jackkuo commited on
Commit
5fab001
·
verified ·
1 Parent(s): 1d962b9

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -9E1T4oBgHgl3EQfogQj/content/tmp_files/2301.03320v1.pdf.txt +524 -0
  2. -9E1T4oBgHgl3EQfogQj/content/tmp_files/load_file.txt +322 -0
  3. .gitattributes +53 -0
  4. 1dAzT4oBgHgl3EQft_1-/vector_store/index.pkl +3 -0
  5. 2NFQT4oBgHgl3EQfFTWv/content/2301.13241v1.pdf +3 -0
  6. 2NFQT4oBgHgl3EQfFTWv/vector_store/index.faiss +3 -0
  7. 2tE4T4oBgHgl3EQf0A0W/content/2301.05278v1.pdf +3 -0
  8. 2tE4T4oBgHgl3EQf0A0W/vector_store/index.faiss +3 -0
  9. 2tE4T4oBgHgl3EQf0A0W/vector_store/index.pkl +3 -0
  10. 4tFKT4oBgHgl3EQf9i5P/content/tmp_files/2301.11954v1.pdf.txt +896 -0
  11. 4tFKT4oBgHgl3EQf9i5P/content/tmp_files/load_file.txt +355 -0
  12. 5dAyT4oBgHgl3EQf2fkR/content/tmp_files/2301.00750v1.pdf.txt +1640 -0
  13. 5dAyT4oBgHgl3EQf2fkR/content/tmp_files/load_file.txt +0 -0
  14. 5tFAT4oBgHgl3EQfmx2I/content/tmp_files/2301.08625v1.pdf.txt +1005 -0
  15. 5tFAT4oBgHgl3EQfmx2I/content/tmp_files/load_file.txt +0 -0
  16. 6dE0T4oBgHgl3EQffAAW/content/2301.02397v1.pdf +3 -0
  17. 6dE0T4oBgHgl3EQffAAW/vector_store/index.pkl +3 -0
  18. 6tAyT4oBgHgl3EQfcvc9/vector_store/index.faiss +3 -0
  19. 6tE4T4oBgHgl3EQf1w38/vector_store/index.faiss +3 -0
  20. 79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf +3 -0
  21. 79E2T4oBgHgl3EQfPgaW/vector_store/index.pkl +3 -0
  22. AdFLT4oBgHgl3EQfxDCd/content/2301.12166v1.pdf +3 -0
  23. AdFLT4oBgHgl3EQfxDCd/vector_store/index.faiss +3 -0
  24. AdFLT4oBgHgl3EQfxDCd/vector_store/index.pkl +3 -0
  25. C9FQT4oBgHgl3EQf_jdA/vector_store/index.pkl +3 -0
  26. HdE4T4oBgHgl3EQfgg3J/vector_store/index.pkl +3 -0
  27. HtFJT4oBgHgl3EQfui1l/vector_store/index.faiss +3 -0
  28. I9E4T4oBgHgl3EQfIgyC/vector_store/index.faiss +3 -0
  29. J9AzT4oBgHgl3EQfIPtt/content/2301.01058v1.pdf +3 -0
  30. J9AzT4oBgHgl3EQfIPtt/vector_store/index.faiss +3 -0
  31. J9AzT4oBgHgl3EQfIPtt/vector_store/index.pkl +3 -0
  32. J9FJT4oBgHgl3EQfwy0B/content/tmp_files/2301.11631v1.pdf.txt +875 -0
  33. J9FJT4oBgHgl3EQfwy0B/content/tmp_files/load_file.txt +0 -0
  34. JNA0T4oBgHgl3EQfCf8h/content/tmp_files/2301.01989v1.pdf.txt +3288 -0
  35. JNA0T4oBgHgl3EQfCf8h/content/tmp_files/load_file.txt +0 -0
  36. JtE1T4oBgHgl3EQfGQNW/vector_store/index.pkl +3 -0
  37. JtE2T4oBgHgl3EQfUwcR/content/tmp_files/2301.03815v1.pdf.txt +2623 -0
  38. JtE2T4oBgHgl3EQfUwcR/content/tmp_files/load_file.txt +0 -0
  39. KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf +3 -0
  40. KtFRT4oBgHgl3EQf1Dhl/vector_store/index.pkl +3 -0
  41. L9E4T4oBgHgl3EQfKAwg/content/2301.04925v1.pdf +3 -0
  42. LdE0T4oBgHgl3EQfSgCx/vector_store/index.pkl +3 -0
  43. MNAyT4oBgHgl3EQf6vpX/content/tmp_files/2301.00826v1.pdf.txt +725 -0
  44. MNAyT4oBgHgl3EQf6vpX/content/tmp_files/load_file.txt +382 -0
  45. N9AzT4oBgHgl3EQfk_2S/content/tmp_files/2301.01541v1.pdf.txt +573 -0
  46. N9AzT4oBgHgl3EQfk_2S/content/tmp_files/load_file.txt +389 -0
  47. N9FAT4oBgHgl3EQfyR7D/content/tmp_files/2301.08692v1.pdf.txt +0 -0
  48. N9FAT4oBgHgl3EQfyR7D/content/tmp_files/load_file.txt +0 -0
  49. NtE0T4oBgHgl3EQfjgEx/content/2301.02459v1.pdf +3 -0
  50. NtE0T4oBgHgl3EQfjgEx/vector_store/index.faiss +3 -0
-9E1T4oBgHgl3EQfogQj/content/tmp_files/2301.03320v1.pdf.txt ADDED
@@ -0,0 +1,524 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ New results for thermal interquark bottomonium
2
+ potentials using NRQCD from the HAL QCD method
3
+ Thomas Spriggs,𝑎,∗ Chris Allton,𝑎 Timothy Burns𝑎 and Seyong Kim𝑏
4
+ 𝑎Department of Physics, Swansea University, Swansea SA2 8PP, United Kingdom
5
+ 𝑏Department of Physics, Sejong University, Seoul 143-747, Korea
6
+ E-mail: {t.spriggs.996870,c.allton,t.burns}@swansea.ac.uk,
7
8
+ We report progress in the calculation of the thermal interquark potential of bottomonium using the
9
+ HAL QCD method applied to bottom quarks in the non-relativistic approximation (i.e. NRQCD).
10
+ We exploit the fast Fourier transform algorithm, using a momentum space representation, to
11
+ efficiently calculate NRQCD correlation functions of non-local mesonic S-wave states, and thus
12
+ obtain the potential for temperatures in both the hadronic and plasma phases. This work was
13
+ performed on our anisotropic 2+1 flavour “Generation 2" FASTSUM ensembles.
14
+ The 39th International Symposium on Lattice Field Theory, LATTICE2022 8th–13th August, 2022 Bonn,
15
+ Germany
16
+ ∗Speaker
17
+ © Copyright owned by the author(s) under the terms of the Creative Commons
18
+ Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
19
+ https://pos.sissa.it/
20
+ arXiv:2301.03320v1 [hep-lat] 9 Jan 2023
21
+
22
+ Thermal interquark bottomonium potentials
23
+ Thomas Spriggs
24
+ 1.
25
+ Introduction
26
+ The interquark potential of quarkonia was one of the first quantities studied in the quest for a
27
+ deeper understanding of the nature of the strong interaction. Pioneering studies include [1] where
28
+ the Cornell potential was used to calculate the spectrum of charmonium states using a quantum
29
+ mechanical formalism. In thermal QCD, the temperature dependence of the interquark potential
30
+ results in quarkonium states melting at different temperatures [2]. These considerations strongly
31
+ motivate a study of the thermal behaviour of the quarkonia interquark potential.
32
+ Slowly moving heavy quarks, interacting via QCD, can be studied using non-relativistic QCD
33
+ (NRQCD) which allows significant benefits. For example, NRQCD calculations of bottomonia
34
+ are typically accurate at the percent level or less and is an excellent ground for quantitative tests.
35
+ In this work we use NRQCD to determine the interquark potential in bottomonia using the HAL
36
+ QCD approach [3]: Correlation functions of bottomonia operators are studied where the quark
37
+ and antiquark are spatially separated, and this allows an access to the Nambu-Bethe-Salpeter
38
+ wavefunction in the quarkonium rest frame. Using this wavefunction in the Schrödinger equation
39
+ leads to the interquark potential. We find indications of the weakening of the potential as the
40
+ temperature increases, as expected. This work is a continuation of the work in [4] and extends
41
+ previous studies of the interquark potential by the FASTSUM Collaboration in the charmonium
42
+ system [5, 6]. Other work in this area includes [7].
43
+ 2.
44
+ NRQCD and lattice setup
45
+ NRQCD is an effective theory with a power counting in the heavy quark velocity, 𝑣. In this
46
+ theory, the heavy quark and antiquark fields decouple and so virtual heavy quark-antiquark loops
47
+ cannot form. The NRQCD quark propagator is calculated via an initial value problem, rather
48
+ than via a boundary value problem (as is the case for relativistic quarks). NRQCD is particularly
49
+ amenable for lattice simulations because NRQCD quarkonium correlation functions do not have
50
+ “backward movers” which means the full extent of the lattice in the temporal direction can be used
51
+ in the analysis.
52
+ Our NRQCD formulation incorporates both O(𝑣4) and the leading spin-dependent corrections.
53
+ The 𝑏-quark mass is tuned by setting the “kinetic” mass (i.e. from the dispersion relation) of the
54
+ spin-averaged 1𝑆 states to its experimental value. Full details of our NRQCD setup appear in [8].
55
+ All our results were obtained using our FASTSUM 𝑁 𝑓 = 2+1 flavour “Generation 2” ensembles
56
+ which have the parameters listed in Table 1.
57
+ 𝑁𝜏
58
+ 16
59
+ 20
60
+ 24
61
+ 28
62
+ 32
63
+ 36
64
+ 40
65
+ T [MeV]
66
+ 352
67
+ 281
68
+ 235
69
+ 201
70
+ 176
71
+ 156
72
+ 141
73
+ 𝑁configurations
74
+ 1050
75
+ 950
76
+ 1000
77
+ 1000
78
+ 1000
79
+ 500
80
+ 500
81
+ Table 1: An overview of the FASTSUM Generation 2 correlation functions used in this work. Lattice
82
+ volumes are (24𝑎𝑠)3 × (𝑁𝜏𝑎𝜏) with 𝑎𝑠 = 0.1227(8)fm and 𝑎𝜏 = 35.1(2)am. For these ensembles with a
83
+ pion mass of 𝑀𝜋 = 384(4)MeV, the pseudo-critical temperature Tpc = 181(1)MeV [9].
84
+ 2
85
+
86
+ Thermal interquark bottomonium potentials
87
+ Thomas Spriggs
88
+ 3.
89
+ Method
90
+ 3.1 The HAL QCD method
91
+ To calculate the potential between two quarks in a bottomonium - the interquark potential, 𝑉(𝑟)
92
+ - we use the method from the HAL QCD collaboration [3]. In brief, this method uses the point-split
93
+ correlation function and the time independent Schrödinger equation to calculate the interquark
94
+ potential.
95
+ The point-split correlation function is defined by
96
+ 𝐶Γ(r, 𝜏) =
97
+ ∑︁
98
+ x
99
+ ⟨𝐽Γ(x, 𝜏; r)𝐽†
100
+ Γ(0; 0)⟩,
101
+ (1)
102
+ where the non-local mesonic operators are defined
103
+ ����Γ(𝑥; r) = ¯𝑞(𝑥)Γ𝑈(𝑥, 𝑥 + r)𝑞(𝑥 + r).
104
+ (2)
105
+ The quark and antiquark fields, 𝑞 and ¯𝑞, are separated in space by r. The gauge field 𝑈(𝑥, 𝑥 + r) is
106
+ required to ensure gauge invariance and Γ signifies the channel being considered; in this work we
107
+ consider vector and pseudoscalar S-wave states. The correlator in (1) is depicted in Figure 1.
108
+ (0,0)
109
+ (x,𝜏)
110
+ (x+r,𝜏)
111
+ 𝐽†
112
+ Γ(0; 0)
113
+ 𝐽Γ(x, 𝜏; r)
114
+ Source
115
+ Sink
116
+ ¯𝑏
117
+ 𝑏
118
+ Figure 1: A representation of the point-split correlation function, as defined in (1)
119
+ As usual, the correlation function can be expressed as a sum over eigenstates of the Hamiltonian,
120
+ 𝐶Γ(r, 𝜏) =
121
+ ∑︁
122
+ 𝑗
123
+ Ψ𝑗(r)𝑒−𝐸𝑗 𝜏,
124
+ (3)
125
+ where 𝐸 𝑗 is the energy of a given state 𝑗, and the unnormalised wavefunction
126
+ Ψ 𝑗(r) =
127
+ 𝜓∗
128
+ 𝑗(0)𝜓 𝑗(r)
129
+ 2𝐸 𝑗
130
+ (4)
131
+ is defined in terms of the Nambu-Bethe–Salpeter wavefunction 𝜓 𝑗(r).
132
+ We introduce the time-independent Schrödinger equation,
133
+
134
+ −∇2
135
+ 𝑟
136
+ 2𝜇 + 𝑉Γ (𝑟)
137
+
138
+ Ψ 𝑗 (𝑟) = 𝐸 𝑗Ψ 𝑗 (𝑟) ,
139
+ (5)
140
+ where 𝑉Γ(𝑟) is the potential for the channel Γ and 𝜇 is the reduced quark mass. We apply the
141
+ Schrödinger equation to the point-split correlation function in (3) through the following steps
142
+ −𝜕𝐶Γ(r, 𝜏)
143
+ 𝜕𝜏
144
+ =
145
+ ∑︁
146
+ 𝑗
147
+ 𝐸 𝑗Ψ 𝑗(r)𝑒−𝐸𝑗 𝜏 =
148
+ ∑︁
149
+ 𝑗
150
+
151
+ −∇2
152
+ 𝑟
153
+ 2𝜇 + 𝑉Γ (𝑟)
154
+
155
+ Ψ 𝑗 (𝑟) 𝑒−𝐸𝑗 𝜏
156
+ =
157
+
158
+ −∇2
159
+ 𝑟
160
+ 2𝜇 + 𝑉Γ (𝑟)
161
+
162
+ 𝐶Γ(r, 𝜏).
163
+ (6)
164
+ 3
165
+
166
+ Thermal interquark bottomonium potentials
167
+ Thomas Spriggs
168
+ This yields the form of the interquark potential for a given channel, 𝑉Γ, as
169
+ 𝑉Γ(𝑟) =
170
+ 1
171
+ 𝐶Γ(r, 𝜏)
172
+ �∇2
173
+ 𝑟
174
+ 2𝜇 − 𝜕
175
+ 𝜕𝜏
176
+
177
+ 𝐶Γ(r, 𝜏).
178
+ (7)
179
+ Note that in the continuum limit, we expect the potential to be function of 𝑟 = |r|. There is explicit
180
+ time dependency in this form for the potential, and this will be studied in Section 4.1. Section 4.2
181
+ will discuss how the reduced quark mass, 𝜇, is set.
182
+ It is convenient to define the central potential, 𝑉C, obtained via the usual spin-average [10]
183
+ 𝑉C = 1
184
+ 4𝑉Pseudo Scalar + 3
185
+ 4𝑉Vector.
186
+ (8)
187
+ 3.2 Using momentum space to reformulate the calculation
188
+ This work is a continuation of [4] where more detail about the HAL QCD method can be
189
+ found. We build upon [4] by using an efficient computation of the point-split correlation function,
190
+ 𝐶Γ(r, 𝜏).
191
+ For each 𝜏, a direct calculation of (1) requires a loop over all lattice sites x for each value of r
192
+ which is an expensive operation scaling as O(V2) where V is the spatial volume. What follows is
193
+ a method to reduce the cost of this computation by introducing a momentum space representation
194
+ for the propagator and correlation function, see the Appendix of [6].
195
+ We introduce quark propagators, 𝐷−1(𝑥; 𝑦), by Wick contracting the quark fields in the point-
196
+ split correlation function, (1),
197
+ 𝐶Γ(r, 𝜏) = −
198
+ ∑︁
199
+ x
200
+ ⟨𝐷−1(x + r, 𝜏; 0, 0)Γ𝛾5
201
+
202
+ 𝐷−1(x, 𝜏; 0, 0)
203
+ �†
204
+ 𝛾5Γ†⟩.
205
+ (9)
206
+ Note that we have gauge fixed our configurations to the Coulomb gauge, and have replaced
207
+ the gauge connection, 𝑈(𝑥, 𝑥 + r) in (2) by unity. We now implicitly define the corresponding
208
+ momentum space quark propagator via
209
+ 𝐷−1(y, 𝜏; 0, 0) = 1
210
+ 𝑉
211
+ ∑︁
212
+ p
213
+ ˜𝐷−1(p, 𝜏)𝑒𝑖y·p,
214
+ (10)
215
+ in terms of the 3-momentum, p, which is conjugate to the position y. Introducing this momentum-
216
+ space quark propagator into (9) yields
217
+ 𝐶Γ(r, 𝜏) = 1
218
+ 𝑉
219
+ ∑︁
220
+ p
221
+ ⟨ ˜𝐷−1(p, 𝜏)Γ𝛾5 ˜𝐷−1(−p, 𝜏)𝛾5Γ†⟩𝑒𝑖p·r,
222
+ (11)
223
+ which we will use to implicitly define the momentum-space correlator, ˜𝐶Γ(p, 𝜏), i.e.
224
+ 𝐶Γ(r, 𝜏) = 1
225
+ 𝑉
226
+ ∑︁
227
+ p
228
+ ˜𝐶Γ(p, 𝜏)𝑒𝑖p·r.
229
+ (12)
230
+ We note that once we have calculated ˜𝐶Γ(p, 𝜏), we can determine the desired correlator 𝐶Γ(r, 𝜏)
231
+ for any r using (12).
232
+ 4
233
+
234
+ Thermal interquark bottomonium potentials
235
+ Thomas Spriggs
236
+ At first sight, the conversion to momentum space does not produce any savings, because the
237
+ calculation of 𝐶Γ and ˜𝐷−1, defined via (10) and (12), are both O(V2) in the number of operations,
238
+ i.e. the same as the direct method. However both (10) and (12) are Fourier transforms, and so
239
+ significant speed-up for these steps can be achieved using the fast Fourier transform (FFT) algorithm
240
+ which scales as O(V log V).
241
+ 4.
242
+ Results
243
+ For better comparison with [4], and as progress towards the treatment of 𝐶Γ(r, 𝜏) for all r, we
244
+ consider here only the on-axis r data. Extensions to this will be discussed in Section 5.
245
+ 4.1 Time dependence
246
+ The potential is defined in (7) where there is an apparent explicit dependence on time, 𝜏, from
247
+ the correlation function. In Figure 2, the potential, 𝑉Vector, from (7) is plotted against 𝜏 for a variety
248
+ of distances r for our two extreme temperatures, 𝑇 = 141 and 352 MeV. We can see a clear 𝜏
249
+ dependence for small 𝜏 which increases with r. However, for various ranges of 𝜏 and r there are
250
+ clear plateau.
251
+ In addition, we note that we would like to uncover temperature effects in the potential. The
252
+ most accurate way of doing this is to compare different temperatures’ potentials obtained with the
253
+ same time window to avoid contamination by systematic artefacts.
254
+ Based on these considerations, we restrict the range of 𝑟 and 𝜏 used in the determination of
255
+ the potential to those listed in Table 2. Notice that in selecting a time window, there is a trade-off
256
+ between the ranges of 𝑟 and 𝑇 for which the potential can be extracted: larger time windows give
257
+ access to a larger range of 𝑟, but over a smaller range of 𝑇.
258
+ In Figure 3 we show four determinations of the central potential, corresponding to the first four
259
+ time windows identified in Table 2. In each plot we show the potentials for several temperatures, and
260
+ since these have been obtained by averaging over the same range of 𝜏, the temperature dependence
261
+ can be ascribed to temperature effects, rather than fitting artefacts.
262
+ We find that the potential
263
+ consistently flattens as the temperature increases above 𝑇pc, as expected. There is little thermal
264
+ variation in the potential for 𝑇 ⪅ 𝑇pc.
265
+ In Figure 3, the error bars show statistical errors only. The curves are fits to the Cornell
266
+ potential, which will be discussed in Section 4.3.
267
+ 4.2 Quark mass dependence
268
+ Equation (7) contains the reduced quark mass, 𝜇, which needs to be defined. In [7], the 1S
269
+ and 2S states were used to determine the bottom quark mass 𝑚𝑏, and thus the reduced quark mass.
270
+ In our simulations we do not have access to the 2S state. We instead use the simple argument:
271
+ 𝜇 ≡ 1
272
+ 2𝑚𝑏 ≈ 1
273
+ 2 𝑀Υ, with 𝑀Υ from [11]. We have tested the sensitivity of the potential on the quark
274
+ mass and found that the variation (within sensible 𝜇 ranges) is minimal.
275
+ 5
276
+
277
+ Thermal interquark bottomonium potentials
278
+ Thomas Spriggs
279
+ Figure 2: Time dependence in the potential restricting the range of 𝑟 that we can consider valid. Shown for
280
+ two temperatures using the vector channel as an example.
281
+ Time window [𝑎𝜏]
282
+ 𝑟 range [𝑎𝑠]
283
+ 𝑟 range [fm]
284
+ Temperatures [MeV]
285
+ 13-14
286
+ 1-3
287
+ 0.12-0.37
288
+ 352-141
289
+ 17-18
290
+ 1-4
291
+ 0.12-0.49
292
+ 281-141
293
+ 19-22
294
+ 1-5
295
+ 0.12-0.61
296
+ 235-141
297
+ 21-26
298
+ 1-5
299
+ 0.12-0.61
300
+ 201-141
301
+ 24-30
302
+ 1-6
303
+ 0.12-0.74
304
+ 176-141
305
+ 24-33
306
+ 1-6
307
+ 0.12-0.74
308
+ 156-141
309
+ Table 2: Range of displacements and temperatures allowed to best approximate time independence in𝑉(𝑟, 𝜏).
310
+ Note that 𝑇pc = 181 MeV and thus the time windows below the solid line do not span this pseudocritical
311
+ temperature.
312
+ 4.3 Cornell potential fits
313
+ The Cornell potential [12] is a phenomenological description of a confining potential applicable
314
+ to heavy quarks in QCD and is given by
315
+ 𝑉(𝑟) = −𝛼
316
+ 𝑟 + 𝜎𝑟 + 𝐷.
317
+ (13)
318
+ Fits using (13) to our potential data are shown as solid curves in Figure 3. As can be seen these
319
+ reproduce the data well. When the string tension, 𝜎, in the Cornell potential is zero, this implies a
320
+ deconfined potential. In all cases above 𝑇pc, we find that 𝜎 decreases with increasing temperature,
321
+ confirming the expected thermal behaviour in the bottomonium system. Below𝑇pc the string tension
322
+ does not change within statistical errors.
323
+ 5.
324
+ Conclusion
325
+ The temperature dependence of the central interquark potential in the bottomonium system
326
+ using NRQCD quarks was explored. This work was an extension of [4] and use a momentum-space
327
+ approach which can improve the efficiency of the calculation. Clear thermal effects in this potential
328
+ 6
329
+
330
+ T = 141 MeV
331
+ 8
332
+ Preliminary
333
+ X
334
+ 6
335
+ [GeV]
336
+ *
337
+ 4
338
+ *
339
+ Vector
340
+ 来来
341
+ 2
342
+
343
+ 10
344
+ 15
345
+ 20
346
+ 25
347
+ 30
348
+ 0
349
+ 5
350
+ 35
351
+ 40
352
+ t/aT = 352 MeV
353
+ 8
354
+ Preliminary
355
+ 6
356
+ TI
357
+ [GeV]
358
+ *
359
+ 4
360
+ 2
361
+ 10
362
+ 15
363
+ 0
364
+ 5Thermal interquark bottomonium potentials
365
+ Thomas Spriggs
366
+ Figure 3: The central potential calculated from (7) (points), overlaid with a fit of these data to the Cornell
367
+ potential (13) (curves). Each plot contains all temperatures and r ranges listed in Table 2.
368
+ were observed using a method which decoupled systematic “time window” artefacts from physical,
369
+ thermal effects. A systematic flattening of the potential with increasing temperature above 𝑇pc was
370
+ observed, with no statistically significant variation in the potential for temperatures below 𝑇pc.
371
+ This work will be extended in a number of directions. The potential will be calculated at all
372
+ possible spatial separations, r, rather than just the on-axis values used here, and channels beyond
373
+ the pseudoscalar and vector S-wave states will be included. Also, a more robust definition of the
374
+ reduced quark mass will be developed. Finally, a direct comparison will be made between these
375
+ bottomonium results and those obtained for the charmonium potential using the same ensembles in
376
+ [6].
377
+ Acknowledgments
378
+ This work is supported by STFC grant ST/T000813/1. SK is supported by the National Research
379
+ Foundation of Korea under grant NRF-2021R1A2C1092701andgrantNRF-2021K1A3A1A16096820,
380
+ funded by the Korean government (MEST). This work used the DiRAC Extreme Scaling service at
381
+ the University of Edinburgh, operated by the Edinburgh Parallel Computing Centre and the DiRAC
382
+ 7
383
+
384
+ Time window: 13-14
385
+ 2.4
386
+ - - T= 352 MeV
387
+ 2.2
388
+ T = 281 MeV
389
+ T = 235 MeV
390
+ 2.0
391
+ T = 201 MeV
392
+ 1.8
393
+ T = 176 MeV
394
+ [GeV]
395
+ T = 156 MeV
396
+ 1.6
397
+ T= 141 MeV
398
+ 1.4
399
+ C
400
+ 1.2
401
+ 1.0
402
+ 0.8
403
+ Preliminary
404
+ 0.6
405
+ 0.0
406
+ 0.1
407
+ 0.2
408
+ 0.3
409
+ 0.4
410
+ 0.5
411
+ 0.6
412
+ 0.7
413
+ r [fm]Time window: 17-18
414
+ 2.4
415
+ T = 281 MeV
416
+ 2.2
417
+ T = 235 MeV
418
+ T = 201 MeV
419
+ 2.0
420
+ T = 176 MeV
421
+ 1.8
422
+ T = 156 MeV
423
+ [GeV]
424
+ T = 141 MeV
425
+ 1.6
426
+ 1.4
427
+ 1.2
428
+ 1.0
429
+ 0.8
430
+ Preliminary
431
+ 0.6
432
+ 0.0
433
+ 0.1
434
+ 0.2
435
+ 0.3
436
+ 0.4
437
+ 0.5
438
+ 0.6
439
+ 0.7
440
+ r [fm]Time window: 19-22
441
+ 2.4
442
+ T = 235 MeV
443
+ 2.2
444
+ T = 201 MeV
445
+ T = 176 MeV
446
+ 2.0
447
+ T = 156 MeV
448
+ 1.8
449
+ T = 141 MeV
450
+ [GeV]
451
+ 1.6
452
+ 1.4
453
+ 1.2
454
+ 1.0
455
+ 0.8
456
+ Preliminary
457
+ 0.6
458
+ 0.0
459
+ 0.1
460
+ 0.2
461
+ 0.3
462
+ 0.4
463
+ 0.5
464
+ 0.6
465
+ 0.7
466
+ r [fm]Time window: 21-26
467
+ 2.4
468
+ - T = 201 MeV
469
+ 2.2
470
+ T = 176 MeV
471
+ T = 156 MeV
472
+ 2.0
473
+ T = 141 MeV
474
+ 1.8
475
+ [GeV]
476
+ 1.6
477
+ 1.4
478
+ 1.2
479
+ 1.0
480
+ 0.8
481
+ Preliminary
482
+ 0.6
483
+ 0.0
484
+ 0.1
485
+ 0.2
486
+ 0.3
487
+ 0.4
488
+ 0.5
489
+ 0.6
490
+ 0.7
491
+ r [fm]Thermal interquark bottomonium potentials
492
+ Thomas Spriggs
493
+ Data Intensive service operated by the University of Leicester IT Services on behalf of the STFC
494
+ DiRAC HPC Facility (www.dirac.ac.uk). This equipment was funded by BEIS capital funding via
495
+ STFC capital grants ST/R00238X/1, ST/K000373/1 and ST/R002363/1 and STFC DiRAC Opera-
496
+ tions grants ST/R001006/1 and ST/R001014/1. DiRAC is part of the UK National e-Infrastructure.
497
+ This work was performed using PRACE resources at Cineca (Italy), CEA (France) and Stuttgart
498
+ (Germany) via grants 2015133079, 2018194714, 2019214714 and 2020214714. We acknowledge
499
+ the support of the Swansea Academy for Advanced Computing, the Supercomputing Wales project,
500
+ which is part-funded by the European Regional Development Fund (ERDF) via Welsh Government,
501
+ and the University of Southern Denmark and ICHEC, Ireland for use of computing facilities. We
502
+ are grateful to the Hadron Spectrum Collaboration for the use of their zero temperature ensemble.
503
+ References
504
+ [1] E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane and T.-M. Yan, Phys. Rev. D 17 (1978)
505
+ 3090.
506
+ [2] T. Matsui and H. Satz, Phys. Lett. B 178 (1986) 416–422.
507
+ [3] N. Ishii, S. Aoki and T. Hatsuda, Phys. Rev. Lett. 99 (2007) 022001, [nucl-th/0611096].
508
+ [4] T. Spriggs, C. Allton, T. Burns and S. Kim, PoS LATTICE2021 (2022) 569,
509
+ [arXiv:2112.09092].
510
+ [5] P. W. M. Evans, C. R. Allton and J. I. Skullerud, Phys. Rev. D 89 (2014) 071502,
511
+ [arXiv:1303.5331].
512
+ [6] C. Allton, W. Evans, P. Giudice and J.-I. Skullerud, arXiv:1505.06616.
513
+ [7] R. Larsen, S. Meinel, S. Mukherjee and P. Petreczky, Phys. Rev. D 102 (2020) 114508,
514
+ [arXiv:2008.00100].
515
+ [8] G. Aarts, C. Allton, T. Harris, S. Kim, M. P. Lombardo, S. M. Ryan et al., JHEP 07 (2014)
516
+ 097, [arXiv:1402.6210].
517
+ [9] G. Aarts et al., PoS LATTICE2019 (2019) 075, [arXiv:1912.09827].
518
+ [10] S. Godfrey and N. Isgur, Phys. Rev. D 32 (1985) 189–231.
519
+ [11] Particle Data Group collaboration, R. L. Workman and Others, PTEP 2022 (2022)
520
+ 083C01.
521
+ [12] E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane and T.-M. Yan, Phys. Rev. D 21 (1980)
522
+ 203.
523
+ 8
524
+
-9E1T4oBgHgl3EQfogQj/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,322 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf,len=321
2
+ page_content='New results for thermal interquark bottomonium potentials using NRQCD from the HAL QCD method Thomas Spriggs,𝑎,∗ Chris Allton,𝑎 Timothy Burns𝑎 and Seyong Kim𝑏 𝑎Department of Physics, Swansea University, Swansea SA2 8PP, United Kingdom 𝑏Department of Physics, Sejong University, Seoul 143-747, Korea E-mail: {t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
3
+ page_content='spriggs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
4
+ page_content='996870,c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
5
+ page_content='allton,t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
6
+ page_content='burns}@swansea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
7
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
8
+ page_content='uk, skim@sejong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
9
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
10
+ page_content='kr We report progress in the calculation of the thermal interquark potential of bottomonium using the HAL QCD method applied to bottom quarks in the non-relativistic approximation (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
11
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
12
+ page_content=' NRQCD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
13
+ page_content=' We exploit the fast Fourier transform algorithm, using a momentum space representation, to efficiently calculate NRQCD correlation functions of non-local mesonic S-wave states, and thus obtain the potential for temperatures in both the hadronic and plasma phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
14
+ page_content=' This work was performed on our anisotropic 2+1 flavour “Generation 2" FASTSUM ensembles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
15
+ page_content=' The 39th International Symposium on Lattice Field Theory, LATTICE2022 8th–13th August, 2022 Bonn, Germany ∗Speaker © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
16
+ page_content='0 International License (CC BY-NC-ND 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
17
+ page_content='0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
18
+ page_content=' https://pos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
19
+ page_content='sissa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
20
+ page_content='it/ arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
21
+ page_content='03320v1 [hep-lat] 9 Jan 2023 Thermal interquark bottomonium potentials Thomas Spriggs 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
22
+ page_content=' Introduction The interquark potential of quarkonia was one of the first quantities studied in the quest for a deeper understanding of the nature of the strong interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
23
+ page_content=' Pioneering studies include [1] where the Cornell potential was used to calculate the spectrum of charmonium states using a quantum mechanical formalism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
24
+ page_content=' In thermal QCD, the temperature dependence of the interquark potential results in quarkonium states melting at different temperatures [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
25
+ page_content=' These considerations strongly motivate a study of the thermal behaviour of the quarkonia interquark potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
26
+ page_content=' Slowly moving heavy quarks, interacting via QCD, can be studied using non-relativistic QCD (NRQCD) which allows significant benefits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
27
+ page_content=' For example, NRQCD calculations of bottomonia are typically accurate at the percent level or less and is an excellent ground for quantitative tests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
28
+ page_content=' In this work we use NRQCD to determine the interquark potential in bottomonia using the HAL QCD approach [3]: Correlation functions of bottomonia operators are studied where the quark and antiquark are spatially separated, and this allows an access to the Nambu-Bethe-Salpeter wavefunction in the quarkonium rest frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
29
+ page_content=' Using this wavefunction in the Schrödinger equation leads to the interquark potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
30
+ page_content=' We find indications of the weakening of the potential as the temperature increases, as expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
31
+ page_content=' This work is a continuation of the work in [4] and extends previous studies of the interquark potential by the FASTSUM Collaboration in the charmonium system [5, 6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
32
+ page_content=' Other work in this area includes [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
33
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
34
+ page_content=' NRQCD and lattice setup NRQCD is an effective theory with a power counting in the heavy quark velocity, 𝑣.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
35
+ page_content=' In this theory, the heavy quark and antiquark fields decouple and so virtual heavy quark-antiquark loops cannot form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
36
+ page_content=' The NRQCD quark propagator is calculated via an initial value problem, rather than via a boundary value problem (as is the case for relativistic quarks).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
37
+ page_content=' NRQCD is particularly amenable for lattice simulations because NRQCD quarkonium correlation functions do not have “backward movers” which means the full extent of the lattice in the temporal direction can be used in the analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
38
+ page_content=' Our NRQCD formulation incorporates both O(𝑣4) and the leading spin-dependent corrections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
39
+ page_content=' The 𝑏-quark mass is tuned by setting the “kinetic” mass (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
40
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
41
+ page_content=' from the dispersion relation) of the spin-averaged 1𝑆 states to its experimental value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
42
+ page_content=' Full details of our NRQCD setup appear in [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
43
+ page_content=' All our results were obtained using our FASTSUM 𝑁 𝑓 = 2+1 flavour “Generation 2” ensembles which have the parameters listed in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
44
+ page_content=' 𝑁𝜏 16 20 24 28 32 36 40 T [MeV] 352 281 235 201 176 156 141 𝑁configurations 1050 950 1000 1000 1000 500 500 Table 1: An overview of the FASTSUM Generation 2 correlation functions used in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
45
+ page_content=' Lattice volumes are (24𝑎𝑠)3 × (𝑁𝜏𝑎𝜏) with 𝑎𝑠 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
46
+ page_content='1227(8)fm and 𝑎𝜏 = 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
47
+ page_content='1(2)am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
48
+ page_content=' For these ensembles with a pion mass of 𝑀𝜋 = 384(4)MeV, the pseudo-critical temperature Tpc = 181(1)MeV [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
49
+ page_content=' 2 Thermal interquark bottomonium potentials Thomas Spriggs 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
50
+ page_content=' Method 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
51
+ page_content='1 The HAL QCD method To calculate the potential between two quarks in a bottomonium - the interquark potential, 𝑉(𝑟) we use the method from the HAL QCD collaboration [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
52
+ page_content=' In brief, this method uses the point-split correlation function and the time independent Schrödinger equation to calculate the interquark potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
53
+ page_content=' The point-split correlation function is defined by 𝐶Γ(r, 𝜏) = ∑︁ x ⟨𝐽Γ(x, 𝜏;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
54
+ page_content=' r)𝐽† Γ(0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
55
+ page_content=' 0)⟩, (1) where the non-local mesonic operators are defined 𝐽Γ(𝑥;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
56
+ page_content=' r) = ¯𝑞(𝑥)Γ𝑈(𝑥, 𝑥 + r)𝑞(𝑥 + r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
57
+ page_content=' (2) The quark and antiquark fields, 𝑞 and ¯𝑞, are separated in space by r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
58
+ page_content=' The gauge field 𝑈(𝑥, 𝑥 + r) is required to ensure gauge invariance and Γ signifies the channel being considered;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
59
+ page_content=' in this work we consider vector and pseudoscalar S-wave states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
60
+ page_content=' The correlator in (1) is depicted in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
61
+ page_content=' (0,0) (x,𝜏) (x+r,𝜏) 𝐽† Γ(0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
62
+ page_content=' 0) 𝐽Γ(x, 𝜏;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
63
+ page_content=' r) Source Sink ¯𝑏 𝑏 Figure 1: A representation of the point-split correlation function, as defined in (1) As usual, the correlation function can be expressed as a sum over eigenstates of the Hamiltonian, 𝐶Γ(r, 𝜏) = ∑︁ 𝑗 Ψ𝑗(r)𝑒−𝐸𝑗 𝜏, (3) where 𝐸 𝑗 is the energy of a given state 𝑗, and the unnormalised wavefunction Ψ 𝑗(r) = 𝜓∗ 𝑗(0)𝜓 𝑗(r) 2𝐸 𝑗 (4) is defined in terms of the Nambu-Bethe–Salpeter wavefunction 𝜓 𝑗(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
64
+ page_content=' We introduce the time-independent Schrödinger equation, � −∇2 𝑟 2𝜇 + 𝑉Γ (𝑟) � Ψ 𝑗 (𝑟) = 𝐸 𝑗Ψ 𝑗 (𝑟) , (5) where 𝑉Γ(𝑟) is the potential for the channel Γ and 𝜇 is the reduced quark mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
65
+ page_content=' We apply the Schrödinger equation to the point-split correlation function in (3) through the following steps −𝜕𝐶Γ(r, 𝜏) 𝜕𝜏 = ∑︁ 𝑗 𝐸 𝑗Ψ 𝑗(r)𝑒−𝐸𝑗 𝜏 = ∑︁ 𝑗 � −∇2 𝑟 2𝜇 + 𝑉Γ (𝑟) � Ψ 𝑗 (𝑟) 𝑒−𝐸𝑗 𝜏 = � −∇2 𝑟 2𝜇 + 𝑉Γ (𝑟) � 𝐶Γ(r, 𝜏).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
66
+ page_content=' (6) 3 Thermal interquark bottomonium potentials Thomas Spriggs This yields the form of the interquark potential for a given channel, 𝑉Γ, as 𝑉Γ(𝑟) = 1 𝐶Γ(r, 𝜏) �∇2 𝑟 2𝜇 − 𝜕 𝜕𝜏 � 𝐶Γ(r, 𝜏).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
67
+ page_content=' (7) Note that in the continuum limit, we expect the potential to be function of 𝑟 = |r|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
68
+ page_content=' There is explicit time dependency in this form for the potential, and this will be studied in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
69
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
70
+ page_content=' Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
71
+ page_content='2 will discuss how the reduced quark mass, 𝜇, is set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
72
+ page_content=' It is convenient to define the central potential, 𝑉C, obtained via the usual spin-average [10] 𝑉C = 1 4𝑉Pseudo Scalar + 3 4𝑉Vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
73
+ page_content=' (8) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
74
+ page_content='2 Using momentum space to reformulate the calculation This work is a continuation of [4] where more detail about the HAL QCD method can be found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
75
+ page_content=' We build upon [4] by using an efficient computation of the point-split correlation function, 𝐶Γ(r, 𝜏).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
76
+ page_content=' For each 𝜏, a direct calculation of (1) requires a loop over all lattice sites x for each value of r which is an expensive operation scaling as O(V2) where V is the spatial volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
77
+ page_content=' What follows is a method to reduce the cost of this computation by introducing a momentum space representation for the propagator and correlation function, see the Appendix of [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
78
+ page_content=' We introduce quark propagators, 𝐷−1(𝑥;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
79
+ page_content=' 𝑦), by Wick contracting the quark fields in the point- split correlation function, (1), 𝐶Γ(r, 𝜏) = − ∑︁ x ⟨𝐷−1(x + r, 𝜏;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
80
+ page_content=' 0, 0)Γ𝛾5 � 𝐷−1(x, 𝜏;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
81
+ page_content=' 0, 0) �† 𝛾5Γ†⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
82
+ page_content=' (9) Note that we have gauge fixed our configurations to the Coulomb gauge, and have replaced the gauge connection, 𝑈(𝑥, 𝑥 + r) in (2) by unity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
83
+ page_content=' We now implicitly define the corresponding momentum space quark propagator via 𝐷−1(y, 𝜏;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
84
+ page_content=' 0, 0) = 1 𝑉 ∑︁ p ˜𝐷−1(p, 𝜏)𝑒𝑖y·p, (10) in terms of the 3-momentum, p, which is conjugate to the position y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
85
+ page_content=' Introducing this momentum- space quark propagator into (9) yields 𝐶Γ(r, 𝜏) = 1 𝑉 ∑︁ p ⟨ ˜𝐷−1(p, 𝜏)Γ𝛾5 ˜𝐷−1(−p, 𝜏)𝛾5Γ†⟩𝑒𝑖p·r, (11) which we will use to implicitly define the momentum-space correlator, ˜𝐶Γ(p, 𝜏), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
86
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
87
+ page_content=' ��Γ(r, 𝜏) = 1 𝑉 ∑︁ p ˜𝐶Γ(p, 𝜏)𝑒𝑖p·r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
88
+ page_content=' (12) We note that once we have calculated ˜𝐶Γ(p, 𝜏), we can determine the desired correlator 𝐶Γ(r, 𝜏) for any r using (12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
89
+ page_content=' 4 Thermal interquark bottomonium potentials Thomas Spriggs At first sight, the conversion to momentum space does not produce any savings, because the calculation of 𝐶Γ and ˜𝐷−1, defined via (10) and (12), are both O(V2) in the number of operations, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
90
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
91
+ page_content=' the same as the direct method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
92
+ page_content=' However both (10) and (12) are Fourier transforms, and so significant speed-up for these steps can be achieved using the fast Fourier transform (FFT) algorithm which scales as O(V log V).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
93
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
94
+ page_content=' Results For better comparison with [4], and as progress towards the treatment of 𝐶Γ(r, 𝜏) for all r, we consider here only the on-axis r data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
95
+ page_content=' Extensions to this will be discussed in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
96
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
97
+ page_content='1 Time dependence The potential is defined in (7) where there is an apparent explicit dependence on time, 𝜏, from the correlation function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
98
+ page_content=' In Figure 2, the potential, 𝑉Vector, from (7) is plotted against 𝜏 for a variety of distances r for our two extreme temperatures, 𝑇 = 141 and 352 MeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
99
+ page_content=' We can see a clear 𝜏 dependence for small 𝜏 which increases with r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
100
+ page_content=' However, for various ranges of 𝜏 and r there are clear plateau.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
101
+ page_content=' In addition, we note that we would like to uncover temperature effects in the potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
102
+ page_content=' The most accurate way of doing this is to compare different temperatures’ potentials obtained with the same time window to avoid contamination by systematic artefacts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
103
+ page_content=' Based on these considerations, we restrict the range of 𝑟 and 𝜏 used in the determination of the potential to those listed in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
104
+ page_content=' Notice that in selecting a time window, there is a trade-off between the ranges of 𝑟 and 𝑇 for which the potential can be extracted: larger time windows give access to a larger range of 𝑟, but over a smaller range of 𝑇.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
105
+ page_content=' In Figure 3 we show four determinations of the central potential, corresponding to the first four time windows identified in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
106
+ page_content=' In each plot we show the potentials for several temperatures, and since these have been obtained by averaging over the same range of 𝜏, the temperature dependence can be ascribed to temperature effects, rather than fitting artefacts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
107
+ page_content=' We find that the potential consistently flattens as the temperature increases above 𝑇pc, as expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
108
+ page_content=' There is little thermal variation in the potential for 𝑇 ⪅ 𝑇pc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
109
+ page_content=' In Figure 3, the error bars show statistical errors only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
110
+ page_content=' The curves are fits to the Cornell potential, which will be discussed in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
111
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
112
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
113
+ page_content='2 Quark mass dependence Equation (7) contains the reduced quark mass, 𝜇, which needs to be defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
114
+ page_content=' In [7], the 1S and 2S states were used to determine the bottom quark mass 𝑚𝑏, and thus the reduced quark mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
115
+ page_content=' In our simulations we do not have access to the 2S state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
116
+ page_content=' We instead use the simple argument: 𝜇 ≡ 1 2𝑚𝑏 ≈ 1 2 𝑀Υ, with 𝑀Υ from [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
117
+ page_content=' We have tested the sensitivity of the potential on the quark mass and found that the variation (within sensible 𝜇 ranges) is minimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
118
+ page_content=' 5 Thermal interquark bottomonium potentials Thomas Spriggs Figure 2: Time dependence in the potential restricting the range of 𝑟 that we can consider valid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
119
+ page_content=' Shown for two temperatures using the vector channel as an example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
120
+ page_content=' Time window [𝑎𝜏] 𝑟 range [𝑎𝑠] 𝑟 range [fm] Temperatures [MeV] 13-14 1-3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
121
+ page_content='12-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
122
+ page_content='37 352-141 17-18 1-4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
123
+ page_content='12-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
124
+ page_content='49 281-141 19-22 1-5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
125
+ page_content='12-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
126
+ page_content='61 235-141 21-26 1-5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
127
+ page_content='12-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
128
+ page_content='61 201-141 24-30 1-6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
129
+ page_content='12-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
130
+ page_content='74 176-141 24-33 1-6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
131
+ page_content='12-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
132
+ page_content='74 156-141 Table 2: Range of displacements and temperatures allowed to best approximate time independence in𝑉(𝑟, 𝜏).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
133
+ page_content=' Note that 𝑇pc = 181 MeV and thus the time windows below the solid line do not span this pseudocritical temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
134
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
135
+ page_content='3 Cornell potential fits The Cornell potential [12] is a phenomenological description of a confining potential applicable to heavy quarks in QCD and is given by 𝑉(𝑟) = −𝛼 𝑟 + 𝜎𝑟 + 𝐷.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
136
+ page_content=' (13) Fits using (13) to our potential data are shown as solid curves in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
137
+ page_content=' As can be seen these reproduce the data well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
138
+ page_content=' When the string tension, 𝜎, in the Cornell potential is zero, this implies a deconfined potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
139
+ page_content=' In all cases above 𝑇pc, we find that 𝜎 decreases with increasing temperature, confirming the expected thermal behaviour in the bottomonium system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
140
+ page_content=' Below𝑇pc the string tension does not change within statistical errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
141
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
142
+ page_content=' Conclusion The temperature dependence of the central interquark potential in the bottomonium system using NRQCD quarks was explored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
143
+ page_content=' This work was an extension of [4] and use a momentum-space approach which can improve the efficiency of the calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
144
+ page_content=' Clear thermal effects in this potential 6 T = 141 MeV 8 Preliminary X 6 [GeV] 4 Vector 来来 2 米 10 15 20 25 30 0 5 35 40 t/aT = 352 MeV 8 Preliminary 6 TI [GeV] 4 2 10 15 0 5Thermal interquark bottomonium potentials Thomas Spriggs Figure 3: The central potential calculated from (7) (points), overlaid with a fit of these data to the Cornell potential (13) (curves).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
145
+ page_content=' Each plot contains all temperatures and r ranges listed in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
146
+ page_content=' were observed using a method which decoupled systematic “time window” artefacts from physical, thermal effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
147
+ page_content=' A systematic flattening of the potential with increasing temperature above 𝑇pc was observed, with no statistically significant variation in the potential for temperatures below 𝑇pc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
148
+ page_content=' This work will be extended in a number of directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
149
+ page_content=' The potential will be calculated at all possible spatial separations, r, rather than just the on-axis values used here, and channels beyond the pseudoscalar and vector S-wave states will be included.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
150
+ page_content=' Also, a more robust definition of the reduced quark mass will be developed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
151
+ page_content=' Finally, a direct comparison will be made between these bottomonium results and those obtained for the charmonium potential using the same ensembles in [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
152
+ page_content=' Acknowledgments This work is supported by STFC grant ST/T000813/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
153
+ page_content=' SK is supported by the National Research Foundation of Korea under grant NRF-2021R1A2C1092701andgrantNRF-2021K1A3A1A16096820, funded by the Korean government (MEST).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
154
+ page_content=' This work used the DiRAC Extreme Scaling service at the University of Edinburgh, operated by the Edinburgh Parallel Computing Centre and the DiRAC 7 Time window: 13-14 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
155
+ page_content='4 - T= 352 MeV 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
156
+ page_content='2 T = 281 MeV T = 235 MeV 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
157
+ page_content='0 T = 201 MeV 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
158
+ page_content='8 T = 176 MeV [GeV] T = 156 MeV 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
159
+ page_content='6 T= 141 MeV 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
160
+ page_content='4 C 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
161
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
162
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
163
+ page_content='8 Preliminary 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
164
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
165
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
166
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
167
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
168
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
169
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
170
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
171
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
172
+ page_content='7 r [fm]Time window: 17-18 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
173
+ page_content='4 T = 281 MeV 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
174
+ page_content='2 T = 235 MeV T = 201 MeV 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
175
+ page_content='0 T = 176 MeV 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
176
+ page_content='8 T = 156 MeV [GeV] T = 141 MeV 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
177
+ page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
178
+ page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
179
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
180
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
181
+ page_content='8 Preliminary 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
182
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
183
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
184
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
185
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
186
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
187
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
188
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
189
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
190
+ page_content='7 r [fm]Time window: 19-22 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
191
+ page_content='4 T = 235 MeV 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
192
+ page_content='2 T = 201 MeV T = 176 MeV 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
193
+ page_content='0 T = 156 MeV 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
194
+ page_content='8 T = 141 MeV [GeV] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
195
+ page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
196
+ page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
197
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
198
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
199
+ page_content='8 Preliminary 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
200
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
201
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
202
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
203
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
204
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
205
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
206
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
207
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
208
+ page_content='7 r [fm]Time window: 21-26 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
209
+ page_content='4 T = 201 MeV 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
210
+ page_content='2 T = 176 MeV T = 156 MeV 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
211
+ page_content='0 T = 141 MeV 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
212
+ page_content='8 [GeV] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
213
+ page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
214
+ page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
215
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
216
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
217
+ page_content='8 Preliminary 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
218
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
219
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
220
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
221
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
222
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
223
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
224
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
225
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
226
+ page_content='7 r [fm]Thermal interquark bottomonium potentials Thomas Spriggs Data Intensive service operated by the University of Leicester IT Services on behalf of the STFC DiRAC HPC Facility (www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
227
+ page_content='dirac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
228
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
229
+ page_content='uk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
230
+ page_content=' This equipment was funded by BEIS capital funding via STFC capital grants ST/R00238X/1, ST/K000373/1 and ST/R002363/1 and STFC DiRAC Opera- tions grants ST/R001006/1 and ST/R001014/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
231
+ page_content=' DiRAC is part of the UK National e-Infrastructure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
232
+ page_content=' This work was performed using PRACE resources at Cineca (Italy), CEA (France) and Stuttgart (Germany) via grants 2015133079, 2018194714, 2019214714 and 2020214714.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
233
+ page_content=' We acknowledge the support of the Swansea Academy for Advanced Computing, the Supercomputing Wales project, which is part-funded by the European Regional Development Fund (ERDF) via Welsh Government, and the University of Southern Denmark and ICHEC, Ireland for use of computing facilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
234
+ page_content=' We are grateful to the Hadron Spectrum Collaboration for the use of their zero temperature ensemble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
235
+ page_content=' References [1] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
236
+ page_content=' Eichten, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
237
+ page_content=' Gottfried, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
238
+ page_content=' Kinoshita, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
239
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
240
+ page_content=' Lane and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
241
+ page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
242
+ page_content=' Yan, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
243
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
244
+ page_content=' D 17 (1978) 3090.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
245
+ page_content=' [2] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
246
+ page_content=' Matsui and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
247
+ page_content=' Satz, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
248
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
249
+ page_content=' B 178 (1986) 416–422.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
250
+ page_content=' [3] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
251
+ page_content=' Ishii, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
252
+ page_content=' Aoki and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
253
+ page_content=' Hatsuda, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
254
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
255
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
256
+ page_content=' 99 (2007) 022001, [nucl-th/0611096].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
257
+ page_content=' [4] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
258
+ page_content=' Spriggs, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
259
+ page_content=' Allton, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
260
+ page_content=' Burns and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
261
+ page_content=' Kim, PoS LATTICE2021 (2022) 569, [arXiv:2112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
262
+ page_content='09092].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
263
+ page_content=' [5] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
264
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
265
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
266
+ page_content=' Evans, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
267
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
268
+ page_content=' Allton and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
269
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
270
+ page_content=' Skullerud, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
271
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
272
+ page_content=' D 89 (2014) 071502, [arXiv:1303.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
273
+ page_content='5331].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
274
+ page_content=' [6] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
275
+ page_content=' Allton, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
276
+ page_content=' Evans, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
277
+ page_content=' Giudice and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
278
+ page_content='-I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
279
+ page_content=' Skullerud, arXiv:1505.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
280
+ page_content='06616.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
281
+ page_content=' [7] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
282
+ page_content=' Larsen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
283
+ page_content=' Meinel, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
284
+ page_content=' Mukherjee and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
285
+ page_content=' Petreczky, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
286
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
287
+ page_content=' D 102 (2020) 114508, [arXiv:2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
288
+ page_content='00100].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
289
+ page_content=' [8] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
290
+ page_content=' Aarts, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
291
+ page_content=' Allton, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
292
+ page_content=' Harris, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
293
+ page_content=' Kim, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
294
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
295
+ page_content=' Lombardo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
296
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
297
+ page_content=' Ryan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
298
+ page_content=', JHEP 07 (2014) 097, [arXiv:1402.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
299
+ page_content='6210].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
300
+ page_content=' [9] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
301
+ page_content=' Aarts et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
302
+ page_content=', PoS LATTICE2019 (2019) 075, [arXiv:1912.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
303
+ page_content='09827].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
304
+ page_content=' [10] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
305
+ page_content=' Godfrey and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
306
+ page_content=' Isgur, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
307
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
308
+ page_content=' D 32 (1985) 189–231.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
309
+ page_content=' [11] Particle Data Group collaboration, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
310
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
311
+ page_content=' Workman and Others, PTEP 2022 (2022) 083C01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
312
+ page_content=' [12] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
313
+ page_content=' Eichten, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
314
+ page_content=' Gottfried, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
315
+ page_content=' Kinoshita, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
316
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
317
+ page_content=' Lane and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
318
+ page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
319
+ page_content=' Yan, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
320
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
321
+ page_content=' D 21 (1980) 203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
322
+ page_content=' 8' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E1T4oBgHgl3EQfogQj/content/2301.03320v1.pdf'}
.gitattributes CHANGED
@@ -5634,3 +5634,56 @@ O9AyT4oBgHgl3EQf7Prc/content/2301.00837v1.pdf filter=lfs diff=lfs merge=lfs -tex
5634
  jNFLT4oBgHgl3EQfbi-Q/content/2301.12079v1.pdf filter=lfs diff=lfs merge=lfs -text
5635
  sNAyT4oBgHgl3EQfmfhl/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5636
  WtA0T4oBgHgl3EQfFP8E/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5634
  jNFLT4oBgHgl3EQfbi-Q/content/2301.12079v1.pdf filter=lfs diff=lfs merge=lfs -text
5635
  sNAyT4oBgHgl3EQfmfhl/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5636
  WtA0T4oBgHgl3EQfFP8E/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5637
+ utE3T4oBgHgl3EQfkgoZ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5638
+ 2NFQT4oBgHgl3EQfFTWv/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5639
+ ZNE2T4oBgHgl3EQfEgZ2/content/2301.03636v1.pdf filter=lfs diff=lfs merge=lfs -text
5640
+ NtE0T4oBgHgl3EQfjgEx/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5641
+ ydE3T4oBgHgl3EQfPQmH/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5642
+ TdE0T4oBgHgl3EQf2QI-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5643
+ U9FKT4oBgHgl3EQfmC51/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5644
+ I9E4T4oBgHgl3EQfIgyC/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5645
+ XtAyT4oBgHgl3EQfvfkj/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5646
+ J9AzT4oBgHgl3EQfIPtt/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5647
+ ytFIT4oBgHgl3EQf1SsP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5648
+ g9AyT4oBgHgl3EQfxfly/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5649
+ w9FIT4oBgHgl3EQfzit1/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5650
+ 6tE4T4oBgHgl3EQf1w38/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5651
+ ddE5T4oBgHgl3EQfgA-d/content/2301.05631v1.pdf filter=lfs diff=lfs merge=lfs -text
5652
+ c9E2T4oBgHgl3EQfwwh7/content/2301.04104v1.pdf filter=lfs diff=lfs merge=lfs -text
5653
+ xdE0T4oBgHgl3EQftAHH/content/2301.02587v1.pdf filter=lfs diff=lfs merge=lfs -text
5654
+ HtFJT4oBgHgl3EQfui1l/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5655
+ 2NFQT4oBgHgl3EQfFTWv/content/2301.13241v1.pdf filter=lfs diff=lfs merge=lfs -text
5656
+ kdFRT4oBgHgl3EQfYDcO/content/2301.13547v1.pdf filter=lfs diff=lfs merge=lfs -text
5657
+ ytAyT4oBgHgl3EQfn_gd/content/2301.00497v1.pdf filter=lfs diff=lfs merge=lfs -text
5658
+ xNFST4oBgHgl3EQfSDhf/content/2301.13764v1.pdf filter=lfs diff=lfs merge=lfs -text
5659
+ J9AzT4oBgHgl3EQfIPtt/content/2301.01058v1.pdf filter=lfs diff=lfs merge=lfs -text
5660
+ j9E4T4oBgHgl3EQfsw0a/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5661
+ ddE5T4oBgHgl3EQfgA-d/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5662
+ e9A0T4oBgHgl3EQfHf82/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5663
+ 6dE0T4oBgHgl3EQffAAW/content/2301.02397v1.pdf filter=lfs diff=lfs merge=lfs -text
5664
+ qNE3T4oBgHgl3EQf8QsZ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5665
+ xtFQT4oBgHgl3EQfxDb0/content/2301.13404v1.pdf filter=lfs diff=lfs merge=lfs -text
5666
+ 2tE4T4oBgHgl3EQf0A0W/content/2301.05278v1.pdf filter=lfs diff=lfs merge=lfs -text
5667
+ L9E4T4oBgHgl3EQfKAwg/content/2301.04925v1.pdf filter=lfs diff=lfs merge=lfs -text
5668
+ xdE0T4oBgHgl3EQftAHH/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5669
+ ytFIT4oBgHgl3EQf1SsP/content/2301.11372v1.pdf filter=lfs diff=lfs merge=lfs -text
5670
+ AdFLT4oBgHgl3EQfxDCd/content/2301.12166v1.pdf filter=lfs diff=lfs merge=lfs -text
5671
+ ddA0T4oBgHgl3EQfG_-E/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5672
+ xtFQT4oBgHgl3EQfxDb0/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5673
+ u9AzT4oBgHgl3EQfB_ou/content/2301.00950v1.pdf filter=lfs diff=lfs merge=lfs -text
5674
+ 2tE4T4oBgHgl3EQf0A0W/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5675
+ gtAyT4oBgHgl3EQfj_iM/content/2301.00425v1.pdf filter=lfs diff=lfs merge=lfs -text
5676
+ j9E4T4oBgHgl3EQfsw0a/content/2301.05218v1.pdf filter=lfs diff=lfs merge=lfs -text
5677
+ 6tAyT4oBgHgl3EQfcvc9/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5678
+ ydE3T4oBgHgl3EQfPQmH/content/2301.04401v1.pdf filter=lfs diff=lfs merge=lfs -text
5679
+ WtE0T4oBgHgl3EQfmQEQ/content/2301.02495v1.pdf filter=lfs diff=lfs merge=lfs -text
5680
+ gtAyT4oBgHgl3EQfj_iM/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5681
+ hNE1T4oBgHgl3EQfzQVT/content/2301.03442v1.pdf filter=lfs diff=lfs merge=lfs -text
5682
+ 79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf filter=lfs diff=lfs merge=lfs -text
5683
+ ZNE2T4oBgHgl3EQfEgZ2/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5684
+ k9FLT4oBgHgl3EQfdS-S/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5685
+ KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf filter=lfs diff=lfs merge=lfs -text
5686
+ NtE0T4oBgHgl3EQfjgEx/content/2301.02459v1.pdf filter=lfs diff=lfs merge=lfs -text
5687
+ AdFLT4oBgHgl3EQfxDCd/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5688
+ h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf filter=lfs diff=lfs merge=lfs -text
5689
+ o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf filter=lfs diff=lfs merge=lfs -text
1dAzT4oBgHgl3EQft_1-/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e026a34fb6a448e338d70e35cd26f781ab2a0e9d3cddcbf02c3001a597c7ce6
3
+ size 176688
2NFQT4oBgHgl3EQfFTWv/content/2301.13241v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d355ae0245dfd971d803a818254f4823a552fa4ffca777ad5857ce2092185f20
3
+ size 1945686
2NFQT4oBgHgl3EQfFTWv/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd1f8912a0bcec61602ad0ba61d8ed4dd48d581d10b911221523f1874ee257ec
3
+ size 5177389
2tE4T4oBgHgl3EQf0A0W/content/2301.05278v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5dc867fe41579ae6a0db08c8bad03559ee157181069c6b2c51be455b88747145
3
+ size 885881
2tE4T4oBgHgl3EQf0A0W/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12e5dc4de464528b5f4e9b3d5b66194c0e6aee2f9d210b26d0394b5bfc7da28a
3
+ size 6225965
2tE4T4oBgHgl3EQf0A0W/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5183284c4da99627e3ad116f2d08499d1770f9e738f6ffc1659ef1477eaa7ca
3
+ size 220569
4tFKT4oBgHgl3EQf9i5P/content/tmp_files/2301.11954v1.pdf.txt ADDED
@@ -0,0 +1,896 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Early universe nucleosynthesis in massive
2
+ conformal gravity
3
+ F. F. Faria ∗
4
+ Centro de Ciˆencias da Natureza,
5
+ Universidade Estadual do Piau´ı,
6
+ 64002-150 Teresina, PI, Brazil
7
+ Abstract
8
+ We study the dynamics of the early universe in massive conformal
9
+ gravity. In particular, we show that the theory is consistent with the
10
+ observed values of the primordial abundances of light elements if we
11
+ consider the existence of right-handed sterile neutrinos.
12
+ PACS numbers: 04.62.+v, 04.60-m, 12.60.-i
13
14
+ arXiv:2301.11954v1 [physics.gen-ph] 27 Jan 2023
15
+
16
+ 1
17
+ Introduction
18
+ It is well known that the standard ΛCDM cosmological model is consistent
19
+ with most observations of the universe at both early and late times [1, 2].
20
+ However, for this consistency to occur, a very small value for the cosmological
21
+ constant (Λ) is required, which by far does not match with the huge value pre-
22
+ dicted by quantum field theory (see [3] for a nice review). This discrepancy
23
+ between the cosmological and quantum values of Λ is known as the cosmolog-
24
+ ical constant problem [4]. Another important problem of ΛCDM is that the
25
+ primordial lithium abundance from the early universe nucleosynthesis pre-
26
+ dicted by it differs by about a factor of three from the observed abundance
27
+ [5], which is known as the lithium problem. Despite several attempts over
28
+ the years, no alternative cosmological model has succeeded in solving these
29
+ two problems and being consistent with other cosmological observations at
30
+ the same time.
31
+ One of such models comes from massive conformal gravity (MCG), which
32
+ is a conformally invariant theory of gravity in which the gravitational action
33
+ is the sum of the Weyl action with the Einstein-Hilbert action conformally
34
+ coupled to a scalar field [6]. Among so many cosmological models, we chose
35
+ the MCG model because it fits well with the Type Ia supernovae (SNIa)
36
+ data without the cosmological constant problem [7]. In addition, the theory
37
+ is free of the van Dam-Veltman-Zakharov (vDVZ) discontinuity [8], can re-
38
+ produce the orbit of binaries by the emission of gravitational waves [9] and
39
+ is consistent with solar system observations [10]. Furthermore, MCG is a
40
+ power-counting renormalizable [11, 12] and unitary [13] quantum theory of
41
+ gravity.
42
+ In this paper, we want to see if the MCG cosmology is consistent with
43
+ the observed primordial abundances of light elements without the lithium
44
+ problem. In Sec. 2, we describe the MCG cosmological equations. In Sec.
45
+ 3, we derive the matter energy-momentum tensor used in the theory. In Sec.
46
+ 4, we study the dynamics of the early MCG universe. In Sec. 5, we compare
47
+ the early universe nucleosynthesis of MCG with cosmological observations. In
48
+ Sec. 6, we analyze the evolution of the baryon density of the MCG universe.
49
+ Finally, in Sec. 7, we present our conclusions.
50
+ 1
51
+
52
+ 2
53
+ Massive conformal gravity
54
+ The total MCG action is given by1 [8]
55
+ S =
56
+
57
+ d4x √−g
58
+
59
+ ϕ2R + 6∂µϕ∂µϕ −
60
+ 1
61
+ 2α2CαβµνCαβµν
62
+
63
+ + 1
64
+ c
65
+
66
+ d4xLm,
67
+ (1)
68
+ where ϕ is a scalar field called dilaton, α is a coupling constant,
69
+ CαβµνCαβµν = RαβµνRαβµν − 4RµνRµν + R2 + 2
70
+
71
+ RµνRµν − 1
72
+ 3R2
73
+
74
+ (2)
75
+ is the Weyl tensor squared, Rαµβν = ∂βΓα
76
+ µν + · · · is the Riemann tensor,
77
+ Rµν = Rαµαν is the Ricci tensor, R = gµνRµν is the scalar curvature, and
78
+ Lm = Lm(gµν, Ψ) is the Lagrangian density of the matter field Ψ. It is worth
79
+ noting that besides being invariant under coordinate transformations, the
80
+ action (1) is also invariant under the conformal transformations
81
+ ˜Φ = Ω(x)−∆ΦΦ,
82
+ (3)
83
+ where Ω(x) is an arbitrary function of the spacetime coordinates, and ∆Φ is
84
+ the scaling dimension of the field Φ, whose values are −2 for the metric field,
85
+ 0 for gauge bosons, 1 for scalar fields, and 3/2 for fermions.
86
+ The variation of (1) with respect to gµν and ϕ gives the MCG field equa-
87
+ tions
88
+ ϕ2Gµν +6∂µϕ∂νϕ−3gµν∂ρϕ∂ρϕ+gµν∇ρ∇ρϕ2 −∇µ∇νϕ2 −α−2Wµν = 1
89
+ 2cTµν,
90
+ (4)
91
+
92
+ ∇µ∇µ − 1
93
+ 6R
94
+
95
+ ϕ = 0,
96
+ (5)
97
+ where
98
+ Wµν
99
+ =
100
+ ∇ρ∇ρRµν − 1
101
+ 3∇µ∇νR − 1
102
+ 6gµν∇ρ∇ρR + 2RρσRµρνσ − 1
103
+ 2gµνRρσRρσ
104
+ −2
105
+ 3RRµν + 1
106
+ 6gµνR2
107
+ (6)
108
+ 1This action is obtained from the action of Ref. [8] by rescaling ϕ →
109
+ ��
110
+ 32πG/3
111
+
112
+ ϕ
113
+ and considering m =
114
+
115
+ 3/64πGα.
116
+ 2
117
+
118
+ is the Bach tensor,
119
+ Gµν = Rµν − 1
120
+ 2gµνR
121
+ (7)
122
+ is the Einstein tensor,
123
+ ∇ρ∇ρϕ =
124
+ 1
125
+ √−g∂ρ �√−g∂ρϕ
126
+
127
+ (8)
128
+ is the generally covariant d’Alembertian for a scalar field, and
129
+ Tµν = −
130
+ 2
131
+ √−g
132
+ δLm
133
+ δgµν
134
+ (9)
135
+ is the matter energy-momentum tensor.
136
+ Before we proceed, it is important to note that both the symmetries of
137
+ the theory allow us to introduce in (1) a quartic self-interacting term of the
138
+ dilaton λ
139
+ � √−gϕ4 as well as interaction terms of the dilaton with the matter
140
+ fields. In the case of the dilaton self-interaction term, we do not include it
141
+ in the MCG action because this inclusion makes the flat metric no longer a
142
+ solution of the field equations, which invalidates the S-matrix formulation.
143
+ Although such a term is reintroduced in the effective action by quantum
144
+ corrections, we can consider the renormalized value of the coupling constant
145
+ λ equal zero so that the self-interacting term is present in the renormalized
146
+ action only to cancel out the corresponding divergent term. In addition, we
147
+ neglect the couplings between the dilaton and the matter fields because they
148
+ make the field equation (5) no longer valid. This equation is fundamental to
149
+ cancel non-renormalizable divergent terms that appear in the effective action
150
+ [14].
151
+ At scales below the Planck scale, the dilaton field acquires a spontaneously
152
+ broken constant vacuum expectation value ϕ0 [15]. In this case, the field
153
+ equations (4) and (5) become
154
+ ϕ2
155
+ 0Gµν − α−2Wµν = 1
156
+ 2cTµν,
157
+ (10)
158
+ R = 0.
159
+ (11)
160
+ In addition, for ϕ = ϕ0, the MCG line element ds2 = (ϕ/ϕ0)2 gµνdxµdxν
161
+ reduces to
162
+ ds2 = gµνdxµdxν.
163
+ (12)
164
+ The full dynamics of the MCG universe can be described by (10)-(12) without
165
+ loss of generality.
166
+ 3
167
+
168
+ 3
169
+ Dynamical perfect fluid
170
+ In order to find the MCG matter energy-momentum tensor, we consider the
171
+ conformally invariant matter Lagrangian density [16]
172
+ Lm = −√−gc
173
+
174
+ S2R+6∂µS∂µS+λS4+ i
175
+ 2ℏ
176
+
177
+ ψγµDµψ − Dµψγµψ
178
+
179
+ −ℏµSψψ
180
+
181
+ ,
182
+ (13)
183
+ where S is a scalar Higgs field2, λ and µ are coupling constants, ψ = ψ†γ0 is
184
+ the adjoint fermion field, Dµ = ∂µ + [γν, ∂µγν]/8 − [γν, γλ]Γλµν/8 (Γλµν is the
185
+ Levi-Civita connection), and γµ are the general relativistic Dirac matrices,
186
+ which satisfy the anti-commutation relation {γµ, γν} = 2gµν.
187
+ By varying (13) with respect to S, ψ and ψ, we obtain the field equations
188
+ 12∇µ∇µS − 2RS − 4λS3 + ℏµψψ = 0,
189
+ (14)
190
+ iγµDµψ − µSψ = 0,
191
+ (15)
192
+ iDµψγµ + µSψ = 0.
193
+ (16)
194
+ Additionally, the substitution of (13) into (9) gives
195
+ Tµν
196
+ c
197
+ =
198
+ 12∂µS∂νS − 6gµν∂ρS∂ρS + 2gµν∇ρ∇ρS2 − 2∇µ∇νS2
199
+ + 2S2Gµν − gµν
200
+
201
+ λS4 + i
202
+ 2ℏ
203
+
204
+ ψγρDρψ − Dρψγρψ
205
+
206
+ − ℏµSψψ
207
+
208
+ + i
209
+ 4ℏ
210
+
211
+ ψγµDνψ − Dνψγµψ + ψγνDµψ − Dµψγνψ
212
+
213
+ .
214
+ (17)
215
+ Then, using (14)-(16) and ∇µ∇νS2 = 2(S∇µ∇νS + ∂µS∂νS) in (17), we find
216
+ the energy-momentum tensor
217
+ Tµν
218
+ =
219
+ c (8∂µS∂νS − 2gµν∂ρS∂ρS − 4S∇µ∇νS + gµνS∇ρ∇ρS)
220
+ + 2cS2
221
+
222
+ Rµν − 1
223
+ 4gµνR
224
+
225
+ + T f
226
+ µν,
227
+ (18)
228
+ where
229
+ T f
230
+ µν = i
231
+ 4cℏ
232
+
233
+ ψγµDνψ − Dνψγµψ + ψγνDµψ − Dµψγνψ
234
+
235
+ − 1
236
+ 4gµνcℏµSψψ (19)
237
+ 2Although the Higgs field is actually a doublet, and it is more likely that we must have
238
+ two more scalar fields to get the correct quantum phenomenology at low energies [17],
239
+ considering only a scalar Higgs field will not change the classical results of the theory.
240
+ 4
241
+
242
+ is the fermion energy-momentum tensor.
243
+ Considering that, at scales below the electroweak scale, the Higgs field
244
+ acquires a spontaneously broken constant vacuum expectation value S0, and
245
+ making some algebra, we find that (15) and (18) become
246
+
247
+ DµDµ −
248
+ �mc
249
+
250
+ �2�
251
+ ψ = 0,
252
+ (20)
253
+ Tµν(S0, gµν) = 2cS2
254
+ 0
255
+
256
+ Rµν − 1
257
+ 4gµνR
258
+
259
+ + T f
260
+ µν(S0, gµν),
261
+ (21)
262
+ where
263
+ T f
264
+ µν(S0, gµν) = i
265
+ 4cℏ
266
+
267
+ ψγµDνψ−Dνψγµψ+ψγνDµψ−Dµψγνψ
268
+
269
+ − 1
270
+ 4gµνmc2ψψ,
271
+ (22)
272
+ with m = µS0ℏ/c being the fermion mass. In flat spacetime, is not difficult
273
+ to see that (20) and (22) reduce to
274
+
275
+ ∂µ∂µ −
276
+ �mc
277
+
278
+ �2�
279
+ ψ = 0,
280
+ (23)
281
+ T f
282
+ µν(S0, ηµν) = i
283
+ 4cℏ
284
+
285
+ ψγµ∂νψ − ∂νψγµψ + ψγν∂µψ − ∂µψγνψ
286
+
287
+ − 1
288
+ 4ηµνmc2ψψ,
289
+ (24)
290
+ where now the Dirac matrices satisfy the anti-commutation relation {γµ, γν} =
291
+ 2ηµν.
292
+ The normalized plane wave solution to (23) is given by
293
+ ψ =
294
+ 1
295
+ √V Ek
296
+ uk eikµxµ,
297
+ (25)
298
+ where V is the volume, Ek =
299
+
300
+ k2c2 + m2c4 is the energy, uk is a spinor
301
+ which satisfies [γµkµ + mc/ℏ] uk = 0, and kµ = (Ek/cℏ,⃗k/ℏ) is the wave
302
+ vector, with ⃗k being the momentum and k = |⃗k|. By substituting (25) and
303
+ its adjoint into (24), and using ukuk = −mc2, we obtain
304
+ T f
305
+ µν(S0, ηµν) =
306
+ � c2ℏ2
307
+ V Ek
308
+
309
+ kµkν +
310
+ � m2c4
311
+ 4V Ek
312
+
313
+ ηµν.
314
+ (26)
315
+ 5
316
+
317
+ Incoherently adding to (26) the individual contributions of a set of six plane
318
+ waves moving in the ± x, ± y and ± z directions, all with the same Ek and
319
+ k, we can write the energy-momentum tensor (26) in the perfect fluid form
320
+ T f
321
+ µν(S0, ηµν) =
322
+
323
+ ρ + p
324
+ c2
325
+
326
+ uµuν + ηµνp + ηµνc2ρΛ,
327
+ (27)
328
+ where
329
+ c2ρ = 6Ek
330
+ V
331
+ (28)
332
+ is the energy density of the fluid,
333
+ p = 2k2c2
334
+ V Ek
335
+ (29)
336
+ is the pressure of the fluid,
337
+ c2ρΛ = 3m2c4
338
+ 2V Ek
339
+ (30)
340
+ is the vacuum energy (dark energy) density, and uµ is the four-velocity of the
341
+ fluid, which is normalized to uµuµ = −c2. It follows from (28)-(30) that
342
+ p = 0,
343
+ ρΛ = 1
344
+ 4ρ,
345
+ (31)
346
+ for a non-relativistic perfect fluid (k2c2 ≪ m2c4), and
347
+ p = 1
348
+ 3c2ρ,
349
+ ρΛ = 0,
350
+ (32)
351
+ for a relativistic perfect fluid (k2c2 ≫ m2c4).
352
+ In curved spacetime, the perfect fluid energy-momentum tensor (27) is
353
+ generalized to
354
+ T f
355
+ µν(S0, gµν) =
356
+
357
+ ρ + p
358
+ c2
359
+
360
+ uµuν + gµνp + gµνc2ρΛ.
361
+ (33)
362
+ Finally, the insertion of (33) into (21) gives the energy-momentum tensor of
363
+ a dynamical perfect fluid
364
+ Tµν(S0, gµν) = 2cS2
365
+ 0
366
+
367
+ Rµν − 1
368
+ 4gµνR
369
+
370
+ +
371
+
372
+ ρ + p
373
+ c2
374
+
375
+ uµuν +gµνp+gµνc2ρΛ. (34)
376
+ 6
377
+
378
+ Taking the trace of (34), and substituting into the trace of (10), whose left
379
+ hand side is zero due to the field equation (11) and the tracelessness of the
380
+ Bach tensor (W = gµνWµν = 0), we arrive at
381
+ T = gµνTµν = 3p − c2ρ + 4c2ρΛ = 0.
382
+ (35)
383
+ We can see from (31) and (32) that both non-relativistic and relativistic
384
+ perfect fluids satisfies the tracelessness relation (35). For simplicity, we could
385
+ isolate ρΛ in (35) and replace it in (34) as done in Ref. [7]. In this case, it is
386
+ made clear that the vacuum energy density does not contribute directly to
387
+ the dynamic evolution of the MCG universe, which solves the cosmological
388
+ constant problem found in the ΛCDM model. However, here we will keep ρΛ
389
+ so we don’t miss any physical details during the calculations.
390
+ By substituting (34) into (10), and considering (11), we find
391
+
392
+ ϕ2
393
+ 0 − S2
394
+ 0
395
+
396
+ Rµν − α−2Wµν = 1
397
+ 2c
398
+ ��
399
+ ρ + p
400
+ c2
401
+
402
+ uµuν + gµνp + gµνc2ρΛ
403
+
404
+ ,
405
+ (36)
406
+ which is the field equation that we will use in the study of the dynamics of
407
+ the early MCG universe in the next section. But before that, it is important
408
+ to compare MCG with another conformally invariant theory of gravity called
409
+ conformal gravity (CG)3, whose action is given by [18]
410
+ S = − 1
411
+ 2α2
412
+
413
+ d4x √−g
414
+
415
+ CαβµνCαβµν
416
+
417
+ + 1
418
+ c
419
+
420
+ d4xLm.
421
+ (37)
422
+ By varying (37) with respect to gµν, we obtain the field equation
423
+ − α−2Wµν = 1
424
+ 2cTµν,
425
+ (38)
426
+ where Tµν is given by (18). We can easily see the difference between the two
427
+ theories by comparing (38) with (10) and (11). Just to stay within the scope
428
+ of this paper, it is worth noting that CG does not pass the early universe
429
+ nucleosynthesis test [19].
430
+ 3Although the difference between the two theories is quite obvious, as we will readily
431
+ show next, MCG is often confused with CG. Perhaps this is because CG is much older
432
+ and known than MCG.
433
+ 7
434
+
435
+ 4
436
+ Early universe
437
+ As usual, we consider that the geometry of the universe is described by the
438
+ Friedmann–Lemaˆıtre–Robertson–Walker (FLRW) line element
439
+ ds2 = −c2dt2 + a(t)2
440
+
441
+ dr2
442
+ 1 − Kr2 + r2dθ2 + r2 sin2 θdφ2
443
+
444
+ ,
445
+ (39)
446
+ where a = a(t) is the scale factor and K = -1, 0 or 1 is the spatial curvature.
447
+ By substituting (39) and the fluid four-velocity uµ = (c, 0, 0, 0) into (36), we
448
+ obtain4
449
+ ¨a
450
+ a = −
451
+ c
452
+ 6 (ϕ2
453
+ 0 − S2
454
+ 0)
455
+
456
+ c2ρ − c2ρΛ
457
+
458
+ ,
459
+ (40)
460
+ ¨a
461
+ a + 2
462
+ � ˙a
463
+ a
464
+ �2
465
+ + 2Kc2
466
+ a2
467
+ =
468
+ c
469
+ 2 (ϕ2
470
+ 0 − S2
471
+ 0)
472
+
473
+ p + c2ρΛ
474
+
475
+ ,
476
+ (41)
477
+ where the dot denotes d/dt.
478
+ Subtracting (40) from (41), and considering that5
479
+ ϕ2
480
+ 0 =
481
+ 3c3
482
+ 32πG ≫ S2
483
+ 0,
484
+ (42)
485
+ we obtain
486
+ � ˙a
487
+ a
488
+ �2
489
+ = 8πG
490
+ 9c2
491
+
492
+ c2ρ + 3p + 2c2ρΛ
493
+
494
+ − Kc2
495
+ a2 .
496
+ (43)
497
+ The combination of (43) with (40) then gives the energy continuity equation
498
+ c2 ˙ρ + 3 ˙a
499
+ a
500
+
501
+ c2ρ + p
502
+
503
+ − c2 ˙ρΛ = 0,
504
+ (44)
505
+ which can also be obtained by the conservation law ∇µT f
506
+ µν = 0, with T f
507
+ µν
508
+ being the perfect fluid energy-momentum tensor (33).
509
+ Using either (31) or (32) in (44), we get
510
+ ˙ρ + 4 ˙a
511
+ aρ = 0,
512
+ (45)
513
+ 4It is worth noting that Wµν = 0 for the FLRW spacetime.
514
+ 5This value of ϕ0 is necessary for the theory to be consistent with solar system obser-
515
+ vations [10].
516
+ 8
517
+
518
+ which, consequently, is valid for both non-relativistic and relativistic dynam-
519
+ ical perfect fluids. As usual, we can write the solution to (45) in the form
520
+ ρ = ρ0
521
+ �a0
522
+ a
523
+ �4
524
+ ,
525
+ (46)
526
+ where, from now on, the subscript 0 denotes values at the present time t0.
527
+ In the case of the early universe, which is composed by a very hot plasma
528
+ dominated by relativistic particles (radiation), we find that (43) becomes
529
+ ˙a2 = 16πGa4
530
+ 0
531
+ 9a2
532
+ ρr0 − Kc2.
533
+ (47)
534
+ where we used (32) and (46), with ρr being the mass density of the radiation.
535
+ Since a is small in the early universe, we can neglect the curvature term on
536
+ the right hand side of (47) and write it in the approximate form
537
+ ˙a2 = 16πGa4
538
+ 0
539
+ 9a2
540
+ ρr0,
541
+ (48)
542
+ whose solution is given by
543
+ a(t) =
544
+ �64πGa4
545
+ 0ρr0
546
+ 9
547
+ �1/4
548
+ t1/2.
549
+ (49)
550
+ Finally, inserting (49) into the Hubble constant
551
+ H = ˙a
552
+ a,
553
+ (50)
554
+ we obtain
555
+ H = 1
556
+ 2t,
557
+ (51)
558
+ which is the same relation between the Hubble constant and time that occurs
559
+ in the early ΛCDM universe. However, since the MCG scale factor (49) is
560
+ equal 0.9 times the value of the ΛCDM scale factor, the expansion of the early
561
+ MCG universe is slower than the expansion of the early ΛCDM universe,
562
+ which will give a difference in the values of the two Hubble constants, as we
563
+ will show in the next section.
564
+ 9
565
+
566
+ 5
567
+ Nucleosynthesis
568
+ The abundances of light chemical elements in the early universe are mainly
569
+ determined by one cosmological parameter, namely, the baryon-to-photon
570
+ ratio η = nb/nγ, where nb and nγ are the number densities of baryons and
571
+ photons in the universe. As usual, to find η we must first write the Hubble
572
+ constant in function of temperature T using the Stefan-Boltzmann law
573
+ ρr =
574
+ �g∗aB
575
+ 2c2
576
+
577
+ T 4,
578
+ (52)
579
+ where aB is the radiation energy constant and g∗ counts the number of rela-
580
+ tivistic particle species determining the energy density in radiation. Substi-
581
+ tuting (52) and (49) into (46), we obtain
582
+ t =
583
+
584
+ 9c2
585
+ 32πGg∗aB
586
+ �1/2 1
587
+ T 2.
588
+ (53)
589
+ It then follows from (51) and (53) that
590
+ H =
591
+ �8πGg∗aB
592
+ 9c2
593
+ �1/2
594
+ T 2,
595
+ (54)
596
+ which is equal 0.82 times the value of the ΛCDM Hubble constant.
597
+ In order to describe the thermal history of the early MCG universe, we
598
+ must compare the Hubble constant in the form (54) with the collision rate
599
+ of particle interactions
600
+ Γ = nσv,
601
+ (55)
602
+ where n is the number density of particles, σ is their interaction cross section
603
+ and v is the average velocity of the particles. A specific temperature that is of
604
+ particular importance for the outcome of the early universe nucleosynthesis
605
+ (EUN) is the one at which the thermal equilibrium between neutrons and
606
+ protons begins to break down, which happens when H ∼ Γν, where
607
+ Γν ≈ G2
608
+ F
609
+ c6ℏ7(kBT)5
610
+ (56)
611
+ is the collision rate of a neutrino with electrons or positrons, with GF being
612
+ the Fermi constant and kB the Boltzmann constant.
613
+ 10
614
+
615
+ By equating (54) with (56), and assuming that at the onset of the electron-
616
+ positron annihilation the remaining relativistic particles are photons, elec-
617
+ trons, positrons and left-handed neutrinos, for which g∗ = 10.75, we obtain
618
+ kBTeq = 0.75 MeV.
619
+ (57)
620
+ We can see from (57) that the thermal equilibrium between neutrons and
621
+ protons is maintained at temperatures above Teq = 8.7 × 109 K in the early
622
+ MCG universe. At that time, the neutron-to-proton ratio was
623
+ �nn
624
+ np
625
+
626
+ eq
627
+ = e−Q/kBTeq = 0.178,
628
+ (58)
629
+ where we used (57) and the neutron-proton energy difference Q = 1.239 MeV.
630
+ Using (58), we can make a rough estimate that the final freeze-out neutron
631
+ abundance is given by
632
+ X∞
633
+ n ∼ Xeq
634
+ n =
635
+ e−Q/kBTeq
636
+ 1 + e−Q/kBTeq = 0.15.
637
+ (59)
638
+ Including the neutron decay in our calculation, we find
639
+ Xn(t) = X∞
640
+ n e−t/τn = 0.15 e−t/τn,
641
+ (60)
642
+ where τn = 879.4 s is the neutron mean lifetime [20].
643
+ The first light element formed in the early universe was deuterium (D),
644
+ whose ratio to proton is approximately given by
645
+ nD
646
+ np
647
+ ≈ 6.9η
648
+ � kBT
649
+ mnc2
650
+ �3/2
651
+ exp
652
+ � BD
653
+ kBT
654
+
655
+ ,
656
+ (61)
657
+ where we used (58) and BD = 2.2 MeV is the binding energy of deuterium.
658
+ Noting that the EUN starts when nD ∼ np, it follows from (61) that
659
+ 6.9ηEUN
660
+ �kBTEUN
661
+ mnc2
662
+ �3/2
663
+ exp
664
+
665
+ BD
666
+ kBTEUN
667
+
668
+ ≈ 1,
669
+ (62)
670
+ where ηEUN and TEUN are the baryon-to-photon ratio and temperature of
671
+ the EUN. We can see from (62) that we need the value of TEUN to find
672
+ 11
673
+
674
+ ηEUN. Fortunately, we can find such value from the primordial helium (4He)
675
+ abundance
676
+ YP ≡ 4n4He
677
+ nH
678
+ =
679
+ 2Xn(tEUN)
680
+ 1 − Xn(tEUN),
681
+ (63)
682
+ where tEUN is the time of the EUN.
683
+ The substitution of (60) and the observed value of the helium abundance
684
+ YP = 0.245 [21] into (63) gives
685
+ tEUN ≈ 279.7 s.
686
+ (64)
687
+ Then, by inserting (64) into (53), and considering that the electrons and
688
+ protons are no longer relativistic after their annihilation, which gives g∗ =
689
+ 3.36, we obtain
690
+ TEUN ≈ 8.8 × 108 K.
691
+ (65)
692
+ Finally, using (65) in (62), we arrive at
693
+ ηEUN ≈ 5.12 × 10−8,
694
+ (66)
695
+ which produces abundances of other light elements besides helium orders
696
+ of magnitude below the primordial abundances inferred from current obser-
697
+ vations [22].
698
+ However, this result does not automatically rule out MCG.
699
+ If we consider that the theory has low energy (≲ eV) right-handed sterile
700
+ neutrinos6, then we must replace g∗ = 10.75 by g∗ = 16.125 prior to the
701
+ electron-positron annihilation and g∗ = 3.36 by g∗ = 5.04 after the electron-
702
+ positron annihilation due to the contribution of the sterile neutrinos to the
703
+ relativistic energy content of the universe. These replacements lead to the
704
+ standard value
705
+ ηEUN ≈ 6 × 10−10,
706
+ (67)
707
+ which is consistent with the observed abundances of all light elements with
708
+ the exception of lithium7.
709
+ 6The existence of such neutrinos is allowed by the symmetries of the theory and may
710
+ be responsible for the small masses of the left-handed neutrinos found in nature [23].
711
+ 7It is possible that the decay of the sterile neutrinos solves the inconsistency between
712
+ the predicted and observed values of the lithium abundance [24].
713
+ 12
714
+
715
+ 6
716
+ Baryon density
717
+ Another important cosmological parameter that is determined by η is the
718
+ baryon mass density ρb of the universe. In order to find the relation between
719
+ these two parameters in the MCG universe, we start from the definitions of
720
+ the baryon and photon number densities
721
+ nb = ρb
722
+ mN
723
+ ,
724
+ (68)
725
+ nγ = 2ζ(3)8π
726
+ c3
727
+ �kBT
728
+ h
729
+ �3
730
+ ≈ 2 × 107T 3,
731
+ (69)
732
+ where mN is the nucleons mass. The combination of (68), (69) and (52),
733
+ with g∗ = 2, then gives the relation
734
+ η =
735
+ aB
736
+ 2 × 107mNc2
737
+ ρb
738
+ ργ
739
+ T,
740
+ (70)
741
+ which is valid for any cosmological model. Noting that both ρb and ργ obey
742
+ (46) in MCG, we can write (70) in the form
743
+ η =
744
+ aB
745
+ 2 × 107mNc2
746
+ ρb0
747
+ ργ0
748
+ T,
749
+ (71)
750
+ which means that the baryon-to-photon ratio evolves over time in the MCG
751
+ universe8, different to what happens in the ΛCDM universe where η is con-
752
+ stant after the EUN.
753
+ Using the current temperature of the universe T0 = 2.73 K in (52), with
754
+ g∗ = 2, we find
755
+ ργ0 = 4.65 × 10−31 kg/m3.
756
+ (72)
757
+ In addition, the use of (67) in (62), with 6.9 replaced by 6.5 due to the
758
+ different value of (58) which leads to (67), gives
759
+ TEUN ≈ 7.56 × 108 K.
760
+ (73)
761
+ 8It would be important to check if (71) at the time of recombination is consistent with
762
+ the value of η measured by cosmic microwave background (CMB) anisotropies. However,
763
+ a theory for the growth of inhomogeneities in MCG has not yet been developed due to the
764
+ complexity generated by the contribution of the Bach tensor in (10). Therefore, we will
765
+ leave this analysis for future works.
766
+ 13
767
+
768
+ Finally, substituting (67), (72) and (73) into (71), we obtain the current
769
+ baryon mass density
770
+ ρb0 = 1.46 × 10−36 kg/m3.
771
+ (74)
772
+ Since ρr and ρb evolve at the same rate in MCG, it follows from (72) and
773
+ (74) that radiation always dominates the MCG universe.
774
+ In fact, the scale factor is big at late times such that we can neglect
775
+ the density term on the right hand side of (47), which makes the late MCG
776
+ universe curvature dominated. In this case, we must impose K = −1, which
777
+ gives the approximated solution
778
+ a(t) = ct
779
+ (75)
780
+ in the late MCG universe. It is not difficult to show that for an open uni-
781
+ verse with the scale factor (75) such as the late MCG universe, we have the
782
+ luminosity distance
783
+ dL(z) = c
784
+ H0
785
+ �(1 + z)2 − 1
786
+ 2
787
+
788
+ ,
789
+ (76)
790
+ which fits well to SNIa data9 [6]. We intend to check if (75) provides good
791
+ fits to other low redshift data in future works.
792
+ Just to finish, it is important to note that the evolution of the baryon-
793
+ to-photon ratio (71) causes the number of baryons Nb to decrease over time
794
+ in the MCG universe. We can see this explicitly by substituting (46) and
795
+ V ∼ a3 in
796
+ Nb = nbV = ρbV
797
+ mN
798
+ ,
799
+ (77)
800
+ which gives
801
+ Nb ∼ ρb0a4
802
+ 0
803
+ mNa.
804
+ (78)
805
+ Using (75), we find that the number of baryons evolves over time according
806
+ to
807
+ Nb ∼
808
+ �ρb0c3t4
809
+ 0
810
+ mN
811
+
812
+ t−1
813
+ (79)
814
+ in the late MCG universe.
815
+ It follows from the energy continuity equation (44) that
816
+ ˙ρb + 3Hρb = ˙ρΛ.
817
+ (80)
818
+ 9It is worth noting that the density term has not been neglected in Ref. [6], which in
819
+ practice does not change the SNIa data fitting.
820
+ 14
821
+
822
+ By comparing (80) with the standard adiabatic conservation equation, and
823
+ noting that ˙ρΛ < 0, we conclude that the decrease in the number of baryons
824
+ (79) is due to the decay of the baryons into dynamic vacuum10, which clearly
825
+ leads to a violation of the conservation of the quantum numbers. However,
826
+ we can see from (79) that the variation of the number of baryons should only
827
+ be significant on cosmological time scales, which makes the decay of baryons
828
+ into vacuum not observable in the laboratory.
829
+ On the other hand, the non-conservation of baryons can have an im-
830
+ portant impact on the evolution of inhomogeneous structures of the universe
831
+ from the end of recombination until today. Due to the decrease in the amount
832
+ of baryons in the MCG universe, it is expected that the formation of struc-
833
+ tures happen much later than is observed or not happen at all. However,
834
+ the evolution of cosmological structures does not depend only on baryons
835
+ but also on dark matter, whose existence is necessary in MCG to explain the
836
+ galaxy rotation curves and the deflection of light by galaxies [10]. Therefore,
837
+ although the theory possibly has an extra scalar field that is a good candidate
838
+ for dark matter [14], much still has to be studied to find out if the evolution
839
+ of cosmological structures predicted by MCG is consistent with observations
840
+ or not.
841
+ 7
842
+ Final remarks
843
+ Here we have shown that the abundances of light elements, including lithium,
844
+ predicted by the early MCG cosmology are consistent with the observed val-
845
+ ues provided the theory has right-handed sterile neutrinos, which is allowed
846
+ by the symmetries of the theory. Even though we still need to check the
847
+ existence of such neutrinos in experiments like the Mini Booster Neutrino
848
+ Experiment (MiniBooNE) [25], this result is quite encouraging for us to con-
849
+ tinue with the study of the theory.
850
+ In addition, it was shown in this paper that the baryon-to-photon ratio
851
+ of the MCG universe evolves over time. Although further studies are needed
852
+ to verify whether this evolution is consistent with the value of the baryon-
853
+ to-photon ratio determined by the CMB anisotropies, who knows it solves
854
+ other early universe problems found in the ΛCDM model such as the baryon
855
+ asymmetry problem. We intend to study this and other MCG cosmological
856
+ predictions in future works.
857
+ 10This decaying process can be accounted by the Yukawa interaction µSψψ in (19).
858
+ 15
859
+
860
+ References
861
+ [1] A.G. Riess et al., Astron. J. 116, 1009 (1998); S. Perlmutter et al., ApJ
862
+ 517, 565 (1999).
863
+ [2] N. Aghanim et al. [Planck Collab.], Planck 2018 results. VI. Cosmologi-
864
+ cal parameters, Astron. Astrophys. 641, A6 (2020); Astron. Astrophys.
865
+ 652, C4 (2021).
866
+ [3] S. E. Rugh and H. Zinkernagel, Stud. Hist. Phil. Sci. B 33, 663 (2002).
867
+ [4] S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).
868
+ [5] R. H. Cyburt, B. D. Fields, K. A. Olive and T.-H. Yeh, Rev. Mod. Phys.
869
+ 88, 015004 (2016).
870
+ [6] F. F. Faria, Adv. High Energy Phys. 2014, 520259 (2014).
871
+ [7] F. F. Faria, Mod. Phys. Lett. A 36, 2150115 (2021).
872
+ [8] F. F. Faria, Adv. High Energy Phys. 2019, 7013012 (2019).
873
+ [9] F. F. Faria, Eur. Phys. J. C 80, 645 (2020).
874
+ [10] F. F. Faria, Mod. Phys. Lett. A 37, 2250033 (2022).
875
+ [11] F. F. Faria, Eur. Phys. J. C 76, 188 (2016).
876
+ [12] F. F. Faria, Eur. Phys. J. C 77, 11 (2017).
877
+ [13] F. F. Faria, Eur. Phys. J. C 78, 277 (2018).
878
+ [14] F. F. Faria, arXiv:1903.04893 [hep-th].
879
+ [15] N. Matsuo, Gen. Relativ. Gravit. 22, 561 (1990).
880
+ [16] P. D. Mannheim, Gen. Relativ. Gravit. 22, 289 (1990).
881
+ [17] A. J. Helmboldt, P. Humbert, M. Lindner and J. Smirnov, JHEP 2017,
882
+ 113 (2017).
883
+ [18] P. D. Mannheim, Prog. Part. Nucl. Phys. 56, 340 (2006).
884
+ [19] L. Knox and A. Kosowsky, arXiv:9311006 [astro-ph].
885
+ 16
886
+
887
+ [20] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001
888
+ (2018).
889
+ [21] E. Aver et al., JCAP 03, 027 (2021).
890
+ [22] P. A. Zyla et al. (Particle Data Group), PTEP 2020, 083C01 (2020).
891
+ [23] K. A. Meissner and H. Nicolai, Phys. Lett. B 648, 312 (2007).
892
+ [24] L. Salvati et al., JCAP 08, 022 (2016).
893
+ [25] A. A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), Phys. Rev.
894
+ Lett. 121, 221801 (2018).
895
+ 17
896
+
4tFKT4oBgHgl3EQf9i5P/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,355 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf,len=354
2
+ page_content='Early universe nucleosynthesis in massive conformal gravity F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
3
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
4
+ page_content=' Faria ∗ Centro de Ciˆencias da Natureza, Universidade Estadual do Piau´ı, 64002-150 Teresina, PI, Brazil Abstract We study the dynamics of the early universe in massive conformal gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
5
+ page_content=' In particular, we show that the theory is consistent with the observed values of the primordial abundances of light elements if we consider the existence of right-handed sterile neutrinos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
6
+ page_content=' PACS numbers: 04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
7
+ page_content='62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
8
+ page_content='+v, 04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
9
+ page_content='60-m, 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
10
+ page_content='60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
11
+ page_content='-i felfrafar@hotmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
12
+ page_content='com arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
13
+ page_content='11954v1 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
14
+ page_content='gen-ph] 27 Jan 2023 1 Introduction It is well known that the standard ΛCDM cosmological model is consistent with most observations of the universe at both early and late times [1, 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
15
+ page_content=' However, for this consistency to occur, a very small value for the cosmological constant (Λ) is required, which by far does not match with the huge value pre- dicted by quantum field theory (see [3] for a nice review).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
16
+ page_content=' This discrepancy between the cosmological and quantum values of Λ is known as the cosmolog- ical constant problem [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
17
+ page_content=' Another important problem of ΛCDM is that the primordial lithium abundance from the early universe nucleosynthesis pre- dicted by it differs by about a factor of three from the observed abundance [5], which is known as the lithium problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
18
+ page_content=' Despite several attempts over the years, no alternative cosmological model has succeeded in solving these two problems and being consistent with other cosmological observations at the same time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
19
+ page_content=' One of such models comes from massive conformal gravity (MCG), which is a conformally invariant theory of gravity in which the gravitational action is the sum of the Weyl action with the Einstein-Hilbert action conformally coupled to a scalar field [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
20
+ page_content=' Among so many cosmological models, we chose the MCG model because it fits well with the Type Ia supernovae (SNIa) data without the cosmological constant problem [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
21
+ page_content=' In addition, the theory is free of the van Dam-Veltman-Zakharov (vDVZ) discontinuity [8], can re- produce the orbit of binaries by the emission of gravitational waves [9] and is consistent with solar system observations [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
22
+ page_content=' Furthermore, MCG is a power-counting renormalizable [11, 12] and unitary [13] quantum theory of gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
23
+ page_content=' In this paper, we want to see if the MCG cosmology is consistent with the observed primordial abundances of light elements without the lithium problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
24
+ page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
25
+ page_content=' 2, we describe the MCG cosmological equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
26
+ page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
27
+ page_content=' 3, we derive the matter energy-momentum tensor used in the theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
28
+ page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
29
+ page_content=' 4, we study the dynamics of the early MCG universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
30
+ page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
31
+ page_content=' 5, we compare the early universe nucleosynthesis of MCG with cosmological observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
32
+ page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
33
+ page_content=' 6, we analyze the evolution of the baryon density of the MCG universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
34
+ page_content=' Finally, in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
35
+ page_content=' 7, we present our conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
36
+ page_content=' 1 2 Massive conformal gravity The total MCG action is given by1 [8] S = � d4x √−g � ϕ2R + 6∂µϕ∂µϕ − 1 2α2CαβµνCαβµν � + 1 c � d4xLm,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
37
+ page_content=' (1) where ϕ is a scalar field called dilaton,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
38
+ page_content=' α is a coupling constant,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
39
+ page_content=' CαβµνCαβµν = RαβµνRαβµν − 4RµνRµν + R2 + 2 � RµνRµν − 1 3R2 � (2) is the Weyl tensor squared,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
40
+ page_content=' Rαµβν = ∂βΓα µν + · · · is the Riemann tensor,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
41
+ page_content=' Rµν = Rαµαν is the Ricci tensor,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
42
+ page_content=' R = gµνRµν is the scalar curvature,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
43
+ page_content=' and Lm = Lm(gµν,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
44
+ page_content=' Ψ) is the Lagrangian density of the matter field Ψ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
45
+ page_content=' It is worth noting that besides being invariant under coordinate transformations, the action (1) is also invariant under the conformal transformations ˜Φ = Ω(x)−∆ΦΦ, (3) where Ω(x) is an arbitrary function of the spacetime coordinates, and ∆Φ is the scaling dimension of the field Φ, whose values are −2 for the metric field, 0 for gauge bosons, 1 for scalar fields, and 3/2 for fermions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
46
+ page_content=' The variation of (1) with respect to gµν and ϕ gives the MCG field equa- tions ϕ2Gµν +6∂µϕ∂νϕ−3gµν∂ρϕ∂ρϕ+gµν∇ρ∇ρϕ2 −∇µ∇νϕ2 −α−2Wµν = 1 2cTµν, (4) � ∇µ∇µ − 1 6R � ϕ = 0, (5) where Wµν = ∇ρ∇ρRµν − 1 3∇µ∇νR − 1 6gµν∇ρ∇ρR + 2RρσRµρνσ − 1 2gµνRρσRρσ −2 3RRµν + 1 6gµνR2 (6) 1This action is obtained from the action of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
47
+ page_content=' [8] by rescaling ϕ → �� 32πG/3 � ϕ and considering m = � 3/64πGα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
48
+ page_content=' 2 is the Bach tensor, Gµν = Rµν − 1 2gµνR (7) is the Einstein tensor, ∇ρ∇ρϕ = 1 √−g∂ρ �√−g∂ρϕ � (8) is the generally covariant d’Alembertian for a scalar field, and Tµν = − 2 √−g δLm δgµν (9) is the matter energy-momentum tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
49
+ page_content=' Before we proceed, it is important to note that both the symmetries of the theory allow us to introduce in (1) a quartic self-interacting term of the dilaton λ � √−gϕ4 as well as interaction terms of the dilaton with the matter fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
50
+ page_content=' In the case of the dilaton self-interaction term, we do not include it in the MCG action because this inclusion makes the flat metric no longer a solution of the field equations, which invalidates the S-matrix formulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
51
+ page_content=' Although such a term is reintroduced in the effective action by quantum corrections, we can consider the renormalized value of the coupling constant λ equal zero so that the self-interacting term is present in the renormalized action only to cancel out the corresponding divergent term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
52
+ page_content=' In addition, we neglect the couplings between the dilaton and the matter fields because they make the field equation (5) no longer valid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
53
+ page_content=' This equation is fundamental to cancel non-renormalizable divergent terms that appear in the effective action [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
54
+ page_content=' At scales below the Planck scale, the dilaton field acquires a spontaneously broken constant vacuum expectation value ϕ0 [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
55
+ page_content=' In this case, the field equations (4) and (5) become ϕ2 0Gµν − α−2Wµν = 1 2cTµν, (10) R = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
56
+ page_content=' (11) In addition, for ϕ = ϕ0, the MCG line element ds2 = (ϕ/ϕ0)2 gµνdxµdxν reduces to ds2 = gµνdxµdxν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
57
+ page_content=' (12) The full dynamics of the MCG universe can be described by (10)-(12) without loss of generality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
58
+ page_content=' 3 3 Dynamical perfect fluid In order to find the MCG matter energy-momentum tensor,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
59
+ page_content=' we consider the conformally invariant matter Lagrangian density [16] Lm = −√−gc � S2R+6∂µS∂µS+λS4+ i 2ℏ � ψγµDµψ − Dµψγµψ � −ℏµSψψ � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
60
+ page_content=' (13) where S is a scalar Higgs field2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
61
+ page_content=' λ and µ are coupling constants,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
62
+ page_content=' ψ = ψ†γ0 is the adjoint fermion field,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
63
+ page_content=' Dµ = ∂µ + [γν,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
64
+ page_content=' ∂µγν]/8 − [γν,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
65
+ page_content=' γλ]Γλµν/8 (Γλµν is the Levi-Civita connection),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
66
+ page_content=' and γµ are the general relativistic Dirac matrices,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
67
+ page_content=' which satisfy the anti-commutation relation {γµ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
68
+ page_content=' γν} = 2gµν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
69
+ page_content=' By varying (13) with respect to S, ψ and ψ, we obtain the field equations 12∇µ∇µS − 2RS − 4λS3 + ℏµψψ = 0, (14) iγµDµψ − µSψ = 0, (15) iDµψγµ + µSψ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
70
+ page_content=' (16) Additionally, the substitution of (13) into (9) gives Tµν c = 12∂µS∂νS − 6gµν∂ρS∂ρS + 2gµν∇ρ∇ρS2 − 2∇µ∇νS2 + 2S2Gµν − gµν � λS4 + i 2ℏ � ψγρDρψ − Dρψγρψ � − ℏµSψψ � + i 4ℏ � ψγµDνψ − Dνψγµψ + ψγνDµψ − Dµψγνψ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
71
+ page_content=' (17) Then,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
72
+ page_content=' using (14)-(16) and ∇µ∇νS2 = 2(S∇µ∇νS + ∂µS∂νS) in (17),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
73
+ page_content=' we find the energy-momentum tensor Tµν = c (8∂µS∂νS − 2gµν∂ρS∂ρS − 4S∇µ∇νS + gµνS∇ρ∇ρS) + 2cS2 � Rµν − 1 4gµνR � + T f µν,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
74
+ page_content=' (18) where T f µν = i 4cℏ � ψγµDνψ − Dνψγµψ + ψγνDµψ − Dµψγνψ � − 1 4gµνcℏµSψψ (19) 2Although the Higgs field is actually a doublet,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
75
+ page_content=' and it is more likely that we must have two more scalar fields to get the correct quantum phenomenology at low energies [17],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
76
+ page_content=' considering only a scalar Higgs field will not change the classical results of the theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
77
+ page_content=' 4 is the fermion energy-momentum tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
78
+ page_content=' Considering that, at scales below the electroweak scale, the Higgs field acquires a spontaneously broken constant vacuum expectation value S0, and making some algebra, we find that (15) and (18) become � DµDµ − �mc ℏ �2� ψ = 0, (20) Tµν(S0, gµν) = 2cS2 0 � Rµν − 1 4gµνR � + T f µν(S0, gµν), (21) where T f µν(S0, gµν) = i 4cℏ � ψγµDνψ−Dνψγµψ+ψγνDµψ−Dµψγνψ � − 1 4gµνmc2ψψ, (22) with m = µS0ℏ/c being the fermion mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
79
+ page_content=' In flat spacetime, is not difficult to see that (20) and (22) reduce to � ∂µ∂µ − �mc ℏ �2� ψ = 0, (23) T f µν(S0, ηµν) = i 4cℏ � ψγµ∂νψ − ∂νψγµψ + ψγν∂µψ − ∂µψγνψ � − 1 4ηµνmc2ψψ, (24) where now the Dirac matrices satisfy the anti-commutation relation {γµ, γν} = 2ηµν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
80
+ page_content=' The normalized plane wave solution to (23) is given by ψ = 1 √V Ek uk eikµxµ, (25) where V is the volume, Ek = √ k2c2 + m2c4 is the energy, uk is a spinor which satisfies [γµkµ + mc/ℏ] uk = 0, and kµ = (Ek/cℏ,⃗k/ℏ) is the wave vector, with ⃗k being the momentum and k = |⃗k|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
81
+ page_content=' By substituting (25) and its adjoint into (24), and using ukuk = −mc2, we obtain T f µν(S0, ηµν) = � c2ℏ2 V Ek � kµkν + � m2c4 4V Ek � ηµν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
82
+ page_content=' (26) 5 Incoherently adding to (26) the individual contributions of a set of six plane waves moving in the ± x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
83
+ page_content=' ± y and ± z directions,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
84
+ page_content=' all with the same Ek and k,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
85
+ page_content=' we can write the energy-momentum tensor (26) in the perfect fluid form T f µν(S0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
86
+ page_content=' ηµν) = � ρ + p c2 � uµuν + ηµνp + ηµνc2ρΛ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
87
+ page_content=' (27) where c2ρ = 6Ek V (28) is the energy density of the fluid,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
88
+ page_content=' p = 2k2c2 V Ek (29) is the pressure of the fluid,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
89
+ page_content=' c2ρΛ = 3m2c4 2V Ek (30) is the vacuum energy (dark energy) density,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
90
+ page_content=' and uµ is the four-velocity of the fluid,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
91
+ page_content=' which is normalized to uµuµ = −c2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
92
+ page_content=' It follows from (28)-(30) that p = 0, ρΛ = 1 4ρ, (31) for a non-relativistic perfect fluid (k2c2 ≪ m2c4), and p = 1 3c2ρ, ρΛ = 0, (32) for a relativistic perfect fluid (k2c2 ≫ m2c4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
93
+ page_content=' In curved spacetime, the perfect fluid energy-momentum tensor (27) is generalized to T f µν(S0, gµν) = � ρ + p c2 � uµuν + gµνp + gµνc2ρΛ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
94
+ page_content=' (33) Finally, the insertion of (33) into (21) gives the energy-momentum tensor of a dynamical perfect fluid Tµν(S0, gµν) = 2cS2 0 � Rµν − 1 4gµνR � + � ρ + p c2 � uµuν +gµνp+gµνc2ρΛ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
95
+ page_content=' (34) 6 Taking the trace of (34), and substituting into the trace of (10), whose left hand side is zero due to the field equation (11) and the tracelessness of the Bach tensor (W = gµνWµν = 0), we arrive at T = gµνTµν = 3p − c2ρ + 4c2ρΛ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
96
+ page_content=' (35) We can see from (31) and (32) that both non-relativistic and relativistic perfect fluids satisfies the tracelessness relation (35).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
97
+ page_content=' For simplicity, we could isolate ρΛ in (35) and replace it in (34) as done in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
98
+ page_content=' [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
99
+ page_content=' In this case, it is made clear that the vacuum energy density does not contribute directly to the dynamic evolution of the MCG universe, which solves the cosmological constant problem found in the ΛCDM model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
100
+ page_content=' However, here we will keep ρΛ so we don’t miss any physical details during the calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
101
+ page_content=' By substituting (34) into (10), and considering (11), we find � ϕ2 0 − S2 0 � Rµν − α−2Wµν = 1 2c �� ρ + p c2 � uµuν + gµνp + gµνc2ρΛ � , (36) which is the field equation that we will use in the study of the dynamics of the early MCG universe in the next section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
102
+ page_content=' But before that, it is important to compare MCG with another conformally invariant theory of gravity called conformal gravity (CG)3, whose action is given by [18] S = − 1 2α2 � d4x √−g � CαβµνCαβµν � + 1 c � d4xLm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
103
+ page_content=' (37) By varying (37) with respect to gµν, we obtain the field equation − α−2Wµν = 1 2cTµν, (38) where Tµν is given by (18).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
104
+ page_content=' We can easily see the difference between the two theories by comparing (38) with (10) and (11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
105
+ page_content=' Just to stay within the scope of this paper, it is worth noting that CG does not pass the early universe nucleosynthesis test [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
106
+ page_content=' 3Although the difference between the two theories is quite obvious, as we will readily show next, MCG is often confused with CG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
107
+ page_content=' Perhaps this is because CG is much older and known than MCG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
108
+ page_content=' 7 4 Early universe As usual, we consider that the geometry of the universe is described by the Friedmann–Lemaˆıtre–Robertson–Walker (FLRW) line element ds2 = −c2dt2 + a(t)2 � dr2 1 − Kr2 + r2dθ2 + r2 sin2 θdφ2 � , (39) where a = a(t) is the scale factor and K = -1, 0 or 1 is the spatial curvature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
109
+ page_content=' By substituting (39) and the fluid four-velocity uµ = (c, 0, 0, 0) into (36), we obtain4 ¨a a = − c 6 (ϕ2 0 − S2 0) � c2ρ − c2ρΛ � , (40) ¨a a + 2 � ˙a a �2 + 2Kc2 a2 = c 2 (ϕ2 0 − S2 0) � p + c2ρΛ � , (41) where the dot denotes d/dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
110
+ page_content=' Subtracting (40) from (41), and considering that5 ϕ2 0 = 3c3 32πG ≫ S2 0, (42) we obtain � ˙a a �2 = 8πG 9c2 � c2ρ + 3p + 2c2ρΛ � − Kc2 a2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
111
+ page_content=' (43) The combination of (43) with (40) then gives the energy continuity equation c2 ˙ρ + 3 ˙a a � c2ρ + p � − c2 ˙ρΛ = 0, (44) which can also be obtained by the conservation law ∇µT f µν = 0, with T f µν being the perfect fluid energy-momentum tensor (33).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
112
+ page_content=' Using either (31) or (32) in (44), we get ˙ρ + 4 ˙a aρ = 0, (45) 4It is worth noting that Wµν = 0 for the FLRW spacetime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
113
+ page_content=' 5This value of ϕ0 is necessary for the theory to be consistent with solar system obser- vations [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
114
+ page_content=' 8 which, consequently, is valid for both non-relativistic and relativistic dynam- ical perfect fluids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
115
+ page_content=' As usual, we can write the solution to (45) in the form ρ = ρ0 �a0 a �4 , (46) where, from now on, the subscript 0 denotes values at the present time t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
116
+ page_content=' In the case of the early universe, which is composed by a very hot plasma dominated by relativistic particles (radiation), we find that (43) becomes ˙a2 = 16πGa4 0 9a2 ρr0 − Kc2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
117
+ page_content=' (47) where we used (32) and (46), with ρr being the mass density of the radiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
118
+ page_content=' Since a is small in the early universe, we can neglect the curvature term on the right hand side of (47) and write it in the approximate form ˙a2 = 16πGa4 0 9a2 ρr0, (48) whose solution is given by a(t) = �64πGa4 0ρr0 9 �1/4 t1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
119
+ page_content=' (49) Finally, inserting (49) into the Hubble constant H = ˙a a, (50) we obtain H = 1 2t, (51) which is the same relation between the Hubble constant and time that occurs in the early ΛCDM universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
120
+ page_content=' However, since the MCG scale factor (49) is equal 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
121
+ page_content='9 times the value of the ΛCDM scale factor, the expansion of the early MCG universe is slower than the expansion of the early ΛCDM universe, which will give a difference in the values of the two Hubble constants, as we will show in the next section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
122
+ page_content=' 9 5 Nucleosynthesis The abundances of light chemical elements in the early universe are mainly determined by one cosmological parameter, namely, the baryon-to-photon ratio η = nb/nγ, where nb and nγ are the number densities of baryons and photons in the universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
123
+ page_content=' As usual, to find η we must first write the Hubble constant in function of temperature T using the Stefan-Boltzmann law ρr = �g∗aB 2c2 � T 4, (52) where aB is the radiation energy constant and g∗ counts the number of rela- tivistic particle species determining the energy density in radiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
124
+ page_content=' Substi- tuting (52) and (49) into (46), we obtain t = � 9c2 32πGg∗aB �1/2 1 T 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
125
+ page_content=' (53) It then follows from (51) and (53) that H = �8πGg∗aB 9c2 �1/2 T 2, (54) which is equal 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
126
+ page_content='82 times the value of the ΛCDM Hubble constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
127
+ page_content=' In order to describe the thermal history of the early MCG universe, we must compare the Hubble constant in the form (54) with the collision rate of particle interactions Γ = nσv, (55) where n is the number density of particles, σ is their interaction cross section and v is the average velocity of the particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
128
+ page_content=' A specific temperature that is of particular importance for the outcome of the early universe nucleosynthesis (EUN) is the one at which the thermal equilibrium between neutrons and protons begins to break down, which happens when H ∼ Γν, where Γν ≈ G2 F c6ℏ7(kBT)5 (56) is the collision rate of a neutrino with electrons or positrons, with GF being the Fermi constant and kB the Boltzmann constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
129
+ page_content=' 10 By equating (54) with (56), and assuming that at the onset of the electron- positron annihilation the remaining relativistic particles are photons, elec- trons, positrons and left-handed neutrinos, for which g∗ = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
130
+ page_content='75, we obtain kBTeq = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
131
+ page_content='75 MeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
132
+ page_content=' (57) We can see from (57) that the thermal equilibrium between neutrons and protons is maintained at temperatures above Teq = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
133
+ page_content='7 × 109 K in the early MCG universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
134
+ page_content=' At that time, the neutron-to-proton ratio was �nn np � eq = e−Q/kBTeq = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
135
+ page_content='178, (58) where we used (57) and the neutron-proton energy difference Q = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
136
+ page_content='239 MeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
137
+ page_content=' Using (58), we can make a rough estimate that the final freeze-out neutron abundance is given by X∞ n ∼ Xeq n = e���Q/kBTeq 1 + e−Q/kBTeq = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
138
+ page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
139
+ page_content=' (59) Including the neutron decay in our calculation, we find Xn(t) = X∞ n e−t/τn = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
140
+ page_content='15 e−t/τn, (60) where τn = 879.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
141
+ page_content='4 s is the neutron mean lifetime [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
142
+ page_content=' The first light element formed in the early universe was deuterium (D), whose ratio to proton is approximately given by nD np ≈ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
143
+ page_content='9η � kBT mnc2 �3/2 exp � BD kBT � , (61) where we used (58) and BD = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
144
+ page_content='2 MeV is the binding energy of deuterium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
145
+ page_content=' Noting that the EUN starts when nD ∼ np, it follows from (61) that 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
146
+ page_content='9ηEUN �kBTEUN mnc2 �3/2 exp � BD kBTEUN � ≈ 1, (62) where ηEUN and TEUN are the baryon-to-photon ratio and temperature of the EUN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
147
+ page_content=' We can see from (62) that we need the value of TEUN to find 11 ηEUN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
148
+ page_content=' Fortunately, we can find such value from the primordial helium (4He) abundance YP ≡ 4n4He nH = 2Xn(tEUN) 1 − Xn(tEUN), (63) where tEUN is the time of the EUN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
149
+ page_content=' The substitution of (60) and the observed value of the helium abundance YP = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
150
+ page_content='245 [21] into (63) gives tEUN ≈ 279.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
151
+ page_content='7 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
152
+ page_content=' (64) Then, by inserting (64) into (53), and considering that the electrons and protons are no longer relativistic after their annihilation, which gives g∗ = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
153
+ page_content='36, we obtain TEUN ≈ 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
154
+ page_content='8 × 108 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
155
+ page_content=' (65) Finally, using (65) in (62), we arrive at ηEUN ≈ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
156
+ page_content='12 × 10−8, (66) which produces abundances of other light elements besides helium orders of magnitude below the primordial abundances inferred from current obser- vations [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
157
+ page_content=' However, this result does not automatically rule out MCG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
158
+ page_content=' If we consider that the theory has low energy (≲ eV) right-handed sterile neutrinos6, then we must replace g∗ = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
159
+ page_content='75 by g∗ = 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
160
+ page_content='125 prior to the electron-positron annihilation and g∗ = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
161
+ page_content='36 by g∗ = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
162
+ page_content='04 after the electron- positron annihilation due to the contribution of the sterile neutrinos to the relativistic energy content of the universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
163
+ page_content=' These replacements lead to the standard value ηEUN ≈ 6 × 10−10, (67) which is consistent with the observed abundances of all light elements with the exception of lithium7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
164
+ page_content=' 6The existence of such neutrinos is allowed by the symmetries of the theory and may be responsible for the small masses of the left-handed neutrinos found in nature [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
165
+ page_content=' 7It is possible that the decay of the sterile neutrinos solves the inconsistency between the predicted and observed values of the lithium abundance [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
166
+ page_content=' 12 6 Baryon density Another important cosmological parameter that is determined by η is the baryon mass density ρb of the universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
167
+ page_content=' In order to find the relation between these two parameters in the MCG universe, we start from the definitions of the baryon and photon number densities nb = ρb mN , (68) nγ = 2ζ(3)8π c3 �kBT h �3 ≈ 2 × 107T 3, (69) where mN is the nucleons mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
168
+ page_content=' The combination of (68), (69) and (52), with g∗ = 2, then gives the relation η = aB 2 × 107mNc2 ρb ργ T, (70) which is valid for any cosmological model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
169
+ page_content=' Noting that both ρb and ργ obey (46) in MCG, we can write (70) in the form η = aB 2 × 107mNc2 ρb0 ργ0 T, (71) which means that the baryon-to-photon ratio evolves over time in the MCG universe8, different to what happens in the ΛCDM universe where η is con- stant after the EUN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
170
+ page_content=' Using the current temperature of the universe T0 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
171
+ page_content='73 K in (52), with g∗ = 2, we find ργ0 = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
172
+ page_content='65 × 10−31 kg/m3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
173
+ page_content=' (72) In addition, the use of (67) in (62), with 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
174
+ page_content='9 replaced by 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
175
+ page_content='5 due to the different value of (58) which leads to (67), gives TEUN ≈ 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
176
+ page_content='56 × 108 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
177
+ page_content=' (73) 8It would be important to check if (71) at the time of recombination is consistent with the value of η measured by cosmic microwave background (CMB) anisotropies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
178
+ page_content=' However, a theory for the growth of inhomogeneities in MCG has not yet been developed due to the complexity generated by the contribution of the Bach tensor in (10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
179
+ page_content=' Therefore, we will leave this analysis for future works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
180
+ page_content=' 13 Finally, substituting (67), (72) and (73) into (71), we obtain the current baryon mass density ρb0 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
181
+ page_content='46 × 10−36 kg/m3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
182
+ page_content=' (74) Since ρr and ρb evolve at the same rate in MCG, it follows from (72) and (74) that radiation always dominates the MCG universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
183
+ page_content=' In fact, the scale factor is big at late times such that we can neglect the density term on the right hand side of (47), which makes the late MCG universe curvature dominated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
184
+ page_content=' In this case, we must impose K = −1, which gives the approximated solution a(t) = ct (75) in the late MCG universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
185
+ page_content=' It is not difficult to show that for an open uni- verse with the scale factor (75) such as the late MCG universe, we have the luminosity distance dL(z) = c H0 �(1 + z)2 − 1 2 � , (76) which fits well to SNIa data9 [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
186
+ page_content=' We intend to check if (75) provides good fits to other low redshift data in future works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
187
+ page_content=' Just to finish, it is important to note that the evolution of the baryon- to-photon ratio (71) causes the number of baryons Nb to decrease over time in the MCG universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
188
+ page_content=' We can see this explicitly by substituting (46) and V ∼ a3 in Nb = nbV = ρbV mN , (77) which gives Nb ∼ ρb0a4 0 mNa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
189
+ page_content=' (78) Using (75), we find that the number of baryons evolves over time according to Nb ∼ �ρb0c3t4 0 mN � t−1 (79) in the late MCG universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
190
+ page_content=' It follows from the energy continuity equation (44) that ˙ρb + 3Hρb = ˙ρΛ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
191
+ page_content=' (80) 9It is worth noting that the density term has not been neglected in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
192
+ page_content=' [6], which in practice does not change the SNIa data fitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
193
+ page_content=' 14 By comparing (80) with the standard adiabatic conservation equation, and noting that ˙ρΛ < 0, we conclude that the decrease in the number of baryons (79) is due to the decay of the baryons into dynamic vacuum10, which clearly leads to a violation of the conservation of the quantum numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
194
+ page_content=' However, we can see from (79) that the variation of the number of baryons should only be significant on cosmological time scales, which makes the decay of baryons into vacuum not observable in the laboratory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
195
+ page_content=' On the other hand, the non-conservation of baryons can have an im- portant impact on the evolution of inhomogeneous structures of the universe from the end of recombination until today.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
196
+ page_content=' Due to the decrease in the amount of baryons in the MCG universe, it is expected that the formation of struc- tures happen much later than is observed or not happen at all.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
197
+ page_content=' However, the evolution of cosmological structures does not depend only on baryons but also on dark matter, whose existence is necessary in MCG to explain the galaxy rotation curves and the deflection of light by galaxies [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
198
+ page_content=' Therefore, although the theory possibly has an extra scalar field that is a good candidate for dark matter [14], much still has to be studied to find out if the evolution of cosmological structures predicted by MCG is consistent with observations or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
199
+ page_content=' 7 Final remarks Here we have shown that the abundances of light elements, including lithium, predicted by the early MCG cosmology are consistent with the observed val- ues provided the theory has right-handed sterile neutrinos, which is allowed by the symmetries of the theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
200
+ page_content=' Even though we still need to check the existence of such neutrinos in experiments like the Mini Booster Neutrino Experiment (MiniBooNE) [25], this result is quite encouraging for us to con- tinue with the study of the theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
201
+ page_content=' In addition, it was shown in this paper that the baryon-to-photon ratio of the MCG universe evolves over time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
202
+ page_content=' Although further studies are needed to verify whether this evolution is consistent with the value of the baryon- to-photon ratio determined by the CMB anisotropies, who knows it solves other early universe problems found in the ΛCDM model such as the baryon asymmetry problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
203
+ page_content=' We intend to study this and other MCG cosmological predictions in future works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
204
+ page_content=' 10This decaying process can be accounted by the Yukawa interaction µSψψ in (19).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
205
+ page_content=' 15 References [1] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
206
+ page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
207
+ page_content=' Riess et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
208
+ page_content=', Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
209
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
210
+ page_content=' 116, 1009 (1998);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
211
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
212
+ page_content=' Perlmutter et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
213
+ page_content=', ApJ 517, 565 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
214
+ page_content=' [2] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
215
+ page_content=' Aghanim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
216
+ page_content=' [Planck Collab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
217
+ page_content=' ], Planck 2018 results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
218
+ page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
219
+ page_content=' Cosmologi- cal parameters, Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
220
+ page_content=' Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
221
+ page_content=' 641, A6 (2020);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
222
+ page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
223
+ page_content=' Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
224
+ page_content=' 652, C4 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
225
+ page_content=' [3] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
226
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
227
+ page_content=' Rugh and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
228
+ page_content=' Zinkernagel, Stud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
229
+ page_content=' Hist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
230
+ page_content=' Phil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
231
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
232
+ page_content=' B 33, 663 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
233
+ page_content=' [4] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
234
+ page_content=' Weinberg, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
235
+ page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
236
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
237
+ page_content=' 61, 1 (1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
238
+ page_content=' [5] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
239
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
240
+ page_content=' Cyburt, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
241
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
242
+ page_content=' Fields, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
243
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
244
+ page_content=' Olive and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
245
+ page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
246
+ page_content=' Yeh, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
247
+ page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
248
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
249
+ page_content=' 88, 015004 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
250
+ page_content=' [6] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
251
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
252
+ page_content=' Faria, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
253
+ page_content=' High Energy Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
254
+ page_content=' 2014, 520259 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
255
+ page_content=' [7] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
256
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
257
+ page_content=' Faria, Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
258
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
259
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
260
+ page_content=' A 36, 2150115 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
261
+ page_content=' [8] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
262
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
263
+ page_content=' Faria, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
264
+ page_content=' High Energy Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
265
+ page_content=' 2019, 7013012 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
266
+ page_content=' [9] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
267
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
268
+ page_content=' Faria, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
269
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
270
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
271
+ page_content=' C 80, 645 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
272
+ page_content=' [10] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
273
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
274
+ page_content=' Faria, Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
275
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
276
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
277
+ page_content=' A 37, 2250033 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
278
+ page_content=' [11] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
279
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
280
+ page_content=' Faria, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
281
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
282
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
283
+ page_content=' C 76, 188 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
284
+ page_content=' [12] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
285
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
286
+ page_content=' Faria, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
287
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
288
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
289
+ page_content=' C 77, 11 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
290
+ page_content=' [13] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
291
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
292
+ page_content=' Faria, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
293
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
294
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
295
+ page_content=' C 78, 277 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
296
+ page_content=' [14] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
297
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
298
+ page_content=' Faria, arXiv:1903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
299
+ page_content='04893 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
300
+ page_content=' [15] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
301
+ page_content=' Matsuo, Gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
302
+ page_content=' Relativ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
303
+ page_content=' Gravit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
304
+ page_content=' 22, 561 (1990).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
305
+ page_content=' [16] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
306
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
307
+ page_content=' Mannheim, Gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
308
+ page_content=' Relativ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
309
+ page_content=' Gravit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
310
+ page_content=' 22, 289 (1990).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
311
+ page_content=' [17] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
312
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
313
+ page_content=' Helmboldt, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
314
+ page_content=' Humbert, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
315
+ page_content=' Lindner and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
316
+ page_content=' Smirnov, JHEP 2017, 113 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
317
+ page_content=' [18] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
318
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
319
+ page_content=' Mannheim, Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
320
+ page_content=' Part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
321
+ page_content=' Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
322
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
323
+ page_content=' 56, 340 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
324
+ page_content=' [19] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
325
+ page_content=' Knox and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
326
+ page_content=' Kosowsky, arXiv:9311006 [astro-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
327
+ page_content=' 16 [20] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
328
+ page_content=' Tanabashi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
329
+ page_content=' (Particle Data Group), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
330
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
331
+ page_content=' D 98, 030001 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
332
+ page_content=' [21] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
333
+ page_content=' Aver et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
334
+ page_content=', JCAP 03, 027 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
335
+ page_content=' [22] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
336
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
337
+ page_content=' Zyla et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
338
+ page_content=' (Particle Data Group), PTEP 2020, 083C01 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
339
+ page_content=' [23] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
340
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
341
+ page_content=' Meissner and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
342
+ page_content=' Nicolai, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
343
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
344
+ page_content=' B 648, 312 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
345
+ page_content=' [24] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
346
+ page_content=' Salvati et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
347
+ page_content=', JCAP 08, 022 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
348
+ page_content=' [25] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
349
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
350
+ page_content=' Aguilar-Arevalo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
351
+ page_content=' (MiniBooNE Collaboration), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
352
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
353
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
354
+ page_content=' 121, 221801 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
355
+ page_content=' 17' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4tFKT4oBgHgl3EQf9i5P/content/2301.11954v1.pdf'}
5dAyT4oBgHgl3EQf2fkR/content/tmp_files/2301.00750v1.pdf.txt ADDED
@@ -0,0 +1,1640 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ’0x / N.N. and N.N.
2
+ (Guest Editors)
3
+ Volume 0 (200x), Number 0
4
+ Interactive Control over Temporal Consistency
5
+ while Stylizing Video Streams
6
+ Sumit Shekhar1∗
7
+ , Max Reimann1∗
8
+ , Moritz Hilscher1, Amir Semmo1,2
9
+ ,
10
+ Jürgen Döllner1, and Matthias Trapp1
11
+ 1Hasso Plattner Institute for Digital Engineering, University of Potsdam, Germany
12
+ 2Digital Masterpieces GmbH, Germany
13
+ (“*” denotes equal contribution)
14
+ Abstract
15
+ With the advent of Neural Style Transfer (NST), stylizing an image has become quite popular. A convenient way for extending
16
+ stylization techniques to videos is by applying them on a per-frame basis. However, such per-frame application usually lacks
17
+ temporal consistency expressed by undesirable flickering artifacts. Most of the existing approaches for enforcing temporal
18
+ consistency suffers from one or more of the following drawbacks: They (1) are only suitable for a limited range of techniques, (2)
19
+ typically do not support live processing as they require the complete video as input, (3) cannot provide consistency for the task
20
+ of stylization, or (4) do not provide interactive consistency-control. Note that existing consistent video-filtering approaches aim
21
+ to completely remove flickering artifacts and thus do not respect any specific consistency-control aspect. For stylization tasks,
22
+ however, consistency-control is an essential requirement where a certain amount of flickering can add to the artistic look and
23
+ feel. Moreover, making this control interactive is paramount from a usability perspective. To achieve the above requirements, we
24
+ propose an approach that can stylize video streams while providing interactive consistency-control. For achieving interactive
25
+ performance, we develop a lite optical-flow network that operates at 80 Frames per second (FPS) on desktop systems with
26
+ sufficient accuracy. Further, we employ an adaptive combination of local and global consistent features and enable interactive
27
+ selection between the two. By objective and subjective evaluation, we show that our method is superior to state-of-the-art
28
+ approaches.
29
+ CCS Concepts
30
+ • Computing methodologies ,..., Image-based rendering; Non-photorealistic rendering; Image processing;
31
+ 1. Introduction
32
+ For thousands of years, paintings have served as a tool for vi-
33
+ sual communication and expression. However, it was not until
34
+ the late 20th century that computers were used to simulate paint-
35
+ ings [Hae90]. In the course of following decades, the field of artistic
36
+ stylization [KCWI13] has significantly developed and extended by
37
+ NSTs [SID17,JYF∗20]. Even though a large number of image styl-
38
+ ization techniques exist, extending these to video remains challeng-
39
+ ing. A major obstacle in this regard is the enforcement of temporal
40
+ coherence between stylized video frames. With the proliferation of
41
+ video streaming applications, stylizing video streams has become
42
+ popular, however, the requirements of low-latency processing add
43
+ additional challenges. Most of the existing methods, to address the
44
+ above, can be classified into one of the following four categories:
45
+ Style Specific. A common approach is to develop a specific
46
+ method for a particular artistic style and exploit its characteris-
47
+ tics for temporal coherency [BNTS07]. Such methods work ef-
48
+ fectively for the specific target style, however, do not generalize
49
+ well. Many of these specialized approaches have been discussed
50
+ by Bénard et al. [BTC13].
51
+ Coherent Noise. Another class of techniques adopt and transform
52
+ a generic, temporally-coherent noise function to yield a visually
53
+ plausible stylized output [BLV∗10, KP11]. Compared to target-
54
+ based coherence enforcement [BNTS07], these are applicable to
55
+ a wider range of techniques but are limited for scenarios with
56
+ rapid temporal changes.
57
+ Stylization by Example. More recently, authors have adopted a
58
+ stylization-by-example approach to support a wide range of styl-
59
+ ization techniques [BCK∗13, JST∗19, TFK∗20, FKL∗21]. How-
60
+ ever, this approach requires the paring of the complete video and
61
+ keyframe marking. Thus, by design it is not applicable to video
62
+ streams.
63
+ Consistent Video Filtering. One can also enable stylization of
64
+ video streams using consistent video filtering techniques. Exist-
65
+ ing approaches are either not well-suited for Image-based Artis-
66
+ tic Rendering (IB-AR) [BTS∗15,YCC17] (Fig. 1) or do not pro-
67
+ vide interactive consistency control [LHW∗18,TDKP21], which
68
+ submitted to 200x.
69
+ arXiv:2301.00750v1 [cs.GR] 2 Jan 2023
70
+
71
+ 2
72
+ S. Shekhar et al. / Interactive Control over Temporal Consistency while Stylizing Video Streams
73
+ Table 1: Comparing existing consistent video filtering methods with ours with regards to consistency-control. Here, the color green denotes
74
+ the aspect which is favourable to interactive consistency-control while the color red denotes otherwise (“NA” stands for Not-Applicable).
75
+ Bonneel et al. [BTS∗15]
76
+ Yao et al. [YCC17]
77
+ Lai et al. [LHW∗18]
78
+ Shekhar et al. [SST∗19]
79
+ Thiomonier et al. [TDKP21]
80
+ Ours
81
+ Requires pre-processing?
82
+ No
83
+ Yes
84
+ No
85
+ Yes
86
+ No
87
+ No
88
+ Provides consistency-control at inference time?
89
+ Yes
90
+ No
91
+ No
92
+ Yes
93
+ No
94
+ Yes
95
+ Is the consistency-control interactive?
96
+ No
97
+ NA
98
+ NA
99
+ Yes
100
+ NA
101
+ Yes
102
+ (a) Input
103
+ (b) Processed
104
+ (c) Ours
105
+ (d) Lai et al. [LHW∗18]
106
+ (e) Bonneel et al. [BTS∗15]
107
+ Figure 1: For the top-row: first two columns depicts (a) input and (b) processed result for frame-24, column three to five depict the correspond-
108
+ ing consistent output using (c) Ours (d) Lai’s, and (e) Bonneel’s method. For the mid-row: depict the corresponding results for frame-80.
109
+ For the bottom-row: we show the Temporal Slice Image (TSI) for the entire video sequence depicting long-term temporal similarity with the
110
+ per-frame processed output. Note, that our method is able to preserve the look and feel of the per-frame processed result in comparison to
111
+ the method of Lai et al. which suffers from color bleeding artifacts while the stylized textures are lost for the output of Bonneel et al. . Please
112
+ see the supplementary material for video results.
113
+ is an essential requirement for artistic rendering [FLJ∗14]. Cur-
114
+ rently, the only method that provides interactive consistency-
115
+ control is limited to offline processing and requires pre-
116
+ processing [SST∗19].
117
+ We aim to develop a temporal-consistency enforcement ap-
118
+ proach for artistic stylization techniques that provides (1) interac-
119
+ tive consistency-control and (2) online processing to facilitate the
120
+ application to video streams.
121
+ A determining factor towards the slow performance of ex-
122
+ isting online and interactive consistent video filtering tech-
123
+ nique [BTS∗15] is the costly step of optic-flow computation. Pre-
124
+ vious works using learning-based methods are able to achieve a
125
+ considerable accuracy for optic-flow estimation [TD20, JCL∗21].
126
+ However, we argue that such a high accuracy is not particularly
127
+ necessary to enforce temporal consistency for artistic stylization
128
+ tasks. To validate our conjecture, we conduct a user study, wherein
129
+ the participants prefer the final consistent video output generated
130
+ using our flow network as compared to that being obtained us-
131
+ ing State-of-the-art (SOTA) approaches. We define artistic styl-
132
+ ization as the adaptation of colors, textures, and strokes. While
133
+ our approach is effective for most image-based stylization tech-
134
+ niques (e.g., NSTs, algorithmic filtering), it is not able to han-
135
+ dle significant shape or content inconsistencies between frames in-
136
+ troduced by semantically-driven image synthesis (e.g., image-to-
137
+ image diffusion-based models [RBL∗22]), as flow-based warping
138
+ is insufficient to enforce consistency in these cases.
139
+ In contrast to accuracy, little attention has been paid to improve
140
+ the run-time performance of optic-flow estimation, but which is
141
+ essential for online-interactive editing. To this end, we develop a
142
+ lite optic-flow neural network that runs at a high-speed (approx.
143
+ 80 FPS on mid-tier desktop GPUs) while maintaining sufficient
144
+ accuracy. The compact network is also deployable on mobile de-
145
+ vices (iPhones and iPads) where it runs at interactive frame rates
146
+ (24 FPS on iPad Pro 2020). We use the optic-flow output from the
147
+ above network to enforce warping-based consistency at interactive
148
+ frame rates. Moreover, we construct an adaptive consistency prior
149
+ which allows for global and local temporal-consistency control. To
150
+ summarize we present the following contributions:
151
+ 1. A novel approach for making per per-frame stylized videos tem-
152
+ porally consistent via adaptive combination of local and global
153
+ consistency features which allows for interactive consistency-
154
+ control.
155
+ 2. A lite optic-flow network, to achieve interactive performance,
156
+ that runs at 80 FPS on a mid-tier desktop PC and at 24 FPS on a
157
+ mobile device while achieving reasonable accuracy.
158
+ 2. Background & Related Work
159
+ Consistent Video Filtering. Lang et al.
160
+ [LWA∗12] propose
161
+ a solution to enforce temporal consistency for a large-class of
162
+ optimization-based problems via iterative filtering along the mo-
163
+ tion path. Dong et al. [DBZY15] address the problem of temporal
164
+ inconsistency for enhancement algorithms by dividing individual
165
+ video frames into multiple regions and performing a region-based
166
+ spatio-temporal optimization. Bonneel et al.
167
+ [BTS∗15] was the
168
+ submitted to 200x.
169
+
170
+ S. Shekhar et al. / Interactive Control over Temporal Consistency while Stylizing Video Streams
171
+ 3
172
+ 𝐼𝑡−1
173
+ 𝐼𝑡−1
174
+ 𝐼𝑡𝐼𝑡
175
+ 𝐼𝑡+1
176
+ 𝐼𝑡+1
177
+ 𝑃𝑡
178
+ 𝑃𝑡
179
+ 𝑃𝑡−1
180
+ 𝑃𝑡−1
181
+ 𝑃𝑡+1
182
+ 𝑃𝑡+1
183
+ 𝑂𝑡−1
184
+ 𝑂𝑡−1
185
+ 𝑤𝑝
186
+ 𝑤𝑛
187
+ ϴ𝑙
188
+ ϴ𝑙
189
+ Linear
190
+ combination
191
+ ϴ𝑔
192
+ ϴ𝑔
193
+ Linear
194
+ combination
195
+ 𝐴𝑡
196
+ 𝐴𝑡
197
+ Optimization
198
+ Solving
199
+ 𝑂𝑡
200
+ 𝑂𝑡
201
+ 𝑤𝑝
202
+ Use 𝑤𝑝 and 𝑤𝑛
203
+ for combining
204
+ 1
205
+ 2
206
+ 3
207
+ 4
208
+ 5
209
+ Estimate 𝑤𝑐
210
+ for optimization
211
+ Figure 2: Schematic overview of our approach: (1) We start by calculating the warping weights wp and wn using Eqn. 3. (2) The computed
212
+ weights are used to linearly combine Pt, Pt−1, and Pt+1 to obtain the locally consistent image Lt, see Eqn. 2. (3) To obtain the globally
213
+ consistent version Gt we warp the output at previous time instance Ot−1 as depicted in Eqn. 4. (4) The local and global consistent images, Lt
214
+ and Gt, are linearly combined to obtain a temporally smooth version At, see Eqn. 5. (5) To include high-frequency details from the per-frame
215
+ processed result, At and Pt is adaptively combined via the optimization in Eqn. 1 using the weights wc (Eqn. 7) to obtain the final result Ot.
216
+ first to present a generalized approach for consistent video filter-
217
+ ing which is agnostic to the type of filtering applied on individ-
218
+ ual video-frames. The method combines gradient-based character-
219
+ istics of the per-frame processed result with the warped version of
220
+ the previous-frame output using a gradient-domain based optimiza-
221
+ tion scheme. Yao et al. [YCC17] propose a similar approach how-
222
+ ever considers multiple key-frames for warping-based consistency
223
+ to avoid problems due to occlusion. Both of the approaches assume
224
+ that the gradient of the processed video is similar to that of the
225
+ input video and thus cannot handle artistic rendering tasks where
226
+ new gradients resembling brush strokes are generated as part of
227
+ the stylization process. Moreover, due to slow optic-flow computa-
228
+ tion they are non-interactive in nature. Shekhar et al. [SST∗19]
229
+ employs a similar formulation as Bonneel et al. , with the dif-
230
+ ference of using a temporally denoised version of the current-
231
+ frame for consistency guidance. However, the temporal denois-
232
+ ing requires the complete video as input making the method of-
233
+ fline in nature. Lai et al. [LHW∗18] propose the first learning-
234
+ based technique in this context. The authors employ perceptual
235
+ loss to enforce similarity with the processed frames and for con-
236
+ sistency make use of short-term and long-term temporal losses.
237
+ Thimonier et al. [TDKP21] employ a ping-pong loss and a cor-
238
+ responding training procedure for temporal consistency. Both the
239
+ learning based technique are faster than their optimization-based
240
+ counterpart since they do not perform optic-flow computation at
241
+ test time. However, these learning based techniques do not allow
242
+ to control the degree of consistency in the final output which is
243
+ vital for the task of stylization. Thus, the above discussed meth-
244
+ ods are either non-interactive/offline or do not provide any con-
245
+ sistency control at inference time. Our approach addresses these
246
+ limitations (Tab. 1).
247
+ Optic Flow for Consistent Filtering. Both Booneel et al. and
248
+ Yao et al. use the PatchMatch algorithm [BSFG09] for flow-based
249
+ warping, however, the slow performance of PatchMatch makes
250
+ them non-interactive. Lai et al. use FlowNet 2.0 [IMS∗17] for flow-
251
+ based warping to design their short-term and long-term temporal
252
+ consistency losses. FlowNet 2.0 is on par with the quality of state-
253
+ of-the-art classical methods, however, due to large number of pa-
254
+ rameters and operations, achieves only interactive frame rates even
255
+ on high-end desktop Graphical Processing Units (GPUs). An im-
256
+ proved compact optic-flow Convolutional Neural Network (CNN)
257
+ is proposed by Sun et al. [SYLK18] – PWC-Net. It combines
258
+ coarse-to-fine estimation with pyramidal image features, correla-
259
+ tion, warping, and CNN-based estimation. Furthermore, a refine-
260
+ ment CNN is stacked at the end to improve the final flow estimate.
261
+ PWC-Net is orders of magnitude smaller than FlowNet 2.0, runs
262
+ at real-time frame rates using desktop GPUs. Liu et al. [LZH∗20]
263
+ employ their approach to train a similar architecture in an un-
264
+ supervised setting and achieve reasonable accuracy – ARFlow.
265
+ LiteFlowNet and its successor LiteFlowNet2, both proposed by
266
+ Hui et al. [HTL18, HTL20], have similar compact architectures.
267
+ Further improvement in accuracy is achieved by models using iter-
268
+ ative refinement, such as RAFT [TD20] and transformer modules
269
+ such as GMA [JCL∗21], however they heavily trade runtime for ac-
270
+ curacy. Based on a runtime-accuracy comparison (see Sec. 3.2), we
271
+ select PWC-Net as a base network to develop a "Lite" flow network
272
+ with improved performance for interactive consistent filtering.
273
+ Temporal
274
+ Consistency
275
+ for
276
+ Video
277
+ Stylization. Litwinow-
278
+ icz [Lit97] describes a technique to apply an impressionist effect
279
+ on images and videos. For enforcing temporal coherence, optical
280
+ flow was used to transform the brush strokes from one frame to
281
+ the next. Winnemöller et al. [WOG06] develop a real-time video
282
+ and image abstraction framework. The authors employ soft quan-
283
+ tization that spreads over a larger area, thus significantly reducing
284
+ temporal incoherence. Bousseau et al. [BNTS07] advects texture
285
+ in forward and backward direction using optical flow for coherent
286
+ water-colorization of videos. Numerous such specialized video-
287
+ based approaches have been discussed by Bénard et al. [BTC13].
288
+ The above classical IB-AR techniques approximate rendering
289
+ primitives by modifying traditional image filters. Most often,
290
+ they use low-level image features for modeling and fail to model
291
+ structures resembling a particular style. Recently, deep CNNs
292
+ were successfully used to transfer high-level style attributes from
293
+ a painting onto a given image [GEB16]. Various methods have
294
+ been proposed to extend the above for videos [HWL∗17,CLY∗17,
295
+ GJAF17,RDB18,LLKY19,PP19,DTD∗21]. Ruder et al. [RDB18]
296
+ submitted to 200x.
297
+
298
+ 4
299
+ S. Shekhar et al. / Interactive Control over Temporal Consistency while Stylizing Video Streams
300
+ propose novel initialization technique and loss functions for
301
+ consistent stylized output even in cases with large motion and
302
+ strong occlusion. The methods of Gupta et al.
303
+ [GJAF17],
304
+ Chen et al. [CLY∗17], and Huang et al. [HWL∗17] enforce con-
305
+ sistency via certain formulation of temporal loss and use optical
306
+ flow based warping only during the training phase thus achieving
307
+ fast performance. Puy and Pérez [PP19] develop a flexible deep
308
+ CNN for controllable artistic style transfer that allows for addition
309
+ of a temporal regularizer at testing time to remove the flickering
310
+ artefacts. The above method comes closest in terms of providing
311
+ some consistency control at test time for NST-based methods.
312
+ However, they cannot handle classical stylization techniques.
313
+ Stylization by example [BCK∗13, JST∗19, TFK∗20, FKL∗21]
314
+ caters to both (classical and neural) paradigms via priors involving
315
+ keyframe-based warping but can only be applied as an offline
316
+ process. We aim to propose a generic solution which is agnostic
317
+ to the type of stylization and provides online performance and
318
+ interactive consistency-control.
319
+ 3. Method
320
+ 3.1. Temporal Consistency Enforcement
321
+ Given an input video stream ...It−1, It, It+1,... and its per-frame
322
+ processed version ...Pt−1, Pt, Pt+1,..., we seek to find a tempo-
323
+ rally consistent output ...Ot−1, Ot, Ot+1 .... Our method is ag-
324
+ nostic to the stylization technique f applied to each frame, where
325
+ Pt = f(It). However, it is necessary for f to not introduce signifi-
326
+ cant shape or content inconsistencies between consecutive frames,
327
+ as the changes in the stylized frames should correspond to the op-
328
+ tical flow (calculated based on the content). We initialize the con-
329
+ sistent output for the first frame as its per-frame processed result
330
+ i.e., O1 = P1. To obtain the output for subsequent frames (Ot at any
331
+ given instance t) we require only a snippet of input (It−1,It,It+1)
332
+ and processed streams (Pt−1,Pt,Pt+1), and the consistent output at
333
+ the previous instance Ot−1. For enforcing consistency, we solve the
334
+ following gradient-domain optimization scheme:
335
+ E(Ot) =
336
+
337
+
338
+
339
+ ||∇Ot −∇Pt||2
340
+
341
+ ��
342
+
343
+ data
344
+ + wc||Ot −At||2
345
+
346
+ ��
347
+
348
+ smoothness
349
+
350
+ dΩ.
351
+ (1)
352
+ where Ω represents the image domain. The data term in this opti-
353
+ mization enforces similarity with the per-frame processed result Pt
354
+ in the gradient-domain. Thus, high-frequency details are taken from
355
+ Pt and the smoothness term enforces temporal-consistency where
356
+ low-frequency content is taken from the image At. The optimiza-
357
+ tion formulation in Eqn. 1 is commonly known as screened Pois-
358
+ son equation and has been successfully employed for various image
359
+ Table 2: Constituent elements of smoothness term in Eqn. 1
360
+ for different methods. Here, ws and Td refers to saliency-based
361
+ weights and temporally-denoised image respectively, introduced by
362
+ Shekhar et al.
363
+ Method
364
+ Weight
365
+ Consistent Image
366
+ Ours
367
+ wc
368
+ At
369
+ Boneell et al. [BTS∗15]
370
+ wp
371
+ Γ(Ot−1)
372
+ Shekhar et al. [SST∗19]
373
+ ws
374
+ Td
375
+ editing applications [BCCZ08,BZCC10]. In the context of consis-
376
+ tent video filtering, it was first used by Bonneel et al. [BTS∗15]
377
+ followed by Shekhar et al. [SST∗19] (Tab. 2). However, our nov-
378
+ elty is the way in which we construct our smoothness term which,
379
+ unlike previous approaches, considers both global and local consis-
380
+ tency aspects. Our novel smoothness term is able to better preserve
381
+ the color and textures in the stylized output while providing both
382
+ short-term and long-term temporal consistency.
383
+ Local Consistency. For enforcing temporal consistency at a local
384
+ level, we use optic-flow to warp neighboring per-frame processed
385
+ results to the current time instance t. This is perfomred by comput-
386
+ ing an adaptive combination of (1) warped previous per-frame pro-
387
+ cessed image Γ(Pt−1), (2) warped next per-frame processed image
388
+ Γ(Pt+1), and (3) the current per-frame processed image Pt, where
389
+ Γ is the warping function. By including both backward and for-
390
+ ward warping in our formulation, we are able to significantly re-
391
+ duce artefacts due to occlusion and flow inaccuracies. The linear
392
+ combination of (1), (2), and (3) gives us a locally consistent ver-
393
+ sion Lt where,
394
+ Lt = (1−(wp+wn))·Pt + wp·Γ(Pt−1) + wn·Γ(Pt+1).
395
+ (2)
396
+ The weights wp and wn capture the inaccuracies in the warping of
397
+ previous and next frames respectively and are defined as follows:
398
+ wp = exp
399
+
400
+ −α||It −Γ(It−1)||2�
401
+ and
402
+ wn = exp
403
+
404
+ −α||It −Γ(It+1)||2�
405
+ .
406
+ (3)
407
+ In order to also incorporate contribution from Pt, we clamp the
408
+ weights wp and wn as follows:
409
+
410
+ wp
411
+
412
+ = k1 and
413
+
414
+ wn
415
+
416
+ = k2, where
417
+ k1 and k2 are two constants. The locally consistent image sequence
418
+ given by Lt has improved temporal consistency over the per-frame
419
+ processed output, however, it still has visible flickering artifacts.
420
+ Thus, the reduction in flickering due to warping of only one tempo-
421
+ ral neighbor is not sufficient. To further improve consistency, one
422
+ can warp more neighboring frames around the current time instance
423
+ t. As we increase the temporal window-size for such an adaptive
424
+ combination it has a denoising effect leading to further reduction in
425
+ flickering. The temporal denoising for enforcing consistency, per-
426
+ formed by Shekhar et al. [SST∗19] can be considered as an specific
427
+ example of the above scenario. However, for interactive stylization
428
+ warping more frames to the current instance is not feasible due to
429
+ time constraint. Moreover, in case of video streams we do not have
430
+ frames to warp from the forward temporal direction.
431
+ Global Consistency. In order to overcome this limitation, exist-
432
+ ing approaches [BTS∗15, LHW∗18] adopt a global approach. For
433
+ global consistency, one can consider the previous stabilized output
434
+ Ot−1 and enforce similarity with its warped version Gt where,
435
+ Gt = Γ(Ot−1).
436
+ (4)
437
+ To enforce only global temporal smoothness, we replace At with Gt
438
+ in Eqn. 1. Further, in order to compensate for optic-flow inaccura-
439
+ cies, the smoothness term is weighted using wp (i.e., wc = wp) in
440
+ Eqn. 1. However, considering only global consistency for flicker
441
+ reduction leads to loss of stylization and local temporal varia-
442
+ tions in the final output. Moreover, in this case any warping-error
443
+ (due to flow-inaccuracies) or noise (as part of stylization process)
444
+ submitted to 200x.
445
+
446
+ S. Shekhar et al. / Interactive Control over Temporal Consistency while Stylizing Video Streams
447
+ 5
448
+ keeps getting propagated to future frames. Due to the above fac-
449
+ tors, such an approach only gives plausible results where the gra-
450
+ dients of the original video are similar to the gradients of the pro-
451
+ cessed video. The above does not hold for the task of stylization
452
+ where stylistic elements such as brush strokes, textures or stroke
453
+ textons [ZGWX05], in general, can vary largely between frames
454
+ even for small changes in gradient.
455
+ Combining Global and Local Consistency. For preserving local
456
+ temporal variations (in terms of look and feel) while significantly
457
+ reducing the flickering artifacts, we linearly combine globally and
458
+ locally consistent images Gt and Lt respectively,
459
+ At = wp·Gt + (1−wp)·Lt.
460
+ (5)
461
+ We use the adaptively combined image At as our reference for
462
+ consistency while enforcing temporal smoothness in Eqn. 1. The
463
+
464
+ wp
465
+
466
+ can be increased to increase the influence of global-temporal
467
+ smoothness and vice versa. Further, the influence of the smoothness
468
+ term is controlled by per-pixel consistency weights wc. We would
469
+ like to invoke the smoothness term only when the warping accuracy
470
+ is sufficiently high. To this end, we construct a warped version of
471
+ the input image similar to Lt as,
472
+ AIt = (1−(wp+wn))·It + wp·Γ(It−1) + wn·Γ(It+1).
473
+ (6)
474
+ Only when the input image It is similar to AIt, the smoothness term
475
+ is invoked. To measure this similarity, we use the weight wc,
476
+ wc = λ·exp
477
+
478
+ −α||It −AIt||
479
+ 2�
480
+ .
481
+ (7)
482
+ The parameter λ is used to scale up or down the weight wc.
483
+ Consistency Control Modes. The above adaptive combination
484
+ of local and global consistency provides two different ways of
485
+ consistency-control in the final output. By increasing
486
+
487
+ wp
488
+
489
+ we can
490
+ increase the proportion of global consistency in the adaptively com-
491
+ bined image At and vice versa. On the other hand the optimization
492
+ parameter λ dictates how close the output Ot will be to the adap-
493
+ tively combined image At. Thus, the level of consistency in the
494
+ final output can be controlled in two different ways: (1) by set-
495
+ ting up the limit of parameter wp, i.e.,
496
+
497
+ wp
498
+
499
+ or (2) by scaling the
500
+ weight parameter λ. For lower values of
501
+
502
+ wp
503
+
504
+ (Fig. 6b), the consis-
505
+ tency enforced is negligible and the final result resembles the per-
506
+ frame processed output (Fig. 6f). However, for higher values we
507
+ start observing noisy ghosting artefacts (Fig. 6e). The lower values
508
+ of
509
+
510
+ wp
511
+
512
+ translates to using only global consistency which results in
513
+ accumulation of flow inaccuracies visualized as ghosting artefacts.
514
+ Similarly, for lower values of λ (Fig. 6g), the final result is visually
515
+ similar to the per-frame processed output (Fig. 6f). However, for
516
+ higher values the optimization becomes unstable resulting in noisy
517
+ optimization-based artefacts. (Fig. 6j).
518
+ Optimization Solver. The energy terms in Eqn. 1 are smooth and
519
+ convex in nature, which allows a straightforward energy minimiza-
520
+ tion with respect to Ot. To this end, we employ an iterative ap-
521
+ proach thus avoiding – storage of a large matrix in memory and
522
+ further estimating its inverse. Moreover, an iterative approach al-
523
+ lows us to stop the solver once we have achieved visually plau-
524
+ sible results. An iterative update Otk+1 is obtained by employing
525
+ 43
526
+ (a) (b) (c)
527
+ Refinement
528
+ Flow
529
+ Estimation
530
+ Modules
531
+ Feature
532
+ Extraction
533
+ Input Frames
534
+ Output Flow
535
+ Figure 3: Modification of the PWC-Net [SYLK18] architecture for
536
+ real-time performance. We apply following network compression
537
+ steps: (a) Replace DenseNet connections with light ones, (b) Re-
538
+ duce the number of flow estimators, and (c) Replace dense connec-
539
+ tions in the refinement module with separable convolutions.
540
+ Stochastic Gradient Descent (SGD) with momentum [Qia99],
541
+ Otk+1 = Otk −η∇E(Otk)+κ(Otk −Otk−1).
542
+ (8)
543
+ where η and κ are the step size parameters, ∇E is the energy gradi-
544
+ ent with respect to Ot, and k is the iteration count. For most of our
545
+ experiments, η = 0.15 and κ = 0.2 yield plausible results. We con-
546
+ sider the trade-off between performance vs. accuracy as a stopping
547
+ criteria and do not compute energy residue for this purpose. To ob-
548
+ tain a consistent output while having interactive performance, we
549
+ empirically determine 150 iterations to be sufficient. The optimiza-
550
+ tion is stable for the given parameter settings and early stopping is
551
+ only employed for computational gain.
552
+ An integral aspect common to both our local and global consis-
553
+ tency is the warping function Γ. Apart from the number of solver
554
+ iterations, for interactive performance the above warping should
555
+ also happen at a fast rate – which in turn necessitates fast optic-
556
+ flow estimation.
557
+ 3.2. Lite Optic-Flow Network
558
+ We aim to obtain a flow network capable of running at high-speed
559
+ on consumer hardware with reasonable accuracy. To this end, we
560
+ start by selecting an existing CNN-based optical flow estimation
561
+ technique, based on accuracy vs. run-time analysis. After the se-
562
+ lection of a base network, we perform further optimization steps to
563
+ increase the performance as outlined in Fig. 3.
564
+ Base Network Selection for Compression. In Fig. 4, we com-
565
+ pare several well-known optical methods to find a base network
566
+ candidate that best matches our runtime/accuracy requirements.
567
+ We employ the following models for this: FlowNet 2.0 [IMS∗17],
568
+ SpyNet [RB17], LiteFlowNet2 [HTL20], PWCNet [SYLK18],
569
+ ARFlow [LZH∗20], VCN [YR19], RAFT [TD20] and finally
570
+ GMA [JCL∗21] (state-of-the-art in terms of EPE-based accuracy).
571
+ Our experiments are carried out on a Nvidia RTX 2070 GPU,
572
+ which we deem to be a good representative of a current mid-to
573
+ submitted to 200x.
574
+
575
+ 6
576
+ S. Shekhar et al. / Interactive Control over Temporal Consistency while Stylizing Video Streams
577
+ 0px
578
+ 2px
579
+ 4px
580
+ 6px
581
+ 8px
582
+ 0
583
+ 10
584
+ 20
585
+ 30
586
+ 40
587
+ flownet2
588
+ spynet
589
+ pwcnet
590
+ arflow
591
+ liteflownet2
592
+ vcn
593
+ raft
594
+ gma
595
+ Sintelfinal-test EPE (lower=better)
596
+ FPS (higher=better)
597
+ Figure 4: Accuracy vs. run-time performance of existing methods
598
+ measured on Sintel Final (Test set) [BWSB12]. The Endpoint Er-
599
+ ror (EPE) metric measures Euclidean distance (in pixels) between
600
+ ground-truth and predicted optical flow vectors.
601
+ higher-end consumer GPU. Under a constraint of interactive perfor-
602
+ mance on consumer hardware, LiteFlowNet2 [HTL20] and PWC-
603
+ Net [SYLK18] offer the best trade-off between run-time perfor-
604
+ mance and accuracy (Fig. 4). LiteFlowNet2 [HTL20] is already an
605
+ optimized version of FlowNet 2.0 [IMS∗17], in comparison PWC-
606
+ Net [SYLK18] has more potential for optimization/compression.
607
+ Moreover, recently it has been shown that PWC-Net can achieve
608
+ similar accuracy to RAFT when trained on a large-scale synthetic
609
+ dataset [SVH∗21] and that PWC-Net achieves favourable trade-offs
610
+ vs. other state-of-the-art methods when selecting for runtime per-
611
+ formance or higher image resolutions [SHR∗22]. Hence, we select
612
+ PWC-Net for further compression.
613
+ Optimized Network Architecture. We start with the base archi-
614
+ tecture of PWC-Net. As the first compression step we reduce the
615
+ computationally expensive DenseNet [HLvdMW17] connections
616
+ in the flow estimators to retain connections only in the last two
617
+ layers ("-light" in Fig. 5b). Similar to LiteFlowNet2 [HTL20], we
618
+ remove the fifth flow estimator – operating on the highest resolu-
619
+ tion – as it heavily trades off run-time for only marginal increase
620
+ in accuracy (compare "4light" vs "5light" in Fig. 5b). We replace
621
+ the standard convolutions in the refinement by depthwise separable
622
+ convolutions [HZC∗17] ("-sepref" in Fig. 5b). Moreover, we also
623
+ explore reducing the number of channels [HZC∗17], but find that
624
+ reducing channels results in a worse trade-off as compared to other
625
+ optimizations.
626
+ Training. For
627
+ training,
628
+ we
629
+ follow
630
+ the
631
+ original
632
+ PWC-
633
+ Net
634
+ [SYLK18]
635
+ schedule.
636
+ However,
637
+ we
638
+ find
639
+ that
640
+ weight-
641
+ ing
642
+ the
643
+ multi-scale
644
+ losses
645
+ equally,
646
+ instead
647
+ of
648
+ exponen-
649
+ tially [SYLK18, HTL18, HTL20, YR19], improves accuracy. For
650
+ our experiments on the desktop system, we use PyTorch [PGM∗19]
651
+ and take inspiration from the implementation by Niklaus [Nik18].
652
+ Similar to PWC-Net [SYLK18], we train our mobile architecture
653
+ on the training dataset schedule FlyingChairs [FDI∗15] → Fly-
654
+ ingThings3D [MIH∗16]→ Sintel [BWSB12]. In the supplementary
655
+ material, we provide training settings for each stage in detail. We
656
+ Table 3: Runtime performance in milliseconds per frame. We mea-
657
+ sure the total processing time (without disk IO) and the individual
658
+ stages for a mid-tier GPU (Nvidia GTX 1080Ti) and a higher-end
659
+ GPU (Nvidia RTX 3090), results are averaged over 100 runs.
660
+ Task
661
+ Optical flow
662
+ Stabilization
663
+ Total
664
+ ↓ Res. / GPU
665
+ 1080Ti 3090
666
+ 1080Ti 3090
667
+ 1080Ti 3090
668
+ 1920×1080 px
669
+ 66.8
670
+ 40.0
671
+ 184.1
672
+ 42.7
673
+ 250.8
674
+ 82.7
675
+ 1280×720 px
676
+ 31.3
677
+ 19.7
678
+ 86.5
679
+ 21.1
680
+ 117.8
681
+ 40.8
682
+ 640×480 px
683
+ 12.6
684
+ 6.2
685
+ 20.6
686
+ 6.3
687
+ 33.2
688
+ 12.5
689
+ employ a multi-scale loss [SYLK18] applied to each flow estimator
690
+ and optimize using the AdamW optimizer [LH19] with β1 = 0.09,
691
+ β2 = 0.99, and l2 weight regularization with trade-off γ = 0.0004.
692
+ Furthermore, extensive dataset augmentation is applied to prevent
693
+ model overfitting. We refer to the supplementary material for more
694
+ details.
695
+ Our Final Model. We analyze various optimization options and
696
+ chose “our-4light-sepref” as our final model for desktop systems
697
+ as it provides the best trade-off between accuracy vs. run-time. As
698
+ depicted in Fig. 5a, our method improves run-time performance of
699
+ PWC-Net from 30 FPS to 85 FPS – a speed-up of factor 2.8. For
700
+ Sintel training data the accuracy drops by ≈ 0.5px in EPE terms,
701
+ however for test data the drop in accuracy is significant where the fi-
702
+ nal EPE is 7.43. Nevertheless, the accuracy is sufficient enough for
703
+ enforcing warping-based consistency. To validate our design deci-
704
+ sions, we conduct an extensive ablation study in which we vary the
705
+ architectural and training choices – please see the supplementary
706
+ for details. Furthermore, we tune our architecture for optical flow
707
+ calculation on mobile devices using channel pruning and quantiza-
708
+ tion, which we also detail in the supplementary material. Here, we
709
+ improve run-time performance from 2.8 FPS to 24 FPS (iPad Pro
710
+ 2020), and 1.5 FPS to 13 FPS (iPad Air) – an improvement of factor
711
+ 8. Next to showing the general applicability of optical flow CNNs
712
+ on mobile devices, this demonstrates that real-time on-device sta-
713
+ bilization of videos using our presented approach will become fea-
714
+ sible with a further moderate increase in mobile GPU computing
715
+ power. A fast optic-flow based warping enables our framework to
716
+ interactively control the degree of consistency and generate visu-
717
+ ally plausible results.
718
+ 4. Experimental Results
719
+ 4.1. Implementation Details
720
+ All our experiments were performed on an consumer PC with an
721
+ AMD Ryzen 1920X 12-Core CPU, 48 GB of RAM, and a Nvidia
722
+ GTX 1080Ti and RTX 3090 graphics cards with VRAMs of 11
723
+ GB and 24 GB respectively. We implement a real-time video-
724
+ consistency framework in C++, using ONNXRuntime for cross-
725
+ platform acceleration of our lite optical-flow network and imple-
726
+ ment the stabilization code using Nvidia CUDA (v11.4). In Tab. 3,
727
+ we measure the runtime performance of our system. We find that
728
+ an incoming stream of frames can be stabilized at real-time perfor-
729
+ mance for VGA resolution even on low- and mid-tier GPUs and
730
+ higher-tier GPUs (such as a RTX 3090) can stabilize HD at com-
731
+ mon video frame rates (approx. 24 FPS) and full-HD resolutions at
732
+ submitted to 200x.
733
+
734
+ S. Shekhar et al. / Interactive Control over Temporal Consistency while Stylizing Video Streams
735
+ 7
736
+ 2px
737
+ 3px
738
+ 4px
739
+ 5px
740
+ 0
741
+ 20
742
+ 40
743
+ 60
744
+ 80
745
+ 100
746
+ flownet2
747
+ liteflownet2
748
+ pwcnet
749
+ our-5light
750
+ our-5light-5sep
751
+ our-5light-2sep
752
+ our-4light-1sep
753
+ our-5light-c50
754
+ our-5light-c75
755
+ our-4light
756
+ our-4light-sepref
757
+ (a) Sintelfinal-train EPE (lower=better)
758
+ FPS (higher=better)
759
+ Modifier
760
+ Description
761
+ Default
762
+ -Nlight
763
+ N light [LZH∗20] flow esti-
764
+ mators.
765
+ 5 dense [SYLK18]
766
+ -Msep
767
+ last M flow estimators use
768
+ depthwise separable convo-
769
+ lutions [HZC∗17].
770
+ standard convs.
771
+ -sepref
772
+ refinement
773
+ uses
774
+ depth-
775
+ wise
776
+ separable
777
+ convolu-
778
+ tions [HZC∗17].
779
+ standard convs.
780
+ -cP
781
+ use P% of channels.
782
+ 100%
783
+ (b) Legend of our CNN variants.
784
+ Figure 5: Accuracy vs. run-time performance of our CNN variants on desktop, measured on Sintel Final (Train) [BWSB12]. Optimization
785
+ steps that lead to significant improvement in run-time are connected by a line. Our architectural modifications to PWC-Net [SYLK18] are
786
+ detailed on the right, e.g., our-4light-sepref denotes a 4 light flow estimators and refinement using depthwise separable convolutions.
787
+ (a) Input
788
+ (b)
789
+
790
+ wp
791
+
792
+ = 0.3
793
+ (c)
794
+
795
+ wp
796
+
797
+ = 0.5
798
+ (d)
799
+
800
+ wp
801
+
802
+ = 0.7
803
+ (e)
804
+
805
+ wp
806
+
807
+ = 0.9
808
+ (f) Processed
809
+ (g) λ = 0.1
810
+ (h) λ = 1.0
811
+ (i) λ = 5.0
812
+ (j) λ = 7.06
813
+ Figure 6: The level of consistency in the final output can be controlled via parameters
814
+
815
+ wp
816
+
817
+ and λ. Here we show how the final result vary
818
+ by increasing these, for lower values the consistency is negligible and the results (Fig. 6b and Fig. 6g) visually look similar to the per-frame
819
+ processed output (Fig. 6b). For higher values we start observing artefacts due to ghosting and/or optimization (Fig. 6e and Fig. 6j).
820
+ interactive frame rates (> 10 FPS) for different parameter settings
821
+ (Tab. 3).
822
+ 4.2. Parameter Settings
823
+ Initially, we tune the parameters of our consistency framework to-
824
+ wards achieving a low warping error (Tab. 5). We refer to this set-
825
+ ting as Ours-objective with the following parameter values k1 =
826
+ k2 = 0.3, α = 10 × 103, and λ = 0.7. However, we observed that
827
+ even though the warping error indicated a good temporal stabil-
828
+ ity, subjectively flickering and artefacts were noticeable. Unlike ex-
829
+ isting approaches, our framework allows for interactive parameter
830
+ adjustment. Thus, a parameter set that subjectively produces well-
831
+ stabilized results on a broad range of tasks and videos was obtained
832
+ experimentally. As our final version, we use the values of k1 = 0.3,
833
+ k2 = 0.5, α = 6.5 × 103, and λ = 2.0 to generate all the images in
834
+ the paper and the videos provided in the supplementary. We fur-
835
+ ther compare Ours-objective settings with our final version as part
836
+ of our user study to validate our parameter choices. The consistent
837
+ outputs obtained using the above parameter settings are compared
838
+ against state of the art approaches thereby showcasing its efficacy.
839
+ 4.3. Consistent Outputs
840
+ We use videos from DAVIS [PPTM∗16] dataset and other open
841
+ source videos (taken from [Vid] and [Pex]) for comparison. For per-
842
+ frame stylization, we employ the following stylization techniques:
843
+ Fast NST [JAFF16], WCT [LFY∗17], and CycleGAN [ZPIE17].
844
+ The results for the method of Lai et al. and Bonneel et al. on videos
845
+ taken from DAVIS [PPTM∗16] and Videvo ( [Vid]) are borrowed
846
+ from the results dataset provided by Lai et al. . For other videos
847
+ we employ the source code provided by the authors to generate
848
+ submitted to 200x.
849
+
850
+ 8
851
+ S. Shekhar et al. / Interactive Control over Temporal Consistency while Stylizing Video Streams
852
+ 132
853
+ 128
854
+ 127
855
+ 39
856
+ 43
857
+ 44
858
+ 0
859
+ 20
860
+ 40
861
+ 60
862
+ 80
863
+ 100
864
+ 120
865
+ 140
866
+ Lai
867
+ Bonneel
868
+ Ours-obj.
869
+ Others
870
+ Ours
871
+ Figure 7: Statistics of the user study results on removal of temporal
872
+ flickering from per-frame stylized videos. For 19 participants and
873
+ 9 different videos we compare our method against Bonneel et al. ,
874
+ Lai et al. , and Ours-objective through a total of 171 randomized
875
+ A/B tests.
876
+ the results. We compare our consistent outputs with that of Bon-
877
+ neel et al. [BTS∗15] and Lai et al. [LHW∗18] in Fig. 8. Among
878
+ the three competing methods Bonneel et al. is the least effective in
879
+ preserving the underlying style for the final output (compare sec-
880
+ ond column with the fourth one in Fig. 8). Hyper-parameter tun-
881
+ ing in the above method (with only global consistency) can pro-
882
+ vide a certain degree of consistency-control. However, by employ-
883
+ ing both global and local consistency we achieve finer consistency-
884
+ control while being similar to the per-frame-processed result. For
885
+ the method of Lai et al. , we observe some color bleeding or dark-
886
+ ening in the output frames (compare second column with the third
887
+ one in Fig. 8). In comparison we are able to preserve the style, color
888
+ and textures, while being consistent (Fig. 7).
889
+ 4.4. Optic Flow Results
890
+ We visualize optical flow on frames from the Sintel [BWSB12]
891
+ dataset in Fig. 9 and compare to state-of-the-art methods. All de-
892
+ picted methods have been fine-tuned on Sintel. We find that our
893
+ optimized method has more blurry motion boundaries and misses
894
+ to estimate certain details accurately (e.g., the hand in the first
895
+ row, however, PWCNet also fails at this), but still captures over-
896
+ all motion direction of objects correctly with a smooth flow field.
897
+ Fig. 10 shows results for real-world videos on the DAVIS dataset
898
+ [PTPC∗17] (no ground-truth flow available). We find that some
899
+ real-world image phenomena, such as complex/ambiguous occlu-
900
+ sions (e.g., bus behind tree) are not well-handled by state-of-the-art
901
+ methods like RAFT [TD20] or PWC-Net [SYLK18], and thus re-
902
+ sults are degraded for our optimized method as well. Besides the
903
+ stronger blurred motion boundaries, we find that our network gen-
904
+ erally performs well and is also robust for real-world videos.
905
+ 5. Evaluation
906
+ 5.1. Quantitative
907
+ Following Lai et al. [LHW∗18], we measure the similarity between
908
+ per-frame processed output and stabilized results, and the temporal
909
+ warping error between consecutive stabilized frames.
910
+ For the fomer, we report the similarity in form of the SSIM met-
911
+ ric in Tab. 4. We achieve significantly higher similarity scores than
912
+ the methods of Bonneel et al. [BTS∗15] and Lai et al. [LHW∗18].
913
+ Following [BTS∗15] and [LHW∗18], we also measure the tempo-
914
+ ral warping error between a frame Vt and the warped consecutive
915
+ frame ˆVt+1, defined as:
916
+ Ewarp (Vt,Vt+1) =
917
+ 1
918
+ ∑N
919
+ i=1 M(i)
920
+ t
921
+ N
922
+
923
+ i=1
924
+ M(i)
925
+ t
926
+ ���V (i)
927
+ t
928
+ − ˆV (i)
929
+ t+1
930
+ ���
931
+ 1 ,
932
+ (9)
933
+ where Mt ∈ {0,1} is a non-occlusion mask [LHW∗18,RDB18], in-
934
+ dicating non-occluded regions. The warped frame ˆVt+1 is obtained
935
+ by calculating the optical flow (using GMA [JCL∗21]) between
936
+ frames Vt,Vt+1, and applying a backwards warping to frame Vt+1.
937
+ We compute Ewarp for every frame of a video and then average to
938
+ obtain the warping error of a video Ewarp(V). In Tab. 5 we report the
939
+ average warping error per dataset (see the supplementary for a per-
940
+ task breakdown). We find that the warping error is slightly higher
941
+ than that of Bonneel et al. [BTS∗15] and Lai et al. [LHW∗18].
942
+ However, as Lai et al. [LHW∗18] notes, results with high temporal
943
+ stability (expressed by a low warping error) can also be achieved
944
+ via temporally smoothing the video, which can be seen in vari-
945
+ ous results of Bonneel et al. [BTS∗15]. Our qualitative results in
946
+ form of a user study Sec. 5.2 further substantiate the divide between
947
+ warping error (as a stability metric) and perceived stability.
948
+ 5.2. Qualitative
949
+ For qualitative evaluation we perform a subjective user study where
950
+ we ask participants to compare the temporally-consistent result ob-
951
+ tained using our method with that of Lai et al. , Bonneel et al. ,
952
+ and Ours-objective – a different parameter setting of ours. We use
953
+ 9 different videos for this purpose: 3 from DAVIS [PPTM∗16], 3
954
+ from Videvo [Vid], and 3 from Pexels [Pex] datasets respectively.
955
+ For each of the above video we stylize them using either the Fast
956
+ NST [JAFF16] (in the styles of udnie, rain-princess, and mosaic)
957
+ or WCT [LFY∗17] (in the styles of wave and antimono) or Cycle-
958
+ GAN (in the styles of photo2vangogh and photo2ukiyoe). For each
959
+ sample, we show the input video and its per-frame stylized version
960
+ on the top row of user-study interface for inference. In the bottom
961
+ row we show two different version of the temporally stabilized out-
962
+ put where one of them is ours. We ask the participants to select
963
+ the output which best preserves: (i) temporally consistency and (ii)
964
+ similarity with the per-frame processed video. For 9 videos and 3
965
+ other competing methods each user sees a total of 27 blind A/B
966
+ tests which are shown in a randomized order to each participant.
967
+ In total, 19 persons (3 female and 16 male) within the ages of 22
968
+ to 43 years participated in the study. Fig. 7 shows that our method
969
+ surpasses all others by a large margin. It was interesting to observe
970
+ that for certain cases the method of Bonneel et al. which degrades
971
+ the processed style significantly was still preferred by users over
972
+ others due to its high consistency quality.
973
+ submitted to 200x.
974
+
975
+ S. Shekhar et al. / Interactive Control over Temporal Consistency while Stylizing Video Streams
976
+ 9
977
+ (a) Input
978
+ (b) Processed
979
+ (c) Ours
980
+ (d) Lai et al. [LHW∗18]
981
+ (e) Bonneel et al. [BTS∗15]
982
+ Figure 8: Comparing our results with Lai et al. [LHW∗18] and Bonneel et al. [BTS∗15] for three different video sequences: Cow (top two
983
+ rows), Farming (mid two rows), and Woman (last two rows). Note how the consistent output for Lai et al. and Bonneel et al. look different
984
+ from the corresponding per-frame processed results.
985
+ 5.3. Using other Optical Flows
986
+ We also tested other optical flow methods within our pipeline
987
+ which were either faster [KTDVG16] or more accurate [TD20].
988
+ For the fast optical method by Kroeger et al. [KTDVG16](DIS)
989
+ the final output is less consistent than ours in both objective and
990
+ subjective metrics. Using DIS for our stabilization, the average
991
+ warp-error over DAVIS is 0.05 (vs. 0.046 ours) and perceptual-
992
+ similarity with the per-frame processed result is 0.9 in SSIM terms
993
+ (vs. 0.923 ours). Visually, DIS-stabilized results show significantly
994
+ more flickering, validating our design choice for the optical-flow.
995
+ A much more accurate optic flow is given by the method of
996
+ Teed et al. [TD20] (RAFT) at the cost of slow computation. The
997
+ stabilized results obtained using RAFT look visually indistinguish-
998
+ able to the one obtained using our flow; the average warp-error over
999
+ DAVIS is 0.045, the perceptual-similarity is 0.923.
1000
+ 6. Discussion
1001
+ Our approach takes a video pair as an input: (i) the original and
1002
+ (ii) its per-frame stylized version. We assume that the stylization
1003
+ is based on the input image-gradients and appears as variations in
1004
+ the form of colors and/or textures. Thereby, we employ the origi-
1005
+ nal video as a guide for enforcing consistency. However, for text-
1006
+ guided generative arts such as recent diffusion model-based ap-
1007
+ proaches [RDN∗22, RBL∗22] the stylized frames are often only
1008
+ weakly correlated with the original input, we cannot handle such
1009
+ cases.
1010
+ For the evaluation we mainly use CNN-based stylization tech-
1011
+ niques. However our approach can also handle classical stylization
1012
+ approaches [KCWI13], we show few such examples in the supple-
1013
+ mentary. Our local-consistency component comprising of convex
1014
+ combination of temporal neighbors can be seen as crude form of
1015
+ submitted to 200x.
1016
+
1017
+ 10
1018
+ S. Shekhar et al. / Interactive Control over Temporal Consistency while Stylizing Video Streams
1019
+ (a) Frame Overlay
1020
+ (b) Ground-truth
1021
+ (c) RAFT [TD20]
1022
+ (d) PWC-Net [SYLK18]
1023
+ (e) Ours
1024
+ Figure 9: Optical flow estimated using the synthetic Sintel dataset [BWSB12].
1025
+ (a) Frame Overlay
1026
+ (b) RAFT [TD20]
1027
+ (c) PWC-Net [SYLK18]
1028
+ (d) Ours
1029
+ Figure 10: Optical flow estimated for the real-world dataset DAVIS [PTPC∗17].
1030
+ local temporal denoising. Previously it has been shown that tem-
1031
+ poral denoising is effective in enforcing consistency [SST∗19]. We
1032
+ conjecture that efficient temporal-denoising combined with flow-
1033
+ based warping can further improve temporal stabilization not only
1034
+ for stylization but also for other tasks.
1035
+ We start with the assumption that temporal flickering is not com-
1036
+ pletely undesirable for the task of stylization and thus we pro-
1037
+ vide interactive consistency control. However, during the subjec-
1038
+ tive user study we observed that participants had different toler-
1039
+ ance levels for flickering in the foreground as compared to that in
1040
+ the background. As part of future work, one can use depth-based
1041
+ or saliency-based masks to vary the consistency control parameters
1042
+ spatially for a more visually pleasing result.
1043
+ Limitation: Our approach tends to have ghosting artifacts for
1044
+ fast moving objects where the object motion between consecutive
1045
+ frames is large (Fig. 11). The above can be reduced by reducing
1046
+ the value of
1047
+
1048
+ wp
1049
+
1050
+ , however such a reduction also reduces consis-
1051
+ (a)
1052
+
1053
+ wp
1054
+
1055
+ = 0.5
1056
+ (b)
1057
+
1058
+ wp
1059
+
1060
+ = 0.1
1061
+ Figure 11: The ghosting artifacts on the rear wheel of the scooter
1062
+ is significant in the final output for
1063
+
1064
+ wp
1065
+
1066
+ = 0.5, however it reduces
1067
+ significantly for
1068
+
1069
+ wp
1070
+
1071
+ = 0.1.
1072
+ tency in the final output. We argue that since we provide interactive
1073
+ control of parameters the above trade off between artifacts vs. con-
1074
+ sistency will not hinder its usability significantly.
1075
+ submitted to 200x.
1076
+
1077
+ EPE: 0.000EPE: 0.000EPE: 0.629EPE: 0.171EPE: 1.283EPE: 0.339EPE: 2.091EPE: 0.520S. Shekhar et al. / Interactive Control over Temporal Consistency while Stylizing Video Streams
1078
+ 11
1079
+ Table 4: Quantitative evaluation on perceptual distance using SSIM (higher = more similar to per-frame processed result).
1080
+ DAVIS
1081
+ VIDEVO
1082
+ Task
1083
+ [BTS∗15]
1084
+ [LHW∗18]
1085
+ Ours
1086
+ [BTS∗15]
1087
+ [LHW∗18]
1088
+ Ours
1089
+ CycleGAN/photo2ukiyoe [ZPIE17]
1090
+ 0.693
1091
+ 0.781
1092
+ 0.978
1093
+ 0.626
1094
+ 0.743
1095
+ 0.980
1096
+ CycleGAN/photo2vangogh [ZPIE17]
1097
+ 0.707
1098
+ 0.792
1099
+ 0.961
1100
+ 0.679
1101
+ 0.789
1102
+ 0.965
1103
+ fast-neural-style/rain-princess [JAFF16]
1104
+ 0.553
1105
+ 0.799
1106
+ 0.921
1107
+ 0.491
1108
+ 0.796
1109
+ 0.920
1110
+ fast-neural-style/udnie [JAFF16]
1111
+ 0.597
1112
+ 0.785
1113
+ 0.956
1114
+ 0.579
1115
+ 0.747
1116
+ 0.959
1117
+ WCT/antimonocromatismo [LFY∗17]
1118
+ 0.389
1119
+ 0.811
1120
+ 0.915
1121
+ 0.388
1122
+ 0.761
1123
+ 0.914
1124
+ WCT/asheville [LFY∗17]
1125
+ 0.329
1126
+ 0.801
1127
+ 0.904
1128
+ 0.348
1129
+ 0.771
1130
+ 0.901
1131
+ WCT/candy [LFY∗17]
1132
+ 0.289
1133
+ 0.763
1134
+ 0.882
1135
+ 0.310
1136
+ 0.738
1137
+ 0.885
1138
+ WCT/feathers [LFY∗17]
1139
+ 0.418
1140
+ 0.863
1141
+ 0.891
1142
+ 0.415
1143
+ 0.848
1144
+ 0.888
1145
+ WCT/sketch [LFY∗17]
1146
+ 0.370
1147
+ 0.845
1148
+ 0.923
1149
+ 0.370
1150
+ 0.833
1151
+ 0.922
1152
+ WCT/wave [LFY∗17]
1153
+ 0.358
1154
+ 0.700
1155
+ 0.902
1156
+ 0.352
1157
+ 0.637
1158
+ 0.899
1159
+ Average
1160
+ 0.470
1161
+ 0.794
1162
+ 0.923
1163
+ 0.456
1164
+ 0.766
1165
+ 0.923
1166
+ Table 5: Flow warping error average over tasks shown in Tab. 4.
1167
+ A per-task breakdown is shown in the supplementary. Note that
1168
+ the slightly higher warping error (lower is better) of our method is
1169
+ subjectively not noticeable as we show in a user study.
1170
+ Dataset
1171
+ Vp
1172
+ [BTS∗15]
1173
+ [LHW∗18]
1174
+ Ours
1175
+ DAVIS
1176
+ 0.056
1177
+ 0.034
1178
+ 0.040
1179
+ 0.046
1180
+ VIDEVO
1181
+ 0.051
1182
+ 0.036
1183
+ 0.036
1184
+ 0.042
1185
+ 7. Conclusions
1186
+ We propose an approach that makes per-frame stylized videos tem-
1187
+ porally coherent irrespective of the underlying stylization applied
1188
+ on individual frames. At this, we introduce a novel temporal con-
1189
+ sistency prior which combines both local and global consistency
1190
+ aspects. We maintain similarity with the per-frame processed result
1191
+ by minimizing the difference in the gradient-domain. Unlike previ-
1192
+ ous approaches we provide interactive consistency control by com-
1193
+ puting optic-flow on the incoming video stream with only sufficient
1194
+ accuracy but at high speed. Fats optic-flow inference is achieved
1195
+ by developing a lightweight flow network architecture based on
1196
+ PWC-Net. The entire optimization solving is GPU-based and runs
1197
+ at real-time frame-rates for HD resolution. We showcase that our
1198
+ temporally consistent output is preferred over the output of com-
1199
+ peting methods by conducting a user study. As part of future work
1200
+ we would like to employ learning-based temporal denoising to fur-
1201
+ ther improve quality of results. Moreover, we would like to ex-
1202
+ plore the usage of depth-based and saliency-based masks to spa-
1203
+ tially vary consistency parameters according to perceptual princi-
1204
+ ples. We hope that our design paradigm of interactive consistency
1205
+ control will potentially make per-frame video stylization more user
1206
+ friendly.
1207
+ References
1208
+ [BCCZ08]
1209
+ BHAT P., CURLESS B., COHEN M., ZITNICK C. L.: Fourier
1210
+ analysis of the 2d screened poisson equation for gradient domain prob-
1211
+ lems. In Computer Vision – ECCV 2008 (2008), Springer Berlin Heidel-
1212
+ berg, pp. 114–128. doi:10.1007/978-3-540-88688-4_9. 4
1213
+ [BCK∗13]
1214
+ BÉNARD P., COLE F., KASS M., MORDATCH I., HEGARTY
1215
+ J., SENN M. S., FLEISCHER K., PESARE D., BREEDEN K.: Stylizing
1216
+ animation by example. ACM Trans. Graph. 32, 4 (jul 2013). doi:
1217
+ 10.1145/2461912.2461929. 1, 4
1218
+ [BLV∗10]
1219
+ BÉNARD P., LAGAE A., VANGORP P., LEFEBVRE S.,
1220
+ DRETTAKIS
1221
+ G.,
1222
+ THOLLOT
1223
+ J.:
1224
+ A
1225
+ dynamic
1226
+ noise
1227
+ primitive
1228
+ for
1229
+ coherent
1230
+ stylization.
1231
+ Computer
1232
+ Graphics
1233
+ Forum
1234
+ 29,
1235
+ 4
1236
+ (2010),
1237
+ 1497–1506.
1238
+ doi:https://doi.org/10.1111/j.
1239
+ 1467-8659.2010.01747.x. 1
1240
+ [BNTS07]
1241
+ BOUSSEAU A., NEYRET F., THOLLOT J., SALESIN D.:
1242
+ Video watercolorization using bidirectional texture advection.
1243
+ ACM
1244
+ Trans. Graph. 26, 3 (jul 2007), 104–es. doi:10.1145/1276377.
1245
+ 1276507. 1, 3
1246
+ [BSFG09]
1247
+ BARNES C., SHECHTMAN E., FINKELSTEIN A., GOLDMAN
1248
+ D. B.: Patchmatch: A randomized correspondence algorithm for struc-
1249
+ tural image editing.
1250
+ ACM Trans. Graph. 28, 3 (jul 2009).
1251
+ doi:
1252
+ 10.1145/1531326.1531330. 3
1253
+ [BTC13]
1254
+ BÉNARD P., THOLLOT J., COLLOMOSSE J.:
1255
+ Temporally
1256
+ Coherent Video Stylization.
1257
+ 2013, pp. 257–284.
1258
+ doi:10.1007/
1259
+ 978-1-4471-4519-6_13. 1, 3
1260
+ [BTS∗15]
1261
+ BONNEEL N., TOMPKIN J., SUNKAVALLI K., SUN D.,
1262
+ PARIS S., PFISTER H.: Blind video temporal consistency. ACM Trans.
1263
+ Graph. 34, 6 (oct 2015). doi:10.1145/2816795.2818107. 1, 2,
1264
+ 4, 8, 9, 11
1265
+ [BWSB12]
1266
+ BUTLER D. J., WULFF J., STANLEY G. B., BLACK M. J.: A
1267
+ naturalistic open source movie for optical flow evaluation. In European
1268
+ Conference on Computer Vision (ECCV) (2012), pp. 611–625. doi:
1269
+ 10.1007/978-3-642-33783-3_44. 6, 7, 8, 10
1270
+ [BZCC10]
1271
+ BHAT P., ZITNICK C. L., COHEN M., CURLESS B.: Gra-
1272
+ dientshop: A gradient-domain optimization framework for image and
1273
+ video filtering. ACM Trans. Graph. 29, 2 (2010). doi:10.1145/
1274
+ 1731047.1731048. 4
1275
+ [CLY∗17]
1276
+ CHEN D., LIAO J., YUAN L., YU N., HUA G.: Coherent
1277
+ online video style transfer. In 2017 IEEE International Conference on
1278
+ Computer Vision (ICCV) (2017), pp. 1114–1123.
1279
+ doi:10.1109/
1280
+ ICCV.2017.126. 3, 4
1281
+ [DBZY15]
1282
+ DONG X., BONEV B., ZHU Y., YUILLE A. L.: Region-based
1283
+ temporally consistent video post-processing. In 2015 IEEE Conference
1284
+ on Computer Vision and Pattern Recognition (CVPR) (2015), pp. 714–
1285
+ 722. doi:10.1109/CVPR.2015.7298671. 2
1286
+ [DTD∗21]
1287
+ DENG Y., TANG F., DONG W., HUANG H., MA C.,
1288
+ XU C.:
1289
+ Arbitrary video style transfer via multi-channel correlation.
1290
+ Proceedings of the AAAI Conference on Artificial Intelligence 35, 2
1291
+ (May 2021), 1210–1217. URL: https://ojs.aaai.org/index.
1292
+ php/AAAI/article/view/16208. 3
1293
+ [FDI∗15]
1294
+ FISCHER P., DOSOVITSKIY A., ILG E., HÄUSSER P., HAZIR-
1295
+ BAS C., GOLKOV V., VAN DER SMAGT P., CREMERS D., BROX
1296
+ submitted to 200x.
1297
+
1298
+ 12
1299
+ S. Shekhar et al. / Interactive Control over Temporal Consistency while Stylizing Video Streams
1300
+ T.:
1301
+ Flownet: Learning optical flow with convolutional networks.
1302
+ In International Conference on Computer Vision (ICCV) (2015),
1303
+ p. 2758–2766. doi:10.1109/ICCV.2015.316. 6
1304
+ [FKL∗21]
1305
+ FUTSCHIK D., KU ˇCERA M., LUKÁ ˇC M., WANG Z.,
1306
+ SHECHTMAN E., SÝKORA D.:
1307
+ Stalp: Style transfer with auxiliary
1308
+ limited pairing.
1309
+ Computer Graphics Forum 40, 2 (2021), 563–573.
1310
+ doi:https://doi.org/10.1111/cgf.142655. 1, 4
1311
+ [FLJ∗14]
1312
+ FIŠER J., LUKÁ ˇC M., JAMRIŠKA O., ˇCADÍK M., GINGOLD
1313
+ Y., ASENTE P., SÝKORA D.: Color me noisy: Example-based rendering
1314
+ of hand-colored animations with temporal noise control. In Proceedings
1315
+ of the 25th Eurographics Symposium on Rendering (2014), EGSR ’14,
1316
+ Eurographics Association, p. 1–10. 2
1317
+ [GEB16]
1318
+ GATYS L. A., ECKER A. S., BETHGE M.: Image style trans-
1319
+ fer using convolutional neural networks. In 2016 IEEE Conference on
1320
+ Computer Vision and Pattern Recognition (CVPR) (2016), pp. 2414–
1321
+ 2423. doi:10.1109/CVPR.2016.265. 3
1322
+ [GJAF17]
1323
+ GUPTA A., JOHNSON J., ALAHI A., FEI-FEI L.: Characteriz-
1324
+ ing and improving stability in neural style transfer. In IEEE International
1325
+ Conference on Computer Vision, ICCV 2017, Venice, Italy, October
1326
+ 22-29, 2017 (2017), pp. 4087–4096. doi:10.1109/ICCV.2017.
1327
+ 438. 3, 4
1328
+ [Hae90]
1329
+ HAEBERLI P.: Paint by numbers: Abstract image representa-
1330
+ tions.
1331
+ In Proceedings of the 17th Annual Conference on Computer
1332
+ Graphics and Interactive Techniques (1990), SIGGRAPH ’90, Associa-
1333
+ tion for Computing Machinery, p. 207–214. doi:10.1145/97879.
1334
+ 97902. 1
1335
+ [HLvdMW17]
1336
+ HUANG G., LIU Z., VAN DER MAATEN L., WEIN-
1337
+ BERGER K. Q.:
1338
+ Densely connected convolutional networks.
1339
+ In
1340
+ Computer Vision and Pattern Recognition (CVPR) (2017), pp. 2261–
1341
+ 2269. doi:10.1109/CVPR.2017.243. 6
1342
+ [HTL18]
1343
+ HUI T.-W., TANG X., LOY C. C.: Liteflownet: A lightweight
1344
+ convolutional neural network for optical flow estimation. In Computer
1345
+ Vision and Pattern Recognition (CVPR) (2018), pp. 8981–8989. doi:
1346
+ 10.1109/CVPR.2018.00936. 3, 6
1347
+ [HTL20]
1348
+ HUI T. W., TANG X., LOY C. C.:
1349
+ A lightweight optical
1350
+ flow cnn - revisiting data fidelity and regularization.
1351
+ In Transactions
1352
+ on Pattern Analysis and Machine Intelligence (TPMAI) (2020). doi:
1353
+ 10.1109/TPAMI.2020.2976928. 3, 5, 6
1354
+ [HWL∗17]
1355
+ HUANG H., WANG H., LUO W., MA L., JIANG W., ZHU
1356
+ X., LI Z., LIU W.: Real-time neural style transfer for videos. In 2017
1357
+ IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
1358
+ (2017), pp. 7044–7052. doi:10.1109/CVPR.2017.745. 3, 4
1359
+ [HZC∗17]
1360
+ HOWARD A. G., ZHU M., CHEN B., KALENICHENKO D.,
1361
+ WANG W., WEYAND T., ANDREETTO M., ADAM H.: Mobilenets: Ef-
1362
+ ficient convolutional neural networks for mobile vision applications. In
1363
+ CoRR (2017). arXiv:1704.04861. 6, 7
1364
+ [IMS∗17]
1365
+ ILG E., MAYER N., SAIKIA T., KEUPER M., DOSOVITSKIY
1366
+ A., BROX T.: Flownet 2.0: Evolution of optical flow estimation with
1367
+ deep networks. In Computer Vision and Pattern Recognition (CVPR)
1368
+ (2017), pp. 1647–1655. doi:10.1109/CVPR.2017.179. 3, 5, 6
1369
+ [JAFF16]
1370
+ JOHNSON J., ALAHI A., FEI-FEI L.: Perceptual losses for
1371
+ real-time style transfer and super-resolution.
1372
+ In Computer Vision –
1373
+ ECCV 2016 (2016), Leibe B., Matas J., Sebe N., Welling M., (Eds.),
1374
+ pp. 694–711. doi:10.1007/978-3-319-46475-6_43. 7, 8, 11
1375
+ [JCL∗21]
1376
+ JIANG S., CAMPBELL D., LU Y., LI H., HARTLEY R.: Learn-
1377
+ ing to estimate hidden motions with global motion aggregation.
1378
+ In
1379
+ Proceedings of the IEEE/CVF International Conference on Computer
1380
+ Vision (2021), pp. 9772–9781. 2, 3, 5, 8
1381
+ [JST∗19]
1382
+ JAMRIŠKA O., SOCHOROVÁ V., TEXLER O., LUKÁ ˇC M.,
1383
+ FIŠER J., LU J., SHECHTMAN E., SÝKORA D.:
1384
+ Stylizing video by
1385
+ example.
1386
+ ACM Trans. Graph. 38, 4 (jul 2019).
1387
+ doi:10.1145/
1388
+ 3306346.3323006. 1, 4
1389
+ [JYF∗20]
1390
+ JING Y., YANG Y., FENG Z., YE J., YU Y., SONG M.:
1391
+ Neural style transfer: A review.
1392
+ IEEE Transactions on Visualization
1393
+ and Computer Graphics 26, 11 (2020), 3365–3385. doi:10.1109/
1394
+ TVCG.2019.2921336. 1
1395
+ [KCWI13]
1396
+ KYPRIANIDIS J. E., COLLOMOSSE J., WANG T., ISENBERG
1397
+ T.: State of the "art”: A taxonomy of artistic stylization techniques for
1398
+ images and video. IEEE Transactions on Visualization and Computer
1399
+ Graphics 19, 5 (2013), 866–885. doi:10.1109/TVCG.2012.160.
1400
+ 1, 9
1401
+ [KP11]
1402
+ KASS M., PESARE D.:
1403
+ Coherent noise for non-photorealistic
1404
+ rendering.
1405
+ ACM Trans. Graph. 30, 4 (jul 2011).
1406
+ doi:10.1145/
1407
+ 2010324.1964925. 1
1408
+ [KTDVG16]
1409
+ KROEGER T., TIMOFTE R., DAI D., VAN GOOL L.: Fast
1410
+ optical flow using dense inverse search. In Computer Vision – ECCV
1411
+ 2016 (2016), Leibe B., Matas J., Sebe N., Welling M., (Eds.), pp. 471–
1412
+ 488. 9
1413
+ [LFY∗17]
1414
+ LI Y., FANG C., YANG J., WANG Z., LU X., YANG M.-
1415
+ H.:
1416
+ Universal style transfer via feature transforms.
1417
+ In Proceedings
1418
+ of the 31st International Conference on Neural Information Processing
1419
+ Systems (2017), NIPS’17, p. 385–395.
1420
+ URL: https://dl.acm.
1421
+ org/doi/10.5555/3294771.3294808. 7, 8, 11
1422
+ [LH19]
1423
+ LOSHCHILOV I., HUTTER F.: Fixing weight decay regulariza-
1424
+ tion in adam. In International Conference on Learning Representations
1425
+ (ICLR) (2019). URL: https://openreview.net/forum?id=
1426
+ rk6qdGgCZ. 6
1427
+ [LHW∗18]
1428
+ LAI W.-S., HUANG J.-B., WANG O., SHECHTMAN E.,
1429
+ YUMER E., YANG M.-H.: Learning blind video temporal consistency.
1430
+ In Computer Vision – ECCV 2018 (2018), Ferrari V., Hebert M., Smin-
1431
+ chisescu C., Weiss Y., (Eds.), pp. 179–195. 1, 2, 3, 4, 8, 9, 11
1432
+ [Lit97]
1433
+ LITWINOWICZ P.:
1434
+ Processing images and video for an im-
1435
+ pressionist effect.
1436
+ In Proceedings of the 24th Annual Conference
1437
+ on Computer Graphics and Interactive Techniques (USA, 1997), SIG-
1438
+ GRAPH ’97, ACM Press/Addison-Wesley Publishing Co., p. 407–414.
1439
+ URL:
1440
+ https://doi.org/10.1145/258734.258893,
1441
+ doi:
1442
+ 10.1145/258734.258893. 3
1443
+ [LLKY19]
1444
+ LI X., LIU S., KAUTZ J., YANG M.: Learning linear trans-
1445
+ formations for fast image and video style transfer. In Proceedings - 2019
1446
+ IEEE/CVF Conference on Computer Vision and Pattern Recognition,
1447
+ CVPR 2019 (June 2019), pp. 3804–3812.
1448
+ doi:10.1109/CVPR.
1449
+ 2019.00393. 3
1450
+ [LWA∗12]
1451
+ LANG M., WANG O., AYDIN T., SMOLIC A., GROSS M.:
1452
+ Practical temporal consistency for image-based graphics applications.
1453
+ ACM Trans. Graph. 31, 4 (jul 2012).
1454
+ doi:10.1145/2185520.
1455
+ 2185530. 2
1456
+ [LZH∗20]
1457
+ LIU L., ZHANG J., HE R., LIU Y., WANG Y., TAI Y., LUO
1458
+ D., WANG C., LI J., HUANG F.: Learning by analogy: Reliable su-
1459
+ pervision from transformations for unsupervised optical flow estimation.
1460
+ In Computer Vision and Pattern Recognition (CVPR) (2020), pp. 6488–
1461
+ 6497. doi:10.1109/CVPR42600.2020.00652. 3, 5, 7
1462
+ [MIH∗16]
1463
+ MAYER N., ILG E., HÄUSSER P., FISCHER P., CREMERS
1464
+ D., DOSOVITSKIY A., BROX T.:
1465
+ A large dataset to train convolu-
1466
+ tional networks for disparity, optical flow, and scene flow estimation.
1467
+ In Computer Vision and Pattern Recognition (CVPR) (2016), pp. 4040–
1468
+ 4048. doi:10.1109/CVPR.2016.438. 6
1469
+ [Nik18]
1470
+ NIKLAUS S.: pytorch-pwc: a reimplementation of pwc-net in
1471
+ pytorch that matches the official caffe version, 2018. URL: https:
1472
+ //github.com/sniklaus/pytorch-pwc. 6
1473
+ [Pex]
1474
+ PEXELS: Pexels. URL: https://www.pexels.com/. 7, 8
1475
+ [PGM∗19]
1476
+ PASZKE A., GROSS S., MASSA F., LERER A., BRAD-
1477
+ BURY J., CHANAN G., KILLEEN T., LIN Z., GIMELSHEIN N.,
1478
+ ANTIGA
1479
+ L.,
1480
+ DESMAISON
1481
+ A.,
1482
+ KOPF
1483
+ A.,
1484
+ YANG
1485
+ E.,
1486
+ DEVITO
1487
+ Z., RAISON M., TEJANI A., CHILAMKURTHY S., STEINER B.,
1488
+ FANG L., BAI J., CHINTALA S.:
1489
+ Pytorch: An imperative style,
1490
+ high-performance deep learning library.
1491
+ In Advances in Neural
1492
+ Information Processing Systems (NIPS). 2019, pp. 8024–8035. URL:
1493
+ https://proceedings.neurips.cc/paper/2019/file/
1494
+ bdbca288fee7f92f2bfa9f7012727740-Paper.pdf. 6
1495
+ submitted to 200x.
1496
+
1497
+ S. Shekhar et al. / Interactive Control over Temporal Consistency while Stylizing Video Streams
1498
+ 13
1499
+ [PP19]
1500
+ PUY G., PÉREZ P.: A flexible convolutional solver for fast style
1501
+ transfers.
1502
+ In 2019 IEEE/CVF Conference on Computer Vision and
1503
+ Pattern Recognition (CVPR) (2019), pp. 8955–8964. doi:10.1109/
1504
+ CVPR.2019.00917. 3, 4
1505
+ [PPTM∗16]
1506
+ PERAZZI
1507
+ F.,
1508
+ PONT-TUSET
1509
+ J.,
1510
+ MCWILLIAMS
1511
+ B.,
1512
+ VAN GOOL L., GROSS M., SORKINE-HORNUNG A.:
1513
+ A bench-
1514
+ mark dataset and evaluation methodology for video object segmentation.
1515
+ In 2016 IEEE Conference on Computer Vision and Pattern Recognition
1516
+ (CVPR) (2016), pp. 724–732. doi:10.1109/CVPR.2016.85. 7, 8
1517
+ [PTPC∗17]
1518
+ PONT-TUSET J., PERAZZI F., CAELLES S., ARBELAEZ P.,
1519
+ SORKINE-HORNUNG A., GOOL L. V.: The 2017 DAVIS challenge on
1520
+ video object segmentation. In CoRR (2017). arXiv:1704.00675. 8,
1521
+ 10
1522
+ [Qia99]
1523
+ QIAN N.: On the momentum term in gradient descent learning
1524
+ algorithms. Neural Networks 12, 1 (1999), 145–151. doi:https:
1525
+ //doi.org/10.1016/S0893-6080(98)00116-6. 5
1526
+ [RB17]
1527
+ RANJAN A., BLACK M. J.: Optical flow estimation using a spa-
1528
+ tial pyramid network. In 2017 IEEE Conference on Computer Vision and
1529
+ Pattern Recognition (CVPR) (2017), pp. 2720–2729. doi:10.1109/
1530
+ CVPR.2017.291. 5
1531
+ [RBL∗22]
1532
+ ROMBACH R., BLATTMANN A., LORENZ D., ESSER P.,
1533
+ OMMER B.: High-resolution image synthesis with latent diffusion mod-
1534
+ els. In Proceedings of the IEEE/CVF Conference on Computer Vision
1535
+ and Pattern Recognition (2022), pp. 10684–10695. 2, 9
1536
+ [RDB18]
1537
+ RUDER M., DOSOVITSKIY A., BROX T.:
1538
+ Artistic style
1539
+ transfer for videos and spherical images.
1540
+ International Journal of
1541
+ Computer Vision 126, 11 (Nov 2018), 1199–1219. doi:10.1007/
1542
+ s11263-018-1089-z. 3, 8
1543
+ [RDN∗22]
1544
+ RAMESH A., DHARIWAL P., NICHOL A., CHU C., CHEN
1545
+ M.:
1546
+ Hierarchical text-conditional image generation with clip latents.
1547
+ arXiv preprint arXiv:2204.06125 (2022). 9
1548
+ [SHR∗22]
1549
+ SUN D., HERRMANN C., REDA F., RUBINSTEIN M., FLEET
1550
+ D. J., FREEMAN W. T.: Disentangling architecture and training for op-
1551
+ tical flow. In ECCV (2022). 6
1552
+ [SID17]
1553
+ SEMMO A., ISENBERG T., DÖLLNER J.: Neural style transfer:
1554
+ A paradigm shift for image-based artistic rendering? In Proceedings of
1555
+ the Symposium on Non-Photorealistic Animation and Rendering (2017),
1556
+ NPAR ’17, Association for Computing Machinery. doi:10.1145/
1557
+ 3092919.3092920. 1
1558
+ [SST∗19]
1559
+ SHEKHAR S., SEMMO A., TRAPP M., TURSUN O., PASE-
1560
+ WALDT S., MYSZKOWSKI K., DÖLLNER J.: Consistent Filtering of
1561
+ Videos and Dense Light-Fields Without Optic-Flow. In Vision, Modeling
1562
+ and Visualization (2019), Schulz H.-J., Teschner M., Wimmer M., (Eds.).
1563
+ doi:10.2312/vmv.20191326. 2, 3, 4, 10
1564
+ [SVH∗21]
1565
+ SUN
1566
+ D.,
1567
+ VLASIC
1568
+ D.,
1569
+ HERRMANN
1570
+ C.,
1571
+ JAMPANI
1572
+ V.,
1573
+ KRAININ M., CHANG H., ZABIH R., FREEMAN W. T., LIU C.:
1574
+ Autoflow: Learning a better training set for optical flow.
1575
+ In 2021
1576
+ IEEE/CVF Conference on Computer Vision and Pattern Recognition
1577
+ (CVPR) (2021), pp. 10088–10097.
1578
+ doi:10.1109/CVPR46437.
1579
+ 2021.00996. 6
1580
+ [SYLK18]
1581
+ SUN D., YANG X., LIU M.-Y., KAUTZ J.: PWC-Net: CNNs
1582
+ for optical flow using pyramid, warping, and cost volume. In Computer
1583
+ Vision and Pattern Recognition (CVPR) (2018), pp. 8934–8943. doi:
1584
+ 10.1109/CVPR.2018.00931. 3, 5, 6, 7, 8, 10
1585
+ [TD20]
1586
+ TEED Z., DENG J.: Raft: Recurrent all-pairs field transforms
1587
+ for optical flow.
1588
+ In Computer Vision – ECCV 2020 (2020), Vedaldi
1589
+ A., Bischof H., Brox T., Frahm J.-M., (Eds.), pp. 402–419.
1590
+ doi:
1591
+ 10.1007/978-3-030-58536-5_24. 2, 3, 5, 8, 9, 10
1592
+ [TDKP21]
1593
+ THIMONIER H., DESPOIS J., KIPS R., PERROT M.: Learn-
1594
+ ing long term style preserving blind video temporal consistency. In 2021
1595
+ IEEE International Conference on Multimedia and Expo (ICME) (2021),
1596
+ IEEE, pp. 1–6. 1, 2, 3
1597
+ [TFK∗20]
1598
+ TEXLER O., FUTSCHIK D., KU ˇCERA M., JAMRIŠKA O., SO-
1599
+ CHOROVÁ V., CHAI M., TULYAKOV S., SÝKORA D.: Interactive video
1600
+ stylization using few-shot patch-based training. ACM Trans. Graph. 39,
1601
+ 4 (2020). doi:10.1145/3386569.3392453. 1, 4
1602
+ [Vid]
1603
+ VIDEVO: Videvo. URL: https://www.videvo.net/. 7, 8
1604
+ [WOG06]
1605
+ WINNEMÖLLER H., OLSEN S. C., GOOCH B.:
1606
+ Real-time
1607
+ video abstraction.
1608
+ ACM Trans. Graph. 25, 3 (jul 2006), 1221–1226.
1609
+ doi:10.1145/1141911.1142018. 3
1610
+ [YCC17]
1611
+ YAO C.-H., CHANG C.-Y., CHIEN S.-Y.:
1612
+ Occlusion-
1613
+ aware video temporal consistency.
1614
+ In Proceedings of the 25th
1615
+ ACM International Conference on Multimedia (New York, NY, USA,
1616
+ 2017), MM ’17, Association for Computing Machinery, p. 777–785.
1617
+ URL: https://doi.org/10.1145/3123266.3123363, doi:
1618
+ 10.1145/3123266.3123363. 1, 2, 3
1619
+ [YR19]
1620
+ YANG
1621
+ G.,
1622
+ RAMANAN
1623
+ D.:
1624
+ Volumetric Correspondence
1625
+ Networks for Optical Flow.
1626
+ Curran Associates Inc., Red Hook, NY,
1627
+ USA, 2019. URL: https://dl.acm.org/doi/pdf/10.5555/
1628
+ 3454287.3454359. 5, 6
1629
+ [ZGWX05]
1630
+ ZHU S.-C., GUO C.-E., WANG Y., XU Z.: What are tex-
1631
+ tons? International Journal of Computer Vision 62, 1 (2005), 121–143.
1632
+ 5
1633
+ [ZPIE17]
1634
+ ZHU J.-Y., PARK T., ISOLA P., EFROS A. A.:
1635
+ Unpaired
1636
+ image-to-image translation using cycle-consistent adversarial networks.
1637
+ In 2017 IEEE International Conference on Computer Vision (ICCV)
1638
+ (2017), pp. 2242–2251. doi:10.1109/ICCV.2017.244. 7, 11
1639
+ submitted to 200x.
1640
+
5dAyT4oBgHgl3EQf2fkR/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
5tFAT4oBgHgl3EQfmx2I/content/tmp_files/2301.08625v1.pdf.txt ADDED
@@ -0,0 +1,1005 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.08625v1 [physics.plasm-ph] 20 Jan 2023
2
+ Interaction of thin tungsten and tantalum films with ultrashort laser pulses:
3
+ calculations from first principles
4
+ N. A. Smirnov∗
5
+ Federal State Unitary Enterprise, Russian Federal Nuclear Center - Zababakhin
6
+ All-Russian Research Institute of Technical Physics, 456770, Snezhinsk, Russia
7
+ (Dated: January 23, 2023)
8
+ The interaction of ultrashort laser pulses with thin tungsten and tantalum films is investigated
9
+ through the full-potential band-structure calculations. Our calculations show that at relatively low
10
+ absorbed energies (the electron temperature Te≲7 kK), the lattice of tantalum undergoes noticeable
11
+ hardening. The hardening leads to the change of the tantalum complete melting threshold under
12
+ these conditions. Calculations suggest that for the isochorically heated Ta film, if such hardening
13
+ really occurs, the complete melting threshold will be at least 25% higher. It is also shown that
14
+ the body-centered cubic structures of W and Ta crystals become dynamically unstable when the
15
+ electronic subsystem is heated to sufficiently high temperatures (Te>22 kK). This lead to their
16
+ complete melting on the sub-picosecond time scale.
17
+ PACS numbers:
18
+ I.
19
+ INTRODUCTION
20
+ As shown in a number of experimental studies, the
21
+ melting of different materials after their interaction with
22
+ ultrashort (femtosecond) laser pulses have their specific
23
+ features [1–5].
24
+ Absorption of this radiation leads to a
25
+ strongly non-equilibrium heating of the system where the
26
+ temperatures of its electronic and ionic subsystems are
27
+ very much different, Te≫Ti. This state may keep for tens
28
+ of picoseconds and even longer [5]. Under these condi-
29
+ tions, semiconductors, for example, undergo the so-called
30
+ nonthermal melting caused not by their lattice heating
31
+ due to heat transfer from hot electrons to cold ions but
32
+ by a dramatic change in the shape of the potential energy
33
+ surface and hence dynamic lattice destabilization [1–3].
34
+ In semimetallic bismuth, the situation seems to be sim-
35
+ ilar [4]. The determining factor here is the estimate of
36
+ the electron-phonon coupling factor G, which defines the
37
+ rate of heat transfer from the electronic to ionic subsys-
38
+ tem. For bismuth, the theoretical estimates of G strongly
39
+ differ [6–8], leaving room for disputes on the presence of
40
+ nonthermal melting in this metal after interaction with
41
+ ultrashort laser pulses [9].
42
+ On the other hand, the change of the shape of the po-
43
+ tential energy surface may also lead, under certain con-
44
+ ditions, to the hardening of irradiated crystal [10–12],
45
+ thus increasing the time of its melting and causing its
46
+ strong overheating. Despite some claims that the lattice
47
+ hardening has been experimentally observed [13], there
48
+ is still no evidence of its reliable detection in experiments
49
+ [5, 12, 14].
50
+ The experimental work reported in Ref. [15] aimed to
51
+ explore the possibility of the nonthermal melting of tung-
52
+ sten by measuring reflectivity of the metal surface after
53
+ its irradiation. The experiments show that above a cer-
54
+ ∗Electronic address: [email protected]
55
+ tain value of absorbed excitation fluence, ablation of the
56
+ metal surface proceeds in a sub-picosecond time interval.
57
+ The revealed effect may be indicative of the ultrafast non-
58
+ thermal melting because in the normal thermal scenario
59
+ of ablation, the characteristic times of this process must
60
+ be much higher than those obtained in experiment [15].
61
+ Ab initio calculations [16] show that the heating of
62
+ the electronic subsystem of tungsten to Te above 20 kK
63
+ may lead to a structural transition from bcc to fcc phase.
64
+ The transition is also caused by the abrupt change in the
65
+ shape of the potential energy surface, leading to fcc sta-
66
+ bilization at high values of Te [16]. In its turn, the bcc
67
+ structure may lose dynamic stability under these condi-
68
+ tions. It is however difficult to detect this transition in
69
+ experiment because of the possibility of sub-picosecond
70
+ nonthermal melting. Just this was shown in molecular
71
+ dynamics (MD) calculations [17] where the interaction
72
+ of femtosecond laser pulses with thin tungsten film was
73
+ investigated. The nuclei of the new fcc phase were only
74
+ able to form mainly on the surface of the film before the
75
+ sample melted during about 0.8 ps. On whole, MD re-
76
+ sults [17] suggest that the detection probability for the
77
+ nonthermal melting of tungsten is much higher than for
78
+ the structural transition predicted in Ref. [16].
79
+ As mentioned above, an important factor of detecting
80
+ nonthermal phenomena in metals is the electron-phonon
81
+ coupling factor G. Its values for metals are usually high
82
+ [18], meaning that the nonthermal character of processes
83
+ that occur after irradiation can hardly be recognized.
84
+ There are different approaches to the theoretical deter-
85
+ mination of G (see, for example, [12, 18, 19]). In our re-
86
+ search we will follow methodology described in Ref. [12],
87
+ but also discuss results obtained with other approaches.
88
+ This paper studies the interaction of femtosecond laser
89
+ pulses with thin (a few tens of nanometers thick) tung-
90
+ sten and tantalum films. The physical quantities required
91
+ for calculations with a two-temperature model [20] were
92
+ obtained from first principles. The issues discussed in-
93
+ clude the processes involved in the nonthermal melting
94
+
95
+ 2
96
+ of the metals and the possibility of detecting tantalum
97
+ lattice hardening at moderate absorbed energies.
98
+ Our
99
+ results are compared with available experimental data
100
+ and other calculations.
101
+ II.
102
+ CALCULATION METHOD
103
+ In this work, the temperature evolution of electronic
104
+ and ionic subsystems with time after irradiation by ul-
105
+ trashort laser pulses is determined using a well-known
106
+ two-temperature model [20]. Since the thin (∼10 nm)
107
+ films of W and Ta are considered, the two-temperature
108
+ model equations can be written as
109
+ Ce(Te)∂Te
110
+ ∂t = −(Te − Ti)G(Te) + S(t),
111
+ (1)
112
+ Ci(Ti)∂Ti
113
+ ∂t = (Te − Ti)G(Te),
114
+ (2)
115
+ where S(t) is the time dependent radiation source func-
116
+ tion [17], Ce(Te) and Ci(Ti) are electron and lattice heat
117
+ capacities, and G(Te) is the electron-phonon coupling fac-
118
+ tor. Here we neglect lattice (κi) and electron (κe) ther-
119
+ mal conductivities because, on the one hand, κe≫κi in
120
+ our case, and on the other hand, in thin foils, ballistic
121
+ electrons bring the electronic subsystem to thermody-
122
+ namic equilibrium over a time about a pulse duration τp
123
+ [21, 22]. So, no significant gradients in temperature oc-
124
+ cur in the target. The method to calculate Ce, Ci, and G
125
+ as functions of electron and ion temperatures from first
126
+ principles is described in rather detail in Ref. [12]. Here
127
+ we only provide the key formula for the electron-phonon
128
+ coupling factor. It reads as
129
+ G(Te) =
130
+ 2πℏ
131
+ (Tl − Te)
132
+
133
+
134
+ 0
135
+ ΩdΩ
136
+
137
+
138
+ −∞
139
+ N(ε)α2F(ε, Ω)
140
+ × S(ε, ε + ℏΩ)dε.
141
+ (3)
142
+ where N(ε) is the electronic density of states (DOS),
143
+ α2F(ε,Ω) is the electron-phonon spectral function, ε
144
+ and ℏΩ are, respectively, electron and phonon energies,
145
+ S(ε,ε + ℏΩ)=[fe(ε)-fe(ε + ℏΩ)][n(ℏΩ,Ti)-n(ℏΩ,Te)] with
146
+ fe standing for the Fermi distribution function and n for
147
+ the Bose-Einstein distribution function.
148
+ Another formula which is often used to determine
149
+ G(Te) has some simplifications as compared to (3) and
150
+ reads as [18]
151
+ G(Te) = πℏkBλ⟨ω2⟩
152
+ N(EF )
153
+
154
+
155
+ −∞
156
+ N 2(ε)
157
+
158
+ −∂fe
159
+ ∂ε
160
+
161
+ dε.
162
+ (4)
163
+ Here λ is the electron-phonon mass enhancement param-
164
+ eter, ⟨Ω⟩2 is the second moment of the phonon spectrum
165
+ [23], and EF is the Fermi energy. Formula 4 is derived un-
166
+ der the assumption that in the interaction with phonon,
167
+ the scattering probability matrix elements is independent
168
+ of the initial {k, i} and final {k′, j} electronic states. The
169
+ authors of Ref. [18] determined the values of λ and ⟨Ω⟩2
170
+ from experimental evaluation, not from first-principles
171
+ calculations.
172
+ One more way to calculate G(Te) is based on the calcu-
173
+ lation of the electron-ion collision integral Ie−i
174
+ nm with the
175
+ use of an approximate tight-binding model to calculate
176
+ the band structure, combined with MD simulation [19].
177
+ The expression for Ie−i
178
+ nm is written as
179
+ Ie−i
180
+ nm = 2π
181
+ ℏ |Me−i(εn, εm)|2
182
+
183
+ fe(εn)[2 − fe(εm)] − fe(εm)[2 − fe(εn)]e−∆ε/Ti;
184
+ for n>m
185
+ fe(εm)[2 − fe(εn)]e−∆ε/Ti − fe(εn)[2 − fe(εm)];
186
+ otherwise ,
187
+ (5)
188
+ where ∆ε=εn − εm is the energy difference between two
189
+ states, and Me−i is the electron-ion scattering matrix el-
190
+ ement. The electron-phonon coupling factor can be writ-
191
+ ten as
192
+ G(Te) =
193
+ 1
194
+ V (Te − Ti)
195
+
196
+ n,m
197
+ εmIe−i
198
+ nm ,
199
+ (6)
200
+ here V is the specific volume. It should be noted here
201
+ that our method for determining G(Te) (by formula (3))
202
+ does not use any experimentally determined parameters
203
+ or approximations which simplify the scattering proba-
204
+ bility matrix element, as it is done in Ref. [18], or serious
205
+ simplifications related to particle interactions in the sys-
206
+ tem, as it is done in the tight-binding model [19].
207
+ In this work, first-principles calculations were done
208
+ with the all-electron full-potential linear muffin-tin or-
209
+
210
+ 3
211
+ 0
212
+ 2
213
+ 4
214
+ 6
215
+ 0.0
216
+ 0.1
217
+ 0.2
218
+ 0.3
219
+ 0.4
220
+ 0.5
221
+ 0.6
222
+ 0.7
223
+ 0
224
+ 2
225
+ 4
226
+ 6
227
+ 0.0
228
+ 0.2
229
+ 0.4
230
+ 0.6
231
+ 0.8
232
+ 1.0
233
+ 1.2
234
+ 1.4
235
+ PDOS (arb. units)
236
+ Frequency (THz)
237
+ W
238
+ Frequency (THz)
239
+ Ta
240
+ FIG. 1: Tungsten and tantalum phonon spectra at the equi-
241
+ librium experimental specific volume from calculations done
242
+ in this work for zero temperature (red lines) and from exper-
243
+ iment at room temperature [30] (circles connected by a line).
244
+ bital method (FP-LMTO) [24]. We consider here pro-
245
+ cesses at a constant specific volume, i.e.
246
+ the isochoric
247
+ heating of targets.
248
+ Within the scope of density func-
249
+ tional theory the FP-LMTO method calculates the elec-
250
+ tron structure, internal and free energies, phonon spec-
251
+ trum and other material properties [12, 24–26]. Phonon
252
+ spectrum and electron-phonon spectral function calcu-
253
+ lations for the metals of interest were done with lin-
254
+ ear response theory implemented in the FP-LMTO code
255
+ [24, 25].
256
+ Integration over the Brillouin zone was done
257
+ with an improved tetrahedron method [27]. Meshes in
258
+ k-space corresponded to equidistant spacing 30×30×30.
259
+ For integration over the q-points of the phonon spectrum,
260
+ a 10×10×10 mesh appeared quite sufficient (see [26] for
261
+ more details on meshes). The cutoff energy for repre-
262
+ senting the basis functions as a set of plane waves in the
263
+ interstitial region was taken to be 900 eV. The basis set
264
+ included MT-orbitals with moments to lb
265
+ max=5. Charge
266
+ density and potential expansions in terms of spherical
267
+ harmonics were done to lw
268
+ max=7. The internal FP-LMTO
269
+ parameters such as the linearization energy, tail energies,
270
+ and the radius of the MT-sphere were chosen using an
271
+ approach similar to that one used in Ref. [28].
272
+ The valence electrons in our calculations were 5s, 5p,
273
+ 4f, 5d, and 6s. For better comparison with calculations
274
+ by other authors, the exchange-correlation potential was
275
+ chosen to be similar to that one used in Ref. [17], i.e.,
276
+ PBE [29]. This functional reproduces well the different
277
+ properties of tungsten and tantalum. For example, the
278
+ equilibrium volume V0 from calculation differs by no more
279
+ than 2% from experiment for both the metals. Figure 1
280
+ shows the phonon densities of states (PDOS) from calcu-
281
+ lation in comparison with experimental data [30]. They
282
+ are seen to be in quite a good agreement.
283
+ The entropy of the electronic subsystem was deter-
284
+ 0
285
+ 15
286
+ 30
287
+ 45
288
+ -0.6
289
+ -0.3
290
+ 0.0
291
+ 0.3
292
+ 0.6
293
+ 0.9
294
+ 0
295
+ 15
296
+ 30
297
+ 45
298
+
299
+ W
300
+ T
301
+ e
302
+ =1 kK
303
+ T
304
+ e
305
+ =10 kK
306
+ T
307
+ e
308
+ =20 kK
309
+
310
+
311
+ N (states/Ry/atom)
312
+ Ta
313
+
314
+
315
+ N (states/Ry/atom)
316
+ E-
317
+ (Ry)
318
+ FIG. 2: Electronic DOS for W (top) and Ta (bottom) at equi-
319
+ librium specific volume and zero temperature (black lines).
320
+ The green, blue and red lines are the Fermi distribution func-
321
+ tions at different electron temperatures.
322
+ mined as
323
+ Se(Te) = −kB
324
+ � ∞
325
+ −∞
326
+ dεN(ε)[feln(fe) + (1 − fe)ln(1 − fe)].
327
+ (7)
328
+ With the known entropy Se(Te) and internal energy
329
+ Ee(Te) of electrons, it is easy to obtain the free energy
330
+ Fe=Ee − TeSe of the electron gas.
331
+ The phonon spectrum of tungsten and tantalum was
332
+ determined within quasiharmonic approximation [12].
333
+ The melting temperature Tm of crystal W and Ta versus
334
+ electron temperature was estimated in the same manner
335
+ as it was done in Ref. [31] with the well performing Lin-
336
+ demann criterion.
337
+ III.
338
+ RESULTS
339
+ Let’s first compare the electronic structures of tungsten
340
+ and tantalum. Figure 2 shows their electronic densities
341
+ of states versus energy at V =V0 and T =0 calculated in
342
+ this work. It is seen that the chemical potential µ which
343
+ coincides with the Fermi energy at zero temperature is
344
+ near the minimum of the DOS for tungsten, while for
345
+ tantalum, the density of states at ε=µ is much higher
346
+ compared to W. For Ta, the Fermi level is near the peak
347
+ of the DOS. Compared to tantalum, the electronic struc-
348
+ ture of tungsten is very much depleted in states in the
349
+ vicinity of µ. Calculations show that as Te grows to ∼15
350
+ kK, the values of N(µ) increase for tungsten and decrease
351
+ for tantalum. This causes certain differences in the be-
352
+ havior of these metals at elevating electron temperatures.
353
+ Now consider how the free energy of electrons depends
354
+ on the lattice parameter c/a (i.e., the Bain path) at dif-
355
+ ferent temperatures Te.
356
+ Figures 3 and 4 show results
357
+
358
+ 4
359
+ 0.9
360
+ 1.0
361
+ 1.1
362
+ 1.2
363
+ 1.3
364
+ 1.4
365
+ 1.5
366
+ -8
367
+ -4
368
+ 0
369
+ 4
370
+ 8
371
+ 12
372
+ W
373
+ T
374
+ e
375
+ =8.7 kK
376
+ T
377
+ e
378
+ =14.5 kK
379
+ T
380
+ e
381
+ =29 kK
382
+ fcc
383
+ F
384
+ e
385
+ -F
386
+ 0
387
+ (mRy/atom)
388
+ c/a
389
+ bcc
390
+ FIG. 3: Free electron energy versus lattice parameter c/a at
391
+ different Te for tungsten (V =V0). The vertical lines show the
392
+ values of c/a which correspond to its bcc and fcc structures.
393
+ 0.9
394
+ 1.0
395
+ 1.1
396
+ 1.2
397
+ 1.3
398
+ 1.4
399
+ 1.5
400
+ -5
401
+ 0
402
+ 5
403
+ 10
404
+ 15
405
+ 20
406
+ Ta
407
+
408
+
409
+ F
410
+ e
411
+ -F
412
+ 0
413
+ (mRy/atom)
414
+ c/a
415
+ T
416
+ e
417
+ =1 kK
418
+ T
419
+ e
420
+ =5.8 kK
421
+ T
422
+ e
423
+ =17.4 kK
424
+ T
425
+ e
426
+ =34.8 kK
427
+ bcc
428
+ fcc
429
+ FIG. 4: Free electron energy versus lattice parameter c/a at
430
+ different Te for tantalum (V =V0). The vertical lines show the
431
+ values of c/a which correspond to its bcc and fcc structures.
432
+ obtained for W and Ta, respectively. In both metals, the
433
+ fcc structure is seen to be dynamically unstable at low
434
+ electron temperatures. With the increasing temperature
435
+ it stabilizes and at Te>15 kK it becomes thermodynam-
436
+ ically more preferable than bcc. It is seen that tantalum
437
+ behaves very much like tungsten but requires somewhat
438
+ higher temperatures for stabilization of the fcc structure.
439
+ On the other hand, with the increasing Te the bcc struc-
440
+ ture becomes dynamically unstable both in tungsten and
441
+ in tantalum. These changes must lead to a bcc→fcc tran-
442
+ sition when the electronic subsystem is heated. As how-
443
+ ever mentioned in paper [17], in such conditions their
444
+ melting is more probable. On whole, our calculations for
445
+ tungsten agree well with results presented in Ref. [16].
446
+ One more feature of tantalum should be noted here. It
447
+ is seen from Fig. 4 that there exists a limited interval of
448
+ temperatures at relatively low values of Te (see Te=5.8
449
+ 0
450
+ 2
451
+ 4
452
+ 6
453
+ 0.0
454
+ 0.2
455
+ 0.4
456
+ 0.6
457
+ 0.8
458
+ 0
459
+ 2
460
+ 4
461
+ 6
462
+ 0.0
463
+ 0.4
464
+ 0.8
465
+ 1.2
466
+ T
467
+ e
468
+ =300 K
469
+ T
470
+ e
471
+ =5.8 kK
472
+ T
473
+ e
474
+ =11.6 kK
475
+ PDOS (arb. units)
476
+ Frequency (THz)
477
+ W
478
+ Frequency (THz)
479
+ Ta
480
+ FIG. 5: Phonon densities of states in tungsten (left) and tan-
481
+ talum (right) at different electron temperatures (V =V0).
482
+ kK), where the bcc lattice hardens. The free energy curve
483
+ runs steeper near the minimum corresponding to the bcc
484
+ phase. This feature is absent in tungsten. Figure 5 shows
485
+ the densities of phonon states for W and Ta we calculated
486
+ in this work for different electron temperatures. It is seen
487
+ that with the increasing Te tungsten gradually softens
488
+ and its phonon frequencies reduce. The phonon frequen-
489
+ cies of tantalum first increase with the growing Te and
490
+ cause bcc lattice hardening. Then the tendency changes
491
+ – the high-frequency part of the spectrum goes on to
492
+ harden, while the low-frequency part begins to soften re-
493
+ ducing its frequencies (see Fig. 5, Te=11.6 kK). At Te
494
+ above 20 kK the bcc structure in both metals loses its
495
+ dynamic stability. It happens at about 22 kK in tung-
496
+ sten and 29 kK in tantalum. The hardening of the Ta
497
+ lattice at relatively low electron temperatures leads to a
498
+ sudden effect we will consider later.
499
+ Figures 6 and 7 show the electron-phonon coupling fac-
500
+ tor G as a function of electron temperature at V =V0,
501
+ calculated in this work for tungsten and tantalum, re-
502
+ spectively. The dependences G(Te) are provided for bcc
503
+ and fcc structures in their stability regions.
504
+ The val-
505
+ ues of G for the structures are seen to be close to each
506
+ other and it is quite possible to approximate our results
507
+ by a continuous line. The figures also show data from
508
+ low-temperature experiments [32–34]. For tungsten, our
509
+ results are seen to agree quite well with experiment. For
510
+ tantalum, experimental data from Ref. [34] provides only
511
+ the lower boundary of G, which does not contradict our
512
+ calculations. Figures 6 and 7 also show results from some
513
+ other calculations. It is seen that compared to our re-
514
+ sults, calculations by Lin et al. [18] for W give overesti-
515
+ mated values of G for the increasing temperature (Fig. 6).
516
+ Such a behavior has earlier been observed in other metals
517
+ [12] and can be related to the more correct account for the
518
+ energy dependence of α2F(ε,Ω) in formula (3). In turn,
519
+ the values of G(Te) from Ref. [19] are much lower than
520
+ our results and the experimental data available.
521
+ Note
522
+ that the presence of adjustable parameters in the calcu-
523
+ lation method may reduce the accuracy of results if they
524
+
525
+ 5
526
+ 0
527
+ 10
528
+ 20
529
+ 30
530
+ 40
531
+ 0
532
+ 3
533
+ 6
534
+ 9
535
+ 12
536
+ fcc
537
+
538
+
539
+ G (10
540
+ 17
541
+ W/m
542
+ 3
543
+ /K)
544
+ T
545
+ e
546
+ (kK)
547
+ bcc
548
+ W
549
+ FIG. 6: Electron-phonon coupling factor versus Te for tung-
550
+ sten from our calculation (solid, dashed lines for bcc and fcc,
551
+ respectively), from calculations reported in papers [18] (dot-
552
+ ted line) and [19] (dashed-dotted line), and from experiments
553
+ [32] and [33] (the circle and the triangle, respectively). The
554
+ vertical line shows the approximate value of Te above which
555
+ the fcc phase becomes more energetically favorable than bcc.
556
+ 0
557
+ 10
558
+ 20
559
+ 30
560
+ 40
561
+ 0
562
+ 2
563
+ 4
564
+ 6
565
+ 8
566
+ 10
567
+
568
+
569
+ G (10
570
+ 17
571
+ W/m
572
+ 3
573
+ /K)
574
+ T
575
+ e
576
+ (kK)
577
+ Ta
578
+ bcc
579
+ fcc
580
+ FIG. 7: Electron-phonon coupling factor versus Te for tan-
581
+ talum from our calculations using formula (3) (solid, dashed
582
+ lines for bcc and fcc, respectively) and by a formula (4) (dot-
583
+ ted line). Other calculations: dashed-dotted line - Ref. [19],
584
+ dashed-dotted-dotted line - Ref. [34] by a formula from
585
+ Ref. [18] (see the text). The triangle shows the lower bound-
586
+ ary of G from experiment [34]. The vertical line shows the
587
+ approximate value of Te above which the fcc phase is more
588
+ energetically preferable than bcc.
589
+ are adjusted to conditions (for example, at T =0) different
590
+ from what we are having here.
591
+ For tantalum (fig. 7), our calculations by expression (4)
592
+ (the dotted line) had one distinction from those reported
593
+ in paper [18]: the values of λ and ⟨Ω⟩2 were determined
594
+ from first-principles calculations rather than from experi-
595
+ mental evaluation. It is seen that in this case, approaches
596
+ [18] and [12] give close values for G(Te), the differences
597
+ 0
598
+ 4
599
+ 8
600
+ 12
601
+ 16
602
+ 20
603
+ 0.0
604
+ 0.2
605
+ 0.4
606
+ 0.6
607
+ 0.8
608
+ 1.0
609
+ 1.2
610
+ W
611
+ I / I
612
+ 0
613
+ t (ps)
614
+ FIG. 8: Intensity of diffraction peak (211) versus time for
615
+ tungsten for absorbed energy density 0.8 MJ/kg from our
616
+ calculation (the solid line), calculations with a constant G
617
+ [33] (the dashed line), calculations with G(Te) from Ref. [18]
618
+ (the dashed-dotted line), and measurements [33] (circles).
619
+ are minimal. In Ref. [34], the electron-phonon coupling
620
+ factor was also calculated with formula (4) but with the
621
+ electronic DOS determined from MD calculations. But
622
+ here deviations from our results come, first of all, from
623
+ the underestimated parameter λ.
624
+ The authors of [34]
625
+ used the empirical value from Ref. [23], λ=0.65. Our cal-
626
+ culations from first principles gave λ=0.88 in the case of
627
+ tantalum. For tungsten, the difference between the em-
628
+ pirical [23] and calculated values of λ is not so large; they
629
+ agree within ∼3%.
630
+ Let’s consider the accuracy of our calculations in com-
631
+ parison with other experimental results. The authors of
632
+ paper [33] measured how evolved the intensity of the Laue
633
+ diffraction peak (211) after a 30-nm-thick tungsten film
634
+ deposited on a silicon nitride substrate was irradiated by
635
+ 400-nm laser pulses with τp=130 fs. The absorbed energy
636
+ density Eabs was about 0.8 MJ/kg. Figure 8 compares
637
+ experimental data with calculations performed in three
638
+ variants (see [12] for calculation details). In addition to
639
+ our computation with use of formula (4), it shows cal-
640
+ culations with G(Te) taken from Ref. [18] and with con-
641
+ stant G=2 · 1017 W/m3/K and ΘD=312 K [33]. The re-
642
+ sults obtained with expression (3) are seen to agree quite
643
+ well with experiment. The use of G(Te) from Ref. [18]
644
+ slightly worsens the agreement and the calculation with
645
+ the constant G markedly underestimates the change of
646
+ the diffraction peak intensity at times below 10 ps.
647
+ Figure 9 presents ion temperature versus electron tem-
648
+ perature for tungsten, calculated by solving equations
649
+ (1)-(2).
650
+ We reproduced experimental conditions from
651
+ Ref. [33] but did calculations for several values of Eabs.
652
+ The possibility of the bcc→fcc transition was not consid-
653
+ ered because ultrafast melting was here more probable
654
+ [17]. Figure 9 also shows the melting temperature of W
655
+ versus Te, obtained in this work and by Murphy et al.
656
+
657
+ 6
658
+ 0
659
+ 5
660
+ 10
661
+ 15
662
+ 20
663
+ 25
664
+ 30
665
+ 0
666
+ 1
667
+ 2
668
+ 3
669
+ 4
670
+ 5
671
+ 6
672
+ T
673
+ m
674
+ (T
675
+ e
676
+ )
677
+ 0.91 MJ/kg
678
+ 2.77 MJ/kg
679
+ W
680
+ T
681
+ i
682
+ (kK)
683
+ T
684
+ e
685
+ (kK)
686
+ 0.8 MJ/kg
687
+ T
688
+ m
689
+ 0
690
+ FIG. 9: Calculated evolution of electron and ion tempera-
691
+ tures (isochoric heating) after irradiation of the 30-nm-thick
692
+ tungsten film by a 130-fs pulse for different absorbed energy
693
+ densities (dashed, dashed-dotted, and dashed-dotted-dotted
694
+ lines). The solid line shows the melting temperature Tm as a
695
+ function of Te from our calculation, the circles show Tm(Te)
696
+ from Ref. [17] (non-isochoric conditions), and the dotted line
697
+ shows the normal melting temperature of W.
698
+ [17] from MD calculations. Remind that our Tm(Te) was
699
+ calculated with the Lindemann criterion. As seen from
700
+ Fig. 9, the melting temperature of tungsten decreases
701
+ with the increasing Te due to lattice softening (Fig. 5).
702
+ The resulted dependence Tm(Te) agrees rather well with
703
+ data from Ref. [17] despite the essentially different ap-
704
+ proaches to its determination. Some discrepancy comes
705
+ from the fact that our calculation corresponded to the
706
+ isochore V =V0, while in MD simulation [17], the sample
707
+ could expand along the axis normal to the target surface.
708
+ In paper [33], a threshold value Em
709
+ abs required for the
710
+ complete melting of tungsten was determined. For the
711
+ conditions of that experiment, it was found to be 0.9
712
+ MJ/kg. Our calculations give a very close value of 0.91
713
+ MJ/kg (details of calculation can be found in paper [12]).
714
+ Complete melting occurs after the temperature Tm is
715
+ reached and the lattice gets sufficient heat to overcome
716
+ the latent heat of fusion, ∆Hm [35]. The absorbed en-
717
+ ergy density of 0.8 MJ/kg is not enough to completely
718
+ melt the target [33]. It is seen from Fig. 9 that at high
719
+ Eabs (>2.5 MJ/kg) the lattice temperature Ti reaches Tm
720
+ even earlier than Ti(Te) reaches its maximum. At high
721
+ Te, the melting temperature of tungsten becomes much
722
+ lower than the normal melting temperature determined
723
+ at ambient pressure, T 0
724
+ m≈3.7 kK. MD calculations and
725
+ analytic equations of state [36, 37], including that one
726
+ for tungsten, suggest that the heat of fusion changes un-
727
+ der the action of external conditions and it will reduce as
728
+ Tm decreases. This will also influence the time of melt-
729
+ ing. Usually, Te reaches a maximum after irradiation by
730
+ ultrashort pulses at a time of about a few τp.
731
+ There-
732
+ fore at sufficiently high Eabs (>2.5 MJ/kg) tungsten will
733
+ 0
734
+ 5
735
+ 10
736
+ 15
737
+ 20
738
+ 25
739
+ 30
740
+ 35
741
+ 0
742
+ 1
743
+ 2
744
+ 3
745
+ 4
746
+ 5
747
+ 6
748
+ 7
749
+ 1.12 MJ/kg
750
+ 3.2 MJ/kg
751
+ Ta
752
+ 1 MJ/kg
753
+ T
754
+ i
755
+ (kK)
756
+ T
757
+ e
758
+ (kK)
759
+ T
760
+ m
761
+ 0
762
+ T
763
+ m
764
+ (T
765
+ e
766
+ )
767
+ FIG. 10: Calculated evolution of electron and ion temper-
768
+ atures (isochoric heating) after irradiation of a 30-nm-thick
769
+ tantalum film by a 130-fs-pulse for different absorbed energy
770
+ densities (dashed, dashed-dotted, and dashed-dotted-dotted
771
+ lines). The solid line shows Tm versus Te from our calculation
772
+ and the dotted line shows the normal melting temperature of
773
+ Ta.
774
+ melt during sub-picosecond times which is also proved by
775
+ calculations [17].
776
+ Now consider tantalum. Figure 10 demonstrates the
777
+ Ti(Te) dependence for Ta similarly to tungsten. Irradia-
778
+ tion conditions and target thickness are the same as for
779
+ W. It is seen that the melting curve Tm(Te) reaches a
780
+ maximum approximately at Te=7.3 kK due to the hard-
781
+ ening of the Ta crystal lattice at these temperatures, as
782
+ mentioned earlier (see Fig. 5). Unlike gold, whose melt-
783
+ ing temperature begins to increase only at Te>15 kK (re-
784
+ maining almost constant at lower Te) [12], for tantalum
785
+ this growth of Tm starts right after the electron temper-
786
+ ature increases.
787
+ At Te higher than 7.3 kK, its lattice
788
+ begins to gradually soften. Like tungsten, tantalum at
789
+ sufficiently high values of Eabs (>3 MJ/kg) must melt on
790
+ the sub-picosecond time scale due to the loss of dynamic
791
+ stability by its lattice (Fig. 10). We do not consider the
792
+ bcc→fcc transition here also. The high electron-phonon
793
+ coupling factor of tantalum signals a higher probability
794
+ of its ultrafast melting. However, the existence of a max-
795
+ imum of Tm(Te) at relatively low electron temperatures
796
+ gives an interesting effect. If such hardening really oc-
797
+ curs, it should lead to an increase in the melting thresh-
798
+ old Em
799
+ abs for Ta metal. As shown in calculations, Em
800
+ abs
801
+ will be at least 25% higher. For tantalum normal melt-
802
+ ing temperature, T 0
803
+ m=3.29 kK, the threshold value �Em
804
+ abs
805
+ equals 0.74 MJ/kg. If the crystal lattice hardens, then,
806
+ under isochoric heating, an absorbed energy density of
807
+ ∼1.12 MJ/kg is required for complete melting. For non-
808
+ isochoric conditions, the threshold may be lower, about
809
+ 0.93 MJ/kg. However, the value is still rather far from
810
+ normal �Em
811
+ abs=0.74 MJ/kg and can be determined quite
812
+ reliably in experiment (see, for example, [5]). In addi-
813
+
814
+ 7
815
+ tion, the growth of Tm make the latent heat of fusion
816
+ higher which will also delay the complete melting.
817
+ A similar maximum of Tm(Te) at relatively low heating
818
+ (Te∼5 kK) is also present in platinum [12]. As shown by
819
+ calculations from first principles, its electronic structure
820
+ is also characterized by a high electronic density of states
821
+ N(µ) on the Fermi level [18], which strongly reduces with
822
+ the increasing Te. Our calculations show that the effect
823
+ of lattice hardening is a bit lower here and the melting
824
+ threshold increases by about 18%.
825
+ But since �Em
826
+ abs for
827
+ platinum at the normal melting temperature T 0
828
+ m is quite
829
+ small (∼0.39 MJ/kg), the detection of its increase in ex-
830
+ periment may be limited by experimental accuracy.
831
+ IV.
832
+ CONCLUSIONS
833
+ The paper studied the interaction of femtosecond laser
834
+ pulses with thin tungsten and tantalum films through cal-
835
+ culations from first principles. Calculated results shows
836
+ the body-centered cubic structure of both the metals to
837
+ lose its dynamic stability at rather high electron tem-
838
+ peratures. This effect must lead to their melting on the
839
+ sub-picosecond time scale when the electronic subsystem
840
+ is heated above 22 kK. It is also demonstrated that the
841
+ metals have rather high values of the electron-phonon
842
+ coupling factor (∼ several units per 1017 W/m3/K) at
843
+ electron temperatures from room temperature to ∼45
844
+ kK. In addition, unlike tungsten, the crystal lattice of
845
+ tantalum hardens at relatively low values of Te (≲7 kK).
846
+ The hardening changes the value of the complete melt-
847
+ ing threshold. Our calculations show that the melting
848
+ threshold will be at least 25% higher if hardening re-
849
+ ally occurs.
850
+ We suppose that this effect for tantalum
851
+ can be detected quite reliably by modern experimental
852
+ techniques used to study the interaction of matter with
853
+ ultrashort laser pulses.
854
+ [1] C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, Cs.
855
+ T´oth, T. Guo, M. Kammler, M. Horn von Hoegen, K.
856
+ R. Wilson, D. von der Linde, C. P. J. Barty, Detection
857
+ of nonthermal melting by ultrafast X-ray diffraction, Sci-
858
+ ence 286, 1340 (1999).
859
+ [2] M. Harb, R. Ernstorfer, C. T. Hebeisen, G. Sciaini, W.
860
+ Peng, T. Dartigalongue, M. A. Eriksson, M. G. Lagally,
861
+ S. G. Kruglik, R. J. Dwayne Miller, Electronically driven
862
+ structure changes of Si captured by femtosecond electron
863
+ diffraction, Phys. Rev. Lett. 100, 155504 (2008).
864
+ [3] E. S. Zijlstra, L. L. Tatarinova, M. E. Garcia, Anhar-
865
+ monic noninertial lattice dynamics during ultrafast non-
866
+ thermal melting of InSb, Phys. Rev. Lett. 101, 135701
867
+ (2008).
868
+ [4] G. Sciaini, M. Harb, S. G. Kruglik, T. Payer, C. T.
869
+ Hebeisen, F.-J. Meyer zu Heringdorf, M. Yamaguchi, M.
870
+ Horn-von Hoegen, R. Ernstorfer, R. J. D. Miller, Elec-
871
+ tronic acceleration of atomic motions and disordering in
872
+ bismuth, Nature 458, 56 (2009).
873
+ [5] M. Z. Mo, Z. Chen, R. K. Li, M. Dunning, B. B. L. Witte,
874
+ J. K. Baldwin, L. B. Fletcher, J. B. Kim, A. Ng, R. Red-
875
+ mer, A. H. Reid, P. Shekhar, X. Z. Shen, M. Shen, K.
876
+ Sokolowski-Tinten, Y. Y. Tsui, Y. Q. Wang, Q. Zheng,
877
+ X. J. Wang, S. H. Glenzer, Heterogeneous to homoge-
878
+ neous melting transition visualized with ultrafast elec-
879
+ tron diffraction, Science 360, 1451 (2018).
880
+ [6] E. G. Gamaly, A. V. Rode, Electron–phonon energy re-
881
+ laxation in bismuth excited by ultrashort laser pulse:
882
+ temperature and fluence dependence, Appl. Phys. A 110,
883
+ 529 (2013).
884
+ [7] E. G. Gamaly, A. V. Rode, Ultrafast electronic relax-
885
+ ation in superheated bismuth, New Journal of Physics
886
+ 15, 013035 (2013).
887
+ [8] B. Arnaud, Y. Giret, Electron Cooling and Debye-Waller
888
+ Effect in Photoexcited Bismuth, Phys. Rev. Lett. 110,
889
+ 016405 (2013).
890
+ [9] E. G. Gamaly, The physics of ultra-short laser interaction
891
+ with solids at non-relativistic intensities, Physics Reports
892
+ 508, 91 (2011).
893
+ [10] V. Recoules, J. Cl´erouin, G. Z´erah, P. M. Anglade, S.
894
+ Mazevet, Effect of Intense Laser Irradiation on the Lat-
895
+ tice Stability of Semiconductors and Metals, Phys. Rev.
896
+ Lett. 96, 055503 (2006).
897
+ [11] F. C. Kabeer, E. S. Zijlstra, M. E. Garcia, Road of warm
898
+ dense noble metals to the plasma state: Ab initio the-
899
+ ory of the ultrafast structural dynamics in warm dense
900
+ matter, Phys. Rev. B 89, 100301 (2014).
901
+ [12] N. A. Smirnov, Copper, gold, and platinum under fem-
902
+ tosecond irradiation: Results of first-principles calcula-
903
+ tions, Phys. Rev. B 101, 094103 (2020).
904
+ [13] R. Ernstorfer, M. Harb, C. T. Hebeisen, G. Sciaini, T.
905
+ Dartigalongue, R. J. D. Miller, The Formation of Warm
906
+ Dense Matter:
907
+ Experimental Evidence for Electronic
908
+ Bond Hardening in Gold, Science 323, 1033 (2009).
909
+ [14] S. L. Daraszewicz, Y. Giret, N. Naruse, Y. Murooka, J.
910
+ Yang, D. M. Duffy, A. L. Shluger, K. Tanimura, Struc-
911
+ tural dynamics of laser-irradiated gold nanofilms, Phys.
912
+ Rev. B 88, 184101 (2013).
913
+ [15] H. Zhang, C. Li, E. Bevillon, G. Cheng, J. P. Colom-
914
+ bier, R. Stoian, Ultrafast destructuring of laser-irradiated
915
+ tungsten: Thermal or nonthermal process, Phys. Rev. B
916
+ 94, 224103 (2016).
917
+ [16] Y. Giret, S. L. Daraszewicz, D. M. Duffy, A. L. Shluger,
918
+ K. Tanimura, Nonthermal solid-to-solid phase transitions
919
+ in tungsten, Phys. Rev. B 90, 094103 (2014).
920
+ [17] S. T. Murphy, S. L. Daraszewicz, Y. Giret, M. Watkins,
921
+ A. L. Shluger, K. Tanimura, D. M. Duffy, Dynamical
922
+ simulations of an electronically induced solid-solid phase
923
+ transformation in tungsten, Phys. Rev. B 92, 134110
924
+ (2015).
925
+ [18] Z. Lin and L. V. Zhigilei, V. Celli, Electron-phonon cou-
926
+ pling and electron heat capacity of metals under con-
927
+ ditions of strong electron-phonon nonequilibrium, Phys.
928
+ Rev. B 77, 075133 (2008).
929
+ [19] N. Medvedev, I. Milov, Electron-phonon coupling in met-
930
+ als at high electronic temperatures, Phys. Rev. B 102,
931
+
932
+ 8
933
+ 064302 (2020).
934
+ [20] S. I. Anisimov, B. L. Kapeliovich, T. L. Perel’man, Elec-
935
+ tron emission from metal surfaces exposed to ultrashort
936
+ laser pulses, Zh. Eksp. Teor. Fiz. 66, 776 (1974) [Sov.
937
+ Phys. JETP 39, 375 (1974)].
938
+ [21] J. Hohlfeld, S.-S. Wellershoff, J. G¨udde, U. Conrad, V.
939
+ J¨ahnke, E. Matthias, Electron and lattice dynamics fol-
940
+ lowing optical excitation of metals, Chem. Phys. 251,
941
+ 237 (2000).
942
+ [22] Z. Chen, V. Sametoglu, Y.Y. Tsui, T. Ao, and A. Ng,
943
+ Flux-Limited Nonequilibrium Electron Energy Transport
944
+ in Warm Dense Gold, Phys. Rev. Lett. 108, 165001
945
+ (2012).
946
+ [23] W. L. McMillan, Transition Temperature of Strong-
947
+ Coupled Superconductors, Phys. Rev. 167, 331 (1968).
948
+ [24] S. Yu. Savrasov, Linear-response theory and lattice dy-
949
+ namics: A muffin-tin-orbital approach, Phys. Rev. B 54,
950
+ 16470 (1996).
951
+ [25] S. Y. Savrasov, D. Y. Savrasov, Electron-phonon inter-
952
+ actions and related physical properties of metals from
953
+ linear-response theory, Phys. Rev. B 54, 16487 (1996).
954
+ [26] N. A. Smirnov, Ab initio calculations for the transport
955
+ properties of metals within Boltzmann transport the-
956
+ ory: From equilibrium to nonequilibrium heating regime,
957
+ Phys. Rev. B 106, 024109 (2022).
958
+ [27] P.
959
+ Bl¨ochl,
960
+ O.
961
+ Jepsen,
962
+ and
963
+ O.
964
+ K.
965
+ Andersen,
966
+ Im-
967
+ proved tetrahedron method for Brillouin-zone integra-
968
+ tions, Phys. Rev. B 49, 16 223 (1994).
969
+ [28] N. A. Smirnov, Ab initio calculations of the elastic and
970
+ thermodynamic properties of gold under pressure, J.
971
+ Phys.: Condens. Matter 29, 105402 (2017).
972
+ [29] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gra-
973
+ dient Approximation Made Simple, Phys. Rev. Lett. 77,
974
+ 3865 (1996).
975
+ [30] K.-H. Hellwege and O. Madelung (Eds.), Phonon States
976
+ of Elements. Electron States and Fermi Surfaces of Al-
977
+ loys, Landolt-B¨ornstein, New Series, Group III, Vol. 13
978
+ Pt. a (Springer, Berlin, 1981).
979
+ [31] D. V. Minakov, P. R. Levashov, Melting curves of metals
980
+ with excited electrons in the quasiharmonic approxima-
981
+ tion, Phys. Rev. B 92, 224102 (2015).
982
+ [32] S. L. Daraszewicz, Y. Giret, H. Tanimura, D. M. Duffy,
983
+ A. L. Shluger, K. Tanimura, Determination of the elec-
984
+ tron–phonon coupling constant in tungsten, Appl. Phys.
985
+ Lett. 105, 023112 (2014).
986
+ [33] M. Mo, S. Murphy, Z. Chen, P. Fossati, R. Li, Y. Wang,
987
+ X. Wang, S. Glenzer, Visualization of ultrafast melting
988
+ initiated from radiation-driven defects in solids, Sci. Adv.
989
+ 5, eaaw0392 (2019).
990
+ [34] N. J. Hartley, P. Belancourt, D. A. Chapman, T. Dopp-
991
+ ner, R. P. Drake, D. O. Gericke, S. H. Glenzer, D.
992
+ Khaghani, S. LePape, T. Ma, P. Neumayer, A. Pak, L.
993
+ Peters, S. Richardson, J. Vorberger, T. G. White, G.
994
+ Gregori, Electron-ion temperature equilibration in warm
995
+ dense tantalum, High Energy Density Phys. 14, 1 (2015).
996
+ [35] W. M. Heynes (Ed.), CRC Handbook of Chemistry and
997
+ Physics (CRC, Boca Raton, FL, 2010).
998
+ [36] C.-M. Liu, X.-R. Chen, C. Xu, L.-C. Cai, and F.-Q. Jing,
999
+ Melting curves and entropy of fusion of body-centered cu-
1000
+ bic tungsten under pressure, J. Appl. Phys. 112, 013518
1001
+ (2012).
1002
+ [37] V. M. Elkin, V. N. Mikhaylov, A. A. Ovechkin, N. A.
1003
+ Smirnov, A wide-range multiphase equation of state for
1004
+ platinum, J. Phys.: Condens. Matter 32, 435403 (2020).
1005
+
5tFAT4oBgHgl3EQfmx2I/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
6dE0T4oBgHgl3EQffAAW/content/2301.02397v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c61f3ab1f2e4aaba8159370b47ea47ff0108496759033c905992b53731890f58
3
+ size 462383
6dE0T4oBgHgl3EQffAAW/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb9de021426ff6be4cbdb1c4264224b4bcfedc646e6e77822679bfc8508e15c8
3
+ size 215936
6tAyT4oBgHgl3EQfcvc9/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1f2b15a9719f64e20de4ee94df1dabe1709c5273fac47212c72b6126118aa9d
3
+ size 5046317
6tE4T4oBgHgl3EQf1w38/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27d161d174b3a48ca37a03e8e28bf314d7445924982d39ee1fad8d5ac4a36c3c
3
+ size 3407917
79E2T4oBgHgl3EQfPgaW/content/2301.03760v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8765159c1dcfb31fd0aaf17563108e5dcc48e6aa9862494db40fb75daa83065b
3
+ size 1920036
79E2T4oBgHgl3EQfPgaW/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a051fc79b73b54faad0283df8c0f79b19b981867bde445dda4526a4012aa4b5b
3
+ size 164107
AdFLT4oBgHgl3EQfxDCd/content/2301.12166v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c63ede406d3a4c78f608f8066d6ee1828f0342692ccae9ab0fd7c066349fa001
3
+ size 762124
AdFLT4oBgHgl3EQfxDCd/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7e0d3a199de964736c6cfd33ebe6afaf6b0f4e9a7aa70773cfec57daea40b11
3
+ size 4259885
AdFLT4oBgHgl3EQfxDCd/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af9107a68b54390380fa97c90353ec59eeb4def8a6ec8bd26773a20bfd13f018
3
+ size 131769
C9FQT4oBgHgl3EQf_jdA/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7ccac5264d74b0b77c4aded0c243ae0a206bc51e4819eceb0977f122ee2bbfa
3
+ size 145564
HdE4T4oBgHgl3EQfgg3J/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9faba73dbdbb2a1c5e7042091d3d1ec059e280593b804854d19f3b49da9bad21
3
+ size 269011
HtFJT4oBgHgl3EQfui1l/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98b2774fea967c5bdadfb77e8ae2d4b932f8083f834e499042e6fcb7ed578f90
3
+ size 2031661
I9E4T4oBgHgl3EQfIgyC/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7bda61c206c32c6c6fa2cce1b2438c6ba422d891d6c048088b305c1c663d0544
3
+ size 4259885
J9AzT4oBgHgl3EQfIPtt/content/2301.01058v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42d5a3ccc38b449ab28b672400cd457ec415f36642bc49b8549c2280ce18756d
3
+ size 512831
J9AzT4oBgHgl3EQfIPtt/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:705395ef8fdd1154d62df7d365f59c35ed2dbe8eeaf8b9981770a79193f3bb71
3
+ size 4259885
J9AzT4oBgHgl3EQfIPtt/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e145e34cc97167fd003c8d337545555d640c5ee230b6b9e8ddd636c61e7c647
3
+ size 166339
J9FJT4oBgHgl3EQfwy0B/content/tmp_files/2301.11631v1.pdf.txt ADDED
@@ -0,0 +1,875 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ HyperNeRFGAN: Hypernetwork approach to 3D NeRF GAN
2
+ Adam Kania 1 Artur Kasymov 1 Maciej Zieba 2 Przemysław Spurek 1
3
+ Abstract
4
+ Recently, generative models for 3D objects are
5
+ gaining much popularity in VR and augmented
6
+ reality applications. Training such models us-
7
+ ing standard 3D representations, like voxels or
8
+ point clouds, is challenging and requires com-
9
+ plex tools for proper color rendering. In order to
10
+ overcome this limitation, Neural Radiance Fields
11
+ (NeRFs) offer a state-of-the-art quality in synthe-
12
+ sizing novel views of complex 3D scenes from a
13
+ small subset of 2D images.
14
+ In the paper, we propose a generative model
15
+ called HyperNeRFGAN, which uses hypernet-
16
+ works paradigm to produce 3D objects repre-
17
+ sented by NeRF. Our GAN architecture leverages
18
+ a hypernetwork paradigm to transfer gaussian
19
+ noise into weights of NeRF model. The model
20
+ is further used to render 2D novel views, and a
21
+ classical 2D discriminator is utilized for training
22
+ the entire GAN-based structure. Our architecture
23
+ produces 2D images, but we use 3D-aware NeRF
24
+ representation, which forces the model to produce
25
+ correct 3D objects. The advantage of the model
26
+ over existing approaches is that it produces a ded-
27
+ icated NeRF representation for the object without
28
+ sharing some global parameters of the rendering
29
+ component. We show the superiority of our ap-
30
+ proach compared to reference baselines on three
31
+ challenging datasets from various domains.
32
+ 1. Introduction
33
+ Generative Adversarial Nets (GANs) (Goodfellow et al.,
34
+ 2014) allow us to generate high-quality 2D images (Yu
35
+ et al., 2017; Karras et al., 2017; 2019; 2020; Struski et al.,
36
+ 2022). On the other hand, maintaining similar quality for
37
+ *Equal contribution
38
+ 1Faculty of Mathematics and Computer
39
+ Science, Jagiellonian University 6 Lojasiewicza Street, 30-348
40
+ Krak´ow, Poland 2Department of Artificial Intelligence, Univer-
41
+ sity of Science and Technology Wyb. Wyspianskiego 27, 50-370,
42
+ Wrocław, Poland. Correspondence to: Przemysław Spurek <prze-
43
44
+ Figure 1. HyperNeRFGAN architecture leverages a hypernetwork
45
+ paradigm to transfer gaussian noise into weights of NeRF model.
46
+ After that, we render 2D novel views by NeRF and use a classical
47
+ 2D discriminator. Our architecture produces 2D images, but we
48
+ use 3D-aware NeRF representation, which forces the model to
49
+ produce correct 3D objects.
50
+ 3D objects is challenging. It is mainly caused by using
51
+ 3D representations like voxels and point clouds that require
52
+ massive deep architectures and have problems with proper
53
+ color rendering.
54
+ We can solve this problem by operating directly on 2D
55
+ image space. We expect our approach to extract informa-
56
+ tion from unlabeled 2D views to obtain 3D shapes. To
57
+ obtain such effects, we can use Neural Radiance Fields
58
+ (NeRFs) (Mildenhall et al., 2021), which allow synthesizing
59
+ novel views of complex 3D scenes from a small subset of
60
+ 2D images. Based on the relations between those base im-
61
+ ages and computer graphics principles, such as ray tracing,
62
+ this neural network model can render high-quality images
63
+ of 3D objects from previously unseen viewpoints.
64
+ Unfortunately, it is not trivial how to use NeRF represen-
65
+ tation with GAN-type architecture. The most challenging
66
+ problem is connected with the conditioning mechanism (Re-
67
+ bain et al., 2022) dedicated to NeRF. Therefore, most models
68
+ arXiv:2301.11631v1 [cs.CV] 27 Jan 2023
69
+
70
+ [x,y,z]
71
+ Weights
72
+ Generator
73
+ NeRE
74
+ Training Data
75
+ True
76
+ Discriminator
77
+ FalseHyperNeRFGAN: Hypernetwork approach to 3D NeRF GAN
78
+ Figure 2. Comparison of HyperNeRFGAN and HoloGAN, GRAF, π-GAN on CARLA. We obtain similar results to π-GAN, but we have
79
+ a better value of FID score, see Tab 2.
80
+ use SIREN (Sitzmann et al., 2020) instead of NeRF, where
81
+ we can naturally add conditioning. But the quality of the 3D
82
+ object is slice worst than in NeRF. In GRAF (Schwarz et al.,
83
+ 2020) and π-GAN (Chan et al., 2021), authors propose a
84
+ model which uses SIREN and a conditioning mechanism to
85
+ produce implicit representation. Such solutions give promis-
86
+ ing results, but it is not trivial how to use NeRF instead of
87
+ SIREN in such solutions. In Fig. 2 we present a qualita-
88
+ tive comparison between our model, GRAF (Schwarz et al.,
89
+ 2020) and π-GAN (Chan et al., 2021). As we can see, our
90
+ model can model the transparency of glass.
91
+ In the paper, we propose a generative model called HyperN-
92
+ eRFGAN1, which combines the hypernetworks paradigm
93
+ and NeRF representation. Hypernetworks, introduced in
94
+ (Ha et al., 2016), are defined as neural models that generate
95
+ weights for a separate target network solving a specific task.
96
+ Our GAN-based model leverages a hypernetwork paradigm
97
+ to transfer gaussian noise into weights of NeRF (see Fig. 1).
98
+ After that, we render 2D novel views by NeRF and use a
99
+ classical 2D discriminator to train the entire GAN-based
100
+ structure in implicit form. Our architecture produces 2D
101
+ images, but we use 3D-aware NeRF representation, which
102
+ forces the model to produce correct 3D objects.
103
+ Our contributions to this paper include the following:
104
+ • We introduce the NeRF-based implicit GAN architec-
105
+ ture - the first GAN model for generating high-quality
106
+ 3D NeRF representations.
107
+ • We show that utilizing the hypernetwork paradigm for
108
+ NeRFs leads to a better quality of 3D representations
109
+ 1The source code is available at: https://github.com/
110
+ gmum/HyperNeRFGAN
111
+ than SIREN-based architectures.
112
+ • Our model allows 3D-aware image synthesis from un-
113
+ supervised 2D images.
114
+ 2. Related Work
115
+ Neural representations and rendering
116
+ 3D objects can
117
+ be represented by using many different approaches, includ-
118
+ ing voxel grids (Choy et al., 2016), octrees (H¨ane et al.,
119
+ 2017), multi-view images (Arsalan Soltani et al., 2017; Liu
120
+ et al., 2022), point clouds (Achlioptas et al., 2018; Shu
121
+ et al., 2022; Yang et al., 2022), geometry images (Sinha
122
+ et al., 2016), deformable meshes (Girdhar et al., 2016), and
123
+ part-based structural graphs (Li et al., 2017).
124
+ The above representations are discreet, which causes some
125
+ problems in real-life applications. Contrary, we can repre-
126
+ sent 3D objects as a continuous function (Dupont et al.,
127
+ 2022). In practice implicit occupancy (Chen & Zhang,
128
+ 2019; Mescheder et al., 2019; Peng et al., 2020), distance
129
+ field (Michalkiewicz et al., 2019; Park et al., 2019) and
130
+ surface parametrization (Yang et al., 2019; Spurek et al.,
131
+ 2020; 2022; Cai et al., 2020) models use a neural network to
132
+ parameterize a 3D object. In such a case, we do not have a
133
+ fixed number of voxels, points, or vertices, but we represent
134
+ shapes as a continuous function.
135
+ These models are limited by their requirement of access to
136
+ ground truth 3D geometry. Implicit neural representations
137
+ (NIR) have been proposed to solve such a problem. Such
138
+ architectures can reconstruct 3D structures from multi-view
139
+ 2D images (Mildenhall et al., 2021; Niemeyer et al., 2020;
140
+ Tewari et al., 2020).
141
+ The two most important methods are NeRF (Mildenhall
142
+
143
+ HoloGAN
144
+ GRAF
145
+ pi-GANHyperNeRFGAN: Hypernetwork approach to 3D NeRF GAN
146
+ et al., 2021) and SIREN (Sitzmann et al., 2020). NeRF
147
+ uses volume rendering (Kajiya & Von Herzen, 1984) for
148
+ reconstructing a 3D scene using neural radiance and den-
149
+ sity fields to synthesize novel views. SIREN replaced the
150
+ popular ReLU activation function with sine functions with
151
+ modulated frequencies. Most NeRF and SIREN-based meth-
152
+ ods focus on a single 3D object or scene. In practice, we
153
+ overfit individual objects or scenes. In our paper, we focus
154
+ on generating 3D models represented by NeRF.
155
+ Single-View Supervised 3D-Aware GANs
156
+ Generative
157
+ Adversarial Nets (GANs) (Goodfellow et al., 2014) allow
158
+ for the generation of high-quality images (Yu et al., 2017;
159
+ Karras et al., 2017; 2019; 2020; Struski et al., 2022). How-
160
+ ever, GANs operate on 2D images and ignore the 3D nature
161
+ of our physical world. Therefore, it is important to use 3D
162
+ structures of objects to generate images and 3D objects.
163
+ The first approach for 3D-aware image syntheses like Visual
164
+ Object Networks (Zhu et al., 2018) and PrGANs (Gadelha
165
+ et al., 2017) first generating a voxelized 3D shape using a
166
+ 3D-GAN (Wu et al., 2016) and then projecting it into 2D.
167
+ HoloGAN (Nguyen-Phuoc et al., 2019) and Block-
168
+ GAN (Nguyen-Phuoc et al., 2020) work in a similar fusion
169
+ but use implicit 3D representation for modeling 3D represen-
170
+ tation of the world. Unfortunately, using an explicit volume
171
+ representation has constrained their resolution (Lunz et al.,
172
+ 2020). In (Szab´o et al., 2019), authors propose using meshes
173
+ to represent 3D geometry. On the other hand, in (Liao et al.,
174
+ 2020) uses collections of primitives for image synthesis.
175
+ In GRAF (Schwarz et al., 2020) and π-GAN (Chan et al.,
176
+ 2021), authors use implicit neural radiance fields for 3D-
177
+ aware image and geometry generation. In our work, we
178
+ use NeRF instead of SIREN and hypernetwork paradigm
179
+ instead of a conditioning procedure.
180
+ Authors use a shading-guided pipeline in ShadeGAN (Pan
181
+ et al., 2021), and in GOF (Xu et al., 2021), they gradu-
182
+ ally shrink the sampling region of each camera ray. GI-
183
+ RAFFE (Niemeyer & Geiger, 2021) we first generate low-
184
+ resolution feature maps. In the second step, we passed
185
+ representation to a 2D CNN to generate outputs at a higher
186
+ resolution.
187
+ In StyleSDF (Or-El et al., 2022), authors merge an SDF-
188
+ based 3D representation with a StyleGAN2 for image gen-
189
+ eration. In (Chan et al., 2022), authors use StyleGAN2
190
+ generator and tri-plane representation of 3D objects. Such
191
+ methods outperform other methods in the quality of gener-
192
+ ated objects but are extremely hard to train.
193
+ Hypernetworks + generative modeling
194
+ Combining hy-
195
+ pernetworks and generative models is not new. In (Ratzlaff
196
+ & Fuxin, 2019; Henning et al., 2018) authors built GANs
197
+ to generate parameters of a neural network dedicated to
198
+ regression or classification tasks. HyperVAE (Nguyen et al.,
199
+ 2020) is designated to encode any target distribution by
200
+ producing generative model parameters given distribution
201
+ samples. HCNAF (Oechsle et al., 2019) is a hypernetwork
202
+ that produces parameters for a conditional autoregressive
203
+ flow model (Kingma et al., 2016; Oord et al., 2018; Huang
204
+ et al., 2018). In (Skorokhodov et al., 2021) authors proposed
205
+ INR-GAN (Skorokhodov et al., 2020) uses a hypernetwork
206
+ to produce a continuous representation of images. The hy-
207
+ pernetwork can modify the shared weights by the low-cost
208
+ mechanism of factorized multiplicative modulation.
209
+ 3. HyperNeRFGAN: Hypernetwork for
210
+ Generating NeRF representions
211
+ In this section, we present HyperNeRFGAN - a novel gener-
212
+ ative model for 3D objects. The main idea of the proposed
213
+ approach is that generator serves as a hypernetwork (Ha
214
+ et al., 2016) and transforms the noise vector sampled from
215
+ the known distribution to the weights of the target model.
216
+ Compared to previous works (Skorokhodov et al., 2020),
217
+ the target model is represented by NeRF (Mildenhall et al.,
218
+ 2021) 3D representation of the object. Consequently, it is
219
+ possible to generate many images of the object from various
220
+ perspectives in a controllable manner. Moreover, thanks to
221
+ the NeRF-based image rendering, the discriminator operates
222
+ on 2D images generated from multiple perspectives, com-
223
+ pared to GAN-based models fed by complex 3D structures.
224
+ In this section, we first briefly discuss the basic concepts
225
+ used in our approach, and further, we focus on the architec-
226
+ ture and training details.
227
+ Hypernetwork
228
+ Hypernetworks, introduced in (Ha et al.,
229
+ 2016), are defined as neural models that predict weights
230
+ for a different target network designed to solve a specific
231
+ task. This approach reduces the number of trainable param-
232
+ eters compared to standard methods that inject additional
233
+ information into the target model using a single embedding.
234
+ A significant reduction of the size of the target model can
235
+ be achieved since it is not sharing the global weights, but
236
+ they are returned by the hypernetwork. Making an analogy
237
+ between Hypernetworks and generative models, the authors
238
+ of (Sheikh et al., 2017), use this mechanism to generate
239
+ a diverse set of target networks approximating the same
240
+ function.
241
+ Hypernetworks are widely used in many domains, including
242
+ few-shot problems (Sendera et al., 2023) or probabilistic
243
+ regression scenarios (Zieba et al., 2020). Various methods
244
+ also use them to produce a continuous representation of 3D
245
+ objects (Spurek et al., 2020; 2022). For instance, Hyper-
246
+ Cloud (Spurek et al., 2020) represents a 3D point cloud as a
247
+ classical MLP that serves as a target model and transforms
248
+
249
+ HyperNeRFGAN: Hypernetwork approach to 3D NeRF GAN
250
+ Figure 3. Elements generated by model train on three classes of ShapeNet (car, plane, chairs).
251
+ points from a uniform distribution on the gaussian ball to the
252
+ point clouds that represent the desired shape. , In (Spurek
253
+ et al., 2022), the target model is represented by a Continuous
254
+ Normalizing Flow (Grathwohl et al., 2018), the generative
255
+ model that creates the point cloud from the assumed base
256
+ distribution in 3D space.
257
+ GAN
258
+ is a framework for training deep generative models
259
+ using a minimax game. The goal is to learn a generator
260
+ distribution PG(x) that matches the real data distribution
261
+ Pdata(x). GAN learns a generator network G that produces
262
+ samples from the generator distribution PG by transform-
263
+ ing a noise variable z ∼ Pnoise(z) (usually Gaussian noise
264
+ N(0, I)) into a sample G(z). The generator learns by play-
265
+ ing against an adversarial discriminator network D aiming
266
+ to distinguish between samples from the true data distri-
267
+ bution Pdata and the generator’s distribution PG. More
268
+ formally, the minimax game is given by the following ex-
269
+ pression:
270
+ minG maxD[V (D, G) =
271
+ Ex∼Pdata[log D(x)] + Ez∼Pnoise[log(1 − D(G(z)))]].
272
+ The main advantage over other models is producing sharp
273
+ images indistinguishable from real ones. GANs are impres-
274
+ sive regarding the visual quality of images sampled from the
275
+ model, but the training process is often challenging and un-
276
+ stable. This phenomenon is caused by direct optimization of
277
+ the training objective is intractable, and the model is usually
278
+ trained by optimizing the parameters of the discriminator
279
+ and generator in alternating steps.
280
+ In recent years, many researchers focused on modifying
281
+ the vanilla GAN procedure to improve the stability of the
282
+ training process. Some modifications were based on chang-
283
+ ing the objective function to Wasserstein distance (WGAN)
284
+ (Arjovsky et al., 2017), restrictions on the gradient penal-
285
+ ties (Gulrajani et al., 2017; Kodali et al., 2017), Spectral
286
+ Normalization (Miyato et al., 2018), or imbalanced learning
287
+ rate for generator and discriminator(Gulrajani et al., 2017;
288
+
289
+ HyperNeRFGAN: Hypernetwork approach to 3D NeRF GAN
290
+ Figure 4. Linear interpolation examples generated with models trained on images of cars, planes, and chairs from ShapeNet (three first
291
+ lines) and CARL data set (last two rows).
292
+ Miyato et al., 2018). The model architectures were also
293
+ more deeply explored by utilizing self-attention mechanisms
294
+ SAGAN (Zhang et al., 2018), and progressively growing
295
+ ProGAN (Karras et al., 2017) and style-gan architectures
296
+ StyleGAN (Karras et al., 2019).
297
+ INR-GAN
298
+ Implicit Neural Representation GAN (Sko-
299
+ rokhodov et al., 2020) is a variant of the GAN-based model
300
+ that utilizes hypernetworks to generate parameters for the
301
+ target model instead of direct image generation. The tar-
302
+ get model, represented by simple MLP, returns the color in
303
+ RGB format for a given pixel location. The model is very
304
+ close architecturally to StyleGAN2 (Karras et al., 2020) and
305
+ has clear advantages over the direct approach, mainly be-
306
+ cause using INR-GAN enables generating images without
307
+ assuming the arbitrarily given resolution.
308
+ NeRF representation of 3D objects
309
+ NeRFs (Mildenhall
310
+ et al., 2021) represent a scene using a fully-connected archi-
311
+ tecture. As the input, NeRF takes a 5D coordinate (spatial
312
+ location x = (x, y, z) and viewing direction d = (θ, ψ))
313
+ and it outputs an emitted color c = (r, g, b) and volume
314
+ density σ.
315
+ A vanilla NeRF uses a set of images for training. In such a
316
+ scenario, we produce many rays passing through the image
317
+ and a 3D object represented by a neural network. NeRF
318
+ approximates this 3D object with a MLP network:
319
+ FΘ : (x, d) → (c, σ),
320
+ and optimizes its weights Θ to map each input 5D coordinate
321
+ to its corresponding volume density and directional emitted
322
+ color.
323
+ The loss of NeRF is inspired by classical volume rendering
324
+ (Kajiya & Von Herzen, 1984). We render the color of all
325
+ rays passing through the scene. The volume density σ(x)
326
+ can be interpreted as the differential probability of a ray. The
327
+ expected color C(r) of camera ray r(t) = o + td (where o
328
+ is ray origin and d is direction) can be computed with an
329
+ integral.
330
+ In practice, this continuous integral is numerically estimated
331
+ using a quadrature. We use a stratified sampling approach
332
+ where we partition our ray [tn, tf] into N evenly-spaced
333
+ bins and then draw one sample uniformly at random from
334
+ within each bin:
335
+ ti ∼ U[tn + i − 1
336
+ N
337
+ (tf − tn), tn + i
338
+ N (tf − tn)].
339
+ We use these samples to estimate C(r) with the quadrature
340
+ rule discussed in the volume rendering review by Max (Max,
341
+ 1995):
342
+ ˆC(r) =
343
+ N
344
+
345
+ i=1
346
+ Ti(1 − exp(−σiδi))ci,
347
+ where T(t) = exp
348
+
349
+ �−
350
+ i−1
351
+
352
+ j=1
353
+ σiδi
354
+
355
+ � ,
356
+ where δi = ti+1 − ti is the distance between adjacent sam-
357
+ ples. This function for calculating ˆC(r) from the set of
358
+ (ci, σi) values is trivially differentiable.
359
+ We then use the volume rendering procedure to render the
360
+ color of each ray from both sets of samples. Contrary to the
361
+ baseline NeRF (Mildenhall et al., 2021), where two ”coarse”
362
+
363
+ HyperNeRFGAN: Hypernetwork approach to 3D NeRF GAN
364
+ and ”fine” models were simultaneously trained, we use only
365
+ the ”coarse” architecture.
366
+ 3.1. HyperNeRFGAN
367
+ In this work, we propose a novel GAN architecture, HyperN-
368
+ eRFGAN, for generating 3D representations. The proposed
369
+ approach utilizes INR-GAN, the implicit approach for gen-
370
+ erating samples. We postulate using the NeRF model as a
371
+ target network compared to standard INR-GAN architec-
372
+ ture, which uses the MLP model to create the output image.
373
+ Thanks to that approach, the generator creates a specific
374
+ 3D representation of the scene or object by delivering the
375
+ specific NeRF parameters.
376
+ The architecture of our model is provided in Fig. 1. The
377
+ generator G takes the sample from the assumed base dis-
378
+ tribution (Gaussian) and returns the set of parameters Θ.
379
+ These parameters are further used inside the NeRF model
380
+ FΘ to transform the spatial location x = (x, y, z) to emitted
381
+ color c = (r, g, b) and volume density σ. Instead of stan-
382
+ dard linear architecture, FΘ uses factorized multiplicative
383
+ modulation (FMM) layers.
384
+ The FMM layer with input of size nin and output of size
385
+ nout can be defined as:
386
+ y = W ⊙ (A × B) · xin + b = ˜W · xin + b,
387
+ where W and b are matrices that share the parameters across
388
+ 3D representations, and A, B are two modulation matrices
389
+ of shapes nout × k, k × nin respectively, created by the
390
+ generator. The parameter k controls the rank of A × B.
391
+ Higher values of k increase the expressiveness of the FMM
392
+ layer but also increase the amount of memory required by
393
+ the hypernetwork. We always use k = 10.
394
+ The INR model FΘ is a simplified version of the baseline
395
+ NeRF. To make training less computationally expensive,
396
+ we do not optimize two networks as the original NeRF. We
397
+ reject the bigger ”fine” network and only employ the smaller
398
+ “coarse” network. Additionally, we reduce the size of the
399
+ ”coarse” network by decreasing the number of channels in
400
+ each hidden layer from 256 to 128. In some experiments,
401
+ we also decrease the number of layers from 8 to 4.
402
+ We differ from the baseline NeRF in one more aspect, as we
403
+ don’t use the viewing direction. That’s because the images
404
+ used for training don’t have view-dependent features like
405
+ reflections. Even though the viewing direction is not used
406
+ in our architecture, there is no reason why it couldn’t be
407
+ enabled for datasets that would benefit from it.
408
+ Our NeRF is a single MLP, which takes only the spatial
409
+ location as input:
410
+ FΘ : x → (c, σ),
411
+ In this work, we utilize the StyleGAN2 architecture, follow-
412
+ ing the design patterns of INR-GAN. The entire model is
413
+ trained using the StyleGanv2 objective in a similar way as
414
+ in INR-GAN. In each training iteration, the noise vector is
415
+ sampled and transformed using generator G to obtain the
416
+ weights of the target NeRF model FΘ. The target model is
417
+ further used to render 2D images from various angles. The
418
+ generated 2D images further serve as fake images for the
419
+ discriminator D. The role of the generator G is to create the
420
+ 3D representation that enables to render 2D images that will
421
+ fool the discriminator. The discriminator aims to distinguish
422
+ between fake renders and authentic 2D images from the data
423
+ distribution.
424
+ 4. Experiments
425
+ In this section, we first evaluate the quality of generating 3D
426
+ objects by HyperNeRFGAN. We use a data set containing
427
+ 2D images of 3D objects obtained from ShapeNet (Zimny
428
+ et al., 2022). The data set contains 50 images of each ele-
429
+ ment from the plane, chair, and car classes. It is the most
430
+ suitable data set for our purpose since each object has a few
431
+ images of each element. Then we use CARLA (Dosovitskiy
432
+ et al., 2017), which contains images of cars. In such a case,
433
+ we have only one image per object, but still, we have photos
434
+ of objects from all sides. We can produce full 3D objects,
435
+ which can be used in VR or augmented reality. In the end,
436
+ we use classical CelebA (Liu et al., 2015) dataset, which
437
+ contains faces. From a 3D generation point of view, it is
438
+ challenging since we only have fronts of faces. In practice,
439
+ 3D based generative model can be used to 3D-aware image
440
+ synthesis (Chan et al., 2022).
441
+ 4.1. 3D object generation from ShapeNet
442
+ In our first experiments, we use a ShapeNet base data set
443
+ containing 50 images of each element from the plane, chair,
444
+ and car classes. Such representation is perfect for training
445
+ 3D models since each element has been seen from many
446
+ views. The data was taken from (Zimny et al., 2022), where
447
+ authors train an autoencoder-based generative model. In
448
+ Fig. 3, we present objects generated from our model. In
449
+ Fig. 4, we also present linear interpolation of objects. As
450
+ we can see, objects are of very good quality, see Tab 1.
451
+ ShapeNet
452
+ cars
453
+ planes
454
+ chairs
455
+ Points2NeRF
456
+ 82.1
457
+ 239
458
+ 129.3
459
+ HyperNeRFGAN
460
+ 29.6
461
+ 33.4
462
+ 22.0
463
+ Table 1. Competition of HyperNeRFGAN and autoencoder based
464
+ model by using FID. Competition between GAN and autoencoder
465
+ and GAN is difficult. But we can obtain a better FID score.
466
+
467
+ HyperNeRFGAN: Hypernetwork approach to 3D NeRF GAN
468
+ Figure 5. Examples from a model trained on CARLA.
469
+ Figure 6. Meshes generated with a model trained on CARLA
470
+ dataset and with models trained on planes and chairs from
471
+ ShapeNet.
472
+ 4.2. 3D object generation from CARLA data set
473
+ In the second experiment, we compare our model on
474
+ CARLA dataset with other GAN-based models: Holo-
475
+ GAN (Nguyen-Phuoc et al., 2019), GRAF (Schwarz et al.,
476
+ 2020) and π-GAN (Chan et al., 2021). CARLA (Dosovit-
477
+ skiy et al., 2017) contains images of cars. We have only
478
+ one image per object, but still, we have photos of objects
479
+ from all sides. Consequently, full 3D objects can be used
480
+ in VR or augmented reality. The visual comparison we
481
+ present in Fig. 2. As illustrated, we can effectively model
482
+ the transparency of glass in cars, see Fig. 5. In Tab. 2 we
483
+ present a numerical comparison of the Frechet Inception
484
+ Distance (FID), Kernel Inception Distance (KID), and In-
485
+ ception Score (IS). As can be seen, we obtain better results
486
+ than the π-GAN model.
487
+ In the case of NeRF representation, we can produce meshes,
488
+ see Fig. 6.
489
+ CARL
490
+ FID
491
+ KID
492
+ IS
493
+ HoloGAN
494
+ 67.5
495
+ 3.95
496
+ 3.52
497
+ GRAF
498
+ 41.7
499
+ 2.43
500
+ 3.60
501
+ π−GAN
502
+ 29.2
503
+ 1.36
504
+ 4.27
505
+ HyperNeRFGAN
506
+ 20.5
507
+ 0.78
508
+ 4.20
509
+ Table 2. FID, KID mean×100, and IS for CARLA dataset.
510
+ 4.3. 3D-aware image synthesis from CelebA
511
+ In our third experiment, we further compare the same mod-
512
+ els as in the second experiment by changing the setup to
513
+ face generation. For this task, we utilize the CelebA (Liu
514
+ et al., 2015) dataset, which contains 200,000 high-resolution
515
+ face images of 10,000 different celebrities. We crop the im-
516
+ ages from the top of the hair to the bottom of the chin and
517
+ resize them to 128x128 resolution as π-GAN authors did.
518
+ We present quantitative results in Tab. 3. As you can notice,
519
+ HyperNeRFGAN and π-GAN achieve similar performance,
520
+ which can also be seen in Fig. 7.
521
+ 5. Conclusions
522
+ In this work, we presented a novel approach to generating
523
+ NeRF representation from 2D images. Our model leverages
524
+
525
+ HyperNeRFGAN: Hypernetwork approach to 3D NeRF GAN
526
+ CelebA
527
+ FID
528
+ KID
529
+ IS
530
+ HoloGAN
531
+ 39.7
532
+ 2.91
533
+ 1.89
534
+ GRAF
535
+ 41.1
536
+ 2.29
537
+ 2.34
538
+ π−GAN
539
+ 14.7
540
+ 0.39
541
+ 2.62
542
+ HyperNeRFGAN
543
+ 15.04
544
+ 0.66
545
+ 2.63
546
+ Table 3. FID, KID mean×100, and IS for CelebA dataset.
547
+ HyperNeRFGAN
548
+ π-GAN
549
+ Figure 7. Comparison between HyperNeRFGAN (first 3 columns)
550
+ and π-GAN uncurated generated faces
551
+ a hypernetwork paradigm and NeRF representation of the
552
+ 3D scene. HyperNeRFGAN take a Gaussian noise and
553
+ return the weights of a NeRF network that reconstructs 3D
554
+ objects from 2D images. In training, we use only unlabeled
555
+ images and a StyleGan2 discriminator. Such representation
556
+ gives several advantages over the existing approaches. First
557
+ of all, we can use NeRF instead of SIREN representation
558
+ in the GAN type algorithm. Secondly, our model is simple
559
+ and can be effectively trained on 3D objects. Finally, our
560
+ model directly produces NeRF objects without sharing some
561
+ global parameters of the rendering component.
562
+ Limitations
563
+ The main limitation of HyperNeRFGAN is
564
+ the fact that we use only 2D images instead any knowledge
565
+ about 3D object representation. In future work, we plan to
566
+ add some information about the structure of 3D meshes.
567
+ References
568
+ Achlioptas, P., Diamanti, O., Mitliagkas, I., and Guibas, L.
569
+ Learning representations and generative models for 3d
570
+ point clouds. In International conference on machine
571
+ learning, pp. 40–49. PMLR, 2018.
572
+ Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein gen-
573
+ erative adversarial networks. In International conference
574
+ on machine learning, pp. 214–223, 2017.
575
+ Arsalan Soltani, A., Huang, H., Wu, J., Kulkarni, T. D., and
576
+ Tenenbaum, J. B. Synthesizing 3d shapes via modeling
577
+ multi-view depth maps and silhouettes with deep genera-
578
+ tive networks. In Proceedings of the IEEE conference on
579
+ computer vision and pattern recognition, pp. 1511–1519,
580
+ 2017.
581
+ Cai, R., Yang, G., Averbuch-Elor, H., Hao, Z., Belongie, S.,
582
+ Snavely, N., and Hariharan, B. Learning gradient fields
583
+ for shape generation. In Computer Vision–ECCV 2020:
584
+ 16th European Conference, Glasgow, UK, August 23–28,
585
+ 2020, Proceedings, Part III 16, pp. 364–381. Springer,
586
+ 2020.
587
+ Chan, E. R., Monteiro, M., Kellnhofer, P., Wu, J., and Wet-
588
+ zstein, G. pi-gan: Periodic implicit generative adversarial
589
+ networks for 3d-aware image synthesis. In Proceedings of
590
+ the IEEE/CVF conference on computer vision and pattern
591
+ recognition, pp. 5799–5809, 2021.
592
+ Chan, E. R., Lin, C. Z., Chan, M. A., Nagano, K., Pan,
593
+ B., De Mello, S., Gallo, O., Guibas, L. J., Tremblay, J.,
594
+ Khamis, S., et al. Efficient geometry-aware 3d generative
595
+ adversarial networks. In Proceedings of the IEEE/CVF
596
+ Conference on Computer Vision and Pattern Recognition,
597
+ pp. 16123–16133, 2022.
598
+ Chen, Z. and Zhang, H. Learning implicit fields for gener-
599
+ ative shape modeling. In Proceedings of the IEEE/CVF
600
+ Conference on Computer Vision and Pattern Recognition,
601
+ pp. 5939–5948, 2019.
602
+ Choy, C. B., Xu, D., Gwak, J., Chen, K., and Savarese, S.
603
+ 3d-r2n2: A unified approach for single and multi-view
604
+ 3d object reconstruction. In European conference on
605
+ computer vision, pp. 628–644. Springer, 2016.
606
+ Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and
607
+ Koltun, V. Carla: An open urban driving simulator. In
608
+ Conference on robot learning, pp. 1–16. PMLR, 2017.
609
+ Dupont, E., Teh, Y. W., and Doucet, A. Generative models
610
+ as distributions of functions. In International Conference
611
+ on Artificial Intelligence and Statistics, pp. 2989–3015.
612
+ PMLR, 2022.
613
+ Gadelha, M., Maji, S., and Wang, R. 3d shape induction
614
+ from 2d views of multiple objects. In 2017 International
615
+ Conference on 3D Vision (3DV), pp. 402–411. IEEE,
616
+ 2017.
617
+ Girdhar, R., Fouhey, D. F., Rodriguez, M., and Gupta, A.
618
+ Learning a predictable and generative vector representa-
619
+ tion for objects. In European Conference on Computer
620
+ Vision, pp. 484–499. Springer, 2016.
621
+
622
+ HyperNeRFGAN: Hypernetwork approach to 3D NeRF GAN
623
+ Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
624
+ Warde-Farley, D., Ozair, S., Courville, A. C., and Bengio,
625
+ Y. Generative adversarial nets. In NIPS, 2014.
626
+ Grathwohl, W., Chen, R. T., Bettencourt, J., Sutskever, I.,
627
+ and Duvenaud, D. Ffjord: Free-form continuous dynam-
628
+ ics for scalable reversible generative models. In Interna-
629
+ tional Conference on Learning Representations, 2018.
630
+ Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and
631
+ Courville, A. C. Improved training of wasserstein gans.
632
+ In Advances in neural information processing systems,
633
+ pp. 5767–5777, 2017.
634
+ Ha, D., Dai, A. M., and Le, Q. V. Hypernetworks. 2016.
635
+ H¨ane, C., Tulsiani, S., and Malik, J. Hierarchical surface
636
+ prediction for 3d object reconstruction. In 2017 Inter-
637
+ national Conference on 3D Vision (3DV), pp. 412–420.
638
+ IEEE, 2017.
639
+ Henning, C., von Oswald, J., Sacramento, J., Surace, S. C.,
640
+ Pfister, J.-P., and Grewe, B. F. Approximating the predic-
641
+ tive distribution via adversarially-trained hypernetworks.
642
+ 2018.
643
+ Huang, C.-W., Krueger, D., Lacoste, A., and Courville, A.
644
+ Neural autoregressive flows. In International Conference
645
+ on Machine Learning, pp. 2078–2087. PMLR, 2018.
646
+ Kajiya, J. T. and Von Herzen, B. P. Ray tracing volume
647
+ densities. ACM SIGGRAPH computer graphics, 18(3):
648
+ 165–174, 1984.
649
+ Karras, T., Aila, T., Laine, S., and Lehtinen, J. Progres-
650
+ sive growing of gans for improved quality, stability, and
651
+ variation. arXiv preprint arXiv:1710.10196, 2017.
652
+ Karras, T., Laine, S., and Aila, T. A style-based generator
653
+ architecture for generative adversarial networks. In Pro-
654
+ ceedings of the IEEE/CVF conference on computer vision
655
+ and pattern recognition, pp. 4401–4410, 2019.
656
+ Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J.,
657
+ and Aila, T. Analyzing and improving the image quality
658
+ of stylegan. In Proceedings of the IEEE/CVF conference
659
+ on computer vision and pattern recognition, pp. 8110–
660
+ 8119, 2020.
661
+ Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X.,
662
+ Sutskever, I., and Welling, M. Improved variational infer-
663
+ ence with inverse autoregressive flow. Advances in neural
664
+ information processing systems, 29, 2016.
665
+ Kodali, N., Abernethy, J., Hays, J., and Kira, Z.
666
+ On
667
+ convergence and stability of gans.
668
+ arXiv preprint
669
+ arXiv:1705.07215, 2017.
670
+ Li, J., Xu, K., Chaudhuri, S., Yumer, E., Zhang, H., and
671
+ Guibas, L. Grass: Generative recursive autoencoders for
672
+ shape structures. ACM Transactions on Graphics (TOG),
673
+ 36(4):1–14, 2017.
674
+ Liao, Y., Schwarz, K., Mescheder, L., and Geiger, A. To-
675
+ wards unsupervised learning of generative models for
676
+ 3d controllable image synthesis. In Proceedings of the
677
+ IEEE/CVF conference on computer vision and pattern
678
+ recognition, pp. 5871–5880, 2020.
679
+ Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning
680
+ face attributes in the wild. In Proceedings of the IEEE
681
+ international conference on computer vision, pp. 3730–
682
+ 3738, 2015.
683
+ Liu, Z., Zhang, Y., Gao, J., and Wang, S. Vfmvac: View-
684
+ filtering-based multi-view aggregating convolution for 3d
685
+ shape recognition and retrieval. Pattern Recognition, 129:
686
+ 108774, 2022. ISSN 0031-3203.
687
+ Lunz, S., Li, Y., Fitzgibbon, A., and Kushman, N. Inverse
688
+ graphics gan: Learning to generate 3d shapes from un-
689
+ structured 2d data. arXiv preprint arXiv:2002.12674,
690
+ 2020.
691
+ Max, N. Optical models for direct volume rendering. IEEE
692
+ Transactions on Visualization and Computer Graphics, 1
693
+ (2):99–108, 1995.
694
+ Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S.,
695
+ and Geiger, A. Occupancy networks: Learning 3d re-
696
+ construction in function space. In Proceedings of the
697
+ IEEE/CVF Conference on Computer Vision and Pattern
698
+ Recognition, pp. 4460–4470, 2019.
699
+ Michalkiewicz, M., Pontes, J. K., Jack, D., Baktashmot-
700
+ lagh, M., and Eriksson, A. Implicit surface representa-
701
+ tions as layers in neural networks. In Proceedings of the
702
+ IEEE/CVF International Conference on Computer Vision,
703
+ pp. 4743–4752, 2019.
704
+ Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
705
+ Ramamoorthi, R., and Ng, R. Nerf: Representing scenes
706
+ as neural radiance fields for view synthesis. Communica-
707
+ tions of the ACM, 65(1):99–106, 2021.
708
+ Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spec-
709
+ tral normalization for generative adversarial networks.
710
+ arXiv preprint arXiv:1802.05957, 2018.
711
+ Nguyen, P., Tran, T., Gupta, S., Rana, S., Dam, H.-C.,
712
+ and Venkatesh, S.
713
+ Hypervae: A minimum descrip-
714
+ tion length variational hyper-encoding network. arXiv
715
+ preprint arXiv:2005.08482, 2020.
716
+
717
+ HyperNeRFGAN: Hypernetwork approach to 3D NeRF GAN
718
+ Nguyen-Phuoc, T., Li, C., Theis, L., Richardt, C., and Yang,
719
+ Y.-L. Hologan: Unsupervised learning of 3d represen-
720
+ tations from natural images. In 2019 IEEE/CVF Inter-
721
+ national Conference on Computer Vision Workshop (IC-
722
+ CVW), pp. 2037–2040. IEEE, 2019.
723
+ Nguyen-Phuoc, T. H., Richardt, C., Mai, L., Yang, Y., and
724
+ Mitra, N. Blockgan: Learning 3d object-aware scene
725
+ representations from unlabelled images. Advances in
726
+ Neural Information Processing Systems, 33:6767–6778,
727
+ 2020.
728
+ Niemeyer, M. and Geiger, A. Giraffe: Representing scenes
729
+ as compositional generative neural feature fields. In Pro-
730
+ ceedings of the IEEE/CVF Conference on Computer Vi-
731
+ sion and Pattern Recognition, pp. 11453–11464, 2021.
732
+ Niemeyer, M., Mescheder, L., Oechsle, M., and Geiger, A.
733
+ Differentiable volumetric rendering: Learning implicit 3d
734
+ representations without 3d supervision. In Proceedings
735
+ of the IEEE/CVF Conference on Computer Vision and
736
+ Pattern Recognition, pp. 3504–3515, 2020.
737
+ Oechsle, M., Mescheder, L., Niemeyer, M., Strauss, T., and
738
+ Geiger, A. Texture fields: Learning texture representa-
739
+ tions in function space. In 2019 IEEE/CVF International
740
+ Conference on Computer Vision (ICCV), pp. 4530–4539.
741
+ IEEE Computer Society, 2019.
742
+ Oord, A., Li, Y., Babuschkin, I., Simonyan, K., Vinyals, O.,
743
+ Kavukcuoglu, K., Driessche, G., Lockhart, E., Cobo, L.,
744
+ Stimberg, F., et al. Parallel wavenet: Fast high-fidelity
745
+ speech synthesis. In International conference on machine
746
+ learning, pp. 3918–3926. PMLR, 2018.
747
+ Or-El, R., Luo, X., Shan, M., Shechtman, E., Park, J. J., and
748
+ Kemelmacher-Shlizerman, I. Stylesdf: High-resolution
749
+ 3d-consistent image and geometry generation. In Pro-
750
+ ceedings of the IEEE/CVF Conference on Computer Vi-
751
+ sion and Pattern Recognition, pp. 13503–13513, 2022.
752
+ Pan, X., Xu, X., Loy, C. C., Theobalt, C., and Dai, B.
753
+ A shading-guided generative implicit model for shape-
754
+ accurate 3d-aware image synthesis. Advances in Neural
755
+ Information Processing Systems, 34:20002–20013, 2021.
756
+ Park, J. J., Florence, P., Straub, J., Newcombe, R., and Love-
757
+ grove, S. Deepsdf: Learning continuous signed distance
758
+ functions for shape representation. In Proceedings of the
759
+ IEEE/CVF Conference on Computer Vision and Pattern
760
+ Recognition, pp. 165–174, 2019.
761
+ Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., and
762
+ Geiger, A. Convolutional occupancy networks. In Eu-
763
+ ropean Conference on Computer Vision, pp. 523–540.
764
+ Springer, 2020.
765
+ Ratzlaff, N. and Fuxin, L. Hypergan: A generative model
766
+ for diverse, performant neural networks.
767
+ In Interna-
768
+ tional Conference on Machine Learning, pp. 5361–5369.
769
+ PMLR, 2019.
770
+ Rebain, D., Matthews, M. J., Yi, K. M., Sharma, G., La-
771
+ gun, D., and Tagliasacchi, A. Attention beats concate-
772
+ nation for conditioning neural fields.
773
+ arXiv preprint
774
+ arXiv:2209.10684, 2022.
775
+ Schwarz, K., Liao, Y., Niemeyer, M., and Geiger, A. Graf:
776
+ Generative radiance fields for 3d-aware image synthesis.
777
+ Advances in Neural Information Processing Systems, 33:
778
+ 20154–20166, 2020.
779
+ Sendera, M., Przewiezlikowski, M., Karanowski, K., Zieba,
780
+ M., Tabor, J., and Spurek, P. Hypershot: Few-shot learn-
781
+ ing by kernel hypernetworks.
782
+ In Proceedings of the
783
+ IEEE/CVF Winter Conference on Applications of Com-
784
+ puter Vision, pp. 2469–2478, 2023.
785
+ Sheikh, A.-S., Rasul, K., Merentitis, A., and Bergmann, U.
786
+ Stochastic maximum likelihood optimization via hyper-
787
+ networks. arXiv preprint arXiv:1712.01141, 2017.
788
+ Shu, D. W., Park, S. W., and Kwon, J. Wasserstein dis-
789
+ tributional harvesting for highly dense 3d point clouds.
790
+ Pattern Recognition, 132:108978, 2022.
791
+ Sinha, A., Bai, J., and Ramani, K. Deep learning 3d shape
792
+ surfaces using geometry images. In European Conference
793
+ on Computer Vision, pp. 223–240. Springer, 2016.
794
+ Sitzmann, V., Martel, J., Bergman, A., Lindell, D., and Wet-
795
+ zstein, G. Implicit neural representations with periodic
796
+ activation functions. Advances in Neural Information
797
+ Processing Systems, 33:7462–7473, 2020.
798
+ Skorokhodov, I., Ignatyev, S., and Elhoseiny, M. Adversarial
799
+ Generation of Continuous Images.
800
+ arXiv, November
801
+ 2020. doi: 10.48550/arXiv.2011.12026.
802
+ Skorokhodov, I., Ignatyev, S., and Elhoseiny, M. Adversarial
803
+ generation of continuous images. In Proceedings of the
804
+ IEEE/CVF Conference on Computer Vision and Pattern
805
+ Recognition, pp. 10753–10764, 2021.
806
+ Spurek, P., Winczowski, S., Tabor, J., Zamorski, M., Zieba,
807
+ M., and Trzcinski, T. Hypernetwork approach to generat-
808
+ ing point clouds. In International Conference on Machine
809
+ Learning, pp. 9099–9108. PMLR, 2020.
810
+ Spurek, P., Zieba, M., Tabor, J., and Trzcinski, T. General
811
+ hypernetwork framework for creating 3d point clouds.
812
+ IEEE Transactions on Pattern Analysis and Machine In-
813
+ telligence, 44(12):9995–10008, 2022.
814
+
815
+ HyperNeRFGAN: Hypernetwork approach to 3D NeRF GAN
816
+ Struski, L., Knop, S., Spurek, P., Daniec, W., and Tabor, J.
817
+ Locogan—locally convolutional gan. Computer Vision
818
+ and Image Understanding, 221:103462, 2022.
819
+ Szab´o, A., Meishvili, G., and Favaro, P. Unsupervised
820
+ generative 3d shape learning from natural images. arXiv
821
+ preprint arXiv:1910.00287, 2019.
822
+ Tewari, A., Elgharib, M., Bernard, F., Seidel, H.-P., P´erez,
823
+ P., Zollh¨ofer, M., and Theobalt, C. Pie: Portrait image
824
+ embedding for semantic control. ACM Transactions on
825
+ Graphics (TOG), 39(6):1–14, 2020.
826
+ Wu, J., Zhang, C., Xue, T., Freeman, B., and Tenenbaum, J.
827
+ Learning a probabilistic latent space of object shapes via
828
+ 3d generative-adversarial modeling. Advances in neural
829
+ information processing systems, 29, 2016.
830
+ Xu, X., Pan, X., Lin, D., and Dai, B. Generative occupancy
831
+ fields for 3d surface-aware image synthesis. Advances
832
+ in Neural Information Processing Systems, 34:20683–
833
+ 20695, 2021.
834
+ Yang, F., Davoine, F., Wang, H., and Jin, Z. Continuous
835
+ conditional random field convolution for point cloud seg-
836
+ mentation. Pattern Recognition, 122:108357, 2022.
837
+ Yang, G., Huang, X., Hao, Z., Liu, M.-Y., Belongie, S.,
838
+ and Hariharan, B. Pointflow: 3d point cloud generation
839
+ with continuous normalizing flows. In Proceedings of the
840
+ IEEE International Conference on Computer Vision, pp.
841
+ 4541–4550, 2019.
842
+ Yu, Y., Gong, Z., Zhong, P., and Shan, J. Unsupervised
843
+ representation learning with deep convolutional neural
844
+ network for remote sensing images. In International
845
+ conference on image and graphics, pp. 97–108. Springer,
846
+ 2017.
847
+ Zhang, H., Goodfellow, I., Metaxas, D., and Odena, A. Self-
848
+ attention generative adversarial networks. arXiv preprint
849
+ arXiv:1805.08318, 2018.
850
+ Zhu, J.-Y., Zhang, Z., Zhang, C., Wu, J., Torralba, A.,
851
+ Tenenbaum, J., and Freeman, B. Visual object networks:
852
+ Image generation with disentangled 3d representations.
853
+ Advances in neural information processing systems, 31,
854
+ 2018.
855
+ Zieba, M., Przewiezlikowski, M., Smieja, M., Tabor, J.,
856
+ Trzcinski, T., and Spurek, P. Regflow: Probabilistic flow-
857
+ based regression for future prediction. arXiv preprint
858
+ arXiv:2011.14620, 2020.
859
+ Zimny, D., Trzcinski, T., and Spurek, P. Points2nerf: Gener-
860
+ ating neural radiance fields from 3d point cloud. arXiv
861
+ preprint arXiv:2206.01290, 2022.
862
+
863
+ HyperNeRFGAN: Hypernetwork approach to 3D NeRF GAN
864
+ A. Additional qualitative results of HyperNeRFGAN.
865
+ Figure 8. Linear interpolation between latent codes with model trained on CARLA.
866
+
867
+ HyperNeRFGAN: Hypernetwork approach to 3D NeRF GAN
868
+ Figure 9. Elements generated by model trained on cars from ShapeNet.
869
+
870
+ HyperNeRFGAN: Hypernetwork approach to 3D NeRF GAN
871
+ Figure 10. Elements generated by model trained on planes from ShapeNet.
872
+
873
+ X
874
+ X
875
+ Yx
J9FJT4oBgHgl3EQfwy0B/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
JNA0T4oBgHgl3EQfCf8h/content/tmp_files/2301.01989v1.pdf.txt ADDED
@@ -0,0 +1,3288 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01989v1 [math.AG] 5 Jan 2023
2
+ Construction of tropical morphisms from tropical
3
+ modifications of nonhyperelliptic genus 3 metric graphs
4
+ with tree gonality 3 to metric trees
5
+ Hamdi D¨ervodeli
6
+ Abstract
7
+ In this article, we look into the tree gonality of genus 3 metric graphs
8
+ Γ which is defined as the minimum of degrees of all tropical morphisms
9
+ from any tropical modification of Γ to any metric tree. It is denoted by
10
+ tgon(Γ) and is at most 3. We define hyperelliptic metric graphs in terms
11
+ of tropical morphisms and tree gonality. Let Γ be a genus 3 metric graph
12
+ with tgon(Γ) = 3 which is not hyperelliptic. In this paper, for such metric
13
+ graphs Γ, we construct a tropical modification Γ′ of Γ, a metric tree T
14
+ and a tropical map ϕ : Γ′ → T of degree 3.
15
+ Contents
16
+ 1
17
+ Introduction
18
+ 2
19
+ 2
20
+ Preliminaries
21
+ 3
22
+ 2.1
23
+ Metric graphs.
24
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . .
25
+ 3
26
+ 2.2
27
+ Harmonic maps and tropical morphisms. . . . . . . . . . . . . . .
28
+ 6
29
+ 2.3
30
+ Tree gonality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
+ 7
32
+ 2.4
33
+ Hyperelliptic metric graphs. . . . . . . . . . . . . . . . . . . . . .
34
+ 8
35
+ 3
36
+ Construction of tropical morphisms
37
+ 10
38
+ 1
39
+
40
+ 1
41
+ Introduction
42
+ We look into the tree gonality of metric graphs. Its motivation comes from
43
+ the striking interplay between graphs and algebraic curves discovered over the
44
+ last two decades. For example, there exists a good theory of divisors on graphs
45
+ (see BN07]) (also including such notions as linear systems, linear equivalences,
46
+ canonical divisors, degrees, and ranks), and maps between metric graphs with
47
+ suitable balancing conditions that behave similarly to morphisms between curves
48
+ (see BN07]).
49
+ Recall that the gonality of an algebraic curve C is the minimum of degrees
50
+ of all non-constant morphisms from C to the projective line P1.
51
+ There are
52
+ two notions of graph gonality in the literature, which are both inspired by
53
+ the gonality of an algebraic curve. They are tree (or geometric) gonality and
54
+ divisorial gonality e.g., studied for ordinary or metric graphs (see Bak08]). Yet
55
+ another variant is stable gonality, which is the infimum of the divisorial gonality
56
+ over all subdivisions of an ordinary graph (see CKK15]).
57
+ We study a tropical version of gonality, where the roles of algebraic curves
58
+ and the projective line are played by metric graphs and metric trees, respectively,
59
+ and the morphisms are replaced by the tropical morphisms (see BN07], Cap14],
60
+ Mik17], BBM11], Cha13]). The tree gonality of a metric graph Γ is defined as
61
+ minimum of degrees of all tropical morphisms from any tropical modification
62
+ of Γ to any metric tree. The tree gonality of any metric graph of genus g is at
63
+ most
64
+ � g
65
+ 2
66
+
67
+ + 1 (see Theorem 1, DV19]). Its proof is entirely combinatorial and
68
+ provides an explicit method to construct divisors with degree
69
+ � g
70
+ 2
71
+
72
+ + 1 and rank
73
+ 1 on genus-g metric graphs. In this article, we are interested in constructing
74
+ a degree-(
75
+ � g
76
+ 2
77
+
78
+ + 1) tropical morphism from a tropical modification of Γ to a
79
+ metric tree, where Γ is of genus g with tree gonality
80
+ � g
81
+ 2
82
+
83
+ + 1.
84
+ Interest for
85
+ such method dates back to (Bak08], Remark 3.13). In this regard, our modest
86
+ contribution is on the case where g = 3 and Γ is not hyperelliptic, i.e., given
87
+ a nonhyperelliptic genus 3 metric graph Γ with tree gonality 3, we construct
88
+ a tropical modification Γ′, a metric tree T , and a degree 3 tropical morphism
89
+ φ : Γ′ → T (Problem 1). We emphasize that our constructions are more direct
90
+ than in DV19] in the sense that we avoid constructing divisors of certain degree
91
+ and rank, but rather make explicit constructions of tropical morphisms from
92
+ tropical modifications of metric graphs to metric trees.
93
+ Problem 1. Let Γ be a genus 3 metric graph with tree gonality 3 which
94
+ is not hyperelliptic. Construct a tropical modification Γ′ of Γ, a metric tree T
95
+ and a tropical morphism ϕ : Γ′ → T of degree 3.
96
+ 2
97
+
98
+ 2
99
+ Preliminaries
100
+ 2.1
101
+ Metric graphs.
102
+ A graph G is defined by the following data: a set V called the vertex set, a set
103
+ E called the edge set and a map ∂ : E → P(V ) such that for any e ∈ E we
104
+ have |∂(e)| = 1 or |∂(e)| = 2, where P(V ) is the power set of V . We write
105
+ G = (V, E, ∂). The elements of V (resp. E) are called vertices (resp. edges)
106
+ of G. An edge e ∈ E with |∂(e)| = 1 is called a loop.
107
+ Two or more edges
108
+ e1, e2, . . . , en ∈ E are called multiple edges if there exist v1, v2 ∈ V such that
109
+ ∂(ei) = {vi, vj} for all i = 1, 2, . . . , n. The graph G is said to be finite if both
110
+ V and E are finite sets. A length map on G is any function l : E → (0, +∞).
111
+ In this article, unless stated otherwise, a graph is always assumed to be finite
112
+ with multiple edges allowed.
113
+ Let G = (V, E, ∂) be a graph. A path in the graph G is a sequence of edges
114
+ (e1, e2 . . . , en−1) for which there exists a sequence of vertices (v1, v2, . . . , vn) such
115
+ that ∂(ei) = {vi, vi+1} for i = 1, 2, . . . , n − 1. If w = (e1, e2, . . . , en−1) is a path
116
+ in G with vertex sequence (v1, v2, . . . , vn) then w is said to be a path from v1
117
+ to vn. A graph G is said to be connected if for any two vertices v1 and v2 there
118
+ exists a path from v1 to v2. Let e ∈ E with ∂(e) = {v, w}. Subdividing the edge
119
+ e ∈ E with ∂(e) = {v, w} into edges e1, e2 yields the graph G′ = (V ′, E′, ∂′)
120
+ where V ′ = V ∪ {z}, E′ = (E \ {e}) ∪ {e1, e2} and ∂′ is given by ∂′|E\{e} = ∂
121
+ and ∂′(e1) = {v, z} , ∂′(e2) = {z, w}.
122
+ Let G = (V, E, ∂) be a connected graph with no loops. An orientation
123
+ on G is a map ⃗∂ : E → V × V such that if we write ⃗∂(e) = (v1, v2) then
124
+ ∂(e) = {v1, v2}. Note that giving an orientation ⃗∂ on G is equivalent to giving
125
+ a map (∂0, ∂1) : E → V × V where ∂0, ∂1 : E → V are endpoint maps.
126
+ Fix an orientation (∂0, ∂1) : E → V ×V on G and choose a length map l on
127
+ G. Let (X, d) be the disjoint union of the real metric spaces [0, l(e)] for e ∈ E
128
+ i.e., the set
129
+ X =
130
+
131
+ e∈E
132
+ [0, l(e)] :=
133
+
134
+ e∈E
135
+ [0, l(e)] × {e}
136
+ together with the metric d : X × X → [0, ∞] given by
137
+ d((x1, e1), (x2, e2)) =
138
+
139
+ |x1 − x2|,
140
+ if e1 = e2
141
+ ∞,
142
+ otherwise.
143
+ Consider the relation ∼1 on X defined by x ∼1 y if there exists a vertex v ∈ V
144
+ such that x, y ∈ {(0, e) ∈ X | ∂0(e) = v} ∪ {(l(e), e) ∈ X | ∂1(e) = v} and let ∼
145
+ be the equivalence relation on X generated by ∼1 i.e., x ∼ y if and only if x = y
146
+ or there exists a finite subset {z1, z2, . . . , zn} ⊂ X such that x = z1, zn = y and
147
+ zi ∼1 zi+1 for i = 1, 2, . . ., n − 1. Let ¯X := X/∼ be the quotient space of X
148
+ 3
149
+
150
+ with respect to the equivalence relation ∼ and ¯d : ¯X × ¯X → [0, ∞) be given by
151
+ ¯d(¯x, ¯y) := inf
152
+ k
153
+
154
+ i=1
155
+ d(xi, yi)
156
+ where the infimum is taken over all k ∈ N and sequences (x1, y1, x2, . . . , xk, yk)
157
+ in X such that x1 ∈ ¯x, xi+1 ∼ yi for i = 1, 2, . . ., k − 1 and yk ∈ ¯y. Then,
158
+ Γ := ( ¯X, ¯d) is a metric space. In this case, we say that the metric space ( ¯X, ¯d)
159
+ is obtained from (G, l) by gluing intervals [0, l(e)], one for each e ∈ E, along
160
+ their endpoints in the manner prescribed by G.
161
+ We often regard each edge
162
+ e ∈ E as a subset of Γ and each vertex v ∈ V as a point in Γ.
163
+ Definition 2.1
164
+ A metric graph is a metric space Γ such that there exists a
165
+ loopless connected graph G with a length map l such that Γ is isometric to
166
+ the metric space obtained from (G, l) by gluing intervals [0, l(e)], one for each
167
+ e ∈ E(G), along their endpoints in the manner prescribed by G.
168
+ The pair (G, l) is called a model of Γ whereas Γ is called a realization of the
169
+ model (G, l). The construction of a metric graph from a graph that may have
170
+ loops will be given in the following way. Let G = (V, E, ∂) be a connected graph
171
+ with loops and l a length function on G. Subdividing all the loops e ∈ E, say
172
+ into e1, e2, . . . , en, yields a graph G′ with no loops. The length map l′ on G′ is
173
+ given by l′ = l on E \ {e ∈ E | ∂(e) = 1} and l′(e1) + l′(e2) + . . . + l′(en) = l(e)
174
+ for edges e1, e2 for which a loop e ∈ E subdivided to e1, e2. Then Γ does not
175
+ depend on the choice of the subdivision (G′, l′). Thus, we define Γ to be the
176
+ realization of (G, l), and we also call (G, l) a model (that may have loops) of Γ.
177
+ The first Betti number of Γ is equal to g(G) := |E(G)| − |V (G)| + 1. It
178
+ is called the genus of Γ and it is denoted by g(Γ). A metric graph Γ of genus
179
+ g(Γ) = 0 is called a metric tree.
180
+ Let Γ be a metric graph. A vertex set of Γ is a finite subset S ⊂ Γ such
181
+ that the subspace Γ \ S is isometric to a disjoint union of finitely many real
182
+ open intervals. Any vertex set S ̸= ∅ of Γ induces a model (GS, lS) of Γ in
183
+ the following way. The graph GS = (V, E, ∂) is given by its vertex set V :=
184
+ S, its edge set E defined to be the set of closures of finitely many connected
185
+ components of Γ \ V and the map ∂ : E → P(V ) given by e �−→ ∂(int(e)),
186
+ where int(e) = e \ S and ∂(int(e)) ⊂ V is its boundary in Γ. Each edge e ∈ E
187
+ is isometric to either a segment or a circle. The length map lS : E → (0, ∞)
188
+ assigns each edge e ∈ E the length of the segment or circle isometric to it.
189
+ We single out a particular model for Γ. A point x ∈ Γ is called an essential
190
+ vertex if for any ε > 0, the open ball B(x, ε) :=
191
+
192
+ y ∈ Γ | ¯d(x, y) < ε
193
+
194
+ is not
195
+ isometric to (−ε, ε) ⊂ R. If x ∈ Γ is an essential vertex, then for any model
196
+ (G, l) of Γ and any edge e ∈ E(G) we have x /∈ int (e), and so, the set of essential
197
+ vertices of Γ is a subset of E(G) for any model (G, l) of Γ. Since G is a finite
198
+ graph, Γ has only finitely many essential vertices.
199
+ 4
200
+
201
+ Lemma 2.2 Let Γ be a metric graph, E the set of essential vertices of Γ, and
202
+ S a finite nonempty subset of Γ. Then, the set S is a vertex set of Γ if and only
203
+ if E ⊆ S.
204
+ Proof. Suppose that ∅ ̸= S is a vertex set in Γ. Then, S induces a model (G, l)
205
+ of Γ where S = V (G) and, so
206
+ Γ \ S = Γ \ V (G) ≡
207
+
208
+ e∈E(G)
209
+ (0, l(e)).
210
+ If E ∩ (Γ \ S) ̸= ∅ then there exists x ∈ E and an edge e ∈ E(G) such that x ∈
211
+ int (e) which contradicts x being an essential vertex. Therefore, E ∩ (Γ \ S) = ∅
212
+ and E ⊆ S. Now, assume that E ⊆ S. If E = ∅ then Γ is isometric to a circle,
213
+ and so, any non-empty finite subset of Γ is a vertex set. Suppose that E ̸= ∅. Let
214
+ (G, l) be a model of Γ, and V , E be the set of vertices, edges of G respectively.
215
+ Then, the set V = �
216
+ e∈E ∂(e), where ∂(e) is the boundary set of e ⊂ Γ, is a
217
+ vertex set of Γ. As E is the set of essential vertices, and V is a vertex set, it
218
+ follows, from what we have shown above, that E ⊆ V . Now, if E = V , then E is
219
+ a vertex set. Assume that E ⊊ V . We know that the set V \ E is always finite.
220
+ If this is a one-element set i.e., V \ E = {x1}, then there exist unique edges
221
+ e1, f1 ∈ E, e1 ̸= f1 such that x1 is a common endpoint of e1 and f1. Then, we
222
+ obtain that
223
+ Γ \ E = (Γ \ V ) ∪ {x1} ≡
224
+
225
+ e∈E
226
+ (0, l(e)) ∪ {x1}
227
+
228
+
229
+ e∈E
230
+ e̸=e1,f1
231
+ (0, l(e)) ⊔ (0, l(e1) + l(f1))
232
+ which implies that E is a vertex set. If V \ E = {x1, x2}, then there exist unique
233
+ edges ei, fi ∈ E with ei ̸= fi such that xi is a common endpoint of ei and fi
234
+ for i = 1, 2. In the case when one of e1 and e2 is equal to one of f1 and f2, say,
235
+ f1 = e2, we have that
236
+ Γ \ E ≡
237
+
238
+ e∈E
239
+ e̸=e1,e2,f2
240
+ (0, l(e)) ⊔ (0, l(e1) + l(e2) + l(f2)).
241
+ If both e1 and e2 are different to both f1 and f2, then
242
+ Γ \ E ≡
243
+
244
+ e∈E
245
+ e̸=e1,e2,f1,f2
246
+ (0, l(e)) ⊔ (0, l(e1) + l(e2)) ⊔ (0, l(f1) + l(f2))
247
+ and therefore, E is a vertex set. Similarly we get we get that E is a vertex set if
248
+ V \ E = {x1, x2, . . . , xn}, Thus, Γ \ E is isometric to a disjoint union of finitely
249
+ many open real intervals. Since Γ \ S ⊂ Γ \ E, we have that Γ \ S is also is
250
+ isometric to a disjoint union of finitely many open intervals, and therefore, S is
251
+ a vertex set. □
252
+ 5
253
+
254
+ A metric graph is said to be a metric loop if it is isometric to a circle. If
255
+ Γ is not a metric loop, then E ̸= ∅ is a vertex set of Γ. The model (GE, lE)
256
+ induced by the essential vertex set E is called the essential model of Γ. From
257
+ Lemma 2.1, the essential model (GE, lE) is minimal in the sense that any other
258
+ model of Γ can be obtained by a sequence of edge subdivisions of GE. Thus, all
259
+ models are refinements of the essential model. In addition, this implies that the
260
+ valence of a point x ∈ Γ defined as the valence of x in GS for S a vertex set of
261
+ Γ and x ∈ S, is well-defined notion. The valence of the point x ∈ Γ is denoted
262
+ by val(x).
263
+ 2.2
264
+ Harmonic maps and tropical morphisms.
265
+ Definition 2.3
266
+ Let Γ1 and Γ2 be metric graphs with loopless models (G1, l1)
267
+ and (G2, l2) respectively, where E(G1) = {e1} and E(G2) = {e2}.
268
+ A map
269
+ ϕ : Γ1 → Γ2 is said to be linear if there exist isometries ρ1 : Γ1 → [0, l1(e1)] and
270
+ ρ2 : Γ2 → [0, l2(e2)] such that the map ρ2 ◦ ϕ ◦ ρ−1
271
+ 1
272
+ : [0, l1(e1)] → [0, l2(e2)] is an
273
+ affine linear map.
274
+ Definition 2.4 Let Γ1 and Γ2 be two metric graphs. A continuous map ϕ :
275
+ Γ1 → Γ2 is said to be piecewise linear if there exist loopless models (G1, l1) and
276
+ (G2, l2) of Γ1 and Γ2 respectively, such that for any edge e1 ∈ E(G1) there exists
277
+ an edge e2 ∈ E(G2) such that ϕ(e1) ⊆ e2 and ϕ|e1 : e1 → e2 is a linear map.
278
+ Let ϕ : Γ1 → Γ2 be a piecewise linear map of metric graphs, v ∈ Γ1 and
279
+ w := ϕ(v). Let (G1, l1) (resp., (G2, l2)) be loopless models of Γ1 (resp., Γ2)
280
+ such that for all e1 ∈ E(G1) there exists e2 ∈ E(G2) such that ϕ(e1) ⊆ e2,
281
+ ϕ|e1 : e1 → e2 is a linear map, and assume that v ∈ V (G1) and w ∈ V (G2).
282
+ Fix a direction ⃗w at w (i.e., a ’unit vector’ starting at w with direction of a
283
+ path emanating from w), and let e2 ∈ E(G2) such that w is an endpoint of e2
284
+ and e2 is in the direction ⃗w. Let {ev1, ev2, . . . , evr} ⊆ E(G1) be the set of edges
285
+ emanating from v. Without loss of generality, assume that
286
+ {ev1, ev2, . . . , evs} = {evj | ϕ(evj) ⊆ e2, j = 1, 2, . . . , r}
287
+ for some s such that 0 ⩽ s ⩽ r. Then, ϕ|evj : evj → e is a linear map for
288
+ j = 1, 2, . . . , s because of the choice of models (G1, l1) and (G2, l2). Denote by
289
+ mϕ, ⃗w(v) the sum of slopes of these linear maps ϕ|evj, j = 1, 2, . . ., s. i.e.,
290
+ mϕ, ⃗w(v) =
291
+ s
292
+
293
+ j=1
294
+ slope (ρ ◦ ϕ ◦ ρ−1
295
+ vj )
296
+ where ρ : e2 → [0, l2(e2)] and ρvj : evj → [0, l1(evj)] are the chosen isometries
297
+ with unique parametrizations ρ(w) = ρvj(v) = 0 for i = 1, 2, . . . , s i.e., that map
298
+ initial endpoints of e2, evj, j = 1, 2, . . . , s to 0. This definition of the slope of
299
+ the linear maps ϕ|evj, j = 1, 2, . . . , s, and their sum mϕ, ⃗w(v) is independent of
300
+ the choice of such models (G1, l1) and (G2, l2).
301
+ 6
302
+
303
+ Definition 2.5 A continuous map ϕ : Γ1 → Γ2 is said to be a harmonic map
304
+ of metric graphs if it is piecewise linear with integer slopes and satisfies the
305
+ harmonicity condition: For any point v ∈ Γ and any two directions ⃗w1, ⃗w2
306
+ emanating from w := ϕ(v) we have mϕ, ⃗
307
+ w1(v) = mϕ, ⃗
308
+ w2(v).
309
+ Let ϕ : Γ1 → Γ2 be a harmonic map and v ∈ Γ. Then, mϕ(v) := mϕ, ⃗
310
+ w1(v) =
311
+ mϕ, ⃗
312
+ w2(v) for any two directions ⃗w1, ⃗w2 emanating from ϕ(v) is said to be the
313
+ local degree of ϕ at v. The degree of a non-constant harmonic map ϕ : Γ1 → Γ2
314
+ is defined to be the sum of all local degrees of ϕ at the pre-images under ϕ of
315
+ any point w ∈ Γ′ i.e.,
316
+ deg ϕ :=
317
+
318
+ v∈Γ,ϕ(v)=w
319
+ mϕ(w)
320
+ for any w ∈ Γ′. The degree of ϕ is independent of the choice of w. (see Section
321
+ 2.4, Kag18]).
322
+ Definition 2.6 A non-constant harmonic map ϕ : Γ → Γ′ of metric graphs is
323
+ said to be a tropical morphism between metric graphs if the slopes of ϕ along
324
+ the edges of linearity are nonzero and the following inequality
325
+ (k − 2) ⩾ mϕ(v) · (l − 2)
326
+ holds for all points v ∈ Γ, where k is the valence of v, and l is the valence of
327
+ w := ϕ(v). The above inequality is known as the Riemann-Hurwitz condition.
328
+ 2.3
329
+ Tree gonality.
330
+ Let Γ be a metric graph, T a metric tree, and let v ∈ Γ, w ∈ T be two points
331
+ such that val(w) = 1. Denote by Γ′ the quotient space of Γ ⊔ T with respect
332
+ to the equivalence relation ∼ that identifies v with w. The metric space Γ′ is
333
+ a metric graph, and we say that Γ′ is obtained by grafting the metric tree T
334
+ onto the point v ∈ Γ. In this article, we allow the inverse operation of grafting
335
+ a metric tree onto a point of a metric graph, and we call it deleting a metric
336
+ tree onto a point of the metric graph.
337
+ Definition 2.7
338
+ A tropical modification of a metric graph Γ is another metric
339
+ graph Γ′ that is obtained by grafting or deleting a finite number of metric trees
340
+ onto points of Γ.
341
+ Given a tropical modification Γ′ of Γ and a tropical morphism ϕ : Γ′ → T of
342
+ metric graphs, then there exists a tropical modification Γ′′ (resp. T ′) of Γ′ (resp.
343
+ T ) respectively and a tropical morphism ϕ′ : Γ′′ → T ′ that extends ϕ and has
344
+ the same degree as ϕ (CD18]). The following definition is the key definition in
345
+ this article.
346
+ Definition 2.8 The tree gonality of a metric graph Γ, denoted by tgon(Γ), is
347
+ defined as the minimum of degrees of all tropical morphisms from any tropical
348
+ modification of Γ to any metric tree.
349
+ 7
350
+
351
+ In order to study tree gonality and tropical morphisms of metric graphs, we
352
+ consider the equivalence relation on metric graphs under tropical modification
353
+ called tropical equivalence. Metric graphs under tropical equivalence are said to
354
+ be tropically equivalent.
355
+ First, we recall the notions of contracting and deleting an edge of a graph.
356
+ Let G = (V, E, ∂) be a graph and e ∈ E with ∂(e) = {v, w}. Contracting G
357
+ at the edge e ∈ E yields the graph G1 = (V1, E1, ∂1) where V1 := V/ ∼ where
358
+ ∼ identifies v with w, E1 := E \ {e} and ∂1 : E1 → P(V1) given as follows:
359
+ for e′ ∈ E1 such that ∂(e′) = {v′, w′} we define ∂1(e′) = {p(v′), p(w′)}, where
360
+ p : V → V1 is the quotient map. Deleting the edge e ∈ E yields the graph
361
+ G′ := (V, E \ {e} , ∂|E\{e}).
362
+ Next, we work with the notion of dangling edges which is due to DV19].
363
+ Note that we regard a singleton graph (a graph without an edge) as a tree.
364
+ Definition 2.9
365
+ Let G be a connected graph. An edge e ∈ E(G) is said to be
366
+ dangling if deleting e gives a graph with two connected components and one of
367
+ them is a tree.
368
+ Let Γ be a metric graph with model (G, l). Assume that g(Γ) ≥ 2. Denote
369
+ by ˜G the graph obtained by successively contracting the dangling edges of G,
370
+ and let ˜l be a length map on ˜G given as the restriction of l on E( ˜G). Let ˜Γ
371
+ be metric graph which is the realization of ( ˜G, ˜l). Then, the metric graph Γ
372
+ is a tropical modification of ˜Γ, and note that by construction, ˜Γ satisfies the
373
+ following property: ˜Γ is the unique metric graph tropically equivalent to Γ whose
374
+ essential model (E, lE) has valency at least 3 i.e., every vertex point has valence
375
+ at least three.
376
+ 2.4
377
+ Hyperelliptic metric graphs.
378
+ We first recall the basic theory of divisors on metric graphs (Cha13], BN07]).
379
+ Let Γ be a metric graph. An element of the free abelian group Div(Γ) generated
380
+ by points of Γ is called a divisor on Γ. If
381
+ D =
382
+
383
+ v∈Γ
384
+ D(v) · v
385
+ is a divisor in Γ, then define the degree of D to be
386
+ deg(D) :=
387
+
388
+ x∈Γ
389
+ D(v) ∈ Z
390
+ Denote by Div0(Γ) the subgroup of divisors of degree 0. A function f : Γ → R
391
+ is called rational function on Γ if it is continuous, piecewise-linear with integer
392
+ slopes along its domains of linearity. We denote by Rat(Γ) the set of rational
393
+ functions on Γ. For f ∈ Rat(Γ) and a point v in Γ, the sum of the outgoing
394
+ 8
395
+
396
+ slopes of f at v is denoted by ordv(f). This sum is 0 except for all but finitely
397
+ many points of Γ, and therefore,
398
+ div(f) :=
399
+
400
+ v∈Γ
401
+ ordv(f)
402
+ is a divisor on Γ. The set of principal divisors on Γ is defined to be Prin(Γ) :=
403
+ {div(f) | f ∈ Rat(Γ)}. Note that Prin(Γ) is a subgroup of Div0(Γ). Two divisors
404
+ D and D′ are said to be linearly equivalent, and we write D ∼ D′, if D − D′ ∈
405
+ Prin(Γ). A divisor D = �
406
+ v∈Γ D(v) · v ∈ Div(Γ) is said to be effective, and we
407
+ write D ⩾ 0, if D(v) ⩾ 0 for all v ∈ Γ. Denote by Divk
408
+ +(Γ) the set of all effective
409
+ divisors with degree k. For a divisor D ∈ Div(Γ) a complete linear system |D|
410
+ is defined to be |D| := {D′ ∈ Div(Γ) | D′ ⩾ 0, D′ ∼ D} . The rank of a divisor
411
+ D is defined to be −1 if |D| = ∅, and
412
+ max
413
+
414
+ k ∈ Z | ∀D′ ∈ Divk
415
+ +(Γ) we have |D − D′| ̸= ∅
416
+
417
+ if |D| ̸= ∅.
418
+ The rank of the divisor D is simply denoted by r(D).
419
+ In the
420
+ literature, there exists a notion of a hyperelliptic metric graph. For example
421
+ in Cha13], a metric graph Γ is said to be hyperelliptic if there exists a divisor
422
+ D ∈ Div(Γ) such that deg(D) = 2 and r(D) = 1.
423
+ In this article, we give
424
+ a definiton of hyperelliptic metric graphs in terms of tropical morphisms and
425
+ their tree gonality and which is different to the one given in Cha13].
426
+ Definition 2.10 A metric graph Γ is said to be hyperelliptic if there exists a
427
+ tropical morphism from Γ to a metric tree with degree tgon(Γ).
428
+ One of our goals in this article is to investigate genus 3 nonhyperelliptic metric
429
+ graphs Γ with tree gonality 3. Note that if Γ is hyperelliptic in the sense of
430
+ Kawaguchi-Yamaki (KY15]) that does not imply that Γ is hyperelliptic in our
431
+ sense. For example, the metric graph Γ in Figure 25 is hyperelliptic in the sense
432
+ of Kawaguchi-Yamaki but is not hyperelliptic in our sense. This is because the
433
+ harmonic map coming from the unique hyperelliptic involution ι (Theorem 3.5,
434
+ KY15]) does not satisfy the Riemann-Hurwitz condition.
435
+ 9
436
+
437
+ 3
438
+ Construction of tropical morphisms
439
+ The main result in this article is the constructive solution given to the Problem
440
+ 1 stated below. Before we do that, we give the following lemma, which will be
441
+ useful to construct tropical morphisms.
442
+ Lemma 3.1
443
+ Let Γ = (G, l), T = (H, m) be two metric graphs where H does
444
+ not have multiple edges and ψ : V (G) → V (H) a map on the set of vertices.
445
+ Suppose that for any v, w ∈ V (G) that are the endpoints of some non-loop edge
446
+ e ∈ E(G), we have ψ(v) = ψ(w), or ψ(v) and ψ(w) are endpoints of some edge
447
+ e′ ∈ H. Then, there exists a unique continuous map ϕ : Γ → T such that
448
+ ϕ|V (G) = ψ and ϕ is linear over each edge e in G.
449
+ Proof.
450
+ If e ∈ E(G) is an edge with endpoints v, w such that ψ(v) = ψ(w), then
451
+ take ϕe : e → T to be the constant map on e with image ψ(v) = ψ(w). In the
452
+ case when e ∈ E(G) is an edge with endpoints v, w such that ψ(v) and ψ(w) are
453
+ endpoints of some edge e′ ∈ H, then choose ϕe : e → e′ to be the linear map
454
+ with slope m(e′)/l(e). Now, we take ϕ : Γ → T to be the unique continuous
455
+ map such that ϕ|e = ϕe for all edges e ∈ E(G). □
456
+ Problem 1. Let Γ be a genus 3 metric graph with tree gonality 3 which is not
457
+ hyperelliptic. Construct a tropical modification Γ′ of Γ, a metric tree T and a
458
+ tropical morphism ϕ : Γ′ → T of degree 3.
459
+ Solution of Problem 1. Consider genus 3 nonhyperelliptic metric graphs with
460
+ tree gonality 3 up to tropical equivalence.
461
+ There is a complete list (up to
462
+ tropical equivalence) of genus 3 metric graphs (Figure 4, Cin15]), and also a
463
+ complete list of genus 3 hyperelliptic metric graphs (the tropical hyperelliptic
464
+ curves of genus 3 with unmarked vertices in Figure 2, Cha13]). Note that there
465
+ is a hyperelliptic metric graph in the latter list, namely the one in Figure 25,
466
+ which is not hyperelliptic in our sense. Based on this, now it is enough to make
467
+ the constructions for the tropically equivalent metric graphs Γ whose essential
468
+ model (G, l) has valency at least 3. They are depicted in Figures 1,5,7,9,.. . ,25.
469
+ We divide the constructions into four cases depending on the number bridges
470
+ (edges of a connected graph whose deletion increases its number of connected
471
+ components) that the essential model (G, l) possesses.
472
+ Case 1. If the metric graph Γ has no bridges, then Γ is one of the metric
473
+ graphs given in Figure 1, 5, 7, 9, 11, or 13.
474
+ Solution of Case 1.
475
+ Case 1.1. Consider the metric graph Γ whose essential model (G, l) is
476
+ given in Figure 1, where the graph G = (V, E, ∂) is given by V = {v1, v2, v3, v4},
477
+ E = {e1, e2, . . . , e6}, and ∂(e1) = {v1, v2}, ∂(e2) = {v1, v3}, ∂(e3) = {v4, v1},
478
+ ∂(e5) = {v2, v3}, and ∂(e6) = {v2, v4}. The length map l on E is defined by
479
+ assigning e1 �→ a, e2 �→ b, e3 �→ c, e4 �→ d, e5 �→ e and e6 �→ f, where a, b, c, d, e,
480
+ and f are real positive numbers.
481
+ 10
482
+
483
+ v1
484
+ v2
485
+ v3
486
+ v4
487
+ a
488
+ e
489
+ d
490
+ c
491
+ f
492
+ b
493
+ Curve
494
+ Figure 1. The essential model (G, l) of Γ
495
+ Choose any vertex, say v1 ∈ V (G), and without loss of generality, assume
496
+ that c ⩽ b ⩽ a.
497
+ It is enough to consider the following three subcases: (A)
498
+ c < b ⩽ a, (B) c = b < a, and (C) c = b = a. We give the constructions for each
499
+ subcase separately as follows.
500
+ Case 1.1.A. Let (G1, l1) be another model of Γ given in Figure 1.1, where
501
+ the graph G1 = (V1, E1, ∂1) is obtained by subdividing the edges ei ∈ E into
502
+ e′
503
+ i, e′′
504
+ i , e′′′
505
+ i (i = 1, 2), and ej ∈ E into e′
506
+ j, e′′
507
+ j (j = 4, 5, 6) with orientation given by:
508
+ ∂1(e′
509
+ 1) = {v1, v6}
510
+ ∂1(e′′
511
+ 1) = {v6, v4}
512
+ ∂1(e′′′
513
+ 1 ) = {v5, v2}
514
+ ∂1(e′′
515
+ 2) = {v8, v7}
516
+ ∂1(e′′′
517
+ 2 ) = {v7, v3}
518
+ ∂1(e′
519
+ 4) = {v4, v9}
520
+ ∂1(e′′
521
+ 4) = {v9, v3}
522
+ ∂1(e′
523
+ 5) = {v2, v10}
524
+ ∂1(e′′
525
+ 5) = {v3, v10}
526
+ ∂1(e′
527
+ 2) = {v1, v8}
528
+ ∂1(e′′
529
+ 6) = {v4, v11}
530
+ ∂1(e′
531
+ 6) = {v2, v11}
532
+ and length map l1, which is equal to l on E \ {e1, e2, e4, e5, e6}, whereas on
533
+ {e1, e2, e4, e5, e6} it is equal to
534
+ l1(e′
535
+ 1) = l1(e′′
536
+ 1) = (a − c)/2
537
+ l1(e′
538
+ 4) = l1(e′′
539
+ 4) = d/2
540
+ l1(e′
541
+ 2) = l1(e′′
542
+ 2) = (b − c)/2
543
+ l1(e′
544
+ 5) = l1(e′′
545
+ 5) = e/2
546
+ l1(e′
547
+ 6) = l1(e′′′
548
+ 1 ) = l1(e′′′
549
+ 2 ) = c
550
+ l1(e′′
551
+ 6) = f/2.
552
+ T = (T ′, t′)
553
+ Γ′ = (G′, l′)
554
+ v5
555
+ v2
556
+ c
557
+ v3
558
+ c
559
+ v1
560
+ v4
561
+ c
562
+ w1
563
+ w0
564
+ w6
565
+ w8
566
+ w10
567
+ w11
568
+ w9
569
+ d
570
+ e
571
+ f
572
+ v9
573
+ v11
574
+ v10
575
+ ϕ
576
+ Curve
577
+ v7
578
+ b − c
579
+ a − c
580
+ v8
581
+ v6
582
+ Figure 1.1. The model (G1, l1) of Γ
583
+ 11
584
+
585
+ Let Γ′ be the the tropical modification of Γ with model (G′, l′) in Figure 1.2,
586
+ where the graph G′ is given by its vertex set V (G′) = V1 ∪ {v′
587
+ 6, v′
588
+ 8, v′
589
+ 9, v′
590
+ 10, v′
591
+ 11},
592
+ and edge set E(G′) = E1 ∪{v2v′
593
+ 9, v3v′
594
+ 11, v4v′
595
+ 10, v5v′
596
+ 8, v7v′
597
+ 6}. The length map l′ on
598
+ G′ is defined by l′ = l1 on E1, and
599
+ l′(v2v′
600
+ 9) = d
601
+ 2
602
+ l′(v3v′
603
+ 11) = f
604
+ 2
605
+ l′(v4v′
606
+ 10) = e
607
+ 2
608
+ l′(v5v′
609
+ 8) = b − c
610
+ 2
611
+ l′(v7v′
612
+ 6) = a − c
613
+ 2
614
+ .
615
+ T = (T ′, t′)
616
+ Γ′ = (G′, l′)
617
+ v5
618
+ v2
619
+ v3
620
+ v1
621
+ v4
622
+ w1
623
+ w0
624
+ w6
625
+ w8
626
+ w10
627
+ w11
628
+ w9
629
+ v9
630
+ v11
631
+ v10
632
+ v′
633
+ 11
634
+ v′
635
+ 10
636
+ v′
637
+ 9
638
+ ϕ
639
+ Curve
640
+ v7
641
+ v8
642
+ v6
643
+ v′
644
+ 8
645
+ v′
646
+ 6
647
+ Figure 1.2. The model (G′, l′) of Γ′
648
+ Let T be the metric tree with model (T ′, t′) in Figure 1.3, where the tree
649
+ T ′ is given with its vertex set V (T ′) = {w0, w1, w6, w8, w9, w10, w11}, and edge
650
+ set E(T ′) = {w0w1, w0w9, w0w10, w0w11, w1w6, w1w8}, whereas the length map
651
+ t′ on T is defined by
652
+ t′(w0w9) = d
653
+ 2
654
+ t′(w0w10) = e
655
+ 2
656
+ t′(w0w11) = f
657
+ 2
658
+ t′(w0w1) = c
659
+ t′(w1w8) = b − c
660
+ 2
661
+ t′(w1w6) = a − c
662
+ 2
663
+ .
664
+ 12
665
+
666
+ T = (T ′, t′)
667
+ Γ′ = (G′, l′)
668
+ v5
669
+ v2
670
+ c
671
+ v3
672
+ c
673
+ v1
674
+ v4
675
+ c
676
+ w1
677
+ w0
678
+ w6
679
+ w8
680
+ w10
681
+ w11
682
+ w9
683
+ d
684
+ e
685
+ f
686
+ v′
687
+ 9
688
+ v11
689
+ v10
690
+ ϕ
691
+ Curve
692
+ v7
693
+ b − c
694
+ a − c
695
+ v8
696
+ v6
697
+ Figure 1.3. The model (T ′, t′) of T
698
+ Let ψ : V (G′) → V (T ) the map on the set of vertices given by v2, v3, v4 �→
699
+ w0, v1, v7, v5 �→ w1, and vi, v′
700
+ i �→ wi for i = 6, 8, 9, 10, 11. Then, the map ψ
701
+ satisfies the condition in Lemma 3.1, and so, there exist a unique continuous
702
+ map ϕ : Γ′ → T such that ϕ|V (G′) = ψ, and ϕ is linear on each edge e′ ∈ E(G′)
703
+ with slope t′(e)/l′(e′), where e = ϕ(e′) ∈ E(T ) with endpoints ψ(v) and ψ(w).
704
+ The map ϕ given in Figure 2. By construction, the models (G′, l′) and (T ′, t′)
705
+ satisfy the condition in Definition 2.4, and therefore, ϕ is a piecewise linear
706
+ function. From our choice of length maps t′, l′, the slope of ϕ|e′ is equal to 1 for
707
+ all edges e′. Thus, ϕ has non-zero integer slopes along its edges of linearity. It
708
+ is remaining to show that the map ϕ satisfies (i) the harmonicity condition and
709
+ (ii) the Riemann-Hurtswitz condition on every point v ∈ Γ′.
710
+ (i) Assume that v ∈ Γ
711
+ ′ is a vertex point, say v = v1 ∈ V (G′). Then, for all
712
+ the directions ⃗w at ϕ(v) = w1, we have that mϕ, ⃗w(v1) = 1. We check that
713
+ the harmonicity condition holds on every other vertex point in a similar
714
+ fashion, and this checking process terminates because the vertex set is
715
+ finite. Whenever v is not a vertex point, say v ∈ int(e) for some edge
716
+ e ∈ E(G′), we have that ϕ(v) ∈ int(e′) where e′ = ϕ(e). Consider the
717
+ new vertex sets on Γ′ and T by adding v and w respectively. There are
718
+ only two directions ⃗w1 and ⃗w2 at ϕ(v) because val(ϕ(v)) = 2. The slopes
719
+ of ϕ at v with directions ⃗w1 and ⃗w2 at ϕ(v) are equal to the slope of the
720
+ same linear map ϕ|e i.e., mϕ, ⃗w1(v) = mϕ, ⃗w2(v), and so, we get that ϕ is
721
+ a harmonic map. Its degree is 3 because for a fixed w ∈ T , say w1, the
722
+ degree of ϕ is given by
723
+ deg(ϕ) =
724
+
725
+ v∈Γ′,ϕ(v)=w1
726
+ mϕ(v)
727
+ = mϕ(v1) + mϕ(v7) + mϕ(v5)
728
+ = 3.
729
+ (ii) Assume that v ∈ Γ′ is a vertex point, say v = v8 ∈ V (G′). Then, mϕ(v8) =
730
+ 2, val(v8) = 2, and val(ϕ(v8)) = 1. Therefore,
731
+ (val(v8) − 2) − mϕ(v8) ·
732
+
733
+ val (ϕ(v8)) − 2
734
+
735
+ = 2 > 0.
736
+ Similarly, we check that the Riemann-Hurwitz condition holds on every
737
+ other vertex point. Now, assume that v is not a vertex point. Consider
738
+ 13
739
+
740
+ the new vertex sets on Γ′ and T (just like in part (i)) by adding v and
741
+ w respectively. Then, we have that val(v) = val(ϕ(v)) = 2, and so the
742
+ Riemann-Hurwitz condition holds.
743
+ From (i) and (ii), we obtain that the map ϕ : Γ′ → T is a tropical morphism
744
+ of metric graphs of degree 3, and so, the solution for the Case 1.1.A is finished.
745
+ T
746
+ Γ′
747
+ v2
748
+ c
749
+ v3
750
+ c
751
+ v1
752
+ v4
753
+ c
754
+ c
755
+ a−c
756
+ 2
757
+ b−c
758
+ 2
759
+ e
760
+ 2
761
+ f
762
+ 2
763
+ d
764
+ 2
765
+ d
766
+ e
767
+ f
768
+ f
769
+ 2
770
+ e
771
+ 2
772
+ d
773
+ 2
774
+ ϕ
775
+ Curve
776
+ b − c
777
+ a − c
778
+ b−c
779
+ 2
780
+ a−c
781
+ 2
782
+ Figure 2. The tropical morphism ϕ : Γ′ → T
783
+ Remark 3.1 Let ϕ : Γ′ → T be non-constant piecewise linear map with
784
+ nonzero integer slopes (as in Case 1.1.A), where the models (G′, l′), (T ′, t′) of Γ′,
785
+ T respectively, are taken so that the condition in the Definition 2.4 is satisfied.
786
+ In order to show that ϕ satisfies the harmonicity and the Riemann-Hurwitz
787
+ condition on Γ′, it is enough to check those conditions on vertex points. This is
788
+ due to the parts (i) and (ii) above.
789
+ Case 1.1.B. Let Γ′
790
+ 1 be the tropical modification of Γ with model (G′
791
+ 1, l′
792
+ 1),
793
+ where the graph G′
794
+ 1 is obtained by contracting the edges v1v8, v8v7, and v5v′
795
+ 8
796
+ of G′ in Figure 1.2. Let T1 be the metric tree with model (T ′
797
+ 1, t′
798
+ 1), where the
799
+ tree T ′
800
+ 1 is obtained by contracting the edge w1w8 of T ′ in Figure 1.3. Next, let
801
+ ψ1 : V (G′
802
+ 1) → V (T1) the map on the set of vertices given by v2, v3, v4 �→ w0,
803
+ v1, v5 �→ w1, and vi, v′
804
+ i �→ wi for i = 6, 9, 10, 11.
805
+ This map ψ satisfies the
806
+ condition in Lemma 3.1, and so, there exist a unique continuous map ϕ1 : Γ′
807
+ 1 →
808
+ T1, given in Figure 3, such that ϕ1|V (G′
809
+ 1) = ψ1 and ϕ1 is linear on each edge
810
+ e′ ∈ E(G′
811
+ 1) with slope t′
812
+ 1(e)/l′
813
+ 1(e′), where e = ϕ1(e′) ∈ E(T1) with endpoints
814
+ ψ1(v) and ψ1(w). Following the reasoning in (i) and (ii), we get that ϕ1 is a
815
+ tropical map of degree 3, and thus, the solution of Case 1.1.B is done.
816
+ 14
817
+
818
+ T1
819
+ Γ′
820
+ 1
821
+ v2
822
+ c
823
+ v3
824
+ v1
825
+ v4
826
+ c
827
+ c
828
+ a−c
829
+ 2
830
+ e
831
+ 2
832
+ f
833
+ 2
834
+ d
835
+ 2
836
+ d
837
+ e
838
+ f
839
+ f
840
+ 2
841
+ e
842
+ 2
843
+ d
844
+ 2
845
+ ϕ1
846
+ Curve
847
+ a − c
848
+ a−c
849
+ 2
850
+ c
851
+ Figure 3. The tropical map ϕ1 : Γ′
852
+ 1 → T1
853
+ T ′
854
+ 2
855
+ Γ′
856
+ 2
857
+ v2
858
+ v3
859
+ v1
860
+ v4
861
+ c
862
+ c
863
+ e
864
+ 2
865
+ f
866
+ 2
867
+ d
868
+ 2
869
+ d
870
+ e
871
+ f
872
+ f
873
+ 2
874
+ e
875
+ 2
876
+ d
877
+ 2
878
+ ϕ2
879
+ Curve
880
+ c
881
+ c
882
+ Figure 4. The tropical map ϕ2 : Γ′
883
+ 2 → T2
884
+ Case 1.1.C. Let Γ′
885
+ 2 be the tropical modification of Γ with model (G′
886
+ 2, l′
887
+ 2),
888
+ where G′
889
+ 2 is obtained by contracting the edges v1v6, v6v5, v7v′
890
+ 6, v1v8, v8v7 and
891
+ v5v′
892
+ 8 of the graph G′ as in Figure 1.2. Let T2 be the metric tree with model
893
+ (T ′
894
+ 2, t′
895
+ 2), where the tree T ′
896
+ 2 is obtained by contracting the edges w1w6, w1w8
897
+ of the tree T ′ as in Figure 1.3. Next, let ψ2 : V (G′
898
+ 2) → V (T2) the map on
899
+ the set of vertices given by v2, v3, v4 �→ w0, v1 �→ w1 and vi, v′
900
+ i �→ wi for
901
+ i = 9, 10, 11.
902
+ The function ψ2 satisfies the condition in Lemma 3.1 and so,
903
+ there exist a unique continuous map ϕ2 : Γ′
904
+ 2 → T2, given in Figure 4, such that
905
+ ϕ2|V (G′
906
+ 2) = ψ2 and ϕ2 is linear on each edge e′ ∈ E(G′
907
+ 2) with slope t′
908
+ 2(e)/l′
909
+ 2(e′),
910
+ 15
911
+
912
+ where e = ϕ2(e′) ∈ E(T2) with endpoints ψ2(v) and ψ2(w).
913
+ Following the
914
+ reasoning in (i) and (ii), we conclude that ϕ2 is a tropical map of degree 3, and
915
+ therefore, the solution of Case 1.1.C is finished.
916
+ Case 1.2.
917
+ Consider the metric graph Γ with essential model (G, l) in
918
+ Figure 5. The graph G is given by its vertex set V (G) = {v1, v2, v3, v4}, and
919
+ edge set E(G) = {v1v2, v3v4, e1, e2, e3, e4}, where e1, e2 (resp., e3, e4) are two
920
+ edges with endpoints v1, v4 (resp., v2, v3). The length map l : E(G) → (0, ∞)
921
+ is defined by assigning v1v2 �→ a, v3v4 �→ b, e1 �→ c, e2 �→ d, e3 �→ e and e4 �→ f
922
+ where a, b, c, d, e, and f are real positive numbers such that a < b. Note that if
923
+ a = b, then Γ is a hyperelliptic metric graph.
924
+ v1
925
+ v2
926
+ v4
927
+ v3
928
+ a
929
+ e
930
+ b
931
+ d
932
+ c
933
+ f
934
+ Curve
935
+ Figure 5. The essential model (G, l) of Γ
936
+ Let (G1, l1) be another model of Γ as in Figure 5.1.
937
+ The graph G1 is
938
+ obtained from G by subdividing the following edges: v3v4 ∈ E(G) into v3v6,
939
+ v6v5, v5v4; e1 ∈ E(G) into v1v7, v7v4; e2 ∈ E(G) into v1v8, v8v4; e3 ∈ E(G) into
940
+ v2v9, v9v3, and e4 ∈ E(G) into v2v10, v10v3, such that
941
+ l1(v3v6) = l1(v6v5) = b − a
942
+ 2
943
+ l1(v1v7) = l1(v7v4) = c
944
+ 2
945
+ l1(v1v8) = l1(v8v4) = d
946
+ 2
947
+ l1(v4v5) = a
948
+ l1(v2v9) = l1(v9v3) = e
949
+ 2
950
+ l1(v2v10) = l1(v10v3) = f
951
+ 2 .
952
+ 16
953
+
954
+ Γ′
955
+ T
956
+ v1
957
+ v2
958
+ a
959
+ v3
960
+ v4
961
+ v5
962
+ a
963
+ v9
964
+ e
965
+ v10
966
+ f
967
+ a
968
+ v6 b − a
969
+ v8
970
+ d
971
+ v7
972
+ c
973
+ d
974
+ 2
975
+ c
976
+ 2
977
+ f
978
+ 2
979
+ e
980
+ 2
981
+ b−a
982
+ 2
983
+ ϕ
984
+ Curve
985
+ Figure 5.1. The model (G1, l1) of Γ
986
+ Let Γ′ be the tropical modification of Γ with model (G′, l′) in Figure 5.2,
987
+ where the graph G′ is given with its vertex set V (G′) = V (G1)∪{v′
988
+ 6, v′
989
+ 7, . . . , v′
990
+ 11},
991
+ and edge set E(G′) = {v2v′
992
+ 6, v3v′
993
+ 11, v′
994
+ 11v′
995
+ 7, v′
996
+ 11v′
997
+ 8, v5v′
998
+ 9, v5v′
999
+ 10}∪E(G1). The length
1000
+ map l′ on G′ is given by l′ = l1 on E(G1), and
1001
+ l′(v1v7) = l′(v7v4) = l′(v11v′
1002
+ 7) = c
1003
+ 2
1004
+ l′(v5v′
1005
+ 10) = l′(v2v10) = l′(v10, v3) = f
1006
+ 2
1007
+ l′(v11v′
1008
+ 8) = l′(v1v8) = l′(v8v4) = d
1009
+ 2
1010
+ l′(v2v′
1011
+ 6) = l′(v3v6) = l′(v6v5) = b − a
1012
+ 2
1013
+ l′(v5v′
1014
+ 9) = l′(v2v9) = l′(v9, v3) = e
1015
+ 2
1016
+ l′(v1v2) = l′(v4v5) = l′(v3v11) = a.
1017
+ Γ′
1018
+ T
1019
+ v1
1020
+ v2
1021
+ a
1022
+ v3
1023
+ a
1024
+ v4
1025
+ v5
1026
+ a
1027
+ v9
1028
+ e
1029
+ v10
1030
+ f
1031
+ a
1032
+ v6 b − a
1033
+ v8
1034
+ d
1035
+ v7
1036
+ c
1037
+ d
1038
+ 2
1039
+ c
1040
+ 2
1041
+ v′
1042
+ 8
1043
+ v′
1044
+ 7
1045
+ f
1046
+ 2
1047
+ e
1048
+ 2
1049
+ b−a
1050
+ 2
1051
+ v��
1052
+ 6
1053
+ b−a
1054
+ 2
1055
+ v′
1056
+ 10
1057
+ f
1058
+ 2
1059
+ v′
1060
+ 9
1061
+ e
1062
+ 2
1063
+ ϕ
1064
+ Curve
1065
+ Figure 5.2. The model (G′, l′) of Γ′
1066
+ Choose T to be the metric tree with model (T ′, t′) in Figure 5.3, where the
1067
+ tree T ′ is given by its vertex set V (T ′) = {w1, w2, w6, w7, . . . , w10}, and edge
1068
+ set E(T ′) = {w1w2, w1w7, w1w8, w2w6, w2w9, w2w10}. The length map t′ on T ′
1069
+ 17
1070
+
1071
+ is given by
1072
+ t′(w2w1) = a
1073
+ t′(w2w6) = b − a
1074
+ 2
1075
+ t′(w1w7) = c
1076
+ 2
1077
+ t′(w1w8) = d
1078
+ 2
1079
+ t′(w2w9) = e
1080
+ 2
1081
+ t′(w2w10) = f
1082
+ 2 .
1083
+ Γ′
1084
+ T
1085
+ v1
1086
+ v2
1087
+ a
1088
+ v3
1089
+ v4
1090
+ v5
1091
+ a
1092
+ v9
1093
+ e
1094
+ v10
1095
+ f
1096
+ w1
1097
+ w2
1098
+ a
1099
+ v6 b − a
1100
+ v8
1101
+ d
1102
+ v7
1103
+ c
1104
+ w8
1105
+ d
1106
+ 2
1107
+ w7
1108
+ c
1109
+ 2
1110
+ w10
1111
+ f
1112
+ 2
1113
+ w9
1114
+ e
1115
+ 2
1116
+ w6
1117
+ b−a
1118
+ 2
1119
+ ϕ
1120
+ Curve
1121
+ Figure 5.3. The model (T ′, t′) of T
1122
+ Let ψ : V (G′) → V (T ) the map on the set of vertices given by v1, v4, v′
1123
+ 11 �→
1124
+ w1, v2, v3, v5 �→ w2, and vi, v′
1125
+ i �→ wi for i = 6, 8, 9, 10, 11.
1126
+ The function ψ
1127
+ satisfies the condition in Lemma 3.1, and so, there exist a unique continuous
1128
+ map ϕ : Γ′ → T , shown in Figure 6, such that ϕ|V (G′) = ψ, and ϕ is linear
1129
+ on each edge e′ ∈ E(G′) with slope t′(e)/l′(e′), where e = ϕ(e′) ∈ E(T ) with
1130
+ endpoints ψ(v) and ψ(w). The tropical morphism ϕ : Γ′ → T is of degree 3
1131
+ essentially because of the reasoning in (i) and (ii).
1132
+ Remark 3.2 The constructions of tropical morphisms of the remaining metric
1133
+ graphs are done similarly as for the metric graph in the Case 1.1.A. In order to
1134
+ avoid tedious writing, we give the construction of a model, a tropical modifica-
1135
+ tion, a metric tree, and a tropical morphism, using only figures from now on.
1136
+ The vertices labeled with a small × are the ’midpoints’ of the edges i.e., when
1137
+ subdividing an edge e into e1 and e2 then both lengths of e1 and e2 are equal
1138
+ to the half of the length of edge e.
1139
+ 18
1140
+
1141
+ Γ′
1142
+ T
1143
+ v1
1144
+ v2
1145
+ a
1146
+ v3
1147
+ a
1148
+ v4
1149
+ a
1150
+ e
1151
+ f
1152
+ a
1153
+ b − a
1154
+ d
1155
+ c
1156
+ d
1157
+ 2
1158
+ c
1159
+ 2
1160
+ f
1161
+ 2
1162
+ e
1163
+ 2
1164
+ b−a
1165
+ 2
1166
+ b−a
1167
+ 2
1168
+ f
1169
+ 2
1170
+ e
1171
+ 2
1172
+ ϕ
1173
+ Curve
1174
+ Figure 6. The tropical morphism ϕ : Γ′ → T
1175
+ v1
1176
+ v4
1177
+ v3
1178
+ d
1179
+ e
1180
+ c
1181
+ f
1182
+ b
1183
+ Curve
1184
+ Figure 7. The essential model (G, l) of Γ1
1185
+ Case 1.3. Consider the metric graph Γ1 with essential model (G, l) in Figure
1186
+ 7, where b, c, d, e, and f are real positive numbers. The model (G1, l1) which is
1187
+ obtained by subdividing (G, l) is shown in Figure 7.1. The tropical modification
1188
+ Γ′
1189
+ 1, the metric tree T1 with models (G′
1190
+ 1, l′
1191
+ 1), (T ′
1192
+ 1, t′
1193
+ 1) is given in Figure 7.2, 7.3,
1194
+ respectively. The construction of the tropical morphism ϕ1 : Γ′
1195
+ 1 → T1 of degree
1196
+ 3 is depicted in Figure 8.
1197
+ 19
1198
+
1199
+ v1
1200
+ v3
1201
+ v4
1202
+ v6
1203
+ b
1204
+ v9
1205
+ e
1206
+ v10
1207
+ f
1208
+ v7
1209
+ c
1210
+ v8
1211
+ d
1212
+ w1
1213
+ w7
1214
+ c
1215
+ 2
1216
+ w8
1217
+ d
1218
+ 2
1219
+ w9
1220
+ e
1221
+ 2
1222
+ w10
1223
+ f
1224
+ 2
1225
+ w6
1226
+ b
1227
+ 2
1228
+ Curve
1229
+ Figure 7.1. The model (G1, l1) of Γ1
1230
+ Γ′
1231
+ 1
1232
+ T1
1233
+ ϕ1
1234
+ v1
1235
+ v3
1236
+ v4
1237
+ v6
1238
+ b
1239
+ v9
1240
+ e
1241
+ v10
1242
+ f
1243
+ v7
1244
+ c
1245
+ v8
1246
+ d
1247
+ w1
1248
+ w7
1249
+ c
1250
+ 2
1251
+ w8
1252
+ d
1253
+ 2
1254
+ w9
1255
+ e
1256
+ 2
1257
+ w10
1258
+ f
1259
+ 2
1260
+ v′
1261
+ 9
1262
+ e
1263
+ 2
1264
+ v′
1265
+ 10
1266
+ f
1267
+ 2
1268
+ w3
1269
+ b
1270
+ 2
1271
+ v′
1272
+ 6
1273
+ b
1274
+ 2
1275
+ v′
1276
+ 8
1277
+ d
1278
+ 2
1279
+ v′
1280
+ 7
1281
+ c
1282
+ 2
1283
+ Curve
1284
+ Figure 7.2. The model (G′
1285
+ 1, l′
1286
+ 1) of Γ′
1287
+ 1
1288
+ v1
1289
+ v3
1290
+ v4
1291
+ v6
1292
+ b
1293
+ v9
1294
+ e
1295
+ v10
1296
+ f
1297
+ v7
1298
+ c
1299
+ v8
1300
+ d
1301
+ w1
1302
+ w7
1303
+ c
1304
+ 2
1305
+ w8
1306
+ d
1307
+ 2
1308
+ w9
1309
+ e
1310
+ 2
1311
+ w10
1312
+ f
1313
+ 2
1314
+ w6
1315
+ b
1316
+ 2
1317
+ Curve
1318
+ Figure 7.3. The model (T ′
1319
+ 1, t′
1320
+ 1) of T1
1321
+ 20
1322
+
1323
+ Γ′
1324
+ 1
1325
+ T1
1326
+ ϕ1
1327
+ v1
1328
+ v3
1329
+ v4
1330
+ v6
1331
+ b
1332
+ v9
1333
+ e
1334
+ v10
1335
+ f
1336
+ v7
1337
+ c
1338
+ v8
1339
+ d
1340
+ w1
1341
+ w7
1342
+ c
1343
+ 2
1344
+ w8
1345
+ d
1346
+ 2
1347
+ w9
1348
+ e
1349
+ 2
1350
+ w10
1351
+ f
1352
+ 2
1353
+ v′
1354
+ 9
1355
+ e
1356
+ 2
1357
+ v′
1358
+ 10
1359
+ f
1360
+ 2
1361
+ w6
1362
+ b
1363
+ 2
1364
+ v′
1365
+ 6
1366
+ b
1367
+ 2
1368
+ v′
1369
+ 8
1370
+ d
1371
+ 2
1372
+ v′
1373
+ 7
1374
+ c
1375
+ 2
1376
+ Curve
1377
+ Figure 8. The tropical morphism ϕ1 : Γ′
1378
+ 1 → T1
1379
+ Case 1.4. Consider the metric graph Γ2 with essential model in Figure
1380
+ 9, where a, b, c, d, and e are real positive numbers such that b > a. Note that
1381
+ if a = b, then Γ2 is a hyperelliptic metric graph. The model (G1, l1) that is
1382
+ obtained by subdividing (G, l) is shown in Figure 9.1.
1383
+ v3
1384
+ v1
1385
+ v2
1386
+ d
1387
+ b
1388
+ a
1389
+ e
1390
+ c
1391
+ Curve
1392
+ Figure 9. The essential model (G, l) of Γ2
1393
+ 21
1394
+
1395
+ Γ′
1396
+ 2
1397
+ T ′
1398
+ 2
1399
+ ϕ2
1400
+ w1
1401
+ w2
1402
+ a
1403
+ w6
1404
+ b−a
1405
+ 2
1406
+ w9
1407
+ e
1408
+ 2
1409
+ w8
1410
+ d
1411
+ 2
1412
+ w7
1413
+ c
1414
+ 2
1415
+ v4
1416
+ v5
1417
+ a
1418
+ v1
1419
+ v2
1420
+ a
1421
+ v8
1422
+ d
1423
+ v7
1424
+ c
1425
+ v6
1426
+ b − a
1427
+ v9
1428
+ e
1429
+ Curve
1430
+ Figure 9.1. The model (G1, l1) of Γ2
1431
+ The tropical modification Γ′
1432
+ 2, the metric tree T2 with models (G′
1433
+ 2, l′
1434
+ 2),
1435
+ (T ′
1436
+ 2, t′
1437
+ 2) is given in Figure 9.2, 9.3 respectively.
1438
+ Γ′
1439
+ 2
1440
+ T ′
1441
+ 2
1442
+ ϕ2
1443
+ w1
1444
+ w2
1445
+ a
1446
+ w6
1447
+ b−a
1448
+ 2
1449
+ w9
1450
+ e
1451
+ 2
1452
+ w8
1453
+ d
1454
+ 2
1455
+ w7
1456
+ c
1457
+ 2
1458
+ v4
1459
+ v5
1460
+ a
1461
+ v1
1462
+ v2
1463
+ a
1464
+ v8
1465
+ d
1466
+ v7
1467
+ c
1468
+ v6
1469
+ b − a
1470
+ v9
1471
+ v11
1472
+ a
1473
+ v′
1474
+ 7
1475
+ c
1476
+ 2
1477
+ v′
1478
+ 8
1479
+ d
1480
+ 2
1481
+ v′
1482
+ 9
1483
+ e
1484
+ 2
1485
+ v′
1486
+ 6
1487
+ b−a
1488
+ 2
1489
+ e
1490
+ Curve
1491
+ Figure 9.2. The model (G′
1492
+ 2, l′
1493
+ 2) of Γ′
1494
+ 2
1495
+ Γ′
1496
+ 2
1497
+ T ′
1498
+ 2
1499
+ ϕ2
1500
+ w1
1501
+ w2
1502
+ a
1503
+ w6
1504
+ b−a
1505
+ 2
1506
+ w9
1507
+ e
1508
+ 2
1509
+ w8
1510
+ d
1511
+ 2
1512
+ w7
1513
+ c
1514
+ 2
1515
+ v4
1516
+ v5
1517
+ a
1518
+ v1
1519
+ v2
1520
+ a
1521
+ v8
1522
+ d
1523
+ v7
1524
+ c
1525
+ v6
1526
+ b − a
1527
+ v9
1528
+ v11
1529
+ a
1530
+ v′
1531
+ 7
1532
+ c
1533
+ 2
1534
+ v′
1535
+ 8
1536
+ d
1537
+ 2
1538
+ v′
1539
+ 9
1540
+ e
1541
+ 2
1542
+ v′
1543
+ 6
1544
+ b−a
1545
+ 2
1546
+ e
1547
+ Curve
1548
+ Figure 9.3. The model (T ′
1549
+ 2, t′
1550
+ 2) of T2
1551
+ The construction of the tropical morphism ϕ2 : Γ′
1552
+ 2 → T2 of degree 3 is
1553
+ depicted in Figure 10.
1554
+ 22
1555
+
1556
+ Γ′
1557
+ 2
1558
+ T2
1559
+ ϕ2
1560
+ a
1561
+ b−a
1562
+ 2
1563
+ e
1564
+ 2
1565
+ d
1566
+ 2
1567
+ c
1568
+ 2
1569
+ v4
1570
+ a
1571
+ v1
1572
+ v2
1573
+ a
1574
+ d
1575
+ c
1576
+ b − a
1577
+ a
1578
+ c
1579
+ 2
1580
+ d
1581
+ 2
1582
+ e
1583
+ 2
1584
+ b−a
1585
+ 2
1586
+ e
1587
+ Curve
1588
+ Figure 10. The tropical morphism ϕ2 : Γ′
1589
+ 2 → T2
1590
+ Case 1.5. Consider the metric graph Γ3 with essential model (G, l) in
1591
+ Figure 11, where a, b, c, and e are real positive numbers such that b > a. Note
1592
+ that if a = b, then Γ2 is a hyperelliptic metric graph. The model (G1, l1) which is
1593
+ obtained by subdividing (G, l) is shown in Figure 11.1. The tropical modification
1594
+ Γ′
1595
+ 3, the metric tree T3 with models (G′
1596
+ 3, l′
1597
+ 3), (T ′
1598
+ 3, t′
1599
+ 3) is given in Figure 11.2, 11.3,
1600
+ respectively. The construction of the tropical morphism ϕ3 : Γ′
1601
+ 3 → T3 of degree
1602
+ 3 is depicted in Figure 12.
1603
+ v1
1604
+ c
1605
+ v2
1606
+ e
1607
+ b
1608
+ a
1609
+ Figure 11. The essential model (G, l) of Γ3
1610
+ 23
1611
+
1612
+ Γ′
1613
+ 3
1614
+ T ′
1615
+ 3
1616
+ ϕ3
1617
+ a
1618
+ b−a
1619
+ 2
1620
+ e
1621
+ 2
1622
+ c
1623
+ 2
1624
+ v1
1625
+ v5
1626
+ a
1627
+ v2
1628
+ v7
1629
+ v6
1630
+ b − a
1631
+ v9
1632
+ v11
1633
+ a
1634
+ v′
1635
+ 7
1636
+ c
1637
+ 2
1638
+ v′
1639
+ 9
1640
+ e
1641
+ 2
1642
+ v′
1643
+ 6
1644
+ b−a
1645
+ 2
1646
+ e
1647
+ Curve
1648
+ a
1649
+ c
1650
+ Figure 11.1. The model (G′
1651
+ 3, l′
1652
+ 3) of Γ′
1653
+ 3
1654
+ Γ′
1655
+ 3
1656
+ T ′
1657
+ 3
1658
+ ϕ3
1659
+ w1
1660
+ w2
1661
+ a
1662
+ w6
1663
+ b−a
1664
+ 2
1665
+ w9
1666
+ e
1667
+ 2
1668
+ w7
1669
+ c
1670
+ 2
1671
+ v1
1672
+ v5
1673
+ a
1674
+ v2
1675
+ v7
1676
+ v6
1677
+ b − a
1678
+ v9
1679
+ v11
1680
+ a
1681
+ v′
1682
+ 7
1683
+ c
1684
+ 2
1685
+ v′
1686
+ 9
1687
+ e
1688
+ 2
1689
+ v′
1690
+ 6
1691
+ b−a
1692
+ 2
1693
+ e
1694
+ Curve
1695
+ a
1696
+ c
1697
+ Figure 11.2. The model (T ′
1698
+ 3, t′
1699
+ 3) of T3
1700
+ Γ′
1701
+ 3
1702
+ T3
1703
+ ϕ3
1704
+ a
1705
+ b−a
1706
+ 2
1707
+ e
1708
+ 2
1709
+ c
1710
+ 2
1711
+ v1
1712
+ a
1713
+ v2
1714
+ b − a
1715
+ a
1716
+ c
1717
+ 2
1718
+ e
1719
+ 2
1720
+ b−a
1721
+ 2
1722
+ e
1723
+ Curve
1724
+ a
1725
+ c
1726
+ Figure 12. The tropical morphism ϕ3 : Γ′
1727
+ 3 → T3
1728
+ 24
1729
+
1730
+ Case 1.6. Consider the metric graph Γ4 with essential model (G, l) in
1731
+ Figure 13, where b, c, d, and e are real positive numbers. The model (G1, l1)
1732
+ that is obtained by subdividing (G, l) is shown in Figure 13.1. The tropical
1733
+ modification Γ′
1734
+ 4, the metric tree T4 with models (G′
1735
+ 4, l′
1736
+ 4), (T ′
1737
+ 4, t′
1738
+ 4) is given in
1739
+ Figure 13.2, 13.3, respectively. The construction of the tropical morphism ϕ4 :
1740
+ Γ′
1741
+ 4 → T4 of degree 3 is depicted in Figure 14.
1742
+ v3
1743
+ v1
1744
+ d
1745
+ e
1746
+ c
1747
+ b
1748
+ Curve
1749
+ Figure 13. The essential model (G, l) of Γ4
1750
+ Γ′
1751
+ 4
1752
+ T4
1753
+ v1
1754
+ v′
1755
+ 3
1756
+ d
1757
+ v′′
1758
+ 3
1759
+ c
1760
+ v′
1761
+ 2
1762
+ b
1763
+ v′
1764
+ 4
1765
+ w′
1766
+ 2
1767
+ b
1768
+ 2
1769
+ w′
1770
+ 4
1771
+ w′
1772
+ 3
1773
+ d
1774
+ 2
1775
+ w′′
1776
+ 3
1777
+ c
1778
+ 2
1779
+ v3
1780
+ Curve
1781
+ e
1782
+ 2
1783
+ e
1784
+ Figure 13.1. The model (G1, l1) of Γ4
1785
+ Γ′
1786
+ 4
1787
+ T4
1788
+ v1
1789
+ v′
1790
+ 3
1791
+ d
1792
+ v′′
1793
+ 3
1794
+ c
1795
+ v′
1796
+ 2
1797
+ b
1798
+ x′
1799
+ 4
1800
+ v′
1801
+ 4
1802
+ x′
1803
+ 2
1804
+ w′
1805
+ 2
1806
+ b
1807
+ 2
1808
+ w′
1809
+ 4
1810
+ x′
1811
+ 3
1812
+ d
1813
+ 2
1814
+ x′′
1815
+ 3
1816
+ c
1817
+ 2
1818
+ w′
1819
+ 3
1820
+ d
1821
+ 2
1822
+ w′′
1823
+ 3
1824
+ c
1825
+ 2
1826
+ v3
1827
+ Curve
1828
+ b
1829
+ 2
1830
+ e
1831
+ 2
1832
+ e
1833
+ 2
1834
+ e
1835
+ Figure 13.2. The model (G′
1836
+ 4, l′
1837
+ 4) of Γ′
1838
+ 4
1839
+ 25
1840
+
1841
+ Γ′
1842
+ 4
1843
+ T4
1844
+ v1
1845
+ d
1846
+ c
1847
+ b
1848
+ w′
1849
+ 2
1850
+ b
1851
+ 2
1852
+ w′
1853
+ 4
1854
+ d
1855
+ 2
1856
+ c
1857
+ 2
1858
+ w′
1859
+ 3
1860
+ d
1861
+ 2
1862
+ w′′
1863
+ 3
1864
+ c
1865
+ 2
1866
+ v3
1867
+ Curve
1868
+ ϕ4
1869
+ b
1870
+ 2
1871
+ e
1872
+ 2
1873
+ e
1874
+ 2
1875
+ e
1876
+ Figure 13.3. The model (T ′
1877
+ 4, t′
1878
+ 4) of T4
1879
+ Γ′
1880
+ 4
1881
+ T4
1882
+ v1
1883
+ d
1884
+ c
1885
+ b
1886
+ b
1887
+ 2
1888
+ d
1889
+ 2
1890
+ c
1891
+ 2
1892
+ d
1893
+ 2
1894
+ c
1895
+ 2
1896
+ v3
1897
+ Curve
1898
+ ϕ4
1899
+ b
1900
+ 2
1901
+ e
1902
+ 2
1903
+ e
1904
+ 2
1905
+ e
1906
+ Figure 14. The tropical morphism ϕ4 : Γ′
1907
+ 4 → T4
1908
+ Case 2. If the metric graph Γ has 1 bridge, then Γ is one of the metric
1909
+ graphs given in Figure 15, 17, or 19.
1910
+ Solution of Case 2.
1911
+ Case 2.1.
1912
+ Consider the metric graph Γ with essential model (G, l) in
1913
+ Figure 15, where a, b, c, d, e, and f are real positive numbers such that b > a.
1914
+ Note that if a = b, then Γ is a hyperelliptic metric graph. The model (G1, l1)
1915
+ which is obtained by subdividing (G, l) is shown in Figure 15.1. The tropical
1916
+ modification Γ′, the metric tree T with model (G′, l′), (T ′, t′) is given in Figure
1917
+ 15.2, 15.3, respectively. The construction of the tropical morphism ϕ : Γ′ → T
1918
+ of degree 3 is depicted in Figure 16.
1919
+ 26
1920
+
1921
+ v3
1922
+ v1
1923
+ v2
1924
+ v4
1925
+ e
1926
+ d
1927
+ c
1928
+ f
1929
+ Curve
1930
+ b
1931
+ a
1932
+ Figure 15. The essential model (G, l) of Γ
1933
+ Γ′
1934
+ T
1935
+ v1
1936
+ v2
1937
+ a
1938
+ v3
1939
+ v′′
1940
+ 2
1941
+ a
1942
+ v′
1943
+ 3
1944
+ d
1945
+ v′′
1946
+ 3
1947
+ c
1948
+ v′
1949
+ 2
1950
+ b − a
1951
+ v4
1952
+ f
1953
+ v′
1954
+ 4
1955
+ e
1956
+ w2
1957
+ w′
1958
+ 2
1959
+ b−a
1960
+ 2
1961
+ w4
1962
+ f
1963
+ w′
1964
+ 4
1965
+ e
1966
+ 2
1967
+ w1
1968
+ a
1969
+ w′′
1970
+ 3
1971
+ c
1972
+ 2
1973
+ ϕ
1974
+ Curve
1975
+ Figure 15.1. The model (G1, l1) of Γ
1976
+ Γ′
1977
+ T
1978
+ x1
1979
+ v1
1980
+ v2
1981
+ a
1982
+ v3
1983
+ v′′
1984
+ 2
1985
+ a
1986
+ x2
1987
+ a
1988
+ v′
1989
+ 3
1990
+ d
1991
+ v′′
1992
+ 3
1993
+ c
1994
+ v′
1995
+ 2
1996
+ b − a
1997
+ x4
1998
+ f
1999
+ v4
2000
+ f
2001
+ f
2002
+ x′
2003
+ 4
2004
+ e
2005
+ 2
2006
+ v′
2007
+ 4
2008
+ e
2009
+ x′
2010
+ 2
2011
+ b−a
2012
+ 2
2013
+ w2
2014
+ w′
2015
+ 2
2016
+ b−a
2017
+ 2
2018
+ w4
2019
+ f
2020
+ w′
2021
+ 4
2022
+ e
2023
+ 2
2024
+ w1
2025
+ a
2026
+ x′
2027
+ 3
2028
+ d
2029
+ 2
2030
+ x′′
2031
+ 3
2032
+ c
2033
+ 2
2034
+ w′′
2035
+ 3
2036
+ c
2037
+ 2
2038
+ ϕ
2039
+ Curve
2040
+ Figure 15.2. The model (G′, l′) of Γ′
2041
+ 27
2042
+
2043
+ Γ′
2044
+ T
2045
+ x1
2046
+ v1
2047
+ v2
2048
+ a
2049
+ v3
2050
+ v′′
2051
+ 2
2052
+ a
2053
+ x2
2054
+ a
2055
+ v′
2056
+ 3
2057
+ d
2058
+ v′′
2059
+ 3
2060
+ c
2061
+ v′
2062
+ 2
2063
+ b − a
2064
+ x4
2065
+ f
2066
+ v4
2067
+ f
2068
+ f
2069
+ x′
2070
+ 4
2071
+ e
2072
+ 2
2073
+ v′
2074
+ 4
2075
+ e
2076
+ w2
2077
+ w′
2078
+ 2
2079
+ b−a
2080
+ 2
2081
+ w4
2082
+ f
2083
+ w′
2084
+ 4
2085
+ e
2086
+ 2
2087
+ w1
2088
+ a
2089
+ x′
2090
+ 3
2091
+ d
2092
+ 2
2093
+ c
2094
+ 2
2095
+ w′
2096
+ 3
2097
+ d
2098
+ 2
2099
+ w′′
2100
+ 3
2101
+ c
2102
+ 2
2103
+ ϕ
2104
+ Curve
2105
+ Figure 15.3. The model (T ′, t′) of T
2106
+ Γ′
2107
+ T
2108
+ v1
2109
+ v2
2110
+ a
2111
+ v3
2112
+ a
2113
+ a
2114
+ d
2115
+ c
2116
+ b − a
2117
+ f
2118
+ v4
2119
+ f
2120
+ f
2121
+ e
2122
+ 2
2123
+ e
2124
+ b−a
2125
+ 2
2126
+ b−a
2127
+ 2
2128
+ f
2129
+ e
2130
+ 2
2131
+ a
2132
+ d
2133
+ 2
2134
+ c
2135
+ 2
2136
+ d
2137
+ 2
2138
+ c
2139
+ 2
2140
+ ϕ
2141
+ Curve
2142
+ Figure 16. The tropical morphism ϕ : Γ′ → T
2143
+ Case 2.2. Consider the metric graph Γ1 with essential model (G, l) in
2144
+ Figure 17, where a, b, c, d, and e are real positive numbers such that b > a. Note
2145
+ that if a = b, then Γ2 is a hyperelliptic metric graph. The model (G1, l1) that
2146
+ obtained by subdividing (G, l) is shown in Figure 17.1. The tropical modification
2147
+ Γ′
2148
+ 1, the metric tree T1 with model (G′
2149
+ 1, l′
2150
+ 1), (T ′
2151
+ 1, t′
2152
+ 1) is given in Figure 17.2, 17.3,
2153
+ respectively. The construction of the tropical morphism ϕ : Γ′
2154
+ 1 → T1 of degree
2155
+ 3 is depicted in Figure 18.
2156
+ v1
2157
+ v2
2158
+ v4
2159
+ d
2160
+ e
2161
+ Curve
2162
+ c
2163
+ a
2164
+ b
2165
+ Figure 17. The essential model (G, l) of Γ1
2166
+ 28
2167
+
2168
+ Γ′
2169
+ 1
2170
+ T1
2171
+ v1
2172
+ v2
2173
+ a
2174
+ v′′
2175
+ 2
2176
+ a
2177
+ v′′
2178
+ 3
2179
+ v′
2180
+ 2
2181
+ b − a
2182
+ v4
2183
+ f
2184
+ v′
2185
+ 4
2186
+ e
2187
+ x′
2188
+ 2
2189
+ w2
2190
+ w′
2191
+ 2
2192
+ b−a
2193
+ 2
2194
+ w4
2195
+ f
2196
+ w′
2197
+ 4
2198
+ e
2199
+ 2
2200
+ w1
2201
+ a
2202
+ x′′
2203
+ 3
2204
+ w′′
2205
+ 3
2206
+ c
2207
+ 2
2208
+ Curve
2209
+ c
2210
+ Figure 17.1. The model (G1, l1) of Γ1
2211
+ Γ′
2212
+ 1
2213
+ T1
2214
+ x1
2215
+ v1
2216
+ v2
2217
+ a
2218
+ v′′
2219
+ 2
2220
+ a
2221
+ x2
2222
+ a
2223
+ v′′
2224
+ 3
2225
+ v′
2226
+ 2
2227
+ b − a
2228
+ x4
2229
+ f
2230
+ v4
2231
+ f
2232
+ f
2233
+ x′
2234
+ 4
2235
+ e
2236
+ 2
2237
+ v′
2238
+ 4
2239
+ e
2240
+ x′
2241
+ 2
2242
+ b−a
2243
+ 2
2244
+ w2
2245
+ w′
2246
+ 2
2247
+ b−a
2248
+ 2
2249
+ w4
2250
+ f
2251
+ w′
2252
+ 4
2253
+ e
2254
+ 2
2255
+ w1
2256
+ a
2257
+ x′′
2258
+ 3
2259
+ c
2260
+ 2
2261
+ w′′
2262
+ 3
2263
+ c
2264
+ 2
2265
+ Curve
2266
+ c
2267
+ Figure 17.2. The model (G′
2268
+ 1, l′
2269
+ 1) of Γ′
2270
+ 1
2271
+ Γ′
2272
+ 1
2273
+ T1
2274
+ x1
2275
+ v1
2276
+ v2
2277
+ a
2278
+ v′′
2279
+ 2
2280
+ a
2281
+ x2
2282
+ a
2283
+ v′′
2284
+ 3
2285
+ v′
2286
+ 2
2287
+ b − a
2288
+ x4
2289
+ f
2290
+ v4
2291
+ f
2292
+ f
2293
+ x′
2294
+ 4
2295
+ e
2296
+ 2
2297
+ v′
2298
+ 4
2299
+ e
2300
+ x′
2301
+ 2
2302
+ b−a
2303
+ 2
2304
+ w2
2305
+ w′
2306
+ 2
2307
+ b−a
2308
+ 2
2309
+ w4
2310
+ f
2311
+ w′
2312
+ 4
2313
+ e
2314
+ 2
2315
+ w1
2316
+ a
2317
+ x′′
2318
+ 3
2319
+ c
2320
+ 2
2321
+ w′′
2322
+ 3
2323
+ c
2324
+ 2
2325
+ Curve
2326
+ c
2327
+ Figure 17.3. The model (T ′
2328
+ 1, t′
2329
+ 1) of T1
2330
+ 29
2331
+
2332
+ Γ′
2333
+ 1
2334
+ T1
2335
+ ϕ1
2336
+ x1
2337
+ v1
2338
+ v2
2339
+ a
2340
+ v′′
2341
+ 2
2342
+ a
2343
+ x2
2344
+ a
2345
+ v′′
2346
+ 3
2347
+ v′
2348
+ 2
2349
+ b − a
2350
+ x4
2351
+ f
2352
+ v4
2353
+ f
2354
+ f
2355
+ x′
2356
+ 4
2357
+ e
2358
+ 2
2359
+ v′
2360
+ 4
2361
+ e
2362
+ x′
2363
+ 2
2364
+ b−a
2365
+ 2
2366
+ w2
2367
+ w′
2368
+ 2
2369
+ b−a
2370
+ 2
2371
+ w4
2372
+ f
2373
+ w′
2374
+ 4
2375
+ e
2376
+ 2
2377
+ w1
2378
+ a
2379
+ x′′
2380
+ 3
2381
+ c
2382
+ 2
2383
+ w′′
2384
+ 3
2385
+ c
2386
+ 2
2387
+ Curve
2388
+ c
2389
+ Figure 18. The tropical morphism ϕ1 : Γ1 → T1
2390
+ Case 2.3. Consider the metric graph Γ2 with essential model in Figure
2391
+ 19, where a, b, c, d, e, and f are real positive numbers. The model (G1, l1) which
2392
+ obtained by subdividing (G, l) is shown in Figure 19.1. The tropical modification
2393
+ Γ′
2394
+ 2, the metric tree T2 with model (G′
2395
+ 2, l′
2396
+ 2), (T ′
2397
+ 2, t′
2398
+ 2) 7is given in Figure 19.2, 19.3,
2399
+ respectively. The construction of the tropical morphism ϕ2 : Γ′
2400
+ 2 → T2 of degree
2401
+ 3 is depicted in Figure 20.
2402
+ v1
2403
+ v3
2404
+ b
2405
+ d
2406
+ c
2407
+ v4
2408
+ e
2409
+ f
2410
+ Curve
2411
+ Figure 19. The essential model (G, l) of Γ2
2412
+ 30
2413
+
2414
+ Γ′
2415
+ 2
2416
+ T2
2417
+ v1
2418
+ v′
2419
+ 3
2420
+ d
2421
+ v′′
2422
+ 3
2423
+ c
2424
+ v′
2425
+ 2
2426
+ b
2427
+ v4
2428
+ f
2429
+ v′
2430
+ 4
2431
+ e
2432
+ x′
2433
+ 2
2434
+ b
2435
+ 2
2436
+ w1
2437
+ w′
2438
+ 2
2439
+ b
2440
+ 2
2441
+ w4
2442
+ f
2443
+ w′
2444
+ 4
2445
+ e
2446
+ 2
2447
+ x′′
2448
+ 3
2449
+ w′
2450
+ 3
2451
+ d
2452
+ 2
2453
+ w′′
2454
+ 3
2455
+ c
2456
+ 2
2457
+ v3
2458
+ Curve
2459
+ ϕ2
2460
+ Figure 19.1. The model (G1, l1) of Γ2
2461
+ Γ′
2462
+ 2
2463
+ T2
2464
+ x1
2465
+ v1
2466
+ v′
2467
+ 3
2468
+ d
2469
+ v′′
2470
+ 3
2471
+ c
2472
+ v′
2473
+ 2
2474
+ b
2475
+ x4
2476
+ f
2477
+ v4
2478
+ f
2479
+ f
2480
+ x′
2481
+ 4
2482
+ e
2483
+ 2
2484
+ v′
2485
+ 4
2486
+ e
2487
+ x′
2488
+ 2
2489
+ b
2490
+ 2
2491
+ w1
2492
+ w′
2493
+ 2
2494
+ b
2495
+ 2
2496
+ w4
2497
+ f
2498
+ w′
2499
+ 4
2500
+ e
2501
+ 2
2502
+ x′
2503
+ 3
2504
+ d
2505
+ 2
2506
+ x′′
2507
+ 3
2508
+ c
2509
+ 2
2510
+ w′
2511
+ 3
2512
+ d
2513
+ 2
2514
+ w′′
2515
+ 3
2516
+ c
2517
+ 2
2518
+ v3
2519
+ Curve
2520
+ ϕ2
2521
+ Figure 19.2. The model (G′
2522
+ 2, l′
2523
+ 2) of Γ′
2524
+ 2
2525
+ Γ′
2526
+ 2
2527
+ T2
2528
+ x1
2529
+ v1
2530
+ v′
2531
+ 3
2532
+ d
2533
+ v′′
2534
+ 3
2535
+ c
2536
+ v′
2537
+ 2
2538
+ b
2539
+ x4
2540
+ f
2541
+ v4
2542
+ f
2543
+ f
2544
+ x′
2545
+ 4
2546
+ e
2547
+ 2
2548
+ v′
2549
+ 4
2550
+ e
2551
+ x′
2552
+ 2
2553
+ b
2554
+ 2
2555
+ w1
2556
+ w′
2557
+ 2
2558
+ b
2559
+ 2
2560
+ w4
2561
+ f
2562
+ w′
2563
+ 4
2564
+ e
2565
+ 2
2566
+ x′
2567
+ 3
2568
+ d
2569
+ 2
2570
+ x′′
2571
+ 3
2572
+ c
2573
+ 2
2574
+ w′
2575
+ 3
2576
+ d
2577
+ 2
2578
+ w′′
2579
+ 3
2580
+ c
2581
+ 2
2582
+ v3
2583
+ Curve
2584
+ ϕ2
2585
+ Figure 19.3. The model (T ′
2586
+ 2, l′
2587
+ 2) of T2
2588
+ 31
2589
+
2590
+ Γ′
2591
+ 2
2592
+ T2
2593
+ v1
2594
+ d
2595
+ c
2596
+ b
2597
+ f
2598
+ v4
2599
+ f
2600
+ f
2601
+ e
2602
+ 2
2603
+ e
2604
+ b
2605
+ 2
2606
+ b
2607
+ 2
2608
+ f
2609
+ e
2610
+ 2
2611
+ d
2612
+ 2
2613
+ c
2614
+ 2
2615
+ d
2616
+ 2
2617
+ c
2618
+ 2
2619
+ v3
2620
+ Curve
2621
+ ϕ2
2622
+ Figure 20. The tropical morphism ϕ2 : Γ′
2623
+ 2 → T2
2624
+ Case 3. If the metric graph Γ has 2 bridges, then Γ is one of the metric
2625
+ graphs given in Figure 21 or 23.
2626
+ Solution of Case 3.
2627
+ Case 3.1.
2628
+ Consider the metric graph Γ with essential model (G, l) in
2629
+ Figure 21, where a, b, c, d, e, and f are real positive numbers such that b > a.
2630
+ Note that if b = a, then Γ is a hyperelliptic metric graph. The model (G1, l1) that
2631
+ obtained by subdividing (G, l) is shown in Figure 21.1. The tropical modification
2632
+ Γ′, the metric tree T with model (G′, l′), (T ′, t′) is given in Figure 21.2, 21.3,
2633
+ respectively. The construction of the tropical morphism ϕ : Γ′ → T of degree 3
2634
+ is depicted in Figure 22.
2635
+ v1
2636
+ v2
2637
+ v4
2638
+ d
2639
+ e
2640
+ Curve
2641
+ v3
2642
+ c
2643
+ a
2644
+ b
2645
+ f
2646
+ Figure 21. The essential model (G, l) of Γ
2647
+ 32
2648
+
2649
+ Γ′
2650
+ T
2651
+ v3
2652
+ v1
2653
+ c
2654
+ v2
2655
+ a
2656
+ v4
2657
+ d
2658
+ v′
2659
+ 3
2660
+ f
2661
+ v′
2662
+ 4
2663
+ e
2664
+ v′′
2665
+ 2
2666
+ a
2667
+ w1
2668
+ w2
2669
+ a
2670
+ w′
2671
+ 2
2672
+ b−a
2673
+ 2
2674
+ w4
2675
+ d
2676
+ w′
2677
+ 4
2678
+ e
2679
+ 2
2680
+ w3
2681
+ 2c
2682
+ w′
2683
+ 3
2684
+ f
2685
+ 2
2686
+ x′
2687
+ 2
2688
+ b − a
2689
+ v′
2690
+ 2
2691
+ ϕ
2692
+ Curve
2693
+ Figure 21.1. The model (G1, l1) of Γ
2694
+ Γ′
2695
+ T
2696
+ v3
2697
+ v1
2698
+ c
2699
+ v2
2700
+ a
2701
+ v4
2702
+ d
2703
+ v′
2704
+ 3
2705
+ f
2706
+ v′
2707
+ 4
2708
+ e
2709
+ v′′
2710
+ 2
2711
+ a
2712
+ x4
2713
+ d
2714
+ x′
2715
+ 4
2716
+ e
2717
+ 2
2718
+ x2
2719
+ d
2720
+ x1
2721
+ a
2722
+ x3
2723
+ 2c
2724
+ x′
2725
+ 3
2726
+ f
2727
+ 2
2728
+ w1
2729
+ w2
2730
+ a
2731
+ w′
2732
+ 2
2733
+ b−a
2734
+ 2
2735
+ w4
2736
+ d
2737
+ w′
2738
+ 4
2739
+ e
2740
+ 2
2741
+ w3
2742
+ 2c
2743
+ w′
2744
+ 3
2745
+ f
2746
+ 2
2747
+ x′
2748
+ 2
2749
+ b−a
2750
+ 2
2751
+ b − a v′
2752
+ 2
2753
+ ϕ
2754
+ Curve
2755
+ Figure 21.2. The model (G′, l′) of Γ′
2756
+ Γ′
2757
+ T
2758
+ v3
2759
+ v1
2760
+ c
2761
+ v2
2762
+ a
2763
+ v4
2764
+ d
2765
+ v′
2766
+ 3
2767
+ f
2768
+ v′
2769
+ 4
2770
+ e
2771
+ v′′
2772
+ 2
2773
+ a
2774
+ x4
2775
+ d
2776
+ x′
2777
+ 4
2778
+ e
2779
+ 2
2780
+ x2
2781
+ d
2782
+ x1
2783
+ a
2784
+ x3
2785
+ 2c
2786
+ x′
2787
+ 3
2788
+ f
2789
+ 2
2790
+ w1
2791
+ w2
2792
+ a
2793
+ w′
2794
+ 2
2795
+ b−a
2796
+ 2
2797
+ w4
2798
+ d
2799
+ w′
2800
+ 4
2801
+ e
2802
+ 2
2803
+ w3
2804
+ 2c
2805
+ w′
2806
+ 3
2807
+ f
2808
+ 2
2809
+ x′
2810
+ 2
2811
+ b−a
2812
+ 2
2813
+ b − a v′
2814
+ 2
2815
+ ϕ
2816
+ Curve
2817
+ Figure 21.3. The model (T ′, t′) of T
2818
+ 33
2819
+
2820
+ Γ′
2821
+ T
2822
+ v3
2823
+ v1
2824
+ c
2825
+ v2
2826
+ a
2827
+ v4
2828
+ d
2829
+ f
2830
+ e
2831
+ a
2832
+ d
2833
+ e
2834
+ 2
2835
+ d
2836
+ a
2837
+ 2c
2838
+ f
2839
+ 2
2840
+ a
2841
+ b−a
2842
+ 2
2843
+ d
2844
+ e
2845
+ 2
2846
+ 2c
2847
+ f
2848
+ 2
2849
+ b−a
2850
+ 2
2851
+ b − a
2852
+ ϕ
2853
+ Figure 22. The tropical morphism ϕ : Γ′ → T
2854
+ Case 3.2. Consider the metric graph Γ1 with essential model (G, l) in
2855
+ Figure 23, where a, b, c, d, e, and f are real positive numbers. The model (G1, l1)
2856
+ that is obtained by subdividing (G, l) is shown in Figure 23.1. The tropical
2857
+ modification Γ′
2858
+ 1, the metric tree T1 with model (G′
2859
+ 1, l′
2860
+ 1), (T ′
2861
+ 1, t′
2862
+ 1) is given in Figure
2863
+ 23.2, 23.3, respectively. The construction of the tropical morphism ϕ1 : Γ′
2864
+ 1 → T1
2865
+ of degree 3 is depicted in Figure 24.
2866
+ v3
2867
+ v1
2868
+ v4
2869
+ c
2870
+ d
2871
+ e
2872
+ b
2873
+ f
2874
+ Figure 23. The essential model (G, l) of Γ1
2875
+ 34
2876
+
2877
+ Γ′
2878
+ 1
2879
+ T1
2880
+ ϕ1
2881
+ v3
2882
+ c
2883
+ v1
2884
+ v4
2885
+ d
2886
+ v′
2887
+ 3
2888
+ f
2889
+ v′
2890
+ 4
2891
+ e
2892
+ w1
2893
+ w4
2894
+ d
2895
+ w′
2896
+ 4
2897
+ e
2898
+ 2
2899
+ w3
2900
+ 2c
2901
+ w′
2902
+ 3
2903
+ f
2904
+ 2
2905
+ b
2906
+ v′
2907
+ 2
2908
+ Curve
2909
+ Figure 23.1. The model (G1, l1) of Γ1
2910
+ v3
2911
+ c
2912
+ v1
2913
+ v4
2914
+ d
2915
+ v′
2916
+ 3
2917
+ f
2918
+ v′
2919
+ 4
2920
+ e
2921
+ x4
2922
+ x′
2923
+ 4
2924
+ e
2925
+ 2
2926
+ d
2927
+ x1
2928
+ x3
2929
+ 2c
2930
+ x′
2931
+ 3
2932
+ f
2933
+ 2
2934
+ w1
2935
+ w4
2936
+ d
2937
+ w′
2938
+ 4
2939
+ e
2940
+ 2
2941
+ w3
2942
+ 2c
2943
+ w′
2944
+ 3
2945
+ f
2946
+ 2
2947
+ d
2948
+ b
2949
+ v′
2950
+ 2
2951
+ x′
2952
+ 2
2953
+ b
2954
+ 2
2955
+ w′
2956
+ 2
2957
+ b
2958
+ 2
2959
+ Curve
2960
+ Figure 23.2. The model (G′
2961
+ 1, l′
2962
+ 1) of Γ′
2963
+ 1
2964
+ v3
2965
+ c
2966
+ v1
2967
+ v4
2968
+ d
2969
+ v′
2970
+ 3
2971
+ f
2972
+ v��
2973
+ 4
2974
+ e
2975
+ x4
2976
+ x′
2977
+ 4
2978
+ e
2979
+ 2
2980
+ d
2981
+ x1
2982
+ x3
2983
+ 2c
2984
+ x′
2985
+ 3
2986
+ f
2987
+ 2
2988
+ w1
2989
+ w4
2990
+ d
2991
+ w′
2992
+ 4
2993
+ e
2994
+ 2
2995
+ w3
2996
+ 2c
2997
+ w′
2998
+ 3
2999
+ f
3000
+ 2
3001
+ d
3002
+ b
3003
+ v′
3004
+ 2
3005
+ x′
3006
+ 2
3007
+ b
3008
+ 2
3009
+ w′
3010
+ 2
3011
+ b
3012
+ 2
3013
+ Curve
3014
+ Figure 23.3. The model (T ′
3015
+ 1, t′
3016
+ 1) of T1
3017
+ 35
3018
+
3019
+ Γ′
3020
+ 1
3021
+ T1
3022
+ ϕ1
3023
+ v3
3024
+ c
3025
+ v1
3026
+ v4
3027
+ d
3028
+ v′
3029
+ 3
3030
+ f
3031
+ v′
3032
+ 4
3033
+ e
3034
+ x4
3035
+ x′
3036
+ 4
3037
+ e
3038
+ 2
3039
+ d
3040
+ x1
3041
+ x3
3042
+ 2c
3043
+ x′
3044
+ 3
3045
+ f
3046
+ 2
3047
+ w1
3048
+ w4
3049
+ d
3050
+ w′
3051
+ 4
3052
+ e
3053
+ 2
3054
+ w3
3055
+ 2c
3056
+ w′
3057
+ 3
3058
+ f
3059
+ 2
3060
+ d
3061
+ b
3062
+ v′
3063
+ 2
3064
+ x′
3065
+ 2
3066
+ b
3067
+ 2
3068
+ w′
3069
+ 2
3070
+ b
3071
+ 2
3072
+ Curve
3073
+ Figure 24. The tropical morphism ϕ1 : Γ′
3074
+ 1 → T1
3075
+ Case 4. If the metric graph Γ has 3 bridges, then Γ is the metric graph
3076
+ given in Figure 25.
3077
+ Solution of Case 4.
3078
+ Consider the metric graph Γ with essential model (G, l) in Figure 25, where
3079
+ a, b, c, d, e, and f are real positive numbers. Note that the metric graph Γ is
3080
+ hyperelliptic in the sense of Kawaguchi-Yamaki KY15] i.e., there is a harmonic
3081
+ morphism from Γ to a metric tree, but it is not hyperelliptic in our sense be-
3082
+ cause the harmonic map coming from the unique hyperelliptic involution ι on
3083
+ Γ (see Theorem 3.5, KY15]) is not a tropical morphism in our sense because it
3084
+ does not satisfy the Riemann-Hurwitz condition. The model (G1, l1) that is ob-
3085
+ tained by subdividing (G, l) is shown in Figure 25.1. The tropical modification
3086
+ Γ′, the metric tree T with model (G′, l′), (T ′, t′) is given in Figure 25.2, 25.3,
3087
+ respectively. The construction of the tropical morphism ϕ : Γ′ → T of degree 3
3088
+ is depicted in Figure 26. This ends our constructive solution of Problem 1.
3089
+ v1
3090
+ v2
3091
+ a
3092
+ v3
3093
+ b
3094
+ v4
3095
+ c
3096
+ f
3097
+ e
3098
+ d
3099
+ Figure 25. The essential model (G, l) of Γ
3100
+ 36
3101
+
3102
+ Γ′
3103
+ T
3104
+ v′
3105
+ 2
3106
+ d
3107
+ v2
3108
+ v1
3109
+ a
3110
+ w2
3111
+ w′
3112
+ 2
3113
+ v3
3114
+ b
3115
+ e
3116
+ v′
3117
+ 3
3118
+ x3
3119
+ x′
3120
+ 3
3121
+ e
3122
+ 2
3123
+ w3
3124
+ w′
3125
+ 3
3126
+ e
3127
+ 2
3128
+ v4
3129
+ c
3130
+ v′
3131
+ 4
3132
+ w′
3133
+ 4
3134
+ ϕ
3135
+ f
3136
+ Curve
3137
+ Figure 25.1. The model (G1, l1) of Γ
3138
+ Γ′
3139
+ T
3140
+ v′
3141
+ 2
3142
+ d
3143
+ v2
3144
+ v1
3145
+ a
3146
+ x2
3147
+ 2a
3148
+ x′
3149
+ 2
3150
+ d
3151
+ 2
3152
+ w2
3153
+ w′
3154
+ 2
3155
+ v3
3156
+ b
3157
+ e
3158
+ v′
3159
+ 3
3160
+ x3
3161
+ 2b
3162
+ x′
3163
+ 3
3164
+ e
3165
+ 2
3166
+ w3
3167
+ w′
3168
+ 3
3169
+ e
3170
+ 2
3171
+ v4
3172
+ c
3173
+ v′
3174
+ 4
3175
+ x4
3176
+ 2c
3177
+ x′
3178
+ 4
3179
+ f
3180
+ 2
3181
+ w′
3182
+ 4
3183
+ ϕ
3184
+ f
3185
+ Curve
3186
+ Figure 25.2. The model (G′, l′) of Γ′
3187
+ Γ′
3188
+ T
3189
+ d
3190
+ v2
3191
+ v1
3192
+ a
3193
+ 2a
3194
+ d
3195
+ 2
3196
+ w1
3197
+ w2
3198
+ 2a
3199
+ w′
3200
+ 2
3201
+ d
3202
+ 2
3203
+ v3
3204
+ b
3205
+ e
3206
+ 2b
3207
+ w3
3208
+ 2b
3209
+ w′
3210
+ 3
3211
+ e
3212
+ 2
3213
+ v4
3214
+ c
3215
+ 2c
3216
+ f
3217
+ 2
3218
+ w4
3219
+ 2c
3220
+ w′
3221
+ 4
3222
+ f
3223
+ 2
3224
+ ϕ
3225
+ f
3226
+ Curve
3227
+ Figure 25.3. The model (T ′, t′) of T
3228
+ 37
3229
+
3230
+ Γ′
3231
+ T
3232
+ d
3233
+ v2
3234
+ v1
3235
+ a
3236
+ 2a
3237
+ d
3238
+ 2
3239
+ 2a
3240
+ d
3241
+ 2
3242
+ v3
3243
+ b
3244
+ e
3245
+ 2b
3246
+ e
3247
+ 2
3248
+ 2b
3249
+ e
3250
+ 2
3251
+ v4
3252
+ c
3253
+ 2c
3254
+ f
3255
+ 2
3256
+ 2c
3257
+ f
3258
+ 2
3259
+ ϕ
3260
+ f
3261
+ Figure 26. The tropical morphism ϕ : Γ′ → T
3262
+ References
3263
+ [KY15] Shu Kawaguchi and Kazuhiko Yamaki, Rank of Divisors on Hyperelliptic Curves
3264
+ and Graphs Under Specialization, Vol. 12, 2015.
3265
+ [Cha13] Melody Chan, Tropical hyperelliptic curves, Vol. 37, 2013.
3266
+ [BN07] Matthew Baker and Serguei Norine, Riemann-Roch and Abel - Jacobi theory on a
3267
+ finite graph, Vol. 215, 2007.
3268
+ [Cap14] Lucia Caporaso, Gonality of Algebraic Curves and Graphs, Vol. 71, 2014.
3269
+ [Mik17] Grigory Mikhalkin, Tropical Geometry and Its Applications, 2017.
3270
+ [BBM11] Benoˆıt Bertrand, Erwan Brugall´e, and Grigory Mikhalkin, Tropical Open Hurwitz
3271
+ Numbers, Vol. 125, 2011.
3272
+ [Bak08] Matthew Baker, Specialization of linear systems from curves to graphs, Vol. 2, 2008.
3273
+ [BN09] Matthew Baker and Serguei Norine, Harmonic morphisms and hyperelliptic graphs,
3274
+ Vol. 2009, 2009.
3275
+ [CKK15] Gunther Cornelissen, Fumiharo Kato, and Janne Kool, A combinatorial Li-Yau
3276
+ inequality and rational points on curves, Vol. 1-2, 2015.
3277
+ [BN19] Matthew Baker and Serguei Norine, Harmonic morphisms and hyperelliptic graphs,
3278
+ Vol. 2009, 2019.
3279
+ [CD18] Filip Cools and Jan Draisma, On Metric Graphs with Prescribed Gonality, Vol. 156,
3280
+ 2018.
3281
+ [DV19] Jan Draisma and Alejandro Vargas, Catalan-many tropical morphisms to trees; Part
3282
+ I: Constructions, https: // arxiv. org/ abs/ 1909. 12924 , 2019.
3283
+ [Cin15] Zubeyir Cinkir, Admissible invariants of genus 3 curves, Manuscripta math 148
3284
+ (2015), 317-339.
3285
+ [Kag18] Yuki Kageyama, Divisorial condition for the stable gonality of tropical curves,
3286
+ https: // arxiv. org/ abs/ 1801. 07405 , 2018.
3287
+ 38
3288
+
JNA0T4oBgHgl3EQfCf8h/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
JtE1T4oBgHgl3EQfGQNW/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd631134f29435451c534187954e3bed99ebff525ed824db2a0c40b5a0ab4e44
3
+ size 109706
JtE2T4oBgHgl3EQfUwcR/content/tmp_files/2301.03815v1.pdf.txt ADDED
@@ -0,0 +1,2623 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ Marine IoT Systems with Space-Air-Sea Integrated
3
+ Networks: Hybrid LEO and UAV Edge Computing
4
+ Sooyeob Jung, Seongah Jeong, Jinkyu Kang, and Joonhyuk Kang
5
+ Abstract—Marine Internet of Things (IoT) systems have grown
6
+ substantially with the development of non-terrestrial networks
7
+ (NTN) via aerial and space vehicles in the upcoming sixth-
8
+ generation (6G), thereby assisting environment protection, mili-
9
+ tary reconnaissance, and sea transportation. Due to unpredictable
10
+ climate changes and the extreme channel conditions of maritime
11
+ networks, however, it is challenging to efficiently and reliably
12
+ collect and compute a huge amount of maritime data. In
13
+ this paper, we propose a hybrid low-Earth orbit (LEO) and
14
+ unmanned aerial vehicle (UAV) edge computing method in space-
15
+ air-sea integrated networks for marine IoT systems. Specifically,
16
+ two types of edge servers mounted on UAVs and LEO satellites
17
+ are endowed with computational capabilities for the real-time
18
+ utilization of a sizable data collected from ocean IoT sensors.
19
+ Our system aims at minimizing the total energy consumption
20
+ of the battery-constrained UAV by jointly optimizing the bit
21
+ allocation of communication and computation along with the
22
+ UAV path planning under latency, energy budget and opera-
23
+ tional constraints. For availability and practicality, the proposed
24
+ methods were developed for three different cases according to
25
+ the accessibility of the LEO satellite, “Always On,” “Always
26
+ Off” and “Intermediate Disconnected”, by leveraging successive
27
+ convex approximation (SCA) strategies. Via numerical results,
28
+ we verify that significant energy savings can be accrued for
29
+ all cases of LEO accessibility by means of joint optimization
30
+ of bit allocation and UAV path planning compared to partial
31
+ optimization schemes that design for only the bit allocation or
32
+ trajectory of the UAV.
33
+ Index terms — Marine networks, Internet of Things (IoT), edge
34
+ computing, low-Earth orbit (LEO) satellite, unmanned aerial
35
+ vehicles (UAVs), successive convex approximation (SCA).
36
+ I. INTRODUCTION
37
+ M
38
+ ARINE Internet of Things (IoT) systems have evolved
39
+ significantly with the rapid development of non-
40
+ terrestrial network (NTN) technologies composed of space
41
+ and airborne platforms to collect and process a variety of
42
+ ocean data. The vast amount of ocean data plays an important
43
+ This work was supported by the Institute of Information & communica-
44
+ tions Technology Planning & Evaluation (IITP) grant funded by the Korea
45
+ government (MSIT) (No.2021-0-00847, Development of 3D Spatial Satellite
46
+ Communications Technology).
47
+ This research was supported by the Ministry of Science and ICT (MSIT),
48
+ Korea, under the Information Technology Research Center (ITRC) support
49
+ program (IITP-2020-0-01787) supervised by the IITP.
50
+ Sooyeob Jung is with the Department of Electrical Engineering, Korea
51
+ Advanced Institute of Science and Technology (KAIST), and with the Satellite
52
+ Wide-Area Infra Research Section, Electronics and Telecommunications Re-
53
+ search Institute (ETRI), Daejeon, South Korea (Email: [email protected]).
54
+ Seongah Jeong is with the School of Electronics Engineering, Kyungpook
55
+ National University, Daegu 14566, South Korea (Email: [email protected]).
56
+ Jinkyu Kang is with the Department of Information and Communications
57
+ Engineering, Myongji University, Gyeonggi-do 17058, South Korea (Email:
58
59
+ Joonhyuk Kang is with the Department of Electrical Engineering, Korea
60
+ Advanced Institute of Science and Technology (KAIST), Daejeon, South
61
+ Korea (Email: [email protected]).
62
+ role in marine monitoring, which contributes to environ-
63
+ mental protection, natural disaster prevention, oceanographic
64
+ research, mineral exploration, military surveillance, etc. [1]-
65
+ [3]. In particular, continuous monitoring of various physical
66
+ phenomena of marine networks, such as sounds, vibrations and
67
+ images, requires high-precision and wide-range measurements.
68
+ Currently, three types of marine monitoring platforms are
69
+ being investigated according to the relay node: shore-based
70
+ radar, survey vessels and satellites [1], most of which have the
71
+ following procedures. By using existing information communi-
72
+ cation technologies, the marine data collected from ocean IoT
73
+ sensors is transferred to a ground cloud server with sufficient
74
+ computation storage capacity. The ground cloud server stores
75
+ and analyzes the collected data, thereby managing various ap-
76
+ plications based on ocean utilization and exploration. In shore-
77
+ based radar systems installed on offshore buoys and automatic
78
+ weather stations located on the coast or islands, there are
79
+ difficulties in installation and maintenance due to their spatial
80
+ constraints. Meanwhile, survey vessel-based platforms have
81
+ temporal constraints, which limit the time for data collection.
82
+ In addition, unexpected loss and defects of collected data may
83
+ occur in point measurements attained by platforms with shore-
84
+ based radar or survey vessel platforms due to extreme channel
85
+ environments and unpredictable climate changes in the ocean
86
+ [2].
87
+ To address these spatial and temporal limitations, satellite-
88
+ based monitoring can be an alternative that provides full
89
+ coverage of the area of interest with one or multiple satellites.
90
+ With the participation of global companies in the satellite
91
+ business such as SpaceX, Amazon, and Telesat [4], low-
92
+ Earth orbit (LEO) satellites are gaining more attention than
93
+ ever before, and cost-effective easy-to-deploy large-scale satel-
94
+ lite networks are being established. In addition, conventional
95
+ satellite operators such as Spire, Kepler, Fleet, Lacuna space
96
+ and Eutelsat, are preparing to provide satellite IoT services
97
+ with global coverage [5], [6]. Until recently, satellites have
98
+ mostly been adopted as a relay with terrestrial networks;
99
+ however, for future 6G IoT services, they can operate as
100
+ functional network components, e.g., computing servers [7]-
101
+ [12]. Traditionally, the critical drawback of satellite-assisted
102
+ networks is the latency resulting from round-trip delays due
103
+ to the IoT sensor-satellite-terrestrial station link as well as
104
+ the rapidly increasing volume of transmitted data. Therefore,
105
+ it is beneficial to bring computing functions in the satellite
106
+ to handle processing capabilities of the collected data, rather
107
+ than sending it to the ground cloud server. In the following
108
+ section, we briefly summarize the recent research activities
109
+ that focus on hierarchical integrated networks using satellites
110
+ as computing servers.
111
+ arXiv:2301.03815v1 [eess.SY] 10 Jan 2023
112
+
113
+ 2
114
+ A. Related Works
115
+ Satellite-assisted edge computing systems have been ac-
116
+ tively studied in space-ground integrated networks [7]-[13],
117
+ space-air-ground integrated networks (SAGIN) [14]-[21] and
118
+ space-air-sea-based non-terrestrial networks (SAS-NTN) [22],
119
+ [23]. In particular, the authors in [7] propose a three-tier
120
+ computation architecture consisting of ground users, LEO
121
+ satellites and ground servers to minimize the total energy
122
+ consumption of the system. In [8], network slice scheduling
123
+ for satellite-assisted computing architecture is studied, where
124
+ satellite servers and ground servers are considered for IoT
125
+ applications. Although satellite-assisted edge computing can
126
+ provide real-time offloading services to large areas, such as
127
+ the ocean, it still faces several practical problems. For long-
128
+ distance communication with a satellite, more transmit power
129
+ and larger antenna size are preferred at ground user terminals,
130
+ which is costly and spatially-limited in real applications.
131
+ Moreover, the transceiver for satellite communications must
132
+ be robustly designed against severe fading due to atmospheric
133
+ turbulence.
134
+ Unmanned aerial vehicles (UAVs) can be adopted to provide
135
+ enhanced coverage for overcoming path loss and fading issues
136
+ of satellite-assisted edge computing. UAVs can receive and
137
+ compute data in close proximity to ocean IoT sensors, or can
138
+ relay the data to the cloud server for computing. Recently,
139
+ UAV-assisted satellite IoT networks have been suggested in
140
+ several studies [14], [15]. Cheng et al. [14] propose offloading
141
+ systems of remote IoT applications in the space-air-ground
142
+ scenario, where UAVs provide computational capability to
143
+ nearby users as edge servers, while satellites relay the of-
144
+ floaded data to the ground cloud server. In [15], LEO satellite-
145
+ assisted UAV data collection for IoT sensors is proposed,
146
+ where the delay-tolerant data and delay-sensitive data are
147
+ transferred to the ground cloud server via UAV and LEO
148
+ satellite, respectively.
149
+ As briefly reviewed above, most of existing works on
150
+ hierarchical offloading systems in the integrated space and
151
+ air networks assume terrestrial infrastructures, which may
152
+ result in latency caused by the extreme channel variation of
153
+ marine IoT systems. Furthermore, even though space or aerial
154
+ computing platforms are considered, most studies assume full
155
+ accessibility of the LEO satellite during mission time, which
156
+ may not be guaranteed according to the orbit of revolution of
157
+ the LEO satellite under insufficient deployments. To perform
158
+ real-time data mining and analysis of ocean data in marine
159
+ IoT systems, the use of aerial/space moving cloudlets play an
160
+ important role considering their availability.
161
+ B. Main Contributions
162
+ In this paper, we focus on a marine IoT system with
163
+ space-air-sea integrated networks, as illustrated in Fig. 1,
164
+ where both UAV and LEO satellite-mounted cloudlets are
165
+ deployed to offer computing opportunities. In the proposed
166
+ system, a number of ocean IoT sensors are distributed only to
167
+ collect abundant marine information with limited battery, and
168
+ transmit the collected data to a designated computing server
169
+ among UAV or LEO-mounted cloudlets so as to satisfy the
170
+ LEO satellite
171
+ (Cloud server)
172
+ UAV
173
+ (Edge server)
174
+ IoT 1
175
+ End user
176
+ Frame 1
177
+ Frame n
178
+ Frame N
179
+ IoT k
180
+ IoT K
181
+ (
182
+ )
183
+ ,
184
+ ,0
185
+ I
186
+ I
187
+ I
188
+ k
189
+ k
190
+ k
191
+ x
192
+ y
193
+ =
194
+ p
195
+ (
196
+ )
197
+ 1
198
+ ,
199
+ ,
200
+ E
201
+ E
202
+ E
203
+ n
204
+ n
205
+ n
206
+ x
207
+ y
208
+ h
209
+ =
210
+ p
211
+ (
212
+ )
213
+ 1
214
+ 2
215
+ ,
216
+ ,
217
+ C
218
+ C
219
+ C
220
+ x
221
+ y
222
+ h
223
+ h
224
+ =
225
+ +
226
+ p
227
+ 1
228
+ I
229
+ K +
230
+ p
231
+ 1
232
+ E
233
+ N +
234
+ p
235
+ IoT → UAV (for UAV computing)
236
+ UAV → LEO
237
+ LEO → UAV
238
+ UAV → User
239
+ IoT → UAV → LEO → UAV (for LEO computing)
240
+ IoT → UAV (for edge computing)
241
+ IoT → UAV (for cloud computing)
242
+ UAV → LEO (offloading)
243
+ LEO → UAV
244
+ UAV → User
245
+ IoT → UAV (for edge computing)
246
+ IoT → UAV (for cloud computing)
247
+ UAV → LEO (offloading)
248
+ LEO → UAV
249
+ UAV → User
250
+ LEO satellite-mounted cloudlet
251
+ End user
252
+ Ocean
253
+ IoT sensor k
254
+ (
255
+ )
256
+ ,
257
+ ,0
258
+ I
259
+ I
260
+ I
261
+ k
262
+ k
263
+ k
264
+ x
265
+ y
266
+ =
267
+ p
268
+ (
269
+ )
270
+ ,
271
+ ,
272
+ U
273
+ U
274
+ U
275
+ n
276
+ n
277
+ n
278
+ U
279
+ x
280
+ y
281
+ h
282
+ =
283
+ p
284
+ UAV-mounted cloudlet
285
+ LEO → Ground
286
+ Orbit
287
+ Ocean
288
+ IoT sensor 1
289
+ Ocean
290
+ IoT sensor K
291
+ IoT → UAV (for UAV computing)
292
+ IoT → UAV → LEO → UAV (for LEO computing)
293
+ Space
294
+ Air
295
+ Sea
296
+ (
297
+ )
298
+ ,
299
+ ,
300
+ L
301
+ L
302
+ L
303
+ n
304
+ n
305
+ n
306
+ U
307
+ L
308
+ x
309
+ y
310
+ h
311
+ h
312
+ =
313
+ +
314
+ p
315
+ LEO satellite-mounted cloudlet
316
+ End user
317
+ Ocean
318
+ IoT sensor k
319
+ UAV-mounted
320
+ cloudlet
321
+ Orbit
322
+ Space
323
+ Air
324
+ Sea
325
+ (
326
+ )
327
+ ,
328
+ ,
329
+ L
330
+ L
331
+ L
332
+ n
333
+ n
334
+ n
335
+ U
336
+ L
337
+ x
338
+ y
339
+ h
340
+ h
341
+ =
342
+ +
343
+ p
344
+ (
345
+ )
346
+ ,
347
+ ,
348
+ U
349
+ U
350
+ U
351
+ n
352
+ n
353
+ n
354
+ U
355
+ x
356
+ y
357
+ h
358
+ =
359
+ p
360
+ (
361
+ )
362
+ ,
363
+ ,0
364
+ I
365
+ I
366
+ I
367
+ k
368
+ k
369
+ k
370
+ x
371
+ y
372
+ =
373
+ p
374
+ 1
375
+ U
376
+ p
377
+ U
378
+ N
379
+ p
380
+ 1
381
+ Ip
382
+ I
383
+ K
384
+ p
385
+ UAV computing: Sensor → UAV →
386
+ LEO computing: Sensor → UAV →
387
+ UAV computing
388
+ LEO computing
389
+ LEO satellite-mounted cloudlet
390
+ End user
391
+ Ocean
392
+ IoT sensor k
393
+ UAV-mounted cloudlet
394
+ Orbit
395
+ Space
396
+ Air
397
+ Sea
398
+ (
399
+ )
400
+ ,
401
+ ,
402
+ L
403
+ L
404
+ L
405
+ n
406
+ n
407
+ n
408
+ U
409
+ L
410
+ x
411
+ y
412
+ h
413
+ h
414
+ =
415
+ +
416
+ p
417
+ (
418
+ )
419
+ ,
420
+ ,
421
+ U
422
+ U
423
+ U
424
+ n
425
+ n
426
+ n
427
+ U
428
+ x
429
+ y
430
+ h
431
+ =
432
+ p
433
+ (
434
+ )
435
+ ,
436
+ ,0
437
+ I
438
+ I
439
+ I
440
+ k
441
+ k
442
+ k
443
+ x
444
+ y
445
+ =
446
+ p
447
+ 1
448
+ U
449
+ p
450
+ U
451
+ N
452
+ p
453
+ 1
454
+ I
455
+ p
456
+ I
457
+ K
458
+ p
459
+ End user
460
+ :
461
+ : Sensor → UAV →
462
+ LEO → UAV → End user
463
+ UAV computing
464
+ LEO computing
465
+ UAV computing: Sensor → UAV → End user
466
+ LEO computing: Sensor → UAV →LEO → UAV → End user
467
+ Fig. 1: Marine IoT system model with a space-air-sea inte-
468
+ grated network using hybrid LEO and UAV edge computing
469
+ for real-time data utilization.
470
+ system design criterion. Here, the LEO satellite is assumed
471
+ to have a higher computational capability to process the task
472
+ than that of the UAV. When the IoT data size exceeds the
473
+ computation capacity of the UAV, the computational task is
474
+ totally offloaded to the LEO satellite. The computation results
475
+ executed at LEO are retransmitted to the UAV, are stored
476
+ until it arrives over the end user, and is finally sent to the
477
+ end user. To this end, we tackle the key design problem of
478
+ jointly optimizing the bit allocation for communication and
479
+ computing and the trajectory of the UAV, with the aim of
480
+ minimizing its energy consumption. The main contributions
481
+ of this paper are summarized as follows:
482
+ • For marine IoT systems with extreme channel environ-
483
+ ments and unpredictable climate changes, we propose
484
+ a hybrid LEO and UAV edge computing method. The
485
+ scheduling between UAV and LEO satellite-mounted
486
+ cloudlets depends on the size of the offloaded ocean data
487
+ and the LEO connection status.
488
+ • For practicality and usability, we consider three different
489
+ scenarios according to LEO availability such as “Always
490
+ On,” “Always Off” and “Intermediate Disconnected”.
491
+ For each case, we develop the joint optimization of bit
492
+ allocation required for offloading and UAV path planning.
493
+ • The non-convex optimization problems formulated for
494
+ three different cases depending on the availability of the
495
+ LEO satellite are tackled by means of a successive convex
496
+ approximation (SCA) algorithm [24], [25], which can
497
+ guarantee the local minimum of the original non-convex
498
+ problems by using an efficient iterative algorithm.
499
+ The rest of this paper is organized as follows. The system
500
+ model is presented in Section II. Section III, IV and V provide
501
+ problem formulations and proposed methods for the LEO
502
+ access status of “Always On,” “Always Off” and “Intermediate
503
+ Disconnected”, respectively. Simulation results are given in
504
+ Section VI, and conclusions are summarized in Section VII.
505
+
506
+ C3
507
+ Frame n-1
508
+ Frame n
509
+ IoT sensor 1
510
+ 〮〮〮
511
+ IoT sensor k
512
+ 〮〮〮
513
+ IoT sensor K
514
+
515
+
516
+
517
+ K
518
+
519
+ 1
520
+ U
521
+ n−
522
+ p
523
+ U
524
+ np
525
+ 1
526
+ U
527
+ n+
528
+ p
529
+ 2
530
+ U
531
+ n+
532
+ p
533
+ Frame n+1
534
+ Fig. 2: Frame structure of orthogonal access for multiple ocean
535
+ IoT sensors.
536
+ II. SYSTEM MODEL
537
+ A. Set-up
538
+ Fig. 1 illustrates a marine IoT system with a space-air-
539
+ sea integrated network using hybrid LEO and UAV edge
540
+ computing, where 𝐾 ocean IoT sensors collect marine data
541
+ to be entirely transferred to available cloudlets for computing.
542
+ The computed results are then designated to an end user. For
543
+ real-time data utilization, two types of cloudlets mounted on
544
+ the UAV and LEO satellite are considered, between which
545
+ the scheduling depends on the UAV computing capability and
546
+ LEO accessibility. Specifically, when the collected data size
547
+ exceeds the computation capacity of the UAV, the data should
548
+ be entirely offloaded to the LEO. The computing capability
549
+ of the LEO satellite is assumed to be higher than that of
550
+ the UAV. Another major factor for scheduling is whether
551
+ the LEO satellite is available or not since its beam coverage
552
+ varies according to the orbit of revolution. Here, we consider
553
+ three different cases according to the availability of the LEO
554
+ satellite during mission time: “Always On,” “Always Off” and
555
+ “Intermediate Disconnected”. For each scenario, we developed
556
+ the joint optimization of the bit allocation for communication
557
+ and computation and the trajectory of the UAV. Depending on
558
+ the types of cloudlets, we refer to UAV computing and LEO
559
+ computing, where computing of the IoT sensor task is executed
560
+ at the UAV and LEO, respectively. In UAV computing, the task
561
+ of the IoT sensor 𝑘 is offloaded to the UAV-mounted cloudlet
562
+ until the UAV arrives over the end user and the output results
563
+ are conveyed to them. In LEO computing, the UAV receives
564
+ and relays the offloaded data of the IoT sensor to LEO for the
565
+ LEO execution. The computed results at LEO are then sent to
566
+ the end user via the UAV when the UAV arrives above them.
567
+ For communication links between IoT sensors and the UAV,
568
+ and between the UAV and LEO satellite, a frequency division
569
+ duplex (FDD) scheme is assumed with equal bandwidth 𝐵 for
570
+ the uplink and downlink. Each IoT sensor 𝑘 has the number
571
+ 𝐼𝑘 of input information bits to be processed. The results for
572
+ LEO computing and UAV computing are characterized as the
573
+ number 𝑂𝐿
574
+ 𝑘 and 𝑂𝑈
575
+ 𝑘 of bits produced per input bit of the IoT
576
+ sensor 𝑘, and the number 𝐶𝐿
577
+ 𝑘 and 𝐶𝑈
578
+ 𝑘 of CPU cycles per input
579
+ bit for computing, respectively. We assume that all tasks must
580
+ be computed within the total mission time 𝑇. Here, a three-
581
+ dimensional Cartesian coordinate system is adopted based on
582
+ the metric unit. We assume that the IoT sensor 𝑘 is deployed
583
+ at position 𝒑𝐼
584
+ 𝑘 = (𝑥𝐼
585
+ 𝑘, 𝑦𝐼
586
+ 𝑘, 𝑎𝑘), for 𝑘 ∈ {1, · · ·, 𝐾 + 1}, with
587
+ 𝑎𝑘 being the average sea surface level, where the position
588
+ TABLE I: List of Symbols
589
+ Symbol
590
+ Definition
591
+ 𝐾
592
+ Number of ocean IoT sensors
593
+ 𝑇
594
+ Total mission time
595
+ Δ
596
+ Frame duration
597
+ 𝑁
598
+ Number of frames within 𝑇
599
+ ℎ𝑈 , ℎ𝐿
600
+ Altitudes of UAV and LEO satellite with respect to
601
+ average sea surface level and UAV, respectively
602
+ 𝑔𝑘,𝑛, ℎ𝑛
603
+ Path loss between the IoT sensor 𝑘 and UAV and
604
+ between the UAV and LEO at the 𝑛th frame
605
+ 𝑔0
606
+ Channel gain at reference distance 1 m
607
+ 𝑇𝑣
608
+ Visible time of an LEO satellite
609
+ 𝑣𝑠
610
+ Speed of an LEO satellite
611
+
612
+ Height of an LEO satellite orbit
613
+ 𝜃, 𝜑
614
+ Elevation angle and beamwidth of the LEO satellite
615
+ 𝑀
616
+ the gross mass of the UAV
617
+ 𝒗𝑈
618
+ 𝑛
619
+ velocity vector of the UAV at the 𝑛th frame
620
+ 𝜀
621
+ Energy budget of the IoT sensor 𝑘 at each frame
622
+ 𝐼𝑘
623
+ Number of input bits of the IoT sensor 𝑘
624
+ 𝐸𝐼,𝑈
625
+ 𝑘,𝑛
626
+ Energy consumption for uplink communication at the
627
+ IoT sensor 𝑘 at the 𝑛th frame
628
+ 𝐸𝑈
629
+ 𝑘,𝑛, 𝐸𝑈,𝐿
630
+ 𝑘,𝑛
631
+ Energy consumption for computing and uplink com-
632
+ munication at the UAV-mounted cloudlet for the IoT
633
+ sensor 𝑘 at the 𝑛th frame
634
+ 𝐸𝑈,𝐸
635
+ Energy consumption for downlink communication at
636
+ the UAV-mounted cloudlet
637
+ 𝐸 𝐿
638
+ 𝑘,𝑛, 𝐸 𝐿,𝑈
639
+ 𝑘,𝑛
640
+ Energy consumption for computing and downlink com-
641
+ munication at the LEO-mounted cloudlet for the IoT
642
+ sensor 𝑘 at the 𝑛th frame
643
+ 𝐸𝐹
644
+ 𝑛
645
+ Energy consumption for a UAV flying at the 𝑛th frame
646
+ 𝐿𝐼,𝑈
647
+ 𝑘,𝑛
648
+ Number of bits for uplink communication at the IoT
649
+ sensor 𝑘 at the 𝑛th frame
650
+ 𝑙𝑈
651
+ 𝑘,𝑛, 𝐿𝑈,𝐿
652
+ 𝑘,𝑛
653
+ Number of bits for computing and uplink communica-
654
+ tion at a UAV-mounted cloudlet for the IoT sensor 𝑘 at
655
+ the 𝑛th frame
656
+ 𝐿𝑈,𝐸
657
+ Number of bits for downlink communication at the
658
+ UAV-mounted cloudlet
659
+ 𝑙𝐿
660
+ 𝑘,𝑛, 𝐿𝐿,𝑈
661
+ 𝑘,𝑛
662
+ Number of bits for computing and downlink communi-
663
+ cation at the LEO-mounted cloudlet for the IoT sensor
664
+ 𝑘 at the 𝑛th frame
665
+ 𝑂𝐿
666
+ 𝑘 , 𝑂𝑈
667
+ 𝑘
668
+ Number of output bits produced per input bit of the IoT
669
+ sensor 𝑘
670
+ 𝑓 𝐿
671
+ 𝑛 , 𝑓 𝑈
672
+ 𝑛
673
+ CPU frequency at the LEO and UAV-mounted cloudlets
674
+ for the 𝑛th frame
675
+ 𝐶𝐿
676
+ 𝑘 , 𝐶𝑈
677
+ 𝑘
678
+ CPU cycles per input bit at the LEO and UAV-mounted
679
+ cloudlets for the task of the IoT sensor 𝑘
680
+ 𝛾𝐿, 𝛾𝑈
681
+ Effective switched capacitances of the LEO and UAV,
682
+ respectively
683
+ 𝒑𝐼
684
+ 𝑘, 𝒑𝑈
685
+ 𝑛 , 𝒑𝐿𝑛
686
+ Positions of the IoT sensor 𝑘, UAV and LEO for the
687
+ 𝑛th frame
688
+ 𝛼𝑘,𝑛, 𝛽𝑘,𝑛
689
+ Variables to indicate LEO connection and offloading
690
+ scheduling of the IoT sensor 𝑘 at the 𝑛th frame
691
+ 𝑁𝑡
692
+ Frame number during LEO disconnection
693
+ of the end user is considered with an index of 𝐾 + 1. The
694
+ UAV flies along a trajectory 𝒑𝑈 (𝑡) = (𝑥𝑈 (𝑡), 𝑦𝑈 (𝑡), ℎ𝑈)
695
+ with a fixed altitude ℎ𝑈 assumed for system stability, for
696
+ 0 ≤ 𝑡 ≤ 𝑇, and the position of the LEO satellite is defined as
697
+ 𝒑𝐿(𝑡) = (𝑥𝐿(𝑡), 𝑦𝐿(𝑡), ℎ𝑈 + ℎ𝐿) with a fixed altitude ℎ𝑈 + ℎ𝐿,
698
+ for 0 ≤ 𝑡 ≤ 𝑇, all the altitudes are measured with respect to
699
+ the average sea surface level 𝑎𝑘. For the multiple access of 𝐾
700
+ ocean IoT sensors, orthogonal access is assumed, as shown in
701
+ Fig. 2. For tractability, in this paper, the total time duration 𝑇
702
+ is divided into 𝑁 frames of duration Δ seconds, each of which
703
+ is equally divided as Δ/𝐾 seconds, and is preallocated to
704
+ IoT sensors for uplink and downlink communication required
705
+
706
+ 4
707
+ Er
708
+ h
709
+ L
710
+ LEO
711
+ Satellite
712
+ s
713
+
714
+
715
+ Earth
716
+ Orbit
717
+ IoT Sensor
718
+
719
+ sv
720
+ Er
721
+ h
722
+ L
723
+ LEO
724
+ Satellite
725
+ s
726
+
727
+
728
+ Earth
729
+ Orbit
730
+ IoT Sensor
731
+
732
+ sv
733
+ Fig. 3: Geometric relationship between the ground user and
734
+ the LEO satellite.
735
+ for offloading. Accordingly, the IoT sensors do not interfere
736
+ with each other in the offloading procedure. Moreover, the
737
+ information data collected from the IoT sensor 𝑘 at the 𝑛 th
738
+ frame is assumed to be entirely computed and transferred to
739
+ the designated node within the corresponding frame during
740
+ Δ/𝐾 seconds, for 𝑛 ∈ {1, · · ·, 𝑁}, so that the computational
741
+ task cannot be partitioned. According to the discretized time
742
+ unit, the trajectory of the UAV 𝒑𝑈 (𝑡) and the position of the
743
+ LEO satellite 𝒑𝐿(𝑡) is expressed as 𝒑𝑈
744
+ 𝑛 = (𝑥𝑈
745
+ 𝑛 , 𝑦𝑈
746
+ 𝑛 , ℎ𝑈) and
747
+ 𝒑𝐿
748
+ 𝑛 = (𝑥𝐿
749
+ 𝑛 , 𝑦𝐿
750
+ 𝑛, ℎ𝑈 + ℎ𝐿), for 𝑛 ∈ N, respectively. The LEO
751
+ satellite generally flies at a constant speed along its orbit and
752
+ the relative positional coordinates of the LEO and UAV should
753
+ vary constantly. For the task mission of marine IoT systems,
754
+ the initial location 𝒑𝑈
755
+ 𝐼 and the final location 𝒑𝑈
756
+ 𝐹 of the UAV
757
+ are assigned to 𝒑𝑈
758
+ 1 and 𝒑𝑈
759
+ 𝑁 +1, respectively, and its maximum
760
+ speed constraint is given as
761
+ ��𝒗𝑈
762
+ 𝑛
763
+ �� =
764
+ �� 𝒑𝑈
765
+ 𝑛+1 − 𝒑𝑈
766
+ 𝑛
767
+ ��
768
+ Δ
769
+ ≤ 𝑣max,
770
+ (1)
771
+ where the velocity vector 𝒗𝑈
772
+ 𝑛
773
+ of the UAV is defined as
774
+ ( 𝒑𝑈
775
+ 𝑛+1 − 𝒑𝑈
776
+ 𝑛 )/Δ, and 𝑣max is its maximum velocity. The overall
777
+ system variables and parameters are summarized in Table I.
778
+ We assume that communication channels between the IoT
779
+ sensors and UAV [16], [26], and between the UAV and LEO
780
+ satellite [15], [16] are dominated by line-of-sight (LoS) links.
781
+ At the 𝑛th frame, the channel gains for the IoT sensor 𝑘-UAV
782
+ link and UAV-LEO link are written as
783
+ 𝑔𝑘,𝑛( 𝒑𝑈
784
+ 𝑛 ) =
785
+ 𝑔0
786
+ (𝑥𝑈𝑛 − 𝑥𝐼
787
+ 𝑘)2 + (𝑦𝑈𝑛 − 𝑦𝐼
788
+ 𝑘)2 + ℎ𝑈 2
789
+ (2)
790
+ and
791
+ ℎ𝑛( 𝒑𝑈
792
+ 𝑛 ) =
793
+ 𝑔0𝐺
794
+ (𝑥𝐿𝑛 − 𝑥𝑈𝑛 )2 + (𝑦𝐿𝑛 − 𝑦𝑈𝑛 )2 + ℎ𝐿2 ,
795
+ (3)
796
+ respectively, where 𝑔0 represents the channel gain at the
797
+ reference distance 1 m, and 𝐺 is an antenna gain for the long-
798
+ distance satellite communication consisting of the transmission
799
+ antenna gain of the UAV and the receiver antenna gain of
800
+ the LEO satellite [15], [27]. In real applications, note that
801
+ ℎ𝑛( 𝒑𝑈
802
+ 𝑛 ) ≫ 𝑔𝑘,𝑛( 𝒑𝑈
803
+ 𝑛 ) is guaranteed. For communication links,
804
+ an additive white Gaussian noise is considered with zero mean
805
+ and power spectral density 𝑁0 [dBm/Hz].
806
+ B. Coverage Model of the LEO Satellite
807
+ In this section, we explore the beam coverage model [7],
808
+ [28] of an LEO satellite that accounts for the effect of the
809
+ orbit of revolution. As shown in Fig. 3, when the LEO satellite
810
+ makes an orbit round, the available communication time with
811
+ the UAV can be limited, which is referred to as the LEO visible
812
+ time window. The length of the visible time window is defined
813
+ as
814
+ 𝑇𝑣 = 𝐿
815
+ 𝑣𝑠
816
+ = 2 (𝑟𝐸 + ℎ) 𝛾
817
+ 𝑣𝑠
818
+ ,
819
+ (4)
820
+ where 𝑣𝑠 is the speed of the LEO satellite. 𝐿 is the arc length to
821
+ define the coverage where IoT sensors can communicate with
822
+ the LEO satellite, and is calculated by 𝐿 = 2 (𝑟𝐸 + ℎ) 𝛾 with
823
+ 𝑟𝐸 being the radius of Earth, ℎ being the height of the LEO
824
+ satellite orbit, and 𝛾 being the angle of the satellite coverage.
825
+ In general, due to the very low altitude of a UAV in comparison
826
+ to the orbit height, the same visible time window is applied to
827
+ the UAV and IoT sensors. The maximum length of the LEO
828
+ visible time window can be achieved when 𝛾 = 𝜋. The angle
829
+ 𝛾 of the satellite coverage is calculated by
830
+ 𝛾 = cos−1
831
+
832
+ 𝑟𝐸
833
+ 𝑟𝐸 + ℎ · cos 𝜃
834
+
835
+ − 𝜃,
836
+ (5)
837
+ where 𝜃 and 𝜑 are the elevation angle and the beamwidth
838
+ of the satellite, respectively, and are derived as 𝜃
839
+ =
840
+ cos−1 �
841
+ 𝑟𝐸+ℎ
842
+ 𝑠
843
+ · cos (𝜃 + 𝜑)
844
+
845
+ and 𝜑 = 𝜋/2 − (𝜃 + 𝛾) with 𝑠
846
+ indicating the distance between the IoT sensor and LEO
847
+ satellite. We assume that the UAV can fully access the LEO
848
+ satellite within the visible time window of 𝑇𝑣. According to
849
+ the availability of LEO communication based on the coverage
850
+ model, three different cases can be considered: “Always On,”
851
+ “Always Off” and “Intermediate Disconnected”, the details for
852
+ which are described below.
853
+ 1) “Always On” scenario (𝑇 ≤ 𝑇𝑣): The first scenario is
854
+ when the UAV can communicate with the LEO satellite during
855
+ the entire mission time since the total mission time is within
856
+ the LEO visible time, i.e., ���� ≤ 𝑇𝑣. In this scenario, we have
857
+ 𝛼𝑘,𝑛 = 1 for all 𝑛 ∈ N; therefore, the computation capability
858
+ of the UAV determines whether the UAV or LEO will be used
859
+ for computing.
860
+ 2) “Always Off” scenario (𝑇𝑣 = 0): The second scenario
861
+ is when LEO communication is not available during the entire
862
+ mission time since the UAV flies outside the beam coverage
863
+ of the LEO satellite, i.e., 𝑇𝑣 = 0. In this scenario, we have
864
+ 𝛼𝑘,𝑛 = 0 for all 𝑛 ∈ N, and only the UAV computing can be
865
+ performed. Furthermore, when the offloaded data size exceeds
866
+ the UAV computation capability, it is transferred to the end
867
+ user via the UAV without computing.
868
+ 3) “Intermediate Disconnected” scenario (𝑇 > 𝑇𝑣): The
869
+ final scenario is when LEO connection is lost during the
870
+ mission time, since the total mission time is larger than the
871
+ LEO visible time, i.e., 𝑇 > 𝑇𝑣. In this scenario, when 𝑡 ≤ 𝑇𝑣,
872
+ we have 𝛼𝑘,𝑛 = 1 for 𝑛 ∈ {1, · · ·, 𝑁𝑡}, with 𝑁𝑡 being the
873
+ last frame within 𝑇𝑣, where both LEO computing and UAV
874
+ computing can be performed: that is, 𝛽𝑘,𝑛 ∈ {0, 1}. When
875
+ 𝑡 > 𝑇𝑣, 𝛼𝑘,𝑛 = 0 for 𝑛 ∈ {𝑁𝑡 + 1, · · ·, 𝑁}, where only UAV
876
+ computing is available: that is, 𝛽𝑘,𝑛 = 0. For example, if the
877
+
878
+ 5
879
+ TABLE II: Three different scenarios according to LEO availability.
880
+ Scenario
881
+ 𝛼𝑘,𝑛
882
+ 𝛽𝑘,𝑛
883
+ Available types of computing
884
+ “Always On” (𝑇 ≤ 𝑇𝑣)
885
+ 1, for all 𝑛 ∈ N
886
+ 0, for all 𝑛 ∈ N
887
+ UAV Computing
888
+ 1, for all 𝑛 ∈ N
889
+ LEO Computing
890
+ “Always Off” (𝑇𝑣 = 0)
891
+ 0, for all 𝑛 ∈ N
892
+ 0, for all 𝑛 ∈ N
893
+ UAV Computing
894
+ “Intermediate Disconnected” (𝑇 > 𝑇𝑣)
895
+ 1, for 𝑛 ∈ {1, · · ·, 𝑁𝑡 },
896
+ 0, for 𝑛 ∈ {𝑁𝑡 + 1, · · ·, 𝑁 }
897
+ 0, for 𝑛 ∈ {1, · · ·, 𝑁𝑡 },
898
+ 0, for 𝑛 ∈ {𝑁𝑡 + 1, · · ·, 𝑁 }
899
+ UAV Computing
900
+ 1, for 𝑛 ∈ {1, · · ·, 𝑁𝑡 },
901
+ 0, for 𝑛 ∈ {𝑁𝑡 + 1, · · ·, 𝑁 }
902
+ LEO Computing →
903
+ UAV Computing
904
+ LEO connection is lost at 𝑇𝑣 = 𝑇/2, 𝑁𝑡 is defined as 𝑁/2. The
905
+ frame data of 𝑛 ∈ {1, · · ·, 𝑁𝑡} is computed by the LEO or UAV,
906
+ while the frame data of 𝑛 ∈ {𝑁𝑡 + 1, · · ·, 𝑁} is computed by
907
+ the UAV. The details for these three scenarios are summarized
908
+ in Table II.
909
+ C. Energy Consumption Model for Offloading
910
+ In the proposed hierarchical architecture, IoT sensors and
911
+ the UAV are battery-limited, while the available energy of the
912
+ LEO satellite is much more sufficient due to its larger size
913
+ and mass, which is therefore negligible for the system design.
914
+ With the aim of minimizing the total energy consumption of
915
+ the UAV, we cover the energy consumption model for compu-
916
+ tation, communication and flying required for offloading. Here,
917
+ the LEO satellite is assumed to have sufficient battery capacity
918
+ compared to the UAV and IoT sensors [7], [13], which is not
919
+ reflected in the system design.
920
+ 1) Computation energy model: First, we define the
921
+ amount of computation energy consumption at the LEO and
922
+ UAV-mounted cloudlets at the 𝑛th frame for IoT sensor 𝑘 as
923
+ [29], [30]
924
+ 𝐸𝑑
925
+ 𝑘,𝑛(𝑙𝑑
926
+ 𝑘,𝑛) =
927
+ 𝛾𝑑𝐶𝑑
928
+ 𝑘 𝑙𝑑
929
+ 𝑘,𝑛
930
+ Δ2
931
+ � 𝐾
932
+ ∑︁
933
+ 𝑘′=1
934
+ 𝐶𝑑
935
+ 𝑘′𝑙𝑑
936
+ 𝑘′,𝑛
937
+ �2
938
+ ,
939
+ (6)
940
+ where 𝑑 ∈ {𝐿,𝑈} with 𝐿 indicating the LEO satellite and 𝑈
941
+ indicating the UAV; 𝑙𝑑
942
+ 𝑘,𝑛 is the number of bits to be computed
943
+ at the cloudlet and 𝛾𝑑 is the effective switched capacitance of
944
+ the cloudlet.
945
+ 2) Communication energy model: In the proposed system,
946
+ the transmit energy consumption from the UAV to LEO at the
947
+ 𝑛th frame for offloading the task of the IoT sensor 𝑘 is defined
948
+ as [26], [31]
949
+ 𝐸𝑈,𝐿
950
+ 𝑘,𝑛 (𝐿𝑈,𝐿
951
+ 𝑘,𝑛 , 𝒑𝑈
952
+ 𝑛 ) = 𝑁0𝐵Δ/𝐾
953
+ ℎ𝑛( 𝒑𝑈𝑛 )
954
+
955
+ 2
956
+ 𝐿𝑈,𝐿
957
+ 𝑘,𝑛
958
+ 𝐵Δ/𝐾 − 1
959
+
960
+ ,
961
+ (7)
962
+ where 𝐿𝑈,𝐿
963
+ 𝑘,𝑛
964
+ is the number of uplink bits. At the final
965
+ destination of the UAV above the end user, the downlink
966
+ communication energy consumption is required so that the
967
+ UAV can transmit the computing results accumulated during
968
+ flying, which is given as
969
+ 𝐸𝑈,𝐸 (𝐿𝑈,𝐸, 𝒑𝑈
970
+ 𝑁 +1) =
971
+ 𝑁0𝐵Δ/𝐾
972
+ 𝑔𝐾+1,𝑁 +1( 𝒑𝑈
973
+ 𝑁 +1)
974
+
975
+ 2
976
+ 𝐿𝑈,𝐸
977
+ 𝐵Δ/𝐾 − 1
978
+
979
+ ,
980
+ (8)
981
+ where 𝐿𝑈,𝐸 is the number of downlink bits and is the same as
982
+ the sum of output bits of the UAV and LEO-mounted cloudlets
983
+ as follows:
984
+ 𝐿𝑈,𝐸 = 𝑂𝑈
985
+ 𝑘
986
+ 𝑁 −2
987
+ ∑︁
988
+ 𝑛=1
989
+ 𝑙𝑈
990
+ 𝑘,𝑛+1 + 𝑂𝐿
991
+ 𝑘
992
+ 𝑁 −4
993
+ ∑︁
994
+ 𝑛=1
995
+ 𝑙𝐿
996
+ 𝑘,𝑛+2.
997
+ (9)
998
+ In addition, the transmit energy consumption from the LEO
999
+ and IoT sensor 𝑘 to the UAV at the 𝑛th frame is defined as
1000
+ 𝐸 𝐿,𝑈
1001
+ 𝑘,𝑛 (𝐿𝐿,𝑈
1002
+ 𝑘,𝑛 , 𝒑𝑈
1003
+ 𝑛 ) = 𝑁0𝐵Δ/𝐾
1004
+ ℎ𝑛( 𝒑𝑈𝑛 )
1005
+
1006
+ 2
1007
+ 𝐿𝐿,𝑈
1008
+ 𝑘,𝑛
1009
+ 𝐵Δ/𝐾 − 1
1010
+
1011
+ (10)
1012
+ and
1013
+ 𝐸 𝐼 ,𝑈
1014
+ 𝑘,𝑛 (𝐿𝐼 ,𝑈
1015
+ 𝑘,𝑛 , 𝒑𝑈
1016
+ 𝑛 ) = 𝑁0𝐵Δ/𝐾
1017
+ 𝑔𝑘,𝑛( 𝒑𝑈𝑛 )
1018
+
1019
+ 2
1020
+ 𝐿𝐼,𝑈
1021
+ 𝑘,𝑛
1022
+ 𝐵Δ/𝐾 − 1
1023
+
1024
+ ,
1025
+ (11)
1026
+ where 𝐿𝐿,𝑈
1027
+ 𝑘,𝑛
1028
+ is the number of downlink bits transmitted at
1029
+ the LEO and 𝐿𝐼 ,𝑈
1030
+ 𝑘,𝑛 is the number of uplink bits transmitted
1031
+ at the IoT sensor 𝑘. The energy consumption for reception is
1032
+ excluded since it is much smaller than the transmission energy
1033
+ consumption.
1034
+ 3) Flying energy model: Following [32], [33], the flying
1035
+ energy consumption of the UAV at the 𝑛th frame is written as
1036
+ 𝐸𝐹
1037
+ 𝑛 (𝒗𝑈
1038
+ 𝑛 ) = 𝜅∥𝒗𝑈
1039
+ 𝑛 ∥2,
1040
+ (12)
1041
+ where 𝜅 = 0.5𝑀Δ and 𝑀 is the mass of the UAV. The flying
1042
+ energy consumption depends only on the velocity vector 𝒗𝑈
1043
+ 𝑛
1044
+ of the UAV, and the level flight entails no change in the
1045
+ gravitational potential energy.
1046
+ Our purpose is to minimize the total energy consumption of
1047
+ the UAV, which must be calculated as the sum of the energy
1048
+ consumption of computation, communication and flying:
1049
+ 𝐸𝑡𝑜𝑡𝑎𝑙
1050
+ 𝑘,𝑛
1051
+ = 𝛼𝑘,𝑛
1052
+
1053
+ 𝛽𝑘,𝑛𝐸𝑈,𝐿
1054
+ 𝑘,𝑛 (𝐿𝑈,𝐿
1055
+ 𝑘,𝑛 , 𝒑𝑈
1056
+ 𝑛 ) + (1 − 𝛽𝑘,𝑛)𝐸𝑈
1057
+ 𝑘,𝑛(𝑙𝑈
1058
+ 𝑘,𝑛)
1059
+
1060
+ + (1 − 𝛼𝑘,𝑛)(1 − 𝛽𝑘,𝑛)𝐸𝑈
1061
+ 𝑘,𝑛(𝑙𝑈
1062
+ 𝑘,𝑛) + 𝐸𝐹
1063
+ 𝑛 (𝒗𝑈
1064
+ 𝑛 ),
1065
+ (13)
1066
+ where 𝛼𝑘,𝑛 and 𝛽𝑘,𝑛 are variables for the LEO availability
1067
+ and scheduling between LEO computing and UAV computing,
1068
+ respectively, which are given as
1069
+ 𝛼𝑘,𝑛 =
1070
+
1071
+ 1,
1072
+ if LEO communication is available,
1073
+ 0,
1074
+ otherwise,
1075
+ (14)
1076
+ 𝛽𝑘,𝑛 =
1077
+
1078
+ 1,
1079
+ if LEO computing is performed,
1080
+ 0,
1081
+ if UAV computing is performed.
1082
+ (15)
1083
+ Note that the energy consumption 𝐸𝑈,𝐸 for downlink com-
1084
+ munication with the end user in (8) is excluded from (13)
1085
+
1086
+ 6
1087
+ since it is constant regardless of optimization. In addition,
1088
+ LEO computing is considered by 𝛽𝑘,𝑛 = 1 when the input
1089
+ bits of the IoT sensor 𝑘 exceeds the computation capability of
1090
+ the UAV: that is,
1091
+ 𝑁
1092
+ ∑︁
1093
+ 𝑛=1
1094
+ 𝐿𝐼 ,𝑈
1095
+ 𝑘,𝑛 >
1096
+ 𝑁
1097
+ ∑︁
1098
+ 𝑛=1
1099
+
1100
+ 𝑓 𝑈
1101
+ 𝑛 · Δ
1102
+ 𝐾
1103
+
1104
+ 1
1105
+ 𝐶𝑈
1106
+ 𝑘
1107
+ ,
1108
+ (16)
1109
+ where 𝑓 𝑈
1110
+ 𝑛
1111
+ [CPU cycles/s] is the CPU frequency at the UAV
1112
+ edge server.
1113
+ III. OPTIMAL ENERGY CONSUMPTION FOR THE
1114
+ “ALWAYS ON” SCENARIO
1115
+ In this section, we formulate an optimization problem and
1116
+ the proposed algorithm to obtain a solution for the “Always
1117
+ On” scenario. Depending on the size of the offloaded data,
1118
+ either LEO computing or UAV computing is selected. As
1119
+ mentioned above, the total UAV energy consumption 𝐸𝑡𝑜𝑡𝑎𝑙
1120
+ 𝑘,𝑛
1121
+ in (13) is rewritten with 𝛼𝑘,𝑛 = 1, for all 𝑛 ∈ N, as
1122
+ 𝐸𝑡𝑜𝑡𝑎𝑙
1123
+ 𝑘,𝑛
1124
+ = 𝛽𝑘,𝑛𝐸𝑈,𝐿
1125
+ 𝑘,𝑛 (𝐿𝑈,𝐿
1126
+ 𝑘,𝑛 , 𝒑𝑈
1127
+ 𝑛 ) + (1 − 𝛽𝑘,𝑛)𝐸𝑈
1128
+ 𝑘,𝑛(𝑙𝑈
1129
+ 𝑘,𝑛)
1130
+ + 𝐸𝐹
1131
+ 𝑛 (𝒗𝑈
1132
+ 𝑛 ).
1133
+ (17)
1134
+ When LEO computing is considered, i.e., 𝛽𝑘,𝑛
1135
+ =
1136
+ 1,
1137
+ we
1138
+ need
1139
+ to
1140
+ jointly
1141
+ optimize
1142
+ the
1143
+ bit
1144
+ allocation
1145
+ of
1146
+ {𝐿𝐼 ,𝑈
1147
+ 𝑘,𝑛 }𝑛∈{1,···,𝑁 −4},𝑘 ∈K,
1148
+ {𝐿𝑈,𝐿
1149
+ 𝑘,𝑛 }𝑛∈{2,···,𝑁 −3},𝑘 ∈K,
1150
+ {𝑙𝐿
1151
+ 𝑘,𝑛}𝑛∈{3,···,𝑁 −2},𝑘 ∈K
1152
+ and
1153
+ {𝐿𝐿,𝑈
1154
+ 𝑘,𝑛 }𝑛∈{4,···,𝑁 −1},𝑘 ∈K
1155
+ along
1156
+ with
1157
+ the
1158
+ UAV
1159
+ trajectory
1160
+ { 𝒑𝑈
1161
+ 𝑛 }𝑛∈{2,···,𝑁 }.
1162
+ When
1163
+ UAV
1164
+ computing is performed, that is, 𝛽𝑘,𝑛 = 0, we must jointly
1165
+ optimize
1166
+ the
1167
+ bit
1168
+ allocation
1169
+ of
1170
+ {𝐿𝐼 ,𝑈
1171
+ 𝑘,𝑛 }𝑛∈{1,···,𝑁 −2},𝑘 ∈K
1172
+ and {𝑙𝑈
1173
+ 𝑘,𝑛}𝑛∈{2,···,𝑁 −1},𝑘 ∈K along with the UAV trajectory
1174
+ { 𝒑𝑈
1175
+ 𝑛 }𝑛∈{2,···,𝑁 }. This problem is formulated with (17) as
1176
+ follows:
1177
+ min
1178
+ 𝐿𝐼,𝑈
1179
+ 𝑘,𝑛 ,𝐿𝑈,𝐿
1180
+ 𝑘,𝑛 ,𝐿𝐿,𝑈
1181
+ 𝑘,𝑛
1182
+ 𝑙𝑈
1183
+ 𝑘,𝑛,𝑙𝐿
1184
+ 𝑘,𝑛,𝒑𝑈
1185
+ 𝑛
1186
+ 𝐾
1187
+ ∑︁
1188
+ 𝑘=1
1189
+ �𝑁 −4
1190
+ ∑︁
1191
+ 𝑛=1
1192
+ 𝛽𝑘,𝑛𝐸𝑈,𝐿
1193
+ 𝑘,𝑛+1(𝐿𝑈,𝐿
1194
+ 𝑘,𝑛+1, 𝒑𝑈
1195
+ 𝑛+1)
1196
+ +
1197
+ 𝑁 −2
1198
+ ∑︁
1199
+ 𝑛=1
1200
+ (1 − 𝛽𝑘,𝑛)𝐸𝑈
1201
+ 𝑘,𝑛+1(𝑙𝑈
1202
+ 𝑘,𝑛+1)
1203
+
1204
+ +
1205
+ 𝑁
1206
+ ∑︁
1207
+ 𝑛=1
1208
+ 𝐸𝐹
1209
+ 𝑛 (𝒗𝑈
1210
+ 𝑛 )
1211
+ (18a)
1212
+ s.t. 𝐸 𝐼 ,𝑈
1213
+ 𝑘,𝑛 (𝐿𝐼 ,𝑈
1214
+ 𝑘,𝑛 , 𝒑𝑈
1215
+ 𝑛 ) ≤ 𝜀, ∀𝑘 ∈ K, 𝑛 ∈ N
1216
+ (18b)
1217
+ 𝑛
1218
+ ∑︁
1219
+ 𝑖=1
1220
+ 𝑙𝑈
1221
+ 𝑘,𝑖+1 ≤
1222
+ 𝑛
1223
+ ∑︁
1224
+ 𝑖=1
1225
+ 𝐿𝐼 ,𝑈
1226
+ 𝑘,𝑖 , ∀𝑘 ∈ K, 𝑛 = 1, · · ·, 𝑁 − 2
1227
+ (18c)
1228
+ 𝑛
1229
+ ∑︁
1230
+ 𝑖=1
1231
+ 𝐿𝑈,𝐿
1232
+ 𝑘,𝑖+1 ≤
1233
+ 𝑛
1234
+ ∑︁
1235
+ 𝑖=1
1236
+ 𝐿𝐼 ,𝑈
1237
+ 𝑘,𝑖 , ∀𝑘 ∈ K, 𝑛 = 1, · · ·, 𝑁 − 4
1238
+ (18d)
1239
+ 𝑛
1240
+ ∑︁
1241
+ 𝑖=1
1242
+ 𝑙𝐿
1243
+ 𝑘,𝑖+2 ≤
1244
+ 𝑛
1245
+ ∑︁
1246
+ 𝑖=1
1247
+ 𝐿𝑈,𝐿
1248
+ 𝑘,𝑖+1, ∀𝑘 ∈ K, 𝑛 = 1, · · ·, 𝑁 − 4
1249
+ (18e)
1250
+ 𝑛
1251
+ ∑︁
1252
+ 𝑖=1
1253
+ 𝐿𝐿,𝑈
1254
+ 𝑘,𝑖+3 ≤ 𝑂𝐿
1255
+ 𝑘
1256
+ 𝑛
1257
+ ∑︁
1258
+ 𝑖=1
1259
+ 𝑙𝐿
1260
+ 𝑘,𝑖+2, ∀𝑘 ∈ K, 𝑛 = 1, · · ·, 𝑁 − 4 (18f)
1261
+ 𝑁 −4
1262
+ ∑︁
1263
+ 𝑛=1
1264
+ 𝛽𝑘,𝑛𝐿𝐼 ,𝑈
1265
+ 𝑘,𝑛 +
1266
+ 𝑁 −2
1267
+ ∑︁
1268
+ 𝑛=1
1269
+ (1 − 𝛽𝑘,𝑛)𝐿𝐼 ,𝑈
1270
+ 𝑘,𝑛 = 𝐼𝑘, ∀𝑘 ∈ K
1271
+ (18g)
1272
+ 𝑁 −4
1273
+ ∑︁
1274
+ 𝑛=1
1275
+ 𝛽𝑘,𝑛𝑙𝐿
1276
+ 𝑘,𝑛+2 +
1277
+ 𝑁 −2
1278
+ ∑︁
1279
+ 𝑛=1
1280
+ (1 − 𝛽𝑘,𝑛)𝑙𝑈
1281
+ 𝑘,𝑛+1 = 𝐼𝑘, ∀𝑘 ∈ K
1282
+ (18h)
1283
+ 𝑁 −4
1284
+ ∑︁
1285
+ 𝑛=1
1286
+ 𝑙𝐿
1287
+ 𝑘,𝑛+2 =
1288
+ 𝑁 −4
1289
+ ∑︁
1290
+ 𝑛=1
1291
+ 𝐿𝑈,𝐿
1292
+ 𝑘,𝑛+1, ∀𝑘 ∈ K
1293
+ (18i)
1294
+ 𝑁 −4
1295
+ ∑︁
1296
+ 𝑛=1
1297
+ 𝐿𝐿,𝑈
1298
+ 𝑘,𝑛+3 = 𝑂𝐿
1299
+ 𝑘
1300
+ 𝑁 −4
1301
+ ∑︁
1302
+ 𝑛=1
1303
+ 𝐿𝑈,𝐿
1304
+ 𝑘,𝑛+1, ∀𝑘 ∈ K
1305
+ (18j)
1306
+ 𝐿𝐼 ,𝑈
1307
+ 𝑘,𝑛 , 𝐿𝑈,𝐿
1308
+ 𝑘,𝑛 , 𝐿𝐿,𝑈
1309
+ 𝑘,𝑛 , 𝑙𝑈
1310
+ 𝑘,𝑛, 𝑙𝐿
1311
+ 𝑘,𝑛 ≥ 0, ∀𝑘 ∈ K, 𝑛 ∈ N
1312
+ (18k)
1313
+ 𝒑𝑈
1314
+ 1 = 𝒑𝑈
1315
+ 𝐼 , 𝒑𝑈
1316
+ 𝑁 +1 = 𝒑𝑈
1317
+ 𝐹 ,
1318
+ (18l)
1319
+ ��𝒗𝑈
1320
+ 𝑛
1321
+ �� ≤ 𝑣max, ∀𝑛 ∈ N,
1322
+ (18m)
1323
+ where 𝜀 in (18b) represents the energy budget constraint per
1324
+ frame for the IoT sensors. The inequality constraint (18c)
1325
+ and (18e) ensures that the number of bits computed at the
1326
+ UAV and LEO-mounted cloudlet is less than or equal to the
1327
+ number of uplink bits transmitted from the IoT sensor and
1328
+ UAV, respectively. The inequality constraints (18d) and (18f)
1329
+ ensure that the number of uplink bits from the UAV is less than
1330
+ or equal to the number of uplink bits from the IoT sensor, and
1331
+ the number of downlink bits from the LEO is limited by the
1332
+ number of output bits from the LEO. The equality constraints
1333
+ (18g) and (18h) enforce that the sum of the uplink bits of
1334
+ the IoT sensor and the sum of the computation bits for the
1335
+ LEO and UAV computing are equal to the input bits of the
1336
+ IoT sensor. The equality constraints (18i) and (18j) enforce the
1337
+ completion of LEO computing, while (18k) is imposed for the
1338
+ non-negative bit allocations. The constraints (18l) and (18m)
1339
+ represent the flying UAV’s initial and final position constraint
1340
+ and the maximum speed constraint, respectively.
1341
+ Problem (18) is non-convex because the objective function
1342
+ and the energy budget constraint are non-convex. To address
1343
+ this non-convexity, we apply the SCA-based strategy [24], [25]
1344
+ which builds on the inner convex approximation framework.
1345
+ In particular, we develop proposed algorithm 1 by using the
1346
+ following lemmas.
1347
+ Lemma 1: Given that a non-convex objective function
1348
+ 𝑈(𝒙) = 𝑓1(𝒙) 𝑓2(𝒙) is the product of 𝑓1 and 𝑓2 convex and
1349
+ non-negative for any 𝒚 in the domain of 𝑈(𝒙), a convex
1350
+ approximation that satisfies the conditions required by the
1351
+ SCA algorithm is given as
1352
+ ¯𝑈 (𝒙; 𝒚) = 𝑓1(𝒙) 𝑓2(𝒚) + 𝑓1(𝒚) 𝑓2(𝒙)
1353
+ + 𝜏𝑖
1354
+ 2 (𝒙 − 𝒚)T𝑯(𝒚)(𝒙 − 𝒚),
1355
+ (19)
1356
+ where 𝜏𝑖 > 0 is a positive constant, 𝑯(𝒚) is a positive definite
1357
+ matrix, and (·)T indicates the transpose.
1358
+ Lemma 2: Given a non-convex constraint 𝑔(𝒙1, 𝒙2) ≤ 0,
1359
+ where 𝑔(𝒙1, 𝒙2) = ℎ1(𝒙1)ℎ2(𝒙2) is the product of the ℎ1 and
1360
+ ℎ2 convex and non-negative, for any (𝒚1, 𝒚2) in the domain of
1361
+ 𝑔(𝒙1, 𝒙2), a convex approximation that satisfies the conditions
1362
+ required by the SCA algorithm is given as
1363
+ ¯𝑔 (𝒙1, 𝒙2; 𝒚1, 𝒚2)
1364
+ Δ= 1
1365
+ 2 (ℎ1(𝒙1) + ℎ2(𝒙2))2 − 1
1366
+ 2 (ℎ12(𝒚1) + ℎ22(𝒚2))
1367
+ − ℎ1(𝒚1)ℎ1
1368
+ ′(𝒚1)(𝒙1 − 𝒚1) − ℎ2(𝒚2)ℎ2
1369
+ ′(𝒚2)(𝒙2 − 𝒚2),
1370
+ (20)
1371
+ where the partial derivative of 𝑓 (·) is 𝑓
1372
+ ′ (·).
1373
+
1374
+ 7
1375
+ We set the primal variables for the formulated Problem
1376
+ (18) as 𝒛 = {𝒛𝑛}𝑛∈N with 𝒛𝑛 = ({𝐿𝐼 ,𝑈
1377
+ 𝑘,𝑛 }𝑘 ∈K, {𝐿𝑈,𝐿
1378
+ 𝑘,𝑛 }𝑘 ∈K,
1379
+ {𝐿𝐿,𝑈
1380
+ 𝑘,𝑛 }𝑘 ∈K, {𝑙𝑈
1381
+ 𝑘,𝑛}𝑘 ∈K, {𝑙𝐿
1382
+ 𝑘,𝑛}𝑘 ∈K, 𝒑𝑈
1383
+ 𝑛 ). We observe that the
1384
+ function 𝐸𝑈,𝐿
1385
+ 𝑘,𝑛 (𝒛𝑛)
1386
+ Δ= 𝐸𝑈,𝐿
1387
+ 𝑘,𝑛 (𝐿𝑈,𝐿
1388
+ 𝑘,𝑛 , 𝒑𝑈
1389
+ 𝑛 ) in (18a) is the product
1390
+ of two convex and non-negative functions, namely
1391
+ 𝑓1(𝐿𝑈,𝐿
1392
+ 𝑘,𝑛 ) = 𝑁0𝐵Δ/𝐾
1393
+ 𝑔0𝐺
1394
+
1395
+ 2
1396
+ 𝐿𝑈,𝐿
1397
+ 𝑘,𝑛
1398
+ 𝐵Δ/𝐾 − 1
1399
+
1400
+ (21)
1401
+ and
1402
+ 𝑓2( 𝒑𝑈
1403
+ 𝑛 ) = (𝑥𝐿
1404
+ 𝑛 − 𝑥𝑈
1405
+ 𝑛 )2 + (𝑦𝐿
1406
+ 𝑛 − 𝑦𝑈
1407
+ 𝑛 )2 + ℎ𝐿2.
1408
+ (22)
1409
+ Then,
1410
+ by
1411
+ using
1412
+ Lemma
1413
+ 1
1414
+ and
1415
+ defining
1416
+ 𝒛𝑛(𝑣)
1417
+ =
1418
+ ({𝐿𝐼 ,𝑈
1419
+ 𝑘,𝑛 (𝑣)}𝑘 ∈K,
1420
+ {𝐿𝑈,𝐿
1421
+ 𝑘,𝑛 (𝑣)}𝑘 ∈K,
1422
+ {𝐿𝐿,𝑈
1423
+ 𝑘,𝑛 (𝑣)}𝑘 ∈K,
1424
+ {𝑙𝑈
1425
+ 𝑘,𝑛(𝑣)}𝑘 ∈K, {𝑙𝐿
1426
+ 𝑘,𝑛(𝑣)}𝑘 ∈K, 𝒑𝑈
1427
+ 𝑛 (𝑣))∈ X for the 𝑣th iterate
1428
+ within the feasible set X of (18), we obtain a strongly convex
1429
+ surrogate function ¯𝐸𝑈,𝐿
1430
+ 𝑘,𝑛 (𝒛𝑛; 𝒛𝑛(𝑣)) of 𝐸𝑈,𝐿
1431
+ 𝑘,𝑛 (𝒛𝑛) as
1432
+ ¯𝐸𝑈,𝐿
1433
+ 𝑘,𝑛 (𝒛𝑛; 𝒛𝑛(𝑣))
1434
+ Δ= ¯𝐸𝑈,𝐿
1435
+ 𝑘,𝑛 (𝐿𝑈,𝐿
1436
+ 𝑘,𝑛 , 𝒑𝑈
1437
+ 𝑛 ; 𝐿𝑈,𝐿
1438
+ 𝑘,𝑛 (𝑣), 𝒑𝑈
1439
+ 𝑛 (𝑣))
1440
+ = 𝑓1(𝐿𝑈,𝐿
1441
+ 𝑘,𝑛 ) 𝑓2( 𝒑𝑈
1442
+ 𝑛 (𝑣)) + 𝑓1(𝐿𝑈,𝐿
1443
+ 𝑘,𝑛 (𝑣)) 𝑓2( 𝒑𝑈
1444
+ 𝑛 )
1445
+ +
1446
+ 𝜏𝐿𝑈,𝐿
1447
+ 𝑘,��
1448
+ 2
1449
+ (𝐿𝑈,𝐿
1450
+ 𝑘,𝑛 − 𝐿𝑈,𝐿
1451
+ 𝑘,𝑛 (𝑣))2 +
1452
+ 𝜏𝑥𝑈
1453
+ 𝑛
1454
+ 2 (𝑥𝑈
1455
+ 𝑛 − 𝑥𝑈
1456
+ 𝑛 (𝑣))2
1457
+ +
1458
+ 𝜏𝑦𝑈
1459
+ 𝑛
1460
+ 2 (𝑦𝑈
1461
+ 𝑛 − 𝑦𝑈
1462
+ 𝑛 (𝑣))2,
1463
+ (23)
1464
+ where 𝜏𝐿𝑈,𝐿
1465
+ 𝑘,𝑛 , 𝜏𝑥𝑈
1466
+ 𝑛 , 𝜏𝑦𝑈
1467
+ 𝑛
1468
+ > 0. Also, the function 𝐸𝑈
1469
+ 𝑘,𝑛(𝒛𝑛)
1470
+ Δ=
1471
+ 𝐸𝑈
1472
+ 𝑘,𝑛(𝑙𝑈
1473
+ 𝑘,𝑛) in (18a) is the product of two convex and non-
1474
+ negative functions, namely
1475
+ 𝑓1(𝑙𝑈
1476
+ 𝑘,𝑛) =
1477
+ 𝛾𝑈𝐶𝑈
1478
+ 𝑘 𝑙𝑈
1479
+ 𝑘,𝑛
1480
+ Δ2
1481
+ (24)
1482
+ and
1483
+ 𝑓2(𝑙𝑈
1484
+ 𝑘′,𝑛) =
1485
+ � 𝐾
1486
+ ∑︁
1487
+ 𝑘′=1
1488
+ 𝐶𝑈
1489
+ 𝑘′𝑙𝑈
1490
+ 𝑘′,𝑛
1491
+ �2
1492
+ .
1493
+ (25)
1494
+ As in (23), we obtain a strongly convex surrogate function
1495
+ ¯𝐸𝑈
1496
+ 𝑘,𝑛(𝒛𝑛; 𝒛𝑛(𝑣)) of 𝐸𝑈
1497
+ 𝑘,𝑛(𝒛𝑛) as
1498
+ ¯𝐸𝑈
1499
+ 𝑘,𝑛(𝒛𝑛; 𝒛𝑛(𝑣))
1500
+ Δ= ¯𝐸𝑈
1501
+ 𝑘,𝑛(𝑙𝑈
1502
+ 𝑘,𝑛, 𝑙𝑈
1503
+ 𝑘′,𝑛; 𝑙𝑈
1504
+ 𝑘,𝑛(𝑣), 𝑙𝑈
1505
+ 𝑘′,𝑛(𝑣))
1506
+ = 𝑓1(𝑙𝑈
1507
+ 𝑘,𝑛) 𝑓2(𝑙𝑈
1508
+ 𝑘′,𝑛(𝑣)) + 𝑓1(𝑙𝑈
1509
+ 𝑘,𝑛(𝑣)) 𝑓2(𝑙𝑈
1510
+ 𝑘′,𝑛)
1511
+ +
1512
+ 𝜏𝑙𝑈
1513
+ 𝑘,𝑛
1514
+ 2 (𝑙𝑈
1515
+ 𝑘,𝑛 − 𝑙𝑈
1516
+ 𝑘,𝑛(𝑣))2 +
1517
+ 𝜏𝑙𝑈
1518
+ 𝑘′,𝑛
1519
+ 2
1520
+ (𝑙𝑈
1521
+ 𝑘′,𝑛 − 𝑙𝑈
1522
+ 𝑘′,𝑛(𝑣))2,
1523
+ (26)
1524
+ where 𝜏𝑙𝑈
1525
+ 𝑘,𝑛, 𝜏𝑙𝑈
1526
+ 𝑘′,𝑛 > 0.
1527
+ For the non-convex energy budget constraint (18b), we
1528
+ derive a convex upper bound by using Lemma 2. The function
1529
+ 𝐸 𝐼 ,𝑈
1530
+ 𝑘,𝑛 (𝒛𝑛)
1531
+ Δ= 𝐸 𝐼 ,𝑈
1532
+ 𝑘,𝑛 (𝐿𝐼 ,𝑈
1533
+ 𝑘,𝑛 , 𝒑𝑈
1534
+ 𝑛 ) is the product of two convex and
1535
+ non-negative functions, namely
1536
+ ℎ1(𝐿𝐼 ,𝑈
1537
+ 𝑘,𝑛 ) = 2
1538
+ 𝐿𝐼,𝑈
1539
+ 𝑘,𝑛
1540
+ 𝐵Δ/𝐾 − 1
1541
+ (27)
1542
+ and
1543
+ ℎ2( 𝒑𝑈
1544
+ 𝑛 ) = (𝑥𝑈
1545
+ 𝑛 − 𝑥𝐼
1546
+ 𝑘)2 + (𝑦𝑈
1547
+ 𝑛 − 𝑦𝐼
1548
+ 𝑘)2 + ℎ𝑈 2.
1549
+ (28)
1550
+ Algorithm 1 Proposed algorithm for the “Always On” scenario
1551
+ Input: 𝛾(𝑣) ∈ (0, 1], 𝒛(0) = {𝒛𝑛(0)}𝑛∈N ∈ X; Set 𝑣 = 0.
1552
+ Output: {𝐿𝐼 ,𝑈
1553
+ 𝑘,𝑛 }, {𝐿𝑈,𝐿
1554
+ 𝑘,𝑛 }, {𝐿𝐿,𝑈
1555
+ 𝑘,𝑛 }, {𝑙𝑈
1556
+ 𝑘,𝑛}, {𝑙𝐿
1557
+ 𝑘,𝑛}, { 𝒑𝑈
1558
+ 𝑛 }.
1559
+ 1: If 𝒛(𝑣) is a stationary solution of (18): STOP.
1560
+ 2: Compute ˆ𝒛 (𝒛(𝑣)) of (30) using dual decomposition or
1561
+ CVX.
1562
+ 3: Set 𝒛(𝑣 + 1) = 𝒛(𝑣) + 𝛾(𝑣) (ˆ𝒛 (𝒛(𝑣)) − 𝒛(𝑣)).
1563
+ 4: 𝑣 ← 𝑣 + 1 and go to step 1.
1564
+ Then, by using Lemma 2 and defining 𝒛𝑛(𝑣) for the 𝑣th
1565
+ iterate, we obtain a strongly convex surrogate function
1566
+ ¯𝐸 𝐼 ,𝑈
1567
+ 𝑘,𝑛 (𝒛𝑛; 𝒛𝑛(𝑣)) of 𝐸 𝐼 ,𝑈
1568
+ 𝑘,𝑛 (𝒛𝑛) as
1569
+ ¯𝐸 𝐼 ,𝑈
1570
+ 𝑘,𝑛 (𝒛𝑛; 𝒛𝑛(𝑣))
1571
+ Δ= 𝐸 𝐼 ,𝑈
1572
+ 𝑘,𝑛 (𝐿𝐼 ,𝑈
1573
+ 𝑘,𝑛 , 𝒑𝑈
1574
+ 𝑛 ; 𝐿𝐼 ,𝑈
1575
+ 𝑘,𝑛 (𝑣), 𝒑𝑈
1576
+ 𝑛 (𝑣))
1577
+ = 𝑁0𝐵Δ/𝐾
1578
+ 2𝑔0
1579
+ ������
1580
+
1581
+ 2
1582
+ 𝐿𝐼,𝑈
1583
+ 𝑘,𝑛
1584
+ 𝐵Δ/𝐾 − 1 + (𝑥𝑈
1585
+ 𝑛 − 𝑥𝐼
1586
+ 𝑘)
1587
+ 2 + (𝑦𝑈
1588
+ 𝑛 − 𝑦𝐼
1589
+ 𝑘)
1590
+ 2 + ℎ𝑈 2
1591
+ �2
1592
+
1593
+
1594
+ 2
1595
+ 𝐿𝐼,𝑈
1596
+ 𝑘,𝑛 (𝑣)
1597
+ 𝐵Δ/𝐾
1598
+ − 1
1599
+ �2
1600
+
1601
+
1602
+ (𝑥𝑈
1603
+ 𝑛 (𝑣) − 𝑥𝐼
1604
+ 𝑘)
1605
+ 2 + (𝑦𝑈
1606
+ 𝑛 (𝑣) − 𝑦𝐼
1607
+ 𝑘)
1608
+ 2 + ℎ𝑈 2�2������
1609
+ − 𝑁0 ln 2
1610
+ 𝑔0
1611
+ 2
1612
+ 𝐿𝐼,𝑈
1613
+ 𝑘,𝑛 (𝑣)
1614
+ 𝐵Δ/𝐾
1615
+
1616
+ 2
1617
+ 𝐿𝐼,𝑈
1618
+ 𝑘,𝑛 (𝑣)
1619
+ 𝐵Δ/𝐾
1620
+ − 1
1621
+ � �
1622
+ 𝐿𝐼 ,𝑈
1623
+ 𝑘,𝑛 − 𝐿𝐼 ,𝑈
1624
+ 𝑘,𝑛 (𝑣)
1625
+
1626
+ − 2𝑁0𝐵Δ/𝐾
1627
+ 𝑔0
1628
+
1629
+ (𝑥𝑈
1630
+ 𝑛 (𝑣) − 𝑥𝐼
1631
+ 𝑘)
1632
+ 2 + (𝑦𝑈
1633
+ 𝑛 (𝑣) − 𝑦𝐼
1634
+ 𝑘)
1635
+ 2 + ℎ𝑈 2�
1636
+
1637
+ (𝑥𝑈
1638
+ 𝑛 (𝑣) − 𝑥𝐼
1639
+ 𝑘)(𝑥𝑈
1640
+ 𝑛 − 𝑥𝑈
1641
+ 𝑛 (𝑣)) + (𝑦𝑈
1642
+ 𝑛 (𝑣) − 𝑦𝐼
1643
+ 𝑘)(𝑦𝑈
1644
+ 𝑛 − 𝑦𝑈
1645
+ 𝑛 (𝑣))
1646
+
1647
+ .
1648
+ (29)
1649
+ Finally, the problem in Equation (18) can be transformed
1650
+ into the strongly convex inner approximation for a given
1651
+ feasible 𝒛(𝑣) = {𝒛𝑛(𝑣)}𝑛∈N, as
1652
+ min
1653
+ 𝒛
1654
+ 𝐾
1655
+ ∑︁
1656
+ 𝑘=1
1657
+ �𝑁 −4
1658
+ ∑︁
1659
+ 𝑛=1
1660
+ 𝛽𝑘,𝑛 ¯𝐸𝑈,𝐿
1661
+ 𝑘,𝑛+1(𝒛𝑛+1; 𝒛𝑛+1(𝑣))
1662
+ +
1663
+ 𝑁 −2
1664
+ ∑︁
1665
+ 𝑛=1
1666
+ (1 − 𝛽𝑘,𝑛) ¯𝐸𝑈
1667
+ 𝑘,𝑛+1(𝒛𝑛+1; 𝒛𝑛+1(𝑣))
1668
+
1669
+ +
1670
+ 𝑁
1671
+ ∑︁
1672
+ 𝑛=1
1673
+ 𝐸𝐹
1674
+ 𝑛 (𝒗𝑈
1675
+ 𝑛 )
1676
+ (30a)
1677
+ s.t. ¯𝐸 𝐼 ,𝑈
1678
+ 𝑘,𝑛 (𝒛𝑛; 𝒛𝑛(𝑣)) ≤ 𝜀, ∀𝑘 ∈ K, 𝑛 ∈ N
1679
+ (30b)
1680
+ (18c) − (18m),
1681
+ (30c)
1682
+ which has a unique solution denoted by ˆ𝒛 (𝒛(𝑣)). Since Prob-
1683
+ lem (30) is convex, we can obtain the closed-form solutions
1684
+ via dual decomposition [34] or a standard convex optimization
1685
+ solver such as CVX [35]. The proposed algorithm based
1686
+ on the SCA method is summarized as Algorithm 1. The
1687
+ sequence {𝒛(𝑣)} generated by Algorithm 1 converges if the
1688
+ step size 𝛾(𝑣) is chosen so that 𝛾(𝑣) ∈ (0, 1], 𝛾(𝑣) → 0, and
1689
+
1690
+ 𝑣 𝛾(𝑣) = ∞. Also, {𝒛(𝑣)} is bounded and every limit point
1691
+ of {𝒛(𝑣)} is stationary. Furthermore, if Algorithm 1 does not
1692
+ stop after a finite number of steps, none of the stationary points
1693
+ are a local minimum of Problem (18).
1694
+
1695
+ 8
1696
+ Algorithm 2 Proposed algorithm for the “Always Off” sce-
1697
+ nario
1698
+ Input: 𝛾(𝑣) ∈ (0, 1], 𝒛(0) = {𝒛𝑛(0)}𝑛∈N ∈ X; Set 𝑣 = 0.
1699
+ Output: {𝐿𝐼 ,𝑈
1700
+ 𝑘,𝑛 }, {𝑙𝑈
1701
+ 𝑘,𝑛}, { 𝒑𝑈
1702
+ 𝑛 }.
1703
+ 1: If 𝒛(𝑣) is a stationary solution of (32): STOP.
1704
+ 2: Compute ˆ𝒛 (𝒛(𝑣)) of (33) using dual decomposition or
1705
+ CVX.
1706
+ 3: Set 𝒛(𝑣 + 1) = 𝒛(𝑣) + 𝛾(𝑣) (ˆ𝒛 (𝒛(𝑣)) − 𝒛(𝑣)).
1707
+ 4: 𝑣 ← 𝑣 + 1 and go to step 1.
1708
+ IV. OPTIMAL ENERGY CONSUMPTION FOR THE
1709
+ “ALWAYS OFF” SCENARIO
1710
+ In this section, we find the optimal bit allocation and UAV
1711
+ path planning when the LEO communication is not available
1712
+ during the entire mission time. Therefore, the total UAV
1713
+ energy consumption 𝐸𝑡𝑜𝑡𝑎𝑙
1714
+ 𝑘,𝑛
1715
+ in (13) is rewritten with 𝛼𝑘,𝑛 = 0
1716
+ for all 𝑛 ∈ N, as
1717
+ 𝐸𝑡𝑜𝑡𝑎𝑙
1718
+ 𝑘,𝑛
1719
+ = (1 − 𝛽𝑘,𝑛)𝐸𝑈
1720
+ 𝑘,𝑛(𝑙𝑈
1721
+ 𝑘,𝑛) + 𝐸𝐹
1722
+ 𝑛 (𝒗𝑈
1723
+ 𝑛 ).
1724
+ (31)
1725
+ For UAV computing with 𝛽𝑘,𝑛 = 0, the problem is given with
1726
+ (31) by
1727
+ min
1728
+ 𝐿𝐼,𝑈
1729
+ 𝑘,𝑛 ,𝑙𝑈
1730
+ 𝑘,𝑛,𝒑𝑈
1731
+ 𝑛
1732
+ 𝐾
1733
+ ∑︁
1734
+ 𝑘=1
1735
+ 𝑁 −2
1736
+ ∑︁
1737
+ 𝑛=1
1738
+ (1 − 𝛽𝑘,𝑛)𝐸𝑈
1739
+ 𝑘,𝑛+1(𝑙𝑈
1740
+ 𝑘,𝑛+1) +
1741
+ 𝑁
1742
+ ∑︁
1743
+ 𝑛=1
1744
+ 𝐸𝐹
1745
+ 𝑛 (𝒗𝑈
1746
+ 𝑛 )
1747
+ (32a)
1748
+ s.t.
1749
+ 𝑁 −2
1750
+ ∑︁
1751
+ 𝑛=1
1752
+ (1 − 𝛽𝑘,𝑛)𝐿𝐼 ,𝑈
1753
+ 𝑘,𝑛 = 𝐼𝑘, ∀𝑘 ∈ K
1754
+ (32b)
1755
+ 𝑁 −2
1756
+ ∑︁
1757
+ 𝑛=1
1758
+ (1 − 𝛽𝑘,𝑛)𝑙𝑈
1759
+ 𝑘,𝑛+1 = 𝐼𝑘, ∀𝑘 ∈ K
1760
+ (32c)
1761
+ (18b), (18c), (18k) − (18m),
1762
+ (32d)
1763
+ where the equality constraints (32b) and (32c) guarantee that
1764
+ the total number of uplink bits from the IoT sensor and the
1765
+ total number of computation bits at the UAV must be equal to
1766
+ the input bits of the IoT sensor for complete offloading.
1767
+ In the “Always Off” case, the primal variables are defined as
1768
+ 𝒛 = {𝒛𝑛}𝑛∈N with 𝒛𝑛 = ({𝐿𝐼 ,𝑈
1769
+ 𝑘,𝑛 }𝑘 ∈K, {𝑙𝑈
1770
+ 𝑘,𝑛}𝑘 ∈K, 𝒑𝑈
1771
+ 𝑛 ). Since
1772
+ Problem (32) is non-convex, it can be transformed into the
1773
+ strongly convex inner approximation, for a given a feasible
1774
+ 𝒛(𝑣) = {𝒛𝑛(𝑣)}𝑛∈N, as
1775
+ min
1776
+ 𝒛
1777
+ 𝐾
1778
+ ∑︁
1779
+ 𝑘=1
1780
+ 𝑁 −2
1781
+ ∑︁
1782
+ 𝑛=1
1783
+ (1 − 𝛽𝑘,𝑛) ¯𝐸𝑈
1784
+ 𝑘,𝑛+1(𝒛𝑛+1; 𝒛𝑛+1(𝑣)) +
1785
+ 𝑁
1786
+ ∑︁
1787
+ 𝑛=1
1788
+ 𝐸𝐹
1789
+ 𝑛 (𝒗𝑈
1790
+ 𝑛 )
1791
+ (33a)
1792
+ s.t. (32b), (32c), (30b), (18c), (18k) − (18m),
1793
+ (33b)
1794
+ where ¯𝐸𝑈
1795
+ 𝑘,𝑛 of the objective function is defined equally in (26).
1796
+ Problem (33) has a unique solution denoted by ˆ𝒛 (𝒛(𝑣)) due to
1797
+ its convexity. As in Problem (30), the locally optimal solution
1798
+ can be obtained by dual decomposition or a standard convex
1799
+ optimization solver. The proposed SCA-based algorithm is
1800
+ summarized in Algorithm 2.
1801
+ Algorithm 3 Proposed algorithm for the “Intermediate Dis-
1802
+ connected” scenario
1803
+ Input: 𝛾(𝑣) ∈ (0, 1], 𝒛(0) = {𝒛𝑛(0)}𝑛∈N ∈ X; Set 𝑣 = 0.
1804
+ Output: {𝐿𝐼 ,𝑈
1805
+ 𝑘,𝑛 }, {𝐿𝑈,𝐿
1806
+ 𝑘,𝑛 }, {𝐿𝐿,𝑈
1807
+ 𝑘,𝑛 }, {𝑙𝑈
1808
+ 𝑘,𝑛}, {𝑙𝐿
1809
+ 𝑘,𝑛}, { 𝒑𝑈
1810
+ 𝑛 }.
1811
+ 1: If 𝒛(𝑣) is a stationary solution of (34): STOP.
1812
+ 2: Compute ˆ𝒛 (𝒛(𝑣)) of (35) using dual decomposition or
1813
+ CVX.
1814
+ 3: Set 𝒛(𝑣 + 1) = 𝒛(𝑣) + 𝛾(𝑣) (ˆ𝒛 (𝒛(𝑣)) − 𝒛(𝑣)).
1815
+ 4: 𝑣 ← 𝑣 + 1 and go to step 1.
1816
+ V. OPTIMAL ENERGY CONSUMPTION FOR THE
1817
+ “INTERMEDIATE DISCONNECTED” SCENARIO
1818
+ For the “Intermediate Disconnected” case, we provide joint
1819
+ path planning and resource allocation when the LEO commu-
1820
+ nication is intermediately disconnected. The total UAV energy
1821
+ consumption in this case follows (13).
1822
+ During the LEO computing for 𝑛
1823
+
1824
+ {1, · · ·, 𝑁𝑡} with
1825
+ 𝛼𝑘,𝑛
1826
+ =
1827
+ 1
1828
+ and
1829
+ 𝛽𝑘,𝑛
1830
+ =
1831
+ 1,
1832
+ we
1833
+ jointly
1834
+ optimize
1835
+ the
1836
+ bit allocation {𝐿𝐼 ,𝑈
1837
+ 𝑘,𝑛 }𝑛∈{1,···,𝑁𝑡 },𝑘 ∈K, {𝐿𝑈,𝐿
1838
+ 𝑘,𝑛 }𝑛∈{2,···,𝑁𝑡+1},𝑘 ∈K,
1839
+ {𝑙𝐿
1840
+ 𝑘,𝑛}𝑛∈{3,···,𝑁𝑡+2},𝑘 ∈K
1841
+ and
1842
+ {𝐿𝐿,𝑈
1843
+ 𝑘,𝑛 }𝑛∈{4,···,𝑁𝑡+3},𝑘 ∈K
1844
+ along
1845
+ with the UAV trajectory { 𝒑𝑈
1846
+ 𝑛 }𝑛∈{2,···,𝑁𝑡+4}. During UAV com-
1847
+ puting for 𝑛 ∈ {1, · · ·, 𝑁𝑡} with 𝛼𝑘,𝑛 = 1 and 𝛽𝑘,𝑛 = 0 and
1848
+ 𝑛 ∈ {𝑁𝑡 + 1, · · ·, 𝑁} with 𝛼𝑘,𝑛 = 0 and 𝛽𝑘,𝑛 = 0, the bit
1849
+ allocation and the UAV path planning are jointly designed
1850
+ as in the UAV computing process of the “Always On” case.
1851
+ Accordingly, we can formulate the problem as
1852
+ min
1853
+ 𝐿𝐼,𝑈
1854
+ 𝑘,𝑛 ,𝐿𝑈,𝐿
1855
+ 𝑘,𝑛 ,𝐿𝐿,𝑈
1856
+ 𝑘,𝑛
1857
+ 𝑙𝑈
1858
+ 𝑘,𝑛,𝑙𝐿
1859
+ 𝑘,𝑛,𝒑𝑈
1860
+ 𝑛
1861
+ 𝐾
1862
+ ∑︁
1863
+ 𝑘=1
1864
+ 𝑁𝑡
1865
+ ∑︁
1866
+ 𝑛=1
1867
+ 𝛼𝑘,𝑛
1868
+
1869
+ 𝛽𝑘,𝑛𝐸𝑈,𝐿
1870
+ 𝑘,𝑛+1(𝐿𝑈,𝐿
1871
+ 𝑘,𝑛+1, 𝒑𝑈
1872
+ 𝑛+1)
1873
+ + �1 − 𝛽𝑘,𝑛
1874
+ � 𝐸𝑈
1875
+ 𝑘,𝑛+1(𝑙𝑈
1876
+ 𝑘,𝑛+1)
1877
+
1878
+ +
1879
+ 𝐾
1880
+ ∑︁
1881
+ 𝑘=1
1882
+ 𝑁 −2
1883
+ ∑︁
1884
+ 𝑛=𝑁𝑡+1
1885
+ �1 − 𝛼���,𝑛
1886
+ � (1 − 𝛽𝑘,𝑛)𝐸𝑈
1887
+ 𝑘,𝑛+1(𝑙𝑈
1888
+ 𝑘,𝑛+1)
1889
+ +
1890
+ 𝑁
1891
+ ∑︁
1892
+ 𝑛=1
1893
+ 𝐸𝐹
1894
+ 𝑛 (𝒗𝑈
1895
+ 𝑛 )
1896
+ (34a)
1897
+ s.t.
1898
+ 𝑛
1899
+ ∑︁
1900
+ 𝑖=1
1901
+ 𝐿𝑈,𝐿
1902
+ 𝑘,𝑖+1 ≤
1903
+ 𝑛
1904
+ ∑︁
1905
+ 𝑖=1
1906
+ 𝐿𝐼 ,𝑈
1907
+ 𝑘,𝑖 , ∀𝑘 ∈ K, 𝑛 = 1, · · ·, 𝑁𝑡
1908
+ (34b)
1909
+ 𝑛
1910
+ ∑︁
1911
+ 𝑖=1
1912
+ 𝑙𝐿
1913
+ 𝑘,𝑖+2 ≤
1914
+ 𝑛
1915
+ ∑︁
1916
+ 𝑖=1
1917
+ 𝐿𝑈,𝐿
1918
+ 𝑘,𝑖+1, ∀𝑘 ∈ K, 𝑛 = 1, · · ·, 𝑁𝑡
1919
+ (34c)
1920
+ 𝑛
1921
+ ∑︁
1922
+ 𝑖=1
1923
+ 𝐿𝐿,𝑈
1924
+ 𝑘,𝑖+3 ≤ 𝑂𝐿
1925
+ 𝑘
1926
+ 𝑛
1927
+ ∑︁
1928
+ 𝑖=1
1929
+ 𝑙𝐿
1930
+ 𝑘,𝑖+2, ∀𝑘 ∈ K, 𝑛 = 1, · · ·, 𝑁𝑡
1931
+ (34d)
1932
+ 𝑁𝑡
1933
+ ∑︁
1934
+ 𝑛=1
1935
+ 𝛽𝑘,𝑛𝑙𝐿
1936
+ 𝑘,𝑛+2 +
1937
+ 𝑁 −2
1938
+ ∑︁
1939
+ 𝑛=1
1940
+ (1 − 𝛽𝑘,𝑛)𝑙𝑈
1941
+ 𝑘,𝑛+1 = 𝐼𝑘, ∀𝑘 ∈ K
1942
+ (34e)
1943
+ 𝑁𝑡
1944
+ ∑︁
1945
+ 𝑛=1
1946
+ 𝑙𝐿
1947
+ 𝑘,𝑛+2 =
1948
+ 𝑁𝑡
1949
+ ∑︁
1950
+ 𝑛=1
1951
+ 𝐿𝑈,𝐿
1952
+ 𝑘,𝑛+1, ∀𝑘 ∈ K
1953
+ (34f)
1954
+ 𝑁𝑡
1955
+ ∑︁
1956
+ 𝑛=1
1957
+ 𝐿𝐿,𝑈
1958
+ 𝑘,𝑛+3 = 𝑂𝐿
1959
+ 𝑘
1960
+ 𝑁𝑡
1961
+ ∑︁
1962
+ 𝑛=1
1963
+ 𝐿𝑈,𝐿
1964
+ 𝑘,𝑛+1, ∀𝑘 ∈ K
1965
+ (34g)
1966
+ (18b), (18c), (32b), (18k) − (18m),
1967
+ (34h)
1968
+
1969
+ 9
1970
+ TABLE III: Simulation Parameters
1971
+ Parameter
1972
+ Value
1973
+ Parameter
1974
+ Value
1975
+ 𝑣𝑠
1976
+ 7.5 km/s
1977
+ 𝑟𝐸
1978
+ 6371 km
1979
+ 𝜃
1980
+ 10 ◦
1981
+ 𝑇𝑣
1982
+ 830 s
1983
+ ℎ𝑈
1984
+ 1 km
1985
+ ℎ𝐿
1986
+ 600 km
1987
+ 𝐾
1988
+ 10
1989
+ 𝑣max
1990
+ 50 m/s
1991
+ 𝑀
1992
+ 9.65 kg
1993
+ 𝑂𝐿
1994
+ 𝑘 , 𝑂𝑈
1995
+ 𝑘
1996
+ 0.5
1997
+ 𝑓 𝑈
1998
+ 𝑛
1999
+ 19.5 × 109 cycles/s [7]
2000
+ 𝐺
2001
+ 10 dB
2002
+ 𝛾𝐿, 𝛾𝑈
2003
+ 10−28 [29], [30]
2004
+ 𝐶𝐿
2005
+ 𝑘 , 𝐶𝑈
2006
+ 𝑘
2007
+ 1550.7 [29], [30]
2008
+ 𝐵
2009
+ 40 MHz
2010
+ 𝑁0
2011
+ -174 dBm/Hz
2012
+ 𝜀
2013
+ 0.11 J
2014
+ ref. SNR
2015
+ 80 dB
2016
+ where the inequality constraints (34b)-(34d) and equality con-
2017
+ straints (34e)-(34g) limit the number of frames to 𝑛 = 1, ···, 𝑁𝑡
2018
+ instead of 𝑛 = 1, ···, 𝑁 −4 in constraints (18d)-(18f) and (18h)-
2019
+ (18j), respectively.
2020
+ In the“Intermediate Disconnected” case, the primal vari-
2021
+ ables are defined the same as in the“Always On” case. By
2022
+ applying the SCA method,the non-convex Problem (34) can
2023
+ be transformed into the strongly convex inner approximation
2024
+ for a given a feasible 𝒛(𝑣) = {𝒛𝑛(𝑣)}𝑛∈N, as
2025
+ min
2026
+ 𝒛
2027
+ 𝐾
2028
+ ∑︁
2029
+ 𝑘=1
2030
+ 𝑁𝑡
2031
+ ∑︁
2032
+ 𝑛=1
2033
+ 𝛼𝑘,𝑛
2034
+
2035
+ 𝛽𝑘,𝑛 ¯𝐸𝑈,𝐿
2036
+ 𝑘,𝑛+1(𝒛𝑛+1; 𝒛𝑛+1(𝑣))
2037
+ + �1 − 𝛽𝑘,𝑛
2038
+ � ¯𝐸𝑈
2039
+ 𝑘,𝑛+1(𝒛𝑛+1; 𝒛𝑛+1(𝑣))
2040
+
2041
+ +
2042
+ 𝐾
2043
+ ∑︁
2044
+ 𝑘=1
2045
+ 𝑁 −2
2046
+ ∑︁
2047
+ 𝑛=𝑁𝑡+1
2048
+ �1 − 𝛼𝑘,𝑛
2049
+ � (1 − 𝛽𝑘,𝑛) ¯𝐸𝑈
2050
+ 𝑘,𝑛+1(𝒛𝑛+1; 𝒛𝑛+1(𝑣))
2051
+ +
2052
+ 𝑁
2053
+ ∑︁
2054
+ 𝑛=1
2055
+ 𝐸𝐹
2056
+ 𝑛 (𝒗𝑈
2057
+ 𝑛 )
2058
+ (35a)
2059
+ s.t. (34b) − (34g), (30b), (18c), (32b), (18k) − (18m), (35b)
2060
+ which has a unique solution denoted by ˆ𝒛 (𝒛(𝑣)) to be obtained
2061
+ by dual decomposition or a standard convex optimization
2062
+ solver. Algorithm 3 describes the proposed method for the
2063
+ “Intermediate Disconnected” scenario.
2064
+ VI. SIMULATION RESULTS
2065
+ In this section, we evaluate the performance of the proposed
2066
+ algorithms to jointly optimize the bit allocation and the UAV
2067
+ trajectory for marine IoT systems in various LEO accessible
2068
+ statuses. For reference, we consider the following schemes:
2069
+ (i) No optimization: The equal bit allocation is considered for
2070
+ communication and computation per frame, while the UAV
2071
+ flies at constant velocity between the initial and final positions
2072
+ as 𝒑𝑈
2073
+ 𝑛 = 𝒑𝑈
2074
+ 𝐼 + (𝑛 − 1) � 𝒑𝑈
2075
+ 𝐹 − 𝒑𝑈
2076
+ 𝐼
2077
+ ��𝑁, for 𝑛 ∈ N; (ii) Opti-
2078
+ mized bit allocation: The communication and computation bits
2079
+ are optimized by the proposed algorithms while considering
2080
+ the UAV trajectory with the constant-velocity as in (i); (iii)
2081
+ Optimized UAV trajectory: The path planning of the UAV
2082
+ is obtained by the proposed algorithms with fixed equal bit
2083
+ allocation per frame. The simulation parameters are provided
2084
+ in Table III. Particularly, the space segment considers Iridium-
2085
+ like LEO satellite networks that provide global coverage with
2086
+ 66 satellites distributed in 6 polar orbits [15], where the orbit
2087
+ 0
2088
+ 1
2089
+ 2
2090
+ 3
2091
+ 4
2092
+ 5
2093
+ 6
2094
+ 7
2095
+ 8
2096
+ 9
2097
+ 10
2098
+ x [km]
2099
+ 0
2100
+ 1
2101
+ 2
2102
+ 3
2103
+ 4
2104
+ 5
2105
+ 6
2106
+ 7
2107
+ 8
2108
+ 9
2109
+ 10
2110
+ y [km]
2111
+ IoT2
2112
+ IoT5
2113
+ IoT3
2114
+ IoT4
2115
+ IoT7
2116
+ IoT8
2117
+ IoT9
2118
+ IoT10
2119
+ IoT6
2120
+ IoT1
2121
+ LEO
2122
+ UAV trajectory
2123
+ ("Always On")
2124
+ UAV trajectory
2125
+ ("Always Off")
2126
+ UAV trajectory
2127
+ ("Intermediate Disconnected")
2128
+ Fig. 4: Optimal UAV trajectories according to the different
2129
+ LEO access scenarios.
2130
+ height is ℎ = 601 km with the elevation angle 𝜃 = 10 ◦, and
2131
+ satellites in the orbit travel at a speed of around 𝑣𝑠 = 7.5 km/s.
2132
+ To better understand the proposed algorithms, Figs. 4 and 5
2133
+ consider the partial optimization of UAV path planning or bit
2134
+ allocation. As shown in Fig. 4, there are 𝐾 = 10 IoT sensors
2135
+ distributed randomly in a 10 km × 10 km area within the
2136
+ beam coverage of the central LEO satellite, i.e., 𝛼𝑘,𝑛 = 1,
2137
+ for all 𝑛 ∈ N and 𝑘 ∈ K. With the LEO visible time of
2138
+ 𝑇𝑣 = 830 s obtained from (4) and a bandwidth of 𝐵 = 40
2139
+ MHz [15], the data size collected from each IoT sensor is
2140
+ randomly determined based on the computation capability of
2141
+ the UAV in (16). In our simulation, the scheduling variable
2142
+ 𝛽𝑘,𝑛 is defined from (16), i.e., 𝛽𝑘,𝑛 = [0 0 0 1 1 1 0 1 0 0],
2143
+ for 𝑘 ∈ K and 𝑛 ∈ N, as shown in Fig. 4. The IoT sensors
2144
+ with 𝛽𝑘,𝑛 = 0 for UAV computing and with 𝛽𝑘,𝑛 = 1 for LEO
2145
+ computing are indicated by black-colored circles and green-
2146
+ colored circles, respectively, while the LEO satellite, indicated
2147
+ by a red-colored hexagram, travels along the red dotted line.
2148
+ The initial and final positions of the UAV are 𝒑𝑈
2149
+ 𝐼 = (5, 0, 0)
2150
+ to 𝒑𝑈
2151
+ 𝐹 = (10, 5, 0).
2152
+ Fig. 4 shows the optimized UAV trajectories with the fixed
2153
+ equal bit allocation according to the different LEO satellite
2154
+ access scenarios. For this experiment, the latency constraint is
2155
+ 𝑇 = 360 s with 𝑁 = 60 and Δ = 6 s. In the “Always On” case,
2156
+ the optimized UAV trajectory, represented by a blue asterisk
2157
+ line, is designed to fly close to the IoT sensors with LEO
2158
+ computing until its final destination. This can significantly
2159
+ reduce the large amount of uplink communication energy
2160
+ consumption induced by the long distance between the LEO
2161
+ satellite and UAV. In the “Always Off” case, where only UAV
2162
+ computing is considered, the UAV flies along a straight path
2163
+ to a destination, which is represented by a yellow crossed
2164
+ line. In this case, the flying energy consumption must be
2165
+ reduced to to minimize the total UAV energy due to the fixed
2166
+ computation bit allocation. In the “Intermediate Disconnected”
2167
+ case, where the LEO communication is lost at 𝑁𝑡 = 𝑁/2, the
2168
+
2169
+ 10
2170
+ 10
2171
+ 20
2172
+ 30
2173
+ 40
2174
+ 50
2175
+ 60
2176
+ Frame number
2177
+ 0
2178
+ 1
2179
+ 2
2180
+ IoT6's number of bits
2181
+ 107
2182
+ LI,U
2183
+ 6,n
2184
+ lU
2185
+ 6,n
2186
+ LU,L
2187
+ 6,n
2188
+ lL
2189
+ 6,n
2190
+ LL,U
2191
+ 6,n
2192
+ (a) “Always On” scenario
2193
+ 10
2194
+ 20
2195
+ 30
2196
+ 40
2197
+ 50
2198
+ 60
2199
+ Frame number
2200
+ 0
2201
+ 5
2202
+ 10
2203
+ IoT6's number of bits
2204
+ 106
2205
+ (b) “Always Off” scenario
2206
+ 10
2207
+ 20
2208
+ 30
2209
+ 40
2210
+ 50
2211
+ 60
2212
+ Frame number
2213
+ 0
2214
+ 0.5
2215
+ 1
2216
+ 1.5
2217
+ 2
2218
+ IoT6's number of bits
2219
+ 107
2220
+ (c) “Intermediate Disconnected” scenario
2221
+ Fig. 5: Optimal bit allocations for IoT sensor 6 in Fig. 4
2222
+ according to the different LEO access scenarios.
2223
+ optimized UAV trajectory, represented by a purple square line,
2224
+ tends to fly close to the IoT sensors with LEO computing for
2225
+ 𝑛 = 1, · · ·, 𝑁𝑡. Then, in the frame period of 𝑛 = 𝑁𝑡 + 1, · · ·, 𝑁
2226
+ where LEO communication is disconnected, the UAV flies
2227
+ straight to the final destination because it performs only UAV
2228
+ computing.
2229
+ Fig. 5 illustrates the optimized bit allocations for IoT sensor
2230
+ 6 shown in Fig. 4 with the fixed constant-velocity UAV
2231
+ trajectory according to different LEO access scenarios. Except
2232
+ for the UAV trajectory, the simulation environment is the same
2233
+ as in Fig. 4. In Fig. 5(a), the optimal bit allocations 𝐿𝐼 ,𝑈
2234
+ 𝑘,𝑛 ,
2235
+ 𝐿𝑈,𝐿
2236
+ 𝑘,𝑛 , 𝑙𝐿
2237
+ 𝑘,𝑛, 𝐿𝐿,𝑈
2238
+ 𝑘,𝑛
2239
+ by proposed Algorithm 1 are shown for
2240
+ LEO computing in the “Always On” case. First, most of the
2241
+ uplink bits 𝐿𝐼 ,𝑈
2242
+ 𝑘,𝑛 are allocated between frames 20 to 35, which
2243
+ corresponds to the period where the UAV flies closest to IoT
2244
+ sensor 6. The offloading bits 𝐿𝑈,𝐿
2245
+ 𝑘,𝑛
2246
+ are allocated equally in
2247
+ the entire frame because the equal bit allocation can achieve
2248
+ the minimal communication energy from (7). Finally, the LEO
2249
+ 1
2250
+ 2
2251
+ 3
2252
+ 4
2253
+ 5
2254
+ 6
2255
+ 7
2256
+ 8
2257
+ 9
2258
+ 10
2259
+ x [km]
2260
+ 0
2261
+ 1
2262
+ 2
2263
+ 3
2264
+ 4
2265
+ 5
2266
+ 6
2267
+ 7
2268
+ 8
2269
+ 9
2270
+ 10
2271
+ y [km]
2272
+ IoT3
2273
+ IoT4
2274
+ IoT10
2275
+ IoT6
2276
+ IoT2
2277
+ IoT8
2278
+ IoT1
2279
+ IoT7
2280
+ IoT9
2281
+ IoT5
2282
+ LEO
2283
+ 2nd
2284
+ orbit
2285
+ 1st
2286
+ orbit
2287
+ 3rd
2288
+ orbit
2289
+ UAV trajectory
2290
+ (1st orbit)
2291
+ UAV trajectory
2292
+ (2nd orbit)
2293
+ UAV trajectory
2294
+ (3rd orbit)
2295
+ Fig. 6: Optimal UAV trajectories according to different LEO
2296
+ satellite orbits, where the IoT sensors with LEO computing
2297
+ are deployed at the corner.
2298
+ computing bits 𝑙𝐿
2299
+ 𝑘,𝑛 and LEO downlink bits 𝐿𝐿,𝑈
2300
+ 𝑘,𝑛 are mostly
2301
+ allocated in the latter parts between frames 50 to 60 to satisfy
2302
+ the inequality constraints of (18e) and (18f). In Fig. 5(b), the
2303
+ optimized bit allocations 𝐿𝐼 ,𝑈
2304
+ 𝑘,𝑛 and 𝑙𝑈
2305
+ 𝑘,𝑛 obtained by proposed
2306
+ Algorithm 2 are shown for UAV computing of the“Always
2307
+ Off” case. Since the UAV cannot communicate with the LEO
2308
+ satellite, the computing process is entirely at the UAV-mounted
2309
+ cloudlet. The uplink bits 𝐿𝐼 ,𝑈
2310
+ 𝑘,𝑛 and the computing bits 𝑙𝑈
2311
+ 𝑘,𝑛 are
2312
+ assigned the same as 𝐿𝐼 ,𝑈
2313
+ 𝑘,𝑛 and 𝐿𝑈,𝐿
2314
+ 𝑘,𝑛 in Fig. 5(a), respectively.
2315
+ However, 𝑙𝑈
2316
+ 𝑘,𝑛 is dramatically reduced to 8 × 106 per frame
2317
+ compared to 10 × 106, as illustrated in Fig. 5(a). This is
2318
+ because the amount of data exceeding the UAV computation
2319
+ capability is excluded from the UAV computing. Fig. 5(c)
2320
+ shows the optimization result of bit allocation attained by
2321
+ proposed Algorithm 3 in the “Intermediate Disconnected”
2322
+ case. LEO computing is performed during the first half of
2323
+ frames, i.e., 𝑛 = 1, ···, 𝑁𝑡, while UAV computing is performed
2324
+ during the second half of frames, i.e., 𝑛 = 𝑁𝑡 + 1, · · ·, 𝑁. The
2325
+ computing bits 𝑙𝐿
2326
+ 𝑘,𝑛 at LEO and the downlink bits 𝐿𝐿,𝑈
2327
+ 𝑘,𝑛 are
2328
+ reduced in proportion to the reduced frame duration of LEO
2329
+ computing compared to those shown in Fig. 5(a). For UAV
2330
+ computing, there are more computing bits 𝑙𝑈
2331
+ 𝑘,𝑛 allocated at
2332
+ the UAV than those from the case in Fig. 5(b). This means
2333
+ that less data exceeds the computational capability of the UAV
2334
+ thanks to the LEO computing.
2335
+ Fig. 6 shows the optimal UAV trajectories according to the
2336
+ different LEO satellite orbits in the “Always On” scenario,
2337
+ where the IoT sensors that need LEO computing are clustered
2338
+ at the corner, i.e., 𝛽𝑘,𝑛 = [0 1 1 0 1 1 0 0 0 0], for 𝑘 ∈ K and
2339
+ 𝑛 ∈ N. In this deployment, the three different movements of
2340
+ the LEO satellite in different orbital directions are considered.
2341
+ In the first orbit moving from the upper right corner to the
2342
+ lower left corner, the UAV flies near the corner area with IoT
2343
+ sensors with LEO computing to its final destination. In the
2344
+
2345
+ 11
2346
+ 400
2347
+ 600
2348
+ 800
2349
+ 1000
2350
+ 1200
2351
+ 1400
2352
+ 1600
2353
+ Total time T (s)
2354
+ 0
2355
+ 1
2356
+ 2
2357
+ 3
2358
+ 4
2359
+ 5
2360
+ 6
2361
+ 7
2362
+ Total UAV energy consumption (J)
2363
+ 106
2364
+ No opt. - "Always On"
2365
+ No opt. - "Always Off"
2366
+ No opt. - "Intermediate Disconnected"
2367
+ Opt. bit allocation - "Always On"
2368
+ Opt. UAV trajectory - "Always On"
2369
+ Joint opt. - "Always On"
2370
+ Joint opt. - "Always Off"
2371
+ Joint opt. - "Intermediate Disconnected"
2372
+ Fig. 7: Comparison of the total UAV energy consumption
2373
+ for different optimization schemes in the three LEO satellite
2374
+ access scenarios.
2375
+ second orbit moving from the upper left corner to the lower
2376
+ right corner, the UAV flies in a diagonally downward direction
2377
+ along its own orbit rather than the optimized UAV trajectory
2378
+ for the first orbit. In the third orbit moving upwards from
2379
+ below the midpoint, the UAV flies in an upward direction along
2380
+ its own orbit rather than the optimal UAV trajectory for the first
2381
+ orbit. From these results, we can see that the LEO movements
2382
+ resulting from the orbit influences the optimal UAV path so
2383
+ as to reduce the communication energy consumption between
2384
+ the UAV and the LEO satellite.
2385
+ Fig. 7 compares the total UAV energy consumption of the
2386
+ joint optimization scheme with reference schemes in three
2387
+ LEO satellite access scenarios. For this experiment, the latency
2388
+ constraint is 𝑇 = [360:90:1620] s with 𝑁 = [60:15:270] and
2389
+ Δ = 6 s, while the remaining simulation parameters are
2390
+ the same as in Figs. 4 and 5. First, the no optimization
2391
+ scheme consumes the highest energy in the three scenarios,
2392
+ among which the largest energy consumption takes place in
2393
+ the “Always Off” case, where only the UAV computing is
2394
+ performed. This is natural since the UAV-mounted cloudlet has
2395
+ a slightly larger burden in terms of the energy consumption
2396
+ with no support of the LEO. In the “Always On” case, for
2397
+ 𝑇 = 360 s, the total UAV energy consumption for the joint
2398
+ optimization scheme is the lowest at 4.6 × 106 J, whereas
2399
+ the optimized UAV trajectory scheme with fixed equal bit
2400
+ allocation requires 5.5×106 J, and the optimized bit allocation
2401
+ with the constant-velocity UAV and no optimization schemes
2402
+ requires 6.1 × 106 J. This implies that the UAV path planning
2403
+ is more effective in terms of UAV energy consumption than
2404
+ bit allocation. Moreover, the total energy consumption in all
2405
+ schemes decreases as the total time increases. This is because
2406
+ the same amount of data is processed over a longer period
2407
+ of time. Compared to the total UAV energy consumption of
2408
+ the joint optimization scheme in the “Always Off” scenario,
2409
+ those of the joint optimization scheme in other scenarios
2410
+ 0
2411
+ 1/8
2412
+ 2/8
2413
+ 4/8
2414
+ 6/8
2415
+ 7/8
2416
+ 1
2417
+ LEO satellite access time rate
2418
+ 2.3
2419
+ 2.4
2420
+ 2.5
2421
+ 2.6
2422
+ 2.7
2423
+ 2.8
2424
+ 2.9
2425
+ 3
2426
+ 3.1
2427
+ 3.2
2428
+ 3.3
2429
+ 3.4
2430
+ Total UAV energy consumption (J)
2431
+ 106
2432
+ 55
2433
+ 60
2434
+ 65
2435
+ 70
2436
+ 75
2437
+ 80
2438
+ 85
2439
+ 90
2440
+ 95
2441
+ 100
2442
+ Collected data usage rate (%)
2443
+ Total energy - "Always On"
2444
+ Total energy - "Always Off"
2445
+ Total energy - "Intermediate Disconnected"
2446
+ Data usage rate - "Always On"
2447
+ Data usage rate - "Always Off"
2448
+ Data usage rate - "Intermediate Disconnected"
2449
+ Fig. 8: Relationship between the total UAV energy consump-
2450
+ tion and the collected data usage rate in three LEO satellite
2451
+ access scenarios according to the LEO satellite access time
2452
+ rate.
2453
+ are much higher since the UAV flies straight to its final
2454
+ destination when the LEO satellite connection is lost, as in Fig.
2455
+ 4. However, there is a trade-off between the total UAV energy
2456
+ consumption and the collected data usage rate for computing,
2457
+ which determines the amount of data executed at cloudlet,
2458
+ which is analyzed in the following figure.
2459
+ Fig. 8 shows the relationship between the total UAV energy
2460
+ consumption and the collected data usage rate for computing in
2461
+ the different LEO accessibility scenarios. Any amount of data
2462
+ exceeding the UAV computation capability is excluded from
2463
+ UAV computing. For this experiment, the scheduling variables
2464
+ are defined as 𝛽𝑘,𝑛 = [0 0 1 1 1 1 0 1 0 0], for 𝑘 ∈ K
2465
+ and 𝑛 ∈ N. The UAV computation capability is applied to
2466
+ 226 Mbits by using the CPU frequency at the UAV server
2467
+ 𝑓 𝑈
2468
+ 𝑛
2469
+ = 9.75 × 109 cycles/s. In the “Always On” scenario, the
2470
+ LEO satellite access time rate is 1. At this time, the total
2471
+ UAV energy consumption is 3.3×106 J and the collected data
2472
+ usage rate is 100%. In the “Always Off” case, where the LEO
2473
+ satellite access time rate is 0, the total UAV energy consump-
2474
+ tion is 2.24 × 106 J and the collected data usage rate is 54%.
2475
+ Although the energy consumption in the “Always Off” case is
2476
+ dramatically reduced, the utilization rate of the collected data
2477
+ is also cut in half. In the “Intermediate Disconnected” case,
2478
+ as the LEO satellite access time rate increases, the total UAV
2479
+ energy consumption and the collected data usage rate increase
2480
+ differently. When the LEO satellite access time rate is above
2481
+ 6/8, the total UAV energy consumption is saturated with the
2482
+ total UAV energy consumption of the “Always On” case. This
2483
+ is because the straight flight segment of the UAV to the final
2484
+ destination after disconnecting with the LEO satellite matches
2485
+ that of the “Always On” case. Also, when the LEO satellite
2486
+ access time rate is more than 7/8, the collected data usage
2487
+ rate is more than about 95%. In this simulation environment,
2488
+ adequate data usage and energy consumption is achieved with
2489
+ more than a 7/8 LEO satellite access time rate.
2490
+
2491
+ 12
2492
+ VII. CONCLUSIONS
2493
+ In this paper, a marine IoT system using hybrid LEO
2494
+ and UAV computing for real-time utilization of marine data
2495
+ has been analyzed according to the different LEO satellite
2496
+ access scenarios: “Always On,” “Always Off” and “Inter-
2497
+ mediate Disconnected”. For each scenario, we proposed the
2498
+ joint optimization problem of bit allocation for computing
2499
+ and communication in offloading and UAV path planning to
2500
+ minimize the total UAV energy consumption under latency,
2501
+ energy budget, and UAV operational constraints. To solve the
2502
+ optimization problem, we developed an SCA-based algorithm
2503
+ whose performance in terms of energy efficiency was validated
2504
+ via numerical results compared to conventional approaches
2505
+ with partial optimization that design only the bit allocation or
2506
+ UAV trajectory. According to LEO satellite access time and
2507
+ its orbit direction, the path planning of the UAV is optimized
2508
+ differently for energy saving, whose impact is pronounced for
2509
+ the case when the LEO connectivity is unstable or discon-
2510
+ nected. In future works, different existing LEO deployments
2511
+ should be further considered with various heights of multiple
2512
+ satellites and UAVs.
2513
+ REFERENCES
2514
+ [1] J. Yang, J. Wen, Y. Wang, B. Jiang, H. Wang, and H. Song, “Fog-based
2515
+ marine environmental information monitoring toward ocean of things,”
2516
+ IEEE Internet Things J., vol. 7, no. 5, pp. 4238-4247, May 2020.
2517
+ [2] S.-H. Park, J. Yoo, D. Son, J. Kim, and H.-S. Jung, “Improved calibration
2518
+ of wind estimates from advanced scatterometer MetOp-B in Korean seas
2519
+ using deep neural network,” Korean J. Remote Sens., 13(20), 4164, Oct.
2520
+ 2021.
2521
+ [3] C. Hu, Y. Pu, F. Yang, R. Zhao, A. Alrawais, and T. Xiang, “Secure and
2522
+ efficient data collection and storage of IoT in smart ocean,” IEEE Internet
2523
+ Things J., vol. 7, no. 10, pp. 9980-9994, Oct. 2020.
2524
+ [4] N. Pachler, I. del Portillo, E. F. Crawley, and B. G. Cameron, “An
2525
+ updated comparison of four low earth orbit satellite constellation systems
2526
+ to provide global broadband,” Proc. IEEE ICC Workshops, Montreal, QC,
2527
+ Canada, June 2021, pp. 1-7.
2528
+ [5] S. Jung, G. Im, D.-H. Jung, P. Kim, J. G. Ryu, and J. Kang, “Performance
2529
+ analysis of DSSS- and CSS-based physical layer for IoT transmission over
2530
+ low-Earth orbit satellites,” ETRI J., vol. 44, pp. 543-559, Aug. 2022.
2531
+ [6] C. C. Chan, A. Al-Hourani, J. Choi, K. M. Gomez, and S. Kandeepan,
2532
+ “Performance modeling framework for IoT-over-satellite using shared
2533
+ radio spectrum, MDPI Remote Sens., vol. 12, no. 10, May 2020.
2534
+ [7] Q. Tang, Z. Fei, B. Li, and Z.Han, “Computation offloading in LEO
2535
+ satellite networks with hybrid cloud and edge computing,” IEEE Internet
2536
+ Things J., vol. 8, no. 11, pp. 9164-9176, Jun. 2021.
2537
+ [8] T. Kim, J. Kwak, and J. P. Choi, “Satellite edge computing architecture
2538
+ and network slice scheduling for IoT support,” IEEE Internet Things J.,
2539
+ vol. 8, no. 11, pp. 9164-9176, Jun. 2021.
2540
+ [9] L. Yan, S. Cao, Y. Gong, H. Han, J. Wei, Y. Zhao, and S. Yang,
2541
+ “SatEC: A 5g satellite edge computing framework based on microservice
2542
+ architecture,” Sensors, vol. 19, no. 4, p. 831, 2019.
2543
+ [10] C. Suzhi, W. Junyong, H. Hao, Z. Yi, Y. Shuling, Y. Lei, W. Shaojun,
2544
+ and G. Yongsheng, “Space edge cloud enabling network slicing for 5G
2545
+ satellite network,” Proc. IEEE 15th Int. Wireless Commun. & Mobile
2546
+ Computing Conf. (IWCMC), 2019.
2547
+ [11] J. Wei, J. Han, and S. Cao, “Satellite IoT edge intelligent computing:
2548
+ A research on architecture,” Electronics, vol. 8, no. 11, p. 1247, 2019.
2549
+ [12] Y. Wang, J. Yang, X. Guo, and Z. Qu, “A game-theoretic approach to
2550
+ computation offloading in satellite edge computing,” IEEE Access, vol.
2551
+ 8, pp. 12 510-12 520, 2019.
2552
+ [13] Z. Zhang, W. Zhang, and F.-H. Tseng, “Satellite mobile edge computing:
2553
+ Improving QoS of high-speed satellite-terrestrial networks using edge
2554
+ computing techniques,” IEEE Network, vol. 33, pp.70-76, Jan./Feb. 2019.
2555
+ [14] N. Cheng, F. Lyu, W. Quan, C. Zhou, H. He, W. Shi, and X.
2556
+ Shen, “Space/aerial-assisted computing offloading for IoT applications:
2557
+ A learning-based approach,” IEEE J. Sel. Areas Commun., vol. 37, no. 5,
2558
+ pp. 1117-1129, May 2019.
2559
+ [15] Z. Jia, M. Sheng, J. Li, D. Niyato, and Z. Han, “LEO-satellite-assisted
2560
+ UAV: Joint trajectory and data collection for internet of remote things in
2561
+ 6G aerial access networks,” IEEE Internet Things J., vol. 8, no. 12, pp.
2562
+ 9814-9826, Jun. 2021.
2563
+ [16] J.-H. Lee, J. Park, M. Bennis, and Y.-C. Ko, “Integrating LEO satellite
2564
+ and UAV relaying via reinforcement learning for non-terrestrial net-
2565
+ works,” Proc. IEEE Globecom, Dec. 2021.
2566
+ [17] S. Yan, L. Qi, and M. Peng, “User access mode selection in satellite-
2567
+ aerial based emergency communication networks,” Proc. IEEE ICC
2568
+ Workshops, May 2018.
2569
+ [18] Z. Wei, M. Zhu, N. Zhang, L. Wang, Y. Zou, Z. Meng, H. Wu, and
2570
+ Z. Feng, “UAV-assisted data collection for internet of things: a survey,”
2571
+ IEEE Internet Things J., vol. 9, no. 17, pp. 15460-15483, Sep. 2022.
2572
+ [19] M. Zeng, W. Hao, O. A. Dobre, Z. Ding, and H. V. Poor, “Massive
2573
+ MIMO-assisted mobile edge computing: Exciting possibilities for com-
2574
+ putation offloading,” IEEE Veh. Technol. Mag., vol. 15, no. 2, pp. 31-38,
2575
+ 2020.
2576
+ [20] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource
2577
+ allocation for mobile-edge computation offloading,” IEEE Trans. Wireless
2578
+ Commun., vol. 16, no. 3, pp. 1397-1411, 2016.
2579
+ [21] S. Yu, X. Gong, Q. Shi, X. Wang, and X. Chen, “EC-SAGINs: edge-
2580
+ computing-enhanced space–air–ground-integrated networks for internet of
2581
+ vehicles,” IEEE Internet Things J., vol. 9, no. 8, pp. 5742-5754, Apr.
2582
+ 2022.
2583
+ [22] S. S. Hassan, Y. K. Tun, W. Saad, Z. Han, and C. S. Hong, “Blue data
2584
+ computation maximization in 6G space-air-sea non-terrestrial networks,”
2585
+ Proc. IEEE Globecom, Dec. 2021.
2586
+ [23] S. S. Hassan, D. H. Kim, Y. K. Tun, N. H. Tran, W. Saad, and C. S.
2587
+ Hong, “Seamless and energy efficient maritime coverage in coordinated
2588
+ 6G space-air-sea non-terrestrial networks,” arXiv:2201.08605, Jan. 2022.
2589
+ [24] G. Scutari, F. Facchinei, L. Lampariello, and P. Song, “Parallel
2590
+ and distributed methods for nonconvex optimization part I: Theory,”
2591
+ arXiv:1410.4754v2, Jan. 2016.
2592
+ [25] G. Scutari, F. Facchinei, L. Lampariello, P. Song, and S. Sardellitti,
2593
+ “Parallel and distributed methods for nonconvex optimization part II:
2594
+ Applications,” arXiv:1601.04059v1, Jan. 2016.
2595
+ [26] S. Jeong, O. Simeone, and J. Kang, “Mobile edge computing via a UAV-
2596
+ mounted cloudlet: Optimization of bit allocation and path planning,” IEEE
2597
+ Trans. Veh. Technol., vol. 67, no. 3, pp. 2049-2063, Mar. 2018.
2598
+ [27] D. D. Mrema and S. Shimamoto, “Performance of quadrifilar helix
2599
+ antenna on EAD channel model for UAV to LEO satellite link,” Proc.
2600
+ Int. Conf. Collaboration Tech. Syst. (CTS), May 2012.
2601
+ [28] I. Ali, N. Al-Dhahir, and J. E. Hershey, “Doppler characterization for
2602
+ LEO satellites,” IEEE Trans. Commun., early access, Dec. 2021.
2603
+ [29] W. H. Yuan and K. Nahrstedt, “Energy-efficient soft real-time CPU
2604
+ scheduling for mobile multimedia systems,” ACM SIGOPS Oper. Syst.
2605
+ Rev., vol. 37, no. 5, pp. 149-163, Dec. 2003.
2606
+ [30] W. H. Yuan and K. Nahrstedt, “Energy-efficient CPU scheduling for
2607
+ multimedia applications,” ACM Trans. Comput. Syst., vol. 24, no. 3, pp.
2608
+ 292-331, Aug. 2006.
2609
+ [31] Y. Zeng, R. Zhang, and T. J. Lim, “Throughput maximization for UAV-
2610
+ enabled mobile relaying systems,” IEEE Trans. Commun., vol. 64, no.
2611
+ 12, pp. 4983-4996, Dec. 2016.
2612
+ [32] N. Xue, “Design and optimization of lithium-ion batteries for electric-
2613
+ vehicle applications,” Doctoral dissertation, Univ. Michigan, Ann Arbor,
2614
+ MI, USA, 2014.
2615
+ [33] A. Chakrabarty and J. Langelaan, “Energy-based long-range path plan-
2616
+ ning for soaring-capable unmanned aerial vehicles,” J. Guid., Control,
2617
+ Dyn., vol. 34, no. 41, pp. 1002-1015, Jul. 2011.
2618
+ [34] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK:
2619
+ Cambridge University Press, 2004.
2620
+ [35] M. Grant and S. Boyd, “Cvx: Matlab software for disciplined
2621
+ convex programming, version 2.1, Mar. 2014,” Available on-line at
2622
+ http://cvxr.com/cvx.
2623
+
JtE2T4oBgHgl3EQfUwcR/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
KtFRT4oBgHgl3EQf1Dhl/content/2301.13655v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e74eb4405363eaaaafda609739a60e62d5e0d6d516f88d0c2d508cfa7f0d0083
3
+ size 424356
KtFRT4oBgHgl3EQf1Dhl/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:557241032f5e367bd01df9b3ef9fcef3ba5af8f1ffa5eaf24b4b7e210346ced8
3
+ size 219435
L9E4T4oBgHgl3EQfKAwg/content/2301.04925v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:927dbf4fafd893d5147579a9592bfb2f25cf864cc67184063451ee48118b9fff
3
+ size 22871308
LdE0T4oBgHgl3EQfSgCx/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1bcb5d57ca983b53f846512e19a88e39e99396be8071794fc9ce7967022f4eef
3
+ size 119790
MNAyT4oBgHgl3EQf6vpX/content/tmp_files/2301.00826v1.pdf.txt ADDED
@@ -0,0 +1,725 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Compact stars in Quantum Field Theory
2
+ Ignacio A. Reyes1 and Giovanni Maria Tomaselli2
3
+ 1Institute for Theoretical Physics and
4
+ 2GRAPPA,
5
+ University of Amsterdam, Amsterdam, 1098 XH, The Netherlands
6
+ Very compact stars seem to be forbidden in General Relativity. While Buchdahl’s theorem sets
7
+ an upper bound on compactness, further no-go results rely on the existence of two light rings, the
8
+ inner of which has been associated to gravitational instabilities. However, little is known about
9
+ the role of quantum fields in these strong gravity regimes. Working in the probe approximation
10
+ where the backreaction is ignored, we show that the trapping of modes around the inner light ring
11
+ leads the renormalized stress tensor of Conformal Field Theories to diverge faster than the classical
12
+ source in the Buchdahl limit. This leads to the violation of the Null Energy Condition, as well as
13
+ the isotropy assumption used in Buchdahl’s theorem. The backreaction of quantum fields in this
14
+ regime therefore cannot be ignored. This happens as the star’s surface approaches the Buchdahl
15
+ radius 9GM/4 rather than the Schwarzschild radius, with the quantum fields having support in
16
+ a small region around the center, becoming negligible at the surface. These are generic quantum
17
+ features and do not depend on the details of the interactions. Our findings open a way for further
18
+ investigation into the role of QFT in astrophysics.
19
+ COMPACT RELATIVISTIC STARS
20
+ The General Relativistic prediction of the existence of
21
+ compact objects, such as white dwarfs and neutron stars,
22
+ has been confirmed by many observations. Their macro-
23
+ scopic properties follow from the Tolman-Oppenheimer-
24
+ Volkoff equation. However, quantum theory is essential
25
+ in understanding the physics of these stars, as it provides
26
+ the ultimate reason for their existence, namely, Fermi’s
27
+ exclusion principle.
28
+ The question regarding the maximum mass of such
29
+ compact object is crucial: it is the main criterion used to
30
+ discriminate between what we suspect is a neutron star or
31
+ a black hole. Well-known upper limits were set by Chan-
32
+ drasekhar [1] and Rhoades-Ruffini [2]. A more generic re-
33
+ sult, that is independent of the equation of state of the
34
+ matter, was established by Buchdahl [3] and gives an up-
35
+ per bound on compactness in GR. Consider an isotropic
36
+ perfect fluid star, with stress tensor
37
+ T µ
38
+ ν = diag(−ρ, p, p, p) ,
39
+ (1)
40
+ on a static, spherically symmetric metric
41
+ ds2 = −f(r) dt2 + h(r) dr2 + r2(dθ2 + sin2 θ dφ2) . (2)
42
+ Assuming in addition that ρ > 0, ∂rρ ≤ 0 and that
43
+ Einstein’s equations hold, the requirement that the met-
44
+ ric is everywhere regular leads to
45
+ R ≥ 9GM/4 ,
46
+ (3)
47
+ where R is the radius of the star and M is its mass. The
48
+ saturation of the bound is known as the Buchdahl limit.
49
+ Notice one can also formulate this bound in a coordinate-
50
+ independent way.
51
+ A particularly simple solution that manifestly sat-
52
+ urates Buchdahl’s second assumption is the constant-
53
+ density star or ‘Schwarzschild interior metric’.
54
+ These
55
+ configurations have uniform density ρ
56
+ =
57
+ 3M/4πR3
58
+ throughout the star, and as is well known they can sat-
59
+ urate the Buchdahl limit (3). Although they are unre-
60
+ alistic models of an astrophysical object, they are the
61
+ standard example when studying the TOV equations.
62
+ The metric for this equation of state takes the form
63
+ (2), with
64
+ f(r) =
65
+
66
+ 3
67
+ 2
68
+
69
+ 1 − 2GM
70
+ R
71
+ − 1
72
+ 2
73
+
74
+ 1 − 2GMr2
75
+ R3
76
+ �2
77
+ ,
78
+ (4)
79
+ h(r) =
80
+
81
+ 1 − 2GMr2
82
+ R3
83
+ �−1
84
+ ,
85
+ (5)
86
+ and is matched to the usual exterior Schwarzschild vac-
87
+ uum solution at the sphere’s surface.
88
+ The simplicity of these solutions make them an excel-
89
+ lent setup to test Quantum Field Theory (QFT) in the
90
+ strong gravity regime.
91
+ A final motivation to consider
92
+ this metric is that it is conformally (Weyl) flat. In fact,
93
+ the uniform density metric above is the unique solution
94
+ to Einstein’s equations coupled to a static perfect fluid
95
+ that is conformally flat [4, 5]. This will allow us to ob-
96
+ tain explicit analytic results.
97
+ We will thus work with
98
+ this spacetime, and comment about the generality of our
99
+ results later on.
100
+ WAVE EQUATION
101
+ In order to understand the behaviour of quantum fields
102
+ in this spacetime, let us begin by first considering the
103
+ propagation of classical waves in it. The wave equation
104
+ for the uniform density background was first discussed
105
+ by Chandrasekhar and Ferrari [6]. For simplicity we take
106
+ a massless scalar Φ using the usual decomposition
107
+ Φ =
108
+
109
+ fωℓm ,
110
+ fωℓm(x) = u(r)
111
+ r
112
+ Yℓm(θ, φ)e−iωt . (6)
113
+ arXiv:2301.00826v1 [gr-qc] 2 Jan 2023
114
+
115
+ 2
116
+ −30
117
+ −20
118
+ −10
119
+ 0
120
+ 10
121
+ 0
122
+ 0.05
123
+ 0.1
124
+ 0.15
125
+ r∗/(GM)
126
+ V/(GM)2
127
+ FIG. 1. Potential (for ℓ = 1) given in (9), for R/(GM) =
128
+ 9/4 (blue), 2.3 (orange) and 2.4 (green). The dashed lines
129
+ mark the the values of r∗ corresponding to the centre of the
130
+ star in the two latter cases.
131
+ A discontinuous jump at the
132
+ star’s surface matches it to the exterior vacuum Schwarzschild
133
+ solution.
134
+ The wave equation □Φ
135
+ =
136
+ 0 can be recast in a
137
+ Schr¨odinger-like form:
138
+ −∂2
139
+ r∗u + V (r∗)u = ω2u ,
140
+ (7)
141
+ where we defined the tortoise coordinate r∗ via
142
+ dr∗
143
+ dr =
144
+
145
+ h(r)/f(r) .
146
+ (8)
147
+ The potential V (r∗) takes the form
148
+ V = 1
149
+ r ∂2
150
+ r∗r + ℓ(ℓ + 1)
151
+ r2
152
+ f
153
+ (9)
154
+ and is plotted in Fig. 1 for ℓ = 1 and various values of
155
+ R/(GM). The potential at r > R corresponds to the
156
+ Schwarzschild vacuum metric, and vanishes at infinity. It
157
+ connects to the interior of the star with a discontinuous
158
+ step.
159
+ As we can see from Fig. 1, when R > 9GM/4, the
160
+ tortoise coordinate has a finite minimum possible value
161
+ (dashed lines) corresponding to the centre of the star,
162
+ because the factor h/f is always regular around r = 0.
163
+ Moreover, V (r∗) reaches a local minimum greater than
164
+ zero and then increases towards the surface.
165
+ When R → 9GM/4, however, one has h/f ∼ r−2
166
+ and therefore the domain of r∗ becomes infinite on both
167
+ sides, while V (r∗) vanishes at the centre of the star. This
168
+ closely resembles the situation for black holes, but in that
169
+ case it is the horizon that is mapped to r∗ → −∞. The
170
+ field modes can thus be trapped inside the star, leading
171
+ to a spectrum of quasi-bound states whose magnitudes
172
+ are amplified close to the origin.
173
+ These properties of the effective potential, together
174
+ with the behavior of the tortoise coordinate, suggests
175
+ that upon quantization the renormalized stress tensor
176
+ can become important in the Buchdahl limit. The rest
177
+ of our analysis will be done in a more generic way that
178
+ depends less on the specific theory considered.
179
+ QFT IN CURVED SPACETIME
180
+ QFT in curved spacetime has seen significant progress
181
+ in the last half century. In the semi-classical approxima-
182
+ tion, gravity is still treated classically and one considers
183
+ some quantum fields as another dynamical source to Ein-
184
+ stein’s equations,
185
+ Rµν − 1
186
+ 2gµνR = 8πG
187
+
188
+ Tµν + ⟨ ˆTµν⟩
189
+
190
+ .
191
+ (10)
192
+ We shall denote by ˆTµν the operator of the QFT to dis-
193
+ tinguish it from the classical source (1).
194
+ However, most work in this field has focused on either
195
+ cosmology or black holes. Here, we will study the role
196
+ it plays for astrophysical compact stars. The question
197
+ we will address in this work is whether there exists some
198
+ generic feature of QFT, independent of the details of
199
+ the nuclear interactions and the quantum states involved,
200
+ that becomes important for very compact stars, in the
201
+ regime of strong gravitational fields. We will show that
202
+ there is indeed such an effect.
203
+ We shall focus on the effects of conformally coupled
204
+ fields where the computation is easier, taking it as a toy
205
+ model for more generic scenarios. We work in 3+1 dimen-
206
+ sions, but the generalization to even higher dimensions is
207
+ straightforward. The non-conformal case will be treated
208
+ elsewhere.
209
+ As is well known, conformally coupled classical mat-
210
+ ter has a vanishing trace of its stress tensor. However,
211
+ its quantum counterpart develops a trace anomaly. In
212
+ 3 + 1 dimensions, the vacuum expectation value of the
213
+ trace of the renormalized stress tensor for quantum fields
214
+ propagating in a curved spacetime is
215
+ ⟨ ˆT µ
216
+ µ ⟩ =
217
+ 1
218
+ (4π)2 [cF − aG − d□R] ,
219
+ (11)
220
+ where R is the Ricci scalar, F is the square of the Weyl
221
+ tensor and G is the Gauss-Bonnet invariant. Amongst the
222
+ three real coefficients, c > 0 and a > 0 are well under-
223
+ stood and characterize the particular theory in question.
224
+ On the other hand, d is not determined by the bare La-
225
+ grangian as it depends on the renormalization scheme,
226
+ and is closely related to the quadratic corrections to the
227
+ gravity action as we review below. As such, it should
228
+ be fixed by experiments. For now we will leave d as a
229
+ fixed but undetermined constant and proceed with the
230
+ calculation.
231
+ If additionally the metric is conformally flat – as is the
232
+ case for the constant-density star – then all components
233
+
234
+ 3
235
+ of the renormalized stress tensor are fixed [7]:
236
+ ⟨ ˆT µν⟩ =
237
+
238
+ a
239
+ (4π)2
240
+
241
+ gµν
242
+ �R2
243
+ 2 − RαβRαβ
244
+
245
+ + 2RµλRν
246
+ λ − 4
247
+ 3RRµν
248
+
249
+ +
250
+ d
251
+ (4π)2
252
+ � 1
253
+ 12gµν(R2 − 4R,λ
254
+ ;λ) − 1
255
+ 3(RRµν − R,µ;ν)
256
+
257
+ .
258
+ (12)
259
+ The quantum state chosen for (12) is the vacuum, but
260
+ this will not play an important role. It could be a state
261
+ at finite temperature or with a large number of fermions:
262
+ this would only add an extra contribution independent of
263
+ the curvature. The vacuum stress tensor for the interior
264
+ of the uniform density star is therefore given by (12). We
265
+ now proceed to evaluate it and examine its properties.
266
+ QUANTUM FIELDS IN THE BUCHDAHL LIMIT
267
+ In this section, we describe the main features of
268
+ the
269
+ quantum
270
+ stress
271
+ tensor
272
+ (12)
273
+ evaluated
274
+ on
275
+ the
276
+ Schwarzschild interior metric. In particular, we wish to
277
+ understand its behavior as we approach the Buchdahl
278
+ limit
279
+ R = (9/4 + ϵ)GM ,
280
+ ϵ → 0 .
281
+ (13)
282
+ We will report the results to leading orders in ϵ.
283
+ The Buchdahl limit (13) is a finite distance above the
284
+ black hole compactness corresponding to R = 2GM.
285
+ Nevertheless, this regime is no less extreme: the Ricci
286
+ scalar R of the background metric at the center diverges
287
+ in this limit as
288
+ R(0) = − 3
289
+ R2ϵ + O(1) .
290
+ (14)
291
+ Correspondingly, the central density and pressure of the
292
+ classical uniform density star solution behave as
293
+ ρ(0) =
294
+ 1
295
+ 3πGR2 + O(ϵ) ,
296
+ (15)
297
+ p(0) =
298
+ 1
299
+ 8πGR2ϵ + O(1) .
300
+ (16)
301
+ Let us contrast this behavior with its quantum coun-
302
+ terpart (12). For generic ϵ, this takes the form
303
+ ⟨ ˆT µ
304
+ ν ⟩ = diag(−⟨ˆρ⟩, ⟨ˆpr⟩, ⟨ˆpθ⟩, ⟨ˆpθ⟩) ,
305
+ (17)
306
+ with ⟨ˆpr⟩ ̸= ⟨ˆpθ⟩. The radial dependence of the compo-
307
+ nents are illustrated in Fig. 2. In the limit ϵ → 0, their
308
+ central values scale as
309
+ ⟨ˆρ(0)⟩ =
310
+ 9d
311
+ (8πR2ϵ)2 +
312
+ d
313
+ 6(πR2)2ϵ + O(1) ,
314
+ (18)
315
+ ⟨ˆpr(0)⟩ = ⟨ˆpθ(0)⟩ = −
316
+ 3d
317
+ (8πR2ϵ)2 +
318
+ 2a − d
319
+ (3πR2)2ϵ + O(1) . (19)
320
+ 0
321
+ 0.5
322
+ 1
323
+ 1.5
324
+ 2
325
+ 0
326
+ 0.1
327
+ 0.2
328
+ r/(GM)
329
+ ⟨ˆρ⟩
330
+ ⟨ˆpr⟩
331
+ ⟨ˆpθ⟩
332
+ FIG. 2.
333
+ Radial profile of the three components of ⟨ ˆT µ
334
+ ν ⟩,
335
+ for a = d = 1/360, ϵ = 0.003, in units where GM = 1. The
336
+ location of the inner light ring is depicted by the dashed line.
337
+ We emphasize that the pressures match only at the cen-
338
+ ter, and not elsewhere. Moreover, notice that the leading
339
+ order of ⟨ˆρ⟩ and ⟨ˆp⟩ have opposite signs. There is no con-
340
+ tribution from c because the Weyl tensor vanishes.
341
+ By comparing (15) and (16) with (18) and (19), we see
342
+ that the components of the renormalized stress tensor
343
+ scale with higher powers of ϵ than the classical contribu-
344
+ tions, and therefore cannot be ignored in the Buchdahl
345
+ limit. Furthermore, notice that the leading divergence of
346
+ the quantum terms depends only on d: in this regime the
347
+ quantum effects are dominated by the scheme-dependent
348
+ terms proportional to d, and not by c or a.
349
+ The backreaction of quantum effects cannot be ne-
350
+ glected if they become of the same order as the clas-
351
+ sical ones.
352
+ By comparing the classical and quantum
353
+ central pressures (16) and (19), this crossover happens
354
+ at ϵ ∼ |d| (ℓP /R)2, which corresponds to a pressure
355
+ p ∼ |d|−1ℓ−4
356
+ P
357
+ and central curvature R ∼ −|d|−1ℓ−2
358
+ P ,
359
+ where ℓP is the Planck length. If d ≪ 1, this corresponds
360
+ to sub-Planckain lengths and therefore we cannot trust
361
+ our semi-classical analysis. Instead, if d ≫ 1, the QFT ef-
362
+ fects cannot be neglected in this regime. For this specific
363
+ equation of state, a different, earlier crossover is found
364
+ if the energy densities are compared instead. However,
365
+ the impact of the constant energy density on the metric
366
+ is negligible compared to that of the diverging central
367
+ pressure, in the Buchdahl limit.
368
+ We will not address the problem of full backreaction in
369
+ this work. Nevertheless, some general features of a lin-
370
+ earized approximation provide useful insight. Consider
371
+ the trace of the semi-classical equations (10),
372
+ −R = 8πG (−ρ + 3p − ⟨ˆρ⟩ + ⟨ˆpr⟩ + 2⟨ˆpθ⟩) ,
373
+ (20)
374
+ evaluated at the origin, as we approach the Buchdahl
375
+ limit.
376
+ In the absence of the quantum corrections, the
377
+ right-hand side of (20) diverges as ϵ−1 as shown in (14).
378
+ However, as we see from (18) and (19), the quantum
379
+ contributions of the last three terms scale as −dϵ−2.
380
+
381
+ 4
382
+ If d < 0, the quantum terms on the right side of (20)
383
+ grow without bound with the same sign as the classi-
384
+ cal ones. This suggests a runaway: as the curvature in-
385
+ creases, so do quantum effects, which increase the curva-
386
+ ture further and so on. Conversely, if d > 0, the quantum
387
+ contributions to the trace have the opposite sign, which
388
+ decreases the curvature. This suggests the possible exis-
389
+ tence of a backreacted solution, but only for d > 0. Such
390
+ an equilibrium would require a small but finite ϵ of the
391
+ order discussed above, so the surface of such an object
392
+ would lie very close the Buchdahl radius, and far from
393
+ the Schwarzschild radius.
394
+ ROLE OF THE LIGHT RING
395
+ Light rings (photon spheres) play a key role in our anal-
396
+ ysis. These are defined as regions where null geodesics
397
+ form circles, and they always come in pairs due to topo-
398
+ logical arguments [8].
399
+ For 9GM/4 < R ≤ 3GM, the
400
+ above metric develops two light rings located at:
401
+ rext = 3GM ,
402
+ rint = 1
403
+ 3
404
+
405
+ R3
406
+ GM
407
+ 4R − 9GM
408
+ R − 2GM .
409
+ (21)
410
+ The outer ring rext, also present for black holes, corre-
411
+ sponds to the usual photon sphere outside the surface of
412
+ the star and is unstable: photons crossing it either es-
413
+ cape to infinity or spiral inwards. It has been probed by
414
+ recent observations [9–11].
415
+ The inner ring rint lies in the interior and is a stable
416
+ attractor of null geodesics, meaning that massless fields
417
+ remain trapped around it. Notice that it shrinks to the
418
+ origin in the Buchdahl limit. As illustrated in Fig. 2, the
419
+ quantum stress tensor (12) is maximum at the center and
420
+ falls steeply around the inner light ring. Indeed, in the
421
+ Buchdahl limit the inner light ring sets the location at
422
+ which the field values have dropped roughly by one order
423
+ of magnitude, i.e.
424
+ ⟨ˆρ(rint)⟩
425
+ ⟨ˆρ(0)⟩
426
+ ∼ 0.1
427
+ (22)
428
+ and similarly for the pressures. This shows that the re-
429
+ gion inside the inner photon sphere is where the quantum
430
+ fields have most support, which is the quantum analogue
431
+ to the classical trapping of modes discussed above us-
432
+ ing the wave equation. The crossover when the classical
433
+ and quantum pressures become comparable corresponds
434
+ to an inner light ring of radius r ∼
435
+
436
+ |d| ℓP .
437
+ The inner photon sphere plays yet another important
438
+ role: it is the location where the Null Energy Condition
439
+ (NEC) is violated. Given a null vector kµ, one defines an
440
+ operator by contracting the (total) stress tensor with it
441
+ NEC =
442
+
443
+ Tµν + ⟨ ˆTµν⟩
444
+
445
+ kµkν ,
446
+ (23)
447
+ where we have included both the classical and quantum
448
+ contributions. For classical matter, one expects NEC ≥
449
+ 0, while it is well known that quantum fields can violate
450
+ this.
451
+ In the star’s interior, but far from the inner light ring,
452
+ the NEC will be positive, since quantum effects there are
453
+ negligible.
454
+ In order to investigate the behavior of the
455
+ NEC in the vicinity of the inner photon sphere as we
456
+ approach the Buchdahl bound, we choose the null vector
457
+ as kµ = (1, kr, 0, 0). We then compute (23) inside the
458
+ star, in the limit ϵ → 0, keeping fixed the ratio r/rint.
459
+ This yields
460
+ NEC(r) =
461
+ 2d
462
+ 27π2G4R4
463
+ r2
464
+ int − r2
465
+ r2
466
+ int + r2 + O(ϵ) .
467
+ (24)
468
+ This is effectively ‘tracking’ the NEC in the region
469
+ around the inner photon sphere as the configuration ap-
470
+ proaches the Buchdahl bound, since rint → 0 in this limit.
471
+ The NEC clearly changes sign at the light ring and is
472
+ thus violated. Notice that the classical contribution is
473
+ subdominant in this limit and is contained in the sub-
474
+ leading orders. On the other hand, choosing kµ along
475
+ the (t, φ) plane does not lead to a violation.
476
+ The analysis above posits an interesting question. Sta-
477
+ ble light rings have been recently associated with gravita-
478
+ tional instabilities due to the existence of slowly decaying
479
+ modes around it [12, 13], which would rule out ultra com-
480
+ pact objects [8]. However, we have shown here that it is
481
+ precisely this feature that enhances the quantum effects
482
+ there, leading to the violation of energy conditions and
483
+ to significant backreaction. Exploring this interaction at
484
+ the non-linear level is an interesting direction.
485
+ COMMENTS ON BUCHDAHL’S THEOREM.
486
+ Buchdahl’s theorem relies on several assumptions as
487
+ stated in the introduction. Our results show that QFT
488
+ in curved spacetime violates two of these assumptions,
489
+ namely isotropy of the matter and the effective equations
490
+ of motion.
491
+ As we have seen in (12) and is illustrated in Fig. 2, the
492
+ renormalized vacuum stress tensor of the quantum fields
493
+ is not isotropic, thus violating one of the assumptions of
494
+ Buchdahl’s theorem. Anisotropic versions of Buchdahl’s
495
+ bound exist but they require extra assumptions [14–18].
496
+ These typically take the form of energy conditions, with
497
+ the strength of the bound depending on the strength
498
+ of the conditions. Here, we have shown that quantum
499
+ fields violate energy conditions in the probe approxima-
500
+ tion. We leave it for future work to examine whether the
501
+ equations including backreaction violate the assumptions
502
+ leading to these generalized theorems.
503
+ Second, close to the compactness bound the relevant
504
+ equations of motion to solve are (10), rather than the
505
+
506
+ 5
507
+ classical Einstein equations.
508
+ These differ by the pres-
509
+ ence of the quantum source which, as we have shown,
510
+ becomes the dominant term in the Buchdahl limit. This
511
+ contribution depends explicitly on the curvature tensors,
512
+ and therefore the differential equations to solve are of a
513
+ different nature than the purely classical ones.
514
+ This last feature has an alternative description in terms
515
+ of quadratic gravity.
516
+ For our specific background, we
517
+ have shown that among the terms that determine ⟨ ˆTµν⟩
518
+ in (11) and (12), only those controlled by d diverge faster
519
+ than the classical Tµν as ϵ → 0. The ones associated with
520
+ a diverge with the same power as the classical terms, but
521
+ come with a coefficient that is very small for astrophysi-
522
+ cal objects. Now as anticipated, d is a scheme-dependent
523
+ parameter that can be generated by adding the countert-
524
+ erm −
525
+ d
526
+ 12(4π)2 R2 to the Lagrangian. This means that our
527
+ results can also be interpreted as coming from quadratic
528
+ corrections to Einstein’s gravity.
529
+ The Weyl-flatness of
530
+ the background, then, is not essential to find the leading
531
+ terms of ⟨ ˆTµν⟩.
532
+ This two-faced interpretation is akin to Starobinsky’s
533
+ inflation [19], initially formulated in terms of the back-
534
+ reaction of quantum fields, then as R2 gravity (in the
535
+ Jordan frame) or Einstein gravity coupled to a scalar
536
+ field (in the Einstein frame). In the latter picture, the
537
+ stability of the scalar field requires the condition d > 0,
538
+ the same we found and discussed earlier.
539
+ It is worth noticing that Buchdahl’s theorem holds in
540
+ a local form as
541
+ r
542
+ Gm(r) ≥ 9
543
+ 4, where the radius and mass
544
+ of the star are replaced by an arbitrary coordinate ra-
545
+ dius r and the Misner-Sharp mass m(r) = 4π
546
+ � r
547
+ 0 dr r2ρ
548
+ contained within it, provided the assumptions are met
549
+ inside that sphere. For example, the star could consist of
550
+ an incompressible dense core surrounded by an external
551
+ crust obeying a softer equation of state. Our results also
552
+ apply to this generalized scenario.
553
+ Interesting recent work has also considered quantum
554
+ fields in the Buchdahl limit [20–22] in the approxima-
555
+ tion of a two-dimensional reduction. This corresponds
556
+ to the s-wave (ℓ = 0) sector, and leaves the stress tensor
557
+ undetermined up to an arbitrary function. Our results
558
+ differ from theirs in that (12) fully captures the 3 + 1-
559
+ dimensional features, leaving no functional freedom. For
560
+ other applications of similar techniques see [23–25].
561
+ SUMMARY
562
+ We have investigated the universal behavior of QFT
563
+ in the interior of very compact stars. A useful arena to
564
+ probe this is the strong gravity regime close to Buch-
565
+ dahl’s limit that, classically, sets an upper bound on the
566
+ compactness of static, spherically symmetric spheres in
567
+ General Relativity. As a proxy for this, we have worked
568
+ with the constant-density Schwarzschild interior solution.
569
+ Motivated by the trapping of classical waves in this
570
+ metric close to Buchdahl’s limit, we have studied quan-
571
+ tum fields propagating on this background in the approx-
572
+ imation of no backreaction.
573
+ Exploiting the conformal
574
+ flatness of this solution, we have evaluated the full renor-
575
+ malized stress tensor (12) for Conformal Field Theories.
576
+ This depends on two coefficients a and d, the latter of
577
+ which is not fixed by the theory in question.
578
+ The vacuum renormalized stress tensor (17) is not
579
+ isotropic, since the radial and angular pressures are dif-
580
+ ferent. The sign of the energy density is opposite to that
581
+ of the pressures. Its components acquire their maximum
582
+ magnitude at the origin, and fall steeply around the inner
583
+ light ring, as shown in (22).
584
+ As we approach the Buchdahl limit, the d term of
585
+ the renormalized stress tensor (18)-(19) diverges faster
586
+ than the classical source (15)-(16), meaning that quan-
587
+ tum fields respond stronger to changes in compactness
588
+ than their classical counterpart.
589
+ The crossover when
590
+ classical and quantum contributions are of the same or-
591
+ der happens when the proper radius of the inner light
592
+ ring is rint ∼
593
+
594
+ |d|ℓP . The radial Null Energy Condition
595
+ – including both classical and quantum contributions –
596
+ changes sign at the inner photon sphere as shown in (24),
597
+ and is thus violated inside the star. Whether the scales
598
+ involved are Planckian or not depends on the value of d.
599
+ If d ≪ 1, we cannot trust our semi-classical analysis. On
600
+ the other hand, if d ≫ 1, the effects of the QFT cannot
601
+ be ignored in this regime.
602
+ We emphasize that the enhancement of quantum ef-
603
+ fects discussed here happens as the surface of the star
604
+ approaches the Buchdahl radius 9GM/4 instead of 2GM.
605
+ Moreover, the effect of the quantum fields is localized in
606
+ a small region around the center – the inner light ring
607
+ – and not the surface. This is different from ultra com-
608
+ pact objects close to the Schwarzschild radius. There,
609
+ the renormalized stress tensor in the Boulware vacuum
610
+ is well known to diverge at the surface as the star ap-
611
+ proaches the black hole limit [26].
612
+ The isotropy assumption used in Buchdahl’s theorem
613
+ is violated by vacuum quantum fields. Whether the con-
614
+ ditions leading to the anisotropic generalizations of this
615
+ bound hold or not requires further investigation.
616
+ We have not attempted to solve the semi-classical
617
+ equations (10) here. Nevertheless, our results suggests
618
+ that if d > 0, quantum fields act by decreasing the cur-
619
+ vature, suggesting that a self-consistent solution to these
620
+ equations might exist that avoids curvature singularities.
621
+ It is intriguing to wonder whether quantum physics
622
+ may play yet another, unexpected, role in the determi-
623
+ nation of the maximum mass of compact stars.
624
+ Acknowledgments.
625
+ We thank Max Ba˜nados, Pablo
626
+ Bosch, Alejandra Castro, Jan de Boer and Erik Verlinde
627
+ for insightful discussions.
628
+ We also thank Daniel Bau-
629
+ mann and Vitor Cardoso for feedback on the manuscript.
630
+ We are particularly grateful to Ben Freivogel for exten-
631
+ sive discussions.
632
+
633
+ 6
634
+ [1] S. Chandrasekhar, The maximum mass of ideal white
635
+ dwarfs, Astrophys. J. 74, 81 (1931).
636
+ [2] C. E. Rhoades, Jr. and R. Ruffini, Maximum mass of a
637
+ neutron star, Phys. Rev. Lett. 32, 324 (1974).
638
+ [3] H. A. Buchdahl, General Relativistic Fluid Spheres,
639
+ Phys. Rev. 116, 1027 (1959).
640
+ [4] H. A. Buchdahl, Conformal Flatness of the Schwarzschild
641
+ Interior Solution, American Journal of Physics 39, 158
642
+ (1971).
643
+ [5] A. Raychaudhuri and S. R. Maiti, Conformal flatness and
644
+ the schwarzschild interior solution, Journal of Mathemat-
645
+ ical Physics 20, 245 (1979).
646
+ [6] S. Chandrasekhar and V. Ferrari, On the non-radial os-
647
+ cillations of a star. III - A reconsideration of the axial
648
+ modes, Proceedings of the Royal Society of London Se-
649
+ ries A 434, 449 (1991).
650
+ [7] L. S. Brown and J. P. Cassidy, Stress Tensors and their
651
+ Trace Anomalies in Conformally Flat Space-Times, Phys.
652
+ Rev. D 16, 1712 (1977).
653
+ [8] P. V. P. Cunha, E. Berti, and C. A. R. Herdeiro, Light-
654
+ Ring Stability for Ultracompact Objects, Phys. Rev.
655
+ Lett. 119, 251102 (2017), arXiv:1708.04211 [gr-qc].
656
+ [9] B. P. Abbott et al. (LIGO Scientific, Virgo), Tests of
657
+ general relativity with GW150914, Phys. Rev. Lett. 116,
658
+ 221101 (2016), [Erratum:
659
+ Phys.Rev.Lett. 121, 129902
660
+ (2018)], arXiv:1602.03841 [gr-qc].
661
+ [10] K. Akiyama et al. (Event Horizon Telescope), First M87
662
+ Event Horizon Telescope Results. I. The Shadow of the
663
+ Supermassive Black Hole, Astrophys. J. Lett. 875, L1
664
+ (2019), arXiv:1906.11238 [astro-ph.GA].
665
+ [11] V. Cardoso and P. Pani, Testing the nature of dark com-
666
+ pact objects:
667
+ a status report, Living Rev. Rel. 22, 4
668
+ (2019), arXiv:1904.05363 [gr-qc].
669
+ [12] J. Keir, Slowly decaying waves on spherically symmet-
670
+ ric spacetimes and ultracompact neutron stars, Class.
671
+ Quant. Grav. 33, 135009 (2016), arXiv:1404.7036 [gr-qc].
672
+ [13] V. Cardoso, L. C. B. Crispino, C. F. B. Macedo,
673
+ H. Okawa, and P. Pani, Light rings as observational ev-
674
+ idence for event horizons: long-lived modes, ergoregions
675
+ and nonlinear instabilities of ultracompact objects, Phys.
676
+ Rev. D 90, 044069 (2014), arXiv:1406.5510 [gr-qc].
677
+ [14] J. Guven and N. O’Murchadha, Bounds on 2m / R for
678
+ static spherical objects, Phys. Rev. D 60, 084020 (1999),
679
+ arXiv:gr-qc/9903067.
680
+ [15] B. V. Ivanov, Maximum bounds on the surface redshift
681
+ of anisotropic stars, Phys. Rev. D 65, 104011 (2002),
682
+ arXiv:gr-qc/0201090.
683
+ [16] D. E. Barraco,
684
+ V. H. Hamity, and R. J. Gleiser,
685
+ Anisotropic spheres in general relativity reexamined,
686
+ Phys. Rev. D 67, 064003 (2003).
687
+ [17] C. G. Boehmer and T. Harko, Bounds on the basic
688
+ physical parameters for anisotropic compact general rel-
689
+ ativistic objects, Class. Quant. Grav. 23, 6479 (2006),
690
+ arXiv:gr-qc/0609061.
691
+ [18] H. Andreasson, Sharp bounds on 2m/r of general spher-
692
+ ically symmetric static objects, J. Diff. Eq. 245, 2243
693
+ (2008), arXiv:gr-qc/0702137.
694
+ [19] A. A. Starobinsky, A New Type of Isotropic Cosmological
695
+ Models Without Singularity, Phys. Lett. B 91, 99 (1980).
696
+ [20] R. Carballo-Rubio, Stellar equilibrium in semiclassi-
697
+ cal
698
+ gravity,
699
+ Phys.
700
+ Rev.
701
+ Lett.
702
+ 120,
703
+ 061102
704
+ (2018),
705
+ arXiv:1706.05379 [gr-qc].
706
+ [21] J. Arrechea, C. Barcel´o, R. Carballo-Rubio, and L. J.
707
+ Garay, Semiclassical relativistic stars, Sci. Rep. 12, 15958
708
+ (2022), arXiv:2110.15808 [gr-qc].
709
+ [22] J. Arrechea, C. Barcel´o, R. Carballo-Rubio, and L. J.
710
+ Garay, Semiclassical constant-density spheres in a reg-
711
+ ularized Polyakov approximation, Phys. Rev. D 104,
712
+ 084071 (2021), arXiv:2105.11261 [gr-qc].
713
+ [23] E. Mottola and R. Vaulin, Macroscopic Effects of the
714
+ Quantum Trace Anomaly, Phys. Rev. D 74, 064004
715
+ (2006), arXiv:gr-qc/0604051.
716
+ [24] H. Kawai and Y. Yokokura, A Model of Black Hole Evap-
717
+ oration and 4D Weyl Anomaly, Universe 3, 51 (2017),
718
+ arXiv:1701.03455 [hep-th].
719
+ [25] P. Beltr´an-Palau, A. del R´ıo, and J. Navarro-Salas, Quan-
720
+ tum corrections to the Schwarzschild metric from vacuum
721
+ polarization, (2022), arXiv:2212.08089 [gr-qc].
722
+ [26] C. Barcelo, S. Liberati, S. Sonego, and M. Visser, Fate of
723
+ gravitational collapse in semiclassical gravity, Phys. Rev.
724
+ D 77, 044032 (2008), arXiv:0712.1130 [gr-qc].
725
+
MNAyT4oBgHgl3EQf6vpX/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,382 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf,len=381
2
+ page_content='Compact stars in Quantum Field Theory Ignacio A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
3
+ page_content=' Reyes1 and Giovanni Maria Tomaselli2 1Institute for Theoretical Physics and 2GRAPPA, University of Amsterdam, Amsterdam, 1098 XH, The Netherlands Very compact stars seem to be forbidden in General Relativity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
4
+ page_content=' While Buchdahl’s theorem sets an upper bound on compactness, further no-go results rely on the existence of two light rings, the inner of which has been associated to gravitational instabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
5
+ page_content=' However, little is known about the role of quantum fields in these strong gravity regimes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
6
+ page_content=' Working in the probe approximation where the backreaction is ignored, we show that the trapping of modes around the inner light ring leads the renormalized stress tensor of Conformal Field Theories to diverge faster than the classical source in the Buchdahl limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
7
+ page_content=' This leads to the violation of the Null Energy Condition, as well as the isotropy assumption used in Buchdahl’s theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
8
+ page_content=' The backreaction of quantum fields in this regime therefore cannot be ignored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
9
+ page_content=' This happens as the star’s surface approaches the Buchdahl radius 9GM/4 rather than the Schwarzschild radius, with the quantum fields having support in a small region around the center, becoming negligible at the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
10
+ page_content=' These are generic quantum features and do not depend on the details of the interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
11
+ page_content=' Our findings open a way for further investigation into the role of QFT in astrophysics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
12
+ page_content=' COMPACT RELATIVISTIC STARS The General Relativistic prediction of the existence of compact objects, such as white dwarfs and neutron stars, has been confirmed by many observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
13
+ page_content=' Their macro- scopic properties follow from the Tolman-Oppenheimer- Volkoff equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
14
+ page_content=' However, quantum theory is essential in understanding the physics of these stars, as it provides the ultimate reason for their existence, namely, Fermi’s exclusion principle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
15
+ page_content=' The question regarding the maximum mass of such compact object is crucial: it is the main criterion used to discriminate between what we suspect is a neutron star or a black hole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
16
+ page_content=' Well-known upper limits were set by Chan- drasekhar [1] and Rhoades-Ruffini [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
17
+ page_content=' A more generic re- sult, that is independent of the equation of state of the matter, was established by Buchdahl [3] and gives an up- per bound on compactness in GR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
18
+ page_content=' Consider an isotropic perfect fluid star, with stress tensor T µ ν = diag(−ρ, p, p, p) , (1) on a static, spherically symmetric metric ds2 = −f(r) dt2 + h(r) dr2 + r2(dθ2 + sin2 θ dφ2) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
19
+ page_content=' (2) Assuming in addition that ρ > 0, ∂rρ ≤ 0 and that Einstein’s equations hold, the requirement that the met- ric is everywhere regular leads to R ≥ 9GM/4 , (3) where R is the radius of the star and M is its mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
20
+ page_content=' The saturation of the bound is known as the Buchdahl limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
21
+ page_content=' Notice one can also formulate this bound in a coordinate- independent way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
22
+ page_content=' A particularly simple solution that manifestly sat- urates Buchdahl’s second assumption is the constant- density star or ‘Schwarzschild interior metric’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
23
+ page_content=' These configurations have uniform density ρ = 3M/4πR3 throughout the star, and as is well known they can sat- urate the Buchdahl limit (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
24
+ page_content=' Although they are unre- alistic models of an astrophysical object, they are the standard example when studying the TOV equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
25
+ page_content=' The metric for this equation of state takes the form (2), with f(r) = � 3 2 � 1 − 2GM R − 1 2 � 1 − 2GMr2 R3 �2 , (4) h(r) = � 1 − 2GMr2 R3 �−1 , (5) and is matched to the usual exterior Schwarzschild vac- uum solution at the sphere’s surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
26
+ page_content=' The simplicity of these solutions make them an excel- lent setup to test Quantum Field Theory (QFT) in the strong gravity regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
27
+ page_content=' A final motivation to consider this metric is that it is conformally (Weyl) flat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
28
+ page_content=' In fact, the uniform density metric above is the unique solution to Einstein’s equations coupled to a static perfect fluid that is conformally flat [4, 5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
29
+ page_content=' This will allow us to ob- tain explicit analytic results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
30
+ page_content=' We will thus work with this spacetime, and comment about the generality of our results later on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
31
+ page_content=' WAVE EQUATION In order to understand the behaviour of quantum fields in this spacetime, let us begin by first considering the propagation of classical waves in it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
32
+ page_content=' The wave equation for the uniform density background was first discussed by Chandrasekhar and Ferrari [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
33
+ page_content=' For simplicity we take a massless scalar Φ using the usual decomposition Φ = � fωℓm , fωℓm(x) = u(r) r Yℓm(θ, φ)e−iωt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
34
+ page_content=' (6) arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
35
+ page_content='00826v1 [gr-qc] 2 Jan 2023 2 −30 −20 −10 0 10 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
36
+ page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
37
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
38
+ page_content='15 r∗/(GM) V/(GM)2 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
39
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
40
+ page_content=' Potential (for ℓ = 1) given in (9), for R/(GM) = 9/4 (blue), 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
41
+ page_content='3 (orange) and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
42
+ page_content='4 (green).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
43
+ page_content=' The dashed lines mark the the values of r∗ corresponding to the centre of the star in the two latter cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
44
+ page_content=' A discontinuous jump at the star’s surface matches it to the exterior vacuum Schwarzschild solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
45
+ page_content=' The wave equation □Φ = 0 can be recast in a Schr¨odinger-like form: −∂2 r∗u + V (r∗)u = ω2u , (7) where we defined the tortoise coordinate r∗ via dr∗ dr = � h(r)/f(r) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
46
+ page_content=' (8) The potential V (r∗) takes the form V = 1 r ∂2 r∗r + ℓ(ℓ + 1) r2 f (9) and is plotted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
47
+ page_content=' 1 for ℓ = 1 and various values of R/(GM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
48
+ page_content=' The potential at r > R corresponds to the Schwarzschild vacuum metric, and vanishes at infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
49
+ page_content=' It connects to the interior of the star with a discontinuous step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
50
+ page_content=' As we can see from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
51
+ page_content=' 1, when R > 9GM/4, the tortoise coordinate has a finite minimum possible value (dashed lines) corresponding to the centre of the star, because the factor h/f is always regular around r = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
52
+ page_content=' Moreover, V (r∗) reaches a local minimum greater than zero and then increases towards the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
53
+ page_content=' When R → 9GM/4, however, one has h/f ∼ r−2 and therefore the domain of r∗ becomes infinite on both sides, while V (r∗) vanishes at the centre of the star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
54
+ page_content=' This closely resembles the situation for black holes, but in that case it is the horizon that is mapped to r∗ → −∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
55
+ page_content=' The field modes can thus be trapped inside the star, leading to a spectrum of quasi-bound states whose magnitudes are amplified close to the origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
56
+ page_content=' These properties of the effective potential, together with the behavior of the tortoise coordinate, suggests that upon quantization the renormalized stress tensor can become important in the Buchdahl limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
57
+ page_content=' The rest of our analysis will be done in a more generic way that depends less on the specific theory considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
58
+ page_content=' QFT IN CURVED SPACETIME QFT in curved spacetime has seen significant progress in the last half century.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
59
+ page_content=' In the semi-classical approxima- tion, gravity is still treated classically and one considers some quantum fields as another dynamical source to Ein- stein’s equations, Rµν − 1 2gµνR = 8πG � Tµν + ⟨ ˆTµν⟩ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
60
+ page_content=' (10) We shall denote by ˆTµν the operator of the QFT to dis- tinguish it from the classical source (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
61
+ page_content=' However, most work in this field has focused on either cosmology or black holes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
62
+ page_content=' Here, we will study the role it plays for astrophysical compact stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
63
+ page_content=' The question we will address in this work is whether there exists some generic feature of QFT, independent of the details of the nuclear interactions and the quantum states involved, that becomes important for very compact stars, in the regime of strong gravitational fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
64
+ page_content=' We will show that there is indeed such an effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
65
+ page_content=' We shall focus on the effects of conformally coupled fields where the computation is easier, taking it as a toy model for more generic scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
66
+ page_content=' We work in 3+1 dimen- sions, but the generalization to even higher dimensions is straightforward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
67
+ page_content=' The non-conformal case will be treated elsewhere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
68
+ page_content=' As is well known, conformally coupled classical mat- ter has a vanishing trace of its stress tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
69
+ page_content=' However, its quantum counterpart develops a trace anomaly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
70
+ page_content=' In 3 + 1 dimensions, the vacuum expectation value of the trace of the renormalized stress tensor for quantum fields propagating in a curved spacetime is ⟨ ˆT µ µ ⟩ = 1 (4π)2 [cF − aG − d□R] , (11) where R is the Ricci scalar, F is the square of the Weyl tensor and G is the Gauss-Bonnet invariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
71
+ page_content=' Amongst the three real coefficients, c > 0 and a > 0 are well under- stood and characterize the particular theory in question.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
72
+ page_content=' On the other hand, d is not determined by the bare La- grangian as it depends on the renormalization scheme, and is closely related to the quadratic corrections to the gravity action as we review below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
73
+ page_content=' As such, it should be fixed by experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
74
+ page_content=' For now we will leave d as a fixed but undetermined constant and proceed with the calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
75
+ page_content=' If additionally the metric is conformally flat – as is the case for the constant-density star – then all components 3 of the renormalized stress tensor are fixed [7]: ⟨ ˆT µν⟩ = − a (4π)2 � gµν �R2 2 − RαβRαβ � + 2RµλRν λ − 4 3RRµν � + d (4π)2 � 1 12gµν(R2 − 4R,λ ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
76
+ page_content='λ) − 1 3(RRµν − R,µ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
77
+ page_content='ν) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
78
+ page_content=' (12) The quantum state chosen for (12) is the vacuum, but this will not play an important role.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
79
+ page_content=' It could be a state at finite temperature or with a large number of fermions: this would only add an extra contribution independent of the curvature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
80
+ page_content=' The vacuum stress tensor for the interior of the uniform density star is therefore given by (12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
81
+ page_content=' We now proceed to evaluate it and examine its properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
82
+ page_content=' QUANTUM FIELDS IN THE BUCHDAHL LIMIT In this section, we describe the main features of the quantum stress tensor (12) evaluated on the Schwarzschild interior metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
83
+ page_content=' In particular, we wish to understand its behavior as we approach the Buchdahl limit R = (9/4 + ϵ)GM , ϵ → 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
84
+ page_content=' (13) We will report the results to leading orders in ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
85
+ page_content=' The Buchdahl limit (13) is a finite distance above the black hole compactness corresponding to R = 2GM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
86
+ page_content=' Nevertheless, this regime is no less extreme: the Ricci scalar R of the background metric at the center diverges in this limit as R(0) = − 3 R2ϵ + O(1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
87
+ page_content=' (14) Correspondingly, the central density and pressure of the classical uniform density star solution behave as ρ(0) = 1 3πGR2 + O(ϵ) , (15) p(0) = 1 8πGR2ϵ + O(1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
88
+ page_content=' (16) Let us contrast this behavior with its quantum coun- terpart (12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
89
+ page_content=' For generic ϵ, this takes the form ⟨ ˆT µ ν ⟩ = diag(−⟨ˆρ⟩, ⟨ˆpr⟩, ⟨ˆpθ⟩, ⟨ˆpθ⟩) , (17) with ⟨ˆpr⟩ ̸= ⟨ˆpθ⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
90
+ page_content=' The radial dependence of the compo- nents are illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
91
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
92
+ page_content=' In the limit ϵ → 0, their central values scale as ⟨ˆρ(0)⟩ = 9d (8πR2ϵ)2 + d 6(πR2)2ϵ + O(1) , (18) ⟨ˆpr(0)⟩ = ⟨ˆpθ(0)⟩ = − 3d (8πR2ϵ)2 + 2a − d (3πR2)2ϵ + O(1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
93
+ page_content=' (19) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
94
+ page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
95
+ page_content='5 2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
96
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
97
+ page_content='2 r/(GM) ⟨ˆρ⟩ ⟨ˆpr⟩ ⟨ˆpθ⟩ FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
98
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
99
+ page_content=' Radial profile of the three components of ⟨ ˆT µ ν ⟩, for a = d = 1/360, ϵ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
100
+ page_content='003, in units where GM = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
101
+ page_content=' The location of the inner light ring is depicted by the dashed line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
102
+ page_content=' We emphasize that the pressures match only at the cen- ter, and not elsewhere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
103
+ page_content=' Moreover, notice that the leading order of ⟨ˆρ⟩ and ⟨ˆp⟩ have opposite signs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
104
+ page_content=' There is no con- tribution from c because the Weyl tensor vanishes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
105
+ page_content=' By comparing (15) and (16) with (18) and (19), we see that the components of the renormalized stress tensor scale with higher powers of ϵ than the classical contribu- tions, and therefore cannot be ignored in the Buchdahl limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
106
+ page_content=' Furthermore, notice that the leading divergence of the quantum terms depends only on d: in this regime the quantum effects are dominated by the scheme-dependent terms proportional to d, and not by c or a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
107
+ page_content=' The backreaction of quantum effects cannot be ne- glected if they become of the same order as the clas- sical ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
108
+ page_content=' By comparing the classical and quantum central pressures (16) and (19), this crossover happens at ϵ ∼ |d| (ℓP /R)2, which corresponds to a pressure p ∼ |d|−1ℓ−4 P and central curvature R ∼ −|d|−1ℓ−2 P , where ℓP is the Planck length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
109
+ page_content=' If d ≪ 1, this corresponds to sub-Planckain lengths and therefore we cannot trust our semi-classical analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
110
+ page_content=' Instead, if d ≫ 1, the QFT ef- fects cannot be neglected in this regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
111
+ page_content=' For this specific equation of state, a different, earlier crossover is found if the energy densities are compared instead.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
112
+ page_content=' However, the impact of the constant energy density on the metric is negligible compared to that of the diverging central pressure, in the Buchdahl limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
113
+ page_content=' We will not address the problem of full backreaction in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
114
+ page_content=' Nevertheless, some general features of a lin- earized approximation provide useful insight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
115
+ page_content=' Consider the trace of the semi-classical equations (10), −R = 8πG (−ρ + 3p − ⟨ˆρ⟩ + ⟨ˆpr⟩ + 2⟨ˆpθ⟩) , (20) evaluated at the origin, as we approach the Buchdahl limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
116
+ page_content=' In the absence of the quantum corrections, the right-hand side of (20) diverges as ϵ−1 as shown in (14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
117
+ page_content=' However, as we see from (18) and (19), the quantum contributions of the last three terms scale as −dϵ−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
118
+ page_content=' 4 If d < 0, the quantum terms on the right side of (20) grow without bound with the same sign as the classi- cal ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
119
+ page_content=' This suggests a runaway: as the curvature in- creases, so do quantum effects, which increase the curva- ture further and so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
120
+ page_content=' Conversely, if d > 0, the quantum contributions to the trace have the opposite sign, which decreases the curvature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
121
+ page_content=' This suggests the possible exis- tence of a backreacted solution, but only for d > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
122
+ page_content=' Such an equilibrium would require a small but finite ϵ of the order discussed above, so the surface of such an object would lie very close the Buchdahl radius, and far from the Schwarzschild radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
123
+ page_content=' ROLE OF THE LIGHT RING Light rings (photon spheres) play a key role in our anal- ysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
124
+ page_content=' These are defined as regions where null geodesics form circles, and they always come in pairs due to topo- logical arguments [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
125
+ page_content=' For 9GM/4 < R ≤ 3GM, the above metric develops two light rings located at: rext = 3GM , rint = 1 3 � R3 GM 4R − 9GM R − 2GM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
126
+ page_content=' (21) The outer ring rext, also present for black holes, corre- sponds to the usual photon sphere outside the surface of the star and is unstable: photons crossing it either es- cape to infinity or spiral inwards.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
127
+ page_content=' It has been probed by recent observations [9–11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
128
+ page_content=' The inner ring rint lies in the interior and is a stable attractor of null geodesics, meaning that massless fields remain trapped around it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
129
+ page_content=' Notice that it shrinks to the origin in the Buchdahl limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
130
+ page_content=' As illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
131
+ page_content=' 2, the quantum stress tensor (12) is maximum at the center and falls steeply around the inner light ring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
132
+ page_content=' Indeed, in the Buchdahl limit the inner light ring sets the location at which the field values have dropped roughly by one order of magnitude, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
133
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
134
+ page_content=' ⟨ˆρ(rint)⟩ ⟨ˆρ(0)⟩ ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
135
+ page_content='1 (22) and similarly for the pressures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
136
+ page_content=' This shows that the re- gion inside the inner photon sphere is where the quantum fields have most support, which is the quantum analogue to the classical trapping of modes discussed above us- ing the wave equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
137
+ page_content=' The crossover when the classical and quantum pressures become comparable corresponds to an inner light ring of radius r ∼ � |d| ℓP .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
138
+ page_content=' The inner photon sphere plays yet another important role: it is the location where the Null Energy Condition (NEC) is violated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
139
+ page_content=' Given a null vector kµ, one defines an operator by contracting the (total) stress tensor with it NEC = � Tµν + ⟨ ˆTµν⟩ � kµkν , (23) where we have included both the classical and quantum contributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
140
+ page_content=' For classical matter, one expects NEC ≥ 0, while it is well known that quantum fields can violate this.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
141
+ page_content=' In the star’s interior, but far from the inner light ring, the NEC will be positive, since quantum effects there are negligible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
142
+ page_content=' In order to investigate the behavior of the NEC in the vicinity of the inner photon sphere as we approach the Buchdahl bound, we choose the null vector as kµ = (1, kr, 0, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
143
+ page_content=' We then compute (23) inside the star, in the limit ϵ → 0, keeping fixed the ratio r/rint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
144
+ page_content=' This yields NEC(r) = 2d 27π2G4R4 r2 int − r2 r2 int + r2 + O(ϵ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
145
+ page_content=' (24) This is effectively ‘tracking’ the NEC in the region around the inner photon sphere as the configuration ap- proaches the Buchdahl bound, since rint → 0 in this limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
146
+ page_content=' The NEC clearly changes sign at the light ring and is thus violated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
147
+ page_content=' Notice that the classical contribution is subdominant in this limit and is contained in the sub- leading orders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
148
+ page_content=' On the other hand, choosing kµ along the (t, φ) plane does not lead to a violation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
149
+ page_content=' The analysis above posits an interesting question.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
150
+ page_content=' Sta- ble light rings have been recently associated with gravita- tional instabilities due to the existence of slowly decaying modes around it [12, 13], which would rule out ultra com- pact objects [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
151
+ page_content=' However, we have shown here that it is precisely this feature that enhances the quantum effects there, leading to the violation of energy conditions and to significant backreaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
152
+ page_content=' Exploring this interaction at the non-linear level is an interesting direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
153
+ page_content=' COMMENTS ON BUCHDAHL’S THEOREM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
154
+ page_content=' Buchdahl’s theorem relies on several assumptions as stated in the introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
155
+ page_content=' Our results show that QFT in curved spacetime violates two of these assumptions, namely isotropy of the matter and the effective equations of motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
156
+ page_content=' As we have seen in (12) and is illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
157
+ page_content=' 2, the renormalized vacuum stress tensor of the quantum fields is not isotropic, thus violating one of the assumptions of Buchdahl’s theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
158
+ page_content=' Anisotropic versions of Buchdahl’s bound exist but they require extra assumptions [14–18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
159
+ page_content=' These typically take the form of energy conditions, with the strength of the bound depending on the strength of the conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
160
+ page_content=' Here, we have shown that quantum fields violate energy conditions in the probe approxima- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
161
+ page_content=' We leave it for future work to examine whether the equations including backreaction violate the assumptions leading to these generalized theorems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
162
+ page_content=' Second, close to the compactness bound the relevant equations of motion to solve are (10), rather than the 5 classical Einstein equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
163
+ page_content=' These differ by the pres- ence of the quantum source which, as we have shown, becomes the dominant term in the Buchdahl limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
164
+ page_content=' This contribution depends explicitly on the curvature tensors, and therefore the differential equations to solve are of a different nature than the purely classical ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
165
+ page_content=' This last feature has an alternative description in terms of quadratic gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
166
+ page_content=' For our specific background, we have shown that among the terms that determine ⟨ ˆTµν⟩ in (11) and (12), only those controlled by d diverge faster than the classical Tµν as ϵ → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
167
+ page_content=' The ones associated with a diverge with the same power as the classical terms, but come with a coefficient that is very small for astrophysi- cal objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
168
+ page_content=' Now as anticipated, d is a scheme-dependent parameter that can be generated by adding the countert- erm − d 12(4π)2 R2 to the Lagrangian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
169
+ page_content=' This means that our results can also be interpreted as coming from quadratic corrections to Einstein’s gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
170
+ page_content=' The Weyl-flatness of the background, then, is not essential to find the leading terms of ⟨ ˆTµν⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
171
+ page_content=' This two-faced interpretation is akin to Starobinsky’s inflation [19], initially formulated in terms of the back- reaction of quantum fields, then as R2 gravity (in the Jordan frame) or Einstein gravity coupled to a scalar field (in the Einstein frame).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
172
+ page_content=' In the latter picture, the stability of the scalar field requires the condition d > 0, the same we found and discussed earlier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
173
+ page_content=' It is worth noticing that Buchdahl’s theorem holds in a local form as r Gm(r) ≥ 9 4, where the radius and mass of the star are replaced by an arbitrary coordinate ra- dius r and the Misner-Sharp mass m(r) = 4π � r 0 dr r2ρ contained within it, provided the assumptions are met inside that sphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
174
+ page_content=' For example, the star could consist of an incompressible dense core surrounded by an external crust obeying a softer equation of state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
175
+ page_content=' Our results also apply to this generalized scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
176
+ page_content=' Interesting recent work has also considered quantum fields in the Buchdahl limit [20–22] in the approxima- tion of a two-dimensional reduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
177
+ page_content=' This corresponds to the s-wave (ℓ = 0) sector, and leaves the stress tensor undetermined up to an arbitrary function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
178
+ page_content=' Our results differ from theirs in that (12) fully captures the 3 + 1- dimensional features, leaving no functional freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
179
+ page_content=' For other applications of similar techniques see [23–25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
180
+ page_content=' SUMMARY We have investigated the universal behavior of QFT in the interior of very compact stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
181
+ page_content=' A useful arena to probe this is the strong gravity regime close to Buch- dahl’s limit that, classically, sets an upper bound on the compactness of static, spherically symmetric spheres in General Relativity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
182
+ page_content=' As a proxy for this, we have worked with the constant-density Schwarzschild interior solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
183
+ page_content=' Motivated by the trapping of classical waves in this metric close to Buchdahl’s limit, we have studied quan- tum fields propagating on this background in the approx- imation of no backreaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
184
+ page_content=' Exploiting the conformal flatness of this solution, we have evaluated the full renor- malized stress tensor (12) for Conformal Field Theories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
185
+ page_content=' This depends on two coefficients a and d, the latter of which is not fixed by the theory in question.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
186
+ page_content=' The vacuum renormalized stress tensor (17) is not isotropic, since the radial and angular pressures are dif- ferent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
187
+ page_content=' The sign of the energy density is opposite to that of the pressures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
188
+ page_content=' Its components acquire their maximum magnitude at the origin, and fall steeply around the inner light ring, as shown in (22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
189
+ page_content=' As we approach the Buchdahl limit, the d term of the renormalized stress tensor (18)-(19) diverges faster than the classical source (15)-(16), meaning that quan- tum fields respond stronger to changes in compactness than their classical counterpart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
190
+ page_content=' The crossover when classical and quantum contributions are of the same or- der happens when the proper radius of the inner light ring is rint ∼ � |d|ℓP .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
191
+ page_content=' The radial Null Energy Condition – including both classical and quantum contributions – changes sign at the inner photon sphere as shown in (24), and is thus violated inside the star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
192
+ page_content=' Whether the scales involved are Planckian or not depends on the value of d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
193
+ page_content=' If d ≪ 1, we cannot trust our semi-classical analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
194
+ page_content=' On the other hand, if d ≫ 1, the effects of the QFT cannot be ignored in this regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
195
+ page_content=' We emphasize that the enhancement of quantum ef- fects discussed here happens as the surface of the star approaches the Buchdahl radius 9GM/4 instead of 2GM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
196
+ page_content=' Moreover, the effect of the quantum fields is localized in a small region around the center – the inner light ring – and not the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
197
+ page_content=' This is different from ultra com- pact objects close to the Schwarzschild radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
198
+ page_content=' There, the renormalized stress tensor in the Boulware vacuum is well known to diverge at the surface as the star ap- proaches the black hole limit [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
199
+ page_content=' The isotropy assumption used in Buchdahl’s theorem is violated by vacuum quantum fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
200
+ page_content=' Whether the con- ditions leading to the anisotropic generalizations of this bound hold or not requires further investigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
201
+ page_content=' We have not attempted to solve the semi-classical equations (10) here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
202
+ page_content=' Nevertheless, our results suggests that if d > 0, quantum fields act by decreasing the cur- vature, suggesting that a self-consistent solution to these equations might exist that avoids curvature singularities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
203
+ page_content=' It is intriguing to wonder whether quantum physics may play yet another, unexpected, role in the determi- nation of the maximum mass of compact stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
204
+ page_content=' Acknowledgments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
205
+ page_content=' We thank Max Ba˜nados, Pablo Bosch, Alejandra Castro, Jan de Boer and Erik Verlinde for insightful discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
206
+ page_content=' We also thank Daniel Bau- mann and Vitor Cardoso for feedback on the manuscript.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
207
+ page_content=' We are particularly grateful to Ben Freivogel for exten- sive discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
208
+ page_content=' 6 [1] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
209
+ page_content=' Chandrasekhar, The maximum mass of ideal white dwarfs, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
210
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
211
+ page_content=' 74, 81 (1931).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
212
+ page_content=' [2] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
213
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
214
+ page_content=' Rhoades, Jr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
215
+ page_content=' and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
216
+ page_content=' Ruffini, Maximum mass of a neutron star, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
217
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
218
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
219
+ page_content=' 32, 324 (1974).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
220
+ page_content=' [3] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
221
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
222
+ page_content=' Buchdahl, General Relativistic Fluid Spheres, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
223
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
224
+ page_content=' 116, 1027 (1959).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
225
+ page_content=' [4] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
226
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
227
+ page_content=' Buchdahl, Conformal Flatness of the Schwarzschild Interior Solution, American Journal of Physics 39, 158 (1971).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
228
+ page_content=' [5] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
229
+ page_content=' Raychaudhuri and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
230
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
231
+ page_content=' Maiti, Conformal flatness and the schwarzschild interior solution, Journal of Mathemat- ical Physics 20, 245 (1979).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
232
+ page_content=' [6] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
233
+ page_content=' Chandrasekhar and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
234
+ page_content=' Ferrari, On the non-radial os- cillations of a star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
235
+ page_content=' III - A reconsideration of the axial modes, Proceedings of the Royal Society of London Se- ries A 434, 449 (1991).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
236
+ page_content=' [7] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
237
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
238
+ page_content=' Brown and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
239
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
240
+ page_content=' Cassidy, Stress Tensors and their Trace Anomalies in Conformally Flat Space-Times, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
241
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
242
+ page_content=' D 16, 1712 (1977).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
243
+ page_content=' [8] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
244
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
245
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
246
+ page_content=' Cunha, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
247
+ page_content=' Berti, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
248
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
249
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
250
+ page_content=' Herdeiro, Light- Ring Stability for Ultracompact Objects, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
251
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
252
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
253
+ page_content=' 119, 251102 (2017), arXiv:1708.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
254
+ page_content='04211 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
255
+ page_content=' [9] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
256
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
257
+ page_content=' Abbott et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
258
+ page_content=' (LIGO Scientific, Virgo), Tests of general relativity with GW150914, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
259
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
260
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
261
+ page_content=' 116, 221101 (2016), [Erratum: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
262
+ page_content='Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
263
+ page_content='Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
264
+ page_content=' 121, 129902 (2018)], arXiv:1602.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
265
+ page_content='03841 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
266
+ page_content=' [10] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
267
+ page_content=' Akiyama et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
268
+ page_content=' (Event Horizon Telescope), First M87 Event Horizon Telescope Results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
269
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
270
+ page_content=' The Shadow of the Supermassive Black Hole, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
271
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
272
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
273
+ page_content=' 875, L1 (2019), arXiv:1906.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
274
+ page_content='11238 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
275
+ page_content='GA].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
276
+ page_content=' [11] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
277
+ page_content=' Cardoso and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
278
+ page_content=' Pani, Testing the nature of dark com- pact objects: a status report, Living Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
279
+ page_content=' Rel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
280
+ page_content=' 22, 4 (2019), arXiv:1904.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
281
+ page_content='05363 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
282
+ page_content=' [12] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
283
+ page_content=' Keir, Slowly decaying waves on spherically symmet- ric spacetimes and ultracompact neutron stars, Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
284
+ page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
285
+ page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
286
+ page_content=' 33, 135009 (2016), arXiv:1404.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
287
+ page_content='7036 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
288
+ page_content=' [13] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
289
+ page_content=' Cardoso, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
290
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
291
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
292
+ page_content=' Crispino, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
293
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
294
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
295
+ page_content=' Macedo, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
296
+ page_content=' Okawa, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
297
+ page_content=' Pani, Light rings as observational ev- idence for event horizons: long-lived modes, ergoregions and nonlinear instabilities of ultracompact objects, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
298
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
299
+ page_content=' D 90, 044069 (2014), arXiv:1406.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
300
+ page_content='5510 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
301
+ page_content=' [14] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
302
+ page_content=' Guven and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
303
+ page_content=' O’Murchadha, Bounds on 2m / R for static spherical objects, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
304
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
305
+ page_content=' D 60, 084020 (1999), arXiv:gr-qc/9903067.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
306
+ page_content=' [15] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
307
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
308
+ page_content=' Ivanov, Maximum bounds on the surface redshift of anisotropic stars, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
309
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
310
+ page_content=' D 65, 104011 (2002), arXiv:gr-qc/0201090.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
311
+ page_content=' [16] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
312
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
313
+ page_content=' Barraco, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
314
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
315
+ page_content=' Hamity, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
316
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
317
+ page_content=' Gleiser, Anisotropic spheres in general relativity reexamined, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
318
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
319
+ page_content=' D 67, 064003 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
320
+ page_content=' [17] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
321
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
322
+ page_content=' Boehmer and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
323
+ page_content=' Harko, Bounds on the basic physical parameters for anisotropic compact general rel- ativistic objects, Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
324
+ page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
325
+ page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
326
+ page_content=' 23, 6479 (2006), arXiv:gr-qc/0609061.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
327
+ page_content=' [18] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
328
+ page_content=' Andreasson, Sharp bounds on 2m/r of general spher- ically symmetric static objects, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
329
+ page_content=' Diff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
330
+ page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
331
+ page_content=' 245, 2243 (2008), arXiv:gr-qc/0702137.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
332
+ page_content=' [19] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
333
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
334
+ page_content=' Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
335
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
336
+ page_content=' B 91, 99 (1980).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
337
+ page_content=' [20] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
338
+ page_content=' Carballo-Rubio, Stellar equilibrium in semiclassi- cal gravity, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
339
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
340
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
341
+ page_content=' 120, 061102 (2018), arXiv:1706.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
342
+ page_content='05379 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
343
+ page_content=' [21] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
344
+ page_content=' Arrechea, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
345
+ page_content=' Barcel´o, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
346
+ page_content=' Carballo-Rubio, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
347
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
348
+ page_content=' Garay, Semiclassical relativistic stars, Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
349
+ page_content=' Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
350
+ page_content=' 12, 15958 (2022), arXiv:2110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
351
+ page_content='15808 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
352
+ page_content=' [22] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
353
+ page_content=' Arrechea, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
354
+ page_content=' Barcel´o, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
355
+ page_content=' Carballo-Rubio, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
356
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
357
+ page_content=' Garay, Semiclassical constant-density spheres in a reg- ularized Polyakov approximation, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
358
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
359
+ page_content=' D 104, 084071 (2021), arXiv:2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
360
+ page_content='11261 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
361
+ page_content=' [23] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
362
+ page_content=' Mottola and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
363
+ page_content=' Vaulin, Macroscopic Effects of the Quantum Trace Anomaly, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
364
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
365
+ page_content=' D 74, 064004 (2006), arXiv:gr-qc/0604051.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
366
+ page_content=' [24] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
367
+ page_content=' Kawai and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
368
+ page_content=' Yokokura, A Model of Black Hole Evap- oration and 4D Weyl Anomaly, Universe 3, 51 (2017), arXiv:1701.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
369
+ page_content='03455 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
370
+ page_content=' [25] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
371
+ page_content=' Beltr´an-Palau, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
372
+ page_content=' del R´ıo, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
373
+ page_content=' Navarro-Salas, Quan- tum corrections to the Schwarzschild metric from vacuum polarization, (2022), arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
374
+ page_content='08089 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
375
+ page_content=' [26] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
376
+ page_content=' Barcelo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
377
+ page_content=' Liberati, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
378
+ page_content=' Sonego, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
379
+ page_content=' Visser, Fate of gravitational collapse in semiclassical gravity, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
380
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
381
+ page_content=' D 77, 044032 (2008), arXiv:0712.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
382
+ page_content='1130 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MNAyT4oBgHgl3EQf6vpX/content/2301.00826v1.pdf'}
N9AzT4oBgHgl3EQfk_2S/content/tmp_files/2301.01541v1.pdf.txt ADDED
@@ -0,0 +1,573 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Condensed Matter Physics, 2022, Vol. 25, No. 4, 43710: 1–9
2
+ DOI: 10.5488/CMP.25.43710
3
+ http://www.icmp.lviv.ua/journal
4
+ Electric field induced polarization rotation in squaric
5
+ acid crystals revisited
6
+ A. P. Moina
7
+ Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine,
8
+ 1 Svientsitskii St., 79011 Lviv, Ukraine
9
+ Received July 10, 2022, in final form July 26, 2022
10
+ Using the previously developed model we revisit the problem of the electric field induced polarization rotation
11
+ in antiferroelectric crystals of squaric acid. We test an alternative set of the model parameters, according to
12
+ which the dipole moments associated with the H2C4O4 groups are assumed to be parallel to the diagonals of
13
+ the 𝑎𝑐 plane. The 𝑇-𝐸 phase diagrams and the polarization curves 𝑃(𝐸) for the fields directed along the 𝑎 axis
14
+ and along one of the diagonals are considered. Comparison of the theoretical results with the newly published
15
+ experimental data confirm the validity of the model. The calculations reveal no apparent advantage of the new
16
+ set of the parameters over the previously used set.
17
+ Key words: polarization, electric field, phase transition, phase diagram, squaric acid
18
+ 1. Introduction
19
+ The squaric acid H2C4O4 is a classical two-dimensional antiferroelectric. The crystal is tetrago-
20
+ nal, 𝐼4/𝑚, in the paraelectric phase and monoclinic, 𝑃21/𝑚, in the antiferroelectric phase. The hydrogen
21
+ bonded C4O4 groups form sheets, parallel to the 𝑎𝑐 plane and stacked along the 𝑏-axis. Below the tran-
22
+ sition at 373 K, a spontaneous polarization arises in these sheets, with the neighboring sheets polarized
23
+ in the opposite directions [1–3].
24
+ External electric fields applied to a uniaxial antiferroelectric can switch a sublattice polarization by
25
+ 180◦ and induce thereby the transition from antiferroelectric (AFE) to ferroelectric (FE) phase. The
26
+ (pseudo)tetragonal symmetry of the squaric acid crystal lattice and of its hydrogen bond networks allows
27
+ the sublattice polarizations to be directed along two perpendicular axes in the fully ordered system.
28
+ As a result, here the external field can rotate one of the sublattice polarizations by 90◦, whereupon
29
+ a noncollinear ferrielectric phase with perpendicular sublattice polarizations (NC90 [4]) is induced.
30
+ The possibility of such a rotation has been suggested by Horiuchi et al [5], and their hysteresis loop
31
+ measurements and Berry phase calculations gave evidence for it. Further calculations [6] indicated that
32
+ the 90◦ rotation is possible at different orientations of the field within the 𝑎𝑐 plane. It is also predicted [5, 6]
33
+ that application of higher fields along the diagonals of the 𝑎𝑐 plane can lead to the second rotation of the
34
+ negative sublattice polarization by 90◦ and induction of the collinear ferroelectric phase.
35
+ Recently [4, 7] we developed a deformable [8] two-sublattice proton-ordering model for a description
36
+ of squaric acid behaviour in external electric fields, applied arbitrarily within the plane of hydrogen
37
+ bonds. The model calculations confirm the two-step process of polarization reorientation [5, 6] at low
38
+ temperatures, with the negative sublattice polarization being switched twice by 90◦ at each transition,
39
+ for any orientation of the field within the 𝑎𝑐 plane, but a few exceptional directions. The exceptional
40
+ directions are those, when the field is either i) collinear to the axes of the sublattice polarization in the AFE
41
+ phase, or ii) directed at 45◦ to these axes. In the case i), the crystal behaves like a uniaxial antiferroelectric,
42
+ undergoing a single-step polarization switching to the FE phase without the intermediate noncollinear
43
+ phase, while in the case ii), the transition field from the NC90 to the FE phase goes to infinity, i.e., the
44
+ transition never occurs [7].
45
+ This work is licensed under a Creative Commons Attribution 4.0 International License. Further distribution
46
+ of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
47
+ 43710-1
48
+ arXiv:2301.01541v1 [cond-mat.mtrl-sci] 4 Jan 2023
49
+
50
+ A. P. Moina
51
+ The temperature-electric field phase diagrams of squaric acid were constructed [4, 7] for the field
52
+ 𝐸1(𝐸3) directed along the 𝑎(𝑐) tetragonal axis, for the fields denoted for brevity as 𝐸1 ± 𝐸3 and directed
53
+ along the diagonals of the 𝑎𝑐 plane, as well as for the fields of the two above mentioned exceptional
54
+ directions i) and ii). Note that the 𝑇-𝐸 diagrams are identical for the fields rotated by 90◦ around the 𝑏
55
+ axis, because of the pseudotetragonal symmetry of the model [7].
56
+ Experimentally, the low-temperature transition between the NC90 and FE phases has not been detected
57
+ yet due to the dielectric breakdown of the samples. As follows from the model calculations [7], the field
58
+ of this transition is the lowest when its direction is close to the axis of the sublattice polarization, so it is
59
+ most likely to be experimentally observed at this field orientation.
60
+ On the other hand, for the AFE-NC90 switching, the experimental data by Horiuchi et al [5] had
61
+ been available, when our calculations were carried out. The polarization hysteresis curves at different
62
+ temperatures for the field 𝐸1 had been measured, and the temperature dependence of the switching
63
+ field had been deduced from those; for the field 𝐸1 + 𝐸3, the measurements had been performed for
64
+ one temperature only [5]. With the fitting procedure for the model being based on the data [5] for the
65
+ static dielectric permittivity, the obtained agreement between the theory and the experiment for the
66
+ switching fields and for the 𝑃(𝐸) curves was only qualitative [4, 7]. Quantitatively, the agreement was
67
+ conspicuously unsatisfactory, which led us to believe that the model used was not completely appropriate,
68
+ and that essential modifications were required [7]. Quite recently, however, the same group of Horiuchi
69
+ et al reported [9] the results of their new measurements of the polarization loops for the squaric acid
70
+ crystals of an improved dielectric strength. This permitted to increase the maximum electric field that
71
+ could be applied to the samples in the hysteresis experiments. Our preliminary calculations showed that
72
+ the new experimental data were much closer to the predictions of the model [4, 7] than the previous data
73
+ of [5], and that the doubts concerning the model validity were premature.
74
+ It was extensively discussed in [4] that the accepted set of the values of the model parameters, in
75
+ particular of the dipole moments assigned to the ground state configurations of the H2C4O4 groups,
76
+ is not unique. While the magnitude of the dipole moment vector is constrained by the fitting to the
77
+ permittivity [5], its orientation (and thereby the orientation of the ground state sublattice polarizations)
78
+ can be varied within the 𝑎𝑐 plane. With the set of the model parameters adopted in [4, 7] these vectors
79
+ are oriented at about 56◦ to the 𝑎(𝑐) axes. On the other hand, the Berry phase calculations [5, 9] indicate
80
+ that the axes of the spontaneous sublattice polarization, in fact, are very close or even coincide with
81
+ the diagonals of the 𝑎𝑐 plane. In terms of our model, this means that the crystallographic axes and the
82
+ diagonals are the above mentioned exceptional directions: the axis 𝑎(𝑐) is the direction ii), while the
83
+ diagonals of the 𝑎𝑐 plane are the direction i). The topology of the 𝑇-𝐸 diagrams and the shape of the
84
+ 𝑃(𝐸) curves for the fields 𝐸1(𝐸3) and 𝐸1 ± 𝐸3 will change accordingly. The availability of the new, more
85
+ reliable experimental data [9] makes a quantitative comparison of theoretical and experimental 𝑃(𝐸)
86
+ curves meaningful and could help to ascertain the orientation of the model dipole moment vectors.
87
+ Thus, it seems worthwhile to revisit the problem of polarization rotation in squaric acid, to perform
88
+ calculations with an alternative set of the model parameters, where the sublattice polarizations are
89
+ oriented along the diagonals of the 𝑎𝑐 plane, and to compare the theoretical results with the most
90
+ recent [9] experimental data. The model [4, 7], briefly described in section 2, is used without any further
91
+ modification of the formulae. In section 3 the results of the theoretical calculations with the old and new
92
+ sets of the model parameters are compared with the experimental data.
93
+ 2. The model
94
+ The model has been introduced and explicated in [4], and a concise outline is given in [7]. Below
95
+ we present a brief qualitative description of the model; all the formulae and other relevant details and
96
+ discussions can be found in the mentioned papers.
97
+ Protons on the hydrogen bonds in squaric acid move in double-well potentials, so each of the protons
98
+ can occupy one of the two sites on the bond: closer to the given C4O4 group or to the neighboring
99
+ group. The motion of protons is described by Ising pseudospins, whose two eigenvalues are assigned to
100
+ two equilibrium positions of each proton. Two interpenetrating sublattices (layers) of pseudospins are
101
+ considered.
102
+ 43710-2
103
+
104
+ Electric field induced polarization rotation in squaric acid crystals revisited
105
+ a)
106
+ b)
107
+ a
108
+ Figure 1. (Colour online) a) The crystal structure of squaric acid as viewed along the 𝑏 axis. Two adjacent
109
+ layers are shown, with black and open circles each. The A and B type C4O4 groups are indicated (see [4, 8]
110
+ for explanation), and the hydrogen bonds are numbered, 𝑓 = 1, 2, 3, 4. b) The dipole moments assigned
111
+ to one of the four lateral proton configurations (the configuration 1 in tables 1 in [4, 7]). Directions of
112
+ the dipole moments associated with protons 𝝁𝐻
113
+ 1 = (2𝜇𝐻 , 0, 0) and with electrons 𝝁𝜋
114
+ 1 = (2𝜇𝜋
115
+ ∥ , 0, −2𝜇𝜋
116
+ ⊥)
117
+ are shown with blue and red arrows, respectively; the green arrow is the total dipole moment of the
118
+ configuration; the vector lengths are nominal. 𝜑0 = arctan(𝜇𝐻 + 𝜇𝜋
119
+ ∥ )/𝜇𝜋
120
+ ⊥ is the angle between the total
121
+ dipole moment of configuration 1 and the 𝑐 axis. Figures are taken from [4, 7, 8, 10].
122
+ The total system Hamiltonian [4, 7] includes ferroelectric intralayer long-range interactions between
123
+ pseudospins, ensuring ferroelectric ordering within each separate layer, antiferroelectric interlayer inter-
124
+ actions responsible for alternation of polarizations in the stacked layers, and the short-range interactions,
125
+ which include also the coupling with external electric fields 𝐸1 and 𝐸3 directed along the tetragonal
126
+ (paraelectric) 𝑎 and 𝑐 axes of the crystal.
127
+ The short-range Hamiltonian describes the four-particle configurational correlations between protons
128
+ placed around each C4O4 group. The usual Slater-Takagi type scheme [4, 8, 11, 12] of 16 degenerate
129
+ levels of lateral/diagonal/single-ionized/double-ionized proton configurations is assumed. The lateral and
130
+ single-ionized configurations have dipole moments in the 𝑎𝑐 plane; the degeneracy of their energy levels
131
+ is removed by the electric fields 𝐸1 and 𝐸3, which break the equivalence of the hydrogen bonds that link
132
+ the C4O4 groups along the 𝑎 and 𝑐 axes (see tables 1 in [4, 7]).
133
+ Assignment of the dipole moments to the ground-state lateral configurations is the crucial point of the
134
+ model. We rely on the results of the Berry phase calculations [5], which have shown that the ground-state
135
+ sublattice polarization in this crystal is formed directly by displacements of protons along the hydrogen
136
+ bonds and, mostly, by the electronic contributions of switchable 𝜋-bond dipoles.
137
+ Positions of the 𝜋-bonds are determined by the proton arrangement around the given C4O4 group: in
138
+ the lateral configurations the 𝜋-bond is formed between the two neighboring carbons, near which protons
139
+ sit on the hydrogen bonds (see fig. 1b), and also between the carbons and adjacent to them oxygens, next
140
+ to which there is no proton (meaning that the protons on these H-bonds sit in the minima close to the
141
+ neighboring C4O4 groups). The field-induced polarization rotation by 90◦ or 180◦ occurs via flipping
142
+ of one or two protons in each molecule to the other sites along the same hydrogen bonds and via a
143
+ simultaneous switching of the 𝜋-bonds. For the depicted in figure 1b lateral proton configuration, the
144
+ vector of the proton contribution to the dipole moment is oriented along the 𝑎 axis, while the electronic
145
+ contribution is at the angle to this axis. The dipole moments of the three remaining lateral configurations
146
+ can be obtained from the scheme of figure 1b by rotation by a multiple of 90◦.
147
+ After going from the representation of proton configuration energies to the pseudospin representation,
148
+ the four-particle cluster approximation for the obtained short-range Hamiltonian is employed. The mean
149
+ field approximation is used for the long-range interlayer and intralayer interactions [4, 8]. The dependence
150
+ of all proton-proton interaction parameters on the diagonal components of the lattice strain tensor and
151
+ on the H-site distance, which are changed by the thermal expansion and potentially by an external stress
152
+ if such is applied, is taken into account [8]. The expression for the thermodynamic potential has been
153
+ obtained [4]; the order parameters and lattice strains are found by numerical minimization thereof.
154
+ 43710-3
155
+
156
+ H
157
+ c
158
+ 02Po,H
159
+ μiA. P. Moina
160
+ The values of all model parameters were chosen earlier [4, 7, 8]. In particular, they were required [8]
161
+ to provide the best fit to the experimental temperature curves of the order parameter at ambient pressure,
162
+ to the temperature and hydrostatic pressure dependences of the diagonal lattice strains, and to the pressure
163
+ dependence of the transition temperature 𝑇N in squaric acid.
164
+ The dielectric characteristics and other electric field effects in our model are mostly governed by
165
+ values of the dipole moments, which enter the final expressions only via the sum 𝜇𝐻 + 𝜇𝜋
166
+ ∥ and via 𝜇𝜋
167
+ ⊥.
168
+ These values are found by fitting the calculated curve of the static dielectric permittivity 𝜀11 at zero
169
+ external bias field to the experimental points of [5], while trying to get the best possible agreement
170
+ with the experiment for the values of the switching fields, corresponding to the first 90◦ rotation of the
171
+ sublattice polarization by the field 𝐸1. It can be shown that in the paraelectric phase 𝜀11 ∼ ¯𝜇2, where
172
+ ¯𝜇 =
173
+ √︃
174
+ (𝜇𝐻 + 𝜇𝜋
175
+ ∥ )2 + (𝜇𝜋
176
+ ⊥)2
177
+ is half the magnitude of the dipole moment, assigned to the H2C4O4 groups. It means that above 𝑇N the
178
+ permittivity 𝜀11 at zero field is determined by the magnitude of the dipole moment vector only, whereas
179
+ the orientation of the vector within the 𝑎𝑐 plane can be varied. For the set, adopted in [4, 7] and presented
180
+ in table 1 as the set A, the dipole moment and the ground state sublattice polarization are oriented at the
181
+ angle 𝜑0 = arctan(𝜇𝐻 + 𝜇𝜋
182
+ ∥ )/𝜇𝜋
183
+ ⊥ ≈ 56◦ to the crystallographic axes. However, the results of the Berry
184
+ phase calculations [9] indicate that the angle should be closer to 45◦. Thus, we find an alternative set of
185
+ the dipole moment values with 𝜇𝐻 + 𝜇𝜋
186
+ ∥ = 𝜇𝜋
187
+ ⊥ and with the same ¯𝜇 as in the set A, which yields the same
188
+ fit to the permittivity in the paraelectric phase; this is the set B in table 1. In the next section, using the
189
+ set B, we construct the 𝑇-𝐸 phase diagrams and explore the 𝑃(𝐸) curves for the electric fields 𝐸1 and
190
+ 𝐸1 + 𝐸3. The results are compared with the previous calculations [7] performed with the set A, as well
191
+ with the experimental data of [5, 9].
192
+ Table 1. The adopted values of the model dipole moments. The set A is taken from [7]. The values of all
193
+ other model parameters are the same as in [4, 7, 8].
194
+ 𝜇𝐻 + 𝜇𝜋
195
+
196
+ 𝜇𝜋
197
+
198
+ ¯𝜇
199
+ (10−29 C m)
200
+ set A
201
+ 3.16
202
+ 2.12
203
+ 3.8
204
+ set B
205
+ 2.66
206
+ 2.66
207
+ 3.8
208
+ 3. Calculations
209
+ 3.1. Phase diagrams
210
+ In figure 2 we redraw the 𝑇-𝐸 diagrams of squaric acid for the fields 𝐸1 and 𝐸1 + 𝐸3, obtained earlier
211
+ in [4, 7] along with the newly available experimental points of [9]. Here, the set A of the dipole moment
212
+ values was used in the calculations. The diagrams overlap the color gradient plots of the introduced in [4]
213
+ noncollinearity angle 𝜃, which is the angle between the vectors of the sublattice polarizations.
214
+ Different phases in the diagrams are separated by the lines of the first order phase transitions I, II,
215
+ and III, and of the second order phase transitions IV. All these lines terminate at various critical points
216
+ (bicritical end points BCE, tricritical point TCP, critical end points CEP). Some of the critical points can
217
+ be artifacts of the mean field approximation, used for the long-range interactions. This was discussed
218
+ extensively in [4, 7]; we shall not dwell on this here. The phase denoted as AFE* (the red region) is
219
+ non-collinear antiferrielectric, very close to the initial AFE phase with 𝜃 ∼ 180◦. The purple region is the
220
+ collinear field-induced ferroelectric phase (FE) with 𝜃 = 0. The phase between the transition lines II, III,
221
+ and IV (green and blue) is the noncollinear ferrielectric phase NC90, where 𝜃 mostly remains close to 90◦,
222
+ only rapidly decreasing to zero near the second-order phase transition line IV. In the region NC135*
223
+ 43710-4
224
+
225
+ Electric field induced polarization rotation in squaric acid crystals revisited
226
+ 250
227
+ 300
228
+ 350
229
+ 400
230
+ 450
231
+ 0
232
+ 200
233
+ 400
234
+ 600
235
+ 800
236
+ 1000
237
+ 1200
238
+ V
239
+ NC135*
240
+ I
241
+ BCE1
242
+ CEP
243
+ TCP
244
+ BCE2
245
+ IV
246
+ III
247
+
248
+
249
+ T (K)
250
+ E1 (kV/cm)
251
+ FE
252
+ NC90
253
+ 0
254
+ 1
255
+ 11
256
+ 22
257
+ 33
258
+ 45
259
+ 56
260
+ 67
261
+ 78
262
+ 90
263
+ 107
264
+ 115
265
+ 120
266
+ 125
267
+ 130
268
+ 146
269
+ 157
270
+ 169
271
+ 180
272
+ AFE*
273
+ θ (deg)
274
+ II
275
+ 300
276
+ 350
277
+ 400
278
+ 200
279
+ 400
280
+ V
281
+ NC135*
282
+
283
+
284
+ FE
285
+ NC90
286
+ I
287
+ IV
288
+ III
289
+ CEP2
290
+ CEP1
291
+ BCE3
292
+ BCE1
293
+ T (K)
294
+ E1+E3 (kV/cm)
295
+ BCE2
296
+ II
297
+ AFE*
298
+ Figure 2. (Colour online) The 𝑇-𝐸 phase diagrams of the squaric acid, overlapping the 𝑇-𝐸 color
299
+ contour plots of the noncollinearity angle 𝜃. The set A is used in calculations. Solid and dashed lines
300
+ indicate the first and second order phase transitions, respectively; dotted lines are the supercritical lines,
301
+ corresponding to the loci of maxima in the field dependences of d𝑃(𝐸)/d𝐸. The open squares □, star �,
302
+ and full circles • indicate the critical end points (CEP), tricritical point (TCP), and bicritical end points
303
+ (BCE), respectively. Blue full triangles ▲, ▶, and ▼ are the experimental points of [5], the electronic
304
+ supplementary material thereto, and [9], respectively.
305
+ (orange to yellow), a crossover between the AFE* and NC90 phases occurs. Here, 𝜃 changes gradually
306
+ from ∼ 180◦ to ∼ 90◦: the negative sublattice polarization rotates continuously with increasing field and
307
+ becomes perpendicular to the positive sublattice polarization. As discussed in [4, 7], this continuous
308
+ rotation is a statistically averaged effect, possible only in presence of thermal fluctuations.
309
+ Crossovers are often marked by the lines formed by the loci of the extrema of the response functions —
310
+ second derivatives of the thermodynamic potentials. Those supercritical lines are continuations of the
311
+ first order transition lines beyond the critical points terminating them. The major drawback of this method
312
+ is that the extrema of different response functions yield different supercritical lines; moreover, the super-
313
+ critical lines formed by the extrema of the same response function taken along different thermodynamic
314
+ paths (e.g., isotherms or isofields) are different as well (see [13]). In order to compare the theory and the
315
+ experimental data derived from the field dependence of polarization, we mark the crossover between the
316
+ AFE* and NC90 phases using the lines formed by the maxima of the d𝑃(𝐸)/d𝐸 isotherms (the inflection
317
+ points of the 𝑃(𝐸) isotherms), where 𝑃 is the projection of the net polarization vector on the field axis.
318
+ These are the dotted lines V in the phase diagrams.
319
+ As one can see in the left-hand panel of figure 2, for the field 𝐸1, the most recent data obtained in [9]
320
+ for the sample with the improved dielectric strength appear to be in a much better agreement with the
321
+ theory than the earlier experimental data of [5]. The theoretical switching fields, calculated with the set
322
+ A, are much higher than the experimental values of [5] with the relative error 𝜂 = 1 − 𝐸exp/𝐸theor ≈ 0.42
323
+ at room temperature (295 K). The error decreases down to ≈ 0.23 for the experimental points of [9],
324
+ which is still not quite satisfactory, but evidently much better.
325
+ In the case of 𝐸1 + 𝐸3, the switching fields calculated with the set A are higher than predicted for
326
+ the field 𝐸1. This is in a qualitative agreement with all available experimental observations [5, 9]. The
327
+ relative errors are about 0.3 for [5] at 324 K and 0.22 for [9] at 295 K, that is, the improvement here is
328
+ not so striking.
329
+ Now let us see how the situation changes, when the set B is used in calculations. For this set, the
330
+ ground state spontaneous polarization axis is oriented along the diagonal of the 𝑎𝑐 plane. It means that
331
+ the fields 𝐸1 + 𝐸3 and 𝐸1 are directed along this axis and at 45◦ to it, respectively, that is, along the
332
+ exceptional directions i) and ii), discussed in Introduction. It is then expected that the 𝑇-𝐸 diagrams will
333
+ be topologically different from those, depicted in figure 2. For the field 𝐸1 + 𝐸3, the crystal of squaric
334
+ acid should behave like a uniaxial antiferroelectric, exhibiting a one-step polarization rotation by 180◦
335
+ 43710-5
336
+
337
+ A. P. Moina
338
+ without the intermediate noncollinear phase. For the field 𝐸1, the field of switching to the ferroelectric
339
+ phase is expected to tend to infinity, and only the AFE*-NC90 transition can be observed.
340
+ 300
341
+ 400
342
+ 100
343
+ 200
344
+ 300
345
+ 400
346
+ T (K)
347
+ I
348
+ IV
349
+ CEP
350
+ BCE1
351
+ FE
352
+ NC90
353
+
354
+
355
+ 0
356
+ 1
357
+ 11
358
+ 22
359
+ 33
360
+ 45
361
+ 56
362
+ 67
363
+ 78
364
+ 90
365
+ 107
366
+ 115
367
+ 120
368
+ 135
369
+ 146
370
+ 157
371
+ 169
372
+ 180
373
+ E1 (kV/cm)
374
+ AFE*
375
+ BCE2
376
+ II
377
+ θ (deg)
378
+ 250
379
+ 300
380
+ 350
381
+ 100
382
+ 200
383
+ 300
384
+ 400
385
+ FI
386
+ E1+E3 (kV/cm)
387
+ IV
388
+ I
389
+
390
+ FE
391
+ TP
392
+ BCE
393
+ TCP2
394
+ T (K)
395
+ TCP1
396
+ AFE*
397
+ III
398
+ V
399
+ VII
400
+ 238
401
+ 240
402
+ 296
403
+ 300
404
+ 304
405
+ VI
406
+ VII
407
+ III
408
+ BCE
409
+ AFE*
410
+
411
+
412
+
413
+ FE
414
+ TP
415
+ III
416
+ V
417
+ FI
418
+ Figure 3. (Colour online) The same as in figure 2. The set B is used in calculations. The open triangle
419
+ △ indicates the triple point TP. The dash-dotted line VII corresponds to the loci of minima in the field
420
+ dependences of d𝑃(𝐸)/d𝐸. The other notations are the same as in figure 2.
421
+ The 𝑇-𝐸 phase diagrams, calculated with the set B and presented in figure 3, are indeed in a total
422
+ agreement with the above described picture. As the magnitude of the dipole moment 2 ¯𝜇 is the same
423
+ for both sets, these diagrams are numerically identical to those obtained in [7] with the set A for
424
+ the exceptional directions ii) and i), respectively (see figures 8, 9 in [7]). This identity can be proved
425
+ algebraically, using the expression for the thermodynamic potential of the system [4, 7].
426
+ For the field 𝐸1, the positions of the lines II of the AFE*-NC90 phase transitions, calculated with
427
+ the sets A and B, are very close but not the same (c.f. the left-hand panels in figures 2 and 3). The
428
+ closeness can be explained by the found in [7] dependence of this switching field at low temperatures on
429
+ the orientation of the spontaneous sublattice polarization axis 𝐸 𝐼 𝐼 ∼ 1/cos(𝛿𝜑 − π/4), where 𝛿𝜑 is the
430
+ angle between this axis and the external field 𝐸. Since 𝛿𝜑 for the sets A and B differ by about 11◦ only,
431
+ the difference between the corresponding switching fields is small as well. It is then trivial to say that for
432
+ 𝐸1, the sets A and B yield about the same agreement with the experimental data for the switching field.
433
+ For the field 𝐸1 + 𝐸3, the intermediate phase NC90 is absent, and 𝜃 is always either 180◦ or zero (see
434
+ the right-hand panel of figure 3), i.e., all phases are collinear. The polarization switching occurs either as
435
+ a first order phase transition across lines III directly to the FE phase and across line VI to an intermediate
436
+ collinear ferrielectric phase FI, or gradually. In the latter case, the magnitude of one of the sublattice
437
+ polarizations decreases down to zero with increasing field, changes its sign continuously at line VII, and
438
+ then increases until the second order transition to the FE phase occurs at line IV. Interestingly, line VII,
439
+ where the angle 𝜃 changes from 180◦ to 0, is formed by the loci of the minima of the d𝑃(𝐸)/d𝐸 isotherms,
440
+ as opposed to line V, formed by the loci of the maxima. Line VI, emanating from the critical point BCE
441
+ (see the inset in figure 3), marks the crossover between AFE* and FI phases. It is to be compared with
442
+ the experimental data for the switching fields, and it yields nearly the same agreement as the set A, with
443
+ the relative errors about 0.3 for [5] at 324 K and 0.23 for [9].
444
+ 3.2. Polarization
445
+ In figure 4 we plot the field dependences of the projections of the net polarization vector on the field
446
+ direction for the fields 𝐸1 and 𝐸1 + 𝐸3. The experimental points of [5] and [9] are also presented. The
447
+ drastic changes in the experimental hysteresis curves, brought by the improvement of the sample quality
448
+ and by the increase of the maximum value of the applied field in [9], are very well seen. It is obvious that
449
+ the comparison of the theoretical polarization curves with the earlier data of [5] could be only qualitative.
450
+ As one can see, for 𝐸1, the sets A and B predict three and two plateaus of polarization, respectively.
451
+ 43710-6
452
+
453
+ Electric field induced polarization rotation in squaric acid crystals revisited
454
+ 100
455
+ 1000
456
+ 0
457
+ 10
458
+ 20
459
+ 30
460
+ 40
461
+ 200
462
+ 400
463
+ 600
464
+ 0
465
+ 10
466
+ 20
467
+ 30
468
+ 40
469
+ III
470
+ set A
471
+ set B
472
+ E1 (kV/cm)
473
+ P1 (µC/cm2)
474
+ II
475
+ V
476
+ IV
477
+ E1+E3 (kV/cm)
478
+ P (µC/cm2)
479
+ Figure 4. (Colour online) The field dependences of polarizations at 295 K. Full triangles: experimental
480
+ points taken from [5] (▲) and [9] (▼). The arrows indicate phase transitions of the first order across lines
481
+ II, III (left-hand) and of the second order across lines IV (right-hand). The arrow and full circles (•)
482
+ indicate the crossovers at lines V (right-hand). Lines II-V are from the 𝑇-𝐸 phase diagrams, figures 2, 3.
483
+ In the physically reasonable field range, which includes the AFE*-NC90 first order phase transition (at
484
+ lines II from the phase diagrams 2, 3), the two sets yield very similar polarizations. The calculated
485
+ polarization jumps are 17.9 µC/cm2 for the set A and 20.4 µC/cm2 for the set B, in a fair agreement
486
+ with the experimental 17.2 µC/cm2 [9]. The set A also predicts the second step of polarization at a much
487
+ higher field, at the transition to the FE phase (across line III from the phase diagram, figure 2). It seems
488
+ unlikely, however, that the field of such high a magnitude could ever be applied in an experiment without
489
+ the squaric acid samples suffering the dielectric breakdown.
490
+ For the field 𝐸1 + 𝐸3, the two sets of the model parameters yield different behaviour of polarization
491
+ even at experimentally accessible fields. The 𝑃(𝐸) curve, calculated with the set A, has three smeared
492
+ plateaus, with a clear rounded step, corresponding to the AFE*- NC90 crossover across line V, and then
493
+ a cusp at the NC90-FE second order transition across line IV. The lower part of this curve, albeit being
494
+ shifted to higher fields, is in a good qualitative and quantitative agreement with the experimental points.
495
+ The polarization, calculated with the set B, on the other hand, has only two smeared plateaus: at low
496
+ fields and above the cusp at line IV. No pronounced intermediate plateau is seen. The change of concavity
497
+ at the inflection point, marked by a full circle in the figure, is hardly discernible. The agreement with
498
+ the experiment is visibly worse than for the set A. However, the switching field magnitude for 𝐸1 + 𝐸3 is
499
+ predicted [5, 7, 9] to be higher than for the field 𝐸1. It means that, despite the increased dielectric strength
500
+ of the samples, the maximum applied fields 𝐸1 +𝐸3 [9] could still be insufficient to obtain correct data for
501
+ polarization. A potential further improvement of the crystal quality (if such is still possible) may change
502
+ the measured values of polarization and switching field for the diagonally directed field in the same way,
503
+ as such an improvement did in the case of the field 𝐸1 in [9] as compared to [5], which is well illustrated
504
+ in the left-hand panel of figure 4. Then, the agreement with the theoretical curves can be reexamined.
505
+ 4. Concluding remarks
506
+ Using the previously developed [4] deformable two-sublattice proton ordering model, we revisit
507
+ the problem of polarization rotation in antiferroelectric crystals of squaric acid under the influence
508
+ of external electric fields. The unique structure of the two-dimensional hydrogen bond networks in
509
+ squaric acid permits 90◦ rotation of the sublattice polarization. The model predicts [4, 7] that except
510
+ for some particular directions of the field, the polarization reorientation at low temperatures is a two-
511
+ step process: first, to the noncollinear phase with perpendicular sublattice polarizations and then to the
512
+ collinear ferroelectric phase. However, when the field is directed along the axis of spontaneous sublattice
513
+ polarizations, the intermediate noncollinear phase is absent; when the field is at 45◦ to this axis, the field
514
+ of the transition to the ferroelectric phase tends to infinity.
515
+ The previously obtained 𝑇-𝐸 phase diagrams and newly calculated polarization curves are compared
516
+ 43710-7
517
+
518
+ A. P. Moina
519
+ with the most recent experimental data [9], measured using the crystal samples of the increased dielectric
520
+ strength. We also test an alternative set of the model parameters, for which the dipole moments assigned
521
+ to the H2C4O4 groups are of the same magnitude as in the previous calculations, but oriented along the
522
+ diagonals of the 𝑎𝑐 plane.
523
+ The new experimental data [9] are in a drastically better agreement with the theory than the earlier
524
+ results [5], especially for the polarization curves, as well as for the switching fields. It shows that the
525
+ simplicity of the model was not the major reason of the earlier [4, 7] disagreement between theory and
526
+ experiment and gives a strong evidence for the model validity.
527
+ Results of testing the new set of the model parameters are inconclusive. Overall, the comparison of the
528
+ theoretical polarization curves with the experimental data seems to slightly favor the previous set [4, 7],
529
+ according to which the axes of the spontaneous sublattice polarization are close, but not exactly parallel
530
+ to the diagonals of the 𝑎𝑐 plane. Further experimental studies may shed some light on this problem.
531
+ As far as a further verification of the model is concerned, the appropriateness of the mean field
532
+ approximation, used for the long-range interactions, may be addressed. This approximation is, most
533
+ likely, the origin of the artifact splitting [4, 7] of some tricritical points in the 𝑃-𝐸 phase diagrams into
534
+ the systems of bicritical and critical endpoints and also of the appearance of the intermediate FI phase,
535
+ seen in the right-hand panels of figures 2, 3. Monte Carlo calculations may be used to construct more
536
+ accurate diagrams.
537
+ References
538
+ 1. Semmingsen D., Tun Z., Nelmes R. J., McMullan R. K., Koetzle T. F., Z. Kristallogr. Cryst. Mater., 1995, 210,
539
+ 934–947, doi:10.1524/zkri.1995.210.12.934.
540
+ 2. Semmingsen D., Hollander F. J., Koetzle T. F., J. Chem. Phys., 1977, 66, 4405–4412, doi:10.1063/1.433745
541
+ 3. Hollander F. J., Semmingsen D., Koetzle T. F., J. Chem. Phys., 1977, 67, 4825–4831, doi:10.1063/1.434686.
542
+ 4. Moina A. P., Phys. Rev. B, 2021, 103, 214104, doi:10.1103/PhysRevB.103.214104.
543
+ 5. Horiuchi S., Kumai R., Ishibashi S., Chem. Sci., 2018, 9, 425–432, doi:10.1039/C7SC03859C.
544
+ 6. Ishibashi S., Horiuchi S., Kumai R., Phys. Rev. B, 2018, 97, 184102, doi:10.1103/PhysRevB.97.184102.
545
+ 7. Moina A. P., Condens. Matter Phys., 2021, 24, No. 4, 43703, doi:10.5488/CMP.24.43703.
546
+ 8. Moina A. P., Condens. Matter Phys., 2020, 23, No. 3, 33704, doi:10.5488/CMP.23.33704.
547
+ 9. Horiuchi S., Ishibashi S., Chem. Phys., 2021, 12, 14198–14206, doi:10.1039/d1sc02729h.
548
+ 10. Semmingsen D., Feder J., Solid State Commun., 1974, 15, 1369–1372, doi:10.1016/0038-1098(74)91382-9.
549
+ 11. Matsushita E., Yoshimitsu K., Matsubara T., Progr. Theor. Phys., 1980, 64, No. 4, 1176–1192,
550
+ doi:10.1143/PTP.64.1176.
551
+ 12. Matsushita E., Matsubara T., Progr. Theor. Phys., 1982, 68, No. 6, 1811–1826, doi:10.1143/PTP.68.1811.
552
+ 13. Schienbein P., Marx D., Phys. Rev. E, 2018, 98, 022104, doi:10.1103/PhysRevE.98.022104.
553
+ 43710-8
554
+
555
+ Electric field induced polarization rotation in squaric acid crystals revisited
556
+ Ще раз про обертання поляризацiї електричним полем в
557
+ кристалах квадратної кислоти
558
+ А. П. Моїна
559
+ Iнститут фiзики конденсованих систем Нацiональної академiї наук України
560
+ 79011, м. Львiв, вул. Свєнцiцького, 1
561
+ З використанням запропонованої ранiше моделi розглядаються процеси обертання поляризацiї зовнiшнi-
562
+ ми електричними полями в антисегнетоелектричних кристалах квадратної кислоти. Обчислення також
563
+ проводяться з альтернативним набором параметрiв теорiї, в якому дипольнi моменти, якi приписуються
564
+ групам H2C4O4, паралельнi до дiагоналей площини 𝑎𝑐. Дослiджено фазовi дiаграми 𝑇-𝐸 та кривi поля-
565
+ ризацiї 𝑃(𝐸) для полiв, прикладених уздовж осi 𝑎 та уздовж дiагоналi площини 𝑎𝑐. Порiвняння теорети-
566
+ чних результатiв з нещодавно опублiкованими експериментальними даними пiдтверджує правильнiсть
567
+ запропонованої моделi. Не виявлено суттєвої переваги нового набору параметрiв моделi перед тим, що
568
+ використовувався в попереднiх розрахунках.
569
+ Ключовi слова: поляризацiя, електричне поле, фазовий перехiд, антисегнетоелектрик, фазова дiаграма,
570
+ квадратна кислота
571
+ 43710-9
572
+
573
+
N9AzT4oBgHgl3EQfk_2S/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,389 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf,len=388
2
+ page_content='Condensed Matter Physics, 2022, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
3
+ page_content=' 25, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
4
+ page_content=' 4, 43710: 1–9 DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
5
+ page_content='5488/CMP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
6
+ page_content='25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
7
+ page_content='43710 http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
8
+ page_content='icmp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
9
+ page_content='lviv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
10
+ page_content='ua/journal Electric field induced polarization rotation in squaric acid crystals revisited A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
11
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
12
+ page_content=' Moina Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii St.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
13
+ page_content=', 79011 Lviv, Ukraine Received July 10, 2022, in final form July 26, 2022 Using the previously developed model we revisit the problem of the electric field induced polarization rotation in antiferroelectric crystals of squaric acid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
14
+ page_content=' We test an alternative set of the model parameters, according to which the dipole moments associated with the H2C4O4 groups are assumed to be parallel to the diagonals of the 𝑎𝑐 plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
15
+ page_content=' The 𝑇-𝐸 phase diagrams and the polarization curves 𝑃(𝐸) for the fields directed along the 𝑎 axis and along one of the diagonals are considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
16
+ page_content=' Comparison of the theoretical results with the newly published experimental data confirm the validity of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
17
+ page_content=' The calculations reveal no apparent advantage of the new set of the parameters over the previously used set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
18
+ page_content=' Key words: polarization, electric field, phase transition, phase diagram, squaric acid 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
19
+ page_content=' Introduction The squaric acid H2C4O4 is a classical two-dimensional antiferroelectric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
20
+ page_content=' The crystal is tetrago- nal, 𝐼4/𝑚, in the paraelectric phase and monoclinic, 𝑃21/𝑚, in the antiferroelectric phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
21
+ page_content=' The hydrogen bonded C4O4 groups form sheets, parallel to the 𝑎𝑐 plane and stacked along the 𝑏-axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
22
+ page_content=' Below the tran- sition at 373 K, a spontaneous polarization arises in these sheets, with the neighboring sheets polarized in the opposite directions [1–3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
23
+ page_content=' External electric fields applied to a uniaxial antiferroelectric can switch a sublattice polarization by 180◦ and induce thereby the transition from antiferroelectric (AFE) to ferroelectric (FE) phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
24
+ page_content=' The (pseudo)tetragonal symmetry of the squaric acid crystal lattice and of its hydrogen bond networks allows the sublattice polarizations to be directed along two perpendicular axes in the fully ordered system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
25
+ page_content=' As a result, here the external field can rotate one of the sublattice polarizations by 90◦, whereupon a noncollinear ferrielectric phase with perpendicular sublattice polarizations (NC90 [4]) is induced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
26
+ page_content=' The possibility of such a rotation has been suggested by Horiuchi et al [5], and their hysteresis loop measurements and Berry phase calculations gave evidence for it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
27
+ page_content=' Further calculations [6] indicated that the 90◦ rotation is possible at different orientations of the field within the 𝑎𝑐 plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
28
+ page_content=' It is also predicted [5, 6] that application of higher fields along the diagonals of the 𝑎𝑐 plane can lead to the second rotation of the negative sublattice polarization by 90◦ and induction of the collinear ferroelectric phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
29
+ page_content=' Recently [4, 7] we developed a deformable [8] two-sublattice proton-ordering model for a description of squaric acid behaviour in external electric fields, applied arbitrarily within the plane of hydrogen bonds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
30
+ page_content=' The model calculations confirm the two-step process of polarization reorientation [5, 6] at low temperatures, with the negative sublattice polarization being switched twice by 90◦ at each transition, for any orientation of the field within the 𝑎𝑐 plane, but a few exceptional directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
31
+ page_content=' The exceptional directions are those, when the field is either i) collinear to the axes of the sublattice polarization in the AFE phase, or ii) directed at 45◦ to these axes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
32
+ page_content=' In the case i), the crystal behaves like a uniaxial antiferroelectric, undergoing a single-step polarization switching to the FE phase without the intermediate noncollinear phase, while in the case ii), the transition field from the NC90 to the FE phase goes to infinity, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
33
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
34
+ page_content=', the transition never occurs [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
35
+ page_content=' This work is licensed under a Creative Commons Attribution 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
36
+ page_content='0 International License.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
37
+ page_content=' Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
38
+ page_content=' 43710-1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
39
+ page_content='01541v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
40
+ page_content='mtrl-sci] 4 Jan 2023 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
41
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
42
+ page_content=' Moina The temperature-electric field phase diagrams of squaric acid were constructed [4, 7] for the field 𝐸1(𝐸3) directed along the 𝑎(𝑐) tetragonal axis, for the fields denoted for brevity as 𝐸1 ± 𝐸3 and directed along the diagonals of the 𝑎𝑐 plane, as well as for the fields of the two above mentioned exceptional directions i) and ii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
43
+ page_content=' Note that the ��-𝐸 diagrams are identical for the fields rotated by 90◦ around the 𝑏 axis, because of the pseudotetragonal symmetry of the model [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
44
+ page_content=' Experimentally, the low-temperature transition between the NC90 and FE phases has not been detected yet due to the dielectric breakdown of the samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
45
+ page_content=' As follows from the model calculations [7], the field of this transition is the lowest when its direction is close to the axis of the sublattice polarization, so it is most likely to be experimentally observed at this field orientation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
46
+ page_content=' On the other hand, for the AFE-NC90 switching, the experimental data by Horiuchi et al [5] had been available, when our calculations were carried out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
47
+ page_content=' The polarization hysteresis curves at different temperatures for the field 𝐸1 had been measured, and the temperature dependence of the switching field had been deduced from those;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
48
+ page_content=' for the field 𝐸1 + 𝐸3, the measurements had been performed for one temperature only [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
49
+ page_content=' With the fitting procedure for the model being based on the data [5] for the static dielectric permittivity, the obtained agreement between the theory and the experiment for the switching fields and for the 𝑃(𝐸) curves was only qualitative [4, 7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
50
+ page_content=' Quantitatively, the agreement was conspicuously unsatisfactory, which led us to believe that the model used was not completely appropriate, and that essential modifications were required [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
51
+ page_content=' Quite recently, however, the same group of Horiuchi et al reported [9] the results of their new measurements of the polarization loops for the squaric acid crystals of an improved dielectric strength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
52
+ page_content=' This permitted to increase the maximum electric field that could be applied to the samples in the hysteresis experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
53
+ page_content=' Our preliminary calculations showed that the new experimental data were much closer to the predictions of the model [4, 7] than the previous data of [5], and that the doubts concerning the model validity were premature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
54
+ page_content=' It was extensively discussed in [4] that the accepted set of the values of the model parameters, in particular of the dipole moments assigned to the ground state configurations of the H2C4O4 groups, is not unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
55
+ page_content=' While the magnitude of the dipole moment vector is constrained by the fitting to the permittivity [5], its orientation (and thereby the orientation of the ground state sublattice polarizations) can be varied within the 𝑎𝑐 plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
56
+ page_content=' With the set of the model parameters adopted in [4, 7] these vectors are oriented at about 56◦ to the 𝑎(𝑐) axes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
57
+ page_content=' On the other hand, the Berry phase calculations [5, 9] indicate that the axes of the spontaneous sublattice polarization, in fact, are very close or even coincide with the diagonals of the 𝑎𝑐 plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
58
+ page_content=' In terms of our model, this means that the crystallographic axes and the diagonals are the above mentioned exceptional directions: the axis 𝑎(𝑐) is the direction ii), while the diagonals of the 𝑎𝑐 plane are the direction i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
59
+ page_content=' The topology of the 𝑇-𝐸 diagrams and the shape of the 𝑃(𝐸) curves for the fields 𝐸1(𝐸3) and 𝐸1 ± 𝐸3 will change accordingly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
60
+ page_content=' The availability of the new, more reliable experimental data [9] makes a quantitative comparison of theoretical and experimental 𝑃(𝐸) curves meaningful and could help to ascertain the orientation of the model dipole moment vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
61
+ page_content=' Thus, it seems worthwhile to revisit the problem of polarization rotation in squaric acid, to perform calculations with an alternative set of the model parameters, where the sublattice polarizations are oriented along the diagonals of the 𝑎𝑐 plane, and to compare the theoretical results with the most recent [9] experimental data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
62
+ page_content=' The model [4, 7], briefly described in section 2, is used without any further modification of the formulae.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
63
+ page_content=' In section 3 the results of the theoretical calculations with the old and new sets of the model parameters are compared with the experimental data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
64
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
65
+ page_content=' The model The model has been introduced and explicated in [4], and a concise outline is given in [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
66
+ page_content=' Below we present a brief qualitative description of the model;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
67
+ page_content=' all the formulae and other relevant details and discussions can be found in the mentioned papers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
68
+ page_content=' Protons on the hydrogen bonds in squaric acid move in double-well potentials, so each of the protons can occupy one of the two sites on the bond: closer to the given C4O4 group or to the neighboring group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
69
+ page_content=' The motion of protons is described by Ising pseudospins, whose two eigenvalues are assigned to two equilibrium positions of each proton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
70
+ page_content=' Two interpenetrating sublattices (layers) of pseudospins are considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
71
+ page_content=' 43710-2 Electric field induced polarization rotation in squaric acid crystals revisited a) b) a Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
72
+ page_content=' (Colour online) a) The crystal structure of squaric acid as viewed along the 𝑏 axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
73
+ page_content=' Two adjacent layers are shown, with black and open circles each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
74
+ page_content=' The A and B type C4O4 groups are indicated (see [4, 8] for explanation), and the hydrogen bonds are numbered, 𝑓 = 1, 2, 3, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
75
+ page_content=' b) The dipole moments assigned to one of the four lateral proton configurations (the configuration 1 in tables 1 in [4, 7]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
76
+ page_content=' Directions of the dipole moments associated with protons 𝝁𝐻 1 = (2𝜇𝐻 , 0, 0) and with electrons 𝝁𝜋 1 = (2𝜇𝜋 ∥ , 0, −2𝜇𝜋 ⊥) are shown with blue and red arrows, respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
77
+ page_content=' the green arrow is the total dipole moment of the configuration;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
78
+ page_content=' the vector lengths are nominal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
79
+ page_content=' 𝜑0 = arctan(𝜇𝐻 + 𝜇𝜋 ∥ )/𝜇𝜋 ⊥ is the angle between the total dipole moment of configuration 1 and the 𝑐 axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
80
+ page_content=' Figures are taken from [4, 7, 8, 10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
81
+ page_content=' The total system Hamiltonian [4, 7] includes ferroelectric intralayer long-range interactions between pseudospins, ensuring ferroelectric ordering within each separate layer, antiferroelectric interlayer inter- actions responsible for alternation of polarizations in the stacked layers, and the short-range interactions, which include also the coupling with external electric fields 𝐸1 and 𝐸3 directed along the tetragonal (paraelectric) 𝑎 and 𝑐 axes of the crystal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
82
+ page_content=' The short-range Hamiltonian describes the four-particle configurational correlations between protons placed around each C4O4 group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
83
+ page_content=' The usual Slater-Takagi type scheme [4, 8, 11, 12] of 16 degenerate levels of lateral/diagonal/single-ionized/double-ionized proton configurations is assumed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
84
+ page_content=' The lateral and single-ionized configurations have dipole moments in the 𝑎𝑐 plane;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
85
+ page_content=' the degeneracy of their energy levels is removed by the electric fields 𝐸1 and 𝐸3, which break the equivalence of the hydrogen bonds that link the C4O4 groups along the 𝑎 and 𝑐 axes (see tables 1 in [4, 7]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
86
+ page_content=' Assignment of the dipole moments to the ground-state lateral configurations is the crucial point of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
87
+ page_content=' We rely on the results of the Berry phase calculations [5], which have shown that the ground-state sublattice polarization in this crystal is formed directly by displacements of protons along the hydrogen bonds and, mostly, by the electronic contributions of switchable 𝜋-bond dipoles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
88
+ page_content=' Positions of the 𝜋-bonds are determined by the proton arrangement around the given C4O4 group: in the lateral configurations the 𝜋-bond is formed between the two neighboring carbons, near which protons sit on the hydrogen bonds (see fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
89
+ page_content=' 1b), and also between the carbons and adjacent to them oxygens, next to which there is no proton (meaning that the protons on these H-bonds sit in the minima close to the neighboring C4O4 groups).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
90
+ page_content=' The field-induced polarization rotation by 90◦ or 180◦ occurs via flipping of one or two protons in each molecule to the other sites along the same hydrogen bonds and via a simultaneous switching of the 𝜋-bonds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
91
+ page_content=' For the depicted in figure 1b lateral proton configuration, the vector of the proton contribution to the dipole moment is oriented along the 𝑎 axis, while the electronic contribution is at the angle to this axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
92
+ page_content=' The dipole moments of the three remaining lateral configurations can be obtained from the scheme of figure 1b by rotation by a multiple of 90◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
93
+ page_content=' After going from the representation of proton configuration energies to the pseudospin representation, the four-particle cluster approximation for the obtained short-range Hamiltonian is employed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
94
+ page_content=' The mean field approximation is used for the long-range interlayer and intralayer interactions [4, 8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
95
+ page_content=' The dependence of all proton-proton interaction parameters on the diagonal components of the lattice strain tensor and on the H-site distance, which are changed by the thermal expansion and potentially by an external stress if such is applied, is taken into account [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
96
+ page_content=' The expression for the thermodynamic potential has been obtained [4];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
97
+ page_content=' the order parameters and lattice strains are found by numerical minimization thereof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
98
+ page_content=' 43710-3 H c 02Po,H μiA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
99
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
100
+ page_content=' Moina The values of all model parameters were chosen earlier [4, 7, 8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
101
+ page_content=' In particular, they were required [8] to provide the best fit to the experimental temperature curves of the order parameter at ambient pressure, to the temperature and hydrostatic pressure dependences of the diagonal lattice strains, and to the pressure dependence of the transition temperature 𝑇N in squaric acid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
102
+ page_content=' The dielectric characteristics and other electric field effects in our model are mostly governed by values of the dipole moments, which enter the final expressions only via the sum 𝜇𝐻 + 𝜇𝜋 ∥ and via 𝜇𝜋 ⊥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
103
+ page_content=' These values are found by fitting the calculated curve of the static dielectric permittivity 𝜀11 at zero external bias field to the experimental points of [5], while trying to get the best possible agreement with the experiment for the values of the switching fields, corresponding to the first 90◦ rotation of the sublattice polarization by the field 𝐸1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
104
+ page_content=' It can be shown that in the paraelectric phase 𝜀11 ∼ ¯𝜇2, where ¯𝜇 = √︃ (𝜇𝐻 + 𝜇𝜋 ∥ )2 + (𝜇𝜋 ⊥)2 is half the magnitude of the dipole moment, assigned to the H2C4O4 groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
105
+ page_content=' It means that above 𝑇N the permittivity 𝜀11 at zero field is determined by the magnitude of the dipole moment vector only, whereas the orientation of the vector within the 𝑎𝑐 plane can be varied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
106
+ page_content=' For the set, adopted in [4, 7] and presented in table 1 as the set A, the dipole moment and the ground state sublattice polarization are oriented at the angle 𝜑0 = arctan(𝜇𝐻 + 𝜇𝜋 ∥ )/𝜇𝜋 ⊥ ≈ 56◦ to the crystallographic axes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
107
+ page_content=' However, the results of the Berry phase calculations [9] indicate that the angle should be closer to 45◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
108
+ page_content=' Thus, we find an alternative set of the dipole moment values with 𝜇𝐻 + 𝜇𝜋 ∥ = 𝜇𝜋 ⊥ and with the same ¯𝜇 as in the set A, which yields the same fit to the permittivity in the paraelectric phase;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
109
+ page_content=' this is the set B in table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
110
+ page_content=' In the next section, using the set B, we construct the 𝑇-𝐸 phase diagrams and explore the 𝑃(𝐸) curves for the electric fields 𝐸1 and 𝐸1 + 𝐸3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
111
+ page_content=' The results are compared with the previous calculations [7] performed with the set A, as well with the experimental data of [5, 9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
112
+ page_content=' Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
113
+ page_content=' The adopted values of the model dipole moments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
114
+ page_content=' The set A is taken from [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
115
+ page_content=' The values of all other model parameters are the same as in [4, 7, 8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
116
+ page_content=' 𝜇𝐻 + 𝜇𝜋 ∥ 𝜇𝜋 ⊥ ¯𝜇 (10−29 C m) set A 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
117
+ page_content='16 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
118
+ page_content='12 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
119
+ page_content='8 set B 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
120
+ page_content='66 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
121
+ page_content='66 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
122
+ page_content='8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
123
+ page_content=' Calculations 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
124
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
125
+ page_content=' Phase diagrams In figure 2 we redraw the 𝑇-𝐸 diagrams of squaric acid for the fields 𝐸1 and 𝐸1 + 𝐸3, obtained earlier in [4, 7] along with the newly available experimental points of [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
126
+ page_content=' Here, the set A of the dipole moment values was used in the calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
127
+ page_content=' The diagrams overlap the color gradient plots of the introduced in [4] noncollinearity angle 𝜃, which is the angle between the vectors of the sublattice polarizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
128
+ page_content=' Different phases in the diagrams are separated by the lines of the first order phase transitions I, II, and III, and of the second order phase transitions IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
129
+ page_content=' All these lines terminate at various critical points (bicritical end points BCE, tricritical point TCP, critical end points CEP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
130
+ page_content=' Some of the critical points can be artifacts of the mean field approximation, used for the long-range interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
131
+ page_content=' This was discussed extensively in [4, 7];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
132
+ page_content=' we shall not dwell on this here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
133
+ page_content=' The phase denoted as AFE* (the red region) is non-collinear antiferrielectric, very close to the initial AFE phase with 𝜃 ∼ 180◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
134
+ page_content=' The purple region is the collinear field-induced ferroelectric phase (FE) with 𝜃 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
135
+ page_content=' The phase between the transition lines II, III, and IV (green and blue) is the noncollinear ferrielectric phase NC90, where 𝜃 mostly remains close to 90◦, only rapidly decreasing to zero near the second-order phase transition line IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
136
+ page_content=' In the region NC135* 43710-4 Electric field induced polarization rotation in squaric acid crystals revisited 250 300 350 400 450 0 200 400 600 800 1000 1200 V NC135* I BCE1 CEP TCP BCE2 IV III T (K) E1 (kV/cm) FE NC90 0 1 11 22 33 45 56 67 78 90 107 115 120 125 130 146 157 169 180 AFE* θ (deg) II 300 350 400 200 400 V NC135* FE NC90 I IV III CEP2 CEP1 BCE3 BCE1 T (K) E1+E3 (kV/cm) BCE2 II AFE* Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
137
+ page_content=' (Colour online) The 𝑇-𝐸 phase diagrams of the squaric acid, overlapping the 𝑇-𝐸 color contour plots of the noncollinearity angle 𝜃.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
138
+ page_content=' The set A is used in calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
139
+ page_content=' Solid and dashed lines indicate the first and second order phase transitions, respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
140
+ page_content=' dotted lines are the supercritical lines, corresponding to the loci of maxima in the field dependences of d𝑃(𝐸)/d𝐸.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
141
+ page_content=' The open squares □, star �, and full circles • indicate the critical end points (CEP), tricritical point (TCP), and bicritical end points (BCE), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
142
+ page_content=' Blue full triangles ▲, ▶, and ▼ are the experimental points of [5], the electronic supplementary material thereto, and [9], respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
143
+ page_content=' (orange to yellow), a crossover between the AFE* and NC90 phases occurs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
144
+ page_content=' Here, 𝜃 changes gradually from ∼ 180◦ to ∼ 90◦: the negative sublattice polarization rotates continuously with increasing field and becomes perpendicular to the positive sublattice polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
145
+ page_content=' As discussed in [4, 7], this continuous rotation is a statistically averaged effect, possible only in presence of thermal fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
146
+ page_content=' Crossovers are often marked by the lines formed by the loci of the extrema of the response functions — second derivatives of the thermodynamic potentials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
147
+ page_content=' Those supercritical lines are continuations of the first order transition lines beyond the critical points terminating them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
148
+ page_content=' The major drawback of this method is that the extrema of different response functions yield different supercritical lines;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
149
+ page_content=' moreover, the super- critical lines formed by the extrema of the same response function taken along different thermodynamic paths (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
150
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
151
+ page_content=', isotherms or isofields) are different as well (see [13]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
152
+ page_content=' In order to compare the theory and the experimental data derived from the field dependence of polarization, we mark the crossover between the AFE* and NC90 phases using the lines formed by the maxima of the d𝑃(𝐸)/d𝐸 isotherms (the inflection points of the 𝑃(𝐸) isotherms), where 𝑃 is the projection of the net polarization vector on the field axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
153
+ page_content=' These are the dotted lines V in the phase diagrams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
154
+ page_content=' As one can see in the left-hand panel of figure 2, for the field 𝐸1, the most recent data obtained in [9] for the sample with the improved dielectric strength appear to be in a much better agreement with the theory than the earlier experimental data of [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
155
+ page_content=' The theoretical switching fields, calculated with the set A, are much higher than the experimental values of [5] with the relative error 𝜂 = 1 − 𝐸exp/𝐸theor ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
156
+ page_content='42 at room temperature (295 K).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
157
+ page_content=' The error decreases down to ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
158
+ page_content='23 for the experimental points of [9], which is still not quite satisfactory, but evidently much better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
159
+ page_content=' In the case of 𝐸1 + 𝐸3, the switching fields calculated with the set A are higher than predicted for the field 𝐸1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
160
+ page_content=' This is in a qualitative agreement with all available experimental observations [5, 9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
161
+ page_content=' The relative errors are about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
162
+ page_content='3 for [5] at 324 K and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
163
+ page_content='22 for [9] at 295 K, that is, the improvement here is not so striking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
164
+ page_content=' Now let us see how the situation changes, when the set B is used in calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
165
+ page_content=' For this set, the ground state spontaneous polarization axis is oriented along the diagonal of the 𝑎𝑐 plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
166
+ page_content=' It means that the fields 𝐸1 + 𝐸3 and 𝐸1 are directed along this axis and at 45◦ to it, respectively, that is, along the exceptional directions i) and ii), discussed in Introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
167
+ page_content=' It is then expected that the 𝑇-𝐸 diagrams will be topologically different from those, depicted in figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
168
+ page_content=' For the field 𝐸1 + 𝐸3, the crystal of squaric acid should behave like a uniaxial antiferroelectric, exhibiting a one-step polarization rotation by 180◦ 43710-5 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
169
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
170
+ page_content=' Moina without the intermediate noncollinear phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
171
+ page_content=' For the field 𝐸1, the field of switching to the ferroelectric phase is expected to tend to infinity, and only the AFE*-NC90 transition can be observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
172
+ page_content=' 300 400 100 200 300 400 T (K) I IV CEP BCE1 FE NC90 0 1 11 22 33 45 56 67 78 90 107 115 120 135 146 157 169 180 E1 (kV/cm) AFE* BCE2 II θ (deg) 250 300 350 100 200 300 400 FI E1+E3 (kV/cm) IV I FE TP BCE TCP2 T (K) TCP1 AFE* III V VII 238 240 296 300 304 VI VII III BCE AFE* FE TP III V FI Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
173
+ page_content=' (Colour online) The same as in figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
174
+ page_content=' The set B is used in calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
175
+ page_content=' The open triangle △ indicates the triple point TP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
176
+ page_content=' The dash-dotted line VII corresponds to the loci of minima in the field dependences of d𝑃(𝐸)/d𝐸.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
177
+ page_content=' The other notations are the same as in figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
178
+ page_content=' The 𝑇-𝐸 phase diagrams, calculated with the set B and presented in figure 3, are indeed in a total agreement with the above described picture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
179
+ page_content=' As the magnitude of the dipole moment 2 ¯𝜇 is the same for both sets, these diagrams are numerically identical to those obtained in [7] with the set A for the exceptional directions ii) and i), respectively (see figures 8, 9 in [7]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
180
+ page_content=' This identity can be proved algebraically, using the expression for the thermodynamic potential of the system [4, 7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
181
+ page_content=' For the field 𝐸1, the positions of the lines II of the AFE*-NC90 phase transitions, calculated with the sets A and B, are very close but not the same (c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
182
+ page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
183
+ page_content=' the left-hand panels in figures 2 and 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
184
+ page_content=' The closeness can be explained by the found in [7] dependence of this switching field at low temperatures on the orientation of the spontaneous sublattice polarization axis 𝐸 𝐼 𝐼 ∼ 1/cos(𝛿𝜑 − π/4), where 𝛿𝜑 is the angle between this axis and the external field 𝐸.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
185
+ page_content=' Since 𝛿𝜑 for the sets A and B differ by about 11◦ only, the difference between the corresponding switching fields is small as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
186
+ page_content=' It is then trivial to say that for 𝐸1, the sets A and B yield about the same agreement with the experimental data for the switching field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
187
+ page_content=' For the field 𝐸1 + 𝐸3, the intermediate phase NC90 is absent, and 𝜃 is always either 180◦ or zero (see the right-hand panel of figure 3), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
188
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
189
+ page_content=', all phases are collinear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
190
+ page_content=' The polarization switching occurs either as a first order phase transition across lines III directly to the FE phase and across line VI to an intermediate collinear ferrielectric phase FI, or gradually.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
191
+ page_content=' In the latter case, the magnitude of one of the sublattice polarizations decreases down to zero with increasing field, changes its sign continuously at line VII, and then increases until the second order transition to the FE phase occurs at line IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
192
+ page_content=' Interestingly, line VII, where the angle 𝜃 changes from 180◦ to 0, is formed by the loci of the minima of the d𝑃(𝐸)/d𝐸 isotherms, as opposed to line V, formed by the loci of the maxima.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
193
+ page_content=' Line VI, emanating from the critical point BCE (see the inset in figure 3), marks the crossover between AFE* and FI phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
194
+ page_content=' It is to be compared with the experimental data for the switching fields, and it yields nearly the same agreement as the set A, with the relative errors about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
195
+ page_content='3 for [5] at 324 K and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
196
+ page_content='23 for [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
197
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
198
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
199
+ page_content=' Polarization In figure 4 we plot the field dependences of the projections of the net polarization vector on the field direction for the fields 𝐸1 and 𝐸1 + 𝐸3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
200
+ page_content=' The experimental points of [5] and [9] are also presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
201
+ page_content=' The drastic changes in the experimental hysteresis curves, brought by the improvement of the sample quality and by the increase of the maximum value of the applied field in [9], are very well seen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
202
+ page_content=' It is obvious that the comparison of the theoretical polarization curves with the earlier data of [5] could be only qualitative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
203
+ page_content=' As one can see, for 𝐸1, the sets A and B predict three and two plateaus of polarization, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
204
+ page_content=' 43710-6 Electric field induced polarization rotation in squaric acid crystals revisited 100 1000 0 10 20 30 40 200 400 600 0 10 20 30 40 III set A set B E1 (kV/cm) P1 (µC/cm2) II V IV E1+E3 (kV/cm) P (µC/cm2) Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
205
+ page_content=' (Colour online) The field dependences of polarizations at 295 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
206
+ page_content=' Full triangles: experimental points taken from [5] (▲) and [9] (▼).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
207
+ page_content=' The arrows indicate phase transitions of the first order across lines II, III (left-hand) and of the second order across lines IV (right-hand).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
208
+ page_content=' The arrow and full circles (•) indicate the crossovers at lines V (right-hand).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
209
+ page_content=' Lines II-V are from the 𝑇-𝐸 phase diagrams, figures 2, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
210
+ page_content=' In the physically reasonable field range, which includes the AFE*-NC90 first order phase transition (at lines II from the phase diagrams 2, 3), the two sets yield very similar polarizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
211
+ page_content=' The calculated polarization jumps are 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
212
+ page_content='9 µC/cm2 for the set A and 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
213
+ page_content='4 µC/cm2 for the set B, in a fair agreement with the experimental 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
214
+ page_content='2 µC/cm2 [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
215
+ page_content=' The set A also predicts the second step of polarization at a much higher field, at the transition to the FE phase (across line III from the phase diagram, figure 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
216
+ page_content=' It seems unlikely, however, that the field of such high a magnitude could ever be applied in an experiment without the squaric acid samples suffering the dielectric breakdown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
217
+ page_content=' For the field 𝐸1 + 𝐸3, the two sets of the model parameters yield different behaviour of polarization even at experimentally accessible fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
218
+ page_content=' The 𝑃(𝐸) curve, calculated with the set A, has three smeared plateaus, with a clear rounded step, corresponding to the AFE*- NC90 crossover across line V, and then a cusp at the NC90-FE second order transition across line IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
219
+ page_content=' The lower part of this curve, albeit being shifted to higher fields, is in a good qualitative and quantitative agreement with the experimental points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
220
+ page_content=' The polarization, calculated with the set B, on the other hand, has only two smeared plateaus: at low fields and above the cusp at line IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
221
+ page_content=' No pronounced intermediate plateau is seen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
222
+ page_content=' The change of concavity at the inflection point, marked by a full circle in the figure, is hardly discernible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
223
+ page_content=' The agreement with the experiment is visibly worse than for the set A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
224
+ page_content=' However, the switching field magnitude for 𝐸1 + 𝐸3 is predicted [5, 7, 9] to be higher than for the field 𝐸1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
225
+ page_content=' It means that, despite the increased dielectric strength of the samples, the maximum applied fields 𝐸1 +𝐸3 [9] could still be insufficient to obtain correct data for polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
226
+ page_content=' A potential further improvement of the crystal quality (if such is still possible) may change the measured values of polarization and switching field for the diagonally directed field in the same way, as such an improvement did in the case of the field 𝐸1 in [9] as compared to [5], which is well illustrated in the left-hand panel of figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
227
+ page_content=' Then, the agreement with the theoretical curves can be reexamined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
228
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
229
+ page_content=' Concluding remarks Using the previously developed [4] deformable two-sublattice proton ordering model, we revisit the problem of polarization rotation in antiferroelectric crystals of squaric acid under the influence of external electric fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
230
+ page_content=' The unique structure of the two-dimensional hydrogen bond networks in squaric acid permits 90◦ rotation of the sublattice polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
231
+ page_content=' The model predicts [4, 7] that except for some particular directions of the field, the polarization reorientation at low temperatures is a two- step process: first, to the noncollinear phase with perpendicular sublattice polarizations and then to the collinear ferroelectric phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
232
+ page_content=' However, when the field is directed along the axis of spontaneous sublattice polarizations, the intermediate noncollinear phase is absent;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
233
+ page_content=' when the field is at 45◦ to this axis, the field of the transition to the ferroelectric phase tends to infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
234
+ page_content=' The previously obtained 𝑇-𝐸 phase diagrams and newly calculated polarization curves are compared 43710-7 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
235
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
236
+ page_content=' Moina with the most recent experimental data [9], measured using the crystal samples of the increased dielectric strength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
237
+ page_content=' We also test an alternative set of the model parameters, for which the dipole moments assigned to the H2C4O4 groups are of the same magnitude as in the previous calculations, but oriented along the diagonals of the 𝑎𝑐 plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
238
+ page_content=' The new experimental data [9] are in a drastically better agreement with the theory than the earlier results [5], especially for the polarization curves, as well as for the switching fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
239
+ page_content=' It shows that the simplicity of the model was not the major reason of the earlier [4, 7] disagreement between theory and experiment and gives a strong evidence for the model validity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
240
+ page_content=' Results of testing the new set of the model parameters are inconclusive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
241
+ page_content=' Overall, the comparison of the theoretical polarization curves with the experimental data seems to slightly favor the previous set [4, 7], according to which the axes of the spontaneous sublattice polarization are close, but not exactly parallel to the diagonals of the 𝑎𝑐 plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
242
+ page_content=' Further experimental studies may shed some light on this problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
243
+ page_content=' As far as a further verification of the model is concerned, the appropriateness of the mean field approximation, used for the long-range interactions, may be addressed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
244
+ page_content=' This approximation is, most likely, the origin of the artifact splitting [4, 7] of some tricritical points in the 𝑃-𝐸 phase diagrams into the systems of bicritical and critical endpoints and also of the appearance of the intermediate FI phase, seen in the right-hand panels of figures 2, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
245
+ page_content=' Monte Carlo calculations may be used to construct more accurate diagrams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
246
+ page_content=' References 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
247
+ page_content=' Semmingsen D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
248
+ page_content=', Tun Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
249
+ page_content=', Nelmes R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
250
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
251
+ page_content=', McMullan R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
252
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
253
+ page_content=', Koetzle T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
254
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
255
+ page_content=', Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
256
+ page_content=' Kristallogr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
257
+ page_content=' Cryst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
258
+ page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
259
+ page_content=', 1995, 210, 934–947, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
260
+ page_content='1524/zkri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
261
+ page_content='1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
262
+ page_content='210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
263
+ page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
264
+ page_content='934.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
265
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
266
+ page_content=' Semmingsen D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
267
+ page_content=', Hollander F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
268
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
269
+ page_content=', Koetzle T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
270
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
271
+ page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
272
+ page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
273
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
274
+ page_content=', 1977, 66, 4405–4412, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
275
+ page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
276
+ page_content='433745 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
277
+ page_content=' Hollander F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
278
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
279
+ page_content=', Semmingsen D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
280
+ page_content=', Koetzle T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
281
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
282
+ page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
283
+ page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
284
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
285
+ page_content=', 1977, 67, 4825–4831, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
286
+ page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
287
+ page_content='434686.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
288
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
289
+ page_content=' Moina A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
290
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
291
+ page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
292
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
293
+ page_content=' B, 2021, 103, 214104, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
294
+ page_content='1103/PhysRevB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
295
+ page_content='103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
296
+ page_content='214104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
297
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
298
+ page_content=' Horiuchi S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
299
+ page_content=', Kumai R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
300
+ page_content=', Ishibashi S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
301
+ page_content=', Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
302
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
303
+ page_content=', 2018, 9, 425–432, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
304
+ page_content='1039/C7SC03859C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
305
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
306
+ page_content=' Ishibashi S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
307
+ page_content=', Horiuchi S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
308
+ page_content=', Kumai R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
309
+ page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
310
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
311
+ page_content=' B, 2018, 97, 184102, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
312
+ page_content='1103/PhysRevB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
313
+ page_content='97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
314
+ page_content='184102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
315
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
316
+ page_content=' Moina A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
317
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
318
+ page_content=', Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
319
+ page_content=' Matter Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
320
+ page_content=', 2021, 24, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
321
+ page_content=' 4, 43703, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
322
+ page_content='5488/CMP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
323
+ page_content='24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
324
+ page_content='43703.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
325
+ page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
326
+ page_content=' Moina A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
327
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
328
+ page_content=', Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
329
+ page_content=' Matter Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
330
+ page_content=', 2020, 23, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
331
+ page_content=' 3, 33704, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
332
+ page_content='5488/CMP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
333
+ page_content='23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
334
+ page_content='33704.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
335
+ page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
336
+ page_content=' Horiuchi S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
337
+ page_content=', Ishibashi S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
338
+ page_content=', Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
339
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
340
+ page_content=', 2021, 12, 14198–14206, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
341
+ page_content='1039/d1sc02729h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
342
+ page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
343
+ page_content=' Semmingsen D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
344
+ page_content=', Feder J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
345
+ page_content=', Solid State Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
346
+ page_content=', 1974, 15, 1369–1372, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
347
+ page_content='1016/0038-1098(74)91382-9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
348
+ page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
349
+ page_content=' Matsushita E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
350
+ page_content=', Yoshimitsu K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
351
+ page_content=', Matsubara T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
352
+ page_content=', Progr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
353
+ page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
354
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
355
+ page_content=', 1980, 64, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
356
+ page_content=' 4, 1176–1192, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
357
+ page_content='1143/PTP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
358
+ page_content='64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
359
+ page_content='1176.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
360
+ page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
361
+ page_content=' Matsushita E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
362
+ page_content=', Matsubara T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
363
+ page_content=', Progr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
364
+ page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
365
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
366
+ page_content=', 1982, 68, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
367
+ page_content=' 6, 1811–1826, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
368
+ page_content='1143/PTP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
369
+ page_content='68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
370
+ page_content='1811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
371
+ page_content=' 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
372
+ page_content=' Schienbein P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
373
+ page_content=', Marx D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
374
+ page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
375
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
376
+ page_content=' E, 2018, 98, 022104, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
377
+ page_content='1103/PhysRevE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
378
+ page_content='98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
379
+ page_content='022104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
380
+ page_content=' 43710-8 Electric field induced polarization rotation in squaric acid crystals revisited Ще раз про обертання поляризацiї електричним полем в кристалах квадратної кислоти А.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
381
+ page_content=' П.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
382
+ page_content=' Моїна Iнститут фiзики конденсованих систем Нацiональної академiї наук України 79011, м.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
383
+ page_content=' Львiв, вул.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
384
+ page_content=' Свєнцiцького, 1 З використанням запропонованої ранiше моделi розглядаються процеси обертання поляризацiї зовнiшнi- ми електричними полями в антисегнетоелектричних кристалах квадратної кислоти.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
385
+ page_content=' Обчислення також проводяться з альтернативним набором параметрiв теорiї, в якому дипольнi моменти, якi приписуються групам H2C4O4, паралельнi до дiагоналей площини 𝑎𝑐.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
386
+ page_content=' Дослiджено фазовi дiаграми 𝑇-𝐸 та кривi поля- ризацiї 𝑃(𝐸) для полiв, прикладених уздовж осi 𝑎 та уздовж дiагоналi площини 𝑎𝑐.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
387
+ page_content=' Порiвняння теорети- чних результатiв з нещодавно опублiкованими експериментальними даними пiдтверджує правильнiсть запропонованої моделi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
388
+ page_content=' Не виявлено суттєвої переваги нового набору параметрiв моделi перед тим, що використовувався в попереднiх розрахунках.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
389
+ page_content=' Ключовi слова: поляризацiя, електричне поле, фазовий перехiд, антисегнетоелектрик, фазова дiаграма, квадратна кислота 43710-9' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9AzT4oBgHgl3EQfk_2S/content/2301.01541v1.pdf'}
N9FAT4oBgHgl3EQfyR7D/content/tmp_files/2301.08692v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
N9FAT4oBgHgl3EQfyR7D/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
NtE0T4oBgHgl3EQfjgEx/content/2301.02459v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb2cc32e3742c772e75a2fa7dcbbb2975c36ac1d9a9fd38ee76ff1c22645e466
3
+ size 1270738
NtE0T4oBgHgl3EQfjgEx/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86e7f4ac72abfc9a7113944a96ed4b6b84e6641eeb9499fbc8dbb4b05c3daece
3
+ size 589869