jackkuo commited on
Commit
599b247
·
verified ·
1 Parent(s): f6ab0ba

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -9E3T4oBgHgl3EQfSwmi/content/tmp_files/2301.04436v1.pdf.txt +931 -0
  2. -9E3T4oBgHgl3EQfSwmi/content/tmp_files/load_file.txt +458 -0
  3. .gitattributes +64 -0
  4. 09AyT4oBgHgl3EQfoPj8/content/2301.00506v1.pdf +3 -0
  5. 09AyT4oBgHgl3EQfoPj8/vector_store/index.faiss +3 -0
  6. 09AyT4oBgHgl3EQfoPj8/vector_store/index.pkl +3 -0
  7. 0dFAT4oBgHgl3EQfCRwI/content/tmp_files/2301.08408v1.pdf.txt +602 -0
  8. 0dFAT4oBgHgl3EQfCRwI/content/tmp_files/load_file.txt +348 -0
  9. 19FQT4oBgHgl3EQf1zZe/content/tmp_files/2301.13421v1.pdf.txt +2036 -0
  10. 19FQT4oBgHgl3EQf1zZe/content/tmp_files/load_file.txt +0 -0
  11. 1NFQT4oBgHgl3EQfETVZ/content/2301.13237v1.pdf +3 -0
  12. 1NFQT4oBgHgl3EQfETVZ/vector_store/index.faiss +3 -0
  13. 1NFQT4oBgHgl3EQfETVZ/vector_store/index.pkl +3 -0
  14. 1tAzT4oBgHgl3EQf8_4M/vector_store/index.pkl +3 -0
  15. 2NFLT4oBgHgl3EQfqi-E/content/tmp_files/2301.12140v1.pdf.txt +1876 -0
  16. 2NFLT4oBgHgl3EQfqi-E/content/tmp_files/load_file.txt +0 -0
  17. 4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf +3 -0
  18. 4NE4T4oBgHgl3EQfAwuD/vector_store/index.faiss +3 -0
  19. 4NE4T4oBgHgl3EQfAwuD/vector_store/index.pkl +3 -0
  20. 5dFJT4oBgHgl3EQfkywG/vector_store/index.pkl +3 -0
  21. 69AzT4oBgHgl3EQfgPxu/content/tmp_files/2301.01465v1.pdf.txt +1405 -0
  22. 69AzT4oBgHgl3EQfgPxu/content/tmp_files/load_file.txt +0 -0
  23. 7dE1T4oBgHgl3EQf7QV5/vector_store/index.faiss +3 -0
  24. 8dFQT4oBgHgl3EQf4jbF/content/2301.13432v1.pdf +3 -0
  25. 8dFQT4oBgHgl3EQf4jbF/vector_store/index.faiss +3 -0
  26. 9tAzT4oBgHgl3EQfSvsB/content/tmp_files/2301.01235v1.pdf.txt +1528 -0
  27. 9tAzT4oBgHgl3EQfSvsB/content/tmp_files/load_file.txt +0 -0
  28. ANE0T4oBgHgl3EQfPgBb/content/2301.02179v1.pdf +3 -0
  29. ANE2T4oBgHgl3EQfnAgQ/content/2301.04003v1.pdf +3 -0
  30. ANE2T4oBgHgl3EQfnAgQ/vector_store/index.faiss +3 -0
  31. ANE2T4oBgHgl3EQfnAgQ/vector_store/index.pkl +3 -0
  32. AtE0T4oBgHgl3EQfxwIb/content/tmp_files/2301.02649v1.pdf.txt +1774 -0
  33. AtE0T4oBgHgl3EQfxwIb/content/tmp_files/load_file.txt +0 -0
  34. B9E0T4oBgHgl3EQfyAKb/content/tmp_files/2301.02654v1.pdf.txt +2295 -0
  35. B9E0T4oBgHgl3EQfyAKb/content/tmp_files/load_file.txt +0 -0
  36. B9E5T4oBgHgl3EQfTg8R/vector_store/index.faiss +3 -0
  37. B9FRT4oBgHgl3EQfvjiF/content/tmp_files/2301.13635v1.pdf.txt +1186 -0
  38. B9FRT4oBgHgl3EQfvjiF/content/tmp_files/load_file.txt +0 -0
  39. C9FKT4oBgHgl3EQfYi5Z/content/tmp_files/2301.11799v1.pdf.txt +1326 -0
  40. C9FKT4oBgHgl3EQfYi5Z/content/tmp_files/load_file.txt +0 -0
  41. CNE4T4oBgHgl3EQfFgxh/content/2301.04886v1.pdf +3 -0
  42. CNE4T4oBgHgl3EQfFgxh/vector_store/index.faiss +3 -0
  43. CNE4T4oBgHgl3EQfFgxh/vector_store/index.pkl +3 -0
  44. D9A0T4oBgHgl3EQfAv_u/content/2301.01968v1.pdf +3 -0
  45. D9E1T4oBgHgl3EQfqQU2/content/tmp_files/2301.03340v1.pdf.txt +879 -0
  46. D9E1T4oBgHgl3EQfqQU2/content/tmp_files/load_file.txt +457 -0
  47. ENAyT4oBgHgl3EQfevhN/vector_store/index.faiss +3 -0
  48. ENAyT4oBgHgl3EQfevhN/vector_store/index.pkl +3 -0
  49. ENE1T4oBgHgl3EQfqQWR/content/tmp_files/2301.03341v1.pdf.txt +1100 -0
  50. ENE1T4oBgHgl3EQfqQWR/content/tmp_files/load_file.txt +0 -0
-9E3T4oBgHgl3EQfSwmi/content/tmp_files/2301.04436v1.pdf.txt ADDED
@@ -0,0 +1,931 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.04436v1 [math.CA] 11 Jan 2023
2
+ OSCILLATORY INTEGRALS FOR MITTAG-LEFFLER FUNCTIONS
3
+ WITH TWO VARIABLES
4
+ ISROIL A. IKROMOV, MICHAEL RUZHANSKY, AKBAR R. SAFAROV∗
5
+ Abstract. In this paper we consider the problem of estimation of oscillatory in-
6
+ tegrals with Mittag-Leffler functions in two variables. The generalisation is that
7
+ we replace the exponential function with the Mittag-Leffler-type function, to study
8
+ oscillatory type integrals.
9
+ Contents
10
+ 1.
11
+ Introduction
12
+ 1
13
+ 2.
14
+ Preliminaries
15
+ 2
16
+ 3.
17
+ Auxiliary statements
18
+ 4
19
+ 4.
20
+ Proof of the main result
21
+ 7
22
+ Acknowledgements
23
+ 9
24
+ Data availability
25
+ 9
26
+ References
27
+ 9
28
+ 1. Introduction
29
+ The function Eα(z) is named after the Swedish mathematican G¨osta Magnus
30
+ Mittag-Leffler (1846-1927) who defined it by a power series
31
+ Eα(z) =
32
+
33
+
34
+ k=0
35
+ zk
36
+ Γ(αk + 1),
37
+ α ∈ C, Re(α) > 0,
38
+ (1.1)
39
+ and studied its properties in 1902-1905 in several subsequent notes [18, 19, 20, 21] in
40
+ connection with his summation method for divergent series.
41
+ A classical generalization of the Mittag-Leffler function, namely the two-parametric
42
+ Mittag-Leffler function is
43
+ Eα,β(z) =
44
+
45
+
46
+ k=0
47
+ zk
48
+ Γ(αk + β),
49
+ α, β ∈ C, Re(α) > 0,
50
+ (1.2)
51
+ which was deeply investigated independently by Humbert and Agarval in 1953 ([1,
52
+ 10, 11]) and by Dzherbashyan in 1954 ([4, 5, 6]) as well as in [9].
53
+ ∗Corresponding author
54
+ 2010 Mathematics Subject Classification. 35D10, 42B20, 26D10.
55
+ Key words and phrases. Mittag-Leffler functions, phase function, amplitude.
56
+ All authors contributed equally to the writing of this paper. All authors read and approved the
57
+ final manuscript.
58
+ 1
59
+
60
+ 2
61
+ I.A.IKROMOV, M.RUZHANSKY, A.R.SAFAROV
62
+ It has the property that
63
+ E1,1(x) = ex, and we can refer to [23] for other properties.
64
+ (1.3)
65
+ In harmonic analysis one of the most important estimates for oscillatory integral is
66
+ van der Corput lemma [24, 25, 26, 34]. Estimates for oscillatory integrals with poly-
67
+ nomial phases can be found, for instance, in papers [2, 15, 29, 30, 31]. In the current
68
+ paper we replace the exponential function with the Mittag-Leffler-type function and
69
+ study oscillatory type integrals (2.3). In the papers [26] and [27] analogues of the van
70
+ der Corput lemmas involving Mittag-Leffler functions for one dimensional integrals
71
+ have been considered. We extend results of [26] and [27] for two-dimensional inte-
72
+ grals with phase having some simple singularities. Analogous problem on estimates
73
+ for Mittag-Leffler functions with the smooth phase functions of two variables having
74
+ simple singularities was considered in [28] and [32].
75
+ 2. Preliminaries
76
+ Definition 2.1. An oscillatory integral with phase f and amplitude a is an integral
77
+ of the form
78
+ J(λ, f, a) =
79
+
80
+ Rn a(x)eiλf(x)dx,
81
+ (2.1)
82
+ where a ∈ C∞
83
+ 0 (Rn) and λ ∈ R.
84
+ If the support of a lies in a sufficiently small neighborhood of the origin and f is
85
+ an analytic function at x = 0, then for λ → ∞ the following asymptotic expansion
86
+ holds ([17]):
87
+ J(λ, f, a) ≈ eiλf(0) �
88
+ s
89
+ n−1
90
+
91
+ k=0
92
+ bs,k(a)λs(ln λ)k,
93
+ (2.2)
94
+ where s belongs to a finite number of arithmetic progressions, independent of a,
95
+ composed of negative rational numbers, bs,k is a distribution with support in the
96
+ critical set {x : ∇f(x) = 0}.
97
+ Inspired by the terminology from [3], we refer to the maximal value of s, denoting
98
+ it by α in this case, as the growth index of f, or the oscillation index at the origin,
99
+ and the corresponding value of k is referred to as the multiplicity.
100
+ More precisely, the multiplicity of the oscillation index of an analytic phase at a
101
+ critical point is the maximal number k possessing the property: for any neighbour-
102
+ hood of the critical point there is an amplitude with support in this neighbourhood
103
+ for which in the asymptotic series (2.2) the coefficient bs,k(a) is not equal to zero.
104
+ The multiplicity of the oscillation index will be denoted by m (see [3]).
105
+ Let f be a smooth real-valued function defined on a neighborhood of the origin in
106
+ R2 with f(0, 0) = 0, ∇f(0, 0) = 0, and consider the associated Taylor series
107
+ f(x1, x2) ∼
108
+
109
+
110
+ j,k=0
111
+ cjkxj
112
+ 1xk
113
+ 2
114
+ of f centered at the origin. The set
115
+ ℑ(f) := {(j, k) ∈ N2 : cjk =
116
+ 1
117
+ j!k!∂j
118
+ x1∂k
119
+ x2f(0, 0) ̸= 0}
120
+
121
+ OSCILLATORY INTEGRALS FOR MITTAG-LEFFLER FUNCTIONS
122
+ 3
123
+ is called the Taylor support of f at (0, 0). We shall always assume that
124
+ ℑ(f) ̸= ∅,
125
+ i.e., that the function f is of finite type at the origin. If f is real analytic, so that the
126
+ Taylor series converges to f near the origin, this just means that f ̸= 0. The Newton
127
+ polyhedron ℵ(f) of f at the origin is defined to be the convex hull of the union of
128
+ all the quadrants (j, k) + R2
129
+ +, with (j, k) ∈ ℑ(f). The associated Newton diagram
130
+ ℵd(f) in the sense of Varchenko [33] is the union of all compact faces of the Newton
131
+ polyhedron; here, by a face, we mean an edge or a vertex.
132
+ We shall use coordinates (t1, t2) for points in the plane containing the Newton
133
+ polyhedron, in order to distinguish this plane from the (x1, x2) - plane.
134
+ The distance d = d(f) between the Newton polyhedron and the origin in the sense
135
+ of Varchenko is given by the coordinate d of the point (d, d) at which the bisectrix
136
+ t1 = t2 intersects the boundary of the Newton polyhedron.
137
+ The principal face π(f) of the Newton polyhedron of f is the face of minimal
138
+ dimension containing the point (d, d). Deviating from the notation in [33], we shall
139
+ call the series
140
+ fp(x1, x2) :=
141
+
142
+ j,k∈π(f)
143
+ cjkxj
144
+ 1xk
145
+ 2
146
+ the principal part of f. In the case that π(f) is compact, fπ is a mixed homogeneous
147
+ polynomial; otherwise, we shall consider fπ as a formal power series.
148
+ Note that the distance between the Newton polyhedron and the origin depends
149
+ on the chosen local coordinate system in which f is expressed. By a local analytic
150
+ (respectively smooth) coordinate system at the origin we shall mean an analytic (re-
151
+ spectively smooth) coordinate system defined near the origin which preserves 0. If
152
+ we work in the category of smooth functions f, we shall always consider smooth co-
153
+ ordinate systems, and if f is analytic, then one usually restricts oneself to analytic
154
+ coordinate systems (even though this will not really be necessary for the questions we
155
+ are going to study, as we will see). The height of the analytic (respectively smooth)
156
+ function f is defined by
157
+ h := h(f) := sup{dx},
158
+ where the supremum is taken over all local analytic (respectively smooth) coordinate
159
+ systems x at the origin, and where dx is the distance between the Newton polyhedron
160
+ and the origin in the coordinates x.
161
+ A given coordinate system x is said to be adapted to f if h(f) = dx.
162
+ Let π be the principal face. We assume that π is a point or a compact edge, then
163
+ fπ is a weighted homogeneous polynomial. Denote by ν the maximal order of roots
164
+ of fπ on the unit circle at the origin, so
165
+ ν := max
166
+ S1 ord(fπ).
167
+ If there exists a coordinate system x such that ν = dx then we set m = 1. It can
168
+ be shown that in this case x is adapted to f (see [12]). Otherwise we take m = 0.
169
+ Following A. N. Varchenko we call m the multiplicity of the Newton polyhedron.
170
+ In the classical paper by A. N. Varchenko [33], he obtained the sharp estimates
171
+ for oscillatory integrals in terms of the height. Also in the paper [13] the height was
172
+ used to get the sharp bound for maximal operators associated to smooth surfaces in
173
+
174
+ 4
175
+ I.A.IKROMOV, M.RUZHANSKY, A.R.SAFAROV
176
+ R3. It turns out that analogous quantities can be used for oscillatory integrals with
177
+ the Mittag-Leffler function.
178
+ We consider the following integral with phase f and amplitude ψ, of the form
179
+ Iα,β =
180
+
181
+ U
182
+ Eα,β(iλf(x))ψ(x)dx,
183
+ (2.3)
184
+ where 0 < α < 1, β > 0, U is a sufficiently small neighborhood of the origin. We
185
+ are interested in particular in the behavior of Iα,β when λ is large, as for small λ the
186
+ integral is just bounded. In particular if α = 1 and β = 1 we have oscillatory integral
187
+ (2.1).
188
+ The main result of the work is the following.
189
+ Theorem 2.2. Let f be a smooth finite type function of two variables defined in a
190
+ sufficiently small neighborhood of the origin and let ψ ∈ C∞
191
+ 0 (U).
192
+ Let h be the height of the function f, and let m = 0, 1 be the multiplicity of its
193
+ Newton polyhedron. If 0 < α < 1, β > 0, h > 1, and λ ≫ 1 then we have the
194
+ estimate
195
+ ����
196
+
197
+ U
198
+ Eα,β(iλf(x1, x2))ψ(x)dx
199
+ ���� ≤
200
+ C| ln λ|m∥ψ∥L∞(U)
201
+ λ
202
+ 1
203
+ h
204
+ .
205
+ (2.4)
206
+ If 0 < α < 1, β > 0, h = 1 and λ ≫ 1, then we have following estimate
207
+ ����
208
+
209
+ U
210
+ Eα,β(iλf(x1, x2))ψ(x)dx
211
+ ���� ≤
212
+ C| ln λ|2∥ψ∥L∞(U)
213
+ λ
214
+ ,
215
+ (2.5)
216
+ where the constants C are independent of the phase, amplitude and λ.
217
+ 3. Auxiliary statements
218
+ We first recall some useful properties.
219
+ Proposition 3.1. If 0 < α < 2, β is an arbitrary real number, µ is such that πα/2 <
220
+ µ < min{π, πα}, then there is C > 0, such that we have
221
+ |Eα,β(z)| ≤
222
+ C
223
+ 1 + |z|, z ∈ C, µ ≤ | arg(z)| ≤ π.
224
+ (3.1)
225
+ See [4], [9], [23].
226
+ Proposition 3.2. Let Ω be an open, bounded subset of
227
+ R2, and let f : Ω → R be a
228
+ measurable function such that for all λ ≫ 1 and for some positive δ ̸= 1, we have
229
+ ����
230
+
231
+
232
+ eiλf(x)dx
233
+ ���� ≤ C|λ|−δ| ln λ|m,
234
+ (3.2)
235
+ with m ≥ 0. Then, we have
236
+ ��x ∈ Ω : |f(x)| ≤ ε| ≤ Cδεδ| ln ε|m, for δ < 1,
237
+ for 0 < ε ≪ 1, and for δ > 1, |x ∈ Ω : |f(x)| ≤ ε| ≤ Cδε ,
238
+ for δ = 1,
239
+ ��x ∈ Ω : |f(x)| ≤ ε| ≤ Cδε| ln ε|m+1,
240
+ where Cδ depends only on δ, |A| means the Lebesgue measure of a set A. See [7].
241
+
242
+ OSCILLATORY INTEGRALS FOR MITTAG-LEFFLER FUNCTIONS
243
+ 5
244
+ Proof. For the convenience of the reader we give an independent proof of Proposition
245
+ 3.2. We consider an even non-negative smooth function
246
+ ω(x) =
247
+
248
+ 1,
249
+ when |x| ≤ 1,
250
+ 0,
251
+ when |x| ≥ 2.
252
+ For the characteristic function of Ω with Ω ⊂ U, the following inequality holds true
253
+ |x ∈ Ω : |f(x)| ≤ ε| =
254
+
255
+
256
+ χ[0,1]
257
+ �|f(x)|
258
+ ε
259
+
260
+ dx ≤
261
+
262
+
263
+ ω
264
+ �f(x)
265
+ ε
266
+
267
+ dx.
268
+ Now we will use the Fourier inversion formula, and rewrite the last integral as
269
+
270
+
271
+ ω
272
+ �f(x)
273
+ ε
274
+
275
+ dx = 1
276
+
277
+
278
+
279
+ � ∞
280
+ −∞
281
+ ˇω(ξ)eiξ f(x)
282
+ ε dξdx.
283
+ As ˇω(ξ) is a Schwartz function, we can use Fubini theorem and change the order of
284
+ integration. So we have
285
+
286
+
287
+ � ∞
288
+ −∞
289
+ ˇω(ξ)eiξ f(x)
290
+ ε dξdx =
291
+ � ∞
292
+ −∞
293
+ ˇω(ξ)
294
+
295
+
296
+ eiξ f(x)
297
+ ε dxdξ.
298
+ We use inequality (3.2) for the inner integral and get
299
+ ����
300
+
301
+
302
+ eiξ f(x)
303
+ ε dx
304
+ ���� ≤ C| ln(2 + ξ
305
+ ε)|m
306
+ (1 + | ξ
307
+ ε|)δ
308
+ .
309
+ As ˇω(ξ) is a Schwartz function, we also have
310
+ |ˇω(ξ)| ≤
311
+ C
312
+ 1 + |ξ|.
313
+ So
314
+ �����
315
+ � ∞
316
+ −∞
317
+ C ˇω(ξ)| ln(2 + ξ
318
+ ε)|m
319
+ (2 + | ξ
320
+ ε|)δ
321
+
322
+ ����� ≲
323
+ � ∞
324
+ 0
325
+ 2C| ln( ξ
326
+ ε)|m
327
+ (1 + |ξ|)(2 + | ξ
328
+ ε|)δ dξ.
329
+ Now we change the variable as ξ = ηε, and we get
330
+ � ∞
331
+ 0
332
+ | ln( ξ
333
+ ε)|m
334
+ (1 + |ξ|)(2 + | ξ
335
+ ε|)δ dξ =
336
+ � ∞
337
+ 0
338
+ ε| ln η|m
339
+ (1 + |εη|)(2 + |η|)δ dη.
340
+ Now we estimate the last integral for different values of δ.
341
+ If δ < 1 then we have
342
+ � ∞
343
+ 0
344
+ ε| ln η|m
345
+ (1 + |εη|)(2 + |η|)δ dη ≤ Cε
346
+
347
+ 1
348
+ ε
349
+ 0
350
+ | ln η|mdη
351
+ (2 + η)δ + Cε
352
+ � ∞
353
+ 1
354
+ ε
355
+ | ln η|mdη
356
+ εηδ+1
357
+ .
358
+ We represent
359
+ 1
360
+ (2+η)δ =
361
+ 1
362
+ ηδ(1+ 2
363
+ η )δ =
364
+ 1
365
+ ηδ + O(
366
+ 1
367
+ ηδ+1). So
368
+
369
+
370
+ 1
371
+ ε
372
+ 0
373
+ | ln η|mdη
374
+ (2 + η)δ = ε
375
+ � 2
376
+ 0
377
+ | ln η|mdη
378
+ (2 + η)δ + ε
379
+
380
+ 1
381
+ ε
382
+ 2
383
+ | ln η|mdη
384
+ (2 + η)δ .
385
+ Integrating by parts we obtain
386
+ ε
387
+
388
+ 1
389
+ ε
390
+ 2
391
+ | ln η|mdη
392
+ (2 + η)δ ≤ ε
393
+
394
+ 1
395
+ ε
396
+ 2
397
+ | ln η|mdη
398
+ ηδ
399
+ ≤ Cεδ| ln ε|m.
400
+
401
+ 6
402
+ I.A.IKROMOV, M.RUZHANSKY, A.R.SAFAROV
403
+ As δ < 1, the integrals
404
+ � 2
405
+ 0
406
+ | ln η|mdη
407
+ (2+η)δ
408
+ and
409
+ � ∞
410
+ 1
411
+ ε
412
+ | ln η|mdη
413
+ εηδ+1
414
+ convergence.
415
+ If δ > 1 then we trivially obtain
416
+ ����
417
+ � ∞
418
+ 0
419
+ Cε| ln η|m
420
+ (1 + |εη|)(2 + |η|)δ dη
421
+ ���� ≤ Cε.
422
+ If δ = 1 then assuming 0 < ε < 1
423
+ 2 we get |εη| < 1 (for |η| < 2), then write the integral
424
+ as the sum of three integrals and obtain
425
+ ����
426
+ � ∞
427
+ 0
428
+ Cε| ln η|m
429
+ (1 + |εη|)(1 + |η|)dη
430
+ ���� ≤
431
+ ����
432
+ � 2
433
+ 0
434
+ Cε| ln η|mdη
435
+ ���� +
436
+ �����
437
+
438
+ 1
439
+ ε
440
+ 2
441
+ Cε| ln η|m
442
+ η
443
+
444
+ ����� +
445
+ �����
446
+ � ∞
447
+ 1
448
+ ε
449
+ Cε| lnη|m
450
+ η
451
+
452
+ ����� .
453
+ Then we have
454
+ ����
455
+ � 2
456
+ 0
457
+ Cε| ln η|mdη
458
+ ���� ≤ Cε,
459
+ and we get with simple calculating that
460
+ �����
461
+
462
+ 1
463
+ ε
464
+ 2
465
+ Cε| lnη|m
466
+ η
467
+
468
+ ����� ≤ Cε| ln ε|m+1.
469
+ We use the formula of integrating by parts several times, to get
470
+ �����
471
+ � ∞
472
+ 1
473
+ ε
474
+ Cε| ln η|m
475
+ η
476
+
477
+ ����� ≤ Cε| ln ε|m,
478
+ completing the proof.
479
+
480
+ From Proposition 3.2 we get the following corollaries.
481
+ Corollary 3.3. Let f(x1, x2) be a smooth function with f(0, 0) = 0, ∇f(0, 0) = 0,
482
+ and h be the height of the function f(x1, x2), and let m = 0, 1 be the multiplicity of
483
+ its Newton polyhedron. Let also a(x) =
484
+
485
+ 1,
486
+ when |x| ≤ σ,
487
+ 0,
488
+ when |x| ≥ 2σ,
489
+ σ > 0, and a(x) ≥ 0
490
+ with a ∈ C∞
491
+ 0 (R2). If for all real λ ≫ 1 and for any positive δ ̸= 1, the following
492
+ inequality holds
493
+ ����
494
+
495
+ R2 eiλf(x)a(x)dx
496
+ ���� ≤ C|λ|−δ| ln λ|m,
497
+ (3.3)
498
+ then we have
499
+ ||x| ≤ σ : |f(x)| ≤ ε| ≤ Cεδ| ln ε|m,
500
+ where m ≥ 0. See [8, 12, 14, 22].
501
+ Corollary 3.4. Let f(x1, x2) be a smooth function with f(0, 0) = 0, ∇f(0, 0) = 0,
502
+ and let Ω be a sufficiently small compact set around the origin. Let also h be the
503
+ height of the function f(x1, x2), and let m = 0, 1 be the multiplicity of its Newton
504
+ polyhedron. Then for all 0 < ε ≪ 1 we have
505
+ |x ∈ Ω : |f(x)| ≤ ε| ≤ Cε
506
+ 1
507
+ h| ln ε|m,
508
+ where h is the height of f and m is its multiplicity [8].
509
+
510
+ OSCILLATORY INTEGRALS FOR MITTAG-LEFFLER FUNCTIONS
511
+ 7
512
+ 4. Proof of the main result
513
+ Proof of Theorem 2.2. As for λ < 2 the integral (2.3) is just bounded, we
514
+ consider the case λ ≥ 2. Without loss of generality, we can consider the integral over
515
+ U. Using inequality (3.1), we have
516
+ |Eα,β(iλf(x))| ≤
517
+ C
518
+ 1 + λ|f(x)|.
519
+ (4.1)
520
+ We then use (4.1) for the integral (2.3), and get that
521
+ |Iα,β| ≤
522
+ ����
523
+
524
+ U
525
+ Eα,β(iλf(x))ψ(x)dx
526
+ ���� ≤ C
527
+
528
+ U
529
+ |ψ(x)|dx
530
+ 1 + λ|f(x)|.
531
+ (4.2)
532
+ Now we represent the integral Iα,β over the union of sets Ω1 := Ω ∩ {λ|f(x1, x2)| <
533
+ M} and Ω2 := Ω ∩ {λ|f(x1, x2)| ≥ M} respectively, where M is a positive real
534
+ number.
535
+ We estimate the integral Iα,β over the sets Ω1 and Ω2, respectively,
536
+ |Iα,β| ≤ C
537
+
538
+ U
539
+ |ψ(x)|dx
540
+ 1 + λ|f(x)| = J1 + J2 := C
541
+
542
+ Ω1
543
+ |ψ(x)|dx
544
+ 1 + λ|f(x)| + C
545
+
546
+ Ω2
547
+ |ψ(x)|dx
548
+ 1 + λ|f(x)|.
549
+ First we estimate the integral over the set Ω1. Using the results of the paper ([17]
550
+ page 31) (see also Corollary 3.4) we obtain
551
+ |J1| = C
552
+
553
+ Ω1
554
+ |ψ(x)|dx
555
+ 1 + λ|f(x)| ≤
556
+ C| ln λ|m∥ψ∥L∞(Ω1)
557
+ λ
558
+ 1
559
+ h
560
+ .
561
+ Lemma 4.1. Let f ∈ C∞ and h be the height of the function f, and let m = 0, 1 be
562
+ the multiplicity of its Newton polyhedron. For any smooth function a = a(x, y) with
563
+ sufficiently small support and for h > 1 the following inequality holds
564
+ I :=
565
+
566
+ {|f(x,y)|≥ M
567
+ λ }
568
+ a(x, y)
569
+ 1 + λ|f(x, y)|dxdy ≤
570
+ C| ln ��|m∥a∥L∞(U)
571
+ λ
572
+ 1
573
+ h
574
+ ,
575
+ (4.3)
576
+ where supp{a(x, y)} = U.
577
+ Proof. Let h > 1. Consider the sets
578
+ Ak =
579
+
580
+ x ∈ U : 2k
581
+ λ ≤ |f(x)| ≤ 2k+1
582
+ λ
583
+
584
+ .
585
+ For the measure of a set of smaller values we use Lemma 1
586
+ ′ in the paper [16] (see also
587
+ Corollary 3.4), and we have
588
+ µ
589
+
590
+ |f(x)| ≤ 2k+1
591
+ λ , x ∈ U
592
+
593
+ ≤ C
594
+ �2k+1
595
+ λ
596
+ � 1
597
+ h �
598
+ ln
599
+ ����
600
+ λ
601
+ 2k+1
602
+ ����
603
+ �m
604
+ .
605
+ Let
606
+ Ik :=
607
+
608
+ Ak
609
+ a(x, y)
610
+ 1 + λ|f(x, y)|dxdy.
611
+ For the integral
612
+
613
+ 2k≤λ|f(x)|≤2k+1
614
+ Ik =
615
+
616
+ Ω2
617
+ a(x, y)
618
+ 1 + λ|f(x, y)|dxdy,
619
+
620
+ 8
621
+ I.A.IKROMOV, M.RUZHANSKY, A.R.SAFAROV
622
+ we find the following estimate:
623
+ |Ik| =
624
+ ����
625
+
626
+ Ak
627
+ a(x, y)
628
+ 1 + λ|f(x, y)|dxdy
629
+ ���� ≤ C∥a∥L∞(U)
630
+ �2k+1
631
+ λ
632
+ � 1
633
+ h ����ln 2k+1
634
+ λ
635
+ ����
636
+ m
637
+ 2−k.
638
+ From here we find the sum of Ik and, by estimating the integral I, we get
639
+ I ≤ ∥a∥L∞(U)
640
+
641
+
642
+ k=1
643
+ Ik ≤ ∥a∥L∞(U)
644
+
645
+
646
+ k=1
647
+ �2k+1
648
+ λ
649
+ � 1
650
+ h ����ln 2k+1
651
+ λ
652
+ ����
653
+ m
654
+ 2−k
655
+ ≤ ∥a∥L∞(U)
656
+ | ln λ|m
657
+ λ
658
+ 1
659
+ h
660
+
661
+
662
+ k=1
663
+ 2
664
+ k+1
665
+ h −kkm.
666
+ As h > 1, the last series is convergent, proving the lemma.
667
+
668
+ Remark 4.2. Consider the case h = 1.
669
+ The smooth function has non-degenerate
670
+ critical point at the origin if and only if h = 1. As f(x, y) is a smooth function with
671
+ ∇f(0, 0) = 0, using Morse lemma we have f ∼ x2 ± y2. So in this case we estimate
672
+ two sets ∆ = ∆1 ∪ ∆2, where ∆1 := {(x, y) : λ|x2 ± y2| ≤ M, |x| ≤ 1, |y| ≤ 1} and
673
+ ∆2 := {(x, y) : λ|x2 ± y2| > M, |x| ≤ 1, |y| ≤ 1}. First we consider the integral over
674
+ the set ∆1. Then we have
675
+ ����
676
+
677
+ ∆1
678
+ a(x, y)
679
+ 1 + λ|x2 ± y2|dxdy
680
+ ���� ≤ C∥a∥L∞(∆1)
681
+ ����
682
+
683
+ ∆1
684
+ dxdy
685
+ ����.
686
+ Now we estimate the last integral as
687
+ ����
688
+
689
+ λ|x2+y2|≤M
690
+ dxdy
691
+ ���� ≤ C
692
+ λ .
693
+ Then we estimate the measure of the set {|x2 − y2| ≤ εM}, where ε = 1
694
+ λ. We have,
695
+ for simplicity putting M = 1,
696
+ ����
697
+
698
+ |x2−y2|≤εM
699
+ dxdy
700
+ ���� ≤ C
701
+ �����
702
+ � √1−ε
703
+ √ε
704
+ dy
705
+ � √
706
+ y2+ε
707
+
708
+ y2−ε
709
+ dx
710
+ ����� =
711
+ �����
712
+ � √1−ε
713
+ √ε
714
+ ��
715
+ y2 + ε −
716
+
717
+ y2 − ε
718
+
719
+ dy
720
+ ����� =
721
+ =
722
+ �y
723
+ 2
724
+
725
+ y2 + ε + ε
726
+ 2 ln |y +
727
+
728
+ y2 + ε|
729
+ � ���
730
+ √1−ε
731
+ √ε
732
+
733
+ �y
734
+ 2
735
+
736
+ y2 − ε − ε
737
+ 2 ln |y +
738
+
739
+ y2 − ε|
740
+ � ���
741
+ √1−ε
742
+ √ε
743
+ =
744
+ =
745
+ �����
746
+ √1 − ε
747
+ 2
748
+ + ε
749
+ 2 ln
750
+ √1 − ε + 1
751
+ √ε
752
+
753
+
754
+ 2
755
+ 2 ε − ε
756
+ 2 ln |√ε(1 +
757
+
758
+ 2)|−
759
+
760
+ ��
761
+ (1 − ε)(1 − 2ε)
762
+ 2
763
+ − ε
764
+ 2 ln |
765
+
766
+ 1 − ε +
767
+
768
+ 1 − 2ε| + ε
769
+ 2 ln √ε|
770
+ ������ ≤ Cε ln ε.
771
+ Now we consider the integral over the set ∆2. In this case we change the variables
772
+ to polar coordinate system and with easy calculating we get
773
+ ����
774
+
775
+ {λ|x2+y2|≥M}
776
+ a(x, y)
777
+ 1 + λ|x2 + y2|dxdy
778
+ ���� ≤ C| ln λ|∥a∥L∞(∆2)
779
+ λ
780
+ (4.4)
781
+ and
782
+ ����
783
+
784
+ {λ|x2−y2|≥M}
785
+ a(x, y)
786
+ 1 + λ|x2 − y2|dxdy
787
+ ���� ≤ C| ln λ|2∥a∥L∞(∆2)
788
+ λ
789
+ .
790
+ (4.5)
791
+
792
+ OSCILLATORY INTEGRALS FOR MITTAG-LEFFLER FUNCTIONS
793
+ 9
794
+ Now we continue the proof of Theorem 2.2. Let h > 1. We use Proposition 3.2 for
795
+ the integral J1, to get
796
+ |J1| ≤
797
+ C| ln λ|m∥a∥L∞(U)
798
+ λ
799
+ 1
800
+ h
801
+ .
802
+ Let consider the integral J2. If h > 1, then using Lemma 4.1 we get
803
+ |J2| ≤
804
+ C| ln λ|∥a∥L∞(U)
805
+ λ
806
+ 1
807
+ h
808
+ .
809
+ If h = 1, using the Remark 4.2 we get the inequality (2.5). The proof is complete.
810
+ The proof of Theorem 2.2 shows that if h = 1, we can get a more precise result.
811
+ Proposition 4.3. If h = 1 and f has an extremal point at the point (0,0) (then f is
812
+ diffeomorhic equivalent to x2
813
+ 1 + x2
814
+ 2 or −x2
815
+ 1 − x2
816
+ 2), then we have
817
+ |Iα,β| ≤
818
+ C| ln λ|∥ψ∥L∞(U)
819
+ λ
820
+ ,
821
+ for all λ ≥ 2.
822
+ Declaration of competing interest
823
+ This work does not have any conflicts of interest.
824
+ Acknowledgements
825
+ The second author was supported in parts by the FWO Odysseus 1 grant G.0H94.18N:
826
+ Analysis and Partial Differential Equations and by the Methusalem programme of the
827
+ Ghent University Special Research Fund (BOF) (Grant number 01M01021) and also
828
+ supported by EPSRC grant EP/R003025/2.
829
+ Data availability. The manuscript has no associated data.
830
+ References
831
+ [1] R. P. Agarwal, A propos d’une note de M.Pierre Humbert, C. R. Acad. Sci. Paris, 236, 2031-2032
832
+ (1953).
833
+ [2] G. I. Arkhipov, A. A. Karatsuba, V. N. Chubarikov, Theory of multiple trigonometric sums, -
834
+ Moscow. Nauka, 1987, p. 357.
835
+ [3] V. I. Arnold, S. M. Gusein-Zade, A. N. Varchenko, Singularities of Differentiable Maps,
836
+ Birkhauser, Boston Basel · Stuttgart, 1985.
837
+ [4] M. M. Dzherbashyan, On the asymtotic expansion of a function of Mittag-Leffler type, Akad.
838
+ Nauk Armjan. SSR Doklady. 19, 65-72 (1954, in Russian).
839
+ [5] M. M. Dzherbashyan, On integral representation of functions continuous on given rays (gener-
840
+ alization of the Fourier integrals), Izvestija Akad. Nauk SSSR Ser. Mat. 18, 427-448 (1954, in
841
+ Russian).
842
+ [6] M. M. Dzherbashyan, On Abelian summation of the eneralized integral transform, Akad. Nauk
843
+ Armjan. SSR Izvestija, fiz-mat. estest. techn.nauki. 7(6), 1-26 (1954, in Russian).
844
+ [7] J. Green, Uniform oscillatory integral estimates for convex phases via sublevel set estimates,
845
+ arxiv: 2111.05395v1.
846
+ [8] M. Greenblat, Oscillatory integral decay, sublevel set growth and the Newton polyhedron, //
847
+ Math. Annalen. - 2010. - V.346, № 4. - p.857-890.
848
+ [9] R. Gorenflo, A. Kilbas, F. Mainardi, S. Rogosin, Mittag-Leffler functions, related topics and
849
+ applications, Springer Monographs in Mathematics, Springer-Verlag Berlin Heidelberg (2014).
850
+ [10] P. Humbert, Quelques r´esultats relatifs `a la fonction de Mittag-Leffler, C. R. Acad. Sci. Paris,
851
+ 236, 1467-1468 (1953).
852
+
853
+ 10
854
+ I.A.IKROMOV, M.RUZHANSKY, A.R.SAFAROV
855
+ [11] P. Humbert,
856
+ R. P. Agarwal,
857
+ Sur la fonction de Mittag-Leffler et quelquenes de ses
858
+ g´en`eralisationes, Bull. Sci. Math. (Ser.II).77, 180-185 (1953).
859
+ [12] I. A. Ikromov and D. M¨uller, On adapted coordinate systems, Transactions of the American
860
+ Mathematical Society, 2011, 363(6), P. 2821—2848.
861
+ [13] I. A. Ikromov, M. Kempe, D. M¨uller, Estimates for maximal functions associated with hyper-
862
+ surfaces in R3 and related problems of harmonic analysis, Acta mathematica, 2010, 204 (2),
863
+ 151–271.
864
+ [14] I. A. Ikromov and D. M¨uller, Fourier Restriction for Hypersurfaces in Three Dimensions and
865
+ Newton Polyhedra, Annals of Mathematics Studies 194, Princeton Univ. Press, Princeton and
866
+ Oxford, 2016.
867
+ [15] I. A. Ikromov, Invariant estimates of two-dimensional trigonometric integrals, Math. USSR.
868
+ Sb. 76 (1990), 473–488.
869
+ [16] V. N. Karpushkin, Uniform estimates for oscillatory integrals with parabolic or hyperbolic phase,
870
+ // Proceedings of the I. G. Petrovsky Seminar. Vol.9. 1983. P. 3-39.(Russian)
871
+ [17] V. N. Karpushkin, Uniform estimates of oscillating integrals in R2, Dokl. Academy of Sciences
872
+ of the USSR, 254 (1980), no.1, 28–31.(Russian)
873
+ [18] M. G. Mittag-Leffler, Sur l’int´egrale de Laplace-Abel, Comp. Rend. Acad. Sci. Paris 135, 937–
874
+ 939 (1902).
875
+ [19] M. G. Mittag-Leffler, Une g´en´eralization de l’int´egrale de Laplace-Abel, Comp. Rend. Acad.
876
+ Sci. Paris 136, 537-539 (1903).
877
+ [20] M. G. Mittag-Leffler, Sur la nouvelle fonction Eα(x), Comp. Rend. Acad. Sci. Paris 137, 554-
878
+ 558 (1903).
879
+ [21] M. G. Mittag-Leffler, Sopra la funzione Eα(x), Rend.R.Acc.Lincei, (Ser.5)13, 3-5 (1904).
880
+ [22] D. H. Phong and E. M. Stein, The Newton polyhedron and oscillatory integral operator, Acta
881
+ Math. 179(1), 1997, 105-152.
882
+ [23] I. Podlubny, Fractional Differensial Equations, Academic Press, New York, 1999.
883
+ [24] M. Ruzhansky, Pointwise van der Corput Lemma for Functions of Several Variables, Functional
884
+ Analysis and Its Applications, 43 (2009), no.1, 75–77.
885
+ [25] M. Ruzhansky, Multidimensional decay in the van der Corput Lemma, Studia Mathematica,
886
+ 208 (2012), no.1, 1–9.
887
+ [26] M. Ruzhansky, B. Torebek, Van der Corput lemmas for Mittag-Leffler functions, Fractional
888
+ Calculus and Applied Analysis, 23 (6), (2021), 1663–1677.
889
+ [27] M. Ruzhansky,
890
+ B. Torebek,
891
+ Van der Corput lemmas for Mittag-Leffler functions. II.
892
+ α−directions , Bull. Sci. Math., 171 (2021), 103016, 23 pp.
893
+ [28] M. Ruzhansky, A. R. Safarov, G. A. Khasanov, Uniform estimates for oscillatory integrals with
894
+ homogeneous polynomial phases of degree 4, Analysis and Mathematical Physics, 12(130),
895
+ (2022).
896
+ [29] A. Safarov, Invariant estimates of two-dimensional oscillatory integrals // Math. Notes. 104,
897
+ 2018. P.293–302.
898
+ [30] A. Safarov, On invariant estimates for oscillatory integrals with polynomial phase, // J. Sib.
899
+ Fed. Univ. Math. Phys. 9 (2016), P.102–107.
900
+ [31] A. Safarov, On a problem of restriction of Fourier transform on a hypersurface // Russian
901
+ Mathematics, 63 (4), P.57-63.
902
+ [32] A. R. Safarov, Estimates for Mittag-–Leffler Functions with Smooth Phase Depending on Two
903
+ Variables, J. Sib. Fed. Univ. Math. Phys., 15(4) (2022), P.459-–466.
904
+ [33] A. N. Varchenko, Newton polyhedra and estimation of oscillating integrals //Functional Analysis
905
+ and Its Applications, vol. 10, pages 175-–196 (1976).
906
+ [34] Van der Korput, Zur Methode der stationaren phase// Compositio Math. V.1. 1934. P. 15-38.
907
+
908
+ OSCILLATORY INTEGRALS FOR MITTAG-LEFFLER FUNCTIONS
909
+ 11
910
+ Isroil A. Ikromov
911
+ V.I. Romanovsky Institute of Mathematics of the Academy of Sciences of Uzbekistan
912
+ Olmazor district, University 46, Tashkent, Uzbekistan
913
+ Samarkand State University
914
+ Department of Mathematics, 15 University Boulevard
915
+ Samarkand, 140104, Uzbekistan
916
+ Email address: [email protected]
917
+ Michael Ruzhansky
918
+ Department of Mathematics: Analysis, Logic and Discrete Mathematics
919
+ Ghent University,
920
+ Krijgslaan 281, Ghent, Belgium,
921
+ School of Mathematical Sciences, Queen Mary University of London,
922
+ United Kingdom
923
+ Email address: [email protected]
924
+ Akbar R.Safarov
925
+ Uzbek-Finnish Pedagogical Institute
926
+ Spitamenshox 166, Samarkand, Uzbekistan
927
+ Samarkand State University
928
+ Department of Mathematics, 15 University Boulevard
929
+ Samarkand, 140104, Uzbekistan
930
+ Email address: [email protected]
931
+
-9E3T4oBgHgl3EQfSwmi/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,458 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf,len=457
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
3
+ page_content='04436v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
4
+ page_content='CA] 11 Jan 2023 OSCILLATORY INTEGRALS FOR MITTAG-LEFFLER FUNCTIONS WITH TWO VARIABLES ISROIL A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
5
+ page_content=' IKROMOV, MICHAEL RUZHANSKY, AKBAR R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
6
+ page_content=' SAFAROV∗ Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
7
+ page_content=' In this paper we consider the problem of estimation of oscillatory in- tegrals with Mittag-Leffler functions in two variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
8
+ page_content=' The generalisation is that we replace the exponential function with the Mittag-Leffler-type function, to study oscillatory type integrals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
9
+ page_content=' Contents 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
10
+ page_content=' Introduction 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
11
+ page_content=' Preliminaries 2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
12
+ page_content=' Auxiliary statements 4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
13
+ page_content=' Proof of the main result 7 Acknowledgements 9 Data availability 9 References 9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
14
+ page_content=' Introduction The function Eα(z) is named after the Swedish mathematican G¨osta Magnus Mittag-Leffler (1846-1927) who defined it by a power series Eα(z) = ∞ � k=0 zk Γ(αk + 1), α ∈ C, Re(α) > 0, (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
15
+ page_content='1) and studied its properties in 1902-1905 in several subsequent notes [18, 19, 20, 21] in connection with his summation method for divergent series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
16
+ page_content=' A classical generalization of the Mittag-Leffler function, namely the two-parametric Mittag-Leffler function is Eα,β(z) = ∞ � k=0 zk Γ(αk + β), α, β ∈ C, Re(α) > 0, (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
17
+ page_content='2) which was deeply investigated independently by Humbert and Agarval in 1953 ([1, 10, 11]) and by Dzherbashyan in 1954 ([4, 5, 6]) as well as in [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
18
+ page_content=' ∗Corresponding author 2010 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
19
+ page_content=' 35D10, 42B20, 26D10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
20
+ page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
21
+ page_content=' Mittag-Leffler functions, phase function, amplitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
22
+ page_content=' All authors contributed equally to the writing of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
23
+ page_content=' All authors read and approved the final manuscript.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
24
+ page_content=' 1 2 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
25
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
26
+ page_content='IKROMOV, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
27
+ page_content='RUZHANSKY, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
28
+ page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
29
+ page_content='SAFAROV It has the property that E1,1(x) = ex, and we can refer to [23] for other properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
30
+ page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
31
+ page_content='3) In harmonic analysis one of the most important estimates for oscillatory integral is van der Corput lemma [24, 25, 26, 34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
32
+ page_content=' Estimates for oscillatory integrals with poly- nomial phases can be found, for instance, in papers [2, 15, 29, 30, 31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
33
+ page_content=' In the current paper we replace the exponential function with the Mittag-Leffler-type function and study oscillatory type integrals (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
34
+ page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
35
+ page_content=' In the papers [26] and [27] analogues of the van der Corput lemmas involving Mittag-Leffler functions for one dimensional integrals have been considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
36
+ page_content=' We extend results of [26] and [27] for two-dimensional inte- grals with phase having some simple singularities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
37
+ page_content=' Analogous problem on estimates for Mittag-Leffler functions with the smooth phase functions of two variables having simple singularities was considered in [28] and [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
38
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
39
+ page_content=' Preliminaries Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
40
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
41
+ page_content=' An oscillatory integral with phase f and amplitude a is an integral of the form J(λ, f, a) = � Rn a(x)eiλf(x)dx, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
42
+ page_content='1) where a ∈ C∞ 0 (Rn) and λ ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
43
+ page_content=' If the support of a lies in a sufficiently small neighborhood of the origin and f is an analytic function at x = 0, then for λ → ∞ the following asymptotic expansion holds ([17]): J(λ, f, a) ≈ eiλf(0) � s n−1 � k=0 bs,k(a)λs(ln λ)k, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
44
+ page_content='2) where s belongs to a finite number of arithmetic progressions, independent of a, composed of negative rational numbers, bs,k is a distribution with support in the critical set {x : ∇f(x) = 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
45
+ page_content=' Inspired by the terminology from [3], we refer to the maximal value of s, denoting it by α in this case, as the growth index of f, or the oscillation index at the origin, and the corresponding value of k is referred to as the multiplicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
46
+ page_content=' More precisely, the multiplicity of the oscillation index of an analytic phase at a critical point is the maximal number k possessing the property: for any neighbour- hood of the critical point there is an amplitude with support in this neighbourhood for which in the asymptotic series (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
47
+ page_content='2) the coefficient bs,k(a) is not equal to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
48
+ page_content=' The multiplicity of the oscillation index will be denoted by m (see [3]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
49
+ page_content=' Let f be a smooth real-valued function defined on a neighborhood of the origin in R2 with f(0, 0) = 0, ∇f(0, 0) = 0, and consider the associated Taylor series f(x1, x2) ∼ ∞ � j,k=0 cjkxj 1xk 2 of f centered at the origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
50
+ page_content=' The set ℑ(f) := {(j, k) ∈ N2 : cjk = 1 j!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
51
+ page_content='k!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
52
+ page_content='∂j x1∂k x2f(0, 0) ̸= 0} OSCILLATORY INTEGRALS FOR MITTAG-LEFFLER FUNCTIONS 3 is called the Taylor support of f at (0, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
53
+ page_content=' We shall always assume that ℑ(f) ̸= ∅, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
54
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
55
+ page_content=', that the function f is of finite type at the origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
56
+ page_content=' If f is real analytic, so that the Taylor series converges to f near the origin, this just means that f ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
57
+ page_content=' The Newton polyhedron ℵ(f) of f at the origin is defined to be the convex hull of the union of all the quadrants (j, k) + R2 +, with (j, k) ∈ ℑ(f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
58
+ page_content=' The associated Newton diagram ℵd(f) in the sense of Varchenko [33] is the union of all compact faces of the Newton polyhedron;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
59
+ page_content=' here, by a face, we mean an edge or a vertex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
60
+ page_content=' We shall use coordinates (t1, t2) for points in the plane containing the Newton polyhedron, in order to distinguish this plane from the (x1, x2) - plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
61
+ page_content=' The distance d = d(f) between the Newton polyhedron and the origin in the sense of Varchenko is given by the coordinate d of the point (d, d) at which the bisectrix t1 = t2 intersects the boundary of the Newton polyhedron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
62
+ page_content=' The principal face π(f) of the Newton polyhedron of f is the face of minimal dimension containing the point (d, d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
63
+ page_content=' Deviating from the notation in [33], we shall call the series fp(x1, x2) := � j,k∈π(f) cjkxj 1xk 2 the principal part of f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
64
+ page_content=' In the case that π(f) is compact, fπ is a mixed homogeneous polynomial;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
65
+ page_content=' otherwise, we shall consider fπ as a formal power series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
66
+ page_content=' Note that the distance between the Newton polyhedron and the origin depends on the chosen local coordinate system in which f is expressed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
67
+ page_content=' By a local analytic (respectively smooth) coordinate system at the origin we shall mean an analytic (re- spectively smooth) coordinate system defined near the origin which preserves 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
68
+ page_content=' If we work in the category of smooth functions f, we shall always consider smooth co- ordinate systems, and if f is analytic, then one usually restricts oneself to analytic coordinate systems (even though this will not really be necessary for the questions we are going to study, as we will see).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
69
+ page_content=' The height of the analytic (respectively smooth) function f is defined by h := h(f) := sup{dx}, where the supremum is taken over all local analytic (respectively smooth) coordinate systems x at the origin, and where dx is the distance between the Newton polyhedron and the origin in the coordinates x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
70
+ page_content=' A given coordinate system x is said to be adapted to f if h(f) = dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
71
+ page_content=' Let π be the principal face.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
72
+ page_content=' We assume that π is a point or a compact edge, then fπ is a weighted homogeneous polynomial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
73
+ page_content=' Denote by ν the maximal order of roots of fπ on the unit circle at the origin, so ν := max S1 ord(fπ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
74
+ page_content=' If there exists a coordinate system x such that ν = dx then we set m = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
75
+ page_content=' It can be shown that in this case x is adapted to f (see [12]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
76
+ page_content=' Otherwise we take m = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
77
+ page_content=' Following A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
78
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
79
+ page_content=' Varchenko we call m the multiplicity of the Newton polyhedron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
80
+ page_content=' In the classical paper by A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
81
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
82
+ page_content=' Varchenko [33], he obtained the sharp estimates for oscillatory integrals in terms of the height.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
83
+ page_content=' Also in the paper [13] the height was used to get the sharp bound for maximal operators associated to smooth surfaces in 4 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
84
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
85
+ page_content='IKROMOV, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
86
+ page_content='RUZHANSKY, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
87
+ page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
88
+ page_content='SAFAROV R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
89
+ page_content=' It turns out that analogous quantities can be used for oscillatory integrals with the Mittag-Leffler function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
90
+ page_content=' We consider the following integral with phase f and amplitude ψ, of the form Iα,β = � U Eα,β(iλf(x))ψ(x)dx, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
91
+ page_content='3) where 0 < α < 1, β > 0, U is a sufficiently small neighborhood of the origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
92
+ page_content=' We are interested in particular in the behavior of Iα,β when λ is large, as for small λ the integral is just bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
93
+ page_content=' In particular if α = 1 and β = 1 we have oscillatory integral (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
94
+ page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
95
+ page_content=' The main result of the work is the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
96
+ page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
97
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
98
+ page_content=' Let f be a smooth finite type function of two variables defined in a sufficiently small neighborhood of the origin and let ψ ∈ C∞ 0 (U).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
99
+ page_content=' Let h be the height of the function f, and let m = 0, 1 be the multiplicity of its Newton polyhedron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
100
+ page_content=' If 0 < α < 1, β > 0, h > 1, and λ ≫ 1 then we have the estimate ���� � U Eα,β(iλf(x1, x2))ψ(x)dx ���� ≤ C| ln λ|m∥ψ∥L∞(U) λ 1 h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
101
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
102
+ page_content='4) If 0 < α < 1, β > 0, h = 1 and λ ≫ 1, then we have following estimate ���� � U Eα,β(iλf(x1, x2))ψ(x)dx ���� ≤ C| ln λ|2∥ψ∥L∞(U) λ , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
103
+ page_content='5) where the constants C are independent of the phase, amplitude and λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
104
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
105
+ page_content=' Auxiliary statements We first recall some useful properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
106
+ page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
107
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
108
+ page_content=' If 0 < α < 2, β is an arbitrary real number, µ is such that πα/2 < µ < min{π, πα}, then there is C > 0, such that we have |Eα,β(z)| ≤ C 1 + |z|, z ∈ C, µ ≤ | arg(z)| ≤ π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
109
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
110
+ page_content='1) See [4], [9], [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
111
+ page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
112
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
113
+ page_content=' Let Ω be an open, bounded subset of R2, and let f : Ω → R be a measurable function such that for all λ ≫ 1 and for some positive δ ̸= 1, we have ���� � Ω eiλf(x)dx ���� ≤ C|λ|−δ| ln λ|m, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
114
+ page_content='2) with m ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
115
+ page_content=' Then, we have ��x ∈ Ω : |f(x)| ≤ ε| ≤ Cδεδ| ln ε|m, for δ < 1, for 0 < ε ≪ 1, and for δ > 1, |x ∈ Ω : |f(x)| ≤ ε| ≤ Cδε , for δ = 1, ��x ∈ Ω : |f(x)| ≤ ε| ≤ Cδε| ln ε|m+1, where Cδ depends only on δ, |A| means the Lebesgue measure of a set A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
116
+ page_content=' See [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
117
+ page_content=' OSCILLATORY INTEGRALS FOR MITTAG-LEFFLER FUNCTIONS 5 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
118
+ page_content=' For the convenience of the reader we give an independent proof of Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
119
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
120
+ page_content=' We consider an even non-negative smooth function ω(x) = � 1, when |x| ≤ 1, 0, when |x| ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
121
+ page_content=' For the characteristic function of Ω with Ω ⊂ U, the following inequality holds true |x ∈ Ω : |f(x)| ≤ ε| = � Ω χ[0,1] �|f(x)| ε � dx ≤ � Ω ω �f(x) ε � dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
122
+ page_content=' Now we will use the Fourier inversion formula, and rewrite the last integral as � Ω ω �f(x) ε � dx = 1 2π � Ω � ∞ −∞ ˇω(ξ)eiξ f(x) ε dξdx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
123
+ page_content=' As ˇω(ξ) is a Schwartz function, we can use Fubini theorem and change the order of integration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
124
+ page_content=' So we have � Ω � ∞ −∞ ˇω(ξ)eiξ f(x) ε dξdx = � ∞ −∞ ˇω(ξ) � Ω eiξ f(x) ε dxdξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
125
+ page_content=' We use inequality (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
126
+ page_content='2) for the inner integral and get ���� � Ω eiξ f(x) ε dx ���� ≤ C| ln(2 + ξ ε)|m (1 + | ξ ε|)δ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
127
+ page_content=' As ˇω(ξ) is a Schwartz function, we also have |ˇω(ξ)| ≤ C 1 + |ξ|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
128
+ page_content=' So ����� � ∞ −∞ C ˇω(ξ)| ln(2 + ξ ε)|m (2 + | ξ ε|)δ dξ ����� ≲ � ∞ 0 2C| ln( ξ ε)|m (1 + |ξ|)(2 + | ξ ε|)δ dξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
129
+ page_content=' Now we change the variable as ξ = ηε, and we get � ∞ 0 | ln( ξ ε)|m (1 + |ξ|)(2 + | ξ ε|)δ dξ = � ∞ 0 ε| ln η|m (1 + |εη|)(2 + |η|)δ dη.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
130
+ page_content=' Now we estimate the last integral for different values of δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
131
+ page_content=' If δ < 1 then we have � ∞ 0 ε| ln η|m (1 + |εη|)(2 + |η|)δ dη ≤ Cε � 1 ε 0 | ln η|mdη (2 + η)δ + Cε � ∞ 1 ε | ln η|mdη εηδ+1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
132
+ page_content=' We represent 1 (2+η)δ = 1 ηδ(1+ 2 η )δ = 1 ηδ + O( 1 ηδ+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
133
+ page_content=' So Cε � 1 ε 0 | ln η|mdη (2 + η)δ = ε � 2 0 | ln η|mdη (2 + η)δ + ε � 1 ε 2 | ln η|mdη (2 + η)δ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
134
+ page_content=' Integrating by parts we obtain ε � 1 ε 2 | ln η|mdη (2 + η)δ ≤ ε � 1 ε 2 | ln η|mdη ηδ ≤ Cεδ| ln ε|m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
135
+ page_content=' 6 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
136
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
137
+ page_content='IKROMOV, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
138
+ page_content='RUZHANSKY, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
139
+ page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
140
+ page_content='SAFAROV As δ < 1, the integrals � 2 0 | ln η|mdη (2+η)δ and � ∞ 1 ε | ln η|mdη εηδ+1 convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
141
+ page_content=' If δ > 1 then we trivially obtain ���� � ∞ 0 Cε| ln η|m (1 + |εη|)(2 + |η|)δ dη ���� ≤ Cε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
142
+ page_content=' If δ = 1 then assuming 0 < ε < 1 2 we get |εη| < 1 (for |η| < 2), then write the integral as the sum of three integrals and obtain ���� � ∞ 0 Cε| ln η|m (1 + |εη|)(1 + |η|)dη ���� ≤ ���� � 2 0 Cε| ln η|mdη ���� + ����� � 1 ε 2 Cε| ln η|m η dη ����� + ����� � ∞ 1 ε Cε| lnη|m η dη ����� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
143
+ page_content=' Then we have ���� � 2 0 Cε| ln η|mdη ���� ≤ Cε, and we get with simple calculating that ����� � 1 ε 2 Cε| lnη|m η dη ����� ≤ Cε| ln ε|m+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
144
+ page_content=' We use the formula of integrating by parts several times, to get ����� � ∞ 1 ε Cε| ln η|m η dη ����� ≤ Cε| ln ε|m, completing the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
145
+ page_content=' □ From Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
146
+ page_content='2 we get the following corollaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
147
+ page_content=' Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
148
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
149
+ page_content=' Let f(x1, x2) be a smooth function with f(0, 0) = 0, ∇f(0, 0) = 0, and h be the height of the function f(x1, x2), and let m = 0, 1 be the multiplicity of its Newton polyhedron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
150
+ page_content=' Let also a(x) = � 1, when |x| ≤ σ, 0, when |x| ≥ 2σ, σ > 0, and a(x) ≥ 0 with a ∈ C∞ 0 (R2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
151
+ page_content=' If for all real λ ≫ 1 and for any positive δ ̸= 1, the following inequality holds ���� � R2 eiλf(x)a(x)dx ���� ≤ C|λ|−δ| ln λ|m, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
152
+ page_content='3) then we have ||x| ≤ σ : |f(x)| ≤ ε| ≤ Cεδ| ln ε|m, where m ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
153
+ page_content=' See [8, 12, 14, 22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
154
+ page_content=' Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
155
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
156
+ page_content=' Let f(x1, x2) be a smooth function with f(0, 0) = 0, ∇f(0, 0) = 0, and let Ω be a sufficiently small compact set around the origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
157
+ page_content=' Let also h be the height of the function f(x1, x2), and let m = 0, 1 be the multiplicity of its Newton polyhedron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
158
+ page_content=' Then for all 0 < ε ≪ 1 we have |x ∈ Ω : |f(x)| ≤ ε| ≤ Cε 1 h| ln ε|m, where h is the height of f and m is its multiplicity [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
159
+ page_content=' OSCILLATORY INTEGRALS FOR MITTAG-LEFFLER FUNCTIONS 7 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
160
+ page_content=' Proof of the main result Proof of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
161
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
162
+ page_content=' As for λ < 2 the integral (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
163
+ page_content='3) is just bounded, we consider the case λ ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
164
+ page_content=' Without loss of generality, we can consider the integral over U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
165
+ page_content=' Using inequality (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
166
+ page_content='1), we have |Eα,β(iλf(x))| ≤ C 1 + λ|f(x)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
167
+ page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
168
+ page_content='1) We then use (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
169
+ page_content='1) for the integral (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
170
+ page_content='3), and get that |Iα,β| ≤ ���� � U Eα,β(iλf(x))ψ(x)dx ���� ≤ C � U |ψ(x)|dx 1 + λ|f(x)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
171
+ page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
172
+ page_content='2) Now we represent the integral Iα,β over the union of sets Ω1 := Ω ∩ {λ|f(x1, x2)| < M} and Ω2 := Ω ∩ {λ|f(x1, x2)| ≥ M} respectively, where M is a positive real number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
173
+ page_content=' We estimate the integral Iα,β over the sets Ω1 and Ω2, respectively, |Iα,β| ≤ C � U |ψ(x)|dx 1 + λ|f(x)| = J1 + J2 := C � Ω1 |ψ(x)|dx 1 + λ|f(x)| + C � Ω2 |ψ(x)|dx 1 + λ|f(x)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
174
+ page_content=' First we estimate the integral over the set Ω1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
175
+ page_content=' Using the results of the paper ([17] page 31) (see also Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
176
+ page_content='4) we obtain |J1| = C � Ω1 |ψ(x)|dx 1 + λ|f(x)| ≤ C| ln λ|m∥ψ∥L∞(Ω1) λ 1 h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
177
+ page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
178
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
179
+ page_content=' Let f ∈ C∞ and h be the height of the function f, and let m = 0, 1 be the multiplicity of its Newton polyhedron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
180
+ page_content=' For any smooth function a = a(x, y) with sufficiently small support and for h > 1 the following inequality holds I := � {|f(x,y)|≥ M λ } a(x, y) 1 + λ|f(x, y)|dxdy ≤ C| ln λ|m∥a∥L∞(U) λ 1 h , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
181
+ page_content='3) where supp{a(x, y)} = U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
182
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
183
+ page_content=' Let h > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
184
+ page_content=' Consider the sets Ak = � x ∈ U : 2k λ ≤ |f(x)| ≤ 2k+1 λ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
185
+ page_content=' For the measure of a set of smaller values we use Lemma 1 ′ in the paper [16] (see also Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
186
+ page_content='4), and we have µ � |f(x)| ≤ 2k+1 λ , x ∈ U � ≤ C �2k+1 λ � 1 h � ln ���� λ 2k+1 ���� �m .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
187
+ page_content=' Let Ik := � Ak a(x, y) 1 + λ|f(x, y)|dxdy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
188
+ page_content=' For the integral � 2k≤λ|f(x)|≤2k+1 Ik = � Ω2 a(x, y) 1 + λ|f(x, y)|dxdy, 8 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
189
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
190
+ page_content='IKROMOV, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
191
+ page_content='RUZHANSKY, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
192
+ page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
193
+ page_content='SAFAROV we find the following estimate: |Ik| = ���� � Ak a(x, y) 1 + λ|f(x, y)|dxdy ���� ≤ C∥a∥L∞(U) �2k+1 λ � 1 h ����ln 2k+1 λ ���� m 2−k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
194
+ page_content=' From here we find the sum of Ik and, by estimating the integral I, we get I ≤ ∥a∥L∞(U) ∞ � k=1 Ik ≤ ∥a∥L∞(U) ∞ � k=1 �2k+1 λ � 1 h ����ln 2k+1 λ ���� m 2−k ≤ ∥a∥L∞(U) | ln λ|m λ 1 h ∞ � k=1 2 k+1 h −kkm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
195
+ page_content=' As h > 1, the last series is convergent, proving the lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
196
+ page_content=' □ Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
197
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
198
+ page_content=' Consider the case h = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
199
+ page_content=' The smooth function has non-degenerate critical point at the origin if and only if h = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
200
+ page_content=' As f(x, y) is a smooth function with ∇f(0, 0) = 0, using Morse lemma we have f ∼ x2 ± y2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
201
+ page_content=' So in this case we estimate two sets ∆ = ∆1 ∪ ∆2, where ∆1 := {(x, y) : λ|x2 ± y2| ≤ M, |x| ≤ 1, |y| ≤ 1} and ∆2 := {(x, y) : λ|x2 ± y2| > M, |x| ≤ 1, |y| ≤ 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
202
+ page_content=' First we consider the integral over the set ∆1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
203
+ page_content=' Then we have ���� � ∆1 a(x, y) 1 + λ|x2 ± y2|dxdy ���� ≤ C∥a∥L∞(∆1) ���� � ∆1 dxdy ����.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
204
+ page_content=' Now we estimate the last integral as ���� � λ|x2+y2|≤M dxdy ���� ≤ C λ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
205
+ page_content=' Then we estimate the measure of the set {|x2 − y2| ≤ εM}, where ε = 1 λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
206
+ page_content=' We have,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
207
+ page_content=' for simplicity putting M = 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
208
+ page_content=' ���� � |x2−y2|≤εM dxdy ���� ≤ C ����� � √1−ε √ε dy � √ y2+ε √ y2−ε dx ����� = ����� � √1−ε √ε �� y2 + ε − � y2 − ε � dy ����� = = �y 2 � y2 + ε + ε 2 ln |y + � y2 + ε| � ��� √1−ε √ε − �y 2 � y2 − ε − ε 2 ln |y + � y2 − ε| � ��� √1−ε √ε = = ����� √1 − ε 2 + ε 2 ln √1 − ε + 1 √ε − √ 2 2 ε − ε 2 ln |√ε(1 + √ 2)|− − �� (1 − ε)(1 − 2ε) 2 − ε 2 ln | √ 1 − ε + √ 1 − 2ε| + ε 2 ln √ε| ������ ≤ Cε ln ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
209
+ page_content=' Now we consider the integral over the set ∆2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
210
+ page_content=' In this case we change the variables to polar coordinate system and with easy calculating we get ���� � {λ|x2+y2|≥M} a(x, y) 1 + λ|x2 + y2|dxdy ���� ≤ C| ln λ|∥a∥L∞(∆2) λ (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
211
+ page_content='4) and ���� � {λ|x2−y2|≥M} a(x, y) 1 + λ|x2 − y2|dxdy ���� ≤ C| ln λ|2∥a∥L∞(∆2) λ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
212
+ page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
213
+ page_content='5) OSCILLATORY INTEGRALS FOR MITTAG-LEFFLER FUNCTIONS 9 Now we continue the proof of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
214
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
215
+ page_content=' Let h > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
216
+ page_content=' We use Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
217
+ page_content='2 for the integral J1, to get |J1| ≤ C| ln λ|m∥a∥L∞(U) λ 1 h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
218
+ page_content=' Let consider the integral J2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
219
+ page_content=' If h > 1, then using Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
220
+ page_content='1 we get |J2| ≤ C| ln λ|∥a∥L∞(U) λ 1 h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
221
+ page_content=' If h = 1, using the Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
222
+ page_content='2 we get the inequality (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
223
+ page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
224
+ page_content=' The proof is complete.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
225
+ page_content=' The proof of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
226
+ page_content='2 shows that if h = 1, we can get a more precise result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
227
+ page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
228
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
229
+ page_content=' If h = 1 and f has an extremal point at the point (0,0) (then f is diffeomorhic equivalent to x2 1 + x2 2 or −x2 1 − x2 2), then we have |Iα,β| ≤ C| ln λ|∥ψ∥L∞(U) λ , for all λ ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
230
+ page_content=' Declaration of competing interest This work does not have any conflicts of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
231
+ page_content=' Acknowledgements The second author was supported in parts by the FWO Odysseus 1 grant G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
232
+ page_content='0H94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
233
+ page_content='18N: Analysis and Partial Differential Equations and by the Methusalem programme of the Ghent University Special Research Fund (BOF) (Grant number 01M01021) and also supported by EPSRC grant EP/R003025/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
234
+ page_content=' Data availability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
235
+ page_content=' The manuscript has no associated data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
236
+ page_content=' References [1] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
237
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
238
+ page_content=' Agarwal, A propos d’une note de M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
239
+ page_content='Pierre Humbert, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
240
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
241
+ page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
242
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
243
+ page_content=' Paris, 236, 2031-2032 (1953).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
244
+ page_content=' [2] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
245
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
246
+ page_content=' Arkhipov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
247
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
248
+ page_content=' Karatsuba, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
249
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
250
+ page_content=' Chubarikov, Theory of multiple trigonometric sums, - Moscow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
251
+ page_content=' Nauka, 1987, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
252
+ page_content=' 357.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
253
+ page_content=' [3] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
254
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
255
+ page_content=' Arnold, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
256
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
257
+ page_content=' Gusein-Zade, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
258
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
259
+ page_content=' Varchenko, Singularities of Differentiable Maps, Birkhauser, Boston Basel · Stuttgart, 1985.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
260
+ page_content=' [4] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
261
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
262
+ page_content=' Dzherbashyan, On the asymtotic expansion of a function of Mittag-Leffler type, Akad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
263
+ page_content=' Nauk Armjan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
264
+ page_content=' SSR Doklady.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
265
+ page_content=' 19, 65-72 (1954, in Russian).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
266
+ page_content=' [5] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
267
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
268
+ page_content=' Dzherbashyan, On integral representation of functions continuous on given rays (gener- alization of the Fourier integrals), Izvestija Akad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
269
+ page_content=' Nauk SSSR Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
270
+ page_content=' Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
271
+ page_content=' 18, 427-448 (1954, in Russian).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
272
+ page_content=' [6] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
273
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
274
+ page_content=' Dzherbashyan, On Abelian summation of the eneralized integral transform, Akad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
275
+ page_content=' Nauk Armjan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
276
+ page_content=' SSR Izvestija, fiz-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
277
+ page_content=' estest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
278
+ page_content=' techn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
279
+ page_content='nauki.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
280
+ page_content=' 7(6), 1-26 (1954, in Russian).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
281
+ page_content=' [7] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
282
+ page_content=' Green, Uniform oscillatory integral estimates for convex phases via sublevel set estimates, arxiv: 2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
283
+ page_content='05395v1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
284
+ page_content=' [8] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
285
+ page_content=' Greenblat, Oscillatory integral decay, sublevel set growth and the Newton polyhedron, // Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
286
+ page_content=' Annalen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
287
+ page_content=' - 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
288
+ page_content=' - V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
289
+ page_content='346, № 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
290
+ page_content=' - p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
291
+ page_content='857-890.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
292
+ page_content=' [9] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
293
+ page_content=' Gorenflo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
294
+ page_content=' Kilbas, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
295
+ page_content=' Mainardi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
296
+ page_content=' Rogosin, Mittag-Leffler functions, related topics and applications, Springer Monographs in Mathematics, Springer-Verlag Berlin Heidelberg (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
297
+ page_content=' [10] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
298
+ page_content=' Humbert, Quelques r´esultats relatifs `a la fonction de Mittag-Leffler, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
299
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
300
+ page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
301
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
302
+ page_content=' Paris, 236, 1467-1468 (1953).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
303
+ page_content=' 10 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
304
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
305
+ page_content='IKROMOV, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
306
+ page_content='RUZHANSKY, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
307
+ page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
308
+ page_content='SAFAROV [11] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
309
+ page_content=' Humbert, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
310
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
311
+ page_content=' Agarwal, Sur la fonction de Mittag-Leffler et quelquenes de ses g´en`eralisationes, Bull.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
312
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
313
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
314
+ page_content=' (Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
315
+ page_content='II).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
316
+ page_content='77, 180-185 (1953).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
317
+ page_content=' [12] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
318
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
319
+ page_content=' Ikromov and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
320
+ page_content=' M¨uller, On adapted coordinate systems, Transactions of the American Mathematical Society, 2011, 363(6), P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
321
+ page_content=' 2821—2848.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
322
+ page_content=' [13] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
323
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
324
+ page_content=' Ikromov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
325
+ page_content=' Kempe, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
326
+ page_content=' M¨uller, Estimates for maximal functions associated with hyper- surfaces in R3 and related problems of harmonic analysis, Acta mathematica, 2010, 204 (2), 151–271.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
327
+ page_content=' [14] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
328
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
329
+ page_content=' Ikromov and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
330
+ page_content=' M¨uller, Fourier Restriction for Hypersurfaces in Three Dimensions and Newton Polyhedra, Annals of Mathematics Studies 194, Princeton Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
331
+ page_content=' Press, Princeton and Oxford, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
332
+ page_content=' [15] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
333
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
334
+ page_content=' Ikromov, Invariant estimates of two-dimensional trigonometric integrals, Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
335
+ page_content=' USSR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
336
+ page_content=' Sb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
337
+ page_content=' 76 (1990), 473–488.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
338
+ page_content=' [16] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
339
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
340
+ page_content=' Karpushkin, Uniform estimates for oscillatory integrals with parabolic or hyperbolic phase, // Proceedings of the I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
341
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
342
+ page_content=' Petrovsky Seminar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
343
+ page_content=' Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
344
+ page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
345
+ page_content=' 1983.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
346
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
347
+ page_content=' 3-39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
348
+ page_content=' (Russian) [17] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
349
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
350
+ page_content=' Karpushkin, Uniform estimates of oscillating integrals in R2, Dokl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
351
+ page_content=' Academy of Sciences of the USSR, 254 (1980), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
352
+ page_content='1, 28–31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
353
+ page_content=' (Russian) [18] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
354
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
355
+ page_content=' Mittag-Leffler, Sur l’int´egrale de Laplace-Abel, Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
356
+ page_content=' Rend.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
357
+ page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
358
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
359
+ page_content=' Paris 135, 937– 939 (1902).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
360
+ page_content=' [19] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
361
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
362
+ page_content=' Mittag-Leffler, Une g´en´eralization de l’int´egrale de Laplace-Abel, Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
363
+ page_content=' Rend.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
364
+ page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
365
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
366
+ page_content=' Paris 136, 537-539 (1903).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
367
+ page_content=' [20] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
368
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
369
+ page_content=' Mittag-Leffler, Sur la nouvelle fonction Eα(x), Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
370
+ page_content=' Rend.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
371
+ page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
372
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
373
+ page_content=' Paris 137, 554- 558 (1903).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
374
+ page_content=' [21] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
375
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
376
+ page_content=' Mittag-Leffler, Sopra la funzione Eα(x), Rend.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
377
+ page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
378
+ page_content='Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
379
+ page_content='Lincei, (Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
380
+ page_content='5)13, 3-5 (1904).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
381
+ page_content=' [22] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
382
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
383
+ page_content=' Phong and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
384
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
385
+ page_content=' Stein, The Newton polyhedron and oscillatory integral operator, Acta Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
386
+ page_content=' 179(1), 1997, 105-152.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
387
+ page_content=' [23] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
388
+ page_content=' Podlubny, Fractional Differensial Equations, Academic Press, New York, 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
389
+ page_content=' [24] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
390
+ page_content=' Ruzhansky, Pointwise van der Corput Lemma for Functions of Several Variables, Functional Analysis and Its Applications, 43 (2009), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
391
+ page_content='1, 75–77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
392
+ page_content=' [25] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
393
+ page_content=' Ruzhansky, Multidimensional decay in the van der Corput Lemma, Studia Mathematica, 208 (2012), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
394
+ page_content='1, 1–9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
395
+ page_content=' [26] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
396
+ page_content=' Ruzhansky, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
397
+ page_content=' Torebek, Van der Corput lemmas for Mittag-Leffler functions, Fractional Calculus and Applied Analysis, 23 (6), (2021), 1663–1677.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
398
+ page_content=' [27] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
399
+ page_content=' Ruzhansky, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
400
+ page_content=' Torebek, Van der Corput lemmas for Mittag-Leffler functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
401
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
402
+ page_content=' α−directions , Bull.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
403
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
404
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
405
+ page_content=', 171 (2021), 103016, 23 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
406
+ page_content=' [28] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
407
+ page_content=' Ruzhansky, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
408
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
409
+ page_content=' Safarov, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
410
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
411
+ page_content=' Khasanov, Uniform estimates for oscillatory integrals with homogeneous polynomial phases of degree 4, Analysis and Mathematical Physics, 12(130), (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
412
+ page_content=' [29] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
413
+ page_content=' Safarov, Invariant estimates of two-dimensional oscillatory integrals // Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
414
+ page_content=' Notes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
415
+ page_content=' 104, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
416
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
417
+ page_content='293–302.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
418
+ page_content=' [30] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
419
+ page_content=' Safarov, On invariant estimates for oscillatory integrals with polynomial phase, // J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
420
+ page_content=' Sib.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
421
+ page_content=' Fed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
422
+ page_content=' Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
423
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
424
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
425
+ page_content=' 9 (2016), P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
426
+ page_content='102–107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
427
+ page_content=' [31] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
428
+ page_content=' Safarov, On a problem of restriction of Fourier transform on a hypersurface // Russian Mathematics, 63 (4), P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
429
+ page_content='57-63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
430
+ page_content=' [32] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
431
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
432
+ page_content=' Safarov, Estimates for Mittag-–Leffler Functions with Smooth Phase Depending on Two Variables, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
433
+ page_content=' Sib.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
434
+ page_content=' Fed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
435
+ page_content=' Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
436
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
437
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
438
+ page_content=', 15(4) (2022), P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
439
+ page_content='459-–466.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
440
+ page_content=' [33] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
441
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
442
+ page_content=' Varchenko, Newton polyhedra and estimation of oscillating integrals //Functional Analysis and Its Applications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
443
+ page_content=' 10, pages 175-–196 (1976).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
444
+ page_content=' [34] Van der Korput, Zur Methode der stationaren phase// Compositio Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
445
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
446
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
447
+ page_content=' 1934.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
448
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
449
+ page_content=' 15-38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
450
+ page_content=' OSCILLATORY INTEGRALS FOR MITTAG-LEFFLER FUNCTIONS 11 Isroil A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
451
+ page_content=' Ikromov V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
452
+ page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
453
+ page_content=' Romanovsky Institute of Mathematics of the Academy of Sciences of Uzbekistan Olmazor district, University 46, Tashkent, Uzbekistan Samarkand State University Department of Mathematics, 15 University Boulevard Samarkand, 140104, Uzbekistan Email address: ikromov1@rambler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
454
+ page_content='ru Michael Ruzhansky Department of Mathematics: Analysis, Logic and Discrete Mathematics Ghent University, Krijgslaan 281, Ghent, Belgium, School of Mathematical Sciences, Queen Mary University of London, United Kingdom Email address: michael.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
455
+ page_content='ruzhansky@ugent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
456
+ page_content='be Akbar R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
457
+ page_content='Safarov Uzbek-Finnish Pedagogical Institute Spitamenshox 166, Samarkand, Uzbekistan Samarkand State University Department of Mathematics, 15 University Boulevard Samarkand, 140104, Uzbekistan Email address: safarov-akbar@mail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
458
+ page_content='ru' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E3T4oBgHgl3EQfSwmi/content/2301.04436v1.pdf'}
.gitattributes CHANGED
@@ -3731,3 +3731,67 @@ stE2T4oBgHgl3EQffQeV/content/2301.03925v1.pdf filter=lfs diff=lfs merge=lfs -tex
3731
  sdE0T4oBgHgl3EQfbAAV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3732
  B9E5T4oBgHgl3EQfTg8R/content/2301.05536v1.pdf filter=lfs diff=lfs merge=lfs -text
3733
  stE2T4oBgHgl3EQffQeV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3731
  sdE0T4oBgHgl3EQfbAAV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3732
  B9E5T4oBgHgl3EQfTg8R/content/2301.05536v1.pdf filter=lfs diff=lfs merge=lfs -text
3733
  stE2T4oBgHgl3EQffQeV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3734
+ yNAzT4oBgHgl3EQfd_yt/content/2301.01430v1.pdf filter=lfs diff=lfs merge=lfs -text
3735
+ zNFRT4oBgHgl3EQfjjf7/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3736
+ dNE0T4oBgHgl3EQfWgC_/content/2301.02280v1.pdf filter=lfs diff=lfs merge=lfs -text
3737
+ ANE0T4oBgHgl3EQfPgBb/content/2301.02179v1.pdf filter=lfs diff=lfs merge=lfs -text
3738
+ W9E3T4oBgHgl3EQfFgmY/content/2301.04306v1.pdf filter=lfs diff=lfs merge=lfs -text
3739
+ CNE4T4oBgHgl3EQfFgxh/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3740
+ yNAzT4oBgHgl3EQfd_yt/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3741
+ 7dE1T4oBgHgl3EQf7QV5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3742
+ B9E5T4oBgHgl3EQfTg8R/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3743
+ _tAyT4oBgHgl3EQfqvix/content/2301.00549v1.pdf filter=lfs diff=lfs merge=lfs -text
3744
+ 8dFQT4oBgHgl3EQf4jbF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3745
+ 4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf filter=lfs diff=lfs merge=lfs -text
3746
+ 4NE4T4oBgHgl3EQfAwuD/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3747
+ 09AyT4oBgHgl3EQfoPj8/content/2301.00506v1.pdf filter=lfs diff=lfs merge=lfs -text
3748
+ cdA0T4oBgHgl3EQfGv9r/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3749
+ rNE1T4oBgHgl3EQfiwTR/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3750
+ QtA0T4oBgHgl3EQfDf99/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3751
+ XNAzT4oBgHgl3EQf1v6R/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3752
+ W9E3T4oBgHgl3EQfFgmY/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3753
+ p9E5T4oBgHgl3EQfkw_7/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3754
+ GNFJT4oBgHgl3EQfDyxI/content/2301.11435v1.pdf filter=lfs diff=lfs merge=lfs -text
3755
+ JtAzT4oBgHgl3EQfIPso/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3756
+ itAyT4oBgHgl3EQf-_qA/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3757
+ 8dFQT4oBgHgl3EQf4jbF/content/2301.13432v1.pdf filter=lfs diff=lfs merge=lfs -text
3758
+ t9AzT4oBgHgl3EQfBvof/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3759
+ CNE4T4oBgHgl3EQfFgxh/content/2301.04886v1.pdf filter=lfs diff=lfs merge=lfs -text
3760
+ ZtE3T4oBgHgl3EQf2QvF/content/2301.04754v1.pdf filter=lfs diff=lfs merge=lfs -text
3761
+ OdE1T4oBgHgl3EQfaAQ0/content/2301.03156v1.pdf filter=lfs diff=lfs merge=lfs -text
3762
+ QtA0T4oBgHgl3EQfDf99/content/2301.02004v1.pdf filter=lfs diff=lfs merge=lfs -text
3763
+ S9E5T4oBgHgl3EQfag-J/content/2301.05589v1.pdf filter=lfs diff=lfs merge=lfs -text
3764
+ IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf filter=lfs diff=lfs merge=lfs -text
3765
+ wtE3T4oBgHgl3EQf_AuU/content/2301.04831v1.pdf filter=lfs diff=lfs merge=lfs -text
3766
+ ENAyT4oBgHgl3EQfevhN/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3767
+ qtAyT4oBgHgl3EQfzvl6/content/2301.00706v1.pdf filter=lfs diff=lfs merge=lfs -text
3768
+ cdA0T4oBgHgl3EQfGv9r/content/2301.02051v1.pdf filter=lfs diff=lfs merge=lfs -text
3769
+ eNE1T4oBgHgl3EQfeQRR/content/2301.03204v1.pdf filter=lfs diff=lfs merge=lfs -text
3770
+ wdAzT4oBgHgl3EQfdfz3/content/2301.01423v1.pdf filter=lfs diff=lfs merge=lfs -text
3771
+ rtAyT4oBgHgl3EQfZvdA/content/2301.00228v1.pdf filter=lfs diff=lfs merge=lfs -text
3772
+ ZdAyT4oBgHgl3EQfifhm/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3773
+ 1NFQT4oBgHgl3EQfETVZ/content/2301.13237v1.pdf filter=lfs diff=lfs merge=lfs -text
3774
+ jtFMT4oBgHgl3EQf6DFB/content/2301.12458v1.pdf filter=lfs diff=lfs merge=lfs -text
3775
+ IdAyT4oBgHgl3EQfffja/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3776
+ z9AyT4oBgHgl3EQfbfcG/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3777
+ QdAzT4oBgHgl3EQfW_xa/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3778
+ n9E5T4oBgHgl3EQfIQ5K/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3779
+ FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf filter=lfs diff=lfs merge=lfs -text
3780
+ 09AyT4oBgHgl3EQfoPj8/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3781
+ jtFMT4oBgHgl3EQf6DFB/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3782
+ JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf filter=lfs diff=lfs merge=lfs -text
3783
+ n9E5T4oBgHgl3EQfIQ5K/content/2301.05447v1.pdf filter=lfs diff=lfs merge=lfs -text
3784
+ JNE2T4oBgHgl3EQfAAax/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3785
+ M9FPT4oBgHgl3EQflTVS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3786
+ U9E2T4oBgHgl3EQfXgeS/content/2301.03845v1.pdf filter=lfs diff=lfs merge=lfs -text
3787
+ x9FST4oBgHgl3EQfSzhz/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3788
+ GNFJT4oBgHgl3EQfDyxI/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3789
+ S9E5T4oBgHgl3EQfag-J/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3790
+ ANE2T4oBgHgl3EQfnAgQ/content/2301.04003v1.pdf filter=lfs diff=lfs merge=lfs -text
3791
+ D9A0T4oBgHgl3EQfAv_u/content/2301.01968v1.pdf filter=lfs diff=lfs merge=lfs -text
3792
+ GNFKT4oBgHgl3EQfbi5K/content/2301.11812v1.pdf filter=lfs diff=lfs merge=lfs -text
3793
+ KdE1T4oBgHgl3EQfYgTD/content/2301.03140v1.pdf filter=lfs diff=lfs merge=lfs -text
3794
+ ANE2T4oBgHgl3EQfnAgQ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3795
+ ndA0T4oBgHgl3EQfJv-v/content/2301.02095v1.pdf filter=lfs diff=lfs merge=lfs -text
3796
+ 1NFQT4oBgHgl3EQfETVZ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3797
+ GNFKT4oBgHgl3EQfbi5K/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
09AyT4oBgHgl3EQfoPj8/content/2301.00506v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:400818c34c0ffe5009fbb18b3691923a7756d0ec7a6cdea2745e5681794c6121
3
+ size 2475065
09AyT4oBgHgl3EQfoPj8/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0676aebfb8d4efb4fe78ec256b88ca422f40a04efb5a8d3a2db0e68998646a70
3
+ size 7602221
09AyT4oBgHgl3EQfoPj8/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2f0455a4699c8e253435cc7d2e7aa8f1cb5796c7e893404783b77246a9fa88c
3
+ size 270090
0dFAT4oBgHgl3EQfCRwI/content/tmp_files/2301.08408v1.pdf.txt ADDED
@@ -0,0 +1,602 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ IDENTITY MASKING WITH EYE ENHANCEMENT
2
+ 1
3
+ Identity masking effectiveness and gesture
4
+ recognition: Effects of eye enhancement in seeing
5
+ through the mask
6
+ Madeline Rachow∗, Thomas Karnowski† and Alice J. O’Toole‡
7
+ ∗University of Arkansas
8
+ † Oak Ridge National Laboratory
9
+ ∗ The University of Texas at Dallas
10
11
+ Abstract—Face identity masking algorithms developed in re-
12
+ cent years aim to protect the privacy of people in video
13
+ recordings. These algorithms are designed to interfere with
14
+ identification, while preserving information about facial actions.
15
+ An important challenge is to preserve subtle actions in the eye
16
+ region, while obscuring the salient identity cues from the eyes. We
17
+ evaluated the effectiveness of identity-masking algorithms based
18
+ on Canny filters, applied with and without eye enhancement, for
19
+ interfering with identification and preserving facial actions. In
20
+ Experiments 1 and 2, we tested human participants’ ability to
21
+ match the facial identity of a driver in a low resolution video to
22
+ a high resolution facial image. Results showed that both masking
23
+ methods impaired identification, and that eye enhancement did
24
+ not alter the effectiveness of the Canny filter mask. In Experiment
25
+ 3, we tested action preservation and found that neither method in-
26
+ terfered significantly with driver action perception. We conclude
27
+ that relatively simple, filter-based masking algorithms, which are
28
+ suitable for application to low quality video, can be used in
29
+ privacy protection without compromising action perception.
30
+ Index Terms—identity-masking, face recognition, privacy, hu-
31
+ man visual perception, driver behavior, de-identification, action
32
+ preservation.
33
+ I. INTRODUCTION
34
+ Video recordings for security and surveillance are now
35
+ ubiquitous in public and private spaces. This has lead to a
36
+ pressing need to develop face identity masking algorithms
37
+ aimed at protecting the privacy of people in the recordings.
38
+ Facial identity masking technology also needs to preserve
39
+ the facial actions (gestures and expressions) of those being
40
+ photographed for applications that require action classification
41
+ without identification. Understanding and measuring the extent
42
+ to which identity-masking algorithms effectively accomplish
43
+ both goals is a challenging problem. Because identification
44
+ and action classification are tasks that can be done accurately
45
+ by humans, the success of masking algorithms cannot be eval-
46
+ uated comprehensively without examining human perception.
47
+ Human identification and gesture categorization of identity-
48
+ masked faces have been examined previously [1]. The effec-
49
+ tiveness of eight different identity masking algorithms was
50
+ evaluated using human perception and a deep convolutional
51
+ neural network (DCNN) trained for face identification. Human
52
+ participants and the DCNN were tested with videos taken of
53
+ drivers actively operating a motor vehicle. For the human ex-
54
+ periment, people studied high-resolution images of the drivers
55
+ to learn their identities and were tested on their recognition
56
+ of those drivers in low-resolution videos. Test videos were
57
+ low resolution and showed drivers actively operating a motor
58
+ vehicle. Videos were either unmasked or masked by one
59
+ of eight algorithms, including methods that rely on Facial
60
+ Action Transfer (FAT) (cf., [2], [3]), a DMask [4], Canny
61
+ filtering [5], and Scharr filtering [6]. The results showed that
62
+ all of the algorithms reduced human face recognition accuracy.
63
+ Moreover, people made their recognition decisions with a
64
+ conservative response bias (i.e., a tendency to indicate that
65
+ they did not recognize drivers, when they were uncertain).
66
+ This bias indicates that the participants had low confidence in
67
+ their identification decisions—supporting the effectiveness of
68
+ the masking methods.
69
+ In the machine evaluation of that test [1], the DCNN
70
+ matched identities between the high-resolution images and
71
+ masked videos, and between the unmasked and masked
72
+ videos. DCNN performance matching high-resolution images
73
+ to masked and unmasked videos showed a pattern of poor
74
+ performance approximately comparable to human behavior—
75
+ echoing the effectiveness of the masking algorithms for both
76
+ humans and the CNN. The results showed that even simple
77
+ methods, such as edge-detection, can impair identification
78
+ performance.
79
+ It is worth noting that more sophisticated methods than
80
+ filtering have been developed for identity masking, including
81
+ generative adversarial networks, GANS (e.g., [7]). However,
82
+ these techniques can only be applied to high quality (frontal)
83
+ images and are computationally intense, which limits their util-
84
+ ity for high volume throughput (e.g., videos). Many important
85
+ applications of face identity masking must deal with large
86
+ quantities of low resolution, poor quality video. Therefore,
87
+ there is a need to consider the effectiveness of simpler methods
88
+ that can be applied in these less controlled circumstances.
89
+ The present work builds on previous work [1], with the
90
+ goal of looking more carefully at the role the eyes play in
91
+ facilitating face recognition in the context of identity mask-
92
+ ing. Simple filtering operations can preserve eye information,
93
+ which is both valuable for gesture recognition, but may also
94
+ inadvertently boost face recognition by people. Specifically,
95
+ in human perception experiments, the eye region of the face
96
+ is known to support particularly good face recognition (e.g.,
97
+ arXiv:2301.08408v1 [cs.CV] 20 Jan 2023
98
+
99
+ IDENTITY MASKING WITH EYE ENHANCEMENT
100
+ 2
101
+ Fig. 1: Example stimuli from the mask conditions. a. Canny+Eyezoom; b. (left) Unmasked, (right) Canny
102
+ [8]). In this study, we tested whether eye enhancement of an
103
+ identity masked face would increase human face identification
104
+ performance. To that end, we created a set of stimuli in which
105
+ the eye region was localized, expanded in size, and enhanced
106
+ with a Scharr filter [6]. We compared face identification in
107
+ three masking conditions: 1.) unmasked driver videos, 2.)
108
+ driver videos masked with the Canny method [5], and 3.)
109
+ a combination method that showed the Canny-masked video
110
+ with an inset of the Scharr-enhanced eye region. See Figure 1
111
+ for an example of the stimulus conditions. Note that we chose
112
+ the Canny method filter for our masking algorithm, because
113
+ it is relatively simple, easy to implement, and is effective for
114
+ both identity-masking and action preservation [1].
115
+ In the first and second experiments, we focused on the
116
+ effectiveness of identity masking. Videos were either shown
117
+ unmasked (unaltered), masked solely with Canny, or masked
118
+ with Canny and Canny+EyeZoom (see details, section II-B).
119
+ The third experiment examined action preservation in these
120
+ conditions.
121
+ A. Study contributions
122
+ • Masking the face of a driver in a video using a Canny
123
+ filter effectively impairs face identification by comparison
124
+ to an unmasked video.
125
+ • Enhancing and enlarging the eye region (Eyezoom of the
126
+ face) and masking it with a Schaar filter does not alter
127
+ the effectiveness of the Canny filter mask.
128
+ • Facial actions are preserved, in large part, when drivers’
129
+ faces are masked with both the Canny and Canny +
130
+ Eyezoom manipulations.
131
+ II. METHODS
132
+ A. Dataset
133
+ Stimuli for the present experiment came from a set of
134
+ driver videos in the Head Pose Validation (HPV) database.
135
+ The HPV dataset was created to emulate data from the SHRP2-
136
+ Naturalistic Driving Study (SHRP2-NDS) database [9], which
137
+ is not easily available for research applications. The SHRP2-
138
+ NDS database is nearly unique in the range of imaging con-
139
+ ditions encompassed in the data. It includes approximately 2
140
+ petabytes of video from approximately 3, 400 drivers obtained
141
+ over 1 to 2 years of observation. However, the dynamic video
142
+ nature of the dataset provides for highly salient, personally
143
+ identifiable, information about the drivers. The dataset is
144
+ characterized by extreme illumination conditions (e.g., night-
145
+ time shadowing, day-time bright spots, or illumination via
146
+ transient headlights as a car turns). There is also the problem
147
+ of quick driver movements (e.g., head turns and other actions
148
+ which are very common in real-world driving).
149
+ The HPV dataset used in the present study includes low-
150
+ resolution videos of people actively driving a car or performing
151
+ staged actions typical while driving, such as using a cellphone
152
+ and putting on headwear or glasses. The video resolution is
153
+ 356 × 240 pixels, with a frame rate of 14.98 frames per second.
154
+ Each video segment was edited to 4s and masks were applied
155
+ to the segments for direct comparison of mask effectiveness
156
+ across conditions. Video length ranged from 1-4s depending on
157
+ the type of action (looking left, looking right, looking down).
158
+ The video segment lengths were identical for each identity
159
+ across conditions.
160
+ B. Conditions
161
+ The three masking conditions tested were implemented, as
162
+ follows:
163
+
164
+ a
165
+ b.IDENTITY MASKING WITH EYE ENHANCEMENT
166
+ 3
167
+ • unmasked - drivers’ faces were unaltered.
168
+ • Canny mask - drivers’ faces were altered by applying
169
+ a series of processes aimed at producing optimal edge
170
+ detection, including the use of a Gaussian smoothing
171
+ filter, a set of gradient-based edge detectors to enhance
172
+ edges in the image, and then non-maximum suppression,
173
+ threshold, and tracking to produce thin, refined edges.
174
+ • Eyezoom condition– drivers’ faces were first masked
175
+ with the Canny process. Then the eyes were detected in
176
+ the original image using the retinaface algorithm [10].
177
+ The original image was then expanded and masked with a
178
+ Schaar filter, and the region around the eye detection was
179
+ cropped. Finally the Canny-masked face was presented
180
+ in an inset showing the Schaar-filtered, zoomed eyes (see
181
+ Fig. II-B).
182
+ III. EXPERIMENT I: EFFECT OF EYEZOOM MASKING
183
+ METHOD
184
+ In Experiment 1, we investigated the effectiveness of the
185
+ Canny and Canny+Eyezoom filters at masking the identities
186
+ of drivers in low-resolution videos.
187
+ A. Participants
188
+ A total of 30 (11 male, 18 female, 1 other) undergraduate
189
+ student volunteers (ages 18-34) from the University of Texas
190
+ at Dallas (UTD) participated in the study in exchange for
191
+ research credit. All human experimental procedures were
192
+ approved by UTD’s Institutional Review Board.
193
+ B. Procedure
194
+ The experiment was composed of 72 trials in which a video
195
+ stimulus was displayed in the top center of the screen. The
196
+ response options were presented below the video and showed
197
+ two faces and silhouette (see Figure 2). Participants were asked
198
+ to select the face image that matched the driver in the video or
199
+ to select the silhouette if neither of the two images matched the
200
+ driver. In target-present trials (n = 36), one of the two faces
201
+ matched the driver. In target-absent trials (n = 36), neither of
202
+ the two faces matched the driver. In all cases, the two face
203
+ images presented as options showed similar-looking identities
204
+ from the dataset. Each of the dataset’s 36 identities was shown
205
+ twice, once with the correct response being one of the target-
206
+ present choices and once with the correct response being the
207
+ target-absent choice.
208
+ The video segments were shown in random order and looped
209
+ until the subjects responded. Subjects were assigned randomly
210
+ to one of the three masking conditions, with the unmasked
211
+ condition serving as a control for general recognition success.
212
+ Subjects were asked to determine whether the identity in the
213
+ video matched one of the two identity images shown or if the
214
+ identity was absent from the identity images shown.
215
+ C. Outcome Measures
216
+ 1) Accuracy: Accuracy was assessed in two ways using a
217
+ signal detection-type calculation based on d’. This measure
218
+ depends on the proportion of hits p(hit) and false alarms
219
+ p(false alarms), as follows:
220
+ d′ = z(p(hit)) − z(p(false alarms),
221
+ where the z refers to the z-score.
222
+ In this experiment, hits were defined as target-present trials
223
+ in which participants correctly recognized a driver as the
224
+ matched-identity response choice. The design of the response
225
+ options in the experiment offered two ways to compute false
226
+ alarms. Specifically, false alarms can be defined as: a.) target-
227
+ present trials in which the participant choose the incorrect
228
+ identity; and/or b.) incorrect target-absent trials in which
229
+ neither image showed the identity (i.e., participants chose one
230
+ of the face images, when neither was an identity match to the
231
+ video). Because both options are consistent with the concept
232
+ of a false alarm, in what follows, we included both types of
233
+ false alarms (a and b) in the accuracy computation.
234
+ D. Results
235
+ 1) Accuracy: Figure 3 shows the average d’ for each mask
236
+ condition. These values indicate that faces in the unmasked
237
+ condition were identified moderately well, but face recognition
238
+ in both masked conditions was significantly impaired. The
239
+ negative d’ values for the masked conditions are unusual
240
+ and suggest that participants used a systematically incorrect
241
+ decision strategy, which we will investigate further in Section
242
+ III-D2.
243
+ A one-factor Analysis of Variance (ANOVA) was performed
244
+ on accuracy (d’), with mask condition as the independent
245
+ variable. The resulting model yielded a main effect of mask
246
+ condition on d’, F(2, 27) = 11.03, p < .001. When comparing
247
+ the conditions, d’ accuracy was significantly higher in the
248
+ unmasked condition than in the masked conditions, with no
249
+ significant difference between the two masked conditions. This
250
+ suggests that Canny and ORNL masking are not significantly
251
+ less effective when used together than Canny masking alone.
252
+ As is clear from the Fig. 3, participant performance was more
253
+ variable in the Eyezoom condition.
254
+ 2) Response Distribution: To further investigate the finding
255
+ of negative d’s, we examined the proportion of responses
256
+ allocated to each response type (face images chosen versus
257
+ no identity chosen). The pattern of responses is shown for
258
+ each mask type in Figure 4, with separate graphs for target-
259
+ present (correct identity was available as a choice) and target-
260
+ absent (correct identity was not available as a choice) trials.
261
+ For the unmasked condition, the graphs show a standard
262
+ (relatively accurate) pattern of responses as a function of
263
+ whether the target was present or absent. The graphs for
264
+ the masked conditions show inaccurate performance, but also
265
+ suggest that participants did not systematically choose the no-
266
+ identity match when a match was present, but instead often
267
+ chose the wrong face as the identity match.
268
+ We conclude tentatively that performance in the masked
269
+ conditions was very poor indicating the effectiveness of the
270
+ masks for preventing identification. However, given the un-
271
+ usual performance in the masked condition (i.e., negative d’s),
272
+
273
+ IDENTITY MASKING WITH EYE ENHANCEMENT
274
+ 4
275
+ Fig. 2: Example trial in Experiment 1.
276
+ Fig. 3: Experiment 1 accuracy, measured as d’ across
277
+ conditions. Results show that both masking algorithms were
278
+ equally effective.
279
+ we retested the conditions with a design that eliminates the
280
+ possibility of response bias.
281
+ IV. EXPERIMENT II: EFFECT OF EYEZOOM MASKING
282
+ METHOD WITH A FORCED-CHOICE TASK
283
+ In this experiment, we used a two-alternative forced choice
284
+ (2AFC) task to test masking effectiveness. In the 2AFC, two
285
+ faces are presented as response options. In all cases, one of
286
+ the two images will be the same identity as the person in the
287
+ video.
288
+ A. Participants
289
+ A total of 30 (7 male, 22 female, 1 other) undergraduate
290
+ student volunteers (ages 18-26) from UTD participated in the
291
+ study in exchange for research credit.
292
+ B. Procedure
293
+ The experiment consisted of 72 trials. The video stimulus
294
+ was displayed in the top center of the screen with the two
295
+ face images beneath it. Participants were asked to determine
296
+ which of the two face images matched the identity shown
297
+ in the video. To make the task challenging, the two faces
298
+ presented had a similar appearance and were of the same race
299
+ and gender. An example trial is shown in Fig. 5.
300
+ Each of the dataset’s 36 identities was shown twice, once
301
+ with the correct response as the left-located option and once
302
+ with the correct response as the right-located option. The
303
+ video segments were shown in random order and looped until
304
+ the subjects responded. Participants were assigned randomly
305
+ to one of the three masking conditions, with the unmasked
306
+ condition serving as a baseline condition for identification
307
+ accuracy.
308
+ C. Results
309
+ Accuracy was assessed as the proportion of correct re-
310
+ sponses. Fig. 6 shows the proportion of correct responses
311
+ for each mask condition. These values indicate that face
312
+ recognition in the unmasked condition was more accurate
313
+ than face recognition in the masked conditions. A one-factor
314
+ ANOVA was performed on the accuracy data (proportion of
315
+ correct responses), with condition as the independent variable.
316
+ The model yielded a main effect of mask condition on
317
+
318
+ ?
319
+ Press "" if the person in the
320
+ Press "2" if the person in the
321
+ Press "3" if the person in the video
322
+ video is the person on the left.
323
+ video is the person in the middle.
324
+ is NOT either of the two people picturedcondition
325
+ unmasked
326
+ canny
327
+ eyezoom
328
+ -1
329
+ -2
330
+ conditionIDENTITY MASKING WITH EYE ENHANCEMENT
331
+ 5
332
+ Fig. 4: Proportion of responses by trial type in Experiment I.
333
+ proportion of correct responses, F(2, 27) = 9.68, p < .001.
334
+ As in the first experiment, participants were more accurate in
335
+ the unmasked condition than in the masked conditions, and
336
+ performed comparably for the two masked conditions.
337
+ The results replicate the pattern of performance across
338
+ conditions found for Experiment 1. As expected with a 2AFC
339
+ task, performance was more accurate in all three conditions
340
+ than it was in Experiment 1. Notably, average identification
341
+ was above chance in both masked conditions. Performance in
342
+ the Eyezoom condition was more variable than performance
343
+ in the Canny mask condition—replicating a similar finding in
344
+ Experiment I.
345
+ We conclude that the masks strongly inhibit identification,
346
+ but that when forced to guess between two images (with the
347
+ assurance that one was an identity match), participants fared
348
+ better than chance. Notwithstanding, applications of identity
349
+ masking would rarely if ever be able to assure a human or ma-
350
+ chine system that one of two candidates was an identity match.
351
+ Our goal in applying this method here was to test examine the
352
+ role of response bias in the unusual pattern of results found in
353
+ Experiment 1. The present results suggest that these masking
354
+ algorithms leave behind some residual identity information in
355
+ the face that humans can exploit when the response decision
356
+ is highly constrained. As noted, it is unlikely that that would
357
+
358
+ Unmasked Target Present Trials
359
+ Unmasked Target Absent Trials
360
+ 1.00
361
+ response
362
+ 1.00
363
+ response
364
+ responses
365
+ chose either identity
366
+ chose either identity
367
+ 0.75
368
+ chose no identity
369
+ chose no identity
370
+ 09'0 9.
371
+ prop
372
+ prop
373
+ 0.00
374
+ 0.00
375
+ response
376
+ response
377
+ Canny Target Present Trials
378
+ Canny Target Absent Trials
379
+ 1.00
380
+ response
381
+ 1.00
382
+ response
383
+ responses
384
+ chose either identity
385
+ chose either identity
386
+ 0.75
387
+ chose no identity
388
+ chose no identity
389
+ 090 9
390
+ pro
391
+ pro
392
+ 0.00
393
+ 0.00
394
+ response
395
+ response
396
+ Eyezoom Target Present Trials
397
+ Eyezoom Target Absent Trials
398
+ 1.00
399
+ response
400
+ 1.00
401
+ response
402
+ chose eitheridentity
403
+ chose either identity
404
+ chose noidentit
405
+ chose no identity
406
+ res
407
+ pro
408
+ pro
409
+ 0.00
410
+ 0.00
411
+ response
412
+ responseIDENTITY MASKING WITH EYE ENHANCEMENT
413
+ 6
414
+ Fig. 5: Example trial from Experiment II.
415
+ Fig. 6: Experiment 2 - identification accuracy across
416
+ conditions.
417
+ be the case in any applied scenario, and so we conclude that
418
+ these simple simple filtering procedures provide a reasonably
419
+ high degree of identity protection. Additionally, we conclude,
420
+ albeit more tentatively, that the eyezoom procedure does not
421
+ improve identification significantly over the Canny procedure.
422
+ V. EXPERIMENT III: EFFECT OF EYEZOOM MASKING
423
+ METHOD ON ACTION PRESERVATION
424
+ The effectiveness of the identity protection provided by
425
+ these masks opens the question of whether this protection
426
+ comes at the cost of preserving information about facial
427
+ actions. In this experiment, we examined whether the Canny
428
+ and Canny+Eyezoom mask conditions impaired driver facial
429
+ action perception.
430
+ A. Participants
431
+ A total of 30 (6 male, 23 female, 1 nonbinary) undergradu-
432
+ ate student volunteers (ages 18-30) from UTD participated in
433
+ the study in exchange for research credit.
434
+ B. Procedure
435
+ The experiment consisted of 100 trials, each with three
436
+ response options: a.) driver looking to the left, 2.) driver
437
+ looking to the right, and 3.) driver looking down. Each of the
438
+ 36 identities in the dataset appeared between two and three
439
+ times, each with a different action (looking right, left, down).
440
+ Prior to the start of the main experiment, a pilot test with
441
+ only the unmasked condition was conducted to ensure that the
442
+ actions were identifiable in all videos. This test resulted in the
443
+ elimination of eight (of 108) videos segments in which actions
444
+ were not recognizable at sufficiently high levels of accuracy
445
+ for inclusion in the action preservation study.
446
+ The participants were assigned randomly to one of three
447
+ masking conditions with the unmasked condition providing a
448
+ baseline action recognition accuracy and were asked to identify
449
+ whether the driver was looking to the left, right, or down. The
450
+ video stimuli were shown in the upper center of the screen
451
+ with three written options below. See Fig. 7 for an example
452
+ trial. The clips were played in a random order and looped until
453
+ the participant responded.
454
+ C. Results
455
+ The proportion of correct responses was used to assess accu-
456
+ racy. Fig. 8 shows the proportion of correct responses for each
457
+ mask condition. These values indicate that action preservation
458
+
459
+ Press"1" if the person in the
460
+ Press "2" if the person in the
461
+ videoisthepersonontheleft
462
+ video is the person in the rightcondition
463
+ 0.9
464
+ unmasked
465
+ canny
466
+ eyezoom
467
+ I of correct response
468
+ 0.7
469
+ ortion
470
+ propor
471
+ 0.6
472
+ 0.5
473
+ conditionIDENTITY MASKING WITH EYE ENHANCEMENT
474
+ 7
475
+ Fig. 7: Example trial from Experiment III.
476
+ was generally high, but also suggest a small advantage for
477
+ action perception in the unmasked condition. A one-factor
478
+ ANOVA, performed on the accuracy (proportion of correct
479
+ responses) data, with the independent variable of condition,
480
+ did not show a significant effect, but was generally consistent
481
+ with this conclusion. The model yielded a marginal main
482
+ effect of mask condition on proportion of correct responses,
483
+ F(2, 27) = 2.69, p = 0.086. This suggests a very slight
484
+ advantage for action perception without stimulus masking.
485
+ In conclusion, although the results did not reach statistical
486
+ significance, there is some indication that masking impaired
487
+ action perception.
488
+ VI. DISCUSSION
489
+ Our goal was to examine the effectiveness of simple
490
+ Canny-filtering based masking methods, with and without eye
491
+ enhancement, for interfering with face identification while
492
+ preserving facial actions. In Experiment I, face recognition
493
+ accuracy was diminished for both mask conditions, relative
494
+ to the unmasked condition. There was no difference between
495
+ the Canny mask alone and the mask with eye enhancement. In
496
+ Experiment II, we replicated this result with a 2AFC procedure
497
+ that controlled for response option bias, which may have been
498
+ a factor in the findings of negative ’. values for both masking
499
+ conditions. In combination, both studies point to the relative
500
+ effectiveness of the masks for interfering with identification.
501
+ They also point to the conclusion that eye enhancement did
502
+ not alter this effectiveness. Experiment III showed that facial
503
+ actions were preserved to a similar degree with both masks,
504
+ Fig. 8: ANOVA of proportion of correct responses.
505
+ though there was a marginal advantage for action perception
506
+ in the unmasked condition.
507
+ In summary, these results indicate that Eyezoom masking
508
+ does not significantly increase identification or alter facial
509
+ action preservation.
510
+ ACKNOWLEDGMENT
511
+ This work was supported through collaboration with Oak
512
+ Ridge National Laboratory and the Federal Highway Admin-
513
+
514
+ Press "1" if the person looks toward the driver's side.
515
+ Press "2" if the person looks toward the passenger's side.
516
+ Press "3" if the person looks down.condition
517
+ unmasked
518
+ canny
519
+ eyezoom
520
+ f correct responses
521
+ 0.96
522
+ 0.92
523
+ of
524
+ proportion
525
+ 0.88
526
+ un
527
+ ma
528
+ ez
529
+ conditionIDENTITY MASKING WITH EYE ENHANCEMENT
530
+ 8
531
+ istration under the Exploratory Advanced Research Program.
532
+ The human experiment and analysis was subcontracted to
533
+ the University of Texas at Dallas from Oak Ridge National
534
+ Laboratory.
535
+ This manuscript has been authored in part by UT-Battelle,
536
+ LLC, under contract DE-AC05-00OR22725 with the US De-
537
+ partment of Energy (DOE). The US government retains and
538
+ the publisher, by accepting the article for publication, acknowl-
539
+ edges that the US government retains a nonexclusive, paid-up,
540
+ irrevocable, worldwide license to publish or reproduce the pub-
541
+ lished form of this manuscript, or allow others to do so, for US
542
+ government purposes. DOE will provide public access to these
543
+ results of federally sponsored research in accordance with the
544
+ DOE Public Access Plan (http://energy.gov/downloads/doe-
545
+ public-access-plan).
546
+ REFERENCES
547
+ [1] K. D. O. Hooge, A. Baragchizadeh, T. P. Karnowski, D. S. Bolme,
548
+ R. Ferrell, P. R. Jesudasen, C. D. Castillo, and A. J. O’toole, “Evaluating
549
+ automated face identity-masking methods with human perception and
550
+ a deep convolutional neural network,” ACM Transactions on Applied
551
+ Perception (TAP), vol. 18, no. 1, pp. 1–20, 2020.
552
+ [2] D. Huang and F. De La Torre, “Facial action transfer with personalized
553
+ bilinear regression,” in Computer Vision–ECCV 2012.
554
+ Springer, 2012,
555
+ pp. 144–158.
556
+ [3] X. Xiong and F. De la Torre, “Supervised descent method and its
557
+ applications to face alignment,” in Proceedings of the IEEE conference
558
+ on computer vision and pattern recognition, 2013, pp. 532–539.
559
+ [4] Federal
560
+ Highway
561
+ Administration
562
+ Active
563
+ Project:
564
+ Exploratory
565
+ Advanced
566
+ Research
567
+ Program,
568
+ “DMask:
569
+ A
570
+ reliable
571
+ identity
572
+ masking
573
+ system
574
+ for
575
+ driver
576
+ safety
577
+ video
578
+ data.”
579
+ FHWA-PROJ-
580
+ 14-0054, 2014-2016. [Online]. Available: https://highways.dot.gov/
581
+ dmask-reliable-identity-masking-system-driver-safety-video-data
582
+ [5] J. Canny, “A computational approach to edge detection,” IEEE Transac-
583
+ tions on pattern analysis and machine intelligence, no. 6, pp. 679–698,
584
+ 1986.
585
+ [6] B. J¨ahne, H. Scharr, and S. K¨orkel, “Principles of filter design,”
586
+ Handbook of computer vision and applications, vol. 2, pp. 125–151,
587
+ 1999.
588
+ [7] M. H. Khojaste, N. M. Farid, and A. Nickabadi, “Gmfim: A generative
589
+ mask-guided facial image manipulation model for privacy preservation,”
590
+ 2022.
591
+ [8] J. Royer, C. Blais, I. Charbonneau, K. D´ery, J. Tardif, B. Duchaine,
592
+ F. Gosselin, and D. Fiset, “Greater reliance on the eye region predicts
593
+ better face recognition ability,” Cognition, vol. 181, pp. 12–20, 2018.
594
+ [9] M. Perez, S. Mclaughlin, T. Kondo, J. Antin, J. Mcclafferty, S. Lee,
595
+ J. Hankey, and T. Dingus, “Transportation safety meets big data: the
596
+ shrp 2 naturalistic driving database,” Journal of the Society of Instrument
597
+ and Control Engineers, no. 55.5, pp. 415–421, 2016.
598
+ [10] J. Deng, J. Guo, E. Ververas, I. Kotsia, S. Zafeiriou, and I. FaceSoft,
599
+ “Retinaface: Single-shot multi-level face localization in the wild,” Pro-
600
+ ceedings of the IEEE/CVF conference on computer vision and pattern
601
+ recognition, 2020.
602
+
0dFAT4oBgHgl3EQfCRwI/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,348 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf,len=347
2
+ page_content='IDENTITY MASKING WITH EYE ENHANCEMENT 1 Identity masking effectiveness and gesture recognition: Effects of eye enhancement in seeing through the mask Madeline Rachow∗, Thomas Karnowski† and Alice J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
3
+ page_content=' O’Toole‡ ∗University of Arkansas † Oak Ridge National Laboratory ∗ The University of Texas at Dallas Email: ∗mrachow@uark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
4
+ page_content='edu, †karnowskitp@ornl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
5
+ page_content='gov, ‡otoole@utdallas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
6
+ page_content='edu Abstract—Face identity masking algorithms developed in re- cent years aim to protect the privacy of people in video recordings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
7
+ page_content=' These algorithms are designed to interfere with identification, while preserving information about facial actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
8
+ page_content=' An important challenge is to preserve subtle actions in the eye region, while obscuring the salient identity cues from the eyes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
9
+ page_content=' We evaluated the effectiveness of identity-masking algorithms based on Canny filters, applied with and without eye enhancement, for interfering with identification and preserving facial actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
10
+ page_content=' In Experiments 1 and 2, we tested human participants’ ability to match the facial identity of a driver in a low resolution video to a high resolution facial image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
11
+ page_content=' Results showed that both masking methods impaired identification, and that eye enhancement did not alter the effectiveness of the Canny filter mask.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
12
+ page_content=' In Experiment 3, we tested action preservation and found that neither method in- terfered significantly with driver action perception.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
13
+ page_content=' We conclude that relatively simple, filter-based masking algorithms, which are suitable for application to low quality video, can be used in privacy protection without compromising action perception.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
14
+ page_content=' Index Terms—identity-masking, face recognition, privacy, hu- man visual perception, driver behavior, de-identification, action preservation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
15
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
16
+ page_content=' INTRODUCTION Video recordings for security and surveillance are now ubiquitous in public and private spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
17
+ page_content=' This has lead to a pressing need to develop face identity masking algorithms aimed at protecting the privacy of people in the recordings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
18
+ page_content=' Facial identity masking technology also needs to preserve the facial actions (gestures and expressions) of those being photographed for applications that require action classification without identification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
19
+ page_content=' Understanding and measuring the extent to which identity-masking algorithms effectively accomplish both goals is a challenging problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
20
+ page_content=' Because identification and action classification are tasks that can be done accurately by humans, the success of masking algorithms cannot be eval- uated comprehensively without examining human perception.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
21
+ page_content=' Human identification and gesture categorization of identity- masked faces have been examined previously [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
22
+ page_content=' The effec- tiveness of eight different identity masking algorithms was evaluated using human perception and a deep convolutional neural network (DCNN) trained for face identification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
23
+ page_content=' Human participants and the DCNN were tested with videos taken of drivers actively operating a motor vehicle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
24
+ page_content=' For the human ex- periment, people studied high-resolution images of the drivers to learn their identities and were tested on their recognition of those drivers in low-resolution videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
25
+ page_content=' Test videos were low resolution and showed drivers actively operating a motor vehicle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
26
+ page_content=' Videos were either unmasked or masked by one of eight algorithms, including methods that rely on Facial Action Transfer (FAT) (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
27
+ page_content=', [2], [3]), a DMask [4], Canny filtering [5], and Scharr filtering [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
28
+ page_content=' The results showed that all of the algorithms reduced human face recognition accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
29
+ page_content=' Moreover, people made their recognition decisions with a conservative response bias (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
30
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
31
+ page_content=', a tendency to indicate that they did not recognize drivers, when they were uncertain).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
32
+ page_content=' This bias indicates that the participants had low confidence in their identification decisions—supporting the effectiveness of the masking methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
33
+ page_content=' In the machine evaluation of that test [1], the DCNN matched identities between the high-resolution images and masked videos, and between the unmasked and masked videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
34
+ page_content=' DCNN performance matching high-resolution images to masked and unmasked videos showed a pattern of poor performance approximately comparable to human behavior— echoing the effectiveness of the masking algorithms for both humans and the CNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
35
+ page_content=' The results showed that even simple methods, such as edge-detection, can impair identification performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
36
+ page_content=' It is worth noting that more sophisticated methods than filtering have been developed for identity masking, including generative adversarial networks, GANS (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
37
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
38
+ page_content=', [7]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
39
+ page_content=' However, these techniques can only be applied to high quality (frontal) images and are computationally intense, which limits their util- ity for high volume throughput (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
40
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
41
+ page_content=', videos).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
42
+ page_content=' Many important applications of face identity masking must deal with large quantities of low resolution, poor quality video.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
43
+ page_content=' Therefore, there is a need to consider the effectiveness of simpler methods that can be applied in these less controlled circumstances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
44
+ page_content=' The present work builds on previous work [1], with the goal of looking more carefully at the role the eyes play in facilitating face recognition in the context of identity mask- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
45
+ page_content=' Simple filtering operations can preserve eye information, which is both valuable for gesture recognition, but may also inadvertently boost face recognition by people.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
46
+ page_content=' Specifically, in human perception experiments, the eye region of the face is known to support particularly good face recognition (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
47
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
48
+ page_content=', arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
49
+ page_content='08408v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
50
+ page_content='CV] 20 Jan 2023 IDENTITY MASKING WITH EYE ENHANCEMENT 2 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
51
+ page_content=' 1: Example stimuli from the mask conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
52
+ page_content=' a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
53
+ page_content=' Canny+Eyezoom;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
54
+ page_content=' b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
55
+ page_content=' (left) Unmasked, (right) Canny [8]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
56
+ page_content=' In this study, we tested whether eye enhancement of an identity masked face would increase human face identification performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
57
+ page_content=' To that end, we created a set of stimuli in which the eye region was localized, expanded in size, and enhanced with a Scharr filter [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
58
+ page_content=' We compared face identification in three masking conditions: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
59
+ page_content=') unmasked driver videos, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
60
+ page_content=') driver videos masked with the Canny method [5], and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
61
+ page_content=') a combination method that showed the Canny-masked video with an inset of the Scharr-enhanced eye region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
62
+ page_content=' See Figure 1 for an example of the stimulus conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
63
+ page_content=' Note that we chose the Canny method filter for our masking algorithm, because it is relatively simple, easy to implement, and is effective for both identity-masking and action preservation [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
64
+ page_content=' In the first and second experiments, we focused on the effectiveness of identity masking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
65
+ page_content=' Videos were either shown unmasked (unaltered), masked solely with Canny, or masked with Canny and Canny+EyeZoom (see details, section II-B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
66
+ page_content=' The third experiment examined action preservation in these conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
67
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
68
+ page_content=' Study contributions Masking the face of a driver in a video using a Canny filter effectively impairs face identification by comparison to an unmasked video.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
69
+ page_content=' Enhancing and enlarging the eye region (Eyezoom of the face) and masking it with a Schaar filter does not alter the effectiveness of the Canny filter mask.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
70
+ page_content=' Facial actions are preserved, in large part, when drivers’ faces are masked with both the Canny and Canny + Eyezoom manipulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
71
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
72
+ page_content=' METHODS A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
73
+ page_content=' Dataset Stimuli for the present experiment came from a set of driver videos in the Head Pose Validation (HPV) database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
74
+ page_content=' The HPV dataset was created to emulate data from the SHRP2- Naturalistic Driving Study (SHRP2-NDS) database [9], which is not easily available for research applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
75
+ page_content=' The SHRP2- NDS database is nearly unique in the range of imaging con- ditions encompassed in the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
76
+ page_content=' It includes approximately 2 petabytes of video from approximately 3, 400 drivers obtained over 1 to 2 years of observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
77
+ page_content=' However, the dynamic video nature of the dataset provides for highly salient, personally identifiable, information about the drivers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
78
+ page_content=' The dataset is characterized by extreme illumination conditions (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
79
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
80
+ page_content=', night- time shadowing, day-time bright spots, or illumination via transient headlights as a car turns).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
81
+ page_content=' There is also the problem of quick driver movements (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
82
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
83
+ page_content=', head turns and other actions which are very common in real-world driving).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
84
+ page_content=' The HPV dataset used in the present study includes low- resolution videos of people actively driving a car or performing staged actions typical while driving, such as using a cellphone and putting on headwear or glasses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
85
+ page_content=' The video resolution is 356 × 240 pixels, with a frame rate of 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
86
+ page_content='98 frames per second.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
87
+ page_content=' Each video segment was edited to 4s and masks were applied to the segments for direct comparison of mask effectiveness across conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
88
+ page_content=' Video length ranged from 1-4s depending on the type of action (looking left, looking right, looking down).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
89
+ page_content=' The video segment lengths were identical for each identity across conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
90
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
91
+ page_content=' Conditions The three masking conditions tested were implemented, as follows: a b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
92
+ page_content='IDENTITY MASKING WITH EYE ENHANCEMENT 3 unmasked - drivers’ faces were unaltered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
93
+ page_content=' Canny mask - drivers’ faces were altered by applying a series of processes aimed at producing optimal edge detection, including the use of a Gaussian smoothing filter, a set of gradient-based edge detectors to enhance edges in the image, and then non-maximum suppression, threshold, and tracking to produce thin, refined edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
94
+ page_content=' Eyezoom condition– drivers’ faces were first masked with the Canny process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
95
+ page_content=' Then the eyes were detected in the original image using the retinaface algorithm [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
96
+ page_content=' The original image was then expanded and masked with a Schaar filter, and the region around the eye detection was cropped.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
97
+ page_content=' Finally the Canny-masked face was presented in an inset showing the Schaar-filtered, zoomed eyes (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
98
+ page_content=' II-B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
99
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
100
+ page_content=' EXPERIMENT I: EFFECT OF EYEZOOM MASKING METHOD In Experiment 1, we investigated the effectiveness of the Canny and Canny+Eyezoom filters at masking the identities of drivers in low-resolution videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
101
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
102
+ page_content=' Participants A total of 30 (11 male, 18 female, 1 other) undergraduate student volunteers (ages 18-34) from the University of Texas at Dallas (UTD) participated in the study in exchange for research credit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
103
+ page_content=' All human experimental procedures were approved by UTD’s Institutional Review Board.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
104
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
105
+ page_content=' Procedure The experiment was composed of 72 trials in which a video stimulus was displayed in the top center of the screen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
106
+ page_content=' The response options were presented below the video and showed two faces and silhouette (see Figure 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
107
+ page_content=' Participants were asked to select the face image that matched the driver in the video or to select the silhouette if neither of the two images matched the driver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
108
+ page_content=' In target-present trials (n = 36), one of the two faces matched the driver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
109
+ page_content=' In target-absent trials (n = 36), neither of the two faces matched the driver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
110
+ page_content=' In all cases, the two face images presented as options showed similar-looking identities from the dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
111
+ page_content=' Each of the dataset’s 36 identities was shown twice, once with the correct response being one of the target- present choices and once with the correct response being the target-absent choice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
112
+ page_content=' The video segments were shown in random order and looped until the subjects responded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
113
+ page_content=' Subjects were assigned randomly to one of the three masking conditions, with the unmasked condition serving as a control for general recognition success.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
114
+ page_content=' Subjects were asked to determine whether the identity in the video matched one of the two identity images shown or if the identity was absent from the identity images shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
115
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
116
+ page_content=' Outcome Measures 1) Accuracy: Accuracy was assessed in two ways using a signal detection-type calculation based on d’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
117
+ page_content=' This measure depends on the proportion of hits p(hit) and false alarms p(false alarms), as follows: d′ = z(p(hit)) − z(p(false alarms), where the z refers to the z-score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
118
+ page_content=' In this experiment, hits were defined as target-present trials in which participants correctly recognized a driver as the matched-identity response choice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
119
+ page_content=' The design of the response options in the experiment offered two ways to compute false alarms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
120
+ page_content=' Specifically, false alarms can be defined as: a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
121
+ page_content=') target- present trials in which the participant choose the incorrect identity;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
122
+ page_content=' and/or b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
123
+ page_content=') incorrect target-absent trials in which neither image showed the identity (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
124
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
125
+ page_content=', participants chose one of the face images, when neither was an identity match to the video).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
126
+ page_content=' Because both options are consistent with the concept of a false alarm, in what follows, we included both types of false alarms (a and b) in the accuracy computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
127
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
128
+ page_content=' Results 1) Accuracy: Figure 3 shows the average d’ for each mask condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
129
+ page_content=' These values indicate that faces in the unmasked condition were identified moderately well, but face recognition in both masked conditions was significantly impaired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
130
+ page_content=' The negative d’ values for the masked conditions are unusual and suggest that participants used a systematically incorrect decision strategy, which we will investigate further in Section III-D2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
131
+ page_content=' A one-factor Analysis of Variance (ANOVA) was performed on accuracy (d’), with mask condition as the independent variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
132
+ page_content=' The resulting model yielded a main effect of mask condition on d’, F(2, 27) = 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
133
+ page_content='03, p < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
134
+ page_content='001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
135
+ page_content=' When comparing the conditions, d’ accuracy was significantly higher in the unmasked condition than in the masked conditions, with no significant difference between the two masked conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
136
+ page_content=' This suggests that Canny and ORNL masking are not significantly less effective when used together than Canny masking alone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
137
+ page_content=' As is clear from the Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
138
+ page_content=' 3, participant performance was more variable in the Eyezoom condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
139
+ page_content=' 2) Response Distribution: To further investigate the finding of negative d’s, we examined the proportion of responses allocated to each response type (face images chosen versus no identity chosen).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
140
+ page_content=' The pattern of responses is shown for each mask type in Figure 4, with separate graphs for target- present (correct identity was available as a choice) and target- absent (correct identity was not available as a choice) trials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
141
+ page_content=' For the unmasked condition, the graphs show a standard (relatively accurate) pattern of responses as a function of whether the target was present or absent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
142
+ page_content=' The graphs for the masked conditions show inaccurate performance, but also suggest that participants did not systematically choose the no- identity match when a match was present, but instead often chose the wrong face as the identity match.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
143
+ page_content=' We conclude tentatively that performance in the masked conditions was very poor indicating the effectiveness of the masks for preventing identification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
144
+ page_content=' However, given the un- usual performance in the masked condition (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
145
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
146
+ page_content=', negative d’s), IDENTITY MASKING WITH EYE ENHANCEMENT 4 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
147
+ page_content=' 2: Example trial in Experiment 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
148
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
149
+ page_content=' 3: Experiment 1 accuracy, measured as d’ across conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
150
+ page_content=' Results show that both masking algorithms were equally effective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
151
+ page_content=' we retested the conditions with a design that eliminates the possibility of response bias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
152
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
153
+ page_content=' EXPERIMENT II: EFFECT OF EYEZOOM MASKING METHOD WITH A FORCED-CHOICE TASK In this experiment, we used a two-alternative forced choice (2AFC) task to test masking effectiveness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
154
+ page_content=' In the 2AFC, two faces are presented as response options.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
155
+ page_content=' In all cases, one of the two images will be the same identity as the person in the video.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
156
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
157
+ page_content=' Participants A total of 30 (7 male, 22 female, 1 other) undergraduate student volunteers (ages 18-26) from UTD participated in the study in exchange for research credit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
158
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
159
+ page_content=' Procedure The experiment consisted of 72 trials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
160
+ page_content=' The video stimulus was displayed in the top center of the screen with the two face images beneath it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
161
+ page_content=' Participants were asked to determine which of the two face images matched the identity shown in the video.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
162
+ page_content=' To make the task challenging, the two faces presented had a similar appearance and were of the same race and gender.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
163
+ page_content=' An example trial is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
164
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
165
+ page_content=' Each of the dataset’s 36 identities was shown twice, once with the correct response as the left-located option and once with the correct response as the right-located option.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
166
+ page_content=' The video segments were shown in random order and looped until the subjects responded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
167
+ page_content=' Participants were assigned randomly to one of the three masking conditions, with the unmasked condition serving as a baseline condition for identification accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
168
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
169
+ page_content=' Results Accuracy was assessed as the proportion of correct re- sponses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
170
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
171
+ page_content=' 6 shows the proportion of correct responses for each mask condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
172
+ page_content=' These values indicate that face recognition in the unmasked condition was more accurate than face recognition in the masked conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
173
+ page_content=' A one-factor ANOVA was performed on the accuracy data (proportion of correct responses), with condition as the independent variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
174
+ page_content=' The model yielded a main effect of mask condition on ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
175
+ page_content=' Press "" if the person in the Press "2" if the person in the Press "3" if the person in the video video is the person on the left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
176
+ page_content=' video is the person in the middle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
177
+ page_content=' is NOT either of the two people picturedcondition unmasked canny eyezoom 1 2 conditionIDENTITY MASKING WITH EYE ENHANCEMENT 5 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
178
+ page_content=' 4: Proportion of responses by trial type in Experiment I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
179
+ page_content=' proportion of correct responses, F(2, 27) = 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
180
+ page_content='68, p < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
181
+ page_content='001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
182
+ page_content=' As in the first experiment, participants were more accurate in the unmasked condition than in the masked conditions, and performed comparably for the two masked conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
183
+ page_content=' The results replicate the pattern of performance across conditions found for Experiment 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
184
+ page_content=' As expected with a 2AFC task, performance was more accurate in all three conditions than it was in Experiment 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
185
+ page_content=' Notably, average identification was above chance in both masked conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
186
+ page_content=' Performance in the Eyezoom condition was more variable than performance in the Canny mask condition—replicating a similar finding in Experiment I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
187
+ page_content=' We conclude that the masks strongly inhibit identification, but that when forced to guess between two images (with the assurance that one was an identity match), participants fared better than chance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
188
+ page_content=' Notwithstanding, applications of identity masking would rarely if ever be able to assure a human or ma- chine system that one of two candidates was an identity match.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
189
+ page_content=' Our goal in applying this method here was to test examine the role of response bias in the unusual pattern of results found in Experiment 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
190
+ page_content=' The present results suggest that these masking algorithms leave behind some residual identity information in the face that humans can exploit when the response decision is highly constrained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
191
+ page_content=' As noted, it is unlikely that that would Unmasked Target Present Trials Unmasked Target Absent Trials 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
192
+ page_content='00 response 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
193
+ page_content='00 response responses chose either identity chose either identity 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
194
+ page_content="75 chose no identity chose no identity 09'0 9." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
195
+ page_content=' prop prop 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
196
+ page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
197
+ page_content='00 response response Canny Target Present Trials Canny Target Absent Trials 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
198
+ page_content='00 response 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
199
+ page_content='00 response responses chose either identity chose either identity 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
200
+ page_content='75 chose no identity chose no identity 090 9 pro pro 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
201
+ page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
202
+ page_content='00 response response Eyezoom Target Present Trials Eyezoom Target Absent Trials 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
203
+ page_content='00 response 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
204
+ page_content='00 response chose eitheridentity chose either identity chose noidentit chose no identity res pro pro 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
205
+ page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
206
+ page_content='00 response responseIDENTITY MASKING WITH EYE ENHANCEMENT 6 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
207
+ page_content=' 5: Example trial from Experiment II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
208
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
209
+ page_content=' 6: Experiment 2 - identification accuracy across conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
210
+ page_content=' be the case in any applied scenario, and so we conclude that these simple simple filtering procedures provide a reasonably high degree of identity protection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
211
+ page_content=' Additionally, we conclude, albeit more tentatively, that the eyezoom procedure does not improve identification significantly over the Canny procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
212
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
213
+ page_content=' EXPERIMENT III: EFFECT OF EYEZOOM MASKING METHOD ON ACTION PRESERVATION The effectiveness of the identity protection provided by these masks opens the question of whether this protection comes at the cost of preserving information about facial actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
214
+ page_content=' In this experiment, we examined whether the Canny and Canny+Eyezoom mask conditions impaired driver facial action perception.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
215
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
216
+ page_content=' Participants A total of 30 (6 male, 23 female, 1 nonbinary) undergradu- ate student volunteers (ages 18-30) from UTD participated in the study in exchange for research credit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
217
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
218
+ page_content=' Procedure The experiment consisted of 100 trials, each with three response options: a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
219
+ page_content=') driver looking to the left, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
220
+ page_content=') driver looking to the right, and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
221
+ page_content=') driver looking down.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
222
+ page_content=' Each of the 36 identities in the dataset appeared between two and three times, each with a different action (looking right, left, down).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
223
+ page_content=' Prior to the start of the main experiment, a pilot test with only the unmasked condition was conducted to ensure that the actions were identifiable in all videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
224
+ page_content=' This test resulted in the elimination of eight (of 108) videos segments in which actions were not recognizable at sufficiently high levels of accuracy for inclusion in the action preservation study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
225
+ page_content=' The participants were assigned randomly to one of three masking conditions with the unmasked condition providing a baseline action recognition accuracy and were asked to identify whether the driver was looking to the left, right, or down.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
226
+ page_content=' The video stimuli were shown in the upper center of the screen with three written options below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
227
+ page_content=' See Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
228
+ page_content=' 7 for an example trial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
229
+ page_content=' The clips were played in a random order and looped until the participant responded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
230
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
231
+ page_content=' Results The proportion of correct responses was used to assess accu- racy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
232
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
233
+ page_content=' 8 shows the proportion of correct responses for each mask condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
234
+ page_content=' These values indicate that action preservation Press"1" if the person in the Press "2" if the person in the videoisthepersonontheleft video is the person in the rightcondition 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
235
+ page_content='9 unmasked canny eyezoom I of correct response 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
236
+ page_content='7 ortion propor 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
237
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
238
+ page_content='5 conditionIDENTITY MASKING WITH EYE ENHANCEMENT 7 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
239
+ page_content=' 7: Example trial from Experiment III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
240
+ page_content=' was generally high, but also suggest a small advantage for action perception in the unmasked condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
241
+ page_content=' A one-factor ANOVA, performed on the accuracy (proportion of correct responses) data, with the independent variable of condition, did not show a significant effect, but was generally consistent with this conclusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
242
+ page_content=' The model yielded a marginal main effect of mask condition on proportion of correct responses, F(2, 27) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
243
+ page_content='69, p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
244
+ page_content='086.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
245
+ page_content=' This suggests a very slight advantage for action perception without stimulus masking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
246
+ page_content=' In conclusion, although the results did not reach statistical significance, there is some indication that masking impaired action perception.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
247
+ page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
248
+ page_content=' DISCUSSION Our goal was to examine the effectiveness of simple Canny-filtering based masking methods, with and without eye enhancement, for interfering with face identification while preserving facial actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
249
+ page_content=' In Experiment I, face recognition accuracy was diminished for both mask conditions, relative to the unmasked condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
250
+ page_content=' There was no difference between the Canny mask alone and the mask with eye enhancement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
251
+ page_content=' In Experiment II, we replicated this result with a 2AFC procedure that controlled for response option bias, which may have been a factor in the findings of negative ’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
252
+ page_content=' values for both masking conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
253
+ page_content=' In combination, both studies point to the relative effectiveness of the masks for interfering with identification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
254
+ page_content=' They also point to the conclusion that eye enhancement did not alter this effectiveness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
255
+ page_content=' Experiment III showed that facial actions were preserved to a similar degree with both masks, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
256
+ page_content=' 8: ANOVA of proportion of correct responses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
257
+ page_content=' though there was a marginal advantage for action perception in the unmasked condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
258
+ page_content=' In summary, these results indicate that Eyezoom masking does not significantly increase identification or alter facial action preservation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
259
+ page_content=' ACKNOWLEDGMENT This work was supported through collaboration with Oak Ridge National Laboratory and the Federal Highway Admin- Press "1" if the person looks toward the driver\'s side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
260
+ page_content=' Press "2" if the person looks toward the passenger\'s side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
261
+ page_content=' Press "3" if the person looks down.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
262
+ page_content='condition unmasked canny eyezoom f correct responses 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
263
+ page_content='96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
264
+ page_content='92 of proportion 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
265
+ page_content='88 un ma ez conditionIDENTITY MASKING WITH EYE ENHANCEMENT 8 istration under the Exploratory Advanced Research Program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
266
+ page_content=' The human experiment and analysis was subcontracted to the University of Texas at Dallas from Oak Ridge National Laboratory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
267
+ page_content=' This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US De- partment of Energy (DOE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
268
+ page_content=' The US government retains and the publisher, by accepting the article for publication, acknowl- edges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the pub- lished form of this manuscript, or allow others to do so, for US government purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
269
+ page_content=' DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
270
+ page_content='gov/downloads/doe- public-access-plan).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
271
+ page_content=' REFERENCES [1] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
272
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
273
+ page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
274
+ page_content=' Hooge, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
275
+ page_content=' Baragchizadeh, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
276
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
277
+ page_content=' Karnowski, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
278
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
279
+ page_content=' Bolme, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
280
+ page_content=' Ferrell, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
281
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
282
+ page_content=' Jesudasen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
283
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
284
+ page_content=' Castillo, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
285
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
286
+ page_content=' O’toole, “Evaluating automated face identity-masking methods with human perception and a deep convolutional neural network,” ACM Transactions on Applied Perception (TAP), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
287
+ page_content=' 18, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
288
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
289
+ page_content=' 1–20, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
290
+ page_content=' [2] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
291
+ page_content=' Huang and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
292
+ page_content=' De La Torre, “Facial action transfer with personalized bilinear regression,” in Computer Vision–ECCV 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
293
+ page_content=' Springer, 2012, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
294
+ page_content=' 144–158.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
295
+ page_content=' [3] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
296
+ page_content=' Xiong and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
297
+ page_content=' De la Torre, “Supervised descent method and its applications to face alignment,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2013, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
298
+ page_content=' 532–539.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
299
+ page_content=' [4] Federal Highway Administration Active Project: Exploratory Advanced Research Program, “DMask: A reliable identity masking system for driver safety video data.” FHWA-PROJ- 14-0054, 2014-2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
300
+ page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
301
+ page_content=' Available: https://highways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
302
+ page_content='dot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
303
+ page_content='gov/ dmask-reliable-identity-masking-system-driver-safety-video-data [5] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
304
+ page_content=' Canny, “A computational approach to edge detection,” IEEE Transac- tions on pattern analysis and machine intelligence, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
305
+ page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
306
+ page_content=' 679–698, 1986.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
307
+ page_content=' [6] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
308
+ page_content=' J¨ahne, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
309
+ page_content=' Scharr, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
310
+ page_content=' K¨orkel, “Principles of filter design,” Handbook of computer vision and applications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
311
+ page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
312
+ page_content=' 125–151, 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
313
+ page_content=' [7] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
314
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
315
+ page_content=' Khojaste, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
316
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
317
+ page_content=' Farid, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
318
+ page_content=' Nickabadi, “Gmfim: A generative mask-guided facial image manipulation model for privacy preservation,” 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
319
+ page_content=' [8] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
320
+ page_content=' Royer, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
321
+ page_content=' Blais, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
322
+ page_content=' Charbonneau, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
323
+ page_content=' D´ery, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
324
+ page_content=' Tardif, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
325
+ page_content=' Duchaine, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
326
+ page_content=' Gosselin, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
327
+ page_content=' Fiset, “Greater reliance on the eye region predicts better face recognition ability,” Cognition, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
328
+ page_content=' 181, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
329
+ page_content=' 12–20, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
330
+ page_content=' [9] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
331
+ page_content=' Perez, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
332
+ page_content=' Mclaughlin, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
333
+ page_content=' Kondo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
334
+ page_content=' Antin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
335
+ page_content=' Mcclafferty, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
336
+ page_content=' Lee, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
337
+ page_content=' Hankey, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
338
+ page_content=' Dingus, “Transportation safety meets big data: the shrp 2 naturalistic driving database,” Journal of the Society of Instrument and Control Engineers, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
339
+ page_content=' 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
340
+ page_content='5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
341
+ page_content=' 415–421, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
342
+ page_content=' [10] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
343
+ page_content=' Deng, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
344
+ page_content=' Guo, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
345
+ page_content=' Ververas, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
346
+ page_content=' Kotsia, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
347
+ page_content=' Zafeiriou, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
348
+ page_content=' FaceSoft, “Retinaface: Single-shot multi-level face localization in the wild,” Pro- ceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dFAT4oBgHgl3EQfCRwI/content/2301.08408v1.pdf'}
19FQT4oBgHgl3EQf1zZe/content/tmp_files/2301.13421v1.pdf.txt ADDED
@@ -0,0 +1,2036 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MOAT: Towards Safe BPF Kernel Extension
2
+ Hongyi Lu1,2, Shuai Wang2,∗, Yechang Wu1, Wanning He1, Fengwei Zhang1,∗
3
+ 1Southern University of Science and Technology
4
+ 2Hong Kong University of Science and Technology
5
+ Abstract
6
+ The Linux kernel makes considerable use of Berkeley Packet
7
+ Filter (BPF) to allow user-written BPF applications to execute
8
+ in the kernel space. BPF employs a verifier to statically check
9
+ the security of user-supplied BPF code. Recent attacks show
10
+ that BPF programs can evade security checks and gain unau-
11
+ thorized access to kernel memory, indicating that the verifica-
12
+ tion process is not flawless. In this paper, we present MOAT,
13
+ a system that isolates potentially malicious BPF programs
14
+ using Intel Memory Protection Keys (MPK). Enforcing BPF
15
+ program isolation with MPK is not straightforward; MOAT
16
+ is carefully designed to alleviate technical obstacles, such
17
+ as limited hardware keys and supporting a wide variety of
18
+ kernel BPF helper functions. We have implemented MOAT
19
+ in a prototype kernel module, and our evaluation shows that
20
+ MOAT delivers low-cost isolation of BPF programs under
21
+ various real-world usage scenarios, such as the isolation of a
22
+ packet-forwarding BPF program for the memcached database
23
+ with an average throughput loss of 6%.
24
+ 1
25
+ Introduction
26
+ It is common to extend kernel functionality by allowing user
27
+ applications to download code into the kernel space. In 1993,
28
+ the well-known Berkeley Packet Filter (BPF) was introduced
29
+ for this purpose [4]. The classic BPF is an infrastructure
30
+ that inspects network packets and decides whether or not
31
+ to forward or discard them. With the introduction of its ex-
32
+ tended version (referred to as eBPF) in the Linux kernel, BPF
33
+ soon became more powerful and is now utilized in numerous
34
+ real-life scenarios, such as load balancing, scheduling, and
35
+ auditing [18, 22, 28, 52, 62, 63].
36
+ To ensure security, BPF is equipped with a verifier [6].
37
+ The verifier performs a variety of static analyses to ensure
38
+ the user-supplied code is secure. For instance, the verifier
39
+ tracks the bounds of all pointers to prevent an out-of-bound
40
+ access. Given that BPF code runs directly within the kernel,
41
+ ∗Shuai Wang and Fengwei Zhang are the corresponding authors.
42
+ the verifier becomes crucial for the BPF security. Neverthe-
43
+ less, as pointed out by recent studies [25, 31, 32, 50, 60], the
44
+ currently available verifier has various limitations, and is in-
45
+ sufficient for the overall security of BPF. First, the current
46
+ BPF ecosystem supports a variety of kernel functionalities
47
+ with over 200 dedicated APIs [2], resulting in a complicated
48
+ verification process. Even though the verifier’s correctness has
49
+ been formally proved [59], the gap between abstraction and
50
+ implementation may still result in vulnerabilities [35–41, 43].
51
+ Second, BPF Just-In-Time (JIT) is currently supported on
52
+ multiple platforms, including x86, ARM, and RISC-V, whose
53
+ differences frequently result in subtle vulnerabilities [44, 45];
54
+ note that the verifier cannot detect vulnerabilities in the JIT
55
+ stage. Third, due to the rapid expansion of BPF capabilities,
56
+ the verifier has to be frequently updated. Nonetheless, it is
57
+ inherently difficult to frequently update a complex static veri-
58
+ fication tool without introducing new vulnerabilities [42]. To
59
+ date, the BPF subsystem has been constantly exploited. For
60
+ instance, two privileged-escalation vulnerabilities have been
61
+ discovered in the implementation of bpf_ringbuf, a rather
62
+ new BPF feature introduced in 2020 [4]. Further, the veri-
63
+ fier’s register-value tracking is quite complex and has been
64
+ bypassed by several severe vulnerabilities [35–38].
65
+ Given the increasing security threats in BPF and the chal-
66
+ lenge of enforcing safe BPF programs with merely static
67
+ verification, we seek to employ hardware extensions to sand-
68
+ box untrusted BPF programs. In particular, we leverage Intel
69
+ Memory Protection Keys (MPK) [9], an emerging hardware
70
+ extension which partitions memory into distinct permission
71
+ groups by assigning up to 16 keys to their Page Table En-
72
+ trys (PTEs). With the aid of MPK and the BPF verifier’s
73
+ analysis results, we present MOAT, which isolates untrusted
74
+ BPF programs in a low-cost and principled manner. For in-
75
+ stance, two MPK protection keys K and E may be assigned to
76
+ the kernel and a BPF program, respectively. When the kernel
77
+ transfers control to the BPF program, it can set K as access-
78
+ disabled to prevent the potentially malicious BPF program
79
+ from tampering with kernel memory regions.
80
+ Despite its promising potential, we observe that using MPK
81
+ 1
82
+ arXiv:2301.13421v1 [cs.CR] 31 Jan 2023
83
+
84
+ tracepoint
85
+ packet filter
86
+ schduler
87
+ tracepoint
88
+ packet filter
89
+ schduler
90
+ User
91
+ Application
92
+ Kernel
93
+ packet filter
94
+ schduler
95
+ tracepoint
96
+ BPF Programs
97
+ BPF Bytecode
98
+ Verifier
99
+ Maps
100
+ Helpers
101
+ call bpf_pid
102
+ ...
103
+ log next_sched
104
+ ret next_sched
105
+ Kernel
106
+ BPF (Runtime) Utilities
107
+ BPF Bytecode
108
+ BPF Compiler
109
+ Figure 1: BPF overview. We illustrate the BPF compilation procedure, and the execution context of a sample BPF program attached to the
110
+ kernel scheduler. Note that BPF verification is conducted at the BPF bytecode loading time.
111
+ to enforce BPF isolation is not straightforward. MOAT is de-
112
+ liberately designed to overcome two major technical hurdles.
113
+ First, Intel MPK provides a maximum of 16 keys. Thus, it
114
+ becomes challenging to support many BPF programs running
115
+ concurrently with this limited number of hardware keys. Exist-
116
+ ing workarounds like key virtualization [51] are incompatible
117
+ with the BPF scenario and challenging to be implemented in
118
+ kernel. This is because the key virtualization heavily relies on
119
+ scheduling and notification facilities that are only available
120
+ to userspace; directly reusing them in the kernel space may
121
+ largely block kernel threads. To address this hurdle, we pro-
122
+ pose a novel dynamic/fixed key allocation scheme that can
123
+ support multiple BPF programs with a small overhead.
124
+ Second, while MPK-based hardware isolation mitigates ma-
125
+ licious BPF programs, helper functions provided by the BPF
126
+ subsystem may be exploited by attackers. Overall, the growth
127
+ of the BPF ecosystem is accompanied by the expansion of its
128
+ dedicated helper functions; helper functions facilitate various
129
+ tasks commonly conducted by a BPF program. On one hand,
130
+ MOAT should allow benign BPF programs to freely use these
131
+ helpers. On the other hand, MOAT must be cautious enough
132
+ with these APIs to ensure they are not exploited by attackers.
133
+ Given that there are over 200 helpers [2] provided in the latest
134
+ Linux kernel, designing individual security policy for each
135
+ of them is impractical and less extensible. To this end, we
136
+ analyze all existing helpers with static dependency-analysis,
137
+ and propose several general defense schemes, each of which
138
+ is applicable to a group of helpers. We envision that when
139
+ a new helper is added, MOAT can be applied easily without
140
+ introducing new schemes.
141
+ To evaluate the security impact of MOAT, we systemati-
142
+ cally examined how MOAT mitigates attack surfaces due to
143
+ untrusted BPF programs. We also empirically analyze all
144
+ recent CVEs within MOAT’s application scope. The result
145
+ shows that MOAT successfully mitigates each CVE. More-
146
+ over, we evaluate the performance overhead of MOAT under
147
+ representative and edge-case scenarios. First, we examine the
148
+ performance of our dynamic/fixed key allocation policy by
149
+ assessing a use case where multiple programs are executed
150
+ concurrently to use all MPK keys. Then, we build a real-
151
+ life port-forwarding BPF program for the memcached [24]
152
+ database, and secure it with MOAT to measure how MOAT
153
+ influences memcached’s throughput. Furthermore, we apply
154
+ MOAT to several real-world BPF applications [52] to illus-
155
+ trate that MOAT can be directly applied to the current BPF
156
+ ecosystem with minimal engineering effort. MOAT’s worst
157
+ case performance overhead in all these experiments is less
158
+ than 30%, which is acceptable given the security benefits
159
+ MOAT provides. Moreover, MOAT imposes only 6% over-
160
+ head on average to the memcache’s throughput. In sum, we
161
+ make the following contributions.
162
+ • Instead of merely relying on BPF verifiers to statically
163
+ validate untrusted BPF programs, this paper for the first
164
+ time advocates to isolate user-supplied BPF programs with
165
+ an emerging hardware extension, Intel MPK.
166
+ • Technically, MOAT is specially designed to address domain-
167
+ specific challenges including limited hardware keys and
168
+ protecting over 200 helper functions in the BPF ecosystem.
169
+ • We implement a prototype of MOAT as a Loadable Kernel
170
+ Module (LKM) of the latest Linux (v5.19) and conduct a
171
+ thorough evaluation of its security and performance. The
172
+ evaluation shows that MOAT delivers a principled security
173
+ guarantee with moderate performance penalty.
174
+ 2
175
+ Background
176
+ 2.1
177
+ Berkeley Packet Filter (BPF)
178
+ BPF Overview. BPF [4] was originally introduced to facili-
179
+ tate flexible network package filtering. Instead of inspecting
180
+ packages in the userspace, users can provide BPF instructions
181
+ specifying package filter rules, which are directly executed in
182
+ the kernel. This allows configurable package filtering without
183
+ costly context switching and data copying. Modern Linux
184
+ kernel features extended BPF (eBPF), a Linux subsystem,
185
+ which supports a wide range of use cases such as kernel pro-
186
+ filing, load balancing, and firewalls.1 Popular applications like
187
+ Docker [34], web browsers [30, 48], and kernel debugging
188
+ utilities like Kprobes [8] are built on top of BPF.
189
+ Fig. 1 depicts an overview of how BPF programs are com-
190
+ piled and then deployed. The eBPF subsystem offers ten
191
+ general-purpose 64-bit registers, memory stack, eBPF cus-
192
+ tomized data structures (often referred to as eBPF maps), and
193
+ a set of eBPF helper functions. To use eBPF (e.g., for ker-
194
+ nel profiling), users can first write their own BPF programs
195
+ (in C code) to specify the functionality. The BPF programs
196
+ will then be compiled into BPF bytecode and downloaded
197
+ into the kernel. Given that eBPF code is written by untrusted
198
+ 1While there are indeed two variants of BPF: classic BPF (cBPF) and
199
+ eBPF, cBPF is internally converted into the latter variant by the kernel.
200
+ 2
201
+
202
+ users, the kernel employs a verifier to conduct several checks
203
+ during the bytecode loading time (see below). By default,
204
+ the bytecode is executed by the BPF interpreter (omitted in
205
+ Fig. 1). Additionally, depending on the kernel configuration
206
+ and architectural support, an optional JIT compilation may
207
+ be applied to the bytecode for better performance. The BPF
208
+ bytecode is then attached to certain kernel components, based
209
+ on its specific end goal. For instance, as shown in Fig. 1, a
210
+ BPF program attached to kernel scheduler collects relevant
211
+ statistics and decides which thread should be running next to
212
+ improve overall performance.
213
+ - len < INSN_MAX
214
+ - no loop
215
+ - no dead code
216
+ - no OOB jmp
217
+ Unverified
218
+ CFG
219
+ Check Phase
220
+ Data-Flow
221
+ Check Phase
222
+ - register tracking
223
+ - access check
224
+ - helper check
225
+ - misc fixups
226
+ Verified
227
+ Figure 2: BPF verification process.
228
+ BPF Verifier. BPF programs are written in C, and compiled
229
+ into a RISC-like instruction set. As aforementioned, the kernel
230
+ strictly verifies the BPF programs upon loading to ensure
231
+ that they are safe to execute. Fig. 2 illustrates the verifying
232
+ process in a holistic manner. First, a BPF program is parsed
233
+ into a control flow graph (CFG) by the verifier, which first
234
+ performs a CFG check phase to ensure four key properties:
235
+ 1) the program size is within a limit; 2) there exists no back
236
+ edges (loops) on its CFG; 3) there exists no unreachable
237
+ codes; and 4) all jumps are direct jump and they refer to a
238
+ valid destination. Overall, given that BPF programs must be
239
+ terminated, the CFG check phase ensures that all jumps are
240
+ direct jumps and there are no back edges. Given that said,
241
+ loops are still feasible via unrolling at the cost of binary size.
242
+ The verifier further performs finer-grained data flow anal-
243
+ ysis. It first tracks the value flow of every register to deduce
244
+ its value ranges conservatively. Based on these ranges, the
245
+ verifier can decide if a pointer accesses safe memory regions,
246
+ and if a parameter is valid. Since this analysis is performed
247
+ statically prior to execution, there exists possibility that a ma-
248
+ licious BPF program uses certain operations to bypass this
249
+ analysis [35–41, 43]. Last, the verifier also performs some
250
+ miscellaneous fixups, like rewriting certain instructions to
251
+ simplify the follow-up JIT compilation.
252
+ BPF Maps. Out of security concern, the kernel also sets a
253
+ rather strict space limit on BPF programs. Each program
254
+ by default can only use up to 512 bytes stack space and 10
255
+ registers, which is far from enough for certain BPF programs.
256
+ To address this problem, BPF maps can be allocated and
257
+ provide additional space for BPF programs. Up to now, there
258
+ are over 30 types of maps supported by kernel, such as array
259
+ map and hash map [5]. Moreover, as demonstrated in Fig. 1,
260
+ maps may act as a communication channel between BPF
261
+ programs and user applications, since some of these maps can
262
+ be accessed by both the BPF program and the user application.
263
+ BPF Helpers. Kernel also limits the kernel functions a BPF
264
+ program may call. Those functions are dubbed BPF helper
265
+ functions, as shown in Fig. 1. Up to now, there are over 200
266
+ helpers scattered across subsystems of the kernel [2]. Note
267
+ that depending on the specific task, a BPF program can usually
268
+ call a group of relevant helpers. For example, a BPF program
269
+ attached to the scheduler is not allowed to call any helper
270
+ related to kernel probing, but it can call bpf_pid2 to obtain
271
+ the PID of the current process and chooses which process to
272
+ be scheduled next.
273
+ 00
274
+ 01
275
+ ...
276
+ 10
277
+ 00
278
+ 32
279
+ 0
280
+ PKR
281
+ PTE[62:59] = 0xF
282
+ PTE[62:59] = 0xE
283
+ PTE[62:59] = 0x1
284
+ PKR Entry Options
285
+ 00
286
+ Access Enable (EN)
287
+ 01
288
+ Access Disabled (AD)
289
+ 10
290
+ Write Disabled (WD)
291
+ 11
292
+ Access Disabled (AD)
293
+ Page Table Entry
294
+ Figure 3: Intel MPK overview.
295
+ Intel MPK. Intel introduces MPK [9] to provide efficient
296
+ page table permissions control. By assigning a MPK protec-
297
+ tion key to each page table entry (PTE) of one process, users
298
+ can enable intra-process isolation and confidential data access
299
+ control [17, 27, 33, 51, 58]. As illustrated in Fig. 3, MPK uses
300
+ four reserved bits [62:59]in each PTE to indicate which pro-
301
+ tection key is attached with this page. Those three PTEs in
302
+ Fig. 3 are assigned with keys 0x1, 0xE and 0xF, respectively.
303
+ Since there are only 4 bits involved, the maximum number
304
+ of keys is 16. Then, a new 32-bit register named Protection
305
+ Key Register (PKR) is introduced to specify the access per-
306
+ mission of these protection keys. Each key occupies two bits
307
+ in PKR, whose values denote either access-disabled (AD) or
308
+ write-disabled (WD), respectively. By writing to certain bits
309
+ in PKR, the access permission of corresponding pages can be
310
+ configured accordingly. It is worth noting that one key may
311
+ be assigned to arbitrary number of pages by modifying their
312
+ PTEs. This facilitates changing the access permission of a
313
+ large number of pages without severe performance penalty.
314
+ Clarification and Notations. As a side note, there are
315
+ actually two versions of Intel MPK. One applies to the
316
+ user-mode while the other applies to the supervisor-mode.
317
+ For brevity, we refer these two versions in their conven-
318
+ tional abbreviations as Protection Key Supervisor (PKS)
319
+ and Protection Key User (PKU), respectively. Most existing
320
+ works [17, 26, 27, 33, 51, 58] are based on PKU. In MOAT,
321
+ we use PKS instead since our goal is to isolate BPF programs,
322
+ which execute in the supervisor-mode. The logistics behind
323
+ these two versions are mostly identical with slight variations.
324
+ For instance, the permission configuration register in PKS is
325
+ a Model Specific Register (MSR) named IA32_PKRS, which
326
+ is inaccessible from userspace, whereas in PKU, this role is
327
+ assigned to a dedicated register PKRU. In addition to PKR,
328
+ there also exists a bit in the control register CR4 that can dis-
329
+ able/enable MPK entirely; for PKU, this bit is CR4.PKE; for
330
+ 2Here, bpf_pid refers to bpf_get_current_pid_tgid.
331
+ 3
332
+
333
+ PKS, this bit is CR4.PKS. To avoid potential misleading, the
334
+ rest of the paper directly refers MPK leveraged by MOAT as
335
+ PKS.
336
+ 3
337
+ Motivation and Assumptions
338
+ 3.1
339
+ Typical Threats to BPF Verifier
340
+ Fast Feature Evolving. As a fast developing technology,
341
+ threats may come from the inconsistency between the con-
342
+ stantly expanding BPF capabilities and the rigorous static
343
+ verification process imposed on them [39, 42]. It is a common
344
+ practice to add corresponding verification procedures simul-
345
+ taneously when introducing new features to BPF programs.
346
+ However, it is very hard to make changes correctly to the BPF
347
+ verifier, a critical security kernel component, which has over
348
+ 10K LoC and a variety of functionalities [6].
349
+ Challenging Pointer Tracking. Second type of threats origi-
350
+ nates from the complexity of pointer tracking mechanism. Al-
351
+ though the correctness of the verifier is formally proved [59],
352
+ there still exist gaps between the implementation and the
353
+ abstraction, especially in some corner cases, such as sign ex-
354
+ tension, truncation, and bit operators [35–41, 43].
355
+ The fact that the contemporary BPF verifier only performs
356
+ static analysis is a severe deficiency, as evidenced by the
357
+ threats noted above. Performing sound and complete static
358
+ analysis toward BPF programs to uncover potential threats is
359
+ fundamentally challenging, and from the disclosed BPF vul-
360
+ nerabilities, we find that there frequently exists a gap between
361
+ verifier’s static analysis results and BPF programs’ runtime
362
+ behavior. For instance, the verifier, based on its static analysis
363
+ results, may conclude that a program is benign because it
364
+ only accesses a memory region ranging from [0x0,0x1000].
365
+ However, by leveraging vulnerabilities like noted above, the
366
+ software may behave differently during execution. Therefore,
367
+ a hardware feature, Intel MPK, is utilized to enforce further
368
+ isolation, such that a BPF program is constrained in its own
369
+ memory regions, and any runtime accesses that violate this
370
+ constraint are effectively flagged and terminated by MOAT.
371
+ 3.2
372
+ Threat Model
373
+ Assumption. Our threat model considers a practical setting
374
+ which is aligned with existing BPF vulnerabilities [35–41, 43].
375
+ In particular, we assume attackers are non-privileged users
376
+ with BPF access, since a root user already has the control over
377
+ almost the entire kernel. Attackers can download their pre-
378
+ pared BPF code into the kernel space to launch exploitation.
379
+ Attacker Capability and Application Scope. MOAT iso-
380
+ lates user-submitted BPF programs and prevent them from
381
+ accessing privileged kernel memory regions. As will be intro-
382
+ duced in Sec. 4, a BPF program is given the minimum neces-
383
+ sary resources and privileges to complete its task. To clarify,
384
+ there are also other more subtle vulnerabilities (not relevant
385
+ to memory exploitations) such as speculation, race condition,
386
+ and DoS occurred to exploit the BPF subsystem [46, 47]; a
387
+ well-isolated BPF program can still launch these attacks to
388
+ jeopardize the BPF subsystem and the kernel. This research
389
+ views them as common security defects shared by many other
390
+ applications such as SGX enclaves [15, 21]. To date, coun-
391
+ termeasures have been deployed by the BPF verifier [11],
392
+ and we assume the standard BPF verifier can handle them
393
+ properly. In contrast, correctly detecting memory-related BPF
394
+ exploitation requires systematic and rigorous static analysis
395
+ over BPF programs and is fundamentally hard for BPF ver-
396
+ ifiers; MOAT enhances mitigating memory-related exploita-
397
+ tions with hardware-assisted isolation. Next, we present anal-
398
+ ysis of three major components in our research context as
399
+ follows.
400
+ BPF Programs. This includes the BPF bytecodes or the JIT-
401
+ emitted native instructions. Our threat model takes the as-
402
+ sumption that malicious BPF programs are able to bypass
403
+ checks statically performed by the verifier; they may thus
404
+ behave maliciously during runtime. Our threat model deems
405
+ BPF programs as untrusted, and MOAT is designed to isolate
406
+ them from the rest of the kernel. More specifically, every BPF
407
+ program, during its runtime, is only allowed to access its own
408
+ stack, allocated maps, and certain helper functions.
409
+ BPF Helper Functions. These helpers act as the interme-
410
+ diate layer between the BPF subsystem and kernel. Certain
411
+ malicious BPF programs can abuse these helpers to perform
412
+ attacks, and therefore, we assume they are also untrusted.
413
+ MOAT mitigates risks raised by adversarial-manipulated
414
+ helper functions with practical defenses.
415
+ Kernel. Kernel is the target to protect. We assume the kernel
416
+ is functioning normally, and attackers aim to leverage mali-
417
+ cious BPF programs to gain unauthorized access to kernel
418
+ data or executing arbitrary privileged kernel code.
419
+ 4
420
+ Design
421
+ MOAT Overview. As motivated in Sec. 3, current security
422
+ design against malicious BPF programs solely relies on the
423
+ static analysis performed by the BPF verifier, which is seen as
424
+ a weak point and exploitable by non-privileged users. MOAT
425
+ instead delivers a principled isolation of BPF programs using
426
+ MPK from the rest part of the kernel and prevent bypasses.
427
+ bpf_lookup_elem
428
+ call bpf_run
429
+ ...
430
+ bpf_delete_elem
431
+ mov %rax, $0x1
432
+ ...
433
+ call bpf_helper
434
+ st %(rax), $0x10
435
+ Helper
436
+ Auditor
437
+ BPF Memory
438
+ ...
439
+ bpf_get_time
440
+ mov %rax, %rbx
441
+ MOAT
442
+ BPF Payload
443
+ Access
444
+ Rules
445
+ Stack
446
+ ...
447
+ Maps
448
+ MPK
449
+ Verifier
450
+ Kernel Memory
451
+ 1
452
+ 2
453
+ 3
454
+ 4
455
+ Figure 4: MOAT overview.
456
+ 4
457
+
458
+ Fig. 4 illustrates the lifecycle of a BPF program with the
459
+ presence of MOAT. 1 Given a user-submitted BPF program
460
+ P, MOAT statically derives the minimum necessary memory
461
+ regions the program needs, such as stack, used maps and
462
+ context by reading metadata from P. 2 These regions (“BPF
463
+ Memory” in Fig. 4) are assigned to P using PKS, forming its
464
+ runtime environment. 3 When the kernel invokes P, MOAT
465
+ configures PKS to constrain P to its own regions and forbids
466
+ its access to other memory regions. 4 On the occasions that P
467
+ requires helper calls to interact with the kernel, depending on
468
+ the helper types, MOAT may adjust involved kernel memory
469
+ region permissions and also validate the helper parameter
470
+ values to prevent helpers from being abused.
471
+ Security Guarantees. Overall, MOAT provides the following
472
+ two key secure design guarantees.
473
+ (i) A BPF program is given the minimum necessary ker-
474
+ nel resources and privileges for completing its task,
475
+ preventing any malicious behavior.
476
+ (ii) The interactions (e.g. helper calls) between the BPF
477
+ program and the kernel are audited thus not abused.
478
+ Extensibility. MOAT leverages MPK, a de facto hardware ex-
479
+ tension available on mainstream Intel architectures to isolate
480
+ BPF programs. We view this design choice is consistent with
481
+ recent hardware-assisted security enforcement works [17, 58].
482
+ Nevertheless, we clarify that the design of MOAT is not lim-
483
+ ited to leveraging MPK. There exist similar hardware security
484
+ mechanisms on other platforms and architectures such as the
485
+ Memory Domains [3] on ARM and the Domain Keys [53]
486
+ on RISC-V. These mechanisms can be used to replace MPK
487
+ on these platforms with a small amount of engineering effort;
488
+ see Sec. 8 for our discussion on migration and extension.
489
+ 4.1
490
+ General BPF Isolation
491
+ In accordance with the BPF program lifecycle depicted in
492
+ Fig. 4, this section elaborates on the general isolation ap-
493
+ proach offered by MOAT. We further discuss two key techni-
494
+ cal challenges in Sec. 4.2.
495
+ 0x0
496
+ ...
497
+ 59
498
+ 62
499
+ Kernel
500
+ BPF
501
+ BPF
502
+ 0x3
503
+ ...
504
+ ...
505
+ Shared by
506
+ &
507
+ Kernel Data
508
+ Kernel Code
509
+ Stack
510
+ Maps
511
+ Context
512
+ Code
513
+ Stack
514
+ Context
515
+ Code
516
+ Shared Maps
517
+ Page Table Entries
518
+ Data Regions
519
+ Runtime PKR Value
520
+ Enable
521
+ 01
522
+ 00
523
+ 01
524
+ 00
525
+ AD
526
+ EN
527
+ EN
528
+ N/A
529
+ AD
530
+ 01
531
+ 01
532
+ 00
533
+ 00
534
+ AD
535
+ EN EN AD
536
+ 8
537
+ ..
538
+ ..
539
+ ..
540
+ ..
541
+ 32
542
+ ...
543
+ 0x2
544
+ ...
545
+ ...
546
+ 0x1
547
+ ...
548
+ ...
549
+ AD Access-Disabled
550
+ EN Access-Enabled
551
+ Figure 5: BPF memory regions.
552
+ 4.1.1
553
+ BPF Memory Regions
554
+ Fig. 5 depicts the memory regions of BPF programs and
555
+ the kernel. By default, all pages should belong to the kernel
556
+ memory region, and each page is initialized with a default
557
+ MPK key value 0. Then, when a BPF program P is newly
558
+ loaded into the kernel, MOAT decides the minimum pages
559
+ it needs, and assigns these amount of pages to the memory
560
+ region of P. Note that the necessary memory sections of a
561
+ BPF program includes its code, stack, and the context; many
562
+ non-trivial BPF programs also require BPF maps (e.g., array
563
+ and hash maps) to use. After assigning these sections to the
564
+ memory region of P, MOAT restricts P to its own memory
565
+ regions by configuring the PKR register. Take the BPF P1 in
566
+ Fig. 5 as an example, most of its sections (including a number
567
+ of BPF maps) solely belong to itself. Furthermore, P1 and
568
+ P2 share several extra BPF maps. Thus, at its runtime, MOAT
569
+ configures the PKR register of P1 to enable its access (EN;
570
+ denoted as 00 in the runtime PKR value column of Fig. 5)
571
+ to its own region 0x1 and the shared region 0x3. Moreover,
572
+ MOAT disables any accesses from P1 to the kernel region 0x0
573
+ and the P2 memory region 0x2 by setting corresponding bits
574
+ in P1’s PKR register as 01 (denoting AD).
575
+ To clarify, the code and map sections of a BPF program
576
+ requires are trivially known (by reading the metadata in the
577
+ BPF program) once it is loaded. Thus, MOAT can assign these
578
+ pages to its designated region by modifying their PTEs during
579
+ the program loading phase without any runtime overhead. The
580
+ assignment for stack, context and some special types of maps
581
+ will be discussed in the next section.
582
+ 4.1.2
583
+ BPF Runtime Environment
584
+ Apart from the program itself and the maps it uses, a BPF
585
+ program requires additional kernel structures to function prop-
586
+ erly. These structures include descriptor tables, stacks, and the
587
+ program’s runtime context. Furthermore, certain maps (such
588
+ as the hash map) are not stored continuously in the kernel
589
+ and cannot be assigned trivially during initialization. MOAT
590
+ assigns entries of this kind of maps on the fly.
591
+ Descriptor Tables. On x86 platforms, descriptor tables such
592
+ as Global Descriptor Table (GDT) and Interrupt Descriptor
593
+ Table (IDT) are essential for basic operations like interrupt.
594
+ These kernel data structures are assigned to a shared region
595
+ that all BPF programs can access. To prevent tampering those
596
+ critical structures, they are made read-only when shared.
597
+ Dedicated Stack. BPF programs require a 512-byte stack
598
+ space to store local variables and function frames. The ver-
599
+ ifier is in charge of determining if a program makes Out of
600
+ Bound (OOB) accesses toward this stack. Thus, when the
601
+ BPF program passes the static checks, its required stack is di-
602
+ rectly allocated from the kernel stack. However, as discussed
603
+ in Sec. 3, certain vulnerabilities may allow BPF programs
604
+ to bypass this check at runtime. Given that this stack is uti-
605
+ lized so frequently, we note that executing dynamic auditing
606
+ 5
607
+
608
+ Table 1: BPF context of common program types.
609
+ Program Type
610
+ Context Type
611
+ Note
612
+ Socket Filter
613
+ __sk_buff *
614
+ Metadata of sk_buff
615
+ Socket Ops
616
+ bpf_sock_ops *
617
+ Socket events (timeout, retransmission, ...)
618
+ XDP
619
+ xdp_md *
620
+ Metadata of xdp_buff
621
+ Kprobe
622
+ pt_regs *
623
+ Register status
624
+ Tracepoints
625
+ Depending on Tracepoint Types
626
+ Relevant Tracepoint information
627
+ Perf Event
628
+ bpf_perf_event_data *
629
+ Perf. event (register status, sample period)
630
+ Cgroup Device
631
+ bpf_cgroup_dev_ctx *
632
+ Device ID, access type (read, write, ...)
633
+ on it, as MOAT does for helper calls (see Sec. 4.2.2), would
634
+ incur an unreasonable level of overhead. Thus, to prevent
635
+ malicious BPF programs from tampering the kernel stack,
636
+ MOAT allocates per-CPU stacks for BPF programs to use. To
637
+ do so, similar to the descriptor tables, these per-CPU stacks
638
+ are shared by all BPF programs running on the same CPU
639
+ core. Consequently, they are also assigned to the shared re-
640
+ gion. To prevent a malicious BPF program from tampering
641
+ stacks of other CPU cores, the stack beginning addresses are
642
+ randomized for each CPU core.
643
+ Runtime Context. The context refers to BPF program param-
644
+ eters, which vary depending on the BPF program types. For
645
+ instance, if the BPF program serves as the filter attached to a
646
+ particular socket, its runtime context is a pointer to the socket
647
+ buffer, which stores packets for the attached socket. Since
648
+ these contexts are not available until runtime, MOAT assigns
649
+ these contexts upon the entry point of each BPF program.
650
+ Table 1 lists common BPF contexts: These contexts are rather
651
+ simple and only a few of them are nested data structures (i.e.,
652
+ containing pointers to other structures). Thus, this assignment
653
+ can be performed efficiently upon each entry point.
654
+ Incontiguous Maps. Despite the fact that there are over 30
655
+ distinct types of maps, their implementations can be roughly
656
+ divided into only two types: Array maps and hash maps.
657
+ The array maps are easy for MOAT to isolate since they
658
+ are stored in a continuous form and of a fixed size. For
659
+ these maps, MOAT determines its isolation when loading
660
+ the BPF programs. The hash maps, however, are stored non-
661
+ contiguously in the memory and can be dynamically expanded
662
+ upon map insertion. This prevents MOAT from determining
663
+ the addresses and sizes of the maps before executing the
664
+ BPF programs. To overcome this issue, MOAT attaches to
665
+ the bpf_map_lookup_elem, which is used to lookup a map
666
+ entry and return its pointer. If the pointer is retrieved from
667
+ an non-contiguous map, the memory to which it points is
668
+ dynamically assigned to the BPF program. These entries are
669
+ returned to the kernel once the program exits.
670
+ 4.1.3
671
+ Lifecycle of a BPF Program
672
+ This section has described how MOAT uses PKS to grant a
673
+ BPF program accesses to its minimum necessary memory
674
+ regions required to complete its task. This protects the ker-
675
+ nel from being attacked by malicious BPF programs while
676
+ allowing benign BPF programs to operate smoothly. We sum-
677
+ marize all these details and depict the lifecycle of an isolated
678
+ BPF program in Fig. 6.
679
+ BPF Program
680
+ Used Map
681
+ BPF Program
682
+ Used Map
683
+ Ctx
684
+ Stack
685
+ Entry
686
+ BPF Program
687
+ Used Map
688
+ Ctx
689
+ Stack
690
+ Dynamic
691
+ Map Entry
692
+ Run
693
+ Exit
694
+ BPF Program
695
+ Load
696
+ 1
697
+ 4
698
+ 2
699
+ 3
700
+ 1 Load: The program itself and its maps are assigned to its region.
701
+ 2 Entry: Context is assigned and stack is swapped.
702
+ 3 Runtime: Entries of incontiguous maps are assigned on the fly.
703
+ 4 Exit: Memory assigned during runtime is returned.
704
+ Figure 6: BPF program lifecycle under isolation of MOAT.
705
+ 4.2
706
+ Challenges for MOAT
707
+ The preceding section illustrates the overall procedure of
708
+ MOAT. However, to effectively isolate a BPF program using
709
+ PKS, MOAT needs to overcome the following obstacles.
710
+ C1: Limited Hardware Regions. In PKS, only 16 hardware
711
+ keys are available. This means there can be no more than
712
+ 16 memory regions concurrently, but there may be signifi-
713
+ cantly more than 16 BPF programs running in the kernel. To
714
+ overcome this limitation, we propose a novel dynamical key
715
+ allocation policy in Sec. 4.2.1.
716
+ C2: Helpers. BPF is a complex ecosystem containing over
717
+ 200 helper functions [2]. Unlike BPF programs, these helper
718
+ functions must have access to certain kernel memory to func-
719
+ tion properly. Thus, MOAT must ensure that these helper func-
720
+ tions are secure and not being abused. However, designing
721
+ specific isolation policy for every one of these helpers requires
722
+ massive human effort. Even worse, designing individualized
723
+ isolation strategy for each helper may impede the applica-
724
+ bility to helpers added in the future. To this end, we analyze
725
+ these BPF helper functions with static analysis techniques and
726
+ propose three general security isolation schemes in Sec. 4.2.2.
727
+ 4.2.1
728
+ Dynamic Key Allocation
729
+ Currently, PKS supports up to 16 memory regions, whose
730
+ permissions are decided by a 32-bit PKR. Although works
731
+ like libmpk [51] propose key virtualization to enable key
732
+ sharing, these works typically focus on isolating userspace
733
+ applications. Therefore, they rely on scheduling and notifica-
734
+ tion mechanisms that are exclusive to userspace. However,
735
+ 6
736
+
737
+ after examining their methods, we conclude that porting these
738
+ userspace mechanisms to kernel is difficult, if at all possible.
739
+ Intuitively, we may explore making key a shared resource;
740
+ each BPF program will dynamically fetch and return a key
741
+ upon its entry point and exit. Our tentative study shows that
742
+ this approach works well with small BPF programs consum-
743
+ ing few pages. Nevertheless, this approach may incur signifi-
744
+ cant runtime overhead, as assigning these pages to a specific
745
+ region upon each entry and exit can be time-consuming, partic-
746
+ ularly if the program is attached with large maps. For instance,
747
+ a 512KB map consists of over 100 pages. If a BPF tracepoint
748
+ program employs this map to log kernel events, there will
749
+ be over 200 page assignments every time this BPF program
750
+ is invoked. These frequent assignments bring unacceptable
751
+ overhead. Overall, given that frequent key retrieval and return
752
+ is too expensive due to the presence of large BPF programs
753
+ with many pages, we propose an adaptive dynamic key allo-
754
+ cation scheme that shares keys across relatively small BPF
755
+ programs and assigns fixed keys to large BPF programs.
756
+ Dynamic keys
757
+ K1
758
+ K2
759
+ Run
760
+ Fixed
761
+ keys
762
+ Exit
763
+ K1
764
+ Wait
765
+ Wait
766
+ ...
767
+ Entry
768
+ Large BPF
769
+ Programs
770
+ 1
771
+ 2
772
+ 3
773
+ 4
774
+ Figure 7: Adaptive key allocation.
775
+ As illustrated in Fig. 7, we divide PKS keys into two cate-
776
+ gories — dynamic keys and fixed keys. We allocate dynamic
777
+ keys to small BPF programs, whose allocation procedure are
778
+ specified as follows. 1 Upon a BPF program P’s entry point,
779
+ MOAT fetches a dynamic key and assigns this key to all pages
780
+ of P. 2 During the runtime, MOAT can detect if P accesses
781
+ pages not assigned to it via PKS. 3 When P exits, all of its
782
+ pages are returned to the kernel, and the key is deallocated.
783
+ 4 If currently no key available when the kernel launches a
784
+ BPF program, then this program is placed in a queue to wait.
785
+ In contrast, fixed key allocation is straightforward. Once
786
+ a large BPF program is loaded by the kernel, MOAT assigns
787
+ a fixed key to it. In extreme cases where multiple large BPF
788
+ programs are loaded into the kernel, and fixed keys are insuffi-
789
+ cient, the smallest and least frequently invoked BPF program
790
+ running will be evicted to use dynamic keys.
791
+ We need to decide a threshold to determine whether a BPF
792
+ program is “small” or “large.” Note that the current BPF sub-
793
+ system only accepts programs that with fewer than 4,096
794
+ instructions, which occupy about eight pages. Considering
795
+ that the majority of BPF programs use a small map to com-
796
+ municate with userspace, we select ten pages as the threshold
797
+ for dynamic key allocation. That is, a BPF program using up
798
+ to ten pages is configured to use dynamic keys, whereas BPF
799
+ programs with more than ten pages uses fixed keys.
800
+ 4.2.2
801
+ Helper Security Mechanism
802
+ As interfaces between kernel and BPF programs, a set of
803
+ BPF helper functions has been provided for kernel interac-
804
+ tion. Since these helper functions serve as interfaces, most of
805
+ them have to access certain kernel memory to function prop-
806
+ erly. Therefore, these helpers may be leveraged by malicious
807
+ BPF programs to launch attacks. Thus, MOAT has to prevent
808
+ these helpers from being abused. However, there are over 200
809
+ helpers provided by the BPF subsystem; it is impractical to
810
+ design individual protection policy for each one. To overcome
811
+ this obstacle, we analyze these helper functions and propose
812
+ three defenses based on their interaction with the kernel. Each
813
+ of these defenses applies to a large number of helpers and can
814
+ be combined to enhance the offered protection guarantee.
815
+ Analyzing all these helpers manually requires a significant
816
+ amount of human effort. We leverage a de facto static pointer
817
+ analysis library, SVF[55, 56], to perform dependency analysis.
818
+ SVF performs sparse value flow analysis to establish value
819
+ flow and pointer analysis results. SVF has been widely used
820
+ to analyze large-size production software [54]. We use the
821
+ default flow-sensitive pointer analysis [55] provided by SVF.
822
+ Specifically, we use it to track the value flow of the parameters
823
+ of these helper functions. Based on the value flow, we can
824
+ scope the usage (read or write) of parameters and decide
825
+ which category (see below) a helper function belongs to. With
826
+ the help of SVF, this categorization process can be conducted
827
+ in a principled way and scalable to analyze all helpers.
828
+ Attackers might manipulate the parameters of these helpers
829
+ to launch attacks. Therefore, based on the above analysis
830
+ results, we divide 260 BPF helper functions into five types.
831
+ As shown in Table 2, the first type (No Arg.) has no argu-
832
+ ments, which does not need any extra protection. The second
833
+ type (Pure Arg.) operates solely on its own arguments and
834
+ does not access kernel memory, which is also safe. The third
835
+ type (Read Only) accesses kernel in a read-only manner, and
836
+ the forth type (Write) may use its argument to modify the
837
+ kernel memory. The fifth type (Other) includes helpers that
838
+ are hard to categorize. For example, bpf_loopis the auxiliary
839
+ function that simplifies the verification process of loops. Note
840
+ that the last three types may interact with the kernel space
841
+ and potentially cause unauthorized access or even kernel ex-
842
+ ploitations by being abused by malicious BPF programs.
843
+ Table 2: BPF helper analysis result. CRP denotes critical region
844
+ protection, ROK denotes read-only kernel space, and DPA denotes
845
+ dynamic parameter auditing.
846
+ Type
847
+ #
848
+ Example
849
+ Applicable Defense
850
+ No Arg.
851
+ 30
852
+ bpf_get_retval()
853
+ No Need
854
+ Pure Arg.
855
+ 16
856
+ bpf_strncmp()
857
+ No Need
858
+ Read Only
859
+ 75
860
+ bpf_get_stackid_tp()
861
+ ROK/CRP/DPA
862
+ Write
863
+ 129
864
+ bpf_skb_set_tstamp()
865
+ CRP/DPA
866
+ Other
867
+ 10
868
+ bpf_loop()
869
+ CRP/DPA
870
+ With this categorization, we now present three mechanisms
871
+ 7
872
+
873
+ in MOAT that ensure helper security as follows.
874
+ Read-Only Kernel Space (ROK). Our analysis reveals that
875
+ the majority of helpers only access the kernel in a read-only
876
+ manner. These read-only helpers account for near one third
877
+ of all helpers. Even though in most cases, read-only helpers
878
+ do not alter the kernel state and are considered safe, MOAT
879
+ still sets the kernel space as read-only when executing these
880
+ helpers.3 This nullifies possibility of potentially tempering
881
+ kernel spaces, and it does not impose extra runtime overhead.
882
+ Normal Regions
883
+ AD
884
+ Critical Regions
885
+ AD
886
+ PKR
887
+ ...
888
+ AD
889
+ Critical Regions
890
+ BPF Region
891
+ EN
892
+ PKR
893
+ ...
894
+ Helper Call
895
+ Kernel Address Space
896
+ Kernel Address Space
897
+ AD Access-Disabled
898
+ EN Access-Enabled
899
+ Normal Regions
900
+ BPF Region
901
+ EN
902
+ EN
903
+ Figure 8: Critical region protection (CRP).
904
+ Critical Region Protection (CRP) in Kernel. Further to the
905
+ discussion in ROK, though many helpers only access kernel
906
+ in a read-only manner, they may still be abused to probe sen-
907
+ sitive data of the kernel, such as task_struct. Moreover, a
908
+ considerable number of helpers, as illustrated in Table 2, may
909
+ modify kernel memory. To prevent such abuse, we protect
910
+ these critical kernel regions with PKS. As shown in Fig. 8,
911
+ instead of treating the entire kernel memory as a whole, we
912
+ divide it into normal regions and critical regions. When enter-
913
+ ing helper functions, instead of setting the entire kernel space
914
+ as access-enabled (EN), those critical memory regions remain
915
+ access-disabled (AD), preventing any access to these regions.
916
+ Once the helper finishes, these normal region will be set back
917
+ to access-disabled (AD) to avoid potential security risk. It is
918
+ worth noting these critical memory regions do not vary with
919
+ helpers. That is, only helpers manipulated by attackers (e.g.,
920
+ via deliberately crafted helper parameters) may attempt to
921
+ access these critical regions. These critical regions can be
922
+ specified in the configurations of MOAT.
923
+ r0 = 0x10
924
+ r1 = r0 + 0x1
925
+ call BPF_HELPER
926
+ BPF Instructions
927
+ Static Register Value
928
+ Inferred by Verifier
929
+ 0x10
930
+ 0x11
931
+ Runtime Register Values
932
+ for Each Instruction
933
+ ...
934
+ 0x10
935
+ 0xbe
936
+ 0x10
937
+ 0x11
938
+ r0
939
+ r1
940
+ r0 = 0x10
941
+ r0 = 0x10 r1 = 0x11
942
+ r0 = 0x10 r1 = 0x11
943
+ ...
944
+ ...
945
+ Figure 9: Register value tracking of the verifier. While the veri-
946
+ fier can indeed deduce a possible value range of each register, for
947
+ simplicity, we use a value point (e.g., r1 = 0x11) here.
948
+ Dynamic Parameter Auditing (DPA). To further regulate
949
+ helpers, we propose dynamic parameters auditing (DPA),
950
+ which leverages the information obtained from the BPF ver-
951
+ 3There exist few functions in this category that rely on synchronization
952
+ facilities like Read-Copy Update (RCU), which cannot be applied with this
953
+ protection scheme.
954
+ ifier to dynamically check if the parameters are within their
955
+ legitimate ranges. As illustrated in Fig. 9, the verifier can
956
+ deduce the value range of each register via static analysis
957
+ (as a practical assumption, we allow the statically deduced
958
+ value ranges to be invalid; see below for clarification). MOAT
959
+ logs such value range information, and during runtime, MOAT
960
+ serves as a “gateway” when the BPF program enters a helper
961
+ function to check if the provided parameter values are within
962
+ the verifier-deduced value ranges. In our example, we can
963
+ check if r0==0x10;r1==0x11 when BPF_HELPER is called.
964
+ If the parameter runtime values do not match with the static
965
+ analysis results, the BPF program is terminated immediately.
966
+ Clarification. In the aforementioned DPA strategy, one may
967
+ question if the “legitimate value ranges” inferred by the veri-
968
+ fier are correct. Recall as discussed in our research motivation
969
+ in Sec. 3, there exist several vulnerabilities that can be lever-
970
+ aged to bypass verifier static checks. Overall, we clarify that
971
+ we do not need the verifier’s static analysis results as always
972
+ correct. Nevertheless, as long as the runtime input values are
973
+ inconsistent with the static analysis results, we terminate the
974
+ BPF program. For such cases, either the verifier is wrong or
975
+ the BPF program is behaving maliciously, both are highly
976
+ severe and we require manual inspection of the triage. We
977
+ assume the chance of both verifier and BPF program being
978
+ unsafe (but still appear to be consistent) is extremely low,
979
+ if at all possible. In fact, for today’s known BPF exploita-
980
+ tions, the verifier’s static analysis results (e.g., deciding the
981
+ value ranges of certain pointers) are safe, though incomplete
982
+ (omitting some data facts on subtle variables) and thus being
983
+ leveraged by malicious BPF programs. Also, even though it
984
+ may be technically feasible to perform dynamic auditing to
985
+ validate the data facts after executing every BPF instruction, it
986
+ is apparently too costly. MOAT thus leverages PKS to deliver
987
+ a low-cost and principled isolation.
988
+ Hybrid Usage. We summarize the applicability of these three
989
+ defense mechanisms in Table 2. On the one hand, DPA pro-
990
+ tects helpers from being abused by ensuring the validity of
991
+ their parameters. On the other hand, even if the helpers are
992
+ already compromised, ROK and CRP can still protect the
993
+ kernel from these compromised helpers. Thus, combining
994
+ these mechanisms together improves the overall security for
995
+ both BPF helpers and the kernel itself. Moreover, we want to
996
+ emphasize that these defenses are not dependent on a partic-
997
+ ular helper. Instead, they are applicable to helper groups, as
998
+ listed in Table 2. Although it can be argued all three defenses
999
+ may be evaded in extreme circumstances, we believe the at-
1000
+ tack feasibility is very low (if it exists at all), given that the
1001
+ BPF program has been isolated by MOAT and these restricted
1002
+ helpers constitute a relatively minor attack surface. Our inves-
1003
+ tigation on existing vulnerabilities supports this assumption.
1004
+ 8
1005
+
1006
+ 5
1007
+ Implementation
1008
+ MOAT is written in 2,075 lines of C code, as a loadable kernel
1009
+ module.4 It includes three components: a BPF loader, a BPF
1010
+ executor, and a key allocator. We explain key points below.
1011
+ Portable Implementation. The major components of MOAT
1012
+ are implemented as hooks to replace their corresponding ker-
1013
+ nel functions. This is accomplished using an existing ker-
1014
+ nel hook utility named ftrace [7]. This introduces a small
1015
+ amount of overhead, but it allows these major components to
1016
+ be kernel-agnostic and can be easily ported across different
1017
+ kernel versions. Though the overhead of the current MOAT
1018
+ prototype is reasonable (see details in Sec. 6.2), we anticipate
1019
+ to further reduce the performance overhead of MOAT, if it is
1020
+ implemented via directly modifying kernel.
1021
+ Kernel Interrupt Handling. Though the major components
1022
+ of MOAT are implemented as loadable modules, certain low-
1023
+ level codes still require direct kernel modification. For in-
1024
+ stance, during the execution of BPF programs, an interrupt
1025
+ may occur and take over the control flow to its handler. Note
1026
+ that most interrupt handlers require access to kernel memory
1027
+ and as a result, the PKS would presumably raise spurious
1028
+ alerts. Thus, we need to temporarily disable PKS inside these
1029
+ handlers and re-enable it once the handlers are finished. The
1030
+ modified code is shown in Fig. 10. Additionally, the exception
1031
+ handler of the kernel is also modified to support terminating
1032
+ and detaching malicious BPF programs upon violation.
1033
+ 1
1034
+ mov
1035
+ %cr4,%rbx
1036
+ 2
1037
+ push %rbx
1038
+ ; save CR4
1039
+ 3
1040
+ and
1041
+ $0xfffffffffeffffff, %rbx ; clear CR4.PKS
1042
+ 4
1043
+ mov
1044
+ %rbx,%cr4
1045
+ 5
1046
+ call \cfunc
1047
+ ; invoke handler
1048
+ 6
1049
+ pop
1050
+ %rbx
1051
+ 7
1052
+ mov
1053
+ %rbx,%cr4
1054
+ ; restore CR4
1055
+ Figure 10: The modified kernel interrupt handler in entry_64.S.
1056
+ 6
1057
+ Evaluation
1058
+ To evaluate MOAT, we first analyze how MOAT mitigates
1059
+ various attack interfaces, and then benchmark its CVEs de-
1060
+ tectability in Sec. 6.1. We then assess the performance of
1061
+ MOAT under different BPF program setups in Sec. 6.2. Lastly,
1062
+ the functionality of MOAT is tested using various types of BPF
1063
+ programs and under different scenarios in Sec. 6.3.
1064
+ 6.1
1065
+ Security Evaluation
1066
+ 6.1.1
1067
+ Analysis of Attack Surface Mitigation
1068
+ We first systematically analyze how MOAT mitigates five rep-
1069
+ resentative attack interfaces presented in the BPF ecosystem.
1070
+ These potential attack interfaces are illustrated in Fig. 11.
1071
+ 4We will release the codebase of MOAT once this paper is published. We
1072
+ will maintain MOAT to benefit the community and follow-up research.
1073
+ PTEs
1074
+ IDT/GDT
1075
+ Memory
1076
+ BPF
1077
+ Program
1078
+ Helper
1079
+ Auditor
1080
+ BPF
1081
+ Helper
1082
+ IA32_PKRS
1083
+ CR4.PKS
1084
+ 3
1085
+ 4
1086
+ 1
1087
+ 2
1088
+ 5
1089
+ PKS Region
1090
+ Write Disabled
1091
+ Access Disabled
1092
+ Figure 11: Analysis of mitigating potential attack surfaces.
1093
+ 1 Arbitrary Kernel Accesses. Currently, the most prevalent
1094
+ threat to the BPF ecosystem is the ability of malicious BPF
1095
+ programs to arbitrarily modify kernel memory. In order to
1096
+ accomplish this, these BPF programs typically employ corner-
1097
+ case operations to deceive the verifier during the loading
1098
+ phase and to behave maliciously during runtime. This type
1099
+ of attack is effectively mitigated due to the fact that MOAT
1100
+ derives the minimum necessary memory regions of each BPF
1101
+ program and uses PKS to prevent any runtime access beyond
1102
+ this region (Sec. 4.1), mitigating such illegal accesses.
1103
+ 2 Helper Function Abuse. Apart from launching attack di-
1104
+ rectly from BPF programs, a malicious BPF program may
1105
+ carefully prepare parameter values by exploiting similar
1106
+ corner-cases operations in 1 and pass them to abuse certain
1107
+ helpers. To prevent such abuse, MOAT features three security
1108
+ enforcement schemes (Sec. 4.2.2) to dynamically audit helper
1109
+ parameters and also protect critical kernel memory regions
1110
+ during the execution of these helpers. Thus, the attacker can
1111
+ no longer take advantage of these helpers.
1112
+ 3 PTE Corruption. A page’s PKS region is configured via
1113
+ its PTE. Consequently, a malicious BPF program may attempt
1114
+ to tamper these PTEs to disable MOAT. However, this is im-
1115
+ possible since MOAT sets these PTEs as access-disabled; they
1116
+ are thus protected by PKS like other kernel resources.
1117
+ 4 Descriptor Table Tampering. Descriptor tables like GDT
1118
+ and IDT are essential for segmentation and interrupt handling.
1119
+ Since they are needed for these critical functions, blindly set-
1120
+ ting them as access-disabled would cause system crashes.
1121
+ However, since these descriptor tables are only accessed in
1122
+ a read-only manner, MOAT sets them as write-disabled to
1123
+ thwart any tampering made by malicious BPF programs. This
1124
+ effectively prevents malicious BPF programs from compro-
1125
+ mising the kernel using these tables.
1126
+ 5 Hardware Configuration Tampering. Besides memory-
1127
+ based attacks discussed above, attackers may also directly
1128
+ disable PKS through hardware configurations. As described
1129
+ in Sec. 2, CR4.PKS and IA32_PKRS are two critical registers
1130
+ for configuring PKS. One may disable PKS via modifying
1131
+ these two registers. However, both registers can only be mod-
1132
+ ified via special instructions, and BPF instruction sets do not
1133
+ include any of these. Therefore, BPF bytecodes containing
1134
+ these instructions are rejected immediately. Since the BPF
1135
+ programs are set to W ⊕ X (meaning write and executable
1136
+ permissions cannot be simultaneously enabled), adding these
1137
+ instructions via self-modification is also impossible.
1138
+ 9
1139
+
1140
+ 6.1.2
1141
+ Real-world CVE Evaluation
1142
+ We analyzed all 37 CVEs relating to BPF since 2020 and
1143
+ found that nine of them are related to runtime memory corrup-
1144
+ tion caused by malicious BPF programs, which falls within
1145
+ the application scope of MOAT. Even though these memory
1146
+ corruption vulnerabilities only account for about one-forth
1147
+ of all CVEs, they all result in privilege escalation and pose a
1148
+ severe security threat to the kernel. As listed in Table 3, five
1149
+ of these vulnerabilities have PoC exploits available and are
1150
+ evaluated at this step.
1151
+ We report that MOAT can successfully mitigate all of them.
1152
+ We clarify that these five are not cherry-picked; the untested
1153
+ four only have high-level text descriptions without further de-
1154
+ tails or any PoC, making it extremely hard for us to build
1155
+ a workable exploit based on these descriptions alone. In-
1156
+ stead, we thoroughly analyze these four vulnerabilities. Due
1157
+ to their conceptual similarity to the other five tested cases,
1158
+ it should be accurate to conclude that these four can also be
1159
+ mitigated by MOAT. For instance, although there is no exploit
1160
+ for CVE-2021-3444, it shares the same logistics with CVE-
1161
+ 2021-31440, albeit with different BPF instructions. Note that
1162
+ both originate from incorrect truncation. From the fact that
1163
+ CVE-2021-31440 is mitigated by MOAT, we would believe
1164
+ the same for CVE-2021-3444.
1165
+ Table 3: BPF CVE detectability evaluation.
1166
+ denotes experimented
1167
+ and mitigated by MOAT.
1168
+ denotes the CVEs share conceptually
1169
+ identical patterns, though they lack available PoC exploit.
1170
+ CVE ID
1171
+ Description
1172
+ Status
1173
+ 2022-2785 [43]
1174
+ Incorrect Instruction Rewrite
1175
+ 2022-23222 [42]
1176
+ Mischeck *_OR_NULL Pointer
1177
+ 2021-45402 [41]
1178
+ Incorrect MOV32 Bound
1179
+ 2021-3490 [40]
1180
+ Incorrect ALU32 Bound
1181
+ 2021-31440 [37]
1182
+ Incorrect 32-bit Truncation
1183
+ 2021-3444 [39]
1184
+ Incorrect MOD32 Truncation
1185
+ 2021-33200 [38]
1186
+ Incorrect Pointer Arithmetic
1187
+ 2020-8835 [36]
1188
+ Incorrect 32-bit Bound
1189
+ 2020-27194 [35]
1190
+ Incorrect OR32 Bound
1191
+ CVE Case Study. To better explain how MOAT mitigates
1192
+ these CVEs, we elaborate on the exploit paths for two of
1193
+ them, CVE-20222-23222 and CVE-2020-27194.
1194
+ CVE-2022-23222 is a pointer mischeck vulnerability intro-
1195
+ duced via a rather new feature of BPF named bpf_ringbuf.
1196
+ This new feature was brought to BPF in 2020 along with
1197
+ a new pointer type named PTR_TO_MEM_OR_NULL. However,
1198
+ the verifier had not been updated to track the bounds of this
1199
+ new type, resulting in this vulnerability. As illustrated in
1200
+ Fig. 12, the malicious payload first retrieves a nullptr via
1201
+ bpf_ringbuf_reserve (line 1), which returns this newly-
1202
+ added pointer type named PTR_TO_MEM_OR_NULL. Since this
1203
+ new type is not tracked by the verifier, the payload can bypass
1204
+ pointer checks by convincing the verifier that r1 is 0x0 when
1205
+ it is actually 0x1 (line 3). This pointer can then be multiplied
1206
+ with any offset to perform arbitrary kernel accesses (line 9).
1207
+ However, such arbitrary access violates PKS immediately and
1208
+ is terminated by MOAT (line 10).
1209
+ 1
1210
+ r0 = bpf_ringbuf_reserve(fd, INT_MAX, 0)
1211
+ 2
1212
+ r1 = r0
1213
+ // R:r0=0;r1=0 V:r0=r1=?
1214
+ 3
1215
+ r1 = r0 + 1
1216
+ // R:r0=0;r1=1 V:r0=r1=?
1217
+ 4
1218
+ if (r0 != nullptr) {
1219
+ // R:r0=0;r1=1 V:r0=r1=?
1220
+ 5
1221
+ ringbuf_discard(r0, 1)
1222
+ 6
1223
+ exit(2)
1224
+ 7
1225
+ }
1226
+ 8
1227
+ off = <OOB addr>
1228
+ // R:r0=0;r1=1 V:r0=r1=0
1229
+ 9
1230
+ off = off * r1
1231
+ // R:off=<OOB addr> V:off=0
1232
+ 10
1233
+ *(ptr+off) = 0xbad
1234
+ // PKS violation!
1235
+ Figure 12: Code snippet of CVE-2022-23222. R denotes variable
1236
+ runtime statuses. V denotes verifier-deduced values of variables.
1237
+ CVE-2020-27194 is a vulnerability due to incorrect trunca-
1238
+ tion. As in Fig. 13, the user first inputs an arbitrary value
1239
+ in the range of [0,0x600000001] (line 1). Then, two con-
1240
+ ditional clauses help the verifier to determine its lower and
1241
+ upper bounds (line 3 and line 5). However, when tracking
1242
+ the BPF_OR operator (line 7), the verifier performs a wrong
1243
+ truncation on its upper bound. After the truncation, the user-
1244
+ controlled r5is viewed by the verifier as a legitimate constant
1245
+ scalar 0x1(line 7), which can later be used as the offset to per-
1246
+ form arbitrary accesses to the kernel (line 8). Similarly, such
1247
+ accesses can be detected by MOAT and terminated instantly.
1248
+ 1
1249
+ r5 = <OOB addr>
1250
+ 2
1251
+ r6 = 0x600000002
1252
+ 3
1253
+ if (r5 >= r6)
1254
+ // R&V:r5<=0x600000001
1255
+ 4
1256
+ exit(2)
1257
+ 5
1258
+ if (r5 <= 0)
1259
+ // R&V:0x1<=r5<=0x600000001
1260
+ 6
1261
+ exit(2)
1262
+ 7
1263
+ r5 = r5 | 0
1264
+ // R:r5=<OOB addr> V: r5=0x1
1265
+ 8
1266
+ *(ptr+r5)=0xbad
1267
+ // PKS violation!
1268
+ Figure 13: Code snippet of CVE-2020-27194. R denotes variable
1269
+ runtime statuses. V denotes verifier-deduced values of variables.
1270
+ 6.2
1271
+ Performance Evaluation
1272
+ We assess MOAT performance overhead on Linux v5.195 and
1273
+ a 16-core Intel 12700H, whose efficiency cores are disabled
1274
+ and performance cores are locked to 4 GHz to avoid random-
1275
+ ness. As a common setup, the cycle and time statistics are
1276
+ measured via the rdtscp instruction and the kernel utility
1277
+ get_ktime_raw(), respectively.
1278
+ 6.2.1
1279
+ Micro Benchmark
1280
+ For micro benchmark, we measure the CPU cycles of four
1281
+ key operations in MOAT. We list the the four operations in
1282
+ Table 4. switch_pks() enables/disables PKS by setting/-
1283
+ clearing the corresponding control bit in CR4. set_pkrs()
1284
+ changes region permissions by changing IA32_PKRS via
1285
+ WRMSR. get_pkrs() returns current permission configuration
1286
+ by reading IA32_PKRS via RDMSR. assign_page() changes
1287
+ 5The kernel is slightly modified as described in Sec. 5.
1288
+ 10
1289
+
1290
+ the permission region of one page by modifying its PTE. Each
1291
+ operation is measured by averaging ten runs of one million
1292
+ invocations to eliminate randomness.
1293
+ Table 4: Micro benchmark results. As a reference [51], userspace
1294
+ RDPKRU, WRPKRU, and pkey_assign() take 0.5, 23.3, and 1104.9
1295
+ cycles, respectively.
1296
+ Operation
1297
+ # Cycle
1298
+ Note
1299
+ switch_pks()
1300
+ 4.2
1301
+ Set/Clear CR4.PKS
1302
+ set_pkrs()/WRMSR
1303
+ 71.7
1304
+ Set region permissions
1305
+ get_pkrs()/RDMSR
1306
+ 25.8
1307
+ Get region permissions
1308
+ assign_page()
1309
+ 1120.4
1310
+ Assign a page to region
1311
+ As Table 4 shows, the most expensive operation is
1312
+ assign_page() which modifies the region one page be-
1313
+ longs to, including locating its PTE and changing specific
1314
+ bits within. Notably, setting and getting the region permis-
1315
+ sions (set_pkrs()/get_pkrs()) in PKS is much more ex-
1316
+ pensive than its userspace variant in libmpk [51] (see the
1317
+ caption of Table 4). We presume that this is because in PKU,
1318
+ the region permission is controlled via a dedicated register
1319
+ named PKRU with two special instructions RDPKRU/WRPKRU,
1320
+ whereas in PKS employed by MOAT, its region permission
1321
+ is stored in an MSR named IA32_PKRS without any special
1322
+ instruction. To configure the permission in IA32_PKRS, one
1323
+ has to use the general RDMSR/WRMSR instructions with the
1324
+ MSR ID 0x6E1, which requires additional cycles to complete.
1325
+ Similarly, directly enabling/disabling PKS via switch_pks()
1326
+ also takes fewer cycle than set_pkrs().
1327
+ Since configuring permission via set_pkrs() is more
1328
+ expensive than switch_pks(), on situations where MOAT
1329
+ needs to temporarily switch back to kernel regions (e.g. inter-
1330
+ rupt handling), it uses switch_pks() to disable PKS instead
1331
+ of using set_pkrs(). Then, before returning to BPF pro-
1332
+ grams, we reactive PKS to maintain isolation.
1333
+ 6.2.2
1334
+ Macro Benchmark
1335
+ To prepare the macro benchmark suite, we consider the fol-
1336
+ lowing properties.
1337
+ (a) To test the performance of MOAT conducting fixed and
1338
+ dynamic key allocation, it is necessary to include BPF
1339
+ programs of varying sizes.
1340
+ (b) The number of BPF programs should exceed the num-
1341
+ ber of available keys to test MOAT in situations where
1342
+ hardware keys are insufficient.
1343
+ (c) The BPF programs should be highly parallel to evaluate
1344
+ the waiting time when dynamic keys are insufficient.
1345
+ (d) The execution order should reflect actual system behav-
1346
+ ior with high enough frequency to stress MOAT.
1347
+ To simultaneously fulfill these requirements, we prepare
1348
+ macro benchmark as follows. We choose seven different
1349
+ events frequently triggered in the kernel, which are sys_open,
1350
+ sys_close,
1351
+ sys_read,
1352
+ sys_write,
1353
+ sched_switch,
1354
+ page_fault_user, and page_fault_kernel. These events
1355
+ are of high frequency (e.g., sched_switch occurs on every
1356
+ context switch) and can reflect actual BPF running behavior.
1357
+ For each of these events, we attach three BPF tracepoints of
1358
+ varying sizes to log this event. This ensures that these BPF
1359
+ programs are highly parallel.
1360
+ MOAT Configuration. In both regular and extreme cases (see
1361
+ below), we choose the configuration as follows: the threshold
1362
+ for dynamic key allocation is ten pages. The number of fixed
1363
+ keys is ten, while the number of dynamic keys is four. Two
1364
+ keys are reserved for the kernel memory region and the shared
1365
+ region (i.e., for per-CPU stack, IDT, GDT), respectively.
1366
+ Regular Case. In the regular case, we attach each one of
1367
+ these events with three types of BPF tracepoints, i.e., small (1
1368
+ page), medium (10 pages) and large (200 pages). We run
1369
+ each setup ten times, and each run consists of 1,000 invoca-
1370
+ tions of each tracepoint. The average results are reported in
1371
+ Fig. 14. We find that even in the worst case, MOAT imposes a
1372
+ moderate overhead of less than 30%. This overhead occurs
1373
+ when launching the medium-size BPF program attached to
1374
+ the event page_fault_kernel. Since its size (10 pages) does
1375
+ not exceed the threshold of dynamic key allocation, it has to
1376
+ repetitively assign and return the dynamic key to its pages
1377
+ upon every entry point and exit. As reflected on the micro
1378
+ benchmark in Sec. 6.2.1, such key assignment is quite costly.
1379
+ Overall, we interpret the performance penalty is aligned with
1380
+ our expectation, and the overall overhead is reasonable.
1381
+ All large-size BPF programs exceed the page number
1382
+ threshold of dynamic key allocation. Therefore, MOAT as-
1383
+ signs fixed keys to them during their loading phase without
1384
+ incurring runtime overhead. The incurred overheads are gen-
1385
+ erally moderate: for all cases, the overheads are less than 10%.
1386
+ Moreover, the overheads for those small-size BPF programs
1387
+ are all less than 22%, which lie between the large-size and
1388
+ the medium-size ones. Apart from the total overhead reported
1389
+ above, we also investigate the waiting overhead, which is the
1390
+ amount of time a BPF program must wait if there is no dy-
1391
+ namic key available. Note that in the regular cases above, 14
1392
+ programs are smaller than the page number threshold; they
1393
+ are configured to use the dynamic key allocation scheme,
1394
+ although there are only four dynamic keys available. Their
1395
+ waiting statistics are shown in Table 5. It is seen that although
1396
+ the average waiting time is near 1µs, less than 1% BPF exe-
1397
+ cutions really experience this delay. Considering there are 14
1398
+ running processes and only four dynamic keys available, we
1399
+ can conclude that the dynamic key allocation policy handles
1400
+ parallelism reasonably well. Moreover, this also shows that
1401
+ four dynamic keys are sufficient for most scenarios; adding
1402
+ more dynamic keys brings marginal benefit.
1403
+ Table 5: Waiting time statistics.
1404
+ Avg. (ns)
1405
+ Waited Avg. (ns)
1406
+ Max. (ns)
1407
+ # Waited
1408
+ 7.1
1409
+ 915.2
1410
+ 2559
1411
+ 0.8%
1412
+ Extreme Cases. The above regular cases only evaluate MOAT
1413
+ under situations where dynamic keys are limited but fixed
1414
+ keys are sufficient. Here, we further explore MOAT’s overhead
1415
+ via extreme cases. Instead of attaching three BPF programs
1416
+ 11
1417
+
1418
+ 1.00
1419
+ 1.00
1420
+ 1.00
1421
+ 1.00
1422
+ 1.00
1423
+ 1.00
1424
+ 1.00
1425
+ 1.19
1426
+ 1.22
1427
+ 1.07
1428
+ 1.04
1429
+ 1.14
1430
+ 1.06
1431
+ 1.06
1432
+ 1.25
1433
+ 1.29
1434
+ 1.25
1435
+ 1.12
1436
+ 1.18
1437
+ 1.22
1438
+ 1.24
1439
+ 1.08
1440
+ 1.09
1441
+ 1.03
1442
+ 1.04
1443
+ 1.05
1444
+ 1.03
1445
+ 1.03
1446
+ 0.00
1447
+ 0.50
1448
+ 1.00
1449
+ 1.50
1450
+ pf_u
1451
+ pf_k
1452
+ sched
1453
+ open
1454
+ close
1455
+ read
1456
+ write
1457
+ Relative Time
1458
+ Base
1459
+ Small
1460
+ Medium
1461
+ Large
1462
+ Figure 14: Regular macro benchmark.
1463
+ of varying sizes, as we did in the regular cases above, in the
1464
+ extreme case evaluation we attach three large (200 pages)
1465
+ BPF programs to each tracepoint. Under this setting, there are
1466
+ only ten fixed keys available, although there are 21 large-size
1467
+ BPF programs, requiring dynamic key allocation for over half
1468
+ of these programs. Since each of these programs contains
1469
+ over 200 pages, there are a large number of page assignments
1470
+ occurring upon their program entry points and exits.
1471
+ Table 6: Extreme overhead.
1472
+ Static Keys (ns)
1473
+ Dynamic Keys (ns)
1474
+ Avg.
1475
+ Max.
1476
+ Avg.
1477
+ Max.
1478
+ Waited
1479
+ # Waited
1480
+ 140.7
1481
+ 202.8
1482
+ 3630
1483
+ 4401
1484
+ 1968.1
1485
+ 4%
1486
+ We report the evaluation results of extreme cases in Ta-
1487
+ ble 6. We find that MOAT imposes a negligible overhead to
1488
+ BPF programs that use fixed keys even under such extreme
1489
+ cases. And for those large BPF programs that use dynamic
1490
+ keys, the average overhead is still reasonably low (around
1491
+ 3.6µs). Overall, we point out that real-life scenarios seldomly
1492
+ require this many BPF programs with large maps running
1493
+ concurrently. Moreover, the currently observed overhead can
1494
+ be further reduced by sharing these large maps between BPF
1495
+ programs, thereby reducing the need for fixed keys. We also
1496
+ report that the waiting time due to the shortage of dynamic
1497
+ keys shows a similar pattern to the regular cases. Although
1498
+ the average waiting time is near 2µs, less than 5% of the
1499
+ executions would experience this delay.
1500
+ 6.2.3
1501
+ Real-world Case Study
1502
+ To evaluate the performance of MOAT under real-world sce-
1503
+ narios, we setup a BPF port forwarding program which redi-
1504
+ rects incoming requests to the memcached [24] memory
1505
+ database. To prepare the benchmark, we choose YCSB [19] to
1506
+ generate six distinct workloads and test the overall throughput
1507
+ of the memcached service. The results are shown in Fig. 15.
1508
+ From the figure, we can see that MOAT imposes on average
1509
+ 6% (up to 14%) slowdown to the overall performance of the
1510
+ BPF-based port forwarding, which is acceptable considering
1511
+ the security benefits MOAT provides. Note that this overhead
1512
+ is far less than the worst overhead we observed from the
1513
+ regular/extreme cases above, which further justifies our as-
1514
+ sumption that BPF programs are invoked less frequently in
1515
+ real-world applications than in extreme cases.
1516
+ 5586
1517
+ 5649
1518
+ 7407
1519
+ 5649
1520
+ 14084
1521
+ 4975
1522
+ 5464
1523
+ 5681
1524
+ 6493
1525
+ 5050
1526
+ 13889
1527
+ 4366
1528
+ 0
1529
+ 5000
1530
+ 10000
1531
+ 15000
1532
+ YCSB_A
1533
+ YCSB_B
1534
+ YCSB_C
1535
+ YCSB_D
1536
+ YCSB_E
1537
+ YCSB_F
1538
+ Throughput
1539
+ (ops/sec)
1540
+ Base
1541
+ MOAT
1542
+ Figure 15: Overall throughput of the memcached case study.
1543
+ 6.3
1544
+ Functionality Evaluation
1545
+ To show that MOAT is able to support various BPF features,
1546
+ we select seven BPF applications with varying functionalities
1547
+ from the famous bcc toolbox [52]. Among them, execsnoop
1548
+ and opensnoopare used for kernel profiling, recording differ-
1549
+ ent system events; tcptrace and net_monitor are used for
1550
+ network monitoring, collecting packet statistics; xdp_drop,
1551
+ xdp_cpu and xdp_interface can be used in firewalls and
1552
+ various load balancing scenarios, redirecting or dropping
1553
+ packages. These applications cover the majority of contem-
1554
+ porary BPF ecosystem usage scenarios. After securing these
1555
+ applications with MOAT, we examine the runtime status of
1556
+ these applications and confirm that they are operating cor-
1557
+ rectly and are not affected by MOAT. Furthermore, Fig. 16
1558
+ reports the performance evaluation results of these applica-
1559
+ tions with MOAT enabled. The extra overhead incurred by
1560
+ MOAT under different scenarios is reasonably low. Overall,
1561
+ the evaluation shows that MOAT can be smoothly applied to
1562
+ secure de facto BPF applications under various scenarios with
1563
+ minimal engineering effort and moderate cost.
1564
+ 1.00
1565
+ 1.00
1566
+ 1.00
1567
+ 1.00
1568
+ 1.00
1569
+ 1.00
1570
+ 1.00
1571
+ 1.07
1572
+ 1.01
1573
+ 1.25
1574
+ 1.10
1575
+ 1.21
1576
+ 1.11
1577
+ 1.07
1578
+ 0.00
1579
+ 0.50
1580
+ 1.00
1581
+ 1.50
1582
+ execsnoop
1583
+ opensnoop
1584
+ tcptrace
1585
+ net_monitor
1586
+ xdp_drop
1587
+ xdp_cpu
1588
+ xdp_interface
1589
+ Relative Time
1590
+ Base
1591
+ MOAT
1592
+ Figure 16: Application benchmark.
1593
+ 7
1594
+ Related Work
1595
+ In-Kernel Isolation. Most existing works [10, 12–14, 16, 23,
1596
+ 26, 29, 49, 61, 64] on kernel isolation focuses kernel com-
1597
+ ponents like device drivers and file systems, which are dis-
1598
+ tinct from BPF programs and hence cannot be reused directly
1599
+ in our scenario. Existing works can be roughly divided into
1600
+ three categories: virtualization, Software Fault Isolation (SFI),
1601
+ and formal methods. Narayanan et al. [49] propose LVD,
1602
+ which isolates kernel components in a virtualized environ-
1603
+ ment. Based on LVD, Huang et al. [29] split kernel modules
1604
+ into individual components for finer-grained isolation. SFI
1605
+ 12
1606
+
1607
+ is employed to instrument programs at the source or binary
1608
+ level [13, 14, 23]. These works ensure kernel security by in-
1609
+ serting pointer checks prior to memory accesses. Furthermore,
1610
+ formal methods enable principled isolation of kernel compo-
1611
+ nents, e.g., separating kernel code from untrusted drivers [61],
1612
+ or verifying file system correctness [10, 16].
1613
+ We believe none of these methods are readily re-usable
1614
+ in our BPF scenario. Virtualization method [12, 29, 49, 64]
1615
+ require placing the program in a separated address space,
1616
+ making it hard for BPF programs to interact with kernel.
1617
+ SFI [13, 14, 23] is based on program (compile-time) instru-
1618
+ mentation, whose inserted software checks often lead to high
1619
+ runtime overhead. Lastly, the BPF verifier itself performs
1620
+ formal verification, which shares conceptually similar advan-
1621
+ tage and drawbacks with existing formal method-based kernel
1622
+ isolation methods [10, 16, 61]; MOAT employs hardware ex-
1623
+ tensions to offer more principled BPF isolation.
1624
+ MPK-Based Isolation. Prior to PKS, Intel first announced
1625
+ its userspace variant PKU. Consequently, most existing
1626
+ works [27, 51, 58] using MPK focus on userspace isolation.
1627
+ To better utilize PKU as an isolation primitive, Park et al. [51]
1628
+ proposed libmpk that resolves the semantic discrepancies
1629
+ between PKU and conventional mprotect. There are also
1630
+ works [27, 58] that leverage this hardware feature to protect
1631
+ confidential data. Apart of using PKU to isolate normal user
1632
+ applications, efforts are made to isolate trusted applications
1633
+ in SGX via PKU [17, 33]. SGXLock [17] establishes mu-
1634
+ tual distrust between kernel and the trusted SGX applications,
1635
+ while EnclaveDom [33] enables intra-isolation within one
1636
+ enclave. PKU has been used for kernel security [26, 57] as
1637
+ well. IskiOS [26] applies PKU to kernel pages by marking
1638
+ them as user-owned, while Sung et al. [57] employ PKU to
1639
+ protect userspace unikernels. As a new feature introduced in
1640
+ 2021, research works using PKS are rather rare comparing
1641
+ to PKU. Linux community attempted to use PKS to prevent
1642
+ stray writes [1], which refers to kernel accidentally writing to
1643
+ wrong addresses.
1644
+ BPF Security. There also exist many works [25, 31, 32, 50,
1645
+ 60] on securing the the BPF ecosystem. However, most of
1646
+ these works use formal methods to enhance the following
1647
+ BPF components: the verifier, the JIT compiler and the BPF
1648
+ program itself. To enhance the standard BPF verifier, Ger-
1649
+ shuni et al. [25] built PREVAIL based on abstract interpre-
1650
+ tation [20], which supports more program structures (e.g.
1651
+ loops) and is more efficient comparing to the standard verifier.
1652
+ PRSafe [32], on the other hand, designs a new domain-specific
1653
+ language based on primitive recursive functions, whose prop-
1654
+ erties ensure that all computations must terminate. The ul-
1655
+ timate goal of PRSafe is to build a mathematically verifi-
1656
+ able compiler for BPF programs. As for BPF JIT compiler,
1657
+ Jitk [60] is a classic BPF JIT compiler whose correctness is
1658
+ proven manually. Further, Nelson et al. [50] propose Jitterbug
1659
+ to generate automated proof for real-world BPF JIT compilers.
1660
+ Lastly, Luke Nelson [31] build proof-carrying BPF programs,
1661
+ requiring developers to provide a correctness proof alongside
1662
+ with the program before loading it into the kernel.
1663
+ 8
1664
+ Discussion
1665
+ Platform Migration. The current prototype implementation
1666
+ of MOAT is based on MPK, a hardware extension available on
1667
+ Intel platforms. Below, we discuss migrating MOAT to other
1668
+ platforms with similar hardware extensions.
1669
+ ARM Memory Domains. “Domain” is a MPK-like feature
1670
+ supported since ARMv7 [3]. It employs 4-bit domain keys in
1671
+ PTEs and a Domain Access Control Register (DACR) in su-
1672
+ pervisor mode. Following a similar rationale to MPK, DACR
1673
+ allows accesses to be configured as denied, fully-allowed, or
1674
+ the same as PTEs. Since this feature is only supported on first-
1675
+ level and section-level PTEs, the domain boundaries must
1676
+ be aligned to 1 megabyte. Due to the similarity between this
1677
+ feature and MPK, we expect MOAT to be implemented on
1678
+ ARM with a moderate effort using this feature.
1679
+ RISC-V Domain Keys. As an open-source architecture, there
1680
+ exists a hardware extension on the RISC-V platform that
1681
+ supports similar features as MPK named Donky [53]. Donky
1682
+ leverages ten unused bits in the PTEs as a protection key,
1683
+ hence supporting 1,024 permission regions. Since Donky
1684
+ supports 1,024 keys, it is no longer possible to control permis-
1685
+ sions for all these regions using a single register, like MPK
1686
+ does. Donky thus introduces a 64-bit DKRU register with four
1687
+ key slots. Each slot can be loaded with a 10-bit protection key.
1688
+ Only when a key is loaded in DKRU can its associated region
1689
+ be written to or read from. From the description above, we
1690
+ interpret that Donky is quite flexible, and therefore, MOAT
1691
+ may be smoothly implemented on RISC-V using Donky.
1692
+ BPF JIT Support. As described in Sec. 2, there are two ways
1693
+ of executing a BPF program: directly interpreting the BPF
1694
+ bytecode, or using a JIT compiler for improved performance.
1695
+ Our prototype implementation of MOAT is based on the BPF
1696
+ interpreter. However, we note that the design of MOAT is
1697
+ compatible with the JIT compiler. First, the PKS is config-
1698
+ ured at the entry and exit points of running a BPF program,
1699
+ which is independent of the BPF program execution method.
1700
+ Second, the operations that MOAT performs during the BPF
1701
+ execution, such as helper auditing, are implemented as part
1702
+ of BPF helpers and also decoupled from how BPF programs
1703
+ are executed. Therefore, MOAT is essentially agnostic about
1704
+ the BPF program execution method, and it is adaptive to the
1705
+ native code produced by the BPF JIT compiler. Moreover,
1706
+ unlike the JIT compiler in Java virtual machine (JVM), which
1707
+ compiles only hotspot code chunks of Java bytecode each
1708
+ time, the BPF JIT compiler compiles the entire BPF program
1709
+ bytecode into native code once. This further reduces the effort
1710
+ of adapting MOAT to BPF programs compiled by JIT.
1711
+ 13
1712
+
1713
+ 9
1714
+ Conclusion
1715
+ Despite the increasing popularity of using BPF to extend
1716
+ kernel functionality, the security of BPF programs is still a
1717
+ concern. Recent attacks reveal that BPF applications can by-
1718
+ pass static security checks and conduct unauthorized kernel
1719
+ memory accesses. This paper has presented MOAT, which iso-
1720
+ lates potentially malicious BPF applications from the kernel
1721
+ using Intel MPK. MOAT addresses technical challenges and
1722
+ delivers a practical and extensible protection mechanism, in
1723
+ compensation to the contemporary BPF verifiers. Our evalua-
1724
+ tion reveals that MOAT can isolate (malicious) BPF programs
1725
+ in various real-world circumstances at a low cost.
1726
+ References
1727
+ [1] Memory protection keys for the kernel, 2020.
1728
+ [2] BPF-Helpers(7) - Linux Manual Page, 2021.
1729
+ [3] ARM Architecture Reference Manual, 2022.
1730
+ [4] BPF Documentation — The Linux Kernel Documenta-
1731
+ tion, 2022.
1732
+ [5] eBPF Maps — The Linux Kernel Documentation, 2022.
1733
+ [6] eBPF Verifier — The Linux Kernel Documentation,
1734
+ 2022.
1735
+ [7] ftrace - Function Tracer — The Linux Kernel Documen-
1736
+ tation, 2022.
1737
+ [8] Kprobes Documentation — The Linux Kernel Documen-
1738
+ tation, 2022.
1739
+ [9] Intel 64 and IA-32 Architectures Software Developer
1740
+ Manuals, 2022.
1741
+ [10] Sidney Amani, Alex Hixon, Zilin Chen, Christine
1742
+ Rizkallah, Peter Chubb, Liam O’Connor, Joel Beeren,
1743
+ Yutaka Nagashima, Japheth Lim, Thomas Sewell,
1744
+ Joseph Tuong, Gabriele Keller, Toby Murray, Gerwin
1745
+ Klein, and Gernot Heiser.
1746
+ Cogent: Verifying high-
1747
+ assurance file system implementations. In Proceedings
1748
+ of the Twenty-First International Conference on Archi-
1749
+ tectural Support for Programming Languages and Oper-
1750
+ ating Systems, ASPLOS ’16, page 175–188, New York,
1751
+ NY, USA, 2016. Association for Computing Machinery.
1752
+ ISBN 9781450340915. doi: 10.1145/2872362.2872404.
1753
+ [11] Daniel Borkmann. BPF and Spectre: Mitigating tran-
1754
+ sient execution attacks. eBPF Summit, 2021.
1755
+ [12] Silas Boyd-Wickizer and Nickolai Zeldovich. Tolerat-
1756
+ ing malicious device drivers in linux. In Proceedings
1757
+ of the 2010 USENIX Conference on USENIX Annual
1758
+ Technical Conference, USENIXATC’10, page 9, USA,
1759
+ 2010. USENIX Association.
1760
+ [13] David Brumley and Dawn Song. Privtrans: Automati-
1761
+ cally partitioning programs for privilege separation. In
1762
+ 13th USENIX Security Symposium (USENIX Security
1763
+ 04), San Diego, CA, August 2004. USENIX Associa-
1764
+ tion.
1765
+ [14] Miguel Castro, Manuel Costa, Jean-Philippe Martin,
1766
+ Marcus Peinado, Periklis Akritidis, Austin Donnelly,
1767
+ Paul Barham, and Richard Black. Fast byte-granularity
1768
+ software fault isolation. In Proceedings of the ACM
1769
+ SIGOPS 22nd Symposium on Operating Systems Prin-
1770
+ ciples, SOSP ’09, page 45–58, New York, NY, USA,
1771
+ 2009. Association for Computing Machinery. ISBN
1772
+ 9781605587523. doi: 10.1145/1629575.1629581.
1773
+ [15] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian
1774
+ Zhang, Zhiqiang Lin, and Ten-Hwang Lai. Sgxpectre at-
1775
+ tacks: Leaking enclave secrets via speculative execution.
1776
+ CoRR, abs/1802.09085, 2018.
1777
+ [16] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chli-
1778
+ pala, M. Frans Kaashoek, and Nickolai Zeldovich. Using
1779
+ crash hoare logic for certifying the FSCQ file system. In
1780
+ 2016 USENIX Annual Technical Conference (USENIX
1781
+ ATC 16), Denver, CO, June 2016. USENIX Association.
1782
+ [17] Yuan Chen, Jiaqi Li, Guorui Xu, Yajin Zhou, Zhi Wang,
1783
+ Cong Wang, and Kui Ren. SGXLock: Towards effi-
1784
+ ciently establishing mutual distrust between host appli-
1785
+ cation and enclave for SGX. In 31st USENIX Security
1786
+ Symposium (USENIX Security 22), pages 4129–4146,
1787
+ Boston, MA, August 2022. USENIX Association. ISBN
1788
+ 978-1-939133-31-1.
1789
+ [18] Cilium.
1790
+ Cilium.
1791
+ https://github.com/cilium/
1792
+ cilium, 2022.
1793
+ [19] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
1794
+ Ramakrishnan, and Russell Sears. Benchmarking cloud
1795
+ serving systems with ycsb. In Proceedings of the 1st
1796
+ ACM Symposium on Cloud Computing, SoCC ’10, page
1797
+ 143–154, New York, NY, USA, 2010. Association for
1798
+ Computing Machinery. ISBN 9781450300360. doi:
1799
+ 10.1145/1807128.1807152.
1800
+ [20] Patrick Cousot and Radhia Cousot. Abstract interpre-
1801
+ tation: a unified lattice model for static analysis of pro-
1802
+ grams by construction or approximation of fixpoints. In
1803
+ Proceedings of the 4th ACM SIGACT-SIGPLAN sympo-
1804
+ sium on Principles of programming languages, pages
1805
+ 238–252, 1977.
1806
+ [21] Jinhua Cui, Jason Zhijingcheng Yu, Shweta Shinde, Pra-
1807
+ teek Saxena, and Zhiping Cai.
1808
+ Smashex: Smashing
1809
+ SGX enclaves using exceptions. In Yongdae Kim, Jong
1810
+ Kim, Giovanni Vigna, and Elaine Shi, editors, CCS ’21:
1811
+ 2021 ACM SIGSAC Conference on Computer and Com-
1812
+ munications Security, Virtual Event, Republic of Korea,
1813
+ 14
1814
+
1815
+ November 15 - 19, 2021, pages 779–793. ACM, 2021.
1816
+ doi: 10.1145/3460120.3484821.
1817
+ [22] Pekka Enberg, Ashwin
1818
+ Rao, and Sasu
1819
+ Tarkoma.
1820
+ Partition-aware packet steering using xdp and ebpf for
1821
+ improving application-level parallelism. In Proceed-
1822
+ ings of the 1st ACM CoNEXT Workshop on Emerg-
1823
+ ing In-Network Computing Paradigms, ENCP ’19, page
1824
+ 27–33, New York, NY, USA, 2019. Association for
1825
+ Computing Machinery. ISBN 9781450370004. doi:
1826
+ 10.1145/3359993.3366766.
1827
+ [23] Úlfar Erlingsson, Martín Abadi, Michael Vrable, Mihai
1828
+ Budiu, and George C. Necula. XFI: Software guards for
1829
+ system address spaces. In 7th USENIX Symposium on
1830
+ Operating Systems Design and Implementation (OSDI
1831
+ 06), Seattle, WA, November 2006. USENIX Associa-
1832
+ tion.
1833
+ [24] Brad Fitzpatrick. Distributed caching with memcached.
1834
+ Linux J., 2004(124):5, aug 2004. ISSN 1075-3583.
1835
+ [25] Elazar Gershuni, Nadav Amit, Arie Gurfinkel, Nina
1836
+ Narodytska, Jorge A. Navas, Noam Rinetzky, Leonid
1837
+ Ryzhyk, and Mooly Sagiv. Simple and precise static
1838
+ analysis of untrusted linux kernel extensions. In Pro-
1839
+ ceedings of the 40th ACM SIGPLAN Conference on
1840
+ Programming Language Design and Implementation,
1841
+ PLDI 2019, page 1069–1084, New York, NY, USA,
1842
+ 2019. Association for Computing Machinery. ISBN
1843
+ 9781450367127. doi: 10.1145/3314221.3314590.
1844
+ [26] Spyridoula
1845
+ Gravani, Mohammad
1846
+ Hedayati, John
1847
+ Criswell, and Michael L. Scott.
1848
+ Fast intra-kernel
1849
+ isolation and security with iskios. In 24th International
1850
+ Symposium on Research in Attacks, Intrusions and
1851
+ Defenses, RAID ’21, page 119–134, New York, NY,
1852
+ USA, 2021. Association for Computing Machinery.
1853
+ ISBN 9781450390583. doi: 10.1145/3471621.3471849.
1854
+ [27] Mohammad Hedayati, Spyridoula Gravani, Ethan John-
1855
+ son, John Criswell, Michael L. Scott, Kai Shen, and
1856
+ Mike Marty. Hodor: Intra-Process isolation for High-
1857
+ Throughput data plane libraries. In 2019 USENIX An-
1858
+ nual Technical Conference (USENIX ATC 19), pages
1859
+ 489–504, Renton, WA, July 2019. USENIX Association.
1860
+ ISBN 978-1-939133-03-8.
1861
+ [28] Toke Høiland-Jørgensen, Jesper Dangaard Brouer,
1862
+ Daniel Borkmann, John Fastabend, Tom Herbert, David
1863
+ Ahern, and David Miller. The express data path: Fast
1864
+ programmable packet processing in the operating sys-
1865
+ tem kernel. In Proceedings of the 14th International
1866
+ Conference on Emerging Networking EXperiments and
1867
+ Technologies, CoNEXT ’18, page 54–66, New York,
1868
+ NY, USA, 2018. Association for Computing Machinery.
1869
+ ISBN 9781450360807. doi: 10.1145/3281411.3281443.
1870
+ [29] Yongzhe Huang, Vikram Narayanan, David Detweiler,
1871
+ Kaiming Huang, Gang Tan, Trent Jaeger, and Anton
1872
+ Burtsev. KSplit: Automating device driver isolation.
1873
+ In 16th USENIX Symposium on Operating Systems De-
1874
+ sign and Implementation (OSDI 22), pages 613–631,
1875
+ Carlsbad, CA, July 2022. USENIX Association. ISBN
1876
+ 978-1-939133-28-1.
1877
+ [30] Google Inc. The Chromium Projects. https://www.
1878
+ chromium.org/chromium-projects/, 2022.
1879
+ [31] Emina Torlak Luke Nelson, Xi Wang. A proof-carrying
1880
+ approach to building correct and flexible in-kernel
1881
+ verifiers.
1882
+ https://homes.cs.washington.edu/
1883
+ ~lukenels/slides/2021-09-23-lpc21.pdf, 2021.
1884
+ [32] Sai Veerya Mahadevan, Yuuki Takano, and Atsuko
1885
+ Miyaji.
1886
+ Prsafe: Primitive recursive function based
1887
+ domain specific language using llvm.
1888
+ In 2021 In-
1889
+ ternational Conference on Electronics, Information,
1890
+ and Communication (ICEIC), pages 1–4, 2021. doi:
1891
+ 10.1109/ICEIC51217.2021.9369763.
1892
+ [33] Marcela S. Melara, Michael J. Freedman, and Mic Bow-
1893
+ man. Enclavedom: Privilege separation for large-tcb
1894
+ applications in trusted execution environments, 2019.
1895
+ [34] Dirk Merkel. Docker: lightweight linux containers for
1896
+ consistent development and deployment. Linux journal,
1897
+ 2014(239):2, 2014.
1898
+ [35] MITRE. CVE-2020-27194. http://cve.mitre.org/
1899
+ cgi-bin/cvename.cgi?name=CVE-2020-27194, .
1900
+ [36] MITRE. CVE-2020-8835. http://cve.mitre.org/
1901
+ cgi-bin/cvename.cgi?name=CVE-2020-8835, .
1902
+ [37] MITRE. CVE-2021-31440. http://cve.mitre.org/
1903
+ cgi-bin/cvename.cgi?name=CVE-2021-31440, .
1904
+ [38] MITRE. CVE-2021-33200. http://cve.mitre.org/
1905
+ cgi-bin/cvename.cgi?name=CVE-2021-33200, .
1906
+ [39] MITRE. CVE-2021-3444. http://cve.mitre.org/
1907
+ cgi-bin/cvename.cgi?name=CVE-2021-3444, .
1908
+ [40] MITRE. CVE-2021-3490. http://cve.mitre.org/
1909
+ cgi-bin/cvename.cgi?name=CVE-2021-3490, .
1910
+ [41] MITRE. CVE-2021-45402. http://cve.mitre.org/
1911
+ cgi-bin/cvename.cgi?name=CVE-2021-45402, .
1912
+ [42] MITRE. CVE-2022-23222. http://cve.mitre.org/
1913
+ cgi-bin/cvename.cgi?name=CVE-2022-23222, .
1914
+ [43] MITRE. CVE-2022-2785. https://cve.mitre.org/
1915
+ cgi-bin/cvename.cgi?name=CVE-CVE-2022-2785,
1916
+ .
1917
+ 15
1918
+
1919
+ [44] MITRE. CVE-2021-38300. http://cve.mitre.org/
1920
+ cgi-bin/cvename.cgi?name=CVE-2021-38300, .
1921
+ [45] MITRE. CVE-2021-29154. http://cve.mitre.org/
1922
+ cgi-bin/cvename.cgi?name=CVE-2021-29154, .
1923
+ [46] MITRE. CVE-2021-4001. https://cve.mitre.org/
1924
+ cgi-bin/cvename.cgi?name=CVE-2021-4001, .
1925
+ [47] MITRE.
1926
+ CVE-2021-29155.
1927
+ https://cve.
1928
+ mitre.org/cgi-bin/cvename.cgi?name=
1929
+ CVE-2021-29155, .
1930
+ [48] Mozilla. The Firefox Projects. https://www.mozilla.
1931
+ org/en-US/firefox/browsers/, 2022.
1932
+ [49] Vikram Narayanan, Yongzhe Huang, Gang Tan, Trent
1933
+ Jaeger, and Anton Burtsev. Lightweight kernel isolation
1934
+ with virtualization and vm functions. In Proceedings
1935
+ of the 16th ACM SIGPLAN/SIGOPS International Con-
1936
+ ference on Virtual Execution Environments, VEE ’20,
1937
+ page 157–171, New York, NY, USA, 2020. Association
1938
+ for Computing Machinery. ISBN 9781450375542. doi:
1939
+ 10.1145/3381052.3381328.
1940
+ [50] Luke Nelson, Jacob Van Geffen, Emina Torlak, and
1941
+ Xi Wang. Specification and verification in the field:
1942
+ Applying formal methods to BPF just-in-time compilers
1943
+ in the linux kernel. In 14th USENIX Symposium on Op-
1944
+ erating Systems Design and Implementation (OSDI 20),
1945
+ pages 41–61. USENIX Association, November 2020.
1946
+ ISBN 978-1-939133-19-9.
1947
+ [51] Soyeon Park, Sangho Lee, Wen Xu, HyunGon Moon,
1948
+ and Taesoo Kim. libmpk: Software abstraction for intel
1949
+ memory protection keys (Intel MPK). In 2019 USENIX
1950
+ Annual Technical Conference (USENIX ATC 19), pages
1951
+ 241–254, Renton, WA, July 2019. USENIX Association.
1952
+ ISBN 978-1-939133-03-8.
1953
+ [52] IO Visor Project. BPF Compiler Collection. https:
1954
+ //github.com/iovisor/bcc, 2022.
1955
+ [53] David Schrammel, Samuel Weiser, Stefan Steinegger,
1956
+ Martin Schwarzl, Michael Schwarz, Stefan Mangard,
1957
+ and Daniel Gruss. Donky: Domain keys – efficient In-
1958
+ Process isolation for RISC-V and x86. In 29th USENIX
1959
+ Security Symposium (USENIX Security 20), pages 1677–
1960
+ 1694. USENIX Association, August 2020. ISBN 978-1-
1961
+ 939133-17-5.
1962
+ [54] Yulei Sui.
1963
+ SVF References.
1964
+ http://svf-tools.
1965
+ github.io/SVF/.
1966
+ [55] Yulei Sui and Jingling Xue. Svf: interprocedural static
1967
+ value-flow analysis in llvm.
1968
+ In Proceedings of the
1969
+ 25th international conference on compiler construction,
1970
+ pages 265–266. ACM, 2016.
1971
+ [56] Yulei Sui, Ding Ye, and Jingling Xue. Detecting mem-
1972
+ ory leaks statically with full-sparse value-flow analysis.
1973
+ IEEE Transactions on Software Engineering, 40(2):107–
1974
+ 122, 2014.
1975
+ [57] Mincheol Sung, Pierre Olivier, Stefan Lankes, and Bi-
1976
+ noy Ravindran. Intra-unikernel isolation with intel mem-
1977
+ ory protection keys. In Proceedings of the 16th ACM
1978
+ SIGPLAN/SIGOPS International Conference on Virtual
1979
+ Execution Environments, VEE ’20, page 143–156, New
1980
+ York, NY, USA, 2020. Association for Computing Ma-
1981
+ chinery. ISBN 9781450375542. doi: 10.1145/3381052.
1982
+ 3381326.
1983
+ [58] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O.
1984
+ Duarte, Michael Sammler, Peter Druschel, and Deepak
1985
+ Garg. ERIM: Secure, efficient in-process isolation with
1986
+ protection keys MPK. In 28th USENIX Security Sym-
1987
+ posium (USENIX Security 19), pages 1221–1238, Santa
1988
+ Clara, CA, August 2019. USENIX Association. ISBN
1989
+ 978-1-939133-06-9.
1990
+ [59] Harishankar Vishwanathan, Matan Shachnai, Srinivas
1991
+ Narayana, and Santosh Nagarakatte.
1992
+ Sound, pre-
1993
+ cise, and fast abstract interpretation with tristate num-
1994
+ bers.
1995
+ In Proceedings of the 20th IEEE/ACM Inter-
1996
+ national Symposium on Code Generation and Opti-
1997
+ mization, CGO ’22, page 254–265. IEEE Press, 2022.
1998
+ ISBN 9781665405843. doi: 10.1109/CGO53902.2022.
1999
+ 9741267.
2000
+ [60] Xi Wang, David Lazar, Nickolai Zeldovich, Adam Chli-
2001
+ pala, and Zachary Tatlock. Jitk: A trustworthy In-Kernel
2002
+ interpreter infrastructure.
2003
+ In 11th USENIX Sympo-
2004
+ sium on Operating Systems Design and Implementation
2005
+ (OSDI 14), pages 33–47, Broomfield, CO, October 2014.
2006
+ USENIX Association. ISBN 978-1-931971-16-4.
2007
+ [61] Miao Yu, Virgil Gligor, and Limin Jia. An i/o separa-
2008
+ tion model for formal verification of kernel implementa-
2009
+ tions. In 2021 IEEE Symposium on Security and Privacy
2010
+ (SP), pages 572–589, 2021. doi: 10.1109/SP40001.2021.
2011
+ 00101.
2012
+ [62] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas,
2013
+ Jeffrey Tao, Evan Mesterhazy, Michael Makris, Junfeng
2014
+ Yang, Amy Tai, Ryan Stutsman, and Asaf Cidon. XRP:
2015
+ In-Kernel storage functions with eBPF. In 16th USENIX
2016
+ Symposium on Operating Systems Design and Imple-
2017
+ mentation (OSDI 22), pages 375–393, Carlsbad, CA,
2018
+ July 2022. USENIX Association. ISBN 978-1-939133-
2019
+ 28-1.
2020
+ [63] Hao Zhou, Shuohan Wu, Xiapu Luo, Ting Wang, Ya-
2021
+ jin Zhou, Chao Zhang, and Haipeng Cai.
2022
+ Ncscope:
2023
+ Hardware-assisted analyzer for native code in android
2024
+ 16
2025
+
2026
+ apps. In Proceedings of the 31st ACM SIGSOFT In-
2027
+ ternational Symposium on Software Testing and Analy-
2028
+ sis, ISSTA 2022, page 629–641, New York, NY, USA,
2029
+ 2022. Association for Computing Machinery. ISBN
2030
+ 9781450393799. doi: 10.1145/3533767.3534410.
2031
+ [64] Zongwei Zhou, Miao Yu, and Virgil D. Gligor. Danc-
2032
+ ing with giants: Wimpy kernels for on-demand isolated
2033
+ i/o. In 2014 IEEE Symposium on Security and Privacy,
2034
+ pages 308–323, 2014. doi: 10.1109/SP.2014.27.
2035
+ 17
2036
+
19FQT4oBgHgl3EQf1zZe/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
1NFQT4oBgHgl3EQfETVZ/content/2301.13237v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d80a92346bacdb7a348d0c5810a95bf907d7723c2bc23a6e403b44a1a3aecc10
3
+ size 1851287
1NFQT4oBgHgl3EQfETVZ/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c607e8c611b9505896d3f7f1b4786bb5b8baec025a2cfea207a5908a720e5fef
3
+ size 5177389
1NFQT4oBgHgl3EQfETVZ/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25c0f9d6af54b14df6213e9a21591a877ab7b5d523dcf9b6e549c333dafd6559
3
+ size 181404
1tAzT4oBgHgl3EQf8_4M/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ba436ee10c5b00920427fce8c20350a2225782dac2a21ec86d0e51eab121d10
3
+ size 74904
2NFLT4oBgHgl3EQfqi-E/content/tmp_files/2301.12140v1.pdf.txt ADDED
@@ -0,0 +1,1876 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Multilingual Sentence Transformer as A Multilingual Word Aligner
2
+ Weikang Wang1∗ Guanhua Chen2∗
3
+ Hanqing Wang1
4
+ Yue Han1
5
+ Yun Chen1†
6
+ 1Shanghai University of Finance and Economics
7
+ 2Southern University of Science and Technology
8
9
10
+ {whq,hanyue}@163.sufe.edu.cn
11
12
+ Abstract
13
+ Multilingual
14
+ pretrained
15
+ language
16
+ models
17
+ (mPLMs) have shown their effectiveness in
18
+ multilingual word alignment induction. How-
19
+ ever, these methods usually start from mBERT
20
+ or XLM-R. In this paper, we investigate
21
+ whether multilingual sentence Transformer
22
+ LaBSE is a strong multilingual word aligner.
23
+ This idea is non-trivial as LaBSE is trained
24
+ to
25
+ learn
26
+ language-agnostic
27
+ sentence-level
28
+ embeddings, while the alignment extraction
29
+ task requires the more fine-grained word-
30
+ level embeddings to be language-agnostic.
31
+ We
32
+ demonstrate
33
+ that
34
+ the
35
+ vanilla
36
+ LaBSE
37
+ outperforms other mPLMs currently used
38
+ in the alignment task, and then propose to
39
+ finetune LaBSE on parallel corpus for further
40
+ improvement.
41
+ Experiment results on seven
42
+ language pairs show that our best aligner
43
+ outperforms previous state-of-the-art models
44
+ of all varieties.
45
+ In addition, our aligner
46
+ supports different language pairs in a single
47
+ model, and even achieves new state-of-the-art
48
+ on zero-shot language pairs that does not
49
+ appear in the finetuning process.
50
+ 1
51
+ Introduction
52
+ Word alignment aims to find the correspondence
53
+ between words in parallel texts (Brown et al., 1993).
54
+ It is useful in a variety of natural language process-
55
+ ing (NLP) applications such as noisy parallel cor-
56
+ pus filtering (Kurfalı and Östling, 2019), bilingual
57
+ lexicon induction (Shi et al., 2021), code-switching
58
+ corpus building (Lee et al., 2019; Lin et al., 2020)
59
+ and incorporating lexical constraints into neural
60
+ machine translation (NMT) models (Hasler et al.,
61
+ 2018; Chen et al., 2021b).
62
+ Recently, neural word alignment approaches
63
+ have developed rapidly and outperformed statistical
64
+ word aligners like GIZA++ (Och and Ney, 2003)
65
+ and fast-align (Dyer et al., 2013). Some works
66
+ ∗The first two authors contribute equally.
67
+ †Corresponding author.
68
+ Figure 1: Cosine similarities between subword repre-
69
+ sentations in a parallel sentence pair from 8th layer of
70
+ mBERT (left) and 6th layer of LaBSE (right).
71
+ Red
72
+ boxes denote the gold alignments.
73
+ (Garg et al., 2019; Li et al., 2019; Zenkel et al.,
74
+ 2019, 2020; Chen et al., 2020b; Zhang and van Gen-
75
+ abith, 2021; Chen et al., 2021a) induce alignments
76
+ from NMT model or its variants. However, these
77
+ bilingual models only support the language pair
78
+ involved in the training process. They also treat the
79
+ source and target side differently, thus two models
80
+ are required for bidirectional alignment extraction.
81
+ Another line of works (Jalili Sabet et al., 2020; Dou
82
+ and Neubig, 2021) build multilingual word aligners
83
+ with contextualized embeddings from the multilin-
84
+ gual pretrained language model (Wu and Dredze,
85
+ 2019; Conneau et al., 2020, mPLM). Thanks to
86
+ the language-agnostic representations learned with
87
+ multilingual masked language modeling task, these
88
+ methods are capable of inducing word alignments
89
+ even for language pairs without any parallel corpus.
90
+ Different from previous methods, in this pa-
91
+ per we present AccAlign, a more accurate mul-
92
+ tilingual word aligner with the multilingual sen-
93
+ tence Transformer LaBSE (Feng et al., 2022, see
94
+ Figure 1). The LaBSE is trained on large scale
95
+ parallel corpus of various language pairs to learn
96
+ language-agnostic sentence embeddings with con-
97
+ trastive learning. However, it is unclear whether
98
+ LaBSE has learned language-agnostic word-level
99
+ arXiv:2301.12140v1 [cs.CL] 28 Jan 2023
100
+
101
+ 0.81
102
+ 0.68
103
+ 0.55
104
+ 0.51
105
+ 0.55
106
+ 0.50
107
+ 0.51
108
+ 0.58
109
+ 0.89
110
+ 0.62
111
+ 0.47
112
+ 0.29
113
+ 0.28
114
+ 0.28
115
+ 0.31
116
+ 0.31
117
+ Das
118
+ 0.64
119
+ 0.87
120
+ 0.58
121
+ 0.52
122
+ 0.52
123
+ 0.55
124
+ 0.51
125
+ 0.57
126
+ 0.57
127
+ 0.89
128
+ 0.53
129
+ 0.32
130
+ 0.28
131
+ 0.33
132
+ 0.28
133
+ 0.33
134
+ 0.61
135
+ 0.66
136
+ 0.74
137
+ 0.53
138
+ 0.56
139
+ 0.51
140
+ 0.55
141
+ 0.58
142
+ 0.47
143
+ 0.56
144
+ 0.87
145
+ 0.36
146
+ 0.33
147
+ 0.31
148
+ 0.32
149
+ 0.25
150
+ 0.53
151
+ 0.57
152
+ 0.65
153
+ 0.48
154
+ 0.46
155
+ 0.50
156
+ 0.48
157
+ 0.54
158
+ 0.39
159
+ 0.53
160
+ 0.57
161
+ 0.34
162
+ 0.25
163
+ 0.36
164
+ 0.32
165
+ 0.29
166
+
167
+ 0.56
168
+ 0.56
169
+ 0.77
170
+ 0.79
171
+ 0.64
172
+ 0.54
173
+ 0.54
174
+ 0.54
175
+ 0.42
176
+ 0.50
177
+ 0.67
178
+ 0.40
179
+ 0.33
180
+ 0.42
181
+ 0.46
182
+ 0.30
183
+ 0.48
184
+ 0.52
185
+ 0.53
186
+ 0.73
187
+ 0.70
188
+ 0.58
189
+ 0.50
190
+ 0.52
191
+ 0.24
192
+ 0.28
193
+ 0.33
194
+ 0.90
195
+ 0.52
196
+ 0.36
197
+ 0.34
198
+ 0.28
199
+ e
200
+ 0.54
201
+ 0.52
202
+ 0.56
203
+ 0.65
204
+ 0.85
205
+ 0.63
206
+ 0.61
207
+ 0.59
208
+ 0.25
209
+ 0.27
210
+ 0.31
211
+ 0.49
212
+ 0.88
213
+ 0.38
214
+ 0.41
215
+ 0.29
216
+ verstehen
217
+ 0.50
218
+ 0.54
219
+ 0.52
220
+ 0.55
221
+ 0.62
222
+ 0.69
223
+ 0.77
224
+ 0.54
225
+ 0.28
226
+ 0.28
227
+ 0.33
228
+ 0.34
229
+ 0.39
230
+ 0.52
231
+ 0.89
232
+ 0.29
233
+ 0.63
234
+ 0.62
235
+ 0.56
236
+ 0.57
237
+ 0.60
238
+ 0.58
239
+ 0.57
240
+ 0.94
241
+ 0.21
242
+ 0.26
243
+ 0.19
244
+ 0.18
245
+ 0.20
246
+ 0.23
247
+ 0.20
248
+ 0.61
249
+ Jno
250
+ That
251
+ can
252
+ That
253
+ our
254
+ can
255
+ nderstand
256
+ understand
257
+ mBERT
258
+ LaBSEembeddings, which is the key for the success of
259
+ word alignment extraction. Specifically, we first
260
+ direct induce word alignments from LaBSE and
261
+ demonstrate that LaBSE outperforms other mPLMs
262
+ currently used in the alignment task. This indi-
263
+ cates that LaBSE has implicitly learned language-
264
+ agnostic word-level embeddings at some intermedi-
265
+ ate layer. Then we propose a simple and effective
266
+ finetuning method to further improve performance.
267
+ Empirical results on seven language pairs show that
268
+ our best aligner outperforms previous SOTA mod-
269
+ els of all varieties. In addition, our aligner supports
270
+ different language pairs in a single model, and even
271
+ achieves new SOTA on zero-shot language pairs
272
+ that does not appear in finetuning process.1
273
+ 2
274
+ AccAlign
275
+ 2.1
276
+ Background: LaBSE
277
+ LaBSE (Feng et al., 2022) is the state-of-the-art
278
+ model for the cross-lingual sentence retrieval task.
279
+ Given an input sentence, the model can retrieve the
280
+ most similar sentence from candidates in a different
281
+ language. LaBSE is first pretrained on a combina-
282
+ tion of masked language modeling (Devlin et al.,
283
+ 2019) and translation language modeling (Conneau
284
+ and Lample, 2019) tasks. After that, it is effec-
285
+ tively finetuned with contrastive loss on 6B parallel
286
+ sentences across 109 languages. We leave the train-
287
+ ing detail of LaBSE in the appendix. However, as
288
+ LaBSE does not include any word-level training
289
+ loss when finetuning with contrastive loss, it is un-
290
+ clear whether the model has learned high-quality
291
+ language-agnostic word-level embeddings, which
292
+ is the key for a multilingual word aligner.
293
+ 2.2
294
+ Alignment Induction from LaBSE
295
+ To investigate whether LaBSE is a strong multilin-
296
+ gual word aligner, we first induce word alignments
297
+ from vanilla LaBSE without any modification or
298
+ finetuning. This is done by utilizing the contextual
299
+ embeddings from LaBSE. Specifically, consider
300
+ a bilingual sentence pair x = ⟨x1, x2, ..., xn⟩ and
301
+ y = ⟨y1, x2, ..., ym⟩, we denote the contextual em-
302
+ beddings from LaBSE as hx = ⟨hx1, ..., hxn⟩ and
303
+ hy = ⟨hy1, ..., hym⟩, respectively. Following pre-
304
+ vious work (Dou and Neubig, 2021; Jalili Sabet
305
+ et al., 2020), we get the similarity matrix from the
306
+ contextual embeddings:
307
+ S = hxhT
308
+ y.
309
+ (1)
310
+ 1Code is available at https://github.com/sufenlp/
311
+ AccAlign.
312
+ Figure 2: The framework of adapter-based finetuning.
313
+ The blue blocks are kept frozen, while the red adapter
314
+ blocks are updated during finetuning.
315
+ The similarity matrix is normalized for each row to
316
+ get Sxy. Sxy is treated as the probability matrix as
317
+ its i-th row represents the probabilities of aligning
318
+ xi to all tokens in y. The reverse probability ma-
319
+ trix Syx is computed similarly by normalizing each
320
+ column of S. Taking intersection of the two prob-
321
+ ability matrices yields the final alignment matrix:
322
+ A = (Sxy > c) ∗ (ST
323
+ yx > c),
324
+ (2)
325
+ where c is a threshold and Aij = 1 indicates that
326
+ xi and yj are aligned. The above method induces
327
+ alignments on the subword level, which are con-
328
+ verted into word-level alignments by aligning two
329
+ words if any of their subwords are aligned follow-
330
+ ing (Zenkel et al., 2020; Jalili Sabet et al., 2020).
331
+ 2.3
332
+ Finetuning LaBSE for Better Alignments
333
+ Inspired by (Dou and Neubig, 2021), we propose a
334
+ finetuning method to further improve performance
335
+ given parallel corpus with alignment labels.
336
+ Adapter-based Finetuning
337
+ Adapter-based fine-
338
+ tuning (Houlsby et al., 2019; Bapna and Firat, 2019;
339
+ He et al., 2021) is not only parameter-efficient,
340
+ but also benefits model performance, especially
341
+ for low-resource and cross-lingual tasks (He et al.,
342
+ 2021). Figure 2 illustrates our overall framework,
343
+ where the adapters are adopted from (Houlsby et al.,
344
+ 2019). For each layer of LaBSE, we introduce
345
+ an adapter for each sublayer, which maps the in-
346
+ put vector of dimension d to dimension m where
347
+ m < d, and then re-maps it back to dimension d.
348
+ Let h and h′ denote the input and output vector,
349
+
350
+ Add & Norm
351
+ Adapter
352
+ Feed-forward
353
+ 00000
354
+ Add & Norm
355
+ 000
356
+ Adapter
357
+ 00000
358
+ Feed-forward
359
+ Self-attention
360
+ Adapter
361
+ XL
362
+ AccAlignerModel
363
+ Setting
364
+ de-en
365
+ sv-en
366
+ fr-en
367
+ ro-en
368
+ ja-en
369
+ zh-en
370
+ fa-en
371
+ avg
372
+ Bilingual Statistical Methods
373
+ fast-align (Dyer et al., 2013)
374
+ scratch
375
+ 27.0
376
+ -
377
+ 10.5
378
+ 32.1
379
+ 51.1
380
+ 38.1
381
+ -
382
+ -
383
+ eflomal (Östling and Tiedemann, 2016)
384
+ 22.6
385
+ -
386
+ 8.2
387
+ 25.1
388
+ 47.5
389
+ 28.7
390
+ -
391
+ -
392
+ GIZA++ (Och and Ney, 2003)
393
+ 20.6
394
+ -
395
+ 5.9
396
+ 26.4
397
+ 48.0
398
+ 35.1
399
+ -
400
+ -
401
+ Bilingual Neural Methods
402
+ MTL-FULLC-GZ (Garg et al., 2019)
403
+ scratch
404
+ 16.0
405
+ -
406
+ 4.6
407
+ 23.1
408
+ -
409
+ -
410
+ -
411
+ -
412
+ BAO-GUIDE (Zenkel et al., 2020)
413
+ 16.3
414
+ -
415
+ 5.0
416
+ 23.4
417
+ -
418
+ -
419
+ -
420
+ -
421
+ SHIFT-AET (Chen et al., 2020b)
422
+ 15.4
423
+ -
424
+ 4.7
425
+ 21.2
426
+ -
427
+ 17.2
428
+ -
429
+ -
430
+ MASK-ALIGN (Chen et al., 2021a)
431
+ 14.4
432
+ -
433
+ 4.4
434
+ 19.5
435
+ -
436
+ 13.8
437
+ -
438
+ -
439
+ BTBA-FCBO-SST (Zhang and van Genabith, 2021)
440
+ 14.3
441
+ -
442
+ 6.7
443
+ 18.5
444
+ -
445
+ -
446
+ -
447
+ -
448
+ Multilingual Neural Methods
449
+ SimAlign (Jalili Sabet et al., 2020)
450
+ no ft
451
+ 18.8
452
+ 11.2
453
+ 7.6
454
+ 27.2
455
+ 46.6
456
+ 21.6
457
+ 32.7
458
+ 23.7
459
+ AwesomeAlign (Dou and Neubig, 2021)
460
+ no ft
461
+ 17.4
462
+ 9.7
463
+ 5.6
464
+ 27.9
465
+ 45.6
466
+ 18.1
467
+ 33.0
468
+ 22.5
469
+ self-sup ft
470
+ 15.9
471
+ 7.9
472
+ 4.4
473
+ 26.2
474
+ 42.4
475
+ 14.9
476
+ 27.1
477
+ 19.8
478
+ sup ft
479
+ 15.2
480
+ 7.2
481
+ 4.0
482
+ 25.5
483
+ 40.6
484
+ 13.4
485
+ 25.8
486
+ 18.8
487
+ AccAlign
488
+ no ft
489
+ 16.0
490
+ 7.3
491
+ 4.5
492
+ 20.8
493
+ 43.3
494
+ 16.2
495
+ 23.4
496
+ 18.8
497
+ self-sup ft
498
+ 14.3
499
+ 5.8
500
+ 3.9
501
+ 21.6
502
+ 39.2
503
+ 13.0
504
+ 22.6
505
+ 17.2
506
+ sup ft
507
+ 13.6
508
+ 5.2
509
+ 2.8
510
+ 20.8
511
+ 36.9
512
+ 11.5
513
+ 22.2
514
+ 16.1
515
+ Table 1: AER comparison between AccAlign and the baselines on test set of 7 language pairs. self-sup and
516
+ sup mean finetuning the model with parallel corpus of self-supervised and human-annotated alignment labels,
517
+ respectively. All multilingual methods are tested on zero-shot language pairs.
518
+ respectively. The output vector h′ is calculated as:
519
+ h
520
+ ′ = Wup · tanh(Wdown · h) + h.
521
+ (3)
522
+ Note that a skip-connection is employed to approx-
523
+ imate an identity function if parameters of the pro-
524
+ jection matrices are near zero. During finetuning,
525
+ only parameters of the adapters are updated.
526
+ Training Objective
527
+ Let ˆA denote the alignment
528
+ labels for the given sentence pair x and y. We
529
+ define the learning objective as:
530
+ L =
531
+
532
+ ij
533
+ ˆAij
534
+ 1
535
+ 2
536
+
537
+ (Sxy)ij
538
+ n
539
+ + (ST
540
+ yx)ij
541
+ m
542
+
543
+ ,
544
+ (4)
545
+ where Sxy and Syx are the alignment probabil-
546
+ ity matrices, n and m are the length of sentence
547
+ x and y, respectively. Intuitively, this objective
548
+ encourages the gold aligned words to have closer
549
+ contextualized representations. In addition, as both
550
+ Sxy and ST
551
+ yx are encouraged to be close to ˆA, it im-
552
+ plicitly encourages the two alignment probability
553
+ matrices to be symmetrical to each other as well.
554
+ Our framework can be easily extended to cases
555
+ where alignment labels are unavailable, by replac-
556
+ ing ˆA with pseudo labels A (Equation 2) and train-
557
+ ing in a self-supervised manner.
558
+ 3
559
+ Experiments
560
+ 3.1
561
+ Setup
562
+ As we aim at building an accurate multilingual
563
+ word aligner, we evaluate AccAlign on a di-
564
+ verse alignment test set of seven language pairs:
565
+ de/sv/ro/fr/ja/zh/fa-en. For finetuning LaBSE, we
566
+ use nl/cs/hi/tr/es/pt-en as the training set and cs-en
567
+ as the validation set. To reduce the alignment anno-
568
+ tation efforts and the finetuning cost, our training
569
+ set only contains 3, 362 annotated sentence pairs.
570
+ To simulate the most difficult use cases where the
571
+ test language pair may not included in training, we
572
+ set the test language pairs different from training
573
+ and validation. Namely, LaBSE is tested in a zero-
574
+ shot manner. We denote this dataset as ALIGN6.
575
+ We induce alignments from 6-th layer of LaBSE,
576
+ which is selected on the validation set. We use
577
+ Alignment Error Rate (AER) as the evaluation met-
578
+ ric. Our model is not directly comparable to the
579
+ bilingual baselines, as they build model for each
580
+ test language pair using large scale parallel corpus
581
+ of that language pair. In contrast, our method is
582
+ more efficient as it supports all language pairs in
583
+ a single model and our finetuning only requires
584
+ 3, 362 sentence pairs.
585
+ Appendix B show more
586
+ dataset, model, baselines and other setup details.
587
+ 3.2
588
+ Main Results
589
+ Table 1 shows the comparison of our methods
590
+ against baselines. AccAlign-supft achieves new
591
+ SOTA on word alignment induction, outperforming
592
+ all baselines in 6 out of 7 language pairs. AccAlign
593
+ is also simpler than AwesomeAlign, which is the
594
+ best existing multilingual word aligner, as Awe-
595
+ someAlign finetunes with a combination of five
596
+ objectives, while AccAlign only has one objective.
597
+ The vanilla LaBSE is a strong multilingual word
598
+
599
+ Model
600
+ fi-el
601
+ fi-he
602
+ SimAglin
603
+ noft
604
+ 69.3
605
+ 85.8
606
+ AwesomeAlign
607
+ noft
608
+ 69.8
609
+ 84.4
610
+ self-sup ft
611
+ 68.8
612
+ 87.7
613
+ sup ft
614
+ 67.4
615
+ 86.1
616
+ AccAlign
617
+ noft
618
+ 47.0
619
+ 81.2
620
+ self-sup ft
621
+ 40.8
622
+ 76.1
623
+ sup ft
624
+ 36.7
625
+ 71.7
626
+ Table 2: AER comparison between AccAlign and mul-
627
+ tilingual baselines on non-English zero-shot language
628
+ pairs. The best AER for each column is bold and un-
629
+ derlined.
630
+ aligner (see AccAlign-noft). It performs better than
631
+ SimAlign-noft and AwesomeAlign-noft, and com-
632
+ parable with AwesomeAlign-supft, indicating that
633
+ LaBSE has learned high-quality language-agnostic
634
+ word embeddings. Our finetuning method is ef-
635
+ fective as well, improving AccAlign-noft by 1.6
636
+ and 2.7 AER with self-supervised and supervised
637
+ alignment labels, respectively. Our model improves
638
+ multilingual baselines even more significantly on
639
+ non-English language pairs. See Table 2 of ap-
640
+ pendix for detailed results.
641
+ 3.3
642
+ Analysis
643
+ Performance on non-English Language Pair
644
+ We conduct experiments to evaluate AccAlign
645
+ against multilingual baselines on non-English test
646
+ language pairs. The fi-el (Finnish-Greek) and fi-he
647
+ (Finnish-Hebrew) test set contains 791 and 2,230
648
+ annotated sentence pairs, respectively. Both test
649
+ sets are from ImaniGooghari et al. (2021)2. The
650
+ results are shown in Table 2. As can be seen, Ac-
651
+ cAlign in all three settings significantly improves
652
+ all multilingual baselines. The improvements is
653
+ much larger compared with zero-shot English lan-
654
+ guage pairs, demonstrating the effectiveness of Ac-
655
+ cAlign on non-English language pairs. We also
656
+ observe that finetuning better improves AccAlign
657
+ than AwesomeAlign. This verifies the strong cross-
658
+ lingual transfer ability of LaBSE , even between
659
+ English-centric and non-English language pairs.
660
+ Adapter-based vs. Full Finetuning
661
+ We com-
662
+ pare full and adapter-based fine-tuning in Table 3.
663
+ Compared with full finetuning, adapter-based fine-
664
+ tuning updates much less parameters and obtains
665
+ better performance under both supervised and self-
666
+ supervised settings, demonstrating its efficiency
667
+ and effectiveness for zero-shot word alignments.
668
+ 2https://github.com/cisnlp/graph-align
669
+ Ft type
670
+ full
671
+ adapter
672
+ Ft mode
673
+ self-supervised (avg.)
674
+ 17.4
675
+ 17.2
676
+ supervised (avg.)
677
+ 16.2
678
+ 16.1
679
+ Number of ft param.
680
+ 428M
681
+ 2.4M
682
+ Table 3:
683
+ AER comparison of full finetuning and
684
+ adapter-based finetuning.
685
+ Bilingual Finetuning
686
+ To better understand our
687
+ method, we compare with AwesomeAlign under
688
+ bilingual finetuning setup where the model is fine-
689
+ tuned and tested in the same single language pair.
690
+ We follow the setup in (Dou and Neubig, 2021) and
691
+ use finetuning corpus without human-annotated la-
692
+ bels. As shown in Table 4, LaBSE outperforms
693
+ AwesomeAlign in the finetuning language pair
694
+ (18.8 vs. 18.2). The performance gap becomes
695
+ larger for zero-shot language pairs (21.3 vs. 18.8).
696
+ The results demonstrate that AccAlign is an effec-
697
+ tive zero-shot aligner, as LaBSE has learned more
698
+ language-agnostic representations which benefit
699
+ cross-lingual transfer.
700
+ Different Multilingual Pretrained Models
701
+ We
702
+ investigate the performance of AccAlign-noft when
703
+ replacing LaBSE with other mPLMs, including
704
+ XLM-R, mBERT and four other multilingual sen-
705
+ tence Transformer from HuggingFace. LaBSE out-
706
+ performs other mPLMs by 3.5 to 9.6 averaged AER.
707
+ Table 9 in appendix shows more details.
708
+ Performance across Layer
709
+ We investigate the
710
+ performance of AccAlign-noft when extracts align-
711
+ ments from different layers. Layer 6, which is the
712
+ layer we use for all experiments, outperforms other
713
+ layers by 0.1 to 26.0 averaged AER. Please refer to
714
+ Table 10 in appendix for more details.
715
+ Representation Analysis
716
+ To succeed in multi-
717
+ lingual word alignment, the contextual embed-
718
+ dings should prefer two following properties: (1)
719
+ language-agnostic: two aligned bilingual words
720
+ should be mapped to nearby features in the
721
+ same language-agnostic feature space. (2) word-
722
+ identifiable: the embeddings of two random tokens
723
+ from the same sentence should be distinguishable.
724
+ Therefore, we analyze the embeddings from dif-
725
+ ferent layers of AccAlign under different settings
726
+ by computing cosine similarity for aligned word
727
+ pairs and word pairs randomly sampled from the
728
+ same sentence, denoted as sbi and smono (see ap-
729
+ pendix for more experiment details). Intuitively,
730
+ bigger sbi and smaller smono are preferred as we
731
+
732
+ Model
733
+ Test lang.
734
+ Ft lang.
735
+ de-en
736
+ fr-en
737
+ ro-en
738
+ ja-en
739
+ zh-en
740
+ avg.
741
+ AwesomeAlign
742
+ ft lang.
743
+ 14.9
744
+ 4.0
745
+ 22.9
746
+ 38.1
747
+ 14.1
748
+ 18.8
749
+ zero-shot langs (avg.)
750
+ 16.3
751
+ 4.7
752
+ 26.6
753
+ 43.7
754
+ 15.0
755
+ 21.3
756
+ AccAlign
757
+ ft lang.
758
+ 14.2
759
+ 3.8
760
+ 21.0
761
+ 38.0
762
+ 13.8
763
+ 18.2
764
+ zero-shot langs (avg.)
765
+ 14.8
766
+ 3.9
767
+ 20.7
768
+ 40.5
769
+ 13.8
770
+ 18.8
771
+ Table 4: AER results with bilingual finetuning.
772
+ Figure 3: sbi (↑) and smono (↓) of AccAlign without
773
+ finetuning (noft), with self-supervised finetuning (self-
774
+ sup ft) and supervised finetuning (sup ft).
775
+ expect the features of aligned words to be similar
776
+ while that of two different words to be different.
777
+ The results on de-en test set are presented in Fig-
778
+ ure 3. For vanilla LaBSE (green curves), we find
779
+ that features from 6-th layer, namely the best layer
780
+ to induce alignment, successfully trades off these
781
+ two properties as it obtains the biggest sbi − smono
782
+ among all layers. In addition, adapter-based fine-
783
+ tuning improves performance mainly by making
784
+ features more word-identifiable, as it significantly
785
+ decreases smono while almost maintaining sbi .
786
+ 4
787
+ Conclusion
788
+ In this paper, we introduce AccAlign, a novel multi-
789
+ lingual word aligner based on multilingual sentence
790
+ Transformer LaBSE. The best proposed approach
791
+ finetunes LaBSE on a few thousands of annotated
792
+ parallel sentences and achieves state-of-the-art per-
793
+ formance even for zero-shot language pairs. Ac-
794
+ cAlign is believed to be a valuable alignment tool
795
+ that can be used out-of-the-box for other NLP tasks.
796
+ Limitations
797
+ AccAlign has shown to extract high quality word
798
+ alignments when the input texts are two well-paired
799
+ bilingual sentences.
800
+ However, the condition is
801
+ not always met. In lexically constrained decod-
802
+ ing of NMT (Hasler et al., 2018; Song et al., 2020;
803
+ Chen et al., 2021b), the aligner takes a full source-
804
+ language sentence and a partial target-language
805
+ translation as the input at each step to determine
806
+ the right position to incorporate constraints. In cre-
807
+ ating translated training corpus in zero-resource
808
+ language for sequence tagging or parsing (Ni et al.,
809
+ 2017; Jain et al., 2019; Fei et al., 2020), the aligner
810
+ extracts alignments from the labelled sentence and
811
+ its translation to conduct label projection. Both
812
+ cases deviate from our current settings as the input
813
+ sentence may contain translation error or even be
814
+ incomplete. We leave exploring the robustness of
815
+ AccAlign as the future work.
816
+ At the same time, our proposed method only
817
+ supports languages included in LaBSE. This hin-
818
+ ders applying AccAlign to more low-resource lan-
819
+ guages. Future explorations are needed to rapidly
820
+ adapt AccAlign to new languages (Neubig and Hu,
821
+ 2018; Garcia et al., 2021).
822
+ Acknowledgements
823
+ This project was supported by National Natural
824
+ Science Foundation of China (No. 62106138) and
825
+ Shanghai Sailing Program (No. 21YF1412100).
826
+ We thank the anonymous reviewers for their in-
827
+ sightful feedbacks on this work.
828
+ References
829
+ Niraj Aswani and Robert Gaizauskas. 2005. Aligning
830
+ words in english-hindi parallel corpora. In Proceed-
831
+ ings of the ACL Workshop on Building and Using
832
+ Parallel Texts, pages 115–118.
833
+ Ankur Bapna and Orhan Firat. 2019.
834
+ Simple, scal-
835
+ able adaptation for neural machine translation. In
836
+ Proceedings of the 2019 Conference on Empirical
837
+ Methods in Natural Language Processing and the
838
+ 9th International Joint Conference on Natural Lan-
839
+ guage Processing (EMNLP-IJCNLP), pages 1538–
840
+ 1548, Hong Kong, China. Association for Computa-
841
+ tional Linguistics.
842
+
843
+ 0.8
844
+ 0.6
845
+ score
846
+ 0.4
847
+ Sbi of noft
848
+ Smono of noft
849
+ Sbi of self-sup ft
850
+ 0.2
851
+ Smono of self-sup ft
852
+ Sbi of sup ft
853
+ Smono of sup ft
854
+ 10
855
+ 12
856
+ 0
857
+ 2
858
+ 4
859
+ 6
860
+ 8
861
+ layerPeter F Brown, Stephen A Della Pietra, Vincent J
862
+ Della Pietra, and Robert L Mercer. 1993. The math-
863
+ ematics of statistical machine translation: Parameter
864
+ estimation.
865
+ Computational linguistics, 19(2):263–
866
+ 311.
867
+ Mehmet Talha Cakmak, Süleyman Acar, and Gül¸sen
868
+ Eryi˘git. 2012. Word alignment for english-turkish
869
+ language pair. In Proceedings of the Eighth Interna-
870
+ tional Conference on Language Resources and Eval-
871
+ uation (LREC’12), pages 2177–2180.
872
+ Chi Chen, Maosong Sun, and Yang Liu. 2021a. Mask-
873
+ align: Self-supervised neural word alignment.
874
+ In
875
+ Proceedings of the 59th Annual Meeting of the
876
+ Association for Computational Linguistics and the
877
+ 11th International Joint Conference on Natural Lan-
878
+ guage Processing (Volume 1: Long Papers), pages
879
+ 4781–4791, Online. Association for Computational
880
+ Linguistics.
881
+ Guanhua Chen, Yun Chen, and Victor OK Li. 2021b.
882
+ Lexically constrained neural machine translation
883
+ with explicit alignment guidance. In Proceedings of
884
+ the AAAI Conference on Artificial Intelligence, vol-
885
+ ume 35, pages 12630–12638.
886
+ Ting Chen, Simon Kornblith, Mohammad Norouzi,
887
+ and Geoffrey Hinton. 2020a. A simple framework
888
+ for contrastive learning of visual representations.
889
+ In International conference on machine learning,
890
+ pages 1597–1607. PMLR.
891
+ Yun Chen, Yang Liu, Guanhua Chen, Xin Jiang, and
892
+ Qun Liu. 2020b. Accurate word alignment induc-
893
+ tion from neural machine translation. In Proceed-
894
+ ings of the 2020 Conference on Empirical Methods
895
+ in Natural Language Processing (EMNLP), pages
896
+ 566–576, Online. Association for Computational
897
+ Linguistics.
898
+ Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
899
+ Vishrav Chaudhary, Guillaume Wenzek, Francisco
900
+ Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
901
+ moyer, and Veselin Stoyanov. 2020. Unsupervised
902
+ cross-lingual representation learning at scale.
903
+ In
904
+ Proceedings of the 58th Annual Meeting of the Asso-
905
+ ciation for Computational Linguistics, pages 8440–
906
+ 8451, Online. Association for Computational Lin-
907
+ guistics.
908
+ Alexis Conneau and Guillaume Lample. 2019. Cross-
909
+ lingual language model pretraining.
910
+ Advances in
911
+ neural information processing systems, 32.
912
+ Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
913
+ Kristina Toutanova. 2019.
914
+ BERT: Pre-training of
915
+ deep bidirectional transformers for language under-
916
+ standing.
917
+ In Proceedings of the 2019 Conference
918
+ of the North American Chapter of the Association
919
+ for Computational Linguistics: Human Language
920
+ Technologies, Volume 1 (Long and Short Papers),
921
+ pages 4171–4186, Minneapolis, Minnesota. Associ-
922
+ ation for Computational Linguistics.
923
+ Zi-Yi Dou and Graham Neubig. 2021. Word alignment
924
+ by fine-tuning embeddings on parallel corpora. In
925
+ Proceedings of the 16th Conference of the European
926
+ Chapter of the Association for Computational Lin-
927
+ guistics: Main Volume, pages 2112–2128, Online.
928
+ Association for Computational Linguistics.
929
+ Chris Dyer, Victor Chahuneau, and Noah A. Smith.
930
+ 2013.
931
+ A simple, fast, and effective reparameter-
932
+ ization of IBM model 2.
933
+ In Proceedings of the
934
+ 2013 Conference of the North American Chapter of
935
+ the Association for Computational Linguistics: Hu-
936
+ man Language Technologies, pages 644–648, At-
937
+ lanta, Georgia. Association for Computational Lin-
938
+ guistics.
939
+ Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi
940
+ Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep
941
+ Baines, Onur Celebi, Guillaume Wenzek, Vishrav
942
+ Chaudhary, et al. 2021. Beyond english-centric mul-
943
+ tilingual machine translation. J. Mach. Learn. Res.,
944
+ 22(107):1–48.
945
+ Hao Fei, Meishan Zhang, and Donghong Ji. 2020.
946
+ Cross-lingual semantic role labeling with high-
947
+ quality translated training corpus. In Proceedings
948
+ of the 58th Annual Meeting of the Association for
949
+ Computational Linguistics, pages 7014–7026, On-
950
+ line. Association for Computational Linguistics.
951
+ Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen
952
+ Arivazhagan, and Wei Wang. 2022.
953
+ Language-
954
+ agnostic BERT sentence embedding.
955
+ In Proceed-
956
+ ings of the 60th Annual Meeting of the Association
957
+ for Computational Linguistics (Volume 1: Long Pa-
958
+ pers), pages 878–891, Dublin, Ireland. Association
959
+ for Computational Linguistics.
960
+ Xavier Garcia, Noah Constant, Ankur Parikh, and
961
+ Orhan Firat. 2021. Towards continual learning for
962
+ multilingual machine translation via vocabulary sub-
963
+ stitution. In Proceedings of the 2021 Conference of
964
+ the North American Chapter of the Association for
965
+ Computational Linguistics: Human Language Tech-
966
+ nologies, pages 1184–1192.
967
+ Sarthak Garg, Stephan Peitz, Udhyakumar Nallasamy,
968
+ and Matthias Paulik. 2019. Jointly learning to align
969
+ and translate with transformer models. In Proceed-
970
+ ings of the 2019 Conference on Empirical Methods
971
+ in Natural Language Processing and the 9th Inter-
972
+ national Joint Conference on Natural Language Pro-
973
+ cessing (EMNLP-IJCNLP), pages 4453–4462, Hong
974
+ Kong, China. Association for Computational Lin-
975
+ guistics.
976
+ Joao Graca, Joana Paulo Pardal, Luísa Coheur, and Dia-
977
+ mantino Caseiro. 2008. Building a golden collection
978
+ of parallel multi-language word alignment. In Pro-
979
+ ceedings of the Sixth International Conference on
980
+ Language Resources and Evaluation (LREC’08).
981
+ Eva Hasler, Adrià de Gispert, Gonzalo Iglesias, and
982
+ Bill Byrne. 2018. Neural machine translation decod-
983
+ ing with terminology constraints. In Proceedings of
984
+
985
+ the 2018 Conference of the North American Chap-
986
+ ter of the Association for Computational Linguistics:
987
+ Human Language Technologies, Volume 2 (Short Pa-
988
+ pers), pages 506–512.
989
+ Ruidan He, Linlin Liu, Hai Ye, Qingyu Tan, Bosheng
990
+ Ding, Liying Cheng, Jiawei Low, Lidong Bing, and
991
+ Luo Si. 2021.
992
+ On the effectiveness of adapter-
993
+ based tuning for pretrained language model adap-
994
+ tation.
995
+ In Proceedings of the 59th Annual Meet-
996
+ ing of the Association for Computational Linguistics
997
+ and the 11th International Joint Conference on Nat-
998
+ ural Language Processing (Volume 1: Long Papers),
999
+ pages 2208–2222, Online. Association for Computa-
1000
+ tional Linguistics.
1001
+ Maria Holmqvist and Lars Ahrenberg. 2011. A gold
1002
+ standard for english-swedish word alignment.
1003
+ In
1004
+ Proceedings of the 18th Nordic conference of compu-
1005
+ tational linguistics (NODALIDA 2011), pages 106–
1006
+ 113.
1007
+ Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
1008
+ Bruna Morrone, Quentin De Laroussilhe, Andrea
1009
+ Gesmundo, Mona Attariyan, and Sylvain Gelly.
1010
+ 2019. Parameter-efficient transfer learning for nlp.
1011
+ In International Conference on Machine Learning,
1012
+ pages 2790–2799. PMLR.
1013
+ Ayyoob
1014
+ ImaniGooghari,
1015
+ Masoud
1016
+ Jalili
1017
+ Sabet,
1018
+ Lutfi
1019
+ Kerem
1020
+ Senel,
1021
+ Philipp
1022
+ Dufter,
1023
+ François
1024
+ Yvon, and Hinrich Schütze. 2021. Graph algorithms
1025
+ for multiparallel word alignment.
1026
+ In Proceedings
1027
+ of the 2021 Conference on Empirical Methods in
1028
+ Natural Language Processing, pages 8457–8469,
1029
+ Online and Punta Cana,
1030
+ Dominican Republic.
1031
+ Association for Computational Linguistics.
1032
+ Alankar Jain, Bhargavi Paranjape, and Zachary C. Lip-
1033
+ ton. 2019.
1034
+ Entity projection via machine transla-
1035
+ tion for cross-lingual NER. In Proceedings of the
1036
+ 2019 Conference on Empirical Methods in Natu-
1037
+ ral Language Processing and the 9th International
1038
+ Joint Conference on Natural Language Processing
1039
+ (EMNLP-IJCNLP), pages 1083–1092, Hong Kong,
1040
+ China. Association for Computational Linguistics.
1041
+ Masoud Jalili Sabet, Philipp Dufter, François Yvon,
1042
+ and Hinrich Schütze. 2020. SimAlign: High qual-
1043
+ ity word alignments without parallel training data us-
1044
+ ing static and contextualized embeddings. In Find-
1045
+ ings of the Association for Computational Linguis-
1046
+ tics: EMNLP 2020, pages 1627–1643, Online. As-
1047
+ sociation for Computational Linguistics.
1048
+ Murathan Kurfalı and Robert Östling. 2019. Noisy par-
1049
+ allel corpus filtering through projected word embed-
1050
+ dings. In Proceedings of the Fourth Conference on
1051
+ Machine Translation (Volume 3: Shared Task Papers,
1052
+ Day 2), pages 277–281, Florence, Italy. Association
1053
+ for Computational Linguistics.
1054
+ Grandee Lee, Xianghu Yue, and Haizhou Li. 2019.
1055
+ Linguistically motivated parallel data augmentation
1056
+ for code-switch language modeling.
1057
+ In INTER-
1058
+ SPEECH, pages 3730–3734.
1059
+ Xintong Li, Guanlin Li, Lemao Liu, Max Meng, and
1060
+ Shuming Shi. 2019. On the word alignment from
1061
+ neural machine translation. In Proceedings of the
1062
+ 57th Annual Meeting of the Association for Com-
1063
+ putational Linguistics, pages 1293–1303, Florence,
1064
+ Italy. Association for Computational Linguistics.
1065
+ Zehui Lin, Xiao Pan, Mingxuan Wang, Xipeng Qiu,
1066
+ Jiangtao Feng, Hao Zhou, and Lei Li. 2020. Pre-
1067
+ training multilingual neural machine translation by
1068
+ leveraging alignment information.
1069
+ In Proceed-
1070
+ ings of the 2020 Conference on Empirical Methods
1071
+ in Natural Language Processing (EMNLP), pages
1072
+ 2649–2663.
1073
+ Yang Liu and Maosong Sun. 2015. Contrastive unsu-
1074
+ pervised word alignment with non-local features. In
1075
+ Twenty-Ninth AAAI Conference on Artificial Intelli-
1076
+ gence.
1077
+ Lieve Macken. 2010. An annotation scheme and gold
1078
+ standard for dutch-english word alignment. In 7th
1079
+ conference on International Language Resources
1080
+ and Evaluation (LREC 2010), pages 3369–3374. Eu-
1081
+ ropean Language Resources Association (ELRA).
1082
+ David Mareˇcek. 2011.
1083
+ Automatic alignment of tec-
1084
+ togrammatical trees from czech-english parallel cor-
1085
+ pus.
1086
+ Rada Mihalcea and Ted Pedersen. 2003.
1087
+ An evalua-
1088
+ tion exercise for word alignment.
1089
+ In Proceedings
1090
+ of the HLT-NAACL 2003 Workshop on Building and
1091
+ Using Parallel Texts: Data Driven Machine Transla-
1092
+ tion and Beyond, pages 1–10.
1093
+ Graham Neubig. 2011. The Kyoto free translation task.
1094
+ http://www.phontron.com/kftt.
1095
+ Graham Neubig and Junjie Hu. 2018. Rapid adapta-
1096
+ tion of neural machine translation to new languages.
1097
+ In Proceedings of the 2018 Conference on Empiri-
1098
+ cal Methods in Natural Language Processing, pages
1099
+ 875–880, Brussels, Belgium. Association for Com-
1100
+ putational Linguistics.
1101
+ Jian Ni, Georgiana Dinu, and Radu Florian. 2017.
1102
+ Weakly supervised cross-lingual named entity recog-
1103
+ nition via effective annotation and representation
1104
+ projection. In Proceedings of the 55th Annual Meet-
1105
+ ing of the Association for Computational Linguistics
1106
+ (Volume 1: Long Papers), pages 1470–1480, Van-
1107
+ couver, Canada. Association for Computational Lin-
1108
+ guistics.
1109
+ Franz Josef Och and Hermann Ney. 2003. A systematic
1110
+ comparison of various statistical alignment models.
1111
+ Computational Linguistics, 29(1):19–51.
1112
+ Robert Östling and Jörg Tiedemann. 2016. Efficient
1113
+ word alignment with markov chain monte carlo. The
1114
+ Prague Bulletin of Mathematical Linguistics.
1115
+ Nils Reimers and Iryna Gurevych. 2019.
1116
+ Sentence-
1117
+ bert:
1118
+ Sentence embeddings using siamese bert-
1119
+ networks. In Proceedings of the 2019 Conference on
1120
+
1121
+ Empirical Methods in Natural Language Processing.
1122
+ Association for Computational Linguistics.
1123
+ Haoyue Shi, Luke Zettlemoyer, and Sida I. Wang. 2021.
1124
+ Bilingual lexicon induction via unsupervised bitext
1125
+ construction and word alignment. In Proceedings of
1126
+ the 59th Annual Meeting of the Association for Com-
1127
+ putational Linguistics and the 11th International
1128
+ Joint Conference on Natural Language Processing
1129
+ (Volume 1: Long Papers), pages 813–826, Online.
1130
+ Association for Computational Linguistics.
1131
+ Kai
1132
+ Song,
1133
+ Kun
1134
+ Wang,
1135
+ Heng
1136
+ Yu,
1137
+ Yue
1138
+ Zhang,
1139
+ Zhongqiang Huang, Weihua Luo, Xiangyu Duan,
1140
+ and Min Zhang. 2020. Alignment-enhanced trans-
1141
+ former for constraining nmt with pre-specified trans-
1142
+ lations. In Proceedings of the AAAI Conference on
1143
+ Artificial Intelligence, volume 34, pages 8886–8893.
1144
+ Leila Tavakoli and Heshaam Faili. 2014. Phrase align-
1145
+ ments in parallel corpus using bootstrapping ap-
1146
+ proach.
1147
+ David Vilar, Maja Popovi´c, and Hermann Ney. 2006.
1148
+ Aer: Do we need to “improve” our alignments? In
1149
+ Proceedings of the Third International Workshop on
1150
+ Spoken Language Translation: Papers.
1151
+ Shijie Wu and Mark Dredze. 2019. Beto, bentz, becas:
1152
+ The surprising cross-lingual effectiveness of bert. In
1153
+ Proceedings of EMNLP-IJCNLP, pages 833–844.
1154
+ Yinfei Yang,
1155
+ Daniel Cer,
1156
+ Amin Ahmad,
1157
+ Mandy
1158
+ Guo, Jax Law, Noah Constant, Gustavo Hernandez
1159
+ Abrego, Steve Yuan, Chris Tar, Yun-Hsuan Sung,
1160
+ et al. 2020. Multilingual universal sentence encoder
1161
+ for semantic retrieval. In Proceedings of the 58th An-
1162
+ nual Meeting of the Association for Computational
1163
+ Linguistics: System Demonstrations, pages 87–94.
1164
+ Thomas Zenkel, Joern Wuebker, and John DeNero.
1165
+ 2019. Adding interpretable attention to neural trans-
1166
+ lation models improves word alignment.
1167
+ arXiv
1168
+ preprint arXiv:1901.11359.
1169
+ Thomas Zenkel, Joern Wuebker, and John DeNero.
1170
+ 2020.
1171
+ End-to-end neural word alignment outper-
1172
+ forms GIZA++. In Proceedings of the 58th Annual
1173
+ Meeting of the Association for Computational Lin-
1174
+ guistics, pages 1605–1617, Online. Association for
1175
+ Computational Linguistics.
1176
+ Jingyi Zhang and Josef van Genabith. 2021. A bidi-
1177
+ rectional transformer based alignment model for un-
1178
+ supervised word alignment. In Proceedings of the
1179
+ 59th Annual Meeting of the Association for Compu-
1180
+ tational Linguistics and the 11th International Joint
1181
+ Conference on Natural Language Processing (Vol-
1182
+ ume 1: Long Papers), pages 283–292, Online. As-
1183
+ sociation for Computational Linguistics.
1184
+
1185
+ A
1186
+ LaBSE
1187
+ LaBSE (Feng et al., 2022) is the state-of-the-art
1188
+ model for the cross-lingual sentence retrieval task.
1189
+ Given an input sentence, the model can retrieve the
1190
+ most similar sentence from candidates in a differ-
1191
+ ent language. It has 471M parameters and supports
1192
+ 109 languages. The model is first pretrained on a
1193
+ combination of masked language modeling (De-
1194
+ vlin et al., 2019) and translation language model-
1195
+ ing (Conneau and Lample, 2019) tasks on the 17B
1196
+ monolingual data and 6B bilingual translation pairs,
1197
+ respectively. After that, it is effectively finetuned
1198
+ with contrastive loss on 6B bilingual translation
1199
+ pairs across 109 languages.
1200
+ Specifically, given a bilingual sentence pair
1201
+ ⟨xi, yi⟩, we use exi and eyi to denote their sen-
1202
+ tence embeddings from LaBSE. Then the model is
1203
+ finetuned using contrative loss with in-batch nega-
1204
+ tives (Chen et al., 2020a):
1205
+ ℓ = − 1
1206
+ N
1207
+ N
1208
+
1209
+ i=1
1210
+
1211
+ log
1212
+ exp
1213
+
1214
+ φ(exi, eyi)
1215
+
1216
+ �N
1217
+ j=1 exp
1218
+
1219
+ φ(exi, eyj)
1220
+ �+
1221
+ log
1222
+ exp
1223
+
1224
+ φ(exi, eyi)
1225
+
1226
+ �N
1227
+ j=1 exp
1228
+
1229
+ φ(exj, eyi)
1230
+
1231
+
1232
+ ,
1233
+ (5)
1234
+ where φ(exi, eyj) measures the similarity of sen-
1235
+ tence xi and yj in the embedding space:
1236
+ φ
1237
+
1238
+ exi, eyj
1239
+
1240
+ =
1241
+
1242
+ e⊤
1243
+ xieyj − b
1244
+ if i = j
1245
+ e⊤
1246
+ xieyj
1247
+ if i ̸= j .
1248
+ (6)
1249
+ Note that a margin b is introduced to improve the
1250
+ separation between positive and negative pairs.
1251
+ B
1252
+ Experiments Setup
1253
+ B.1
1254
+ Language Code
1255
+ We refer to the language information in Table 1 of
1256
+ (Fan et al., 2021). The information of the languages
1257
+ used in this paper is listed in Table 5.
1258
+ B.2
1259
+ Dataset
1260
+ Table 6 shows the detailed data statistics of
1261
+ ALIGN6. The ja and zh sentences are preprocessed
1262
+ by Dou and Neubig (2021) and Liu and Sun (2015),
1263
+ respectively. For finetuning AccAlign and multilin-
1264
+ gual baselines, we use the training and validation
1265
+ set from ALIGN6. As bilingual baselines are not
1266
+ capable of zero-shot alignment induction, they are
1267
+ trained from scratch with parallel corpus of the
1268
+ test language pair using the same dataset as Dou
1269
+ ISO
1270
+ Name
1271
+ Family
1272
+ en
1273
+ English
1274
+ Germanic
1275
+ nl
1276
+ Dutch
1277
+ Germanic
1278
+ cs
1279
+ Czech
1280
+ Slavic
1281
+ hi
1282
+ Hindi
1283
+ Indo-Aryan
1284
+ tr
1285
+ Turkish
1286
+ Turkic
1287
+ es
1288
+ Spanish
1289
+ Romance
1290
+ pt
1291
+ Portuguese
1292
+ Romance
1293
+ de
1294
+ German
1295
+ Germanic
1296
+ sv
1297
+ Swedish
1298
+ Germanic
1299
+ fr
1300
+ French
1301
+ Romance
1302
+ ro
1303
+ Romanian
1304
+ Romance
1305
+ ja
1306
+ Japanese
1307
+ Japonic
1308
+ zh
1309
+ Chinese
1310
+ Chinese
1311
+ fa
1312
+ Persian
1313
+ Iranian
1314
+ Table 5: The information of the languages used in this
1315
+ paper.
1316
+ and Neubig (2021). The bilingual training data
1317
+ set of de/fr/ro/ja/zh-en contain 1.9M, 1.1M, 450K,
1318
+ 444K and 40K parallel sentence pairs, respectively,
1319
+ which are much larger than the training dataset of
1320
+ ALIGN6.
1321
+ B.3
1322
+ Model Setup
1323
+ We use the contextual word embeddings from the
1324
+ 6-th layer of the official LaBSE3, which have 768
1325
+ dimensions. We set the threshold in Equation 2 to
1326
+ 0.1, which is selected on validation set by manual
1327
+ tuning among [0, 0.2]. For adapter-based finetun-
1328
+ ing, we set the hidden dimension of the adapters to
1329
+ be 128. The adapters have 2.4M parameters, which
1330
+ account 0.5% of the parameters of LaBSE. We use
1331
+ the AdamW optimizer with learning rate of 1e-4,
1332
+ and do not use warmup or dropout. The batch size
1333
+ is set to 40 and maximum updates number is 1500
1334
+ steps. We use a single NVIDIA V100 GPU for all
1335
+ experiments.
1336
+ B.4
1337
+ Baselines
1338
+ Besides three statistical baselines fast-align (Dyer
1339
+ et al., 2013), eflomal (Östling and Tiedemann,
1340
+ 2016) and GIZA++ (Och and Ney, 2003), we com-
1341
+ pare AccAlign with the following neural baselines:
1342
+ MTL-FULLC-GZ (Garg et al., 2019). This model
1343
+ supervises an attention head in Transformer-based
1344
+ NMT model with GIZA++ word alignments in a
1345
+ multitask learning framework.
1346
+ BAO-GUIDE (Zenkel et al., 2020). This model
1347
+ 3https://huggingface.co/sentence-transformers/LaBSE
1348
+
1349
+ Type
1350
+ Lang.
1351
+ Source
1352
+ Link
1353
+ # Sents
1354
+ Training set
1355
+ cs-en
1356
+ Mareˇcek (2011)
1357
+ http://ufal.mff.cuni.cz/
1358
+ czech-english-manual-word-alignment
1359
+ 2400
1360
+ nl-en
1361
+ Macken (2010)
1362
+ http://www.tst.inl.nl
1363
+ 372
1364
+ hi-en
1365
+ Aswani and Gaizauskas (2005)
1366
+ http://web.eecs.umich.edu/~mihalcea/wpt05/
1367
+ 90
1368
+ tr-en
1369
+ Cakmak et al. (2012)
1370
+ http://web.itu.edu.tr/gulsenc/resources.htm
1371
+ 300
1372
+ es-en
1373
+ Graca et al. (2008)
1374
+ https://www.hlt.inesc-id.pt/w/Word_Alignments
1375
+ 100
1376
+ pt-en
1377
+ Graca et al. (2008)
1378
+ https://www.hlt.inesc-id.pt/w/Word_Alignments
1379
+ 100
1380
+ Validation set
1381
+ cs-en
1382
+ Mareˇcek (2011)
1383
+ http://ufal.mff.cuni.cz/
1384
+ czech-english-manual-word-alignment
1385
+ 101
1386
+ Test set
1387
+ de-en
1388
+ Vilar et al. (2006)
1389
+ http://www-i6.informatik.rwth-aachen.de/
1390
+ goldAlignment/
1391
+ 508
1392
+ sv-en
1393
+ Holmqvist and Ahrenberg (2011)
1394
+ https://www.ida.liu.se/divisions/hcs/nlplab/
1395
+ resources/ges/
1396
+ 192
1397
+ fr-en
1398
+ Mihalcea and Pedersen (2003)
1399
+ http://web.eecs.umich.edu/~mihalcea/wpt/
1400
+ 447
1401
+ ro-en
1402
+ Mihalcea and Pedersen (2003)
1403
+ http://web.eecs.umich.edu/~mihalcea/wpt05/
1404
+ 248
1405
+ ja-en
1406
+ Neubig (2011)
1407
+ http://www.phontron.com/kftt
1408
+ 582
1409
+ zh-en
1410
+ Liu and Sun (2015)
1411
+ https://nlp.csai.tsinghua.edu.cn/~ly/systems/
1412
+ TsinghuaAligner/TsinghuaAligner.html
1413
+ 450
1414
+ fa-en
1415
+ Tavakoli and Faili (2014)
1416
+ http://eceold.ut.ac.ir/en/node/940
1417
+ 400
1418
+ Table 6: Training, validation and test dataset of ALIGN6. Note that this is a zero-shot setting as the test language
1419
+ pairs do not appear in training and validation.
1420
+ adds an extra alignment layer to repredict the to-be-
1421
+ aligned target token and further improves perfor-
1422
+ mance with Bidirectional Attention Optimization.
1423
+ SHIFT-AET (Chen et al., 2020b). This model
1424
+ trains a separate alignment module in a self-
1425
+ supervised manner, and induce alignments when
1426
+ the to-be-aligned target token is the decoder input.
1427
+ MASK-ALIGN (Chen et al., 2021a). This model
1428
+ is a self-supervised word aligner which makes use
1429
+ of the full context on the target side.
1430
+ BTBA-FCBO-SST (Zhang and van Genabith,
1431
+ 2021). This model has similar idea with Chen
1432
+ et al. (2021a), but with different model architecture
1433
+ and training objectives.
1434
+ SimAlign (Jalili Sabet et al., 2020). This model is a
1435
+ multilingual word aligner which induces alignment
1436
+ with contextual word embeddings from mBERT
1437
+ and XLM-R.
1438
+ AwesomeAlign (Dou and Neubig, 2021). This
1439
+ model improves over SimAlign by designing new
1440
+ alignment induction method and proposing to fur-
1441
+ ther finetune the mPLM on parallel corpus.
1442
+ Among them, SimAlign and AwesomeAlign are
1443
+ multilingual aligners which support multiple lan-
1444
+ guage pairs in a single model, while others are
1445
+ bilingual word aligners which require training from
1446
+ scratch with bilingual corpus for each test lan-
1447
+ guage pair. We re-implement SimAlign and Awe-
1448
+ someAlign, while quote the results from (Dou and
1449
+ Neubig, 2021) for the three statistical baselines and
1450
+ the corresponding paper for other baselines.
1451
+ B.5
1452
+ Sentence Transformer
1453
+ We compare LaBSE with four other multilingual
1454
+ sentence Transformer in HuggingFace. The de-
1455
+ tailed information of these models are:
1456
+ distiluse-base-multilingual-cased-v2.4
1457
+ This
1458
+ model is a multilingual knowledge distilled version
1459
+ of m-USE (Yang et al., 2020), which has 135M
1460
+ parameters and supports more than 50+ languages.
1461
+ paraphrase-xlm-r-multilingual-v1.5 This model
1462
+ is a multilingual version of paraphrase-distilroberta-
1463
+ base-v1 (Reimers and Gurevych, 2019), which has
1464
+ 278M parameters and supports 50+ languages. It
1465
+ initializes the student model with an mPLM and
1466
+ trains it to imitate monolingual sentence Trans-
1467
+ former on parallel data with knowledge distillation.
1468
+ paraphrase-multilingual-MiniLM-L12-v2.6
1469
+ This model is a multilingual version of paraphrase-
1470
+ MiniLM-L12-v2 (Reimers and Gurevych, 2019),
1471
+ which has 118M parameters and supports 50+
1472
+ languages. It trains similarly as paraphrase-xlm-
1473
+ r-multilingual-v1, but with different teacher and
1474
+ student model initialization.
1475
+ paraphrase-multilingual-mpnet-base-v2.7 This
1476
+ model is a multilingual version of paraphrase-
1477
+ mpnet-base-v2 (Reimers and Gurevych, 2019),
1478
+ 4https://huggingface.co/sentence-transformers/distiluse-
1479
+ base-multilingual-cased-v2
1480
+ 5https://huggingface.co/sentence-
1481
+ transformers/paraphrase-xlm-r-multilingual-v1
1482
+ 6https://huggingface.co/sentence-
1483
+ transformers/paraphrase-multilingual-MiniLM-L12-v2
1484
+ 7https://huggingface.co/sentence-
1485
+ transformers/paraphrase-multilingual-mpnet-base-v2
1486
+
1487
+ which has 278M parameters and supports 50+ lan-
1488
+ guages. It trains similarly as paraphrase-xlm-r-
1489
+ multilingual-v1, but with different teacher model
1490
+ initialization.
1491
+ B.6
1492
+ Bilingual Finetuning
1493
+ We use the same dataset as bilingual baselines for
1494
+ bilingual finetuning following (Dou and Neubig,
1495
+ 2021). At each time, we finetune LaBSE with one
1496
+ language pair among de/fr/ro/ja/zh-en and test on
1497
+ all seven language pairs. For Awesome-align, we
1498
+ follow the setup in their paper, while for AccAlign,
1499
+ we use the same hyperparameters as the main ex-
1500
+ periments.
1501
+ B.7
1502
+ Representation Analysis
1503
+ We conduct representation analysis on de-en test
1504
+ set. To compute sbi, we calculate the averaged co-
1505
+ sine similarity of all gold aligned bilingual word
1506
+ pairs. To compute smono, we randomly permute a
1507
+ given sentence x = ⟨x1, x2, ..., xn⟩ to get x′ =
1508
+ ⟨x′
1509
+ 1, x′
1510
+ 2, ..., x′
1511
+ n⟩ and then create n word pairs as
1512
+ {⟨xi-x′
1513
+ i⟩}n
1514
+ i=1. We go through all de and en test
1515
+ sentences and report the averaged cosine similarity
1516
+ of all created word pairs as smono.
1517
+ C
1518
+ Experiment Results
1519
+ Detailed results for each test language in Sec-
1520
+ tion 3.3 are shown in Table 7 to Table 10.
1521
+
1522
+ Ft mode
1523
+ Ft type
1524
+ de-en
1525
+ sv-en
1526
+ fr-en
1527
+ ro-en
1528
+ ja-en
1529
+ zh-en
1530
+ fa-en
1531
+ avg
1532
+ Self-supervised
1533
+ full
1534
+ 14.7
1535
+ 5.8
1536
+ 3.7
1537
+ 21.6
1538
+ 39.9
1539
+ 13.3
1540
+ 22.7
1541
+ 17.4
1542
+ adapter
1543
+ 14.3
1544
+ 5.8
1545
+ 3.9
1546
+ 21.6
1547
+ 39.2
1548
+ 13.0
1549
+ 22.6
1550
+ 17.2
1551
+ Supervised
1552
+ full
1553
+ 13.6
1554
+ 5.3
1555
+ 2.8
1556
+ 21.0
1557
+ 37.1
1558
+ 11.0
1559
+ 22.5
1560
+ 16.2
1561
+ adapter
1562
+ 13.6
1563
+ 5.2
1564
+ 2.7
1565
+ 20.8
1566
+ 36.8
1567
+ 11.5
1568
+ 22.2
1569
+ 16.1
1570
+ Table 7: AER comparison of full finetuning and adapter-based finetuning. The best AER for each column is bold
1571
+ and underlined.
1572
+ Model
1573
+ Ft lang.
1574
+ Test lang.
1575
+ de-en
1576
+ fr-en
1577
+ ro-en
1578
+ ja-en
1579
+ zh-en
1580
+ sv-en
1581
+ fa-en
1582
+ AwesomeAlign
1583
+ de-en
1584
+ 14.9
1585
+ 4.7
1586
+ 26.2
1587
+ 43.6
1588
+ 14.6
1589
+ 7.1
1590
+ 28.2
1591
+ fr-en
1592
+ 16.4
1593
+ 4.0
1594
+ 26.9
1595
+ 44.6
1596
+ 15.7
1597
+ 7.6
1598
+ 28.0
1599
+ ro-en
1600
+ 15.8
1601
+ 4.7
1602
+ 22.9
1603
+ 44.2
1604
+ 15.1
1605
+ 7.8
1606
+ 27.0
1607
+ ja-en
1608
+ 16.8
1609
+ 4.9
1610
+ 27.0
1611
+ 38.1
1612
+ 15.2
1613
+ 8.5
1614
+ 30.0
1615
+ zh-en
1616
+ 16.2
1617
+ 4.6
1618
+ 26.2
1619
+ 42.4
1620
+ 14.1
1621
+ 8.1
1622
+ 28.0
1623
+ AccAlign
1624
+ de-en
1625
+ 14.2
1626
+ 3.8
1627
+ 20.9
1628
+ 39.3
1629
+ 13.1
1630
+ 5.7
1631
+ 22.5
1632
+ fr-en
1633
+ 14.6
1634
+ 3.8
1635
+ 20.8
1636
+ 41.0
1637
+ 14.1
1638
+ 6.0
1639
+ 22.5
1640
+ ro-en
1641
+ 15.2
1642
+ 4.0
1643
+ 21.0
1644
+ 42.1
1645
+ 14.4
1646
+ 6.5
1647
+ 23.2
1648
+ ja-en
1649
+ 14.8
1650
+ 3.9
1651
+ 20.3
1652
+ 38.0
1653
+ 13.5
1654
+ 6.3
1655
+ 22.5
1656
+ zh-en
1657
+ 14.6
1658
+ 3.9
1659
+ 20.7
1660
+ 38.9
1661
+ 13.4
1662
+ 5.9
1663
+ 22.4
1664
+ Table 8: AER results with bilingual finetuning. The results where the model is trained and tested on the same
1665
+ language pair are bold and underlined.
1666
+ layer
1667
+ de-en
1668
+ sv-en
1669
+ fr-en
1670
+ ro-en
1671
+ ja-en
1672
+ zh-en
1673
+ fas-en
1674
+ avg
1675
+ mBERT
1676
+ 8
1677
+ 17.4
1678
+ 8.7
1679
+ 5.6
1680
+ 27.9
1681
+ 45.6
1682
+ 18.1
1683
+ 33.0
1684
+ 22.3
1685
+ XLM-R
1686
+ 8
1687
+ 23.1
1688
+ 13.3
1689
+ 9.2
1690
+ 28.6
1691
+ 62.0
1692
+ 30.3
1693
+ 28.6
1694
+ 27.9
1695
+ distiluse-base-multilingual-cased-v2
1696
+ 3
1697
+ 23.7
1698
+ 17.2
1699
+ 9.8
1700
+ 29.2
1701
+ 56.3
1702
+ 29.2
1703
+ 33.5
1704
+ 28.4
1705
+ paraphrase-xlm-r-multilingual-v1
1706
+ 6
1707
+ 17.4
1708
+ 8.7
1709
+ 4.9
1710
+ 24.7
1711
+ 53.8
1712
+ 26.1
1713
+ 26.5
1714
+ 23.2
1715
+ paraphrase-multilingual-MiniLM-L12-v2
1716
+ 6
1717
+ 19.4
1718
+ 9.4
1719
+ 6.2
1720
+ 26.0
1721
+ 57.7
1722
+ 29.7
1723
+ 27.4
1724
+ 25.1
1725
+ paraphrase-multilingual-mpnet-base-v2
1726
+ 5
1727
+ 18.0
1728
+ 8.9
1729
+ 5.4
1730
+ 24.1
1731
+ 54.9
1732
+ 25.7
1733
+ 25.5
1734
+ 23.2
1735
+ LaBSE
1736
+ 6
1737
+ 16.0
1738
+ 7.3
1739
+ 4.5
1740
+ 20.8
1741
+ 43.3
1742
+ 16.2
1743
+ 23.4
1744
+ 18.8
1745
+ Table 9: AER comparison of LaBSE and other multilingual pretrained model. All are without finetuning. We
1746
+ determine the best layer of alignment induction for each model using the validation set. The best AER for each
1747
+ column is bold and underlined.
1748
+ Layer
1749
+ de-en
1750
+ sv-en
1751
+ fr-en
1752
+ ro-en
1753
+ ja-en
1754
+ zh-en
1755
+ fa-en
1756
+ avg
1757
+ 0
1758
+ 32.4
1759
+ 27.7
1760
+ 20.5
1761
+ 44.2
1762
+ 65.5
1763
+ 40.1
1764
+ 38.7
1765
+ 38.4
1766
+ 1
1767
+ 27.3
1768
+ 19.7
1769
+ 12.8
1770
+ 35.6
1771
+ 64.0
1772
+ 33.9
1773
+ 35.4
1774
+ 32.7
1775
+ 2
1776
+ 22.3
1777
+ 14.0
1778
+ 8.6
1779
+ 28.8
1780
+ 58.0
1781
+ 25.0
1782
+ 31.3
1783
+ 26.9
1784
+ 3
1785
+ 18.5
1786
+ 9.9
1787
+ 6.0
1788
+ 24.0
1789
+ 50.3
1790
+ 17.9
1791
+ 26.8
1792
+ 21.9
1793
+ 4
1794
+ 17.7
1795
+ 8.7
1796
+ 5.9
1797
+ 23.3
1798
+ 48.4
1799
+ 16.3
1800
+ 25.7
1801
+ 20.9
1802
+ 5
1803
+ 15.8
1804
+ 7.4
1805
+ 4.5
1806
+ 21.5
1807
+ 43.7
1808
+ 15.4
1809
+ 23.8
1810
+ 18.9
1811
+ 6
1812
+ 16.0
1813
+ 7.3
1814
+ 4.5
1815
+ 20.8
1816
+ 43.3
1817
+ 16.2
1818
+ 23.4
1819
+ 18.8
1820
+ 7
1821
+ 16.5
1822
+ 7.6
1823
+ 4.8
1824
+ 22.4
1825
+ 43.4
1826
+ 15.0
1827
+ 23.7
1828
+ 19.1
1829
+ 8
1830
+ 16.2
1831
+ 7.3
1832
+ 5.0
1833
+ 21.6
1834
+ 42.7
1835
+ 16.7
1836
+ 23.4
1837
+ 19.0
1838
+ 9
1839
+ 16.8
1840
+ 7.6
1841
+ 5.3
1842
+ 21.5
1843
+ 42.7
1844
+ 17.9
1845
+ 23.2
1846
+ 19.3
1847
+ 10
1848
+ 17.7
1849
+ 9.0
1850
+ 5.6
1851
+ 23.0
1852
+ 44.4
1853
+ 20.4
1854
+ 24.4
1855
+ 20.6
1856
+ 11
1857
+ 36.7
1858
+ 27.0
1859
+ 24.2
1860
+ 43.6
1861
+ 61.3
1862
+ 35.0
1863
+ 46.2
1864
+ 39.1
1865
+ 12
1866
+ 43.1
1867
+ 33.2
1868
+ 30.5
1869
+ 46.0
1870
+ 65.7
1871
+ 42.6
1872
+ 52.4
1873
+ 44.8
1874
+ Table 10: AER comparison of vanilla LaBSE across layers. Layer 0 is the embedding layer. The best AER for
1875
+ each column is bold and underlined.
1876
+
2NFLT4oBgHgl3EQfqi-E/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4504a9d4a364e77babbfc540dd9701c9edb9786a48542d17620f75750fcb436f
3
+ size 494224
4NE4T4oBgHgl3EQfAwuD/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a21a6ee4961b9c286a5ed1533ce7219d0c4ee79ffd3e67db0915f26c36af4669
3
+ size 2031661
4NE4T4oBgHgl3EQfAwuD/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba0eb917bdaa9619f79c8a77c370fbb72a344bfcd1c4dae00e7bf9658c856830
3
+ size 76905
5dFJT4oBgHgl3EQfkywG/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de6efeb9de7a71cb75d8477f4139557bc8eba81bda7558f9befd289544b42ce3
3
+ size 130106
69AzT4oBgHgl3EQfgPxu/content/tmp_files/2301.01465v1.pdf.txt ADDED
@@ -0,0 +1,1405 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01465v1 [hep-ph] 4 Jan 2023
2
+ Spin Polarization and Anomalous Magnetic Moment in a (2 +
3
+ 1)-flavor Nambu-Jona-Lasinio model in the thermomagnetic
4
+ background
5
+ Yi-Wei Qiu1 and Sheng-Qin Feng1, 2, 3, ∗
6
+ 1College of Science, China Three Gorges University, Yichang 443002, China
7
+ 2Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics,
8
+ Central China Normal University, Wuhan 430079, China
9
+ 3Center for Astronomy and Space Sciences,
10
+ China Three Gorges University, Yichang 443002, China
11
+ (Dated: January 5, 2023)
12
+ Abstract
13
+ Abstract: We investigate the magnetized QCD matter and chiral phase transition in a (2 + 1)-
14
+ flavor Nambu–Jona-Lasinio (NJL) model at finite temperature and chemical potential by comparing
15
+ the contributions from the tensor spin polarization (TSP) and anomalous magnetic moment (AMM)
16
+ of quarks. For light u and d quarks, when TSP and AMM are not considered, the magnetized system
17
+ is characterized by magnetic catalysis. The introduction of TSP will further enhance the magnetic
18
+ catalytic characteristics.
19
+ On the other hands, when AMM is introduced, the phase transition
20
+ temperature decreases with the magnetic field, which is the feature of inverse magnetic catalysis.
21
+ The phase diagram of u and d quarks will change from the crossover phase transition to the first
22
+ order phase transition with the increase of magnetic field and chemical potential when AMM is
23
+ induced. The phase diagram will not change from the crossover phase transition to the first order
24
+ phase transition when TSP is induced. For the phase diagram of strange s quark, whether TSP
25
+ or AMM is induced, the phase diagram will keep a crossover phase transition with the increase of
26
+ magnetic field and chemical potential.
27
+ ∗ Corresponding author: [email protected]
28
+ 1
29
+
30
+ I.
31
+ INTRODUCTION
32
+ Comprehending properties of QCD matter under a strong magnetic field is of essential
33
+ importance to further investigate the evolution of the early universe [1], non-central heavy-
34
+ ion collisions [2–5], neutron-star merges [6, 7], and the interior of magnestar [8, 9]. The
35
+ exploration of the QCD vacuum and strongly interacting matter under external strong mag-
36
+ netic fields has fascinated much attention, see reviews, e.g., Refs. [10–14]. Here we stress
37
+ the study of the magnetic field of non-central heavy-ion collisions, which comes from the
38
+ laboratory of mankind. The magnetic field reaches up to
39
+
40
+ eB ∼ 0.1GeV for RHIC and
41
+
42
+ eB ∼ 0.5 GeV for LHC in non-central heavy-ion collisions. This magnetic field is external
43
+ since it is generated by the spectators, and though it has a very short lifetime(of the order of
44
+ 1 fm/c). However, as taken in Refs. [15–18], the presence of the quark-gluon plasma (QGP)
45
+ medium response effect, substantially delays the decay of these time-dependent magnetic
46
+ fields. This is why in the most cases, the effect of constant and uniform magnetic fields on
47
+ quark matter is discussed in the literature. The magnetic field coincides with the produc-
48
+ tion of the QGP and thus may have a fairly important effect on the properties of the phase
49
+ transition. For example, the chiral magnetic effect (CME) [16, 19–22], magnetic cataly-
50
+ sis (MC) in the vacuum [23–25], inverse magnetic catalysis (IMC) around the chiral phase
51
+ transition [26–29].
52
+ The magnetic field can lead to spin polarization, that is, the condensation of quark
53
+ anti-quark (¯qq) pairs with spin parallel. Ref.[30] shows that a tensor-type interaction ∼
54
+ � ¯ψΣ3ψ
55
+ �2 +
56
+ � ¯ψiγ5Σ3ψ
57
+ �2 produces a spin polarization (SP)
58
+ � ¯ψiγ1γ2ψ
59
+
60
+ , which is very similar
61
+ to the anomalous magnetic moment (AMM) produced by quarks in a magnetic field. The
62
+ tensor polarization operator ¯ψσµνψ can also be named as the spin polarization operator, or
63
+ the spin density since ¯ψσ12ψ = ψγ0Σ3ψ. If the quark spinor ψ is projected into the sub-spin
64
+ space ψ = ψ↑ + ψ↓ , corresponding to ¯ψσ12ψ ∼
65
+ � ¯ψ↑ψ↑
66
+
67
+
68
+ � ¯ψ↓ψ↓
69
+
70
+ , which can be used to
71
+ measure the difference between the spin-up quark pair and the spin-down quark pair.
72
+ We investigate the magnetized QCD matter in a (2 + 1)-flavor Nambu–Jona-Lasinio
73
+ (NJL) model at finite temperature and chemical potential by comparing the contributions
74
+ from the tensor spin polarization (TSP) and AMM of quarks. For a particle with charge
75
+ e, mass m and spin ⃗s, its corresponding magnetic moment (MM) is µ. Corresponding to
76
+ ¯qq pair with antiparallel spin pairs, it has a net magnetic moment (MM), so the chiral
77
+ 2
78
+
79
+ condensation triggers a dynamic AMM. Under the action of the magnetic field, the net MM
80
+ tends to be parallel to the magnetic field. For SP with ¯qq pair parallel spin pairing, the
81
+ MM of spin-aligned quarks and anti-quarks cancel each other, and the spin polarization
82
+ pairing does not present a net MM. Therefore, compared with the chiral condensation with
83
+ a nonzero net MM, the total MM of the system considering SP condensation will reduce.
84
+ Therefore, systems with spin polarization are expected to exhibit relative diamagnetism. At
85
+ high temperatures, the pair of ¯qq dissociates, and all charged quarks become a single small
86
+ magnet, which is arranged in turn along the magnetic field; Therefore, QCD matter at high
87
+ temperature manifests paramagnetism.
88
+ The catalysis of chiral symmetry breaking induced by a magnetic field, namely the MC
89
+ effect, can be easily understood from dimension reduction. On the other hand, IMC effect,
90
+ the critical temperature of the chiral phase transition decreases with the increasing mag-
91
+ netic field, which is intuitively contradictory to the MC effect and is still a puzzle. Although
92
+ there are many publications trying to explain IMC by considering running coupling constant
93
+ generated by the magnetic field [31] and chiral imbalance caused by sphaleron transition or
94
+ instanton anti-instanton pairing [32]. Some interesting and novel properties of magnetized
95
+ QCD materials have recently been presented by lattice calculations, for example, magne-
96
+ tized materials exhibit paramagnetism (positive susceptibility) at high temperatures and
97
+ diamagnetism (negative susceptibility) at low temperatures [33, 34].
98
+ The effect of an AMM of quark has drawn quite a lot of interest recently [35–41] in order
99
+ to investigate the IMC effect. The dynamical chiral symmetry broken is known as one of
100
+ the most important characteristics of QCD, which makes quarks achieve a dynamical mass
101
+ of QCD. Refs. [42, 43] pointed out that quarks’ AMM can also be dynamically produced
102
+ like the dynamic quark mass. Therefore, once quarks achieve dynamic mass, they should
103
+ also achieve dynamical AMM [42, 44–46]. The coefficient κ of quarks’ AMM in the magnetic
104
+ field by the effective interaction 1
105
+ 2qκFµν ¯ψσµνψ = 1
106
+ 2 [γµ, γν] is introduced and the IMC effect
107
+ at finite temperature is proposed by Ref. [47]. For QCD, both explicit and spontaneous
108
+ chiral symmetry breaking is dedicated to the AMM of quarks, which is also called dynamical
109
+ AMM [43].
110
+ In this paper, we investigate the magnetism of QCD matter and chiral phase transition
111
+ under a magnetic field with the contribution from the TSP and the AMM of quarks re-
112
+ spectively. This paper is organized as follows: in Sec. II, we introduce the (2 + 1)-flavor
113
+ 3
114
+
115
+ NJL models by including the AMM and the TSP in the external magnetic field respectively.
116
+ in Sec. III, we investigate MC and IMC by the AMM and TSP, respectively. Then the
117
+ dependencies of dynamical mass, entropy, sound-velocity, and critical point on the magnetic
118
+ field by comparing the contributions from the TSP and the AMM of quarks are studied in
119
+ Sec. III. Finally, we make the summaries and conclusions in Sec. IV.
120
+ II.
121
+ THE 2 + 1 FLAVORS NJL MODEL UNDER A MAGNETIC FIELD
122
+ The Lagrangian density of the (2 + 1)-flavor NJL model [48, 49] in the presence of an
123
+ external magnetic field is given as:
124
+ L = ¯ψ
125
+
126
+ iγµDµ + γ0µ − m
127
+
128
+ ψ + Gs
129
+ 8
130
+
131
+ a=0
132
+ �� ¯ψλaψ
133
+ �2 +
134
+ � ¯ψiγ5λaψ
135
+ �2�
136
+ − K
137
+
138
+ det ¯ψ (1 + γ5) ψ + det ¯ψ (1 − γ5) ψ
139
+
140
+ ,
141
+ (1)
142
+ where the quark field ψ carries three flavors (f = u, d, s) and three colors (c = r, g, b ), and
143
+ λa(a = 1, · · ·N2
144
+ f − 1) represents the SU(3) Gell-Mann matrices in the three flavor space.
145
+ Current quark mass m is considered as mu = md for isospin symmetry of light quarks,
146
+ strange quark mass ms is different from the other light quark (mu and md) masses. The
147
+ difference between the strange and non-strange quark masses obviously breaks the SU(3)
148
+ flavor symmetry. µ is the quark chemical potential, and we assume that the quark chemical
149
+ potentials of the strange and non-strange quarks are the same. A covariant derivative with
150
+ magnetic field is introduced as Du = ∂µ + i QAext
151
+ µ , and the charge matrix in flavor space is
152
+ Q = diag (qu, qd, qs) = diag
153
+ �2
154
+ 3, −1
155
+ 3, −1
156
+ 3
157
+
158
+ .
159
+ (2)
160
+ In general, if one chooses the gauge field Aext
161
+ µ
162
+ = (0, 0, Bx1, 0), a constant magnetic field
163
+ should point at the x3-direction. The K term of Eq. (1) is the term of Kobayashi-Maskawa-
164
+ t’Hooft interaction [49–51].
165
+ A.
166
+ The introduction of a (2 + 1)- flavors NJL model with TSP
167
+ It is shown that [30, 35] the breaking of the rotational symmetry by a uniform magnetic
168
+ field induces a separation between longitudinal and transverse fermion modes along the
169
+ direction of the magnetic field. This separation gives rise to the effective splitting of the
170
+ 4
171
+
172
+ couplings in the one-gluon exchange interactions on which the NJL models are usually based.
173
+ This splitting is therefore reported in the four-fermion couplings of a QCD-inspired NJL
174
+ model in a magnetic field, and we can use the Fierz identities in a magnetic field [30, 31, 52]
175
+ to propose the interactions of scalar and tensor of the (2 + 1)-flavor NJL Lagrangian:
176
+ LTSP = ¯ψ
177
+
178
+ iγµDµ + γ0µ − m
179
+
180
+ ψ + Gs
181
+ 8
182
+
183
+ a=0
184
+ �� ¯ψλaψ
185
+ �2 +
186
+ � ¯ψiγ5λaψ
187
+ �2�
188
+ + Gt
189
+ 8
190
+
191
+ a=0
192
+ �� ¯ψΣ3λaψ
193
+ �2 +
194
+ � ¯ψΣ3iγ5λaψ
195
+ �2�
196
+ − K
197
+
198
+ det
199
+ � ¯ψ (1 + γ5) ψ
200
+
201
+ + det
202
+ � ¯ψ (1 − γ5) ψ
203
+ ��
204
+ .
205
+ (3)
206
+ The coupling constant Gs in the scalar/pseudo-scalar channel is closely related to the
207
+ spontaneously chiral symmetry breaking, which produces a dynamical quark mass, and
208
+ the tensor/ pseudo-tensor channels term Gt
209
+ 8�
210
+ a=0
211
+ �� ¯ψc
212
+ fΣ3λaψc
213
+ f
214
+ �2 +
215
+ � ¯ψc
216
+ fiΣ3γ5λaψc
217
+ f
218
+ �2�
219
+ is closely
220
+ related to the spin-spin interaction, which causes spin polarization condensation.
221
+ For the (2 + 1)-flavor NJL model, tensor-type interaction at the mean field level leads to
222
+ two types of spin polarization as
223
+ F3 = −2Gt
224
+ � ¯ψΣ3λ3ψ
225
+
226
+ ,
227
+ F8 = −2Gt
228
+ � ¯ψΣ3λ8ψ
229
+
230
+ .
231
+ (4)
232
+ In general, F3 contains only u and d quark spin polarization condensates, on the other
233
+ hand, F8 is associated with the strange quark spin polarization condensate. The running
234
+ coupling constants are divided into longitudinal (g∥) and transverse (g⊥) components due
235
+ to the existence of the magnetic field. In our current study, the couplings of the above NJL
236
+ interactions relevant to quark gluon vertex coupling are expressed as Gs =
237
+
238
+ g2
239
+ || + g2
240
+
241
+
242
+ /Λ2
243
+ and Gt =
244
+
245
+ g2
246
+ || − g2
247
+
248
+
249
+ /Λ2. The distinguishing transverse and parallel Fierz identities auto-
250
+ matically create a new channel of four-fermion interaction term with second order tensor
251
+ structure in Lagrangian density during the transformation from splitting quark-gluon cou-
252
+ pling to the scalar and pseudoscalar bilinear quantity [30]. Gs and Gt can be considered as
253
+ the scalar and tensor channel interaction couplings, respectively.
254
+ 5
255
+
256
+ The effective potential by using standardized process is given
257
+ ΩTSP =Gs
258
+
259
+ f=u,d,s
260
+
261
+ ψψ
262
+ �2
263
+ f + Gt
264
+
265
+ ψλ3Σ3ψ
266
+ �2 + Gt
267
+
268
+ ψλ8Σ3ψ
269
+ �2 − Nc
270
+
271
+
272
+ f=u,d,s
273
+ |qfB|
274
+
275
+
276
+ l=0
277
+ αl
278
+
279
+
280
+ −∞
281
+ dpz
282
+
283
+ ×
284
+
285
+ εf,l,η + T ln
286
+
287
+ 1 + exp
288
+ �−εf,l,η − µ
289
+ T
290
+ ��
291
+ + T ln
292
+
293
+ 1 + exp
294
+ �−εf,l,η + µ
295
+ T
296
+ ���
297
+ + 4K
298
+
299
+ ψψ
300
+
301
+ u
302
+
303
+ ψψ
304
+
305
+ d
306
+
307
+ ψψ
308
+
309
+ s
310
+ (5)
311
+ where l= 0, 1, 2 ...
312
+ represents the quantum number of Landau level,and η = ±1 cor-
313
+ responds to the two kinds of spin direction of quark-antiquark(¯qq) pair. Contribution of
314
+ non-degenerate particles due to spin difference at non-lowest Landau energy levels can be
315
+ taken into account with the definition of this new operator αl = δ0,l +∆ (l) �
316
+ η=±1
317
+ , where ∆ (l)
318
+ is denoted by
319
+ ∆ (l) =
320
+
321
+
322
+
323
+ 0
324
+ 1
325
+ l = 0
326
+ l > 0
327
+ (6)
328
+ and the energy spectrum of the lowest Landau Level ( LLL) (l = 0) and non-LLL (l ̸= 0)
329
+ are given as
330
+ ε2
331
+ u,l=0 = p2
332
+ z +
333
+
334
+ Mf +
335
+
336
+ F3 + F8
337
+
338
+ 3
339
+ ��2
340
+ ,
341
+ ε2
342
+ u,l̸=0,η=±1 = p2
343
+ z +
344
+ ��
345
+ Mf
346
+ 2 + 2|qfB|l + η
347
+
348
+ F3 + F8
349
+
350
+ 3
351
+ ��2
352
+ ,
353
+ ε2
354
+ d,l=0 = p2
355
+ z +
356
+
357
+ Mf +
358
+
359
+ F3 − F8
360
+
361
+ 3
362
+ ��2
363
+ ,
364
+ ε2
365
+ d,l̸=0,η=±1 = p2
366
+ z +
367
+ ��
368
+ Mf
369
+ 2 + 2|qfB|l + η
370
+
371
+ F3 − F8
372
+
373
+ 3
374
+ ��2
375
+ ,
376
+ ε2
377
+ s,l=0 = p2
378
+ z +
379
+
380
+ Mf +
381
+ �2F8
382
+
383
+ 3
384
+ ��2
385
+ ,
386
+ ε2
387
+ s,l̸=0,η=±1 = p2
388
+ z +
389
+ ��
390
+ Mf
391
+ 2 + 2|qfB|l + η
392
+ �2F8
393
+
394
+ 3
395
+ ��2
396
+ .
397
+ (7)
398
+ Note that the breaking of energy spectrum degeneracy caused by spin known as Zeeman
399
+ effect. Therefore, the contributions of spin come not only from the ground state of Landau
400
+ level, but also from the whole excited states of Landau level. The tensor condensate param-
401
+ eter F3 and F8 are self-consistently satisfied the minimum of the thermodynamic potential,
402
+ 6
403
+
404
+ which are similar to dynamical quark mass Mf. At first, one can obtain three gap equations
405
+ for Mf (f = u, d, s)
406
+ ∂ΩTSP (Mf, F3, F8)
407
+ ∂Mf
408
+ = 0,
409
+ (8)
410
+ and the other two gap equations for F3 and F8 is given as
411
+ ∂ΩTSP (Mf, F3, F8)
412
+ ∂F3
413
+ = 0,
414
+ ∂ΩTSP (Mf, F3, F8)
415
+ ∂F8
416
+ = 0.
417
+ (9)
418
+ To ensure that the thermodynamic potential in vacuum returns to zero, we define the
419
+ normalized thermodynamic potential as effective potential
420
+ Ωeff (T, µ, eB) = Ω (T, µ, eB) − Ω (0, 0, eB) .
421
+ (10)
422
+ Some of the relevant thermodynamical quantities can be evaluated by the effective po-
423
+ tential. The quark number density is
424
+ ρf =
425
+
426
+ l,η
427
+ Nc |qfeB|
428
+ 4π2
429
+
430
+
431
+ -∞
432
+ dpz
433
+
434
+ n+ − n−�
435
+ ,
436
+ (11)
437
+ where n± = 1/(exp [(εf,l,η ∓ µ) /T] + 1) is quark (antiquark) number distribution.
438
+ The
439
+ entropy density Sf = −∂Ωeff
440
+ ∂T
441
+ is given as
442
+ Sf = −
443
+
444
+ l,η
445
+ Nc |qfeB|
446
+ 4π2
447
+
448
+
449
+ -∞
450
+ dpz
451
+
452
+ ln
453
+
454
+ 1 − n+�
455
+ + ln
456
+
457
+ 1 − n−�
458
+ − εf,l,η
459
+ T
460
+
461
+ n+ + n−�
462
+ + µ
463
+ T (n+ − n−)
464
+
465
+ .
466
+ (12)
467
+ The energy density is given as
468
+ ε = T ∂P
469
+ ∂T +µ∂P
470
+ ∂µ − P,
471
+ (13)
472
+ where P is pressure. The square of sound-speed are defined as
473
+ c2
474
+ s = ∂P
475
+ ∂ε =
476
+ � µ
477
+ Sf
478
+ ∂ρf
479
+ ∂T + T
480
+ Sf
481
+ ∂Sf
482
+ ∂T
483
+ �-1
484
+ .
485
+ (14)
486
+ 7
487
+
488
+ B.
489
+ the introduction of the (2 + 1)- flavor NJL model with AMM
490
+ The effective Lagrangian density of the (2 + 1)- flavor with AMM [48, 49] is given as
491
+ LAMM = ¯ψ
492
+
493
+ iγµDµ + γ0µ − m+1
494
+ 2qfκσµνFµν
495
+
496
+ ψ
497
+ + Gs
498
+ 8
499
+
500
+ a=0
501
+ �� ¯ψλaψ
502
+ �2 +
503
+ � ¯ψiγ5λaψ
504
+ �2�
505
+ − K
506
+
507
+ det ¯ψ (1 + γ5) ψ + det ¯ψ (1 − γ5) ψ
508
+
509
+ .
510
+ (15)
511
+ The e���ective potential with AMM can be taken as
512
+ ΩAMM =Gs
513
+
514
+ f=u,d,s
515
+
516
+ ψψ
517
+ �2
518
+ f + 4K
519
+
520
+ ψψ
521
+
522
+ u
523
+
524
+ ψψ
525
+
526
+ d
527
+
528
+ ψψ
529
+
530
+ s − Nc
531
+
532
+
533
+ f=u,d,s
534
+ |qfB|
535
+
536
+
537
+ l=0
538
+
539
+ t=±1
540
+
541
+
542
+ −∞
543
+ dpz
544
+
545
+ ×
546
+
547
+ Ef,l,t + T ln
548
+
549
+ 1 + exp
550
+ �−Ef,l,t − µ
551
+ T
552
+ ��
553
+ + T ln
554
+
555
+ 1 + exp
556
+ �−Ef,l,t + µ
557
+ T
558
+ ���
559
+ ,
560
+ (16)
561
+ where
562
+ Ef,l,t =
563
+
564
+ p2
565
+ z +
566
+ ��
567
+ Mf
568
+ 2 + 2|qfB|l
569
+ �1/2 − tκfqfeB
570
+ �2
571
+ (17)
572
+ is the energy spectrum under different Landau energy levels, and t = ±1 corresponds to the
573
+ two kinds of spin direction of ¯qq pair. One can obtain three coupling gap equations for each
574
+ order parameter as
575
+ ∂ΩAMM
576
+ ∂Mf
577
+ = 0,
578
+ (18)
579
+ where f = u, d, s for the three different flavors. Thus we can obtain three dynamical quark
580
+ masses of u, d, and s as
581
+ Mu = mu − 4Gs
582
+ � ¯ψψ
583
+
584
+ u + 2K
585
+
586
+ ψψ
587
+
588
+ d
589
+
590
+ ψψ
591
+
592
+ s,
593
+ Md = md − 4Gs
594
+ � ¯ψψ
595
+
596
+ d + 2K
597
+
598
+ ψψ
599
+
600
+ u
601
+
602
+ ψψ
603
+
604
+ s,
605
+ Ms = ms − 4Gs
606
+ � ¯ψψ
607
+
608
+ s + 2K
609
+
610
+ ψψ
611
+
612
+ u
613
+
614
+ ψψ
615
+
616
+ d,
617
+ (19)
618
+ where
619
+ � ¯ψψ
620
+
621
+ f = NcGs
622
+
623
+
624
+
625
+ l=0
626
+ αl|qfB|
627
+ +∞
628
+
629
+ −∞
630
+ dpz
631
+
632
+ Mf
633
+ εf,l,t
634
+
635
+ 1 − sκfqfB
636
+ ˆ
637
+ Mf,l,t
638
+ � �
639
+ 1 −
640
+ 1
641
+ e
642
+ εf,l,t+µ
643
+ T
644
+ + 1
645
+
646
+ 1
647
+ e
648
+ εf,l,t−µ
649
+ T
650
+ + 1
651
+
652
+ (20)
653
+ corresponds to chiral condensation of different quark flavors.
654
+ 8
655
+
656
+ III.
657
+ RESULTS AND DISCUSSIONS
658
+ To calibrate sets of parameters to applicable observable, parameters are referred [49, 53]
659
+ to be chosen as: Λ = 631.4 MeV, mu = md = 5.6 MeV, ms = 135.7 MeV, Λ2Gs = 1.835
660
+ and KΛ5 = 9.29.
661
+ The empirical values are given as fπ = 93 MeV, mπ = 138 MeV,
662
+ mK = 495.7 MeV, and mη′ = 957.5 MeV.
663
+ The tensor channel coupling constant Gt restricted by the magnetic fields ought to be
664
+ zero in the case of the vanished magnetic field, and equals the value of Gs when eB → ∞.
665
+ At the following study, the value of Gt is taken as Gt = Gs/2.
666
+ FIG. 1.
667
+ The dependence of dynamical quark mass (M) on temperature (T) for four different
668
+ magnetic fields ( eB = 0.05, 0.10, 0.15 and 0.20 GeV2 ) , which does not consider TSP and AMM.
669
+ Fig 1.(a) is for µ = 0.0 GeV; and Fig 1.(b) is for µ = 0.25 GeV.
670
+ In order to investigate the effect of AMM on the phase transition, we make comparisons
671
+ between the two AMM sets. The compatible results obtained in [54] we define it as AMM1
672
+ set as κu = κd = 0.38, κs = 0.25, while the defined AMM2 set chosen as κu = 0.123, κd =
673
+ 9
674
+
675
+ 0.6
676
+ Ms
677
+ eB = 0.05GeV2
678
+ -eB = 0.10GeV2
679
+ .. eB = 0.15GeV2
680
+ 0.5
681
+ eB = 0.20GeV2
682
+ (GeV)
683
+ 0.4
684
+ M
685
+ 0.3
686
+ 0.2
687
+ eB = 0.05GeV2
688
+ eB = 0.10GeV2
689
+ Mu
690
+ eB = 0.15GeV2
691
+ 0.1
692
+ -eB = 0.20GeV2
693
+ 0.6
694
+ (b)
695
+ Ms
696
+ eB = 0.05GeV2
697
+ eB = 0.10GeV2
698
+ 0.5
699
+ ..eB = 0.15GeV2
700
+ -eB = 0.20GeV2
701
+ (GeV)
702
+ 0.4
703
+ M
704
+ 0.3
705
+ 0.2
706
+ eB = 0.05GeV2
707
+ -eB = 0.10GeV2
708
+ Mu
709
+ 0.1
710
+ ...eB = 0.15GeV2
711
+ ---eB = 0.20GeV2
712
+ 0
713
+ 0
714
+ 0.05
715
+ 0.1
716
+ 0.15
717
+ 0.2
718
+ 0.25
719
+ 0.3
720
+ T (GeV)0.555, κs = 0.329 fixed by [55].
721
+ Due to the NJL model is non-renormalizable, the divergent vacuum terms merged in gap
722
+ equation regularized by using the magnetic-field-independent regularization (MIFR) scheme
723
+ [56, 57], which gets rid of the nonphysical part by separating the vacuum term form the
724
+ integrals. The scheme dealing with the sums of all Landau level within the integrals by
725
+ means of Hurwitz zeta function are presented.
726
+ FIG. 2.
727
+ The dependence of dynamical quark mass (M) on temperature (T) for four different
728
+ magnetic fields ( eB = 0.05, 0.10, 0.15 and 0.20 GeV2 ) by considering TSP. Fig 2.(a) is for
729
+ µ = 0.0 GeV; and Fig 2.(b) is for µ = 0.25 GeV.
730
+ The dynamical mass or the quark condensate plays as an order parameter for the chiral
731
+ phase transition. Chiral restoration happens at high temperatures and/or high chemical
732
+ potentials. In Fig. 1(a, b), the dynamical quark masses M of u, d and s quarks without
733
+ considering AMM and TSP are manifested as decreasing smooth functions of temperatures
734
+ at µ = 0 and µ = 0.25 GeV, which indicates a chiral crossover. The dynamical mass M
735
+ is apparently enhanced by increasing the magnetic field. The magnetic field is shown at
736
+ eB = 0.05, 0.1, 0.15, and 0.2 GeV2 with µ = 0 and µ = 0.25 GeV respectively. Since we
737
+ 10
738
+
739
+ (a)
740
+ eB = 0.05GeV2
741
+ 0.6
742
+ Ms
743
+ eB =0.10GeV2
744
+ •eB = 0.15GeV2
745
+ 0.5
746
+ ieB = 0.20GeV2
747
+ (GeV)
748
+ 0.4
749
+ M
750
+ 0.3
751
+ 0.2
752
+ eB = 0.05GeV2
753
+ Mu
754
+ eB= 0.10GeV2
755
+ ... eB = 0.15GeV2
756
+ 0.1
757
+ -eB = 0.20GeV2
758
+ 0
759
+ (q)
760
+ 0.6
761
+ Ms
762
+ eB = 0.05GeV2
763
+ - eB = 0.10GeV2
764
+ . eB = 0.15GeV2
765
+ 0.5
766
+ eB = 0.20GeV2
767
+ (GeV)
768
+ 0.4
769
+ M
770
+ 0.3
771
+ 0.2
772
+ eB = 0.05GeV2
773
+ Mu
774
+ -eB=0.10GeV2
775
+ . eB = 0.15GeV2
776
+ 0.1
777
+ ---eB = 0.20GeV2
778
+ 0
779
+ 0
780
+ 0.05
781
+ 0.1
782
+ 0.15
783
+ 0.2
784
+ 0.25
785
+ 0.3
786
+ T (GeV)have considered non-vanishing current quark mass, the chiral symmetry is never restored
787
+ fully. Since the dynamical mass is proportional to chiral condensate, it can be seen from
788
+ Fig.1 that the larger the magnetic field is, the larger the corresponding chiral condensation
789
+ is. This phenomenon is manifested as magnetic catalysis [19, 23, 24, 58], which accounts for
790
+ the magnetic field has a strong tendency to enhance (or catalyze) spin-zero ¯qq condensates.
791
+ By considering TSP of quarks, we investigate the temperature dependence of constituent
792
+ quark mass for eB = 0.05, 0.10, 0.15 and 0.20
793
+ GeV2 respectively shown in Fig.2(a, b).
794
+ The dynamical mass M by considering TSP of quarks is manifested as a decreasing smooth
795
+ function of temperatures for different magnetic fields and chemical potentials, which cor-
796
+ responds to a chiral crossover. The dynamical mass M is apparently enhanced with the
797
+ increase of magnetic field, It is suggested that the introduction of TSP will enhance the
798
+ magnetic catalysis effect.
799
+ FIG. 3. Fig.3(a, b) shows the contour plots of the F3 and F8 distributions with zero chemical
800
+ potential in the T − eB plane, and Fig.3(c, d) shows similar plots of the F3 and F8 distributions
801
+ but with non-zero chemical potential µ = 0.25 GeV.
802
+ 11
803
+
804
+ (a) F, with u = O Gev
805
+ (b) F。with u = 0 GeV
806
+ 0.5
807
+ 0.5
808
+ 0.4
809
+ 0.12
810
+ 0.35
811
+ 0.4
812
+ 0.4
813
+ 0.1
814
+ 0.3
815
+ (GeV3)
816
+ 0.3
817
+ 0.08
818
+ (GeV
819
+ 0.3
820
+ 0.25
821
+ 0.2
822
+ eB
823
+ eB
824
+ 0.06
825
+ 0.2
826
+ 0.2
827
+ 0.15
828
+ 0.04
829
+ 0.1
830
+ 0.1
831
+ 0.1
832
+ 0.02
833
+ 0.05
834
+ 0
835
+ 0
836
+ 0
837
+ 0
838
+ 0
839
+ 0.05
840
+ 0.1
841
+ 0.15
842
+ 0.2
843
+ 0.25
844
+ 0.3
845
+ 0
846
+ 0.05
847
+ 0.1
848
+ 0.15
849
+ 0.2
850
+ 0.25
851
+ 0.3
852
+ T (GeV)
853
+ T (GeV)
854
+ (c) F, with μ = 0.25 GeV
855
+ (d) F。with u = 0.25 GeV
856
+ 0.5
857
+ 0.5
858
+ 0.14
859
+ 0.06
860
+ 0.12
861
+ 0.4
862
+ 0.4
863
+ 0.05
864
+ 0.1
865
+ (Gev2)
866
+ 0.04
867
+ 0.3
868
+ 0.3
869
+ 0.08
870
+ 0.03
871
+ 8
872
+ 8
873
+ 0.06
874
+ 0.2
875
+ 0.2
876
+ 0.02
877
+ 0.04
878
+ 0.1
879
+ 0.01
880
+ 0.1
881
+ 0.02
882
+ 0
883
+ 0
884
+ 0
885
+ 0
886
+ 0
887
+ 0.05
888
+ 0.1
889
+ 0.15
890
+ 0.2
891
+ 0.25
892
+ 0.3
893
+ 0
894
+ 0.05
895
+ 0.1
896
+ 0.15
897
+ 0.2
898
+ 0.25
899
+ 0.3
900
+ T (GeV)
901
+ T (GeV)In the T − eB plane of the Fig.3, the corresponding temperature range is
902
+ 0 ≤ T ≤
903
+ 0.3 GeV, and the magnetic field range is 0 ≤ eB ≤ 0.5 GeV2. Fig.3 (a, b) displays the
904
+ contour plots of the F3 and F8 distributions with zero chemical potential in the T − eB
905
+ plane, and Fig.3 (c, d) shows similar plots of the F3 and F8 distributions but with non-zero
906
+ chemical potential µ = 0.25 GeV. The (2 + 1)-flavor spin polarization is different from
907
+ that of two flavor spin polarization because of an additional term F8 = −2Gt
908
+ � ¯ψΣ3λ8ψ
909
+
910
+ associated with the λ8 flavor generator.
911
+ The spin condensates affect dynamical quark masses and quark dispersion relation. It is
912
+ found that the nonzero values of the two spin condensates F3 and F8 exist in the restored
913
+ chiral symmetry phase with high temperature and large magnetic field, but F3 and F8 are
914
+ almost zero in the chiral symmetry broken phase. We also noticed that F8 decreases sharply
915
+ with the increase of chemical potential, but F3 changes slightly with the chemical potential.
916
+ FIG. 4. The dynamical quark mass (M) as a function of temperature (T) for four different magnetic
917
+ fields (eB = 0.05, 0.10, 0.15 and 0.20 GeV2) by considering the different sets of AMM. Fig.4(a,
918
+ b) are for µ = 0 and µ = 0.25 GeV respectively with AMM1 set as κu = κd = 0.38, κs = 0.25.
919
+ Fig.4(c, d) is same as Fig.4 (a, b) but for AMM2 set as κu = 0.123, κd = 0.555, κs = 0.329.
920
+ Figure 4. displays the dependence of dynamical quark mass (M) on temperature (T)
921
+ 12
922
+
923
+ 0.6F (b)
924
+ (a)
925
+ eB = 0.05GeV2
926
+ 0.6
927
+ Ms
928
+ M.
929
+ eB = 0.05 GeV2
930
+ - eB = 0.10GeV2
931
+ -eB = 0.10GeV2
932
+ ...eB = ..5 GeV2.
933
+ 0.5
934
+ 0.5
935
+ -eB = 0.20GeV2
936
+ eB = 0.15GeV2
937
+ M 0.4
938
+ (GeV)
939
+ 0.4
940
+ (Gev
941
+ M
942
+ 0.3
943
+ 0.3
944
+ M
945
+ Mu
946
+ eB = 0.05GeV2
947
+ 0.2
948
+ 0.2
949
+ eB = 0.05GeV2
950
+ - eB = 0.10GeV2
951
+ eB = 0.15GeV2
952
+ - -eB = 0.10GeV2
953
+ Mu
954
+ 0.1
955
+ 0.1
956
+ - eB = 0.20GeV2
957
+ :eB = 0.15GeV2
958
+ 0
959
+ 0
960
+ 0
961
+ 0.05
962
+ 0.1
963
+ 0.15
964
+ 0.2
965
+ 0.25
966
+ 0.05
967
+ 0.1
968
+ 0.15
969
+ 0.2
970
+ 0
971
+ T (GeV)
972
+ T (GeV)
973
+ 0.6
974
+ 0.6
975
+ (d)
976
+ (c)
977
+ M:
978
+ M.
979
+ eB = 0.05 GeV2
980
+ eB = 0.05 GeV2
981
+ eB = 0.10GeV2
982
+ 0.5
983
+ -eB = 0.10GeV2
984
+ 0.5
985
+ eB = 0.15GeV2
986
+ eB = 0.20GeV2
987
+ eB = 0.15GeV2
988
+ 0.4
989
+ (GeV
990
+ 0.3
991
+ M
992
+ M
993
+ 0.3
994
+ Mu
995
+
996
+ 0.2
997
+ 0.2
998
+ Mu
999
+ eB = 0.05GeV2
1000
+ eB = 0.05GeV2
1001
+ - eB = 0.10GeV2
1002
+ -eB = 0.10GeV2
1003
+ 0.1
1004
+ 0.1
1005
+ -eB = 0.15GeV2
1006
+ -
1007
+ -eB = 0.15GeV2
1008
+ .eB = 0.20GeV2
1009
+ 0
1010
+ 0
1011
+ 0
1012
+ 0.05
1013
+ 0.1
1014
+ 0.15
1015
+ 0.2
1016
+ 0.25
1017
+ 0.3
1018
+ 0
1019
+ 0.05
1020
+ 0.1
1021
+ 0.15
1022
+ 0.2
1023
+ T (GeV)
1024
+ T (GeV)for four different magnetic fields (eB = 0.05, 0.10, 0.15 and 0.20 GeV2) by considering the
1025
+ two AMM’s sets. Fig.4(a, b) are for µ = 0 GeV and µ = 0.25 GeV with AMM1 set as
1026
+ κu = κd = 0.38 and κs = 0.25. Fig.4(c, d) is same as Fig.4(a, b) but with AMM2 set as
1027
+ κu = 0.123, κd = 0.555 and κs = 0.329. Contrary to the behavior of the zero AMM in Fig.1,
1028
+ the mass-decreasing behavior of u and d quarks in the chiral restoration is not a smooth
1029
+ slope but a sudden drop, which indicates the existence of a first-order transition. However,
1030
+ the smooth slope of the dynamical mass for the crossover can be still present in the weak
1031
+ field eB = 0.05 GeV2 for the non-zero AMM. The mass-decreasing behavior of s quark in the
1032
+ chiral restoration is still a smooth slope, which suggests a chiral crossover for s quark. From
1033
+ Fig.4, it is found that the dynamical quark mass of u and d quarks have the characteristics
1034
+ of inverse magnetic catalysis in the chiral restoration phase (T ≥ TC) by using the AMM
1035
+ sets.
1036
+ FIG. 5. The critical temperature of u and d quarks as a function of the magnetic field at µ = 0
1037
+ (a) and = 0.25 GeV (b).
1038
+ In Fig. 5, the critical temperature is shown as a function of the magnetic field with the
1039
+ chemical potentials µ = 0 and 0.25 GeV respectively. It is found that the critical temperature
1040
+ decreases with the magnetic field for the AMM1 and AMM2 sets, which indicates an inverse
1041
+ magnetic catalysis which qualitatively agrees with lattice result in [33].
1042
+ On the contrary, with the TSP, TC enhances as a function of the magnetic field, which
1043
+ is the extension of the magnetic catalysis effect from vacuum to finite temperature. The
1044
+ different effects of AMM and TSP on chiral condensate can be easily understood from the
1045
+ dispersion relations in Eq. (7) and Eq. (17), the AMM reduces the LLL energy and the
1046
+ TSP lifts up the LLL energy, which causes the different effects.
1047
+ 13
1048
+
1049
+ (a)
1050
+ (b)
1051
+ 0.13
1052
+ 0.19
1053
+ - no AMM&TSP
1054
+ 0.11
1055
+ (GeV)
1056
+ no AMM&TSP
1057
+ .TSP
1058
+ .TSP
1059
+ AMM1
1060
+ -AMM1
1061
+ -AMM2
1062
+ - AMM2
1063
+ 0.15
1064
+ 0.07
1065
+ 0.13
1066
+ 0.05
1067
+ 0.05
1068
+ 0.1
1069
+ 0.15
1070
+ 0.2
1071
+ 0.05
1072
+ 0.1
1073
+ 0.15
1074
+ 0.2
1075
+ eB (GeV2)
1076
+ eB (GeV2)FIG. 6. The same as Fig. 5, but for the s-quark.
1077
+ The critical temperature of chiral phase transition of s quark as a function of eB is man-
1078
+ ifested in Fig.6. Compared with light quarks of u and d, the phase transition temperature
1079
+ TC of s quark with TSP increases significantly with the increase of magnetic field, which
1080
+ corresponds to the characteristics of magnetic catalysis.
1081
+ The introduction of AMM sets
1082
+ corresponds to inverse magnetic catalytic characteristics.
1083
+ Figure 7 displays the dependencies of the entropy density of u , d and s quarks on
1084
+ temperature at zero chemical potential. It can be noted that the introduction of the AMM
1085
+ makes the crossover phase transition sharp.
1086
+ It is worth noting that the AMM in Fig.7
1087
+ corresponds to three different settings, which are AMM0, AMM1 and AMM2, respectively.
1088
+ AMM0 means that the AMM is not considered, that is, all κ values in Eq. (17) are set
1089
+ to zero. AMM1 and AMM2 sets have been mentioned above. When eB = 0.05 GeV2, the
1090
+ magnetic field is not big enough to excite the effect on entropy. When eB = 0.2 GeV2, some
1091
+ of the effects of the magnetic field on entropy for different AMM sets and TSP can be excited.
1092
+ It is found that the entropy shows a sharp change near the phase transition temperature
1093
+ after adding AMM sets, and this sharp change is more obvious with the magnetic field
1094
+ increases and chemical potential, showing a first-order phase characteristic. The change of
1095
+ entropy with temperature near the phase transition temperature is relatively smooth after
1096
+ adding TSP, and it behaves like the crossover transition.
1097
+ 14
1098
+
1099
+ 0.34
1100
+ 0.34 F
1101
+ (b)
1102
+ 0.3
1103
+ - no AMM&TSP
1104
+ no AMM&TSP
1105
+ 0.3
1106
+ (GeV)
1107
+ (GeV)
1108
+ .TSP
1109
+ . TSP
1110
+ AMM1
1111
+ 0.26
1112
+ -AMM1
1113
+ c
1114
+ C
1115
+ AMM2
1116
+ -AMM2
1117
+ 0.26
1118
+ 0.22
1119
+ 0.22
1120
+ 0.18
1121
+ 0.05
1122
+ 0.1
1123
+ 0.15
1124
+ 0.2
1125
+ 0.05
1126
+ 0.1
1127
+ 0.15
1128
+ 0.2
1129
+ eB (GeV2)
1130
+ eB (GeV2)FIG. 7. The dependence of S/T 3 on temperature T at µ = 0GeV with different magnetic field.
1131
+ Fig.7 (a) is for eB = 0.05 GeV2 and Fig.7 (b) is for eB = 0.2 GeV2.
1132
+ The dependence of square of sound-velocity c2
1133
+ s on temperature T is manifested in Fig.8.
1134
+ Fig.8(a) and Fig.8(b) are for zero chemical potential µ = 0 and µ = 0.25 GeV respectively.
1135
+ The square of sound-velocity shows a sudden rapid rise inflection near the phase transition
1136
+ after adding AMM sets, and this rapid rise is more obvious with the magnetic field increases,
1137
+ showing a obviously first-order phase characteristic.
1138
+ On the other hands, the change of
1139
+ square of sound-velocity with temperature near the phase transition is relatively smooth
1140
+ inflection after adding TSP, showing a obviously cross-over transition characteristic. The
1141
+ result obtained by using the square of sound velocity is completely consistent with the result
1142
+ of entropy analysis.
1143
+ Compared with u and d quarks, the square of sound-velocity of s quark with temperature
1144
+ is relatively smooth inflection after adding TSP and AMM sets. It is proposed that s quarks
1145
+ have always maintained obvious cross-over characteristics. In the high-temperature region,
1146
+ the square of sound-velocity c2
1147
+ s increases with temperature and obtains the saturation value
1148
+ 15
1149
+
1150
+ 16
1151
+ (a)
1152
+ 12
1153
+ S
1154
+ 8
1155
+ no AMM&TSP, eB = 0.05GeV2
1156
+ " AMM1,eB = 0.05GeV2
1157
+ 4
1158
+ AMM2,eB = 0.05GeV2
1159
+ --TSP,eB = 0.05GeV2
1160
+ Stefan-Boltzmann limit
1161
+ 0
1162
+ (b)
1163
+ 16
1164
+ 12
1165
+ 2
1166
+ S
1167
+ 8
1168
+ no AMM&TSP,eB = 0.20GeV2
1169
+ . AMM1, eB = 0.20GeV2
1170
+ 4
1171
+ -AMM2,eB = 0.20GeV2
1172
+ --TSP,eB = 0.20GeV2
1173
+ Stefan-Boltzmann limit
1174
+ 0
1175
+ 0.05
1176
+ 0.1
1177
+ 0.15
1178
+ 0.2
1179
+ 0.25
1180
+ T (GeV)c2
1181
+ s = 1/3 to satisfy the relativistic requirement. This suggests that the equation of state
1182
+ in the chiral restoration phase at high temperatures is close to the Stefan-Boltzmann limit
1183
+ ε = 3P.
1184
+ FIG. 8. The sound-velocity square C2
1185
+ s of u and d with s quarks as a function of the temperature
1186
+ T with different chemical potential. Fig.8 (a, b) is for u and d quarks with zero chemical potential
1187
+ µ = 0, and µ = 0.25 GeV, and Fig.8 (c, d) is for s quarks
1188
+ IV.
1189
+ SUMMARY AND CONCLUSIONS
1190
+ In this work, we thoroughly study the effect from TSP and AMM on the vacuum, phase
1191
+ transition and thermal magnetized QCD in the (2 + 1)-flavor Nambu-Jona-Lasinio (NJL)
1192
+ model with nonzero current quark masses at finite temperature and chemical potential. An
1193
+ unified physical mechanism to illustrate the novel consequences from recent lattice QCD as
1194
+ magnetic catalysis and inverse magnetic catalysis effect proposed in the paper.
1195
+ We focus on two topics: the AMM and TSP. For these two topics, we should pay special
1196
+ attention to the dispersion relation, especially the lowest Landau level, which determines
1197
+ 16
1198
+
1199
+ (a) u and d quarks with u = O GeV
1200
+ (b) u and d quarks with u = 0.25 GeV
1201
+ 0.5
1202
+ 0.5
1203
+ 0.4
1204
+ 0.4
1205
+ 0.3
1206
+ 0.3
1207
+ 2s
1208
+ TSP, eB = 0.05GeV2
1209
+ 0.2
1210
+ 0.2
1211
+ TSP,eB = 0.05 GeV2
1212
+ - AMM1, eB = 0.05GeV2
1213
+ AMM1, eB = 0.05GeV2
1214
+ AMM2, eB = 0.05GeV2
1215
+ - AMM2, eB = 0.05GeV2
1216
+ 0.1
1217
+ —TSP,eB = 0.20GeV2
1218
+ 0.1
1219
+ + -AMM1,eB = 0.20GeV2
1220
+ +- AMM1,eB = 0.20GeV2
1221
+ - AMM2, eB = 0.20GeV2
1222
+ +-- AMM2, eB = 0.20GeV2
1223
+ 0:
1224
+ 01
1225
+ 0
1226
+ 0.05
1227
+ 0.1
1228
+ 0.15
1229
+ 0.2
1230
+ 0.25
1231
+ 0
1232
+ 0.05
1233
+ 0.1
1234
+ 0.15
1235
+ 0.2
1236
+ T (GeV)
1237
+ T (GeV)
1238
+ (c) s quarks with u = O GeV
1239
+ (d) s quarks with u = 0.25 GeV
1240
+ 0.4
1241
+ 0.4
1242
+ TSP,eB = 0.05GeV2
1243
+ TSP,eB = 0.05GeV2
1244
+ - AMM1,eB = 0.05GeV2
1245
+ - AMM1,eB = 0.05GeV2
1246
+ AMM2, eB = 0.05GeV2
1247
+ - AMM2,eB = 0.05GeV2
1248
+ 0.3
1249
+ 0.3
1250
+ TSP, eB = 0.20GeV2
1251
+ -TSP,eB = 0.15GeV2
1252
+ + AMM1,eB = 0.15GeV2
1253
+ - AMM1,eB = 0.20GeV2
1254
+ 2s
1255
+ 2s
1256
+ - AMM2,eB = 0.20GeV2
1257
+ +- AMM2, eB = 0.15GeV2
1258
+ 0.2
1259
+ 0.2
1260
+ 0.1
1261
+ 0.1
1262
+ +0
1263
+ 0+
1264
+ 0.05
1265
+ 0.1
1266
+ 0.15
1267
+ 0.2
1268
+ 0
1269
+ 0.25
1270
+ 0
1271
+ 0.05
1272
+ 0.1
1273
+ 0.15
1274
+ 0.2
1275
+ T (GeV)
1276
+ T (GeV)the properties of the magnetized quark matter system.
1277
+ The TSP lifts up the LLL en-
1278
+ ergy: ELLL =
1279
+
1280
+ p2
1281
+ z + (M + F3 + F8
1282
+
1283
+ 3)2� 1
1284
+ 2, while the AMM effect diminishes the LLL energy:
1285
+ ELLL =
1286
+
1287
+ p2
1288
+ z + (M − κ |qf| B)2�1/2 therefore, the TSP and the AMM take almost opposite
1289
+ effects on magnetized quark matter. When the AMM and TSP contributions are not con-
1290
+ sidered, the corresponding phase transition temperature increases with the magnetic field,
1291
+ showing the characteristics of magnetic catalysis. When considering only the contribution of
1292
+ TSP, the phase transition temperature also increases with the magnetic field, showing the
1293
+ characteristics of magnetic catalysis. On the other hand, when AMM are introduced, the
1294
+ phase transition temperature decreases with the magnetic field, showing the characteristics
1295
+ of inverse magnetic catalysis.
1296
+ It is found that the square of sound-velocity shows a sudden rapid rise inflection near
1297
+ the phase transition after adding AMM sets, and this rapid rise is more obvious with the
1298
+ magnetic field increases, showing a obviously first-order phase characteristic. On the other
1299
+ hands, after adding TSP, the change of square of sound-velocity with temperature near the
1300
+ phase transition is relatively smooth inflection, showing a obviously cross-over transition
1301
+ characteristic.
1302
+ The result obtained by using the square of sound velocity is completely
1303
+ consistent with the result of entropy analysis.
1304
+ The (2 + 1)-flavor spin polarization is different from that of two flavor because of an ad-
1305
+ ditional F8 = −2Gt
1306
+ � ¯ψΣ3λ8ψ
1307
+
1308
+ associated with the λ8 flavor generator. The spin condensates
1309
+ affect the dynamical quark masses, chiral phase transition,and quark dispersion relation. It
1310
+ is found that the nonzero values of the two spin condensates F3 and F8 exist in the restored
1311
+ chiral symmetry phase with high temperature and large magnetic field, but F3 and F8 are
1312
+ almost zero in the chiral symmetry broken phase.
1313
+ ACKNOWLEDGMENTS
1314
+ This work was supported by National Natural Science Foundation of China (Grants No.
1315
+ 11875178, No. 11475068, No. 11747115).
1316
+ 17
1317
+
1318
+ REFERENCES
1319
+ [1] T. Vachaspati, Phys. Lett. B 265, 258 (1991).
1320
+ [2] V. Skokov, A. Y. Illarionov, and V. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009).
1321
+ [3] W.-T. Deng and X.-G. Huang, Phys. Rev. C 85, 044907 (2012).
1322
+ [4] Y.-J. Mo, S.-Q. Feng, and Y.-F. Shi, Phys. Rev. C 88, 024901 (2013).
1323
+ [5] Y. Zhong, C.-B. Yang, X. Cai, and S.-Q. Feng, Adv. High Energy Phys. 2014, 193039 (2014).
1324
+ [6] K.
1325
+ Kiuchi,
1326
+ P.
1327
+ Cerd´a-Dur´an,
1328
+ K.
1329
+ Kyutoku,
1330
+ Y.
1331
+ Sekiguchi,
1332
+ and
1333
+ M.
1334
+ Shibata,
1335
+ Phys. Rev. D 92, 124034 (2015).
1336
+ [7] L. Baiotti and L. Rezzolla, Rept. Prog. Phys. 80, 096901 (2017).
1337
+ [8] T. Tatsumi, AIP Conf. Proc. 847, 171 (2006).
1338
+ [9] R. C. Duncan and C. Thompson, Astrophys. J. Lett. 392, L9 (1992).
1339
+ [10] A. Bzdak, S. Esumi, V. Koch, J. Liao, M. Stephanov, and N. Xu, Phys. Rept. 853, 1 (2020).
1340
+ [11] D. E. Kharzeev, J. Liao, S. A. Voloshin, and G. Wang, Prog. Part. Nucl. Phys. 88, 1 (2016).
1341
+ [12] X.-G. Huang, Rept. Prog. Phys. 79, 076302 (2016).
1342
+ [13] J. O. Andersen, W. R. Naylor, and A. Tranberg, Rev. Mod. Phys. 88, 025001 (2016).
1343
+ [14] V. A. Miransky and I. A. Shovkovy, Phys. Rept. 576, 1 (2015).
1344
+ [15] U. Gursoy, D. Kharzeev, and K. Rajagopal, Phys. Rev. C 89, 054905 (2014).
1345
+ [16] D. She, S.-Q. Feng, Y. Zhong, and Z.-B. Yin, Eur. Phys. J. A 54, 48 (2018).
1346
+ [17] B.-X. Chen and S.-Q. Feng, Chin. Phys. C 44, 024104 (2020).
1347
+ [18] X. Chen, S.-Q. Feng, Y.-F. Shi, and Y. Zhong, Phys. Rev. D 97, 066015 (2018).
1348
+ [19] D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, Nucl. Phys. A 803, 227 (2008).
1349
+ [20] K. Fukushima, D. E. Kharzeev, and H. J. Warringa, Phys. Rev. D 78, 074033 (2008).
1350
+ [21] Y. Guo, S. Shi, S. Feng, and J. Liao, Phys. Lett. B 798, 134929 (2019).
1351
+ [22] J. Deng and S.-Q. Feng, Phys. Rev. D 105, 026015 (2022).
1352
+ [23] V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy, Nucl. Phys. B 563, 361 (1999).
1353
+ [24] V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy, Nucl. Phys. B 462, 249 (1996).
1354
+ [25] S. P. Klevansky and R. H. Lemmer, Phys. Rev. D 39, 3478 (1989).
1355
+ [26] G. S. Bali, F. Bruckmann, G. Endrodi, F. Gruber, and A. Schaefer, JHEP 04, 130 (2013).
1356
+ 18
1357
+
1358
+ [27] G. S. Bali,
1359
+ F. Bruckmann,
1360
+ G. Endrodi,
1361
+ Z. Fodor,
1362
+ S. D. Katz,
1363
+ and A. Schafer,
1364
+ Phys. Rev. D 86, 071502 (2012).
1365
+ [28] G. S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. D. Katz, S. Krieg, A. Schafer, and K. K.
1366
+ Szabo, JHEP 02, 044 (2012).
1367
+ [29] M. D’Elia, F. Manigrasso, F. Negro, and F. Sanfilippo, Phys. Rev. D 98, 054509 (2018).
1368
+ [30] E. J. Ferrer, V. de la Incera, I. Portillo, and M. Quiroz, Phys. Rev. D 89, 085034 (2014).
1369
+ [31] E. J. Ferrer, V. de la Incera, and X. J. Wen, Phys. Rev. D 91, 054006 (2015).
1370
+ [32] J. Chao, P. Chu, and M. Huang, Phys. Rev. D 88, 054009 (2013).
1371
+ [33] G. S. Bali, F. Bruckmann, M. Constantinou, M. Costa, G. Endrodi, S. D. Katz, H. Panagopou-
1372
+ los, and A. Schafer, Phys. Rev. D 86, 094512 (2012).
1373
+ [34] G. S. Bali, G. Endr˝odi, and S. Piemonte, JHEP 07, 183 (2020).
1374
+ [35] S. Fayazbakhsh and N. Sadooghi, Phys. Rev. D 90, 105030 (2014).
1375
+ [36] E. J. Ferrer, V. de la Incera, D. Manreza Paret, A. P´erez Mart´ınez,
1376
+ and A. Sanchez,
1377
+ Phys. Rev. D 91, 085041 (2015).
1378
+ [37] N. Chaudhuri, S. Ghosh, S. Sarkar, and P. Roy, Phys. Rev. D 99, 116025 (2019).
1379
+ [38] S. Ghosh, N. Chaudhuri, S. Sarkar, and P. Roy, Phys. Rev. D 101, 096002 (2020).
1380
+ [39] N. Chaudhuri, S. Ghosh, S. Sarkar, and P. Roy, Eur. Phys. J. A 56, 213 (2020).
1381
+ [40] S. Mao and D. H. Rischke, Phys. Lett. B 792, 149 (2019).
1382
+ [41] J. Mei and S. Mao, Phys. Rev. D 102, 114035 (2020).
1383
+ [42] E. J. Ferrer and V. de la Incera, Nucl. Phys. B 824, 217 (2010).
1384
+ [43] L. Chang, Y.-X. Liu, and C. D. Roberts, Phys. Rev. Lett. 106, 072001 (2011).
1385
+ [44] E. J. Ferrer and V. de la Incera, Phys. Rev. Lett. 102, 050402 (2009).
1386
+ [45] F. Preis, A. Rebhan, and A. Schmitt, JHEP 03, 033 (2011).
1387
+ [46] P. J. A. Bicudo, J. E. F. T. Ribeiro, and R. Fernandes, Phys. Rev. C 59, 1107 (1999).
1388
+ [47] K. Xu, J. Chao, and M. Huang, Phys. Rev. D 103, 076015 (2021).
1389
+ [48] M. Buballa, Phys. Rept. 407, 205 (2005).
1390
+ [49] T. Hatsuda and T. Kunihiro, Phys. Rept. 247, 221 (1994).
1391
+ [50] U. Vogl and W. Weise, Prog. Part. Nucl. Phys. 27, 195 (1991).
1392
+ [51] P. Rehberg, S. P. Klevansky, and J. Hufner, Phys. Rev. C 53, 410 (1996).
1393
+ [52] F. Lin, K. Xu, and M. Huang, Phys. Rev. D 106, 016005 (2022).
1394
+ [53] H. Kohyama, D. Kimura, and T. Inagaki, Nucl. Phys. B 906, 524 (2016).
1395
+ 19
1396
+
1397
+ [54] M. Mekhfi, Phys. Rev. D 72, 114014 (2005).
1398
+ [55] Y. Dothan, Physica A 114, 216 (1982).
1399
+ [56] D. P. Menezes, M. Benghi Pinto, S. S. Avancini, A. Perez Martinez,
1400
+ and C. Providencia,
1401
+ Phys. Rev. C 79, 035807 (2009).
1402
+ [57] R. M. Aguirre, Phys. Rev. D 102, 096025 (2020).
1403
+ [58] V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy, Phys. Rev. Lett. 73, 3499 (1994).
1404
+ 20
1405
+
69AzT4oBgHgl3EQfgPxu/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
7dE1T4oBgHgl3EQf7QV5/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:030ba2f1b05b57ce5890bf1f567294f969d510cf962efaf1b320018aaa9d0e26
3
+ size 3538989
8dFQT4oBgHgl3EQf4jbF/content/2301.13432v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f2649756ba2f039e783e0c63cfa9a4273f3950631ede7d2b7ad7bedc5da5c43
3
+ size 7471232
8dFQT4oBgHgl3EQf4jbF/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:905a914d54f3070460c08b24a082a3228df79e8e6835eb0b9c18ecb8c0dd1011
3
+ size 3801133
9tAzT4oBgHgl3EQfSvsB/content/tmp_files/2301.01235v1.pdf.txt ADDED
@@ -0,0 +1,1528 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ An Empirical Investigation into the Reproduction of
2
+ Bug Reports for Android Apps
3
+ Jack Johnson∗, Junayed Mahmud†, Tyler Wendland∗, Kevin Moran†, Julia Rubin‡, Mattia Fazzini∗
4
+ ∗University of Minnesota, MN, USA; [email protected], [email protected], [email protected]
5
+ †George Mason University, VA, USA; [email protected], [email protected]
6
+ ‡University of British Columbia, BC, Canada; [email protected]
7
+ Abstract—One of the key tasks related to ensuring mobile
8
+ app quality is the reporting, management, and resolution of
9
+ bug reports. As such, researchers have committed considerable
10
+ resources toward automating various tasks of the bug man-
11
+ agement process for mobile apps, such as reproduction and
12
+ triaging. However, the success of these automated approaches is
13
+ largely dictated by the characteristics and properties of the bug
14
+ reports they operate upon. As such, understanding mobile app
15
+ bug reports is imperative to drive the continued advancement
16
+ of report management techniques. While prior studies have
17
+ examined high-level statistics of large sets of reports, we currently
18
+ lack an in-depth investigation of how the information typically
19
+ reported in mobile app issue trackers relates to the specific details
20
+ generally required to reproduce the underlying failures.
21
+ In this paper, we perform an in-depth analysis of 180 re-
22
+ producible bug reports systematically mined from Android apps
23
+ on GitHub and investigate how the information contained in
24
+ the reports relates to the task of reproducing the described
25
+ bugs. In our analysis, we focus on three pieces of information:
26
+ the environment needed to reproduce the bug report, the steps
27
+ to reproduce (S2Rs), and the observed behavior. Focusing on
28
+ this information, we characterize failure types, identify the
29
+ modality used to report the information, and characterize the
30
+ quality of the information within the reports. We find that bugs
31
+ are reported in a multi-modal fashion, the environment is not
32
+ always provided, and S2Rs often contain missing or non-specific
33
+ enough information. These findings carry with them important
34
+ implications on automated bug reproduction techniques as well as
35
+ automated bug report management approaches more generally.
36
+ I. INTRODUCTION
37
+ The importance of the quality of mobile applications (collo-
38
+ quially referred to as apps) has grown in recent years as smart-
39
+ phones and tablets have become deeply integrated into users’
40
+ daily lives. Once an application has been released to users, its
41
+ quality is largely ensured by continuing maintenance activities,
42
+ which have been shown to consume considerable amounts of
43
+ engineering effort [1]. These important maintenance activities
44
+ are typically centered around bug report management and
45
+ include activities related to understanding, reproducing, and
46
+ resolving bug reports.
47
+ A number of unique development constraints related to
48
+ mobile apps, such as pressure for frequent releases [2], [3],
49
+ the need to cope with constantly evolving platform APIs [4],
50
+ [5], a large volume of user feedback [6], [7], [8], [9],
51
+ [10], and testing challenges [11] complicate the bug report
52
+ management process. Software engineering researchers have
53
+ recognized these domain-specific challenges and have worked
54
+ toward providing automated solutions across several bug report
55
+ management activities for mobile apps, including bug report
56
+ quality assessment [12], reproduction [13], [14], triaging [15],
57
+ and bug localization [16], [17].
58
+ One common thread among these various automated solu-
59
+ tions is that they operate directly upon the information con-
60
+ tained within bug reports and, as such, are directly affected by
61
+ the characteristics and quality of various report components,
62
+ such as environmental information (e.g., device, software ver-
63
+ sion), reproduction steps (S2Rs), and observed behavior (OB).
64
+ Thus, researchers and practitioners require a solid empirical
65
+ foundation that delineates common characteristics of mobile
66
+ app bug reports to build effective automated techniques.
67
+ In prior work, researchers have examined high-level statis-
68
+ tics (e.g., number and type of report, fix rates, fix time)
69
+ of large sets of bug reports. For example, Battacharya et
70
+ al. [18] performed an empirical study on bugs submitted to
71
+ the Android platform on 24 widely-used open source apps.
72
+ Others have compared high-level bug characteristics between
73
+ mobile apps and desktop apps [19]. However, to the best
74
+ of our knowledge, no study has yet provided an in-depth
75
+ characterization of how the information contained in mobile
76
+ bug reports might impact the task of bug reproduction. One
77
+ likely reason that past studies have not examined this relation
78
+ is that as it requires manually reproducing real bug reports,
79
+ which is a time-consuming and difficult task. Despite the
80
+ difficulty of this analysis, understanding this information is
81
+ critical as both developers and automated bug analysis tech-
82
+ niques may need to (i) understand the type of reported failure,
83
+ (ii) understand multiple modalities of information, such as
84
+ text, images, or screen-recordings, and (iii) identify or infer
85
+ information that is either vague or missing from the reports.
86
+ In short, empirically analyzing both the characteristics and
87
+ quality of the information reported in mobile app bugs is
88
+ critical for both the practical and scientific advancement bug
89
+ report management for mobile apps.
90
+ In this paper, we conduct and in-depth characterization of
91
+ reproducible bug reports for Android apps. To this end, we
92
+ significantly extend ANDROR2 [20] – a dataset of reproducible
93
+ bug reports for Android apps which contains bugs representing
94
+ a range of failure types. We augmented the dataset with addi-
95
+ tional, manually verified and fully reproduced bug reports from
96
+ open source Android apps hosted on GitHub [21] and available
97
+ on the Google Play store [22], obtaining a dataset of 180 bug
98
+ reports. In this work, we focus on bug reports for Android
99
+ arXiv:2301.01235v1 [cs.SE] 3 Jan 2023
100
+
101
+ apps as Android is the most widely used operating system for
102
+ mobile apps [23]. To the best of our knowledge, ours is the
103
+ largest dataset of (i) fully reproduced bug reports for Android
104
+ apps, which (ii) contains both user-submitted and developer-
105
+ submitted reports, and (iii) in contrast to related work, focuses
106
+ on different types of failures beyond app crashes. Given this
107
+ dataset, we focused our in-depth analysis on three sources
108
+ of information: the description of the environment needed
109
+ to reproduce the bug report, the steps to reproduce, and the
110
+ observed behavior.
111
+ Leveraging the fact that our studied reports are considered
112
+ fully reproducible, we perform an in-depth analysis of both the
113
+ report characteristics—including the failure types and modal-
114
+ ities of reported information—and the quality of reported
115
+ information. In relation to the quality of reported information,
116
+ we focus on three aspects: the types and prevalence of missing
117
+ information, whether report discussion threads contain helpful
118
+ information for reproducing the reports, and the specificity
119
+ of reported information (which investigates whether reported
120
+ information can be directly used for reproducing the reports).
121
+ Although these aspects are only some of ones that describe the
122
+ quality of reported information, we believe that the analysis
123
+ of these aspects provides useful insights into the reproduction
124
+ of bug reports and hence focus on them.
125
+ Our analysis shows that (i) reported failures can be grouped
126
+ into four types, three of which are not yet considered by
127
+ existing automated reproduction techniques, (ii) different in-
128
+ formation modalities are used to report the details related to
129
+ the environment, steps to reproduce, and observed behavior,
130
+ (iii) a large number of reports (74%) have at least one step
131
+ to reproduce that requires multiple operations in the app
132
+ indicating that the information provided for the step is not
133
+ always specific enough, (iv) the great majority of reports
134
+ (92%) have at least one missing reproduction step, illustrating
135
+ that the operations required to reproduce the reports must
136
+ often be inferred, and (v) bug report discussions can, in some
137
+ cases (19%), provide additional information useful for the
138
+ reproduction of the reports. Finally, we discuss implications
139
+ of our findings, which can help guide future research on
140
+ automated reproduction of bug reports and, more generally,
141
+ bug report management activities.
142
+ In summary, the main contributions of this paper are:
143
+ • A large set of 180 manually mined and reproduced
144
+ bug reports for Android apps that contains user- and
145
+ developer-submitted bug reports of multiple failure types.
146
+ • A study that examines bug characteristics and information
147
+ quality in reproducible mobile app bug reports. This
148
+ advances upon prior studies which do not manually verify
149
+ and collect reproducible bug reports.
150
+ • A discussion on the implications of our findings, which
151
+ illustrates the need for future research on non-crashing
152
+ oracles, multi-modal understanding of report information,
153
+ mocking environments, and missing and non-specific
154
+ reproduction steps.
155
+ • A replication package [24] that contains our dataset of
156
+ bug reports, data analysis reports, and scripts to perform
157
+ Bug Report
158
+ Title:
159
+ Bug: Long pressing the amount input brings up QWERTY keyboard
160
+ Content:
161
+ Software specifications:
162
+ • GnuCash Android version: 2.2.0
163
+ • System Android version: 6.0
164
+ • Device type: Motorola Moto G (2nd Generation)
165
+ Steps to reproduce the behaviour:
166
+ 1. Navigate to Transactions screen
167
+ 2. Tap the Add button
168
+ 3. Enter Description (optional)
169
+ 4. Focus the Amount input
170
+ 5. Long press to bring up the context menu
171
+ Expected behaviour:
172
+ See the context menu
173
+ Actual behaviour:
174
+ Fig. 1: Bug report for the GNUCASH app.
175
+ the study analyses, which can facilitate future replications
176
+ and extensions of this work.
177
+ II. BACKGROUND AND TERMINOLOGY
178
+ Given a bug report that describes a failure in an app, we
179
+ use the term reporter to identify the person submitting the
180
+ bug report. A reporter can be either a user or a developer. In
181
+ this study, we consider a person who never contributed to the
182
+ source code of an app to be a user and all other reporters to
183
+ be developers.
184
+ We conceptually group the information contained in a bug
185
+ report into multiple parts, each of which detail a particular
186
+ aspect of the report. The parts and aspects of interest in this
187
+ study are the ones providing details on how to reproduce the
188
+ failure described in a report. These aspects are: the environ-
189
+ ment, the steps to reproduce (S2Rs), and the observed behavior
190
+ (OB). The environment includes information on the software
191
+ and hardware necessary to reproduce the failure described in
192
+ a report. This part can contain information such as the app
193
+ version, the operating system (OS) version, and the device
194
+ where the failure occurred. The S2Rs provide details on the
195
+ operations that should be performed on a device in order
196
+ to reproduce the failure. We use the terms GUI action (or
197
+ simply action) and GUI interaction (or simply interaction)
198
+ interchangeably to indicate the operations performed on the
199
+ GUI of a device. An S2R (which are the unit of information
200
+ composing the S2Rs) can be mapped to one or more GUI
201
+ actions. The OB describes the failure and can be used to check
202
+ that the failure was successfully reproduced. In practice, the
203
+ information from these conceptual parts can be interleaved
204
+ across the paragraphs and sections of a bug report. Bug
205
+ reports can also have a discussion thread. A discussion thread
206
+ contains discussion messages and these messages can provide
207
+ 2
208
+
209
+ 12:22
210
+ X
211
+ New transaction
212
+ SAVE
213
+ Heating/Utilities
214
+ 7
215
+ 8
216
+ 9
217
+ X
218
+ C
219
+ 4
220
+ 5
221
+ 6
222
+ *
223
+ 1
224
+ 2
225
+ 3
226
+ +
227
+ 0
228
+ 2
229
+ 3
230
+ 8
231
+ 0
232
+ 9
233
+ W
234
+ e
235
+ V
236
+ u
237
+ a
238
+ S
239
+ d
240
+ g
241
+ b
242
+ X
243
+ X
244
+ n
245
+ m
246
+ ?123
247
+ English
248
+ V
249
+ 口additional information on the environment, the S2Rs, and the
250
+ OB associated with the report.
251
+ Figure 1 provides an example of a user-submitted bug re-
252
+ port [25]. This bug report is taken from the report management
253
+ system of GNUCASH, an app for finance tracking, and is
254
+ slightly modified for presentation purposes. The bug report
255
+ contains information related to the environment, the S2Rs, and
256
+ the OB, which are located in the Software specifications, Steps
257
+ to reproduce the behaviour, and Actual behaviour sections of
258
+ the report, respectively.
259
+ To exercise the bug, the user navigated to the transactions
260
+ screen, started adding a new transaction, and long-clicked on
261
+ the GUI element representing the amount of the transaction.
262
+ The failure manifests as a wrong screen being displayed to the
263
+ user: screen with a keyboard view instead of the context menu.
264
+ The OB describing the failure is reported using text (in the
265
+ title) and using an image (in the Actual behaviour section). We
266
+ refer to the way in which a piece of information is reported as
267
+ the reporting modality (or modality in short) and reporters can
268
+ provide the same information multiple times using different
269
+ modalities. Because the user did not reach the desired screen,
270
+ we identify this failure as a navigation failure. We use the
271
+ terms failure type and failure category interchangeably to refer
272
+ to the categorization of the failure.
273
+ The report has five S2Rs (numbered items under the Steps
274
+ to reproduce the behaviour section) and 13 GUI actions are
275
+ necessary to reproduce the failure. An example of GUI action
276
+ is performing a click on the add button in the transaction
277
+ screen of the app as indicated by 2. Tap the Add button. An
278
+ S2R can map to one or more GUI actions. In this example,
279
+ the first S2R (1. Navigate to Transactions screen) maps to
280
+ three GUI actions. We refer to S2Rs that map to multiple
281
+ GUI actions as non-specific S2Rs. Of the remaining four S2Rs,
282
+ three map to one GUI action and one S2R is optional (3. Enter
283
+ Description (optional).) This optional S2R is not included in
284
+ 13 GUI actions necessary to reproduce the failure. Seven (13-
285
+ 3-3) of the GUI actions in this example are not described by
286
+ any of the S2Rs. We refer to such GUI actions as unmapped
287
+ GUI actions and say that they correspond to missing S2Rs.
288
+ We refer to the remaining actions as mapped GUI actions.
289
+ If an unmapped GUI action occurs before the first mapped
290
+ GUI action, we call the missing S2R that corresponds to
291
+ the unmapped action a missing context S2R, indicating that
292
+ some contextual information is missing from the bug report.
293
+ Otherwise, if a missing S2R is associated with a GUI action
294
+ occurring after the first mapped GUI action, we refer to the
295
+ S2R as a missing inline S2R.
296
+ III. METHODOLOGY
297
+ To characterize reproducible bug reports, inform research on
298
+ automated bug reproduction, and, more generally, provide in-
299
+ sights for research on bug report management, we formulated
300
+ and answered the following research questions (RQs):
301
+ • RQ1: What are the failure types associated with
302
+ reproducible bug reports? In this RQ, we analyzed
303
+ and categorized failures associated with reproducible bug
304
+ reports. With the findings from this RQ we aim to inform
305
+ research on automatic failure recognition.
306
+ • RQ2: What information modalities are used to report
307
+ the information contained in reproducible bug re-
308
+ ports? This RQ categorizes the modalities used to report
309
+ environment, S2Rs, and OB information. The findings
310
+ from this RQ aim to inform research in bug triaging,
311
+ report reproduction, and report quality assessment.
312
+ • RQ3: Do reproducible bug reports have missing in-
313
+ formation? We answer this question by analyzing the
314
+ information contained in reproducible bug reports w.r.t.
315
+ operations required to reproduce the failures described in
316
+ the reports. This RQ aims to direct efforts on research
317
+ for identifying and inferring missing information in bug
318
+ reports, necessary for bug report reproduction.
319
+ • RQ4: Do discussion threads of reproducible bug re-
320
+ ports contain helpful information for reproducing the
321
+ reports? In this RQ, we analyzed the information gain
322
+ obtained by interpreting the bug report discussions. This
323
+ RQ aims to evaluate the need for approaches that combine
324
+ content from bug reports and their discussions.
325
+ • RQ5: How specific is the information reported in
326
+ reproducible bug reports? In this RQ, we investigated
327
+ whether the information contained in reproducible bug
328
+ reports can be directly mapped onto the operations need
329
+ to reproduce the reports. This RQ aims to provide insights
330
+ on how to leverage the information in bug reports for
331
+ reproducing the failures.
332
+ Figure 2 provides a high-level outline of the methodology
333
+ we used to answer the RQs. In a nutshell, we first assembled
334
+ a dataset of reproducible bug reports and then analyzed the
335
+ characteristics of the bug reports through qualitative and
336
+ quantitative analyses. We describe these steps in detail next.
337
+ A. Dataset Creation
338
+ The Dataset Creation component of Figure 2 provides an
339
+ overview of our data collection workflow, which consisted of
340
+ two phases: bug reports filtering and failure reproduction.
341
+ 1) Bug Reports Filtering: The objective of this phase was
342
+ to identify a set of bug reports that we could try to reproduce
343
+ and ultimately include in our dataset. In this study, we are
344
+ interested in both user-submitted and developer-submitted bug
345
+ reports that are reproducible and describe different types of
346
+ failures. To the best of our knowledge, ANDROR2 [20] is
347
+ the largest dataset of reproducible bug reports for Android
348
+ apps that does not exclusively focus on crashes. This dataset
349
+ contains 90 user-submitted bug reports, which are associated
350
+ with apps available on the Google Play store [22] and hosted
351
+ on GitHub [21]. The 90 bug reports are GitHub issues [26]
352
+ and are associated with reproduction scripts created by the
353
+ ANDROR2’s authors. This set of 90 bug reports was extracted
354
+ from a larger set of 6,365 issues that was systematically
355
+ mined from GitHub. The set of 6,365 issues contains issues
356
+ that: (i) are part of repositories that use Java, (ii) have
357
+ the label “bug”, (iii) are in repositories that contain an
358
+ AndroidManifest.xml file (as Android apps require this
359
+ 3
360
+
361
+ Bug Reports
362
+ Filtering
363
+ AndroR2
364
+ Filtered
365
+ Bug Reports
366
+ Failure
367
+ Reproduction
368
+ Reproduced
369
+ Bug Reports
370
+ RQ1: Failure Type
371
+ RQ2: Reporting Modality
372
+ RQ3: Missing Information
373
+ Dataset Creation
374
+ Bug Reports Analysis
375
+ RQ4: Discussion Information
376
+ RQ5: Information Specificity
377
+ Reproduction
378
+ Scripts
379
+ Bug Reports
380
+ Preparation
381
+ Annotated
382
+ Bug Reports
383
+ E,OB,S2Rs
384
+ Fig. 2: Overview on the methodology used in the study.
385
+ file to properly compile [27]), (iv) contain the word “step”
386
+ in them, and (v) are associated with apps also available on the
387
+ Google Play store.
388
+ Because we are also interested in developer-submitted bug
389
+ reports, we started from the set of 6,365 GitHub issues pro-
390
+ vided by ANDROR2 and identified 90 reproducible, developer-
391
+ submitted bug reports (to match the number of already avail-
392
+ able user-submitted bug reports). To identify the 90 developer-
393
+ submitted bug reports, we used a methodology similar to that
394
+ of ANDROR2. Specifically, we first refined the set of 6,365
395
+ issues to only contain those created by GitHub users that
396
+ had contributed to the repositories associated with the issues,
397
+ resulting in 2,523 issues. Second, we selected issues that were
398
+ closed at the time the issues were mined (November 2020) so
399
+ that we could more easily identify whether the issues were also
400
+ originally reproduced by the developers. This filtering resulted
401
+ in 2,045 reports. Third, after analyzing the set of issues, we
402
+ found that some repositories had a much larger number of
403
+ issues compared to others. To avoid overfitting the bug report
404
+ dataset to a specific app, we considered at most ten issues
405
+ per repository. When a repository had more than ten issues,
406
+ we randomly selected ten from this set resulting in 645 bug
407
+ reports for 164 apps.
408
+ 2) Failure Reproduction Phase: In the second phase of our
409
+ dataset creation process, we randomly selected bug reports
410
+ from the set of 645 developer-submitted bug reports until we
411
+ reproduced 90 of them. In this process, we disregarded trivially
412
+ reproducible bug reports, i.e., those we could reproduce by
413
+ simply opening the app.
414
+ Two authors tried to reproduce the failures described in the
415
+ bug reports. To reproduce a failure, the authors followed the
416
+ S2Rs contained in the bug report by mapping the steps to GUI
417
+ actions on the screen of the device running the app associated
418
+ with the report. If a report had missing S2Rs, the authors
419
+ manually explored the functionality of the app to identify the
420
+ minimal sequence of GUI actions that would account for those
421
+ missing steps, using a trial-and-error approach. When a bug
422
+ report could be successfully reproduced by one of the two
423
+ authors, the other author also tried to reproduced the same
424
+ report to ensure that the reproduced failure was the same as
425
+ the one described in the report. For all 90 bug reports, the
426
+ authors also encoded the GUI actions in reproduction scripts
427
+ using the UIAutomator framework [28].
428
+ To validate whether user-submitted bug reports were still
429
+ reproducible, we ran the scripts associated with these reports
430
+ in the ANDROR2 dataset. Four reports were not reproducible
431
+ as the servers associated with the apps were no longer running.
432
+ To replace these bug reports, we identified and reproduced four
433
+ additional user-submitted reports from the set of 6,365 GitHub
434
+ issues provided by ANDROR2. At the end of this process,
435
+ we obtained a set of 90 user-submitted and 90 developer-
436
+ submitted reproducible bug reports, which we considered for
437
+ the rest of the study.
438
+ B. Bug Reports Analysis
439
+ In this section, we present the analyses we performed to
440
+ characterize aspects related to the reproducibility of Android
441
+ bug reports. The Bug Reports Analysis Creation part of
442
+ Figure 2 provides a summary of the analyses we performed.
443
+ The analyses were driven by two of the paper’s authors and
444
+ were performed one at a time to reduce cognitive load.
445
+ 1) Bug Reports Preparation: Before performing the analy-
446
+ ses associated with the RQs, we annotated the information
447
+ contained in the bug reports and their discussion threads,
448
+ to identify the portions of each report that provide infor-
449
+ mation about the environment, S2Rs, and OB. This step
450
+ was performed by the two authors together and in multiple
451
+ sessions; the authors associated each sentence in the report’s
452
+ textual description, as well as each link, image, recording,
453
+ and execution logs, with it designated purpose: to describe
454
+ environment, S2Rs, and OB. Some elements received multiple
455
+ annotations, e.g., a sentence can provide both S2Rs and OB.
456
+ 2) Analysis for RQ1 (What are the failure types associated
457
+ with reproducible bug reports?): To answer RQ1, we per-
458
+ formed a qualitative analysis that combines inductive and axial
459
+ coding [29], [30]. Inductive coding is a systematic approach
460
+ for categorizing data by manually coding (i.e., labeling) the
461
+ data. Axial coding relates codes to one another and finds
462
+ higher-level codes that represent abstractions of the original
463
+ codes. In our analysis, a code is a label that categorizes the
464
+ type of a failure and we assigned the code to the bug report
465
+ describing the failure.
466
+ The analysis was performed by two raters, who analyzed
467
+ the description of the failure in the bug report and used the
468
+ reproduction scripts to observe how the failure manifested.
469
+ The analysis was divided into two parts. In the first part, the
470
+ two raters analyzed a sample of the bug reports to define
471
+ the analysis codebook – a document detailing the rules for
472
+ assigning a specific code to a failure. For each code, the set
473
+ 4
474
+
475
+ D</Vof rules specified the characteristics required for assigning a
476
+ code to a failure.
477
+ This part of the analysis was performed in six iterations. In
478
+ each iteration, the raters independently analyzed 18 bug reports
479
+ (10% of the report considered in the study). The set contained
480
+ the same bug reports for both raters and was selected randomly
481
+ from the set of not-yet-analyzed bug reports. At the end of each
482
+ iteration, the raters used negotiated agreement [31] to resolve
483
+ inconsistencies among created and assigned codes, and to in-
484
+ sure the reliability of the coding process. We used this method
485
+ due to it is advantages in research like ours, where generating
486
+ new insights is the primary concern [32]. Because we used
487
+ negotiated agreement, measures such as inter-rater agreement
488
+ are not applicable in our context. To resolve disagreements,
489
+ the raters reproduced the failures together and then decided
490
+ on the final classification. For example, for one of the reports
491
+ considered in the study [33], one of the raters categorized the
492
+ failure as a crash and the other rater categorized the failure as
493
+ a navigation issue. When the two raters met, they discussed
494
+ the disagreement and decided to classify the failure as a crash
495
+ because the app displayed an exception before bringing the
496
+ user back to a different screen.
497
+ At the sixth iteration, the raters did not create new codes and
498
+ had assigned the same codes to all reports. From that point, the
499
+ raters split the remaining 72 bug reports equally and coded the
500
+ bug reports independently. At the end of the coding process,
501
+ the raters also performed axial coding. This step led to four
502
+ main categories of failures, which we present in Section IV.
503
+ 3) Analysis for RQ2 (What information modalities are used
504
+ to report the details contained in reproducible bug reports?):
505
+ The analysis to answer RQ2 was also based on inductive and
506
+ axial coding. Two raters analyzed the environment, S2Rs, and
507
+ OB information annotated during the bug reports preparation
508
+ step. The raters created the analysis codebook in two iterations,
509
+ analyzing in each iteration a sample of 18 bug reports (10%
510
+ of all bug reports). The raters used negotiated agreement to
511
+ address the reliability of the coding process. After finalizing
512
+ the codebook, the authors split the remaining 144 bug reports
513
+ equally and coded them independently.
514
+ The raters performed axial coding at the end of the coding
515
+ process. This process led to six main reporting modalities,
516
+ detailed in Section IV.
517
+ 4) Analysis for RQ3 (Do reproducible bug reports have
518
+ missing information?): To answer RQ3, we performed two
519
+ types of analysis. First, we leveraged the annotations created
520
+ in the bug reports preparation step to identify whether environ-
521
+ ment, S2Rs, and OB information was completely missing from
522
+ the reports. Second, when the S2Rs information was provided,
523
+ we performed an in-depth analysis of S2Rs. Specifically, for
524
+ each bug report, we compared the S2Rs information from
525
+ the bug report with the GUI actions in our reproduction
526
+ scripts, in order to identify missing S2Rs. Once we identified
527
+ missing S2Rs, we categorized them into missing context S2Rs
528
+ and missing inline S2Rs (see definitions in Section II). Two
529
+ authors analyzed each bug report independently and then met
530
+ to discuss and finalize the classification.
531
+ 5) Analysis for RQ4 (Do discussion threads of reproducible
532
+ bug reports contain helpful information for reproducing the
533
+ reports?): In RQ4, two authors manually analyzed the mes-
534
+ sages in the bug report discussions, to identify whether they
535
+ added information relevant to understanding and reproducing
536
+ the bug reports. The authors leveraged the annotations from the
537
+ bug reports preparation step to focus on messages providing
538
+ environment, S2Rs, and OB information. The authors analyzed
539
+ each bug report independently and labeled with the word
540
+ additional the data from discussion messages that provided
541
+ additional information. The two authors met and discussed
542
+ the final classification also in this case.
543
+ 6) Analysis for RQ5 (How specific is the information re-
544
+ ported in reproducible bug reports?): To answer RQ5, we
545
+ analyzed whether the information provided in the bug reports
546
+ could be directly used for reproducing the bug reports. For the
547
+ environment-related information, two authors checked whether
548
+ the provided information was sufficient to define the environ-
549
+ ment where to reproduce the failure. If no additional infor-
550
+ mation was needed, we considered the provided information
551
+ to be of specific (and non-specific otherwise). For S2Rs, two
552
+ authors mapped each of the S2Rs defined in a bug report
553
+ to corresponding GUI actions from the reproduction script.
554
+ If an S2R mapped to multiple GUI actions, we labeled that
555
+ S2R as a non-specific S2R. We considered the other S2Rs
556
+ to be specific. For the OB information, the authors checked
557
+ whether the information was sufficient to verify the failure. If
558
+ no additional information was needed (i.e., no need to check
559
+ discussion messages), we considered the provided information
560
+ to be specific (and non-specific otherwise).
561
+ IV. RESULTS
562
+ In this section, we present the results of our study on ana-
563
+ lyzing and characterizing reproducible Android bug reports.
564
+ A. RQ1: What are the failure types associated with repro-
565
+ ducible bug reports?
566
+ Our analysis identified four failures types: output, cosmetic,
567
+ navigation, and crash. Output failures reveal issues in the
568
+ output provided by the app. Cosmetic failures identify issues
569
+ in the app that do not affect the functionality of the app.
570
+ Navigation failures display the wrong screen to the user.
571
+ Crashes abruptly terminate the execution of the app. Across the
572
+ bug reports considered, we identify 33% of reports reporting
573
+ output failures, 31% reporting cosmetic failures, 8% reporting
574
+ navigation failures, and 28% reporting crashes. This finding is
575
+ notable, as many current bug report analysis techniques focus
576
+ solely on crashes. We discuss the implications of these findings
577
+ further in Section V.
578
+ This distribution reveals a comparable amount of failures
579
+ between the output, cosmetic, and crash categories and a sig-
580
+ nificantly lower number of navigation failures. The distribution
581
+ is similar across both developer- and user-submitted bug re-
582
+ ports. Specifically, among the user-submitted bug reports, there
583
+ are 33% output failures, 31% cosmetic failures, 7% navigation
584
+ failures, and 28% crashes. Among developer-submitted bug
585
+ 5
586
+
587
+ (a) Example of output failure on the left and fix on the right.
588
+ (b) Example of cosmetic failure on the left and fix on the right.
589
+ (c) Example of navigation failure on the left and fix on the right.
590
+ (d) Example of crash failure on the left and fix on the right.
591
+ Fig. 3: Screenshot examples for the four failure types identified in the bug reports considered.
592
+ reports, there are 32% output failures, 29% cosmetic failures,
593
+ 9% navigation failures, and 29% crashes.
594
+ Our analysis categorized the 60 output failures into two
595
+ subcategories: incorrect output (32) and missing output (28).
596
+ Incorrect output identifies failures in which some computation
597
+ of the app is displayed incorrectly or improperly saved to a
598
+ file, and missing output describes failures where the result of
599
+ some computation is not displayed or saved to a file. A vast
600
+ majority of these cases affect the GUI of the app (56 cases)
601
+ whereas a smaller number impact generated files (4 cases).
602
+ The screenshot on the left of Figure 3a shows an example of
603
+ a failure under the incorrect output subcategory. The example
604
+ is taken from a bug report [34] of OMNI NOTES, a note-taking
605
+ app. The app has a failure as it does not display the right values
606
+ for the tags associated with the notes in the app.
607
+ As part of our analysis, we further classified the 55 cosmetic
608
+ failures into eight subcategories: incorrect color (10), incorrect
609
+ cursor placement (3), content cut (3), image rendering issue
610
+ (4), missing GUI element (9), incorrect orientation (2), incor-
611
+ rect placement (4), and incorrect text (18). We provide details
612
+ for each of these subcategories in our online appendix [24].
613
+ The screenshot on the left of Figure 3b illustrates an example
614
+ of a cosmetic failure from the incorrect placement subcategory.
615
+ This example is taken from a report [35] submitted for
616
+ FIREFOX FOCUS, a browser app. In this example, the text
617
+ Show home screen tips has additional padding w.r.t other
618
+ text elements (e.g., About Firefox Focus) on the screen.
619
+ Our analysis of the navigation failures did not produce any
620
+ further subcategories. The screenshot on the left of Figure 3c
621
+ reports an example of a navigation failure. This failure was
622
+ reported [36] for K-9 MAIL, an email client app. In this
623
+ example, the user started setting up a new email account, went
624
+ into the manual configuration settings, and, upon pressing the
625
+ back button, the user was brought out of the app instead of
626
+ the previous app screen. The screenshot in the right part of
627
+ Figure 3c illustrates the correct app behavior where the user
628
+ navigates to the sign-up screen after pressing the back button.
629
+ For the 50 failures leading to a crash, we identified two
630
+ main subcategories, immediate crash (46) and app freeze (4).
631
+ Immediate crash identifies failures in which the app crashes
632
+ as soon an operation is performed in the app. App freeze
633
+ includes failures in which the app first becomes unresponsive
634
+ after an operation is performed in the app, and then the crash
635
+ appears after a certain amount of time. The screenshot in the
636
+ left portion of Figure 3d reports an example of an immediate
637
+ crash failure reported [37] for FAMILY FINANCE, a household
638
+ finance app. The right part of the Figure 3d reports the screen
639
+ of the app after the bug in the app was fixed.
640
+ RQ1 answer: Our categorization identified four failure
641
+ types: output (33%), cosmetic (31%), navigation (8%), and
642
+ crash (28%). We also identified subcategories for output (2),
643
+ cosmetic (8), and crash (2). Finally, the failure distribution
644
+ does not differ dramatically when user- and developer-
645
+ submitted reports are considered individually.
646
+ B. RQ2: What information modalities are used to report the
647
+ details contained in reproducible bug reports?
648
+ In our analysis of RQ2, we identified six modalities used
649
+ to report bug information: text, annotated text, image, anno-
650
+ tated image, recording, and log. Text identifies information
651
+ reported in plain text. Annotated text is a sentence containing
652
+ text within quotes or text with casing or capitalization [38],
653
+ which represent either app inputs or GUI elements. Image
654
+ identifies device screenshots. Annotated image is associated
655
+ with device screenshots that have been edited to highlight parts
656
+ of their content. Recording refers to any animated image or
657
+ video providing a recording of the device screen. Finally, log
658
+ identifies reporter-provided stack traces extracted from either
659
+ app or system logs. Figure 4 reports the distribution of the
660
+ modalities, for reports as a whole (Figure 4-a), the environment
661
+ (Figure 4-b), S2Rs (Figure 4-c), and OB (Figure 4-d).
662
+ As expected, text is the most commonly used modality,
663
+ with all 180 bug reports using text to convey some piece
664
+ of information. Annotated text is the second most recurring
665
+ modality and appeared in 100 bug reports. In our analysis,
666
+ we also further categorized the annotated text modality into
667
+ annotated GUI text and annotated input text. Annotated GUI
668
+ text identifies bug reports in which the reporter used text within
669
+ quotes or latter casing to identify an element in the GUI of the
670
+ 6
671
+
672
+ 11:26
673
+ Reports
674
+ NSES/INCOMES
675
+ EXPENSES BY ARTICLES
676
+ INCOMES BY AR
677
+ No chart data available3:17
678
+
679
+ Test
680
+ ab
681
+ +
682
+ Add reminder
683
+ Created: moments ago
684
+ Updated: moments ago3:10
685
+ test
686
+ #testa #testb
687
+ Add reminder
688
+ Created: 4 hours ago
689
+ Updated: 3 hours ago12:45
690
+ Mozilla
691
+ Show home screen tips
692
+ About Firefox Focus
693
+ Help
694
+ Your Rights
695
+ Privacy Notice12:51
696
+ Mozilla
697
+ Show home screen tips
698
+ About Firefox Focus
699
+ Help
700
+ Your Rights
701
+ Privacy Notice5:08
702
+ Q Search apps
703
+ +
704
+ Calculator
705
+ Calendar
706
+ Camera
707
+ Clock
708
+ Contacts
709
+ @
710
+ Custom L.
711
+ Dev Tools
712
+ Email
713
+ Family Fi..
714
+ Files
715
+ Gallery
716
+ K-9 Mail
717
+ Messagi..
718
+ Music
719
+ Omni Not..
720
+ Phimp.me
721
+ Phone
722
+ Search
723
+ Settings
724
+ Transistor
725
+ UIAutom..
726
+ Weather
727
+ WebView.
728
+ 口A
729
+ 9:18
730
+ Set up a new account
731
732
+ I Show password
733
+ Advanced options
734
+ MANUAL SETUP
735
+ NEXT
736
+ 1
737
+ 2
738
+ 3
739
+ 4
740
+ 5
741
+ 6
742
+ 7
743
+ 8
744
+ 9
745
+ 0
746
+ r
747
+ t
748
+ y
749
+ u
750
+ :
751
+ q
752
+ W
753
+ e
754
+ 0
755
+ p
756
+ d
757
+ h
758
+ K
759
+ a
760
+ g
761
+ v
762
+ b
763
+ Z
764
+ X
765
+ C
766
+ n
767
+ m
768
+ ?123
769
+ @
770
+ V
771
+ 口LIE 4:53
772
+ Reports
773
+ ARTICLES (PIE CHART)
774
+ INCOMES BY ARTICLES (PIE CHART)
775
+ Display of Incomes by Articles (Pie
776
+ Chart)
777
+ Group by:
778
+ View:
779
+ Unfortunately, Family Finance has stopped.
780
+ OK
781
+ With limited group
782
+ CANCEL
783
+ OK200
784
+ 175
785
+ 150
786
+ 125
787
+ 100
788
+ 75
789
+ 50
790
+ 25
791
+ 0
792
+ Text
793
+ Annotated Text
794
+ Image
795
+ Annotated Image
796
+ Recording
797
+ Log
798
+ 180
799
+ 100
800
+ 30
801
+ 6
802
+ 18
803
+ 19
804
+ 133
805
+ 2
806
+ 179
807
+ 89
808
+ 4
809
+ 1
810
+ 14
811
+ 172
812
+ 36
813
+ 29
814
+ 5
815
+ 16
816
+ 19
817
+ 200
818
+ 175
819
+ 150
820
+ 125
821
+ 100
822
+ 75
823
+ 50
824
+ 25
825
+ 0
826
+ 160
827
+ 140
828
+ 120
829
+ 100
830
+ 80
831
+ 60
832
+ 40
833
+ 20
834
+ 0
835
+ 200
836
+ 175
837
+ 150
838
+ 125
839
+ 100
840
+ 75
841
+ 50
842
+ 25
843
+ 0
844
+ a) Modalities for bug reports.
845
+ b) Modalities for environment.
846
+ c) Modalities for S2Rs.
847
+ d) Modalities for OB.
848
+ Fig. 4: Reporting modalities for bug reports and bug report components.
849
+ relevant app. An example of this case appears in the bug report
850
+ associated with Figure 3b in which the user wrote “Show
851
+ homescreen tips” is indented in the report to describe the
852
+ report’s OB. The annotated input text subcategory contains
853
+ cases in which the reporter provided a textual app input using
854
+ text within quotes. An example of this case appears in a
855
+ bug report [39] for K-9 MAIL, where the reporter mentioned
856
+ Add new email account with “[email protected]” as one of the S2Rs
857
+ in the report. In total, we identified 100 bug reports with
858
+ annotated text (85 annotated GUI text, six annotated input text,
859
+ and nine in which both categories appeared). The remaining
860
+ modalities, while less common, were still present and, in a
861
+ large number of cases, provided information that would have
862
+ been more cumbersome to convey otherwise. Among the bug
863
+ reports considered, reporters used the image, annotated image,
864
+ recording, and log modalities in 30, 6, 18, and 19 bug reports,
865
+ respectively. Furthermore, image-based modalities (i.e., image,
866
+ annotated image, and recording) appeared more frequently
867
+ in user-submitted (35) than developer-submitted bug reports
868
+ (14). Finally, we noticed a slight trend of increasing use of
869
+ image data over the years, with image-based information being
870
+ present in only 14% of reports in 2016 to 36% in 2019.
871
+ Figures 4-b, 4-c, and 4-d report the modalities used for
872
+ specific sections of the bug reports. Figure 4-b reports the
873
+ modalities used for the environment sections. The great ma-
874
+ jority of the reports (133) use the text modality to report
875
+ environment information, and only a few use the image
876
+ modality (2). Figure 4-c provides the modalities used for the
877
+ S2Rs. Text is the most commonly used modality (present in
878
+ 179 bug reports). Annotated text also appears in a considerable
879
+ number of bug reports (89). The remaining modalities are less
880
+ common but provide relevant information for reproducing the
881
+ bug reports. Nineteen bug reports had multiple S2R modalities
882
+ other than text or annotated text, 16 of these bug reports
883
+ were user-submitted and 3 were developer-submitted. These
884
+ 19 bug reports also used the recording (14), the image (4),
885
+ and annotated image (1) modalities. Finally, Figure 4-d report
886
+ the modalities used for the OB sections. Once more, the text
887
+ modality is the most recurring one (172 cases). However,
888
+ for OB, the image and recording modalities were used more
889
+ frequently (29 and 16 cases, respectively) as compared to
890
+ environment and S2Rs. Sixty bug reports had multiple OB
891
+ modalities other than text or annotated text, 38 of these bug
892
+ reports were user-submitted and 22 were developer-submitted.
893
+ These 60 bug reports also used the image (29), the annotated
894
+ image (5), recording (16), and log (19) modalities (with
895
+ some bug reports having multiple modalities). Overall, user-
896
+ submitted bug reports used reporting modalities other than text
897
+ more frequently that developer-submitted bug reports.
898
+ Examining the relationship between reporting modalities
899
+ and failure types, we found that bug reports with cosmetic and
900
+ navigation failures have a higher proportion of cases in which
901
+ the information is reported using image-based modalities as
902
+ compared to output and crash failures. Specifically, 45% of
903
+ the bug reports describing cosmetic failures and 43% of the
904
+ bug reports discussing navigation failures use image-based
905
+ modalities, while these modalities appear in only 16% and
906
+ 18% of the bug reports describing crash and output failures,
907
+ respectively. Focusing on specific bug reports sections, we
908
+ find a similar result for OB descriptions. Additionally, the
909
+ log modality was used exclusively to report the OB of bug
910
+ reports describing crashes. These results highlight how certain
911
+ modalities might be preferable particular failure types.
912
+ RQ2 answer: Our categorization identified six main re-
913
+ porting modalities. Overall, text and annotated text are the
914
+ most recurring modalities. Certain modalities occur more
915
+ frequently when considering specific failure types, e.g.,
916
+ images for cosmetic and navigation failures.
917
+ C. RQ3: Do reproducible bug reports have missing information?
918
+ Our analysis identified that 54 bug reports did not contain
919
+ any environment information, one bug report did not have any
920
+ S2Rs, and four bug reports did not contain OB information.
921
+ (Missing information is computed with respect to the bug re-
922
+ ports initially submitted and does not consider the information
923
+ contained in their discussions, as that is the focus of RQ4.)
924
+ Although only one bug report did not have any S2Rs, 92.2%
925
+ of the bug reports had at least one missing S2R. As mentioned
926
+ in Section II, missing S2Rs include missing context S2Rs
927
+ and missing inline S2Rs. 88.3% of bug reports had at least
928
+ one missing context S2R and 37.7% of bug reports had at
929
+ least one missing inline S2R. Figure 5 associates missing
930
+ S2Rs to unmapped GUI actions. More precisely, for each bug
931
+ report, the figure reports the percentage of unmapped GUI
932
+ actions with respect to the number of GUI actions necessary
933
+ to reproduce the report. The figure reports the percentage for
934
+ missing S2Rs, missing context S2Rs, and missing inline S2Rs.
935
+ The figure reveals that 75% of the bug reports have at least
936
+ 20% unmapped GUI actions due to missing S2Rs. Across
937
+ 7
938
+
939
+ Missing S2Rs
940
+ Missing Context S2Rs
941
+ Missing Inline S2Rs
942
+ 100%
943
+ 80%
944
+ 60%
945
+ 40%
946
+ 20%
947
+ 0%
948
+ % of Unmapped GUI Actions
949
+ Fig. 5: Pct. of unmapped GUI actions due to missing S2Rs.
950
+ all bug reports, missing S2Rs led to 43.2% of GUI actions
951
+ being unmapped. 33.4% of unmapped GUI actions are due
952
+ to missing context S2Rs and 9.8% are due to missing inline
953
+ S2Rs. These results illustrate that reproducing bug reports also
954
+ requires inferring a large number of GUI actions that are not
955
+ specified in the description of the bug reports.
956
+ Comparing missing S2Rs from user-submitted bug reports
957
+ with respect to missing S2Rs from developer-submitted bug
958
+ reports, users submitted reports that have a lower percentage of
959
+ unmatched GUI actions due to missing context S2Rs (22.5%)
960
+ with respect to developer-submitted reports (43.5%). This
961
+ difference does not appear for unmatched GUI actions due
962
+ to missing inline S2Rs (9.5% for user-submitted and 10%
963
+ for developer-submitted bug reports). We did not observe a
964
+ difference in missing information across failure types.
965
+ RQ3 answer: The environment section of a bug report is the
966
+ most likely to be missing from submitted bug reports among
967
+ the sections considered. A large percentage of bug reports
968
+ (92%) had at least one missing S2R. Missing S2Rs equate
969
+ to 43.2% unmapped GUI actions necessary to reproduce the
970
+ failures described in the reports.
971
+ D. RQ4: Do discussion threads of reproducible bug reports
972
+ contain helpful information for reproducing the reports?
973
+ To answer this RQ, we analyzed the discussions associated
974
+ with the bug reports in our dataset and identified information
975
+ added as part of the conversations that was relevant for repro-
976
+ ducing the bugs. In total, 35 of the bug reports contained addi-
977
+ tional information detailing either the environment, the S2Rs,
978
+ or the OB of the bug reports. Among these 35 bug reports,
979
+ 25 were user-submitted and 10 were developer-submitted.
980
+ Additionally, in 22 of the 35 bug reports, a developer explicitly
981
+ requested for the information to be added to the discussion.
982
+ In the discussions, there were 20 instances of environment
983
+ information added to the report, 11 instances of S2Rs, and 9
984
+ instances of OB. The sum of these numbers is higher than
985
+ the total number of bug reports with additional information
986
+ because some discussions (five in total, four with two mes-
987
+ sages and one with three) contained multiple messages that
988
+ provided additional information. Although added information
989
+ does not appear in a large number of cases, these results show
990
+ 0%
991
+ 20%
992
+ 40%
993
+ 60%
994
+ 80%
995
+ 100%
996
+ Fig. 6: Percentage of non-specific S2Rs by bug report.
997
+ that follow up conversations can be leveraged to reproduce
998
+ reported bugs. Furthermore, considering the high number of
999
+ reports with missing environment information and unmatched
1000
+ GUI actions identified in RQ3, automated techniques can try
1001
+ to identify and automatically seek this information through
1002
+ iterative or interactive bug reproduction approaches.
1003
+ Looking at different failure types, bug reports describing
1004
+ output failures were the ones with the highest number of
1005
+ added information in their discussions. Among the 35 bug
1006
+ reports with added information, 17 described output failures,
1007
+ 15 reported crashes, 2 described cosmetic failures, and 1
1008
+ discussed a navigation failure.
1009
+ RQ4 answer: Among the bug reports considered, 35 had
1010
+ additional information relevant for reproducing the reports
1011
+ derived from follow-up, message-based discussions. In 22
1012
+ reports, the information was explicitly requested by a devel-
1013
+ oper. Finally, of the 35 reports, 20 had added environment
1014
+ info, 11 had added S2Rs, and 10 had added OB.
1015
+ E. RQ5: How specific is the information reported in repro-
1016
+ ducible bug reports?
1017
+ When the environment was reported, the information could
1018
+ be directly mapped into actions for reproducing the failure.
1019
+ That is, it was possible to select the right app version, Android
1020
+ version, and device for reproducing the failure. In the case of
1021
+ OB, we had to look at the bug report discussion of six reports
1022
+ to better understand the problem associated with the reported
1023
+ failures, meaning that, in our analysis, the OB described in
1024
+ those bug reports was not specific enough for reproducing the
1025
+ failures. Considering S2Rs, 73.9% of the bug reports had at
1026
+ least one reported S2Rs that could not be directly mapped
1027
+ into a single GUI action but, instead, required multiple GUI
1028
+ actions. Based on the terminology defined in Section II, this
1029
+ means that those bug reports had at least one non-specific S2R.
1030
+ Figure 6 reports the percentage of non-specific S2Rs in each
1031
+ bug report of our dataset. Across all reports, the S2Rs section
1032
+ had an average of 36% of S2Rs that were non-specific. This
1033
+ results shows that there is the need to fill a gap to map S2Rs
1034
+ into corresponding GUI actions when reproducing reports.
1035
+ Considering failure types, bug reports describing navigation
1036
+ failures had the highest average percentage of non-specific
1037
+ S2Rs (40%), while output failures had the lowest (34%). This
1038
+ result shows a minor difference in the specificity of S2Rs
1039
+ between reported failure types. There was also little difference
1040
+ in the average percentage of non-specific S2Rs reported by
1041
+ users (34.6%) and developers (35.8%).
1042
+ 8
1043
+
1044
+ RQ5 answer: Environment and OB information was spe-
1045
+ cific enough to reproduce reported failures in the great
1046
+ majority of cases. A large percentage of reports (73.9%) had
1047
+ at least one non-specific S2R, and the average percentage
1048
+ of non-specific S2Rs across all reports was 36%.
1049
+ V. DISCUSSION AND IMPLICATIONS
1050
+ 1) New automated techniques are needed for understanding
1051
+ non-crashing oracles. Most existing automated bug repro-
1052
+ duction approaches for mobile apps focus on reproducing
1053
+ bugs leading to a crash [13], [14]. This is likely because
1054
+ failures related to crashes are easier to recognize, for example
1055
+ through detection of a crash dialog, and thus detect when a
1056
+ a crashing bug has been reproduced. However, our analysis
1057
+ shows that more than 70% of the bug reports describe failures
1058
+ other than crashes and thus require more sophisticated oracle
1059
+ definitions and detection. For example, automated techniques
1060
+ for bug report reproduction might benefit from techniques
1061
+ that can define visual oracles using computer vision, such as
1062
+ detecting an incorrect color theme through color histogram
1063
+ analysis. Similarly, navigation failures might require analysis
1064
+ of statically computed program state graphs, to determine
1065
+ feasibility of navigation paths. Extending recent work on
1066
+ defining oracles through the derivation of program invariants
1067
+ (e.g., [40]) could further aid in oracle construction.
1068
+ 2) There is a need for automated multi-modal understand-
1069
+ ing of bug report information. Our analysis has illustrated
1070
+ that bug reports can mix multiple modalities of information
1071
+ together in form of text, images, and recordings, which capture
1072
+ disparate pieces of information about a given bug. However,
1073
+ most recent work on automated bug report reproduction and
1074
+ analysis only considers the textual modality [12], [13], [14].
1075
+ Given the amount of prevalence of missing information, even
1076
+ in reproducible reports, revealed through our analysis of RQ3,
1077
+ automated report analysis should strive to analyze all types of
1078
+ reported information for a more robust and complete analysis.
1079
+ As such, new techniques for multi-modal understanding of
1080
+ bugs is needed. For example, deep learning techniques that
1081
+ connect images and natural language (e.g., dense image cap-
1082
+ tioning [41]) could be used to link textual information to visual
1083
+ information for more complete report analysis. Furthermore,
1084
+ in the case of S2Rs, automated techniques would also need to
1085
+ identify how to suitably order the information and this could
1086
+ be achieved by leveraging window transition graphs computed
1087
+ statically or dynamically from the apps [42], [43].
1088
+ 3) Techniques for inferring and mocking app environments
1089
+ are essential. Historically, Android app developers have strug-
1090
+ gled to reign-in issues related to the fragmented platform and
1091
+ device ecosystem. These issues also surface in bug reporting.
1092
+ As identified while analyzing the bug reports considered, it
1093
+ is possible for bugs to manifest under specific combinations
1094
+ of device and platform versions. Considering, that this in-
1095
+ formation is not always present in submitted bug reports
1096
+ (missing in 30% of the cases), techniques that are able to infer,
1097
+ prioritize environmental settings (e.g., device and platform
1098
+ versions) are needed to help drive research on more advanced
1099
+ automated mobile bug report analysis techniques. Furthermore,
1100
+ considering that apps are released frequently [44], [45] and
1101
+ bug reports do not always contain the associated app version,
1102
+ it would be beneficial to automatically infer the version of
1103
+ the app associated with a bug report. This task could be done
1104
+ by automatically by mapping bug report information into GUI
1105
+ components or code entities in the app.
1106
+ 3) Reasoning about missing S2Rs is required. Our analysis
1107
+ illustrated that a large majority (92%) of our studied bug
1108
+ reports have at least one missing S2R. This represents a
1109
+ notable challenge for automated report analysis techniques
1110
+ which will likely need to infer this missing information in
1111
+ order to provide robust analyses. Current techniques do offer
1112
+ advanced solutions (i.e., they are based on random exploration)
1113
+ to help fill in certain missing gaps [13], [14], [12]. However,
1114
+ additional techniques are likely needed that allow for fine-
1115
+ grained inference of missing steps. For instance, future tech-
1116
+ niques could examine existing corpora of bug reports (such
1117
+ the artifacts associated with this research) and attempt to infer
1118
+ missing steps via patterns learned from a corpus of complete
1119
+ bug reports.
1120
+ 4) Handling non-specific S2Rs in bug report data is a
1121
+ major challenge. In addition to a high prevalence of missing
1122
+ S2Rs, our analysis also revealed that 36% of the S2Rs were
1123
+ mapped to multiple GUI actions. These S2Rs identified “high-
1124
+ level” operations, in which the actions or target GUI elements
1125
+ were not explicitly delineated. This situation represents a
1126
+ challenging reasoning problem for automated reproduction
1127
+ and report analysis techniques. Current techniques attempt
1128
+ to overcome such ambiguities through the use of ontological
1129
+ matching [13] or neural representations of text [12] in addition
1130
+ to random exploration. However, additional techniques for
1131
+ performing mapping of non-specific actions or targets are
1132
+ likely needed. For example future techniques may benefit
1133
+ from inferring descriptions of app controls or functionality
1134
+ through multi-modal image captioning models that allow for
1135
+ better mapping of text to runtime app information. Automated
1136
+ “repair” of ambiguous bug report steps based on patterns
1137
+ learned form well-formed sets of reproduction steps may also
1138
+ be a worthwhile direction of exploration. Additionally, S2R
1139
+ descriptions could be extracted from sequences of GUI actions
1140
+ in existing test cases and be mapped to S2Rs in bug reports
1141
+ to facilitate their reproduction.
1142
+ In summary, the analysis performed in this paper has
1143
+ revealed several notable implications that impact future work
1144
+ on automated bug report reproduction, reporting, analysis, and
1145
+ management. We believe that future work will benefit from
1146
+ these findings and the potential new directions of research that
1147
+ they point towards.
1148
+ VI. THREATS TO VALIDITY
1149
+ While we follow a systematic methodology in collecting,
1150
+ analyzing, and reporting our results, it is important to discuss
1151
+ the threats to validity of our study to provide a comprehensive
1152
+ view of our findings. In terms of external validity, our results
1153
+ 9
1154
+
1155
+ may not generalize to bugs for other Android apps. However,
1156
+ given the number, diversity, and popularity of our subject
1157
+ applications and reports, we believe our studied reports should
1158
+ be reasonably representative of Android bug reports as a
1159
+ whole. We considered the most recent dataset of reproducible
1160
+ bug reports (with non-crashing bugs) and extended the dataset
1161
+ to also include developer-submitted bug reports. This dataset
1162
+ includes apps that vary in terms of their size and category. An
1163
+ additional threat could be posed by the fact that we only used
1164
+ open source apps. However, the evaluation includes apps such
1165
+ as FIREFOX FOCUS and SIMPLENOTE, which have complex
1166
+ functionality and millions of installs. In terms of construct
1167
+ validity, our results might be affected by errors in the tools
1168
+ we used to perform our analyses. To mitigate this threat, we
1169
+ extensively tested our tools and multiple authors manually
1170
+ inspected the results. Finally, we also performed qualitative
1171
+ analyses, which could be impacted by divergent understanding
1172
+ among evaluators. To mitigate this threat, we used open coding
1173
+ based on negotiated agreement [31].
1174
+ VII. RELATED WORK
1175
+ A. General Studies on Bug Reports
1176
+ Related work investigated bug report properties to better un-
1177
+ derstand multiple activities characterizing the bug report man-
1178
+ agement process [46], [47], [48], [49], [50], [51], [52], [53],
1179
+ [54]. Among different topics, this line of research analyzed
1180
+ bug report content, developers’ and users’ participation in
1181
+ bug report discussions, triaging, and bug fixing. A prominent
1182
+ study carried out by Bettenburg et al. [46] identified desired
1183
+ aspects that should be contained in a bug report. In follow-up
1184
+ work, Bettenburg et al. [47] also showed that duplicated bug
1185
+ reports contain some additional helpful information that could
1186
+ be used for bug triaging. Sahoo et al. [48] identified the main
1187
+ components necessary for bug reproduction by performing
1188
+ an empirical study. Some prior studies focused primarily on
1189
+ user-submitted bug reports. This line of research investigated
1190
+ how users typically communicate software problems [51], the
1191
+ usefulness of the provided information by power users [52],
1192
+ and user communitys’ expectations [55]. In this paper, we
1193
+ investigated key aspects related to both user-submitted and
1194
+ developer-submitted Android bug reports. Furthermore, we fo-
1195
+ cused on the aspects related to the reproduction of bug reports
1196
+ and specifically investigated how the bug report information
1197
+ relates to the information needed to reproduce the reports.
1198
+ B. Bug Report Studies for Mobile Apps
1199
+ Most of the initial studies on bug reports focused on
1200
+ desktop applications. However, because of smartphone apps’
1201
+ availability, usability, and popularity in the last decade, re-
1202
+ searchers have also started focusing on studying characteristics
1203
+ of bug reports for mobile apps. Zhou et al. [19] performed
1204
+ a study to understand the bug management between desktop
1205
+ and mobile software. Bhattacharya et al. [18] studied mobile
1206
+ bug reports and the bug-fixing process. Aljedaani et al. [56]
1207
+ compared the bug reports between Android and iOS. Zhang et
1208
+ al. [57] studied mobile apps bug reports, labeled those reports,
1209
+ and computed similarities with the previously labeled ones.
1210
+ In our study we reproduced bug reports, characterized the
1211
+ failures associated with the reports, analyzed the usefulness
1212
+ of the information provided in the reports, and categorized the
1213
+ reporting modalities. Previous studies also produced datasets
1214
+ of Android bugs with associated bug reports. Wendland et
1215
+ al. [20] created a dataset of reproducible, user-submitted bug
1216
+ reports. Su et al. [58] created a dataset of crashing bugs based
1217
+ on GitHub issues. Fazzini et al. [13] and Zhao et al. [14]
1218
+ also assembled a dataset of crashing bugs for their research
1219
+ on automated reproduction of bug reports. Compared to these
1220
+ datasets, to the best of our knowledge, this paper is the first
1221
+ to create and consider in its study a dataset of non-crashing
1222
+ and reproducible bug reports that contains both user-submitted
1223
+ and developer-submitted reports.
1224
+ VIII. CONCLUSION
1225
+ We presented an empirical study that characterized re-
1226
+ producible Android bug reports. Specifically, we manually
1227
+ reproduced 180 bug reports systematically mined from An-
1228
+ droid apps on GitHub and investigated how the information
1229
+ contained in the bug report relates to the task of reproducing
1230
+ the reports. Our analysis identified that reported failures can
1231
+ be grouped into four categories, three of which are not yet
1232
+ considered by existing automated reproduction techniques,
1233
+ reporters use different modalities to report the information
1234
+ relevant for reproducing failures, a large number of reports
1235
+ (74%) have at least one non-specific S2R (i.e., multiple GUI
1236
+ action are necessary to perform the operation described by the
1237
+ S2R), the great majority of reports (92%) do not provide all the
1238
+ S2Rs that are necessary to reproduce the reports, and bug re-
1239
+ port discussions can, in some cases (19%), provide additional
1240
+ information useful for the reproduction of the reports.
1241
+ In future work, we first plan to present our findings to
1242
+ Android developers and then develop techniques to aid au-
1243
+ tomated reproduction of bug reports. To support automated
1244
+ reproduction of bug reports, we first plan to define an approach
1245
+ that leverages natural language processing and computer vi-
1246
+ sion techniques to automatically encode OB information into
1247
+ oracles and so aid reproduction of output, cosmetic, and
1248
+ navigation failures. Second, we plan to define a technique that
1249
+ combines S2Rs information reported using different modali-
1250
+ ties. Third, we plan to define a technique that leverages the
1251
+ information contained in existing test cases to help mapping
1252
+ non-specific S2Rs to corresponding GUI actions. Finally, we
1253
+ believe that additional studies into the reproduction of bug
1254
+ reports for software in other domains are needed and those
1255
+ studies could inform techniques for bug report management
1256
+ in those domains.
1257
+ ACKNOWLEDGMENT
1258
+ This work was partially supported by a gift from Facebook
1259
+ and the NSF CCF-2007246 & CCF-1955853 grants. Any
1260
+ opinions, findings, and conclusions expressed herein are the
1261
+ authors’ and do not necessarily reflect those of the sponsors.
1262
+ 10
1263
+
1264
+ REFERENCES
1265
+ [1] G. Tassey, “The economic impacts of inadequate infrastructure for
1266
+ software testing,” National Institute of Standards and Technology, Tech.
1267
+ Rep., 2002.
1268
+ [2] G. Hu, X. Yuan, Y. Tang, and J. Yang, “Efficiently, effectively detecting
1269
+ mobile app bugs with appdoctor,” in Proceedings of the 9th European
1270
+ Conference on Computer Systems, ser. EuroSys’14, New York, NY,
1271
+ USA, 2014, pp. 18:1–18:15.
1272
+ [3] N. Jones, “Seven best practices for optimizing mobile testing efforts,”
1273
+ Gartner, Technical Report G00248240, 2013.
1274
+ [4] D. Han, C. Zhang, X. Fan, A. Hindle, K. Wong, and E. Stroulia,
1275
+ “Understanding android fragmentation with topic analysis of vendor-
1276
+ specific bugs,” in Proceedings of the 2012 19th Working Conference
1277
+ on Reverse Engineering, ser. WCRE ’12.
1278
+ Washington, DC, USA:
1279
+ IEEE
1280
+ Computer
1281
+ Society,
1282
+ 2012,
1283
+ pp.
1284
+ 83–92.
1285
+ [Online].
1286
+ Available:
1287
+ http://dx.doi.org/10.1109/WCRE.2012.18
1288
+ [5] “Android fragmentation statistics http://opensignal.com/reports/2014/
1289
+ android-fragmentation/,” 2014.
1290
+ [6] A. Ciurumelea, A. Schaufelb¨uhl, S. Panichella, and H. Gall, “Analyzing
1291
+ reviews and code of mobile apps for better release planning,” in
1292
+ Proceedings of the IEEE 24th International Conference on Software
1293
+ Analysis, Evolution and Reengineering, ser. SANER’17, Feb. 2017, pp.
1294
+ 91–102.
1295
+ [7] A. Di Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A. Visag-
1296
+ gio, G. Canfora, and H. C. Gall, “What Would Users Change in My App?
1297
+ Summarizing App Reviews for Recommending Software Changes,” in
1298
+ Proceedings of the 24th ACM SIGSOFT International Symposium on
1299
+ Foundations of Software Engineering, ser. FSE’16, Seattle, WA, USA,
1300
+ 2016, pp. 499–510.
1301
+ [8] F. Palomba, P. Salza, A. Ciurumelea, S. Panichella, H. Gall, F. Ferrucci,
1302
+ and A. De Lucia, “Recommending and localizing change requests for
1303
+ mobile apps based on user reviews,” in Proceedings of the 39th Interna-
1304
+ tional Conference on Software Engineering, ser. ICSE’17, Piscataway,
1305
+ NJ, USA, 2017, pp. 106–117.
1306
+ [9] F. Palomba, M. Linares-V´asquez, G. Bavota, R. Oliveto, M. D. Penta,
1307
+ D. Poshyvanyk, and A. D. Lucia, “Crowdsourcing user reviews to
1308
+ support the evolution of mobile apps,” Journal of Systems and Software,
1309
+ pp. 143–162, 2018.
1310
+ [10] F. Palomba, M. Linares-Vasquez, G. Bavota, R. Oliveto, M. D. Penta,
1311
+ D. Poshyvanyk, and A. D. Lucia, “User reviews matter! tracking crowd-
1312
+ sourced reviews to support evolution of successful apps,” in Proceedings
1313
+ of the IEEE International Conference on Software Maintenance and
1314
+ Evolution, ser. ICSME’15, Sept 2015, pp. 291–300.
1315
+ [11] S. Choudhary, A. Gorla, and A. Orso, “Automated test input generation
1316
+ for android: Are we there yet? (e),” in 2015 30th IEEE/ACM
1317
+ International Conference on Automated Software Engineering (ASE).
1318
+ Los Alamitos, CA, USA: IEEE Computer Society, nov 2015, pp.
1319
+ 429–440. [Online]. Available: https://doi.ieeecomputersociety.org/10.
1320
+ 1109/ASE.2015.89
1321
+ [12] O. Chaparro, C. Bernal-C´ardenas, J. Lu, K. Moran, A. Marcus,
1322
+ M. Di Penta, D. Poshyvanyk, and V. Ng, “Assessing the Quality of the
1323
+ Steps to Reproduce in Bug Reports,” in Proceedings of the 2019 27th
1324
+ ACM Joint Meeting on European Software Engineering Conference and
1325
+ Symposium on the Foundations of Software Engineering.
1326
+ Association
1327
+ for Computing Machinery, 2019, p. 86–96.
1328
+ [13] M. Fazzini, M. Prammer, M. d’Amorim, and A. Orso, “Automatically
1329
+ translating bug reports into test cases for mobile apps,” in Proceedings of
1330
+ the 27th ACM SIGSOFT International Symposium on Software Testing
1331
+ and Analysis (ISSTA), 2018, pp. 141–152.
1332
+ [14] Y. Zhao, T. Yu, T. Su, Y. Liu, W. Zheng, J. Zhang, and W. G. J. Halfond,
1333
+ “ReCDroid: Automatically Reproducing Android Application Crashes
1334
+ From Bug Reports,” in Proceedings of the 41st International Conference
1335
+ on Software Engineering (ICSE), 2019, pp. 128–139.
1336
+ [15] X. Xia, D. Lo, Y. Ding, J. M. Al-Kofahi, T. N. Nguyen, and X. Wang,
1337
+ “Improving automated bug triaging with specialized topic model,” IEEE
1338
+ Transactions on Software Engineering, vol. 43, no. 03, pp. 272–297, mar
1339
+ 2017.
1340
+ [16] M. Pradel, V. Murali, R. Qian, M. Machalica, E. Meijer, and S. Chandra,
1341
+ “Scaffle: Bug localization on millions of files,” in Proceedings of the
1342
+ 29th ACM SIGSOFT International Symposium on Software Testing and
1343
+ Analysis. New York, NY, USA: Association for Computing Machinery,
1344
+ 2020, p. 225–236.
1345
+ [17] T. Zhang, W. Hu, X. Luo, and X. Ma, “A commit messages-based bug
1346
+ localization for android applications,” International Journal of Software
1347
+ Engineering and Knowledge Engineering, vol. 29, no. 04, pp. 457–487,
1348
+ 2019.
1349
+ [18] P. Bhattacharya, L. Ulanova, I. Neamtiu, and S. C. Koduru, “An
1350
+ empirical analysis of bug reports and bug fixing in open source android
1351
+ apps,” in Software Maintenance and Reengineering (CSMR), 2013 17th
1352
+ European Conference on, 2013, pp. 133–143.
1353
+ [19] B. Zhou, I. Neamtiu, and R. Gupta, “A cross-platform analysis of bugs
1354
+ and bug-fixing in open source projects: desktop vs. android vs. ios,”
1355
+ Proceedings of the 19th International Conference on Evaluation and
1356
+ Assessment in Software Engineering, 2015.
1357
+ [20] T. Wendland, J. Sun, J. Mahmud, S. M. H. Mansur, S. Huang, K. Moran,
1358
+ J. Rubin, and M. Fazzini, “Andror2: A dataset of manually-reproduced
1359
+ bug reports for android apps,” 2021 IEEE/ACM 18th International
1360
+ Conference on Mining Software Repositories (MSR), pp. 600–604, 2021.
1361
+ [21] (2021, Oct.) Github. [Online]. Available: https://github.com
1362
+ [22] (2021, Oct.) Google play. [Online]. Available: https://play.google.com
1363
+ [23] “Mobile operating system market share worldwide,” StatCounter, Tech-
1364
+ nical Report, 2021.
1365
+ [24] A.
1366
+ Authors,
1367
+ “Online
1368
+ appendix
1369
+ https://sites.google.com/view/
1370
+ 2021bugreportingstudy/home,” 2021.
1371
+ [25] (2021,
1372
+ Oct.)
1373
+ Bug:
1374
+ Long
1375
+ pressing
1376
+ the
1377
+ amount
1378
+ input
1379
+ brings
1380
+ up
1381
+ qwerty keyboard. [Online]. Available: https://github.com/codinguser/
1382
+ gnucash-android/issues/689
1383
+ [26] (2021, Jan.) About issues. [Online]. Available: https://docs.github.com/
1384
+ en/github/managing-your-work-on-github/about-issues
1385
+ [27] (2021,
1386
+ Jan.)
1387
+ App
1388
+ manifest
1389
+ overview.
1390
+ [Online].
1391
+ Available:
1392
+ https:
1393
+ //developer.android.com/guide/topics/manifest/manifest-intro
1394
+ [28] (2021, Jan.) Uiautomator. [Online]. Available: https://developer.android.
1395
+ com/training/testing/ui-automator
1396
+ [29] J. Corbin and A. Strauss, Basics of qualitative research: Techniques and
1397
+ procedures for developing grounded theory.
1398
+ Sage publications, 2014.
1399
+ [30] M. B. Miles, A. M. Huberman, and J. Salda˜na, Qualitative data analysis:
1400
+ A methods sourcebook.
1401
+ Sage publications, 2018.
1402
+ [31] J. L. Campbell, C. Quincy, J. Osserman, and O. K. Pedersen, “Coding in-
1403
+ depth semistructured interviews: Problems of unitization and intercoder
1404
+ reliability and agreement,” Sociological Methods & Research, vol. 42,
1405
+ no. 3, pp. 294–320, 2013.
1406
+ [32] E. R. Morrissey, “Sources of error in the coding of questionnaire data,”
1407
+ Sociological Methods & Research, vol. 3, no. 2, pp. 209–232, 1974.
1408
+ [33] (2018, Aug.) Can’t open the add/remove medicine stock dialog.
1409
+ [Online]. Available: https://github.com/citiususc/calendula/issues/134
1410
+ [34] (2021, Oct.) Tag text removal bug by using checkbox. [Online].
1411
+ Available: https://github.com/federicoiosue/Omni-Notes/issues/634
1412
+ [35] (2021, Oct.) Home screen tips toggle improperly indented. [Online].
1413
+ Available: https://github.com/mozilla-mobile/focus-android/issues/3304
1414
+ [36] (2021, Oct.) App closes on pressing back button in manual setup.
1415
+ [Online]. Available: https://github.com/k9mail/k-9/issues/3971
1416
+ [37] (2021, Oct.) app crash when change view by in report section. [Online].
1417
+ Available: https://github.com/zwieback/FamilyFinance/issues/1
1418
+ [38] (2021,
1419
+ Oct.)
1420
+ Title
1421
+ case
1422
+ vs
1423
+ sentence
1424
+ case
1425
+ in
1426
+ ux
1427
+ writing.
1428
+ [Online].
1429
+ Available:
1430
+ https://uxdesign.cc/
1431
+ title-case-vs-sentence-case-in-ux-writing-212087192261
1432
+ [39] (2021, Oct.) Crashes with invalid format email address. [Online].
1433
+ Available: https://github.com/k9mail/k-9/issues/3255
1434
+ [40] T. Su, Y. Yan, J. Wang, J. Sun, Y. Xiong, G. Pu, K. Wang, and Z. Su,
1435
+ “Fully automated functional fuzzing of android apps for detecting non-
1436
+ crashing logic bugs,” Proc. ACM Program. Lang., vol. 5, no. OOPSLA,
1437
+ Oct. 2021. [Online]. Available: https://doi.org/10.1145/3485533
1438
+ [41] J. Johnson, A. Karpathy, and L. Fei-Fei, “Densecap: Fully convolutional
1439
+ localization networks for dense captioning,” in Proceedings of the IEEE
1440
+ Conference on Computer Vision and Pattern Recognition, 2016.
1441
+ [42] D. Lai and J. Rubin, “Goal-driven exploration for android applications,”
1442
+ in 2019 34th IEEE/ACM International Conference on Automated Soft-
1443
+ ware Engineering (ASE), 2019, pp. 115–127.
1444
+ [43] S. Yang, H. Wu, H. Zhang, Y. Wang, C. Swaminathan, D. Yan, and
1445
+ A. Rountev, “Static window transition graphs for Android,” International
1446
+ Journal of Automated Software Engineering, vol. 25, no. 4, pp. 833–873,
1447
+ Dec. 2018.
1448
+ [44] J. Gao, L. Li, T. F. Bissyand´e, and J. Klein, “On the evolution of mobile
1449
+ app complexity,” in 2019 24th International Conference on Engineering
1450
+ of Complex Computer Systems (ICECCS), 2019, pp. 200–209.
1451
+ [45] S. McIlroy, N. Ali, and A. E. Hassan, “Fresh apps: an empirical study
1452
+ of frequently-updated mobile apps in the google play store,” Empirical
1453
+ Software Engineering, vol. 21, no. 3, pp. 1346–1370, 2016.
1454
+ 11
1455
+
1456
+ [46] N. Bettenburg, S. Just, A. Schr¨oter, C. Weiss, R. Premraj, and T. Zim-
1457
+ mermann, “What makes a good bug report?” in Proceedings of the 16th
1458
+ ACM SIGSOFT International Symposium on Foundations of Software
1459
+ Engineering.
1460
+ New York, NY, USA: ACM, 2008, pp. 308–318.
1461
+ [47] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Duplicate
1462
+ bug reports considered harmful ... really?” in Proceedings of the Inter-
1463
+ national Conference on Software Maintenance, ser. ICSM’08, 2008, pp.
1464
+ 337–345.
1465
+ [48] S. K. Sahoo, J. Criswell, and V. Adve, “An empirical study of reported
1466
+ bugs in server software with implications for automated bug diagnosis,”
1467
+ in Proceedings of the 32nd ACM/IEEE International Conference on
1468
+ Software Engineering - Volume 1, ser. ICSE ’10.
1469
+ New York, NY, USA:
1470
+ Association for Computing Machinery, 2010, p. 485–494. [Online].
1471
+ Available: https://doi.org/10.1145/1806799.1806870
1472
+ [49] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, “Information Needs
1473
+ in Bug Reports: Improving Cooperation Between Developers and Users,”
1474
+ in Proceedings of the Conference on Computer Supported Cooperative
1475
+ Work (CSCW’10), 2010, pp. 301–310.
1476
+ [50] S. Davies and M. Roper, “What’s in a bug report?” in Proceedings
1477
+ of the 8th ACM/IEEE International Symposium on Empirical Software
1478
+ Engineering and Measurement, ser. ESEM ’14.
1479
+ New York, NY,
1480
+ USA: Association for Computing Machinery, 2014. [Online]. Available:
1481
+ https://doi.org/10.1145/2652524.2652541
1482
+ [51] A. J. Ko, B. A. Myers, and D. H. Chau, “A Linguistic Analysis of How
1483
+ People Describe Software Problems,” in Proceedings of the Symposium
1484
+ on Visual Languages and Human-Centric Computing (VL/HCC’06),
1485
+ 2006, pp. 127–134.
1486
+ [52] A. J. Ko and P. K. Chilana, “How power users help and hinder open
1487
+ bug reporting,” in Proceedings of the SIGCHI Conference on Human
1488
+ Factors in Computing Systems, ser. CHI ’10.
1489
+ New York, NY, USA:
1490
+ Association for Computing Machinery, 2010, p. 1665–1674. [Online].
1491
+ Available: https://doi.org/10.1145/1753326.1753576
1492
+ [53] F. Thung, D. Lo, and L. Jiang, “Automatic defect categorization,”
1493
+ in Proceedings of the Working Conference on Reverse Engineering
1494
+ (WCRE’12), 2012, pp. 205–214.
1495
+ [54] P.
1496
+ J.
1497
+ Guo,
1498
+ T.
1499
+ Zimmermann,
1500
+ N.
1501
+ Nagappan,
1502
+ and
1503
+ B.
1504
+ Murphy,
1505
+ “Characterizing and predicting which bugs get fixed: An empirical
1506
+ study of microsoft windows,” in Proceedings of the 32nd ACM/IEEE
1507
+ International Conference on Software Engineering - Volume 1, ser. ICSE
1508
+ ’10.
1509
+ New York, NY, USA: Association for Computing Machinery,
1510
+ 2010, p. 495–504. [Online]. Available: https://doi.org/10.1145/1806799.
1511
+ 1806871
1512
+ [55] P. K. Chilana, A. J. Ko, and J. O. Wobbrock, “Understanding expressions
1513
+ of unwanted behaviors in open bug reporting,” in 2010 IEEE Symposium
1514
+ on Visual Languages and Human-Centric Computing, 2010, pp. 203–
1515
+ 206.
1516
+ [56] W. Aljedaani, M. Nagappan, B. Adams, and M. Godfrey, “A comparison
1517
+ of bugs across the ios and android platforms of two open source cross
1518
+ platform browser apps,” in 2019 IEEE/ACM 6th International Confer-
1519
+ ence on Mobile Software Engineering and Systems (MOBILESoft), 2019,
1520
+ pp. 76–86.
1521
+ [57] T. Zhang, H. Li, Z. Xu, J. Liu, R. Huang, and Y. Shen, “Labelling issue
1522
+ reports in mobile apps,” IET Softw., vol. 13, pp. 528–542, 2019.
1523
+ [58] T. Su, J. Wang, and Z. Su, “Benchmarking automated gui testing for
1524
+ android against real-world bugs.”
1525
+ New York, NY, USA: Association
1526
+ for Computing Machinery, 2021, p. 119–130.
1527
+ 12
1528
+
9tAzT4oBgHgl3EQfSvsB/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
ANE0T4oBgHgl3EQfPgBb/content/2301.02179v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6d6124a665bac1657b95416dd16be033bd707cb4559820c66a398f37bf0d060
3
+ size 6241657
ANE2T4oBgHgl3EQfnAgQ/content/2301.04003v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03d9f0522dd7585538be328a91b5778be587713987bf2369a70aea81508e0ac4
3
+ size 1114584
ANE2T4oBgHgl3EQfnAgQ/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17dc858b5321b30a2f1396705cc796dc47423a3738cb7fbd98032a6841c4422a
3
+ size 6029357
ANE2T4oBgHgl3EQfnAgQ/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:059409304ebb1c9281d626a536d63eb92abf39e1841d246626d953c28146c2be
3
+ size 254909
AtE0T4oBgHgl3EQfxwIb/content/tmp_files/2301.02649v1.pdf.txt ADDED
@@ -0,0 +1,1774 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ AJB-23-1
2
+ BARI-TH/23-743
3
+ 331 Model Predictions for Rare B and K Decays,
4
+ and ∆F = 2 Processes: an Update
5
+ Andrzej J. Burasa,b and Fulvia De Fazioc
6
+ aTUM Institute for Advanced Study, Lichtenbergstr. 2a, D-85747 Garching, Germany
7
+ bPhysik Department, Technische Universit¨at M¨unchen, James-Franck-Straße,
8
+ D-85747 Garching, Germany
9
+ cIstituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, I-70126 Bari, Italy
10
+ Abstract
11
+ Motivated by the improved results from the HPQCD lattice collaboration on the hadronic
12
+ matrix elements entering ∆Ms,d in B0
13
+ s,d − ¯B0
14
+ s,d mixings and the increase of the ex-
15
+ perimental branching ratio for Bs → µ+µ−, we update our 2016 analysis of various
16
+ flavour observables in four 331 models, M1, M3, M13 and M16 based on the gauge group
17
+ SU(3)C ×SU(3)L ×U(1)X. These four models, which are distinguished by the quantum
18
+ numbers, are selected among 24 331 models through their consistency with the elec-
19
+ troweak precision tests and simultaneously by the relation CNP
20
+ 9
21
+ = −b CNP
22
+ 10
23
+ with b ≥ 2,
24
+ which after new result on Bs → µ+µ− from CMS is favoured over the popular relation
25
+ CNP
26
+ 9
27
+ = −CNP
28
+ 10 predicted by several leptoquark models. In this context we investigate in
29
+ particular the dependence of various observables on |Vcb|, varying it in the broad range
30
+ [0.0386, 0.043], that encompasses both its inclusive and exclusive determinations. Im-
31
+ posing the experimental constraints from εK, ∆Ms, ∆Md and the mixing induced CP
32
+ asymmetries SψKS and SψKS, we investigate for which values of |Vcb| the four models
33
+ can be made compatible with these data and what is the impact on B and K branching
34
+ ratios. In particular we analyse NP contributions to the Wilson coefficients C9 and C10
35
+ and the decays Bs,d → µ+µ−, K+ → π+ν¯ν and KL → π0ν¯ν. This allows us to illustrate
36
+ how the value of |Vcb| determined together with other parameters of these models is
37
+ infected by NP contributions and compare it with the one obtained recently under the
38
+ assumption of the absence of NP in εK, ∆Ms, ∆Md and SψKS.
39
+ arXiv:2301.02649v1 [hep-ph] 6 Jan 2023
40
+
41
+ 1
42
+ Introduction
43
+ 1
44
+ Contents
45
+ 1
46
+ Introduction
47
+ 1
48
+ 2
49
+ Flavour Structure of 331 Models
50
+ 4
51
+ 3
52
+ Selecting the 331 Models
53
+ 5
54
+ 4
55
+ Numerical Analysis
56
+ 6
57
+ 4.1
58
+ Determining the parameter space . . . . . . . . . . . . . . . . . . . . . . . . .
59
+ 6
60
+ 4.2
61
+ CNP
62
+ 9
63
+ and CNP
64
+ 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
65
+ 7
66
+ 4.3
67
+ ¯B(Bs → µ+µ−) and B(Bd → µ+µ−) . . . . . . . . . . . . . . . . . . . . . . . .
68
+ 8
69
+ 4.4
70
+ Rare Kaon decays
71
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
72
+ 9
73
+ 5
74
+ Summary
75
+ 10
76
+ 1
77
+ Introduction
78
+ The Standard Model (SM) describes globally the existing data on quark-flavour violating
79
+ processes rather well [1] but with the reduction of experimental errors and increased precision
80
+ in non-perturbative and perturbative QCD and electroweak calculations a number of tensions
81
+ at the level of 2 − 5 σ seem to emerge in various seemingly unrelated observables.
82
+ While
83
+ some of these tensions could turn out to be the result of statistical fluctuations, underestimate
84
+ of systematical and theoretical errors, it is not excluded that eventually they all signal the
85
+ presence of some kind of new physics (NP). Therefore, it is interesting to investigate what this
86
+ NP could be.
87
+ In the present paper we will address some of these tensions in four particular 331 models
88
+ based on the gauge group SU(3)C × SU(3)L × U(1)X [2, 3] 1. As these models have much
89
+ smaller number of new parameters than supersymmetric models, Randall-Sundrum scenar-
90
+ ios and Littlest Higgs models, it is not evident that they can remove all present tensions
91
+ simultaneously.
92
+ Our paper has been motivated by the following recent facts.
93
+ • As demonstrated in [5] most recent lattice QCD results from HPQCD collaboration [6],
94
+ based on 2 + 1 + 1 simulations, imply simultaneous agreement of
95
+ |εK|,
96
+ ∆Ms,
97
+ ∆Md,
98
+ SψKS
99
+ Sψφ
100
+ (1)
101
+ within the SM with the data for rather precise values of |Vcb|, |Vub| and γ. This should
102
+ be contrasted with the situation at the time of our previous analysis 2016 [7], when
103
+ significant tensions between εK and ∆Ms,d within the SM have been found [8] and the
104
+ room for NP in the quark mixing sector was much larger than it is now.
105
+ 1A recent critical reanalysis of 331 models and a collection of references can be found in [4].
106
+
107
+ 1
108
+ Introduction
109
+ 2
110
+ • The most recent data on Bs → µ+µ− from CMS imply that in the case of the dominance
111
+ of left-handed quark currents, as is the case of the 331 models,
112
+ CNP
113
+ 9
114
+ = −b CNP
115
+ 10 ,
116
+ b ≥ 2,
117
+ (2)
118
+ where CNP
119
+ 9 , CNP
120
+ 10 represent the shifts in the Wilson coefficients C9, C10 of the b → sℓ+ℓ−
121
+ effective Hamiltonian in the presence of NP. The relation (2) is in contrast to the pre-
122
+ viously favoured case b = 1 found in several leptoquark models, in particular in the U1
123
+ model.
124
+ • Recent messages from the LHCb [9, 10], that the lepton flavour universality violation
125
+ (LFUV) in b → s���+ℓ−, which for many years dominated the B-physics anomalies, prac-
126
+ tically disappeared. This is good news for 331 models for which LFUV anomalies were
127
+ problematic, although these models could provide some shifts in the Wilson coefficients
128
+ C9 and C10. Such shifts, in particular in C9, are still required to describe suppressed
129
+ branching ratios in b → sµ+µ− transitions.
130
+ • The most recent value for γ obtained by the LHCb collaboration from tree-level decays
131
+ that reads [11]
132
+ γ = (63.8+3.5
133
+ −3.7)◦ .
134
+ (3)
135
+ It is significantly more precise than the LHCb values of γ in 2016 that could be as large
136
+ as 75◦.
137
+ The question then arises how 331 models face this new situation relative to the 2016
138
+ input and what are the implications for many flavour observables, in particular for the decays
139
+ Bd → K(K∗)µ+µ−, B+ → K+µ+µ− and Bs → φµ+µ− related to the B physics anomalies
140
+ that imply the need for significant NP contributions to the Wilson coefficient C9 and smaller
141
+ to C10. But it is also of interest to see what are the implications for rare decays Bs,d → µ+µ−,
142
+ K+ → π+ν¯ν and KL → π0ν¯ν.
143
+ It is known from many analyses, and stressed recently in particular in [5, 12] that the
144
+ tensions between inclusive and exclusive determinations of |Vcb| and |Vub| preclude precise
145
+ predictions for rare decay observables in the SM. However, eliminating these parameters with
146
+ the help of εK, ∆Ms,d and SψKS and setting the latter observables to their experimental
147
+ values allowed to obtain SM predictions for many flavour observables that are most precise to
148
+ date [5,12]. The motivation for this strategy has been strengthened recently by one of us [13] as
149
+ the one which could minimize the impact of NP on the determination of the CKM parameters.
150
+ Indeed, as demonstrated in [5], presently no NP is required to describe precise experimental
151
+ data on ∆F = 2 observables.
152
+ This allows in turn to determine the CKM parameters on
153
+ the basis of ∆F = 2 observables alone without being involved in the issue of |Vcb| and |Vub|
154
+ tensions and minimizing possible impact of NP on their values that otherwise would infect
155
+ SM predictions for rare decay branching ratios.
156
+ The resulting values of the CKM parameters read [5]
157
+ |Vcb| = 42.6(4) × 10−3,
158
+ |Vub| = 3.72(11) × 10−3,
159
+ γ = 64.6(16)◦.
160
+ (4)
161
+ While in this manner one can obtain rather precise SM predictions for numerous branching
162
+ ratios [5, 12, 13], the absence of NP in the ∆F = 2 observables, if confirmed with higher
163
+
164
+ 1
165
+ Introduction
166
+ 3
167
+ Decay
168
+ EXCLUSIVE
169
+ HYBRID
170
+ DATA
171
+ B(K+ → π+ν¯ν) × 1011
172
+ 6.88(38)
173
+ 8.44(41)
174
+ 10.9(38)
175
+ [15]
176
+ B(KL → π0ν¯ν) × 1011
177
+ 2.37(15)
178
+ 2.74(14)
179
+ < 300
180
+ [16]
181
+ B(KS → µ+µ−) × 1013
182
+ 1.49(10)
183
+ 1.72(8)
184
+ 104
185
+ [17]
186
+ B(Bs → µ+µ−) × 109
187
+ 3.18(12)
188
+ 3.67(12)
189
+ 3.45(29)[18–21]
190
+ B(Bd → µ+µ−) × 1010
191
+ 0.864(34)
192
+ 0.999(34)
193
+ < 2.05
194
+ [18]
195
+ |εK| × 103
196
+ 1.78(11)
197
+ 2.14(12)
198
+ 2.228(11)
199
+ [22]
200
+ SψKS
201
+ 0.731(24)
202
+ 0.688(22)
203
+ 0.699(17)
204
+ [22]
205
+ ∆Ms ps−1
206
+ 15.02(87)
207
+ 17.35(94)
208
+ 17.749(20) [22]
209
+ ∆Md ps−1
210
+ 0.434(28)
211
+ 0.502(31)
212
+ 0.5065(19) [22]
213
+ Table 1:
214
+ Predictions (second column) for selected observables within the SM obtained in [5] using
215
+ the EXCLUSIVE strategy for |Vcb| and |Vub| and γ = 65.4◦. In the third column we show the results
216
+ for the HYBRID choice of |Vcb| and |Vub| as given in (6) and in the fourth the experimental data.
217
+ precision, would be a nightmare scenario for many NP models that attempt to explain the
218
+ B physics anomalies.
219
+ While the ones related to lepton flavour universality violation have
220
+ been dwarfed recently through new LHCb data [9,10], sizable anomalies remained in several
221
+ branching ratios. In particular using the strategy of [5,12] large anomalies in the low q2 bin
222
+ in B+ → K+µ+µ− (5.1σ) and Bs → φµ+µ− (4.8σ) have been found [13].
223
+ Explaining such anomalies without practically no NP contributions to ∆F = 2 processes
224
+ is in principle possible but would require significant tuning of NP parameters. Now, the value
225
+ of γ in (4) agrees very well with the most recent value from LHCb in (3) and experimental
226
+ value of β from SψKS is already used in obtaining the CKM parameters in (4). It is evident
227
+ then that the most efficient and transparent strategy to allow NP to enter the ∆F = 2 sector
228
+ is to modify the value of |Vcb|.
229
+ In this context in [5], two scenarios for the parameters |Vcb| and |Vub| have been analysed
230
+ within the SM. The EXCLUSIVE one based on determinations of these parameters in exclusive
231
+ decays
232
+ |Vcb| = 39.21(62) × 10−3,
233
+ |Vub| = 3.61(13) × 10−3,
234
+ (EXCLUSIVE),
235
+ (5)
236
+ and the HYBRID scenario in which the value for |Vcb| is the inclusive one from [14] and the
237
+ exclusive one for |Vub| as above:
238
+ |Vcb| = 42.16(50) × 10−3,
239
+ |Vub| = 3.61(13) × 10−3,
240
+ (HYBRID).
241
+ (6)
242
+ In Table 1 we show selected results obtained in [5] in these two scenarios. The results
243
+ obtained in the HYBRID scenario do not differ by much from those obtained using the CKM
244
+
245
+ 2
246
+ Flavour Structure of 331 Models
247
+ 4
248
+ parameters in (4) [5, 13]. With exclusive values of |Vcb| that are much lower than given in
249
+ (4), anomalies in ∆Ms (3σ), ∆Md (4σ) and εK (5σ) are generated. But in [5] no analysis
250
+ of a NP scenario has been presented which would explain these anomalies and whether a
251
+ model explaining them would also be able to explain anomalies in semi-leptonic B decays.
252
+ In the present paper we investigate whether the 331 models could provide some insight in
253
+ these issues and what would be the implications for rare branching ratios. As a byproduct
254
+ our analysis illustrates in simple settings how the determination of |Vcb| in a global fit that
255
+ includes observables exposing anomalies can be infected by NP contributions [13]. It is a
256
+ concrete illustration of the points made in section 2 of the latter paper.
257
+ Our paper is organized as follows. In Section 2 we recall briefly the flavour structure of
258
+ the 331 models. In Section 3 we select four 331 models that perform best on the basis of
259
+ electroweak precision tests and the present experimental values of the ratio CNP
260
+ 9 /CNP
261
+ 10 in (2).
262
+ In fact these are the only models among the 24 ones considered in [23], that can successfuly
263
+ face the new relation (2) when other contraints like electroweak precision tests are taken into
264
+ account [7]. In Section 4 we present numerical analysis of these models addressing the issues
265
+ mentioned above. We conclude in Section 5.
266
+ 2
267
+ Flavour Structure of 331 Models
268
+ Let us recall that in the 331 models new flavour-violating effects are governed by tree-level
269
+ Z′ exchanges with a subdominant but non-negligible role played by tree-level Z exchanges
270
+ generated through Z − Z′ mixing. All the formulae for flavour observables in these models
271
+ can be found in [23–26] and will not be repeated here. In particular the collection of formulae
272
+ for Z′ couplings to quarks and leptons are given in [25].
273
+ New sources of flavour and CP violation in 331 models are parametrized by new mixing
274
+ parameters and phases
275
+ ˜s13,
276
+ ˜s23,
277
+ δ1,
278
+ δ2
279
+ (7)
280
+ with ˜s13 and ˜s23 positive definite and smaller than unity and 0 ≤ δ1,2 ≤ 2π. They can be
281
+ constrained by flavour observables as demonstrated in detail in [24]. The non-diagonal Z′
282
+ couplings relevant for K, Bd and Bs meson systems can be then parametrized respectively
283
+ within an excellent approximation through
284
+ v∗
285
+ 32v31 = ˜s13˜s23ei(δ2−δ1),
286
+ v∗
287
+ 33v31 = −˜s13e−iδ1,
288
+ v∗
289
+ 33v32 = −˜s23e−iδ2 .
290
+ (8)
291
+ ˜s13 and δ1 can be determined from ∆Md and CP-asymmetry SψKS while ˜s23 and δ2 from ∆Ms
292
+ and CP-asymmetry Sψφ. Then the parameters in the K system are fixed. It is a remarkable
293
+ feature of 331 models that also FCNC processes in the charm sector can be described without
294
+ introducing no new free parameters beyond those already present in the beauty and kaon
295
+ meson systems [27,28]. These correlations constitute important tests of these models.
296
+ The remaining two parameters, except for MZ′ mass, are β and tan ¯β defined through2
297
+ Q = T3 + Y
298
+ 2 = T3 + βT8 + X,
299
+ tan ¯β = vρ
300
+
301
+ .
302
+ (9)
303
+ 2The parameter β should not be confused with the angle β in the unitarity triangle.
304
+
305
+ 3
306
+ Selecting the 331 Models
307
+ 5
308
+ MI
309
+ scen.
310
+ β
311
+ tan ¯β
312
+ MI
313
+ scen.
314
+ β
315
+ tan ¯β
316
+ MI
317
+ scen.
318
+ β
319
+ tan ¯β
320
+ M1
321
+ F1
322
+ −2/
323
+
324
+ 3
325
+ 1
326
+ M9
327
+ F2
328
+ −2/
329
+
330
+ 3
331
+ 1
332
+ M17
333
+ F1
334
+ −2/
335
+
336
+ 3
337
+ 0.2
338
+ M2
339
+ F1
340
+ −2/
341
+
342
+ 3
343
+ 5
344
+ M10
345
+ F2
346
+ −2/
347
+
348
+ 3
349
+ 5
350
+ M18
351
+ F2
352
+ −2/
353
+
354
+ 3
355
+ 0.2
356
+ M3
357
+ F1
358
+ −1/
359
+
360
+ 3
361
+ 1
362
+ M11
363
+ F2
364
+ −1/
365
+
366
+ 3
367
+ 1
368
+ M19
369
+ F1
370
+ −1/
371
+
372
+ 3
373
+ 0.2
374
+ M4
375
+ F1
376
+ −1/
377
+
378
+ 3
379
+ 5
380
+ M12
381
+ F2
382
+ −1/
383
+
384
+ 3
385
+ 5
386
+ M20
387
+ F2
388
+ −1/
389
+
390
+ 3
391
+ 0.2
392
+ M5
393
+ F1
394
+ 1/
395
+
396
+ 3
397
+ 1
398
+ M13
399
+ F2
400
+ 1/
401
+
402
+ 3
403
+ 1
404
+ M21
405
+ F1
406
+ 1/
407
+
408
+ 3
409
+ 0.2
410
+ M6
411
+ F1
412
+ 1/
413
+
414
+ 3
415
+ 5
416
+ M14
417
+ F2
418
+ 1/
419
+
420
+ 3
421
+ 5
422
+ M22
423
+ F2
424
+ 1/
425
+
426
+ 3
427
+ 0.2
428
+ M7
429
+ F1
430
+ 2/
431
+
432
+ 3
433
+ 1
434
+ M15
435
+ F2
436
+ 2/
437
+
438
+ 3
439
+ 1
440
+ M23
441
+ F1
442
+ 2/
443
+
444
+ 3
445
+ 0.2
446
+ M8
447
+ F1
448
+ 2/
449
+
450
+ 3
451
+ 5
452
+ M16
453
+ F2
454
+ 2/
455
+
456
+ 3
457
+ 5
458
+ M24
459
+ F2
460
+ 2/
461
+
462
+ 3
463
+ 0.2
464
+ Table 2: Definition of the various 331 models.
465
+ Here T3,8 and X are the diagonal generators of SU(3)L and U(1)X, respectively. Y represents
466
+ U(1)Y and vi are the vacuum expectation values of scalar triplets responsible for the generation
467
+ of down- and up-quark masses in these models.
468
+ Different 331 models can also be distinguished by the way quarks transform under SU(3)L.
469
+ In [23] two classes of such models have been analyzed to be denoted by F1 and F2. F1 stands
470
+ for the case in which the first two generations of quarks belong to triplets of SU(3)L, while
471
+ the third generation of quarks to antitriplet. F2 stands for the case in which the first two
472
+ generations of quarks belong to antitriplets of SU(3)L, while the third generation of quarks
473
+ to triplet.
474
+ A detailed analysis of 24 331 models corresponding to different values of β and tan ¯β for
475
+ the representations F1 and F2 has been presented in [23]. They are collected in Table 2. With
476
+ the values of β and tan ¯β being fixed, flavour phenomenology depends only on the parameters
477
+ in (7), MZ′ and the CKM parameters which distinguish EXCLUSIVE and HYBRID scenarios.
478
+ 3
479
+ Selecting the 331 Models
480
+ A detailed analysis of electroweak precision tests in the 24 models in Table 2 has been per-
481
+ formed in [23]. Interested readers are asked to look at Section 5 of that paper. Here we just
482
+ summarize the main outcome of that study.
483
+ Requiring that the 24 models in question perform well in these tests and are simultaneously
484
+ consistent with the ratio C9/C10 in (2) selects, as shown in Table 3, the following models
485
+ M1,
486
+ M3,
487
+ M13,
488
+ M16,
489
+ (favoured).
490
+ (10)
491
+ Note that the Z − Z′ mixing plays in some cases an important role and that the two favoured
492
+ models M8 and M9 analysed by us in [7] are ruled out by (2).
493
+
494
+ 4
495
+ Numerical Analysis
496
+ 6
497
+ MI
498
+ Full
499
+ no Mixing
500
+ MI
501
+ Full
502
+ no Mixing
503
+ MI
504
+ Full
505
+ no Mixing
506
+ M1
507
+ −3.25
508
+ −8.87
509
+ M9
510
+ 0.42
511
+ 0.60
512
+ M17
513
+ −175.6
514
+ −8.87
515
+ M2
516
+ −1.68
517
+ −8.87
518
+ M10
519
+ 0.28
520
+ 0.60
521
+ M18
522
+ 0.75
523
+ 0.60
524
+ M3
525
+ −2.07
526
+ −2.98
527
+ M11
528
+ −0.02
529
+ −0.004
530
+ M19
531
+ −63.48
532
+ −2.98
533
+ M4
534
+ −1.09
535
+ −2.98
536
+ M12
537
+ −0.04
538
+ −0.004
539
+ M20
540
+ 0.06
541
+ −0.004
542
+ M5
543
+ 0.02
544
+ −0.004
545
+ M13
546
+ −5.47
547
+ −2.98
548
+ M21
549
+ 1.15
550
+ −0.004
551
+ M6
552
+ −0.03
553
+ −0.004
554
+ M14
555
+ −1.56
556
+ −2.98
557
+ M22
558
+ 3.25
559
+ −2.98
560
+ M7
561
+ 0.97
562
+ 0.60
563
+ M15
564
+ 11.3
565
+ −8.87
566
+ M23
567
+ 7.50
568
+ 0.60
569
+ M8
570
+ 0.49
571
+ 0.60
572
+ M16
573
+ −4.59
574
+ −8.87
575
+ M24
576
+ 2.44
577
+ −8.87
578
+ Table 3: CNP
579
+ 9 /CNP
580
+ 10 in various 331 models with and without Z − Z′ mixing for MZ′ = 3 TeV.
581
+ mBs = 5366.8(2) MeV
582
+ [22]
583
+ mBd = 5279.58(17) MeV [22]
584
+ ∆Ms = 17.749(20) ps−1
585
+ [22]
586
+ ∆Md = 0.5065(19) ps−1
587
+ [22]
588
+ ∆MK = 0.005292(9) ps−1 [22]
589
+ mK0 = 497.61(1) MeV
590
+ [22]
591
+ SψKS = 0.699(17)
592
+ [22]
593
+ FK = 155.7(3) MeV
594
+ [29]
595
+ |Vus| = 0.2253(8)
596
+ [22]
597
+ |ϵK| = 2.228(11) · 10−3
598
+ [22]
599
+ FBs = 230.3(1.3) MeV
600
+ [30]
601
+ FBd = 190.0(1.3) MeV
602
+ [30]
603
+ FBs
604
+ � ˆBs = 256.1(5.7) MeV [6]
605
+ FBd
606
+ � ˆBd = 210.6(5.5) MeV[6]
607
+ ˆBs = 1.232(53)
608
+ [6]
609
+ ˆBd = 1.222(61)
610
+ [6]
611
+ mt(mt) = 162.83(67) GeV[31]
612
+ mc(mc) = 1.279(13) GeV
613
+ Stt(xt) = 2.303
614
+ Sut(xc, xt) = −1.983 × 10−3
615
+ ηtt = 0.55(2)
616
+ [32]
617
+ ηut = 0.402(5)
618
+ [32]
619
+ κε = 0.94(2)
620
+ [33]
621
+ ηB = 0.55(1)
622
+ [34,35]
623
+ τBs = 1.515(4) ps
624
+ [36]
625
+ τBd = 1.519(4) ps
626
+ [36]
627
+ Table 4: Values of the experimental and theoretical quantities used as input parameters. For
628
+ future updates see FLAG [30], PDG [22] and HFLAV [29].
629
+ 4
630
+ Numerical Analysis
631
+ 4.1
632
+ Determining the parameter space
633
+ Despite the fact that NP is not required to obtain within the SM simultaneous agreement with
634
+ data for the ∆F = 2 observables in (1) [5], the present uncertainties in hadronic parameters
635
+ still allow for some NP contributions, whose size depends strongly on the value of |Vcb| [5,12].
636
+ Therefore in order to constrain the parameters in (7) and subsequently obtain predictions for
637
+ various observables, we will proceed in each of the four considered 331 models as follows:
638
+ • We will vary ∆Md, SψKs, ∆Ms, Sψφ, ϵK within 5% of the central value of their experi-
639
+ mental datum.
640
+
641
+ 4
642
+ Numerical Analysis
643
+ 7
644
+ • Concerning CKM parameters, we adopt here a different strategy with respect to our
645
+ previous analyses. We vary |Vub| as in (4), while |Vcb| is varied in such a way to encompass
646
+ both its inclusive and exclusive determinations, i.e. |Vcb| ∈ [0.0386, 0.043].
647
+ • For each of the four 331 models considered in this paper we then determine the allowed
648
+ values of the 331 parameters ˜s13, δ1, ˜s23, δ2 as well as a range for |Vcb| for which a given
649
+ model satisfies the constraints from ∆F = 2 observables in (1) within 5% as stated
650
+ above.
651
+ • We predict several observables in each model and discuss their dependence on |Vcb|. We
652
+ compare the outcome in the four cases.
653
+ The remaining parameters used in our analysis are collected in Table 4.
654
+ Among the parameters that define the various scenarios, ∆F = 2 observables depend only
655
+ on |β|, so that the resulting parameter space will be the same for M1 and M16 as well as for M3
656
+ and M13. In the two cases we have constructed the tables of the allowed parameters in the form
657
+ of 6-vectors of the kind (˜s13, δ1, ˜s23, δ2, |Vcb|, |Vub|). Of course it is not possible to display the
658
+ space of all the variables simultaneously and therefore we do not show these plots. Instead, in
659
+ Fig. 1 we show the allowed (|Vcb|, |Vub|) ranges in the two resulting parameter spaces. It should
660
+ be understood that each point corresponds to a set of 331 parameters. In these figures the
661
+ green points are obtained after imposing the constraints on ∆Md, SψKs, ∆Ms, Sψφ and show
662
+ that even though such observables select the 331 parameters ˜s13, δ1, ˜s23, δ2 they do not have
663
+ an impact on the allowed ranges for |Vub| and |Vcb|. On the contrary, when the constraint on εK
664
+ is imposed, a limitation is found for |Vcb| that is the consequence of the stronger dependence
665
+ of εK on this parameter than in the case of ∆Ms and ∆Md. However, we can observe that,
666
+ while in the case of M1 and M16, |Vcb| cannot be smaller than ≃ 0.0405, no similar constraint
667
+ is found in the case of M3, M13.
668
+ 4.2
669
+ CNP
670
+ 9
671
+ and CNP
672
+ 10
673
+ We have already remarked the nice feature of 331 models that the ratio CNP
674
+ 9 /CNP
675
+ 10 depends only
676
+ on the considered scenario but not on the parameters ˜s13, δ1, ˜s23, δ2. However, the separate
677
+ values of CNP
678
+ 9
679
+ and CNP
680
+ 10 depend on them. In Fig. 2 we show the correlation between their real
681
+ parts in the four scenarios, while in Fig. 3 the correlation between their imaginary parts is
682
+ displayed.
683
+ In order to understand which values of |Vcb| correspond to the largest deviations
684
+ in CNP
685
+ 9
686
+ we consider Max
687
+ ��Re[CNP
688
+ 9 ]
689
+ �� setting |Vub| at its central value. The result is shown in
690
+ Fig. 4.
691
+ These plots display that, consistently with the result in Fig. 1 in the case of M1
692
+ and M16 only the values |Vcb| ≥ 0.0405 are allowed. Moreover, the deviation in |Re[C9]| is a
693
+ decreasing function of |Vcb|, as shown in Fig. 4, together with the plots for the imaginary part.
694
+ The situation for |Re[CNP
695
+ 10 ]| and |Im[CNP
696
+ 10 ]| is displayed in Figs. 5 and 6. It can be noticed
697
+ that CNP
698
+ 9
699
+ is to an excellent approximation the same in M1 and M16 on the one hand and in
700
+ M3 and M13 on the other; for this reason we have shown the corresponding plots in a single
701
+ figure. CNP
702
+ 10
703
+ is instead different in all the four considered cases.
704
+ We observe that while the pattern of NP contributions signalled by the data is correctly
705
+ described by these models, the absolute values of CNP
706
+ 9
707
+ are likely to turn out to be too small to
708
+ explain the observed suppression of the branching ratios for B+ → K+µ+µ− and Bs → φµ+µ−,
709
+
710
+ 4
711
+ Numerical Analysis
712
+ 8
713
+ Figure 1: Allowed (|Vcb|, |Vub|) ranges in the parameter space of M1 and M16 (upper plot) and in
714
+ that of M3 and M13 (lower plot). Each point corresponds to a set of 331 parameters. The green
715
+ points are obtained after imposing the constraints on ∆Md, SψKs, ∆Ms, Sψφ, while the light blue
716
+ points derive from imposing the constraint on εK.
717
+ in particular if the final value for |Vcb| from tree-level decays will turn out to be in the ballpark
718
+ of its inclusive determinations.
719
+ 4.3
720
+ ¯B(Bs → µ+µ−) and B(Bd → µ+µ−)
721
+ In Fig. 7 we plot the correlation between the rare decays ¯B(Bs → µ+µ−) and B(Bd → µ+µ−)
722
+ in the four considered 331 models. In these plots, the gray region is obtained considering
723
+ all the allowed parameter space in each scenario, while the red region corresponds to |Vcb| ∈
724
+ [0.0386, 0.0398] and the cyan region to |Vcb| ∈ [0.0422, 0.043]. The SM results for |Vcb| =
725
+ 0.03921 and |Vcb| = 0.0426 are also displayed. Comparing the four models, we can observe
726
+ that if |Vcb| is fixed consistenlty with the exclusive determinations, a possible suppression of
727
+ both branching ratios with respect to their SM values, that is not yet excluded in view of large
728
+ experimental errors, could be explained only in M3 and M13. On the other hand, inclusive
729
+
730
+ M1&M16
731
+ 0.00380
732
+ 0.00375
733
+ AMd,SuKs,AMs,Su
734
+ 0.00370
735
+ EK
736
+ 0.00365
737
+ 0.00360
738
+ 0.039
739
+ 0.040
740
+ 0.041
741
+ 0.042
742
+ 0.043
743
+ IVcblM3 & M13
744
+ 0.00380
745
+ 0.00375
746
+ AMd , Suk., AMs, Sud
747
+ 0.00370
748
+ EK
749
+ 0.00365
750
+ 0.00360
751
+ 0.039
752
+ 0.040
753
+ 0.041
754
+ 0.042
755
+ 0.043
756
+ IVcbl4
757
+ Numerical Analysis
758
+ 9
759
+ Figure 2: Correlation between the real parts of CNP
760
+ 9
761
+ and CNP
762
+ 10
763
+ in the four considered 331 models.
764
+ values of |Vcb| do not define a clear situation in any of the four models: other correlations should
765
+ be explored in order to discriminate among these scenarios. We detail the dependence of the
766
+ considered branching fractions on the CKM elements in the contour plots in Fig. 8 for M1
767
+ and M16 and in Fig. 9 for M3 and M13. Since in each scenario the parameter space involves
768
+ 6 variables it is possible that fixing (|Vcb|, |Vub|) different values for the considered branching
769
+ ratios are obtained, because these depend also on the other four parameters of the 331 model.
770
+ Therefore, what is plotted in Fig. 8 and in Fig. 9 is the value of the branching ratios that,
771
+ for a given pair (|Vcb|, |Vub|), mostly deviates from the corresponding SM prediction. The
772
+ resulting value of the branching fractions can be read from the legenda on the right of each
773
+ plot. The benefit of these plots with respect to those already shown is that it is possible to
774
+ relate a given value of the branching fractions to the entries for (|Vcb|, |Vub|), an information
775
+ that is hidden in Fig. 7. The SM result as function of (|Vcb|, |Vub|) can be read from Fig. 10:
776
+ comparison between these plots and the corresponding one in a given 331 model would give
777
+ an idea of the possible deviation as a function of (|Vcb|, |Vub|). In particular, one can observe
778
+ that M3 and M13 perform rather similarly to the SM, with values of the branching fractions
779
+ that increase with |Vcb| almost independently on |Vub|. On the other hand, this pattern is not
780
+ followed in M1 and M16.
781
+ 4.4
782
+ Rare Kaon decays
783
+ In Fig. 11 we display the correlation between B(K+ → π+ν¯ν) and B(KL → π0ν¯ν). The gray
784
+ points span all the allowed parameter space in each scenario, while the red region corresponds
785
+
786
+ M1
787
+ M16
788
+ 0.2
789
+ 0.2
790
+ 0.1
791
+ 0.1
792
+ Re[CP]
793
+ Re[CND]
794
+ 0.0
795
+ 0.0
796
+ 0.1
797
+ -0.1
798
+ 0.2
799
+ 0.2
800
+ 0.5
801
+ 0.0
802
+ 0.5
803
+ 0.5
804
+ 0.0
805
+ 0.5
806
+ Re[CgP]
807
+ Re[CgP]
808
+ M3
809
+ M13
810
+ 0.2
811
+ 0.2
812
+ 0.1
813
+ 0.1
814
+ Re[CN]
815
+ 0.0
816
+ 0.0
817
+ 0.1
818
+ -0.1
819
+ 0.2
820
+ 0.2
821
+ 0.5
822
+ 0.0
823
+ 0.5
824
+ 0.5
825
+ 0.0
826
+ 0.5
827
+ Re[C)P]5
828
+ Summary
829
+ 10
830
+ Figure 3: Correlation between the imaginary parts of CNP
831
+ 9
832
+ and CNP
833
+ 10
834
+ in the four considered 331
835
+ models.
836
+ to |Vcb| ∈ [0.0386, 0.0398] and the cyan region to |Vcb| ∈ [0.0422, 0.043]. The SM results for
837
+ |Vcb| = 3.921 10−2 and |Vcb| = 4.26 10−2 are also displayed. In all the four models, the largest
838
+ deviation from SM is possible in the case of B(KL → π0ν¯ν). Contour plots analogous to
839
+ those presented for Bs, Bd decays are shown in Figs. 12 and 13, to be compared with the
840
+ corresponding SM case in Fig. 14. We observe again that M3 and M13 behave similarly to
841
+ the SM, while M1 and M16 show a differnt pattern.
842
+ Correlation between B(K+ → π+ν¯ν) and ¯B(Bs → µ+µ−) is shown in Fig. 15. It can be
843
+ observed that in all the four cases the inclusive values of |Vcb| correspond to points that can be
844
+ compatible with the experimental result for ¯B(Bs → µ+µ−) performing slightly better than
845
+ the SM; such points correspond to B(K+ → π+ν¯ν) ≤ 1010. Exclusive values of |Vcb| that are
846
+ not allowed in M1 and M16, can produce in M3 and M13 also values of ¯B(Bs → µ+µ−) and
847
+ B(K+ → π+ν¯ν) simultaneously smaller than the experimental range.
848
+ 5
849
+ Summary
850
+ Motivated by several changes both on experimental and theoretical frontiers we updated
851
+ our 2016 analysis of various flavour observables in the 331 model based on the gauge group
852
+ SU(3)C × SU(3)L × U(1)X for MZ′ = 3 TeV, that is still in the LHC reach.
853
+ Among 24 331 models considered in our 2016 analysis only four, namely M1, M3, M13
854
+ and M16 are simultaneously consistent with the electroweak precision tests and the relation
855
+ between CNP
856
+ 9
857
+ and CNP
858
+ 10 signalled by the most recent data on the B → µ+µ− decay from the
859
+
860
+ M1
861
+ M16
862
+ 0.2
863
+ 0.2
864
+ 0.1
865
+ 0.1
866
+ [ab]u]
867
+ 0.0
868
+ 0.0
869
+ -0.1
870
+ -0.1
871
+ 0.2
872
+ 0.2
873
+ 0.5
874
+ 0.0
875
+ 0.5
876
+ 0.5
877
+ 0.0
878
+ 0.5
879
+ Im[CgP]
880
+ Im[CgP]
881
+ M3
882
+ M13
883
+ 0.2
884
+ 0.2
885
+ 0.1
886
+ 0.1
887
+ 0.0
888
+ 0.0
889
+ 0.1
890
+ 0.1
891
+ 0.2
892
+ 0.2
893
+ 0.5
894
+ 0.0
895
+ 0.5
896
+ 0.5
897
+ 0.0
898
+ 0.5
899
+ Im[C)P]5
900
+ Summary
901
+ 11
902
+ Figure 4: Maximal deviation of
903
+ ��Re[CNP
904
+ 9
905
+ ]
906
+ �� and
907
+ ��Im[CNP
908
+ 9
909
+ ]
910
+ �� in the four considered 331 models.
911
+ Figure 5: Maximal deviation of
912
+ ��Re[CNP
913
+ 10 ]
914
+ �� in the four considered 331 models.
915
+
916
+ & M16
917
+ M3 & M13
918
+ 0.8
919
+ 0.8
920
+ 0.6
921
+ 0.6
922
+ 0.4
923
+ 0.4
924
+ 0.2
925
+ 0.2
926
+ 0.0
927
+ 0.0
928
+ 0.0405
929
+ 0.0410
930
+ 0.0415
931
+ 0.0420
932
+ 0.0425
933
+ 0.0430
934
+ 0.039
935
+ 0.040
936
+ 0.041
937
+ 0.042
938
+ 0.043
939
+ IVcbl
940
+ IVcbl
941
+ M1 & M16
942
+ M3 & M13
943
+ 0.5
944
+ 0.5
945
+ 0.4
946
+ 0.4
947
+ 0.3
948
+ 0.3
949
+ 0.2
950
+ 0.2
951
+ 0.1
952
+ 0.1
953
+ 0.0
954
+ 0.0
955
+ 0.0405
956
+ 0.0410
957
+ 0.0415
958
+ 0.0420
959
+ 0.0425
960
+ 0.0430
961
+ 0.039
962
+ 0.040
963
+ 0.041
964
+ 0.042
965
+ 0.043
966
+ IVcbl
967
+ IVcblM1
968
+ M16
969
+ 0.25
970
+ 0.25
971
+ 0.20
972
+ 0.20
973
+ 0.15
974
+ 0.15
975
+ Max
976
+ 0.10
977
+ Max
978
+ 0.10
979
+ 0.05
980
+ 0.05
981
+ 0.00
982
+ 0.00
983
+ 0.039
984
+ 0.040
985
+ 0.041
986
+ 0.042
987
+ 0.043
988
+ 0.039
989
+ 0.040
990
+ 0.041
991
+ 0.042
992
+ 0.043
993
+ IVcbl
994
+ IVcbl
995
+ M3
996
+ M13
997
+ 0.25
998
+ 0.25
999
+ 0.20
1000
+ 0.20
1001
+ [Re[CN 1
1002
+ 0.15
1003
+ 0.15
1004
+ Max
1005
+ 0.10
1006
+ Max
1007
+ 0.10
1008
+ 0.05
1009
+ 0.05
1010
+ 0.00
1011
+ 0.00
1012
+ 0.039
1013
+ 0.040
1014
+ 0.041
1015
+ 0.042
1016
+ 0.043
1017
+ 0.039
1018
+ 0.040
1019
+ 0.041
1020
+ 0.042
1021
+ 0.043
1022
+ IVcbl
1023
+ IVcbl5
1024
+ Summary
1025
+ 12
1026
+ Figure 6: Maximal deviation of
1027
+ ��Im[CNP
1028
+ 10 ]
1029
+ �� in the four considered 331 models.
1030
+ CMS.
1031
+ The lessons from this analysis are as follows:
1032
+ • The 331 models allow for the values of the ratio CNP
1033
+ 9 /CNP
1034
+ 10 that are consistent with the
1035
+ most recent data. M13 and M16 are performing best but this can only be decided when
1036
+ new overall fits will be performed.
1037
+ • However, only models M1 and M16 can reach the values Re[CNP
1038
+ 9 ] = −0.7, which although
1039
+ likely not quite sufficient to explain properly the the suppression of b → sµ+µ− branching
1040
+ ratios, they reproduce a significant portion of it. For M3 and M13 models only the
1041
+ corresponding values of −0.5 can be reached.
1042
+ • Moreover, we notice that while in the case M1 and M16 models the maximal negative
1043
+ shifts of Re[C9] can still be obtained for inclusive values in the ballpark of |Vcb| = 0.0415,
1044
+ in the case of M3 and M13 the shift of −0.5 can only be obtained for exclusive values of
1045
+ |Vcb| as low as 0.039. We conclude then that models M1 and M16 perform best in this
1046
+ context but as seen in Fig. 4 for the case of the HYBRID scenario for CKM parameters
1047
+ none of the models can provide suppression of Re[C9] by more than −0.2 which appears
1048
+ too small from present perspective.
1049
+ • Concerning Re[CNP
1050
+ 10 ] all models show only a small shift which is consisten with the data.
1051
+ This is also the case of of the imaginary parts of both CNP
1052
+ 9
1053
+ and CNP
1054
+ 10 .
1055
+ • As seen in Fig 11, NP effects in K+ → π+ν¯ν turn out to be small but could be signifi-
1056
+ cantly larger in KL → π0ν¯ν.
1057
+
1058
+ M1
1059
+ M16
1060
+ 0.20
1061
+ 0.20
1062
+ 0.15
1063
+ 0.15
1064
+ 0.10
1065
+ 0.10
1066
+ 0.05
1067
+ 0.05
1068
+ 0.00
1069
+ 0.00
1070
+ 0.039
1071
+ 0.040
1072
+ 0.041
1073
+ 0.042
1074
+ 0.043
1075
+ 0.039
1076
+ 0.040
1077
+ 0.041
1078
+ 0.042
1079
+ 0.043
1080
+ IVcbl
1081
+ IVcbl
1082
+ M3
1083
+ M13
1084
+ 0.20
1085
+ 0.20
1086
+ 0.15
1087
+ 0.15
1088
+ 0.10
1089
+ 0.10
1090
+ Max
1091
+ 0.05
1092
+ 0.05
1093
+ 0.00
1094
+ e...
1095
+ 0.00
1096
+ 0.039
1097
+ 0.040
1098
+ 0.041
1099
+ 0.042
1100
+ 0.043
1101
+ 0.039
1102
+ 0.040
1103
+ 0.041
1104
+ 0.042
1105
+ 0.043
1106
+ IVebl
1107
+ IVcblREFERENCES
1108
+ 13
1109
+ Figure 7: Correlation between ¯B(Bs → µ+µ−) and B(Bd → µ+µ−). The gray points span all the
1110
+ allowed parameter space in each scenario. The red region corresponds to |Vcb| ∈ [0.0386, 0.0398]
1111
+ while the cyan region corresponds to |Vcb| ∈ [0.0422, 0.043]. The SM results in correspondence of
1112
+ two values of |Vcb| are displayed, as specified in the legenda.
1113
+ We are looking forward to improved data on all observables to be able to judge better the
1114
+ ability of the 331 models in explaining signs of NP.
1115
+ Acknowledgements
1116
+ A.J.B would like to thank Andreas Crivellin for the discussion on the present status of lepto-
1117
+ quark models after new LHCb and CMS data. This research was done in the context of the
1118
+ Excellence Cluster ORIGINS, funded by the Deutsche Forschungsgemeinschaft (DFG, German
1119
+ Research Foundation), Excellence Strategy, EXC-2094, 390783311. It has also been carried
1120
+ out within the INFN project (Iniziativa Specifica) QFT-HEP.
1121
+ References
1122
+ [1] A. J. Buras, Gauge Theory of Weak Decays. Cambridge University Press, 6, 2020.
1123
+ [2] F. Pisano and V. Pleitez, An SU(3) x U(1) model for electroweak interactions,
1124
+ Phys. Rev. D46 (1992) 410–417, [hep-ph/9206242].
1125
+
1126
+ M3
1127
+ 4.0
1128
+ 109
1129
+ x(
1130
+ 3.5
1131
+ T
1132
+ B
1133
+ 3.0
1134
+ B
1135
+ 0.6
1136
+ 0.7
1137
+ 0.8
1138
+ 0.9
1139
+ 1.0
1140
+ 1.1
1141
+ 1.2
1142
+ 1.3
1143
+ B(Ba→μ+
1144
+ μ-)x 1010M13
1145
+ 4.0
1146
+ 109
1147
+ 3.5
1148
+ SM: IVebl=3.921 10-2
1149
+ T
1150
+ SM: IVebl=4.26 10-2
1151
+ B
1152
+ 3.0
1153
+ B
1154
+ 0.6
1155
+ 0.7
1156
+ 0.8
1157
+ 0.9
1158
+ 1.0
1159
+ 1.1
1160
+ 1.2
1161
+ 1.3
1162
+ B(Bd→>μ+
1163
+ μ-)× 1010M1
1164
+ 4.0
1165
+ 109
1166
+ x(
1167
+ 3.5
1168
+ B
1169
+ 3.0
1170
+ B
1171
+ 0.6
1172
+ 0.7
1173
+ 0.8
1174
+ 0.9
1175
+ 1.0
1176
+ 1.1
1177
+ 1.2
1178
+ 1.3
1179
+ μ)x 1010M16
1180
+ 4.0
1181
+ 109
1182
+ x(
1183
+ 3.5
1184
+ SM: IVebl=3.921 10-2
1185
+ T
1186
+ SM: IVebl=4.26 10-2
1187
+ B
1188
+ 3.0
1189
+ B
1190
+ 0.6
1191
+ 0.7
1192
+ 0.8
1193
+ 0.9
1194
+ 1.0
1195
+ 1.1
1196
+ 1.2
1197
+ 1.3
1198
+ B(Ba→μ+
1199
+ μ-)x 1010REFERENCES
1200
+ 14
1201
+ Figure 8: Contour Plots of ¯B(Bs → µ+µ−) (left column) and B(Bd → µ+µ−) (right column) versus
1202
+ |Vcb| and |Vub| in M1 (upper plots) and in M16 (lower plots).
1203
+ [3] P. H. Frampton, Chiral dilepton model and the flavor question, Phys. Rev. Lett. 69
1204
+ (1992) 2889–2891.
1205
+ [4] V. Pleitez, Challenges for the 3-3-1 models, in 5th Colombian Meeting on High Energy
1206
+ Physics, 12, 2021. arXiv:2112.10888.
1207
+ [5] A. J. Buras and E. Venturini, The exclusive vision of rare K and B decays and of the
1208
+ quark mixing in the standard model, Eur. Phys. J. C 82 (2022), no. 7 615,
1209
+ [arXiv:2203.11960].
1210
+ [6] R. J. Dowdall, C. T. H. Davies, R. R. Horgan, G. P. Lepage, C. J. Monahan,
1211
+ J. Shigemitsu, and M. Wingate, Neutral B-meson mixing from full lattice QCD at the
1212
+ physical point, Phys. Rev. D 100 (2019), no. 9 094508, [arXiv:1907.01025].
1213
+
1214
+ B(Bs →μ+ μ)x 10°, M1
1215
+ 0.00380
1216
+ 4.0
1217
+ 0.00375
1218
+ 3.8
1219
+ Vub
1220
+ 3.6
1221
+ 0.00370
1222
+ 3.4
1223
+ 3.2
1224
+ 0.00365
1225
+ 0.0405
1226
+ 0.0410
1227
+ 0.0415
1228
+ 0.0420
1229
+ 0.0425
1230
+ IVcb!B(Ba → μ+ μ-)x 1010, M1
1231
+ 0.00380
1232
+ 1.10
1233
+ 0.00375
1234
+ 1.05
1235
+ 1.00
1236
+ qn
1237
+ 0.95
1238
+ 0.00370
1239
+ 0.90
1240
+ 0.85
1241
+ 0.00365
1242
+ 0.0405
1243
+ 0.0410
1244
+ 0.0415
1245
+ 0.0420
1246
+ 0.0425
1247
+ IVcblB(Bs →μ+ μ-)x 10°, M16
1248
+ 0.00380
1249
+ 3.9
1250
+ 3.8
1251
+ 0.00375
1252
+ 3.7
1253
+ 3.6
1254
+ 3.5
1255
+ 0.00370
1256
+ 3.4
1257
+ 3.3
1258
+ 3.2
1259
+ 0.00365
1260
+ 0.0405
1261
+ 0.0410
1262
+ 0.0415
1263
+ 0.0420
1264
+ 0.0425
1265
+ IVcblB(Bd → μ+ μ-)x 10l0, M16
1266
+ 0.00380
1267
+ 1.075
1268
+ 1.050
1269
+ 1.025
1270
+ 0.00375
1271
+ 1.000
1272
+ 0.975
1273
+ 0.950
1274
+ 0.00370
1275
+ 0.925
1276
+ 0.900
1277
+ 0.875
1278
+ 0.850
1279
+ 0.00365
1280
+ 0.0405
1281
+ 0.0410
1282
+ 0.0415
1283
+ 0.0420
1284
+ 0.0425
1285
+ IVcb!REFERENCES
1286
+ 15
1287
+ Figure 9: Contour Plots of ¯B(Bs → µ+µ−) (left column) and B(Bd → µ+µ−) (right column) versus
1288
+ |Vcb| and |Vub| in M3 (upper plots)and in M13 (lower plots).
1289
+ [7] A. J. Buras and F. De Fazio, 331 Models Facing the Tensions in ∆F = 2 Processes with
1290
+ the Impact on ε′/ε, Bs → µ+µ− and B → K∗µ+µ−, JHEP 08 (2016) 115,
1291
+ [arXiv:1604.02344].
1292
+ [8] M. Blanke and A. J. Buras, Universal Unitarity Triangle 2016 and the tension between
1293
+ ∆Ms,d and εK in CMFV models, Eur. Phys. J. C76 (2016), no. 4 197,
1294
+ [arXiv:1602.04020].
1295
+ [9] LHCb Collaboration, Test of lepton universality in b → sℓ+ℓ− decays,
1296
+ arXiv:2212.09152.
1297
+ [10] LHCb Collaboration, Measurement of lepton universality parameters in B+ → K+ℓ+ℓ−
1298
+ and B0 → K∗0ℓ+ℓ− decays, arXiv:2212.09153.
1299
+ [11] LHCb Collaboration, R. Aaij et al., Simultaneous determination of CKM angle γ and
1300
+ charm mixing parameters, JHEP 12 (2021) 141, [arXiv:2110.02350].
1301
+
1302
+ B(Bs → μ+ μ-)x 10°, M3
1303
+ 0.00380
1304
+ 4.0
1305
+ 3.8
1306
+ 0.00375
1307
+ 3.6
1308
+ ub
1309
+ 3.4
1310
+ 0.00370
1311
+ 3.2
1312
+ 3.0
1313
+ 2.8
1314
+ 0.00365
1315
+ 0.039
1316
+ 0.040
1317
+ 0.041
1318
+ 0.042
1319
+ 0.043
1320
+ IVcblB(Ba → μ+ μ-)x 1010 , M3
1321
+ 0.00380
1322
+ 1.15
1323
+ 1.10
1324
+ 0.00375
1325
+ 1.05
1326
+ 1.00
1327
+ Vubl
1328
+ 0.95
1329
+ 0.00370
1330
+ 0.90
1331
+ 0.85
1332
+ 0.80
1333
+ 0.00365
1334
+ 0.75
1335
+ 0.039
1336
+ 0.040
1337
+ 0.041
1338
+ 0.042
1339
+ 0.043
1340
+ IVcblB(Bs →μ+ μ-)x 10°, M13
1341
+ 0.00380
1342
+ 3.8
1343
+ 3.7
1344
+ 0.00375
1345
+ 3.6
1346
+ 3.5
1347
+ ub
1348
+ 3.4
1349
+ 0.00370
1350
+ 3.3
1351
+ 3.2
1352
+ 3.1
1353
+ 3.0
1354
+ 0.00365
1355
+ 0.039
1356
+ 0.040
1357
+ 0.041
1358
+ 0.042
1359
+ 0.043
1360
+ IVcblB(Ba → μ+ μ-)x 101° , M13
1361
+ 0.00380
1362
+ 1.05
1363
+ 0.00375
1364
+ 1.00
1365
+ qA
1366
+ 0.95
1367
+ 0.90
1368
+ 0.00370
1369
+ 0.85
1370
+ 0.80
1371
+ 0.00365
1372
+ 0.039
1373
+ 0.040
1374
+ 0.041
1375
+ 0.042
1376
+ 0.043
1377
+ IVeblREFERENCES
1378
+ 16
1379
+ Figure 10: Contour Plots of ¯B(Bs → µ+µ−) (left column) and B(Bd → µ+µ−) (right column) versus
1380
+ |Vcb| and |Vub| in the SM .
1381
+ Figure 11: Correlation between B(K+ → π+ν¯ν) and B(KL → π0ν¯ν). The gray points span all
1382
+ the allowed parameter space in each scenario. The red region corresponds to |Vcb| ∈ [0.0386, 0.0398]
1383
+ while the cyan region corresponds to |Vcb| ∈ [0.0422, 0.043]. The SM results in correspondence of
1384
+ two values of |Vcb| are displayed, as specified in the legenda. The light gray region corresponds to
1385
+ the experimental range for B(K+ → π+ν¯ν) reported in Table 1.
1386
+
1387
+ B(Bs →μt μ)x 10°, SM
1388
+ 0.00380
1389
+ 3.7
1390
+ 3.6
1391
+ 0.00375
1392
+ 3.5
1393
+ 3.4
1394
+ 0.00370
1395
+ 3.3
1396
+ 3.2
1397
+ 3.1
1398
+ 0.00365
1399
+ 0.039
1400
+ 0.040
1401
+ 0.041
1402
+ 0.042
1403
+ IVcblB(Bd → μ+ μ-)x 10l0 , SM
1404
+ 0.00380
1405
+ 1.02
1406
+ 1.00
1407
+ 0.98
1408
+ 0.00375
1409
+ 0.96
1410
+ 0.94
1411
+ 0.92
1412
+ 0.00370
1413
+ 0.90
1414
+ 0.88
1415
+ 0.86
1416
+ 0.84
1417
+ 0.00365
1418
+ 0.039
1419
+ 0.040
1420
+ 0.041
1421
+ 0.042
1422
+ IVcblM1
1423
+ 14
1424
+ 12
1425
+ 10
1426
+ 8
1427
+
1428
+ B(K+
1429
+ 9
1430
+ 1
1431
+ 2
1432
+ 3
1433
+ 4
1434
+ 5
1435
+ B(KL →°) × 1011M16
1436
+ 14
1437
+ 12
1438
+ x(4
1439
+ 10
1440
+ SM: IVebl=3.921 10-2
1441
+
1442
+ 8
1443
+ SM: IVebl=4.26 10-2
1444
+ B(K+
1445
+ 6
1446
+ 2
1447
+ 3
1448
+ 4
1449
+ B(K →°) × 10l1M3
1450
+ 14
1451
+ 12
1452
+ 10
1453
+ 8
1454
+ B(K+
1455
+ 9
1456
+ 1
1457
+ 2
1458
+ 3
1459
+ 4
1460
+ 5
1461
+ B(KL →°) × 1011M13
1462
+ 14
1463
+ 12
1464
+ ×(4
1465
+ 10
1466
+ SM: IVebl=3.921 10-2
1467
+
1468
+ 8
1469
+ SM: IVcbl=4.26 10-2
1470
+ B(K+
1471
+ 6
1472
+ 2
1473
+ 3
1474
+ 4
1475
+ B(KL →°) × 1011REFERENCES
1476
+ 17
1477
+ Figure 12: Contour Plots of B(K+ → π+ν¯ν) (left column) and B(KL → π0ν¯ν) (right column) versus
1478
+ |Vcb| and |Vub| in M1 (upper plots) and in M16 (lower plots).
1479
+ [12] A. J. Buras and E. Venturini, Searching for New Physics in Rare K and B Decays
1480
+ without |Vcb| and |Vub| Uncertainties, Acta Phys. Polon. B 53 (9, 2021) A1,
1481
+ [arXiv:2109.11032].
1482
+ [13] A. J. Buras, Standard Model Predictions for Rare K and B Decays without New Physics
1483
+ Infection, arXiv:2209.03968.
1484
+ [14] M. Bordone, B. Capdevila, and P. Gambino, Three loop calculations and inclusive |Vcb|,
1485
+ Phys. Lett. B 822 (2021) 136679, [arXiv:2107.00604].
1486
+ [15] NA62 Collaboration, M. Zamkovsk´y et al., Measurement of the very rare K+ → π+ν¯ν
1487
+ decay, PoS DISCRETE2020-2021 (2022) 070.
1488
+ [16] KOTO Collaboration, J. Ahn et al., Search for the KL →π0νν and KL →π0X0 decays
1489
+ at the J-PARC KOTO experiment, Phys. Rev. Lett. 122 (2019), no. 2 021802,
1490
+ [arXiv:1810.09655].
1491
+
1492
+ B(K+→+) × 10ll , M1
1493
+ 0.00380
1494
+ 12
1495
+ 11
1496
+ 0.00375
1497
+ 10
1498
+ 9
1499
+ .8
1500
+ 0.00370
1501
+ 7
1502
+ 6
1503
+ 5
1504
+ 0.00365
1505
+ 0.0405
1506
+ 0.0410
1507
+ 0.0415
1508
+ 0.0420
1509
+ 0.0425
1510
+ IVcblB(KL -→元° ) × 10ll , M1
1511
+ 0.00380
1512
+ 4.5
1513
+ 0.00375
1514
+ 4.0
1515
+ 3.5
1516
+ qn
1517
+ 3.0
1518
+ 0.00370
1519
+ 2.5
1520
+ 2.0
1521
+ 0.00365
1522
+ 0.0405
1523
+ 0.0410
1524
+ 0.0415
1525
+ 0.0420
1526
+ 0.0425
1527
+ IVcblB(K+ -→ +v) × 10ll, M16
1528
+ 0.00380
1529
+ 12
1530
+ 0.00375
1531
+ 10
1532
+ 8
1533
+ 0.00370
1534
+ 6
1535
+ .4
1536
+ 0.00365
1537
+ 0.0405
1538
+ 0.0410
1539
+ 0.04150.0420
1540
+ 0.0425
1541
+ 0.0430
1542
+ IVeblB(KL →° ) × 10l1 , M16
1543
+ 0.00380
1544
+ 5.0
1545
+ 4.5
1546
+ 0.00375
1547
+ 4.0
1548
+ 3.5
1549
+ 3.0
1550
+ 0.00370
1551
+ 2.5
1552
+ 2.0
1553
+ 1.5
1554
+ 0.00365
1555
+ 0.0405
1556
+ 0.0410
1557
+ 0.0415
1558
+ 0.0420
1559
+ 0.0425
1560
+ 0.0430
1561
+ IVecblREFERENCES
1562
+ 18
1563
+ Figure 13: Contour Plots of B(K+ → π+ν¯ν) (left column) and B(KL → π0ν¯ν) (right column) versus
1564
+ |Vcb| and |Vub| in M3 (upper plots)and in M13 (lower plots).
1565
+ [17] LHCb Collaboration, R. Aaij et al., Improved limit on the branching fraction of the
1566
+ rare decay K0
1567
+ S → µ+µ−, Eur. Phys. J. C77 (2017), no. 10 678, [arXiv:1706.00758].
1568
+ [18] LHCb Collaboration, R. Aaij et al., Measurement of the B0
1569
+ s → µ+µ− decay properties
1570
+ and search for the B0 → µ+µ− and B0
1571
+ s → µ+µ−γ decays, arXiv:2108.09283.
1572
+ [19] CMS Collaboration, Combination of the ATLAS, CMS and LHCb results on the
1573
+ B0
1574
+ (s) → µ+µ− decays, CMS-PAS-BPH-20-003.
1575
+ [20] ATLAS Collaboration, Combination of the ATLAS, CMS and LHCb results on the
1576
+ B0
1577
+ (s) → µ+µ− decays., ATLAS-CONF-2020-049.
1578
+ [21] HFLAV Collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron, and τ-lepton
1579
+ properties as of 2021, arXiv:2206.07501.
1580
+
1581
+ B(K+-→+ ) × 10ll , M3
1582
+ 0.00380
1583
+ 9.0
1584
+ 0.00375
1585
+ 8.5
1586
+ 8.0
1587
+ 7.5
1588
+ 0.00370
1589
+ 7.0
1590
+ 6.5
1591
+ 0.00365
1592
+ 0.039
1593
+ 0.040
1594
+ 0.041
1595
+ 0.042
1596
+ IVcblB(KL -→元° v) × 10ll , M3
1597
+ 0.00380
1598
+ 4.00
1599
+ 3.75
1600
+ 0.00375
1601
+ 3.50
1602
+ 3.25
1603
+ 3.00
1604
+ 0.00370
1605
+ 2.75
1606
+ 2.50
1607
+ 2.25
1608
+ 2.00
1609
+ 0.00365
1610
+ 0.039
1611
+ 0.040
1612
+ 0.041
1613
+ 0.042
1614
+ IVcblB(K+ -→π+vv) × 1011 , M13
1615
+ 0.00380
1616
+ 9.5
1617
+ 9.0
1618
+ 0.00375
1619
+ 8.5
1620
+ 8.0
1621
+ -7.5
1622
+ 0.00370
1623
+ -7.0
1624
+ 6.5
1625
+ 6.0
1626
+ 0.00365
1627
+ 0.039
1628
+ 0.040
1629
+ 0.041
1630
+ 0.042
1631
+ IVcblB(KL -→元° v) × 10ll , M13
1632
+ 0.00380
1633
+ 4.5
1634
+ 4.0
1635
+ 0.00375
1636
+ 3.5
1637
+ qn
1638
+ 3.0
1639
+ 0.00370
1640
+ 2.5
1641
+ 2.0
1642
+ 1.5
1643
+ 0.00365
1644
+ 0.039
1645
+ 0.040
1646
+ 0.041
1647
+ 0.042
1648
+ IVcb!REFERENCES
1649
+ 19
1650
+ Figure 14: Contour Plots of B(K+ → π+ν¯ν) (left column) and B(KL → π0ν¯ν) (right column) versus
1651
+ |Vcb| and |Vub| in the SM .
1652
+ Figure 15: Correlation between B(K+ → π+ν¯ν) and ¯B(Bs → µ+µ−). The gray points span all
1653
+ the allowed parameter space in each scenario. The red region corresponds to |Vcb| ∈ [0.0386, 0.0398]
1654
+ while the cyan region corresponds to |Vcb| ∈ [0.0422, 0.043]. The SM results in correspondence of two
1655
+ values of |Vcb| are displayed, as specified in the legenda. The light gray region and the blue range
1656
+ correspond to the experimental range for B(K+ → π+ν¯ν) and ¯B(Bs → µ+µ−), respectively, reported
1657
+ in Table 1.
1658
+
1659
+ B(K+ -→元+ ) × 10l1 , SM
1660
+ 0.00380
1661
+ 8.75
1662
+ 8.50
1663
+ 0.00375
1664
+ 8.25
1665
+ 8.00
1666
+ 7.75
1667
+ 7.50
1668
+ 0.00370
1669
+ 7.25
1670
+ 7.00
1671
+ 6.75
1672
+ 0.00365
1673
+ 0.039
1674
+ 0.040
1675
+ 0.041
1676
+ 0.042
1677
+ IVcblB(KL -→元 ) × 1011 , SM
1678
+ 0.00380
1679
+ 3.1
1680
+ 3.0
1681
+ 0.00375
1682
+ 2.9
1683
+ 2.8
1684
+ 2.7
1685
+ 0.00370
1686
+ 2.6
1687
+ 2.5
1688
+ 2.4
1689
+ 0.00365
1690
+ 0.039
1691
+ 0.040
1692
+ 0.041
1693
+ 0.042
1694
+ IVcblM1
1695
+ 14
1696
+ 12
1697
+ 10
1698
+ 8
1699
+ B(K+
1700
+ 9
1701
+ 3.0
1702
+ 3.5
1703
+ 4.0M16
1704
+ 14
1705
+ 12
1706
+ 10
1707
+ SM: IVcbl=3.921 10-2
1708
+ 8
1709
+ SM: IVcbl=4.26 10-2
1710
+ B(K+
1711
+ 6
1712
+ 3.0
1713
+ 3.5
1714
+ 4.0
1715
+ B(Bs → μ+ μ)x 109M3
1716
+ 14
1717
+ 12
1718
+ 10
1719
+ 8
1720
+ B(K+
1721
+ 6
1722
+ 3.0
1723
+ 3.5
1724
+ 4.0M13
1725
+ 14
1726
+ 12
1727
+ 10
1728
+ SM: IVebl=3.921 10-2
1729
+ 8
1730
+ SM: IVebl=4.26 10-2
1731
+ B(K+
1732
+ 6
1733
+ 3.0
1734
+ 3.5
1735
+ 4.0
1736
+ B(Bs → μ+ μ)x 109REFERENCES
1737
+ 20
1738
+ [22] Particle Data Group Collaboration, P. A. Zyla et al., Review of Particle Physics,
1739
+ PTEP 2020 (2020), no. 8 083C01.
1740
+ [23] A. J. Buras, F. De Fazio, and J. Girrbach-Noe, Z-Z’ mixing and Z-mediated FCNCs in
1741
+ SU(3)C × SU(3)L × U(1)X Models, JHEP 1408 (2014) 039, [arXiv:1405.3850].
1742
+ [24] A. J. Buras, F. De Fazio, J. Girrbach, and M. V. Carlucci, The Anatomy of Quark
1743
+ Flavour Observables in 331 Models in the Flavour Precision Era, JHEP 1302 (2013)
1744
+ 023, [arXiv:1211.1237].
1745
+ [25] A. J. Buras, F. De Fazio, and J. Girrbach, 331 models facing new b → sµ+µ− data,
1746
+ JHEP 1402 (2014) 112, [arXiv:1311.6729].
1747
+ [26] A. J. Buras and F. De Fazio, ε′/ε in 331 Models, JHEP 03 (2016) 010,
1748
+ [arXiv:1512.02869].
1749
+ [27] P. Colangelo, F. De Fazio, and F. Loparco, c → u¯νν transitions of Bc mesons: 331
1750
+ model facing Standard Model null tests, Phys. Rev. D 104 (2021), no. 11 115024,
1751
+ [arXiv:2107.07291].
1752
+ [28] A. J. Buras, P. Colangelo, F. De Fazio, and F. Loparco, The charm of 331, JHEP 10
1753
+ (2021) 021, [arXiv:2107.10866].
1754
+ [29] Flavour Lattice Averaging Group Collaboration, S. Aoki et al., FLAG Review
1755
+ 2019: Flavour Lattice Averaging Group (FLAG), Eur. Phys. J. C 80 (2020), no. 2 113,
1756
+ [arXiv:1902.08191].
1757
+ [30] Y. Aoki et al., FLAG Review 2021, arXiv:2111.09849.
1758
+ [31] J. Brod, M. Gorbahn, and E. Stamou, Updated Standard Model Prediction for K → πν¯ν
1759
+ and ϵK, in 19th International Conference on B-Physics at Frontier Machines, 5, 2021.
1760
+ arXiv:2105.02868.
1761
+ [32] J. Brod, M. Gorbahn, and E. Stamou, Standard-Model Prediction of ϵK with Manifest
1762
+ Quark-Mixing Unitarity, Phys. Rev. Lett. 125 (2020), no. 17 171803,
1763
+ [arXiv:1911.06822].
1764
+ [33] A. J. Buras, D. Guadagnoli, and G. Isidori, On ϵK beyond lowest order in the Operator
1765
+ Product Expansion, Phys. Lett. B688 (2010) 309–313, [arXiv:1002.3612].
1766
+ [34] A. J. Buras, M. Jamin, and P. H. Weisz, Leading and next-to-leading QCD corrections
1767
+ to ε parameter and B0 − ¯B0 mixing in the presence of a heavy top quark, Nucl. Phys.
1768
+ B347 (1990) 491–536.
1769
+ [35] J. Urban, F. Krauss, U. Jentschura, and G. Soff, Next-to-leading order QCD corrections
1770
+ for the B0 − ¯B0 mixing with an extended Higgs sector, Nucl. Phys. B523 (1998) 40–58,
1771
+ [hep-ph/9710245].
1772
+ [36] Heavy Flavor Averaging Group (HFAG) Collaboration, Y. Amhis et al., Averages
1773
+ of b-hadron, c-hadron, and τ-lepton properties as of summer 2016, arXiv:1612.07233.
1774
+
AtE0T4oBgHgl3EQfxwIb/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
B9E0T4oBgHgl3EQfyAKb/content/tmp_files/2301.02654v1.pdf.txt ADDED
@@ -0,0 +1,2295 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ DOES COMPRESSING ACTIVATIONS HELP MODEL PARALLEL TRAINING?
2
+ Song Bian * 1 Dacheng Li * 2 Hongyi Wang 2 Eric P. Xing 2 3 4 Shivaram Venkataraman 1
3
+ ABSTRACT
4
+ Large-scale Transformer models are known for their exceptional performance in a range of tasks, but training
5
+ them can be difficult due to the requirement for communication-intensive model parallelism. One way to improve
6
+ training speed is to compress the message size in communication. Previous approaches have primarily focused on
7
+ compressing gradients in a data parallelism setting, but compression in a model-parallel setting is an understudied
8
+ area. We have discovered that model parallelism has fundamentally different characteristics than data parallelism.
9
+ In this work, we present the first empirical study on the effectiveness of compression methods for model parallelism.
10
+ We implement and evaluate three common classes of compression algorithms - pruning-based, learning-based,
11
+ and quantization-based - using a popular Transformer training framework. We evaluate these methods across
12
+ more than 160 settings and 8 popular datasets, taking into account different hyperparameters, hardware, and both
13
+ fine-tuning and pre-training stages. We also provide analysis when the model is scaled up. Finally, we provide
14
+ insights for future development of model parallelism compression algorithms.
15
+ 1
16
+ INTRODUCTION
17
+ Transformer models have become the dominant model for
18
+ many machine learning tasks (Devlin et al., 2018; Radford
19
+ et al., 2018; Yang et al., 2019; Dosovitskiy et al., 2020; Gong
20
+ et al., 2021; Sharir et al., 2021; Gong et al., 2021). However,
21
+ state-of-the-art Transformer models have a large number
22
+ of parameters, making it difficult for a single GPU to hold
23
+ the entire model. As a result, training large Transformer
24
+ models often requires partitioning the model parameters
25
+ among multiple GPUs, a technique known as model paral-
26
+ lelism (Shoeybi et al., 2019; Rasley et al., 2020). Model
27
+ parallelism strategies often introduce significant commu-
28
+ nication overhead, as demonstrated in Figure 1 (Li et al.,
29
+ 2022). For instance, the most commonly used tensor model
30
+ parallelism strategy requires two all-reduce operations over
31
+ a large tensor in each Transformer encoder block per iter-
32
+ ation. This can greatly increase the overall computational
33
+ cost of training the model (Shoeybi et al., 2019).
34
+ To address the issue of high communication overhead in
35
+ model parallelism, one approach is to compress the mes-
36
+ sages communicated among GPUs, such as activation val-
37
+ ues. In the data-parallel setting, several prior works have
38
+ explored compressing gradients to reduce the communica-
39
+ tion cost of training (Seide et al., 2014; Bernstein et al.,
40
+ 2018; Dettmers, 2015; Lin et al., 2017; Wang et al., 2018b;
41
+ *Equal contribution
42
+ 1Department of Computer Science, Uni-
43
+ versity of Wisconsin-Madison 2Machine Learning Department,
44
+ Carnegie Mellon University 3MBZUAI 4Petuum Inc.. Correspon-
45
+ dence to: Song Bian <[email protected]>.
46
+ (8, 128)
47
+ (32, 128)
48
+ (32, 512)
49
+ Hyper-parameters
50
+ 0
51
+ 5
52
+ 10
53
+ 15
54
+ 20
55
+ 25
56
+ 30
57
+ 35
58
+ 40
59
+ Comm. Overhead
60
+ (% of total time)
61
+ TP=1, PP=4
62
+ TP=2, PP=2
63
+ TP=4, PP=1
64
+ Figure 1. Communication overhead of model parallelism with dif-
65
+ ferent batch sizes and sequence lengths on BERTLarge using Py-
66
+ torch 1.12, NCCL, fp16 and 4 GPUs. The x-axis is (batch size,
67
+ sequence length)
68
+ Vogels et al., 2019). However, there has been limited ex-
69
+ ploration of compression methods specifically designed for
70
+ model parallelism. Furthermore, it is important to note that
71
+ compression in model parallelism is fundamentally different
72
+ from compression in data parallelism for two main reasons.
73
+ Firstly, as shown in Figure 2, gradients tend to be low-rank,
74
+ while activations do not. Therefore, low-rank gradient com-
75
+ pression methods, which have been shown to provide state-
76
+ of-the-art end-to-end speedup in communication-efficient
77
+ data-parallel training, may not directly apply to model paral-
78
+ lelism (Vogels et al., 2019). Secondly, the performance ben-
79
+ efits of gradient compression methods can be significantly
80
+ affected by system optimizations in data parallelism (Agar-
81
+ wal et al., 2022). However, model parallelism has a different
82
+ arXiv:2301.02654v1 [cs.LG] 6 Jan 2023
83
+
84
+ Does compressing activations help model parallel training?
85
+ 0.0
86
+ 0.2
87
+ 0.4
88
+ 0.6
89
+ 0.8
90
+ 1.0
91
+ Dimension Percentage
92
+ 0.0
93
+ 0.2
94
+ 0.4
95
+ 0.6
96
+ 0.8
97
+ 1.0
98
+ Sigma Value Percentage
99
+ Activation
100
+ Gradient
101
+ Figure 2. Low-Rank analysis: Curves are drawn by ordering the
102
+ singular values of the SVD decomposition. The result shows that
103
+ the gradient is low-rank but the activation is not. The activation is
104
+ the output of the 12th transformer layer in BERTLarge model.
105
+ set of system optimization techniques than data parallelism,
106
+ so it is unclear how these optimizations would impact the
107
+ performance of compression methods in model parallelism.
108
+ In this paper, we present the first systematic study of model
109
+ parallelism compression for large Transformer models. We
110
+ evaluate the impact of different compression methods in
111
+ terms of both throughput and accuracy. We conduct ex-
112
+ periments for both pre-training and fine-tuning tasks. (De-
113
+ vlin et al., 2018; Gururangan et al., 2020). In particular,
114
+ we implement and evaluate popular gradient compression
115
+ methods, e.g., Top-K and Random-K as well as a learning-
116
+ based compression method, i.e., auto-encoders (Hinton &
117
+ Zemel, 1993), which can not directly be applied to gradi-
118
+ ent compression but is compatible with activation compres-
119
+ sion. To assist researchers and practitioners training new
120
+ Transformer-based models (Liu et al., 2019; Izsak et al.,
121
+ 2021), we study compression methods using different train-
122
+ ing hyper-parameters and hardware setups. We also develop
123
+ a performance model that can be conveniently used to under-
124
+ stand how compression methods would affect throughput
125
+ at larger scales. In total, we evaluate compression methods
126
+ across over 160 different settings with various compression
127
+ algorithms, training stages, hyper-parameters, and hardware,
128
+ and over 8 datasets (Wang et al., 2018a). Our findings in-
129
+ clude the following takeaways.
130
+ Our takeaways. 1. Learning-based compression meth-
131
+ ods are most suitable for model-parallelism. On the fine-
132
+ tuning stage(§4.2, §4.3), only auto-encoders (AEs) can pro-
133
+ vide end-to-end speedup (upto 18%) while preserving the
134
+ model’s accuracy (within ∼3 GLUE score (Wang et al.,
135
+ 2018a)). Top-K, Random-K, and quantization methods
136
+ slow down training because their message encoding and de-
137
+ coding overhead is larger than the communication time they
138
+ reduce. Top-K and Random-K also hurt model’s accuracy.
139
+ For the pre-training stage (§4.4), only AE provides speedup
140
+ (upto 16%) while preserving the model’s accuracy (similar
141
+ GLUE score). Top-K marginally improves training time,
142
+ but degrades the accuracy. Quantization slows down the
143
+ training time, and degrades the accuracy.
144
+ 2. Training hyper-parameters affect the performance
145
+ benefits of compression methods. None of the compres-
146
+ sion methods can improve performance when the batch size
147
+ and sequence length are small because the cost of message
148
+ encoding and decoding becomes relatively higher (as dis-
149
+ cussed in section §4.6). In practice, we have found that
150
+ the batch size and sequence length need to be at least 32
151
+ and 512, respectively, for the compression methods to pro-
152
+ vide throughput gains. The same is true when fine-tuning is
153
+ performed on a machine with high-bandwidth NVLink con-
154
+ nections between all GPUs (as described in section §4.2).
155
+ 3. Early model layers are more sensitive to compression.
156
+ Our observations show that compressing the early layers or
157
+ too many layers significantly decreases the model’s accuracy
158
+ (as discussed in section §4.5), which is consistent with the
159
+ findings of previous research (Wang et al., 2021). In practice,
160
+ we have found that compressing the final 12 layers of a 24-
161
+ layer Transformer model is an effective approach.
162
+ Contributions. We make the following contributions:
163
+ • We conduct the first empirical study on model paral-
164
+ lelism compression methods for Transformer models,
165
+ considering different compression methods, training
166
+ stages, hyper-parameters, and hardware configurations.
167
+ • We implement several popular compression algorithms,
168
+ including Top-K, Random-K, quantization, and auto-
169
+ encoders (AEs), and integrate them into an existing
170
+ distributed training system.
171
+ • We extensively evaluate these algorithms across over
172
+ 160 different settings and eight popular datasets. Based
173
+ on our experimental results, we provide several take-
174
+ aways for future model parallelism compression stud-
175
+ ies. We also analyze the speedup when the model size
176
+ and cluster size are scaled up.
177
+ 2
178
+ BACKGROUND AND CHALLENGES
179
+ In this section, we first introduce data parallelism and model
180
+ parallelism (§2.1). Then we introduce the challenges in
181
+ model parallelism compression (§2.2).
182
+ 2.1
183
+ Data Parallelism and Model Parallelism
184
+ Data Parallelism (DP).
185
+ DP divides the training examples
186
+ among multiple workers (Li et al., 2014; Ho et al., 2013) and
187
+ replicates the model at each worker. During each iteration,
188
+
189
+ Does compressing activations help model parallel training?
190
+ each worker calculates the model gradient based on its as-
191
+ signed examples and then synchronizes the gradient with the
192
+ other workers (Sergeev & Del Balso, 2018). However, DP
193
+ requires each worker to compute and synchronize gradients
194
+ for the entire model, which can become challenging as the
195
+ model size increases. One issue is that the large gradients
196
+ can create a communication bottleneck, and several previous
197
+ studies have proposed gradient compression methods (Seide
198
+ et al., 2014; Bernstein et al., 2018; Dettmers, 2015; Lin
199
+ et al., 2017; Wang et al., 2018b) to address this. Addition-
200
+ ally, the worker may not have enough memory to train with
201
+ the entire model using even one example, in which case
202
+ model parallelism may be necessary.
203
+ Model Parallelism (MP).
204
+ Model parallelism (MP) di-
205
+ vides the model among multiple workers, allowing large
206
+ models to be trained by only requiring each worker to main-
207
+ tain a portion of the entire model in memory. There are two
208
+ main paradigms for MP: inter-layer pipeline model paral-
209
+ lelism (PP) and intra-layer tensor model parallelism (TP). PP
210
+ divides the layers among workers, with each worker execut-
211
+ ing the forward and backward computations in a pipelined
212
+ fashion across different training examples (Narayanan et al.,
213
+ 2019; Li et al., 2021).
214
+ For example, a mini-batch of
215
+ training examples can be partitioned into smaller micro-
216
+ batches (Huang et al., 2019), with the forward computation
217
+ of the first micro-batch taking place on one worker while
218
+ the forward computation of the second micro-batch hap-
219
+ pens on another worker in parallel. TP (Lu et al., 2017;
220
+ Shazeer et al., 2018; Kim et al., 2016) divides the tensor
221
+ computations among workers. In particular, we consider
222
+ a specialized strategy developed for Transformer models
223
+ that divides the two GEMM layers in the attention module
224
+ column-wise and then row-wise, with the same partitioning
225
+ applied to the MLP module (Shoeybi et al., 2019). However,
226
+ TP still involves a communication bottleneck due to the
227
+ need for two all-to-all collective operations in each layer,
228
+ motivating the use of compression to reduce the communi-
229
+ cation overhead of MP (Shoeybi et al., 2019). two all-to-all
230
+ collective operations in each layer (Shoeybi et al., 2019).
231
+ This bottleneck motivates our study to use compression for
232
+ reducing the communication of model parallelism.
233
+ 2.2
234
+ Challenges in Model Parallelism Compression
235
+ In data parallelism, synchronizing gradients in large models
236
+ is a major bottleneck, and several gradient compression al-
237
+ gorithms have been proposed (Seide et al., 2014; Bernstein
238
+ et al., 2018; Dettmers, 2015; Lin et al., 2017; Wang et al.,
239
+ 2018b) to reduce the communication volume. These algo-
240
+ rithms often rely on the observation that the gradient matrix
241
+ is low-rank. In model parallelism, we have observed that
242
+ communicating activations becomes the bottleneck. How-
243
+ ever, we have identified three challenges when adapting
244
+ gradient compression algorithms for use in model paral-
245
+ lelism.
246
+ First, the low-rank observation for gradient matrices does
247
+ not hold for activation matrices, as shown in Figure 2. The
248
+ sigma value percentage for activation matrices increases
249
+ nearly linearly with the dimension percentage, indicating
250
+ that the activation matrix is not low-rank. Therefore, ap-
251
+ plying gradient compression techniques to activations is
252
+ likely to result in a significant loss of accuracy. Second, the
253
+ performance of compression methods is heavily influenced
254
+ by system optimizations (Li et al., 2020), and many gradi-
255
+ ent compression methods do not lead to speed-ups for data
256
+ parallelism (Zhang et al., 2017; Agarwal et al., 2022) due
257
+ to competition for GPU resources between gradient encod-
258
+ ing computation and backward computation. However, the
259
+ impact of these optimizations on compression methods in
260
+ model parallelism has not been studied. Third, model par-
261
+ allelism introduces the possibility of using learning-based
262
+ compression methods, such as autoencoders (AE) (Hinton &
263
+ Zemel, 1993), which have not been examined in the gradient
264
+ compression literature because they require gradient com-
265
+ putations and raise new considerations. Given these three
266
+ challenges, there is a need for a thorough study of the effects
267
+ of different compression methods in model parallelism.
268
+ 3
269
+ IMPLEMENTATION
270
+ In this section, we first introduce the compression algo-
271
+ rithms we evaluate in this work (§ 3.1). Then, we discuss
272
+ implementation details in Sections 3.2 and 3.3.
273
+ 3.1
274
+ Compression Algorithms
275
+ In this work, we evaluate a range of popular compres-
276
+ sion algorithms, including sparsification-based approaches,
277
+ learning-based approaches, and quantization-based ap-
278
+ proaches (as illustrated in Figure 3). We use Top-K and
279
+ Random-K as sparsification-based approaches, as they have
280
+ been well-studied in gradient compression (Stich et al.,
281
+ 2018). We also implement AEs, which compress messages
282
+ using a small neural network (Hinton & Zemel, 1993). For
283
+ quantization, we use the same scheme as in previous re-
284
+ search (Wang et al., 2022), but compare its performance to
285
+ other compression algorithms in the context of model paral-
286
+ lelism, as the prior work only considered pipeline compres-
287
+ sion over slow networks. Since the activation matrices for
288
+ models are not low-rank (as shown in Figure 2), low-rank
289
+ based compression algorithms (such as PowerSGD (Vo-
290
+ gels et al., 2019)) are not suitable for model parallelism
291
+ compression, and we do not evaluate any low-rank based
292
+ compression algorithms in this work.
293
+
294
+ Does compressing activations help model parallel training?
295
+ 3.2
296
+ Tensor Parallelism Compression
297
+ We base our implementation on Megatron-LM (Shoeybi
298
+ et al., 2019), a popular Transformer models training system
299
+ that supports tensor and pipeline model parallelism. To
300
+ integrate the compression algorithms into Megatron-LM,
301
+ we make the following modifications. For AE, we compress
302
+ the activation before the all-reduce step and invoke the
303
+ all-reduce function as usual. The implementation of AE
304
+ is shown here: for each layer, we have a learnable matrix
305
+ w ∈ Rh×c, and the activation X ∈ Rb×s×h, where b is the
306
+ batch size, s is the sequence length, h is the hidden size,
307
+ and c < h is the compressed size. By using the matrix
308
+ w, we output the compressed activation Xw ∈ Rb×s×c.
309
+ Then, we use a similar technique(a decoder as opposed to
310
+ an encoder) to decompress the compressed activation and
311
+ propagate it to the next layer. However, since the Top-K,
312
+ Random-K, and quantization can output two independent
313
+ tensors with different types (e.g., for Top-K values and
314
+ their indices), we cannot use torch.distributed.all-reduce
315
+ to sum the tensors up directly.
316
+ In light of this, we
317
+ replace the all-reduce step with the all-gather function:
318
+ gather-from-tensor-model-parallel-region,
319
+ which
320
+ is
321
+ implemented
322
+ by
323
+ Megatron-LM.
324
+ We
325
+ use
326
+ torch.topk function to select the k largest absolute
327
+ values of the activation and random.sample function to
328
+ randomly select k values from the activation. Finally, our
329
+ implementation of quantization is based on code released
330
+ by (Wang et al., 2022).
331
+ 3.3
332
+ Pipeline Parallelism Compression
333
+ Megatron-LM can only send one tensor to the next pipeline
334
+ stage per round, so we modify its communication functions
335
+ to allow for the transmission of multiple tensors per round
336
+ in order to integrate Top-K, Random-K, and quantization.
337
+ Since we compress the activation in the forward step, us-
338
+ ing compression also reduces the size of the gradient for
339
+ activation and thus the communication cost in the backward
340
+ step. However, this is not the case when using quantization
341
+ to compress the activation for models. This is because, as
342
+ previously noted (Wang et al., 2022), the Pytorch backward
343
+ engine only supports gradients for floating point tensors,
344
+ and therefore the size of the gradient is the same as the size
345
+ of the decompressed activation. Our implementation also
346
+ allows the integration of error-feedback compression algo-
347
+ rithms by retaining the error information from the previous
348
+ compression step.
349
+ 4
350
+ EXPERIMENTS
351
+ We next perform experiments using our implementation to
352
+ answer the following questions:
353
+ • What is the impact of activation compression on system
354
+ throughput and which compression method achieves
355
+ the best throughput?
356
+ • What is the impact on the model’s accuracy?
357
+ • How different network bandwidths affect the best com-
358
+ pression method?
359
+ • How do hyper-parameters such as the batch size and
360
+ sequence length affect the benefits of compression?
361
+ We answer these questions in the context of two commonly
362
+ used scenarios in language modeling: fine-tuning on the
363
+ GLUE benchmark (Wang et al., 2018a), and pre-training
364
+ on the Wikipedia (Devlin et al., 2018) dataset and the
365
+ BooksCorpus (Zhu et al., 2015) dataset.
366
+ 4.1
367
+ Experimental Setup
368
+ In this section, we briefly describe the hardware, model, and
369
+ other experiment settings.
370
+ System Configuration. To measure the performance of
371
+ compression algorithms over different hardware, our ex-
372
+ periments are conducted on two different setups.
373
+ Our
374
+ first setup uses AWS p3.8xlarge machines which have 4
375
+ Tesla V100 GPUs with all GPUs connected by NVLink.
376
+ AWS p3.8xlarge instances have 10 Gbps network band-
377
+ width across instances. Our second setup uses a local ma-
378
+ chine which also has 4 Tesla V100 GPUs but does not have
379
+ NVLink. All the GPUs are connected by a single PCIe
380
+ bridge. The local server runs Ubuntu 18.04 LTS and the
381
+ server has 125GB of memory.
382
+ Model.
383
+ We use the BERTLARGE model provided by
384
+ Megatron-LM (Shoeybi et al., 2019) which has 345M pa-
385
+ rameters. We configure the model to have 24 layers with
386
+ each layer having a hidden size of 1024 and 16 attention
387
+ heads. We use fp16 training to train the BERTLARGE model.
388
+ Experimental Settings. For fine-tuning, we follow the
389
+ previous work (Devlin et al., 2018; Liu et al., 2019), and
390
+ use micro-batch size 32 and sequence length 512 by de-
391
+ fault. We use one machine with 4 V100 GPUs and vary
392
+ the tensor model-parallel size and the pipeline model-
393
+ parallel size across the following three parallelism degrees:
394
+ {(1, 4), (2, 2), (4, 1)}, where the first number of the tuple
395
+ represents the tensor model-parallel degree and the second
396
+ number of the tuple stands for the pipeline model-parallel
397
+ degree. To investigate the impact of hyper-parameters, we
398
+ conduct experiments that vary the batch size from {8, 32},
399
+ and sequence length from {128, 512} on fine-tuning.
400
+ For pre-training, we use micro-batch size 128, global batch
401
+ size 1024, and sequence length 128. To study the impact of
402
+ the distributed settings, we use the following three different
403
+ parallelism degrees: {(2, 8), (4, 4), (8, 2)}, where the first
404
+
405
+ Does compressing activations help model parallel training?
406
+ g
407
+ g
408
+ C
409
+ C
410
+ C
411
+ C
412
+ Machine 1
413
+ Machine 2
414
+ C
415
+ Transformer Layer
416
+ Transformer Layer
417
+ Activation
418
+ Transformer Layer
419
+ Machine 1,2
420
+ Machine 3,4
421
+ DC
422
+ DC
423
+ DC
424
+ DC
425
+ Micro-batch
426
+ C
427
+ DC
428
+ Transformer Layer
429
+ Transformer Layer
430
+ Transformer Layer
431
+ Activation
432
+ DC
433
+ Figure 3. Illustration of compression on a 6-Layer Transformer model with 4 machines. Machine 1 and Machine 2 maintain the first three
434
+ layers according to the TP strategy (pipeline stage 1). g stands for an all-reduce operation in the forward pass. A compression method C
435
+ is used to reduce the message size for the all-reduce operation to reduce TP communication time. Correspondingly, a de-compression
436
+ method DC is used after the communication. For instance, if AE are used, then C is an encoder, and DC is a decoder. Machine 3 and
437
+ Machine 4 are responsible for the last three layers (pipeline stage 2). A compression method is used before Machine 1 sends the activation
438
+ to Machine 3, and before Machine 2 sends the activation to Machine 4 to reduce PP communication time. The goal of this paper is to
439
+ study the effect of different pairs of C and DC.
440
+ number of the tuple represents the tensor model-parallel
441
+ degree and the second number of the tuple represents the
442
+ pipeline model-parallel degree.
443
+ We also evaluate compression algorithms with different
444
+ parameters. For AE, we use different dimension after com-
445
+ pression from {50, 100}. For Top-K and Random-K algo-
446
+ rithms, we use two comparable settings: (1) Keep the same
447
+ compression ratio as AE (i.e., we compress the activation
448
+ around 10 and 20 times.) (2) Keep the same communica-
449
+ tion cost as AE. Finally, we also tune the parameters for
450
+ quantization and compress the activation to {2, 4, 8} bits.
451
+ By default, we perform experiments on BERTLarge model
452
+ with 24 layers and compress the activation for the last 12
453
+ layers. For instance, when the pipeline model-parallel de-
454
+ gree is 2 and tensor model-parallel degree is 2, we compress
455
+ the activation between two pipeline stages and the communi-
456
+ cation cost over tensor parallelism in the last 12 layers. We
457
+ also vary the number of layers compressed in Section 4.5.
458
+ 4.2
459
+ Throughput Benefits for Fine-Tuning
460
+ Takeaway 1 Using non-learning-based compression tech-
461
+ niques to compress activations only slightly improves system
462
+ throughput (by 1% or less) due to the large overhead of these
463
+ methods. However, we see end-to-end speedups of up to
464
+ Notation
465
+ Description
466
+ A1
467
+ AE with encoder output dimension 50
468
+ A2
469
+ AE with encoder output dimension 100
470
+ T1/R1
471
+ Top/Rand-K: same comm. cost as A1
472
+ T2/R2
473
+ Top/Rand-K: same comm. cost as A2
474
+ T3/R3
475
+ Top/Rand-K: same comp. ratio as A1
476
+ T4/R4
477
+ Top/Rand-K: same comp. ratio as A2
478
+ Q1
479
+ Quantization: reduce the precision to 2 bits
480
+ Q2
481
+ Quantization: reduce the precision to 4 bits
482
+ TP
483
+ Tensor model-parallelism degree
484
+ PP
485
+ Pipeline model-parallelism degree
486
+ Table 1. Notation Table. For ease of notation, we use TP/PP to
487
+ denote the degree of tensor/pipeline model parallelism. ‘comm’
488
+ and ‘comp’ are short for ‘communication’ and ‘compression’.
489
+ 17.8% when using learning-based compression methods on
490
+ a machine without NVLink.
491
+ When running fine-tune experiments on a p3.8xlarge in-
492
+ stance on Amazon EC2, we cannot improve system through-
493
+ put by using non-learning-based compression algorithms
494
+ (Table 2). Comparing Tables 2 and 3, we can see that the net-
495
+
496
+ Does compressing activations help model parallel training?
497
+ Distributed Setting
498
+ w/o
499
+ A1
500
+ A2
501
+ T1
502
+ T2
503
+ T3
504
+ T4
505
+ TP=1, PP=4
506
+ 591.96
507
+ 591.36
508
+ 591.47
509
+ 594.81
510
+ 595.53
511
+ 599.65
512
+ 605.05
513
+ TP=2, PP=2
514
+ 440.71
515
+ 437.98
516
+ 444.02
517
+ 465.73
518
+ 473.64
519
+ 493.16
520
+ 528.93
521
+ TP=4, PP=1
522
+ 261.48
523
+ 270.22
524
+ 275.54
525
+ 314.37
526
+ 323.90
527
+ 356.57
528
+ 409.23
529
+ Distributed Setting
530
+ w/o
531
+ R1
532
+ R2
533
+ R3
534
+ R4
535
+ Q1
536
+ Q2
537
+ TP=1, PP=4
538
+ 591.96
539
+ 749.56
540
+ 1,008.64
541
+ 1,824.36
542
+ 5,572.87
543
+ 595.29
544
+ 595.45
545
+ TP=2, PP=2
546
+ 440.71
547
+ 3,377.59
548
+ 6,616.30
549
+ 17,117.01
550
+ 71,058.64
551
+ 489.27
552
+ 486.54
553
+ TP=4, PP=1
554
+ 261.48
555
+ 3,254.01
556
+ 6,561.22
557
+ 16,990.88
558
+ 65,121.79
559
+ 347.68
560
+ 350.50
561
+ Table 2. The average iteration time (ms) for fine-tuning with various compression techniques by varying the distributed setting. The
562
+ results are collected from the AWS p3.8xlarge machine with NVLink by using batch size 32, and sequence length 512. The best setting is
563
+ bolded in the table. And the settings which see benefits compared with the baseline, are underlined.
564
+ With NVLink
565
+ w/o
566
+ A1
567
+ A2
568
+ TP=1, PP=4
569
+ 591.96
570
+ 591.36
571
+ 591.47
572
+ TP=2, PP=2
573
+ 440.71
574
+ 437.98
575
+ 444.02
576
+ TP=4, PP=1
577
+ 261.48
578
+ 270.22
579
+ 275.54
580
+ Without NVLink
581
+ w/o
582
+ A1
583
+ A2
584
+ TP=1, PP=4
585
+ 633.17
586
+ 620.10
587
+ 620.44
588
+ TP=2, PP=2
589
+ 646.14
590
+ 586.65
591
+ 595.25
592
+ TP=4, PP=1
593
+ 736.01
594
+ 624.62
595
+ 636.15
596
+ Table 3. The
597
+ average
598
+ iteration
599
+ time
600
+ (ms)
601
+ for
602
+ fine-tuning
603
+ with/without NVLink. We compare time without compression
604
+ and with AE on different distributed settings, with batch size 32,
605
+ and sequence length 512. The best setting on each machine is
606
+ bolded. And the settings, under which we can gain benefits com-
607
+ pared with the baseline, are underlined.
608
+ work bandwidth across the GPUs can affect the performance
609
+ benefits from compression. In other words, we can improve
610
+ system throughput by at most 17.8% when compressing
611
+ activation for fine-tuning tasks on a 4-GPU machine without
612
+ NVLink. That’s because, without NVLink, the communica-
613
+ tion time for model parallelism is much longer. Thus, while
614
+ the message encoding and decoding time remain unchanged,
615
+ compression methods can provide more throughput benefits
616
+ across lower bandwidth links.
617
+ Furthermore, from Tables 2 and 3, we observe that AE out-
618
+ performs other compression methods. In Table 4, we break-
619
+ down the time taken by each algorithm and find that Top-K,
620
+ Random-K and quantization have large encoding/decoding
621
+ overheads and thus cannot provide end-to-end throughput
622
+ improvements. Although AE slightly increases the time
623
+ taken by the backward step, the ∼ 2× reduction in commu-
624
+ nication time and the limited encoding/decoding overhead
625
+ lead to better overall throughput.
626
+ 4.3
627
+ Effect of Compression on Model Accuracy while
628
+ Fine-tuning
629
+ Takeaway 2 Among all evaluated compression algorithms,
630
+ only AE and quantization preserve fine-tuning accuracy.
631
+ From Table 5, we can see that, when using AE and quan-
632
+ tization algorithm for compression, the accuracy loss is
633
+ within 3% except for CoLA and RTE. In Figure 2, we have
634
+ shown that the activation for models is not low-rank. There-
635
+ fore, sparsification-based compression algorithms (Top-
636
+ K/Random-K) lose important information and do not pre-
637
+ serve model accuracy. Given that there is significant accu-
638
+ racy difference for CoLA and RTE, we study the impact
639
+ of varying the number and range of layers compressed for
640
+ these two datasets in Section 4.5.
641
+ 4.4
642
+ Throughput Benefits for Pre-training
643
+ Takeaway 3 Only AE and Top-K algorithms improve
644
+ throughput when performing distributed pre-training.
645
+ First, we recap the experimental environment here. For pre-
646
+ training, we use 4 p3.8xlarge instances on Amazon EC2
647
+ and each instance has 4 GPUs with NVLink. From Table 6,
648
+ we can see that using Top-K and AE can speed up pre-
649
+ training by 7% and 16% respectively. Among the three
650
+ distributed settings, TP=4, PP=4 is the best setting for
651
+ pre-training. That is because the communication cost of
652
+ tensor parallelism is larger than that of pipeline parallelism
653
+ and with TP=4, tensor parallel communication happens over
654
+ faster NVLinks.
655
+ Takeaway 4 Compressing activation for models can im-
656
+ prove throughput for pre-training by 16%.
657
+ From Table 7, we notice that using AE and Top-K can
658
+ reduce the waiting time and pipeline communication time
659
+ of pre-training. This is because the inter-node bandwidth
660
+ (10Gbps) is smaller than the intra-node bandwidth (40GB/s
661
+
662
+ Does compressing activations help model parallel training?
663
+ Compression
664
+ Algorithm
665
+ Forward
666
+ Backward
667
+ Optimizer
668
+ Waiting &
669
+ Pipeline Comm.
670
+ Total Time
671
+ Tensor Enc.
672
+ Tensor Dec.
673
+ Tensor
674
+ Comm.
675
+ w/o
676
+ 276.34
677
+ 354.16
678
+ 5.80
679
+ 9.83
680
+ 646.14
681
+ \
682
+ \
683
+ 150.72
684
+ A1
685
+ 213.83
686
+ 362.61
687
+ 6.16
688
+ 4.06
689
+ 586.65
690
+ 2.16
691
+ 3.12
692
+ 80.88
693
+ A2
694
+ 219.01
695
+ 366.51
696
+ 5.67
697
+ 4.07
698
+ 595.25
699
+ 3.12
700
+ 4.56
701
+ 84.48
702
+ T1
703
+ 298.93
704
+ 355.71
705
+ 6.79
706
+ 4.38
707
+ 665.81
708
+ 70.08
709
+ 13.68
710
+ 85.20
711
+ T2
712
+ 305.47
713
+ 355.51
714
+ 6.36
715
+ 3.91
716
+ 671.24
717
+ 70.32
718
+ 16.80
719
+ 87.84
720
+ T3
721
+ 331.70
722
+ 356.80
723
+ 5.78
724
+ 5.00
725
+ 699.27
726
+ 72.24
727
+ 27.36
728
+ 100.80
729
+ T4
730
+ 376.72
731
+ 359.19
732
+ 5.89
733
+ 6.60
734
+ 748.41
735
+ 74.88
736
+ 45.36
737
+ 124.56
738
+ R1
739
+ 2,408.68
740
+ 357.02
741
+ 6.10
742
+ 7.68
743
+ 2,779.49
744
+ 2,040.24
745
+ 15.84
746
+ 104.16
747
+ R2
748
+ 4,696.99
749
+ 356.33
750
+ 6.28
751
+ 6.20
752
+ 5,065.80
753
+ 4,244.64
754
+ 19.44
755
+ 135.84
756
+ R3
757
+ 12,603.79
758
+ 362.13
759
+ 6.81
760
+ 25.28
761
+ 12,998.01
762
+ 11,499.12
763
+ 29.76
764
+ 139.92
765
+ R4
766
+ 46,968.21
767
+ 365.36
768
+ 7.61
769
+ 22.81
770
+ 47,363.98
771
+ 44,038.56
772
+ 47.52
773
+ 567.36
774
+ Q1
775
+ 274.03
776
+ 354.56
777
+ 5.88
778
+ 7.98
779
+ 642.46
780
+ 20.64
781
+ 32.16
782
+ 91.68
783
+ Q2
784
+ 282.64
785
+ 354.55
786
+ 5.58
787
+ 7.58
788
+ 650.36
789
+ 19.92
790
+ 30.24
791
+ 104.64
792
+ Table 4. We breakdown the average iteration time (ms) for fine-tuning with various compression techniques when using TP=2 and PP=2,
793
+ batch size 32, and sequence length 512. The results are collected from the local machine without NVLink. The total time (ms) is divided
794
+ into following parts: forward step, backward step, optimizer, and waiting & pipeline communication. The last three columns further
795
+ breakdown the tensor encoder/decoder and communication times which are considered part of the forward step.
796
+ Compression
797
+ Algorithm
798
+ MNLI-(m/mm)
799
+ QQP
800
+ SST-2
801
+ MRPC
802
+ CoLA
803
+ QNLI
804
+ RTE
805
+ STS-B
806
+ Avg.
807
+ w/o
808
+ 88.07/88.70
809
+ 92.02
810
+ 95.07
811
+ 88.46
812
+ 62.22
813
+ 93.39
814
+ 82.67
815
+ 89.16
816
+ 86.64
817
+ A1
818
+ 85.42/85.43
819
+ 91.07
820
+ 92.09
821
+ 86.14
822
+ 54.18
823
+ 91.31
824
+ 70.04
825
+ 87.61
826
+ 82.59
827
+ A2
828
+ 85.53/85.65
829
+ 91.24
830
+ 93.23
831
+ 85.86
832
+ 55.93
833
+ 91.01
834
+ 65.34
835
+ 87.76
836
+ 82.40
837
+ T1
838
+ 32.05/32.18
839
+ 74.31
840
+ 83.60
841
+ 70.78
842
+ 0.00
843
+ 58.37
844
+ 51.99
845
+ 0.00
846
+ 44.81
847
+ T2
848
+ 44.12/45.67
849
+ 39.68
850
+ 90.83
851
+ 78.09
852
+ 0.00
853
+ 84.42
854
+ 49.82
855
+ 62.70
856
+ 55.04
857
+ T3
858
+ 36.12/36.08
859
+ 74.75
860
+ 90.25
861
+ 81.51
862
+ 0.00
863
+ 85.41
864
+ 54.15
865
+ 0.00
866
+ 50.92
867
+ T4
868
+ 83.85/84.41
869
+ 56.39
870
+ 93.69
871
+ 83.65
872
+ 0.00
873
+ 90.54
874
+ 59.21
875
+ 86.02
876
+ 70.86
877
+ Q1
878
+ 87.25/87.81
879
+ 91.71
880
+ 93.46
881
+ 87.01
882
+ 55.99
883
+ 61.38
884
+ 67.51
885
+ 88.02
886
+ 80.02
887
+ Q2
888
+ 87.85/88.47
889
+ 91.93
890
+ 93.23
891
+ 87.42
892
+ 57.67
893
+ 93.01
894
+ 78.34
895
+ 87.43
896
+ 85.04
897
+ Table 5. Fine-tuning results over GLUE dataset under the setting that the tensor model-parallel size is 2 and pipeline model-parallel size is
898
+ 2. F1 scores are reported for QQP and MRPC, Matthews correlation coefficients are reported for CoLA, and Spearman correlations are
899
+ reported for STS-B, and accuracy scores are reported for the other tasks.
900
+ with NVLink), so compression is effective at reducing the
901
+ communication time between two pipeline stages. From
902
+ Table 9, we can observe that, by using A2 to compress
903
+ the activation over the last 12 layers, we can reduce the
904
+ communication cost between two pipeline stages effectively.
905
+ Takeaway 5 Among all evaluated methods, AE is the
906
+ best strategy to compress activation over pre-training. It
907
+ achieves higher pre-training throughput and preserves the
908
+ model’s accuracy.
909
+ From Table 8, compared with the baseline (without com-
910
+ pression), we can observe that using AE is able to keep
911
+ the accuracy when compared to the uncompressed model.
912
+ In addition, we observe that we can use the AE at the pre-
913
+ training phase and remove it during the fine-tuning phase.
914
+ In other words, we only need to load the parameter of the
915
+ BERTLarge model to do fine-tuning, and the parameters of
916
+ the AE can be ignored. Furthermore, Table 8 shows that pre-
917
+ trained models suffer significant accuracy loss when using
918
+ Top-K for compression. Finally, quantization can preserve
919
+ the model’s accuracy, but we cannot achieve end-to-end
920
+ speedup by using quantization as strategy to compress ac-
921
+
922
+ Does compressing activations help model parallel training?
923
+ Distributed Setting
924
+ w/o
925
+ A1
926
+ A2
927
+ T1
928
+ T2
929
+ T3
930
+ T4
931
+ TP=2, PP=8
932
+ 1,625.16
933
+ 1,550.18
934
+ 1,579.70
935
+ 1,508.34
936
+ 1,503.54
937
+ 1,593.37
938
+ 1,682.87
939
+ TP=4, PP=4
940
+ 1,422.40
941
+ 1,242.97
942
+ 1,223.20
943
+ 1,360.37
944
+ 1,352.61
945
+ 1,410.47
946
+ 1,721.87
947
+ TP=8, PP=2
948
+ 15,642.30
949
+ 14,577.29
950
+ 14,073.45
951
+ 14,308.12
952
+ 14,543.81
953
+ 18,919.92
954
+ 27,152.07
955
+ Distributed Setting
956
+ w/o
957
+ R1
958
+ R2
959
+ R3
960
+ R4
961
+ Q1
962
+ Q2
963
+ TP=2, PP=8
964
+ 1,625.16
965
+ 10,308.03
966
+ 20,814.20
967
+ 55,925.28
968
+ >100,000
969
+ 1,759.27
970
+ 1,752.24
971
+ TP=4, PP=4
972
+ 1,422.40
973
+ 15,433.12
974
+ 31,565.19
975
+ 87,421.46
976
+ >100,000
977
+ 2,435.03
978
+ 2,594.94
979
+ TP=8, PP=2
980
+ 15,642.30
981
+ 32,522.47
982
+ 61,049.87
983
+ >100,000
984
+ >100,000
985
+ 16,414.57
986
+ 16,517.44
987
+ Table 6. The average iteration time (ms) for pre-training with various compression techniques by varying the distributed setting. The
988
+ results are collected from 4 AWS p3.8xlarge machines with NVLink by using micro-batch size 128, global batch size 1024, and sequence
989
+ length 128. The best setting is bolded in the table. And the settings, under which we can gain benefits compared with the baseline, are
990
+ underlined.
991
+ Compression
992
+ Algorithm
993
+ Forward
994
+ Backward
995
+ Optimizer
996
+ Waiting &
997
+ Pipeline Comm.
998
+ Total Time
999
+ Tensor Enc.
1000
+ Tensor Dec.
1001
+ Tensor
1002
+ Comm.
1003
+ w/o
1004
+ 467.73
1005
+ 419.26
1006
+ 7.42
1007
+ 527.99
1008
+ 1,422.40
1009
+ \
1010
+ \
1011
+ 91.08
1012
+ A1
1013
+ 546.95
1014
+ 455.26
1015
+ 7.29
1016
+ 233.47
1017
+ 1,242.97
1018
+ 8.64
1019
+ 16.20
1020
+ 32.76
1021
+ A2
1022
+ 459.26
1023
+ 467.51
1024
+ 9.64
1025
+ 286.78
1026
+ 1,223.20
1027
+ 12.96
1028
+ 20.52
1029
+ 43.56
1030
+ T1
1031
+ 712.22
1032
+ 423.91
1033
+ 7.21
1034
+ 217.03
1035
+ 1,360.37
1036
+ 73.44
1037
+ 140.4
1038
+ 80.28
1039
+ T2
1040
+ 671.19
1041
+ 424.27
1042
+ 7.35
1043
+ 249.80
1044
+ 1,352.61
1045
+ 81.00
1046
+ 170.64
1047
+ 81.36
1048
+ T3
1049
+ 813.03
1050
+ 433.42
1051
+ 7.35
1052
+ 156.67
1053
+ 1,410.47
1054
+ 108.00
1055
+ 268.92
1056
+ 115.92
1057
+ T4
1058
+ 1,068.38
1059
+ 444.26
1060
+ 6.75
1061
+ 202.48
1062
+ 1,721.87
1063
+ 153.36
1064
+ 427.68
1065
+ 151.56
1066
+ R1
1067
+ 14,199.56
1068
+ 421.40
1069
+ 4.23
1070
+ 807.93
1071
+ 15,433.12
1072
+ 13,185.72
1073
+ 181.44
1074
+ 193.68
1075
+ R2
1076
+ 29,344.85
1077
+ 427.18
1078
+ 3.91
1079
+ 1,789.25
1080
+ 31,565.19
1081
+ 27,975.24
1082
+ 181.44
1083
+ 187.20
1084
+ R3
1085
+ 78,906.91
1086
+ 444.88
1087
+ 6.08
1088
+ 3,707.37
1089
+ 83,065.23
1090
+ 73,847.16
1091
+ 279.72
1092
+ 649.44
1093
+ Q1
1094
+ 803.63
1095
+ 417.33
1096
+ 8.61
1097
+ 1,205.46
1098
+ 2,435.03
1099
+ 90.72
1100
+ 304.56
1101
+ 193.68
1102
+ Q2
1103
+ 805.33
1104
+ 417.74
1105
+ 7.55
1106
+ 1,364.32
1107
+ 2,594.94
1108
+ 85.32
1109
+ 271.08
1110
+ 111.60
1111
+ Table 7. We breakdown the average iteration time (ms) for pre-training with various compression techniques when using tensor model-
1112
+ parallel size 4, pipeline model-parallel size 4, micro batch size 128, global batch size 1024, and sequence length 128. The results are
1113
+ collected from 4 AWS p3.8xlarge machines with NVLink.
1114
+ Compression
1115
+ Algorithm
1116
+ MNLI-(m/mm)
1117
+ QQP
1118
+ SST-2
1119
+ MRPC
1120
+ CoLA
1121
+ QNLI
1122
+ RTE
1123
+ STS-B
1124
+ Avg.
1125
+ w/o
1126
+ 84.87/84.79
1127
+ 91.25
1128
+ 92.43
1129
+ 86.84
1130
+ 56.36
1131
+ 92.26
1132
+ 70.40
1133
+ 86.83
1134
+ 82.89
1135
+ A2
1136
+ 83.77/84.32
1137
+ 91.14
1138
+ 91.63
1139
+ 86.55
1140
+ 58.61
1141
+ 91.96
1142
+ 71.48
1143
+ 87.16
1144
+ 82.96
1145
+ T2
1146
+ 61.06/60.93
1147
+ 80.74
1148
+ 80.16
1149
+ 63.83
1150
+ 10.01
1151
+ 59.55
1152
+ 47.29
1153
+ 0.37
1154
+ 51.55
1155
+ Q2
1156
+ 84.47/85.32
1157
+ 91.36
1158
+ 93.23
1159
+ 85.10
1160
+ 58.84
1161
+ 91.69
1162
+ 71.84
1163
+ 86.39
1164
+ 83.14
1165
+ Table 8. Fine-tuning results over GLUE dataset by using the checkpoint obtained by pre-training. F1 scores are reported for QQP and
1166
+ MRPC, Matthews correlation coefficient is reported for CoLA, and Spearman correlations are reported for STS-B, and accuracy scores
1167
+ are reported for the other tasks.
1168
+ tivation over pre-training. In conclusion, it is not a good
1169
+ choice to compress the activation by using quantization or
1170
+ Top-K.
1171
+ 4.5
1172
+ Varying Compression Layers and Location
1173
+ Takeaway 6 When the number of compressed layers in-
1174
+ creases, the model accuracy decreases.
1175
+ From Figure 4(a), we can observe that the accuracy for RTE
1176
+
1177
+ Does compressing activations help model parallel training?
1178
+ Pipeline Stages
1179
+ Comm. (w/o)
1180
+ Comm. (A2)
1181
+ 0 ↔ 1
1182
+ 77.82
1183
+ 76.13
1184
+ 1 ↔ 2
1185
+ 88.69
1186
+ 13.19
1187
+ 2 ↔ 3
1188
+ 97.67
1189
+ 14.09
1190
+ Table 9. The average communication time (ms) per iteration be-
1191
+ tween two pipeline stages. The first column indicates the pipeline
1192
+ stage. And the second column shows the communication time
1193
+ per iteration without compression. Moreover, the third column
1194
+ presents the communication time with A2. We only compress
1195
+ the activation in the last 12 layers and thus the time for the first
1196
+ pipeline stage is unchanged.
1197
+ w/o
1198
+ 6
1199
+ 8
1200
+ 10
1201
+ 12
1202
+ 14
1203
+ 16
1204
+ 18
1205
+ Number of Layers Compressed
1206
+ 0
1207
+ 20
1208
+ 40
1209
+ 60
1210
+ 80
1211
+ 100
1212
+ Metrics (%)
1213
+ CoLA
1214
+ RTE
1215
+ (a) Vary Number of Layers Compressed
1216
+ 1-12
1217
+ 4-15
1218
+ 7-18
1219
+ 10-21
1220
+ 13-24
1221
+ w/o
1222
+ Compression Location
1223
+ 0
1224
+ 20
1225
+ 40
1226
+ 60
1227
+ 80
1228
+ 100
1229
+ Metrics (%)
1230
+ CoLA
1231
+ RTE
1232
+ (b) Vary Compression Location
1233
+ Figure 4. Fine-tuning results over CoLA and RTE datasets by vary-
1234
+ ing the compression location and number of layers compressed.
1235
+ The above figure shows that model performance vs the number
1236
+ of layers compressed. The below figure shows that model per-
1237
+ formance versus the compression location. We use tensor model-
1238
+ parallel degree 2, pipeline model-parallel degree 2, batch size 32,
1239
+ and sequence length 512.
1240
+ and the matthews correlation coefficient for CoLA decreases
1241
+ as we increase the number of layers compressed. This is
1242
+ because as we increase number of layers compressed, we
1243
+ lose more information in the activations leading to a loss in
1244
+ accuracy. From Figure 4(a), we observe that compressing
1245
+ activations of the last 8 layers is the best strategy to keep
1246
+ the accuracy loss within 3% for both datasets.
1247
+ Takeaway 7 Compressing the activation for the initial lay-
1248
+ ers harms the accuracy of the model.
1249
+ We keep the number of layers compressed constant and
1250
+ vary the location where we apply compression (Figure 4(b)).
1251
+ The results indicate that compressing activations of the first
1252
+ few layers of the model significantly harms the model’s
1253
+ accuracy. This is because compressing activations generates
1254
+ error and the error in the early layers can be accumulated
1255
+ and propagated to later layers.
1256
+ 4.6
1257
+ Impact of Model Hyper-parameters
1258
+ Takeaway 8 Using a smaller batch size or sequence length
1259
+ for fine-tuning negates the throughput benefits from com-
1260
+ pression because of the smaller communication cost.
1261
+ We vary the batch size from {8, 32} and sequence length
1262
+ from {128, 512}, and report the results in Table 11-14. We
1263
+ provide more detailed experimental results in Appendix A.
1264
+ We notice that when the communication cost over model par-
1265
+ allelism is small, the overhead of the compression methods
1266
+ can become the bottleneck. Therefore, we cannot improve
1267
+ system throughput when using compression algorithms with
1268
+ batch size 8 and sequence length 128.
1269
+ 4.7
1270
+ Performance Analysis
1271
+ In this section, we develop an analytical cost model to an-
1272
+ swer the question:
1273
+ What will happen if we scale up the model size and the
1274
+ cluster size?
1275
+ Given that prior works (Li et al., 2022) have analyzed the
1276
+ complexity of various model parallelism strategies, we only
1277
+ consider a fixed strategy of using tensor model parallelism
1278
+ here. Concretely, we use tensor model parallelism in the
1279
+ same node, and pipeline model parallelism across the node,
1280
+ a suggested strategy according to (Narayanan et al., 2021).
1281
+ In particular, we build the performance analysis for real-
1282
+ world settings similar to (Narayanan et al., 2019) in two
1283
+ steps. First, we develop our own model on a single-node
1284
+ scenario, and we scale up the model size on a single node.
1285
+ Second, we increase the cluster size and, according to the
1286
+ model-parallelism strategy we choose, assign additional
1287
+ GPUs to pipeline parallelism, and use off-the-shelf pipeline
1288
+ parallelism cost models to predict the performance (Li et al.,
1289
+ 2022; Zheng et al., 2022).
1290
+ Denote the vocabulary size as V , hidden size as h, sequence
1291
+ length as s, and batch size as B. From (Narayanan et al.,
1292
+ 2021), we know that the number of floating points opera-
1293
+ tions (FLOPs) and all-reduce message size in a Transformer
1294
+ layer is 96Bsh2 + 16Bs2h, and Bsh respectively.
1295
+ If we do not use compression methods, the total time of a
1296
+ Transformer layer can be modeled as a sum of the all-reduce
1297
+ communication step and the computation time step. We note
1298
+
1299
+ Does compressing activations help model parallel training?
1300
+ 2500
1301
+ 5000
1302
+ 7500
1303
+ 10000 12500
1304
+ Hidden size
1305
+ 0
1306
+ 50
1307
+ 100
1308
+ 150
1309
+ 200
1310
+ Run-time (ms)
1311
+ bs16(pred)
1312
+ bs32(pred)
1313
+ bs64(pred)
1314
+ bs128(pred)
1315
+ bs16
1316
+ bs32
1317
+ bs64
1318
+ bs128
1319
+ (a) Tcomp
1320
+ 2500
1321
+ 5000
1322
+ 7500
1323
+ 10000
1324
+ 12500
1325
+ Hidden size
1326
+ 0
1327
+ 20
1328
+ 40
1329
+ 60
1330
+ Run-time (ms)
1331
+ bs16(pred)
1332
+ bs32(pred)
1333
+ bs64(pred)
1334
+ bs128(pred)
1335
+ bs16
1336
+ bs32
1337
+ bs64
1338
+ bs128
1339
+ (b) Tcomm
1340
+ 2500
1341
+ 5000
1342
+ 7500
1343
+ 10000
1344
+ 12500
1345
+ Hidden size
1346
+ 0
1347
+ 1
1348
+ 2
1349
+ 3
1350
+ 4
1351
+ 5
1352
+ Run-time (ms)
1353
+ bs16(pred)
1354
+ bs32(pred)
1355
+ bs64(pred)
1356
+ bs128(pred)
1357
+ bs16
1358
+ bs32
1359
+ bs64
1360
+ bs128
1361
+ (c) Toverhead
1362
+ 2500
1363
+ 5000
1364
+ 7500
1365
+ 10000 12500
1366
+ Hidden Size
1367
+ 1
1368
+ 2
1369
+ 3
1370
+ 4
1371
+ 5
1372
+ Speedup
1373
+ bs16(pred)
1374
+ bs32(pred)
1375
+ bs64(pred)
1376
+ bs128(pred)
1377
+ bs16
1378
+ bs32
1379
+ bs64
1380
+ bs128
1381
+ (d) Speedup
1382
+ Figure 5. We vary the batch size and the hidden size to show that our prediction model is accurate compared with the real experimental
1383
+ results. The model we use here has only one transformer layer and the tensor model-parallel size is 4. In specific, Figure (a) shows the
1384
+ real and predicted computation time with the increase of the hidden size. Figure (b) presents the real and predicted communication time
1385
+ between tensor parallelism by varying the hidden size. As for the Figure (c), it presents the computation time of AE with the increase of
1386
+ hidden size. In the end, Figure (d) show the total speedup when we use AE to compress activations over tensor parallelism.
1387
+ that these two steps can hardly overlap because , the reason
1388
+ behind it is that the all-reduce communication depends on
1389
+ the previous computational results:
1390
+ T = Tcomp(96Bsh2 + 16Bs2h) + Tcomm(Bsh)
1391
+ (1)
1392
+ Modeling Tcomp
1393
+ We model Tcomp as a linear function of
1394
+ FLOPs with the coefficient α that corresponds to the peak
1395
+ performance of the GPU. In particular, we estimate α using
1396
+ ground truth wall clock time of the largest hidden size we
1397
+ can fit, where the GPU is more likely to be of the peak
1398
+ utilization (Williams et al., 2009). During experiments, we
1399
+ found that fitting α using time of smaller hidden sizes can
1400
+ result in a 30x higher prediction time when we scale up the
1401
+ hidden size because of low GPU utilization. Our prediction
1402
+ versus the ground truth time is plotted in Figure 5(a).
1403
+ Modeling Tcomm
1404
+ we model Tcomm as a piece-wise func-
1405
+ tion of the message size (Agarwal et al., 2022). Formally,
1406
+ Tcomm(Bsh) =
1407
+
1408
+ c
1409
+ if Bsh < d
1410
+ βBsh
1411
+ if Bsh ≥ d
1412
+ If the message size is smaller than a threshold d, then
1413
+ Tcomm(Bsh) is a constant c because the worker needs to
1414
+ launch one communication round (Li et al., 2020). Other-
1415
+ wise, the number of communication rounds is proportional
1416
+ to the message size. The fitting result is in Figure 5(b).
1417
+ Using AE as the compression method and a fixed encoder
1418
+ dimension e (we set e to 100 in this section), the total time
1419
+ of a single Transformer layer is:
1420
+ TAE = Tcomp(96Bsh2 + 16Bs2h) + Tcomm(Bse)
1421
+ + Toverhead
1422
+ Compared with the setting without compression, the compu-
1423
+ tation time remains unchanged. In addition, Tcomm(Bse)
1424
+ is roughly equal to c because Bse is usually smaller than
1425
+ the threshold d. In our experiments, the threshold d =
1426
+ 16 × 128 × 100 = 409600 and c ≈ 0.2.
1427
+ Modeling Toverhead
1428
+ In AE, Toverhead is the encoder and
1429
+ decoder computation time. It is a batched matrix multiplica-
1430
+ tion with input dimension B × s × h and h × e. Assuming
1431
+ e is kept constant, it can be modeled as Toverhead = γBsh.
1432
+ The fitting result is shown in 5(c).
1433
+ Since each Transformer layer has identical configurations in
1434
+ popular Transformer models (Devlin et al., 2018; Radford
1435
+ et al., 2018), the overall speedup ratio is the same as we vary
1436
+ the number of layers. Thus, we can estimate the speedup of
1437
+ different hidden sizes of any number of Transformer layers
1438
+ using
1439
+ T
1440
+ TAE . We provide the fitting result in Figure 5(d).
1441
+ Understanding the trend
1442
+ We consider the asymptotic
1443
+ behavior of large hidden size h:
1444
+ T
1445
+ TAE
1446
+
1447
+ α(96Bsh2 + 16Bs2h) + βBsh
1448
+ α(96Bsh2 + 16Bs2h) + γBsh + c
1449
+ (2)
1450
+ Thus, we can see that as hidden layer size increases, the
1451
+ benefits from compression diminish.
1452
+ Scaling up the cluster size
1453
+ Next we analyze the speedup
1454
+ when scaling up the cluster size by combining the pipeline
1455
+ parallelism cost model developed in (Li et al., 2022; Zheng
1456
+ et al., 2022). Formally, the running time is modeled as a
1457
+ sum of per-micro-batch pipeline communication time, per-
1458
+ micro-batch of non-straggler pipeline execution time, and
1459
+ the per-mini-batch straggler pipeline execution time. To use
1460
+ the cost model, we denote the micro-batch size as m, the
1461
+ number of nodes n, the number of layers L, the pipeline
1462
+ communication time p or pAE.
1463
+ We use the default pipeline layer assignment strategy
1464
+ in (Shoeybi et al., 2019), which balances the number of
1465
+ transformer layers. Thus, every stage takes the same time in
1466
+ our scenario: L
1467
+ nT or L
1468
+ nTAE. We use the pipeline communi-
1469
+ cation model in (Jia et al., 2019; Li et al., 2022), p = Bsh
1470
+ w ,
1471
+ pAE = Bse
1472
+ w , where w is the bandwidth. Thus the overall
1473
+ speedup can be written as:
1474
+ ( m−1
1475
+ n
1476
+ + 1) × LT + (n − 1) × Bsh
1477
+ w
1478
+ ( m−1
1479
+ n
1480
+ + 1) × LTAE + (n − 1) × Bse
1481
+ w
1482
+ (3)
1483
+
1484
+ Does compressing activations help model parallel training?
1485
+ From the Table 10, we see that we can maintain a ∼1.5x
1486
+ speedup as we scale the hidden size to 25600. This shows
1487
+ that if we increase the number of nodes when we increase in
1488
+ hidden size, AE compression retains its benefits. However,
1489
+ it is possible to avoid the diminishing speedup by properly
1490
+ scaling up the number of nodes n, where the speedup will
1491
+ asymptotically converge to h
1492
+ e .
1493
+ In summary, compression in model parallelism has dimin-
1494
+ ishing returns if we only scale up the model on a fixed
1495
+ cluster. To gain benefits from compression methods, one
1496
+ needs to also properly manage other parameters in the
1497
+ cost model, e.g. also scaling up the number of nodes and
1498
+ use the pipeline parallelism.
1499
+ 5
1500
+ RELATED WORK
1501
+ In this section, we first introduce work related to the de-
1502
+ velopment of large Transformer models. Then, we discuss
1503
+ strategies to train these models at scale. In the end, we
1504
+ discuss prior work that accelerates distributed ML models
1505
+ training by using compression techniques.
1506
+ Transformer Models. Transformer models were first intro-
1507
+ duced by Vaswani et al. (2017) in the machine translation
1508
+ context. It has been shown to be effective in various other
1509
+ language understanding tasks such as text generation, text
1510
+ classification and question answering (Devlin et al., 2018;
1511
+ Radford et al., 2018; Wang et al., 2018a; Rajpurkar et al.,
1512
+ 2016). Recent research has also successfully applied Trans-
1513
+ former models to images (Dosovitskiy et al., 2020; Touvron
1514
+ et al., 2021), audio (Gong et al., 2021) and beyond (Sharir
1515
+ et al., 2021). An N-layers transformer model is composed
1516
+ of three major components: (1) An embedding layer that
1517
+ maps an input token to a hidden state, (2) A stack of N
1518
+ transformer layers, and (3) a prediction layer that maps the
1519
+ hidden state proceeded by transformer layers to the task
1520
+ output. A transformer layer is composed of an attention
1521
+ module (Bahdanau et al., 2014) and several matrix multipli-
1522
+ cations. Several optimizations have been proposed to speed
1523
+ up Transformer model training such as carefully managing
1524
+ the I/O (Dao et al., 2022) and reducing the complexity of the
1525
+ attention module (Wang et al., 2020). In this work, we speed
1526
+ up the Transformer model training in the distributed setting,
1527
+ where we reduce the communication between workers.
1528
+ Training Large Transformer models. Several parallelism
1529
+ strategies have been proposed to train Transformer mod-
1530
+ els. Megatron (Shoeybi et al., 2019) proposes tensor model
1531
+ parallelism, which parallelizes the computation in attention
1532
+ layers and in the following matrix multiplications. Deep-
1533
+ Speed (Rasley et al., 2020) uses a specialized form of
1534
+ pipeline parallelism (Huang et al., 2019; Narayanan et al.,
1535
+ 2019) that treats a transformer layer as the smallest unit
1536
+ in pipeline stages. It further combines the tensor model
1537
+ parallelism developed in Megatron and data parallelism to
1538
+ train Transformer models at the scale of trillion parame-
1539
+ ters. (Li et al., 2022) considers a more sophisticated model
1540
+ parallelism strategy space for Transformer models and uses
1541
+ a cost model to automatically search for the optimal one.
1542
+ Our work is orthogonal to the direction of developing new
1543
+ parallel training strategies. In this work, we study how to
1544
+ compress communication on existing parallel strategies.
1545
+ Distributed training with Compression. Distributed ML
1546
+ model training requires frequent and heavy synchronization
1547
+ between workers. Several directions have been proposed
1548
+ to reduce the communication bottleneck by compressing
1549
+ the message size. One direction is developed on the data
1550
+ parallelism setting, where workers communicate model gra-
1551
+ dients (Wang et al., 2021; Agarwal et al., 2022) during
1552
+ backward propagation. Common techniques to reduce the
1553
+ gradient communication include low-rank updates (Wang
1554
+ et al., 2018b), sparsification (Lin et al., 2017), and quanti-
1555
+ zation (Seide et al., 2014; Bernstein et al., 2018; Dettmers,
1556
+ 2015). A more recent direction find that the activation pro-
1557
+ duced during the forward propagation in neural networks is
1558
+ large, and thus compressing them is beneficial (Wang et al.,
1559
+ 2022). In particular, they use quantization to compress the
1560
+ activation volume between pipeline parallelism workers.
1561
+ However, they focus on the geo-distributed setting where
1562
+ the network bandwidth is very low. In this paper, we study
1563
+ the effect of a rich set of popular compression techniques
1564
+ on tensor and pipeline parallelism, and in a typical cloud
1565
+ computing setting.
1566
+ 6
1567
+ CONCLUSION
1568
+ In this work, we studied the impact of compressing acti-
1569
+ vations for models trained using model parallelism. We
1570
+ implemented and integrated several popular compression
1571
+ algorithms into an existing distributed training framework
1572
+ (Megatron-LM) and evaluated their performance in terms
1573
+ of throughput and accuracy under various settings. Our re-
1574
+ sults show that learning-based compression algorithms are
1575
+ the most effective approach for compressing activations in
1576
+ model parallelism. We also developed a performance model
1577
+ to analyze the speedup when scaling up the model. Our ex-
1578
+ periments provide valuable insights for the development of
1579
+ improved activation compression algorithms in the future.
1580
+ Acknowledgments
1581
+ Shivaram Venkataraman is supported by the Office of the
1582
+ Vice Chancellor for Research and Graduate Education at
1583
+ UW-Madison with funding from the Wisconsin Alumni
1584
+ Research Foundation.
1585
+ Eric Xing is supported by NSF
1586
+ IIS1563887, NSF CCF1629559, NSF IIS1617583, NGA
1587
+ HM04762010002, NSF IIS1955532, NSF CNS2008248,
1588
+ NSF IIS2123952, and NSF BCS2040381.
1589
+
1590
+ Does compressing activations help model parallel training?
1591
+ hidden size
1592
+ number of layers
1593
+ number of nodes
1594
+ batch size
1595
+ speedup
1596
+ 6144
1597
+ 40
1598
+ 1
1599
+ 1024
1600
+ 1.91×
1601
+ 8192
1602
+ 48
1603
+ 2
1604
+ 1536
1605
+ 1.75×
1606
+ 10240
1607
+ 60
1608
+ 4
1609
+ 1792
1610
+ 1.63×
1611
+ 12288
1612
+ 80
1613
+ 8
1614
+ 2304
1615
+ 1.55×
1616
+ 16384
1617
+ 96
1618
+ 16
1619
+ 2176
1620
+ 1.46×
1621
+ 20480
1622
+ 105
1623
+ 35
1624
+ 2528
1625
+ 1.46×
1626
+ 25600
1627
+ 128
1628
+ 64
1629
+ 3072
1630
+ 1.47×
1631
+ Table 10. Weak-scaling speedup for the Transformer models. The number of tensor model parallelism is 4, and the micro-batch size is 16.
1632
+ As for the change of the hidden size, the number of layers, and the batch size, we follow the setting of Table 1 in (Narayanan et al., 2021).
1633
+ REFERENCES
1634
+ Agarwal, S., Wang, H., Venkataraman, S., and Papailiopou-
1635
+ los, D. On the utility of gradient compression in dis-
1636
+ tributed training systems. Proceedings of Machine Learn-
1637
+ ing and Systems, 4:652–672, 2022.
1638
+ Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
1639
+ translation by jointly learning to align and translate. arXiv
1640
+ preprint arXiv:1409.0473, 2014.
1641
+ Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., and Anand-
1642
+ kumar, A. signsgd: Compressed optimisation for non-
1643
+ convex problems. In International Conference on Ma-
1644
+ chine Learning, pp. 560–569. PMLR, 2018.
1645
+ Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and R´e, C. Flashat-
1646
+ tention: Fast and memory-efficient exact attention with
1647
+ io-awareness. arXiv preprint arXiv:2205.14135, 2022.
1648
+ Dettmers, T. 8-bit approximations for parallelism in deep
1649
+ learning. arXiv preprint arXiv:1511.04561, 2015.
1650
+ Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
1651
+ Pre-training of deep bidirectional transformers for lan-
1652
+ guage understanding. arXiv preprint arXiv:1810.04805,
1653
+ 2018.
1654
+ Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
1655
+ D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
1656
+ Heigold, G., Gelly, S., et al. An image is worth 16x16
1657
+ words: Transformers for image recognition at scale. arXiv
1658
+ preprint arXiv:2010.11929, 2020.
1659
+ Gong, Y., Chung, Y.-A., and Glass, J. Ast: Audio spec-
1660
+ trogram transformer. arXiv preprint arXiv:2104.01778,
1661
+ 2021.
1662
+ Gururangan, S., Marasovi´c, A., Swayamdipta, S., Lo, K.,
1663
+ Beltagy, I., Downey, D., and Smith, N. A. Don’t stop
1664
+ pretraining: adapt language models to domains and tasks.
1665
+ arXiv preprint arXiv:2004.10964, 2020.
1666
+ Hinton, G. E. and Zemel, R. Autoencoders, minimum de-
1667
+ scription length and helmholtz free energy. Advances in
1668
+ neural information processing systems, 6, 1993.
1669
+ Ho, Q., Cipar, J., Cui, H., Lee, S., Kim, J. K., Gibbons, P. B.,
1670
+ Gibson, G. A., Ganger, G., and Xing, E. P. More effective
1671
+ distributed ml via a stale synchronous parallel parameter
1672
+ server. In Advances in neural information processing
1673
+ systems, pp. 1223–1231, 2013.
1674
+ Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen,
1675
+ M., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., et al. Gpipe:
1676
+ Efficient training of giant neural networks using pipeline
1677
+ parallelism. Advances in neural information processing
1678
+ systems, 32, 2019.
1679
+ Izsak, P., Berchansky, M., and Levy, O.
1680
+ How to
1681
+ train bert with an academic budget.
1682
+ arXiv preprint
1683
+ arXiv:2104.07705, 2021.
1684
+ Jia, Z., Zaharia, M., and Aiken, A. Beyond data and model
1685
+ parallelism for deep neural networks. Proceedings of
1686
+ Machine Learning and Systems, 1:1–13, 2019.
1687
+ Kim, J. K., Ho, Q., Lee, S., Zheng, X., Dai, W., Gibson,
1688
+ G. A., and Xing, E. P. Strads: A distributed framework for
1689
+ scheduled model parallel machine learning. In Proceed-
1690
+ ings of the Eleventh European Conference on Computer
1691
+ Systems, pp. 1–16, 2016.
1692
+ Li, D., Wang, H., Xing, E., and Zhang, H. Amp: Automati-
1693
+ cally finding model parallel strategies with heterogeneity
1694
+ awareness. arXiv preprint arXiv:2210.07297, 2022.
1695
+ Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed,
1696
+ A., Josifovski, V., Long, J., Shekita, E. J., and Su, B.-Y.
1697
+ Scaling distributed machine learning with the parameter
1698
+ server.
1699
+ In 11th {USENIX} Symposium on Operating
1700
+ Systems Design and Implementation ({OSDI} 14), pp.
1701
+ 583–598, 2014.
1702
+
1703
+ Does compressing activations help model parallel training?
1704
+ Li, S., Zhao, Y., Varma, R., Salpekar, O., Noordhuis, P.,
1705
+ Li, T., Paszke, A., Smith, J., Vaughan, B., Damania, P.,
1706
+ et al. Pytorch distributed: Experiences on accelerating
1707
+ data parallel training. arXiv preprint arXiv:2006.15704,
1708
+ 2020.
1709
+ Li, Z., Zhuang, S., Guo, S., Zhuo, D., Zhang, H., Song, D.,
1710
+ and Stoica, I. Terapipe: Token-level pipeline parallelism
1711
+ for training large-scale language models.
1712
+ In Interna-
1713
+ tional Conference on Machine Learning, pp. 6543–6552.
1714
+ PMLR, 2021.
1715
+ Lin, Y., Han, S., Mao, H., Wang, Y., and Dally, W. J.
1716
+ Deep gradient compression: Reducing the communica-
1717
+ tion bandwidth for distributed training. arXiv preprint
1718
+ arXiv:1712.01887, 2017.
1719
+ Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
1720
+ Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
1721
+ Roberta: A robustly optimized bert pretraining approach.
1722
+ arXiv preprint arXiv:1907.11692, 2019.
1723
+ Lu, W., Yan, G., Li, J., Gong, S., Han, Y., and Li, X.
1724
+ Flexflow: A flexible dataflow accelerator architecture
1725
+ for convolutional neural networks. In 2017 IEEE In-
1726
+ ternational Symposium on High Performance Computer
1727
+ Architecture (HPCA), pp. 553–564. IEEE, 2017.
1728
+ Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V.,
1729
+ Devanur, N. R., Ganger, G. R., Gibbons, P. B., and Za-
1730
+ haria, M. Pipedream: generalized pipeline parallelism for
1731
+ dnn training. In Proceedings of the 27th ACM Symposium
1732
+ on Operating Systems Principles, pp. 1–15, 2019.
1733
+ Narayanan, D., Shoeybi, M., Casper, J., LeGresley, P., Pat-
1734
+ wary, M., Korthikanti, V., Vainbrand, D., Kashinkunti, P.,
1735
+ Bernauer, J., Catanzaro, B., et al. Efficient large-scale
1736
+ language model training on gpu clusters using megatron-
1737
+ lm. In Proceedings of the International Conference for
1738
+ High Performance Computing, Networking, Storage and
1739
+ Analysis, pp. 1–15, 2021.
1740
+ Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.,
1741
+ et al. Improving language understanding by generative
1742
+ pre-training. 2018.
1743
+ Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. Squad:
1744
+ 100,000+ questions for machine comprehension of text.
1745
+ arXiv preprint arXiv:1606.05250, 2016.
1746
+ Rasley, J., Rajbhandari, S., Ruwase, O., and He, Y. Deep-
1747
+ speed: System optimizations enable training deep learn-
1748
+ ing models with over 100 billion parameters. In Proceed-
1749
+ ings of the 26th ACM SIGKDD International Conference
1750
+ on Knowledge Discovery & Data Mining, pp. 3505–3506,
1751
+ 2020.
1752
+ Seide, F., Fu, H., Droppo, J., Li, G., and Yu, D. 1-bit stochas-
1753
+ tic gradient descent and its application to data-parallel
1754
+ distributed training of speech dnns. In Fifteenth annual
1755
+ conference of the international speech communication
1756
+ association. Citeseer, 2014.
1757
+ Sergeev, A. and Del Balso, M. Horovod: fast and easy
1758
+ distributed deep learning in tensorflow. arXiv preprint
1759
+ arXiv:1802.05799, 2018.
1760
+ Sharir, G., Noy, A., and Zelnik-Manor, L. An image is worth
1761
+ 16x16 words, what is a video worth?
1762
+ arXiv preprint
1763
+ arXiv:2103.13915, 2021.
1764
+ Shazeer, N., Cheng, Y., Parmar, N., Tran, D., Vaswani, A.,
1765
+ Koanantakool, P., Hawkins, P., Lee, H., Hong, M., Young,
1766
+ C., et al. Mesh-tensorflow: Deep learning for super-
1767
+ computers. Advances in neural information processing
1768
+ systems, 31, 2018.
1769
+ Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,
1770
+ J., and Catanzaro, B.
1771
+ Megatron-lm: Training multi-
1772
+ billion parameter language models using model paral-
1773
+ lelism. arXiv preprint arXiv:1909.08053, 2019.
1774
+ Stich, S. U., Cordonnier, J.-B., and Jaggi, M. Sparsified sgd
1775
+ with memory. Advances in Neural Information Process-
1776
+ ing Systems, 31, 2018.
1777
+ Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles,
1778
+ A., and J´egou, H. Training data-efficient image transform-
1779
+ ers & distillation through attention. In International Con-
1780
+ ference on Machine Learning, pp. 10347–10357. PMLR,
1781
+ 2021.
1782
+ Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
1783
+ L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
1784
+ tention is all you need. Advances in neural information
1785
+ processing systems, 30, 2017.
1786
+ Vogels, T., Karimireddy, S. P., and Jaggi, M. Powersgd:
1787
+ Practical low-rank gradient compression for distributed
1788
+ optimization. Advances in Neural Information Processing
1789
+ Systems, 32, 2019.
1790
+ Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
1791
+ Bowman, S. R. Glue: A multi-task benchmark and anal-
1792
+ ysis platform for natural language understanding. arXiv
1793
+ preprint arXiv:1804.07461, 2018a.
1794
+ Wang, H., Sievert, S., Liu, S., Charles, Z., Papailiopoulos,
1795
+ D., and Wright, S. Atomo: Communication-efficient
1796
+ learning via atomic sparsification. Advances in Neural
1797
+ Information Processing Systems, 31, 2018b.
1798
+ Wang, H., Agarwal, S., and Papailiopoulos, D. Pufferfish:
1799
+ communication-efficient models at no extra cost. Pro-
1800
+ ceedings of Machine Learning and Systems, 3:365–386,
1801
+ 2021.
1802
+
1803
+ Does compressing activations help model parallel training?
1804
+ Wang, J., Yuan, B., Rimanic, L., He, Y., Dao, T., Chen,
1805
+ B., Re, C., and Zhang, C. Fine-tuning language models
1806
+ over slow networks using activation compression with
1807
+ guarantees. arXiv preprint arXiv:2206.01299, 2022.
1808
+ Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H.
1809
+ Linformer: Self-attention with linear complexity. arXiv
1810
+ preprint arXiv:2006.04768, 2020.
1811
+ Williams, S., Waterman, A., and Patterson, D. Roofline:
1812
+ an insightful visual performance model for multicore
1813
+ architectures. Communications of the ACM, 52(4):65–76,
1814
+ 2009.
1815
+ Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov,
1816
+ R. R., and Le, Q. V. Xlnet: Generalized autoregressive
1817
+ pretraining for language understanding.
1818
+ Advances in
1819
+ neural information processing systems, 32, 2019.
1820
+ Zhang, H., Zheng, Z., Xu, S., Dai, W., Ho, Q., Liang, X., Hu,
1821
+ Z., Wei, J., Xie, P., and Xing, E. P. Poseidon: An efficient
1822
+ communication architecture for distributed deep learning
1823
+ on GPU clusters. In 2017 USENIX Annual Technical
1824
+ Conference (USENIX ATC 17), pp. 181–193, 2017.
1825
+ Zheng, L., Li, Z., Zhang, H., Zhuang, Y., Chen, Z., Huang,
1826
+ Y., Wang, Y., Xu, Y., Zhuo, D., Gonzalez, J. E., et al. Alpa:
1827
+ Automating inter-and intra-operator parallelism for dis-
1828
+ tributed deep learning. arXiv preprint arXiv:2201.12023,
1829
+ 2022.
1830
+ Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urta-
1831
+ sun, R., Torralba, A., and Fidler, S. Aligning books and
1832
+ movies: Towards story-like visual explanations by watch-
1833
+ ing movies and reading books. In Proceedings of the
1834
+ IEEE international conference on computer vision, pp.
1835
+ 19–27, 2015.
1836
+
1837
+ Does compressing activations help model parallel training?
1838
+ A
1839
+ MORE EXPERIMENTAL RESULTS
1840
+ We provide more experimental results in this section.
1841
+ Distributed Setting
1842
+ w/o
1843
+ A1
1844
+ A2
1845
+ T1
1846
+ T2
1847
+ T3
1848
+ T4
1849
+ TP=1, PP=4
1850
+ 151.82
1851
+ 154.62
1852
+ 155.03
1853
+ 155.78
1854
+ 155.12
1855
+ 156.84
1856
+ 158.58
1857
+ TP=2, PP=2
1858
+ 145.58
1859
+ 157.49
1860
+ 163.63
1861
+ 175.67
1862
+ 177.39
1863
+ 186.71
1864
+ 178.91
1865
+ TP=4, PP=1
1866
+ 136.66
1867
+ 155.43
1868
+ 145.97
1869
+ 170.04
1870
+ 176.88
1871
+ 186.06
1872
+ 190.01
1873
+ Distributed Setting
1874
+ R1
1875
+ R2
1876
+ R3
1877
+ R4
1878
+ Q1
1879
+ Q2
1880
+ Q3
1881
+ TP=1, PP=4
1882
+ 206.89
1883
+ 273.49
1884
+ 449.70
1885
+ 1,292.15
1886
+ 154.30
1887
+ 153.65
1888
+ 152.33
1889
+ TP=2, PP=2
1890
+ 844.66
1891
+ 1,589.66
1892
+ 3,915.32
1893
+ 15,732.57
1894
+ 178.09
1895
+ 175.23
1896
+ 172.93
1897
+ TP=4, PP=1
1898
+ 820.37
1899
+ 1,588.59
1900
+ 3,915.52
1901
+ 15,469.87
1902
+ 188.10
1903
+ 168.90
1904
+ 167.90
1905
+ Table 11. The total time (ms) for fine-tuning with various compression techniques by varying the distributed setting. The results are
1906
+ collected from the AWS p3.8xlarge machine with NVLink by using batch size 32, and sequence length 128.
1907
+ Distributed Setting
1908
+ w/o
1909
+ A1
1910
+ A2
1911
+ T1
1912
+ T2
1913
+ T3
1914
+ T4
1915
+ TP=1, PP=4
1916
+ 106.04
1917
+ 113.67
1918
+ 106.35
1919
+ 109.58
1920
+ 109.10
1921
+ 109.18
1922
+ 110.57
1923
+ TP=2, PP=2
1924
+ 121.26
1925
+ 142.41
1926
+ 140.05
1927
+ 152.91
1928
+ 154.60
1929
+ 162.00
1930
+ 157.12
1931
+ TP=4, PP=1
1932
+ 122.22
1933
+ 142.33
1934
+ 139.47
1935
+ 171.24
1936
+ 165.77
1937
+ 172.69
1938
+ 170.61
1939
+ Distributed Setting
1940
+ R1
1941
+ R2
1942
+ R3
1943
+ R4
1944
+ Q1
1945
+ Q2
1946
+ Q3
1947
+ TP=1, PP=4
1948
+ 124.39
1949
+ 137.51
1950
+ 187.59
1951
+ 333.61
1952
+ 108.18
1953
+ 109.56
1954
+ 109.49
1955
+ TP=2, PP=2
1956
+ 314.51
1957
+ 507.00
1958
+ 998.51
1959
+ 3,197.42
1960
+ 163.18
1961
+ 155.48
1962
+ 150.31
1963
+ TP=4, PP=1
1964
+ 329.33
1965
+ 513.89
1966
+ 1,007.65
1967
+ 3,406.20
1968
+ 171.06
1969
+ 163.96
1970
+ 152.82
1971
+ Table 12. The total time (ms) for fine-tuning with various compression techniques by varying the distributed setting. The results are
1972
+ collected from the AWS p3.8xlarge machine with NVLink by using batch size 8, and sequence length 128.
1973
+ Distributed Setting
1974
+ w/o
1975
+ A1
1976
+ A2
1977
+ T1
1978
+ T2
1979
+ T3
1980
+ T4
1981
+ TP=1, PP=4
1982
+ 154.82
1983
+ 152.50
1984
+ 153.47
1985
+ 155.56
1986
+ 156.01
1987
+ 156.81
1988
+ 158.37
1989
+ TP=2, PP=2
1990
+ 184.48
1991
+ 175.29
1992
+ 180.35
1993
+ 206.56
1994
+ 204.48
1995
+ 207.66
1996
+ 214.30
1997
+ TP=4, PP=1
1998
+ 212.76
1999
+ 201.39
2000
+ 200.31
2001
+ 234.16
2002
+ 240.42
2003
+ 242.62
2004
+ 261.39
2005
+ Distributed Setting
2006
+ R1
2007
+ R2
2008
+ R3
2009
+ R4
2010
+ Q1
2011
+ Q2
2012
+ Q3
2013
+ TP=1, PP=4
2014
+ 185.83
2015
+ 231.78
2016
+ 368.95
2017
+ 963.62
2018
+ 155.33
2019
+ 154.85
2020
+ 154.82
2021
+ TP=2, PP=2
2022
+ 684.28
2023
+ 1,228.36
2024
+ 2,900.86
2025
+ 10,499.14
2026
+ 188.82
2027
+ 189.14
2028
+ 194.25
2029
+ TP=4, PP=1
2030
+ 722.87
2031
+ 1,275.57
2032
+ 2,973.04
2033
+ 10,891.70
2034
+ 225.42
2035
+ 230.69
2036
+ 242.42
2037
+ Table 13. The total time (ms) for fine-tuning with various compression techniques by varying the distributed setting. The results are
2038
+ collected from the local machine without NVLink by using batch size 32, and sequence length 128.
2039
+ Distributed Setting
2040
+ w/o
2041
+ A1
2042
+ A2
2043
+ T1
2044
+ T2
2045
+ T3
2046
+ T4
2047
+ TP=1, PP=4
2048
+ 73.19
2049
+ 72.94
2050
+ 72.58
2051
+ 75.98
2052
+ 74.15
2053
+ 73.62
2054
+ 74.86
2055
+ TP=2, PP=2
2056
+ 100.86
2057
+ 107.73
2058
+ 100.54
2059
+ 113.59
2060
+ 117.36
2061
+ 114.86
2062
+ 112.11
2063
+ TP=4, PP=1
2064
+ 100.73
2065
+ 107.90
2066
+ 115.18
2067
+ 129.31
2068
+ 124.94
2069
+ 136.18
2070
+ 133.91
2071
+ Distributed Setting
2072
+ R1
2073
+ R2
2074
+ R3
2075
+ R4
2076
+ Q1
2077
+ Q2
2078
+ Q3
2079
+ TP=1, PP=4
2080
+ 82.45
2081
+ 94.84
2082
+ 123.78
2083
+ 239.81
2084
+ 73.33
2085
+ 74.41
2086
+ 71.80
2087
+ TP=2, PP=2
2088
+ 235.02
2089
+ 366.59
2090
+ 769.47
2091
+ 2,183.39
2092
+ 111.61
2093
+ 106.75
2094
+ 101.25
2095
+ TP=4, PP=1
2096
+ 238.28
2097
+ 368.45
2098
+ 733.03
2099
+ 2,509.73
2100
+ 120.14
2101
+ 114.73
2102
+ 118.98
2103
+ Table 14. The total time (ms) for fine-tuning with various compression techniques by varying the distributed setting. The results are
2104
+ collected from the local machine without NVLink by using batch size 8, and sequence length 128.
2105
+
2106
+ Does compressing activations help model parallel training?
2107
+ Compression
2108
+ Algorithm
2109
+ MNLI-(m/mm)
2110
+ QQP
2111
+ SST-2
2112
+ MRPC
2113
+ CoLA
2114
+ QNLI
2115
+ RTE
2116
+ STS-B
2117
+ w/o
2118
+ 87.87/88.02
2119
+ 91.96
2120
+ 95.18
2121
+ 87.71
2122
+ 59.40
2123
+ 92.99
2124
+ 76.90
2125
+ 88.43
2126
+ A1
2127
+ 85.30/85.33
2128
+ 91.28
2129
+ 92.32
2130
+ 84.58
2131
+ 55.18
2132
+ 90.87
2133
+ 59.93
2134
+ 87.92
2135
+ A2
2136
+ 85.25/85.19
2137
+ 91.41
2138
+ 93.23
2139
+ 86.72
2140
+ 57.02
2141
+ 90.92
2142
+ 64.26
2143
+ 87.74
2144
+ T1
2145
+ 34.38/34.01
2146
+ 72.29
2147
+ 49.54
2148
+ 70.38
2149
+ 36.64
2150
+ 59.89
2151
+ 53.43
2152
+ 70.81
2153
+ T2
2154
+ 40.10/38.97
2155
+ 58.91
2156
+ 79.24
2157
+ 66.49
2158
+ 0.00
2159
+ 80.40
2160
+ 45.49
2161
+ 11.32
2162
+ T3
2163
+ 68.76/69.23
2164
+ 64.58
2165
+ 91.40
2166
+ 80.93
2167
+ 0.00
2168
+ 67.34
2169
+ 66.43
2170
+ 69.24
2171
+ T4
2172
+ 84.24/85.23
2173
+ 89.17
2174
+ 92.09
2175
+ 81.68
2176
+ 51.54
2177
+ 91.71
2178
+ 63.54
2179
+ 84.80
2180
+ Q1
2181
+ 86.85/87.58
2182
+ 91.50
2183
+ 93.58
2184
+ 86.96
2185
+ 59.20
2186
+ 92.24
2187
+ 59.57
2188
+ 86.89
2189
+ Q2
2190
+ 87.46/88.02
2191
+ 91.82
2192
+ 94.95
2193
+ 87.48
2194
+ 57.02
2195
+ 93.36
2196
+ 68.95
2197
+ 87.84
2198
+ Table 15. Fintune results over GLUE dataset under the setting using tensor parallelism size 2, pipeline parallelism size 2, batch size
2199
+ 32, and sequence length 128. F1 scores are reported for QQP and MRPC, Matthews correlation coefficient is reported for CoLA, and
2200
+ Spearman correlations are reported for STS-B, and accuracy scores are reported for the other tasks.
2201
+ Compression
2202
+ Algorithm
2203
+ MNLI-(m/mm)
2204
+ QQP
2205
+ SST-2
2206
+ MRPC
2207
+ CoLA
2208
+ QNLI
2209
+ RTE
2210
+ STS-B
2211
+ w/o
2212
+ 86.23/86.07
2213
+ 91.22
2214
+ 91.74
2215
+ 88.17
2216
+ 59.02
2217
+ 92.09
2218
+ 78.70
2219
+ 88.40
2220
+ A1
2221
+ 82.49/82.41
2222
+ 89.93
2223
+ 91.85
2224
+ 82.43
2225
+ 43.56
2226
+ 89.84
2227
+ 47.29
2228
+ 87.03
2229
+ A2
2230
+ 82.18/82.23
2231
+ 90.45
2232
+ 90.52
2233
+ 83.54
2234
+ 0.00
2235
+ 89.02
2236
+ 62.82
2237
+ 87.66
2238
+ T1
2239
+ 36.69/38.13
2240
+ 66.85
2241
+ 55.32
2242
+ 68.93
2243
+ 0.00
2244
+ 59.13
2245
+ 52.71
2246
+ 1.97
2247
+ T2
2248
+ 43.92/43.66
2249
+ 73.63
2250
+ 51.26
2251
+ 62.26
2252
+ 0.00
2253
+ 60.13
2254
+ 49.82
2255
+ 0.00
2256
+ T3
2257
+ 49.07/47.96
2258
+ 72.02
2259
+ 83.57
2260
+ 69.33
2261
+ 12.04
2262
+ 83.60
2263
+ 55.60
2264
+ 84.96
2265
+ T4
2266
+ 83.99/84.37
2267
+ 35.78
2268
+ 68.30
2269
+ 83.54
2270
+ 47.33
2271
+ 60.52
2272
+ 64.62
2273
+ 86.72
2274
+ Q1
2275
+ 84.91/85.18
2276
+ 90.54
2277
+ 92.43
2278
+ 85.91
2279
+ 53.25
2280
+ 60.68
2281
+ 57.04
2282
+ 87.91
2283
+ Q2
2284
+ 85.66/86.09
2285
+ 90.99
2286
+ 91.74
2287
+ 86.84
2288
+ 53.92
2289
+ 91.31
2290
+ 75.81
2291
+ 88.19
2292
+ Table 16. Fintune results over GLUE dataset under the setting using tensor parallelism size 2, pipeline parallelism size 2, batch size 8, and
2293
+ sequence length 128. F1 scores are reported for QQP and MRPC, Matthews correlation coefficient is reported for CoLA, and Spearman
2294
+ correlations are reported for STS-B, and accuracy scores are reported for the other tasks.
2295
+
B9E0T4oBgHgl3EQfyAKb/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
B9E5T4oBgHgl3EQfTg8R/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95df99ef4158266f8b0a68ee3b04eff385102cf8b84f97ebbc02c5317eb9ce5a
3
+ size 4653101
B9FRT4oBgHgl3EQfvjiF/content/tmp_files/2301.13635v1.pdf.txt ADDED
@@ -0,0 +1,1186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Highlights
2
+ Active Learning-based Domain Adaptive Localized Polynomial Chaos Expansion
3
+ Lukáš Novák, Michael D. Shields, Václav Sadílek, Miroslav Voˇrechovský
4
+ • Effective construction of a general purpose surrogate model based on polynomial chaos expansion.
5
+ • Novel method for sequential decomposition of the input random space and construction of local approxi-
6
+ mations.
7
+ • Sequential domain decomposition and sample size extension based on an active learning methodology.
8
+ • Active learning is represented by variance-based Θ criterion developed for polynomial chaos expansion.
9
+ arXiv:2301.13635v1 [cs.LG] 31 Jan 2023
10
+
11
+ Active Learning-based Domain Adaptive Localized Polynomial Chaos
12
+ Expansion
13
+ Lukáš Novák∗
14
+ Brno University of Technology, Brno, Czech Republic
15
+ Michael D. Shields
16
+ Johns Hopkins University, Baltimore, USA
17
+ Václav Sadílek, Miroslav Voˇrechovský
18
+ Brno University of Technology, Brno, Czech Republic
19
+ Abstract
20
+ The paper presents a novel methodology to build surrogate models of complicated functions by an active learning-
21
+ based sequential decomposition of the input random space and construction of localized polynomial chaos expan-
22
+ sions, referred to as domain adaptive localized polynomial chaos expansion (DAL-PCE). The approach utilizes
23
+ sequential decomposition of the input random space into smaller sub-domains approximated by low-order poly-
24
+ nomial expansions. This allows approximation of functions with strong nonlinearties, discontinuities, and/or sin-
25
+ gularities. Decomposition of the input random space and local approximations alleviates the Gibbs phenomenon
26
+ for these types of problems and confines error to a very small vicinity near the non-linearity. The global behavior
27
+ of the surrogate model is therefore significantly better than existing methods as shown in numerical examples.
28
+ The whole process is driven by an active learning routine that uses the recently proposed Θ criterion to assess
29
+ local variance contributions [1]. The proposed approach balances both exploitation of the surrogate model and
30
+ exploration of the input random space and thus leads to efficient and accurate approximation of the original
31
+ mathematical model. The numerical results show the superiority of the DAL-PCE in comparison to (i) a single
32
+ global polynomial chaos expansion and (ii) the recently proposed stochastic spectral embedding (SSE) method
33
+ [2] developed as an accurate surrogate model and which is based on a similar domain decomposition process.
34
+ This method represents general framework upon which further extensions and refinements can be based, and
35
+ which can be combined with any technique for non-intrusive polynomial chaos expansion construction.
36
+ Keywords: Polynomial Chaos Expansion, Adaptive Sampling, Sequential Sampling, Local Approximations,
37
+ Active Learning, Stochastic Spectral Embedding
38
+ 1. Introduction
39
+ The Polynomial Chaos Expansion (PCE), originally proposed by Norbert Wiener [3] and further investigated
40
+ in the context of engineering problems by many researchers, e.g. [4, 5], is a preferred method for uncertainty
41
+ quantification (UQ) and surrogate modeling in industrial applications [6, 7] thanks to its efficiency and powerful
42
+ post-processing. Once a PCE is available for a given problem, the constructed explicit function can be exploited
43
+ ∗Corresponding author
44
+ Email addresses: [email protected] (Lukáš Novák), [email protected] (Michael D. Shields),
45
+ [email protected] (Václav Sadílek), [email protected] (Miroslav Voˇrechovský)
46
+ Preprint submitted to Computer Methods in Applied Mechanics and Engineering
47
+ February 1, 2023
48
+
49
+ to directly estimate important properties of the original problem including its statistical moments, response prob-
50
+ ability distribution or sensitivity indices (without additional sampling [8]), which brings significant efficiency for
51
+ surrogate modeling, sensitivity analysis, uncertainty quantification and reliability analysis [9].
52
+ The PCE, in its non-intrusive form, offers a convenient way to perform probabilistic analysis of any black-box
53
+ model, e.g. finite element models representing complex physical systems in engineering. There are generally
54
+ two types of non-intrusive methods to calculate the deterministic PCE coefficients: spectral projection and lin-
55
+ ear regression. The spectral projection approach utilizes the orthogonality of the multivariate polynomials and
56
+ calculates the coefficients using inner products. The spectral projection leads to an explosion of computational
57
+ complexity referred to as the curse of dimensionality. Therefore, the non-intrusive approach based on linear re-
58
+ gression is often preferred. Although it is typically less expensive than the spectral projection (the number of
59
+ samples should be at least � (P ln(P)), where P is the number of terms in the PCE [10, 11]), it suffers from the
60
+ curse of dimensionality as well, since the number of PCE terms grows rapidly with both dimension and maximum
61
+ polynomial order. Therefore, it becomes necessary to employ advanced adaptive techniques to construct sparse
62
+ PCEs that yield efficient solutions for real-world physical systems.
63
+ Regression-based PCE can be significantly affected by the selected sampling scheme, as was recently shown
64
+ in an extensive review paper [12] comparing several general statistical sampling techniques. However, PCE
65
+ construction as a linear regression model is a very problem specific task and it can be highly beneficial to use
66
+ methods that exploit information from the given mathematical model and sequentially update the surrogate
67
+ model – referred to as active learning. Active learning is a common approach for surrogate-based reliability
68
+ analysis, wherein an initial experimental design is iteratively updated based on the current estimate of the limit-
69
+ state surface [13, 14, 15]. Active learning for reliability analysis with PCE was used e.g. in [16, 17, 18]. For
70
+ general UQ studies, some recent studies have focused on general sequential sampling for PCE based on space-
71
+ filling criteria or alphabetical optimality [19, 20]. However, it is beneficial to use both exploitation (leveraging
72
+ model behavior) criteria and exploration (space filling) criteria to define an optimally balanced criterion [21].
73
+ Such sequential sampling for sparse Bayesian learning PCE combining both aspects – epistemic uncertainty of
74
+ the statistical inference (exploration) together with quadratic loss function (local exploitation) – was recently
75
+ proposed in [22]. However, its application is limited to PCE built by sparse Bayesian learning only.
76
+ The authors of this paper recently proposed a general active learning method based on sequential adaptive
77
+ variance-based sampling [1], which is an efficient tool for accurate surrogate modeling that is sufficiently general
78
+ for further extension [23]. Although this approach leads to superior results in comparison to standard approaches
79
+ without active learning, it is limited by the inherently smooth nature of the PCE. More specifically, polynomial
80
+ basis functions are not able to approximate functions with discontinuities or singularities. Moreover, it is nec-
81
+ essary to use high-order polynomials to approximate functions with local non-linearities, even when the rest of
82
+ the input random space could be easily approximated by a low-order PCE. This can lead to spurious oscillations
83
+ in the approximation and over-fitting. To overcome this limitation, we propose a method to construct localized
84
+ PCEs based on the concept of divide-and-conquer, i.e. decomposition of the input random space to sub-domains
85
+ approximated by many low-order PCEs instead of a single high-order global PCE. Although this concept is not
86
+ entirely new in stochastic finite elements [24] and stochastic collocation [25, 26], there is no such approach
87
+ for non-intrusive PCE. However there are two primary techniques based on similar concepts as described in the
88
+ following section.
89
+ 1.1. Related Developments
90
+ Stochastic Spectral Embedding (SSE) [2] is a general approximation technique based on a decomposition of
91
+ the input random space and the construction of embedded local approximations. Although it is generally possible
92
+ to use any spectral approximation technique, it is beneficially coupled with PCE. SSE is based on a novel idea of
93
+ embedding – instead of constructing local approximations of the original mathematical model, local surrogates
94
+ are constructed to approximate the residuals between the model and approximation from the previous level of
95
+ the decomposed space. Although such an approach can lead to significant improvement in comparison to a single
96
+ global approximation [2], it is not a sequential approach based on active learning and thus it does not iteratively
97
+ reflect new information obtained from the previous steps of the algorithm. Active learning is crucial in analysis of
98
+ functions with discontinuity or singularity because it allows for the aforementioned exploration and exploitation
99
+ necessary to find and resolve these features. For the sake of completeness, active learning for SSE has been
100
+ 2
101
+
102
+ proposed for reliability analysis [27], but it does not lead to an accurate approximation over the entire input
103
+ random space. Its accuracy is limited to regions around the limit surface, which are important for an estimation
104
+ of failure probability.
105
+ The second related technique is Multi-element generalized Polynomial Chaos Expansion (ME-gPC) [28]. ME-
106
+ gPC was developed as an extension of generalized PCE based on Wiener-Askey scheme [29] allowing analysis of
107
+ models with arbitrary distribution of input random vector. The ME-gPC method consists of three main parts: de-
108
+ composition of the input random space, numerical construction of locally orthogonal polynomials and an adaptive
109
+ procedure based on the decay rate of local error in estimated variance derived from local PCE. ME-PCE applies
110
+ an h-type mesh refinement procedure akin to mesh refinement in finite element methods. By doing so, they
111
+ introduce a structured grid of uniform points in each new element and solve for the PCE coefficients. This can
112
+ be cumbersome and does not afford the flexibility to adaptively select sparse and near-optimal training points.
113
+ Moreover, we note that the ME-gPC was created mainly for uncertainty propagation in models with arbitrary
114
+ input distributions, and thus in contrast to SSE, its objective is not necessarily to construct the best possible sur-
115
+ rogate model using adaptive algorithms, but rather to minimize errors in response statistics. This is a subtle, but
116
+ important difference that distinguishes its use as a predictive tool from that of a tool for statistical estimation.
117
+ 1.2. Contributions of this paper
118
+ This paper describes a novel method, termed Domain Adaptive Localized PCE (DAL-PCE) that applies adap-
119
+ tive sequential decomposition of the input random space and adaptive sequential sampling within the sub-
120
+ domains. Both of these features are based on recently a proposed criterion for variance-based sequential sta-
121
+ tistical sampling, developed specifically for PCE in [30]. In the context of previously described methods SSE and
122
+ ME-gPC, the proposed novel approach can be though to lie between them. Like SSE, it is developed specifically
123
+ for the construction of accurate surrogate models, especially for functions with high non-linearity or disconti-
124
+ nuity. But the decomposition of the input random space is rather similar to ME-gPC. The uniqueness of our
125
+ proposal lies in the combination of active learning, sequential sampling, sequential decomposition of the input
126
+ space and regression-based PCE using sparse solvers such as Least Angle Regression (LARS) allowing adaptivity
127
+ and learning in each iteration of the proposed algorithm.
128
+ 2. Polynomial Chaos Expansion
129
+ Assume a probability space (Ω,F,P), where Ω is an event space, F is a σ-algebra on Ω and P is a probability
130
+ measure on F. If the input variable of a mathematical model, Y = f (X), is a random variable X(ω),ω ∈ Ω, the
131
+ model response Y (ω) is also a random variable. Assuming that Y has a finite variance, PCE represents the output
132
+ variable Y as a function of an another random variable ξ called the germ with a known distribution
133
+ Y = f (X) = f PCE(ξ),
134
+ (1)
135
+ and represents the function f (X) via infinite polynomial expansion. A set of polynomials, orthogonal with respect
136
+ to the distribution of the germ, are used as a basis of the Hilbert space L2 (Ω,F,P) of all real-valued random
137
+ variables of finite variance, where P takes over the meaning of the probability distribution. The orthogonality
138
+ condition is given by the inner product of L2 (Ω,F,P) defined for any two functions ψj and ψk for all j ̸= k
139
+ with respect to the weight function pξ (probability density function of ξ) as:
140
+ 〈ψj,ψk〉 =
141
+
142
+ ψj(ξ)ψk(ξ)pξ(ξ) dξ = 0.
143
+ (2)
144
+ This means that there are specific orthogonal polynomials associated with the corresponding distribution of
145
+ the germ via its weighting function. For example, Hermite polynomials orthogonal to the Gaussian measure are
146
+ associated with normally distributed germs. Orthogonal polynomials corresponding to other distributions can
147
+ be chosen according to Wiener-Askey scheme [29] or constructed numerically [31]. For further processing, it is
148
+ beneficial to use normalized polynomials (orthonormal), where the inner product of ith and jth polynomials is
149
+ equal to the Kronecker delta δjk, i.e. δjk = 1 if and only if j = k, and δjk = 0 otherwise.
150
+ 3
151
+
152
+ In the case of XXX and ξ being vectors containing M independent random variables, the polynomial Ψ(ξ) is
153
+ multivariate and it is built up as a tensor product of univariate orthonormal polynomials, i.e.
154
+ Ψααα(ξ) =
155
+ M
156
+
157
+ i=1
158
+ ψαi(ξi),
159
+ (3)
160
+ where ααα ∈ �M is a set of integers called the multi-index reflecting polynomial degrees associated to each ξi. The
161
+ quantity of interest (QoI), i.e. the response of the mathematical model Y = f (XXX), can then be represented as [5]
162
+ Y = f (XXX) =
163
+
164
+ ααα∈�M
165
+ βαααΨααα(ξ),
166
+ (4)
167
+ where βααα are deterministic coefficients and Ψααα are multivariate orthonormal polynomials.
168
+ 2.1. Non-intrusive computation of PCE coefficients
169
+ For practical computation, the PCE expressed in Eq. (4) must be truncated to a finite number of terms P.
170
+ One can generally choose any truncation rule (e.g. tensor product of polynomials up to the selected order p),
171
+ but the most common truncation is achieved by retaining only terms whose total degree |ααα| is less than or equal
172
+ to a given p, in which case the truncated set of PCE terms is then defined as
173
+ AM,p =
174
+
175
+ ααα ∈ �M : |ααα| =
176
+ M
177
+
178
+ i=1
179
+ αi ≤ p
180
+
181
+ .
182
+ (5)
183
+ The cardinality of the truncated index set AM,p is given by
184
+ card AM,p = (M + p)!
185
+ M! p!
186
+ ≡ P .
187
+ (6)
188
+ When the PCE is truncated to a finite number of terms, there is an error ϵ in the approximation such that
189
+ Y = f (XXX) =
190
+
191
+ ααα∈A
192
+ βαααΨααα(ξ) + ϵ .
193
+ From a statistical point of view, PCE is a simple linear regression model with intercept. Therefore, it is possible
194
+ to use ordinary least squares (OLS) regression to minimize the error ϵ.
195
+ Knowledge of vector βββ fully characterizes the approximation via PCE. To solve for βββ, first it is necessary to
196
+ create Nsim realizations of the input random vector XXX and the corresponding results of the original mathematical
197
+ model Y, together called the experimental design (ED). Then, the vector of P deterministic coefficients βββ can be
198
+ determined by OLS as
199
+ βββ = (Ψ TΨ)−1 Ψ TY,
200
+ (7)
201
+ where Ψ is the data matrix
202
+ Ψ =
203
+
204
+ Ψi j = Ψj(ξ(i)), i = 1,..., Nsim, j = 0,..., P − 1
205
+
206
+ .
207
+ (8)
208
+ A well-known problem, the curse of dimensionality, states that P is highly dependent on the number of input
209
+ random variables M and the maximum total degree of polynomials p, which is clear from Eq. (6). Considering
210
+ that estimation of βββ by regression requires at least � (P ln(P)) number of samples for stable solution [10, 11],
211
+ the problem can become computationally highly demanding in case of a large or strongly non-linear stochastic
212
+ models. Although one can use advanced model selection algorithms such as Least Angle Regression (LAR) [32, 4],
213
+ orthogonal matching pursuit [33] or Bayesian compressive sensing [34] to find an optimal set of PCE terms, and
214
+ thus reduce the number of samples needed to compute the unknown coefficients, the benefit of these techniques
215
+ is significant only if the true coefficient vector is sparse or compressible. The sparse set of basis functions obtained
216
+ by any adaptive algorithm is further denoted by A for the sake of clarity.
217
+ 4
218
+
219
+ 2.2. Approximation Error Estimation
220
+ Once the PCE is constructed, it is crucial to estimate its accuracy. Further, the PCE accuracy can be used
221
+ to directly compare several PCEs to choose the best surrogate model. Ideally the ED should be divided into
222
+ validation and training sets, but this might be extremely computationally demanding in engineering applications
223
+ with complex numerical models. Therefore in the field of uncertainty quantification (UQ) of engineering models,
224
+ it is preferred to estimate the approximation error directly from the training set, without any additional sampling
225
+ of the original model. A common choice is the coefficient of determination R2, which is well-known from machine
226
+ learning or statistics. However, R2 may lead to over-fitting and thus advanced methods should be used. One of
227
+ the most widely-used methods is the leave-one-out cross-validation (LOO-CV) error Q2. The LOO-CV is based on
228
+ residuals between the original surrogate model and the surrogate model built with the ED while excluding one
229
+ realization. This approach is repeated for all realizations in the ED and the average error is estimated. Although
230
+ the calculation of Q2 is typically highly time-consuming, it is possible to obtain results analytically from a single
231
+ PCE as follows [35]:
232
+ Q2 =
233
+ 1
234
+ Nsim
235
+ Nsim
236
+
237
+ i=1
238
+
239
+ g
240
+
241
+ x (i)�
242
+ − gPCE �
243
+ x (i)�
244
+ 1 − hi
245
+ �2
246
+ σ2
247
+ Y,ED
248
+ ,
249
+ (9)
250
+ where σ2
251
+ Y,ED is the variance of the ED calculated using the original mathematical model and hi represents the ith
252
+ diagonal term of matrix H = Ψ
253
+
254
+ Ψ TΨ
255
+ �−1 Ψ T.
256
+ 2.3. Statistical Moments Derived from PCE
257
+ The form of PCE as a linear summation over orthonormal polynomials allows for powerful and efficient
258
+ post-processing. In particular, once a PCE approximation is created, it is possible to directly estimate statistical
259
+ moments of the output from the expansion.
260
+ The first statistical moment (the mean value) is simply the first deterministic coefficient of the expansion
261
+ µY =
262
+
263
+ Y 1�
264
+ = β000. The second raw statistical moment,
265
+
266
+ Y 2�
267
+ , can be estimated by
268
+
269
+ Y 2�
270
+ =
271
+ � ��
272
+ ααα∈A
273
+ βαααΨααα (ξ)
274
+ �2
275
+ pξ (ξ) dξ =
276
+
277
+ ααα1∈A
278
+
279
+ ααα2∈A
280
+ βααα1βααα2
281
+
282
+ Ψααα1 (ξ)Ψααα2 (ξ) pξ (ξ) dξ
283
+ (10)
284
+ =
285
+
286
+ ααα∈A
287
+ β2
288
+ ααα
289
+
290
+ Ψααα (ξ)2pξ (ξ) dξ =
291
+
292
+ ααα∈A
293
+ β2
294
+ ααα 〈Ψααα,Ψααα〉.
295
+ Considering the orthonormality of the polynomials, it is possible to obtain the variance σ2
296
+ Y =
297
+
298
+ Y 2�
299
+ − µ2
300
+ Y as the
301
+ sum of all squared deterministic coefficients except the intercept (which represents the mean value), i.e.
302
+ σ2
303
+ Y =
304
+
305
+ ααα∈A
306
+ ααα̸=000
307
+ β2
308
+ ααα.
309
+ (11)
310
+ Note that the computation of higher statistical central moments, specifically skewness γY (3rd moment) and
311
+ kurtosis κY (4th moment), are more complicated since they require triple and quad products. These can be
312
+ obtained analytically only for certain polynomial families, e.g. formulas for Hermite and Legendre polynomials
313
+ (and their combination) can be found in [30].
314
+ 3. Active Learning-based Domain Adaptive Localized PCE (DAL-PCE)
315
+ In this section, we propose a novel methodology to constructed localized PCEs designed for highly non-linear
316
+ functions, termed Domain Adaptive Localized PCE (DAL-PCE). Instead of increasing the maximum polynomial
317
+ order p (p-adaptivity), which brings high computational requirements due to the curse of dimensionality, we
318
+ 5
319
+
320
+ propose to decompose the input random space into several sub-domains approximated by low-order PCEs (h-
321
+ adaptivity). Although this idea is not entirely new, we use this approach in combination with novel active learning
322
+ methods to identify domains for refinement and for sequential sample selection and regression-based PCEs. This
323
+ allows us to use any sparse adaptive solver (e.g. LAR) and thus it can be easily implemented into the existing
324
+ software packages [36, 37]. In the following sections, we define the requisite components of the proposed method
325
+ and provide an algorithm (Algorithm 1) for its implementation.
326
+ 3.1. Variance-based Adaptive Sequential Sampling
327
+ The decomposition of the input random space is a sequential process coupled with adaptive sampling assuring
328
+ optimal coverage of the sub-domains of interest. The whole process thus consists of two steps: (i) identification of
329
+ an important sub-domain, that is, a domain that is either large compared to other sub-domains or that is associated
330
+ with a high local variance; and (ii) identification of the best positions for additional samples extending the current
331
+ ED in the selected sub-domain. Each of these steps must be based on a criterion that balances exploration of the
332
+ input random space with exploitation of the surrogate model, which in our case is in the form of a PCE. The
333
+ Θ-criterion for adaptive sequential sampling, which is driven by the output variance and its approximation via
334
+ local variance using PCE [1], is employed for both steps. We will first discuss the process for adaptive sequential
335
+ sampling within a specified sub-domain in this section. This will be followed by the process for refinement of the
336
+ domain in the subsequent sections.
337
+ Consider a pool of candidate samples containing realizations of the random vector ξ generated by an arbitrary
338
+ sampling technique, e.g., Latin Hypercube Sampling (LHS) [38, 39] or Coherence sampling [40, 41, 10]. From
339
+ this pool of candidates, we select the best sample using a method inspired by the sequential sampling proposed in
340
+ [21] and based on Koksma-Hlawka inequality [42]. The Θ-criterion for PCE, which accounts for both variation
341
+ of the function and discrepancy of the samples, was proposed as follows [1]:
342
+ Θ(ξ(c)) ≡ Θc =
343
+
344
+ σ2
345
+ A(ξ(c)) · σ2
346
+ A(ξ(s))
347
+ ave variance density
348
+ l M
349
+ c,s
350
+ vol.
351
+
352
+
353
+ σ2
354
+ c · σ2
355
+ s l M
356
+ c,s.
357
+ (12)
358
+ The criterion is a product of two terms – the exploitation term (denoted as “ave variance density”) and the
359
+ exploration part (the distance term lc,s raised to the domain dimension) – which are multiplied to maintain an
360
+ optimal balance between exploration and exploitation [1].
361
+ The exploration aspect is maintained by accounting for the distance lc,s between a candidate ξ(c) and its nearest
362
+ neighboring realization from the existing ED, ξ(s) as
363
+ lc,s =
364
+
365
+
366
+
367
+ M
368
+
369
+ i=1
370
+ |ξ(c)
371
+ i
372
+ − ξ(s)
373
+ i |2.
374
+ (13)
375
+ If the criterion was reduced to this term only, sequential filling of the greatest empty regions would occur, con-
376
+ verging to uniform space coverage in the spirit of the space-filling “miniMax criterion” [43, 44, 45].
377
+ The exploitation component is motivated by the desire to sample points in regions with the greatest contribu-
378
+ tions to the total variance of the QoI σ2
379
+ Y , i.e. at points with the highest variance density. Once the PCE has been
380
+ established at any given stage of the algorithm, the variance density is computationally cheap to evaluate for any
381
+ location ξ as
382
+ σ2
383
+ A(ξ) =
384
+ � �
385
+ ααα∈A
386
+ ααα̸=000
387
+ βαααΨααα (ξ)
388
+ �2pξ (ξ).
389
+ (14)
390
+ The local variance is therefore estimated directly using the basis functions and coefficients β of the PCE. When
391
+ considering a candidate “c”, an estimate of the variance contribution of the region between the candidate and its
392
+ nearest neighbor “s” may be obtained by averaging the local variance densities between the two. Therefore, we
393
+ can say that the candidate with the greatest Θc criterion is the one that represents the largest amount of total
394
+ variance to be refined by its selection.
395
+ A significant advantage of this method is the ability to add candidates into an existing ED one-by-one. Thus,
396
+ it can be employed at any moment of the PCE construction process. Moreover, this learning function can be
397
+ 6
398
+
399
+ combined with any sampling algorithm for the construction of the initial ED and candidates for extension. The
400
+ ideas behind the Θ criterion will now be used in the proposed domain decomposition and ED extension algorithm.
401
+ 3.2. Decomposition of Input Random Space
402
+ The core of the proposed approach is a sequential decomposition of the input random space � for the construc-
403
+ tion of local approximations. This approach assumes that the original mathematical model can be approximated
404
+ by piecewise low-order PCEs that are valid only in individual sub-domains of �. Therefore, in the proposed ap-
405
+ proach, the input random space is sequentially decomposed into n� smaller non-overlapping sub-domains �i ⊂ �
406
+ that collectively fill the full input random space �, i.e.
407
+ n�
408
+
409
+ i=1
410
+ �i = �
411
+ such that
412
+ �i ∩ �j = �
413
+ ∀i, j
414
+ (15)
415
+ In each iteration of the algorithm, a single sub-domain �i (referred to as the parent) is identified for refinement
416
+ and divided by a plane perpendicular to the direction of one selected input random variable. Specifically, �i is
417
+ divided into a refinement-child �i, which is further processed, and an inheriting-child �⋆
418
+ i adopting the PCE from
419
+ the parent as illustrated for a one-dimensional function in Fig. 1. In this case, we see that the space is divided
420
+ into two subdomains. In the left (refinement child) a new PCE is constructed. In the right (inheriting child), the
421
+ original PCE is retained. Such process assures an exhaustive decomposition into disjoint subsets i.e. �i = �i⊕�⋆
422
+ i .
423
+ This sequential domain decomposition is illustrated in Fig. 2, which depicts the original input random space and
424
+ the first four iterations of the decomposition process.
425
+ Figure 1: The first iteration of the algorithm: the original sub-domain is split and the new local PCE is constructed in �i (red background),
426
+ while the second part in �⋆
427
+ i inherits the PCE approximation from the original domain.
428
+ In contrast to SSE [2], the selection of a single sub-domain for refinement in each iteration is based on an active
429
+ learning approach, the details of which are provided in subsequent sections. Importantly, actively integrating
430
+ information from the original mathematical model leads to a significantly more effective decomposition of the
431
+ space and thus assures accurate approximations, even for small-size EDs. On the other hand, the identified
432
+ decomposition and the associated ED are directly connected to the given mathematical model and therefore
433
+ might be inefficient for general statistical analysis.
434
+ The complete surrogate model is assembled from the n� local PCEs associated with all sub-domains �i as:
435
+ Y ≈
436
+ n�
437
+
438
+ i=0
439
+
440
+ αααi∈Ai
441
+ βαααiΨαααi(ξ)��i(ξ),
442
+ (16)
443
+ where ��i(ξ) represents indicator function, i.e. ��i(ξ) = 1 only if ξ ∈ �i and ��i(ξ) = 0 otherwise. In other
444
+ words, to approximate the original model at any point, it suffices to determine the one relevant sub-domain and
445
+ use the corresponding local PCE. Each such local PCE has its own set of basis functions Ai and corresponding co-
446
+ efficients βαααi, which can be obtained by any model-selection algorithm. In this paper the OLS and LAR algorithms
447
+ are employed, but generally any non-intrusive technique can be used.
448
+ 7
449
+
450
+ Figure 2: The first four steps of the decomposition of a 3D space of input random variables. The thick black lines outline the parent domain
451
+ selected for division. The red and green boxes inside it represent the two newly created refinement-child �i (red) and inheriting-child �⋆
452
+ i
453
+ (green) sub-domains created by splitting the parent domain �i (bold boundaries), selected via Eq. (17), by the cutting plane (blue). The
454
+ cutting plane is perpendicular to the variable selected for splitting (blue arrow).
455
+ 3.3. Domain Selection via Modified Variance-based Criterion
456
+ The selection process to identify the “best” subdomain for possible division is governed by extending the
457
+ Θ-criterion from Eq. (12) as follows:
458
+ Θi = Wi · exp(Q2
459
+ i )
460
+ weight of subdomain
461
+ ·
462
+
463
+ σ2
464
+ Ai(ξ(c)) · σ2
465
+ Ai(ξ(s)) l M
466
+ c,s
467
+ Θc in ith subdomain
468
+ .
469
+ (17)
470
+ This extended criterion aims to identify sub-domains of the input random space associated with the maximum
471
+ value of Θc, while simultaneously accounting for the size of each subdomain and the accuracy of the existing
472
+ local PCE. The former is calculated using Eq. (12) calculated for a rich pool of screening global candidates,
473
+ while the latter are measured by incorporating the volume of each sub-domain Wi and the LOO-CV error Q2
474
+ i ,
475
+ respectively. The LOO-CV term, exp(Q2
476
+ i ), can be thought to artificially inflate the domain volume as a penalization
477
+ for inaccurate approximation. When the approximation is perfect (Q2
478
+ i = 0) the true volume of the sub-domain is
479
+ used. Meanwhile, a poor approximation with Q2
480
+ i = 1 leads to roughly 2.72 times increased volume.
481
+ The three terms featured in Eq. (17) aim at different aspects affecting the accuracy of the final surrogate
482
+ model: large sub-domains are preferred by Wi, sub-domains containing poor PCE approximation are promoted
483
+ via exp(Q2
484
+ i ) and finally, Θc prefers sub-domains with high concentration of variance. Note that Θc is calculated
485
+ for a rich pool of screening candidates, and Wi and exp(Q2
486
+ i ) are calculated directly from the geometry of existing
487
+ sub-domain and the local PCE model, respectively. The product of all three terms in the extended criterion
488
+ therefore maintains the desired balance and assures the selection of the sub-domain, �i, that currently seems to
489
+ be the most important for increasing the accuracy of the PCE surrogate model.
490
+ Sub-domain � with the greatest Θi is selected and one of the operations described in detail in Sec. 3.6 is
491
+ performed, depending on whether �i contains a critical number of ED points. Two scenarios can occur:
492
+ • �i contains a sufficient number of ED points (ni ≥ nsim) to ensure accuracy of a PCE on the domain.
493
+ Therefore, it becomes a parent �i (bold boundaries in Fig. 2) and is divided into two parts by a selected
494
+ rule. The child domain containing the decisive candidate with the greatest Θc becomes the refinement-child
495
+ �i (see the red subdomains in steps 1 − 4 in Fig. 2). The remaining volume becomes an inheriting-child
496
+ denoted �⋆
497
+ i (see the green subdomains in Fig. 2), which retains the PCE from the parent. Division occurs
498
+ by a cutting plane, oriented perpendicular to the selected direction (blue arrows in Fig. 2) and naturally, the
499
+ coordinates of the cutting plane are restricted to the bounding box of the selected parent �i, see Sec. 3.6.
500
+ If needed, the refinement-child domain �i is sequentially filled with additional ED points (according to Θc)
501
+ to reach ni = nsim needed to construct a new PCE approximation.
502
+ • �i does not contain a sufficient number of ED points (ni < nsim). The domain is not divided because the
503
+ suggestion for division is based on insufficient information. Instead, new ED points are sequentially added
504
+ to �i, again using the Θc criterion. Note that this scenario practically arises when the selected domain was
505
+ an inheriting-child in the previous iteration. In this case, the selected domain has inherited a PCE model
506
+ that was constructed over a larger domain. When that domain was divided, it was left with an insufficient
507
+ number of points from which to construct a new PCE.
508
+ 8
509
+
510
+ 3.4. PCE Basis Functions
511
+ Without loss of generality, the proposed method operates on the M-dimensional unit hypercube with uniform
512
+ distributions of input random variables, i.e. XXX ∼ U[0,1]M. In the case of a general joint probability distribution
513
+ of XXX, it is always possible to transform input random vector to the unit hypercube by Rosenblatt transformation
514
+ [46], Nataf transformation [47] or various methods based on copulas [48]. Standard normalized Legendre
515
+ polynomials, orthonormal to the uniform distribution, can thus be used as basis functions for the PCE. However,
516
+ due to the decomposition of the input random space to smaller sub-domains, each with lower bound ai and upper
517
+ bound bi, it is necessary to use univariate scaled orthonormal Legendre polynomials of nth order ˜
518
+ ψn(ξ) defined
519
+ as follows:
520
+ ˜
521
+ ψn(ξ) = ψn
522
+ �2ξ − ai − bi
523
+ bi − ai
524
+
525
+ ,
526
+ (18)
527
+ where ψn represents standard orthonormal Legendre polynomials. Naturally, the transformation of the original
528
+ input random vector to the unit hypercube might bring additional non-linearity, and thus one might prefer the
529
+ direct construction of polynomials locally orthonormal to the given original probability measure as proposed
530
+ in the Me-gPC [28]. While certainly possible, this brings additional computational demands and thus it is not
531
+ employed here.
532
+ 3.5. Local and Global Statistical Estimates from DAL-PCE
533
+ The significant advantage of PCE is that analytically post-processing of the expansion yields highly efficient
534
+ estimates of statistical moments [30], sensitivity indices [8] and LOO-CV [4]. In the proposed DAL-PCE, since
535
+ the original domain � is decomposed into a set of sub-domains (see Eq. (15)), standard analytical post-processing
536
+ can be applied locally and global characteristics can be obtained by simple weighted summations that converge
537
+ to the true values as n� increases. Specifically, the global mean value and variance of a QoI are obtained from
538
+ localized PCEs (denoted by subscript �i) as follows:
539
+ µY =
540
+ n�
541
+
542
+ i=1
543
+ Wiβ0i =
544
+ n�
545
+
546
+ i=1
547
+ Wiµ�i,
548
+ (19)
549
+ σ2
550
+ Y =
551
+ n�
552
+
553
+ i=1
554
+ Wi
555
+
556
+ αααi∈Ai
557
+ αααi̸=000
558
+ β2
559
+ αααi =
560
+ n�
561
+
562
+ i=1
563
+ Wiσ2
564
+ �i.
565
+ (20)
566
+ where the local mean µ�i and variance σ2
567
+ �i are obtained as described in Section 2.3.
568
+ Local Sobol’ indices, S�i, of any order can be derived directly from localized PCEs and their first-order (main
569
+ effect) estimates are given by
570
+ S
571
+ X j
572
+ �i =
573
+ 1
574
+ σ2
575
+ �i
576
+
577
+ αααi∈A
578
+ X j
579
+ i
580
+ β2
581
+ αααi
582
+ A
583
+ X j
584
+ i
585
+ =
586
+
587
+ αααi ∈ Ai : αj
588
+ i > 0,αk̸=j
589
+ i
590
+ = 0
591
+
592
+ .
593
+ (21)
594
+ These local Sobol’ indices are used in the DAL-PCE to determine the cut direction (see Section 3.6). Likewise,
595
+ global Sobol’ indices can be obtained easily from weighted summation of local contributions to partial variances
596
+ normalized by σ2
597
+ Y as follows:
598
+ SX j =
599
+ �n�
600
+ i=1 Wi
601
+
602
+ αααi∈A
603
+ X j
604
+ i
605
+ β2
606
+ αααi
607
+ σ2
608
+ Y
609
+ .
610
+ (22)
611
+ Similarly, global LOO-CV, Q2, of a QoI can be approximated by the weighted summation of the local contributions
612
+ as
613
+ Q2 =
614
+ n�
615
+
616
+ i=1
617
+ WiQ2
618
+ �i,
619
+ (23)
620
+ where Q2
621
+ �i are obtained from each local PCE using Eq. (9).
622
+ These estimates are used throughout the proposed DAL-PCE, as described in detail next.
623
+ 9
624
+
625
+ 3.6. Numerical Algorithm
626
+ Based on the presented theoretical background, we now present the numerical algorithm for the domain
627
+ adaptive localized PCE. As mentioned above, the whole process can be divided to two iterative tasks: (i) decom-
628
+ position of the input random space and (ii) construction of localized PCEs. Both of these tasks are described in
629
+ the following paragraphs with specific reference to the steps in Algorithm 1.
630
+ Algorithm 1 DAL-PCE: Active Domain Decomposition and Construction of Localized PCEs
631
+ Input: maximum local polynomial order p, number of screening global candidates nc,g, number of local
632
+ candidates nc,l, number of iterations niter
633
+ 1: set the minimum number of realizations for local PCE construction nsim ∈ 〈P,2P〉
634
+ 2: generate a rich pool of nc,g screening candidates
635
+ 3: generate the initial ED (size nsim) and construct the initial global PCE
636
+ 4: for 1 to niter do
637
+ 5:
638
+ identify the sub-domain �i with the highest Θi based on screening candidates
639
+ 6:
640
+ ni ← number of ED samples existing in �i
641
+ 7:
642
+ if ni ≥ nsim then
643
+ 8:
644
+ the identified sub-domain �i becomes a parent �i
645
+ 9:
646
+ identify the direction of the highest first-order Sobol’ index S�i of the parent �i
647
+ 10:
648
+ restrict coordinates of �i → �i and create �⋆
649
+ i
650
+ 11:
651
+ ni ← number of ED samples existing in �i
652
+ 12:
653
+ end if
654
+ 13:
655
+ generate nc,l local candidates in �i
656
+ 14:
657
+ while ni < nsim do
658
+ 15:
659
+ extend size of local ED ni using the local Θc criterion
660
+ 16:
661
+ end while
662
+ 17:
663
+ reconstruct local PCEs in the �i
664
+ 18: end for
665
+ Output: list of subdomains and corresponding PCEs
666
+ The first task identifies the important sub-domain �i that should be divided and over which low-order local
667
+ PCE should be constructed. The sub-domain �i is specifically identified using the Θi criterion from Eq. (17),
668
+ which again incorporates three important characteristics for accurate surrogate modeling – the size of the sub-
669
+ domain Wi, the accuracy of the existing local PCE measured by Q2
670
+ �i, and the original Θc criterion measuring the
671
+ variance contribution in �i. While Wi and Q2
672
+ �i are computed for the whole sub-domain, Θc is computed at specific
673
+ realizations of input random vector. Therefore, it is necessary to cover the sub-domains by a sufficiently large
674
+ number of screening candidates, such that the total global number of screening candidates is given by nc,g. Based
675
+ on numerical experiments, we recommend nc,g ≥ 1000 M to ensure that each sub-domain contains a sufficient
676
+ number of screening candidates. Note that the screening candidates are used only to identify �i [step 5]. They
677
+ are not used for the ED, and thus even high nc,g does not bring any additional computational demand.
678
+ Once �i is identified, it is necessary to check whether there are enough samples to construct a PCE inside the
679
+ sub-domain. We start with finding out how many points belong to the selected domain �i [step 6]. If the number
680
+ of samples in the identified sub-domain, ni, is greater than (or equal to) nsim [step 7], a local PCE already exists
681
+ for �i. The subdomain is then assigned as a parent �i for division [step 8] and the first-order Sobol’ indices
682
+ are estimated by Eq. (22) [step 9]. This identified parent �i is divided in the direction of the highest first-order
683
+ Sobol’ index S
684
+ X j
685
+ �i . The new restricted coordinates of refinement-child �i are identified and the inheriting-child �⋆
686
+ i
687
+ is created [step 10]. Further, the number of ED samples ni in the refinement-child �i is determined [step 11]. On
688
+ the other hand, if the identified sub-domain �i does not contain enough samples (i.e. ni < nsim), the inherited
689
+ PCE from the previous iteration is not sufficiently local (it was trained over a domain that has since been divided)
690
+ and it is necessary to add new samples to �i before constructing a new local PCE.
691
+ The second task of the proposed algorithm is sequential sampling and adaptive PCE construction in sub-
692
+ domain �i. Recall that this domain may be either
693
+ 10
694
+
695
+ (i) a refinement-child that was just divided but does not contain a sufficient number of points (ni < nsim) or,
696
+ (ii) an inheriting-child that now does not contain at least nsim ED samples.
697
+ Next, a set of local candidates is generated in region �i [step 13]. To ensure sufficient assessment of the coverage
698
+ of the domain, the number of local candidates is empirically recommended as nc,l ∈ 〈3P,5P〉 [1]. From these
699
+ candidates, the standard Θc criterion in Eq. (12) is used to iteratively select the best candidates until there are
700
+ nsim samples in �i [step 14-16]. This sequential extension of the sample in �i is adaptive in the sense that the
701
+ pairwise distances in Eq. (12) between candidates and existing ED points are updated after the addition of each
702
+ new point. However, because ni < nsim the local variance densities are estimated from the previously existing
703
+ PCE, which cannot be updated until a sufficient number of samples are available in �i.
704
+ The last step of each iteration is to construct the local PCE using scaled Legendre polynomials as basis func-
705
+ tions (see Eq. (18)) [step 17]. Any non-intrusive technique can be used to estimate the coefficients βββ; we use LARS
706
+ and OLS for an adaptive construction of the local PCEs in this paper. At the end of the iteration, all sub-domains
707
+ are re-numbered and a list of sub-domains with corresponding PCEs can be exported or the next iteration can be
708
+ started.
709
+ 3.7. Adaptivity in PCE Construction and Domain Decomposition
710
+ Adaptivity is central to the proposed DAL-PCE. In the proposed algorithm, there are two types of adaptivity
711
+ employed:
712
+ (i) adaptivity in PCE construction (selection of the optimal set of basis functions), and
713
+ (ii) adaptivity in domain decomposition
714
+ Since the PCE can be constructed by any regression technique in each sub-domain, PCE adaptivity is incorporated
715
+ by sparse solvers and best model selection algorithms, e.g. Least Angle Regression [32], orthogonal matching
716
+ pursuit [33] or Bayesian compressive sensing [34]. Although sparse solvers are often used for PCE with high p,
717
+ this adaptivity is also important for reducing the number of basis functions (and thus the minimum number of ED
718
+ samples) for high-dimensional examples or, in our case, for very low-size ED in each �i approximated by low-p
719
+ local PCE.
720
+ The second type of adaptivity is the proposed adaptivity in the domain decomposition. At any point in the
721
+ iterative process, the existing ED samples can be used to construct local PCEs or a single global PCE. The DAL-
722
+ PCE is not guaranteed to provide a better approximation than the global PCE. This can be measured via Q2,
723
+ specifically by computing Q2
724
+ local from Eq. (23) and Q2
725
+ global from a single global PCE according to Eq. (9). If
726
+ Q2
727
+ local > Q2
728
+ global at a given iteration, the domain decomposition is deemed to be poor and the whole decomposition
729
+ process is re-started. That is, the complete geometrical decomposition is forgotten and all existing ED points
730
+ are taken as an initial ED for a brand new run of the algorithm. This is illustrated in Fig. 3 which shows the
731
+ decomposition (top) and the associated error (bottom) right before the restart a) at Nsim = 181, b) the new
732
+ decomposition and error right after the restart, and c) the final decomposition/error which shows significant
733
+ improvement over the global PCE. These histories show the standard R2 error defined in Eq. (24). It is not
734
+ necessary to check this criterion at every iteration, but it is suggested to check it periodically, every nr steps, to
735
+ ensure adequate local refinement.
736
+ 3.8. Stopping Criteria
737
+ The proposed DAL-PCE algorithm can be fully automated by adding an adequate stopping criterion. A simple
738
+ but practical stopping criterion is based on computational budget, i.e. once the total number of model evaluations
739
+ Nsim or number of iterations niter have reached a critical level/budget. One may also use a stopping criterion
740
+ based on decomposition pattern, e.g. the smallest or the largest volumes of any subdomain, to ensure a desired
741
+ resolution. Valuable stopping criterion can be also obtained directly from Q2, corresponding to a target/threshold
742
+ level of achieved accuracy. Regardless of the selected stopping criteria, it can easily be applied before step 5 of
743
+ the proposed algorithm (start of each iteration).
744
+ 11
745
+
746
+ Figure 3: Illustration of domain decomposition restart. a) decomposition and error evolution prior to restart, b) rebuilt decomposition and
747
+ error drop right after the restart, c) final decomposition and error showing that the restart unlocks a dramatic decrease in approximation
748
+ error.
749
+ 4. Numerical Experiments
750
+ The proposed DAL-PCE is presented on four numerical examples of increasing complexity and which illus-
751
+ trated different aspects of the approach. The obtained results are compared (a) to the standard global PCE
752
+ approach with adaptive maximum order p ∈ [5,25] and (b) to SSE [2], as current state-of-the-art non-intrusive
753
+ surrogate modeling technique based on the domain decomposition. The PCE is constructed using the UQPy pack-
754
+ age [36] and the original implementation of SSE is used from the UQLab package [37]. To compare methods,
755
+ the relative mean squared errors ε are calculated for all three approximations ˜f on a validation set containing
756
+ a large pool of 106 integration points generated by crude Monte Carlo according to:
757
+ ε(XXX) :=
758
+
759
+ ��
760
+ f (XXX) − ˜f (XXX)
761
+ �2�
762
+
763
+
764
+ f (XXX)
765
+
766
+ ,
767
+ (24)
768
+ where �[] and �[] are the mean value and variance operators, respectively.
769
+ To show representative results of the proposed DAL-PCE algorithm, the calculations were repeated 100 times,
770
+ and the same settings of the algorithm for all examples were selected as follows: maximum local polynomial
771
+ degree p = 2, number of global candidates nc,g = 1000 M, number of local candidates nc,l = 5P, minimum
772
+ number of samples for local PCE construction nsim = 1.5P, minimum number of iterations before checking for
773
+ restart nr = 20, and βββ are obtained by LARS and OLS algorithm. Minimum number of samples in sub-domains
774
+ required to justify an expansions for SSE was set identically to DAL-PCE and polynomial order is adaptively
775
+ selected in the range p ∈ [2,6]. Since the SSE is not a sequential approach, the presented results were obtained
776
+ for 10 discrete sample sets of increasing size to compare convergence of the method. Note that all samples and
777
+ candidates are generated by LHS for all compared approaches, though it was shown [1] that for the variance-
778
+ based sequential sampling, it is significantly better to use advanced techniques such as Coherence D-optimal
779
+ sampling [41].
780
+ 12
781
+
782
+ 4.1. One-dimensional Toy Example
783
+ The first example involves a simple 1D function [2] that is extremely difficult to approximate with PCE due
784
+ to the third, highly nonlinear “exp” term:
785
+ f (X) = −X + 0.1sin(30X) + exp(−(50(X − 0.65))2),
786
+ X ∼ U[0,1].
787
+ (25)
788
+ The poor performance of a single global PCE learned from 200 samples is depicted by the blue line in Fig. 4c
789
+ where it is clear that a single global PCE is not able to accurately approximate the function even for a high
790
+ number of samples and high maximum polynomial order p ∈ [5,25]. This function was originally developed to
791
+ demonstrate the efficiency of SSE based on domain decomposition and thus it is a natural choice for comparison
792
+ of the proposed DAL-PCE and SSE.
793
+ Fig. 4a-b show a typical realization of the DAL-PCE where the algorithm sequentially decomposes the domain
794
+ and adds additional samples to the ED. Specifically shown are the 4th and 11th iterations. The boundaries of
795
+ sub-domains are represented by blue vertical lines and red dots show the positions of samples in the ED. Once
796
+ the algorithm discovers the highly nonlinear region (the steep peak caused by exp), it progressively refines this
797
+ region and adds more samples there as a result of the high variance density. Of course, these figures show only
798
+ one realization of the algorithm and the decomposition is dependent on the initial ED. Therefore, it is necessary
799
+ to repeat the algorithm many times with random initial ED to assess convergence. Fig. 4d shows convergence
800
+ Figure 4: (a), (b) The adapted domain and ED before (iteration 4) and after (iteration 11) exploration and discovery of the exponential part
801
+ of the mathematical model. (c) Final surrogate models from global PCE and DAL-PCE. (d) Convergence plot comparing the mean square
802
+ error for global PCE SSE, and DAL-PCE. The convergence plots for Global PCE and DAL-PCE show continuous mean value ±σ intervals
803
+ from 100 repeated trials, while those for SSE are plotted for several discrete ED sizes.
804
+ of the error ε from 100 repeated trials. The single global PCE is unable to accurately approximate the original
805
+ function even when using high p and thus the ε does not converge, as expected. Both methods based on domain
806
+ decomposition (DAL-PCE and SSE) achieve great accuracy already for 200 samples. However, the DAL-PCE
807
+ consistently has 1–2 orders of magnitude higher accuracy than SSE for the given number of samples. Moreover,
808
+ increase in variance of ε is, in general, slower in DAL-PCE than in SSE. Fast increment in variance of SSE can
809
+ be seen also in the original paper [2]. Finally, we again observe that convergence is continuous with DAL-PCE,
810
+ where convergence can only be assessed at discrete sample sizes with SSE through a new analysis. All of these
811
+ 13
812
+
813
+ Figure 5: Results for the 2-dimensional Singularity function: a) original mathematical model, b) approximation via DAL-PCE (background
814
+ color), current domain division and the corresponding ED, c) local LOO-CV Q2
815
+ �i and Θi value for each sub-domain, d) convergence plots for
816
+ DAL-PCE, Global PCE, and SSE showing the mean value and ±σ interval. Convergence plots for SSE show the mean ±σ at discrete sample
817
+ sizes.
818
+ advantages of the DAL-PCE can be attributed to the active learning, which both explores the space and exploits
819
+ the behavior of the function to decompose the domain and add samples. Although active learning might lead to
820
+ lower accuracy (higher ε) initially (for small nsim = 10–20) as it is dominated by exploration, it rapidly improves
821
+ once it identifies important features and begins to favor exploitation.
822
+ 4.2. Two-dimensional Singularity
823
+ The second example involves a 2D function with mirrored quarter-circle arc line singularities [1]. The form
824
+ of the function is give by:
825
+ f (XXX) =
826
+ 1
827
+ |0.3 − X 2
828
+ 1 − X 2
829
+ 2| + δ −
830
+ 1
831
+ |0.3 − (1 − X1)2 − (1 − X2)2| + δ,
832
+ XXX ∼ U[0,1]2,
833
+ (26)
834
+ where the strength of the singularities is controlled by the parameter δ, which we set as δ = 0.1. The singularities
835
+ in this example represent a challenging task for a global PCE even with high order, due to the well-known Gibbs
836
+ phenomenon [49]. It is thus beneficial to identify the location of the singularity, locally decompose the domain,
837
+ and construct low-order local PCEs.
838
+ Fig. 5 illustrates the decomposition and DAL-PCE approximation at a given stage of the computation. Panel
839
+ a) visualizes the true values of the function via a background color. The same coloring scheme is used in panel b)
840
+ for the pointwise information available in the current ED (small circles) and for the function approximation via
841
+ DAL-PCE by the background color. Panels b) and c) show also the final domain decomposition. The symmetry
842
+ 14
843
+
844
+ Figure 6: Results for the 2-dimensional discontinuiy function: a) original mathematical model, b) approximation via DAL-PCE and ED, c)
845
+ local LOO-CV Q2
846
+ �i and Θi value for each sub-domain, d) convergence plots for DAL-PCE, Global PCE, and SEE showing the mean value and
847
+ ±σ interval. Convergence plots for SSE show the mean ±σ at discrete sample sizes.
848
+ in the decomposition documents the great convergence of the DAL-PCE thanks to an adaptive decomposition
849
+ described in the previous section. Plot c) shows the local Q2
850
+ �i error in each individual sub-domain (darker color
851
+ corresponds to higher local error). These local errors clearly show localization of the prediction error to very
852
+ small areas near singularities, which are continually being refined. The color of the small solid squares in the
853
+ center of each sub-domains shows the Θi value for that sub-domain.
854
+ Finally, the convergence plot in Fig. 5d) shows that both DAL-PCE and SSE outperform the global PCE, as
855
+ expected. The SSE performs comparable to or slightly better than DAL-PCE for small Nsim, but the DAL-PCE
856
+ begins to outperform SSE as Nsim grows thanks to the active learning approach that targets samples in the vicinity
857
+ of the singularities. Note that the error converges for both SSE and DAL-PCE as we approach 1000 samples and
858
+ does not seem to substantially reduce after this. This is due to the fundamental limitation of trying to approximate
859
+ this singularity, even locally, with low-order polynomials.
860
+ 4.3. M-dimensional Discontinuity
861
+ The third example investigates the role of dimensionality on the performance of the proposed DAL-PCE. The
862
+ following discontinuous function is defined for an arbitrary number of input random variables M [26]:
863
+ f (XXX) =
864
+
865
+ sin(X1π)sin(X2π)
866
+ if x1 ≤ 0.5 and x2 ≤ 0.5
867
+ �M
868
+ i=3 Xi
869
+ otherwise
870
+ ,
871
+ XXX ∼ U[0,1]M.
872
+ (27)
873
+ This function has a discontinuity in the first two input random variables, which can be seen in Fig. 6a. A single
874
+ global PCE cannot accurately approximate the function because of the discontinuity, although the function f (XXX)
875
+ 15
876
+
877
+ Figure 7: Convergence plots for the M-dimensional function: a) 3-dimensional version, b) 5-dimensional version, c) 6-dimensional version,
878
+ and d) 8-dimensional version. Convergence plots for the DAL-PCE and global PCE show the mean value ±σ interval. Convergence plots
879
+ for SSE also show the mean ±σ, but at discrete sample sizes.
880
+ can be easily approximated by two separate PCEs in the two regions for which the definitions differ. But, this
881
+ requires a priori knowledge of the discontinuity location. Since the location of the discontinuity is assumed to be
882
+ unknown, this function is a good example for domain adaptation using DAL-PCE.
883
+ The detailed results for a 2D version of this problem are depicted in Fig. 6 in identical form as in the previous
884
+ example. Note that the local Q2
885
+ i errors Fig. 6c show perfect accuracy in the part of the input random space where
886
+ f (XXX) = 0 and thus the associated sub-domains are not preferred for further decomposition. The convergence
887
+ plot in Fig. 6d confirms that a single global PCE is not able to create an accurate approximation and adding
888
+ more points to ED does not lead to significant improvements in the approximation. The mean values of errors
889
+ ε associated to the proposed DAL-PCE approach are significantly lower in comparison to SSE (1–2 orders of
890
+ magnitude) similarly as in the first example, though the convergence trend is similar for both methods. SSE,
891
+ however, uses a random splitting routine. This can lead to very high variance of results, since the accuracy is
892
+ highly dependent on the pattern of the decomposed input random space. This clearly shows the advantage of an
893
+ active learning approach.
894
+ The influence of dimensionality M on convergence of the DAL-PCE, SSE, and global PCE is studied in Fig. 7
895
+ for a) 3, b) 5, c) 6, and d) 8 input random variables. As the domain dimension increases, the linear part of the
896
+ function f (XXX) occupies an increasing proportion of the domain while the discontinuity remain low-dimensional.
897
+ The proposed DAL-PCE greatly improves the convergence because it is able to identify an ideal decomposition
898
+ and local samples to resolve the discontinuity. For low-dimensions (M = 2,3), SSE error ε shows a decreasing
899
+ trend that is better than global PCE but has an extremely high variance. This is caused by a lack of control in
900
+ sample placement. The domain decomposition in SSE is a product of sample location and without active learning
901
+ to guide sample placement, SSE will sometimes produce a very good decomposition and sometimes a very poor
902
+ decomposition. Meanwhile, the proposed DAL-PCE errors have comparably low variance for low-dimensions
903
+ and consistently have accuracy comparable to, or better than, the best SSE realizations.
904
+ As the dimension, M, increases the DAL-PCE is able to maintain a very high level of accuracy, while the
905
+ accuracy degrades completely for the SSE such that it is comparable to the global PCE. The DAL-PCE is able
906
+ to maintain its low error because the discontinuity remains low-dimensional and the active learning process is
907
+ able to target this region for domain re��nement and sampling. This means that the DAL-PCE remains largely
908
+ independent of the problem dimension, and instead depends predominantly on the intrinsic dimension of the
909
+ 16
910
+
911
+ Figure 8: Convergence plots for the modified M-dimensional function: a) 3-dimensional version, b) 5-dimensional version, c) 6-dimensional
912
+ version, and d) 8-dimensional version. Convergence plots for the DAL-PCE and global PCE show the mean value ±σ interval. Convergence
913
+ plots for SSE also show the mean ±σ, but at discrete sample sizes.
914
+ discontinuous/nonlinear features of the model. The performance of SSE, on the other hand, degrades with
915
+ dimension because its domain decomposition depends only on a set of a priori specified points that are not selected
916
+ in a way that is aware of the important features of the model. Consequently, as the dimension increases the
917
+ algorithm becomes less likely to refine the domain appropriately around an embedded low-dimensional feature.
918
+ We remark that this desirable scalable convergence trend of the DAL-PCE is not likely a universal property, as
919
+ the trend may break down in problems where the intrinsic dimension of the discontinuity/nonlinearity is high or
920
+ where the discontinuity occupies a very small proportion of the domain – in which case exploration of the space
921
+ to find the important feature may take a very large number of samples.
922
+ In the present example, the discontinuity in the function given in Eq. (27) lies at x1 = 0.5 and x2 = 0.5, which
923
+ corresponds to the exact location where the domain will be split for both SSE and during the early iterations of
924
+ the DAL-PCE. One might argue that this presents an unreasonable advantage for the proposed algorithm. We
925
+ therefore modified the function such that the discontinuity lies at x1 = 0.61 and x2 = 0.61. Fig. 8 shows the
926
+ convergence for the DAL-PCE and SSE for this modified function with varying dimension, M. The absolute errors
927
+ ε exhibit slower decrease, especially for dimensions M = 3 and M = 5. However, the proposed active learning
928
+ still leads to superior results (especially for higher dimensions as in the previous case). Note that there are visible
929
+ spikes in the DAL-PCE convergence graph for the 3-dimensional example. Although the results were statistically
930
+ processed, these spikes are caused by the restart adaptivity occurring at the same Nsim in each replication. In
931
+ this case, the optimal decomposition pattern is very complicated and therefore the algorithm activates the restart
932
+ adaptivity frequently (after multiples of nr steps), until it finds a suitable pattern to continue convergence. SSE
933
+ in the 3- and 5-dimensional cases has higher mean error and significantly lower variance in comparison to the
934
+ previous example. This is caused by the fact that the modified discontinuity location no longer lies along the
935
+ boundary of the domain decomposition. In the previous example, some SSE realizations achieved near-perfect
936
+ accuracy because the domain was coincidentally divided along the discontinuity.
937
+ This phenomenon is investigated more closely in Fig. 9, which compares number of outliers in both versions
938
+ of 3D examples. In addition to the mean ±σ seen previously, the figure also shows standard boxplots for SSE
939
+ (median along with lower and upper quartiles) and the corresponding number of “extreme” realizations produc-
940
+ ing very high accuracy (top axis) for a) the original position of discontinuity; and b) discontinuity at x1 = 0.61
941
+ 17
942
+
943
+ Figure 9: Convergence plots for DAL-PCE and SSE with additional boxplots for SSE showing the median, lower and upper quartiles and
944
+ outliers for: a) the 3D example with discontinuity at x1 = 0.5 and x2 = 0.5, b) the 3D example with discontinuity at x1 = 0.61 and x2 = 0.61.
945
+ and x2 = 0.61. As can be seen, in panel a) there are many outliers producing ε < −7, which effectively decreases
946
+ µ relative to the median while also significantly increasing the variance. In contrast DAL-PCE has no outliers and
947
+ it leads to very consistent results. In panel b), there are no outliers for either SSE or DAL-PCE and the results
948
+ are thus consistent with low variance for both methods.
949
+ 4.4. Asymmetric shallow von Mises truss
950
+ In this section, we demonstrate the relevance of the proposed method for a representative engineering exam-
951
+ ple exhibiting discontinuous response. Consider the shallow two-bar planar truss subjected to a vertical load at
952
+ its top joint, as presented in [50] and illustrated in Fig. 10a.
953
+ The truss is formed by two prismatic bars made of a hard wood (density 800 kg/m3, modulus of elasticity
954
+ E = 12 GPa). There are two variables in the studied von Mises truss: (i) the loading vertical force F, and (ii)
955
+ a half sine-wave imperfection of the left bar having magnitude δ, see the sketch in Fig. 10a. The load is applied
956
+ dynamically as a step function at time zero for an unlimited duration. The structure is modeled, as illustrated
957
+ in Fig. 10b. In particular, the mass of the bar is concentrated in 21 mass points, including the supports and
958
+ the loading point. These mass points are connected via 10 + 10 translational springs representing the normal
959
+ stiffness of the true bars. The pairs of the axial members are connected via rotational spring having zero moment
960
+ for a zero angle between adjacent bars. The only exceptions are the loading ans support points where there
961
+ are no rotational springs attached (hinges). The damping is associated with the mass points via linear viscous
962
+ damping coefficient set to 11 N · s/(kg · m) approximating the relative damping of about 3%. Explicit dynamics
963
+ solver FyDiK [51, 52] was used to solve the equations of equilibrium at the mass points. The numerical solution
964
+ lasts to up to two seconds, which is the time needed for almost complete stabilization of the solution (kinetic
965
+ energy drops below a negligible threshold).
966
+ Since the structure is very shallow, sudden application of the vertical force can cause snap-through buckling,
967
+ wherein the loading point drops down between the supports and the members switch from a state of compression
968
+ to tensile stresses in the final stable state. We specifically study the horizontal coordinate yF of the loading point
969
+ after the dynamic response stabilizes to the final deformed shape. The force F ∈ (31.6,772.6) kN and initial
970
+ imperfection δ ∈ (−0.4,0.4) m are treated as uniform random variables mapped to the unit square such that
971
+ the model input X ∼ U[0,1]2. Because of the potential snap-through buckling, the solution is discontinuous as
972
+ illustrated in Fig. 10c. On each side of the discontinuity, the solution yF is smooth and slowly-varying having
973
+ values near +1 m and -1 m, respectively. Note that the output is not symmetric with respect to δ = 0 because the
974
+ dynamical response evolves differently for concave and convex initial displacements.
975
+ The sharp boundary between the buckled and unbuckled regions, shown in Fig. 11a cause global PCE to
976
+ produce poor approximations that are vulnerable to the Gibbs phenomenon, similar to the example in subsection
977
+ 18
978
+
979
+ b)
980
+ a)
981
+ c)
982
+ Figure 10: Asymmetric shallow von Mises truss. a) Initial geometry with two random variables F and δ; b) illustrative sketch of the discrete
983
+ dynamical model and the meaning of output variable yF, c) illustration of the discontinuous response function of the two input variables.
984
+ Figure 11: Results for the von Misses truss example: a) original mathematical model (numerical solution), b) approximation via DAL-PCE
985
+ and ED, c) local LOO-CV Q2
986
+ �i and Θi value for each sub-domain, d) convergence plots for DAL-PCE, Global PCE, and SSE showing the
987
+ mean value and ±σ interval; convergence plots for SSE show the mean ±σ at discrete sample sizes.
988
+ 4.2. This is shown by the convergence plots in Fig. 11d comparing global PCE, DAL-PCE, and SSE. Clearly, the
989
+ complexity of this example and the complicated shape of the discontinuity limits the accuracy of all the surrogate
990
+ models. The proposed DAL-PCE achieves low accuracy for small sample sizes because the corresponding small
991
+ number of sub-domains and low-order PCEs are unable to sufficiently approximate the boundary. Therefore, the
992
+ global PCE and SSE (with a low number of embedding levels) are initially better. With increasing number of
993
+ samples, the proposed DAL-PCE approach leads to superior results because the active learning is able to resolve
994
+ the discontinuity as illustrated in Fig. 11b, which shows the domain decomposition and approximation after
995
+ 2000 samples. Fig. 11c shows the corresponding LOO-CV errors for each subdomain, demonstrating the errors
996
+ are confined to small, localized regions near the boundary.
997
+ 19
998
+
999
+ 5. Discussion & Future Work
1000
+ The proposed DAL-PCE approach is a general methodology for the decomposition of the input random space
1001
+ and construction of localized PCEs using active learning. The proposed active learning is based on a novel Θ
1002
+ criterion that optimally balances global exploration with local exploitation of the model. Although this paper
1003
+ presents one specific learning algorithm, the methodology is general and amenable to modifications to reflect the
1004
+ specific user’s needs. The whole process can be divided into two tasks: A) decomposition of the input random
1005
+ space and B) construction of localized PCEs; and both can be easily modified as discussed further:
1006
+ A) The most important sub-domain �i is identified by extended Θ according to Eq. (17) evaluated for a large
1007
+ number of global candidates. In this paper, we use standard LHS for candidate generation, but it may
1008
+ be beneficial to use different sampling methods that produce more uniform coverage of the whole input
1009
+ random space (see e.g. [53, 54, 45]). Although it is generally possible to generate a large number of
1010
+ candidates, it might be challenging to uniformly cover the entire input random space, especially in high
1011
+ dimensions. Thus, one can use any sampling technique suitable for a specific example, e.g. [55].
1012
+ Once the �i is identified via Eq. (17), it is either divided (providing it contains enough ED points) or
1013
+ the sample is extended inside it, to achieve a better PCE approximation. The simplest division occurs by
1014
+ splitting the volume into two parts of identical hypervolume in the direction of the highest first-order Sobol’
1015
+ index. However, the algorithm can accommodate various different approaches. For example, it is possible
1016
+ to divide the �i into a higher number of sub-domains, not just two. Moreover, instead of splitting the
1017
+ domain into parts of equal hypervolume, other criteria can be used. For example, the cutting plane can be
1018
+ positioned so to split the domain variance into equal parts.
1019
+ B) The user can choose to employ any existing method to construct the non-intrusive PCEs, including various
1020
+ sparse solvers or adaptive algorithms, which may be preferable for certain applications [12]. For example,
1021
+ we use LARS with OLS. However, it is generally more efficient to use active learning based on the Θ criterion
1022
+ for PCE as shown in [1], which employs variance-based sequential sampling. This improvement can be
1023
+ integrated within the DAL-PCE to make local PCE more efficient in each subdomain, and thereby improving
1024
+ the overall convergence. The can be compounded by the use of advanced sampling techniques within the
1025
+ subdomains such as Coherence D-optimal sampling [40, 41].
1026
+ As seen from the previous paragraphs, the whole algorithm can be adapted for specific needs reflecting the
1027
+ characteristics of a given mathematical model, such as dimensionality, sparsity, non-linearity etc., by simply ex-
1028
+ changing components of the proposed algorithm for suitable existing (or new) techniques. Note that even after
1029
+ the modification, the whole methodology based on Θ criterion is still valid and can be used for uncertainty
1030
+ quantification and surrogate modelling as described in this paper. Moreover, in comparison to SSE, the DAL-
1031
+ PCE sequentially adds points and divides the sub-domains one-by-one based on information obtained from the
1032
+ previous iteration.
1033
+ Another significant advantage of the DAL-PCE is that it provides estimates of the local errors, Q�i, associ-
1034
+ ated with each sub-domain. Since localized PCEs are constructed independently, local errors estimate the local
1035
+ accuracy of the surrogate model directly, and can be assembled to provide global error measures. Naturally, local
1036
+ accuracy is very important information that can be used for further probabilistic analysis and active learning.
1037
+ Although this paper does not propose any specific approach for further processing of this information, it could
1038
+ serve as a main ingredient for various active learning algorithms. For example, it could be directly used to predict
1039
+ uncertainty in industrial applications and possibly extend the ED in a sub-domain of interest.
1040
+ Finally, an important topic of further research is to study the behavior of the proposed criterion in higher
1041
+ dimensions. In particular, the geometrical terms l M
1042
+ c,s and �i likely cause poor convergence in high dimensions.
1043
+ Although some preliminary results focused on investigating of l M
1044
+ c,s in high dimensions was previously performed in
1045
+ the paper [1] proposing the original Θ criterion, it is still necessary to perform an extensive study of its behavior
1046
+ as well as investigating the influence of �i, which may need to be reformulated for high dimensions.
1047
+ 20
1048
+
1049
+ 6. Conclusion
1050
+ The paper presented a novel approach, domain adaptively localzed PCE, for the adaptive sequential con-
1051
+ struction of localized PCEs based on active learning and decomposition of the input random space. It combines
1052
+ adaptive sequential sampling based on the recently proposed Θ criterion to maintain the balance between ex-
1053
+ ploration of the input random space and exploitation of the current characteristics of the PCE together with the
1054
+ adaptive sequential decomposition of the input random space creating sub-domains approximated by local sur-
1055
+ rogate models. The methodology offers a general technique that can be easily adapted or modified for specific
1056
+ functions extending its applicability. The performance of the proposed methodology was validated on several nu-
1057
+ merical examples of increasing complexity investigating different aspects of the algorithm and leading to superior
1058
+ results in comparison to a single global PCE and the recently proposed SSE.
1059
+ Acknowledgments
1060
+ The first author acknowledge financial support provided by the Czech Science Foundation under project num-
1061
+ ber 22-00774S. Additionally, the major part of this research was conducted during the research stay of the first
1062
+ author at Johns Hopkins University supported by the project International Mobility of Researchers of Brno Uni-
1063
+ versity of Technology, Czechia under project No. EF18_053/0016962.
1064
+ References
1065
+ [1] L. Novák, M. Voˇrechovský, V. Sadílek, M. D. Shields, Variance-based adaptive sequential sampling for polynomial chaos expansion,
1066
+ Computer Methods in Applied Mechanics and Engineering 386 (2021) 114105. doi:10.1016/j.cma.2021.114105.
1067
+ [2] S. Marelli, P.-R. Wagner, C. Lataniotis, B. Sudret, STOCHASTIC SPECTRAL EMBEDDING, International Journal for Uncertainty Quan-
1068
+ tification 11 (2) (2021) 25–47. doi:10.1615/int.j.uncertaintyquantification.2020034395.
1069
+ [3] N. Wiener, The homogeneous chaos, American Journal of Mathematics 60 (4) (1938) 897–936. doi:10.2307/2371268.
1070
+ [4] G. Blatman, B. Sudret, Adaptive sparse polynomial chaos expansion based on least angle regression, Journal of Computational Physics
1071
+ 230 (6) (2011) 2345–2367. doi:10.1016/j.jcp.2010.12.021.
1072
+ [5] R. G. Ghanem, P. D. Spanos, Stochastic Finite Elements:
1073
+ A Spectral Approach, Springer New York, 1991.
1074
+ doi:10.1007/
1075
+ 978-1-4612-3094-6.
1076
+ [6] N.-Z. Chen, C. Guedes Soares, Spectral stochastic finite element analysis for laminated composite plates, Computer methods in Applied
1077
+ Mechanics and Engineering 197 (51) (2008) 4830–4839. doi:10.1016/j.cma.2008.07.003.
1078
+ [7] L. Novak, D. Novak, Surrogate modelling in the stochastic analysis of concrete girders failing in shear, in: Proc. of the Fib Symposium
1079
+ 2019: Concrete - Innovations in Materials, Design and Structures, 2019, pp. 1741–1747.
1080
+ [8] B. Sudret, Global sensitivity analysis using polynomial chaos expansions, Reliability Engineering & System Safety 93 (7) (2008) 964–
1081
+ 979. doi:10.1016/j.ress.2007.04.002.
1082
+ [9] T. Crestaux, O. L. Maître, J.-M. Martinez, Polynomial chaos expansion for sensitivity analysis, Reliability Engineering & System Safety
1083
+ 94 (7) (2009) 1161–1172. doi:10.1016/j.ress.2008.10.008.
1084
+ [10] A. Cohen, G. Migliorati, Optimal weighted least-squares methods, The SMAI journal of computational mathematics 3 (2017) 181–203.
1085
+ doi:10.5802/smai-jcm.24.
1086
+ [11] A. C. Narayan, J. Jakeman, T. Zhou, A Christoffel function weighted least squares algorithm for collocation approximations, Math.
1087
+ Comput. 86 (2017) 1913–1947. doi:10.1090/mcom/3192.
1088
+ [12] N. Lüthen, S. Marelli, B. Sudret, Sparse polynomial chaos expansions: Literature survey and benchmark, SIAM/ASA Journal on Uncer-
1089
+ tainty Quantification 9 (2) (2021) 593–649. doi:10.1137/20M1315774.
1090
+ [13] B. Echard, N. Gayton, M. Lemaire, AK-MCS: An active learning reliability method combining kriging and monte carlo simulation,
1091
+ Structural Safety 33 (2) (2011) 145–154. doi:10.1016/j.strusafe.2011.01.002.
1092
+ [14] L. Shi, B. Sun, D. S. Ibrahim, An active learning reliability method with multiple kernel functions based on radial basis function,
1093
+ Structural and Multidisciplinary Optimization 60 (1) (2019) 211–229. doi:10.1007/s00158-019-02210-0.
1094
+ [15] X. Yang, X. Cheng, Active learning method combining kriging model and multimodal-optimization-based importance sampling for
1095
+ the estimation of small failure probability, International Journal for Numerical Methods in Engineering 121 (21) (2020) 4843–4864.
1096
+ doi:10.1002/nme.6495.
1097
+ [16] S. Marelli, B. Sudret, An active-learning algorithm that combines sparse polynomial chaos expansions and bootstrap for structural
1098
+ reliability analysis, Structural Safety 75 (2018) 67–74. doi:10.1016/j.strusafe.2018.06.003.
1099
+ [17] Y. Zhou, Z. Lu, W. Yun, Active sparse polynomial chaos expansion for system reliability analysis, Reliability Engineering & System Safety
1100
+ 202 (2020) 107025. doi:10.1016/j.ress.2020.107025.
1101
+ [18] K. Cheng, Z. Lu, Active learning polynomial chaos expansion for reliability analysis by maximizing expected indicator function prediction
1102
+ error, International Journal for Numerical Methods in Engineering 121 (14) (2020) 3159–3177. doi:10.1002/nme.6351.
1103
+ [19] N. Fajraoui, S. Marelli, B. Sudret, Sequential design of experiment for sparse polynomial chaos expansions, SIAM/ASA Journal on
1104
+ Uncertainty Quantification 5 (1) (2017) 1061–1085. doi:10.1137/16m1103488.
1105
+ 21
1106
+
1107
+ [20] M. Thapa, S. B. Mulani, R. W. Walters, Adaptive weighted least-squares polynomial chaos expansion with basis adaptivity and sequential
1108
+ adaptive sampling,
1109
+ Computer methods in Applied Mechanics and Engineering 360 (2020) 112759. doi:10.1016/j.cma.2019.
1110
+ 112759.
1111
+ [21] M. D. Shields, Adaptive Monte Carlo analysis for strongly nonlinear stochastic systems, Reliability Engineering & System Safety 175
1112
+ (2018) 207–224. doi:10.1016/j.ress.2018.03.018.
1113
+ [22] Y. Zhou, Z. Lu, K. Cheng, C. Ling, An efficient and robust adaptive sampling method for polynomial chaos expansion in sparse bayesian
1114
+ learning framework, Computer Methods in Applied Mechanics and Engineering 352 (2019) 654–674. doi:10.1016/j.cma.2019.
1115
+ 04.046.
1116
+ [23] J. Zhang, W. Gong, X. Yue, M. Shi, L. Chen, Efficient reliability analysis using prediction-oriented active sparse polynomial chaos
1117
+ expansion, Reliability Engineering & System Safety 228 (2022) 108749. doi:10.1016/j.ress.2022.108749.
1118
+ [24] M. K. Deb, I. M. Babuška, J. Oden, Solution of stochastic partial differential equations using galerkin finite element techniques, Computer
1119
+ Methods in Applied Mechanics and Engineering 190 (48) (2001) 6359–6372. doi:10.1016/S0045-7825(01)00237-7.
1120
+ [25] J. A. Witteveen, G. Iaccarino, Simplex stochastic collocation with random sampling and extrapolation for nonhypercube probability
1121
+ spaces, SIAM Journal on Scientific Computing 34 (2) (2012) A814–A838.
1122
+ [26] A. Bhaduri, Y. He, M. D. Shields, L. Graham-Brady, R. M. Kirby, Stochastic collocation approach with adaptive mesh refinement for
1123
+ parametric uncertainty analysis, Journal of Computational Physics 371 (2018) 732–750. doi:10.1016/j.jcp.2018.06.003.
1124
+ [27] P.-R. Wagner, S. Marelli, I. Papaioannou, D. Straub, B. Sudret, Rare event estimation using stochastic spectral embedding, Structural
1125
+ Safety 96 (2022) 102179. doi:10.1016/j.strusafe.2021.102179.
1126
+ [28] X. Wan, G. E. Karniadakis, An adaptive multi-element generalized polynomial chaos method for stochastic differential equations, Journal
1127
+ of Computational Physics 209 (2) (2005) 617–642. doi:10.1016/j.jcp.2005.03.023.
1128
+ [29] D. Xiu, G. E. Karniadakis, The Wiener–Askey polynomial chaos for stochastic differential equations, SIAM Journal on Scientific Com-
1129
+ puting 24 (2) (2002) 619–644. doi:10.1137/s1064827501387826.
1130
+ [30] L. Novák, On distribution-based global sensitivity analysis by polynomial chaos expansion, Computers & Structures 267 (2022) 106808.
1131
+ doi:10.1016/j.compstruc.2022.106808.
1132
+ [31] W. Gautschi, On generating orthogonal polynomials, SIAM Journal on Scientific and Statistical Computing 3 (3) (1982) 289–317.
1133
+ doi:10.1137/0903018.
1134
+ [32] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, Least angle regression, The Annals of Statistics 32 (2) (2004) 407–451. doi:10.2307/
1135
+ 3448465.
1136
+ [33] J. A. Tropp, A. C. Gilbert, Signal recovery from random measurements via orthogonal matching pursuit, IEEE Transactions on Informa-
1137
+ tion Theory 53 (12) (2007) 4655–4666. doi:10.1109/tit.2007.909108.
1138
+ [34] S. Ji, Y. Xue, L. Carin, Bayesian compressive sensing, IEEE Transactions on Signal Processing 56 (6) (2008) 2346–2356. doi:10.1109/
1139
+ TSP.2007.914345.
1140
+ [35] G. Blatman, B. Sudret, An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis,
1141
+ Probabilistic Engineering Mechanics 25 (2) (2010) 183–197. doi:10.1016/j.probengmech.2009.10.003.
1142
+ [36] A. Olivier, D. Giovanis, B. Aakash, M. Chauhan, L. Vandanapu, M. D. Shields, UQpy: A general purpose python package and development
1143
+ environment for uncertainty quantification, Journal of Computational Science 47 (2020) 101204.
1144
+ [37] S. Marelli, B. Sudret, UQLab: A framework for uncertainty quantification in Matlab, in: Vulnerability, Uncertainty, and Risk, 2014, pp.
1145
+ 2554–2563. doi:10.1061/9780784413609.257.
1146
+ [38] M. D. McKay, W. J. Conover, R. J. Beckman, A comparison of three methods for selecting values of input variables in the analysis of
1147
+ output from a computer code, Technometrics 21 (1979) 239–245. doi:10.1080/00401706.1979.10489755.
1148
+ [39] W. Conover, On a better method for selecting input variables, unpublished Los Alamos National Laboratories manuscript, reproduced
1149
+ as Appendix A of “Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems” by J.C. Helton and
1150
+ F.J. Davis, Sandia National Laboratories report SAND2001-0417, printed November 2002. (1975).
1151
+ URL https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2001/010417.pdf
1152
+ [40] J. Hampton, A. Doostan, Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies, Journal
1153
+ of Computational Physics 280 (2015) 363–386. doi:10.1016/j.jcp.2014.09.019.
1154
+ [41] P. Diaz, A. Doostan, J. Hampton, Sparse polynomial chaos expansions via compressed sensing and D-optimal design, Computer methods
1155
+ in Applied Mechanics and Engineering 336 (2018) 640–666. doi:10.1016/j.cma.2018.03.020.
1156
+ [42] J. F. Koksma, Een algemeene stelling uit de theorie der gelijkmatige verdeeling modulo 1, Mathematica B 11 (1942/1943) 7–11.
1157
+ [43] M. Johnson, L. Moore, D. Ylvisaker, Minimax and maximin distance designs, Journal of Statistical Planning and Inference 2 (26) (1990)
1158
+ 131–148. doi:10.1016/0378-3758(90)90122-B.
1159
+ [44] L. Pronzato, Minimax and maximin space-filling designs: some properties and methods for construction, Journal de la Société Française
1160
+ de Statistique 158 (1) (2017) 7–36.
1161
+ [45] J. Eliáš, M. Voˇrechovský, V. Sadílek, Periodic version of the minimax distance criterion for Monte Carlo integration, Advances in Engi-
1162
+ neering Software 149 (2020) 102900. doi:10.1016/j.advengsoft.2020.102900.
1163
+ [46] M. Rosenblatt, Remarks on a multivariate transformation, The Annals of Mathematical Statistics 23 (3) (1952) 470–472. doi:10.
1164
+ 1214/aoms/1177729394.
1165
+ [47] A. Nataf, Détermination des distributions de probabilité dont les marges sont données, Comptes Rendus de l’Académie des Sciences
1166
+ 225 (1962) 42–43.
1167
+ [48] F. Wang, H. Li, System reliability under prescribed marginals and correlations: Are we correct about the effect of correlations?, Reliability
1168
+ Engineering & System Safety 173 (2018) 94–104. doi:10.1016/j.ress.2017.12.018.
1169
+ [49] J. M. Davis, P. Hagelstein, Gibbs phenomena for some classical orthogonal polynomials, Journal of Mathematical Analysis and Applica-
1170
+ tions 505 (1) (2022) 125574.
1171
+ [50] M. Voˇrechovský, Reliability analysis of discrete-state performance functions via adaptive sequential sampling with detection of failure
1172
+ surfaces, Computer Methods in Applied Mechanics and Engineering 401 (2022) 115606. doi:10.1016/j.cma.2022.115606.
1173
+ 22
1174
+
1175
+ [51] P. Frantík, FyDik - a software for interactive simulations of dissipative nonlinear dynamical systems based on physical discretization,
1176
+ http://fydik.kitnarf.cz/ (2000–2022).
1177
+ [52] P. Frantík, Simulation of the stability loss of the von Mises truss in an unsymmetrical stress state, Engineering Mechanics 14 (3) (2007)
1178
+ 155–161.
1179
+ [53] M. Voˇrechovský, J. Eliáš, Modification of the maximin and φp (phi) criteria to achieve statistically uniform distribution of sampling
1180
+ points, Technometrics 62 (3) (2020) 371–386. doi:10.1080/00401706.2019.1639550.
1181
+ [54] M. Voˇrechovský, J. Mašek, J. Eliáš, Distance-based optimal sampling in a hypercube: Analogies to N-body systems, Advances in Engi-
1182
+ neering Software 137 (2019) 102709. doi:10.1016/j.advengsoft.2019.102709.
1183
+ [55] M. Voˇrechovský, J. Mašek, Distance-based optimal sampling in a hypercube: Energy potentials for high-dimensional and low-saturation
1184
+ designs, Advances in Engineering Software 149 (2020) 102880. doi:10.1016/j.advengsoft.2020.102880.
1185
+ 23
1186
+
B9FRT4oBgHgl3EQfvjiF/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
C9FKT4oBgHgl3EQfYi5Z/content/tmp_files/2301.11799v1.pdf.txt ADDED
@@ -0,0 +1,1326 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+
4
+
5
+ Số chuyên san (11/2022): 1 – 11
6
+ 1
7
+
8
+
9
+ MỐI TƯƠNG QUAN CỦA CÁC NHÂN TỐ ẢNH HƯỞNG
10
+ TỚI VIỆC SỬ DỤNG ỨNG DỤNG BLUEZONE
11
+ Nguyễn Thế Vịnh1*, Nguyễn Tuấn Anh1, Nguyễn Hồng Tân1, Lương Khắc Định2
12
+ 1Khoa Công nghệ thông tin, Trường ĐH Công nghệ thông tin và Truyền thông, ĐH Thái Nguyên
13
+ 2Khoa Công nghệ thông tin, Trường ĐH Hạ Long
14
+ * Email: [email protected]
15
+ Ngày nhận bài: 11/6/2022
16
+ Ngày nhận bài sửa sau phản biện: 09/11/2022
17
+ Ngày chấp nhận đăng: DD/MM/YYYY
18
+ TÓM TẮT
19
+ Sự xuất hiện của đại dịch Covid-19 đã gây ra nhiều tác động tiêu cực đến mọi mặt của đời
20
+ sống. Chính phủ đã áp dụng nhiều biện pháp để giảm thiểu sự ảnh hưởng và lây truyền của dịch
21
+ bệnh. Trong số đó có việc áp dụng chuyển đổi số đối với việc quản lý và truy vết người bị nhiễm
22
+ Covid thông qua phần mềm Bluezone (nay là PC-Covid). Tuy nhiên, việc cài đặt và sử dụng
23
+ Bluezone lại không được như kỳ vọng. Vì vậy, nghiên cứu này tìm hiểu những nhân tố chính và
24
+ sự ảnh hưởng của chúng tới ý định hành vi của người dùng về việc sử dụng phần mềm truy vết
25
+ Bluezone. Phiếu khảo sát được gửi tới người dùng thông qua công cụ Google Form. Kết quả
26
+ phân tích các nhân tố khám phá trên 224 đối tượng khảo sát cho thấy, có bốn nhân tố chính ảnh
27
+ hưởng tới hành vi của người dùng, trong đó: sự tin tưởng và kỳ vọng hiệu quả, kỳ vọng nỗ lực,
28
+ ảnh hưởng xã hội có tác động tích cực đến ý định hành vi của việc sử dụng phần mềm truy vết
29
+ Bluezone; trong khi rủi ro về quyền riêng tư có ảnh hưởng tiêu cực đến hành vi này.
30
+ Từ khóa: EFA, SEM, UTAUT, tin tưởng, quyền riêng tư, Covid-19.
31
+ FACTORS INFLUENCING TO USE OF BLUEZONE
32
+ ABSTRACT
33
+ The emergence of the Covid-19 pandemic has been causing many negative impacts on all
34
+ aspects of life. The government has taken many measures to minimize the impact and
35
+ transmission of the disease. Among them is the application of digital transformation to the
36
+ management and tracing of people infected with Covid through the Bluezone app (now PC-
37
+ Covid). However, using and installing Bluezone is not as expected. Therefore, this study aims
38
+ to understand the main factors and their influence on the behavioral intention of users about
39
+ using Bluezone. Surveys are sent to users through the Google Form tool. Experimental results
40
+ through analysis of exploratory factors on 224 survey subjects show that there are 4 main factors
41
+ affecting user behavior. Structural equation modeling indicates that trust, performance
42
+ expectations, effort expectations, and social influence have a positive impact on behavioral
43
+ intention of using Bluezone. Meanwhile, privacy risks have a negative effect on this behavior.
44
+ Keywords: EFA, SEM, UTAUT, trust, privacy, Covid-19.
45
+
46
+ ap chi khoa hoc
47
+ DAI HOC HA LONGTAP CHI KHOAHOC DAI HOCHALONG
48
+ Scientific JournalofHa Long Vniversity
49
+ KHOAHOC
50
+ DAIHOCHALONG
51
+ http://uhl.edu.vnl
52
+ Hac de thanh cong
53
+
54
+
55
+
56
+ 2 Số 01(2021): 1 – 11
57
+
58
+
59
+
60
+ KHOA HỌC TỰ NHIÊN
61
+ 1. ĐẶT VẤN ĐỀ
62
+ Đại dịch Covid-19 xuất hiện vào cuối năm
63
+ 2019 và bùng phát mạnh mẽ trong thời gian
64
+ qua đã có những ảnh hưởng tiêu cực tới tất cả
65
+ các quốc gia trên toàn thế giới (Whitelaw và
66
+ c.s., 2020). Đứng trước vấn đề đó, chính phủ
67
+ các quốc gia trên thế giới đã tiến hành nhiều
68
+ biện pháp cấp bách nhằm hạn chế tầm ảnh
69
+ hưởng, lây lan của dịch bệnh (Nguyen và c.s.,
70
+ 2021). Song song với các biện pháp tuyên
71
+ truyền đến người dân về ý thức phòng chống
72
+ dịch thông qua các phương tiện truyền thông,
73
+ chính phủ Việt Nam cũng tiến hành nhiều
74
+ biện pháp hỗ trợ nhằm truy vết tiếp xúc và
75
+ cảnh báo người nhiễm Covid-19 (Le và c.s.,
76
+ 2021). Cụ thể, Bộ Y tế và Bộ Thông tin và
77
+ Truyền thông đã phối hợp tạo ra ứng dụng
78
+ Bluezone. Bluezone được coi là “cần thiết
79
+ trong quá trình sinh hoạt hàng ngày, khi mọi
80
+ người có tiếp xúc, ứng dụng trên điện thoại
81
+ của họ sẽ tự “nói chuyện” với nhau”
82
+ (baochinhphu.vn, 2020). Ứng dụng Bluezone
83
+ được kỳ vọng là sẽ giúp ích cho các cơ quan
84
+ nhà nước có thể nhanh chóng truy vết và quản
85
+ lý được các ca nhiễm trong cộng đồng, người
86
+ dân có thể nắm bắt được thông tin kịp thời để
87
+ phòng dịch (Nguyen và c.s., 2021).
88
+ Mặc dù Bluezone được kỳ vọng sẽ mang
89
+ lại hiệu quả tích cực cao và nhiều người sẽ sử
90
+ d���ng, nhưng số liệu thống kê thực tế lại
91
+ không được như mong muốn (Nguyen và c.s.,
92
+ 2021). Tính đến 27 tháng 5 năm 2021, cả
93
+ nước chỉ ghi nhận 33,48 triệu lượt tải (khoảng
94
+ 34,7% so với tổng dân số), trong đó tập trung
95
+ chủ yếu ở hai địa phương lớn là Hà Nội (3,1
96
+ triệu lượt cài đặt) và Thành phố Hồ Chí Minh
97
+ (2,83 triệu lượt cài đặt). Ở chiều ngược lại,
98
+ các tỉnh khác như Điện Biên, Kon Tum, Lai
99
+ Châu, Bắc Kạn lại ghi nhận số lượng người
100
+ tải ứng dụng Bluezone thấp nhất. Vì vậy, câu
101
+ hỏi đặt ra là: Những yếu tố nào ảnh hưởng tới
102
+ việc sử dụng phần mềm Bluezone?
103
+ Trả lời được câu hỏi nghiên cứu trên đóng
104
+ vai trò quan trọng trong việc khuyến khích
105
+ người dân tham gia, hỗ trợ phòng chống dịch
106
+ trên môi trường số (Nguyen & Nguyen, 2022;
107
+ Whitelaw và c.s., 2020). Có nhiều nghiên cứu
108
+ trên thế giới tìm hiểu các yếu tố ảnh hưởng
109
+ tới việc sử dụng phần mềm truy vết nói chung
110
+ (Mbunge, 2020; Whitelaw và c.s., 2020),
111
+ nhưng chưa có nghiên cứu nào được thực
112
+ hiện ở Việt Nam trả lời cho câu hỏi trên một
113
+ cách đầy đủ. Vì vậy nghiên cứu này có vị trí
114
+ riêng biệt và cần thiết trong bối cảnh hiện
115
+ nay, đặc biệt khi đại dịch Covid-19 vẫn chưa
116
+ có dấu hiệu kết thúc do sự xuất hiện của các
117
+ biến chủng mới. Nghiên cứu của Nguyen và
118
+ c.s. (2021) mới chỉ dừng lại ở việc trích xuất
119
+ được các nhân tố mà chưa xem xét đến mối
120
+ tương quan giữa các nhân tố đó tới ý định sử
121
+ dụng phần mềm Bluezone như thế nào. Chính
122
+ vì vậy, nghiên cứu này được mở rộng bằng
123
+ cách áp dụng mô hình phương trình cấu trúc
124
+ nhằm đánh giá mối quan hệ giữa các yếu tố
125
+ tới ý định sử dụng phần mềm Bluezone. Kết
126
+ quả của bài báo được kỳ vọng sẽ có những
127
+ đóng góp tích cực trong lĩnh vực nghiên cứu
128
+ bao gồm: 1) việc khám phá ra các nhân tố
129
+ chính ảnh hưởng tới ý định sử dụng phần
130
+ mềm Bluezone, 2) đánh giá mối quan hệ giữa
131
+ các yếu tố tới ý định sử dụng phần mềm
132
+ Bluezone. Kết quả nghiên cứu sẽ là tài liệu
133
+ tham khảo cho các nghiên cứu tương tự và là
134
+ một trong các chỉ báo giúp các nhà quản lý
135
+ điều chỉnh chính sách phù hợp nhằm nâng cao
136
+ hiệu quả của ứng dụng truy vết.
137
+ 2. MÔ HÌNH NGHIÊN CỨU VÀ CƠ SỞ
138
+ LÝ THUYẾT
139
+ 2.1. Tổng quan về mô hình nghiên cứu
140
+ Sự phát triển không ngừng của các thiết bị
141
+ mới và phần mềm mới đã giúp cho người
142
+ dùng trải nghiệm và giải quyết các vấn đề
143
+ trong cuộc sống dễ dàng hơn. Tuy nhiên,
144
+ không phải mọi công nghệ mới đều được
145
+ người dùng chấp nhận và sử dụng. Để giảm
146
+ thiểu các rủi ro trên, nhiều mô hình chấp nhận
147
+ công nghệ được phát triển và áp dụng rộng rãi
148
+ như: mô hình SOR – stimulus (kích thích),
149
+ organism (chủ thể), response (phản hồi) – mô
150
+ tả cách mà sinh vật, con người phản ứng, đáp
151
+ lại với kích thích từ môi trường (Mehrabian
152
+ & Russell, 1974), mô hình chấp nhận công
153
+ nghệ – Technology Acceptance Model
154
+ (TAM) (Davis, 1985), mô hình lý thuyết chấp
155
+ nhận công nghệ hợp nhất (UTAUT). UTAUT
156
+ được phát triển bằng việc kết hợp và tinh
157
+ chỉnh tám mô hình trước đây thành một mô
158
+ hình duy nhất để mô tả hành vi của người
159
+
160
+
161
+
162
+
163
+
164
+ Số 02 (2022): 1 – 11
165
+ 3
166
+
167
+ KHOA HỌC TỰ NHIÊN
168
+ dùng với một hệ thống công nghệ thông tin
169
+ (Venkatesh và c.s., 2003). Mô hình UTAUT
170
+ chỉ ra có 4 yếu tố chính ảnh hưởng đến hành vi
171
+ của người dùng bao gồm: kỳ vọng hiệu quả
172
+ (performance expectancy), kì vọng nỗ lực
173
+ (effort expectancy), ảnh hưởng xã hội (social
174
+ influence), và các điều kiện thuận lợi
175
+ (facilitating conditions). Ngoài ra còn có các
176
+ yếu tố khác điều chỉnh đến ý định sử dụng như
177
+ giới tính, độ tuổi, sự tự nguyện và kinh nghiệm.
178
+ UTAUT được áp dụng rộng rãi trong nhiều lĩnh
179
+ vực khác nhau (Jung và c.s., 2020, 2021;
180
+ Nguyen, 2022). Trong nghiên cứu này, chúng
181
+ tôi mở rộng mô hình UTAUT với hai nhân tố
182
+ mới là sự riêng tư (privacy) và độ tin cậy (trust)
183
+ được tham khảo từ những nghiên cứu tương tự
184
+ (Arfi và c.s., 2021; Chopdar, 2022).
185
+ 2.2. Cơ sở lý thuyết
186
+ Kỳ
187
+ vọng
188
+ hiệu
189
+ quả
190
+ (Performance
191
+ Expectancy) được định nghĩa là mức độ mà
192
+ một cá nhân tin rằng vi���c sử dụng hệ thống sẽ
193
+ giúp họ đạt được hiệu quả trong công việc
194
+ (Venkatesh và c.s., 2003). Năm yếu tố từ các
195
+ mô hình khác nhau liên quan đến kỳ vọng
196
+ hiệu quả là nhận thức phần mềm hữu ích,
197
+ động lực bên ngoài, sự phù hợp với công việc,
198
+ lợi thế tương đối và kỳ vọng kết quả.
199
+ Kỳ vọng nỗ lực (Effort Expectancy) được
200
+ định nghĩa là mức độ dễ dàng liên quan đến
201
+ việc sử dụng hệ thống (Venkatesh và c.s.,
202
+ 2003). Ba yếu tố từ các mô hình khác nhau
203
+ liên quan đến kỳ vọng nỗ lực là nhận thức dễ
204
+ sử dụng, độ phức tạp (mô hình sử dụng máy
205
+ tính) và tính dễ dùng (mô hình khuếch tán
206
+ đổi mới).
207
+ Ảnh hưởng xã hội (Social Influence) được
208
+ định nghĩa là mức độ mà một cá nhân nhận
209
+ thấy rằng những người khác quan trọng tin
210
+ rằng họ nên sử dụng hệ thống mới (Venkatesh
211
+ và c.s., 2003). Ba yếu tố từ các mô hình khác
212
+ nhau liên quan đến ảnh hưởng xã hội là chuẩn
213
+ chủ quan, yếu tố xã hội và hình ảnh.
214
+ Các điều kiện thuận lợi (Facilitating
215
+ Conditions) được định nghĩa là “Mức độ mà
216
+ một cá nhân tin rằng có sẵn cơ sở hạ tầng kỹ
217
+ thuật và tổ chức để hỗ trợ việc sử dụng hệ
218
+ thống” (Venkatesh và c.s., 2003). Venkatesh
219
+ cho rằng các điều kiện thuận lợi không ảnh
220
+ hưởng đến ý định hành vi, nhưng ảnh hưởng
221
+ đến hành vi sử dụng. Các điều kiện thuận lợi
222
+ liên quan đến sự sẵn có của nguồn lực và hỗ
223
+ trợ cho các cá nhân sử dụng công nghệ.
224
+ Rủi ro về quyền riêng tư (Privacy Risk)
225
+ được hiểu là mối quan ngại của người dùng
226
+ về việc tiết lộ thông tin cá nhân (Arfi và c.s.,
227
+ 2021; Chopdar, 2022; Li, 2011). Nhiều
228
+ nghiên cứu đã chỉ ra rằng rủi ro về quyền
229
+ riêng tư có ảnh hưởng tới độ tin cậy của người
230
+ dùng và gián tiếp ảnh hưởng đến ý định sử
231
+ dụng hệ thống (Arfi và c.s., 2021; Bansal và
232
+ c.s., 2010; Chopdar, 2022).
233
+ Sự tin tưởng (Trust) phản ánh sự sẵn sàng
234
+ ở trong tình trạng dễ bị tổn thương dựa trên
235
+ kỳ vọng tích cực đối với hành vi trong tương
236
+ lai của yếu tố ngoại vi (Arfi và c.s., 2021;
237
+ Chopdar, 2022). Nhiều nghiên cứu đã chỉ ra
238
+ rằng sự tin tưởng có ảnh hưởng tới ý định
239
+ hành vi và nhận thức rủi ro (Arfi và c.s., 2021;
240
+ Chopdar, 2022).
241
+ 3. PHƯƠNG PHÁP NGHIÊN CỨU
242
+ 3.1. Đối tượng nghiên cứu
243
+ Phiếu khảo sát được tạo ra và gửi đến người
244
+ dùng thông qua ứng dụng Zalo và mạng xã hội
245
+ Facebook trong khoảng thời gian từ ngày
246
+ 18/6/2021 đến ngày 21/6/2021. Số lượng ước
247
+ lượng người dùng tham gia khảo sát là 400
248
+ người, tỷ lệ phản hồi là 73,75% (295 phản
249
+ hồi), nhóm nghiên cứu loại bỏ 25 phản hồi do
250
+ người dùng không cài đặt ứng dụng Bluezone,
251
+ 41 câu trả lời không hợp lệ do chỉ chọn một
252
+ lựa chọn duy nhất, 5 phản hồi không hoàn
253
+ thành khảo sát. Tổng số dữ liệu cuối cùng để
254
+ đưa vào phân tích là 224 (75,93%). Bảng 1
255
+ tổng hợp dữ liệu từ phiếu khảo sát, tỷ lệ nam
256
+ chiếm 16,07%, trong khi đó tỷ lệ nữ chiếm
257
+ 83,48%. Hơn một nửa đối tượng tham gia điều
258
+ tra là sinh viên, học sinh trong độ tuổi từ 10 –
259
+ 20 (52,68%), 27,23% nằm trong độ tuổi từ 21
260
+ – 30, 11,16% nằm trong độ tuổi 31 – 40%, số
261
+ còn lại trên 41 tuổi chiếm 8,93%. Khu vực sinh
262
+ sống của người dùng ứng dụng Bluezone chủ
263
+ yếu tập trung ở khu vực thị xã, nông thôn và
264
+ miền núi (52,23%), còn lại là ở các khu vực
265
+ thành phố (28,57%) và quận /huyện (19,20%).
266
+ Kết quả của phiếu khảo sát này cũng phù hợp
267
+ với đặc tính vùng miền của tỉnh Thái Nguyên
268
+ – là tỉnh miền núi.
269
+
270
+ ap chi khoa hoc
271
+ DAI HOC HA LONG
272
+
273
+
274
+
275
+ 4 Số 01(2021): 1 – 11
276
+
277
+
278
+
279
+ KHOA HỌC TỰ NHIÊN
280
+ 3.2. Công cụ khảo sát
281
+ Sau khi nghiên cứu các câu hỏi dùng cho
282
+ việc khảo sát dựa trên mô hình nghiên cứu
283
+ (Arfi và c.s., 2021; Chopdar, 2022), 18 câu
284
+ hỏi được nhóm tác giả lựa chọn và đưa vào
285
+ nghiên cứu (xem
286
+ Bảng 2). Thang điểm Likert năm điểm (1
287
+ = Hoàn toàn không đồng ý, 2 = Không đồng
288
+ ý, 3 = Trung lập, 4 = Đồng ý, 5 = Hoàn toàn
289
+ đồng ý) được sử dụng cho mỗi câu hỏi.
290
+ Bảng 1. Thông tin chung về đối tượng khảo sát
291
+ Thông tin chung
292
+ Số lượng
293
+ %
294
+
295
+ Giới tính
296
+
297
+
298
+
299
+ Nam
300
+ 36
301
+ 16,07
302
+ Nữ
303
+ 187
304
+ 83,48
305
+ Không xác định
306
+ 1
307
+ 0,45
308
+ ��ộ tuổi
309
+
310
+
311
+ 10 – 20
312
+ 118
313
+ 52,68
314
+ 21 – 30
315
+ 61
316
+ 27,23
317
+ 31 – 40
318
+ 25
319
+ 11,16
320
+ Trên 40 tuổi
321
+ 20
322
+ 8,93
323
+ Khu vực sinh sống
324
+
325
+
326
+ Thành phố
327
+ 64
328
+ 28,57
329
+ Quận/huyện
330
+ 43
331
+ 19,20
332
+ Thị xã, nông thôn
333
+ 117
334
+ 52,23
335
+ Tổng
336
+ 224
337
+ 100
338
+ 3.3. Phân tích các nhân tố khám phá
339
+ Phân tích nhân tố khám phá (Explatory
340
+ Factor Analysis - EFA) là một phương pháp
341
+ thống kê dùng để rút gọn nhiều biến đo lường
342
+ phụ thuộc lẫn nhau (đo được) thành một tập
343
+ biến ít hơn (gọi là các nhân tố – không đo
344
+ được trực tiếp) mà vẫn chứa đựng hầu hết nội
345
+ dung thông tin của tập biến ban đầu (Hair Jr
346
+ và c.s., 2009). EFA giả định rằng mỗi chỉ số
347
+ trong một tập hợp các chỉ số là một hàm tuyến
348
+ tính của một hoặc nhiều nhân tố chung và một
349
+ nhân tố duy nhất. Các nhân tố chung là các
350
+ yếu tố tiềm ẩn không thể quan sát được có ảnh
351
+ hưởng đến nhiều hơn một chỉ số trong một
352
+ tập hợp các chỉ số (Fabrigar & Wegener,
353
+ 2012). Các nhân tố duy nhất là các biến tiềm
354
+ ẩn được giả định chỉ ảnh hưởng đến một chỉ
355
+ số từ một tập hợp các chỉ số và không tính
356
+ đến mối tương quan giữa các chỉ số. Mục tiêu
357
+ của mô hình nhân tố chung là tìm hiểu cấu
358
+ trúc mối tương quan giữa các chỉ số bằng
359
+ cách ước tính các mô hình mối quan hệ giữa
360
+ các chỉ số và các nhân tố tiềm ẩn được lập chỉ
361
+ mục gọi là tải nhân tố.
362
+ Bảng 2. Bảng câu hỏi sử dụng khảo sát
363
+ Mã Câu hỏi
364
+
365
+ Kỳ vọng hiệu quả (Venkatesh và c.s., 2003)
366
+
367
+ PE1 Sử dụng phần mềm Bluezone giúp tôi nắm
368
+ bắt thông tin về Covid nhanh hơn.
369
+
370
+ PE2 Sử dụng phần mềm Bluezone giúp tôi
371
+ nâng cao hiệu quả về phòng tránh Covid.
372
+
373
+ PE3 Sử dụng phần mềm Bluezone giúp tôi nắm
374
+ bắt kịp thời các thông tin cần thiết nơi tôi
375
+ sinh sống.
376
+
377
+ Kỳ vọng nỗ lực (Venkatesh và c.s., 2003)
378
+
379
+ EE1 Học cách sử dụng phần mềm Bluezone là
380
+ tương đối dễ với tôi.
381
+
382
+ EE2 Các chức năng và thao tác của Bluezone là
383
+ rõ ràng và dễ hiểu.
384
+
385
+ EE3 Phần mềm Bluezone là dễ sử dụng.
386
+
387
+ EE4 Tôi dễ dàng sử dụng thành thạo phần mềm
388
+ Bluezone.
389
+
390
+ Ảnh hưởng xã hội (Venkatesh và c.s., 2003)
391
+
392
+ SI1 Người thân trong gia đình tôi cho rằng tôi
393
+ nên sử dụng phần mềm Bluezone.
394
+
395
+ SI2 Bạn bè và đồng nghiệp tôi cho rằng tôi
396
+ nên sử dụng phần mềm Bluezone.
397
+
398
+ SI3 Tôi sử dụng phần mềm Bluezone là do
399
+ được tuyên truyền từ các phương tiện
400
+ truyền thông.
401
+
402
+ Các điều kiện thuận lợi (Venkatesh và c.s., 2003)
403
+
404
+ FC1 Tôi có thiết bị để cài đặt phần mềm
405
+ Bluezone (ví dụ: điện thoại, máy tính
406
+ bảng).
407
+
408
+ FC2 Phần mềm Bluezone tương thích với các
409
+ thiết bị của tôi.
410
+
411
+ FC3 Tôi có sự hỗ trợ khi gặp trục trặc với phần
412
+ mềm Bluezone.
413
+
414
+ Rủi ro về quyền riêng tư (Arfi và c.s., 2021;
415
+ Chopdar, 2022)
416
+
417
+ PR1 Tôi nghĩ rằng việc sử dụng Bluezone sẽ
418
+ khiến quyền riêng tư của tôi gặp rủi ro.
419
+
420
+ PR2 Dữ liệu cá nhân của tôi có thể bị rò rỉ khi
421
+ sử dụng phần mềm Bluezone.
422
+
423
+ Sự tin tưởng (Trust) (Arfi và c.s., 2021;
424
+ Chopdar, 2022)
425
+
426
+ T1
427
+ Tôi tin rằng thông tin mà Bluezone cung
428
+ cấp là đáng tin cậy.
429
+
430
+ T2
431
+ Tôi tin tưởng việc sử dụng phần mềm
432
+ Bluezone.
433
+
434
+ T3
435
+ Bluezone cung cấp các chức năng mà
436
+ người dùng cần.
437
+
438
+ Nếu giá trị trung bình của một câu được tìm
439
+ thấy là gần với 1 hoặc 5 thì nhóm nghiên cứu
440
+
441
+
442
+
443
+
444
+
445
+ Số 02 (2022): 1 – 11
446
+ 5
447
+
448
+ KHOA HỌC TỰ NHIÊN
449
+ loại bỏ câu trả lời đó ra khỏi bảng số liệu vì nó
450
+ có thể làm giảm tiêu chuẩn tương quan giữa các
451
+ mục còn lại (J. J. Kim, 2011). Sau bước này,
452
+ tính chuẩn mực trong phân phối đã được kiểm
453
+ tra bằng cách kiểm tra độ lệch (skewness) và độ
454
+ nhọn (kurtosis) trước khi tiến hành phân tích
455
+ nhân tố khám phá. Vì tính chuẩn mực của phân
456
+ phối đã được xác nhận, nên việc phân tích nhân
457
+ tố khám phá được tiến hành thông qua việc sử
458
+ dụng phần mềm SPSS 26 (Statistical Package
459
+ for the Social Sciences).
460
+ Tiến trình phân tích nhân tố khám phá được
461
+ bắt đầu bằng việc thu thập các giá trị riêng
462
+ (eigenvalues) cho mỗi nhân tố. Tiếp theo, thang
463
+ đo Kaiser-Meyer-Olkin (KMO) được sử dụng
464
+ để đo về mức độ phù hợp của dữ liệu cho việc
465
+ phân tích nhân tố (Goretzko và c.s., 2021). Giá
466
+ trị của KMO thay đổi giữa 0 và 1 và các giá trị
467
+ trên 0,5 thường được coi là đủ cho EFA
468
+ (Goretzko và c.s., 2021; Schneeweiss &
469
+ Mathes, 1995). Mức độ tương quan giữa các
470
+ câu hỏi có đủ lớn để phân tích nhân tố có ý
471
+ nghĩa thống kê hay không được kiểm tra thông
472
+ qua phương pháp Bartlett. Chỉ khi kiểm định
473
+ Bartlett có ý nghĩa thống kê (sig. < 0,05) thì các
474
+ phân tích tiếp theo mới được tiến hành.
475
+ 3.4. Mô hình phương trình cấu trúc
476
+ Sau khi có kết quả từ phân tích nhân tố
477
+ khám phá, các nhân tố tìm được sẽ được sử
478
+ dụng để tìm hiểu sự tác động của chúng đối
479
+ với ý định hành vi của việc sử dụng phần
480
+ mềm Bluezone. Mô hình phương trình cấu
481
+ trúc (Structural Equation Modeling – SEM)
482
+ được sử dụng để tìm hiểu sự tác động của các
483
+ biến độc lập (nhân tố) đối với biến phụ thuộc
484
+ (ý định hành vi) (Kline, 2015). SEM là một
485
+ mô hình cấu trúc tuyến tính bao gồm các mô
486
+ hình thống kê nhằm tìm lời giải thích mối
487
+ quan hệ giữa các biến số (Kline, 2015). SEM
488
+ được ứng dụng rộng rãi trong nhiều lĩnh vực
489
+ với các tên gọi khác nhau như phân tích cấu
490
+ trúc hiệp phương sai, phân tích biến ẩn, hoặc
491
+ mô hình nhân quả. Mục đích của SEM là
492
+ kiểm tra lý thuyết bằng cách chỉ định một mô
493
+ hình đại diện cho các dự đoán của lý thuyết
494
+ đó trong số các cấu trúc hợp lý được đo bằng
495
+ các biến quan sát thích hợp.
496
+ 4. KẾT QUẢ NGHIÊN CỨU
497
+ 4.1. Phân tích nhân tố khám phá
498
+ EFA được thực hiện trên 18 câu hỏi với
499
+ vòng quay Varimax. Kết quả phân tích từ
500
+ phần mềm SPSS cho phép nhóm nghiên cứu
501
+ trích xuất được giá trị đặc trưng cho từng
502
+ nhân tố. Phép đo KMO đã xác minh tính thích
503
+ hợp của việc lấy mẫu cho phép phân tích với
504
+ giá trị là 0,889 (xem Bảng 3), cao hơn đề xuất
505
+ của J. O. Kim & Mueller (1978) là 0,6.
506
+ Bảng 3. Kiểm định KMO và Barlett
507
+ Kaiser-Meyer-Olkin
508
+ 0,889
509
+ Kiểm định
510
+ Bartlett
511
+ Chi-Square
512
+ 2825,528
513
+ df
514
+ 153
515
+ Sig.
516
+ 0,000
517
+ Kiểm định Bartlett (Bartlett's test of
518
+ sphericity) cho kết quả χ2 (153) = 2825,528,
519
+ ρ < 0,000, chỉ ra rằng mối tương quan giữa
520
+ các hạng mục câu hỏi là đủ lớn để tiến hành
521
+ phân tích nhân tố khám phá.
522
+ Số liệu từ
523
+ Bảng 4 cho thấy có bốn nhân tố chính
524
+ được hình thành từ tập 18 câu hỏi với giá trị
525
+ đặc trưng lớn hơn 1. Nói cách khác, 18 câu
526
+ hỏi này đóng góp 70,269% tầm quan trọng
527
+ của các yếu tố tác động đến việc sử dụng ứng
528
+ dụng Bluezone, 29,731% còn lại là do các
529
+ yếu tố khác. Tỷ lệ phần trăm được giải thích
530
+ theo từng nhân tố là: nhân tố 1 (46,749%),
531
+ nhân tố 2 (10,563%), nhân tố 3 (6,587%) và
532
+ nhân tố 4 (3,369%).
533
+ Dữ liệu trong Bảng 5 cho thấy có sự dịch
534
+ chuyển về hạng mục câu hỏi giữa các nhân tố
535
+ chính. Trong mô hình ban đầu, chúng tôi giả
536
+ định rằng có sáu nhân tố chính ảnh hưởng tới
537
+ việc sử dụng phần mềm Bluezone, tuy nhiên
538
+ kết quả phân tích chỉ ra bốn nhân tố cơ bản
539
+ phản ánh mối tương quan giữa các câu hỏi. Có
540
+ một điểm đáng chú ý trong kết quả phân tích
541
+ đó là nhóm nhân tố chính thứ hai và thứ tư vẫn
542
+ giữ nguyên theo giả định ban đầu của nhóm
543
+ tác giả, trong khi nhóm nhân tố chính thứ nhất
544
+ được hình thành bằng việc kết hợp giữa hai
545
+ yếu tố sự tin cậy (trust) và kỳ vọng hiệu quả
546
+ (Performance Expectancy) – đặt lại tên là Hiệu
547
+
548
+ ap chi khoa hoc
549
+ DAI HOC HA LONG
550
+
551
+
552
+
553
+ 6 Số 01(2021): 1 – 11
554
+
555
+
556
+
557
+ KHOA HỌC TỰ NHIÊN
558
+ quả tin cậy; Nhóm nhân tố thứ 3 được hình
559
+ thành bằng việc kết hợp giữa ảnh hưởng xã hội
560
+ và các điều kiện thuận lợi – đặt lại tên là Xã
561
+ hội và Kỳ vọng hiệu quả. Hạng mục FC3 (Tôi
562
+ có sự hỗ trợ khi gặp trục trặc với phần mềm
563
+ Bluezone) bị loại bỏ sau quá trình phân tích.
564
+ Bảng 4. Các nhân tố chính
565
+ Bảng 5. Ma trận nhân tố xoay
566
+
567
+ 1
568
+ 2
569
+ 3
570
+ 4
571
+ T3
572
+ 0,721
573
+
574
+
575
+
576
+ PE2
577
+ 0,712
578
+
579
+
580
+
581
+ PE3
582
+ 0,690
583
+
584
+
585
+
586
+ T2
587
+ 0,649
588
+
589
+
590
+
591
+ PE1
592
+ 0,575
593
+
594
+
595
+
596
+ T1
597
+ 0,481
598
+
599
+
600
+
601
+ FC3
602
+
603
+
604
+
605
+
606
+ EE1
607
+
608
+ 0,769
609
+
610
+
611
+ EE2
612
+
613
+ 0,739
614
+
615
+
616
+ EE3
617
+
618
+ 0,688
619
+
620
+
621
+ EE4
622
+
623
+ 0,664
624
+
625
+
626
+ SI2
627
+
628
+
629
+ 0,796
630
+
631
+ SI1
632
+
633
+
634
+ 0,671
635
+
636
+ FC1
637
+
638
+
639
+ 0,614
640
+
641
+ FC2
642
+
643
+
644
+ 0,566
645
+
646
+ SI3
647
+
648
+
649
+ 0,375
650
+
651
+ PR1
652
+
653
+
654
+
655
+ 0,905
656
+ PR2
657
+
658
+
659
+
660
+ 0,872
661
+ 4.2. Mô hình phương trình cấu trúc
662
+ Dựa vào kết quả của phân tích nhân t���
663
+ khám phá, nhóm nghiên cứu đưa ra các giả
664
+ thiết sau:
665
+ H1. Sự tin tưởng và kỳ vọng hiệu quả có
666
+ ảnh hưởng tích cực tới ý định hành vi của việc
667
+ sử dụng phần mềm Bluezone.
668
+ H2. Kỳ vọng nỗ lực có ảnh hưởng tích cực tới ý
669
+ định hành vi của việc sử dụng phần mềm Bluezone.
670
+ H3. Ảnh hưởng xã hội có tác động tích cực tới ý
671
+ định hành vi của việc sử dụng phần mềm Bluezone.
672
+ H4. Rủi ro về quyền riêng tư có ảnh hưởng
673
+ tiêu cực tới ý định hành vi của việc sử dụng
674
+ phần mềm Bluezone.
675
+ Chỉ có các hạng mục có hệ số trong Bảng
676
+ 5 lớn hơn 0,6 được giữ lại trong phân tích. Số
677
+ mẫu tối thiểu cần thiết để phân tích có ý nghĩa
678
+ thống kê theo công cụ tính toán của (Soper,
679
+ 2022) là 166 (với 4 biến tiềm ẩn và 13 biến
680
+ quan sát được). Số mẫu trong nghiên cứu là
681
+ 224 lớn hơn so với số mẫu tối thiểu. Kỹ thuật
682
+ phân tích thành phần có cấu trúc tổng quát
683
+ (GSCA) được sử dụng để phân tích mô hình
684
+ nghiên cứu được đề xuất do khả năng xử lý
685
+ với kích thước mẫu nhỏ trong khi cần phân
686
+ phối chuẩn nghiêm ngặt (Hwang & Takane,
687
+ 2014). GSCA là một thành phần dựa trên mô
688
+ hình phương trình cấu trúc có thể được sử
689
+ dụng để mô phỏng các đường dẫn Bình
690
+ phương tối thiểu một phần (PLS). Nghiên cứu
691
+ này sử dụng phần mềm GSCA Pro trong việc
692
+ ước lượng các tham số (Hwang và c.s., 2021).
693
+
694
+ Tính nhất quán của dữ liệu và các phép
695
+ đo giá trị hội tụ cho mỗi nhân tố được thể hiện
696
+ trong Bảng 6. Dillon-Goldstein’s rho được sử
697
+ dụng để đánh giá cho các yêu cầu về tính nhất
698
+ quán và độ tin cậy bên trong của mỗi nhân tố
699
+ (Hwang & Takane, 2014).
700
+ Nhân tố
701
+ Giá trị đặc trưng khởi tạo
702
+ Tổng bình phương của
703
+ hệ số tải nhân tố
704
+ Tổng bình phương
705
+ của hệ số tải nhân
706
+ tố xoay
707
+ Tổng
708
+ % Phương
709
+ sai
710
+ % Tích lũy
711
+ Tổng
712
+ % Phương
713
+ sai
714
+ % Tích lũy
715
+ Tổng
716
+ 1
717
+ 8,415
718
+ 46,749
719
+ 46,749
720
+ 8,068
721
+ 44,823
722
+ 44,823
723
+ 3,765
724
+ 2
725
+ 1,901
726
+ 10,563
727
+ 57,312
728
+ 1,682
729
+ 9,343
730
+ 54,165
731
+ 3,326
732
+ 3
733
+ 1,186
734
+ 6,587
735
+ 63,900
736
+ 0,911
737
+ 5,062
738
+ 59,228
739
+ 2,652
740
+ 4
741
+ 1,146
742
+ 3,369
743
+ 70,269
744
+ 0,760
745
+ 4,220
746
+ 63,447
747
+ 1,677
748
+ 5
749
+ 0,973
750
+ 5,405
751
+ 75,674
752
+
753
+
754
+
755
+
756
+ 6
757
+ 0,728
758
+ 4,043
759
+ 79,717
760
+
761
+
762
+
763
+
764
+
765
+
766
+
767
+
768
+
769
+ Số 02 (2022): 1 – 11
770
+ 7
771
+
772
+ KHOA HỌC TỰ NHIÊN
773
+ Bảng 6. Độ tin cậy của thang đo
774
+ Nhân tố
775
+ Rho
776
+ AVE
777
+ Sự tin tưởng và kỳ
778
+ vọng hiệu quả
779
+ 0,912
780
+ 0,722
781
+ Kỳ vọng nỗ lực
782
+ 0,940
783
+ 0,796
784
+ Ảnh hưởng xã hội
785
+ 0,897
786
+ 0,746
787
+ Rủi ro về quyền
788
+ riêng tư
789
+ 0,947
790
+ 0,899
791
+ Ý định hành vi
792
+ 0,090
793
+ 0,750
794
+ Hầu hết tất cả các giá trị, nằm trong
795
+ khoảng từ 0,897 đến 0,947, đều lớn hơn 0,7,
796
+ trên mức ước tính độ tin cậy có thể chấp nhận
797
+ được (Hwang & Takane, 2014). Chúng tôi
798
+ cũng đã xem xét giá trị phương sai trung bình
799
+ được trích xuất (Average Variance Extracted
800
+ – AVE) của mỗi biến tiềm ẩn để xác định xem
801
+ biến có hội tụ hay không. Tất cả các giá trị
802
+ AVE đều lớn hơn 0,5 (Hwang & Takane,
803
+ 2014), nằm trong khoảng từ 0,722 đến 0,899,
804
+ cho thấy độ tin cậy hội tụ.
805
+ Bảng 7. Ước lượng hệ số tải (loadings)
806
+
807
+ Ước lượng
808
+ SE
809
+ 95%CI_LB
810
+ 95%CI_UB
811
+ PE2
812
+ 0,876
813
+ 0,022
814
+ 0,826
815
+ 0,911
816
+ PE3
817
+ 0,850
818
+ 0,031
819
+ 0,786
820
+ 0,904
821
+ T2
822
+ 0,833
823
+ 0,031
824
+ 0,782
825
+ 0,893
826
+ T3
827
+ 0,839
828
+ 0,027
829
+ 0,763
830
+ 0,887
831
+ EE1
832
+ 0,849
833
+ 0,032
834
+ 0,789
835
+ 0,907
836
+ EE2
837
+ 0,912
838
+ 0,017
839
+ 0,873
840
+ 0,939
841
+ EE3
842
+ 0,915
843
+ 0,020
844
+ 0,867
845
+ 0,947
846
+ EE4
847
+ 0,890
848
+ 0,019
849
+ 0,851
850
+ 0,932
851
+ SI1
852
+ 0,896
853
+ 0,014
854
+ 0,869
855
+ 0,921
856
+ SI2
857
+ 0,943
858
+ 0,008
859
+ 0,924
860
+ 0,955
861
+ FC1
862
+ 0,739
863
+ 0,050
864
+ 0,621
865
+ 0,822
866
+ PR1
867
+ 0,949
868
+ 0,008
869
+ 0,934
870
+ 0,968
871
+ PR2
872
+ 0,948
873
+ 0,009
874
+ 0,931
875
+ 0,967
876
+ BI1
877
+ 0,893
878
+ 0,029
879
+ 0,836
880
+ 0,939
881
+ BI2
882
+ 0,869
883
+ 0,029
884
+ 0,808
885
+ 0,917
886
+ BI3
887
+ 0,835
888
+ 0,043
889
+ 0,716
890
+ 0,889
891
+ Bảng 7 cho thấy hệ số tải của các hạng
892
+ mục cùng với các tham số khác như sai số
893
+ chuẩn (SE), khoảng tin cậy dưới (CI_LB) và
894
+ khoảng tin cậy trên (CI_UB). Phương pháp
895
+ Boostrap thực hiện với số mẫu lặp lại là 100
896
+ lần, giá trị trung bình của 100 lần lặp này
897
+ được dùng để ước lượng giá trị gần đúng của
898
+ tổng thể. Ở mức 0,05 alpha, ước tính tham số
899
+ được coi là có ý nghĩa thống kê nếu 95%
900
+ khoảng tin cậy không bao gồm giá trị 0. Kết
901
+ quả Bảng 7 cho thấy tất cả các hạng mục đều
902
+ đáng tin cậy và các ước lượng tải đều có ý
903
+ nghĩa thống kê.
904
+
905
+ Kết quả phân tích từ phần mềm GSCA
906
+ Pro cho các kết quả như: độ phù hợp của mô
907
+ hình (Model FIT) là 0,59; độ phù hợp điều
908
+ chỉnh của mô hình (Adjusted FIT - AFIT) là
909
+ 0,586. Cả FIT và FIT điều chỉnh (AFIT) đều
910
+ được sử dụng để điều tra sự khác biệt trong
911
+ dữ liệu được giải thích bởi một cấu hình mô
912
+ hình nhất định. Các giá trị FIT nằm trong
913
+ khoảng từ 0 đến 1. Các đặc điểm và ý nghĩa
914
+ của FIT và AFIT tương đương với R2 và R2
915
+ điều chỉnh trong hồi quy tuyến tính. Kết quả
916
+ thực nghiệm của FIT và AFIT cho thấy mô
917
+ hình lần lượt chiếm khoảng 59% và 58,6%
918
+ tổng phương sai của tất cả các biến.
919
+
920
+ ap chi khoa hoc
921
+ DAI HOC HA LONG
922
+
923
+
924
+
925
+ 8 Số 01(2021): 1 – 11
926
+
927
+
928
+
929
+ KHOA HỌC TỰ NHIÊN
930
+ Bảng 8. Ước tính hệ số đường dẫn
931
+
932
+ Ước lượng
933
+ SE
934
+ 95%CI_LB 95%CI_UB
935
+ Sự tin tưởng và kỳ vọng hiệu quả
936
+ → Ý định hành vi sử dụng Bluezone (H1)
937
+ 0,218*
938
+ 0,105
939
+ 0,029
940
+ 0,049
941
+ Kỳ vọng nỗ lực
942
+ → Ý định hành vi sử dụng Bluezone (H2)
943
+ 0,116*
944
+ 0,084
945
+ 0,05
946
+ 0,290
947
+ Ảnh hưởng xã hội
948
+ → Ý định hành vi sử dụng Bluezone (H3)
949
+ 0,137*
950
+ 0,097
951
+ 0,043
952
+ 0,320
953
+ Rủi ro về quyền riêng tư
954
+ → Ý định hành vi sử dụng Bluezone (H4)
955
+ -0,06*
956
+ 0.63
957
+ 0.06
958
+ 0.185
959
+ * có ý nghĩa thống kê ở mức 0,05
960
+ Bảng 8 trình bày các ước tính của hệ số
961
+ đường dẫn của mô hình phương trình cấu
962
+ trúc, cùng với sai số chuẩn và khoảng tin cậy
963
+ 95% cận dưới và cận trên. Kết quả thực
964
+ nghiệm cho thấy sự tin tưởng và kỳ vọng hiệu
965
+ quả có ảnh hưởng tích cực tới ý định hành vi
966
+ sử dụng phần mềm Bluezone (H1 = 0,218; SE
967
+ = 0,105; CIs = 0,029 – 0,049). Tương tự, kỳ
968
+ vọng nỗ lực có ảnh hưởng tích cực tới ý định
969
+ hành vi (H2 = 0,016; SE = 0,084; CIs = 0,05
970
+ – 0,29). Ảnh hưởng xã hội cũng đóng góp vào
971
+ ý định hành vi một cách tích cực (H3 = 0,137;
972
+ SE = 0,097; CIs = 0,043 – 0,32) và cuối cùng
973
+ rủi ro về quyền riêng tư có ảnh hưởng tiêu cực
974
+ tới ý định hành vi sử dụng Bluezone của
975
+ người dùng (H4 = -0,06; SE = 0,63; CIs =
976
+ 0,06 – 0,185).
977
+ 5. THẢO LUẬN
978
+ Đã hơn hai năm kể từ khi đại dịch Covid-
979
+ 19 xuất hiện, mặc dù số lượng ca nhiễm và tử
980
+ vong đã giảm đáng kể so với giai đoạn đầu
981
+ nhưng vẫn chưa có dấu hiệu nào cho thấy sự
982
+ kết thúc của đại dịch này. Cùng với các biện
983
+ pháp cách ly xã hội, tiêm vắc xin, khai báo
984
+ trực tiếp bằng văn bản, việc ứng dụng công
985
+ nghệ thông tin trong hỗ trợ đại dịch cũng đã
986
+ và đang đem lại nhiều lợi ích nhất định. Hầu
987
+ như các hoạt động xã hội đều đã được số hóa
988
+ như họp trực tuyến, đặt hàng trực tuyến,
989
+ thanh toán trực tuyến, giảng dạy trực tuyến...
990
+ đến truy vết bằng công nghệ số. Các hoạt
991
+ động này, cho dù không có đại dịch xảy ra,
992
+ cũng là xu hướng tất yếu trong chuyển đổi số,
993
+ nhưng sự xuất hiện của đại dịch khiến cho
994
+ quá trình này được chuyển đổi nhanh hơn.
995
+ Phần mềm Bluezone là sản phẩm kịp thời để
996
+ ứng phó nhanh với đại dịch. Tuy nhiên, số
997
+ lượng người dùng sử dụng liên tục lại không
998
+ được như kỳ vọng. Điều đó dẫn đến ứng dụng
999
+ công nghệ thông tin này chưa phát huy được
1000
+ hết sức mạnh. Do đó, ý thức về việc tích cực
1001
+ tham gia vào việc sử dụng ứng dụng
1002
+ Bluezone (hay PC-Covid) vẫn cần phải được
1003
+ nâng cao để giúp các nhà chức trách nhanh
1004
+ chóng tìm ra các giải pháp kịp thời.
1005
+ Kết quả thực nghiệm từ mô hình phương
1006
+ trình cấu trúc cho thấy, cả bốn nhân tố thu
1007
+ được từ phân tích các nhân tố khám phá đều
1008
+ có ảnh hưởng tích cực hoặc tiêu cực tới ý định
1009
+ hành vi của người dùng đối với phần mềm
1010
+ Bluezone. Cụ thể, sự tin tưởng và kỳ vọng
1011
+ hiệu quả, kỳ vọng nỗ lực, ảnh hưởng xã hội
1012
+ có tác động tích cực đến ý định hành vi của
1013
+ việc sử dụng phần mềm truy vết Bluezone.
1014
+ Trong khi đó, rủi ro về quyền riêng tư có ảnh
1015
+ hưởng tiêu cực đến hành vi này.
1016
+ Về mặt lý thuyết, kết quả của nghiên cứu
1017
+ này một lần nữa xác thực các mối quan hệ
1018
+ nguyên nhân – hậu quả đã được nghiên cứu
1019
+ và xác định ở trong mô hình phương trình cấu
1020
+ trúc, qua đó tạo thêm nhiều minh chứng cho
1021
+ sự tồn tại và ảnh hưởng của các nhân tố này.
1022
+ Những độc giả quan tâm hoặc các nhà nghiên
1023
+ cứu khác có thể tham khảo kết quả trên cho
1024
+ các nghiên cứu tương tự.
1025
+ Về mặt thực tiễn, kết quả nghiên cứu là cơ
1026
+ sở để các nhà phát triển phần mềm, người
1027
+ quản lý đưa ra các chiến lược và giải pháp phù
1028
+ hợp để tăng cường ý định hành vi sử dụng
1029
+
1030
+
1031
+
1032
+
1033
+
1034
+ Số 02 (2022): 1 – 11
1035
+ 9
1036
+
1037
+ KHOA HỌC TỰ NHIÊN
1038
+ phần mềm truy vết Bluezone. Cụ thể, đối với
1039
+ các nhân tố có ảnh hưởng tích cực, cần phải
1040
+ liên tục và cập nhật phần mềm sao cho nó
1041
+ thực sự mang lại hiệu quả hay nói cách khác,
1042
+ dữ liệu có được sử dụng tối ưu cho các nhà
1043
+ quản lý hay không. Hơn nữa, phần mềm phải
1044
+ nên thiết kế dễ sử dụng để bất kỳ ai cũng có
1045
+ thể tự thao tác. Ảnh hưởng xã hội cho thấy
1046
+ phương tiện truyền thông, gia đình, bạn bè và
1047
+ đồng nghiệp đóng vai trò quan trọng tới ý
1048
+ định hành vi, do đó việc tuyên truyền cũng
1049
+ nên tiếp tục được duy trì thông qua các
1050
+ phương tiện truyền thông khác nhau. Vì rủi ro
1051
+ về quyền riêng tư cũng đóng vai trò quyết
1052
+ định tới ý định, hành vi của người sử dụng,
1053
+ do đó các nhà quản lý, các nhà phát triển phần
1054
+ mềm, an ninh mạng cũng phải có các kỹ
1055
+ thuật, cơ chế, chính sách sử dụng và bảo vệ
1056
+ một cách phù hợp để giúp người dùng yên
1057
+ tâm hơn về dữ liệu cá nhân của mình.
1058
+ Ngoài các yếu tố tích cực, nghiên cứu này
1059
+ cũng tồn tại một số giới hạn. Thứ nhất, việc
1060
+ lấy mẫu là không hoàn toàn ngẫu nhiên vì đối
1061
+ tượng tham gia nghiên cứu nằm trong mạng
1062
+ lưới của tác giả. Do đó việc khái quát hóa đến
1063
+ một số lượng người dùng lớn hơn cần phải
1064
+ được xem xét một cách kỹ lưỡng. Thứ hai,
1065
+ việc khảo sát chỉ được thực hiện trong một
1066
+ khoảng thời gian nhất định nên hành vi của
1067
+ đối tượng tham gia nghiên cứu có thể không
1068
+ nhất quán trong tương lai. Thứ ba, chỉ có một
1069
+ số các nhân tố được đưa vào phân tích trong
1070
+ mô hình phương trình cấu trúc, có thể tồn tại
1071
+ nhiều nhân tố khác cũng có tầm ảnh hưởng
1072
+ tới việc sử dụng Bluezone, do đó chúng tôi
1073
+ khuyến nghị các nhà nghiên cứu quan tâm tìm
1074
+ hiểu thêm các nhân tố mới này.
1075
+ 6. KẾT LUẬN
1076
+ Nghiên cứu này khám phá các nhân tố
1077
+ và đánh giá sự ảnh hưởng của các nhân tố
1078
+ đó tới ý định hành vi của người dùng trong
1079
+ việc sử dụng phần mềm truy vết Bluezone.
1080
+ Mô hình lý thuyết thống nhất về chấp nhận
1081
+ và sử dụng công nghệ được mở rộng thêm
1082
+ hai nhân tố mới bao gồm sự tin tưởng và rủi
1083
+ ro về quyền riêng tư. Kết quả khảo sát từ
1084
+ 224 người dùng cho thấy có bốn nhân tố
1085
+ chính ảnh hưởng tới việc sử dụng phần
1086
+ mềm truy vết, trong đó có 3 nhân tố ảnh
1087
+ hưởng tích cực tới ý định hành vi, trong khi
1088
+ đó nhân tố rủi ro về quyền riêng tư có ảnh
1089
+ hưởng theo chiều ngược lại. Kết quả nghiên
1090
+ cứu đóng góp về mặt lý thuyết bằng cách
1091
+ giải thích sự ảnh hưởng của các nhân tố đối
1092
+ với ý định hành vi một cách tinh gọn hơn
1093
+ (giảm chiều từ 6 nhân tố xuống còn 4 nhân
1094
+ tố trong EFA) và xác thực các mối quan hệ
1095
+ nguyên nhân – hậu quả thông qua mô hình
1096
+ phương trình cấu trúc. Đồng thời, kết quả
1097
+ nghiên cứu cũng có thể được sử dụng trong
1098
+ thực tiễn giúp các nhà quản lý, nhà phát
1099
+ triển phần mềm, an ninh môi trường mạng
1100
+ có thêm cơ sở để tiếp tục hoàn thiện phần
1101
+ mềm truy vết Covid-19.
1102
+ LỜI CẢM ƠN
1103
+
1104
+ Nhóm tác giả trân trọng cảm ơn các
1105
+ bạn bè, đồng nghiệp trong việc tham gia khảo
1106
+ sát. Cảm ơn TS. Nguyễn Hải Minh (ICTU) vì
1107
+ đã phổ biến phiếu khảo sát đến các sinh viên
1108
+ trong trường.
1109
+ TÀI LIỆU THAM KHẢO
1110
+ Arfi, W. B., Nasr, I. B., Kondrateva, G., &
1111
+ Hikkerova, L. (2021). The role of trust in
1112
+ intention to use the IoT in eHealth:
1113
+ Application of the modified UTAUT in a
1114
+ consumer
1115
+ context.
1116
+ Technological
1117
+ Forecasting and Social Change, 167,
1118
+ 120688.
1119
+ https://doi.org/10.1016/j.techfore.2021.120688
1120
+ Bansal, G., Zahedi, F. “Mariam”, & Gefen,
1121
+ D. (2010). The impact of personal
1122
+ dispositions on information sensitivity,
1123
+ privacy concern and trust in disclosing
1124
+ health information online.
1125
+ Decision
1126
+ Support
1127
+ Systems,
1128
+ 49(2),
1129
+ 138–150.
1130
+ https://doi.org/10.1016/j.dss.2010.01.010
1131
+ baochinhphu.vn. (2020, Tháng Tư 18). Thủ
1132
+ tướng dự khai trương 2 sản phẩm công
1133
+ nghệ giúp phòng chống COVID-19.
1134
+
1135
+ ap chi khoa hoc
1136
+ DAI HOC HA LONG
1137
+
1138
+
1139
+
1140
+ 10 Số 02 (2022): 1 – 11
1141
+
1142
+
1143
+
1144
+ baochinhphu.vn.
1145
+ https://baochinhphu.vn/thu-tuong-du-
1146
+ khai-truong-2-san-pham-cong-nghe-
1147
+ giup-phong-chong-covid-19-
1148
+ 102271400.htm
1149
+ Chopdar, P. K. (2022). Adoption of Covid-19
1150
+ contact tracing app by extending UTAUT
1151
+ theory: Perceived disease threat as moderator.
1152
+ Health Policy and Technology, 11(3),
1153
+ 100651.
1154
+ https://doi.org/10.1016/j.hlpt.2022.100651
1155
+ Davis, F. D. (1985). A technology acceptance
1156
+ model for empirically testing new end-
1157
+ user information systems: Theory and
1158
+ results [Thesis, Massachusetts Institute of
1159
+ Technology].
1160
+ https://dspace.mit.edu/handle/1721.1/15192
1161
+ Fabrigar, L. R., & Wegener, D. T. (2012).
1162
+ Exploratory Factor Analysis. Oxford
1163
+ University Press.
1164
+ Goretzko, D., Pham, T. T. H., & Bühner, M.
1165
+ (2021). Exploratory factor analysis:
1166
+ Current
1167
+ use,
1168
+ methodological
1169
+ developments and recommendations for
1170
+ good practice. Current Psychology, 40(7),
1171
+ 3510–3521. https://doi.org/10.1007/s12144-
1172
+ 019-00300-2
1173
+ Hair Jr, J. F., Black, W. C., Babin, B. J., &
1174
+ Anderson, R. E. (2009). Multivariate
1175
+ Data Analysis (7th edition). Pearson.
1176
+ Hwang, H., Cho, G., & Choo, H. (2021).
1177
+ GSCA Pro 1.0 User’s Manual.
1178
+ Hwang,
1179
+ H.,
1180
+ &
1181
+ Takane,
1182
+ Y.
1183
+ (2014).
1184
+ Generalized
1185
+ Structured
1186
+ Component
1187
+ Analysis: A Component-Based Approach
1188
+ to
1189
+ Structural
1190
+ Equation
1191
+ Modeling.
1192
+ Chapman
1193
+ and
1194
+ Hall/CRC.
1195
+ https://doi.org/10.1201/b17872
1196
+ Jung, K., Nguyen, T. V., Piscarac, D., &
1197
+ Yoo, S.-C. (2020). Meet the Virtual Jeju
1198
+ Dol Harubang—The Mixed VR/AR
1199
+ Application for Cultural Immersion in
1200
+ Korea’s
1201
+ Main
1202
+ Heritage.
1203
+ ISPRS
1204
+ International
1205
+ Journal
1206
+ of
1207
+ Geo-
1208
+ Information,
1209
+ 9(6),
1210
+ Art.
1211
+ 6.
1212
+ https://doi.org/10.3390/ijgi9060367
1213
+ Jung, K., Nguyen, V. T., & Lee, J. (2021).
1214
+ BlocklyXR: An Interactive Extended
1215
+ Reality Toolkit for Digital Storytelling.
1216
+ Applied
1217
+ Sciences,
1218
+ 11(3),
1219
+ Art.
1220
+ 3.
1221
+ https://doi.org/10.3390/app11031073
1222
+ Kim, J. J. (2011). Developing an instrument
1223
+ to measure social presence in distance
1224
+ higher education. British Journal of
1225
+ Educational Technology, 42(5), 763–777.
1226
+ https://doi.org/10.1111/j.1467-
1227
+ 8535.2010.01107.x
1228
+ Kim, J. O., & Mueller, C. W. (1978). Factor
1229
+ Analysis:
1230
+ Statistical
1231
+ Methods
1232
+ and
1233
+ Practical Issues. SAGE Publications, Inc.
1234
+ Kline, R. B. (2015). Principles and Practice
1235
+ of Structural Equation Modeling (Fourth
1236
+ edition). The Guilford Press.
1237
+ Le, T.-A. T., Vodden, K., Wu, J., & Atiwesh,
1238
+ G. (2021). Policy Responses to the
1239
+ COVID-19
1240
+ Pandemic
1241
+ in
1242
+ Vietnam.
1243
+ International Journal of Environmental
1244
+ Research and Public Health, 18(2), Art. 2.
1245
+ https://doi.org/10.3390/ijerph18020559
1246
+ Li, Y. (2011). Empirical Studies on Online
1247
+ Information Privacy Concerns: Literature
1248
+ Review and an Integrative Framework.
1249
+ Communications of the Association for
1250
+ Information
1251
+ Systems,
1252
+ 28(1).
1253
+ https://doi.org/10.17705/1CAIS.02828
1254
+ Mbunge, E. (2020). Integrating emerging
1255
+ technologies into COVID-19 contact
1256
+ tracing: Opportunities, challenges and
1257
+ pitfalls. Diabetes & Metabolic Syndrome:
1258
+ Clinical Research & Reviews, 14(6),
1259
+ 1631–1636.
1260
+ https://doi.org/10.1016/j.dsx.2020.08.029
1261
+ Mehrabian, A., & Russell, J. A. (James A.
1262
+ (1974). An approach to environmental
1263
+ psychology. Cambridge, M.I.T. Press.
1264
+ http://archive.org/details/approachtoenvir
1265
+ o00albe
1266
+ Nguyen, T. V. (2022). The perceptions of
1267
+ social media users of digital detox apps
1268
+ considering personality traits. Education
1269
+ and Information Technologies, 27(7),
1270
+ 9293–9316.
1271
+ https://doi.org/10.1007/s10639-022-
1272
+ 11022-7
1273
+ Nguyen, T. V., Anh, N., Tan, N., & Dinh, L.
1274
+ (2021). Tìm hiểu các yếu tố ảnh hưởng tới
1275
+
1276
+ ap chi khoa hoc
1277
+ DAI HOC HA LONG
1278
+
1279
+
1280
+
1281
+ Số 02 (2022): 1 – 11
1282
+ 11
1283
+
1284
+ KHOA HỌC TỰ NHIÊN
1285
+ việc sử dụng ứng dụng Bluezone tại Việt
1286
+ Nam. Hội thảo quốc gia lần thứ XXIV:
1287
+ Một số vấn đề chọn lọc của Công nghệ
1288
+ thông tin và truyền thông, Thái Nguyên.
1289
+ Nguyen, T. V., & Nguyen, T. H. C. (2022).
1290
+ Factors Influencing Intention to use the
1291
+ COVID-19 Contact Tracing Application.
1292
+ Journal of Computer Science, 18(6), 453–
1293
+ 462.
1294
+ https://doi.org/10.3844/jcssp.2022.453.462
1295
+ Schneeweiss, H., & Mathes, H. (1995).
1296
+ Factor
1297
+ Analysis
1298
+ and
1299
+ Principal
1300
+ Components. Journal of Multivariate
1301
+ Analysis,
1302
+ 55(1),
1303
+ 105–124.
1304
+ https://doi.org/10.1006/jmva.1995.1069
1305
+ Soper, D. S. (2022). A-priori Sample Size
1306
+ Calculator for Structural Equation Models.
1307
+ https://www.danielsoper.com/statcalc/cal
1308
+ culator.aspx?id=89
1309
+ Venkatesh, V., Morris, M. G., Davis, G. B., &
1310
+ Davis, F. D. (2003). User Acceptance of
1311
+ Information Technology: Toward a Unified
1312
+ View. MIS Quarterly, 27(3), 425–478.
1313
+ https://doi.org/10.2307/30036540
1314
+ Whitelaw, S., Mamas, M. A., Topol, E., &
1315
+ Spall, H. G. C. V. (2020). Applications of
1316
+ digital
1317
+ technology
1318
+ in
1319
+ COVID-19
1320
+ pandemic planning and response. The
1321
+ Lancet Digital Health, 2(8), e435–e440.
1322
+ https://doi.org/10.1016/S2589-
1323
+ 7500(20)30142-4
1324
+
1325
+ ap chi khoa hoc
1326
+ DAI HOC HA LONG
C9FKT4oBgHgl3EQfYi5Z/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
CNE4T4oBgHgl3EQfFgxh/content/2301.04886v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46f93baa2e035b3bc9e40ccfcd280f14b2e68750128f939c00f88b2755bbab6f
3
+ size 216387
CNE4T4oBgHgl3EQfFgxh/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9da95adc836db6ecdcad72313339aeda806412803d610f25f899d4dd98379114
3
+ size 1507373
CNE4T4oBgHgl3EQfFgxh/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46c35dc5c2cea6c8d18ea14485d6543587909454bdc97762dd71c64b69195930
3
+ size 58587
D9A0T4oBgHgl3EQfAv_u/content/2301.01968v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9338aaee8a3a5ada5447606dd01b2aa5899e258df8cd8e9596cf6c98ce9ef73a
3
+ size 11479871
D9E1T4oBgHgl3EQfqQU2/content/tmp_files/2301.03340v1.pdf.txt ADDED
@@ -0,0 +1,879 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03340v1 [physics.atom-ph] 9 Jan 2023
2
+ Formation of strongly shifted EIT resonances using "forbidden" transitions of Cesium
3
+ Armen Sargsyan,1 Ara Tonoyan,1 Rodolphe Momier,1, 2, ∗ Claude Leroy,2 and David Sarkisyan1
4
+ 1Institute for Physical Research, NAS of Armenia, Ashtarak-2, 0203 Armenia
5
+ 2Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303,
6
+ Université Bourgogne Franche-Comté, 21000 Dijon, France
7
+ (Dated: January 10, 2023)
8
+ Atomic transitions satisfying Fe − Fg = ∆F = ±2 (where Fe stands for excited and Fg stands
9
+ for ground state) of alkali atoms have zero probability in zero magnetic field (they are so-called
10
+ "forbidden" transitions) but experience a large probabilty increase in an external magnetic field.
11
+ These transitions are called magnetically induced (MI) transitions. In this paper, we use for the first
12
+ time the σ+ (∆mF =
13
+ + 1) MI transitions Fg = 3 → Fe = 5 of Cesium as probe radiation to form
14
+ EIT resonances in strong magnetic fields (1 - 3 kG) while the coupling radiation frequency is resonant
15
+ with Fg = 4 → Fe = 5 σ+ transitions. The experiment is performed using a nanometric-thin cell
16
+ filled with Cs vapor and a strong permanent magnet. The thickness of the vapor column is 852 nm,
17
+ corresponding to the Cs D2 line transition wavelength. Due to the large frequency shift slope of the
18
+ MI transitions (∼ 4 MHz/G), it is possible to form contrasted and strongly frequency-shifted EIT
19
+ resonances. Particularly, a strong 12 GHz frequency shift is observed when applying an external
20
+ magnetic field of ∼ 3 kG. Preliminary calculations performed considering Doppler-broadened three
21
+ level systems in a nanocell are in reasonable agreement with the experimental measurements.
22
+ I.
23
+ INTRODUCTION
24
+ Optical processes occurring in Rubidium, Cesium,
25
+ Potassium and Sodium vapors confined in optical cells
26
+ have important applications such as optical atomic
27
+ clocks, optical atomic magnetometers, atomic gyro-
28
+ scopes, markers of atomic transition frequencies, as de-
29
+ scribed for example in [1–6]. Therefore, the study of the
30
+ peculiarities of atomic transitions (in particular Zeeman
31
+ transitions in an external magnetic field) of alkali atoms
32
+ is of utmost importance. It is well known that the appli-
33
+ cation of a strong magnetic field can significantly change
34
+ the probabilities (intensities) of the Zeeman transitions,
35
+ as shown in [7–13]. High interest has recently been fo-
36
+ cused on atomic transitions between ground and excited
37
+ levels that satisfy the condition Fe − Fg = ∆F = ±2
38
+ (these transitions are so-called forbidden by the selection
39
+ rules, thus their probability is zero when no external mag-
40
+ netic field is applied). However, the probabilities of these
41
+ transitions in a magnetic field increase significantly. For
42
+ this reason, we refer to these transitions as Magnetically
43
+ Induced (MI) transitions [8, 11, 12].
44
+ This giant increase in the probabilities of the MI transi-
45
+ tions is due to the “mixing” of magnetic sublevels |F, mF ⟩
46
+ of the ground (Fg) or excited (Fe) levels with sublevels
47
+ having the same magnetic quantum number mF . This
48
+ mixing is the strongest for D2 lines of alkali atoms, as
49
+ up to four states |Fe, 0⟩ can experience mixing, thus re-
50
+ sulting in a 4×4 block in the magnetic Hamiltonian, as
51
+ described in [7, 8, 11, 12].
52
+ Magnetically-induced transitions are of great interest
53
+ because, over a wide range of magnetic field, their proba-
54
+ bilities can be much higher than the probabilities of usual
55
56
+ ("allowed", satisfying the selection rule on F) transitions.
57
+ It is important to note that the slope of the frequency
58
+ shifts (obtained by diagonalizing the magnetic Hamilto-
59
+ nian [7]) as a function of the magnetic field B in strong
60
+ magnetic fields can reach up to around 4 MHz/G, which
61
+ is 3 times larger than in the case of ordinary transitions.
62
+ Thus, the frequency shift of MI transitions in strong mag-
63
+ netic fields can reach several tens of GHz, which can be
64
+ useful for working in higher frequency ranges, for exam-
65
+ ple for the frequency stabilisation of lasers on strongly
66
+ shifted frequencies [14, 15].
67
+ In [11, 12], we established the following rule for the
68
+ probabilities of MI transitions:
69
+ the probabilities and
70
+ number of MI transitions with ∆F = +2 are maximal
71
+ for σ+ radiation, whereas the probabilities and number
72
+ of MI transitions with ∆F = −2 are maximal for σ−
73
+ radiation. The difference between the intensities of MI
74
+ transitions for the σ+ and σ−-polarized radiation beams
75
+ can reach several orders of magnitude.
76
+ It
77
+ has
78
+ been
79
+ recently
80
+ demonstrated
81
+ that
82
+ electromagnetically-induced
83
+ transparency
84
+ (EIT)
85
+ resonances can be formed using Λ-system made of
86
+ ∆F
87
+ =
88
+ +2 MI transitions only if both probe and
89
+ coupling beam are σ+-polarized.
90
+ This statement was
91
+ experimentally and theoretically verified for 87Rb (MI
92
+ transitions Fg = 1 → Fe = 3) and 85Rb (MI transitions
93
+ Fg = 2 → Fe = 4) [16, 17]. However, if the Λ-system
94
+ is formed by MI transitions satisfying ∆F = −2, then
95
+ both probe and coupling radiation must be σ−-polarized
96
+ in order to form EIT resonances.
97
+ This statement
98
+ was experimentally and theoretically verified for Cs
99
+ (MI transitions Fg = 4 → Fe = 2).
100
+ This is a direct
101
+ consequence of magnetically-induced circular dichroism
102
+ [18].
103
+ In this work, we consider seven σ+ MI transitions of
104
+ Cs (Fg = 3 → Fe = 5, see Fig. 1). The probabilities of
105
+ these transitions increase highly in the range 0.3 - 3 kG
106
+
107
+ 2
108
+ 0
109
+ +1
110
+ +2
111
+ +3
112
+ -1
113
+ -2
114
+ -3
115
+ 0
116
+ +1
117
+ +2
118
+ +3
119
+ -1
120
+ -2
121
+ 1
122
+ 2
123
+ 3
124
+ 4
125
+ 5
126
+ 7
127
+ 6
128
+ +4
129
+ 0
130
+ +1
131
+ +2
132
+ +3
133
+ -1
134
+ -2
135
+ -3
136
+ FIG. 1. Scheme of Cs D2 line σ+ transitions between Fg = 3, 4
137
+ and Fe = 5. The probe frequency νp is scanned across the
138
+ MI transitions labelled 1-7 (Fg = 3 → Fe = 5). The coupling
139
+ frequencies νcn are resonant with Fg = 4 → Fe = 5 transi-
140
+ tions, forming seven Λ-systems. Only the states involved in
141
+ the process under consideration are shown. Note that |F, mF ⟩
142
+ is just a notation for visualization, as the atomic states are
143
+ better described in the uncoupled basis |J, mJ, I, mI⟩ in high
144
+ magnetic fields.
145
+ and we used these transitions to form EIT resonances
146
+ in strong B-fields.
147
+ A nanometric-thin cell (NC) filled
148
+ with Cs vapor (thickness L ≈ 850 nm, approximately
149
+ the resonant wavelength of Cs D2 line [19]) has been
150
+ used. The advantages of using thin cells, including strong
151
+ reduction of Doppler broadening, are noted in [12, 17, 20].
152
+ A.
153
+ Probabilities and frequency shifts of the MI
154
+ transitions of Cs D2 line
155
+ The curves in Fig. 2 were calculated using a known the-
156
+ oretical model depicting the changes of transition proba-
157
+ bilities as a function of the external magnetic field. The
158
+ block-diagonal (each block corresponding to a given value
159
+ of the magnetic quantum number) magnetic Hamiltonian
160
+ is built for each value of the magnetic field and then diag-
161
+ onalized in order to calculate the probability coefficients.
162
+ This model was presented in a number of papers, e.g.
163
+ [7, 11, 13].
164
+ The evolution of the probabilities of MI transitions (la-
165
+ belled 1 to 7, see Fig. 1) with respect to the magnetic field
166
+ B is shown in Fig. 2a). Note that in the range 0.3 - 2
167
+ kG the probabilities of the MI transitions labeled 5, 6
168
+ and 7 are the strongest among all transitions occurring
169
+ from Fg = 3 [8, 12]. The frequency shift slope of the
170
+ MI transitions, obtained through the eigenvalues of the
171
+ Hamiltonian, is quite large (∼ 4 MHz/G) while for usual
172
+ transitions the slope is 3 times smaller. Despite the fact
173
+ that the probabilities of the MI transitions decrease as
174
+ B increases, they can still be recorded easily at 7 kG.
175
+ As noted below, this is due to the fact that these tran-
176
+ sitions are formed far on the high-frequency wing where
177
+ there are no intersections with other transitions (spec-
178
+ tra are presented for Na in [21], but Cs behaves almost
179
+ identically).
180
+ The evolution of the probabilities of the corresponding
181
+ seven coupling transitions Fg = 4 → Fg = 5 (Ac1 to Ac7)
182
+ that are used to form seven Λ-systems (see Fig. 1) with
183
+ respect to the magnetic field are shown in Fig. 2b). In the
184
+ case of σ− polarization, the probability of the strongest
185
+ Fg = 4 → Fe = 5 σ− transition already tends to zero for
186
+ B > 300 G, as shown in Fig. 2c). Thus, both the probe
187
+ and the coupling beams must be σ+-polarized in order
188
+ to form EIT resonances.
189
+ B.
190
+ Qualitative description of the EIT process
191
+ For a qualitative description of the EIT process, we
192
+ present a formula from [3, 22]. The ratio of absorption at
193
+ the probe radiation frequency νp at which EIT resonance
194
+ is observed (in the presence of νc radiation) to absorp-
195
+ tion (when there is no coupling radiation), assuming low
196
+ radiation intensity νp and zero frequency detuning of the
197
+ coupling radiation, is described by the expression:
198
+ α(Ωc)
199
+ α(0) =
200
+ K
201
+ 1 + Ω2c/4Γ21γN
202
+ ,
203
+ (1)
204
+ where K is a constant including the Doppler width,
205
+ γN is the natural width of the level (γN/2π ≃ 5.2 MHz
206
+ for the 62P3/2 level of the Cs atom), Ωc is the Rabi fre-
207
+ quency for the coupling radiation and Γ21 is the dephas-
208
+ ing rate of the coherence between the two ground states
209
+ of the Λ-system, which is caused in particular by colli-
210
+ sions of atoms with the windows of the nanocell. The
211
+ case α(Ωc) = 0 corresponds to complete transparency
212
+ (the contrast of the EIT resonance reaches 100%) and a
213
+ large amplitude of the EIT resonance, which decreases
214
+ with an increase in Γ21. The spectral width of the EIT
215
+ resonance can be described by the simple expression [3]:
216
+ γEIT ≃ 2Γ21 + Ω2
217
+ c/γN .
218
+ (2)
219
+ It follows from formula (1) that in order to obtain small
220
+ value of α(Ωc) (which means high electromagnetically in-
221
+ duced transparency of the medium), it is necessary to in-
222
+ crease Ωc, however, an increase in Ωc leads to an increase
223
+ in the spectral width of the EIT resonance. Therefore,
224
+ it is necessary to find a compromise for Ωc. Estimates
225
+ can be obtained from Ωc/2π = aγN(I/8)1/2 where I is
226
+ the laser intensity in mW/cm2, γN ∼ 5 MHz, and a
227
+ is a fit parameter (for our case a is of ∼ 0.5) [23] and
228
+ Ωc ∼ 15 MHz.
229
+ II.
230
+ EXPERIMENT
231
+ A.
232
+ Experimental setup
233
+ The layout of the experimental setup is shown on
234
+ Fig. 3. Two extended cavity diode lasers are tuned in the
235
+ vicinity of the Cs D2 line, with a wavelength λ ≃ 852 nm.
236
+ The Λ-systems shown in Fig. 1 are formed by scanning
237
+ the frequency νp of a VitaWave laser (δνp ∼ 1 MHz) [24]
238
+
239
+ 3
240
+ 1
241
+ 2
242
+ 3
243
+ 4
244
+ 5
245
+ 6
246
+ 7
247
+ a)
248
+ b)
249
+ c)
250
+ FIG. 2. Magnetic field dependence of the Zeeman transition intensities of the D2 line of Cs. a) Fg = 3 → Fe = 5 σ+ MI
251
+ transitions. b) Fg = 4 → Fe = 5 σ+ transitions. c) Transition |4, −1⟩ → |5, −2⟩ (σ−). This transition forms a Λ-system with
252
+ transition 7 as shown in panel a) and in the inset (see Fig. 1). Its probability tends to 0 as the magnetic field increases, thus
253
+ forming EIT resonances at high magnetic fields requires both probe and coupling beams to be σ+-polarized.
254
+ FI
255
+ FI
256
+ SO
257
+ BS
258
+ PD
259
+ ECDL 1
260
+ ECDL 2
261
+ probe
262
+ coupling
263
+ C
264
+ Ref. channel
265
+ Meas. channel
266
+ PBS2
267
+ PBS1
268
+ PBS3
269
+ PBS4
270
+ M
271
+ IF PD
272
+ NC
273
+ PM
274
+ FIG. 3.
275
+ Scheme of the experimental setup.
276
+ ECDL: CW
277
+ narrow-band external-cavity diode lasers with λ = 852 nm
278
+ (resonant with Cs D2 line). FI: Faraday insulators. PBSi:
279
+ polarizing beam splitters. BS: beam splitter. IF: interference
280
+ filter. C: saturated absorption spectroscopy unit for frequency
281
+ reference. NC: nanocell placed in oven. PM: permanent mag-
282
+ net. PD: photodiodes. SO: 4-channel digital oscilloscope.
283
+ in the vicinity of the MI transitions Fg = 3 → Fe = 5,
284
+ while keeping the frequency νc from a MOGLabs “cat-
285
+ eye” laser (δνp ≃ 0.1 MHz) on resonance with one of the
286
+ 4 → 5 transitions. A fraction about 10% of the coupling
287
+ radiation power was sent to a frequency stabilization unit
288
+ based on the DAVLL method [25]. Probe radiation has
289
+ vertical polarization, while the coupling radiation has
290
+ horizontal polarization. In the case of a longitudinal B-
291
+ field, linearly polarized laser radiation can be considered
292
+ as consisting of σ+ and σ− radiations. The use of mutu-
293
+ ally perpendicular polarizations allows by using PBS4 to
294
+ direct only probe radiation to the photo-receiver, while
295
+ cutting off the coupling radiation. As noted above, in
296
+ the case of MI transitions with ∆F = +2 for the for-
297
+ mation of the EIT resonance, both probe and coupling
298
+ radiations must have σ+ polarization. A photograph of
299
+ the Cs nanocell is shown in Fig. 3. Interference fringes
300
+ are formed by the reflection of light on the inner surfaces
301
+ of windows (made of sapphire). The region correspond-
302
+ Coupling off
303
+ 7
304
+ 6
305
+ 5
306
+ 4
307
+ 3
308
+ EIT 7
309
+ EIT 6
310
+ EIT 5
311
+ EIT 4
312
+ EIT 3
313
+ (1)
314
+ (2)
315
+ (3)
316
+ (4)
317
+ (5)
318
+ (6)
319
+ FIG. 4. Probe transmission spectra of the Cs nanocell (L =
320
+ λ = 852 nm). Spectra labelled 1 to 5 show five EIT reso-
321
+ nances, labelled EIT 3 to EIT 7, while the probe frequency is
322
+ scanned across transitions 3 to 7 (see Fig. 1). The coupling
323
+ and probe powers are respectively 10 and 0.05 mW and the ex-
324
+ ternal longitudinal magnetic field is B = 1400 G. Spectrum n°
325
+ 6 corresponds to the case where coupling is off. Small VSOP
326
+ peaks are visible on each atomic resonance. Zero frequency
327
+ corresponds to the transition frequency of Cs D2 line.
328
+ ing to a thickness L ≈ λ ∼ 850 nm is outlined by an
329
+ oval. The design of the Cs-filled NC used in our experi-
330
+ ments is similar to that of extremely thin cell described
331
+ in [26]. Earlier it was demonstrated in [16, 17, 27] that
332
+ the use of a nanocell (NC) with thickness L = λ makes it
333
+ easy to record contrasted EIT resonances, which is due
334
+ to the low absorption of the NC, while the disadvan-
335
+ tage is broadening of the EIT resonance caused by fre-
336
+ quent inelastic collisions of atoms with the windows of
337
+ the NC. Studies of the EIT resonances were done using
338
+ a strong neodymium–iron–boron alloy ring-shaped per-
339
+ manent magnet (PM). Due to the small thickness of the
340
+ vapor column, the high-gradient field produced by magne
341
+ can be considered uniform across the interaction region.
342
+ The PM was placed after the rear window of the NC,
343
+ with the axis aligned along the probe beam propagation
344
+
345
+ 4
346
+ direction. The magnetic field in the NC was simply var-
347
+ ied by longitudinal displacement of the PM, calibrated
348
+ using a Teslameter HT201 magnetometer.
349
+ B.
350
+ Experimental results: using MI transitions to
351
+ form EIT resonances
352
+ Curves 1 to 5 in Fig. 4 show the experimental trans-
353
+ mission spectra of the probe radiation which contain the
354
+ resonances EIT 3 to EIT 7 (numbers 3-7 means that MI
355
+ transitions with numbers 3-7 are involved, respectively)
356
+ in a longitudinal magnetic field B = 1400 G. The NC
357
+ thickness is L = λ = 852 nm and the temperature of
358
+ the reservoir is 100 ◦C (to prevent Cs vapor condensa-
359
+ tion on the windows, the temperature of the windows is
360
+ slightly higher). The coupling and the probe powers are
361
+ 20 mW and 0.1 mW, respectively. Note that since only
362
+ σ+ radiations participate to the formation of the EIT
363
+ resonances (see Fig. 1), only half of the power of these
364
+ radiations must be considered, meaning 10 mW and 50
365
+ µW, respectively. Curve n° 6 is a probe spectrum when
366
+ the coupling is blocked. Since the cell thickness is L = λ,
367
+ small peaks formed by velocity selective optical pump-
368
+ ing (VSOP) resonances are located exactly at the atomic
369
+ transitions frequencies, as described in [9].
370
+ The amplitude of the EIT resonance is a factor ∼10
371
+ larger than the amplitude of the VSOP resonance,
372
+ whereas the spectral width of the EIT resonance is a
373
+ factor of 1.5 smaller, which is characteristic of the coher-
374
+ ent EIT process [17]. Note that the contrast of the EIT
375
+ resonance defined as the ratio of the EIT resonance am-
376
+ plitude divided by the peak absorption of the Cs vapor
377
+ when the coupling is blocked reached 40-50 % which is
378
+ typical when a nanocell is used [27].
379
+ In Fig. 6, curves 1 to 4 are probe transmission spectra
380
+ which contain EIT 6, EIT 5, EIT 4 and EIT 3 resonances
381
+ for B = 1770 G. Curve n° 5 shows only the probe spec-
382
+ trum when the coupling is blocked. In Fig. 7, lines 1 to 3
383
+ show the probe transmission spectra which contain EIT
384
+ 6, EIT 4 and EIT 3 resonances for B = 2880 G. Line
385
+ n° 4 shows only the probe spectrum when the coupling
386
+ is blocked. The inset shows the profile of EIT 6 reso-
387
+ nance fitted with a Gaussian profile with a FWHM of ∼
388
+ 35 MHz. There is also a small VSOP resonance which is
389
+ formed when the coupling is blocked. The typical FWHM
390
+ of VSOP resonances is 40-50 MHz.
391
+ Preliminary theoretical calculations (shown in the
392
+ right part of the inset of Fig. 7 were obtained by solv-
393
+ ing the Liouville equations of motion for an ensemble of
394
+ three-level Λ-systems (as presented in Fig. 5), taking into
395
+ account the geometry of the nanocell (coherence dephas-
396
+ ing rate determined by the time of flight of the atoms), its
397
+ Fabry-Perot nature (reflections of the fields on the inner
398
+ surfaces of the cell) and Doppler broadening, following
399
+ the procedure described in [28]. The Rabi frequencies of
400
+ the probe and coupling lasers are respectively Ωc = 1.5γN
401
+ and Ωp = 0.06γN. Reasonable agreement between theory
402
+ and experiment regarding the width and depth of the EIT
403
+ resonance is obtained and the VSOP resonance is seen.
404
+ Small discrepancies (assymetry of the profile and ampli-
405
+ tude of the VSOP resonance) can arise notably from the
406
+ need of considering neighboring Zeeman sublevels (not
407
+ shown in Fig. 1, and therefore more than three levels, to
408
+ obtain more accurate results.
409
+ FIG. 5. Scheme of the three-level Λ-system used in the calcu-
410
+ lations. The total decay rate Γ33 of state |3⟩ is 1/2(γ31 + γ32)
411
+ [29].
412
+ The dephasing rate of coherence between the ground
413
+ states is Γ21 = (2πt)−1 where t is the time of flight of
414
+ the atoms through the cell (at the most probable velocity
415
+ u =
416
+
417
+ 2kBT/M where T is the vapor temperature and M the
418
+ atomic mass).
419
+ The amplitude of resonance n° 6 is ∼ 50 times greater
420
+ than that of the VSOP resonance and is spectrally nar-
421
+ rower than the latter (this is a manifestation of the co-
422
+ herent EIT process [2, 17]). In Fig. 8 the solid lines in-
423
+ dicate the calculated dependences of the frequency shifts
424
+ for transitions 1–7 (Fig. 1) and Fg = 3 → Fe = 4 (marked
425
+ with dotted oval) to the magnetic field B.
426
+ The black
427
+ squares represent the experimental results. As mentioned
428
+ earlier, due to the high value of the frequency shift slope
429
+ for B > 3 kG, the group of MI transitions 1–7 is com-
430
+ pletely separated in frequency from Fg = 3 → Fe = 4
431
+ transitions.
432
+ The curves in the inset of Fig. 8 show experimental and
433
+ theoretical spectra (calculated by combining the models
434
+ presented in [7] and [30]) of the seven MI transitions ab-
435
+ sorption for B = 6 kG when frequency shift reaches ∼ 30
436
+ GHz. Note that the amplitude of transition 6 is slightly
437
+ bigger than that of transition 7 (while for B < 5 kG the
438
+ amplitude of transition 7 is bigger, see Fig. 2a), because
439
+ of the “mixing” effect. Note that one of the remarkable
440
+ features of the σ+ MI transitions 3 → 5′ is that they
441
+ are still well recorded for a magnetic field B ≈ 8 kG.
442
+ They are located in the high frequency wing of the spec-
443
+ trum presented in Fig. 18 of paper [31] and for this case
444
+ the frequency shift reaches 34 GHz. Using our theoret-
445
+ ically calculated curves for MI transitions 3 → 5′ we
446
+ checked the frequency position of these MI transitions
447
+ and found good agreement with the experimental curves
448
+ presented in Fig. 18. In paper [31] the 3 → 5′transitions
449
+ are not identified. Therefore, it is important to inform
450
+
451
+ 5
452
+ Coupling off
453
+ EIT 6
454
+ EIT 5
455
+ EIT 4
456
+ EIT 3
457
+ (1)
458
+ (2)
459
+ (3)
460
+ (4)
461
+ (5)
462
+ 6
463
+ 5
464
+ 4
465
+ 3
466
+ FIG. 6.
467
+ Probe transmission spectra of the Cs nanocell
468
+ (L = λ ≈ 850 nm). Spectra 1 to 4 exhibit four EIT reso-
469
+ nances, labelled EIT 3 to EIT 6, while the probe frequency
470
+ is scanned across transitions 3 to 6. The external longitudi-
471
+ nal magnetic field is B = 1770 G. Spectrum n° 5 is a probe
472
+ transmission spectrum when the coupling is off. Small VSOP
473
+ peaks are visible on each atomic transition. Zero frequency
474
+ corresponds to the transition frequency of Cs D2 line.
475
+ Coupling off
476
+ Coupling off
477
+ (1)
478
+ (2)
479
+ (3)
480
+ (4)
481
+ Experiment
482
+ Coupling o���
483
+ EIT 6
484
+ EIT 4
485
+ EIT 3
486
+ 6
487
+ 5
488
+ 4
489
+ 3
490
+ EIT 6
491
+ Theory
492
+ FIG. 7. Probe transmission spectra of the Cs nanocell (L =
493
+ λ = 852 nm).
494
+ Lines 1 to 3 show four EIT resonances, la-
495
+ belled EIT 4, EIT 5 and EIT 6. The external longitudinal
496
+ magnetic field is B = 2880 G. Line 4 is a probe transmission
497
+ spectrum when the coupling is off. The left part of the inset
498
+ is a zoom on EIT 6, fitted with a Gaussian profile (FWHM
499
+ 35 MHz). The right curves are calculated. Red: coupling on,
500
+ black: coupling off. Small VSOP peaks are visible on each
501
+ atomic transitions formed by the probe radiation. Their typ-
502
+ ical linewidth is 40-50 MHz. Zero frequency corresponds to
503
+ the transition frequency of Cs D2 line.
504
+ scientists working in the field of laser spectroscopy of al-
505
+ kali metal atoms about the MI atomic transitions. The
506
+ above-mentioned MI transitions can be exploited in such
507
+ high B-fields as new frequency markers, for using new fre-
508
+ quency ranges, as well as for the frequency stabilization
509
+ of lasers at strongly shifted frequencies from the initial
510
+ transition in unperturbed atoms [13, 14].
511
+ Exp.
512
+ Theory
513
+ 6
514
+ 5
515
+ 4
516
+ 3 2 1
517
+ 7
518
+ 6
519
+ 5
520
+ 4
521
+ 3
522
+ 2
523
+ 1
524
+ 7
525
+ FIG. 8. Red solid lines: frequency shift of transitions 1 to 7
526
+ (see figure 1) as a function of the magnetic field. The black
527
+ squares with error bars represent experimental measurements,
528
+ the inaccuracy is around 1 %. Black dashed lines: frequency
529
+ shift of Fg = 3 → Fe = 4 transitions. For B > 3 kG, both
530
+ groups are well separated in frequency. Inset: theoretical and
531
+ experimental absorption spectra for B = 6 kG, the frequency
532
+ shift reaches 30 GHz from the Cs D2 line transition frequency.
533
+ III.
534
+ CONCLUSION
535
+ In this paper, we used for the first time forbidden
536
+ transitions of Cs (Fg = 3 → Fe = 5, more precisely
537
+ σ+(∆mF = +1) transitions) to create Λ-system allowing
538
+ the formation of EIT resonances. This was done in an ex-
539
+ ternal magnetic field, as such transitions have zero proba-
540
+ bility in the absence of magnetic field. A nanometric-thin
541
+ cell filled with Cs vapor was used, with a thickness corre-
542
+ sponding to the resonant wavelength of Cs D2 line (≈ 850
543
+ nm), and the magnetic field was varied by longitudinal
544
+ displacement of the permanent magnet along the prop-
545
+ agation direction (Fig. 3). As expected, when the cou-
546
+ pling is blocked, small VSOP resonances are formed right
547
+ at the different transitions’ frequencies, while coupling
548
+ radiation allows for the formation of EIT resonances,
549
+ spectrally narrower and with a bigger amplitude.
550
+ We
551
+ formed EIT resonances with 6 out the 7 transitions de-
552
+ picted in Fig. 1. This was possible up to 3 kG thanks
553
+ to the big value of the frequency shift, reaching up to 4
554
+ MHz/G, therefore leading to EIT resonances shifted 12
555
+ GHz apart from the Cs D2 line transition frequency [31].
556
+ This result is of great interest, as the highly-shifted spec-
557
+ tra can serve as frequency references [14, 15], especially
558
+ taking into account that these transitions are still easily
559
+ recorded up to 8 kG when the frequency shift reaches 35
560
+ GHz. As for the theoretical description, further investi-
561
+ gation is necessary, mainly in order to take into account
562
+ the effect of neighbouring states, and thus including more
563
+ levels in the model. The complexity of the manifold and
564
+ the number of coupled equations make it a challenging
565
+
566
+ 6
567
+ and computationally-intensive task. However, reasonable
568
+ agreement was already achieved by simply considering an
569
+ ensemble of three-level systems. To the best of our knowl-
570
+ edge, there are no reports on obtaining EIT resonances
571
+ in Λ-systems in such strong fields using usual transitions
572
+ of alkali atoms. We note that much narrower EIT reso-
573
+ nances can be attained by using cm-long cells (to lower
574
+ the effect of inelastic collisions of atoms with the win-
575
+ dows), and by using coherently coupled probe and cou-
576
+ pling radiations derived from a single narrow-band laser
577
+ beam [3].
578
+ ACKNOWLEDGMENTS
579
+ This work was supported by the Science Committee of
580
+ the Republic of Armenia, in the frame of research project
581
+ n° 21T-1C005, and by the NATO Science for Peace and
582
+ Security Project under grant G5794.
583
+ DATA AVAILABILITY STATEMENT
584
+ Data underlying the results presented in this paper are
585
+ not publicly available at this time but may be obtained
586
+ from the authors upon reasonable request.
587
+ [1] J.
588
+ Kitching,
589
+ Chip-scale
590
+ atomic
591
+ devices,
592
+ Applied Physics Reviews 5, 031302 (2018).
593
+ [2] J. Vanier, Atomic clocks based on coherent population
594
+ trapping: a review, Applied Physics B 81, 421 (2005).
595
+ [3] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Elec-
596
+ tromagnetically induced transparency: Optics in coher-
597
+ ent media, Reviews of Modern Physics 77, 633 (2005).
598
+ [4] D. Meschede, Optics, light and lasers: the practical ap-
599
+ proach to modern aspects of photonics and laser physics,
600
+ 2nd ed. (Wiley-VCH, Weinheim, 2008).
601
+ [5] M.
602
+ T.
603
+ Simons,
604
+ M.
605
+ D.
606
+ Kautz,
607
+ C.
608
+ L.
609
+ Holloway,
610
+ D.
611
+ A.
612
+ Anderson,
613
+ G.
614
+ Raithel,
615
+ D.
616
+ Stack,
617
+ M.
618
+ C.
619
+ St. John, and W. Su, Electromagnetically Induced Trans-
620
+ parency (EIT) and Autler-Townes (AT) splitting in
621
+ the presence of band-limited white Gaussian noise,
622
+ Journal of Applied Physics 123, 203105 (2018).
623
+ [6] M. Abdel Hafiz, R. Vicarini, N. Passilly, C. Calosso,
624
+ V. Maurice, J. Pollock, A. Taichenachev, V. Yudin,
625
+ J. Kitching, and R. Boudot, Protocol for Light-Shift
626
+ Compensation in a Continuous-Wave Microcell Atomic
627
+ Clock, Physical Review Applied 14, 034015 (2020).
628
+ [7] P. Tremblay, A. Michaud, M. Levesque, S. Thériault,
629
+ M. Breton, J. Beaubien, and N. Cyr, Absorption pro-
630
+ files of alkali-metal D lines in the presence of a static
631
+ magnetic field, Physical Review A 42, 2766 (1990).
632
+ [8] A. Sargsyan,
633
+ A. Tonoyan,
634
+ G. Hakhumyan, A. Pa-
635
+ poyan, E. Mariotti, and D. Sarkisyan, Giant modifica-
636
+ tion of atomic transition probabilities induced by a mag-
637
+ netic field: forbidden transitions become predominant,
638
+ Laser Physics Letters 11, 055701 (2014).
639
+ [9] A. Sargsyan, G. Hakhumyan, A. Papoyan, D. Sarkisyan,
640
+ A. Atvars, and M. Auzinsh, A novel approach to quan-
641
+ titative spectroscopy of atoms in a magnetic field and
642
+ applications based on an atomic vapor cell with l = λ,
643
+ Applied Physics Letters 93, 021119 (2008).
644
+ [10] S.
645
+ Scotto,
646
+ D.
647
+ Ciampini,
648
+ C.
649
+ Rizzo,
650
+ and
651
+ E.
652
+ Ari-
653
+ mondo,
654
+ Four-level
655
+ N-scheme
656
+ crossover
657
+ resonances
658
+ in
659
+ Rb
660
+ saturation
661
+ spectroscopy
662
+ in
663
+ magnetic
664
+ fields,
665
+ Physical Review A 92, 063810 (2015).
666
+ [11] A. Tonoyan, A. Sargsyan, E. Klinger, G. Hakhumyan,
667
+ C. Leroy,
668
+ M. Auzinsh,
669
+ A. Papoyan, and D. Sark-
670
+ isyan,
671
+ Circular
672
+ dichroism
673
+ of
674
+ magnetically
675
+ in-
676
+ duced
677
+ transitions
678
+ for
679
+ D2
680
+ lines
681
+ of
682
+ alkali
683
+ atoms,
684
+ EPL (Europhysics Letters) 121, 53001 (2018).
685
+ [12] A. Sargsyan, A. Amiryan, A. Tonoyan, E. Klinger, and
686
+ D. Sarkisyan, Circular dichroism in atomic vapors: Mag-
687
+ netically induced transitions responsible for two distinct
688
+ behaviors, Physics Letters A 390, 127114 (2021).
689
+ [13] D. Pizzey, J. Briscoe, F. Logue, F. Ponciano-Ojeda,
690
+ S. Wrathmall, and I. Hughes, Laser spectroscopy of hot
691
+ atomic vapours: from scope to theoretical fit, New Jour-
692
+ nal of Physics 24, 125001 (2022).
693
+ [14] A. Sargsyan, A. Tonoyan, R. Mirzoyan, D. Sarkisyan,
694
+ A. M. Wojciechowski,
695
+ A. Stabrawa, and W. Gaw-
696
+ lik, Saturated-absorption spectroscopy revisited: atomic
697
+ transitions in strong magnetic fields (>20 mT) with a
698
+ micrometer-thin cell, Optics Letters 39, 2270 (2014).
699
+ [15] R. S. Mathew, F. Ponciano-Ojeda, J. Keaveney, D. J.
700
+ Whiting, and I. G. Hughes, Simultaneous two-photon res-
701
+ onant optical laser locking (STROLLing) in the hyperfine
702
+ Paschen–Back regime, Optics Letters 43, 4204 (2018).
703
+ [16] A. Sargsyan, A. Tonoyan, A. Papoyan, and D. Sark-
704
+ isyan, Dark resonance formation with magnetically in-
705
+ duced transitions: extension of spectral range and giant
706
+ circular dichroism, Optics Letters 44, 1391 (2019).
707
+ [17] A.
708
+ Sargsyan,
709
+ A. Tonoyan,
710
+ and
711
+ D. Sarkisyan, Ap-
712
+ plication
713
+ of
714
+ Magnetically
715
+ Induced
716
+ Transitions
717
+ of
718
+ the
719
+ 85Rb
720
+ D2
721
+ Line
722
+ in
723
+ Coherent
724
+ Processes,
725
+ Journal of Experimental and Theoretical Physics 133, 16 (2021).
726
+ [18] A. Sargsyan, A. Amiryan, A. Tonoyan, E. Klinger,
727
+ and
728
+ D.
729
+ Sarkisyan,
730
+ Coherent
731
+ optical
732
+ processes
733
+ on
734
+ Cs
735
+ D2
736
+ line
737
+ magnetically
738
+ induced
739
+ transitions,
740
+ Physics Letters A 434, 128043 (2022).
741
+ [19] D. A. Steck, Cesium D line data, Revision 2.2.1, available
742
+ online at http://steck.us/alkalidata (2019).
743
+ [20] A. Sargsyan, A. Amiryan, Y. Pashayan-Leroy, C. Leroy,
744
+ A. Papoyan, and D. Sarkisyan, Approach to quantita-
745
+ tive spectroscopy of atomic vapor in optical nanocells,
746
+ Optics Letters 44, 5533 (2019).
747
+ [21] R.
748
+ Momier,
749
+ A.
750
+ V.
751
+ Papoyan,
752
+ and
753
+ C.
754
+ Leroy,
755
+ Sub-
756
+ Doppler
757
+ spectra
758
+ of
759
+ sodium
760
+ D
761
+ lines
762
+ in
763
+ a
764
+ wide
765
+ range
766
+ of
767
+ magnetic
768
+ field:
769
+ Theoretical
770
+ study,
771
+ Journal of Quantitative Spectroscopy and Radiative Transfer 272, 107780 (2021).
772
+ [22] J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao,
773
+ Electromagnetically induced transparency in ladder-type
774
+ inhomogeneously broadened media: Theory and experi-
775
+ ment, Physical Review A 51, 576 (1995).
776
+ [23] T. T. Grove,
777
+ V. Sanchez-Villicana,
778
+ B. C. Duncan,
779
+ S. Maleki, and P. L. Gould, Two-photon two-color
780
+
781
+ 7
782
+ diode
783
+ laser
784
+ spectroscopy
785
+ of
786
+ the Rb 5D
787
+ 5/2
788
+ state,
789
+ Physica Scripta 52, 271 (1995).
790
+ [24] V.
791
+ V.
792
+ Vassiliev,
793
+ S.
794
+ A.
795
+ Zibrov,
796
+ and
797
+ V.
798
+ L.
799
+ Velichansky,
800
+ Compact
801
+ extended-cavity
802
+ diode
803
+ laser
804
+ for
805
+ atomic
806
+ spectroscopy
807
+ and
808
+ metrology,
809
+ Review of Scientific Instruments 77, 013102 (2006).
810
+ [25] V. V. Yashchuk, D. Budker, and J. R. Davis, Laser
811
+ frequency
812
+ stabilization
813
+ using
814
+ linear
815
+ magneto-optics,
816
+ Review of Scientific Instruments 71, 341 (2000).
817
+ [26] J. Keaveney, I. G. Hughes, A. Sargsyan, D. Sark-
818
+ isyan, and C. S. Adams, Maximal
819
+ Refraction
820
+ and
821
+ Superluminal Propagation
822
+ in
823
+ a Gaseous
824
+ Nanolayer,
825
+ Physical Review Letters 109, 233001 (2012).
826
+ [27] A. Sargsyan, C. Leroy, Y. Pashayan-Leroy, S. Car-
827
+ taleva, and D. Sarkisyan, High-contrast dark reso-
828
+ nances on the D1 line in cesium nanocell:
829
+ the ad-
830
+ vantages
831
+ compared
832
+ with
833
+ the
834
+ other
835
+ alkali
836
+ D
837
+ lines,
838
+ Journal of Modern Optics 62, 769 (2015).
839
+ [28] Y. Pashayan-Leroy, C. Leroy, A. Sargsyan, A. Pa-
840
+ poyan,
841
+ and
842
+ D.
843
+ Sarkisyan,
844
+ Electromagnetically
845
+ induced
846
+ transparency:
847
+ the
848
+ thickness
849
+ of
850
+ the
851
+ va-
852
+ por column is of the order of a light wavelength,
853
+ Journal of the Optical Society of America B 24, 1829 (2007).
854
+ [29] B. W. Shore, The theory of coherent atomic excitation
855
+ (Wiley, New York, 1990).
856
+ [30] G. Dutier, S. Saltiel, D. Bloch, and M. Ducloy, Revisit-
857
+ ing optical spectroscopy in a thin vapor cell: mixing of
858
+ reflection and transmission as a Fabry–Perot microcavity
859
+ effect, J. Opt. Soc. Am. B 20, 793 (2003).
860
+ [31] H.
861
+ Stærkind,
862
+ K.
863
+ Jensen,
864
+ J.
865
+ H.
866
+ Müller,
867
+ V.
868
+ O.
869
+ Boer,
870
+ E.
871
+ T.
872
+ Petersen,
873
+ and
874
+ E.
875
+ S.
876
+ Polzik,
877
+ Precision Measurement of the Excited State Landé g-factor and Diamagnetic Shift of the Cesium D2 Line
878
+ (2022), arXiv:2208.00077.
879
+
D9E1T4oBgHgl3EQfqQU2/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,457 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf,len=456
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
3
+ page_content='03340v1 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
4
+ page_content='atom-ph] 9 Jan 2023 Formation of strongly shifted EIT resonances using "forbidden" transitions of Cesium Armen Sargsyan,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
5
+ page_content='1 Ara Tonoyan,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
6
+ page_content='1 Rodolphe Momier,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
7
+ page_content='1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
8
+ page_content=' 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
9
+ page_content=' ∗ Claude Leroy,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
10
+ page_content='2 and David Sarkisyan1 1Institute for Physical Research,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
11
+ page_content=' NAS of Armenia,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
12
+ page_content=' Ashtarak-2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
13
+ page_content=' 0203 Armenia 2Laboratoire Interdisciplinaire Carnot de Bourgogne,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
14
+ page_content=' UMR CNRS 6303,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
15
+ page_content=' Université Bourgogne Franche-Comté,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
16
+ page_content=' 21000 Dijon,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
17
+ page_content=' France (Dated: January 10,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
18
+ page_content=' 2023) Atomic transitions satisfying Fe − Fg = ∆F = ±2 (where Fe stands for excited and Fg stands for ground state) of alkali atoms have zero probability in zero magnetic field (they are so-called "forbidden" transitions) but experience a large probabilty increase in an external magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
19
+ page_content=' These transitions are called magnetically induced (MI) transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
20
+ page_content=' In this paper, we use for the first time the σ+ (∆mF = + 1) MI transitions Fg = 3 → Fe = 5 of Cesium as probe radiation to form EIT resonances in strong magnetic fields (1 - 3 kG) while the coupling radiation frequency is resonant with Fg = 4 → Fe = 5 σ+ transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
21
+ page_content=' The experiment is performed using a nanometric-thin cell filled with Cs vapor and a strong permanent magnet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
22
+ page_content=' The thickness of the vapor column is 852 nm, corresponding to the Cs D2 line transition wavelength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
23
+ page_content=' Due to the large frequency shift slope of the MI transitions (∼ 4 MHz/G), it is possible to form contrasted and strongly frequency-shifted EIT resonances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
24
+ page_content=' Particularly, a strong 12 GHz frequency shift is observed when applying an external magnetic field of ∼ 3 kG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
25
+ page_content=' Preliminary calculations performed considering Doppler-broadened three level systems in a nanocell are in reasonable agreement with the experimental measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
26
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
27
+ page_content=' INTRODUCTION Optical processes occurring in Rubidium, Cesium, Potassium and Sodium vapors confined in optical cells have important applications such as optical atomic clocks, optical atomic magnetometers, atomic gyro- scopes, markers of atomic transition frequencies, as de- scribed for example in [1–6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
28
+ page_content=' Therefore, the study of the peculiarities of atomic transitions (in particular Zeeman transitions in an external magnetic field) of alkali atoms is of utmost importance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
29
+ page_content=' It is well known that the appli- cation of a strong magnetic field can significantly change the probabilities (intensities) of the Zeeman transitions, as shown in [7–13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
30
+ page_content=' High interest has recently been fo- cused on atomic transitions between ground and excited levels that satisfy the condition Fe − Fg = ∆F = ±2 (these transitions are so-called forbidden by the selection rules, thus their probability is zero when no external mag- netic field is applied).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
31
+ page_content=' However, the probabilities of these transitions in a magnetic field increase significantly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
32
+ page_content=' For this reason, we refer to these transitions as Magnetically Induced (MI) transitions [8, 11, 12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
33
+ page_content=' This giant increase in the probabilities of the MI transi- tions is due to the “mixing” of magnetic sublevels |F, mF ⟩ of the ground (Fg) or excited (Fe) levels with sublevels having the same magnetic quantum number mF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
34
+ page_content=' This mixing is the strongest for D2 lines of alkali atoms, as up to four states |Fe, 0⟩ can experience mixing, thus re- sulting in a 4×4 block in the magnetic Hamiltonian, as described in [7, 8, 11, 12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
35
+ page_content=' Magnetically-induced transitions are of great interest because, over a wide range of magnetic field, their proba- bilities can be much higher than the probabilities of usual ∗ rodolphe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
36
+ page_content='momier@u-bourgogne.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
37
+ page_content='fr ("allowed", satisfying the selection rule on F) transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
38
+ page_content=' It is important to note that the slope of the frequency shifts (obtained by diagonalizing the magnetic Hamilto- nian [7]) as a function of the magnetic field B in strong magnetic fields can reach up to around 4 MHz/G, which is 3 times larger than in the case of ordinary transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
39
+ page_content=' Thus, the frequency shift of MI transitions in strong mag- netic fields can reach several tens of GHz, which can be useful for working in higher frequency ranges, for exam- ple for the frequency stabilisation of lasers on strongly shifted frequencies [14, 15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
40
+ page_content=' In [11, 12], we established the following rule for the probabilities of MI transitions: the probabilities and number of MI transitions with ∆F = +2 are maximal for σ+ radiation, whereas the probabilities and number of MI transitions with ∆F = −2 are maximal for σ− radiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
41
+ page_content=' The difference between the intensities of MI transitions for the σ+ and σ−-polarized radiation beams can reach several orders of magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
42
+ page_content=' It has been recently demonstrated that electromagnetically-induced transparency (EIT) resonances can be formed using Λ-system made of ∆F = +2 MI transitions only if both probe and coupling beam are σ+-polarized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
43
+ page_content=' This statement was experimentally and theoretically verified for 87Rb (MI transitions Fg = 1 → Fe = 3) and 85Rb (MI transitions Fg = 2 → Fe = 4) [16, 17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
44
+ page_content=' However, if the Λ-system is formed by MI transitions satisfying ∆F = −2, then both probe and coupling radiation must be σ−-polarized in order to form EIT resonances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
45
+ page_content=' This statement was experimentally and theoretically verified for Cs (MI transitions Fg = 4 → Fe = 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
46
+ page_content=' This is a direct consequence of magnetically-induced circular dichroism [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
47
+ page_content=' In this work, we consider seven σ+ MI transitions of Cs (Fg = 3 → Fe = 5, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
48
+ page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
49
+ page_content=' The probabilities of these transitions increase highly in the range 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
50
+ page_content='3 - 3 kG 2 0 +1 +2 +3 1 2 3 0 +1 +2 +3 1 2 1 2 3 4 5 7 6 +4 0 +1 +2 +3 1 2 3 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
51
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
52
+ page_content=' Scheme of Cs D2 line σ+ transitions between Fg = 3, 4 and Fe = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
53
+ page_content=' The probe frequency νp is scanned across the MI transitions labelled 1-7 (Fg = 3 → Fe = 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
54
+ page_content=' The coupling frequencies νcn are resonant with Fg = 4 → Fe = 5 transi- tions, forming seven Λ-systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
55
+ page_content=' Only the states involved in the process under consideration are shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
56
+ page_content=' Note that |F, mF ⟩ is just a notation for visualization, as the atomic states are better described in the uncoupled basis |J, mJ, I, mI⟩ in high magnetic fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
57
+ page_content=' and we used these transitions to form EIT resonances in strong B-fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
58
+ page_content=' A nanometric-thin cell (NC) filled with Cs vapor (thickness L ≈ 850 nm, approximately the resonant wavelength of Cs D2 line [19]) has been used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
59
+ page_content=' The advantages of using thin cells, including strong reduction of Doppler broadening, are noted in [12, 17, 20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
60
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
61
+ page_content=' Probabilities and frequency shifts of the MI transitions of Cs D2 line The curves in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
62
+ page_content=' 2 were calculated using a known the- oretical model depicting the changes of transition proba- bilities as a function of the external magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
63
+ page_content=' The block-diagonal (each block corresponding to a given value of the magnetic quantum number) magnetic Hamiltonian is built for each value of the magnetic field and then diag- onalized in order to calculate the probability coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
64
+ page_content=' This model was presented in a number of papers, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
65
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
66
+ page_content=' [7, 11, 13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
67
+ page_content=' The evolution of the probabilities of MI transitions (la- belled 1 to 7, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
68
+ page_content=' 1) with respect to the magnetic field B is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
69
+ page_content=' 2a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
70
+ page_content=' Note that in the range 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
71
+ page_content='3 - 2 kG the probabilities of the MI transitions labeled 5, 6 and 7 are the strongest among all transitions occurring from Fg = 3 [8, 12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
72
+ page_content=' The frequency shift slope of the MI transitions, obtained through the eigenvalues of the Hamiltonian, is quite large (∼ 4 MHz/G) while for usual transitions the slope is 3 times smaller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
73
+ page_content=' Despite the fact that the probabilities of the MI transitions decrease as B increases, they can still be recorded easily at 7 kG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
74
+ page_content=' As noted below, this is due to the fact that these tran- sitions are formed far on the high-frequency wing where there are no intersections with other transitions (spec- tra are presented for Na in [21], but Cs behaves almost identically).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
75
+ page_content=' The evolution of the probabilities of the corresponding seven coupling transitions Fg = 4 → Fg = 5 (Ac1 to Ac7) that are used to form seven Λ-systems (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
76
+ page_content=' 1) with respect to the magnetic field are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
77
+ page_content=' 2b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
78
+ page_content=' In the case of σ− polarization, the probability of the strongest Fg = 4 → Fe = 5 σ− transition already tends to zero for B > 300 G, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
79
+ page_content=' 2c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
80
+ page_content=' Thus, both the probe and the coupling beams must be σ+-polarized in order to form EIT resonances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
81
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
82
+ page_content=' Qualitative description of the EIT process For a qualitative description of the EIT process, we present a formula from [3, 22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
83
+ page_content=' The ratio of absorption at the probe radiation frequency νp at which EIT resonance is observed (in the presence of νc radiation) to absorp- tion (when there is no coupling radiation), assuming low radiation intensity νp and zero frequency detuning of the coupling radiation, is described by the expression: α(Ωc) α(0) = K 1 + Ω2c/4Γ21γN , (1) where K is a constant including the Doppler width, γN is the natural width of the level (γN/2π ≃ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
84
+ page_content='2 MHz for the 62P3/2 level of the Cs atom), Ωc is the Rabi fre- quency for the coupling radiation and Γ21 is the dephas- ing rate of the coherence between the two ground states of the Λ-system, which is caused in particular by colli- sions of atoms with the windows of the nanocell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
85
+ page_content=' The case α(Ωc) = 0 corresponds to complete transparency (the contrast of the EIT resonance reaches 100%) and a large amplitude of the EIT resonance, which decreases with an increase in Γ21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
86
+ page_content=' The spectral width of the EIT resonance can be described by the simple expression [3]: γEIT ≃ 2Γ21 + Ω2 c/γN .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
87
+ page_content=' (2) It follows from formula (1) that in order to obtain small value of α(Ωc) (which means high electromagnetically in- duced transparency of the medium), it is necessary to in- crease Ωc, however, an increase in Ωc leads to an increase in the spectral width of the EIT resonance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
88
+ page_content=' Therefore, it is necessary to find a compromise for Ωc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
89
+ page_content=' Estimates can be obtained from Ωc/2π = aγN(I/8)1/2 where I is the laser intensity in mW/cm2, γN ∼ 5 MHz, and a is a fit parameter (for our case a is of ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
90
+ page_content='5) [23] and Ωc ∼ 15 MHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
91
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
92
+ page_content=' EXPERIMENT A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
93
+ page_content=' Experimental setup The layout of the experimental setup is shown on Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
94
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
95
+ page_content=' Two extended cavity diode lasers are tuned in the vicinity of the Cs D2 line, with a wavelength λ ≃ 852 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
96
+ page_content=' The Λ-systems shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
97
+ page_content=' 1 are formed by scanning the frequency νp of a VitaWave laser (δνp ∼ 1 MHz) [24] 3 1 2 3 4 5 6 7 a) b) c) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
98
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
99
+ page_content=' Magnetic field dependence of the Zeeman transition intensities of the D2 line of Cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
100
+ page_content=' a) Fg = 3 → Fe = 5 σ+ MI transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
101
+ page_content=' b) Fg = 4 → Fe = 5 σ+ transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
102
+ page_content=' c) Transition |4, −1⟩ → |5, −2⟩ (σ−).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
103
+ page_content=' This transition forms a Λ-system with transition 7 as shown in panel a) and in the inset (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
104
+ page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
105
+ page_content=' Its probability tends to 0 as the magnetic field increases, thus forming EIT resonances at high magnetic fields requires both probe and coupling beams to be σ+-polarized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
106
+ page_content=' FI FI SO BS PD ECDL 1 ECDL 2 probe coupling C Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
107
+ page_content=' channel Meas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
108
+ page_content=' channel PBS2 PBS1 PBS3 PBS4 M IF PD NC PM FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
109
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
110
+ page_content=' Scheme of the experimental setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
111
+ page_content=' ECDL: CW narrow-band external-cavity diode lasers with λ = 852 nm (resonant with Cs D2 line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
112
+ page_content=' FI: Faraday insulators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
113
+ page_content=' PBSi: polarizing beam splitters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
114
+ page_content=' BS: beam splitter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
115
+ page_content=' IF: interference filter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
116
+ page_content=' C: saturated absorption spectroscopy unit for frequency reference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
117
+ page_content=' NC: nanocell placed in oven.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
118
+ page_content=' PM: permanent mag- net.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
119
+ page_content=' PD: photodiodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
120
+ page_content=' SO: 4-channel digital oscilloscope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
121
+ page_content=' in the vicinity of the MI transitions Fg = 3 → Fe = 5, while keeping the frequency νc from a MOGLabs “cat- eye” laser (δνp ≃ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
122
+ page_content='1 MHz) on resonance with one of the 4 → 5 transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
123
+ page_content=' A fraction about 10% of the coupling radiation power was sent to a frequency stabilization unit based on the DAVLL method [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
124
+ page_content=' Probe radiation has vertical polarization, while the coupling radiation has horizontal polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
125
+ page_content=' In the case of a longitudinal B- field, linearly polarized laser radiation can be considered as consisting of σ+ and σ− radiations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
126
+ page_content=' The use of mutu- ally perpendicular polarizations allows by using PBS4 to direct only probe radiation to the photo-receiver, while cutting off the coupling radiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
127
+ page_content=' As noted above, in the case of MI transitions with ∆F = +2 for the for- mation of the EIT resonance, both probe and coupling radiations must have σ+ polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
128
+ page_content=' A photograph of the Cs nanocell is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
129
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
130
+ page_content=' Interference fringes are formed by the reflection of light on the inner surfaces of windows (made of sapphire).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
131
+ page_content=' The region correspond- Coupling off 7 6 5 4 3 EIT 7 EIT 6 EIT 5 EIT 4 EIT 3 (1) (2) (3) (4) (5) (6) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
132
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
133
+ page_content=' Probe transmission spectra of the Cs nanocell (L = λ = 852 nm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
134
+ page_content=' Spectra labelled 1 to 5 show five EIT reso- nances, labelled EIT 3 to EIT 7, while the probe frequency is scanned across transitions 3 to 7 (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
135
+ page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
136
+ page_content=' The coupling and probe powers are respectively 10 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
137
+ page_content='05 mW and the ex- ternal longitudinal magnetic field is B = 1400 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
138
+ page_content=' Spectrum n° 6 corresponds to the case where coupling is off.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
139
+ page_content=' Small VSOP peaks are visible on each atomic resonance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
140
+ page_content=' Zero frequency corresponds to the transition frequency of Cs D2 line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
141
+ page_content=' ing to a thickness L ≈ λ ∼ 850 nm is outlined by an oval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
142
+ page_content=' The design of the Cs-filled NC used in our experi- ments is similar to that of extremely thin cell described in [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
143
+ page_content=' Earlier it was demonstrated in [16, 17, 27] that the use of a nanocell (NC) with thickness L = λ makes it easy to record contrasted EIT resonances, which is due to the low absorption of the NC, while the disadvan- tage is broadening of the EIT resonance caused by fre- quent inelastic collisions of atoms with the windows of the NC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
144
+ page_content=' Studies of the EIT resonances were done using a strong neodymium–iron–boron alloy ring-shaped per- manent magnet (PM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
145
+ page_content=' Due to the small thickness of the vapor column, the high-gradient field produced by magne can be considered uniform across the interaction region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
146
+ page_content=' The PM was placed after the rear window of the NC, with the axis aligned along the probe beam propagation 4 direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
147
+ page_content=' The magnetic field in the NC was simply var- ied by longitudinal displacement of the PM, calibrated using a Teslameter HT201 magnetometer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
148
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
149
+ page_content=' Experimental results: using MI transitions to form EIT resonances Curves 1 to 5 in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
150
+ page_content=' 4 show the experimental trans- mission spectra of the probe radiation which contain the resonances EIT 3 to EIT 7 (numbers 3-7 means that MI transitions with numbers 3-7 are involved, respectively) in a longitudinal magnetic field B = 1400 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
151
+ page_content=' The NC thickness is L = λ = 852 nm and the temperature of the reservoir is 100 ◦C (to prevent Cs vapor condensa- tion on the windows, the temperature of the windows is slightly higher).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
152
+ page_content=' The coupling and the probe powers are 20 mW and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
153
+ page_content='1 mW, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
154
+ page_content=' Note that since only σ+ radiations participate to the formation of the EIT resonances (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
155
+ page_content=' 1), only half of the power of these radiations must be considered, meaning 10 mW and 50 µW, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
156
+ page_content=' Curve n° 6 is a probe spectrum when the coupling is blocked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
157
+ page_content=' Since the cell thickness is L = λ, small peaks formed by velocity selective optical pump- ing (VSOP) resonances are located exactly at the atomic transitions frequencies, as described in [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
158
+ page_content=' The amplitude of the EIT resonance is a factor ∼10 larger than the amplitude of the VSOP resonance, whereas the spectral width of the EIT resonance is a factor of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
159
+ page_content='5 smaller, which is characteristic of the coher- ent EIT process [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
160
+ page_content=' Note that the contrast of the EIT resonance defined as the ratio of the EIT resonance am- plitude divided by the peak absorption of the Cs vapor when the coupling is blocked reached 40-50 % which is typical when a nanocell is used [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
161
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
162
+ page_content=' 6, curves 1 to 4 are probe transmission spectra which contain EIT 6, EIT 5, EIT 4 and EIT 3 resonances for B = 1770 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
163
+ page_content=' Curve n° 5 shows only the probe spec- trum when the coupling is blocked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
164
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
165
+ page_content=' 7, lines 1 to 3 show the probe transmission spectra which contain EIT 6, EIT 4 and EIT 3 resonances for B = 2880 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
166
+ page_content=' Line n° 4 shows only the probe spectrum when the coupling is blocked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
167
+ page_content=' The inset shows the profile of EIT 6 reso- nance fitted with a Gaussian profile with a FWHM of ∼ 35 MHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
168
+ page_content=' There is also a small VSOP resonance which is formed when the coupling is blocked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
169
+ page_content=' The typical FWHM of VSOP resonances is 40-50 MHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
170
+ page_content=' Preliminary theoretical calculations (shown in the right part of the inset of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
171
+ page_content=' 7 were obtained by solv- ing the Liouville equations of motion for an ensemble of three-level Λ-systems (as presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
172
+ page_content=' 5), taking into account the geometry of the nanocell (coherence dephas- ing rate determined by the time of flight of the atoms), its Fabry-Perot nature (reflections of the fields on the inner surfaces of the cell) and Doppler broadening, following the procedure described in [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
173
+ page_content=' The Rabi frequencies of the probe and coupling lasers are respectively Ωc = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
174
+ page_content='5γN and Ωp = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
175
+ page_content='06γN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
176
+ page_content=' Reasonable agreement between theory and experiment regarding the width and depth of the EIT resonance is obtained and the VSOP resonance is seen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
177
+ page_content=' Small discrepancies (assymetry of the profile and ampli- tude of the VSOP resonance) can arise notably from the need of considering neighboring Zeeman sublevels (not shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
178
+ page_content=' 1, and therefore more than three levels, to obtain more accurate results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
179
+ page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
180
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
181
+ page_content=' Scheme of the three-level Λ-system used in the calcu- lations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
182
+ page_content=' The total decay rate Γ33 of state |3⟩ is 1/2(γ31 + γ32) [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
183
+ page_content=' The dephasing rate of coherence between the ground states is Γ21 = (2πt)−1 where t is the time of flight of the atoms through the cell (at the most probable velocity u = � 2kBT/M where T is the vapor temperature and M the atomic mass).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
184
+ page_content=' The amplitude of resonance n° 6 is ∼ 50 times greater than that of the VSOP resonance and is spectrally nar- rower than the latter (this is a manifestation of the co- herent EIT process [2, 17]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
185
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
186
+ page_content=' 8 the solid lines in- dicate the calculated dependences of the frequency shifts for transitions 1–7 (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
187
+ page_content=' 1) and Fg = 3 → Fe = 4 (marked with dotted oval) to the magnetic field B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
188
+ page_content=' The black squares represent the experimental results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
189
+ page_content=' As mentioned earlier, due to the high value of the frequency shift slope for B > 3 kG, the group of MI transitions 1–7 is com- pletely separated in frequency from Fg = 3 → Fe = 4 transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
190
+ page_content=' The curves in the inset of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
191
+ page_content=' 8 show experimental and theoretical spectra (calculated by combining the models presented in [7] and [30]) of the seven MI transitions ab- sorption for B = 6 kG when frequency shift reaches ∼ 30 GHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
192
+ page_content=' Note that the amplitude of transition 6 is slightly bigger than that of transition 7 (while for B < 5 kG the amplitude of transition 7 is bigger, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
193
+ page_content=' 2a), because of the “mixing” effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
194
+ page_content=' Note that one of the remarkable features of the σ+ MI transitions 3 → 5′ is that they are still well recorded for a magnetic field B ≈ 8 kG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
195
+ page_content=' They are located in the high frequency wing of the spec- trum presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
196
+ page_content=' 18 of paper [31] and for this case the frequency shift reaches 34 GHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
197
+ page_content=' Using our theoret- ically calculated curves for MI transitions 3 → 5′ we checked the frequency position of these MI transitions and found good agreement with the experimental curves presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
198
+ page_content=' 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
199
+ page_content=' In paper [31] the 3 → 5′transitions are not identified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
200
+ page_content=' Therefore, it is important to inform 5 Coupling off EIT 6 EIT 5 EIT 4 EIT 3 (1) (2) (3) (4) (5) 6 5 4 3 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
201
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
202
+ page_content=' Probe transmission spectra of the Cs nanocell (L = λ ≈ 850 nm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
203
+ page_content=' Spectra 1 to 4 exhibit four EIT reso- nances, labelled EIT 3 to EIT 6, while the probe frequency is scanned across transitions 3 to 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
204
+ page_content=' The external longitudi- nal magnetic field is B = 1770 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
205
+ page_content=' Spectrum n° 5 is a probe transmission spectrum when the coupling is off.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
206
+ page_content=' Small VSOP peaks are visible on each atomic transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
207
+ page_content=' Zero frequency corresponds to the transition frequency of Cs D2 line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
208
+ page_content=' Coupling off Coupling off (1) (2) (3) (4) Experiment Coupling off EIT 6 EIT 4 EIT 3 6 5 4 3 EIT 6 Theory FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
209
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
210
+ page_content=' Probe transmission spectra of the Cs nanocell (L = λ = 852 nm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
211
+ page_content=' Lines 1 to 3 show four EIT resonances, la- belled EIT 4, EIT 5 and EIT 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
212
+ page_content=' The external longitudinal magnetic field is B = 2880 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
213
+ page_content=' Line 4 is a probe transmission spectrum when the coupling is off.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
214
+ page_content=' The left part of the inset is a zoom on EIT 6, fitted with a Gaussian profile (FWHM 35 MHz).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
215
+ page_content=' The right curves are calculated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
216
+ page_content=' Red: coupling on, black: coupling off.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
217
+ page_content=' Small VSOP peaks are visible on each atomic transitions formed by the probe radiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
218
+ page_content=' Their typ- ical linewidth is 40-50 MHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
219
+ page_content=' Zero frequency corresponds to the transition frequency of Cs D2 line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
220
+ page_content=' scientists working in the field of laser spectroscopy of al- kali metal atoms about the MI atomic transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
221
+ page_content=' The above-mentioned MI transitions can be exploited in such high B-fields as new frequency markers, for using new fre- quency ranges, as well as for the frequency stabilization of lasers at strongly shifted frequencies from the initial transition in unperturbed atoms [13, 14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
222
+ page_content=' Exp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
223
+ page_content=' Theory 6 5 4 3 2 1 7 6 5 4 3 2 1 7 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
224
+ page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
225
+ page_content=' Red solid lines: frequency shift of transitions 1 to 7 (see figure 1) as a function of the magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
226
+ page_content=' The black squares with error bars represent experimental measurements, the inaccuracy is around 1 %.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
227
+ page_content=' Black dashed lines: frequency shift of Fg = 3 → Fe = 4 transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
228
+ page_content=' For B > 3 kG, both groups are well separated in frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
229
+ page_content=' Inset: theoretical and experimental absorption spectra for B = 6 kG, the frequency shift reaches 30 GHz from the Cs D2 line transition frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
230
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
231
+ page_content=' CONCLUSION In this paper, we used for the first time forbidden transitions of Cs (Fg = 3 → Fe = 5, more precisely σ+(∆mF = +1) transitions) to create Λ-system allowing the formation of EIT resonances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
232
+ page_content=' This was done in an ex- ternal magnetic field, as such transitions have zero proba- bility in the absence of magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
233
+ page_content=' A nanometric-thin cell filled with Cs vapor was used, with a thickness corre- sponding to the resonant wavelength of Cs D2 line (≈ 850 nm), and the magnetic field was varied by longitudinal displacement of the permanent magnet along the prop- agation direction (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
234
+ page_content=' 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
235
+ page_content=' As expected, when the cou- pling is blocked, small VSOP resonances are formed right at the different transitions’ frequencies, while coupling radiation allows for the formation of EIT resonances, spectrally narrower and with a bigger amplitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
236
+ page_content=' We formed EIT resonances with 6 out the 7 transitions de- picted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
237
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
238
+ page_content=' This was possible up to 3 kG thanks to the big value of the frequency shift, reaching up to 4 MHz/G, therefore leading to EIT resonances shifted 12 GHz apart from the Cs D2 line transition frequency [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
239
+ page_content=' This result is of great interest, as the highly-shifted spec- tra can serve as frequency references [14, 15], especially taking into account that these transitions are still easily recorded up to 8 kG when the frequency shift reaches 35 GHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
240
+ page_content=' As for the theoretical description, further investi- gation is necessary, mainly in order to take into account the effect of neighbouring states, and thus including more levels in the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
241
+ page_content=' The complexity of the manifold and the number of coupled equations make it a challenging 6 and computationally-intensive task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
242
+ page_content=' However, reasonable agreement was already achieved by simply considering an ensemble of three-level systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
243
+ page_content=' To the best of our knowl- edge, there are no reports on obtaining EIT resonances in Λ-systems in such strong fields using usual transitions of alkali atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
244
+ page_content=' We note that much narrower EIT reso- nances can be attained by using cm-long cells (to lower the effect of inelastic collisions of atoms with the win- dows), and by using coherently coupled probe and cou- pling radiations derived from a single narrow-band laser beam [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
245
+ page_content=' ACKNOWLEDGMENTS This work was supported by the Science Committee of the Republic of Armenia, in the frame of research project n° 21T-1C005, and by the NATO Science for Peace and Security Project under grant G5794.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
246
+ page_content=' DATA AVAILABILITY STATEMENT Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
247
+ page_content=' [1] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
248
+ page_content=' Kitching, Chip-scale atomic devices, Applied Physics Reviews 5, 031302 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
249
+ page_content=' [2] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
250
+ page_content=' Vanier, Atomic clocks based on coherent population trapping: a review, Applied Physics B 81, 421 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
251
+ page_content=' [3] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
252
+ page_content=' Fleischhauer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
253
+ page_content=' Imamoglu, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
254
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
255
+ page_content=' Marangos, Elec- tromagnetically induced transparency: Optics in coher- ent media, Reviews of Modern Physics 77, 633 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
256
+ page_content=' [4] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
257
+ page_content=' Meschede, Optics, light and lasers: the practical ap- proach to modern aspects of photonics and laser physics, 2nd ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
258
+ page_content=' (Wiley-VCH, Weinheim, 2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
259
+ page_content=' [5] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
260
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
261
+ page_content=' Simons, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
262
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
263
+ page_content=' Kautz, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
264
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
265
+ page_content=' Holloway, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
266
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
267
+ page_content=' Anderson, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
268
+ page_content=' Raithel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
269
+ page_content=' Stack, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
270
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
271
+ page_content=' St.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
272
+ page_content=' John, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
273
+ page_content=' Su, Electromagnetically Induced Trans- parency (EIT) and Autler-Townes (AT) splitting in the presence of band-limited white Gaussian noise, Journal of Applied Physics 123, 203105 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
274
+ page_content=' [6] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
275
+ page_content=' Abdel Hafiz, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
276
+ page_content=' Vicarini, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
277
+ page_content=' Passilly, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
278
+ page_content=' Calosso, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
279
+ page_content=' Maurice, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
280
+ page_content=' Pollock, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
281
+ page_content=' Taichenachev, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
282
+ page_content=' Yudin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
283
+ page_content=' Kitching, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
284
+ page_content=' Boudot, Protocol for Light-Shift Compensation in a Continuous-Wave Microcell Atomic Clock, Physical Review Applied 14, 034015 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
285
+ page_content=' [7] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
286
+ page_content=' Tremblay, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
287
+ page_content=' Michaud, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
288
+ page_content=' Levesque, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
289
+ page_content=' Thériault, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
290
+ page_content=' Breton, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
291
+ page_content=' Beaubien, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
292
+ page_content=' Cyr, Absorption pro- files of alkali-metal D lines in the presence of a static magnetic field, Physical Review A 42, 2766 (1990).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
293
+ page_content=' [8] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
294
+ page_content=' Sargsyan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
295
+ page_content=' Tonoyan, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
296
+ page_content=' Hakhumyan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
297
+ page_content=' Pa- poyan, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
298
+ page_content=' Mariotti, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
299
+ page_content=' Sarkisyan, Giant modifica- tion of atomic transition probabilities induced by a mag- netic field: forbidden transitions become predominant, Laser Physics Letters 11, 055701 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
300
+ page_content=' [9] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
301
+ page_content=' Sargsyan, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
302
+ page_content=' Hakhumyan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
303
+ page_content=' Papoyan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
304
+ page_content=' Sarkisyan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
305
+ page_content=' Atvars, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
306
+ page_content=' Auzinsh, A novel approach to quan- titative spectroscopy of atoms in a magnetic field and applications based on an atomic vapor cell with l = λ, Applied Physics Letters 93, 021119 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
307
+ page_content=' [10] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
308
+ page_content=' Scotto, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
309
+ page_content=' Ciampini, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
310
+ page_content=' Rizzo, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
311
+ page_content=' Ari- mondo, Four-level N-scheme crossover resonances in Rb saturation spectroscopy in magnetic fields, Physical Review A 92, 063810 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
312
+ page_content=' [11] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
313
+ page_content=' Tonoyan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
314
+ page_content=' Sargsyan, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
315
+ page_content=' Klinger, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
316
+ page_content=' Hakhumyan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
317
+ page_content=' Leroy, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
318
+ page_content=' Auzinsh, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
319
+ page_content=' Papoyan, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
320
+ page_content=' Sark- isyan, Circular dichroism of magnetically in- duced transitions for D2 lines of alkali atoms, EPL (Europhysics Letters) 121, 53001 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
321
+ page_content=' [12] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
322
+ page_content=' Sargsyan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
323
+ page_content=' Amiryan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
324
+ page_content=' Tonoyan, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
325
+ page_content=' Klinger, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
326
+ page_content=' Sarkisyan, Circular dichroism in atomic vapors: Mag- netically induced transitions responsible for two distinct behaviors, Physics Letters A 390, 127114 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
327
+ page_content=' [13] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
328
+ page_content=' Pizzey, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
329
+ page_content=' Briscoe, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
330
+ page_content=' Logue, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
331
+ page_content=' Ponciano-Ojeda, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
332
+ page_content=' Wrathmall, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
333
+ page_content=' Hughes, Laser spectroscopy of hot atomic vapours: from scope to theoretical fit, New Jour- nal of Physics 24, 125001 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
334
+ page_content=' [14] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
335
+ page_content=' Sargsyan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
336
+ page_content=' Tonoyan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
337
+ page_content=' Mirzoyan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
338
+ page_content=' Sarkisyan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
339
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
340
+ page_content=' Wojciechowski, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
341
+ page_content=' Stabrawa, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
342
+ page_content=' Gaw- lik, Saturated-absorption spectroscopy revisited: atomic transitions in strong magnetic fields (>20 mT) with a micrometer-thin cell, Optics Letters 39, 2270 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
343
+ page_content=' [15] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
344
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
345
+ page_content=' Mathew, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
346
+ page_content=' Ponciano-Ojeda, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
347
+ page_content=' Keaveney, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
348
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
349
+ page_content=' Whiting, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
350
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
351
+ page_content=' Hughes, Simultaneous two-photon res- onant optical laser locking (STROLLing) in the hyperfine Paschen–Back regime, Optics Letters 43, 4204 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
352
+ page_content=' [16] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
353
+ page_content=' Sargsyan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
354
+ page_content=' Tonoyan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
355
+ page_content=' Papoyan, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
356
+ page_content=' Sark- isyan, Dark resonance formation with magnetically in- duced transitions: extension of spectral range and giant circular dichroism, Optics Letters 44, 1391 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
357
+ page_content=' [17] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
358
+ page_content=' Sargsyan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
359
+ page_content=' Tonoyan, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
360
+ page_content=' Sarkisyan, Ap- plication of Magnetically Induced Transitions of the 85Rb D2 Line in Coherent Processes, Journal of Experimental and Theoretical Physics 133, 16 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
361
+ page_content=' [18] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
362
+ page_content=' Sargsyan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
363
+ page_content=' Amiryan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
364
+ page_content=' Tonoyan, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
365
+ page_content=' Klinger, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
366
+ page_content=' Sarkisyan, Coherent optical processes on Cs D2 line magnetically induced transitions, Physics Letters A 434, 128043 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
367
+ page_content=' [19] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
368
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
369
+ page_content=' Steck, Cesium D line data, Revision 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
370
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
371
+ page_content='1, available online at http://steck.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
372
+ page_content='us/alkalidata (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
373
+ page_content=' [20] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
374
+ page_content=' Sargsyan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
375
+ page_content=' Amiryan, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
376
+ page_content=' Pashayan-Leroy, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
377
+ page_content=' Leroy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
378
+ page_content=' Papoyan, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
379
+ page_content=' Sarkisyan, Approach to quantita- tive spectroscopy of atomic vapor in optical nanocells, Optics Letters 44, 5533 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
380
+ page_content=' [21] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
381
+ page_content=' Momier, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
382
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
383
+ page_content=' Papoyan, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
384
+ page_content=' Leroy, Sub- Doppler spectra of sodium D lines in a wide range of magnetic field: Theoretical study, Journal of Quantitative Spectroscopy and Radiative Transfer 272, 107780 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
385
+ page_content=' [22] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
386
+ page_content=' Gea-Banacloche, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
387
+ page_content='-Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
388
+ page_content=' Li, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
389
+ page_content='-Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
390
+ page_content=' Jin, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
391
+ page_content=' Xiao, Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experi- ment, Physical Review A 51, 576 (1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
392
+ page_content=' [23] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
393
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
394
+ page_content=' Grove, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
395
+ page_content=' Sanchez-Villicana, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
396
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
397
+ page_content=' Duncan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
398
+ page_content=' Maleki, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
399
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
400
+ page_content=' Gould, Two-photon two-color 7 diode laser spectroscopy of the Rb 5D 5/2 state, Physica Scripta 52, 271 (1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
401
+ page_content=' [24] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
402
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
403
+ page_content=' Vassiliev, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
404
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
405
+ page_content=' Zibrov, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
406
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
407
+ page_content=' Velichansky, Compact extended-cavity diode laser for atomic spectroscopy and metrology, Review of Scientific Instruments 77, 013102 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
408
+ page_content=' [25] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
409
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
410
+ page_content=' Yashchuk, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
411
+ page_content=' Budker, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
412
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
413
+ page_content=' Davis, Laser frequency stabilization using linear magneto-optics, Review of Scientific Instruments 71, 341 (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
414
+ page_content=' [26] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
415
+ page_content=' Keaveney, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
416
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
417
+ page_content=' Hughes, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
418
+ page_content=' Sargsyan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
419
+ page_content=' Sark- isyan, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
420
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
421
+ page_content=' Adams, Maximal Refraction and Superluminal Propagation in a Gaseous Nanolayer, Physical Review Letters 109, 233001 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
422
+ page_content=' [27] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
423
+ page_content=' Sargsyan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
424
+ page_content=' Leroy, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
425
+ page_content=' Pashayan-Leroy, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
426
+ page_content=' Car- taleva, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
427
+ page_content=' Sarkisyan, High-contrast dark reso- nances on the D1 line in cesium nanocell: the ad- vantages compared with the other alkali D lines, Journal of Modern Optics 62, 769 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
428
+ page_content=' [28] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
429
+ page_content=' Pashayan-Leroy, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
430
+ page_content=' Leroy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
431
+ page_content=' Sargsyan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
432
+ page_content=' Pa- poyan, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
433
+ page_content=' Sarkisyan, Electromagnetically induced transparency: the thickness of the va- por column is of the order of a light wavelength, Journal of the Optical Society of America B 24, 1829 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
434
+ page_content=' [29] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
435
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
436
+ page_content=' Shore, The theory of coherent atomic excitation (Wiley, New York, 1990).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
437
+ page_content=' [30] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
438
+ page_content=' Dutier, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
439
+ page_content=' Saltiel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
440
+ page_content=' Bloch, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
441
+ page_content=' Ducloy, Revisit- ing optical spectroscopy in a thin vapor cell: mixing of reflection and transmission as a Fabry–Perot microcavity effect, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
442
+ page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
443
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
444
+ page_content=' Am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
445
+ page_content=' B 20, 793 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
446
+ page_content=' [31] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
447
+ page_content=' Stærkind, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
448
+ page_content=' Jensen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
449
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
450
+ page_content=' Müller, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
451
+ page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
452
+ page_content=' Boer, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
453
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
454
+ page_content=' Petersen, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
455
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
456
+ page_content=' Polzik, Precision Measurement of the Excited State Landé g-factor and Diamagnetic Shift of the Cesium D2 Line (2022), arXiv:2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
457
+ page_content='00077.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/D9E1T4oBgHgl3EQfqQU2/content/2301.03340v1.pdf'}
ENAyT4oBgHgl3EQfevhN/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19973628cbcfc112030a393c3c04271ca76f9f648462610207730ca5db7c0532
3
+ size 7929901
ENAyT4oBgHgl3EQfevhN/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc3a6b5af59dd5107ff5dce699cb7bfa706e7b849c60140f11484b9c0229e7e7
3
+ size 275602
ENE1T4oBgHgl3EQfqQWR/content/tmp_files/2301.03341v1.pdf.txt ADDED
@@ -0,0 +1,1100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Enantio-specific state transfer of chiral molecules through enantio-selective
2
+ shortcut-to-adiabaticity paths
3
+ Jian-Jian Cheng,1, 2 Chong Ye,3 and Yong Li1, 4, ∗
4
+ 1Center for Theoretical Physics and School of Science, Hainan University, Haikou 570228, China
5
+ 2Beijing Computational Science Research Center, Beijing 100193, China
6
+ 3Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems,
7
+ School of Physics, Beijing Institute of Technology, 100081 Beijing, China
8
+ 4Synergetic Innovation Center for Quantum Effects and Applications,
9
+ Hunan Normal University, Changsha 410081, China
10
+ (Dated: January 10, 2023)
11
+ An interesting method of fast enantio-specific state transfer is proposed for cyclic three-level
12
+ systems of chiral molecules. We show that the fast population transfer via shortcut to adiabaticity
13
+ can be accomplished for the cyclic three-level system of a general (chiral) molecule with invariant-
14
+ based inverse engineering of the coupling strengths. By choosing appropriate parameters, the two
15
+ enantiomers, which are initially prepared in their ground states in the three-level systems, will
16
+ evolve respectively along their enantio-selective shortcut-to-adiabaticity paths to different-energy
17
+ final states simultaneously, namely achieving the fast enantio-specific state transfer.
18
+ I.
19
+ INTRODUCTION
20
+ Since Pasteur first discovered chiral molecules in
21
+ 1848, the theoretical and experimental studies of chiral
22
+ molecules have proliferated in chemistry [1], biotechnolo-
23
+ gies [2], and pharmaceutics [3]. Chiral molecules contain
24
+ two species, e.g. left- and right-handed ones [4], which are
25
+ often called enantiomers. The two enantiomers are mir-
26
+ ror images of each other but can be superposed on each
27
+ other via translations and rotations. The enantiodiscrim-
28
+ ination (as well as enantioseparation and enantioconver-
29
+ sion) [5–8] of chiral molecules remains an enormous chal-
30
+ lenge. The traditional method of enantiodiscrimination
31
+ is to break the mirror symmetry of the enantiomers by
32
+ using circularly polarized light [9]. Some commonly used
33
+ chiroptical methods of enantiodiscrimination are circular
34
+ dichroism [10], vibrating circular dichroism [11], optical
35
+ rotation [9], and Raman optical activity [12]. However,
36
+ these methods rely on the interference between electric-
37
+ dipole and weak magnetic-dipole (or electric-quadrupole)
38
+ transitions.
39
+ Alternatively,
40
+ enantiodiscrimination
41
+ methods
42
+ that
43
+ only use electric-dipole interactions [13, 14], have also
44
+ been proposed.
45
+ The left- and right-handed chiral
46
+ molecules can be modeled as cyclic three-level systems,
47
+ where three electromagnetic (optical or microwave) fields
48
+ couple respectively to three transitions via electric-dipole
49
+ interactions [15, 16]. Due to the intrinsic property of chi-
50
+ ral molecules, the product of the corresponding three cou-
51
+ pling strengths (Rabi frequencies) in the cyclic three-level
52
+ systems can differ in signs for the two enantiomers [15,
53
+ 16].
54
+ So the corresponding overall phases in the cyclic
55
+ three-level systems differ by π with the enantiomers.
56
+ Based on such cyclic three-level systems, one can use
57
+ different schemes, such as enantio-selective three-wave
58
59
+ mixing [17–21], enantio-selective absorption [22], enantio-
60
+ selective AC stark effect [23] and enantio-selective two-
61
+ dimensional spectra [24], to discriminate the left- and
62
+ right-handed molecules. Moreover, some more ingenious
63
+ sources of modern optics physics, such as frequency en-
64
+ tangled photons [25], quantized photons [26, 27], and cor-
65
+ related photons in cavities [28], have been introduced to
66
+ enhance the performance of enantiodiscrimination.
67
+ Beyond the enantiodiscrimination, the cyclic three-
68
+ level systems of chiral molecules have also been used in
69
+ some more ambitious issues, such as the enantio-specific
70
+ state transfer (ESST) [15, 29–38], enantioseparation [39–
71
+ 42], and enantioconversion [16, 43–46]. The perfect ESST
72
+ of chiral molecules can be realized by transferring the left-
73
+ and right-handed chiral molecules from the same-energy
74
+ initial states to different-energy final states by choosing
75
+ suitable electromagnetic fields [15, 29–38]. Recently, the
76
+ feasibility of ESST based on the cyclic three-level sys-
77
+ tems has been demonstrated experimentally in gaseous
78
+ samples by using microwave fields [47–50].
79
+ After the
80
+ achievement of the ESST, one can further realize the
81
+ enantiodiscrimination and spatial enantioseparation for
82
+ the chiral molecules [39, 40].
83
+ In the original ESST method based on cyclic three-
84
+ level systems of chiral molecules [15], the ESST was re-
85
+ alized by using the adiabatic (and also diabatic) passage
86
+ technique, which makes the ESST process slow and com-
87
+ plicated. To overcome these defects, several theoretical
88
+ methods of fast ESST were proposed and developed [29–
89
+ 38] based on cyclic three-level systems. Among them, an
90
+ ingenious method [31] was proposed to achieve the fast
91
+ ESST of chiral molecules by using the “shortcut to adi-
92
+ abaticity” (STA) concept via adding a counterdiabatic
93
+ field to accelerate the stimulated Raman adiabatic pas-
94
+ sage.
95
+ Motivated by Ref. [31], here we propose to achieve the
96
+ ESST by a different STA with invariant-based inverse
97
+ engineering [51–53], instead of the STA with adding the
98
+ counterdiabatic field [31].
99
+ The invariant-based inverse
100
+ arXiv:2301.03341v1 [quant-ph] 9 Jan 2023
101
+
102
+ 2
103
+ engineering starts by introducing a Lewis-Riesenfeld in-
104
+ variant in a time-dependent system. The invariant can
105
+ be used to derive a law that governs the evolution state
106
+ for the designed Hamiltonian. By means of the invariant-
107
+ based inverse engineering of the time-dependent Hamil-
108
+ tonians with designing appropriate control parameters,
109
+ the left- and right-handed chiral molecules prepared ini-
110
+ tially in their corresponding ground states would evolve
111
+ (approximately) along their enantio-selective shortcut-
112
+ to-adiabaticity paths to different-energy final states.
113
+ II.
114
+ CYCLIC THREE-LEVEL SYSTEMS
115
+ A general chiral molecule can be modeled as the cyclic
116
+ three-level system by choosing appropriate three electro-
117
+ magnetic fields to couple with three electric-dipole tran-
118
+ sitions [15, 54]. Here, we only consider the case that all
119
+ the three electromagnetic fields couple resonantly with
120
+ the electric-dipole transitions respectively, as shown sim-
121
+ ilar to Fig. 1(a). In the basis of {|1⟩, |2⟩, |3⟩}, the Hamil-
122
+ tonian of the cyclic three-level system can be described
123
+ in the interaction picture as (ℏ = 1) [31]
124
+ ˆH(t) =
125
+
126
+
127
+ 0
128
+ Ωx(t) Ωz(t)e−iφ
129
+ Ωx(t)
130
+ 0
131
+ Ωy(t)
132
+ Ωz(t)eiφ Ωy(t)
133
+ 0
134
+
135
+
136
+ (1)
137
+ with |1⟩ = (1, 0, 0)T , |2⟩ = (0, 1, 0)T , |3⟩ = (0, 0, 1)T .
138
+ Here Ωj(t) (j = x, y, z) are the Rabi frequencies, which
139
+ can be controlled by varying the amplitudes of the ap-
140
+ plied electromagnetic fields. φ is the overall phase of the
141
+ three Rabi frequencies. Here we set φ = π/2. Without
142
+ loss of generality, we have assumed Ωj are real. Then the
143
+ Hamiltonian can be expressed as
144
+ ˆH(t) = Ωx(t) ˆKx + Ωy(t) ˆKy + Ωz(t) ˆKz.
145
+ (2)
146
+ Here, ˆKx, ˆKy, and ˆKz are the SU(2) angular-momentum
147
+ operators [55]
148
+ ˆKx =
149
+
150
+
151
+ 0 1 0
152
+ 1 0 0
153
+ 0 0 0
154
+
155
+ � ,
156
+ ˆKy =
157
+
158
+
159
+ 0 0 0
160
+ 0 0 1
161
+ 0 1 0
162
+
163
+ � ,
164
+ ˆKz =
165
+
166
+
167
+ 0 0 −i
168
+ 0 0
169
+ 0
170
+ i 0
171
+ 0
172
+
173
+ � .
174
+ (3)
175
+ They satisfy the commutation relations
176
+ [ ˆKx, ˆKy] = i ˆKz, [ ˆKy, ˆKz] = i ˆKx, [ ˆKz, ˆKx] = i ˆKy.(4)
177
+ The fact that Hamiltonian (2) is written as the sum of
178
+ three SU(2) operators, means it addresses the SU(2) al-
179
+ gebraic structure [53].
180
+ For the two enantiomers of chiral molecules, the overall
181
+ phases in the cyclic three-level systems under consider-
182
+ ation differ by π [50]. For convenience, we specify that
183
+ the signs before Ωx and Ωz are equal for the two enan-
184
+ tiomers, while the sign before Ωy is opposite, as shown
185
+ in Fig. 1.
186
+ |3〉L
187
+ |3〉R
188
+ |2〉L
189
+ |2〉R
190
+ |1〉L
191
+ |1〉R
192
+ Ωzeiϕ
193
+ Ωy
194
+ Ωx
195
+ Ωzeiϕ
196
+ -Ωy
197
+ Ωx
198
+ (a) Left-handed
199
+ (b) Right-handed
200
+ FIG. 1.
201
+ (a) Left- and (b) right-handed chiral molecules of
202
+ cyclic three-level systems, where three electromagnetic fields
203
+ couple resonantly to the three electric-dipole transitions, re-
204
+ spectively, with Ωx, ±Ωy, and Ωzeiφ the corresponding Rabi
205
+ frequencies.
206
+ Therefore, the Hamiltonians of the cyclic three-level
207
+ systems for the two enantiomers in the basis {|m⟩L} and
208
+ {|m⟩R} (m = 1, 2, 3) can be described as
209
+ ˆHL,R(t) = Ωx(t) ˆKL,R
210
+ x
211
+ ± Ωy(t) ˆKL,R
212
+ y
213
+ + Ωz(t) ˆKL,R
214
+ z
215
+ . (5)
216
+ Here, the indices L and R [which correspond, respec-
217
+ tively, to the signs + and − in the right side of Eq. (5)],
218
+ denote the left- and right-handed chiral molecules, re-
219
+ spectively.
220
+ ˆKQ
221
+ j (j = x, y, z, Q = L, R) is just
222
+ ˆKj in
223
+ Eq. (3) for the two enantiomers. In this work, when refer-
224
+ ring to left- or right-handed chiral molecules, we will add
225
+ the index. When there is no index, we refer to general
226
+ molecules.
227
+ III.
228
+ INVARIANT DYNAMICS
229
+ Shortcut to adiabaticity (STA) is a fast route to ac-
230
+ celerate a slow adiabatic process by controlling the pa-
231
+ rameters of a system [56], while keeping the same initial
232
+ and final states as that in the adiabatic passage. A mo-
233
+ tivation to apply the STA technique is to manipulate the
234
+ quantum system on timescales shorter than decoherence
235
+ times.
236
+ There are two main STA techniques that have
237
+ been proposed theoretically and implemented experimen-
238
+ tally to inversely engineer the time-dependent Hamilto-
239
+ nian of a quantum system for accelerating slow adiabatic
240
+ process [52]. One is the counterdiabatic driving method
241
+ with adding an auxiliary field in a reference Hamilto-
242
+ nian to cancel the nonadiabatic coupling, where the dy-
243
+ namics follows exactly the adiabatic passage defined by
244
+ the reference Hamiltonian [52, 57, 58]. The other one is
245
+ the invariant-based inverse engineering method, which is
246
+ based on the Lewis-Riesenfeld invariant that carries the
247
+ eigenstates of a system from the initial state to the de-
248
+ sired final state [52], with keeping the same initial and
249
+ final states as those in the adiabatic passage, but without
250
+ following the adiabatic passage at the intermediate time
251
+ instants [51, 52]. In what follows, we focus on how to use
252
+
253
+ 3
254
+ the latter STA technique to achieve the ESST of chiral
255
+ molecules.
256
+ Commonly a Lewis-Riesenfeld invariant for a Hamilto-
257
+ nian ˆH(t) is a Hermitian operator ˆI(t) that satisfies [59]
258
+ dˆI(t)
259
+ dt
260
+ ≡ ∂ ˆI(t)
261
+ ∂t
262
+ − i[ˆI(t), ˆH(t)] = 0,
263
+ (6)
264
+ so that its eigenvalues remain constant in time. Accord-
265
+ ing to the Lewis-Riesenfeld theory [51, 52, 59], if {|φn(t)⟩}
266
+ is a set of orthogonal eigenstates of the invariant ˆI(t),
267
+ the solution to the time-dependent Sch¨ordinger equation
268
+ can be constructed as |Ψ(t)⟩ = �
269
+ n cneiαn(t)|φn(t)⟩, with
270
+ cn being a time-independent coefficient. Here αn(t) =
271
+ � t
272
+ 0⟨φn(t′)|[i∂t′ − ˆH(t′)]|φn(t′)⟩dt′ is the Lewis-Riesenfeld
273
+ phase [51, 52, 59].
274
+ In general, ˆH(t) does not commute with the invari-
275
+ ant ˆI(t) at all time. We only require the invariant and
276
+ the Hamiltonian to commute at the initial and final time
277
+ instants, i.e., [ ˆH(0), ˆI(0)] = 0 and [ ˆH(τ), ˆI(τ)] = 0 [51–
278
+ 53, 56]. The eigenstates of the Hamiltonian and the in-
279
+ variant coincide at the initial and final time instants but
280
+ may be different at the intermediate time. This leaves
281
+ large freedom to choose how the state evolves in the in-
282
+ termediate time. We can use Eq. (6) to find the Hamilto-
283
+ nian (2) that drives such a designed evolution of a given
284
+ state in the cyclic three-level system. Moreover, we con-
285
+ sider, respectively, the evolutions of the left- and right-
286
+ handed chiral molecules with cyclic three-level structures
287
+ by invariant-based inverse engineering of the Rabi fre-
288
+ quencies (equivalently the amplitude of the electromag-
289
+ netic fields). By choosing appropriate Rabi frequencies,
290
+ the fast ESST can be achieved by transferring the two
291
+ enantiomers from their ground states to different-energy
292
+ final states through their corresponding eigenstates of in-
293
+ variants, following their enantio-selective STA paths.
294
+ A.
295
+ Invariant dynamics for the left-handed chiral
296
+ molecules
297
+ We first consider the state transfer of the left-handed
298
+ chiral molecules with the cyclic three-level structures by
299
+ the invariant-based inverse engineering. Since ˆHL(t) in
300
+ Eq. (5) possesses the SU(2) algebraic structure, the cor-
301
+ responding invariant ˆIL(t) can be given as [53]
302
+ ˆIL =Ω0
303
+ 2 (cos γ sin β · ˆKL
304
+ x + cos γ cos β · ˆKL
305
+ y + sin γ · ˆKL
306
+ z )
307
+ =Ω0
308
+ 2
309
+
310
+
311
+ 0
312
+ cos γ sin β
313
+ −i sin γ
314
+ cos γ sin β
315
+ 0
316
+ cos γ cos β
317
+ i sin γ
318
+ cos γ cos β
319
+ 0
320
+
321
+
322
+ L
323
+ (7)
324
+ in the basis {|1⟩L, |2⟩L, |3⟩L}. Here, Ω0 is an arbitrary
325
+ constant with unit of frequency, and the time-dependent
326
+ auxiliary parameters γ and β satisfy the equations
327
+ ˙γ = Ωx cos β − Ωy sin β,
328
+ ˙β = (Ωx sin β + Ωy cos β) tan γ − Ωz.
329
+ (8)
330
+ The eigenstates of the invariant ˆIL(t), which satisfy
331
+ ˆIL(t)|φn(t)⟩L = λL
332
+ n|φn(t)⟩L (n = 0, ±), are
333
+ |φ0⟩L =
334
+
335
+
336
+ cos γ cos β
337
+ −i sin γ
338
+ − cos γ sin β
339
+
340
+
341
+ L
342
+ ,
343
+ (9)
344
+ |φ±⟩L =
345
+ 1
346
+
347
+ 2
348
+
349
+
350
+ sin γ cos β ± i sin β
351
+ i cos γ
352
+ − sin γ sin β ± i cos β
353
+
354
+
355
+ L
356
+ (10)
357
+ with the corresponding (time-independent) eigenval-
358
+ ues
359
+ λL
360
+ 0
361
+ =
362
+ 0
363
+ and
364
+ λL
365
+ ±
366
+ =
367
+ ±Ω0.
368
+ In
369
+ this
370
+ case,
371
+ the
372
+ Lewis-Riesenfeld
373
+ phases
374
+ are
375
+ αL
376
+ 0 (t)
377
+ =
378
+ 0,
379
+ and
380
+ αL
381
+ ±(t) = ∓
382
+ � t
383
+ 0[ ˙β(t′) sin β(t′) + Ωx(t′) sin β(t′) cos γ(t′) +
384
+ Ωy(t′) cos β(t′) cos γ(t′) + Ωz(t′) sin γ(t′)]dt′.
385
+ Here, we take Ωx(t) = Ωz(t) for simplicity. By using
386
+ Eq. (8), we have
387
+ Ωx = Ωz =
388
+ ˙β sin β + ˙γ cos β tan γ
389
+ tan γ − sin β
390
+ ,
391
+ Ωy =
392
+ ˙β cos β + ˙γ(1 − tan γ sin β)
393
+ tan γ − sin β
394
+ .
395
+ (11)
396
+ Once the appropriate boundary conditions for γ and β
397
+ are fixed, one can insert a polynomial function to deter-
398
+ mine Ωx, Ωy, and Ωz. Our task is to design the Hamilto-
399
+ nian ˆHL(t) to drive the initial state |1⟩L to the final state
400
+ |3⟩L (up to a phase factor) along the invariant eigenstate
401
+ |φ0(t)⟩L in a given time τ. Therefore, based on the invari-
402
+ ant eigenstate |φ0(0)⟩L = (1, 0, 0)T
403
+ L = |1⟩L at the initial
404
+ instant time and |φ0(τ)⟩L = (0, 0, −1)T
405
+ L = −|3⟩L at the
406
+ final instant time τ, the boundary conditions for γ and
407
+ β can be given as
408
+ γ(0) = 0, β(0) = 0,
409
+ γ(τ) = 0, β(τ) = π
410
+ 2 .
411
+ (12)
412
+ On one hand, one needs to impose the boundary con-
413
+ ditions to make ˆHL(t) and ˆIL(t) commute at t = 0 and
414
+ t = τ so that they have common eigenstates at these time
415
+ instants. On the other hand, one requires the Rabi fre-
416
+ quencies to vanish at the initial and final time instants to
417
+ make the electromagnetic fields turn on and off smoothly.
418
+ These requirements further imply the additional bound-
419
+ ary conditions
420
+ ˙γ(0) = 0, ˙β(0) = 0,
421
+ ˙γ(τ) = 0, ˙β(τ) = 0.
422
+ (13)
423
+ There are many interpolating functions consistent with
424
+ the boundary conditions at the initial and final time in-
425
+ stants. With these boundary conditions, we can simply
426
+ choose
427
+ γ(t) = 0, β(t) = 3π
428
+ 2τ 2 t2 − π
429
+ τ 3 t3 + ��.
430
+ (14)
431
+ Here the small value η is set to avoid the infinite values
432
+ of the Rabi frequencies at the initial time instant. Thus
433
+
434
+ 4
435
+ the designed Rabi frequencies in Eq. (11) reduce to
436
+ Ωx = Ωz = 3πt
437
+ τ 2
438
+ � t
439
+ τ − 1
440
+
441
+ ,
442
+ Ωy = 3πt
443
+ τ 2
444
+ � t
445
+ τ − 1
446
+
447
+ cot
448
+ � 3π
449
+ 2τ 2 t2 − π
450
+ τ 3 t3 + η
451
+
452
+ .
453
+ (15)
454
+ (a)
455
+ Ωx (Ωz)
456
+ Ωy
457
+ 0.0
458
+ 0.2
459
+ 0.4
460
+ 0.6
461
+ 0.8
462
+ 1.0
463
+ -2.0
464
+ -1.5
465
+ -1.0
466
+ -0.5
467
+ 0.0
468
+ t /τ
469
+ Rabi frequencies (2π /τ)
470
+ (b)
471
+ P1
472
+ L
473
+ P3
474
+ L
475
+ P2
476
+ L
477
+ 0.0
478
+ 0.2
479
+ 0.4
480
+ 0.6
481
+ 0.8
482
+ 1.0
483
+ 0.0
484
+ 0.2
485
+ 0.4
486
+ 0.6
487
+ 0.8
488
+ 1.0
489
+ t /τ
490
+ population
491
+ FIG. 2.
492
+ (Color online) (a) The designed Rabi frequen-
493
+ cies for the left-handed chiral molecules with Ωx = Ωz (red
494
+ solid line) and Ωy (blue dashed line) given in Eq. (15). (b)
495
+ Time evolution of corresponding populations in |1⟩L (red solid
496
+ line), |2⟩L (black dotted line), and |3⟩L (blue dashed line) for
497
+ the left-handed chiral molecules with the initial state |1⟩L.
498
+ Here η = 0.02.
499
+ Fig. 2 shows the designed Rabi frequencies for the left-
500
+ handed chiral molecules and corresponding evolution of
501
+ the populations in the states |m⟩L (m = 1, 2, 3) for the
502
+ initial state |Ψ(0)⟩L = |1⟩L. In the ideal condition (i.e.
503
+ the case of η = 0), the left-handed chiral molecules will
504
+ evolve from the initial state |1⟩L (= |φ0(0)⟩L) to the
505
+ final target state −|3⟩L (up to a phase factor), along
506
+ the invariant eigenstate |φ0(t)⟩L. For the case of small
507
+ value η = 0.02 as shown in Fig. 2(b), the initial state
508
+ |1⟩L ≈ |φ0(0)⟩L, thus the populations in the initial state
509
+ |1⟩L with P L
510
+ 1 (0) = 1 are finally transferred approxi-
511
+ mately to that in the target state |3⟩L with probabil-
512
+ ity P L
513
+ 3 (τ) = 0.9991 for the left-handed chiral molecules.
514
+ Correspondingly, P L
515
+ 2 (0) = 0 = P L
516
+ 3 (0), P L
517
+ 1 (τ) = 0.0005,
518
+ and P L
519
+ 2 (τ) = 0.0004.
520
+ B.
521
+ Invariant dynamics for the right-handed chiral
522
+ molecules
523
+ Then we consider the state transfer of the right-handed
524
+ chiral molecules with the cyclic three-level structures
525
+ by the invariant-based inverse engineering.
526
+ Since the
527
+ Hamiltonian ˆHR(t) in Eq. (5) of the right-handed chi-
528
+ ral molecules has the same SU(2) algebraic structure as
529
+ ˆHL(t) of the left-handed ones, similarly the invariant
530
+ ˆIR(t) can be given in the basis {|1⟩R, |2⟩R, |3⟩R} as the
531
+ form
532
+ ˆIR= Ω0
533
+ 2 (cos ξ sin χ · ˆKR
534
+ x + cos ξ cos χ · ˆKR
535
+ y + sin ξ · ˆKR
536
+ z )
537
+ = Ω0
538
+ 2
539
+
540
+
541
+ 0
542
+ cos ξ sin χ
543
+ −i sin ξ
544
+ cos ξ sin χ
545
+ 0
546
+ cos ξ cos χ
547
+ i sin ξ
548
+ cos ξ cos χ
549
+ 0
550
+
551
+
552
+ R
553
+ .
554
+ (16)
555
+ Here the time-dependent auxiliary parameters ξ(t) and
556
+ χ(t) satisfy the equations
557
+ ˙ξ = Ωx cos χ + Ωy sin χ,
558
+ ˙χ = (Ωx sin χ − Ωy cos χ) tan ξ − Ωz.
559
+ (17)
560
+ The eigenstates of the invariant ˆIR(t), which satisfy
561
+ ˆIR(t)|φn(t)⟩R = λR
562
+ n |φn(t)⟩R (n = 0, ±), are
563
+ |φ0⟩R =
564
+
565
+
566
+ cos ξ cos χ
567
+ −i sin ξ
568
+ − cos ξ sin χ
569
+
570
+
571
+ R
572
+ ,
573
+ (18)
574
+ |φ±⟩R =
575
+ 1
576
+
577
+ 2
578
+
579
+
580
+ sin ξ cos χ ± i sin χ
581
+ i cos ξ
582
+ − sin ξ sin χ ± i cos χ
583
+
584
+
585
+ R
586
+ (19)
587
+ with the corresponding eigenvalues λR
588
+ 0 = 0 and λR
589
+ ± =
590
+ ±Ω0. Here the Lewis-Riesenfeld phase is αR
591
+ 0 (t) = 0, and
592
+ αR
593
+ ±(t) = ∓
594
+ � t
595
+ 0[ ˙χ(t′) sin χ(t′) + Ωx(t′) sin χ(t′) cos ξ(t′) −
596
+ Ωy(t′) cos χ(t′) cos ξ(t′) + Ωz(t′) sin ξ(t′)]dt′.
597
+ Here we still take Ωx = Ωz for simplicity. According
598
+ to Eq. (17), we have
599
+ Ωx = Ωz = ˙χ sin χ + ˙ξ cos χ tan ξ
600
+ tan ξ − sin χ
601
+ ,
602
+ Ωy = ˙χ cos χ + ˙ξ(1 − tan ξ sin χ)
603
+ sin χ − tan ξ
604
+ .
605
+ (20)
606
+ Similar to the case of the left-handed chiral molecules
607
+ in the above subsection, once the functions χ and ξ are
608
+ fixed, we can construct Ωx, Ωy, and Ωz and thus the
609
+ Hamiltonian HR(t) can be determined. Here we aim to
610
+ design the Hamiltonian ˆHR(t) to make the system evolve
611
+ from the initial state |1⟩R to the finial state |2⟩R (up to
612
+ a phase factor) along the invariant eigenstate |φ0(t)⟩R
613
+ in a given time τ.
614
+ Therefore, based on the invariant
615
+ eigenstate |φ0(0)⟩R = (1, 0, 0)T
616
+ R = |1⟩R at the initial time
617
+ instant and |φ0(τ)⟩R = (0, −i, 0)T
618
+ R = −i|2⟩R at the final
619
+ time instant τ, the boundary conditions for ξ and χ can
620
+ be given as
621
+ ξ(0) = 0, χ(0) = 0, ξ(τ) = −π
622
+ 2 .
623
+ (21)
624
+
625
+ 5
626
+ (a)
627
+ Ωx (Ωz)
628
+ Ωy
629
+ 0.0
630
+ 0.2
631
+ 0.4
632
+ 0.6
633
+ 0.8
634
+ 1.0
635
+ -2.0
636
+ -1.5
637
+ -1.0
638
+ -0.5
639
+ 0.0
640
+ t /τ
641
+ Rabi frequencies (2π /τ)
642
+ (b)
643
+ P1
644
+ R
645
+ P2
646
+ R
647
+ P3
648
+ R
649
+ 0.0
650
+ 0.2
651
+ 0.4
652
+ 0.6
653
+ 0.8
654
+ 1.0
655
+ 0.0
656
+ 0.2
657
+ 0.4
658
+ 0.6
659
+ 0.8
660
+ 1.0
661
+ t /τ
662
+ population
663
+ FIG. 3. (Color online) (a) The designed Rabi frequencies for
664
+ the right-handed chiral molecules with Ωx = Ωz (red solid
665
+ line) and Ωy (blue dashed line) given in Eq. (24). (b) Time
666
+ evolution of corresponding populations in |1⟩R (red solid line),
667
+ |2⟩R (black dotted line), and |3⟩R (blue dashed line) for the
668
+ right-handed chiral molecules with the initial state |1⟩R. Here
669
+ η′ = −0.02.
670
+ Similarly, we set ˆHR(t) and ˆIR(t) commute at the ini-
671
+ tial and final time instants (so that they have the same
672
+ eigenstates at these time instants) and make the electro-
673
+ magnetic fields (equivalently the Rabi frequencies) turn
674
+ on and off smoothly for the right-handed chiral molecules.
675
+ Thus, the additional boundary conditions for ξ(t) and
676
+ χ(t) can be given as
677
+ ˙ξ(0) = 0, ˙χ(0) = 0,
678
+ ˙ξ(τ) = 0, ˙χ(τ) = 0.
679
+ (22)
680
+ Consistent with these boundary conditions, we can
681
+ choose
682
+ χ(t) = 0, ξ(t) = − 3π
683
+ 2τ 2 t2 + π
684
+ τ 3 t3 + η′.
685
+ (23)
686
+ Here the small value η′ is set to avoid the infinite values
687
+ of the Rabi frequencies at the initial time instant. Thus
688
+ the designed Rabi frequencies in Eq. (20) reduce to
689
+ Ωx = Ωz = 3πt
690
+ τ 2
691
+ � t
692
+ τ − 1
693
+
694
+ ,
695
+ Ωy = 3πt
696
+ τ 2
697
+ � t
698
+ τ − 1
699
+
700
+ cot
701
+ � 3π
702
+ 2τ 2 t2 − π
703
+ τ 3 t3 − η′
704
+
705
+ .
706
+ (24)
707
+ Fig. 3 shows the designed Rabi frequencies of the right-
708
+ handed chiral molecules and corresponding evolution of
709
+ the populations in the states |m⟩R (m = 1, 2, 3) for the
710
+ initial state |Ψ(0)⟩R = |1⟩R.
711
+ In the ideal condition (i.e. the case of η′ = 0), the
712
+ right-handed chiral molecules will evolve from the initial
713
+ state |1⟩R (= |φ0(0)⟩R) to the final target state −i|2⟩L
714
+ (up to a phase factor), along the invariant eigenstate
715
+ |φ0(t)⟩R. When we set the small value η′ = −0.02 as
716
+ shown in Fig. 3(b), the initial state |1⟩R ≈ |φ0(0)⟩R, thus
717
+ the populations in the initial state |1⟩R with P R
718
+ 1 (0) = 1
719
+ are finally transferred approximately to that in the tar-
720
+ get state |2⟩R with P R
721
+ 2 (τ) = 0.9991 for the right-handed
722
+ chiral molecules. Correspondingly, P R
723
+ 2 (0) = 0 = P R
724
+ 3 (0),
725
+ P R
726
+ 1 (τ) = 0.0005, and P R
727
+ 3 (τ) = 0.0004.
728
+ C.
729
+ Achieving the fast enantio-specific state transfer
730
+ So far we have designed the desired evolution for the
731
+ left- and right-handed chiral molecules of the cyclic three-
732
+ level systems via the STA technique with invariant-based
733
+ inverse engineering in the above two subsections, respec-
734
+ tively.
735
+ By comparing Eq. (15) with Eq. (24), it can
736
+ be found that the two groups of designed Rabi frequen-
737
+ cies for the two enantiomers are exactly the same when
738
+ η = −η′. This means that the two enantiomers are driven
739
+ by the same three electromagnetic fields indeed. In this
740
+ case, the left-handed chiral molecule begins with |1⟩L and
741
+ terminates approximately at −|3⟩L, almost along the in-
742
+ variant eigenstate |φ0(t)⟩L, while the right-handed chi-
743
+ ral molecule begins with |1⟩R and terminates approxi-
744
+ mately at −i|2⟩R, almost along the invariant eigenstate
745
+ |φ0(t)⟩R simultaneously.
746
+ As also shown in Fig. 2 and
747
+ Fig. 3, the left- and right-handed chiral molecules pre-
748
+ pared in the same-energy initial states evolves (approx-
749
+ imately) to the different-energy final states via the dif-
750
+ ferent enantio-selective STA processes of invariant-based
751
+ inverse engineering, driven by the same electromagnetic
752
+ fields. Thus, the fast ESST via enantio-selective STA is
753
+ achieved (approximately).
754
+ In the above ESST method via the enantio-selective
755
+ STA with invariant-based inverse engineering, the enan-
756
+ tiomeric excess of the ESST can be defined as [23, 38]
757
+ ϵ ≡
758
+ ���P L
759
+ 3 (τ) − P R
760
+ 3 (τ)
761
+ P L
762
+ 3 (τ) + P R
763
+ 3 (τ)
764
+ ���.
765
+ (25)
766
+ Although the small values η and η′ (e.g.
767
+ η = −η′ =
768
+ 0.02) have been introduced to avoid the infinite Ωy at
769
+ the initial time instant, we still obtain a highly efficient
770
+ ESST with enantiomeric excess ϵ = 99.92% at the final
771
+ time instant (with most of left-chiral molecule staying
772
+ in |3⟩L and very few of the right-chiral molecule staying
773
+ in the same-energy state |3⟩R, as shown in Fig. 2 and
774
+ Fig. 3).
775
+ In general, the final populations are effected by the
776
+ small value η (or η′) and are independent of the param-
777
+ eter τ. As shown in Fig. 4(a), the population of the tar-
778
+
779
+ 6
780
+ get state |3⟩L can be further decreased by increasing the
781
+ small value η, while the population of the other target
782
+ state |3⟩R would be commonly increased by increasing
783
+ the small value η. Therefore, it is possible to achieve a
784
+ better enantiomeric excess with relatively small value η.
785
+ According to Eq. (15) and Eq. (24), decreasing the small
786
+ amount η (or η′) implies the tradeoff of requiring larger
787
+ Rabi frequencies and laser intensities [53]. Here we define
788
+ Ωmax=Max{|Ωx(t)|, |Ωy(t)|, |Ωz(t)|} as the maximum ab-
789
+ solute value of the Rabi frequencies during the whole evo-
790
+ lution process. As shown in Fig. 4(b), the maximum ab-
791
+ solute value of the Rabi frequencies increase dramatically
792
+ when decreasing the small value η.
793
+ (a)
794
+ P3
795
+ R
796
+ P3
797
+ L
798
+ 0.00
799
+ 0.05
800
+ 0.10
801
+ 0.15
802
+ 0.20
803
+ 0.25
804
+ 0.80
805
+ 0.85
806
+ 0.90
807
+ 0.95
808
+ 1.00
809
+ 0
810
+ 0.01
811
+ 0.02
812
+ 0.03
813
+ 0.04
814
+ η
815
+ population
816
+ (b)
817
+ 0.00
818
+ 0.05
819
+ 0.10
820
+ 0.15
821
+ 0.20
822
+ 0.25
823
+ 5
824
+ 10
825
+ 50
826
+ 100
827
+ 500
828
+ 1000
829
+ η
830
+ Ωmax (2π⨯MHz)
831
+ FIG. 4. (Color online) (a) The corresponding populations in
832
+ |3⟩L (red solid line) and |3⟩R (blue dashed line) at the final
833
+ time versus the small value η. The initial states are |1⟩L,R.
834
+ (b) The maximum absolute value of the Rabi frequencies Ωmax
835
+ versus the small value η with τ = 0.5 µs.
836
+ In experiments, the typical Rabi frequencies for the
837
+ transitions of chiral molecules are about 2π×10 MHz [18,
838
+ 47, 48]. That means the evolution time can be shortened
839
+ to be 0.5 µs for the experimentally available Rabi fre-
840
+ quencies. Thus, the decoherence effects (typically being
841
+ about 5 ∼ 6 µs) [17, 47] will become negligable.
842
+ This
843
+ is the advantage of our ESST method since it allows to
844
+ manipulate the quantum system on the timescales much
845
+ shorter than the typical decoherence time.
846
+ Note that in the previous ESST method via STA [31],
847
+ an auxiliary counterdiabatic field has been applied. It
848
+ works as a shortcut to adiabaticity for canceling the
849
+ nonadiabatic coupling and induces perfect population
850
+ transfer between the states |1⟩L and |3⟩L for the left-
851
+ handed chiral molecules.
852
+ Simultaneously, it also acts
853
+ oppositely for strengthening the nonadiabatic coupling
854
+ for the right-handed chiral molecules and the population
855
+ transfer between the states |1⟩R and |3⟩R is canceled com-
856
+ pletely. Therefore, under such an ESST process, the left-
857
+ handed chiral molecule begins with |1⟩L and terminates
858
+ at −|3⟩L, following a STA path. But the right-handed
859
+ chiral molecule is subject to a free evolution, instead
860
+ of following the STA path.
861
+ By contrast, in our ESST
862
+ method via STA, the eigenstates of invariants for the two
863
+ enantiomers define their corresponding enantio-selective
864
+ STA paths. Thus, our ESST can be achieved with trans-
865
+ ferring the two enantiomers from their ground states to
866
+ different-energy final states along their enantio-selective
867
+ STA paths simultaneously, by choosing appropriate in-
868
+ tensities of the three electromagnetic fields (that is, the
869
+ Rabi frequencies).
870
+ IV.
871
+ CONCLUSION
872
+ In conclusion, we have proposed the fast ESST method
873
+ of chiral molecules via the STA technique with invariant-
874
+ based inverse engineering. Based on the cyclic three-level
875
+ systems, the ESST of chiral molecules can be achieved
876
+ through enantio-selective STA paths: for the left- and
877
+ right-handed chiral molecules prepared initially in their
878
+ ground states, they will evolve (approximately) finally to
879
+ the different-energy states almost along the eigenstates
880
+ of the invariants within a short operation time simulta-
881
+ neously.
882
+ Hence, our fast ESST method via STA with
883
+ invariant-based inverse engineering has promising appli-
884
+ cations in discriminating molecular chirality and control-
885
+ ling the dynamics of chiral molecules.
886
+ ACKNOWLEDGMENTS
887
+ This work was supported by the Natural Science Foun-
888
+ dation of China (Grants No. 12074030, No. 12274107,
889
+ and No. U1930402), National Science Foundation for
890
+ Young Scientists of China (No. 12105011), and Bei-
891
+ jing Institute of Technology Research Fund Program for
892
+ Young Scholars.
893
+ [1] K. T. Barrett, A. J. Metrano, P. R. Rablen, and S. J.
894
+ Miller, Spontaneous transfer of chirality in an atropi-
895
+ somerically enriched two-axis system, Nature (London)
896
+ 509, 71 (2014).
897
+
898
+ 7
899
+ [2] T. J. Leitereg, D. G. Guadagni, J. Harris, T. R. Mon,
900
+ and R. Teranishi, Sensory Evaluation Spectrum Method
901
+ as a Descriptive Sensory Analysis, J. Agric. Food Chem.
902
+ 19, 785 (1971).
903
+ [3] A. R. Ribeiro, P. M. L. Castro, and M. E. Tiritan, En-
904
+ vironmental Fate of Chiral Pharmaceuticals: Determina-
905
+ tion, Degradation and Toxicity, Environ. Chem. Lett. 10,
906
+ 239 (2012).
907
+ [4] R. G. Woolley, Quantum theory and molecular structure,
908
+ Adv. Phys. 25, 27 (1976).
909
+ [5] R. McKendry, M. E. Theoclitou, T. Rayment, and
910
+ C. Abell, Chiral discrimination by chemical force mi-
911
+ croscopy, Nature (London) 391, 566 (1998).
912
+ [6] L. D. Barron, Chirality, magnetism and light, Nature
913
+ (London) 405, 932 (2000).
914
+ [7] Chiral
915
+ Separation
916
+ Methods
917
+ for
918
+ Pharmaceutical
919
+ and
920
+ Biotechnological Products, edited by S. Ahuja (John Wi-
921
+ ley & Sons, New York, 2011).
922
+ [8] H. Zepik, E. Shavit, M. Tang, T. R. Jensen, K. Kjaer,
923
+ G. Bolbach, L. Leiserowitz, I. Weissbuch, and M. Lahav,
924
+ Chiral amplification of oligopeptides in two-dimensional
925
+ crystalline self-assemblies on water, Science 295, 1266
926
+ (2002).
927
+ [9] Comprehensive Chiroptical Spectroscopy:
928
+ Instrumenta-
929
+ tion, Methodologies, and Theoretical Simulations, edited
930
+ by N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W.
931
+ Woody (Wiley, New York, 2012).
932
+ [10] N. Berova and K. Nakanishi, Circular Dichroism: Prin-
933
+ ciples and Applications (Wiley, New York, 2000).
934
+ [11] L. A. Nafie, T. A. Keiderling, and P. J. Stephens, Vibra-
935
+ tional Circular Dichroism, J. Am. Chem. Soc. 98, 2715
936
+ (1976).
937
+ [12] L. D. Barron, F. Zhu, L. Hecht, G. E. Tranter, and N.
938
+ W. Isaacs, Vibrational Circular Dichroism, Raman Opti-
939
+ cal Activity and Raman Spectra of Amphetamine Species
940
+ Quantum Chemical Model Calculations and Experiments,
941
+ J. Mol. Struct. 7, 834-836 (2007).
942
+ [13] M. Shapiro and P. Brumer Controlled photon induced
943
+ symmetry breaking: Chiral molecular products from achi-
944
+ ral precursors J. Chem. Phys. 95, 8658 (1991).
945
+ [14] Hirota, E. Triple resonance for a three-level system of a
946
+ chiral molecule. Proc. Jpn Acad. B 88, 120 (2012).
947
+ [15] P. Kr´al and M. Shapiro, Cyclic Population Transfer in
948
+ Quantum Systems with Broken Symmetry, Phys. Rev.
949
+ Lett. 87, 183002 (2001).
950
+ [16] P. Kr´al, I. Thanopulos, M. Shapiro, and D. Cohen, Two-
951
+ Step Enantio-Selective Optical Switch, Phys. Rev. Lett.
952
+ 90, 033001 (2003).
953
+ [17] D. Patterson, M. Schnell, and J. M. Doyle, Enantiomer-
954
+ specific detection of chiral molecules via microwave spec-
955
+ troscopy, Nature (London) 497, 475 (2013).
956
+ [18] D. Patterson and J. M. Doyle, Sensitive Chiral Analy-
957
+ sis via Microwave Three-Wave Mixing, Phys. Rev. Lett.
958
+ 111, 023008 (2013).
959
+ [19] V. A. Shubert, D. Schmitz, D. Patterson, J. M. Doyle,
960
+ and M. Schnell, Identifying Enantiomers in Mixtures
961
+ of Chiral Molecules with Broadband Microwave Spec-
962
+ troscopy, Angew. Chem., Int. Ed. 53, 1152-1155 (2014).
963
+ [20] S. Lobsiger, C. P´erez, L. Evangelisti, K. K. Lehmann, and
964
+ B. H. Pate, Molecular structure and chirality detection
965
+ by Fourier transform microwave spectroscopy, J. Phys.
966
+ Chem. Lett. 6, 196 (2015).
967
+ [21] V. A. Shubert, D. Schmitz, C. P´erez, C. Medcraft, A.
968
+ Krin, S. R. Domingos, D. Patterson, and M. Schnell,
969
+ Chiral analysis using broadband rotational spectroscopy,
970
+ J. Phys. Chem. Lett. 7, 341 (2016).
971
+ [22] W. Z. Jia and L. F. Wei, Probing molecular chirality
972
+ by coherent optical absorption spectra, Phys. Rev. A 84,
973
+ 053849 (2011).
974
+ [23] C. Ye, Q. Zhang, Y. Y. Chen, and Y. Li, Determination
975
+ of enantiomeric excess with chirality-dependent ac Stark
976
+ effects in cyclic three-level models, Phys. Rev. A 100,
977
+ 033411 (2019).
978
+ [24] M. R. Cai, C. Ye, H. Dong, and Y. Li, Enantiodetection
979
+ of Chiral Molecules via Two-Dimensional Spectroscopy,
980
+ Phys. Rev. Lett. 129, 103201 (2022).
981
+ [25] C. Ye, Y. Sun, and X. Zhang, Entanglement-assisted
982
+ quantum chiral spectroscopy, J. Phys. Chem. Lett. 12,
983
+ 8591 (2021).
984
+ [26] Y. Y. Chen, C. Ye, and Y. Li, Enantio-detection via
985
+ cavity-assisted three-photon processes, Opt. Express 29,
986
+ 36132 (2021).
987
+ [27] Y. Y. Chen, J. J. Cheng, C. Ye, and Y. Li, Enantiode-
988
+ tection of cyclic three-level chiral molecules in a driven
989
+ cavity, Phys. Rev. Research 4, 013100 (2022).
990
+ [28] F. Zou, Y. Y. Chen, B. Liu, and Y. Li, Enantiodiscrimi-
991
+ nation of chiral molecules via quantum correlation func-
992
+ tion, Opt. Express 30, 31073 (2022).
993
+ [29] Y. Li and C. Bruder, Dynamic method to distinguish be-
994
+ tween left- and right-handed chiral molecules, Phys. Rev.
995
+ A 77, 015403 (2008).
996
+ [30] W. Z. Jia and L. F. Wei, Distinguishing left- and right-
997
+ handed molecules using two-step coherent pulses, J. Phys.
998
+ B 43, 185402 (2010).
999
+ [31] N. V. Vitanov and M. Drewsen, Highly Efficient Detec-
1000
+ tion and Separation of Chiral Molecules through Short-
1001
+ cuts to Adiabaticity, Phys. Rev. Lett. 122, 173202 (2019).
1002
+ [32] C. Ye, Q. Zhang, Y. Y. Chen, and Y. Li, Effective
1003
+ two-level models for highly efficient inner-state enan-
1004
+ tioseparation based on cyclic three-level systems of chiral
1005
+ molecules, Phys. Rev. A 100, 043403 (2019).
1006
+ [33] M. Leibscher, T. F. Giesen, and C. P. Koch, Principles
1007
+ of enantio-selective excitation in three-wave mixing spec-
1008
+ troscopy of chiral molecules, J. Chem. Phys. 151, 014302
1009
+ (2019).
1010
+ [34] J. L. Wu, Y. Wang, J. Song, Y. Xia, S. L. Su, and Y. Y.
1011
+ Jiang, Robust and highly efficient discrimination of chiral
1012
+ molecules through three-mode parallel paths, Phys. Rev.
1013
+ A 100, 043413 (2019).
1014
+ [35] B. T. Torosov, M. Drewsen, and N. V. Vitanov, Efficient
1015
+ and robust chiral resolution by composite pulses, Phys.
1016
+ Rev. A 101, 063401 (2020).
1017
+ [36] J. L. Wu, Y. Wang, J. X. Han, C. Wang, S. L. Su, Y.
1018
+ Xia, Y. Y. Jiang, and J. Song, Two-Path Interference for
1019
+ Enantiomer-Selective State Transfer of Chiral Molecules,
1020
+ Phys. Rev. Applied 13, 044021 (2020).
1021
+ [37] B. T. Torosov, M. Drewsen, and N. V. Vitanov, Chiral
1022
+ resolution by composite Raman pulses, Phys. Rev. Re-
1023
+ search 2, 043235 (2020).
1024
+ [38] Q. Zhang, Y.-Y. Chen, C. Ye, and Y. Li, Evading thermal
1025
+ population influence on enantiomeric-specific state trans-
1026
+ fer based on a cyclic three-level system via ro-vibrational
1027
+ transitions, J. Phys. B: At. Mol. Opt. Phys. 53, 235103
1028
+ (2020).
1029
+ [39] Y. Li, C. Bruder, and C. P. Sun, Generalized Stern-
1030
+ Gerlach Effect for Chiral Molecules, Phys. Rev. Lett. 99,
1031
+ 130403 (2007).
1032
+
1033
+ 8
1034
+ [40] X. Li and M. Shapiro, Theory of the optical spatial sepa-
1035
+ ration of racemic mixtures of chiral molecules, J. Chem.
1036
+ Phys. 132, 194315 (2010).
1037
+ [41] A. Jacob and K. Hornberger, Effect of molecular rota-
1038
+ tion on enantioseparation, J. Chem. Phys. 137, 044313
1039
+ (2012).
1040
+ [42] B. Liu, C. Ye, C. P. Sun, and Y. Li, Spatial enantiosep-
1041
+ aration of gaseous chiral molecules, Phys. Rev. A 104,
1042
+ 013113 (2021).
1043
+ [43] M. Shapiro, E. Frishman, and P. Brumer, Coherently
1044
+ Controlled Asymmetric Synthesis with Achiral Light,
1045
+ Phys. Rev. Lett. 84, 1669 (2000).
1046
+ [44] P. Brumer, E. Frishman, and M. Shapiro, Principles of
1047
+ electric-dipole-allowed optical control of molecular chiral-
1048
+ ity, Phys. Rev. A 65, 015401 (2001).
1049
+ [45] C. Ye, Q. Zhang, Y. Y. Chen, and Y. Li, Fast enantiocon-
1050
+ version of chiral mixtures based on a four-level double-∆
1051
+ model, Phys. Rev. Research 2, 033064 (2020).
1052
+ [46] C. Ye, B. Liu, Y. Y. Chen, and Y. Li, Enantio-conversion
1053
+ of chiral mixtures via optical pumping, Phys. Rev. A 103,
1054
+ 022830 (2021).
1055
+ [47] S. Eibenberger, J. Doyle, and D. Patterson, Enantiomer-
1056
+ Specific State Transfer of Chiral Molecules, Phys. Rev.
1057
+ Lett. 118, 123002 (2017).
1058
+ [48] C. P´erez, A. L. Steber, S. R. Domingos, A. Krin, D.
1059
+ Schmitz, and M. Schnell, Coherent enantiomer-selective
1060
+ population enrichment using tailored microwave fields,
1061
+ Angew. Chem., Int. Ed. 56, 12512 (2017).
1062
+ [49] C. P´erez, A. L. Steber, A. Krin, and M. Schnell,
1063
+ State-Specific Enrichment of Chiral Conformers with Mi-
1064
+ crowave Spectroscopy, J. Phys. Chem. Lett. 9, 4539
1065
+ (2018).
1066
+ [50] J. Lee, J. Bischoff, A. O. Hernandez-Castillo, B. Sar-
1067
+ takov, G. Meijer, and S. Eibenberger-Arias, Quantitative
1068
+ study of enantiomer-specific state transfer, Phys. Rev.
1069
+ Lett. 128, 173001 (2022).
1070
+ [51] X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D.
1071
+ Gu´ery-Odelin and J. G. Muga, Fast Optimal Frictionless
1072
+ Atom Cooling in Harmonic Traps: Shortcut to Adiabatic-
1073
+ ity, Phys. Rev. Lett. 104, 063002 (2010).
1074
+ [52] X. Chen, E. Torrontegui, and J. G. Muga, Lewis-
1075
+ Riesenfeld Invariants and Transitionless Quantum Driv-
1076
+ ing, Phys. Rev. A 83, 062116 (2011).
1077
+ [53] X. Chen and J. G. Muga, Engineering of fast population
1078
+ transfer in three-level systems, Phys. Rev. A 86, 033405
1079
+ (2012).
1080
+ [54] C. Ye, Q. Zhang, and Y. Li, Real single-loop cyclic three-
1081
+ level configuration of chiral molecules, Phys. Rev. A 98,
1082
+ 063401 (2018).
1083
+ [55] C. E. Carroll and F. T. Hioe, N-level quantum systems
1084
+ with SU(2) dynamic symmetry, J. Opt. Soc. Am. B 5,
1085
+ 1335 (1988).
1086
+ [56] D. Gu´ery-Odelin, A. Ruschhaupt, A. Kiely, E. Tor-
1087
+ rontegui, S. Mart´ınez-Garaot, and J. G. Muga, Short-
1088
+ cuts to adiabaticity: Concepts, methods, and applications,
1089
+ Rev. Mod. Phys. 91, 045001 (2019).
1090
+ [57] M. V. Berry, Transitionless quantum driving, J. Phys. A
1091
+ 42, 365303 (2009).
1092
+ [58] X. Chen, I. Lizuain, A. Ruschhaupt, D. Gu´ery-Odelin,
1093
+ and J. G. Muga, Shortcut to Adiabatic Passage in Two-
1094
+ and Three-Level Atoms, Phys. Rev. Lett. 105, 123003
1095
+ (2010).
1096
+ [59] H. R. Lewis and W. B. Riesenfeld, An exact quantum
1097
+ theory of the time-dependent harmonic oscillator and of
1098
+ a charged particle in a time-dependent electromagnetic
1099
+ field, J. Math. Phys. 10, 1458 (1969).
1100
+
ENE1T4oBgHgl3EQfqQWR/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff