
+ 3
1598
+ 4
1599
+ 5
1600
+ -0.5
1601
+ 0
1602
+ 0.5
1603
+ 1
1604
+ (b) Control variable uw
1605
+ 2 (24) and scaled
1606
+ switching function σw
1607
+ 2 (23) superposed.
1608
+ Figure 4: TB problem—Boundary Pareto solutions, corresponding to w0 = 0.5251 and wf =
1609
+ 0.5709, are shown with (blue) solid curves and (green) dashed curves, respectively. Master Pareto
1610
+ solution, corresponding to w∗ = 0.5358, is shown with dashed-and-dotted (red) curves.
1611
+ Scalarization
1612
+ Functional values
1613
+ Switching times
1614
+ Terminal state values
1615
+ weight w
1616
+ xw
1617
+ 5 (tf)
1618
+ xw
1619
+ 6 (tf)
1620
+ tw
1621
+ s1
1622
+ tw
1623
+ s2
1624
+ Sw(tf)
1625
+ Lw
1626
+ 1 (tf)
1627
+ Iw(tf)
1628
+ Lw
1629
+ 2 (tf)
1630
+ Rw(tf)
1631
+ w0 = 0.5251 :
1632
+ 28155
1633
+ 31133
1634
+ 0.145
1635
+ 2.864
1636
+ 1193.1
1637
+ 28.2
1638
+ 13.3
1639
+ 864.0
1640
+ 27901.4
1641
+ w∗ = 0.5358:
1642
+ 27255
1643
+ 31455
1644
+ 0.809
1645
+ 3.439
1646
+ 1205.8
1647
+ 27.5
1648
+ 13.0
1649
+ 747.6
1650
+ 28006.1
1651
+ wf = 0.5709 :
1652
+ 26459
1653
+ 35205
1654
+ 4.083
1655
+ 4.752
1656
+ 1238.2
1657
+ 23.8
1658
+ 11.2
1659
+ 419.3
1660
+ 28307.5
1661
+ Table 2: TB problem.
1662
+ by (24) alone). The master Pareto solution is given for w = w∗ using dashed-and-dotted
1663
+ (red) curves, in which the controls are also of bang–bang type with one switching.
1664
+ The switching functions for each control and case, σw
1665
+ k (·), k = 1, 2, scaled as indicated, are
1666
+ plotted with (black) dotted curves and superposed with the control plots in Figures 4(a)–(b).
1667
+ We remind that, by using (23) (recall that discrete approximations of λw
1668
+ Lk(t), k = 1, 2, λw
1669
+ 5 (t)
1670
+ and λw
1671
+ 6 (t) can readily be obtained as constraint multipliers from AMPL), one verifies the
1672
+ optimality condition in (24).
1673
+ In each strategy, the two control efforts are “on” until the times tw
1674
+ sk, k = 1, 2, at which
1675
+ the respective uw
1676
+ k (·) is switched “off” (down to zero). These types of bang–bang controls
1677
+ are also referred to as on–off controls. In Table 2 the switching times for the boundary as
1678
+ well as the optimal weights are listed. Under these controls, the resulting terminal values
1679
+ of the state variables are also listed in Table 2. The plots of these variables are not pro-
1680
+ vided as they are difficult to distinguish at earlier times (as expected) and that they become
1681
+ distinguishable/comparable only near the terminal time.
1682
+ Under the controls minimizing x5(tf) (with w = wf = 0.5709 and minimum xwf
1683
+ 5 (tf) =
1684
+ 26459) the number of persistent latent individuals L2(tf) turns out to be about 419 (in a
1685
+ population of 30000). This number is more than doubled to 864 if x6(tf) is minimized (with
1686
+ w = w0 = 0.5709 and minimum xw0
1687
+ 6 (tf) = 31133). The optimal Pareto solution minimizing
1688
+ the distance in value space to the origin yields with w = w∗ = 0.5358 the optimal L2(tf) as
1689
+ 748.
1690
+
1691
+ Optimization Over the Pareto Front of Multi-objective Optimal Control Problems by C. Y. Kaya and H. Maurer
1692
+ 22
1693
+ 5
1694
+ Conclusion
1695
+ We have proposed an algorithm to solve the problem of optimization over the Pareto front.
1696
+ The algorithm employs bisection method which starts with an essential interval of weights
1697
+ of the Chebyshev scalarization. It is applicable to a wide range of optimal control problems,
1698
+ including state- and control-constrained problems with time delay. Numerical solution of two
1699
+ challenging optimal control problems has demonstrated the effectiveness of the algorithm.
1700
+ The main motive behind the algorithm we have proposed is that one can find the optimal
1701
+ solution minimizing a master objective functional without having to construct the Pareto
1702
+ front. The algorithm solves the challenging optimal control problem (OCPw) a relatively
1703
+ smaller number of times than the case of constructing the Pareto front. In the examples
1704
+ we have studied the algorithm had to solve (OCPw) 20 to 30 times. On the other hand,
1705
+ without the algorithm we propose, it is necessary to construct the Pareto front by solving
1706
+ (OCPw) thousands of times in order to obtain the same solution with the same computational
1707
+ accuracy.
1708
+ The proposed algorithm can be improved/modified in various ways. For example, scalar-
1709
+ ization techniques other than Chebyshev might be employed; see for example [8, 9] and the
1710
+ references therein. Bisection method might be replaced by methods with higher convergence
1711
+ rates, for example regula falsi and secant methods (see [10]), at the expense of approximating
1712
+ higher order derivatives of course, although the latter would make the algorithm applicable
1713
+ to problems with more than just two objective functionals.
1714
+ References
1715
+ [1] Alt, W., Baier, R. , Lempio, F., Gerdts, M.: Approximations of linear control problems
1716
+ with bang–bang solutions. Optimization, 62, 9–32 (2013)
1717
+ [2] Benson, H.P.: Optimization over the efficient set, J. Math. Anal. Appl.. 98, 562–580
1718
+ (1984)
1719
+ [3] Benson, H.P.: A finite, non-adjacent extreme point search algorithm for optimization
1720
+ over the efficient set. J. Optim. Theory Appl., 73, 47–64 (1992)
1721
+ [4] Betts, J.T.: Practical Methods for Optimal Control Using Nonlinear Programming,
1722
+ Third Edition. Advances in Design and Control, SIAM Publications, Philadelphia (2020)
1723
+ [5] Bolintin´eanu, S.: Optimality conditions for minimization over the (weakly or properly)
1724
+ efficient set. J. Math. Anal. Appl., 173(2), 523–541 (1993)
1725
+ [6] Bolintin´eanu, S.: Minimization of a quasi-concave function over an efficient set. Math.
1726
+ Prog., 61, 89–110 (1993)
1727
+ [7] Bonnel, H., Kaya, C.Y.: Optimization over the efficient set of multi-objective convex
1728
+ optimal control problems. J. Optim. Theory Appl., 147, 93–11 (2010)
1729
+ [8] Burachik, R.S., Kaya, C.Y., Rizvi, M.M.: A new scalarization technique to approximate
1730
+ Pareto fronts of problems with disconnected feasible sets. J. Optim. Theory Appl., 162,
1731
+ 428–446 (2014)
1732
+ [9] Burachik, R.S., Kaya, C.Y., Rizvi, M.M.: A new scalarization technique and new algo-
1733
+ rithms to generate Pareto fronts. SIAM J. Optim., 27, 1010–1034 (2017)
1734
+
1735
+ Optimization Over the Pareto Front of Multi-objective Optimal Control Problems by C. Y. Kaya and H. Maurer
1736
+ 23
1737
+ [10] Burden, R.L., Faires, J.D.: Numerical Analysis, 9th edition. Thompson Brooks/Cole,
1738
+ Belmont, CA, USA (2011)
1739
+ [11] B¨uskens, C.:
1740
+ Optimierungsmethoden und Sensitivit¨atsanalyse f¨ur optimale Steuer-
1741
+ prozesse mit Steuer– und Zustands–Beschr¨ankungen. PhD Thesis, Institut f¨ur Nu-
1742
+ merische Mathematik, Universit¨at M¨unster, Germany (1998)
1743
+ [12] B¨uskens, C., Maurer, H.: SQP-methods for solving optimal control problems with control
1744
+ and state constraints: Adjoint variables, sensitivity analysis and real-time control. J.
1745
+ Comp. Appl. Math., 120, 85–108 (2000)
1746
+ [13] Chorobura, A.P.: Multi-objective infinite horizon optimal control problems: character-
1747
+ ization of the Pareto fronts and Pareto solutions. Comp. Appl. Math., 40, 258 (2021)
1748
+ URL: https://doi.org/10.1007/s40314-021-01633-0.
1749
+ [14] Dauer J.P.: Optimization over the efficient set using an active constraint approach. Z.
1750
+ Oper. Res., 35, 185–195 (1991).
1751
+ [15] Dauer, J.P., Fosnaugh, T.A.: Optimization over the efficient set, J. Global Optim., 7,
1752
+ 261–277 (1995).
1753
+ [16] D´esilles, A., Zidani, H.: Pareto front characterization for multiobjective optimal control
1754
+ problems using Hamilton–Jacobi approach. SIAM J. Control Optim., 57, 3884–3910
1755
+ (2019)
1756
+ [17] Dontchev, A.L., and Hager, W.W.: Lipschitz stability in in nonlinear control and opti-
1757
+ mization, SIAM J. Control Optim., 31, 569–603 (1993).
1758
+ [18] Dontchev, A.L., Hager, W.W.: The Euler approximation in state constrained optimal
1759
+ control problems. Math. Comput., 70, 173–203 (2001)
1760
+ [19] Dontchev, A.L., Hager, W.W., Malanowski, K.: Error bound for Euler approximation of
1761
+ a state and control constrained optimal control problem. Numer. Funct. Anal. Optim.,
1762
+ 21(6), 653–682 (2000)
1763
+ [20] Dontchev, A.L., Hager, W.W., Veliov, V.M.: Second-order Runge-Kutta approximations
1764
+ in control constrained optimal control, SIAM J. Num. Anal., 38(1), 202—226 (2000)
1765
+ [21] Dutta, J., Kaya, C.Y.: A new scalarization and numerical method for constructing the
1766
+ weak Pareto front of multi-objective optimization problems. Optimization, 60, 1091–1104
1767
+ (2011)
1768
+ [22] Eichfelder,
1769
+ G.:
1770
+ Adaptive Scalarization Methods in Multiobjective Optimization.
1771
+ Springer, Berlin, Heidelberg (2008)
1772
+ [23] Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathe-
1773
+ matical Programming, Second Edition. Brooks/Cole Publishing Company / Cengage
1774
+ Learning (2003)
1775
+ [24] G¨ollmann, L., Maurer, H.: Theory and applications of optimal control problems with
1776
+ multiple time-delays, J. of Industrial and Management Optimization, 10, 413–441 (2014)
1777
+ [25] Horst, R., Thoai, N.V.: Maximizing a concave function over the efficient or weakly-
1778
+ efficient set. European J. Oper. Res., 117, 239–252 (1999)
1779
+ [26] Horst, R., Thoai, N.V., Yamamoto, Y., Zenke, D.: On optimization over the efficient set
1780
+ in linear multicriteria programming. J. Optim. Theory Appl., 134, 433–443 (2007)
1781
+
1782
+ Optimization Over the Pareto Front of Multi-objective Optimal Control Problems by C. Y. Kaya and H. Maurer
1783
+ 24
1784
+ [27] Kaya, C.Y., Maurer, H.: A numerical method for nonconvex multi-objective optimal
1785
+ control problems. Comp. Optim. Appl., 57, 685–702 (2014)
1786
+ [28] Logist, F., van Erdeghem, P.M.M., van Impe, J.F.: Efficient deterministic multiple
1787
+ objective optimal control of (bio)chemical processes. Chem. Eng. Sci., 64, 2527–2538
1788
+ (2009)
1789
+ [29] Logist, F., Houska, B., Diehl, M., van Impe, J.: Fast Pareto set generation for nonlinear
1790
+ optimal control problems with multiple objectives. Struct. Multidisc. Optim., 42, 591-603
1791
+ (2010)
1792
+ [30] Logist, F., Vallerio, M., Houska, B., Diehl, M., van Impe, J.: Multi-objective optimal
1793
+ control of chemical processes using ACADO toolkit. Comp. Chem. Eng., 37, 191–199
1794
+ (2012)
1795
+ [31] Liu, Z., Ehrgott, M.: Primal and dual algorithms for optimization over the efficient set.
1796
+ Optimization, 67,1661–1686 (2018)
1797
+ [32] Malanowski, K., Maurer, H.: Sensitivity analysis for parametric control problems with
1798
+ control-state constraints. Computational Optimization and Applications, 5, 253-283
1799
+ (1996)
1800
+ [33] Malanowski, K., Maurer, H.: Sensitivity analysis for state constrained optimal control
1801
+ problems. Discrete and Continuous Dynamical Systems, 4, 241-272 (1998)
1802
+ [34] Maurer, H., B¨uskens, C., Kim, J.-H.R., Kaya, C.Y.: Optimization methods for the
1803
+ verification of second-order sufficient conditions for bang–bang controls. Optim. Contr.
1804
+ Appl. Meth., 26, 129–156 (2005)
1805
+ [35] Maurer, H., Oberle, H.J.: Second order sufficient conditions for optimal control problems
1806
+ with free final time: the Riccati Approach. SIAM J. Control Optim., 41(2), 380–403
1807
+ (2002)
1808
+ [36] Maurer, H., Pesch, H.J.: Solution differentiability for nonlinear parametric control prob-
1809
+ lems. SIAM J. Control Optim., 32, 1542–1554 (1994)
1810
+ [37] Maurer, H., Pesch, H.J.: Solution differentiability for parametric nonlinear control prob-
1811
+ lems with control-state constraints. J. Optim. Theory Appl., 86, 285–309 (1995)
1812
+ [38] Miettinen, K.M.: Nonlinear Multiobjective Optimization, Kluwer (1999)
1813
+ [39] Ober-Bl¨obaum, S., Ringkamp, M., zum Felde, G.: Solving multiobjective optimal control
1814
+ problems in space mission design using discrete mechanics and reference point techniques.
1815
+ Proceedings of the 51st IEEE Conference on Decision and Control, Dec. 10-13, Maui,
1816
+ Hawaii, USA, pp. 5711–5716 (2012)
1817
+ [40] Osmolovskii, N.P., H. Maurer, H.: Applications to Regular and Bang-Bang Control:
1818
+ Second-Order Necessary and Sufficient Optimality Conditions in Calculus of Variations
1819
+ and Optimal Control. SIAM Advances in Design and Control, Vol. DC 24, SIAM Pub-
1820
+ lications, Philadelphia, 2012.
1821
+ [41] Philip, J.: Algorithms for the vector maximization problem. Math. Prog., 207–229 (1972).
1822
+ [42] Pietrus, A., Scarinci, T., Veliov, V.: High order discrete approximations to Mayer’s
1823
+ problems for linear systems SIAM J. Control Optim., 56(1), 102–119 (2018)
1824
+
1825
+ Optimization Over the Pareto Front of Multi-objective Optimal Control Problems by C. Y. Kaya and H. Maurer
1826
+ 25
1827
+ [43] Silva, C. J., Maurer, H., Torres, D.F.M.: Optimal control of a Tuberculosis model with
1828
+ state and control delays. Math. Biosci. Eng., 14, 321–337 (2017)
1829
+ [44] Tuberculosis. World Health Organization, 14 October 2021 and 27 October 2022. URL:
1830
+ https://www.who.int/news-room/fact-sheets/detail/tuberculosis. Accessed: 15 August
1831
+ 2022 and 14 January 2023.
1832
+ [45] Vinter, R. B.: State constrained optimal control problems with time delays. J. Math.
1833
+ Anal. Appl., 457(2), 1696–1712 (2018)
1834
+ [46] W¨achter, A., Biegler, L.T.: On the Implementation of a primal-dual interior point filter
1835
+ line search algorithm for large-scale nonlinear programming. Math. Progr., 106, 25–57
1836
+ (2006)
1837
+ [47] Yamamoto, Y.: Optimization over the efficient set : overview. J. Global Optim., 22(1-4),
1838
+ 285–317 (2002).
1839
+
X9FRT4oBgHgl3EQfODd9/content/tmp_files/2301.13512v1.pdf.txt ADDED
@@ -0,0 +1,934 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ OpTaS: An Optimization-based Task Specification Library for
2
+ Trajectory Optimization and Model Predictive Control
3
+ Christopher E. Mower, Jo˜ao Moura, Nazanin Zamani Behabadi,
4
+ Sethu Vijayakumar, Tom Vercauteren∗, Christos Bergeles∗
5
+ Abstract— This paper presents OpTaS, a task specification
6
+ Python library for Trajectory Optimization (TO) and Model
7
+ Predictive Control (MPC) in robotics. Both TO and MPC
8
+ are increasingly receiving interest in optimal control and in
9
+ particular handling dynamic environments. While a flurry
10
+ of software libraries exists to handle such problems, they
11
+ either provide interfaces that are limited to a specific problem
12
+ formulation (e.g. TracIK, CHOMP), or are large and stati-
13
+ cally specify the problem in configuration files (e.g. EXOTica,
14
+ eTaSL). OpTaS, on the other hand, allows a user to specify
15
+ custom nonlinear constrained problem formulations in a single
16
+ Python script allowing the controller parameters to be modified
17
+ during execution. The library provides interface to several open
18
+ source and commercial solvers (e.g. IPOPT, SNOPT, KNITRO,
19
+ SciPy) to facilitate integration with established workflows in
20
+ robotics. Further benefits of OpTaS are highlighted through
21
+ a thorough comparison with common libraries. An additional
22
+ key advantage of OpTaS is the ability to define optimal control
23
+ tasks in the joint space, task space, or indeed simultaneously.
24
+ The code for OpTaS is easily installed via pip, and the source
25
+ code with examples can be found at github.com/cmower/optas.
26
+ I. INTRODUCTION
27
+ High-dimensional motion planners and controllers are
28
+ integrated in many of the approaches for solving complex
29
+ manipulation tasks. Consider, for example, a robot operating
30
+ in an unstructured and dynamic environment that, e.g. places
31
+ an object onto a shelf, or drilling during pedicle screw
32
+ fixation in surgery (see Fig. 1). In such cases, a planner
33
+ and controller must account for objectives/constraints like
34
+ bi-manual coordination, contact constraints between robot-
35
+ object and object-environment, and be robust to disturbances.
36
+ Efficient motion planning and fast controllers are an effective
37
+ way of enabling robots to perform these tasks subject to
38
+ C. E. Mower, C. Bergeles and T. Vercauteren are with the School of
39
+ Biomedical Engineering & Imaging Sciences, King’s College London, UK.
40
+ J. Moura and S. Vijaykumar are with School of Informatics, University of
41
+ Edinburgh, UK. Correspondence: [email protected].
42
+ This research received funding from the European Union’s Horizon 2020
43
+ research and innovation program under grant agreement No. 101016985
44
+ (FAROS). Further, this work was supported by core funding from the
45
+ Wellcome/EPSRC [WT203148/Z/16/Z; NS/A000049/1]. T. Vercauteren is
46
+ supported by a Medtronic / RAEng Research Chair [RCSRF1819\7\34],
47
+ and C. Bergeles by an ERC Starting Grant [714562]. This work has
48
+ received funding from the European Union’s Horizon 2020 research and
49
+ innovation programme under grant agreement No 101017008, Enhancing
50
+ Healthcare with Assistive Robotic Mobile Manipulation (HARMONY).
51
+ This work was supported by core funding from the Wellcome/EPSRC
52
+ [WT203148/Z/16/Z; NS/A000049/1]. This research is supported by Kawada
53
+ Robotics Corporation, Japan and the Alan Turing Institute, UK.
54
+ ∗C. Bergeles and T. Vercauteren equally contributed to the work.
55
+ For the purpose of open access, the authors have applied a CC BY public
56
+ copyright license to any Author Accepted Manuscript version arising from
57
+ this submission.
58
+ (a)
59
+ (b)
60
+ Fig. 1: Examples of contact-rich manipulation showing (a)
61
+ a robot placing an item on a shelf, (b) a human interacting
62
+ with a robot performing a drilling task during pedicle screw
63
+ fixation. Image credit: University Hospital Balgrist, Daniel
64
+ Hager Photography & Film GmbH.
65
+ motion constraints, system dynamics, and changing task
66
+ objectives.
67
+ Sampling-based planners [1] are effective, however, they
68
+ typically require considerable post-processing (e.g. trajectory
69
+ smoothing). Optimal planners (i.e. that are provably asymp-
70
+ totically optimal, e.g. RRT∗) are promising but inefficient (in
71
+ terms of computation duration) for solving high-dimensional
72
+ problems [2].
73
+ Gradient-based trajectory optimization (TO) is a key ap-
74
+ proach in optimal control, and has also been utilized for mo-
75
+ tion planning. This approach underpins many recent works
76
+ in robotics for planning and control, e.g. [3], [4], [5], [6],
77
+ [7], [8], [9], [10]. Given an initialization, optimization finds a
78
+ locally optimal trajectory, comprised of a stream of state and
79
+ control commands subject to motion constraints and system
80
+ dynamics (i.e. equations of motion).
81
+ Several reliable open-source and commercial optimization
82
+ solvers exist for solving TO problems, e.g. IPOPT [11], KNI-
83
+ TRO [12], and SNOPT [13]. However, despite the success
84
+ of the optimization approaches proposed in the literature
85
+ and motion planning frameworks such as MoveIt [14], there
86
+ is a lack of libraries enabling fast development/prototyping
87
+ of optimization-based approaches for multi-robot setups that
88
+ easily interfaces with these efficient solvers.
89
+ To fill this gap, this paper proposes OpTaS, a user-friendly
90
+ task-specification library for rapid development and deploy-
91
+ ment of nonlinear optimization-based planning and control
92
+ approaches such as Model Predictive Control (MPC). The
93
+ library leverages the symbolic framework of CasADi [15],
94
+ enabling function derivatives to arbitrary order via automatic
95
+ differentiation. This is important since some solvers (e.g.
96
+ SNOPT) utilize the Jacobian and Hessian.
97
+ arXiv:2301.13512v1 [cs.RO] 31 Jan 2023
98
+
99
+ ACEFig. 2: System overview for the proposed OpTaS library. Red highlights the main features of the proposed library. Green
100
+ shows configuration parameter input. Grey shows third-party frameworks/libraries. Finally, the image in the top-right corner
101
+ shows integration with the ROS-PyBullet Interface [16].
102
+ A. Related work
103
+ In this section, we review popular optimization solvers
104
+ and their interfaces. Next, we describe works similar (in
105
+ formulation) to our proposed library. Finally, we summarize
106
+ the key differences and highlight our contributions. Table I
107
+ summarizes alternatives and how they compare to OpTaS.
108
+ There are several capable open-source and commercial
109
+ optimization solvers. First considering quadratic program-
110
+ ming, the OSQP method provides a general purpose solver
111
+ based on the alternating direction method of multipliers [17].
112
+ Alternatively, CVXOPT implements a custom interior-point
113
+ solver [18]. IPOPT implements an interior-point solver for
114
+ constrained nonlinear optimization. SNOPT provides an in-
115
+ terface to an SQP algorithm [13]. KNITRO also solves gen-
116
+ eral mixed-integer programs [12]. Please note that SNOPT
117
+ and KNITRO are proprietary.
118
+ These solvers are often implemented in low-level program-
119
+ ming languages such as C, C++, or FORTRAN. However,
120
+ there are also many interfaces to these methods via higher
121
+ level languages, such as Python, to make implementation and
122
+ adoption easier. The SciPy library contains the optimize
123
+ module [19] to interface with low-level routines, e.g. conju-
124
+ gate gradient and BFGS algorithm [20], the Simplex method
125
+ [21], COBYLA [22], and SLSQP [23]. A requirement when
126
+ using optimization-based methods is the need for function
127
+ gradients. Several popular software packages implement
128
+ automatic differentiation [24], [15], [25]. We leverage the
129
+ CasADi framework [15] for deriving gradients. Our choice
130
+ for CasADI is based on the fact that it comes readily
131
+ integrated with common solvers for optimal control. To the
132
+ best of our knowledge, JAX and PyTorch are not currently
133
+ integrated with constrained nonlinear optimization solvers.
134
+ Similar to our proposed library are the following pack-
135
+ ages. The MoveIt package provides the user with specific
136
+ TABLE I: Comparison between OpTaS and common alter-
137
+ natives in literature.
138
+ Languages
139
+ End-pose Traj. MPC Solver
140
+ AutoDiff ROS Re-form
141
+ OpTaS
142
+ Python
143
+ 
144
+ 
145
+ 
146
+ QP/NLP 
147
+ 
148
+ 
149
+ EXOTica
150
+ Python/C++ 
151
+ 
152
+ 
153
+ QP/NLP 
154
+ 
155
+ 
156
+ MoveIt
157
+ Python/C++ 
158
+ 
159
+ 
160
+ QP
161
+ 
162
+ 
163
+ 
164
+ TracIK
165
+ Python/C++ 
166
+ 
167
+ 
168
+ QP
169
+ 
170
+ 
171
+ 
172
+ RBDL
173
+ Python/C++ 
174
+ 
175
+ 
176
+ QP
177
+ 
178
+ 
179
+ 
180
+ eTaSL
181
+ C++
182
+ 
183
+ 
184
+ 
185
+ QP
186
+ 
187
+ 1
188
+ 
189
+ OpenRAVE Python
190
+ 
191
+ 
192
+ 
193
+ QP
194
+ 
195
+ 
196
+ 
197
+ IK/planning formulations and provides interfaces to solvers
198
+ for the particular problem [14]. The eTaSL library [26]
199
+ allows the user to specify custom tasks specifications, but
200
+ only supports problems formulated as quadratic programs.
201
+ The CASCLIK library uses CasADi and provides support
202
+ for constraint-based inverse kinematic controllers [27], to the
203
+ best of our knowledge they allow optimization in the joint
204
+ space. We provide joint space, task space optimization and
205
+ also the ability to simultaneously optimize in the joint/task
206
+ space. Furthermore, our framework supports optimization of
207
+ several robots in a single formulation. The EXOTica library
208
+ allows the user to specify a problem formulation from an
209
+ XML file [28]. The package, however, requires the user to
210
+ supply analytic gradients for additional sub-task models.
211
+ B. Contributions
212
+ This paper makes the following contributions:
213
+ • A task-specification library, in Python, for rapid devel-
214
+ opment/deployment of TO approaches for multi-robot
215
+ setups.
216
+ • Modeling of the robot kinematics (forward kinematics,
217
+ geometric Jacobian, etc.), to arbitrary derivative order,
218
+ given a URDF specification.
219
+ 1Enabled with external pluggins.
220
+
221
+ Task specification
222
+ Goals
223
+ Obstacles
224
+ Regularization
225
+ Optimization builder
226
+ URDF
227
+ ROS-PyBullet
228
+ Robot model 1
229
+ Interface
230
+ Model options
231
+ Decision
232
+ Linear (In)equality
233
+ ..
234
+ variables
235
+ constraints
236
+ Cost
237
+ URDF
238
+ terms
239
+ ":ROS
240
+ Robot model N
241
+ (In)equality
242
+ Parameters
243
+ Model options
244
+ constraints
245
+ Solver
246
+ Solver options
247
+ Optimization problem type identifie
248
+ Deployment
249
+ Feedback
250
+ Joint
251
+ configuration
252
+ Solver interface
253
+ Optimization problem
254
+ Obstacle
255
+ tracking
256
+ Teleoperator
257
+ Controller/Planner
258
+ input
259
+ Controller options• An interface that allows a user to easily reformulate
260
+ an optimal control problem, and define parameterized
261
+ constraints for online modification of the optimization
262
+ problem.
263
+ • Analysis comparing the performance of the library (i.e.
264
+ solver convergence, solution quality) versus existing
265
+ software packages. Further demonstrations highlight the
266
+ ease in which nonlinear constrained optimization prob-
267
+ lems can be set up and deployed in realistic settings.
268
+ II. PROBLEM FORMULATION
269
+ We can write an optimal control formulation of a TO or
270
+ planning problems as
271
+ min
272
+ x,u cost(x, u; T)
273
+ subject to
274
+
275
+
276
+
277
+
278
+
279
+ ˙x = f(x, u)
280
+ x ∈ X
281
+ u ∈ U
282
+ (1)
283
+ where t denotes time, and x = x(t) ∈ Rnx and u =
284
+ u(t) ∈ Rnu denote the states and controls, with T being the
285
+ time-horizon for the planned trajectory. The scalar function
286
+ cost : Rnx ×Rnu → R represents the cost function (typically
287
+ a weighted sum of terms each modeling a certain sub-task),
288
+ the dot notation denotes a derivative with respect to time
289
+ (i.e. ˙x ≡ dx
290
+ dt ), f represents the system dynamics (equations
291
+ of motion), and X ⊆ Rnx and U ⊆ Rnu are feasible
292
+ regions for the states and controls respectively (modeled by
293
+ a set of equality and inequality constraints). Direct optimal
294
+ control, optimizes for the controls u for a discrete set of time
295
+ instances, using numerical methods (e.g. Euler or Runge-
296
+ Kutta), to integrate the system dynamics over the time
297
+ horizon T [29]. Given an initialization xinit, uinit, a locally
298
+ optimal trajectory x∗, u∗ is found by solving (1).
299
+ As discussed in Sec. I, many works propose optimization-
300
+ based approaches for planning and control. These can all be
301
+ formulated under the same framework, i.e. a TO problem as
302
+ in (1). The goal of our work is to deliver a library that allows
303
+ a user to quickly develop and prototype constrained nonlinear
304
+ TO for multi-robot problems, and deploy them for motion
305
+ generation. The library includes two types of problems, IK
306
+ and task-sace TO, and indeed both simultaneously. Common
307
+ steps, such as transcription that transforms the problem’s
308
+ task-level description into a form accepted by numerical
309
+ optimization solver routines, should be automated and thus
310
+ not burden the user. Furthermore, many works in practice
311
+ require the ability to adapt constraints dynamically to handle
312
+ changes in the environment (e.g. MPC). This motivates a
313
+ constraint parameterization feature.
314
+ III. PROPOSED FRAMEWORK
315
+ In this section, we describe the main features of the
316
+ proposed library shown in Fig. 2. The library is completely
317
+ implemented in the Python programming language. We chose
318
+ Python because it is simple for beginners but also versatile
319
+ with many well-developed libraries, and it easily facilitates
320
+ fast prototyping.
321
+ A. Robot model
322
+ The robot model (RobotModel) provides the kinematic
323
+ modeling and specifies the time derivative orders required for
324
+ the optimization problem. The only requirement is a URDF
325
+ to instantiate the object2. A key feature is that we can include
326
+ several robots in the TO, which is useful for dual arm and
327
+ whole-body optimization. Additional base frames and end-
328
+ effector links can be added programatically (for example,
329
+ when several robots are included the optimization their
330
+ base frames should be registered within a global coordinate
331
+ frame).
332
+ The RobotModel class allows access to data such as:
333
+ the number of degrees of freedom, the names of the actuated
334
+ joints, the upper and lower actuated joint limits, and the kine-
335
+ matics model. Furthermore, we provide methods to compute
336
+ the forward kinematics and geometric Jacobian in any given
337
+ reference frame. Several methods modeling the kinematics
338
+ are supplied, given a specification from the user for the base
339
+ frame and end-effector frame. These methods include: the 4×
340
+ 4 homogeneous transformation matrix, translation position,
341
+ rotational representations (e.g. Euler angles, quaternions),
342
+ the geometric and analytical Jacobian. Each of the methods
343
+ above depend on a joint state (supplied as either a Python
344
+ list, NumPy array, or CasADi symbolic array).
345
+ B. Task model
346
+ Several works optimize robot motion in the task space
347
+ and then compute the IK as a secondary step, e.g. [8], [9].
348
+ The task model (TaskModel) provides a representation for
349
+ any arbitrary trajectory. For example, the three dimensional
350
+ position trajectory of an end-effector. In the same way as
351
+ the robot model, the time derivatives can be specified in the
352
+ interface an arbitrary order.
353
+ C. Optimization builder
354
+ This section introduces and describes the optimization
355
+ builder class (OptimizationBuilder). The purpose of
356
+ this class is to aid the user to easily setup a TO problem,
357
+ and then automatically build an optimization problem model
358
+ (Sec. III-D) that interfaces with a solver interface (Sec.
359
+ III-E). The development cycle consists in specifying the
360
+ task (i.e. decision variables, parameters, cost function, and
361
+ constraints) using intuitive syntax and symbolic variables.
362
+ Then, the builder creates an optimization problem class,
363
+ which interfaces with several solvers.
364
+ D. Optimization problem model
365
+ The standard TO is stated in (1). This task/problem is
366
+ specified by the optimization builder class in intuitive syntax
367
+ for the user. Transcribing the problem to a form that can be
368
+ solved by off-the-shelf solvers is non-trivial. The output of
369
+ the optimization builder method build is an optimization
370
+ problem model that allows us to interface with several
371
+ solvers.
372
+ 2http://wiki.ros.org/urdf
373
+
374
+ The most general optimization problem that is modeled
375
+ by OpTaS is given by
376
+ X∗ = arg min
377
+ X
378
+ f(X; P)
379
+ (2a)
380
+ subject to
381
+ k(X; P) = M(P)X + c(P) ≥ 0
382
+ (2b)
383
+ a(X; P) = A(P)X + b(P) = 0
384
+ (2c)
385
+ g(X; P) ≥ 0
386
+ (2d)
387
+ h(X; P) = 0
388
+ (2e)
389
+ where X = [vec(x)T , vec(u)T ]T ∈ RnX is the decision
390
+ variable array such that x, u are as defined in (1) and vec(·)
391
+ is a function that returns its input as a 1-dimensional vector,
392
+ P ∈ RnP is the vectorized parameters, f : RnX → R
393
+ denotes the objective function, k : RnX → Rnk denotes
394
+ the linear inequality constraints, a : RnX → Rna denotes
395
+ the linear equality constraints, g : RnX → Rng denotes
396
+ the nonlinear inequality constraints, and h : RnX → Rnh
397
+ denotes the nonlinear equality constraints. The decision vari-
398
+ ables X are all the joint states and other variables specified
399
+ by the user stacked into a single vector. Similarly for the
400
+ parameters, cost terms, and constraints. Vectorization is made
401
+ possible by the SXContainer data structure implemented
402
+ in the sx container module. This data structure enables
403
+ automatic transcription of the TO problem specified in (1)
404
+ into the form (2).
405
+ Of course, not all task specifications will require defini-
406
+ tions for each of the functions in (2). Depending on the struc-
407
+ ture of the objective function and constraints, the required
408
+ time budget, and accuracy, some solvers will be more appro-
409
+ priate for solving (2). For example, a quadratic programming
410
+ solver that only handles linear constraints (e.g. OSQP [17])
411
+ is unsuitable for solving a problem with nonlinear objective
412
+ function and nonlinear constraints. The build process auto-
413
+ matically identifies the optimization problem type, exposing
414
+ only the relevant solvers. Several problem types are available
415
+ to the user: unconstrained quadratic cost, linearly constrained
416
+ with quadratic cost, nonlinear constrained with quadratic
417
+ cost, unconstrained with nonlinear cost, linearly constrained
418
+ with nonlinear cost, nonlinear cost and constraints.
419
+ 1) Initialization: Upon initialization of the optimization
420
+ builder class we can specify (i) the number of time steps
421
+ in the trajectory, (ii) several robot and task models (given a
422
+ unique name for each), (iii) the joint states (positions and
423
+ required time-derivatives) that integrate the decision variable
424
+ array, (iv) task space labels, dimensions, and derivatives
425
+ to also integrate the decision variable array, (v) a Boolean
426
+ describing the alignment of the derivatives (Fig. 3), and (vi)
427
+ a Boolean indicating whether to optimize time steps.
428
+ The alignment of time-derivatives can be specified in
429
+ two ways. Each derivative is aligned with its corresponding
430
+ state (alignement), or otherwise. This is specified by the
431
+ derivs align flag in the optimization builder interface
432
+ and shown diagramatically in Fig. 3.
433
+ In addition, the user can also optimize the time-steps
434
+ between each state. The time derivatives can be integrated
435
+ Fig. 3: Joint state alignment with time. User supplies
436
+ derivs align that specifies how joint state time deriva-
437
+ tives should be aligned.
438
+ over time, e.g. qt+1 = qt + δτt ˙qt, where δτt is an increment
439
+ in time. When optimize time=True, then each δτt is
440
+ included as decision variables in the optimal control problem.
441
+ 2) Decision variables and parameters: Decision variables
442
+ are specified in the optimization builder class interface for
443
+ the joint space, task space, and time steps. Each group
444
+ of variables is given a unique label and can be retrieved
445
+ using the get model state method. States are retrieved
446
+ by specifying a robot name or task name, the required time
447
+ index, and the time derivative order required. Additional
448
+ decision variables can be included in the problem by using
449
+ the add decision variables method given a unique
450
+ name and dimension.
451
+ Parameters for the problem (e.g. safe distances) can be
452
+ specified using the add parameter method. To specify a
453
+ new parameter, a unique name and dimension is required.
454
+ 3) Cost and constraint functions: The cost function in (1)
455
+ is assumed to be made up of several cost terms, i.e.
456
+ cost(x, u; T) =
457
+
458
+ i
459
+ ci(x, u; T)
460
+ (3)
461
+ where ci : Rnx × Rnu → R is an individual cost term
462
+ modeling a specific sub-task. For example, let us define the
463
+ cost terms c0 = ∥ψ(xT ) − ψ∗∥2 and c1 = λ
464
+ � T
465
+ 0
466
+ ∥u∥2 dt
467
+ (note, discretization is implicit in this formulation) where
468
+ ψ : Rnx → R3 is a function for the forward kinematics
469
+ position (note, this can be provided by the robot model
470
+ class as described in Sec. III-A), ψ∗ ∈ R3 is a goal task
471
+ space position, and 0 < λ ∈ R is a scaling term used
472
+ to weight the relative importance of one constraint against
473
+ the other. Thus, c0 describes an ideal state for the final
474
+ state, and c1 encourages trajectories with minimal control
475
+ signals (e.g. minimize joint velocities). Each cost term is
476
+ added to the problem using the add cost term method;
477
+ the build sequence ensures each term is added to the
478
+ objective function.
479
+ Several constraints can be added to the optimization
480
+ problem by using the add equality constraint and
481
+ add leq inequality constraint methods that add
482
+ equality and inequality constraints respectively. When the
483
+ constraints are added to the problem, they are first checked to
484
+ see if they are linear constraints with respect to the decision
485
+ variables. This functionality allows the library to differentiate
486
+ between linear and nonlinear constraints.
487
+ Additionally, OpTaS offers several methods that provide
488
+ an implementation for common constraints, as, for example,
489
+
490
+ derivs_align=True
491
+ 1-
492
+ -1-
493
+ —...
494
+ q0
495
+ q1
496
+ q2
497
+ q3
498
+ q4
499
+ QT-1
500
+ qT
501
+ :b
502
+ :pb
503
+ q0
504
+ q1
505
+ q2
506
+ q3
507
+ q4
508
+ QT-1
509
+ qT
510
+ derivs_align=False
511
+ 1
512
+ ..·
513
+ -1
514
+ qo
515
+ q1
516
+ q2
517
+ q3
518
+ q4
519
+ : b
520
+ qT-1
521
+ qT
522
+ qo
523
+ q1
524
+ q2
525
+ q3
526
+ : pb
527
+ qT-1joint position/velocity limits and time-integration for the
528
+ system dynamics f (e.g joint velocities can be integrated
529
+ to positions).
530
+ E. Solver interface
531
+ OpTaS provides interfaces to solvers (open-source and
532
+ commercial) that interface with CasADi [15] (such as
533
+ IPOPT [11]), SNOPT [13], KNITRO [12], and Gurobi [30]),
534
+ the Scipy minimize method [19], OSQP [17], and CVX-
535
+ OPT [18].
536
+ 1) Initialization of solver: When the solver is initialized,
537
+ several variables are setup and the optimization problem
538
+ object is set as a class attribute. The user must then call
539
+ the setup method - that itself is an interface to the solver
540
+ initialization that the user has chosen. The requirement of
541
+ this method is to setup the interface for the specific solver;
542
+ relevant solver parameters are passed to the interface at this
543
+ stage.
544
+ 2) Resetting the interface: When using the solver as a
545
+ controller, it is expected that the solver should be called more
546
+ than once. In the case for feedback controllers or controllers
547
+ with parameterized constraints (e.g. obstacles), this requires
548
+ a way to reset the problem parameters. Furthermore, the
549
+ initial seed for the optimizer is often required to be reset
550
+ at each control loop cycle. To reset the initial seed and
551
+ problem parameters the user calls reset initial seed,
552
+ and reset parameters, respectively. Both the initial
553
+ seed and parameters are initialized by giving the name of the
554
+ variables. The required vectorization is internally performed
555
+ by the solver utilizing features of the SXContainer data
556
+ structure. Note, if any decision variables or parameters are
557
+ not specified in the reset methods then they automatically
558
+ default to zero. This enables warm-starting the optimization
559
+ routine, e.g. with the solution of the previous time-step
560
+ problem.
561
+ 3) Solving an optimization problem: The optimization
562
+ problem is solved by calling the solve method. This
563
+ method passes the optimization problem to the desired
564
+ solver. The resulting data from the solver is collected and
565
+ transformed back into the state trajectory for each robot. A
566
+ method is provided, named interpolate, is used to in-
567
+ terpolate the computed trajectories across time. Additionally,
568
+ the method stats retrieves available optimization statistics
569
+ (e.g. number of iterations).
570
+ 4) Extensible solver interface: The solver interface has
571
+ been implemented to allow for extensibility, i.e. additional
572
+ optimization solvers can be easily integrated into the frame-
573
+ work. When a user would like to include a new solver
574
+ interface, they must create a new class that inherits from
575
+ the Solver class. In their sub-class definition they must
576
+ implement three methods: (i) setup which (as described
577
+ above) initializes the solver interface, (ii) solve that calls
578
+ the solver and returns the optimized variable X∗, and (iii)
579
+ stats that returns any statistics from the solver.
580
+ F. Additional features
581
+ Support for integration with ROS [31] is provided out-
582
+ of-the-box. The ROS node provided is integrated with the
583
+ import optas
584
+ # Setup robot and optimization builder
585
+ T = 100 # number of time steps in trajectory
586
+ urdf = ’/path/to/robot.urdf’
587
+ r = optas.RobotModel(urdf, time_deriv=[0, 1])
588
+ n = r.get_name()
589
+ b = optas.OptimizationBuilder(T=T, robots=[r])
590
+ # Retrieve variables and setup parameters
591
+ q0 = b.get_model_state(n, t=0)
592
+ qT = b.get_model_state(n, t=-1) # final state
593
+ pg = b.add_parameter(’pg’, 3) # goal pos.
594
+ qc = b.add_parameter(’qc’, r.ndof) # init q
595
+ o = b.add_parameter(’o’, 3) # obstacle pos.
596
+ r = b.add_parameter(’r’)
597
+ # obstacle radius
598
+ dt = b.add_parameter(’dt’) # time step
599
+ # Forward kinematics
600
+ p = r.get_global_link_position(tip, qT)
601
+ # Cost and constraints
602
+ b.add_cost_term(’c’, optas.sumsqr(p - pg))
603
+ b.integrate_model_states(
604
+ n, time_deriv=1, dt=dt)
605
+ b.add_equality_constraint(’init’, q0, qc)
606
+ for t in range(T):
607
+ b.add_leq_inequality_constraint(
608
+ optas.sumsqr(p - o), r**2)
609
+ # Build optimization problem and setup solver
610
+ solver = optas.CasADiSolver(
611
+ b.build()).setup(’ipopt’)
612
+ Fig. 4: Example code for TO described in Section IV.
613
+ ROS-PyBullet Interface [16] so the publishers/subscribers
614
+ can connect a robot in the optimization problem with a robot
615
+ simulated in PyBullet.
616
+ In addition, we provide a port of the spatialmath
617
+ library by Corke [32] that supports CasADi variables. This
618
+ library defines methods for manipulating homogeneous trans-
619
+ formation matrices, quaternions, Euler angles, etc. using
620
+ CasADi symbolic variables.
621
+ IV. CODE EXAMPLE
622
+ In this section, we describe a common TO problem and
623
+ give the code that models the problem. We aim to highlight
624
+ how straightforward it is to setup a problem.
625
+ Consider a serial link manipulator, and goal to find a
626
+ collision-free plan over time horizon T to a goal end-
627
+ effector position pg given a starting configuration qc. A single
628
+ spherical collision is represented by a position o and radius r.
629
+ The robot configuration qt represent states, and the velocities
630
+ ˙qt are controls.
631
+ The cost function is given by ∥p(qT ) − pg∥2 where p
632
+ is the position of the end-effector given by the forward
633
+ kinematics. We solve the problem by minimizing the cost
634
+ function subject to the constraints: (i) initial configuration,
635
+ q0 = qc, (ii) joint limits q− ≤ qt ≤ q+, and (iii) obstacle
636
+ avoidance, ∥p(qt) − o∥2 ≥ r2. The system dynamics is
637
+ represented by several equality constraints qt+1 = qt + δt ˙qt
638
+ that can be specified by methods already in-built into OpTaS.
639
+ The code for the TO problem above, is shown in Fig. 4.
640
+
641
+ (a)
642
+ (b)
643
+ Fig. 5: Comparison of end-effector task space trajectories
644
+ computed using two different formulations. (a) Shows the
645
+ start (left), and final configurations (right) for the robot under
646
+ each approach. (b) Plots the end-effector position trajectory
647
+ two dimensions.
648
+ V. EXPERIMENTS
649
+ A. Optimization along custom dimensions
650
+ Popular solvers, such as TracIK [33], require the user to
651
+ provide a 6D pose as the task space goal. Whilst this is ap-
652
+ plicable to several robotics problems (e.g. pick-and-place) it
653
+ may not be necessary to optimize each task space dimension
654
+ (e.g. spraying applications does not require optimization in
655
+ the roll angular direction). Furthermore, optimizing in more
656
+ dimensions than necessary may be disadvantageous.
657
+ OpTaS can optimize or neglect any desired task space
658
+ dimension. This can have certain advantages, for example
659
+ increasing the robot workspace. Consider a non-prehensile
660
+ pushing task along the plane, optimizing the full 6D pose
661
+ may not be ideal since the task is two dimensional. By
662
+ optimizing in the two dimensional plane and specifying
663
+ boundary constraints on the third linear spatial dimension,
664
+ increases the robots workspace.
665
+ We setup a tracking experiment in OpTaS using a sim-
666
+ ulated Kuka LWR robot arm to compare the two cases:
667
+ (i) optimize the full 6D pose, and (ii) optimize 2D linear
668
+ position. The robot is given an initial configuration (Fig. 5a
669
+ left) and the task is to move the end-effector with velocity of
670
+ constant magnitude and direction in the 2D plane. The end
671
+ configuration for each approach is shown in Fig. 5a right and
672
+ the end-effector trajectories are shown in Fig. 5b. We see
673
+ that the 2D optimization problem is able to reach a greater
674
+ distance, highlighting that the robot workspace is increased.
675
+ B. Performance comparison
676
+ In this section, we demonstrate that OpTaS can formulate
677
+ similar problems and compare its performance to alterna-
678
+ tives. First, we model, with OpTaS, the same problem as
679
+ used in TracIK [33] and in addition we also model the
680
+ problem using EXOTica [28]. The Scipy SLSQP solver [23]
681
+ was used for OpTaS and EXOTica. With same Kuka LWR
682
+ Fig. 6: Figure-of-eight trajectory tracked by the Kuka LWR.
683
+ (a)
684
+ (b)
685
+ Fig. 7: Solver duration comparisons for figure of eight
686
+ motion. (a) Compares an IK tracking approach described
687
+ in Section V, (b) is a similar comparison that includes a
688
+ maximization term for manipulability. Green is OpTaS, red
689
+ is TracIK, and blue is EXOTica.
690
+ robot arm in the previous experiment, we setup a task where
691
+ the robot must track a figure-of-eight motion in task space
692
+ (Fig. 6) and record the CPU time for the solver duration at
693
+ each control loop cycle. The results are shown in Fig. 7a.
694
+ TracIK is the fastest (0.049 ± 0.035ms), which is expected
695
+ since it is optimized for a specific problem formulation. We
696
+ see that OpTaS (2.608 ± 0.239ms) is faster than EXOTica
697
+ (3.694 ± 0.300ms)
698
+ A second experiment, using the same setup as be-
699
+ fore, was performed comparing the performance of OpTaS
700
+ against EXOTica with an additional cost term to maxi-
701
+ mize manipulability [34]. The results are shown in Fig.
702
+ 7b. Despite using the same formulation and solver, OpTaS
703
+ (2.650 ± 0.270ms) achieved better performance than EXOT-
704
+ ica (7.640±1.404ms). Without extensive profiling it is diffi-
705
+ cult to precisely explain this difference. However, EXOTica
706
+ requires the user to supply analytical gradients for sub-tasks
707
+ (called task maps in the EXOTica documentation). EXOTica
708
+ does not provide the gradients for the manipulability task,
709
+ and thus falls-back to using the finite difference method to
710
+ estimate the gradient - this can can be slow to compute.
711
+ VI. CONCLUSIONS
712
+ In this paper, we have proposed OpTaS: an optimization-
713
+ based task tpecification Python library for TO and MPC.
714
+ OpTaS allows a user to setup a constrained nonlinear pro-
715
+ grams for custom problem formulations and has been shown
716
+ to perform well against alternatives. Parameterization enables
717
+ programs to act as feedback controllers, motion planners, and
718
+ benchmark problem formulations and solvers.
719
+ We hope OpTaS will be used by researchers, students, and
720
+ industry to facilitate the development of control and motion
721
+ planning algorithms. The code base is easily installed via
722
+ pip and has been made open-source under the Apache 2
723
+ license: https://github.com/cmower/optas.
724
+
725
+ 0.1
726
+ Optimize6D
727
+ Optimize2D
728
+ Ideal path
729
+ Start
730
+ (m)
731
+ 0.0
732
+ -0.1
733
+ 0.0
734
+ 0.2
735
+ 0.4
736
+ 0.6
737
+ 0.8
738
+ 1.0
739
+ 1.2
740
+ 1.4
741
+ X (m)CPU Time (ms)
742
+ OpTaS
743
+ TraclK
744
+ EXOTica
745
+ 7
746
+ 0
747
+ 0.0
748
+ 2.5
749
+ 5.0
750
+ 7.5
751
+ 5 10.0 12.5 15.0 17.5 20.0
752
+ Time (s)CPU Time (ms)
753
+ 10
754
+ OpTaS
755
+ EXOTica
756
+ 8
757
+ 6
758
+ 4
759
+ 2
760
+ 0.0
761
+ 2.5
762
+ 5.0
763
+ 7.5
764
+ 10.0 12.5 15.0 17.5 20.0
765
+ Time (s)REFERENCES
766
+ [1] S. M. LaValle, Planning algorithms.
767
+ Cambridge university press,
768
+ 2006.
769
+ [2] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
770
+ motion planning,” The international journal of robotics research,
771
+ vol. 30, no. 7, pp. 846–894, 2011.
772
+ [3] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp:
773
+ Gradient optimization techniques for efficient motion planning,” in
774
+ 2009 IEEE International Conference on Robotics and Automation,
775
+ 2009, pp. 489–494.
776
+ [4] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
777
+ S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
778
+ convex optimization and convex collision checking,” The International
779
+ Journal of Robotics Research, vol. 33, no. 9, pp. 1251–1270, 2014.
780
+ [5] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory op-
781
+ timization of rigid bodies through contact,” The International Journal
782
+ of Robotics Research, vol. 33, no. 1, pp. 69–81, 2014.
783
+ [6] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai,
784
+ F. Permenter, T. Koolen, P. Marion, and R. Tedrake, “Optimization-
785
+ based locomotion planning, estimation, and control design for the
786
+ atlas humanoid robot,” Autonomous Robots, vol. 40, no. 3, pp.
787
+ 429–455, Mar 2016. [Online]. Available: https://doi.org/10.1007/
788
+ s10514-015-9479-3
789
+ [7] T. Stouraitis, I. Chatzinikolaidis, M. Gienger, and S. Vijayakumar,
790
+ “Online hybrid motion planning for dyadic collaborative manipulation
791
+ via bilevel optimization,” IEEE Transactions on Robotics, vol. 36,
792
+ no. 5, pp. 1452–1471, 2020.
793
+ [8] C. E. Mower, J. Moura, and S. Vijayakumar, “Skill-based shared
794
+ control,” in Robotics: Science and Systems, 2021.
795
+ [9] J. Moura, T. Stouraitis, and S. Vijayakumar, “Non-prehensile planar
796
+ manipulation via trajectory optimization with complementarity con-
797
+ straints,” in 2022 International Conference on Robotics and Automa-
798
+ tion (ICRA).
799
+ IEEE, 2022, pp. 970–976.
800
+ [10] M. Toussaint, J. Harris, J.-S. Ha, D. Driess, and W. H¨onig, “Sequence-
801
+ of-constraints mpc: Reactive timing-optimal control of sequential
802
+ manipulation,” 2022.
803
+ [11] A. W¨achter and L. T. Biegler, “On the implementation of an
804
+ interior-point filter line-search algorithm for large-scale nonlinear
805
+ programming,” Mathematical Programming, vol. 106, no. 1, pp.
806
+ 25–57,
807
+ Mar
808
+ 2006.
809
+ [Online].
810
+ Available:
811
+ https://doi.org/10.1007/
812
+ s10107-004-0559-y
813
+ [12] R. H. Byrd, J. Nocedal, and R. A. Waltz, “KNITRO: An integrated
814
+ package for nonlinear optimization,” in Large-scale nonlinear opti-
815
+ mization.
816
+ Springer, 2006, pp. 35–59.
817
+ [13] P.
818
+ E.
819
+ Gill,
820
+ W.
821
+ Murray,
822
+ and
823
+ M.
824
+ A.
825
+ Saunders,
826
+ “Snopt:
827
+ An
828
+ sqp
829
+ algorithm
830
+ for
831
+ large-scale
832
+ constrained
833
+ optimization,”
834
+ SIAM
835
+ Rev., vol. 47, no. 1, p. 99–131, jan 2005. [Online]. Available:
836
+ https://doi.org/10.1137/S0036144504446096
837
+ [14] D. Coleman, I. Sucan, S. Chitta, and N. Correll, “Reducing the barrier
838
+ to entry of complex robotic software: a MoveIt! case study,” 2014.
839
+ [15] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
840
+ “CasADi – A software framework for nonlinear optimization and
841
+ optimal control,” Mathematical Programming Computation, vol. 11,
842
+ no. 1, pp. 1–36, 2019.
843
+ [16] C. E. Mower, T. Stouraitis, J. Moura, C. Rauch, L. Yan, N. Z. Be-
844
+ habadi, M. Gienger, T. Vercauteren, C. Bergeles, and S. Vijayakumar,
845
+ “ROS-PyBullet Interface: A framework for reliable contact simulation
846
+ and human-robot interaction,” in [to appear] Proceedings of the
847
+ Conference on Robot Learning, ser. Proceedings of Machine Learning
848
+ Research.
849
+ PMLR, 2022.
850
+ [17] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP:
851
+ an operator splitting solver for quadratic programs,” Mathematical
852
+ Programming Computation, vol. 12, no. 4, pp. 637–672, 2020.
853
+ [Online]. Available: https://doi.org/10.1007/s12532-020-00179-2
854
+ [18] M. Andersen, J. Dahl, and L. Vandenberghe, “Cvxopt: Convex opti-
855
+ mization,” Astrophysics Source Code Library, pp. ascl–2008, 2020.
856
+ [19] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
857
+ D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
858
+ van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
859
+ Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, ˙I. Polat, Y. Feng,
860
+ E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman,
861
+ I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
862
+ Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors,
863
+ “SciPy 1.0: Fundamental Algorithms for Scientific Computing in
864
+ Python,” Nature Methods, vol. 17, pp. 261–272, 2020.
865
+ [20] J. Nocedal and S. J. Wright, Numerical optimization. Springer, 1999.
866
+ [21] J. A. Nelder and R. Mead, “A simplex method for function minimiza-
867
+ tion,” The computer journal, vol. 7, no. 4, pp. 308–313, 1965.
868
+ [22] M. J. D. Powell, A Direct Search Optimization Method That Models
869
+ the Objective and Constraint Functions by Linear Interpolation.
870
+ Dordrecht:
871
+ Springer
872
+ Netherlands,
873
+ 1994,
874
+ pp.
875
+ 51–67.
876
+ [Online].
877
+ Available: https://doi.org/10.1007/978-94-015-8330-5 4
878
+ [23] D. Kraft, “A software package for sequential quadratic programming,”
879
+ Tech. Rep. DFVLR-FB 88-28, DLR German Aerospace Center –
880
+ Institute for Flight Mechanics, Koln, Germany, 1988.
881
+ [24] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary,
882
+ D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-
883
+ Milne,
884
+ and
885
+ Q.
886
+ Zhang,
887
+ “JAX:
888
+ composable
889
+ transformations
890
+ of
891
+ Python+NumPy programs,” 2018. [Online]. Available: http://github.
892
+ com/google/jax
893
+ [25] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
894
+ T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
895
+ E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
896
+ L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
897
+ performance deep learning library,” in Advances in Neural Information
898
+ Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
899
+ F. d'Alch´e-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc.,
900
+ 2019, pp. 8024–8035.
901
+ [26] E. Aertbeli¨en and J. De Schutter, “etasl/etc: A constraint-based task
902
+ specification language and robot controller using expression graphs,”
903
+ in 2014 IEEE/RSJ International Conference on Intelligent Robots and
904
+ Systems, 2014, pp. 1540–1546.
905
+ [27] M. H. Arbo, E. I. Grøtli, and J. T. Gravdahl, “Casclik: Casadi-
906
+ based closed-loop inverse kinematics,” 2019. [Online]. Available:
907
+ https://arxiv.org/abs/1901.06713
908
+ [28] V. Ivan, Y. Yang, W. Merkt, M. P. Camilleri, and S. Vijayakumar,
909
+ EXOTica: An Extensible Optimization Toolset for Prototyping and
910
+ Benchmarking Motion Planning and Control.
911
+ Cham: Springer
912
+ International Publishing, 2019, pp. 211–240. [Online]. Available:
913
+ https://doi.org/10.1007/978-3-319-91590-6 7
914
+ [29] M. Kelly, “An introduction to trajectory optimization: How to do your
915
+ own direct collocation,” SIAM Review, vol. 59, no. 4, pp. 849–904,
916
+ 2017.
917
+ [30] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
918
+ 2022. [Online]. Available: https://www.gurobi.com
919
+ [31] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
920
+ E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source robot
921
+ operating system,” in Proc. of the IEEE Intl. Conf. on Robotics and
922
+ Automation (ICRA) Workshop on Open Source Robotics, Kobe, Japan,
923
+ 2009.
924
+ [32] P. I. Corke, Robotics, Vision & Control: Fundamental Algorithms in
925
+ MATLAB, 2nd ed.
926
+ Springer, 2017, iSBN 978-3-319-54413-7.
927
+ [33] P. Beeson and B. Ames, “Trac-ik: An open-source library for improved
928
+ solving of generic inverse kinematics,” in 2015 IEEE-RAS 15th
929
+ International Conference on Humanoid Robots (Humanoids), 2015,
930
+ pp. 928–935.
931
+ [34] T. Yoshikawa, “Manipulability of robotic mechanisms,” The Interna-
932
+ tional Journal of Robotics Research, vol. 4, no. 2, pp. 3–9, 1985.
933
+ [Online]. Available: https://doi.org/10.1177/027836498500400201
934
+
X9FRT4oBgHgl3EQfODd9/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
XNAyT4oBgHgl3EQf9PpX/content/tmp_files/2301.00870v1.pdf.txt ADDED
@@ -0,0 +1,1356 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ TUM-HEP 1447/22, IPMU22-0070
2
+ Enhanced prospects for direct detection of
3
+ inelastic dark matter from a non-galactic diffuse
4
+ component
5
+ Gonzalo Herrera1,2, Alejandro Ibarra1, and Satoshi Shirai3
6
+ 1Physik-Department, Technische Universität München, James-Franck-Straße, 85748
7
+ Garching, Germany
8
+ 2Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6,80805
9
+ München, Germany
10
+ 3Kavli Institute for the Physics and Mathematics of the Universe (WPI),The University of
11
+ Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa 277-8583, Japan
12
+ Abstract
13
+ In some scenarios, the dark matter particle predominantly scatters inelastically with
14
+ the target, producing a heavier neutral particle in the final state. In this class of scenarios,
15
+ the reach in parameter space of direct detection experiments is limited by the velocity of
16
+ the dark matter particle, usually taken as the escape velocity from the Milky Way. On the
17
+ other hand, it has been argued that a fraction of the dark matter particles in the Solar
18
+ System could be bound to the envelope of the Local Group or to the Virgo Supercluster,
19
+ and not to our Galaxy, and therefore could carry velocities larger than the escape velocity
20
+ from the Milky Way. In this paper we estimate the enhancement in sensitivity of current
21
+ direct detection experiments to inelastic dark matter scatterings with nucleons or electrons
22
+ due to the non-galactic diffuse components, and we discuss the implications for some well
23
+ motivated models.
24
+ 1
25
+ Introduction
26
+ The existence of dark matter in galaxies, clusters of galaxies and the Universe at large scale is
27
+ by now established by their gravitational effects on ordinary matter (for reviews, see e.g. [1–
28
+ 4]). If the dark matter is constituted by new particles, it is plausible that they could interact
29
+ with the ordinary matter through other interactions aside from gravity. A promising avenue to
30
+ probe these putative interactions consists in the search for nuclear or electron recoils induced
31
+ by dark matter particles entering a dedicated detector at the Earth [5, 6] (for reviews, see e.g.
32
+ [7–9]). This search strategy, denominated direct detection, has seen an impressive increase in
33
+ sensitivity since it was first proposed more than three decades ago. Yet, no conclusive dark
34
+ matter signal has been found to date.
35
+ Assuming that the dark matter scatters elastically with the nucleus, current direct detection
36
+ experiments restrict the spin-independent interaction cross-section to be smaller than ∼ 1
37
+ 1
38
+ arXiv:2301.00870v1 [hep-ph] 2 Jan 2023
39
+
40
+ zeptobarn in the mass range ∼ 10 GeV - 1 TeV [10]. These stringent constraints put pressure on
41
+ several well motivated dark matter scenarios, especially those for which the dark matter particle
42
+ couples at tree level with the valence quarks in models addressing the electroweak hierarchy
43
+ problem [1]. On the other hand, there are many other dark matter scenarios, arguably also
44
+ well motivated theoretically, which are largely unconstrained by current searches.
45
+ In this paper we will focus on scenarios where the dark matter cannot scatter elastically with
46
+ a nucleus (or an electron), so that the stringent limits on the elastic scattering cross-section do
47
+ not necessarily hold. This seemingly strong assumption naturally arises in some models. For
48
+ instance, the elastic scattering mediated by vector current is forbidden for Majorana dark matter
49
+ χ, due to the Majorana nature of fermion: ¯χγµχ = 0 [11]. However, Majorana dark matter
50
+ particles may leave an imprint in direct search experiments if they could scatter inelastically
51
+ producing a heavier Majorana fermion χ′ in the final state, since there is an off-diagonal fermion
52
+ current ¯χ′γµχ ̸= 0. This scenario is approximately realized in the Minimal Supersymmetric
53
+ Standard Model, when the lightest supersymmetric particle is almost a pure Higgsino state,
54
+ and the other supersymmetric particles are very heavy. In this case, the elastic scattering of
55
+ the Higgsino dark matter is suppressed by the large sfermion and gaugino masses, while it has
56
+ a large inelastic scattering cross section by the electroweak gauge interactions [12]. Scenarios
57
+ of inelastic dark matter have also been motivated phenomenologically, e.g. in [12–22].
58
+ The kinematics of the inelastic scattering differs from the one in the elastic scenario. In
59
+ order to allow the production of a heavier neutral particle in the final state, the velocity of the
60
+ incoming dark matter particle must be larger than a certain threshold. Therefore, as the mass
61
+ difference between the initial and final neutral particles increases, faster and faster dark matter
62
+ particles are necessary in order to open kinematically the inelastic process. For dark matter
63
+ particles bound to our galaxy, and which have speeds smaller than the escape velocity from
64
+ the Milky Way, vesc = 544 km/s [23, 24], the inelastic scattering off a nucleus is kinematically
65
+ allowed when the mass difference between the two states is δm < 1/2µv2
66
+ esc, with µ the reduced
67
+ mass of the DM-nucleus system; for the scattering off an electron, the inelastic channel is open
68
+ when δm < 1/2µev2
69
+ esc − |Enl|, where µe is the reduced mass of the DM-electron system, and
70
+ |Enl| is the binding energy of an electron in the (n, l) shell of the target nucleus. In practice,
71
+ experiments can only detect recoiling nuclei/ionized electrons within a given energy range,
72
+ therefore the mass difference that can be probed in direct searches is smaller than this value.
73
+ In this letter we argue that the parameter space of inelastic dark matter scenarios that
74
+ can be probed in direct search experiments is larger than the one previously considered in
75
+ the literature, that implicitly assumes that the Milky Way is an isolated galaxy. Instead, the
76
+ Milky Way is one among the various members of the Local Group, which include M31, M33
77
+ and several dwarf galaxies. It has been argued that the Local Group contains a diffuse dark
78
+ matter component, which is not bound to any individual galaxy, and which is distributed
79
+ roughly homogeneously over the Local Group [25–27]. Notably, a non-negligible fraction of
80
+ the dark matter particles in the Solar System is expected to be associated to this non-galactic
81
+ diffuse component, rather than to the Milky Way halo, and could have velocities larger than
82
+ the escape velocity from the Milky Way. Consequently, the mass splitting that could be probed
83
+ in experiments correspondingly increases. Likewise, the Local Group is one among the many
84
+ groups of galaxies embedded in the Virgo Supercluster, which could also contain a diffuse
85
+ component [28]. Although the fraction of dark matter particles in the Solar System associated
86
+ to the Virgo Supercluster is fairly small, they have very large velocities, and could be pivotal in
87
+ generating a signal in direct search experiments when the inelastic scattering is kinematically
88
+ 2
89
+
90
+ inaccessible for the dark matter bound to the Milky Way and to the Local Group.
91
+ The paper is organized as follows. In section 2, we present the non-galactic dark matter
92
+ flux at Earth. In section 3, we derive constraints on inelastic dark matter from nuclear recoil
93
+ searches, and in section 4, we derive constraints from electron recoil searches. Finally, in section
94
+ 5, we present our conclusions.
95
+ 2
96
+ Dark matter flux at Earth
97
+ A correct description of the dark matter flux at Earth is crucial for assessing the prospects for
98
+ detection of a given dark matter model. The largest contribution to the flux is expected to arise
99
+ from dark matter particles in the Milky Way halo. The local density of dark matter particles
100
+ and their velocity distribution is unknown. However, it is common in the literature to adopt
101
+ the Standard Halo Model (SHM), characterized by a local density ρloc
102
+ SHM = 0.3 GeV/cm3 and
103
+ an isotropic velocity distribution described by a Maxwell-Boltzmann distribution truncated at
104
+ the escape velocity of the Milky Way [29, 30]. In the galactic frame, the velocity distribution
105
+ reads:
106
+ fSHM(⃗v) =
107
+ 1
108
+ (2πσ2
109
+ v)3/2Nesc
110
+ exp
111
+
112
+ − v2
113
+ 2σ2
114
+ v
115
+
116
+ for v ≤ vesc ,
117
+ (1)
118
+ where v = |⃗v|, σv ≈ 156 km/s is the velocity dispersion [30, 31], and vesc = 544 km/s is the
119
+ escape velocity from our Galaxy [23, 24]. Further, Nesc is a normalization constant, given by:
120
+ Nesc = erf
121
+ � vesc
122
+
123
+ 2σv
124
+
125
+
126
+
127
+ 2
128
+ π
129
+ vesc
130
+ σv
131
+ exp
132
+
133
+ −v2
134
+ esc
135
+ 2σ2
136
+ v
137
+
138
+ .
139
+ (2)
140
+ For our chosen parameters, Nesc ≃ 0.993. The contribution to the local dark matter flux from
141
+ the Milky Way halo then reads:
142
+ FSHM(⃗v) = ρloc
143
+ SHM
144
+ mDM
145
+ vfSHM(⃗v) .
146
+ (3)
147
+ It is plausible that the dark matter flux at Earth also contains a contribution from dark mat-
148
+ ter particles not bound to the Milky Way. Astronomical observations indicate the presence of
149
+ diffuse dark matter components homogeneously distributed between clusters and Superclusters
150
+ of galaxies [32]. Since these dark matter particles are not gravitationally bound to the Milky
151
+ Way, they carry larger velocities than the escape velocity of the Milky Way. In this work, we
152
+ consider the contribution to the dark matter flux from the Local Group and from the Virgo
153
+ Supercluster. The dark matter particles from the Local Group contribute at the Solar System
154
+ with a local density of ρLG ∼ 10−2 GeV/cm3, and are expected to move isotropically with a
155
+ narrow velocity distribution, σv.LG ∼ 20 km/s, and with mean velocity vLG ∼ 600 km/s [33].
156
+ The contribution from the Local Group to the dark matter flux at the location of the Solar
157
+ System then reads:
158
+ FLG(⃗v) = ρloc
159
+ LG
160
+ mDM
161
+ δ(v − vLG)
162
+ 4πv
163
+ .
164
+ (4)
165
+ Dark matter particles bound to the Virgo Supercluster give a small contribution to the local
166
+ dark matter density. Observations indicate that the average density in the diffuse component
167
+ 3
168
+
169
+ of the Virgo Supercluster is close to the cosmological value ∼ 10−6 GeV/cm3 [28]. However, the
170
+ gravitational focusing due to the Local Group leads to an increase in the density at the location
171
+ of the Sun by a factor ∼ 1 + v2
172
+ esc/v2
173
+ σVS, where vσVS is the velocity dispersion of the dark matter
174
+ particles from the Virgo Supercluster [33]. This value is highly uncertain, but it is expected
175
+ to be comparable to that of the observable members of the Supercluster, which ranges from
176
+ vσVS ∼ 50 km/s to vσVS ∼ 500 km/s [28, 34]. We consider for concreteness an enhancement on
177
+ the local density of dark matter particles from the Virgo Supercluster of ∼ 10, consistent with
178
+ the value of the velocity dispersion of the observable members of the Supercluster, which leads
179
+ to ρloc
180
+ VG ∼ 10−5 GeV/cm3. Current knowledge on the dark matter velocity distribution in the
181
+ Virgo Supercluster is much poorer. Following [33], we assume that the dark matter particles
182
+ have the typical velocities of the members of the Virgo Supercluster, corresponding to (at least)
183
+ vVS ∼ 1000 km/s. The contribution to the dark matter flux at the location of the Solar System
184
+ from the Virgo Supercluster can then be written as:
185
+ FVS(⃗v) = ρloc
186
+ VS
187
+ mDM
188
+ δ(v − vVS)
189
+ 4πv
190
+ .
191
+ (5)
192
+ The total (galactic plus non-galactic) dark matter flux at the Solar System is therefore
193
+ approximately given by:
194
+ F(⃗v) = FSHM(⃗v) + FLG(⃗v) + FVS(⃗v).
195
+ (6)
196
+ Following [33], we adopt values for the local density of each component such that the total sum
197
+ yields the canonical value of the local density used by direct detection experiments ρloc = 0.3
198
+ GeV/cm3, namely ρloc
199
+ SHM = 0.26 GeV/cm3 (∼ 88%), ρloc
200
+ LG = 0.037 GeV/cm3 (∼ 12%), and
201
+ ρloc
202
+ VS = 10−5 GeV/cm3 (∼ 0.00003%).
203
+ 3
204
+ Impact on nuclear recoils
205
+ The differential rate of nuclear recoils induced by inelastic up-scatterings of dark matter parti-
206
+ cles traversing a detector at the Earth is given by:
207
+ dR
208
+ dER
209
+ =
210
+
211
+ i
212
+ ξi
213
+ mAi
214
+
215
+ v≥vi
216
+ min(ER)
217
+ d3vF(⃗v + ⃗v⊙) dσi
218
+ dER
219
+ (v, ER) .
220
+ (7)
221
+ Here, ⃗v is the dark matter velocity in the rest frame of the detector, F(⃗v + ⃗v⊙) is the dark
222
+ matter flux in the detector frame, and ⃗v⊙ is the velocity of the Sun with respect to the Galactic
223
+ frame with |⃗v⊙| ≈ 232 km/s [35]. For the inelastic scattering with mass splitting between two
224
+ dark matter states, δDM, the minimum velocity necessary to induce a recoil with energy ER of
225
+ the nucleus i with mass mAi and mass fraction ξi in the detector reads
226
+ vi
227
+ min(ER) =
228
+ 1
229
+
230
+ 2ERmAi
231
+ �ERmAi
232
+ µAi
233
+ + δDM
234
+
235
+ .
236
+ (8)
237
+ Further, for spin-independent interactions, the differential dark matter-nucleus cross section
238
+ reads,
239
+ dσSI
240
+ i
241
+ dER
242
+ (v, ER) =
243
+ mAi
244
+ 2µ2
245
+ Aiv2σSI
246
+ 0,iF 2
247
+ i (ER) .
248
+ (9)
249
+ 4
250
+
251
+ Here mAi is mass of the nucleus i, µAi is the reduced mass of the dark matter-nucleus i system
252
+ and F 2
253
+ i (ER) is the nuclear form-factor, for which we adopt the Helm prescription. Besides,
254
+ σSI
255
+ 0,i is the spin-independent dark matter-nucleus scattering cross section at zero momentum
256
+ transfer, which depends on the details of the dark matter model and the target nucleus. From
257
+ the differential rate, one can calculate the total recoil rate using:
258
+ R =
259
+ � ∞
260
+ 0
261
+ dER ϵi(ER) dR
262
+ dER
263
+ ,
264
+ (10)
265
+ where ϵi(ER) is the efficiency of that experiment. Finally, the total number of expected recoil
266
+ events is N = R · E, with E the exposure (i.e. mass multiplied by live-time).
267
+ In our analysis, we will consider two scenarios for the coupling of dark matter to nucleons.
268
+ First, we will consider a Majorana dark matter candidate. In this case
269
+ σSI
270
+ 0,i = 4µ2
271
+ Ai
272
+ π
273
+
274
+ Zif p
275
+ S + (Ai − Zi)f n
276
+ S
277
+ �2
278
+ ,
279
+ (11)
280
+ where f p
281
+ S and f n
282
+ S parametrize the strength of the scalar interactions to the proton and the
283
+ neutron (see e.g. [7, 36]). It is common to write Eq. (11) as
284
+ σSI
285
+ 0,i = µ2
286
+ Ai
287
+ µ2
288
+ p
289
+
290
+ Zi + (Ai − Zi)f n
291
+ S
292
+ f p
293
+ S
294
+ �2
295
+ σDM,p ,
296
+ (12)
297
+ with µp the reduced mass of the DM-proton system and σDM,p an effective DM-proton inter-
298
+ action cross-section. Within the Majorana dark matter scenario, we will consider in particular
299
+ the widely adopted benchmark case where the interaction is “isoscalar”, i.e. when the dark
300
+ matter couples with equal strength to protons and neutrons, for which
301
+ σSI
302
+ 0,i = µ2
303
+ Ai
304
+ µ2
305
+ p
306
+ A2
307
+ i σDM,p .
308
+ (13)
309
+ We will also consider a scenario where the dark matter has hypercharge Y , and interacts
310
+ with the quarks via the exchange of a Z boson.
311
+ In this case, σSI
312
+ 0,i has the same form as
313
+ Eq. (11), replacing the scalar couplings by the corresponding vector couplings, f p,n
314
+ S
315
+ → f p,n
316
+ V .
317
+ For interactions with the Z boson, f p
318
+ V and f n
319
+ V are explicitly given by:
320
+ f p
321
+ V = GFζY
322
+ 2
323
+
324
+ 2 (1 − 4 sin2 θW) ,
325
+ f n
326
+ V = −GFζY
327
+ 2
328
+
329
+ 2 ,
330
+ (14)
331
+ with ζ = 1 (ζ = 2) for fermionic (bosonic) dark matter [5, 21, 37]. In this scenario, the dark
332
+ matter-nucleus cross section can be related to the dark matter-proton cross-section through:
333
+ σSI
334
+ 0,i = µ2
335
+ Ai
336
+ µ2
337
+ p
338
+
339
+ Zi −
340
+ (Ai − Zi)
341
+ (1 − 4 sin2 θW)
342
+ �2
343
+ σDM,p ,
344
+ (15)
345
+ which is independent of the dark matter hypercharge and spin.
346
+ To assess the impact of the non-galactic diffuse components for direct detection experiments,
347
+ we plot in Figure. 1 the differential rate of inelastic scatterings in the LUX-ZEPLIN experiment
348
+ 5
349
+
350
+ 10
351
+ 20
352
+ 30
353
+ 40
354
+ 50
355
+ 60
356
+ 70
357
+ 80
358
+ ER [keV]
359
+ 10−6
360
+ 10−4
361
+ 10−2
362
+ 100
363
+ 102
364
+ 104
365
+ 106
366
+ dR
367
+ dER [keV−1]
368
+ mDM = 1 TeV
369
+ σDM−p = 10−38cm2
370
+ LUX-ZEPLIN (SHM, δDM = 100 keV)
371
+ LUX-ZEPLIN (SHM, δDM = 200 keV)
372
+ LUX-ZEPLIN (SHM+Non-galactic, δDM = 100 keV)
373
+ LUX-ZEPLIN (SHM+Non-galactic, δDM = 200 keV)
374
+ CEνNS (Solar neutrinos)
375
+ Figure 1: Differential rate for the inelastic scattering of a Majorana dark matter candidate in
376
+ the “isoscalar” scenario with mass mDM = 1 TeV, for δDM = 100 keV (light blue) and 200 keV
377
+ (dark blue), for a dark matter flux at Earth as modelled by the Standard Halo Model (dotted
378
+ line) or including also the contribution from the non-galactic diffuse dark matter component
379
+ (solid line). For the plots it was assumed σDM,p = 10−38 cm2.
380
+ for the “isoscalar” scenario, assuming mDM = 1 TeV and σDM,p = 10−38 cm2, for δDM = 100
381
+ keV (light blue) and 200 keV (dark blue), including in the flux only the contribution from dark
382
+ matter bound to the Milky Way (dotted lines), as commonly assumed in the literature, and
383
+ including the contribution from the non-galactic diffuse component (solid lines). The impact
384
+ of the non-galactic component in the differential rate is apparent from the figure, and increases
385
+ the number of events at all recoil energies, especially in the region with low ER which is not
386
+ kinematically accessible to the galactic dark matter. The non-galactic dark matter, therefore,
387
+ has implications not only for enhancing the sensitivity of the experiment, but also for the
388
+ interpretation of a putative dark matter signal.
389
+ Current direct search experiments have not observed a significant excess of nuclear recoils,
390
+ which allows to derive upper limits on the dark matter nucleon cross section for given com-
391
+ binations of the dark matter mass and mass splitting between the dark matter particle and
392
+ the neutral particle in the final state. In Figure 2, we show upper limits on the dark matter-
393
+ proton spin-independent scattering cross section versus mass splitting for mDM = 1 TeV from
394
+ LUX-ZEPLIN (blue) [10], PICO60 (green) [38], CRESST-II (red) [39], and from a radiopurity
395
+ measurement in a CaWO4 crystal (orange) [40, 41]. The dotted lines represent the limits ob-
396
+ tained considering the galactic dark matter (described by the SHM) as the only contribution
397
+ to the dark matter flux, while the solid lines were obtained including also the contributions to
398
+ the flux from the non-galactic diffuse component in the Solar System. In the upper left plot,
399
+ we show the limits for a Majorana dark matter candidate in the “isoscalar” scenario, and in the
400
+ upper right plot, the most conservative limit for the Majorana dark matter, without making
401
+ assumptions on the coupling strengths, derived following the approach of [42]. Lastly, in the
402
+ lower plot we show the limits for a scenario where the dark matter interacts with the nucleus via
403
+ the exchange of a Z-boson. In the latter plot we also show the dark matter-proton scattering
404
+ cross-section for scenarios of a fermionic dark matter, and Y = 1/2 (corresponding to the well
405
+ motivated scenario of the Higgsino dark matter in the limit of high scale supersymmetry [12]),
406
+ 6
407
+
408
+ 0
409
+ 200
410
+ 400
411
+ 600
412
+ 800
413
+ 1000
414
+ 1200
415
+ δDM [keV]
416
+ 10−48
417
+ 10−46
418
+ 10−44
419
+ 10−42
420
+ 10−40
421
+ 10−38
422
+ 10−36
423
+ 10−34
424
+ 10−32
425
+ 10−30
426
+ σSI
427
+ DM−p[cm2]
428
+ mDM = 1 TeV
429
+ Majorana DM, f n = f p
430
+ LUX-ZEPLIN (SHM)
431
+ LUX-ZEPLIN (SHM + Non-galactic)
432
+ PICO60 (SHM)
433
+ PICO60 (SHM + Non-galactic)
434
+ CRESST II (SHM)
435
+ CRESST II (SHM + Non-galactic)
436
+ CaWO4 (SHM)
437
+ CaWO4 (SHM + Non-galactic)
438
+ 0
439
+ 200
440
+ 400
441
+ 600
442
+ 800
443
+ 1000
444
+ 1200
445
+ δDM [keV]
446
+ 10−48
447
+ 10−46
448
+ 10−44
449
+ 10−42
450
+ 10−40
451
+ 10−38
452
+ 10−36
453
+ 10−34
454
+ 10−32
455
+ 10−30
456
+ σSI
457
+ DM−p[cm2]
458
+ mDM = 1 TeV
459
+ Majorana DM, f n, f p free
460
+ LUX-ZEPLIN (SHM)
461
+ LUX-ZEPLIN (SHM + Non-galactic)
462
+ PICO60 (SHM)
463
+ PICO60 (SHM + Non-galactic)
464
+ CRESST II (SHM)
465
+ CRESST II (SHM + Non-galactic)
466
+ CaWO4 (SHM)
467
+ CaWO4 (SHM + Non-galactic)
468
+ 0
469
+ 200
470
+ 400
471
+ 600
472
+ 800
473
+ 1000
474
+ 1200
475
+ δDM [keV]
476
+ 10−48
477
+ 10−46
478
+ 10−44
479
+ 10−42
480
+ 10−40
481
+ 10−38
482
+ 10−36
483
+ 10−34
484
+ 10−32
485
+ σSI
486
+ DM−p[cm2]
487
+ mDM = 1 TeV
488
+ Y=1/2
489
+ Y=1
490
+ Y=3/2
491
+ Z-boson mediation
492
+ LUX-ZEPLIN (SHM)
493
+ LUX-ZEPLIN (SHM + Non-galactic)
494
+ PICO60 (SHM)
495
+ PICO60 (SHM + Non-galactic)
496
+ CRESST II (SHM)
497
+ CRESST II (SHM + Non-galactic)
498
+ CaWO4 (SHM)
499
+ CaWO4 (SHM + Non-galactic)
500
+ Figure 2: 90% C.L upper limits on the spin-independent dark matter-proton inelastic cross
501
+ section for a dark matter mass of 1 TeV as a function of the mass splitting, from LUX-ZEPLIN
502
+ (blue), PICO60 (green), CRESST-II (red and orange) and from a CaWO4 detector radiopurity
503
+ measurement (orange). We show the limits for three different scenarios: Majorana dark matter
504
+ with scalar interactions f p = f n (upper left plot), arbitrary f p and f n (upper right plot),
505
+ and dark matter interacting via the Z-boson (lower plot). In the lower plot, we also show for
506
+ reference the predicted value of the cross-section with a xenon target for scenarios of fermionic
507
+ dark matter with hypercharge Y = 1/2, 1, 3/2.
508
+ Y = 1 and Y = 3/2 (which correspond to different scenarios of minimal dark matter [37]), for a
509
+ xenon target. For other targets, the expected cross section for mDM = 1 TeV scales as ∼ Ai/Zi,
510
+ being indistinguishable in the Figure.
511
+ As seen in the plots, for all the scenarios the non-galactic diffuse component enhances the
512
+ sensitivity of experiments to inelastic dark matter, allowing to probe larger mass splittings.
513
+ For instance, for our representative dark matter mass of 1 TeV, the LUX-ZEPLIN experiment
514
+ is insensitive to dark matter particles of the Milky Way scattering inelastically if the mass
515
+ difference with the neutral particle in the final state is δDM ≳ 300 keV. However, the presence
516
+ of dark matter in the Solar System from the envelope of the Local Group extends the reach
517
+ up to δDM ≃ 330 keV and allows to probe uncharted parameter space for large mass splittings.
518
+ 7
519
+
520
+ Concretely, the LUX-ZEPLIN experiment sets for the isoscalar scenario the limit σSI
521
+ DM−p ≲
522
+ 10−44 cm2 for δDM = 250 keV, which is about three orders of magnitude stronger than the limit
523
+ obtained assuming that all dark matter is bound to the Milky Way, and only a factor of 100
524
+ weaker than the limit on the elastic scattering cross-section i.e. for δDM = 0. For the interaction
525
+ mediated by the Z-boson the upper limit is σSI
526
+ DM−p ≲ 10−44 cm2, and the most conservative limit
527
+ without making assumptions on the form of the interaction is σSI
528
+ DM−p ≲ 10−40 cm2, obviously
529
+ much weaker than for concrete scenarios. The dark matter particles from the Virgo Supercluster
530
+ extend the reach to even larger mass differences, up to δDM ≃ 450 keV and sets for the isoscalar
531
+ scenario the limit σSI
532
+ DM−p ≲ 5 × 10−40 cm2 for δDM = 450 keV; for the interaction mediated
533
+ by the Z-boson the upper limit is σSI
534
+ DM−p ≲ 10−41 cm2, while the model independent limit is
535
+ σSI
536
+ DM−p ≲ 5 × 10−36 cm2. Similar conclusions apply for the PICO and CRESST experiments,
537
+ and from the radiopurity measurements on a CaWO4 target.
538
+ It is interesting to note the complementarity of the different experiments in probing the
539
+ parameter space of inelastic dark matter scenarios. Both in the scenario of a Majorana dark
540
+ matter with f n = f p and for the scenario with Z-boson mediation, LUX-ZEPLIN is the most
541
+ sensitive probe for small δDM, whereas the radiopurity measurements on a CaWO4 is the most
542
+ sensitive probe for large δDM.
543
+ PICO-60 is relevant for intermediate values of δDM, and is
544
+ in fact the most sensitive current probe of some well motivated dark matter scenarios, as
545
+ suggested by the gray lines in the Figure, which correspond to the expected cross-section for
546
+ different scenarios of electroweakly interacting fermionic dark matter. The complementarity
547
+ of experiments in probing these scenarios is investigated in Figure 3. The dotted lines show
548
+ the upper limit on the mass splitting as a function of the dark matter mass assuming the
549
+ Standard Halo Model. Under this common assumption, LUX-ZEPLIN is the most constraining
550
+ experiment over the whole parameter space considered. However, when including the non-
551
+ galactic components, different experiments contribute to set the upper limit, as reflected by the
552
+ breaks in the solid lines in the Figure: LUX-ZEPLIN remains as the most sensitive experiment
553
+ for small dark matter masses, while PICO-60 is the best experiment for larger masses. Further,
554
+ the dark matter mass at which PICO-60 becomes the leading experiment becomes larger and
555
+ larger as the dark matter hypercharge increases. As seen in the Figure, for this class of scenarios
556
+ the non-galactic components in the dark matter flux enhance the sensitivity of experiments to
557
+ the mass splitting by a factor ∼ 2 for mDM = 100 GeV - 1 TeV.
558
+ It is noteworthy the pivotal role of the radiopurity measurements on a CaWO4 target to
559
+ probe large mass splittings in inelastic dark matter scenarios. This can be understood from the
560
+ expression for the minimum DM velocity required to induced a recoil with energy ER, Eq. (8).
561
+ Let us consider a velocity distribution where the maximum speed is v∗. Then, for an experiment
562
+ capable of detecting a recoil of a nucleus Ai with energy ER, the maximum mass splitting that
563
+ can be probed is:
564
+ δDM ≤
565
+
566
+ 2ERmAiv∗ − ERmAi
567
+ µAi
568
+ ≤ 1
569
+ 2µAiv2
570
+ ∗ ,
571
+ (16)
572
+ where the absolute maximum is reached when ER = µ2
573
+ Aiv2
574
+ ∗/(2mAi). This is shown in Figure 4,
575
+ for v∗ = 764 km/s, v∗ = 820 km/s, v∗ = 1220 km/s (solid lines), corresponding respectively to
576
+ the maximal velocity at the Earth of dark matter particles bound to the Milky Way (described
577
+ by the Standard Halo Model), from the Local Group envelope and from the Virgo Supercluster.
578
+ The plot also shows the range of recoil energies that can be detected by the CRESST-II ex-
579
+ periment and by the radiopurity measurements in CaWO4 crystals. As seen in the plot, while
580
+ 8
581
+
582
+ 102
583
+ 103
584
+ 104
585
+ mDM [GeV]
586
+ 100
587
+ 200
588
+ 300
589
+ 400
590
+ 500
591
+ δDM [keV]
592
+ Upper limits at 90% CL from LZ+PICO60+CaWO4, Dirac dark matter
593
+ Y = 1/2, SHM
594
+ Y = 1/2, SHM + Non-galactic
595
+ Y = 1, SHM
596
+ Y = 1, SHM + Non-galactic
597
+ Y = 3/2, SHM
598
+ Y = 3/2, SHM + Non-galactic
599
+ Figure 3: Upper limits on the mass splitting for electroweakly charged (pseudo-)dirac dark
600
+ matter as a function of the dark matter mass, for different choices of the hypercharge, and
601
+ including in the flux only the Standard Halo Model component (dotted lines) or also the non-
602
+ galactic diffuse components (solid lines).
603
+ CRESST-II can only probe up to δDM ∼ 700 keV, the radiopurity measurements allow to probe
604
+ up to δDM ∼ 1200 keV, when including the flux component from the dark matter bound to the
605
+ Virgo Supercluster (however with a lower sensitivity due to the smaller exposure). From this
606
+ plot it follows that the CRESST experiment would have an enhanced sensitivity to inelastic
607
+ dark matter scenarios if the window of recoil energies used in the analysis were extended to
608
+ larger values. Let us note that for low dark matter masses, extending the search window to
609
+ higher recoil energies would not help in probing larger values of the mass splitting. This is
610
+ illustrated in the Figure for mDM = 100 GeV, from where it is apparent that to increase the
611
+ reach in mass splittings it is necessary to extend the search to lower recoil energies.
612
+ Finally, we show in Figure 5 the isocontours with the 90% C.L. upper limits on the cross-
613
+ section for different dark matter masses and mass splittings, from LUX-ZEPLIN (top panels),
614
+ PICO60 (middle panels) and from radiopurity measurements on a CaWO4 target (bottom
615
+ panels), considering that all dark matter in the Solar System is bound to the Milky Way, as
616
+ commonly assumed (left panels), and including the non-galactic components (right panels).
617
+ The enhancement in sensitivity is clear from the plots.
618
+ 4
619
+ Impact on electron recoils
620
+ The differential ionization rate induced by dark matter-electron inelastic scattering in liquid
621
+ xenon, with mass splitting between the two dark matter states given by δDM, reads:
622
+ dRion
623
+ dlnEer
624
+ = NT
625
+
626
+ n,l
627
+
628
+ v≥vnl
629
+ min(Eer)
630
+ d3vF(⃗v + ⃗v⊙) dσnl
631
+ ion
632
+ dlnEer
633
+ (v, Eer) ,
634
+ (17)
635
+ where NT is the number of target nuclei and
636
+ vnl
637
+ min(Eer) =
638
+
639
+ 2
640
+ mDM
641
+ (Eer + |Enl| + δDM)
642
+ (18)
643
+ 9
644
+
645
+ 100
646
+ 101
647
+ 102
648
+ 103
649
+ 104
650
+ ER [keV]
651
+ 200
652
+ 400
653
+ 600
654
+ 800
655
+ 1000
656
+ 1200
657
+ 1400
658
+ δDM [keV]
659
+ mDM = 100 GeV
660
+ CaWO4
661
+ CRESST-II
662
+ SHM
663
+ SHM+LG
664
+ SHM+LG+VS
665
+ 100
666
+ 101
667
+ 102
668
+ 103
669
+ 104
670
+ ER [keV]
671
+ 200
672
+ 400
673
+ 600
674
+ 800
675
+ 1000
676
+ 1200
677
+ 1400
678
+ δDM [keV]
679
+ mDM = 1 TeV
680
+ CaWO4
681
+ CRESST-II
682
+ SHM
683
+ SHM+LG
684
+ SHM+LG+VS
685
+ Figure 4: Values of the mass splitting δDM that can produce a recoil energy in a 184W target
686
+ for mDM = 100 GeV (left plot) and mDM = 1 TeV (right plot) when the maximal velocity of
687
+ the dark matter particles at Earth is v∗ = 764 km/s (dotted lines), v∗ = 820 km/s (dashed
688
+ lines) and v∗ = 1220 km/s (solid lines), corresponding respectively to dark matter bound to
689
+ the Milky Way (described by the Standard Halo Model), bound to the Local Group and bound
690
+ to the Virgo Supercluster.
691
+ For comparison, we also show the range of recoil energies that
692
+ can be detected by the CRESST-II experiment (red band) and by the CaWO4 radiopurity
693
+ measurement (yellow band).
694
+ is the minimum dark matter velocity necessary to ionize a bound electron in the (n, l) shell of
695
+ a xenon atom (with energy Enl), giving a free electron with energy Eer. Further, dσnl
696
+ ion/dlnEer
697
+ is the differential ionization cross section, given by:
698
+ dσnl
699
+ ion
700
+ dlnEer
701
+ (v, Eer) =
702
+ ¯σDM−e
703
+ 8µ2
704
+ DM,ev2
705
+ � qnl
706
+ max
707
+ qnl
708
+ min
709
+ dqq
710
+ ��f nl
711
+ ion(k′, q)
712
+ ��2 |FDM(q)|2 .
713
+ (19)
714
+ Here, µDM,e is the reduced mass of the dark matter-electron system, ¯σDM−e is the dark matter-
715
+ free electron scattering cross section at fixed momentum transfer q = αme,
716
+ ��f nl
717
+ ion(k′, q)
718
+ ��2 is the
719
+ ionization form factor of an electron in the (n, l) shell with final momentum k′ = √2meEer
720
+ and momentum transfer q, and FDM(q) is a form factor that encodes the q-dependence of the
721
+ squared matrix element for dark matter-electron scattering and depends on the mediator under
722
+ consideration. The maximum and minimum values of the momentum transfer needed to ionize
723
+ a bound electron in the (n, l) shell recoil with energy Eer from the interaction of a dark matter
724
+ particle with speed v are:
725
+ qnl
726
+ max
727
+ min(Eer) = mDMv
728
+
729
+ �1 ±
730
+
731
+ 1 −
732
+ �vnl
733
+ min(Eer)
734
+ v
735
+ �2�
736
+ � ,
737
+ (20)
738
+ with vnl
739
+ min(Eer) defined in Eq. (18). Finally, the total number of expected ionization events reads
740
+ N = Rion · E, with Rion the total ionization rate, calculated from integrating Eq.(17) over the
741
+ experimentally measured recoil energies, and E the exposure (i.e. mass multiplied by live-time)
742
+ of the experiment.
743
+ 10
744
+
745
+ 102
746
+ 103
747
+ 104
748
+ mDM [GeV]
749
+ 100
750
+ 200
751
+ 300
752
+ 400
753
+ 500
754
+ 600
755
+ δDM [keV]
756
+ Upper limits at 90% C.L from LUX-ZEPLIN, SHM, Isoscalar
757
+ 10−47
758
+ 10−45
759
+ 10−43
760
+ 10−41
761
+ 10−39
762
+ 10−37
763
+ σDM−p
764
+ 102
765
+ 103
766
+ 104
767
+ mDM [GeV]
768
+ 100
769
+ 200
770
+ 300
771
+ 400
772
+ 500
773
+ 600
774
+ δDM [keV]
775
+ Upper limits at 90% C.L from LUX-ZEPLIN, Non-galactic, Isoscalar
776
+ 10−47
777
+ 10−45
778
+ 10−43
779
+ 10−41
780
+ 10−39
781
+ 10−37
782
+ σDM−p
783
+ 102
784
+ 103
785
+ 104
786
+ mDM [GeV]
787
+ 100
788
+ 200
789
+ 300
790
+ 400
791
+ 500
792
+ 600
793
+ δDM [keV]
794
+ Upper limits at 90% C.L from PICO60, SHM, Isoscalar
795
+ 10−45
796
+ 10−43
797
+ 10−41
798
+ 10���39
799
+ 10−37
800
+ 10−35
801
+ σDM−p
802
+ 102
803
+ 103
804
+ 104
805
+ mDM [GeV]
806
+ 100
807
+ 200
808
+ 300
809
+ 400
810
+ 500
811
+ 600
812
+ δDM [keV]
813
+ Upper limits at 90% C.L from PICO60, Non-galactic, Isoscalar
814
+ 10−45
815
+ 10−43
816
+ 10−41
817
+ 10−39
818
+ 10−37
819
+ 10−35
820
+ σDM−p
821
+ 102
822
+ 103
823
+ 104
824
+ mDM [GeV]
825
+ 200
826
+ 400
827
+ 600
828
+ 800
829
+ 1000
830
+ 1200
831
+ 1400
832
+ δDM [keV]
833
+ Upper limits at 90% C.L from CaWO4, SHM, Isoscalar
834
+ 10−41
835
+ 10−39
836
+ 10−37
837
+ 10−35
838
+ 10−33
839
+ 10−31
840
+ 10−29
841
+ 10−27
842
+ σDM−p
843
+ 102
844
+ 103
845
+ 104
846
+ mDM [GeV]
847
+ 200
848
+ 400
849
+ 600
850
+ 800
851
+ 1000
852
+ 1200
853
+ 1400
854
+ δDM [keV]
855
+ Upper limits at 90% C.L from CaWO4, Non-galactic, Isoscalar
856
+ 10−41
857
+ 10−39
858
+ 10−37
859
+ 10−35
860
+ 10−33
861
+ 10−31
862
+ 10−29
863
+ 10−27
864
+ σDM−p
865
+ Figure 5: Isocontours of the 90% C.L. upper limits on the spin-independent dark matter-proton
866
+ inelastic cross-section for the isoscalar scenario (f p = f n) in the parameter space spanned by
867
+ the dark matter mass and mass splitting, from LUX-ZEPLIN (top panels), PICO60 (middle
868
+ panels) and radiopurity measurements in a CaWO4 target (lower panels), assuming that all
869
+ dark matter in the Solar System is bound to the Milky Way (left panels) or including the
870
+ non-galactic diffuse component (right panels).
871
+ 11
872
+
873
+ In semiconductor detectors, the electron excitation rate induced by dark matter-electron
874
+ inelastic scatterings, with a mass splitting δDM, reads [43, 44]
875
+ R = 1
876
+ ρT
877
+ ¯σDM−e
878
+ µ2
879
+ DM,e
880
+ π
881
+ α
882
+
883
+ d3vF(⃗v + ⃗v⊙)
884
+ v
885
+
886
+ d3q
887
+ (2π)3q2 |FDM(q)|2
888
+ � dω
889
+
890
+ 1
891
+ 1 − e−βω Im
892
+
893
+ −1
894
+ ϵ(ω, ⃗q)
895
+
896
+ δ
897
+
898
+ ω + δDM +
899
+ q2
900
+ 2mχ
901
+ − ⃗q · ⃗v
902
+
903
+ ,
904
+ (21)
905
+ where w is the energy deposited in the material, ⃗q is the momentum transfer of the process,
906
+ and ρT is the target density. The rate involves an integration of the Electronic Loss Function
907
+ (ELF) of the target material, which we calculate with DarkELF [44]. For the dielectric function
908
+ ϵ(ω, q), we use the Lindhard method, which treats the target as a non-interacting Fermi liquid.
909
+ Finally, the total number of events reads N = R · E, with E the exposure (i.e. mass multiplied
910
+ by live-time) of the experiment.
911
+ The non-observation of a significant excess of electron recoils in a given experiment allows
912
+ to set upper limits on the dark matter-electron scattering cross section, for a given dark matter
913
+ mass and a given mass splitting between the dark matter particle and the heavier neutral state.
914
+ We show in Figure 6, upper limits on the inelastic dark matter-electron cross section versus mass
915
+ splitting for a fixed dark matter mass of mDM = 1 GeV from XENON1T [45](blue lines), and
916
+ from the semiconductor experiment SENSEI [46](purple lines), both when considering the SHM
917
+ flux only (solid lines), and when including the non-galactic components to the dark matter flux
918
+ (dotted lines). In the upper plots, we take the form factor FDM = α2m2
919
+ e/q2, corresponding to
920
+ an ultralight or massless mediator. In the middle plots, we take the form factor FDM = αme/q,
921
+ corresponding to an electric dipole interaction, and in the lower plots we take the form factor
922
+ FDM = 1, corresponding to a heavy mediator [47, 48].
923
+ As can be seen in the Figure, the non-galactic components enhance the sensitivity to the
924
+ mass splitting of both XENON1T and SENSEI by a factor of ∼ 2, compared to the sensitivity
925
+ estimated from considering just the galactic component. This conclusion holds independently
926
+ of the choice of the dark matter form factor. Further, the reach in cross-section is enhanced due
927
+ to the non-galactic components, especially at low mass splittings, being the effect stronger for
928
+ XENON1T than for SENSEI. For comparison, we also show as a grey band the cross section
929
+ for which the observed dark matter abundance is reproduced via freeze-in in the case of an
930
+ ultralight mediator [49], or via freeze-out in the case of a heavy mediator [50]. Clearly, the
931
+ non-galactic dark matter components allow to probe larger values of the mass splitting.
932
+ 5
933
+ Conclusions
934
+ We have investigated the impact of a non-galactic diffuse dark matter component inside the
935
+ Solar System for the detection of the inelastic scattering of a dark matter particle in direct
936
+ search experiments. Concretely, we have considered the contribution to the dark matter flux
937
+ from dark matter particles in the envelope of the Local Group and from the Virgo Supercluster.
938
+ Their speeds in the galactic frame are ∼ 600 km/s and ∼ 1000 km/s, respectively, which are
939
+ larger than the maximal speed of dark matter particles bound to the Milky Way, ∼ 540 km/s.
940
+ As a result, the region of parameter space that can be probed with current experiments is larger
941
+ than reported in previous works, that implicitly assumed that the Milky Way is an isolated
942
+ galaxy in the Universe.
943
+ 12
944
+
945
+ 100
946
+ 101
947
+ 102
948
+ δDM [eV]
949
+ 10−47
950
+ 10−44
951
+ 10−41
952
+ 10−38
953
+ 10−35
954
+ 10−32
955
+ 10−29
956
+ 10−26
957
+ ¯σe[cm2]
958
+ FDM = α2m2
959
+ e/q2
960
+ mDM = 1 GeV
961
+ Freeze-in
962
+ Ultralight mediator
963
+ SENSEI (SHM)
964
+ SENSEI (SHM+Non-galactic)
965
+ XENON1T (SHM)
966
+ XENON1T (SHM+Non-galactic)
967
+ 100
968
+ 101
969
+ 102
970
+ δDM [eV]
971
+ 10−47
972
+ 10−44
973
+ 10−41
974
+ 10−38
975
+ 10−35
976
+ 10−32
977
+ 10−29
978
+ 10−26
979
+ ¯σe[cm2]
980
+ FDM = αme/q
981
+ mDM = 1 GeV
982
+ Dipole interaction
983
+ SENSEI (SHM)
984
+ SENSEI (SHM+Non-galactic)
985
+ XENON1T (SHM)
986
+ XENON1T (SHM+Non-galactic)
987
+ 100
988
+ 101
989
+ 102
990
+ δDM [eV]
991
+ 10−47
992
+ 10−44
993
+ 10−41
994
+ 10−38
995
+ 10−35
996
+ 10−32
997
+ 10−29
998
+ 10−26
999
+ ¯σe[cm2]
1000
+ FDM = 1
1001
+ mDM = 1 GeV
1002
+ Freeze-out (Pseudo-Dirac fermion)
1003
+ Massive mediator
1004
+ SENSEI (SHM)
1005
+ SENSEI (SHM+Non-galactic)
1006
+ XENON1T (SHM)
1007
+ XENON1T (SHM+Non-galactic)
1008
+ Figure 6: 90% C.L upper limits on the spin-independent dark matter-electron inelastic cross
1009
+ section for a dark matter mass of 1 GeV, as a function of the mass splitting, from XENON1T
1010
+ (blue) and SENSEI (purple), when the dark matter-electron interaction is mediated by an
1011
+ ultralight dark photon (upper left plot), by a dipole operator (upper right plot), or by a heavy
1012
+ mediator (lower plot).
1013
+ For nuclear recoils, the non-galactic component expands the reach in mass splitting at
1014
+ the LUX-ZEPLIN, PICO60, and CRESST-II experiments by a factor ∼ 2 in the mass range
1015
+ mDM = 10 GeV- 10 TeV, and enhances significantly the reach in cross-section, especially close
1016
+ to the kinematic threshold for the galactic dark matter. For instance, for mDM = 1 TeV and
1017
+ δDM = 250 keV, the sensitivity to the cross-section improves by about three orders of magnitude.
1018
+ We have also stressed the relevance of experiments capable of detecting high recoil energies
1019
+ for probing the parameter space of inelastic dark matter scenarios. We have illustrated this
1020
+ capability with the radiopurity measurements in CaWO4 crystals performed by the CRESST
1021
+ collaboration, and which allows to probe up to δDM ∼ 1.2 MeV (1.4 MeV) for mDM = 1 TeV
1022
+ (10 TeV). For electron recoils, the conclusions are analogous, allowing to increase reach in mass
1023
+ splitting of the XENON1T and SENSEI experiments also by a factor ∼ 2 for dark matter
1024
+ 13
1025
+
1026
+ 10−2
1027
+ 10−1
1028
+ 100
1029
+ 101
1030
+ mDM [GeV]
1031
+ 5
1032
+ 10
1033
+ 15
1034
+ 20
1035
+ 25
1036
+ 30
1037
+ δDM [eV]
1038
+ Upper limits at 90% C.L from SENSEI, SHM, Massive mediator
1039
+ 10−37
1040
+ 10−35
1041
+ 10−33
1042
+ 10−31
1043
+ 10−29
1044
+ 10−27
1045
+ 10−25
1046
+ ¯σDM−e
1047
+ 10−2
1048
+ 10−1
1049
+ 100
1050
+ 101
1051
+ mDM [GeV]
1052
+ 5
1053
+ 10
1054
+ 15
1055
+ 20
1056
+ 25
1057
+ 30
1058
+ δDM [eV]
1059
+ Upper limits at 90% C.L from SENSEI, Non-galactic, Massive mediator
1060
+ 10−37
1061
+ 10−35
1062
+ 10−33
1063
+ 10−31
1064
+ 10−29
1065
+ 10−27
1066
+ 10−25
1067
+ ¯σDM−e
1068
+ 10−2
1069
+ 10−1
1070
+ 100
1071
+ 101
1072
+ mDM [GeV]
1073
+ 100
1074
+ 200
1075
+ 300
1076
+ 400
1077
+ 500
1078
+ 600
1079
+ δDM [eV]
1080
+ Upper limits at 90% C.L from XENON1T, SHM, Massive mediator
1081
+ 10−41
1082
+ 10−40
1083
+ 10−39
1084
+ 10−38
1085
+ 10−37
1086
+ 10−36
1087
+ 10−35
1088
+ 10−34
1089
+ ¯σDM−e
1090
+ 10−2
1091
+ 10−1
1092
+ 100
1093
+ 101
1094
+ mDM [GeV]
1095
+ 100
1096
+ 200
1097
+ 300
1098
+ 400
1099
+ 500
1100
+ 600
1101
+ δDM [eV]
1102
+ Upper limits at 90% C.L from XENON1T, Non-galactic, Massive mediator
1103
+ 10−41
1104
+ 10−40
1105
+ 10−39
1106
+ 10−38
1107
+ 10−37
1108
+ 10−36
1109
+ 10−35
1110
+ 10−34
1111
+ ¯σDM−e
1112
+ Figure 7: Isocontours of the 90% C.L. upper limits on the dark matter-electron inelastic scat-
1113
+ tering cross-section for the heavy mediator scenario (FDM = 1) in the parameter space spanned
1114
+ by the dark matter mass and mass splitting, from SENSEI (top panels), and XENON1T (lower
1115
+ panels), assuming that all dark matter in the Solar System is bound to the Milky Way (left
1116
+ panels) or including the non-galactic component diffuse (right panels).
1117
+ masses in the range mDM = 0.01 GeV-10 GeV,
1118
+ Acknowledgments
1119
+ The work of GH and AI was supported by the Collaborative Research Center SFB1258 and by
1120
+ the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
1121
+ Excellence Strategy - EXC-2094 - 390783311. The work of SS is supported by Grant-in-Aid
1122
+ for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technol-
1123
+ ogy (MEXT), Japan, 18K13535, 20H01895, 20H05860 and 21H00067, and by World Premier
1124
+ International Research Center Initiative (WPI), MEXT, Japan.
1125
+ 14
1126
+
1127
+ A
1128
+ Derivation of upper limits from direct detection exper-
1129
+ iments
1130
+ To derive upper limits on the inelastic dark matter-nucleon scattering cross section, as a function
1131
+ of the dark matter mass and/or the dark matter mass splitting, we follow a poissonian-likelihood
1132
+ approach, and we calculate the rates for the different experiments/detectors independently. For
1133
+ the LUX-ZEPLIN experiment, we use the data from [10], with an exposure of 0.904 tonne×year,
1134
+ a region of interest extending from 2 keV to 70 keV, and the efficiency function reported by
1135
+ the collaboration. Given the agreement of the number of signal events with the background
1136
+ prediction reported by the collaboration, we take a 90% C.L. upper limit on the number of
1137
+ signal events of 2.71. For the PICO-60 experiment, we use the results from [38], corresponding
1138
+ to an exposure of 9.356 kg×year, a region of interest extending from 13.5 keV to 100 keV, and
1139
+ the efficiency function reported by the collaboration. Since PICO-60 observed no signal events,
1140
+ we take a 90% C.L. upper limit on the number of signal events of 2.71. For CRESST-II, we use
1141
+ the published data [39], corresponding to an exposure of 52 kg×days. We do not consider as
1142
+ signal events those belonging to the acceptance region of the experiment at low recoil energies,
1143
+ but instead, we consider the recoil energy region extending from 30 keV to 120 keV, which gives
1144
+ an upper limit of 4 signal events. Finally, for the CaWO4 radiopurity measurement from [40],
1145
+ we take an exposure of 90.10 kg×days, with a recoil energy region extending from 300 keV to
1146
+ 2000 keV, and a number of 3 signal events.
1147
+ For the inelastic dark matter-electron scattering cross-section, we derive upper limits at 90%
1148
+ C.L at fixed momentum transfer q = αme using data from XENON1T [45] and SENSEI [46].
1149
+ We consider the observed event rate XENON1T between 150-3000 photoelectrons (PE), which
1150
+ corresponds to the range 0.18 keVee to 3.5 keVee (kiloelectronvolt electron equivalent). We take
1151
+ the efficiency function from [45], an exposure of 22 ± 3 tonne-days and an upper limit on the
1152
+ number of events of 39.2. For SENSEI, we sum-up the observed events in the energy bins
1153
+ ranging from 4.91 eV to 16.31 eV, resulting in an upper limit of 4.957 events per gram day of
1154
+ exposure. Further, we use the efficiency reported by the collaboration in every energy bin [46].
1155
+ References
1156
+ [1]
1157
+ Gerard Jungman, Marc Kamionkowski, and Kim Griest. “Supersymmetric dark matter”.
1158
+ In: Phys. Rept. 267 (1996), pp. 195–373. doi: 10.1016/0370-1573(95)00058-5. arXiv:
1159
+ hep-ph/9506380.
1160
+ [2]
1161
+ Gianfranco Bertone, Dan Hooper, and Joseph Silk. “Particle dark matter: Evidence, can-
1162
+ didates and constraints”. In: Phys. Rept. 405 (2005), pp. 279–390. doi: 10.1016/j.
1163
+ physrep.2004.08.031. arXiv: hep-ph/0404175.
1164
+ [3]
1165
+ Lars Bergström. “Nonbaryonic dark matter: Observational evidence and detection meth-
1166
+ ods”. In: Rept. Prog. Phys. 63 (2000), p. 793. doi: 10.1088/0034- 4885/63/5/2r3.
1167
+ arXiv: hep-ph/0002126.
1168
+ [4]
1169
+ Jonathan L. Feng. “Dark Matter Candidates from Particle Physics and Methods of Detec-
1170
+ tion”. In: Ann. Rev. Astron. Astrophys. 48 (2010), pp. 495–545. doi: 10.1146/annurev-
1171
+ astro-082708-101659. arXiv: 1003.0904 [astro-ph.CO].
1172
+ 15
1173
+
1174
+ [5]
1175
+ Mark W. Goodman and Edward Witten. “Detectability of Certain Dark Matter Can-
1176
+ didates”. In: Phys. Rev. D 31 (1985). Ed. by M. A. Srednicki, p. 3059. doi: 10.1103/
1177
+ PhysRevD.31.3059.
1178
+ [6]
1179
+ R. Bernabei et al. “Investigating electron interacting dark matter”. In: Phys. Rev. D 77
1180
+ (2008), p. 023506. doi: 10.1103/PhysRevD.77.023506. arXiv: 0712.0562 [astro-ph].
1181
+ [7]
1182
+ David G. Cerdeno and Anne M. Green. “Direct detection of WIMPs”. In: (Feb. 2010),
1183
+ pp. 347–369. doi: 10.1017/CBO9780511770739.018. arXiv: 1002.1912 [astro-ph.CO].
1184
+ [8]
1185
+ Teresa Marrodán Undagoitia and Ludwig Rauch. “Dark matter direct-detection experi-
1186
+ ments”. In: J. Phys. G 43.1 (2016), p. 013001. doi: 10.1088/0954-3899/43/1/013001.
1187
+ arXiv: 1509.08767 [physics.ins-det].
1188
+ [9]
1189
+ J. D. Lewin and P. F. Smith. “Review of mathematics, numerical factors, and corrections
1190
+ for dark matter experiments based on elastic nuclear recoil”. In: Astropart. Phys. 6 (1996),
1191
+ pp. 87–112. doi: 10.1016/S0927-6505(96)00047-3.
1192
+ [10]
1193
+ J. Aalbers et al. “First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Exper-
1194
+ iment”. In: (July 2022). arXiv: 2207.03764 [hep-ex].
1195
+ [11]
1196
+ Jose F. Nieves. “Electromagnetic Properties of Majorana Neutrinos”. In: Phys. Rev. D 26
1197
+ (1982), p. 3152. doi: 10.1103/PhysRevD.26.3152.
1198
+ [12]
1199
+ Natsumi Nagata and Satoshi Shirai. “Higgsino dark matter in high-scale supersymmetry”.
1200
+ In: Journal of High Energy Physics 2015.1 (Jan. 2015). doi: 10.1007/jhep01(2015)029.
1201
+ url: https://doi.org/10.1007%2Fjhep01%282015%29029.
1202
+ [13]
1203
+ Lawrence J. Hall, Takeo Moroi, and Hitoshi Murayama. “Sneutrino cold dark matter
1204
+ with lepton-number violation”. In: Physics Letters B 424.3-4 (Apr. 1998), pp. 305–312.
1205
+ doi: 10.1016/s0370-2693(98)00196-8. url: https://doi.org/10.1016%2Fs0370-
1206
+ 2693%2898%2900196-8.
1207
+ [14]
1208
+ Nicole F. Bell, Giorgio Busoni, and Sandra Robles. “Heating up neutron stars with in-
1209
+ elastic dark matter”. In: Journal of Cosmology and Astroparticle Physics 2018.09 (Sept.
1210
+ 2018), pp. 018–018. doi: 10.1088/1475-7516/2018/09/018. url: https://doi.org/
1211
+ 10.1088%2F1475-7516%2F2018%2F09%2F018.
1212
+ [15]
1213
+ Anirban Biswas et al. “Improved White Dwarves Constraints on Inelastic Dark Matter
1214
+ and Left-Right Symmetric Models”. In: (June 2022). arXiv: 2206.06667 [hep-ph].
1215
+ [16]
1216
+ Daniele S.M. Alves et al. “Composite inelastic dark matter”. In: Physics Letters B 692.5
1217
+ (Sept. 2010), pp. 323–326. doi: 10.1016/j.physletb.2010.08.006. url: https:
1218
+ //doi.org/10.1016%2Fj.physletb.2010.08.006.
1219
+ [17]
1220
+ Thomas Schwetz and Jure Zupan. “Dark matter attempts for CoGeNT and DAMA”. In:
1221
+ Journal of Cosmology and Astroparticle Physics 2011.08 (Aug. 2011), pp. 008–008. doi:
1222
+ 10.1088/1475- 7516/2011/08/008. url: https://doi.org/10.1088%2F1475-
1223
+ 7516%2F2011%2F08%2F008.
1224
+ [18]
1225
+ Nima Arkani-Hamed et al. “A theory of dark matter”. In: Physical Review D 79.1 (Jan.
1226
+ 2009). doi: 10 . 1103 / physrevd . 79 . 015014. url: https : / / doi . org / 10 . 1103 %
1227
+ 2Fphysrevd.79.015014.
1228
+ 16
1229
+
1230
+ [19]
1231
+ Spencer Chang, Neal Weiner, and Itay Yavin. “Magnetic inelastic dark matter”. In:
1232
+ Physical Review D 82.12 (Dec. 2010). doi: 10.1103/physrevd.82.125011. url: https:
1233
+ //doi.org/10.1103%2Fphysrevd.82.125011.
1234
+ [20]
1235
+ G. Barello, Spencer Chang, and Christopher A. Newby. “A model independent approach
1236
+ to inelastic dark matter scattering”. In: Physical Review D 90.9 (Nov. 2014). doi: 10.
1237
+ 1103/physrevd.90.094027. url: https://doi.org/10.1103%2Fphysrevd.90.094027.
1238
+ [21]
1239
+ Natsumi Nagata and Satoshi Shirai. “Electroweakly interacting Dirac dark matter”. In:
1240
+ Physical Review D 91.5 (Mar. 2015). doi: 10.1103/physrevd.91.055035. url: https:
1241
+ //doi.org/10.1103%2Fphysrevd.91.055035.
1242
+ [22]
1243
+ Timon Emken et al. “Electron recoils from terrestrial upscattering of inelastic dark mat-
1244
+ ter”. In: Physical Review D 105.5 (Mar. 2022). doi: 10.1103/physrevd.105.055023.
1245
+ url: https://doi.org/10.1103%2Fphysrevd.105.055023.
1246
+ [23]
1247
+ Martin C. Smith et al. “The RAVE Survey: Constraining the Local Galactic Escape
1248
+ Speed”. In: Mon. Not. Roy. Astron. Soc. 379 (2007), pp. 755–772. doi: 10.1111/j.1365-
1249
+ 2966.2007.11964.x. arXiv: astro-ph/0611671.
1250
+ [24]
1251
+ Til Piffl et al. “The RAVE survey: the Galactic escape speed and the mass of the Milky
1252
+ Way”. In: Astron. Astrophys. 562 (2014), A91. doi: 10.1051/0004-6361/201322531.
1253
+ arXiv: 1309.4293 [astro-ph.GA].
1254
+ [25]
1255
+ F. D. Kahn and L. Woltjer. “Intergalactic Matter and the Galaxy.” In: Astrophys. J. 130
1256
+ (1959), p. 705. doi: 10.1086/146762.
1257
+ [26]
1258
+ James Binney and Scott Tremaine. Galactic Dynamics: Second Edition. 2008.
1259
+ [27]
1260
+ T. J. Cox and Abraham Loeb. “The Collision Between The Milky Way And Andromeda”.
1261
+ In: Mon. Not. Roy. Astron. Soc. 386 (2008), p. 461. doi: 10.1111/j.1365-2966.2008.
1262
+ 13048.x. arXiv: 0705.1170 [astro-ph].
1263
+ [28]
1264
+ Dmitry Makarov and Igor Karachentsev. “Galaxy groups and clouds in the Local (z ∼
1265
+ 0.01) universe”. In: Mon. Not. Roy. Astron. Soc. 412 (2011), p. 2498. doi: 10.1111/j.
1266
+ 1365-2966.2010.18071.x. arXiv: 1011.6277 [astro-ph.CO].
1267
+ [29]
1268
+ J. I. Read. “The Local Dark Matter Density”. In: J. Phys. G 41 (2014), p. 063101. doi:
1269
+ 10.1088/0954-3899/41/6/063101. arXiv: 1404.1938 [astro-ph.GA].
1270
+ [30]
1271
+ Anne M. Green. “Astrophysical uncertainties on direct detection experiments”. In: Mod. Phys. Lett. A
1272
+ 27 (2012), p. 1230004. doi: 10.1142/S0217732312300042. arXiv: 1112.0524 [astro-ph.CO].
1273
+ [31]
1274
+ F. J. Kerr and Donald Lynden-Bell. “Review of galactic constants”. In: Mon. Not. Roy. Astron. Soc.
1275
+ 221 (1986), p. 1023.
1276
+ [32]
1277
+ I. D. Karachentsev. “Missing dark matter in the local universe”. In: Astrophysical Bulletin
1278
+ 67.2 (Apr. 2012), pp. 123–134. issn: 1990-3421. doi: 10.1134/s1990341312020010. url:
1279
+ http://dx.doi.org/10.1134/S1990341312020010.
1280
+ [33]
1281
+ A.N. Baushev. “Extragalactic dark matter and direct detection experiments”. In: Astrophys. J.
1282
+ 771 (2013), p. 117. doi: 10.1088/0004-637X/771/2/117. arXiv: 1208.0392 [astro-ph.CO].
1283
+ [34]
1284
+ I. D. Karachentsev et al. “Local galaxy flows within 5 mpc”. In: Astron. Astrophys. 398
1285
+ (2003), pp. 479–492. doi: 10.1051/0004-6361:20021566. arXiv: astro-ph/0211011.
1286
+ 17
1287
+
1288
+ [35]
1289
+ Christopher McCabe. “The Earth’s velocity for direct detection experiments”. In: JCAP 02
1290
+ (2014), p. 027. doi: 10.1088/1475-7516/2014/02/027. arXiv: 1312.1355 [astro-ph.CO].
1291
+ [36]
1292
+ G. Belanger et al. “Dark matter direct detection rate in a generic model with micrOMEGAs
1293
+ 2.2”. In: Comput. Phys. Commun. 180 (2009), pp. 747–767. doi: 10.1016/j.cpc.2008.
1294
+ 11.019. arXiv: 0803.2360 [hep-ph].
1295
+ [37]
1296
+ Marco Cirelli, Nicolao Fornengo, and Alessandro Strumia. “Minimal dark matter”. In:
1297
+ Nucl. Phys. B 753 (2006), pp. 178–194. doi: 10.1016/j.nuclphysb.2006.07.012.
1298
+ arXiv: hep-ph/0512090.
1299
+ [38]
1300
+ C. Amole et al. “Dark matter search results from the PICO-60 CF3I bubble chamber”.
1301
+ In: Phys. Rev. D 93.5 (2016), p. 052014. doi: 10.1103/PhysRevD.93.052014. arXiv:
1302
+ 1510.07754 [hep-ex]. url: https://doi.org/10.1103%2Fphysrevd.93.052014.
1303
+ [39]
1304
+ G. Angloher et al. “Results on light dark matter particles with a low-threshold CRESST-
1305
+ II detector”. In: The European Physical Journal C 76.1 (Jan. 2016). doi: 10.1140/epjc/
1306
+ s10052-016-3877-3. url: https://doi.org/10.1140%2Fepjc%2Fs10052-016-3877-3.
1307
+ [40]
1308
+ A Münster et al. “Radiopurity of CaWO4 crystals for direct dark matter search with
1309
+ CRESST and EURECA”. In: 2014.05 (May 2014), pp. 018–018. doi: 10.1088/1475-
1310
+ 7516/2014/05/018. url: https://doi.org/10.1088%2F1475-7516%2F2014%2F05%
1311
+ 2F018.
1312
+ [41]
1313
+ Ningqiang Song, Serge Nagorny, and Aaron C. Vincent. “Pushing the frontier of WIMPy
1314
+ inelastic dark matter: Journey to the end of the periodic table”. In: Phys. Rev. D 104.10
1315
+ (2021), p. 103032. doi: 10.1103/PhysRevD.104.103032. arXiv: 2104.09517 [hep-ph].
1316
+ [42]
1317
+ Anja Brenner et al. “Complementarity of experiments in probing the non-relativistic
1318
+ effective theory of dark matter-nucleon interactions”. In: JCAP 06.06 (2022), p. 026. doi:
1319
+ 10.1088/1475-7516/2022/06/026. arXiv: 2203.04210 [hep-ph].
1320
+ [43]
1321
+ Simon Knapen, Tongyan Lin, and Kathryn M. Zurek. “Light dark matter: Models and
1322
+ constraints”. In: Physical Review D 96.11 (Dec. 2017). doi: 10.1103/physrevd.96.
1323
+ 115021. url: https://doi.org/10.1103%2Fphysrevd.96.115021.
1324
+ [44]
1325
+ Simon Knapen, Jonathan Kozaczuk, and Tongyan Lin. “python package for dark matter
1326
+ scattering in dielectric targets”. In: Physical Review D 105.1 (Jan. 2022). doi: 10.1103/
1327
+ physrevd.105.015014. url: https://doi.org/10.1103%2Fphysrevd.105.015014.
1328
+ [45]
1329
+ E. Aprile et al. “Dark Matter Search Results from a One Ton-Year Exposure of XENON1T”.
1330
+ In: Physical Review Letters 121.11 (Sept. 2018). doi: 10 . 1103 / physrevlett . 121 .
1331
+ 111302. url: https://doi.org/10.1103%2Fphysrevlett.121.111302.
1332
+ [46]
1333
+ Liron Barak et al. “SENSEI: Direct-Detection Results on sub-GeV Dark Matter from
1334
+ a New Skipper CCD”. In: Physical Review Letters 125.17 (Oct. 2020). doi: 10.1103/
1335
+ physrevlett.125.171802. url: https://doi.org/10.1103%2Fphysrevlett.125.
1336
+ 171802.
1337
+ [47]
1338
+ Rouven Essig et al. “Snowmass2021 Cosmic Frontier: The landscape of low-threshold
1339
+ dark matter direct detection in the next decade”. In: 2022 Snowmass Summer Study.
1340
+ Mar. 2022. arXiv: 2203.08297 [hep-ph].
1341
+ [48]
1342
+ Riccardo Catena et al. “Atomic responses to general dark matter-electron interactions”. In:
1343
+ Physical Review Research 2.3 (Aug. 2020). doi: 10.1103/physrevresearch.2.033195.
1344
+ url: https://doi.org/10.1103%2Fphysrevresearch.2.033195.
1345
+ 18
1346
+
1347
+ [49]
1348
+ Rouven Essig, Tomer Volansky, and Tien-Tien Yu. “New Constraints and Prospects for
1349
+ sub-GeV Dark Matter Scattering off Electrons in Xenon”. In: Phys. Rev. D 96.4 (2017),
1350
+ p. 043017. doi: 10.1103/PhysRevD.96.043017. arXiv: 1703.00910 [hep-ph].
1351
+ [50]
1352
+ Mariana Carrillo González and Natalia Toro. “Cosmology and signals of light pseudo-
1353
+ Dirac dark matter”. In: JHEP 04 (2022), p. 060. doi: 10.1007/JHEP04(2022)060. arXiv:
1354
+ 2108.13422 [hep-ph].
1355
+ 19
1356
+
XtAzT4oBgHgl3EQfKfuP/content/2301.01098v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03fe3e629cce619c8f4b150c0e0a20cb51a14f979eca4f6abcc6f143dd88a1e0
3
+ size 4501676
YNFQT4oBgHgl3EQfdzaO/content/tmp_files/2301.13332v1.pdf.txt ADDED
@@ -0,0 +1,1307 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2CIM: Area-Efficient 2-Cycle Integer Multipliers
2
+ Ahmad Houraniah
3
+ Department of Computer Science
4
+ ¨Ozye˘gin University
5
+ Istanbul, Turkey
6
7
+ H. Fatih Ugurdag
8
+ Department of Electrical
9
+ and Electronics Engineering
10
+ ¨Ozye˘gin University
11
+ Istanbul, Turkey
12
13
+ Cengiz Emre Dedeagac
14
+ Department of Computer Science
15
+ ¨Ozye˘gin University
16
+ Istanbul, Turkey
17
18
+ Abstract—Fast multipliers with large bit widths can occupy
19
+ significant silicon area, which, in turn, can be minimized by
20
+ employing multi-cycle multipliers. This paper introduces archi-
21
+ tectures and parameterized Verilog circuit generators for 2-
22
+ cycle integer multipliers. When implementing an algorithm in
23
+ hardware, it is common that less than 1 multiplication needs
24
+ to be performed per clock cycle. It is also possible that the
25
+ multiplications per cycle is a fractional number, e.g., 3.5. In such
26
+ case, we can surely use 4 multipliers, each with a throughput of 1
27
+ result per cycle. However, we can instead use 3 such multipliers
28
+ plus a multiplier with a throughput of 1/2. Resource sharing
29
+ allows a multiplier with a lower throughput to be smaller, hence
30
+ area savings. These multipliers offer customization in regards
31
+ to the latency and clock frequency. All proposed designs were
32
+ automatically synthesized and tested for various bit widths. Two
33
+ main architectures are presented in this work, and each has
34
+ several variants. Our 2-cycle multipliers offer up to 21%, 42%,
35
+ 32%, 41%, and 48% of area savings for bit widths of 8, 16, 32,
36
+ 64, and 128, with respect to synthesizing the “*” operator with
37
+ throughput of 1. Furthermore, some of the proposed designs also
38
+ offer power savings under certain conditions.
39
+ Index Terms—computer arithmetic, multi-cycle multiplier,
40
+ resource-sharing, pipelining
41
+ I. INTRODUCTION
42
+ An integer multiplier is an essential building block for
43
+ various ASICs and CPUs. Integer multipliers can get quite
44
+ expensive in terms of area as bit width increases. Large
45
+ integers are used in a wide range of applications that require a
46
+ high degree of precision. Floating-point operations are unsuit-
47
+ able for some applications because of so-called “catastrophic
48
+ cancellations” [1]. The addition and subtraction of floating-
49
+ point numbers that greatly vary in magnitude can produce
50
+ rounding errors, resulting in significant data loss. Floating-
51
+ point operations are significantly more expensive than fixed-
52
+ point operations regarding area complexity and latency. For
53
+ these reasons, fixed point representation is preferred for many
54
+ applications. The CUDA [2] programming model and software
55
+ environment, which NVIDIA develops, recently introduced a
56
+ 128-bit integer data type, which is intended for applications
57
+ that require a higher degree of precision within a predeter-
58
+ mined range. This signifies the importance of large fixed-
59
+ point integers. Multiplying such large integers can require
60
+ significant hardware resources. For this reason, decreasing the
61
+ area complexity for integer multipliers can be very beneficial.
62
+ There exists a large number of applications containing data
63
+ flow paths that require less than one multiplication every
64
+ two or more clock cycles. Such a case is found in RSIC-V
65
+ softcore implementations, where area efficiency is vital, even
66
+ if it comes at the expense of increasing the latency of ALU
67
+ operations such as multiplication.
68
+ Applications can contain numerous multiplications in their
69
+ data flow paths. Due to the area complexity of these multipli-
70
+ ers, the same multiplication circuits are used multiple times to
71
+ minimize the area complexity of the system. These multiplica-
72
+ tions typically need to be computed within a predefined period.
73
+ Since a conventional multiplier can only be used once in every
74
+ clock cycle, using a single multiplier can severely limit the
75
+ system’s throughput. The throughput can be maintained by
76
+ using several multiplication circuits operating in parallel. The
77
+ number of multipliers necessary can be calculated by dividing
78
+ the number of multiplications by the period they need to be
79
+ computed within (in clock cycles). Using this formula, the
80
+ number of multipliers required is not always an integer. The
81
+ conventional approach is to round up this value, which causes
82
+ one of these multipliers to be underutilized. A fully-pipelined
83
+ multiplier that can accept new inputs in consecutive clock
84
+ cycles would remain underutilized in such applications.
85
+ In this work, various 2-cycle unsigned integer multiplier
86
+ (2CIM) designs are proposed to decrease the area complexity
87
+ for these underutilized multipliers. 2CIM architectures can
88
+ be extended for signed integer multiplication as well. 2CIM
89
+ designs offer partial multipliers that can offer area-efficient
90
+ designs with a throughput of 1/2. The conventional approach
91
+ of multiplying unsigned integers comprises two steps: partial
92
+ product generation (PPG) and partial production summation.
93
+ The PPG stage is typically done using AND gates, where one
94
+ integer is shifted and multiplied with each bit of the other
95
+ integer. The PPG stage produces multiple variables that must
96
+ be summed to produce the multiplication result. This is done
97
+ using a tree of full adder (FA) and half adder (HA) cells.
98
+ Using a standard ripple carry adder structure to handle the
99
+ partial product summation can result in a long critical path
100
+ and an increased area complexity. The optimization of integer
101
+ multiplications has been a thoroughly studied topic, and the
102
+ conventional approach is to use a carry-save adder for the
103
+ summation stage.
104
+ Multiplication can be solved using a divide and conquer
105
+ arXiv:2301.13332v1 [cs.AR] 30 Jan 2023
106
+
107
+ strategy, where any multiplication can be divided into multiple
108
+ smaller ones, this is often seen as an algorithmic problem, and
109
+ a great deal of research was done to reduce the algorithmic
110
+ complexity of multiplications. The same concepts used for
111
+ reducing the algorithmic complexity can be applied to hard-
112
+ ware for area reductions since multiplication can be spread
113
+ across multiple clock cycles. The conventional schoolbook
114
+ approach is to divide multiplication using the distributive
115
+ property. One multiplication can be split into various smaller
116
+ multiplications. Equation 1 shows how a single multiplication
117
+ can be divided into two smaller multiplications using the
118
+ schoolbook approach, where N is the bit width of the second
119
+ multiplicand B.
120
+ Y = A ∗ B = A ∗ {B1, B0} = A ∗ B0 + A ∗ B1 ∗ 2N/2 (1)
121
+ Such an approach can be applied for area reductions, where a
122
+ smaller multiplication circuit can be used repetitively to com-
123
+ pute several smaller multiplications. Although multiplication
124
+ can be implemented using a recursive approach, implementing
125
+ several division levels requires more control logic. Since the
126
+ smaller multiplier needed for a single division level is expected
127
+ to be used twice for each multiplication, new inputs can only
128
+ arrive once every two clock cycles (CCs), which will be called
129
+ the initiation interval (II).
130
+ The rest of the paper is organized as follows: Section
131
+ II presents the previous work. Section III presents the ar-
132
+ chitectures proposed in this work. Section IV describes the
133
+ methodology used for the design generation, synthesis, and
134
+ verification. Section V presents the implementation results of
135
+ all the proposed architectures and explains the implications of
136
+ these results. Section VI concludes the paper.
137
+ II. PREVIOUS WORK
138
+ A great degree of research has been done to improve the
139
+ efficiency of integer multipliers. This is due to the large area
140
+ complexities that can require. In [3], Wallace et al. proposed
141
+ an efficient approach to dealing with integer multiplications
142
+ by using carry-save trees for row and column compression.
143
+ Their approach significantly decreased the critical path for the
144
+ summation of more than two numbers. A carry-save adder
145
+ structure uses FA and HA cells in a parallel fashion, reducing
146
+ the number of rows to two before the ripple carry adder,
147
+ thus significantly reducing the critical path. The architecture
148
+ proposed by Wallace [3] heavily impacted the industry and
149
+ continues to be applied in modern research. In [4], Dadda
150
+ presented an improvement over the previously proposed carry
151
+ save adder tree structure proposed by [3]. This reduced the
152
+ number of FA and HA cells required for the column and row
153
+ compression. Ugurdag et al. in [5] proposed a new and faster
154
+ carry-save tree structure called row and column compression
155
+ trees (RoCoCo). Their structure allowed for smaller and faster
156
+ final adders for integer multiplication circuits. Using these
157
+ structures, they presented faster multiplication circuits than
158
+ much of the literature on FPGAs, outperforming Dadda mul-
159
+ tipliers [4] and the built-in multiplication circuits by Xilinx.
160
+ Considering how RoCoCo trees can offer an improvement
161
+ over Wallace [3] and Dadda [4] trees, their architectures were
162
+ utilized in this work.
163
+ Multi-cycle (MC) multipliers have also been studied in the
164
+ past, both for FPGA and ASIC applications. The focus of
165
+ these studies was to decrease the area complexity for integer
166
+ multiplication (similar to ours). However, recent work only
167
+ target FPGA applications due to the limited resources avail-
168
+ able. The authors in [6] extensively studied the topic of large
169
+ integer multiplication, with a focus on FPGA implementation.
170
+ They proposed several MC architectures involving Schoolbook
171
+ multiplication, Comba multiplication, Karatsuba multiplica-
172
+ tion, and Number Theoretic Transforms. These architectures
173
+ are each suited for different applications, each having different
174
+ characteristics. In their architectures, the latency depends on
175
+ the bit widths of the multiplicands, allowing for a higher
176
+ degree of resource sharing depending on the multiplication
177
+ size, minimizing the number of required DSP slices. DSP
178
+ slices are an FPGA-specific type of resource. Thus, more op-
179
+ timized architectures can be presented for ASIC applications.
180
+ In [7], a design implementing the Karatsuba algorithm was
181
+ implemented. Due to the recursive nature of the Karatsuba
182
+ algorithm, they proposed using a “Coprocessor,” which was
183
+ responsible for the sub-functions of the Karatsuba algorithm,
184
+ such as multiplication, addition, and shifting operations. The
185
+ “Coprocessor” has a fixed size, and a Block RAM was used
186
+ to store intermediate results. They were able to produce a
187
+ circuit that could handle different bit widths using the same
188
+ area resources. The only varying part is the latency required.
189
+ This approach means the latency can increase rapidly as the
190
+ multiplication size increases, requiring 120 clock cycles to im-
191
+ plement a 128×128 multiplication. This approach also implies
192
+ a long II since the “Coprocessor” is expected to be reused sev-
193
+ eral times for a single computation. This architecture provides
194
+ an area-efficient approach to computing large multiplications
195
+ on FPGAs, yet, it is only suitable for very low-bandwidth
196
+ applications. This architecture made further improvements to
197
+ other FPGA-based MC multiplication circuits proposed in
198
+ [8], [9], and [10]. Such architectures heavily rely on the
199
+ usage of DSP slices and Block RAMs, which are expected to
200
+ increase the speed of an FPGA application while decreasing
201
+ the slice usage of the design. Since ASICs do not have these
202
+ built-in hardware resources, more optimized solutions can be
203
+ proposed. The authors in [11] proposed a design based on an
204
+ MC Karatsuba multiplication. Their design achieves significant
205
+ area reduction for FPGAs. Their design required 1/9th of the
206
+ DSP resources for a conventional 2048×2048 multiplication.
207
+ For a 2048×2048 multiplication, they achieve a latency of
208
+ 118 cycles and an II of 9 cycles. Although the design has
209
+ a relatively low throughput of 1/9, they achieve significant
210
+ area savings for large multiplications, which would otherwise
211
+ be too costly in terms of area requirements. This design is
212
+ only feasible for very large multiplications with a more limited
213
+ number of applications.
214
+ A few work have evaluated MC multiplications for ASIC,
215
+ offering significant area reductions at the cost of speed/latency.
216
+ Li et al. presented an area-efficient MC multiplier in [12].
217
+
218
+ Their architecture heavily relies on resource sharing. Their
219
+ designs require an II of N for N×N multiplication and have
220
+ a latency of N+1. Such a high II and latency can severely
221
+ limit the design’s applications and scalability. In [13], an
222
+ iterative multiplication circuit for 64×64 was proposed, having
223
+ an II of 4 CCs and a latency of 10 CCs. They used an
224
+ internally generated clock using NOT gates. Therefore, the
225
+ clock generation circuitry requires manual modification to
226
+ work with different system clocks. Such an approach can limit
227
+ the design’s capability of being pipelined. Another design was
228
+ proposed in [14], implementing an MC multiplication circuit
229
+ based on a modified-Booth encoding, similar to [13]. They use
230
+ self-timed clocks that do not require manual modification to
231
+ change the operating frequency, allowing them to work with
232
+ any system clock. Their architecture offered an area reduction
233
+ of 86.6% in comparison with an array implementation, coming
234
+ at the cost of an 18.8% reduction in speed. Although this
235
+ architecture presents significant area savings, a speed reduction
236
+ can be a major limitation for high-speed applications. Further-
237
+ more, using a self-timed clock can limit the design’s ability to
238
+ be pipelined. This architecture is considered a combinational
239
+ circuit; hence, the design can accept inputs in consecutive
240
+ clock cycles. The system clock, however, would be limited
241
+ by the maximum frequency of the design.
242
+ III. PROPOSED ARCHITECTURES
243
+ Integer multiplication can be represented by three stages,
244
+ partial product generation (PPG), partial product reduction
245
+ (PPR), and the final addition. Since multiplication can be
246
+ described as the sum of several smaller multiplications as
247
+ shown in equation 1. These smaller multiplications can be
248
+ computed using the same hardware resource when applying
249
+ resource-sharing. Thus, the circuit responsible for the smaller
250
+ multiplications will be used multiple times for each multipli-
251
+ cation, reducing the throughput to less than one. This approach
252
+ reduces the area requirements and the critical path of the
253
+ circuit. Both the critical path and the area requirements for the
254
+ PPG stage for a conventional integer multiplier can be reduced
255
+ by 50% when implementing a 2-cycle approach (implementing
256
+ equation 1). For any multiplication greater than 4×4, more
257
+ than two rows are generated after the PPG stage. This means
258
+ that the PPR stage is expected to handle large reductions.
259
+ Furthermore, all the intermediate values must be stored in
260
+ registers until they reach the PPR stage. Such an approach
261
+ can limit the area reduction that can be achieved. A more
262
+ optimized approach is to separate the PPR stage into two parts.
263
+ The first part would be connected to the outputs of the PPG
264
+ stage. This allows for applying resource sharing on a large
265
+ part of the PPR stage since this circuit is expected to be used
266
+ twice for each multiplication. This combination of a PPG and a
267
+ smaller PPR is called a partial product multiplier (PPM). PPMs
268
+ have a shorter critical path than regular multipliers since they
269
+ do not require the final addition stage. The PPM will be used
270
+ twice for each multiplication, producing four results. These
271
+ results are then reduced using the second part of the PPR,
272
+ which will be called a compressor.
273
+ A. Sub-module Architectures
274
+ Our architectures consist of three core sub-modules: PPM,
275
+ compressor, and final adder. Several architectures for these
276
+ sub-modules were used in this work, each having certain
277
+ advantages. DW02 multp is a synthesis-based PPM offered by
278
+ Synopsys [15] which can produce fast and efficient PPMs. The
279
+ outputs’ sizes for an M × N multiplication is M+N+2 due to
280
+ the nature of the design. DW02 multp produces signed results
281
+ that require sign extension. Since the sign of both outputs can
282
+ vary, the sign extension was implemented using the following
283
+ three steps.
284
+ 1) Applying a NOT gate to the most significant bits of all
285
+ PPMs’ outputs (bit position M+N+2, where M and N
286
+ are the sizes of the multiplicands).
287
+ 2) Pad the outputs with 1’s after the most significant bit
288
+ (bit positions greater than M+N+2).
289
+ 3) Sum all constants to reduce the compression size (before
290
+ synthesis).
291
+ Steps 1 and 2 allow DW02 multp to be used for unsigned
292
+ multiplications, even though DW02 multp produces signed
293
+ results. Step 3 sums up all the constants, including the sign
294
+ extension padding bits, reducing the size of the numbers that
295
+ should be compressed in the next stage, and providing further
296
+ area reductions. Like DW02 mult, DW02 tree is a synthesis-
297
+ based compression tree offered by Synopsys [15], which can
298
+ provide fast and efficient compressors.
299
+ RoCoCo, proposed in [5], presents a row and column com-
300
+ pression tree that can be used to create fast and efficient integer
301
+ multipliers and compressors. RoCoCo aims to maximize the
302
+ reduction in the row and column compression tree, allowing
303
+ for a smaller final addition. RoCoCo multipliers can be used
304
+ as PPMs by omitting the final addition stage. RoCoCo also
305
+ presents RTL generators that can produce compressors. Their
306
+ architecture can reduce the area complexity and the critical
307
+ path of the overall design. The compressor used for the Ro-
308
+ CoCo multiplier maximizes the reduction made, where several
309
+ of the least significant bits of the second output are reduced to
310
+ 0. This reduces required computations in the following stages,
311
+ reducing the overall area complexity and the critical path.
312
+ A custom area-efficient compression tree is proposed in this
313
+ work as well. This compression tree aims at reducing the num-
314
+ ber of rows into two while minimizing the resources required.
315
+ This compressor is tailored for a feed-forward architecture
316
+ (which will be discussed in III-C) utilizing a DW02 multp
317
+ PPM. Since this compressor is designed to minimize the
318
+ required hardware resources, it does not achieve identical bit
319
+ reductions as RoCoCo. This approach can be helpful since the
320
+ final addition can be spread into multiple cycles using resource
321
+ sharing or pipelining.
322
+ The final addition stage, which comes after the partial
323
+ product reduction stage, typically consists of ripple carry
324
+ adders, which can often be the critical path of a design.
325
+ This can increase the area complexity since the synthesis
326
+ tool is forced to use larger library cells with greater driving
327
+ strength and a shorter propagation delay. Since the designs
328
+
329
+ target MC multiplications, the final adder will remain idle
330
+ 50% of the time for 2-cycle multipliers. This presents another
331
+ opportunity to implement resource sharing. The size of the
332
+ adder can be reduced by 50% by applying resource-sharing
333
+ and using it in two consecutive cycles. This approach creates
334
+ a loop around the adders, which makes pipelining the design
335
+ complex, requiring additional control logic. Such a 2-cycle
336
+ resource shared adder (2CA) architecture is unsuitable for
337
+ strict timing targets. The feedback loop presents a limitation
338
+ since the designs cannot always meet the timing target. For
339
+ more relaxed timing targets, creating a feedback loop around
340
+ a smaller adder reduces the area complexity because it reduces
341
+ the size of the final adder. Pipelining the 2CA architecture can
342
+ allow resource sharing to be implemented without limiting the
343
+ maximum frequency. A pipelined 2-cycle adder (2CPA) can
344
+ be achieved by placing registers in the path of the final adders.
345
+ Such an approach would not work since variables would start
346
+ to overlap. This was solved by adding a delay register in the
347
+ path, making the total latency for the final adder five clock
348
+ cycles. However, when inputs arrive at odd intervals with
349
+ respect to the previous inputs, this again causes an overlap
350
+ of variables. Thus, an internal state machine is required for
351
+ such cases, which requires more complicated control logic and
352
+ memory elements.
353
+ MC multiplication circuits offer various opportunities for
354
+ resource sharing since any multiplication stage can be reused
355
+ for II times. However, resource sharing can also create feed-
356
+ back loops in the design. Feedback loops limit a design’s
357
+ ability to be pipelined. And thus, there exists a trade-off
358
+ between the design’s ability to be pipelined (which determines
359
+ the maximum frequency) and the degree of resource sharing
360
+ to be implemented. A design containing no feedback loops
361
+ can easily be pipelined by placing registers in the path. This
362
+ allows a design to meet very strict timing targets at the
363
+ cost of increased latency. Designs containing feedback loops
364
+ have a fixed critical path since the feedback loop cannot
365
+ be pipelined. This means that the maximum frequency can
366
+ become a limitation for high-speed applications. Furthermore,
367
+ since the area of a standard library cell depends on its driving
368
+ strength and speed, pipelining allows for the reduction of area
369
+ usage since the synthesis tool can use smaller cells that have
370
+ longer propagation delays. Due to this, a feed-forward design
371
+ can significantly outperform a design with a feedback loop
372
+ in its data flow path when the clock target is strict enough,
373
+ even if the designs implementing a feedback loop can meet
374
+ timing. Nevertheless, feedback loops enable a greater degree of
375
+ resource sharing, maximizing the area reductions when dealing
376
+ with more relaxed timing targets. As a result, both approaches
377
+ have their benefits. Depending on the target frequency, either
378
+ approach could outperform the other.
379
+ Two designs are proposed in this work using the previously
380
+ discussed concepts, each having different variations in the
381
+ sub-modules used. These designs are optimized for specific
382
+ applications in terms of operating frequency, maximizing the
383
+ area reductions that can be achieved.
384
+ B. Feedback Design
385
+ Feedback loops allow for a greater degree of resource
386
+ sharing. As a result, we present an architecture that uses feed-
387
+ back loops to reduce the area complexity. In this architecture,
388
+ all three multiplier stages are resource-shared: the PPM, the
389
+ compressor, and the final adder. These stages are fully utilized
390
+ for 100% of clock cycles under regular operation (when
391
+ inputs arrive back to back). This is achieved by creating a
392
+ feedback loop around the compressor and final adder, reducing
393
+ the size of both. The feedback loop in this design contains
394
+ a 3:2 compressor and a ripple carry adder. For an M×N
395
+ multiplication, this architecture uses an M × (⌈N/2⌉) PPM,
396
+ a final adder, and a 3:2 compressor of width M+⌈N/2⌉. This
397
+ design is represented by figure 1. The number of FA cells in
398
+ the feedback loop, which determines the critical path of the
399
+ design, can be calculated using equation 2, where M and N
400
+ are the bit widths of the multiplicands.
401
+ CriticalPath = 1 + (⌈M/2⌉ + N),
402
+ (2)
403
+ This approach uses the least amount of resources out of our
404
+ designs. However, due to the loop, it can be outperformed
405
+ by feed-forward designs for strict timing targets, where the
406
+ feedback loop can be a limiting factor. This design is based on
407
+ the schoolbook approach and can be represented by figure 1 for
408
+ 2C multiplication. This architecture can be extended for any
409
+ 3:2
410
+ Compressor
411
+ PPM
412
+ +
413
+ REG
414
+ MUX
415
+ 0
416
+ Fig. 1.
417
+ 2-cycle feedback design
418
+ II, decreasing the size of the core sub-modules. The II and the
419
+ area complexity of the three stages (PPM, compressor, and the
420
+ final adder) have an exponential decay relationship. However,
421
+ the number of registers storing intermediate results increases
422
+ linearly. Due to this relationship, diminishing returns will be
423
+ seen as the II increases. Furthermore, continuously increasing
424
+ the II after some point would also increase the area complexity
425
+ of the design.
426
+
427
+ C. Feed-forward Design
428
+ Multiplication circuits are frequently used with high-
429
+ frequency applications; ergo, architectures with short critical
430
+ paths can be very beneficial. The critical path directly affects
431
+ both area and speed. The critical path limits the maximum
432
+ operating frequency, and the area complexity is indirectly
433
+ affected by the critical path. A circuit synthesized using its
434
+ maximum frequency consumes significantly more area than
435
+ one synthesized for a relaxed frequency. When operating under
436
+ strict timing conditions, the synthesis tool instantiates larger
437
+ library cells with shorter delays to meet timing. In contrast,
438
+ the synthesis tool can use small library cells with longer prop-
439
+ agation delays when dealing with relaxed timing targets. The
440
+ critical path is caused by the combinational circuit that has to
441
+ be executed within the same clock cycle. If this combinational
442
+ logic were to be divided across multiple clock cycles, the
443
+ critical path would be decreased, and thus, both speed and area
444
+ would improve. As previously discussed, having a feedback
445
+ loop in the design limits the design’s ability to be pipelined.
446
+ For this reason, we propose a design that contains no feedback
447
+ loops. This architecture has three main steps. Firstly, the partial
448
+ product multiplications are computed using one module, thus
449
+ requiring two clock cycles. In the final clock cycle, four results
450
+ need to be added, these are first sent to a compressor, and then
451
+ the result of the compression is sent to a ripple carry adder.
452
+ Only the PPM is used twice in this architecture which does not
453
+ create any feedback loops. This design can easily be pipelined
454
+ to meet very strict timing targets. The area savings of this
455
+ design come from the fact that it requires smaller PPG and
456
+ PPR stages, which contribute a large portion of the overall
457
+ complexity for an integer multiplier. All the stages in this
458
+ design can be efficiently pipelined, which allows the critical
459
+ path to be continuously decreased at the cost of longer latency.
460
+ The PPM’s size equals M + ⌈(N/2)⌉. The compressor’s size
461
+ depends on the bit widths of the inputs, as well as the type of
462
+ PPM used. The compression tree has at most four rows to be
463
+ reduced, and several bit-positions contain fewer rows due to
464
+ the shifting operations. DW02 multp produces signed outputs
465
+ that require sign extension, while RoCoCo produces unsigned
466
+ results; ergo, the compression trees needed for these two PPMs
467
+ are not identical. This architecture is ideal to be used with an
468
+ II of 2. In such a case, the stage can be reduced by around
469
+ 50% while keeping the control logic simple and not requiring a
470
+ significant number of registers for storing intermediate results.
471
+ Since the PPM has two outputs and it is used twice, a 4:2
472
+ compressor is required, where the inputs would be the first
473
+ 2 PPM results and the shifted version of the second 2 PPM
474
+ results. This design is represented by figure 2.
475
+ This architecture can also be extended for different IIs;
476
+ however, maintaining a feed-forward approach becomes a
477
+ limitation. A feed-forward design with an II of 3 would
478
+ require a 6:2 compressor. This increase in the compressor’s
479
+ size undermines the area reductions gained by the smaller
480
+ PPM. Furthermore, such a design requires significantly more
481
+ registers to store the intermediate results until all PPMs are
482
+ REG
483
+ REG
484
+ 4:2
485
+ Compressor
486
+ Final
487
+ Adder
488
+ PPM
489
+ Fig. 2. 2 cycle feed-forward with a 4:2 comp
490
+ computed. Such an architecture is not expected to provide
491
+ any area savings. A better approach would be to add a loop
492
+ around the 4:2 compressor. Such a design allows the II to
493
+ be increased without significantly affecting the architecture.
494
+ However, The feedback loop limits the design’s ability to be
495
+ pipelined. This loop has a short critical path of only 2 FAs,
496
+ but it also requires more registers to store the intermediate
497
+ results. Moreover, this approach also requires a significantly
498
+ larger compressor, requiring 96% more FAs and HAs for the
499
+ case of 3C versus 2C II. Although a 4:2 compressor is used
500
+ in both cases, the 4:2 compressor required for a 2C design
501
+ contains more columns with only 2 bits to be reduced. All this
502
+ results in a higher area requirement when compared to the 2C
503
+ version. Therefore, a feed-forward design with this approach
504
+ is only viable for an II of 2.
505
+ IV. IMPLEMENTATION
506
+ The proposed designs were tested thoroughly, using differ-
507
+ ent bit widths, latencies, and timing targets. This required sev-
508
+ eral steps, including design generation, synthesis, pipelining,
509
+ simulation, and reporting power. These steps were automated
510
+ using a series of scripts that handle these tasks accordingly.
511
+ This automation allows for a greater degree of testing required
512
+ for a complete evaluation of all these designs. The designs
513
+ are generated using RTL generation scripts written in Python,
514
+ synthesized using the Synopsys Design Compiler and a TSMC
515
+ 40 nm technology, and simulated using Icarus Verilog.
516
+ In this work, two main architectures are proposed, which
517
+ can have variations in the type of compressors, PPMs, and
518
+ final adders. Due to this, design generation scripts were used
519
+ to accommodate these variations easily. All designs are instan-
520
+ tiated with a wrapper, automatically setting the input/output
521
+ delays and loads. The wrapper applies a register to each of
522
+ the inputs and outputs of the design except the clock signal.
523
+
524
+ There are two different generators for 2CIM designs, one for
525
+ each architecture. All the generators create both a wrapper
526
+ and a testbench, thus allowing for easy and accurate testing
527
+ for each design. The feedback architecture’s generator takes
528
+ the size of the multiplicands, the type of PPM (DW02 multp
529
+ or RoCoCo), and the added pipeline stages as inputs and
530
+ then generates the design. The feed-forward design has some
531
+ differences in the design generation parameters since it has
532
+ multiple options for the compressor and final adder to be
533
+ used. This generator takes the multiplicands’ size, the PPM
534
+ and compressor’s type, and the number of pipeline stages
535
+ as the input parameters. These variations in sub-modules are
536
+ required to achieve optimal performance since each offers
537
+ some advantages.
538
+ Retiming is a technique used to optimize digital circuits
539
+ by moving flip-flops. It can significantly reduce the critical
540
+ path and improve the area. Since strict timing targets require
541
+ larger library cells, reducing the critical path can also decrease
542
+ the area complexity. The Synopsys Design Compiler offers
543
+ the retiming feature, which was utilized to achieve optimized
544
+ pipelining for any design. To increase the depth of the pipeline,
545
+ registers are added at the end of the design. The synthesis tool
546
+ can freely move these registers as long as they do not affect
547
+ a feedback loop in the design. Increasing the pipeline’s depth
548
+ also increases the latency, but it can decrease both the area
549
+ complexity and the critical path while maintaining the same
550
+ throughput.
551
+ Synthesis is not a linear computation. It has to handle var-
552
+ ious constraints to meet timing, optimize area, and minimize
553
+ power consumption. Over-constraining is another technique to
554
+ meet strict timing targets when the synthesis tool fails. This
555
+ is done by further restricting the timing target, allowing the
556
+ synthesis tool to make decisions that expect a more strict
557
+ timing target. This can often allow our designs to meet the
558
+ required timing target even if the initial synthesis attempt
559
+ was unsuccessfully in meeting timing. The automation scripts
560
+ attempt over-constraining whenever a design does not meet
561
+ timing; this is done by reducing the timing target by 5%
562
+ and re-attempting synthesis. Over-constraining is attempted
563
+ three times before increasing the depth of the pipeline (adding
564
+ registers to the design and applying retiming).
565
+ In this work, area complexities of all 2CIM designs and the
566
+ standard multiplication circuit generated by Synopsys using
567
+ the “*” operator (which will be referred to as Star) are
568
+ compared. The same target frequency should be used for a fair
569
+ comparison of results between any two designs. The area com-
570
+ plexity, power consumption, and operating frequency are all
571
+ interdependent. However, in most applications, the operating
572
+ frequency is a design decision that needs to be preserved.The
573
+ initial timing target is set as the maximum frequency achieved
574
+ by the Star multiplier without adding any additional pipeline
575
+ stages. In addition, over-constraining is used to test if a higher
576
+ maximum frequency can be achieved. Timing is then increased
577
+ by 15% and 30% to see how the designs perform in more
578
+ relaxed timing targets. Furthermore, the target is set to 0.31,
579
+ representing the clock-to-q + setup + hold delay for 1 FA
580
+ placed between registers, using the smallest library cell for
581
+ a FA. However, such a strict timing target is not suitable
582
+ for multiplications larger than 32×32 since large multipliers
583
+ require many pipeline stages to meet the target timing. Larger
584
+ multipliers used less strict timing targets according to the
585
+ actual multiplication size. Using such strict timing targets is
586
+ useful to check how effectively the designs can be pipelined
587
+ to meet very strict timing targets. The designs are also
588
+ synthesized with additional pipeline stages until the latency
589
+ reaches the maximum latency of other designs. This is because
590
+ increasing the pipeline depth can decrease the area complexity
591
+ as well. All this was accomplished by using automation scripts.
592
+ The scripts first synthesize the Star multiplier to get the three
593
+ timing targets. Two more timing targets are used, representing
594
+ strict and relaxed timing conditions. For each timing target, it
595
+ follows a series of steps to produce the complete results table.
596
+ The first step is the design generation, which is done using
597
+ the RTL generators of each architecture. It then synthesizes
598
+ each design using retiming and over-constraining to meet the
599
+ timing target. After that, it simulates the generated netlist and
600
+ estimates the power consumption. This is repetitively done for
601
+ all designs, variations, and timing targets. Since the designs are
602
+ tested using a strict timing target, the target is not always met
603
+ from the initial synthesis attempt. The script will first attempt
604
+ to meet timing using over-constraining. If the design is still
605
+ unable to meet timing, a pipeline stage is added. This iteration
606
+ is repetitively done until either timing is met or the number of
607
+ pipeline stages exceeds 8. This usually means that the target
608
+ timing cannot be met even when pipelined. All architectures
609
+ are simulated using a set of 200 randomly generated inputs.
610
+ Self-checking test benches were used, where the output is
611
+ sampled depending on the latency of the design. Furthermore,
612
+ both design and netlist simulations were performed.
613
+ Power consumption can be an important aspect to consider
614
+ when designing a digital circuit. All the proposed designs were
615
+ analyzed for power consumption. Randomly generated inputs
616
+ were used, being set every 2 clock cycles. This represents a
617
+ worst-case scenario, where the power consumption is analyzed
618
+ under heavy loads. Post-synthesis simulation was performed
619
+ on all the designs, generating a file that contains the switching
620
+ activities of all nets and ports. This file is then used by
621
+ the synthesis tool (Synopsys Design Compiler) to estimate
622
+ the power consumption of a design, including both dynamic
623
+ and static power consumption in the estimation. Analyzing
624
+ power using the post-synthesis netlist simulation can generate
625
+ more accurate results when compared to the RTL simulation
626
+ since it contains more accurate switching activities. Power
627
+ consumption can be affected by several factors. However, there
628
+ are three main factors to consider, the critical path of the
629
+ circuit, the length of the MC path (which includes the parts to
630
+ be resource shared), and the area of the design. Under strict
631
+ timing conditions, the synthesis tool uses large library cells to
632
+ meet timing, which consumes more power than smaller library
633
+ cells having longer delays. Longer MC paths produce more
634
+ glitches in the design, and these glitches (part of the switching
635
+ activity) increase power consumption. And lastly, a larger area
636
+
637
+ implies that there are more gates in the design, thus consuming
638
+ more power since even idle gates contribute to static power
639
+ consumption.
640
+ V. RESULTS
641
+ All the proposed 2CIM designs were tested thoroughly in
642
+ this work. Each design has advantages and disadvantages,
643
+ offering significant area saving under the right conditions. All
644
+ the proposed 2CIM designs and variants should be synthesized
645
+ under the same timing conditions and compared to perform a
646
+ thorough evaluation. All 2CIM designs were synthesized under
647
+ a wide range of multiplication sizes and various timing targets.
648
+ All the designs were tested using a wide range of operating
649
+ frequencies since each 2CIM architecture targets a specific
650
+ type of application with respect to the operating frequency.
651
+ Moreover, the scalability of these designs is an important
652
+ feature. The designs were tested for various multiplication
653
+ sizes to show that these area savings are consistent for various
654
+ multiplication sizes. This section will present two tables that
655
+ can represent strict and relaxed timing conditions. Since our
656
+ designs usually achieve a longer latency, they should be
657
+ compared with a Star multiplier design using the same number
658
+ of pipeline stages. However, the Star multiplier is relatively
659
+ faster, so it will reach its minimum area using a smaller
660
+ number of pipeline stages than that of 2CIM designs. The
661
+ area results that are reported for the Star multiplier are the
662
+ best area results that can be achieved using any number of
663
+ pipeline stages.
664
+ A. Synthesis Under Relaxed Timing Conditions
665
+ A relaxed timing target can show the actual area require-
666
+ ments of each design since a strict timing target would affect
667
+ the results depending on the critical path. The relaxed timing
668
+ conditions case is represented by a timing target of 10 ns.
669
+ Such a target allowed all the designs to meet timing without
670
+ requiring additional pipeline stages while being able to use
671
+ small library cells. Table I presents the synthesis results for a
672
+ 16×16 multiplication. Since the timing target is very relaxed,
673
+ retiming and over-constraining were not required. Thus, the
674
+ latency presented in table I represents the minimum latency
675
+ (L) for these designs.
676
+ The feedback (FB) designs best suit applications that do
677
+ not require very strict timing targets. The area complexity of
678
+ these designs is always the lowest under such circumstances.
679
+ For 16×16 multiplications, the feedback designs can offer
680
+ around 30% area savings. But it comes at the cost of an
681
+ increase in power consumption. And so, a trade-off exists
682
+ between the area complexity and power consumption for such
683
+ multiplications with relaxed timing targets. It can be seen that
684
+ the 2CA final adder cannot offer any benefits in terms of
685
+ area savings compared to either the feed-forward (FF) design
686
+ implementing no spread (SCA) or the feedback design. This
687
+ can be explained by the fact that under very relaxed timing
688
+ conditions, the area complexity coming from the final adder is
689
+ lower than the required logic to implement resource sharing.
690
+ Thus, 2CA is not expected to offer additional area savings
691
+ TABLE I
692
+ SYNTHESIS RESULTS FOR 16×16 MULTIPLICATIONS UNDER RELAXED
693
+ TIMING CONDITIONS (TARGET = 10 ns)
694
+ Design
695
+ Final
696
+ PPM
697
+ Comp.
698
+ L
699
+ Area
700
+ Power
701
+ Adder
702
+ (uW)
703
+ Star
704
+ N/A
705
+ N/A
706
+ N/A
707
+ 1
708
+ 1348
709
+ 79
710
+ FB
711
+ N/A
712
+ DW02
713
+ FAs
714
+ 2
715
+ 942
716
+ 100
717
+ N/A
718
+ RoCoCo
719
+ FAs
720
+ 2
721
+ 960
722
+ 108
723
+ FF
724
+ RCA
725
+ DW02
726
+ DW02
727
+ 2
728
+ 1096
729
+ 124
730
+ RCA
731
+ DW02
732
+ RoCoCo
733
+ 2
734
+ 1145
735
+ 127
736
+ RCA
737
+ DW02
738
+ Custom
739
+ 2
740
+ 1105
741
+ 124
742
+ RCA
743
+ RoCoCo
744
+ DW02
745
+ 2
746
+ 1051
747
+ 120
748
+ RCA
749
+ RoCoCo
750
+ RoCoCo
751
+ 2
752
+ 1122
753
+ 122
754
+ 2CA
755
+ DW02
756
+ DW02
757
+ 3
758
+ 1352
759
+ 159
760
+ 2CA
761
+ DW02
762
+ RoCoCo
763
+ 3
764
+ 1181
765
+ 148
766
+ 2CA
767
+ DW02
768
+ Custom
769
+ 3
770
+ 1420
771
+ 168
772
+ 2CA
773
+ RoCoCo
774
+ DW02
775
+ 3
776
+ 1115
777
+ 138
778
+ 2CA
779
+ RoCoCo
780
+ RoCoCo
781
+ 3
782
+ 1155
783
+ 140
784
+ 2CPA
785
+ DW02
786
+ DW02
787
+ 6
788
+ 2102
789
+ 250
790
+ 2CPA
791
+ DW02
792
+ RoCoCo
793
+ 6
794
+ 2053
795
+ 251
796
+ 2CPA
797
+ DW02
798
+ Custom
799
+ 6
800
+ 2086
801
+ 248
802
+ 2CPA
803
+ RoCoCo
804
+ DW02
805
+ 6
806
+ 2120
807
+ 244
808
+ 2CPA
809
+ RoCoCo
810
+ RoCoCo
811
+ 6
812
+ 2129
813
+ 243
814
+ under these conditions. 2CPA is designed to provide area
815
+ savings for strict timing targets. Therefore, it cannot offer any
816
+ area savings under such relaxed timing conditions. This is due
817
+ to the added complexity in the control logic, which is required
818
+ for scheduling inputs based on their arrival time, and the
819
+ increased number of registers needed for storing intermediate
820
+ results. The proposed designs consume more power than
821
+ the Star multiplier since they have a longer MC path. A
822
+ longer MC path increases the circuit’s glitches, increasing the
823
+ dynamic power consumption. The Star multiplier employs no
824
+ resource sharing. Therefore, only a part of the circuit is active
825
+ simultaneously when a throughput of less than one is needed.
826
+ In our testing, inputs are received every two cycles, making
827
+ the Star multiplier remain idle 50% of the time.
828
+ B. Synthesis Under Strict Timing Conditions
829
+ An essential aspect of ASICs is their ability to operate at
830
+ high frequencies. For this reason, the ability of any multi-
831
+ plication circuit to operate at high frequencies is vital. All
832
+ 2CIM designs were tested under high frequencies as well.
833
+ They were synthesized using a very strict timing target of
834
+ 0.31 ns, equal to the clock-to-q + setup + hold delay for 1
835
+ FA placed between registers. Such a strict target shows how
836
+ well these designs can be pipelined. Table II contains the
837
+ synthesis results of the proposed designs, both retiming and
838
+ over-constraining were used to meet timing. The feed-forward
839
+ designs that use a 2CA final adder have a longer critical path
840
+ than the feedback designs; ergo, they are unsuitable for high-
841
+ frequency applications. Designs using the 2CPA final adders
842
+ could achieve high frequencies as intended. However, the
843
+ added complexity from the more complicated control logic
844
+ resulted in a greater area complexity. Therefore, 2CPA is
845
+ consistently outperformed by a pipelined RCA using the same
846
+ latency. For such high-frequency applications, the only viable
847
+ options are fully feed-forward designs because of their ability
848
+
849
+ to be efficiently pipelined without requiring additional control
850
+ logic. As seen in table II, the feed-forward (FF) designs can
851
+ TABLE II
852
+ SYNTHESIS RESULTS FOR 16×16 MULTIPLICATIONS UNDER STRICT
853
+ TIMING CONDITIONS (TARGET = 0.31 ns)
854
+ Design
855
+ FA
856
+ PPM
857
+ Comp.
858
+ L
859
+ Area
860
+ Timing
861
+ Power
862
+ (ns)
863
+ (mW)
864
+ Star
865
+ N/A
866
+ N/A
867
+ N/A
868
+ 7
869
+ 5178
870
+ 0.31
871
+ 7.52
872
+ FF
873
+ RCA
874
+ RoCoCo
875
+ DW02
876
+ 9
877
+ 3963
878
+ 0.31
879
+ 7.13
880
+ RCA
881
+ DW02
882
+ DW02
883
+ 9
884
+ 3984
885
+ 0.31
886
+ 7.92
887
+ RCA
888
+ RoCoCo
889
+ RoCoCo
890
+ 7
891
+ 4065
892
+ 0.31
893
+ 6.57
894
+ RCA
895
+ DW02
896
+ Custom
897
+ 9
898
+ 4065
899
+ 0.31
900
+ 7.83
901
+ RCA
902
+ DW02
903
+ RoCoCo
904
+ 9
905
+ 4200
906
+ 0.31
907
+ 7.98
908
+ 2CPA
909
+ DW02
910
+ DW02
911
+ 11
912
+ 4971
913
+ 0.31
914
+ 10.17
915
+ 2CPA
916
+ DW02
917
+ Custom
918
+ 10
919
+ 5115
920
+ 0.31
921
+ 9.72
922
+ 2CPA
923
+ RoCoCo
924
+ RoCoCo
925
+ 12
926
+ 5192
927
+ 0.31
928
+ 9.58
929
+ 2CPA
930
+ RoCoCo
931
+ DW02
932
+ 12
933
+ 5202
934
+ 0.31
935
+ 10.11
936
+ 2CPA
937
+ DW02
938
+ RoCoCo
939
+ 11
940
+ 5307
941
+ 0.31
942
+ 10.06
943
+ 2CA
944
+ DW02
945
+ DW02
946
+ 5
947
+ 4394
948
+ 0.46
949
+ 4.43
950
+ 2CA
951
+ DW02
952
+ RoCoCo
953
+ 7
954
+ 4208
955
+ 0.49
956
+ 4.18
957
+ 2CA
958
+ DW02
959
+ Custom
960
+ 5
961
+ 4600
962
+ 0.48
963
+ 4.46
964
+ 2CA
965
+ RoCoCo
966
+ DW02
967
+ 5
968
+ 3255
969
+ 0.55
970
+ 2.96
971
+ 2CA
972
+ RoCoCo
973
+ RoCoCo
974
+ 6
975
+ 3434
976
+ 0.58
977
+ 3.05
978
+ FB
979
+ N/A
980
+ DW02
981
+ FAs
982
+ 4
983
+ 3712
984
+ 0.46
985
+ 4.47
986
+ N/A
987
+ RoCoCo
988
+ FAs
989
+ 6
990
+ 3554
991
+ 0.49
992
+ 4.34
993
+ offer up to 23% area savings and 13% power reduction. The
994
+ Star multiplier is not able to meet timing without pipelining.
995
+ It requires a minimum pipeline depth of 6 for the designs to
996
+ meet timing and a depth of 7 to achieve the optimal area.
997
+ The Star multiplier achieves a similar latency to the proposed
998
+ designs while having a greater area complexity. Therefore, the
999
+ MC path for 2CIM designs is shorter or equivalent to that of
1000
+ Star, explaining the power reduction 2CIM designs offer for
1001
+ such strict timing targets.
1002
+ C. Discussions
1003
+ The proposed 2CIM designs can offer significant area
1004
+ savings for various applications. Table III contains the area
1005
+ savings provided by the best-performing design under different
1006
+ bit widths and timing targets. This table presents the optimal
1007
+ design under either very strict or semi-relaxed timing condi-
1008
+ tions. The feed-forward (FF) design is best suited for strict
1009
+ timing targets, and the feedback (FB) design is best suited for
1010
+ more relaxed timing targets. The 2CA and 2CPA final adders
1011
+ do not offer any area savings when compared to the other
1012
+ designs. The 2CA creates a feedback loop in the feed-forward
1013
+ design. This means that a feed-forward design implementing
1014
+ a 2CA final adder will consistently be outperformed by either
1015
+ the feedback designs or a feed-forward design that uses an
1016
+ RCA final adder.
1017
+ 2CIM designs have a throughput of 1/2, i.e., they can
1018
+ compute one multiplication every two clock cycles. 2CIM
1019
+ designs can be used when i multiplications are required within
1020
+ j clock cycles, and (i mod j)/j is less than or equal to 1/2.
1021
+ Another case in which 2CIM designs can be used is when
1022
+ there is a latency constraint. For 128×128 multipliers with
1023
+ a clock target of 0.8, both the feed-forward design and the
1024
+ Star multiplier achieve the same latency. This is because the
1025
+ feed-forward architecture can be pipelined very efficiently.
1026
+ TABLE III
1027
+ AREA SAVINGS FOR DIFFERENT BIT WIDTHS
1028
+ Design
1029
+ PPM
1030
+ Comp.
1031
+ Timing
1032
+ L
1033
+ Area
1034
+ Savings
1035
+ (ns)
1036
+ 8×8
1037
+ Star
1038
+ N/A
1039
+ N/A
1040
+ 0.31
1041
+ 4
1042
+ 1377
1043
+ -
1044
+ FF
1045
+ RoCoCo
1046
+ RoCoCo
1047
+ 0.31
1048
+ 5
1049
+ 1088
1050
+ 21%
1051
+ Star
1052
+ N/A
1053
+ N/A
1054
+ 0.5705
1055
+ 2
1056
+ 738
1057
+ -
1058
+ FB
1059
+ DW02
1060
+ FAs
1061
+ 0.5705
1062
+ 4
1063
+ 600
1064
+ 19%
1065
+ 16×16
1066
+ Star
1067
+ N/A
1068
+ N/A
1069
+ 0.31
1070
+ 7
1071
+ 5179
1072
+ -
1073
+ FF
1074
+ RoCoCo
1075
+ DW02
1076
+ 0.31
1077
+ 9
1078
+ 3964
1079
+ 23%
1080
+ Star
1081
+ N/A
1082
+ N/A
1083
+ 1.001
1084
+ 1
1085
+ 2160
1086
+ -
1087
+ FB
1088
+ DW02
1089
+ FAs
1090
+ 1.001
1091
+ 3
1092
+ 1255
1093
+ 42%
1094
+ 32×32
1095
+ Star
1096
+ N/A
1097
+ N/A
1098
+ 0.31
1099
+ 10
1100
+ 17790
1101
+ -
1102
+ FF
1103
+ DW02
1104
+ Custom
1105
+ 0.31
1106
+ 9
1107
+ 13653
1108
+ 23%
1109
+ Star
1110
+ N/A
1111
+ N/A
1112
+ 1.287
1113
+ 2
1114
+ 6057
1115
+ -
1116
+ FB
1117
+ DW02
1118
+ FAs
1119
+ 1.287
1120
+ 3
1121
+ 4093
1122
+ 32%
1123
+ 64×64
1124
+ Star
1125
+ N/A
1126
+ N/A
1127
+ 0.4
1128
+ 7
1129
+ 51638
1130
+ -
1131
+ FF
1132
+ DW02
1133
+ Custom
1134
+ 0.4
1135
+ 7
1136
+ 47496
1137
+ 8%
1138
+ Star
1139
+ N/A
1140
+ N/A
1141
+ 1.3915
1142
+ 2
1143
+ 22841
1144
+ -
1145
+ FB
1146
+ DW02
1147
+ FAs
1148
+ 1.3915
1149
+ 3
1150
+ 13389
1151
+ 41%
1152
+ 128×128
1153
+ Star
1154
+ N/A
1155
+ N/A
1156
+ 0.8
1157
+ 4
1158
+ 121634
1159
+ -
1160
+ FF
1161
+ DW02
1162
+ Custom
1163
+ 0.8
1164
+ 4
1165
+ 63777
1166
+ 48%
1167
+ Star
1168
+ N/A
1169
+ N/A
1170
+ 1.457
1171
+ 2
1172
+ 89165
1173
+ -
1174
+ FB
1175
+ DW02
1176
+ FAs
1177
+ 1.457
1178
+ 3
1179
+ 48911
1180
+ 45%
1181
+ Suppose there is a latency constraint of 4 cycles, and the
1182
+ throughput of these multipliers does not exceed 1/2. In such
1183
+ a case, multiple instances of the feed-forward design can be
1184
+ used to calculate any number of multiplications, providing
1185
+ a great degree of area savings. Such cases are only seen
1186
+ for large multiplications operating under high frequencies. In
1187
+ most cases, however, a 2CIM design can slightly increase the
1188
+ latency. This is because conventional multipliers are somewhat
1189
+ faster than the proposed 2CIM designs. Thus, 2CIM designs
1190
+ might require more pipeline stages to meet a strict timing
1191
+ target. This is usually around one or two additional clock
1192
+ cycles. For large multipliers with very strict timing targets,
1193
+ however, the feed-forward architecture can be pipelined more
1194
+ efficiently, achieving identical latencies as those of the Star
1195
+ multiplier.
1196
+ VI. CONCLUSION
1197
+ The number of multiplications required in a clock cycle is
1198
+ not always an integer, which is the case when an odd number
1199
+ of multiplications is required within two clock cycles, e.g.,
1200
+ three multiplications are required within two clock cycles, i.e.,
1201
+ 1.5 multiplications per clock cycle. Such cases can be found
1202
+ in a variety of applications across any domain since multipli-
1203
+ cation circuits are essential building blocks. The conventional
1204
+ way of dealing with such cases is to utilize complete multi-
1205
+ pliers for these fractional multiplications. Or in other words,
1206
+ using a multiplier for only 50% of the time. This approach
1207
+ is not optimal since it requires more area than necessary
1208
+ and does not take full advantage of the allocated resources.
1209
+ This work presents a range of MC unsigned integer multi-
1210
+
1211
+ pliers that offer fractional multipliers. These designs provide
1212
+ significant area savings for a variety of applications. 2CIM
1213
+ designs are designed to replace fully-pipelined multipliers,
1214
+ i.e., multipliers that can accept inputs in a consecutive clock
1215
+ cycle, for applications where they remain underutilized. 2CIM
1216
+ designs have a throughput of 1/2, i.e., they can compute one
1217
+ multiplication every two clock cycles. This work presents two
1218
+ main architectures, each having multiple possible variations.
1219
+ The feed-forward architecture has the advantage of speed. It
1220
+ can run at very high frequencies due to the feed-forward design
1221
+ aspect, which allows it to be continuously pipelined until the
1222
+ timing is met. The feedback design implements a higher degree
1223
+ of resource sharing, enabling it to require significantly fewer
1224
+ hardware resources. However, it also requires a feedback loop.
1225
+ Feedback loops can limit a design’s ability to operate at high
1226
+ frequencies since feedback loops are not easily pipelined. Both
1227
+ architectures have advantages, and depending on the target
1228
+ application, either can be the optimal choice. 2CIM designs
1229
+ can be used for any application that requires i multiplications
1230
+ within j clock cycles, and (i mod j)/j is less than or equal
1231
+ to 1/2. This can be especially useful for area-efficient low-
1232
+ bandwidth applications. 2CIM designs can provide up to 21%,
1233
+ 42%, 32%, 41%, and 48% area savings for multiplications
1234
+ bit widths of 8, 16, 32, 64, and 128, respectively. 2CIM
1235
+ designs were tested thoroughly through automation scripts
1236
+ using various multiplication sizes and timing targets. 2CIM
1237
+ designs consistently offered significant area savings through-
1238
+ out our testing. Moreover, 2CIM designs can provide power
1239
+ savings when dealing with strict timing targets. All designs
1240
+ were synthesized using the Synopsys Design Compiler and a
1241
+ 40 nm TSMC technology.
1242
+ REFERENCES
1243
+ [1] D. Goldberg, “What every computer scientist should know about
1244
+ floating-point arithmetic,” ACM Computing Surveys, vol. 23, pp. 5–48,
1245
+ 1991.
1246
+ [2] C.
1247
+ Hoekstra,
1248
+ K.
1249
+ Shukla,
1250
+ and
1251
+ M.
1252
+ Harris,
1253
+ “Im-
1254
+ plementing
1255
+ high-precision
1256
+ decimal
1257
+ arithmetic
1258
+ with
1259
+ CUDA
1260
+ int128,”
1261
+ https://developer.nvidia.com/blog/
1262
+ implementing-high-precision-decimal-arithmetic-with-cuda-int128
1263
+ (accessed 14 July 2022).
1264
+ [3] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Transactions
1265
+ on Electronic Computers, vol. EC-13, pp. 14–17, 1964.
1266
+ [4] L. Dadda, “Some schemes for parallel multipliers,” Alta Frequenza,
1267
+ vol. 34, pp. 349–356, 1965.
1268
+ [5] F. Ugurdag, O. Keskin, C. Tunc, F. Temizkan, G. Fici, and S. Dedeoglu,
1269
+ “RoCoCo: Row and column compression for high-performance multipli-
1270
+ cation on FPGAs,” in Proc. East-West Design & Test Symp. (EWDTS),
1271
+ 2011, pp. 98–101.
1272
+ [6] C. Rafferty, M. O’Neill, and N. Hanley, “Evaluation of large integer
1273
+ multiplication methods on hardware,” IEEE Transactions on Computers,
1274
+ vol. 66, pp. 1369–1382, 2017.
1275
+ [7] I. San and N. At, “On increasing the computational efficiency of long
1276
+ integer multiplication on FPGA,” in Proc. IEEE Int. Conf. on Trust,
1277
+ Security and Privacy in Computing and Communications (TrustCom),
1278
+ 2012, pp. 1149–1154.
1279
+ [8] J. Von Zur Gathen and J. Shokrollahi, “Efficient FPGA-based karat-
1280
+ suba multipliers for polynomials over F2,” in Proc. Selected Areas in
1281
+ Cryptography (SAC).
1282
+ Springer, 2005, pp. 359–369.
1283
+ [9] S. Gao, D. Al-Khalili, and N. Chabini, “Efficient scheme for implement-
1284
+ ing large size signed multipliers using multigranular embedded DSP
1285
+ blocks in FPGAs,” Int. Journal of Reconfigurable Computing, 2009.
1286
+ [10] F. de Dinechin and B. Pasca, “Large multipliers with fewer DSP blocks,”
1287
+ in Proc. IEEE Int. Conf. on Field Programmable Logic and Applications
1288
+ (FPL), 2009, pp. 250–255.
1289
+ [11] M. Langhammer and B. Pasca, “Folded integer multiplication for
1290
+ FPGAs,” in Proc. ACM/SIGDA Int. Symp. on Field-Programmable Gate
1291
+ Arrays (FPGA), 2021, pp. 160–170.
1292
+ [12] J. Li, Y. Du, and J. Wang, “Design a pocket multi-bit multiplier in
1293
+ FPGA,” in Proc. IEEE Int. Conf. on ASIC (ASICON), 1996, pp. 275–
1294
+ 279.
1295
+ [13] M. R. Santoro and M. A. Horowitz, “SPIM: a pipelined 64*64-bit
1296
+ iterative multiplier,” IEEE Journal of Solid-state Circuits, vol. 24, pp.
1297
+ 487–493, 1989.
1298
+ [14] M.-C. Shin, S.-H. Kang, and I.-C. Park, “An area-efficient iterative
1299
+ modified-booth multiplier based on self-timed clocking,” in Proc. IEEE
1300
+ Int. Conf. on Computer Design: VLSI in Computers and Processors
1301
+ (ICCD), 2001, pp. 511–512.
1302
+ [15] Synopsys,
1303
+ “DesignWare
1304
+ Library,”
1305
+ https://www.synopsys.com/dw/
1306
+ buildingblock.php (accessed: 2021-03-01).
1307
+
YNFQT4oBgHgl3EQfdzaO/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff