jackkuo commited on
Commit
41400f5
·
verified ·
1 Parent(s): 443cf4b

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +79 -0
  2. 0tAzT4oBgHgl3EQfRPvU/content/2301.01214v1.pdf +3 -0
  3. 0tAzT4oBgHgl3EQfRPvU/vector_store/index.faiss +3 -0
  4. 0tAzT4oBgHgl3EQfRPvU/vector_store/index.pkl +3 -0
  5. 1NAzT4oBgHgl3EQfDfoM/vector_store/index.pkl +3 -0
  6. 1NE3T4oBgHgl3EQfnQph/content/tmp_files/2301.04623v1.pdf.txt +1502 -0
  7. 1NE3T4oBgHgl3EQfnQph/content/tmp_files/load_file.txt +0 -0
  8. 29A0T4oBgHgl3EQfNP8E/vector_store/index.faiss +3 -0
  9. 29A0T4oBgHgl3EQfNP8E/vector_store/index.pkl +3 -0
  10. 2NE0T4oBgHgl3EQfugGB/vector_store/index.pkl +3 -0
  11. 4NFAT4oBgHgl3EQflx07/content/2301.08619v1.pdf +3 -0
  12. 4NFAT4oBgHgl3EQflx07/vector_store/index.faiss +3 -0
  13. 4NFAT4oBgHgl3EQflx07/vector_store/index.pkl +3 -0
  14. 4tE1T4oBgHgl3EQfSwM3/content/tmp_files/2301.03069v1.pdf.txt +2884 -0
  15. 4tE1T4oBgHgl3EQfSwM3/content/tmp_files/load_file.txt +0 -0
  16. 59AyT4oBgHgl3EQfpfhu/content/2301.00526v1.pdf +3 -0
  17. 59AyT4oBgHgl3EQfpfhu/vector_store/index.pkl +3 -0
  18. 6NAzT4oBgHgl3EQfEfqj/content/tmp_files/2301.00995v1.pdf.txt +0 -0
  19. 6NAzT4oBgHgl3EQfEfqj/content/tmp_files/load_file.txt +0 -0
  20. 6NAzT4oBgHgl3EQff_yv/content/2301.01462v1.pdf +3 -0
  21. 6NAzT4oBgHgl3EQff_yv/vector_store/index.faiss +3 -0
  22. 6NAzT4oBgHgl3EQff_yv/vector_store/index.pkl +3 -0
  23. 6dA0T4oBgHgl3EQfN__p/vector_store/index.faiss +3 -0
  24. 79E0T4oBgHgl3EQffQDe/vector_store/index.faiss +3 -0
  25. 7tFLT4oBgHgl3EQfAi4b/content/2301.11966v1.pdf +3 -0
  26. 7tFLT4oBgHgl3EQfAi4b/vector_store/index.faiss +3 -0
  27. 7tFLT4oBgHgl3EQfAi4b/vector_store/index.pkl +3 -0
  28. 8dFJT4oBgHgl3EQfnix6/content/tmp_files/2301.11592v1.pdf.txt +2400 -0
  29. 8dFJT4oBgHgl3EQfnix6/content/tmp_files/load_file.txt +0 -0
  30. 8tE3T4oBgHgl3EQfqgri/content/2301.04653v1.pdf +3 -0
  31. 8tE3T4oBgHgl3EQfqgri/vector_store/index.pkl +3 -0
  32. A9E2T4oBgHgl3EQf8Qn_/content/2301.04218v1.pdf +3 -0
  33. BdAzT4oBgHgl3EQfGPtU/content/2301.01024v1.pdf +3 -0
  34. BdAzT4oBgHgl3EQfGPtU/vector_store/index.faiss +3 -0
  35. BdAzT4oBgHgl3EQfGPtU/vector_store/index.pkl +3 -0
  36. BtE0T4oBgHgl3EQfyAJM/content/2301.02653v1.pdf +3 -0
  37. BtE0T4oBgHgl3EQfyAJM/vector_store/index.faiss +3 -0
  38. BtE0T4oBgHgl3EQfyAJM/vector_store/index.pkl +3 -0
  39. BtE1T4oBgHgl3EQf9gZu/vector_store/index.faiss +3 -0
  40. BtE1T4oBgHgl3EQf9gZu/vector_store/index.pkl +3 -0
  41. CNE2T4oBgHgl3EQf9AkT/content/tmp_files/2301.04223v1.pdf.txt +2202 -0
  42. CNE2T4oBgHgl3EQf9AkT/content/tmp_files/load_file.txt +0 -0
  43. D9FJT4oBgHgl3EQfBywq/content/tmp_files/2301.11426v1.pdf.txt +2613 -0
  44. DdE2T4oBgHgl3EQfoQiw/content/2301.04017v1.pdf +3 -0
  45. DdE2T4oBgHgl3EQfoQiw/vector_store/index.faiss +3 -0
  46. DdE2T4oBgHgl3EQfoQiw/vector_store/index.pkl +3 -0
  47. EdFKT4oBgHgl3EQfZy6F/vector_store/index.faiss +3 -0
  48. EdFKT4oBgHgl3EQfZy6F/vector_store/index.pkl +3 -0
  49. FNFJT4oBgHgl3EQfCyyx/content/tmp_files/2301.11431v1.pdf.txt +1411 -0
  50. FNFJT4oBgHgl3EQfCyyx/content/tmp_files/load_file.txt +0 -0
.gitattributes CHANGED
@@ -1868,3 +1868,82 @@ EdFKT4oBgHgl3EQfZy6F/content/2301.11805v1.pdf filter=lfs diff=lfs merge=lfs -tex
1868
  QtFRT4oBgHgl3EQf7Tgp/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1869
  _NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf filter=lfs diff=lfs merge=lfs -text
1870
  CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1868
  QtFRT4oBgHgl3EQf7Tgp/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1869
  _NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf filter=lfs diff=lfs merge=lfs -text
1870
  CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf filter=lfs diff=lfs merge=lfs -text
1871
+ ddFKT4oBgHgl3EQfqi7m/content/2301.11875v1.pdf filter=lfs diff=lfs merge=lfs -text
1872
+ TdE0T4oBgHgl3EQfUwDn/content/2301.02256v1.pdf filter=lfs diff=lfs merge=lfs -text
1873
+ 7tFLT4oBgHgl3EQfAi4b/content/2301.11966v1.pdf filter=lfs diff=lfs merge=lfs -text
1874
+ ldAyT4oBgHgl3EQfyfmD/content/2301.00685v1.pdf filter=lfs diff=lfs merge=lfs -text
1875
+ YdE3T4oBgHgl3EQfcQoq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1876
+ otE0T4oBgHgl3EQfZwCz/content/2301.02326v1.pdf filter=lfs diff=lfs merge=lfs -text
1877
+ a9FAT4oBgHgl3EQfXR0t/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1878
+ YdE3T4oBgHgl3EQfcQoq/content/2301.04523v1.pdf filter=lfs diff=lfs merge=lfs -text
1879
+ ztE2T4oBgHgl3EQfiAcw/content/2301.03953v1.pdf filter=lfs diff=lfs merge=lfs -text
1880
+ NtFPT4oBgHgl3EQfmDWp/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1881
+ M9FAT4oBgHgl3EQfxh78/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1882
+ ldAyT4oBgHgl3EQfyfmD/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1883
+ _dFIT4oBgHgl3EQf9yvA/content/2301.11408v1.pdf filter=lfs diff=lfs merge=lfs -text
1884
+ 0tAzT4oBgHgl3EQfRPvU/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1885
+ 7tFLT4oBgHgl3EQfAi4b/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1886
+ sNFKT4oBgHgl3EQf1S6Z/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1887
+ a9FAT4oBgHgl3EQfXR0t/content/2301.08532v1.pdf filter=lfs diff=lfs merge=lfs -text
1888
+ 0tAzT4oBgHgl3EQfRPvU/content/2301.01214v1.pdf filter=lfs diff=lfs merge=lfs -text
1889
+ EdFKT4oBgHgl3EQfZy6F/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1890
+ 79E0T4oBgHgl3EQffQDe/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1891
+ stE4T4oBgHgl3EQfww21/content/2301.05253v1.pdf filter=lfs diff=lfs merge=lfs -text
1892
+ stE4T4oBgHgl3EQfww21/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1893
+ ftE3T4oBgHgl3EQf3Qv5/content/2301.04763v1.pdf filter=lfs diff=lfs merge=lfs -text
1894
+ M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf filter=lfs diff=lfs merge=lfs -text
1895
+ XNFOT4oBgHgl3EQf8TTm/content/2301.12966v1.pdf filter=lfs diff=lfs merge=lfs -text
1896
+ ddAzT4oBgHgl3EQfLvvB/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1897
+ Q9AyT4oBgHgl3EQf7vq-/content/2301.00845v1.pdf filter=lfs diff=lfs merge=lfs -text
1898
+ 6NAzT4oBgHgl3EQff_yv/content/2301.01462v1.pdf filter=lfs diff=lfs merge=lfs -text
1899
+ ftE3T4oBgHgl3EQf3Qv5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1900
+ 6NAzT4oBgHgl3EQff_yv/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1901
+ _dFIT4oBgHgl3EQf9yvA/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1902
+ 59AyT4oBgHgl3EQfpfhu/content/2301.00526v1.pdf filter=lfs diff=lfs merge=lfs -text
1903
+ u9AyT4oBgHgl3EQfm_jD/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1904
+ ztE2T4oBgHgl3EQfiAcw/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1905
+ sdE_T4oBgHgl3EQf8hzE/content/2301.08376v1.pdf filter=lfs diff=lfs merge=lfs -text
1906
+ PdFIT4oBgHgl3EQfeytv/content/2301.11276v1.pdf filter=lfs diff=lfs merge=lfs -text
1907
+ PdFIT4oBgHgl3EQfeytv/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1908
+ yNE2T4oBgHgl3EQf3wh7/content/2301.04174v1.pdf filter=lfs diff=lfs merge=lfs -text
1909
+ TdE0T4oBgHgl3EQfUwDn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1910
+ eNAzT4oBgHgl3EQfaPxf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1911
+ Q9AyT4oBgHgl3EQf7vq-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1912
+ VtE1T4oBgHgl3EQfIwPB/content/2301.02944v1.pdf filter=lfs diff=lfs merge=lfs -text
1913
+ ddFKT4oBgHgl3EQfqi7m/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1914
+ u9AyT4oBgHgl3EQfm_jD/content/2301.00482v1.pdf filter=lfs diff=lfs merge=lfs -text
1915
+ BtE0T4oBgHgl3EQfyAJM/content/2301.02653v1.pdf filter=lfs diff=lfs merge=lfs -text
1916
+ ntFST4oBgHgl3EQfLzgJ/content/2301.13741v1.pdf filter=lfs diff=lfs merge=lfs -text
1917
+ TdE0T4oBgHgl3EQflQEG/content/2301.02482v1.pdf filter=lfs diff=lfs merge=lfs -text
1918
+ sNFKT4oBgHgl3EQf1S6Z/content/2301.11919v1.pdf filter=lfs diff=lfs merge=lfs -text
1919
+ z9AzT4oBgHgl3EQfRPsg/content/2301.01211v1.pdf filter=lfs diff=lfs merge=lfs -text
1920
+ XNFOT4oBgHgl3EQf8TTm/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1921
+ A9E2T4oBgHgl3EQf8Qn_/content/2301.04218v1.pdf filter=lfs diff=lfs merge=lfs -text
1922
+ 4NFAT4oBgHgl3EQflx07/content/2301.08619v1.pdf filter=lfs diff=lfs merge=lfs -text
1923
+ BdAzT4oBgHgl3EQfGPtU/content/2301.01024v1.pdf filter=lfs diff=lfs merge=lfs -text
1924
+ BtE0T4oBgHgl3EQfyAJM/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1925
+ otE0T4oBgHgl3EQfZwCz/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1926
+ DdE2T4oBgHgl3EQfoQiw/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1927
+ sdE_T4oBgHgl3EQf8hzE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1928
+ f9AzT4oBgHgl3EQfof2V/content/2301.01598v1.pdf filter=lfs diff=lfs merge=lfs -text
1929
+ yNE2T4oBgHgl3EQf3wh7/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1930
+ BdAzT4oBgHgl3EQfGPtU/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1931
+ jtE5T4oBgHgl3EQfGQ7H/content/2301.05430v1.pdf filter=lfs diff=lfs merge=lfs -text
1932
+ TdE4T4oBgHgl3EQfmQ04/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1933
+ 4NFAT4oBgHgl3EQflx07/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1934
+ TdE0T4oBgHgl3EQflQEG/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1935
+ ctFAT4oBgHgl3EQf6B4X/content/2301.08736v1.pdf filter=lfs diff=lfs merge=lfs -text
1936
+ tdE5T4oBgHgl3EQfKw7w/content/2301.05469v1.pdf filter=lfs diff=lfs merge=lfs -text
1937
+ KtAyT4oBgHgl3EQfsfmL/content/2301.00578v1.pdf filter=lfs diff=lfs merge=lfs -text
1938
+ pNAyT4oBgHgl3EQflvio/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1939
+ O9AyT4oBgHgl3EQfg_h-/content/2301.00369v1.pdf filter=lfs diff=lfs merge=lfs -text
1940
+ UdAyT4oBgHgl3EQfuvkh/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1941
+ BtE1T4oBgHgl3EQf9gZu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1942
+ n9E2T4oBgHgl3EQfzwgf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1943
+ 8tE3T4oBgHgl3EQfqgri/content/2301.04653v1.pdf filter=lfs diff=lfs merge=lfs -text
1944
+ KNE4T4oBgHgl3EQfiA0C/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1945
+ DdE2T4oBgHgl3EQfoQiw/content/2301.04017v1.pdf filter=lfs diff=lfs merge=lfs -text
1946
+ ctFAT4oBgHgl3EQf6B4X/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1947
+ WdAzT4oBgHgl3EQfmP2O/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1948
+ 29A0T4oBgHgl3EQfNP8E/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1949
+ 6dA0T4oBgHgl3EQfN__p/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
0tAzT4oBgHgl3EQfRPvU/content/2301.01214v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71c4d16fc26a2ed48c141ce0bc28d2d52b276e074e755bbca483d1b0ed00e44f
3
+ size 2372819
0tAzT4oBgHgl3EQfRPvU/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb9cd9cda5de9e6f34fd10dbd973662246c41099aa275707bf001112ca37ed00
3
+ size 7143469
0tAzT4oBgHgl3EQfRPvU/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b69565678fc1a4923d4f435f8e98cb63c384525bacd7278ce983e99f01406018
3
+ size 228025
1NAzT4oBgHgl3EQfDfoM/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5bada75803874868647287272679eb91f2830beb07a2d7d272b0c9cf78e9c068
3
+ size 207096
1NE3T4oBgHgl3EQfnQph/content/tmp_files/2301.04623v1.pdf.txt ADDED
@@ -0,0 +1,1502 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Enhancing ResNet Image Classification Performance by using
2
+ Parameterized Hypercomplex Multiplication
3
+ Nazmul Shahadat, Anthony S. Maida
4
+ University of Louisiana at Lafayette
5
+ Lafayette LA 70504, USA
6
7
+ Abstract
8
+ Recently, many deep networks have introduced hy-
9
+ percomplex and related calculations into their architec-
10
+ tures. In regard to convolutional networks for classifica-
11
+ tion, these enhancements have been applied to the con-
12
+ volution operations in the frontend to enhance accuracy
13
+ and/or reduce the parameter requirements while main-
14
+ taining accuracy. Although these enhancements have
15
+ been applied to the convolutional frontend, it has not
16
+ been studied whether adding hypercomplex calculations
17
+ improves performance when applied to the densely con-
18
+ nected backend. This paper studies ResNet architectures
19
+ and incorporates parameterized hypercomplex multipli-
20
+ cation (PHM) into the backend of residual, quaternion,
21
+ and vectormap convolutional neural networks to assess
22
+ the effect. We show that PHM does improve classifica-
23
+ tion accuracy performance on several image datasets,
24
+ including small, low-resolution CIFAR 10/100 and large
25
+ high-resolution ImageNet and ASL, and can achieve
26
+ state-of-the-art accuracy for hypercomplex networks.
27
+ 1. Introduction
28
+ Convolutional neural networks (CNNs) have been
29
+ widely used, with great success, in visual classification
30
+ tasks [3, 12] because of their good inductive priors and
31
+ intuitive design.
32
+ Most deep learning building blocks in CNNs use
33
+ real-valued operations.
34
+ However, recent studies have
35
+ explored the complex/hypercomplex space and showed
36
+ that hypercomplex valued networks can perform bet-
37
+ ter than their real-valued counterparts due to the weight
38
+ sharing mechanism embedded in the hypercomplex mul-
39
+ tiplication [7,18]. This weight sharing differs from that
40
+ found in the real-valued convolution operation. Specif-
41
+ ically, quaternion convolutions share weights across in-
42
+ put channels enabling them to discover cross-channel in-
43
+ put relationships that support more accurate prediction
44
+ (a) Validation accuracy comparison for CIFAR-10 data.
45
+ (b) Validation accuracy comparison for CIFAR-100 data.
46
+ Figure 1. Top-1 validation accuracy comparison among orig-
47
+ inal ResNets [7], original quaternion networks [7], original
48
+ vectormap networks [7], our proposed QPHM and VPHM net-
49
+ works for CIFAR benchmarks
50
+ and generalization. The effectiveness of quaternion net-
51
+ works is shown in [7,16,19,23,31].
52
+ The weight-sharing properties of the Hamiltonian
53
+ product allow the discovery of cross-channel relation-
54
+ ships. This is a new plausible inductive bias, namely,
55
+ that there are data correlations across convolutional in-
56
+ put channels that enhance discovery of effective cross-
57
+ channel features. Practitioners have applied these cal-
58
+ culations in the convolution stages of CNNs but not
59
+ to the dense backend where real-valued operations are
60
+ still used. The present paper puts weight-sharing cal-
61
+ culations in the dense backend to further improve CNN
62
+ arXiv:2301.04623v1 [cs.CV] 11 Jan 2023
63
+
64
+ 96
65
+ Top-1 Validation Accuracy
66
+ 95.5
67
+ 95
68
+ 94.5
69
+ HH
70
+ 94
71
+ 93.5
72
+ 93
73
+ ResNet Original Quaternion
74
+ Vectormap
75
+ QPHM
76
+ VPHM
77
+ Original
78
+ Original
79
+ ResNet-18
80
+ ResNet-34
81
+ ResNet-5082
82
+ 80
83
+ Top-1 Validation Accuracy
84
+ 78
85
+ 76
86
+ 74
87
+ 72
88
+ 70
89
+ 68
90
+ 66
91
+ ResNet Original
92
+ Quaternion
93
+ Vectormap
94
+ QPHM
95
+ VPHM
96
+ Original
97
+ Original
98
+ ResNet-18
99
+ ResNet-34
100
+ ResNet-50performance. To exploit this new type of weight shar-
101
+ ing, we use a parameterized hypercomplex multiplica-
102
+ tion (PHM) [30] layer as a building block. This block
103
+ replaces the real-valued FC layers with hypercomplex
104
+ FC layers. We test the hypothesis using two types of
105
+ hypercomplex CNNs, namely quaternion [8] CNNs and
106
+ vectormap [7] CNNs.
107
+ Our contributions are:
108
+ • Showing the effectiveness of using hypercomplex
109
+ networks in the densely connected backend of a
110
+ CNN.
111
+ • Introducing quaternion networks with PHM based
112
+ dense layer (QPHM) to bring hypercomplex deep
113
+ learning properties to the entire model.
114
+ • Introducing vectormap networks with a PHM based
115
+ dense layer (VPHM) to remove hypercomplex di-
116
+ mensionality constraints from the frontend and
117
+ backend.
118
+ The effectiveness of employing PHM based FC lay-
119
+ ers with hypercomplex networks is seen in Figures 1a
120
+ and 1b.
121
+ We also show that these new models ob-
122
+ tain SOTA results for hypercomplex networks in CIFAR
123
+ benchmarks. Our experiments also show SOTA results
124
+ for American Sign Language (ASL) data. Moreover, our
125
+ models use fewer parameters, FLOPS, and latency com-
126
+ pared to the base model proposed by [7,23] for classifi-
127
+ cation.
128
+ 2. Background and Related Work
129
+ 2.1. Quaternion Convolution
130
+ Quaternions are four dimensional vectors of the form
131
+ Q = r + ix + jy + kz ; r, x, y, z ∈ R
132
+ (1)
133
+ where, r, x, y, and z are real values and i, j, and k are
134
+ the imaginary values which satisfy i2 = j2 = k2 =
135
+ ijk = −1. Quaternion convolution is defined by con-
136
+ volving a quaternion filter matrix with a quaternion vec-
137
+ tor (or feature map). Let, QF = R + iX + jY + kZ
138
+ be a quaternion filter matrix with R, X, Y, and Z be-
139
+ ing real-valued kernels and QV = r + ix + jy + kz
140
+ be a quaternion input vector with r, x, y, and z being
141
+ real-valued vectors. Quaternion convolution is defined
142
+ below [8].
143
+ QF ⊛ QV = (R ∗ r − X ∗ x − Y ∗ y − Z ∗ z)
144
+ +i(R ∗ x + X ∗ r + Y ∗ z − Z ∗ y)
145
+ +j(R ∗ y − X ∗ z + Y ∗ r + Z ∗ x)
146
+ +k(R ∗ z + X ∗ y − Y ∗ x + Z ∗ r)
147
+ (2)
148
+ There are 16 real-valued convolutions but only four ker-
149
+ nels which are reused.
150
+ This is how the weight shar-
151
+ ing occurs. [18] first described the weight sharing in the
152
+ Hamilton product.
153
+ 2.2. Vectormap Convolution
154
+ [7] noted that the Hamilton product and quaternion
155
+ convolution, when used in deep networks, did not re-
156
+ quire the entire Quaternion algebra. They called these
157
+ vectormap convolutions.
158
+ The weight sharing ratio is
159
+ 1
160
+ N where N is the dimension of the vectormap, Dvm.
161
+ Let V 3
162
+ in = [v1, v2, v3] be an RGB input vector and
163
+ W 3 = [w1, w2, w3] a weight vector with N = 3. We
164
+ use a permutation τ on inputs so each input vector is
165
+ multiplied by each weight vector element:
166
+ τ(vi) =
167
+
168
+ v3
169
+ i = 1
170
+ vi−1
171
+ i > 1
172
+ (3)
173
+ After applying circularly right shifted permutation to
174
+ V 3
175
+ in, a new vector V 3 is formed. The permutation of
176
+ weight τ(W 3) can be found like equation 3. Hence, the
177
+ output vector Vout is:
178
+ V 3
179
+ out = [W 3 · V 3
180
+ in, τ(W 3) · V 3
181
+ in, τ 2(W 3) · V 3
182
+ in]
183
+ (4)
184
+ Here, “·” denotes dot product. The outputs V 3
185
+ out come
186
+ from the linear combination of the elements of V 3
187
+ in and
188
+ W 3. Let the weight filter matrix for a vectormap be
189
+ VF = [A, B, C] and the input vector after linear com-
190
+ bination be Vh = [x, y, z], the vectormap convolution
191
+ between VF , and Vh for Dvm = 3 is:
192
+
193
+
194
+ R(VF ∗ Vh)
195
+ I (VF ∗ Vh)
196
+ J (VF ∗ Vh)
197
+
198
+ � = L ⊙
199
+
200
+
201
+ A
202
+ B
203
+ C
204
+ C
205
+ A
206
+ B
207
+ B
208
+ C
209
+ A
210
+
211
+ � ∗
212
+
213
+
214
+ x
215
+ y
216
+ z
217
+
218
+
219
+ (5)
220
+ where, L is a learnable matrix defined as a matrix L ∈
221
+ RDvm×Dvm which is initialized using:
222
+ lij =
223
+
224
+
225
+
226
+
227
+
228
+
229
+
230
+
231
+
232
+
233
+
234
+
235
+
236
+
237
+
238
+ 1
239
+ i = 1
240
+ 1
241
+ i = j
242
+ 1
243
+ j = Cali where Cali = (i + (i − 1)) &
244
+ Cali = Cali − Dvm if Cali > Dvm
245
+ −1
246
+ else.
247
+ (6)
248
+ By choosing Dvm and assigning a new constant matrix
249
+ L ∈ RDvm×Dvm matching Dvm, any dimensional hy-
250
+ percomplex convolution can be used. Vectormap weight
251
+ initialization uses a similar mechanism to complex [25]
252
+ and quaternion [8] weight initialization. Our weight ini-
253
+ tialization follows [7].
254
+
255
+ 2.3. PHM Fully Connected Layer
256
+ The above methods apply to convolutional layers but
257
+ not to fully connected (FC) layers. [30] proposed pa-
258
+ rameterized hypercomplex multiplication (PHM) for FC
259
+ layers. Like vectormaps, PHM can have any dimension.
260
+ If the dimension is four, it is like the Hamilton prod-
261
+ uct. The success of the Hamiltonian product is shown
262
+ in [7,8,16,19,28,31]. Our work uses two different PHM
263
+ dimensions: four for quaternion networks, and five for
264
+ vectormap networks.
265
+ A
266
+ fully
267
+ connected
268
+ layer
269
+ is
270
+ defined
271
+ [30]
272
+ as
273
+ y = FC(x) = Wx + b, where W ∈ Rk×d and
274
+ b ∈ Rk are weights and bias, d and k are input and
275
+ output dimensions, and x ∈ Rd, y ∈ Rk. PHM uses
276
+ the following hypercomplex transform to map input
277
+ x ∈ Rd into output y ∈ Rk as y = PHM (x) = Hx + b,
278
+ where H ∈ Rk×d is the sum of Kronecker products.
279
+ Like Dvm, let the dimension of the PHM module
280
+ be Dphm = N.
281
+ The PHM operation requires that
282
+ both d and k are divisible by N.
283
+ H is the sum
284
+ of Kronecker products of the parameter matrices
285
+ Ai ∈ RN×N and Si ∈ Rk/N×d/N, where i = 1 . . . N:
286
+ H = �N
287
+ i=1 Ai ⊗ Si. Parameter reduction comes from
288
+ reusing matrices A and S in the PHM layer. The ⊗ is
289
+ the Kronecker product. H is multiplied with the input
290
+ in the dense layer. The four dimensional PHM layer is
291
+ explained in [30]. We also use five dimensions which
292
+ is explained here. The learnable parameters for N = 5
293
+ are Pr, Pw, Px, Py, and Pz where P ∈ R1×1. For Ai
294
+ we use the hypercomplex matrix (5 dimensions) which
295
+ is generated in a similar way of vectormap convolution
296
+ (Equations 5 and 6). H is calculated using two learnable
297
+ parameter matrices (Ai, and Si) for N = 5 as follows:
298
+ H =
299
+
300
+ �����
301
+ 1
302
+ 0
303
+ 0
304
+ 0
305
+ 0
306
+ 0
307
+ 1
308
+ 0
309
+ 0
310
+ 0
311
+ 0
312
+ 0
313
+ 1
314
+ 0
315
+ 0
316
+ 0
317
+ 0
318
+ 0
319
+ 1
320
+ 0
321
+ 0
322
+ 0
323
+ 0
324
+ 0
325
+ 1
326
+
327
+ �����
328
+
329
+ ��
330
+
331
+ A1
332
+
333
+ �Pr
334
+
335
+ ����
336
+ S1
337
+ +
338
+
339
+ �����
340
+ 0
341
+ 1
342
+ 0
343
+ 0
344
+ 0
345
+ 0
346
+ 0
347
+ 1
348
+ 0
349
+ 0
350
+ 0
351
+ 0
352
+ 0
353
+ -1
354
+ 0
355
+ 0
356
+ 0
357
+ 0
358
+ 0
359
+ -1
360
+ -1
361
+ 0
362
+ 0
363
+ 0
364
+ 0
365
+
366
+ �����
367
+
368
+ ��
369
+
370
+ A2
371
+
372
+ �Pw
373
+
374
+ � �� �
375
+ S2
376
+ +
377
+
378
+ �����
379
+ 0
380
+ 0
381
+ 1
382
+ 0
383
+ 0
384
+ 0
385
+ 0
386
+ 0
387
+ -1
388
+ 0
389
+ 0
390
+ 0
391
+ 0
392
+ 0
393
+ 1
394
+ -1
395
+ 0
396
+ 0
397
+ 0
398
+ 0
399
+ 0
400
+ -1
401
+ 0
402
+ 0
403
+ 0
404
+
405
+ �����
406
+
407
+ ��
408
+
409
+ A3
410
+
411
+ �Px
412
+
413
+ ����
414
+ S3
415
+ +
416
+
417
+ �����
418
+ 0
419
+ 0
420
+ 0
421
+ 1
422
+ 0
423
+ 0
424
+ 0
425
+ 0
426
+ 0
427
+ -1
428
+ -1
429
+ 0
430
+ 0
431
+ 0
432
+ 0
433
+ 0
434
+ 1
435
+ 0
436
+ 0
437
+ 0
438
+ 0
439
+ 0
440
+ -1
441
+ 0
442
+ 0
443
+
444
+ �����
445
+
446
+ ��
447
+
448
+ A4
449
+
450
+ �Py
451
+
452
+ ����
453
+ S4
454
+ +
455
+
456
+ �����
457
+ 0
458
+ 0
459
+ 0
460
+ 0
461
+ 1
462
+ -1
463
+ 0
464
+ 0
465
+ 0
466
+ 0
467
+ 0
468
+ -1
469
+ 0
470
+ 0
471
+ 0
472
+ 0
473
+ 0
474
+ -1
475
+ 0
476
+ 0
477
+ 0
478
+ 0
479
+ 0
480
+ 1
481
+ 0
482
+
483
+ �����
484
+
485
+ ��
486
+
487
+ A5
488
+
489
+ �Pz
490
+
491
+ ����
492
+ S5
493
+ =
494
+
495
+ �����
496
+ Pr
497
+ Pw
498
+ Px
499
+ Py
500
+ Pz
501
+ −Pz
502
+ Pr
503
+ Pw
504
+ −Px
505
+ −Py
506
+ −Py
507
+ −Pz
508
+ Pr
509
+ −Pw
510
+ Px
511
+ −Px
512
+ −Py
513
+ −Pz
514
+ Pr
515
+ −Pw
516
+ −Pw
517
+ −Px
518
+ −Py
519
+ Pz
520
+ Pr
521
+
522
+ �����
523
+ (7)
524
+ Equation 7 for N = 5 expresses the Hamiltonian prod-
525
+ uct of hypercomplex layer. It preserves all PHM layer
526
+ properties.
527
+ 3. Proposed Models: QPHM and VPHM
528
+ We propose a new fully hypercomplex model in lieu
529
+ of hypercomplex CNNs that use a real-valued backend
530
+ dense layer. That is, we replace the dense layer with a
531
+ PHM layer to enjoy the benefits of hypercomplex weight
532
+ sharing.
533
+ We chose two base hypercomplex models for the con-
534
+ volutional frontend, the quaternion network and vec-
535
+ tormap network [7, 8] which were using real-valued
536
+ backend layers. To match dimensions with frontend net-
537
+ works, we used a PHM layer at four dimensions with the
538
+ quaternion network and a PHM layer at five dimensions
539
+ with the three dimensional vectormap network. In some
540
+ cases, we also needed to use a PHM layer at five dimen-
541
+ sions with quaternion networks. But we couldn’t use a
542
+ three dimensional PHM layer as the output classes must
543
+ be divisible by the dimensions in the PHM operation.
544
+ Figure 2 shows our proposed PHM based FC layer
545
+ with quaternion convolutional neural networks (QC-
546
+ NNs). At the end of QCNNs (end of layer 4 in Figure
547
+ 2 (top)), the output feature maps are flattened. This flat-
548
+ tened layer is normally the input to a fully connected
549
+ layer, but in our proposed method this layer is the input
550
+ layer for the PHM based FC layer. This is represented
551
+ as Pin. The parameterized weight H performs parame-
552
+ terized multiplication to find the hyper-complex output
553
+ Pout. The type of PHM layer depends on the dimensions
554
+ needed. For quaternion networks, we used dimensions
555
+ four and five according to the number of classes in the
556
+ datasets. The figures in Figure 2 (bottom) are expanded
557
+ 4D PHM and 5D PHM layer of a single dense layer con-
558
+ nection (red marked in Figure 2 (top)).
559
+ Pin = Prin + Pwin + Pxin + Pyin + Pzin
560
+ (8)
561
+ For the PHM layer with five dimensions, each PHM
562
+ layer accepts five channels of input like Prin, Pwin,
563
+
564
+ Figure 2. Full hypercomplex network where quaternion convolutional neural networks (QCNNs) are used in the front and PHM
565
+ based fully-connected layers are applied in the back-end. 5-dimensional PHM is explained in Equation 7. Equations 8 and 9
566
+ describe input and output for a 5D PHM layer. 4D PHM is similar.
567
+ Layer
568
+ Output
569
+ size
570
+ Quaternion
571
+ ResNet
572
+ Vectormap
573
+ ResNet
574
+ QPHM
575
+ VPHM
576
+ Stem
577
+ 32x32
578
+ 3x3Q, 112, std=1
579
+ 3x3V, 90, std=1
580
+ 3x3Q, 112, std=1
581
+ 3x3V, 90, std=1
582
+ Bottleneck
583
+ group 1
584
+ 32x32
585
+
586
+
587
+ 1x1Q, 112
588
+ 3x3Q, 112
589
+ 1x1Q, 448
590
+
591
+ � ×3
592
+
593
+
594
+ 1x1V, 90
595
+ 3x3V, 90
596
+ 1x1V, 360
597
+
598
+ � ×3
599
+
600
+
601
+ 1x1QP, 112
602
+ 3x3QP, 112
603
+ 1x1QP, 448
604
+
605
+ � ×3
606
+
607
+
608
+ 1x1VP, 90
609
+ 3x3VP, 90
610
+ 1x1VP, 390
611
+
612
+ � ×3
613
+ Bottleneck
614
+ group 2
615
+ 16x16
616
+
617
+
618
+ 1x1Q, 224
619
+ 3x3Q, 224
620
+ 1x1Q, 896
621
+
622
+ � ×4
623
+
624
+
625
+ 1x1V, 180
626
+ 3x3V, 180
627
+ 1x1V, 720
628
+
629
+ � ×4
630
+
631
+
632
+ 1x1QP, 224
633
+ 3x3QP, 224
634
+ 1x1QP, 896
635
+
636
+ � ×4
637
+
638
+
639
+ 1x1VP, 180
640
+ 3x3VP, 180
641
+ 1x1VP, 720
642
+
643
+ � ×4
644
+ Bottleneck
645
+ group 3
646
+ 8x8
647
+
648
+
649
+ 1x1Q, 448
650
+ 3x3Q, 448
651
+ 1x1Q, 1792
652
+
653
+ � ×6
654
+
655
+
656
+ 1x1V, 360
657
+ 3x3V, 360
658
+ 1x1V, 1440
659
+
660
+ � ×6
661
+
662
+
663
+ 1x1QP, 448
664
+ 3x3QP, 448
665
+ 1x1QP, 1792
666
+
667
+ � ×6
668
+
669
+
670
+ 1x1VP, 360
671
+ 3x3VP, 360
672
+ 1x1VP, 1440
673
+
674
+ � ×6
675
+ Bottleneck
676
+ group 4
677
+ 4x4
678
+
679
+
680
+ 1x1Q, 896
681
+ 3x3Q, 896
682
+ 1x1Q, 3584
683
+
684
+ � ×3
685
+
686
+
687
+ 1x1V, 720
688
+ 3x3V, 720
689
+ 1x1V, 2880
690
+
691
+ � ×3
692
+
693
+
694
+ 1x1QP, 896
695
+ 3x3QP, 896
696
+ 1x1QP, 3584
697
+
698
+ � ×3
699
+
700
+
701
+ 1x1VP, 720
702
+ 3x3VP, 720
703
+ 1x1VP, 2880
704
+
705
+ � ×3
706
+ Pooling
707
+ Layer
708
+ 1x1x100
709
+ global average-pool, 100 outputs
710
+ Output
711
+ 1x1x100
712
+ fully connected Layer, softmax
713
+ QPHM Layer
714
+ VPHM Layer
715
+ Table 1. The 50-layer architectures tested on CIFAR-100: quaternion ResNet [7, 8], vectormap ResNet [7], our proposed QPHM,
716
+ and VPHM. Input is a 32x32x3 color image. The number of stacked bottleneck modules is specified by multipliers. “Q”, “V”,
717
+ “QP”, “VP”, and “std” denote quaternion convolution, vectormap convolution, QPHM (quaternion network with PHM layer),
718
+ VPHM (vectormap network with PHM layer), and stride respectively. Integers (e.g., 90, 112) denote number of output channels.
719
+ Pxin, Pyin, and Pzin (Equation 8) and produces five
720
+ channels of output like Prout, Pwout, Pxout, Pyout,
721
+ and Pzout which are merged or stacked together to Pout
722
+ as,
723
+ Pout = Prout +Pwout +Pxout +Pyout +Pzout (9)
724
+ Hence,
725
+ the
726
+ representational
727
+ feature
728
+ maps
729
+ persist
730
+ throughout the classification network.
731
+ Similarly, this
732
+
733
+ Parameterized
734
+ STAGE 1
735
+ STAGE 2
736
+ STAGE 3
737
+ STAGE 4
738
+ Weight
739
+ Pin
740
+ Input
741
+ H
742
+ Horse
743
+ Cat
744
+ 224x224x4
745
+ Classification
746
+ Stem Layer
747
+ PHM
748
+ based FC Layer
749
+ QCNN
750
+ 64 Filters
751
+ 2nd Layer
752
+ 3rd Layer
753
+ 4rth Layer
754
+ 1st Layer
755
+ Filter size 7
756
+ QCNN
757
+ QCNN
758
+ QCNN
759
+ Flatten
760
+ QCNN
761
+ 128 Filters
762
+ 256 Filters
763
+ 512 Filters
764
+ Layer
765
+ With stride 2
766
+ 64 Filters
767
+ max-pooling
768
+ Stride 2
769
+ Stride 2
770
+ Stride 2
771
+ Stride 1
772
+ 5-dimensional PHM layer (VPHM)
773
+ 4-dimensional PHM layer (QPHM)
774
+ PPHM (both 4D, and 5D) dense layer is applied in
775
+ the backend of original ResNet [10] which we named
776
+ RPHM (ResNet-with-PHM).
777
+ 4. Experiment
778
+ The purpose of the experiments reported herein was
779
+ to test whether replacing the real-valued backend of
780
+ a CNN model with a PHM backend improved clas-
781
+ sification performance. The architectures tested were
782
+ real-valued, quaternion-valued [8, 19], and vectormap
783
+ ResNet [7], either with or without the PHM backend.
784
+ We refer to the quaternion ResNet model with the PHM
785
+ backend as QPHM. Similarly, VPHM, RPHM denote
786
+ the vectormap ResNet, and real-valued ResNet models
787
+ with the PHM backend.
788
+ Our experiments were conducted on the following
789
+ datasets: CIFAR-10/100 [14], the ImageNet300k dataset
790
+ [23] and the American Sign Language Hand Gesture
791
+ color image recognition dataset [5].
792
+ The first two
793
+ datasets have less training samples with small image
794
+ resolutions and the other datasets use a large number
795
+ of training samples with higher resolution images. We
796
+ used these datasets to check our proposed models for
797
+ small and large training samples as well as for small and
798
+ high resolution images. The experiments were run on a
799
+ workstation with an Intel(R) Core(TM) i9-9820X CPU
800
+ @ 3.30GHz, 128 GB memory, and NVIDIA Titan RTX
801
+ GPU (24GB).
802
+ 4.1. CIFAR Classification
803
+ In addition to testing the PHM with real-valued,
804
+ quaternion-valued, and vectormap ResNet, we tested the
805
+ network models with three depths: 18, 34, and 50 layers.
806
+ 4.1.1
807
+ Method
808
+ We tested all of the above mentioned architectures with
809
+ and without the PHM backend on both the CIFAR-10
810
+ and CIFAR-100 datasets. These datasets were composed
811
+ of 32x32 pixel RGB images falling into either ten classes
812
+ or 100 classes, respectively. Both datasets have 50,000
813
+ training, and 10,000 test examples.
814
+ The models were trained using the same components
815
+ as the real-valued networks, the original quaternion net-
816
+ work, and the original vectormap network using the
817
+ same datasets. All models in Table 2 were trained us-
818
+ ing the same hyperparameters. Our QPHM and VPHM
819
+ design is similar to the quaternion [7,8], and vectormap
820
+ networks [7], respectively. The residual architectures
821
+ differ in the number of output channels than the origi-
822
+ nal hypercomplex networks and the proposed networks
823
+ due to keeping the number of trainable parameters about
824
+ the same. The number of output channels for the resid-
825
+ ual networks is the same as [7] and [19]. Table 1 shows
826
+ the 50-layer architectures tested for CIFAR-100 dataset.
827
+ One goal is to see if the representations generated by
828
+ the PHM based dense layer instead of the real-valued
829
+ dense layer outperforms the quaternion, vectormap, and
830
+ residual baselines reported in [7].
831
+ We also analyzed
832
+ different residual architectures to assess the effect of
833
+ depth on our proposed models. For preprocessing, we
834
+ followed [7]. We used stochastic gradient descent op-
835
+ timization with 0.9 Nesterov momentum.
836
+ The learn-
837
+ ing rate was initially set to 0.1 with warm-up learning
838
+ for the first 10 epochs. For smooth learning, we chose
839
+ cosine learning from epochs 11 to 120. However, we
840
+ were getting about same performance for linear learn-
841
+ ing. All models were trained for 120 epochs and batch
842
+ size was set to 100. This experiment used batch normal-
843
+ ization and 0.0001 weight decay. The implementation
844
+ is on github at-https://github.com/nazmul729/QPHM-
845
+ VPHM.git.
846
+ 4.1.2
847
+ Results
848
+ The main results appear in Figure 1 and 3, and in Ta-
849
+ ble 2. Figure 1 gives the overall pattern of results. Fig-
850
+ ure 1a shows results for CIFAR-10. It shows top-1 vali-
851
+ dation accuracy for the five models: real-valued ResNet,
852
+ quaternion-valued ResNet, vectormap ResNet, QPHM,
853
+ and VPHM. Also, results are shown for 18, 34, and 50
854
+ layers. We chose top-1 performance out of three. Fig-
855
+ ure 1b shows the same consistent pattern of results for
856
+ the CIFAR-100 dataset. The magnitude of improvement
857
+ is higher for CIFIR-100 than for CIFAR-10. The results
858
+ are also shown in tabular form in Table 2, along with
859
+ counts of trainable parameters, flops, and latency. It can
860
+ be seen in Table 2 that modifying the backend to have
861
+ a PHM layers has little effect on the parameter count,
862
+ flops, and latency as the input image resolutions, and
863
+ the number of output classes are low.
864
+ The proposed QPHM model attains better top-1 val-
865
+ idation accuracy than the original ResNet, quaternion,
866
+ and vectormap networks for both datasets. The QPHM
867
+ also produces better performance compared to the pro-
868
+ posed VPHM, and RPHM models. Moreover, we com-
869
+ pare our best performance which is obtained by the
870
+ QPHM model, to the deep or shallow complex or hyper-
871
+ complex networks and notice that the QPHM is achieved
872
+ SOTA performance (shown in Table 3) for the CIFAR-
873
+ 10 and -100 datasets.
874
+ Table 3 compares different complex or hypercom-
875
+ plex networks top-1 validation accuracy with our best
876
+ result. Our comparison was not limited to [7] and com-
877
+ plex space. The QPHM also gains highest top-1 vali-
878
+ dation accuracy than the relevant CNN models for both
879
+ datasets (shown in Table 4). Tables 2, 3, and 4, show that
880
+
881
+ Model Name
882
+ Param Count
883
+ FLOPS
884
+ Latency
885
+ Validation Accuracy
886
+ CIFAR-10
887
+ CIFAR-100
888
+ ResNet18 [10]
889
+ 11.1M
890
+ 0.56G
891
+ 0.22ms
892
+ 94.08
893
+ 72.19
894
+ RPHM18
895
+ 11.1M
896
+ 0.55G
897
+ 0.21ms
898
+ 94.74
899
+ 77.83
900
+ Quat18 [8]
901
+ 8.5M
902
+ 0.26G
903
+ 0.36ms
904
+ 94.08
905
+ 71.23
906
+ Vect18 [7]
907
+ 7.3M
908
+ 0.21G
909
+ 0.29ms
910
+ 93.95
911
+ 72.82
912
+ QPHM18
913
+ 8.5M
914
+ 0.25G
915
+ 0.35ms
916
+ 95.03
917
+ 77.88
918
+ VPHM18
919
+ 7.3M
920
+ 0.20G
921
+ 0.27ms
922
+ 94.97
923
+ 77.80
924
+ ResNet34 [10]
925
+ 21.2M
926
+ 1.16G
927
+ 0.29ms
928
+ 94.27
929
+ 72.19
930
+ RPHM34
931
+ 21.1M
932
+ 1.15G
933
+ 0.28ms
934
+ 94.98
935
+ 77.80
936
+ Quat34 [8]
937
+ 16.3M
938
+ 0.438G
939
+ 0.57ms
940
+ 94.27
941
+ 72.76
942
+ Vect34 [7]
943
+ 14.04M
944
+ 0.35G
945
+ 0.45ms
946
+ 94.45
947
+ 74.12
948
+ QPHM34
949
+ 16.3M
950
+ 0.432G
951
+ 0.54ms
952
+ 95.40
953
+ 78.51
954
+ VPHM34
955
+ 14.03M
956
+ 0.34G
957
+ 0.44ms
958
+ 95.41
959
+ 77.23
960
+ ResNet50 [10]
961
+ 23.5M
962
+ 1.30G
963
+ 0.478ms
964
+ 93.90
965
+ 72.60
966
+ RPHM50
967
+ 20.6M
968
+ 1.29G
969
+ 0.468ms
970
+ 95.59
971
+ 79.21
972
+ Quat50 [8]
973
+ 18.08M
974
+ 1.45G
975
+ 0.97ms
976
+ 93.90
977
+ 72.68
978
+ Vect50 [7]
979
+ 15.5M
980
+ 1.19G
981
+ 0.77ms
982
+ 94.28
983
+ 74.84
984
+ QPHM50
985
+ 18.07M
986
+ 1.44G
987
+ 0.96ms
988
+ 95.59
989
+ 80.25
990
+ VPHM50
991
+ 15.5M
992
+ 1.15G
993
+ 0.76ms
994
+ 95.48
995
+ 78.91
996
+ Table 2. Image classification performance on the CIFAR benchmarks for 18, 34 and 50-layer architectures. Here, Quat, Vect,
997
+ QPHM, and VPHM, define the quaternion ResNet, vectormap ResNet, quaternion networks with PHM FC layer, and vectormap
998
+ networks with PHM FC layer, respectively.
999
+ (a) Validation loss versus training.
1000
+ (b) Validation accuracy versus training.
1001
+ Figure 3. Validation loss and accuracy of 50 layer ResNet [7], quaternion [7], vectormap [7], QPHM, VPHM for CIFAR-100.
1002
+ our QPHM model achieves best performance for CIFAR
1003
+ 10 and 100 datasets with fewer parameters, flops, and la-
1004
+ tency.
1005
+ 4.2. ImageNet Classification
1006
+ 4.2.1
1007
+ Method
1008
+ These experiments are performed on a 300k subset of
1009
+ the ImageNet dataset which we call ImageNet300k [23].
1010
+ [23] explains how the full dataset was sampled. The
1011
+ models compared are: standard ResNets [23], quater-
1012
+ nion convolutional ResNets [23], and our proposed
1013
+ QPHM. We ran 26, 35, and 50-layers architectures using
1014
+ “[1, 2, 4, 1]”, “[2, 3, 4, 2]” and “[3, 4, 6, 3]” bottleneck
1015
+ block multipliers. Training (all models in Table 5) used
1016
+ the same optimizer and hyperparameters as CIFAR clas-
1017
+ sification method.
1018
+ 4.2.2
1019
+ Experimental Results
1020
+ Table 5 shows the results on the ImageNet300k dataset.
1021
+ This result shows that our model takes three millions
1022
+ fewer trainable parameters and yields almost 5% higher
1023
+ validation performance for the same architectures. Pa-
1024
+
1025
+ 4.5
1026
+ ResNet
1027
+ 4
1028
+ Quaternion
1029
+ Vectormap
1030
+ 3.5
1031
+ QPHM
1032
+ 3
1033
+ VPHM
1034
+ Loss
1035
+ 2.5
1036
+ 2
1037
+ 1.5
1038
+ 1
1039
+ 0.5
1040
+ 0
1041
+ 8
1042
+ 345438
1043
+ 5
1044
+ 0
1045
+ 9
1046
+ 118
1047
+ 127
1048
+ 6
1049
+ 145
1050
+ 154
1051
+ 8
1052
+ 172
1053
+ 3
1054
+ Epochs90
1055
+ 80
1056
+ 70
1057
+ 60
1058
+ Accuracy
1059
+ ResNet
1060
+ 50
1061
+ Quaternion
1062
+ 40
1063
+ .Vectormap
1064
+ 30
1065
+ QPHM
1066
+ 20
1067
+ VPHM
1068
+ 10
1069
+ 0
1070
+ 1
1071
+ 9
1072
+ 8
1073
+ 3
1074
+ 4
1075
+ 5
1076
+ 43
1077
+ 8
1078
+ 100
1079
+ 109
1080
+ 8
1081
+ 127
1082
+ 136
1083
+ 145
1084
+ 154
1085
+ 163
1086
+ 172
1087
+ EpochsModel Architecture
1088
+ Validation Accuracy
1089
+ CIFAR-10
1090
+ CIFAR-100
1091
+ DCNs [2]
1092
+ 38.90
1093
+ 42.6
1094
+ DCN [25]
1095
+ 94.53
1096
+ 73.37
1097
+ QCNN [16]
1098
+ 77.48
1099
+ 47.46
1100
+ Quat [31]
1101
+ 77.78
1102
+ -
1103
+ QCNN [28]
1104
+ 83.09
1105
+ -
1106
+ QCNN* [28]
1107
+ 84.15
1108
+ -
1109
+ Quaternion18 [7]
1110
+ 94.80
1111
+ 71.23
1112
+ Quaternion34 [7]
1113
+ 94.27
1114
+ 72.76
1115
+ Quaternion50 [7]
1116
+ 93.90
1117
+ 72.68
1118
+ Octonion [27]
1119
+ 94.65
1120
+ 75.40
1121
+ Vectormap18 [7]
1122
+ 93.95
1123
+ 72.82
1124
+ Vectormap34 [7]
1125
+ 94.45
1126
+ 74.12
1127
+ Vectormap50 [7]
1128
+ 94.28
1129
+ 74.84
1130
+ QPHM-50
1131
+ 95.59
1132
+ 80.25
1133
+ VPHM-50
1134
+ 95.48
1135
+ 78.91
1136
+ Table 3.
1137
+ Top-1 validation accuracy for hypercomplex net-
1138
+ works. DCN stands for deep complex convolutional network.
1139
+ * variant used quaternion batch normalization. Quaternion and
1140
+ vectormap networks are the base networks [7]
1141
+ rameter reduction is not depicted in Table 3 for low res-
1142
+ olution CIFAR benchmark images as they have saved
1143
+ parameters in thousands. It is also clear that deeper net-
1144
+ works perform better than shallow networks.
1145
+ 4.3. ASL Classification
1146
+ 4.3.1
1147
+ Method
1148
+ To compare the proposed QPHM model with other
1149
+ networks,
1150
+ we
1151
+ evaluated
1152
+ it
1153
+ on
1154
+ the
1155
+ ASL
1156
+ Alpha-
1157
+ bet dataset [26] publicly available on Kaggle at
1158
+ https://www.kaggle.com/grassknoted/asl-alphabet. This
1159
+ dataset has 87,000 hand-gesture images for 29 sign
1160
+ classes where each class has about 3,000 images. And,
1161
+ the image size is 200 × 200 × 3.
1162
+ It has 26 finger spelling alphabet classes for the En-
1163
+ glish alphabetic letters and three special characters. Due
1164
+ to the divisibility restriction in PHM, we cannot use 29
1165
+ classes as 29 is prime. Like all other baseline leave-one-
1166
+ out and half-half methods [5,13,15,20,24], we exclude
1167
+ one class (letter B) from the training and validation sets.
1168
+ We use the same hyperparameters as CIFAR classifica-
1169
+ tion method.
1170
+ 4.3.2
1171
+ Experimental Results
1172
+ Due to the divisibility limitation, it is not possible to
1173
+ evaluate the ASL data using VPHM model as we choose
1174
+ PHM with five dimensions for VPHM model. So we
1175
+ only tested the QPHM (PHM with four dimensions)
1176
+ model to compare with other networks on the ASL
1177
+ Model Architecture
1178
+ Validation Accuracy
1179
+ CIF10
1180
+ CIF100
1181
+ Convolutional Networks
1182
+ ResNet18 [9]
1183
+ 90.27
1184
+ 63.41
1185
+ ResNet34 [9]
1186
+ 90.51
1187
+ 64.52
1188
+ ResNet50 [9]
1189
+ 90.60
1190
+ 61.68
1191
+ ResNet110 [9]
1192
+ 95.08
1193
+ 76.63
1194
+ ResNet1001 [11]
1195
+ 95.08
1196
+ 77.29
1197
+ MobileNet [9]
1198
+ 91.02
1199
+ 67.44
1200
+ Cout [4]
1201
+ 95.28
1202
+ 77.54
1203
+ Wide Residual Networks
1204
+ WRN-28-10
1205
+ 96.00
1206
+ 80.75
1207
+ WRN-28-10-dropout
1208
+ 96.11
1209
+ 81.15
1210
+ Our Method
1211
+ QPHM50
1212
+ 95.59
1213
+ 80.25
1214
+ VPHM50
1215
+ 95.48
1216
+ 78.91
1217
+ QPHM-18-2 (ours)
1218
+ 96.24
1219
+ 81.45
1220
+ QPHM-50-2 (ours)
1221
+ 96.63
1222
+ 82.00
1223
+ Table 4. Top-1 validation accuracy comparison among deep
1224
+ networks.
1225
+ CIF10 and CIF100 stand for CIFAR10 and CI-
1226
+ FAR100. Cout is the ResNet-18+cutout. WRN-28-10 [29],
1227
+ QPHM-18-2, and QPHM-50-2 stand for wide ResNet 28, 18,
1228
+ and 50-layers with the output channel widening factor 10, 2,
1229
+ and 2, respectively.
1230
+ dataset. Table 6 provides a comparison of top-1 val-
1231
+ idation accuracy of our proposed QPHM model with
1232
+ other networks in ASL data. Our proposed architecture
1233
+ performs state-of-the-art accuracy in this ASL dataset.
1234
+ Hence, the representation feature maps in the dense
1235
+ layer are very effective for this dataset.
1236
+ 5. Conclusions
1237
+ We replaced the dense backend of existing hypercom-
1238
+ plex CNNs for image classification with PHM modules
1239
+ to create weight sharing in this layer. This novel de-
1240
+ sign improved classification accuracy, reduced parame-
1241
+ ter counts, flops, and latency compared to the baseline
1242
+ networks. The results support our hypothesis that the
1243
+ PHM operation in the densely connected back end pro-
1244
+ vides better representations as well as improves accu-
1245
+ racy with fewer parameters. These results also high-
1246
+ lighted the importance of the calculations in the back-
1247
+ end.
1248
+ The QPHM and VPHM outperformed the other
1249
+ works mentioned in “Experiment” section.
1250
+ The pro-
1251
+ posed QPHM achieved higher validation accuracy (top-
1252
+ 1) for all network architectures than the proposed
1253
+ VPHM.
1254
+
1255
+ Architecture
1256
+ Params
1257
+ FLOPS
1258
+ Latency
1259
+ Training
1260
+ Accuracy
1261
+ Validation
1262
+ Accuracy
1263
+ ResNet26
1264
+ 13.6M
1265
+ 1.72G
1266
+ 0.75ms
1267
+ 57.0
1268
+ 45.48
1269
+ Quat ResNet26
1270
+ 15.1M
1271
+ 1.30G
1272
+ 1.71ms
1273
+ 64.1
1274
+ 50.09
1275
+ QPHM26
1276
+ 11.4M
1277
+ 1.18G
1278
+ 1.7ms
1279
+ 65.3
1280
+ 52.23
1281
+ ResNet35
1282
+ 18.5M
1283
+ 3.57G
1284
+ 1.02ms
1285
+ 63.8
1286
+ 48.99
1287
+ Quat ResNet35
1288
+ 20.5M
1289
+ 4.59G
1290
+ 3.15ms
1291
+ 70.9
1292
+ 48.11
1293
+ QPHM35
1294
+ 17.5M
1295
+ 4.10G
1296
+ 3.15ms
1297
+ 75.3
1298
+ 51.84
1299
+ ResNet50
1300
+ 25.5M
1301
+ 4.01G
1302
+ 1.46ms
1303
+ 65.8
1304
+ 50.92
1305
+ Quat ResNet50
1306
+ 27.6M
1307
+ 5.82G
1308
+ 4.21ms
1309
+ 73.4
1310
+ 49.69
1311
+ QPHM50
1312
+ 24.5M
1313
+ 5.32G
1314
+ 4.16ms
1315
+ 78.8
1316
+ 54.38
1317
+ Table 5. Classification performance on the ImageNet300k dataset for different ResNet architectures. Top-1 training and validation
1318
+ accuracies.
1319
+ Architecture
1320
+ Top-1 Validation Accuracy
1321
+ CNNs
1322
+ 82%
1323
+ HOG-LBP-SVM
1324
+ 98.36%
1325
+ HT with CNN
1326
+ 96.71%
1327
+ RF-JA with l-o-o
1328
+ 70%
1329
+ RF-JA with h-h
1330
+ 90%
1331
+ GF-RF l-o-o
1332
+ 49%
1333
+ GF-RF h-h
1334
+ 75%
1335
+ ESF-MLRF l-o-o
1336
+ 57%
1337
+ ESF-MLRF h-h
1338
+ 87%
1339
+ RF-JP l-o-o
1340
+ 43%
1341
+ RF-JP h-h
1342
+ 59%
1343
+ Faster RCNN
1344
+ 89.72%
1345
+ RCNNA
1346
+ 94.87%
1347
+ DBN
1348
+ 79%
1349
+ CMVA and IF l-o-o
1350
+ 92.7%
1351
+ CMVA and IF h-h
1352
+ 99.9%
1353
+ CNN with ASL
1354
+ 97.82%
1355
+ QPHM
1356
+ 100.0
1357
+ Table 6.
1358
+ Top-1 validation accuracy comparison with other
1359
+ works on ASL dataset. Here, l-o-o, h-h, HT with CNN [6,21],
1360
+ CMVA [24], RF-JA [5], GF-RF [20], ESF-MLRF [15], RF-
1361
+ JP [13], RCNN [26], RCNNA [26], DBN [22], and HOG-LBP-
1362
+ SVM [17] mean Leave one out, half-half, HYBRID TRANS-
1363
+ FORM, CNNs [1] with multiview augmentation and IF Infer-
1364
+ ence Fusion, Random Forest with Joint Angles, Gabor Filter-
1365
+ based features with Random Forest, Ensemble of Shape Func-
1366
+ tion with Multi-Layer Random Forest, Random Forest with
1367
+ Joint Positions, Recurrent convolutional neural networks, Re-
1368
+ current convolutional neural networks with attention, Deep be-
1369
+ lief network, and Histogram of Oriented Gradients (HOG) and
1370
+ Local Binary Pattern (LBP) with support vector machine, re-
1371
+ spectively.
1372
+ References
1373
+ [1] Salem Ameen and Sunil Vadera. A convolutional neu-
1374
+ ral network to classify american sign language finger-
1375
+ spelling from depth and colour images. Expert Systems,
1376
+ 34(3):e12197, 2017. 8
1377
+ [2] Timothy Anderson. Split-complex convolutional neural
1378
+ networks. 2017. 7
1379
+ [3] Pierre Buyssens, Abderrahim Elmoataz, and Olivier
1380
+ L´ezoray. Multiscale convolutional neural networks for
1381
+ vision–based classification of cells. In Asian Conference
1382
+ on Computer Vision, pages 342–352. Springer, 2012. 1
1383
+ [4] Terrance DeVries and Graham W Taylor. Improved reg-
1384
+ ularization of convolutional neural networks with cutout.
1385
+ arXiv preprint arXiv:1708.04552, 2017. 7
1386
+ [5] Cao Dong, Ming C Leu, and Zhaozheng Yin. Ameri-
1387
+ can sign language alphabet recognition using microsoft
1388
+ kinect. In Proceedings of the IEEE conference on com-
1389
+ puter vision and pattern recognition workshops, pages
1390
+ 44–52, 2015. 5, 7, 8
1391
+ [6] Brandon Garcia and Sigberto Alarcon Viesca. Real-time
1392
+ american sign language recognition with convolutional
1393
+ neural networks. Convolutional Neural Networks for Vi-
1394
+ sual Recognition, 2:225–232, 2016. 8
1395
+ [7] Chase Gaudet and Anthony S. Maida. Removing dimen-
1396
+ sional restrictions on complex/hyper-complex networks.
1397
+ In 2021 IEEE International Conference on Image Pro-
1398
+ cessing (ICIP), 2021. 1, 2, 3, 4, 5, 6, 7
1399
+ [8] Chase J Gaudet and Anthony S Maida.
1400
+ Deep quater-
1401
+ nion networks. In 2018 International Joint Conference
1402
+ on Neural Networks (IJCNN), pages 1–8. IEEE, 2018. 2,
1403
+ 3, 4, 5, 6
1404
+ [9] Ali Hassani, Steven Walton, Nikhil Shah, Abulikemu
1405
+ Abuduweili, Jiachen Li, and Humphrey Shi. Escaping
1406
+ the big data paradigm with compact transformers. arXiv
1407
+ preprint arXiv:2104.05704, 2021. 7
1408
+ [10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
1409
+ Sun. Deep residual learning for image recognition. In
1410
+ Proceedings of the IEEE conference on computer vision
1411
+ and pattern recognition, pages 770–778, 2016. 5, 6
1412
+ [11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
1413
+ Sun. Identity mappings in deep residual networks. In Eu-
1414
+ ropean conference on computer vision, pages 630–645.
1415
+ Springer, 2016. 7
1416
+ [12] Shima Javanmardi,
1417
+ Seyed-Hassan Miraei Ashtiani,
1418
+ Fons J Verbeek, and Alex Martynenko. Computer-vision
1419
+
1420
+ classification of corn seed varieties using deep convolu-
1421
+ tional neural network. Journal of Stored Products Re-
1422
+ search, 92:101800, 2021. 1
1423
+ [13] Cem Keskin, Furkan Kırac¸, Yunus Emre Kara, and Lale
1424
+ Akarun. Real time hand pose estimation using depth sen-
1425
+ sors. In Consumer depth cameras for computer vision,
1426
+ pages 119–137. Springer, 2013. 7, 8
1427
+ [14] Alex Krizhevsky, Geoffrey Hinton, et al. Learning mul-
1428
+ tiple layers of features from tiny images. 2009. 5
1429
+ [15] Alina Kuznetsova, Laura Leal-Taix´e, and Bodo Rosen-
1430
+ hahn. Real-time sign language recognition using a con-
1431
+ sumer depth camera. In Proceedings of the IEEE interna-
1432
+ tional conference on computer vision workshops, pages
1433
+ 83–90, 2013. 7, 8
1434
+ [16] Cameron E Long. Quaternion Temporal Convolutional
1435
+ Neural Networks.
1436
+ PhD thesis, University of Dayton,
1437
+ 2019. 1, 3, 7
1438
+ [17] Huy BD Nguyen and Hung Ngoc Do. Deep learning for
1439
+ american sign language fingerspelling recognition sys-
1440
+ tem. In 2019 26th International Conference on Telecom-
1441
+ munications (ICT), pages 314–318. IEEE, 2019. 8
1442
+ [18] T. Parcollet, M. Morchid, and G. Linar´es. Quaternion
1443
+ convolutional networks for heterogeneous image pro-
1444
+ cessing. In IEEE Intl. Conf. on Acoustics, Speech and
1445
+ Signal Processing (ICASSP), pages 8514–8518, 2019. 1,
1446
+ 2
1447
+ [19] Titouan Parcollet, Ying Zhang, Mohamed Morchid,
1448
+ Chiheb Trabelsi, Georges Linar`es, Renato De Mori,
1449
+ and Yoshua Bengio.
1450
+ Quaternion convolutional neural
1451
+ networks for end-to-end automatic speech recognition.
1452
+ arXiv preprint arXiv:1806.07789, 2018. 1, 3, 5
1453
+ [20] Nicolas Pugeault and Richard Bowden. Spelling it out:
1454
+ Real-time asl fingerspelling recognition. In 2011 IEEE
1455
+ International conference on computer vision workshops
1456
+ (ICCV workshops), pages 1114–1119. IEEE, 2011. 7, 8
1457
+ [21] Virender Ranga, Nikita Yadav, and Pulkit Garg. Amer-
1458
+ ican sign language fingerspelling using hybrid discrete
1459
+ wavelet transform-gabor filter and convolutional neural
1460
+ network. Journal of Engineering Science and Technol-
1461
+ ogy, 13(9):2655–2669, 2018. 8
1462
+ [22] Lucas Rioux-Maldague and Philippe Giguere. Sign lan-
1463
+ guage fingerspelling classification from depth and color
1464
+ images using a deep belief network. In 2014 Canadian
1465
+ Conference on Computer and Robot Vision, pages 92–97.
1466
+ IEEE, 2014. 8
1467
+ [23] Nazmul Shahadat and Anthony S Maida. Adding quater-
1468
+ nion representations to attention networks for classifica-
1469
+ tion. arXiv preprint arXiv:2110.01185, 2021. 1, 2, 5,
1470
+ 6
1471
+ [24] Wenjin Tao, Ming C Leu, and Zhaozheng Yin. Amer-
1472
+ ican sign language alphabet recognition using convolu-
1473
+ tional neural networks with multiview augmentation and
1474
+ inference fusion. Engineering Applications of Artificial
1475
+ Intelligence, 76:202–213, 2018. 7, 8
1476
+ [25] Chiheb Trabelsi, Olexa Bilaniuk, Ying Zhang, Dmitriy
1477
+ Serdyuk, Sandeep Subramanian, Joao Felipe Santos,
1478
+ Soroush Mehri, Negar Rostamzadeh, Yoshua Bengio,
1479
+ and Christopher J Pal. Deep complex networks. arXiv
1480
+ preprint arXiv:1705.09792, 2017. 2, 7
1481
+ [26] Shweta Upadhyay, RK Sharma, and Prashant Singh
1482
+ Rana. Sign language recognition with visual attention.
1483
+ Technical report, EasyChair, 2020. 7, 8
1484
+ [27] Jiasong Wu, Ling Xu, Fuzhi Wu, Youyong Kong, Lotfi
1485
+ Senhadji, and Huazhong Shu. Deep octonion networks.
1486
+ Neurocomputing, 397:179–191, 2020. 7
1487
+ [28] Qilin Yin, Jinwei Wang, Xiangyang Luo, Jiangtao Zhai,
1488
+ Sunil Kr Jha, and Yun-Qing Shi. Quaternion convolu-
1489
+ tional neural network for color image classification and
1490
+ forensics. IEEE Access, 7:20293–20301, 2019. 3, 7
1491
+ [29] Sergey Zagoruyko and Nikos Komodakis. Wide residual
1492
+ networks. arXiv preprint arXiv:1605.07146, 2016. 7
1493
+ [30] Aston Zhang, Yi Tay, Shuai Zhang, Alvin Chan,
1494
+ Anh Tuan Luu, Siu Cheung Hui, and Jie Fu. Beyond
1495
+ fully-connected layers with quaternions: Parameteriza-
1496
+ tion of hypercomplex multiplications with 1/n parame-
1497
+ ters. arXiv preprint arXiv:2102.08597, 2021. 2, 3
1498
+ [31] Xuanyu Zhu, Yi Xu, Hongteng Xu, and Changjian Chen.
1499
+ Quaternion convolutional neural networks. In Proceed-
1500
+ ings of the European Conference on Computer Vision
1501
+ (ECCV), pages 631–647, 2018. 1, 3, 7
1502
+
1NE3T4oBgHgl3EQfnQph/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
29A0T4oBgHgl3EQfNP8E/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7f00627fd2863ba3fe5e4aba3bcec49a82e8563add78747097044677b9799c7
3
+ size 3866669
29A0T4oBgHgl3EQfNP8E/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76f5d66746028570658affa5e6993f7e3ed67377f62e908eefeefae01d72b082
3
+ size 162590
2NE0T4oBgHgl3EQfugGB/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98ebe609fdd79ad666a3efbed654e7b0363a7fe68784380a81ab5f0f964f4108
3
+ size 877866
4NFAT4oBgHgl3EQflx07/content/2301.08619v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:665a4be05c9d49fc78e384cf820b6082b199141b4ecbf86711934857167b1152
3
+ size 370373
4NFAT4oBgHgl3EQflx07/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac48eba86b40e01ba2ee82a663e84fa432675b439136d490208978238611310a
3
+ size 2359341
4NFAT4oBgHgl3EQflx07/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:789420c84370f3fc6c35e40249dcbcfec2b40d563886a9173f7924c46993e1b0
3
+ size 79123
4tE1T4oBgHgl3EQfSwM3/content/tmp_files/2301.03069v1.pdf.txt ADDED
@@ -0,0 +1,2884 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ EXACT HYDRODYNAMIC MANIFOLDS FOR THE LINEARIZED
2
+ THREE-DIMENSIONAL BOLTZMANN BGK EQUATION
3
+ FLORIAN KOGELBAUER AND ILYA KARLIN
4
+ Abstract. We perform a complete spectral analysis of the linear three-dimensional
5
+ Boltzmann BGK operator resulting in an explicit transcendental equation for the eigen-
6
+ values. Using the theory of finite-rank perturbations, we prove that there exists a critical
7
+ wave number kcrit which limits the number of hydrodynamic modes in the frequency
8
+ space. This implies that there are only finitely many isolated eigenvalues above the es-
9
+ sential spectrum, thus showing the existence of a finite-dimensional, well-separated linear
10
+ hydrodynamic manifold as a combination of invariant eigenspaces. The obtained results
11
+ can serve as a benchmark for validating approximate theories of hydrodynamic closures
12
+ and moment methods.
13
+ 1. Introduction
14
+ The derivation of hydrodynamic equations from kinetic theory is a fundamental, yet not
15
+ completely resolved, problem in thermodynamics and fluids, dating back at least to part
16
+ (b) of Hilbert’s sixth problem [26]. Given the Boltzmann equation or an approximation of
17
+ it, can the the basic equations of fluid dynamics (Euler, Navier–Stokes) be derived directly
18
+ from the dynamics of the distribution function?
19
+ One classical approach is to seek a series expansion in terms of a small parameter, such
20
+ as the relaxation time τ or the Knudsen number ε [39]. One widely used expansion is the
21
+ Chapman–Enskog series [12], where it is assumed that the collision term scales with ε−1,
22
+ thus indicating a (singular) Taylor expansion in ε. Indeed, the zeroth order PDE obtained
23
+ this way gives the Euler equation, while the first order PDE reproduces the Navier–Stokes
24
+ equation. On the linear level, the Navier–Stokes equation is globally dissipative and decay
25
+ of entropy on the kinetic level translates to decay of energy on the fluid level.
26
+ For higher-order expansions, however, we are in trouble. In [4], it was first shown that
27
+ an expansion in terms of Knudsen number can lead to nonphysical properties of the hy-
28
+ drodynamic models: At order two (Burnett equation [12]), the dispersion relation shows
29
+ a change of sign, thus leading to modes which grow in energy (Bobylev instability). In
30
+ particular, the Burnett hydrodynamics are not hyperbolic and there exists no H-theorem
31
+ for them [6].
32
+ 1
33
+ arXiv:2301.03069v1 [math-ph] 8 Jan 2023
34
+
35
+ 2
36
+ FLORIAN KOGELBAUER AND ILYA KARLIN
37
+ From a mathematical point of view, of course, there is no guarantee that the expansion
38
+ of a non-local operator in frequency space, i.e., an approximation in terms of local (dif-
39
+ ferential) operators, gives a good approximation for the long-time dynamics of the overall
40
+ system. Among the first to suggest a non-local closure relation was probably Rosenau
41
+ [34]. In a series of works (see, e.g., [19, 18, 21] and references therein), Karlin and Gorban
42
+ derived explicit non-local closures by essentially summing the Chapman–Enskog series for
43
+ all orders. Furthermore, we note that the Chapman–Enskog expansion mixes linear and
44
+ nonlinear terms for the full Boltzmann equation since it only considers powers of ε, while
45
+ the existence (and approximation) of a hydrodynamic manifold can be performed indepen-
46
+ dently of the Knudsen number, for which it only enters as a parameter.
47
+ Spectral properties of linearized kinetic equations are of basic interest in thermodynam-
48
+ ics and have been performed by numerous authors. Already Hilbert himself was concerned
49
+ with the spectral properties of linear integral operators derived from the Boltzmann equa-
50
+ tion [25].
51
+ Carleman [8] proved that the essential spectrum remains the same under a
52
+ compact perturbation (Weyl’s theorem) in the hard sphere case and was able to estimate
53
+ the spectral gap. This result was generalized to a broader class of collision kernels by Grad
54
+ [23] and to soft potentials in [7].
55
+ For spatially uniform Maxwell molecules, a complete spectral description was derived
56
+ in [5] (together with exact special solutions and normal form calculations for the full,
57
+ non-linear problem), see also [11]. Famously, in [15], some fundamental properties of the
58
+ spectrum of a comparably broad class of kinetic operators was derived. In particular, the
59
+ existence of eigenvalue branches and asymptotic expansion of the (small) eigenvalues for
60
+ vanishing wave number was derived. We stress, however, that no analysis for large wave
61
+ numbers or close to the essential spectrum was performed in [15].
62
+ Let us also comment on the relation to Hilbert’s sixth problem. Along these lines, several
63
+ result on the converges to Navier–Stokes (and Euler) equations have been obtained. Al-
64
+ ready Grad [24] was interested in this question. In [15], it is also shown that the semi-group
65
+ generated by the linearized Euler equation converges - for fixed time - to the semi-group
66
+ generated by the linearized Boltzmann equation (and similarly, for the linear Navier–Stokes
67
+ semi-group). In [35], convergence of scaled solutions to the Navier–Stokes equation along
68
+ the lines of [2] was proved. We also mention the results related to convergence rates to the
69
+ equilibrium (hypercoercivity) of the variants of the BGK equation [40, 14]. For an excellent
70
+ review on the mathematical perspective of Hilbert’s sixth problem, we refer to [36].
71
+ In this work, we perform a complete spectral analysis for the Bhatnagar–Gross–Krook
72
+ (BGK) equation [3] linearized around a global Maxwellian.
73
+ The BGK model - despite
74
+ being a comparatively simple approximation to the full Boltzmann equation - shares im-
75
+ portant features such as decay of entropy and the conservation laws of mass, momentum
76
+ and energy [3]. Global existence and estimates of the solution were proved in [32, 33] for
77
+
78
+ EXACT HYDRODYNAMICS FROM LINEAR BGK
79
+ 3
80
+ the full, non-linear BGK system.
81
+ The single relaxation time τ in the BGK equation will serve as the analog of the Knudsen
82
+ number and fundamental parameter in our analysis. Previous work on the full spectrum
83
+ of kinetic models together with a hydrodynamic interpretation has been performed in [28]
84
+ for the three-dimensional Grad system and in [29] for the linear BGK equation with mass
85
+ density only. A similar independent analysis for the one-dimensional linear BGK with one
86
+ fluid moment was performed in [10, 9] in the context of grossly determined solutions (in
87
+ the sense of [39]), where convergence to the slow manifold is also proven explicitly. While
88
+ the results obtained in [10, 9] are proved for the real line (for which the corresponding
89
+ eigen-distributions are derived), we will focus on the torus TL, for which we expect a dis-
90
+ crete set of eigenvalues.
91
+ Indeed, we will give a complete and (up to the solution of a transcendental equa-
92
+ tion) explicit description of the spectrum of the BGK equation linearized around a global
93
+ Maxwellian. We will show the existence of finitely many discrete eigenvalues above the
94
+ essential spectrum as well as the existence of a critical wave number for each family of
95
+ modes. More precisely, we prove the following:
96
+ Theorem 1.1. The spectrum of the non-dimensional linearized BGK operator L with re-
97
+ laxation time τ around a global Maxwellian is given by
98
+ σ(L) =
99
+
100
+ −1
101
+ τ + iR
102
+
103
+
104
+
105
+ N∈Modes
106
+
107
+ |k|<kcrit,N
108
+ {λN(τ|k|)},
109
+ (1.1)
110
+ where Modes = {shear, diff, ac, ac∗} corresponding to the shear mode, the diffusion mode
111
+ and the pair of complex conjugate acoustic modes. The essential spectrum is given by the
112
+ line ℜλ = − 1
113
+ τ , while the discrete spectrum consists of a finite number of discrete, isolated
114
+ eigenvalues. Along with each family of modes, there exists a critical wave number kcrit,N,
115
+ limiting the range of wave numbers for which λN exists.
116
+ Our proof is based on the theory of finite-rank perturbations (see, e.g., [42]), together
117
+ with some properties of the plasma dispersion function, collected in the Appendix for the
118
+ sake of completeness. Furthermore, we give a hydrodynamic interpretation of the results
119
+ by considering the dynamics on the (slow) hydrodynamic manifold (linear combination of
120
+ eigenspaces).
121
+ The paper is structured as follows: In Section 2, we introduce some notation and give
122
+ some basic definitions. In Section 3, we formulate the fundamental equations and perform
123
+ - for completeness - the linearization around a global Maxwellian as well as the non-
124
+ dimensionalization explicitly. Section 4 is devoted to the spectral analysis of the linear part,
125
+ including the derivation of a spectral function describing the discrete spectrum completely.
126
+ We also give a proof of the finiteness of the hydrodynamic spectrum together with a
127
+ description of the modes (shear, diffusion, acoustic) in frequency space. Finally, in Section
128
+
129
+ 4
130
+ FLORIAN KOGELBAUER AND ILYA KARLIN
131
+ (5), we write down the hydrodynamic manifold as a linear combination of eigenvectors and
132
+ derive a closed system for the linear hydrodynamic variables.
133
+ 2. Notation and Basic Definitions
134
+ Let H denote a Hilbert space and let T : H → H be a linear operator with domain of
135
+ definition D(H). We denote the spectrum of T as σ(T) and its resolvent set as ρ(T).
136
+ The spectral analysis of the main operator L of the paper (to be defined later) will be
137
+ carried out on the Hilbert space
138
+ Hx,v = L2
139
+ x(T3) × L2
140
+ v(R3, e− |v|2
141
+ 2 ),
142
+ (2.1)
143
+ together with the inner product
144
+ ⟨f, g⟩x,v =
145
+
146
+ T3
147
+
148
+ R3 f(x, v)g∗(x, v) e− |v|2
149
+ 2 dvdx,
150
+ (2.2)
151
+ where the star denotes complex conjugation.
152
+ Because of the unitary properties of the
153
+ Fourier transform, we can slice the space H for each wave number k and analyze the
154
+ operator Lk (restriction of L to the wave number k) on the Hilbert space
155
+ Hv = L2
156
+ v(R3, e−|v|2),
157
+ (2.3)
158
+ together with the inner product
159
+ ⟨f, g⟩v =
160
+
161
+ R3 f(v)g∗(v)e− |v|2
162
+ 2 dv.
163
+ (2.4)
164
+ For further calculations, let us collect some formulas for definite Gaussian integrals:
165
+
166
+ R
167
+ e−Av2 dv =
168
+ � π
169
+ A,
170
+
171
+ R3 e−A|v|2 dv =
172
+ � π
173
+ A
174
+ �− 3
175
+ 2 ,
176
+
177
+ R3|v|2e−A|v|2 dv = 3
178
+ 2A
179
+ � π
180
+ A
181
+ � 3
182
+ 2 ,
183
+
184
+ R
185
+ v2e−Av2 dv =
186
+ √π
187
+ 2 A− 3
188
+ 2 ,
189
+ (2.5)
190
+ for any A > 0. More generally, for any n ∈ N, we have the useful formula
191
+
192
+ R
193
+ v2ne−Av2 dv =
194
+ � π
195
+ A
196
+ (2n − 1)! !
197
+ (2A)n
198
+ .
199
+ (2.6)
200
+ 3. Preliminaries and Formulation of the Problem
201
+ We will be concerned with the three-dimensional BGK kinetic equation
202
+ ∂f
203
+ ∂t + v · ∇xf = −1
204
+ τ QBGK,
205
+ (3.1)
206
+ for the scalar distribution function f : T3
207
+ L ×R3 ×[0, ∞) → R+, f = f(x, v, t) and the BGK
208
+ collision operator
209
+ QBGK =
210
+
211
+ f(x, v, t) − feq(n[f], u[f], T[f]; v)
212
+
213
+ .
214
+ (3.2)
215
+
216
+ EXACT HYDRODYNAMICS FROM LINEAR BGK
217
+ 5
218
+ Here, T3
219
+ L denotes the three-dimensional torus of length L, the parameter τ > 0 is the
220
+ relaxation time, the equilibrium distribution is given by the standard Gaussian
221
+ feq(n, u, T; v) = n
222
+ �2πkBT
223
+ m
224
+ �− 3
225
+ 2
226
+ e−
227
+ m
228
+ 2kBT |u−v|2
229
+ ,
230
+ (3.3)
231
+ for the molecular mass m and the Boltzmann constant kB, while the five scalar hydrody-
232
+ namic variables are given by the number density,
233
+ n[f](x, t) =
234
+
235
+ R3 f(x, v, t) dv,
236
+ (3.4)
237
+ the velocity,
238
+ u[f](x, t) =
239
+ 1
240
+ n[f](x, t)
241
+
242
+ R3 vf(x, v, t) dv,
243
+ (3.5)
244
+ and the temperature, which is defined implicitly through conservation of energy as
245
+ 3
246
+ 2
247
+ kB
248
+ m T[f](x, t)n[f](x, t) + n[f](x, t)|u[f](x, t)|2
249
+ 2
250
+ =
251
+
252
+ R3
253
+ |v|2
254
+ 2 f(x, v, t) dv.
255
+ (3.6)
256
+ The physical units are given as [kB] = m2kgs−2K−1 and [kBT] = m2kgs−2 respectively.
257
+ We introduce the moments of the distribution function f as
258
+ M(n)(x, t) =
259
+
260
+ R3 f(x, v, t) v⊗ndv,
261
+ (3.7)
262
+ where v⊗0 = 1, v⊗1 = v and
263
+ v⊗n = v ⊗ ... ⊗ v
264
+
265
+ ��
266
+
267
+ n−times
268
+ ,
269
+ (3.8)
270
+ for n ≥ 2 is the n-th tensor power. The moment defined in (3.7) is an n-th order symmetric
271
+ tensor, depending on space and time.
272
+ The first three moments relate to the hydrodynamic variables through
273
+ M(0) = n,
274
+ M(1) = nu,
275
+ traceM(2) = n
276
+
277
+ |u|2+3kBT
278
+ m
279
+
280
+ .
281
+ (3.9)
282
+ Conversely, we can express the hydrodynamic variables in terms of the moments as
283
+ n = M0,
284
+ u = M1
285
+ M0
286
+ ,
287
+ kB
288
+ m T = 1
289
+ 3
290
+ �traceM2
291
+ M0
292
+ − |M1|2
293
+ M2
294
+ 0
295
+
296
+ .
297
+ (3.10)
298
+
299
+ 6
300
+ FLORIAN KOGELBAUER AND ILYA KARLIN
301
+ We can reformulate equation (3.1) as an infinite system of coupled momentum equations
302
+ as
303
+
304
+ 1 + τ ∂
305
+ ∂t
306
+
307
+ M(n) = −τ∇ · M(n+1) + M(n)
308
+ eq ,
309
+ (3.11)
310
+ for n ≥ 0, where
311
+ M(n)
312
+ eq =
313
+
314
+ R3 feq(n[f], u[f], T[f]; v)v⊗n dv.
315
+ (3.12)
316
+ The special property of the BGK hierarchy is that the first three moment equations reduce
317
+ to
318
+
319
+ ∂tM(0) = −∇ · M(1),
320
+
321
+ ∂tM(1) = −∇ · M(2),
322
+
323
+ ∂ttraceM(2) = −trace(∇ · M(3)).
324
+ (3.13)
325
+ In particular, the first three moment equations in terms of the hydrodynamic variables
326
+ read
327
+
328
+ ∂tn = −∇ · (nu),
329
+
330
+ ∂t(nu) = −∇ ·
331
+
332
+ R3 v ⊗ vf dv,
333
+
334
+ ∂t
335
+ ��
336
+ R3
337
+ m|v|2
338
+ 2
339
+ f dv
340
+
341
+ = −∇ ·
342
+
343
+ R3
344
+ |v|2
345
+ 2 vf dv.
346
+ (3.14)
347
+ The collision operator QBGK shares some key properties with the collision operator of
348
+ the full Boltzmann equation. Namely, we have that
349
+
350
+ R3 QBGK(v)
351
+
352
+
353
+ 1
354
+ v
355
+ |v|2
356
+
357
+ � dv = 0,
358
+ (3.15)
359
+ as well as the negativity condition
360
+ ⟨QBGKf, f⟩x,v ≤ 0,
361
+ (3.16)
362
+ for all f ∈ Hx,v for which the above expression is defined.
363
+ We will be interested in the linearized dynamics of (3.1) around a global Maxwellian
364
+ φ(v) = n0
365
+
366
+ 2πkBT0
367
+ m
368
+ �− 3
369
+ 2
370
+ e− m|v|2
371
+ 2kBT0 ,
372
+ (3.17)
373
+ for the equilibrium density n0 and the equilibrium temperature T0. Setting
374
+ f �→ φ + εf,
375
+ (3.18)
376
+
377
+ EXACT HYDRODYNAMICS FROM LINEAR BGK
378
+ 7
379
+ implies that
380
+ M0 �→ n0 + εM0,
381
+ M1 �→ εM1,
382
+ M2 �→ n0
383
+ kBT0
384
+ m Id3×3 + εM2,
385
+ (3.19)
386
+ and consequently
387
+ n �→ n0 + εM0,
388
+ u �→
389
+ εM1
390
+ n0 + εM0
391
+ ,
392
+ T �→ m
393
+ 3kB
394
+
395
+ 3n0 kBT0
396
+ m
397
+ + εtraceM2
398
+ n0 + εM0
399
+ − ε2
400
+ |M1|2
401
+ (n0 + εM0)2
402
+
403
+ .
404
+ (3.20)
405
+ Using
406
+ ∂n
407
+ ∂ε
408
+ ����
409
+ ε=0
410
+ = M0,
411
+ ∂u
412
+ ∂ε
413
+ ����
414
+ ε=0
415
+ = M1
416
+ n0
417
+ ,
418
+ ∂T
419
+ ∂ε
420
+ ����
421
+ ε=0
422
+ = m
423
+ 3kB
424
+ traceM2 − 3T0 kB
425
+ m M0
426
+ n0
427
+ ,
428
+ (3.21)
429
+ we can readily calculate:
430
+
431
+ ∂ε
432
+ ����
433
+ ε=0
434
+ feq[φ + εf] = ∂
435
+ ∂ε
436
+ ����
437
+ ε=0
438
+ n
439
+ �2πkBT
440
+ m
441
+ �− 3
442
+ 2
443
+ e−
444
+ m
445
+ 2kBT |u−v|2
446
+ = n0
447
+ �2πkB
448
+ m
449
+ �− 3
450
+ 2
451
+ e−
452
+ m
453
+ 2kBT0 |v|2
454
+
455
+ M0
456
+ n0
457
+ + m
458
+ 3kB
459
+ traceM2 − 3T0 kB
460
+ m M0
461
+ n0
462
+
463
+ −3
464
+ 2
465
+
466
+ T
467
+ − 5
468
+ 2
469
+ 0
470
+ + T
471
+ − 3
472
+ 2
473
+ 0
474
+
475
+
476
+ m
477
+ 2kBT0
478
+ � �
479
+ −2M1
480
+ n0
481
+ · v
482
+
483
+ +T
484
+ − 3
485
+ 2
486
+ 0
487
+ m
488
+ 3kB
489
+ traceM2 − 3T0 kB
490
+ m M0
491
+ n0
492
+ |v|2
493
+
494
+ − m
495
+ 2kB
496
+
497
+ (−T −2
498
+ 0 )
499
+
500
+ ,
501
+ (3.22)
502
+ which, after regrouping and cancellations, becomes
503
+
504
+ ∂ε
505
+ ����
506
+ ε=0
507
+ feq[φ + εf] =
508
+ �2πkBT0
509
+ m
510
+ �− 3
511
+ 2
512
+ e−
513
+ m
514
+ 2kBT0 |v|2
515
+
516
+ M0 −
517
+ m
518
+ kBT0
519
+ traceM2 − 3kBT0
520
+ m M0
521
+ 2
522
+ +
523
+
524
+ − m
525
+ kBT0
526
+
527
+ M1 · v + traceM2 − 3 T0kB
528
+ m M0
529
+ 6
530
+ |v|2
531
+ � m
532
+ T0kB
533
+ �2�
534
+ .
535
+ (3.23)
536
+
537
+ 8
538
+ FLORIAN KOGELBAUER AND ILYA KARLIN
539
+ Defining the thermal velocity as
540
+ vthermal =
541
+
542
+ kB
543
+ m T0,
544
+ (3.24)
545
+ and re-scaling according to
546
+ v �→ vthermalv,
547
+ (3.25)
548
+ implies that
549
+ Mn �→
550
+ �kB
551
+ m T0
552
+ � 3+n
553
+ 2
554
+ Mn,
555
+ (3.26)
556
+ which allows us to simplify
557
+
558
+ ∂ε
559
+ ����
560
+ ε=0
561
+ feq[φ+εf] = (2π)−3/2e− |v|2
562
+ 2
563
+
564
+ M0 − traceM2 − 3M0
565
+ 2
566
+ + M1 · v + traceM2 − 3M0
567
+ 6
568
+ |v|2
569
+
570
+ .
571
+ (3.27)
572
+ Similarly, we re-scale
573
+ x �→ Lx,
574
+ (3.28)
575
+ which implies that x ∈ T3 henceforth. Defining the thermal time
576
+ tthermal = L
577
+ � m
578
+ kBT0
579
+ ,
580
+ (3.29)
581
+ we can re-scale and non-dimensionalize
582
+ t �→ ttthermal,
583
+ τ �→ τtthermal,
584
+ (3.30)
585
+ which leads to the linearized, non-dimensional BGK equation
586
+ ∂f
587
+ ∂t = −v · ∇xf − 1
588
+ τ f + 1
589
+ τ (2π)−3/2e
590
+ −|v|2
591
+ 2
592
+ ��5
593
+ 2 − |v|2
594
+ 2
595
+
596
+ M0 + M1 · v + 1
597
+ 6(|v|2−3)traceM2
598
+
599
+ .
600
+ (3.31)
601
+ Equation (3.31) will be the starting point for further analysis. For later reference, we also
602
+ define the mean free path as
603
+ lmfp = τvthermal.
604
+ (3.32)
605
+ Let us remark that, by equation (3.21), the linearized macro-variables (nlin, ulin, Tlin) are
606
+ related to the moments (M0, M1, traceM2) via the matrix transform
607
+
608
+
609
+ nlin
610
+ ulin
611
+ Tlin
612
+
613
+ � = v3
614
+ thermal
615
+ n0
616
+
617
+
618
+ n0
619
+ 01×3
620
+ 0
621
+ 03×1
622
+ vthermalI3×3
623
+ 03×1
624
+ −T0
625
+ 01×3
626
+ T0
627
+ 3
628
+
629
+
630
+
631
+
632
+ M0
633
+ M1
634
+ traceM2
635
+
636
+ � .
637
+ (3.33)
638
+
639
+ EXACT HYDRODYNAMICS FROM LINEAR BGK
640
+ 9
641
+ 4. Spectral Analysis of the linearized BGK operator
642
+ In this section, we will carry out a complete spectral analysis of the right-hand side of
643
+ (3.31). This will allow us to draw conclusions on the decay properties of hydrodynamic
644
+ variables, the existence of a critical wave number and the hydrodynamic closure. After
645
+ reformulating the problem in frequency space, we will use the resolvent calculus to formulate
646
+ a condition for the discrete spectrum (Subsection 4.1). Then, we will use properties of the
647
+ plasma dispersion function (see Appendix) to define a spectral function Γτ|k|, whose zeros
648
+ coincide with the discrete, isolated eigenvalues (Subsection 4.2). Then, in Subsection 4.3,
649
+ using Rouch´e’s Theorem, we prove the existence of a critical wave number kcrit such that
650
+ Γτ|k| has no zeros (i.e., there exists no eigenvalues) for |k|> kcrit. Finally, in Subsection
651
+ 4.4, we take a closer look at the branches of eigenvalues (modes) and their corresponding
652
+ critical wave numbers.
653
+ 4.1. The discrete spectrum of a finite-rank perturbation. To ease notation, we
654
+ define five distinguished vectors associated with the hydrodynamic moments as
655
+ e0(v) = (2π)− 3
656
+ 4 ,
657
+ e1(v) = (2π)− 3
658
+ 4 v1,
659
+ e2(v) = (2π)− 3
660
+ 4 v2,
661
+ e3(v) = (2π)− 3
662
+ 4 v3,
663
+ e4(v) = (2π)− 3
664
+ 4 |v|2−3
665
+
666
+ 6
667
+ ,
668
+ (4.1)
669
+ which satisfy the orthonormality condition,
670
+ ⟨ei, ej⟩v = δij,
671
+ for
672
+ 0 ≤ i, j ≤ 4,
673
+ (4.2)
674
+ where δij is the Kronecker’s delta. To ease notation, we denote the projection onto the
675
+ span of {ej}0≤j≤4 as
676
+ P5f =
677
+ 4
678
+
679
+ j=0
680
+ ⟨f, ej⟩vej,
681
+ (4.3)
682
+ for any f ∈ Hv. The linearized dynamics then takes the form
683
+ ∂f
684
+ ∂t = Lf,
685
+ (4.4)
686
+ for the linear operator
687
+ L = −v · ∇x − 1
688
+ τ + 1
689
+ τ P5.
690
+ (4.5)
691
+ Remark 4.1. Let us recall that any function f ∈ Hv admits a unique expansion as a
692
+ multi-dimensional Hermite series:
693
+ f(v) =
694
+
695
+
696
+ n=0
697
+ fn : Hn(v),
698
+ (4.6)
699
+
700
+ 10
701
+ FLORIAN KOGELBAUER AND ILYA KARLIN
702
+ where
703
+ Hn = (−1)ne
704
+ |v|2
705
+ 2 ∇ne
706
+ −|v|2
707
+ 2
708
+ ,
709
+ (4.7)
710
+ and fn is an n-tensor. Since the five basis vectors (4.1) appear in the expansion (4.6) via
711
+ an orthogonal splitting, we have that
712
+ ⟨P5f, (1 − P5)f⟩v = 0,
713
+ (4.8)
714
+ for any f ∈ Hv. Hermite expansions were famously used by Grad in his seminal paper [22]
715
+ to establish finite-moment closures.
716
+ From
717
+ ⟨Lf, f⟩x,v = ⟨−v · ∇xf − 1
718
+ τ f + 1
719
+ τ P5f, f⟩x,v
720
+ =
721
+
722
+ T3
723
+
724
+ R3(−v · ∇xf − 1
725
+ τ f + 1
726
+ τ P5f)fe− |v|2
727
+ 2 dxdv
728
+ =
729
+
730
+ T3
731
+
732
+ R3 −1
733
+ τ [(1 − P5)f](P5f + (1 − P5)f)e− |v|2
734
+ 2 dxdv
735
+ = −1
736
+ τ ∥(1 − P5)f∥2
737
+ x,v,
738
+ (4.9)
739
+ where we have assumed that f is sufficiently regular to justify the application of the diver-
740
+ gence theorem in x in order to remove the gradient term as well as (4.8), it follows that
741
+ the operator L is dissipative and that
742
+ ℜσ(L) ≤ 0.
743
+ (4.10)
744
+ On the other hand, from (4.9) and from ∥1 − P5∥op= 1, since 1 − P5 is a projection as well,
745
+ it follows that
746
+ ⟨Lf, f⟩x,v ≥ −1
747
+ τ ∥f∥2
748
+ x,v.
749
+ (4.11)
750
+ This shows that any solution to (4.4) has to converge to zero, i.e., the global Maxwellian
751
+ is a stable equilibrium up to the conserved quantities from the center mode. On the other
752
+ hand, we infer that the overall convergence rate to equilibrium can be at most − 1
753
+ τ , which
754
+ immediately implies that there cannot be any eigenvalues below the essential spectrum (see
755
+ also the next section).
756
+ Let us proceed with the spectral analysis by switching to frequency space. Since x ∈ T3,
757
+ we can decompose f in a Fourier series as
758
+ f(x, v) =
759
+
760
+
761
+ |k|=0
762
+ ˆf(k, v)eix·k,
763
+ (4.12)
764
+ for the Fourier coefficients
765
+ ˆf(k, v) =
766
+ 1
767
+ (2π)3
768
+
769
+ R3 f(x, v)e−ix·k dx.
770
+ (4.13)
771
+
772
+ EXACT HYDRODYNAMICS FROM LINEAR BGK
773
+ 11
774
+ In frequency space, the operator (4.5) is conjugated to the linear operator
775
+ ˆLk = −iv · kf − 1
776
+ τ f + 1
777
+ τ P5f,
778
+ (4.14)
779
+ which implies that
780
+ σ(L) =
781
+
782
+ k∈Z3
783
+ σ( ˆLk).
784
+ (4.15)
785
+ Defining
786
+ fj = ⟨ej, f⟩v,
787
+ (4.16)
788
+ we can define the following relations between the moments and the coefficients (4.16):
789
+ 5 − |v|2
790
+ 2(2π)
791
+ 3
792
+ 2
793
+ M0 = 5 − |v|2
794
+ 2(2π)
795
+ 3
796
+ 4
797
+ f0 = f0e0 −
798
+
799
+ 6
800
+ 2 f0e4,
801
+ 1
802
+ (2π)
803
+ 3
804
+ 2
805
+ v · M1 = f1e1 + f2e2 + f3e3,
806
+ |v|2−3
807
+ 6(2π)
808
+ 3
809
+ 2
810
+ traceM2 = e4
811
+ 1
812
+
813
+ 6(2π)
814
+ 3
815
+ 4
816
+
817
+ R
818
+ f|v|2 dv = e4
819
+ 1
820
+
821
+ 6(2π)
822
+ 3
823
+ 4
824
+ ��
825
+ R
826
+ f(|v|2−3) dv + 3M0
827
+
828
+ = f2e4 + 3
829
+
830
+ 6f0e4.
831
+ (4.17)
832
+ For compactness, we bundle these five basis polynomials into a single vector
833
+ e = (e0, e1, e2, e3, e4).
834
+ (4.18)
835
+ First, let us take a look at the spectrum of ˆL0. For k = 0, we see that ˆL collapses to a
836
+ diagonal operator with five dimensional kernel spanned by {ej}0≤j≤4:
837
+ ˆL0ej = −1
838
+ τ (ej − P5ej) = 0,
839
+ 0 ≤ j ≤ 4.
840
+ (4.19)
841
+ On the other hand, the operator ˆL0 acts just like − 1
842
+ τ on the orthogonal complement of
843
+ span{ej}0≤j≤4. This shows that
844
+ σ( ˆL0) =
845
+
846
+ −1
847
+ τ , 0
848
+
849
+ ,
850
+ (4.20)
851
+ where the eigenspace associated to zero has dimension five, while the eigenspace associated
852
+ to − 1
853
+ τ has co-dimension five.
854
+ Now, let us analyse ˆLk for k ̸= 0. To ease notation in the following argument, we define
855
+ the operator
856
+ Skf = v · kf,
857
+ (4.21)
858
+
859
+ 12
860
+ FLORIAN KOGELBAUER AND ILYA KARLIN
861
+ for any k ̸= 0, which gives
862
+ σ( ˆLk) = −1
863
+ τ − σ
864
+
865
+ iSk − 1
866
+ τ P5
867
+
868
+ = −1
869
+ τ − 1
870
+ τ σ (iτSk − P5) .
871
+ (4.22)
872
+ Because the resolvent of Sk is just given by multiplication with (v · k − z)−1, we see
873
+ immediately that σ(Sk) = R, see also [38]. We define the Green’s function matrices as
874
+ GT (z, n, m) = ⟨en, (iτSk − P5 − z)−1em⟩v,
875
+ GS(z, n, m) = ⟨en, (iτSk − z)−1em⟩v,
876
+ (4.23)
877
+ for 0 ≤ n, m ≤ 4 and set GS(z) = {GS(z, n, m)}0≤n≤4, GT (z) = {GT (z, n, m)}0≤n≤4.
878
+ By the second resolvent identity,
879
+ R(z; A) − R(z; B) = R(z; A)(B − A)R(z; B),
880
+ (4.24)
881
+ for any operators A, B and z ∈ ρ(A) ∩ ρ(B), we have for A = iτSk and B = iτSk − P5 that
882
+ (iτSk − P5 − z)−1 = (iτSk − z)−1 + (iτSk − z)−1P5(iτSk − P5 − z)−1.
883
+ (4.25)
884
+ Applying equation (4.25) to em for 0 ≤ m ≤ 4 and rearranging gives
885
+ (iτSk − P5 − z)−1em = (iτSk − z)−1em + (iτSk − z)−1P5(iτSk − P5 − z)−1em
886
+ = (iτSk − z)−1em + (iτSk − z)−1
887
+ 4
888
+
889
+ j=0
890
+ ⟨(iτSk − P5 − z)−1em, ej⟩vej
891
+ = (iτSk − z)−1em +
892
+ 4
893
+
894
+ j=0
895
+ G∗
896
+ T (z, j, m)(iτSk − z)−1ej,
897
+ (4.26)
898
+ for z ∈ C \ iR. Thus, the resolvent of iτSk − P5 − z includes the resolvent of iτSk as well
899
+ as information from the matrix {GT (z, n, m)}0≤n,m≤4 as coefficients.
900
+ Taking an inner product of (4.26) with en gives
901
+ GT (z, n, m) = GS(z, n, m) +
902
+ 4
903
+
904
+ j=0
905
+ GT (z, j, m)⟨en, (iτSk − z)−1ej⟩v
906
+ = GS(z, n, m) +
907
+ 4
908
+
909
+ j=0
910
+ GT (z, j, m)GS(z, n, j)
911
+ (4.27)
912
+ for 0 ≤ n, m ≤ 4 and z ∈ C \ iR, where in the last step, we have used the symmetry of the
913
+ Green’s function matrix. System (4.27) defines twenty-five equations for the coefficients
914
+ GT (z, n, m), which can be re-written more compactly as
915
+ GT = GS + GSGT ,
916
+ (4.28)
917
+
918
+ EXACT HYDRODYNAMICS FROM LINEAR BGK
919
+ 13
920
+ or, equivalently,
921
+ (Id − GS)GT = GS.
922
+ (4.29)
923
+ Equation (4.29) can be interpreted as a special case of Krein’s resolvent identity [30]. This
924
+ shows that we can solve for the entries of GT unless det(Id − GS) = 0, or, to phrase it
925
+ differently, we have that for each wave number k, the discrete spectrum of (iτSk) − P5 can
926
+ be used to infer that
927
+ σdisc( ˆLk) = −1
928
+ τ − 1
929
+ τ
930
+
931
+
932
+ �z ∈ C : det
933
+
934
+
935
+
936
+ R3 e(v) ⊗ e(v)
937
+ e− |v|2
938
+ 2
939
+ iτk · v − z dv − Id
940
+
941
+ � = 0
942
+
943
+
944
+ � .
945
+ (4.30)
946
+ An eigenvalue λ of the operator ˆLk is related to the zero z in (4.30) via
947
+ z = −τλ − 1.
948
+ (4.31)
949
+ In particular, the finite-rank perturbation P5 can only add discrete eigenvalues to the spec-
950
+ trum and we have that σess(iτSk − P5) = σess(iτSk) = iR.
951
+ 4.2. Reformulation in terms of the spectral function. We proceed with the spectral
952
+ analysis of (4.5) by rewriting the determinant expression in (4.30). To this end, we note
953
+ that any wave vector k can be written as
954
+ k = Qk(|k|, 0, 0)T ,
955
+ (4.32)
956
+ for some rotation matrix Qk. Defining w = QT
957
+ kv, we have that
958
+ k · v = Qk(|k|, 0, 0)T · v = (|k|, 0, 0) · w = |k|w1,
959
+ (4.33)
960
+ while the vector of basis functions e transforms according to
961
+ e(v) = (2π)− 3
962
+ 4
963
+
964
+ 1, v, |v|2−3
965
+
966
+ 6
967
+
968
+ = (2π)− 3
969
+ 4
970
+
971
+ 1, Qkw, |w|2−3
972
+
973
+ 6
974
+
975
+ =
976
+
977
+
978
+ 1
979
+ 0
980
+ 0
981
+ 0
982
+ Qk
983
+ 0
984
+ 0
985
+ 0
986
+ 1
987
+
988
+ � e(w).
989
+ (4.34)
990
+ This, together with dv = dw from the orthogonality of Qk, implies that
991
+ det
992
+
993
+
994
+
995
+ R3 e(v) ⊗ e(v)
996
+ e− |v|2
997
+ 2
998
+ iτk · v − z dv − Id
999
+
1000
+
1001
+ = det
1002
+
1003
+
1004
+
1005
+ R3
1006
+
1007
+
1008
+ 1
1009
+ 0
1010
+ 0
1011
+ 0
1012
+ Qk
1013
+ 0
1014
+ 0
1015
+ 0
1016
+ 1
1017
+
1018
+ � e(w) ⊗
1019
+
1020
+
1021
+
1022
+
1023
+ 1
1024
+ 0
1025
+ 0
1026
+ 0
1027
+ Qk
1028
+ 0
1029
+ 0
1030
+ 0
1031
+ 1
1032
+
1033
+ � e(w)
1034
+
1035
+
1036
+ e− |w|2
1037
+ 2
1038
+ iτ|k|w1 − z dw − Id
1039
+
1040
+
1041
+ = det
1042
+
1043
+
1044
+
1045
+ R3 e(w) ⊗ e(w)
1046
+ e− |w|2
1047
+ 2
1048
+ iτ|k|w1 − z dw − Id
1049
+
1050
+ � ,
1051
+ (4.35)
1052
+
1053
+ 14
1054
+ FLORIAN KOGELBAUER AND ILYA KARLIN
1055
+ where we have used the orthogonality of Qk.
1056
+ We proceed:
1057
+ det
1058
+
1059
+
1060
+
1061
+ R3 e(w) ⊗ e(w)
1062
+ e− |w|2
1063
+ 2
1064
+ iτ|k|w1 − z dw − Id
1065
+
1066
+ � =
1067
+ = det
1068
+
1069
+ ���������
1070
+ (2π)− 3
1071
+ 2
1072
+
1073
+ R3
1074
+
1075
+
1076
+
1077
+
1078
+
1079
+
1080
+
1081
+
1082
+
1083
+
1084
+ 1
1085
+ w1
1086
+ w2
1087
+ w3
1088
+ |w|2−3
1089
+
1090
+ 6
1091
+ w1
1092
+ w2
1093
+ 1
1094
+ w1w2
1095
+ w1w3
1096
+ w1
1097
+ |w|2−3
1098
+
1099
+ 6
1100
+ w2
1101
+ w1w2
1102
+ w2
1103
+ 2
1104
+ w2w3
1105
+ w2
1106
+ |w|2−3
1107
+
1108
+ 6
1109
+ w3
1110
+ w1w3
1111
+ w3w2
1112
+ w2
1113
+ 3
1114
+ w3
1115
+ |w|2−3
1116
+
1117
+ 6
1118
+ |w|2−3
1119
+
1120
+ 6
1121
+ w1
1122
+ |w|2−3
1123
+
1124
+ 6
1125
+ w2
1126
+ |w|2−3
1127
+
1128
+ 6
1129
+ w3
1130
+ |w|2−3
1131
+
1132
+ 6
1133
+ (|w|2−3)2
1134
+ 6
1135
+
1136
+
1137
+
1138
+
1139
+
1140
+
1141
+
1142
+
1143
+
1144
+
1145
+ e− |w|2
1146
+ 2
1147
+ iτ|k|w1 − z dw − Id
1148
+
1149
+ ���������
1150
+ ,
1151
+ (4.36)
1152
+ Integrating out the variables w2 and w3 with the help of (2.5), it follows that
1153
+ det
1154
+
1155
+
1156
+
1157
+ R3 e(w) ⊗ e(w)
1158
+ e− |w|2
1159
+ 2
1160
+ iτ|k|w1 − z dw − Id
1161
+
1162
+ � =
1163
+ = det
1164
+
1165
+ �������
1166
+ (2π)− 3
1167
+ 2
1168
+
1169
+ R
1170
+
1171
+
1172
+
1173
+
1174
+
1175
+
1176
+
1177
+
1178
+
1179
+ 2πw1
1180
+ 0
1181
+ 0
1182
+ 2π w2
1183
+ 1−1
1184
+
1185
+ 6
1186
+ 2πw1
1187
+ 2πw2
1188
+ 1
1189
+ 0
1190
+ 0
1191
+ 2πw1
1192
+ w2
1193
+ 1−1
1194
+
1195
+ 6
1196
+ 0
1197
+ 0
1198
+
1199
+ 0
1200
+ 0
1201
+ 0
1202
+ 0
1203
+ 0
1204
+
1205
+ 0
1206
+ 2π w2
1207
+ 1−1
1208
+
1209
+ 6
1210
+ 2πw1
1211
+ w2
1212
+ 1−1
1213
+
1214
+ 6
1215
+ 0
1216
+ 0
1217
+ 2π w4
1218
+ 1−2w2
1219
+ 1+5
1220
+ 6
1221
+
1222
+
1223
+
1224
+
1225
+
1226
+
1227
+
1228
+
1229
+ e−
1230
+ w2
1231
+ 1
1232
+ 2
1233
+ iτ|k|w1 − z dw1 − Id
1234
+
1235
+ �������
1236
+ = det
1237
+
1238
+ ���
1239
+ 1
1240
+
1241
+
1242
+
1243
+ R
1244
+
1245
+
1246
+
1247
+
1248
+ 1
1249
+ w
1250
+ w2−1
1251
+
1252
+ 6
1253
+ w
1254
+ w2
1255
+ w w2−1
1256
+
1257
+ 6
1258
+ w2−1
1259
+
1260
+ 6
1261
+ w w2−1
1262
+
1263
+ 6
1264
+ w4−2w2+5
1265
+ 6
1266
+
1267
+
1268
+
1269
+
1270
+ e− w2
1271
+ 2
1272
+ iτ|k|w − z dw − Id
1273
+
1274
+ ���
1275
+
1276
+
1277
+ 1
1278
+
1279
+
1280
+
1281
+ R
1282
+ e− w2
1283
+ 2
1284
+ iτ|k|w − z − 1
1285
+
1286
+
1287
+ 2
1288
+ ,
1289
+ (4.37)
1290
+
1291
+ EXACT HYDRODYNAMICS FROM LINEAR BGK
1292
+ 15
1293
+ where we have used the linearity of the integral and properties of the determinant of block
1294
+ matrices. Also, we have used that
1295
+
1296
+ R2(w2
1297
+ 1 + w2
1298
+ 2 + w2
1299
+ 3 − 3)2e−
1300
+ w2
1301
+ 2
1302
+ 2 −
1303
+ w2
1304
+ 3
1305
+ 2 dw2dw3
1306
+ =
1307
+
1308
+ R2(w4
1309
+ 1 + w4
1310
+ 2 + w4
1311
+ 3 + 9 − 6w2
1312
+ 1 − 6w2
1313
+ 2 − 6w2
1314
+ 3 + 2w2
1315
+ 1w2
1316
+ 2 + 2w2
1317
+ 2w2
1318
+ 3 + 2w2
1319
+ 1w2
1320
+ 3)e−
1321
+ w2
1322
+ 2
1323
+ 2 −
1324
+ w2
1325
+ 3
1326
+ 2 dw2dw3
1327
+ = 2π
1328
+
1329
+ w4
1330
+ 1 + 3 + 3 + 9 − 6w2
1331
+ 1 − 6 − 6 + 2w2
1332
+ 1 + 2 + 2w2
1333
+ 1
1334
+
1335
+ = 2π
1336
+
1337
+ w4
1338
+ 1 − 2w2
1339
+ 1 + 5
1340
+
1341
+ .
1342
+ (4.38)
1343
+ For the following calculation, let us define the function
1344
+ Z(z) =
1345
+ 1
1346
+
1347
+
1348
+
1349
+ R
1350
+ e− v2
1351
+ 2
1352
+ v − z dv,
1353
+ (4.39)
1354
+ for z ∈ C \ R. From (4.9), it suffices to consider Z for ℑz > 0. The symmetry property
1355
+ Z(z∗) = Z∗(z), however, allows us to extend the function to the whole complex plane (with
1356
+ a discontinuity at the real line) once an expression for a half-plane is known.
1357
+ Remark 4.2. Integral expressions of the form (4.39) appear frequently in thermodynamics
1358
+ and plasma physics [17], where the function (4.39) is called plasma dispersion function
1359
+ [13] accordingly. Some properties of Z - including a more explicit expression in terms of
1360
+ complex error functions - are collected in the Appendix.
1361
+ Using the recurrence relation (A.9), we calculate the first few derivatives of Z in terms
1362
+ of polynomials and Z itself:
1363
+ dZ
1364
+ dz = −1 − zZ,
1365
+ d2Z
1366
+ dz2 = z + (z2 − 1)Z,
1367
+ d3Z
1368
+ dz3 = 2 − z2 + (3z − z2)Z,
1369
+ d4Z
1370
+ dz4 = −5z + z3 + (z4 − 6z2 + 3)Z.
1371
+ (4.40)
1372
+ Using the identity
1373
+ 1
1374
+
1375
+
1376
+
1377
+ R
1378
+ Hk(v) e− v2
1379
+ 2
1380
+ v − z dv =
1381
+ 1
1382
+
1383
+
1384
+
1385
+ R
1386
+ ��
1387
+ − d
1388
+ dv
1389
+ �k
1390
+ e− v2
1391
+ 2
1392
+
1393
+ dv
1394
+ v − z = (−1)kk!
1395
+
1396
+
1397
+
1398
+ R
1399
+ e− v2
1400
+ 2
1401
+ dv
1402
+ (v − z)k+1
1403
+ = (−1)k
1404
+
1405
+
1406
+ dk
1407
+ dzk
1408
+
1409
+ R
1410
+ e− v2
1411
+ 2
1412
+ dv
1413
+ v − z = (−1)k dkZ
1414
+ dzk ,
1415
+ (4.41)
1416
+
1417
+ 16
1418
+ FLORIAN KOGELBAUER AND ILYA KARLIN
1419
+ together with (4.40) allows us to further simplify the determinant expression in (4.36).
1420
+ Indeed, expanding the polynomial matrix in (4.36) in Hermite basis and using (4.41), we
1421
+ deduce that
1422
+ 1
1423
+
1424
+
1425
+
1426
+ R
1427
+
1428
+
1429
+
1430
+
1431
+ 1
1432
+ w
1433
+ w2−1
1434
+
1435
+ 6
1436
+ w
1437
+ w2
1438
+ w w2−1
1439
+
1440
+ 6
1441
+ w2−1
1442
+
1443
+ 6
1444
+ w w2−1
1445
+
1446
+ 6
1447
+ w4−2w2+5
1448
+ 6
1449
+
1450
+
1451
+
1452
+
1453
+ e− w2
1454
+ 2
1455
+ w − ζ dw
1456
+ =
1457
+ 1
1458
+
1459
+
1460
+
1461
+ R
1462
+
1463
+
1464
+
1465
+
1466
+ H0(w)
1467
+ H1(w)
1468
+ H2(w)
1469
+
1470
+ 6
1471
+ H1(w)
1472
+ H2(w) + H0(w)
1473
+ H3(w)+2H1(w)
1474
+
1475
+ 6
1476
+ H2(w)
1477
+
1478
+ 6
1479
+ H3(w)+2H1(w)
1480
+
1481
+ 6
1482
+ H4(w)+4H2(w)+6
1483
+ 6
1484
+
1485
+
1486
+
1487
+
1488
+ e− w2
1489
+ 2
1490
+ w − ζ dw
1491
+ =
1492
+
1493
+
1494
+
1495
+
1496
+ Z
1497
+ −Z′
1498
+ Z′′
1499
+
1500
+ 6
1501
+ −Z′
1502
+ Z′′ + Z
1503
+ − Z′′′+2Z′
1504
+
1505
+ 6
1506
+ Z′′
1507
+
1508
+ 6
1509
+ − Z′′′+Z′
1510
+
1511
+ 6
1512
+ Z(4)+4Z′′+6H0
1513
+ 6
1514
+
1515
+
1516
+
1517
+
1518
+ =
1519
+
1520
+
1521
+
1522
+
1523
+ Z
1524
+ 1 + ζZ
1525
+ ζ+(ζ2−1)Z
1526
+
1527
+ 6
1528
+ 1 + ζZ
1529
+ ζ + ζ2Z
1530
+ ζ2+(ζ3−ζ)Z
1531
+
1532
+ 6
1533
+ ζ+(ζ2−1)Z
1534
+
1535
+ 6
1536
+ ζ2+(ζ3−ζ)Z
1537
+
1538
+ 6
1539
+ ζ3−ζ+(ζ4−2ζ2+5)Z
1540
+ 6
1541
+
1542
+
1543
+
1544
+ � .
1545
+ (4.42)
1546
+ To ease notation, we define the function
1547
+ Γτ|k|(ζ) := det
1548
+
1549
+
1550
+
1551
+
1552
+ Z(ζ) − iτ|k|
1553
+ 1 + ζZ(ζ)
1554
+ ζ+(ζ2−1)Z(ζ)
1555
+
1556
+ 6
1557
+ 1 + ζZ(ζ)
1558
+ ζ + ζ2Z(ζ) − iτ|k|
1559
+ ζ2+(ζ3−ζ)Z(ζ)
1560
+
1561
+ 6
1562
+ ζ+(ζ2−1)Z(ζ)
1563
+
1564
+ 6
1565
+ ζ2+(ζ3−ζ)Z(ζ)
1566
+
1567
+ 6
1568
+ ζ3−ζ+(ζ4−2ζ2+5)Z(ζ)
1569
+ 6
1570
+ − iτ|k|
1571
+
1572
+
1573
+
1574
+
1575
+ = 1
1576
+ 6
1577
+
1578
+ ζ + 6i|k|3τ 3 − ζ(ζ2 + 5)|k|2τ 2 + 2i(ζ2 + 3)|k|τ
1579
+ +Z(ζ)(ζ2 − (ζ4 + 4ζ2 + 11)|k|2τ 2 + 2iζ3|k|τ − 5) − 4iZ2(ζ)((ζ2 + 1)|k|τ − iζ)
1580
+
1581
+ ,
1582
+ (4.43)
1583
+ which allows us to conclude that
1584
+ det
1585
+
1586
+
1587
+
1588
+ R3 e(w) ⊗ e(w)
1589
+ e− |v|2
1590
+ 2
1591
+ iτk · v − z dv − Id
1592
+
1593
+ � =
1594
+ 1
1595
+ (i|k|τ)5 (Z(ζ) − iτ|k|)2Γτ|k|(ζ)
1596
+ ����
1597
+ ζ=
1598
+ z
1599
+ i|k|τ
1600
+ ,
1601
+ (4.44)
1602
+ by the scaling properties of the determinant function. Consequently, from (4.30) and (4.31)
1603
+ we deduce that
1604
+ σdisc( ˆLk) =
1605
+
1606
+ λ ∈ C : Γτ|k|
1607
+ �−τλ − 1
1608
+ i|k|τ
1609
+
1610
+ = 0
1611
+
1612
+
1613
+
1614
+ λ ∈ C : Z
1615
+ �−τλ − 1
1616
+ i|k|τ
1617
+
1618
+ = iτ|k|
1619
+
1620
+ . (4.45)
1621
+ Typical spectra (4.45) for different wave numbers are shown in Figures 4.1 - 4.3.
1622
+ The
1623
+ explicit transcendental equation (4.45) determining the discrete spectrum is the first main
1624
+
1625
+ EXACT HYDRODYNAMICS FROM LINEAR BGK
1626
+ 17
1627
+
1628
+ -π/2
1629
+ 0
1630
+ π/2
1631
+ π
1632
+ 0.1
1633
+ 1.
1634
+ 10.
1635
+ 100.
1636
+ (a) |k|= 1
1637
+
1638
+ -π/2
1639
+ 0
1640
+ π/2
1641
+ π
1642
+ 0.1
1643
+ 1.
1644
+ 10.
1645
+ 100.
1646
+ (b) |k|=
1647
+
1648
+ 2
1649
+ Figure 4.1. Argument plot of the spectral function (4.44) for τ = 0.5 and
1650
+ different values of |k|. The zeros of the function (4.44) in the complex plane
1651
+ define eigenvalues of the linearized BGK operator. These are points, were
1652
+ a small, counter-clockwise loop runs through the whole rainbow according
1653
+ to multiplicity.
1654
+ result of our paper. It will allow us to draw further conclusions about the discrete (hydro-
1655
+ dynamic) spectrum.
1656
+ 4.3. Existence of a Critical Wave Number and Finiteness of the Hydrodynamic
1657
+ Spectrum. Next, let us prove that there exists a critical wave number kcrit, such that
1658
+ σdisc( ˆLk) = ∅,
1659
+ for |k|> kcrit.
1660
+ (4.46)
1661
+ Proof. First, let us recall that any discrete eigenvalue λ of ˆLk (and hence of L) satisfies
1662
+ − 1
1663
+ τ < ℜλ ≤ 0,
1664
+ (4.47)
1665
+ by (4.9), which we will assume henceforth (of course, it would in fact follow from a slightly
1666
+ more detailed analysis of the following). Since λ and ζ are related by
1667
+ λ = −i|k|τζ + 1
1668
+ τ
1669
+ ,
1670
+ (4.48)
1671
+ this implies that ℜλ = |k|ℑζ − 1
1672
+ τ and consequently
1673
+ 0 < ℑζ ≤
1674
+ 1
1675
+ τ|k|.
1676
+ (4.49)
1677
+
1678
+ 18
1679
+ FLORIAN KOGELBAUER AND ILYA KARLIN
1680
+
1681
+ -π/2
1682
+ 0
1683
+ π/2
1684
+ π
1685
+ 0.1
1686
+ 1.
1687
+ 10.
1688
+ 100.
1689
+ (a) |k|=
1690
+
1691
+ 3
1692
+
1693
+ -π/2
1694
+ 0
1695
+ π/2
1696
+ π
1697
+ 0.1
1698
+ 1.
1699
+ 10.
1700
+ 100.
1701
+ (b) |k|=
1702
+
1703
+ 6
1704
+ Figure 4.2. Argument plot of the spectral function (4.44) for τ = 0.5 and
1705
+ different values of |k|. The zeros of the function (4.44) in the complex plane
1706
+ define eigenvalues of the linearized BGK operator. These are points, were
1707
+ a small, counter-clockwise loop runs through the whole rainbow according
1708
+ to multiplicity. As we approach the critical wave number, the zeros move
1709
+ closer and closer to the essential spectrum (ℜλ = − 1
1710
+ τ )
1711
+ .
1712
+ Our strategy is to apply Rouch´e’s theorem to the function Γτ|k| by splitting it into a
1713
+ dominant part plus an (asymptotically) small part.
1714
+ To this end, we can focus on the
1715
+ family of rectangles Ra = {−a, a, a + i 1
1716
+ τ|k|, −a + i 1
1717
+ τ|k|} for a > 0. First, let us consider the
1718
+ asymptotics of Γτ|k| in ζ for fixed τ|k|.
1719
+ Since we are focused on the upper half-plane, we can consider Z+ defined in (A.10) as an
1720
+ analytic continuation together with its limit on the real line. In particular, we see from
1721
+
1722
+ EXACT HYDRODYNAMICS FROM LINEAR BGK
1723
+ 19
1724
+
1725
+ -π/2
1726
+ 0
1727
+ π/2
1728
+ π
1729
+ 0.1
1730
+ 1.
1731
+ 10.
1732
+ 100.
1733
+ (a) |k|=
1734
+
1735
+ 8
1736
+
1737
+ -π/2
1738
+ 0
1739
+ π/2
1740
+ π
1741
+ 0.1
1742
+ 1.
1743
+ 10.
1744
+ 100.
1745
+ (b) |k|= 3
1746
+ Figure 4.3. Argument plot of the spectral function (4.44) for τ = 0.5 and
1747
+ different values of |k|. The zeros of the function (4.44) in the complex plane
1748
+ define eigenvalues of the linearized BGK operator. These are points, were
1749
+ a small, counter-clockwise loop runs through the whole rainbow according
1750
+ to multiplicity. Since the wave number is above kcrit, there exist, indeed,
1751
+ no zeros.
1752
+ the asymptotics (A.15) that
1753
+ Γτ|k|(z) ∼ 1
1754
+ 6
1755
+
1756
+ ζ + 6i|k|3τ 3 − ζ(ζ2 + 5)|k|2τ 2 + 2i(ζ2 + 3)|k|τ
1757
+ +Z(ζ)(ζ2 − (ζ4 + 4ζ2 + 11)|k|2τ 2 + 2iζ3|k|τ − 5) − 4iZ2(ζ)((ζ2 + 1)|k|τ − iζ)
1758
+
1759
+ ∼ 1
1760
+ 6
1761
+
1762
+ ζ + 6i|k|3τ 3 − ζ(ζ2 + 5)|k|2τ 2 + 2i(ζ2 + 3)|k|τ
1763
+
1764
+
1765
+
1766
+ n=0
1767
+ (2n − 1)! !
1768
+ ζ2n+1
1769
+ (ζ2 − (ζ4 + 4ζ2 + 11)|k|2τ 2 + 2iζ3|k|τ − 5)
1770
+ −4i
1771
+
1772
+
1773
+
1774
+
1775
+ n=0
1776
+ (2n − 1)! !
1777
+ ζ2n+1
1778
+ �2
1779
+ ((ζ2 + 1)|k|τ − iζ)
1780
+
1781
+ � ,
1782
+ (4.50)
1783
+
1784
+ 20
1785
+ FLORIAN KOGELBAUER AND ILYA KARLIN
1786
+ which, after rearranging and regrouping higher-order terms in ζ−1, gives
1787
+ Γτ|k|(z) ∼ 1
1788
+ 6
1789
+
1790
+ ζ + 6i|k|3τ 3 − ζ(ζ2 + 5)|k|2τ 2 + 2i(ζ2 + 3)|k|τ
1791
+ − (ζ−1 + ζ−3)(ζ2 − (ζ4 + 4ζ2 + 11)|k|2τ 2 + 2iζ3|k|τ − 5) + O(|ζ|−1)
1792
+ −4iζ−2((ζ2 + 1)|k|τ − iζ)
1793
+
1794
+ + O(|ζ|−2)
1795
+ ∼ 1
1796
+ 6
1797
+
1798
+ ζ + 6i|k|3τ 3 − |k|2τ 2ζ3 − 5|k|2τ 2ζ + 2i|k|τζ2 + 6i|k|τ
1799
+ − ζ + |k|2τ 2ζ3 + 4|k|2τ 2ζ + 11|k|2τ 2ζ−1 − 2i|k|τζ2 − 5ζ−1
1800
+ − ζ−1 + |k|2τ 2ζ + 4|k|2τ 2ζ−1 + 11|k|2τ 2ζ−2 − 2i|k|τ − 5ζ−3
1801
+ −4i|k|τ − 4i|k|τζ−2 − 4ζ−1 + O(|ζ|−1)
1802
+
1803
+ ∼ i(|k|τ)3 + O(|ζ|−1),
1804
+ (4.51)
1805
+ for |arg(ζ)|≤ π
1806
+ 2 − δ,
1807
+ ζ → ∞, for any real number 0 < δ ≤ π
1808
+ 2 .
1809
+ Remark 4.3. It is a quite remarkable property of the spectral function Γτ|k| that all the
1810
+ polynomial terms (up to order four) cancel exactly with the negative-power terms in the
1811
+ asymptotic expansion (A.15) to give a constant asymptotic value in the limit. This is due
1812
+ to a subtle fine-tuning of the numerical coefficients of the polynomials. This property also
1813
+ guarantees the existence of a critical wave number (and hence implies that there are only
1814
+ finitely many discrete eigenvalues above the essential spectrum). At the outset, it is by no
1815
+ means clear that the spectrum should exhibit this cancellation property. Indeed, numerical
1816
+ investigations actually leave this question unanswered [27].
1817
+ Let us start with estimating Γτ|k| − i(|k|τ)3 on the real line. Because x �→ |Γτ|k|(x) −
1818
+ i(|k|τ)3| is an even function for x ∈ R, we can focus on x > 0. Since Γτ|k|(x) → i(|k|τ)3
1819
+ as x → ∞, we know that x �→ |Γτ|k|(x) − i(|k|τ)3| is bounded on the real line. Since
1820
+ Γτ|k|(x) − i(|k|τ)3 only contains powers of |k| up to order two, we know that there exists
1821
+ a k1 > 0 such that
1822
+ |Γτ|k|(x) − i(|k|τ)3|< (|k|τ)3,
1823
+ (4.52)
1824
+ for all x ∈ R and all |k|> k1.
1825
+ By the same token, we conclude that x �→ |Γτ|k|(x +
1826
+ i
1827
+ |k|τ ) − i(|k|τ)3|, is bounded for x ∈ R
1828
+ since (4.50) holds in cone containing the real axis. Therefore, since again Γτ|k|(x +
1829
+ i
1830
+ |k|τ ) −
1831
+ i(|k|τ)3 is bounded for x ∈ R, there exists a k2 > 0 such that
1832
+ ����Γτ|k|
1833
+
1834
+ x +
1835
+ i
1836
+ |k|τ
1837
+
1838
+ − i(|k|τ)3
1839
+ ���� < (|k|τ)3,
1840
+ (4.53)
1841
+ for all x ∈ R and all |k|> k2.
1842
+ Clearly, an estimate of the form (4.53) for all x ∈ R,
1843
+ 0 ≤ y ≤
1844
+ 1
1845
+ τ|k| and |k|> k3 holds true by compactness and the decay properties of Γτ|k|.
1846
+ This shows that, for |k| large enough, we can bound the function Γτ|k| − i(|k|τ)3 on the
1847
+ rectangle Ra for any a > 0 by the modulus of i(|k|τ)3, which has no zeros in the strip at
1848
+ all (in particular, not in the strip 0 ≤ ℑζ ≤
1849
+ 1
1850
+ τ|k|). For |k| large enough, Rouch´e’s theorem
1851
+
1852
+ EXACT HYDRODYNAMICS FROM LINEAR BGK
1853
+ 21
1854
+ (a) On the real line
1855
+ (b) For ℑζ =
1856
+ 1
1857
+ τ|k|
1858
+ Figure 4.4. The function ζ �→ |Γτ|k|(ζ) − i(|k|τ)3| on the real line and on
1859
+ the line ℑζ =
1860
+ 1
1861
+ τ|k| for τ = 0.5 and |k|= 1 (solid lines) compared to (|k|τ)3
1862
+ (dashed lines).
1863
+ (a) On the real line
1864
+ (b) For ℑζ =
1865
+ 1
1866
+ τ|k|
1867
+ Figure 4.5. The function ζ �→ |Γτ|k|(ζ) − i(|k|τ)3| on the real line and on
1868
+ the line ℑζ =
1869
+ 1
1870
+ τ|k| for|k|= 4 (solid lines) compared to (|k|τ)3 (dashed lines).
1871
+ then implies that Γτ|k| cannot have any zeros for 0 ≤ ℑζ ≤
1872
+ 1
1873
+ τ|k| either.
1874
+ This proves the claim.
1875
+
1876
+ Now, let us prove that
1877
+ Γ2(λ) :=
1878
+ 1
1879
+ (i|k|τ)3 Γτ|k|
1880
+ �−τλ − 1
1881
+ i|k|τ
1882
+
1883
+ (4.54)
1884
+ has exactly three zeros (one real, two complex conjugate, which we will prove later) for |k|
1885
+ small enough.
1886
+
1887
+ TiK
1888
+ 6
1889
+ 5
1890
+ 4 F
1891
+ 3 E
1892
+ 2
1893
+ 4
1894
+ 6
1895
+ 8
1896
+ 10[riki(x)-ik33
1897
+ 0.6
1898
+ 0.5
1899
+ 0.4
1900
+ 0.3
1901
+ 0.2
1902
+ 0.1
1903
+ 2
1904
+ 4
1905
+ 6
1906
+ 8
1907
+ 100.14
1908
+ 0.12
1909
+ 0.10
1910
+ 0.08
1911
+ 2
1912
+ 6
1913
+ 8
1914
+ 10[riki(x)-ik33
1915
+ 5
1916
+ 46
1917
+ 3 E
1918
+ 2
1919
+ 4
1920
+ 6
1921
+ 8
1922
+ 1022
1923
+ FLORIAN KOGELBAUER AND ILYA KARLIN
1924
+ Proof. To this end, we again use the asymptotic expansion (A.15) up to order three for the
1925
+ limit |k|→ 0 together with expansion similar to those derived in (4.50) and (4.51):
1926
+ Γ2(λ) ∼
1927
+ 1
1928
+ 6(i|k|τ)3
1929
+
1930
+ ζ + 6i|k|3τ 3 − ζ(ζ2 + 5)|k|2τ 2 + 2i(ζ2 + 3)|k|τ
1931
+ + Z(ζ)(ζ2 − (ζ4 + 4ζ2 + 11)|k|2τ 2 + 2iζ3|k|τ − 5)
1932
+ −4iZ2(ζ)((ζ2 + 1)|k|τ − iζ)
1933
+ � ���
1934
+ ζ= −τλ−1
1935
+ i|k|τ
1936
+
1937
+ 1
1938
+ 6(i|k|τ)3
1939
+
1940
+ ζ + 6i|k|3τ 3 − ζ(ζ2 + 5)|k|2τ 2 + 2i(ζ2 + 3)|k|τ
1941
+ + (−ζ−1 − ζ−3 − 3ζ−5 + O(|ζ|−7))(ζ2 − (ζ4 + 4ζ2 + 11)|k|2τ 2 + 2iζ3|k|τ − 5)
1942
+ −4i(−ζ−1 − ζ−3 − 3ζ−5 + O(|ζ|−7))2((ζ2 + 1)|k|τ − iζ)
1943
+ � ���
1944
+ ζ= −τλ−1
1945
+ i|k|τ
1946
+ ,
1947
+ (4.55)
1948
+ which, after plugging in the transformation (4.48), gives
1949
+ Γ2(λ) ∼
1950
+ 1
1951
+ 6(i|k|τ)3
1952
+
1953
+ O(|ζ|−3)(|k|τ)2 + 6i(|k|τ)3 + (|k|τ)2 �
1954
+ 18ζ−1 + 23ζ−3 + 33ζ−5�
1955
+ −2i|k|τ
1956
+
1957
+ 9ζ−2 + 18ζ−4 + 26ζ−6 + 30ζ−8 + 18ζ−10�
1958
+
1959
+
1960
+ 6ζ−3 + 13ζ−5 + 24ζ−7 + 36
1961
+ �� ���
1962
+ ζ= −τλ−1
1963
+ i|k|τ
1964
+
1965
+ 1
1966
+ 6(i|k|τ)3
1967
+
1968
+ 6i(|k|τ)3 + 18i(|k|τ)3(−τλ − 1)−1 − 18i(|k|τ|)(i|k|τ)2(−τλ − 1)−2
1969
+ −6(i|k|τ)3(−τλ − 1)−3 + O(|k|4)
1970
+
1971
+ ∼ −
1972
+ λ3
1973
+ (λτ + 1)3 + O(|k|),
1974
+ (4.56)
1975
+ i.e., in the limit |k|→ 0, the spectral function (4.43) has a triple zero at λ = 0. The cubic
1976
+ scaling in |k| in front of the above expression cancels exactly with the terms inside the
1977
+ bracket, leaving only the term λ3 in the limit |k|→ 0. This is consistent with the spectrum
1978
+ of ˆL0 containing zero as an isolated eigenvalue, see (4.20). By continuity of the spectrum,
1979
+ this implies that the there will emanate exactly three discrete eigenvalues as zeros of the
1980
+ spectral function Γτ|k|.
1981
+
1982
+ 4.4. Hydrodynamic Modes and their Corresponding Critical Wave Numbers.
1983
+ Now, let us take a closer look at the eigenvalues. From (4.43), it follows immediately that
1984
+ there exists a sequence of real eigenvalue of algebraic multiplicity two which we call shear
1985
+ mode and denote as |k|�→ λshear(|k|).
1986
+ A closer look at (4.43) reveals that the function Γτ|k| maps imaginary numbers to imaginary
1987
+ numbers (since also Z|iR⊆ iR by (A.6)). As a consequence, Γ2(λ) maps real numbers to
1988
+ real numbers. This shows that, together with the above considerations, that, for each wave
1989
+ number small enough, there exists exactly one real zero and two complex conjugated zeros.
1990
+
1991
+ EXACT HYDRODYNAMICS FROM LINEAR BGK
1992
+ 23
1993
+ Consequently, apart from the shear mode, there exists a sequence of pairs of complex
1994
+ conjugated eigenvalues which we call acoustic modes and denote as |k|�→ λac(|k|) and
1995
+ |k|�→ λ∗
1996
+ ac(|k|). Figure 4.6 shows the distribution of acoustic modes for a given relaxation
1997
+ time and varying wave number.
1998
+ Furthermore, there exists another simple, real eigenvalue called diffusion mode which we
1999
+ denote as |k|�→ λdiff(|k|). Each mode has its own critical wave number. In conclusion, the
2000
+ spectrum is given by
2001
+ σ( ˆLk) =
2002
+
2003
+ −1
2004
+ τ + iR
2005
+
2006
+ ∪ {λshear(|k|), λdiff(|k|), λac(|k|), λ∗
2007
+ ac(|k|)},
2008
+ (4.57)
2009
+ for |k| smaller than the respective critical wave number.
2010
+ Remark 4.4. We note that the eigenvalues (and hence the spectrum) depends on wave
2011
+ number only through τ|k|. This implies that, while the eigenvectors depend on the full
2012
+ wave vector k, the form of the spectrum only depends on the dimensionless parameter τ|k|
2013
+ and the existence of the hydrodynamic manifold (as a linear combination of eigenvectors)
2014
+ is independent of the relaxation time. If the relaxation time decreases, the critical wave
2015
+ number of each mode is increased, thus allowing for more eigenvalues in each family of
2016
+ modes. Consequently, decreasing the relaxation time increases the (finite) dimension of
2017
+ the hydrodynamic manifold.
2018
+ In the limit τ → 0, the eigenvalues accumulate at the essential spectrum and we cannot
2019
+ separate a hydrodynamic manifold any longer, since the corresponding spectral projection
2020
+ does not exist (no closed contour can be defined that encircles the set of discrete eigenvalues,
2021
+ while not intersecting the essential spectrum).
2022
+ To finish the spectral analysis, let us derive some information about the critical wave
2023
+ number of the four hydrodynamic modes. Since |Z|≤ � π
2024
+ 2 with equality exactly at zero
2025
+ (continuously extended from both sides), we immediately conclude that
2026
+ kcrit(λshear) =
2027
+ �π
2028
+ 2
2029
+ 1
2030
+ τ ≈ 1.253311
2031
+ τ .
2032
+ (4.58)
2033
+ from equation (4.45). This is consistent with the result obtained in [29] (equation (2.53)
2034
+ in [29]).
2035
+ Since the diffusion mode is real, and wanders from zero to − 1
2036
+ τ as |k| increases, we can
2037
+ recover the critical wave number by taking the limit λ → − 1
2038
+ τ (on the branch Z+) in (4.43).
2039
+ Since limζ→0,ℑζ>0 Z(ζ) = i�π
2040
+ 2 , see (A.14), we obtain the critical wave number kcrit(λdiff)
2041
+ as a zero of the cubic polynomial
2042
+ 6(kτ)3 − 11
2043
+ �π
2044
+ 2 (kτ)2 + (6 + 2π) kτ − 5
2045
+ �π
2046
+ 2 = 0.
2047
+ (4.59)
2048
+ The only real solution is approximately given by
2049
+ kcrit(λdiff) ≈ 1.356031
2050
+ τ .
2051
+ (4.60)
2052
+
2053
+ 24
2054
+ FLORIAN KOGELBAUER AND ILYA KARLIN
2055
+ Figure 4.6. The acoustic modes for τ = 0.001 and wave numbers up to
2056
+ the critical wave number together withe the vertical line ℜλ = − 1
2057
+ τ
2058
+ Now, let us turn to the acoustic mode. We know that at the critical wave number, the two
2059
+ complex conjugated acoustic modes will merge into the essential spectrum. This happens
2060
+ when ℜλ = − 1
2061
+ τ . So, let us assume that λ = − 1
2062
+ τ − i|k|x, which amount to setting ζ = x in
2063
+ (4.43). We obtain two equations (real and imaginary part of Γτ|k|(x)):
2064
+ 1
2065
+ 12e−x2 �
2066
+ erfi
2067
+ � x
2068
+
2069
+ 2
2070
+ � �√
2071
+ 2π(τ|k|)2e
2072
+ x2
2073
+ 2 �
2074
+ x4 + 4x2 + 11
2075
+
2076
+ − 8πτ|k|
2077
+
2078
+ x2 + 1
2079
+
2080
+
2081
+
2082
+ 2πe
2083
+ x2
2084
+ 2 �
2085
+ x2 − 5
2086
+ ��
2087
+ −4πxerfi
2088
+ � x
2089
+
2090
+ 2
2091
+ �2
2092
+ − 2x
2093
+
2094
+ ex2 �
2095
+ (τ|k|)2 �
2096
+ x2 + 5
2097
+
2098
+ − 1
2099
+
2100
+ +
2101
+
2102
+ 2πτ|k|e
2103
+ x2
2104
+ 2 x2 − 2π
2105
+ ��
2106
+ = 0,
2107
+ 1
2108
+ 12e−x2
2109
+
2110
+ −4πτ|k|
2111
+
2112
+ x2 + 1
2113
+
2114
+ erfi
2115
+ � x
2116
+
2117
+ 2
2118
+ �2
2119
+ + erfi
2120
+ � x
2121
+
2122
+ 2
2123
+ � �
2124
+ 8πx − 2
2125
+
2126
+ 2πτ|k|e
2127
+ x2
2128
+ 2 x3
2129
+
2130
+ + 4τ|k|ex2 �
2131
+ 3τ|k|2+x2 + 3
2132
+
2133
+ +
2134
+
2135
+ 2πe
2136
+ x2
2137
+ 2 �
2138
+
2139
+
2140
+ (τ|k|)2 �
2141
+ x4 + 4x2 + 11
2142
+ ��
2143
+ + x2 − 5
2144
+
2145
+ + 4πτ|k|
2146
+
2147
+ x2 + 1
2148
+ ��
2149
+ = 0,
2150
+ (4.61)
2151
+ for x ∈ R. The zero sets of equations (4.61) are shown in Figure 4.7.
2152
+ Solving system (4.61) numerically gives the following approximation for the critical wave
2153
+ number of the acoustic mode:
2154
+ kcrit(λac) = kcrit(λ∗
2155
+ ac) ≈ 1.311761
2156
+ τ .
2157
+ (4.62)
2158
+ Remark 4.5. The critical wave numbers obtained before depend inversely on the (non-
2159
+ dimensional) relaxation parameter. Transforming back to physical units, we see that the
2160
+
2161
+ Im(>)
2162
+ 1500
2163
+ 1000
2164
+ 500
2165
+ Re(^)
2166
+ -1000
2167
+ 800
2168
+ 600
2169
+ 400
2170
+ -200
2171
+ 500
2172
+ -1000
2173
+ -1500EXACT HYDRODYNAMICS FROM LINEAR BGK
2174
+ 25
2175
+ Figure 4.7. The zero sets of equations (4.61).
2176
+ The intersection of the
2177
+ solid line (ℜΓτ|k|(x)) with the dashed line (ℑΓτ|k|(x)) gives the critical wave
2178
+ numbers for the acoustic modes (and the diffusion mode on the real line as
2179
+ well).
2180
+ critical wave number is numerically proportional to the inverse mean-free path (3.32).
2181
+ Indeed, we obtain that
2182
+ kcrit ∼
2183
+
2184
+ kBT0
2185
+ m
2186
+ 1
2187
+ τphys
2188
+
2189
+ 1
2190
+ lmfp
2191
+ .
2192
+ (4.63)
2193
+ 5. Linear Hydrodynamic Manifolds
2194
+ In this section, we give a description of the hydrodynamic manifolds together with
2195
+ their respective dynamics. We define the hydrodynamic manifold through the following
2196
+ properties:
2197
+ (1) It contains an appropriately scaled, spatially independent stationary distribution
2198
+ (e.g. global Maxwellian) as a base solution
2199
+ (2) The projection onto the hydrodynamic moments along the manifold provide a clo-
2200
+ sure of the hydrodynamic moments (mass-density, velocity and temperature)
2201
+ (3) It attracts all trajectories in the space of probability-density functions (which are
2202
+ close enough to the base solution) exponentially fast, thus acting as a slow manifold
2203
+ (4) It is unique.
2204
+ From the explicit analysis in the previous section, we know that the addition of P5 only
2205
+ adds finitely many discrete eigenvalues to the spectrum. Let us take a closer look at their
2206
+
2207
+ .5
2208
+ 0
2209
+ 0.5
2210
+ 0026
2211
+ FLORIAN KOGELBAUER AND ILYA KARLIN
2212
+ associated eigenvectors.
2213
+ For each wave number k ∈ Z3, the eigenvectors associated to
2214
+ λN(τ|k|), N ∈ Modes, where Modes = {diff, shear, ac, ac∗}, satisfy the equation
2215
+ − iv · k ˆfeig
2216
+ N,j − 1
2217
+ τ
2218
+ ˆfeig
2219
+ N,j + 1
2220
+ τ P5 ˆfeig
2221
+ N,j = λN(τ|k|) ˆfeig
2222
+ N,j,
2223
+ (5.1)
2224
+ where 1 ≤ j ≤ µN(|k|) denotes the geometric multiplicity of λN(τ|k|). Defining
2225
+ αN,j,l(k) := ⟨ ˆfeig
2226
+ N,j,k(v, k), el(v)⟩v,
2227
+ (5.2)
2228
+ we can rewrite (5.1) as
2229
+ ˆfeig
2230
+ N,j(v, k) =
2231
+ 1
2232
+ iτk · v + 1 + τλN(τ|k|)
2233
+ 4
2234
+
2235
+ l=0
2236
+ αN,j,l(k)el(v).
2237
+ (5.3)
2238
+ To omit cluttering in the notation, we will suppressed the dependence of αN,j,l on k. Taking
2239
+ an inner product with ep(v) in (5.3) gives
2240
+ αN,j,p =
2241
+ 4
2242
+
2243
+ l=0
2244
+ αN,j,l
2245
+
2246
+ R3 el(v)ep(v)
2247
+ e− |v|2
2248
+ 2
2249
+ iτk · v + 1 + τλN(τ|k|) dv,
2250
+ (5.4)
2251
+ which is equivalent to the non-invertibilty of the matrix (Id − GS) in equation (4.29) and
2252
+ (4.30) for z = −1 − τλN(τ|k|). Indeed, denoting αN,j = (αN,j,0, .., αN,j,4), it follows that
2253
+ αN,j ∈ ker((Id − GS))|z=−1−τλN(τ|k|).
2254
+ (5.5)
2255
+ This defines the eigenvector (5.3) for each wave number k and each mode N completely.
2256
+ To obtain the closure relation for the linearized hydrodynamic variables (nlin, ulin, Tlin),
2257
+ we define a solution to the linearized dynamics (4.4) as
2258
+ fhydro(x, v, t) =
2259
+
2260
+ |k|≤kcrit
2261
+
2262
+ N∈Modes
2263
+ µN(k)
2264
+
2265
+ j=1
2266
+ ˆfeig
2267
+ N,j(v, k)eλN(τ|k|)t+ik·x,
2268
+ (5.6)
2269
+ where we set
2270
+ ˆfeig
2271
+ N,j,k = 0,
2272
+ if |k|> kcrit(λN),
2273
+ (5.7)
2274
+ and µN(k).
2275
+ Following (3.33), let
2276
+ Θ := (2π)
2277
+ 3
2278
+ 4 v3
2279
+ thermal
2280
+ n0
2281
+
2282
+
2283
+ n0
2284
+ 01×3
2285
+ 0
2286
+ 03×1
2287
+ vthermalI3×3
2288
+ 03×1
2289
+ −T0
2290
+ 01×3
2291
+ T0
2292
+ 3
2293
+
2294
+ � ,
2295
+ (5.8)
2296
+ denote the matrix that realized the linear coordinate change
2297
+ (nlin, ulin, Tlin)T = Θe.
2298
+ (5.9)
2299
+
2300
+ EXACT HYDRODYNAMICS FROM LINEAR BGK
2301
+ 27
2302
+ On the hydrodynamic manifold defined by (5.7), the variables (nlin, ulin, Tlin) evolve ac-
2303
+ cording to an explicit (non-local) system. Indeed, in frequency space, denoting the Fourier
2304
+ coefficients of (nlin, ulin, Tlin) as (ˆnlin, ˆulin, ˆTlin) we find that
2305
+ (ˆnlin, ˆulin, ˆTlin) = Θdiag(⟨ ˆfhydro, e⟩)e,
2306
+ (5.10)
2307
+ which, setting αN = �µN
2308
+ j=1 αN,j and defining
2309
+ α := [αshear, αdiff, αac, αac∗],
2310
+ (5.11)
2311
+ as well as Λ = diag(λshear, λdiff, λac, λac∗), λ = etΛ, can be written more explicitly as
2312
+ (ˆnlin, ˆulin, ˆTlin) = Θdiag(αλ)e.
2313
+ (5.12)
2314
+ We can invert for e,
2315
+ e = (Θdiag(αλ))−1(ˆnlin, ˆulin, ˆTlin),
2316
+ (5.13)
2317
+ and, finally, taking a time derivative, we arrive at
2318
+
2319
+ ∂t(ˆnlin, ˆulin, ˆTlin) = Θdiag(αΛλ)(Θdiag(αλ))−1(ˆnlin, ˆulin, ˆTlin).
2320
+ (5.14)
2321
+ This defines a (non-local) closure to the linearized dynamics (3.1).
2322
+ Since - up to the
2323
+ conserved quantities (3.15) - any solution approaches the slow dynamics given by (5.7)
2324
+ exponentially fast in time, the closure (5.14) defines the unique, global, hydrodynamic
2325
+ limit of (3.1).
2326
+ 6. Conclusion and Further Perspectives
2327
+ We have given a complete and (up to the solution of a transcendental equation) explicit
2328
+ description of the spectrum of the three-dimensional BGK equation linearized around a
2329
+ global Maxwellian. Further, we identified (and therefore confirmed) the existence of three
2330
+ families of modes (shear, diffusion and acoustic) and we gave a description of critical wave
2331
+ numbers. The analysis allowed us to infer that the discrete spectrum consists of a finite
2332
+ number of eigenvalues, thus implying that the dispersion relation remains bounded also for
2333
+ the acoustic modes.
2334
+ Let us give an outlook on some future lines of research in this context. We expect that
2335
+ the results obtained in this paper are explicit enough to carry out a comparison of viscous
2336
+ dissipation versus capillarity as carried out in [37] for the three-dimensional Grad system.
2337
+ Furthermore, the explicit knowledge of the spectral function (4.43) allows us to infer more
2338
+ refined approximations to the exact non-local hydrodynamics. This will involve expansions
2339
+ not in terms of relaxation time or wave number, but much rather in terms of the variable
2340
+ ζ in (4.43). This could also improve present numerical methods [27].
2341
+ Finally, the spectral properties of the linear three-dimensional BGK equation will also serve
2342
+ as the basis for nonlinear analysis in terms of invariant manifolds. Indeed, the fact that the
2343
+ discrete spectrum is well separated from the essential spectrum allows us to define a spectral
2344
+ projection for the whole set of eigenvalues, thus giving the first-order approximation (in
2345
+ terms of nonlinear deformations) to the hydrodynamic manifolds. In particular, we expect
2346
+
2347
+ 28
2348
+ FLORIAN KOGELBAUER AND ILYA KARLIN
2349
+ that the theory of thermodynamic projectors [20] may be helpful in proving the nonlinear
2350
+ extension.
2351
+ Acknowledgement
2352
+ This work was supported by European Research Council (ERC) Advanced Grant no.
2353
+ 834763-PonD (F.K. and I.K.).
2354
+ Data Availability Statement
2355
+ All data generated or analysed during this study are included in this published article
2356
+ (and its supplementary information files).
2357
+ Appendix A. Some Properties of the Plasma Dispersion Function
2358
+ In the following, we collect some properties of the integral expression (4.39). In partic-
2359
+ ular, to evaluate the integral in (4.39) in terms of error functions, we rely on the identities
2360
+ in [1, p.297]. Let
2361
+ w(z) = e−z2(1 − erf(−iz)),
2362
+ z ∈ C,
2363
+ (A.1)
2364
+ which satisfies the functional identity
2365
+ w(−z) = 2e−z2 − w(z),
2366
+ z ∈ C.
2367
+ (A.2)
2368
+ Function (A.1) is called Faddeeva function and is frequently encountered in problems re-
2369
+ lated to kinetic equations [17]. We then have that
2370
+ w(z) = i
2371
+ π
2372
+
2373
+ R
2374
+ e−s2
2375
+ z − s ds,
2376
+ ℑz > 0,
2377
+ (A.3)
2378
+ and, by relation (A.2), we have for ℑz < 0:
2379
+ i
2380
+ π
2381
+
2382
+ R
2383
+ e−s2
2384
+ z − s ds = − i
2385
+ π
2386
+
2387
+ R
2388
+ e−s2
2389
+ (−z) + s ds
2390
+ = − i
2391
+ π
2392
+
2393
+ R
2394
+ e−s2
2395
+ (−z) − s ds
2396
+ = −w(−z)
2397
+ = e−z2[−1 − erf(−iz)].
2398
+ (A.4)
2399
+
2400
+ EXACT HYDRODYNAMICS FROM LINEAR BGK
2401
+ 29
2402
+ (a) Argument Plot of Z
2403
+ (b) Modulus-Argument Plot of Z
2404
+ Figure A.1. Complex plots of the function Z.
2405
+ Consequently, we obtain
2406
+
2407
+ R
2408
+ 1
2409
+ s − z e− s2
2410
+ 2 ds =
2411
+
2412
+ R
2413
+ e−s2
2414
+ s −
2415
+ z
2416
+
2417
+ 2
2418
+ ds
2419
+ = iπ i
2420
+ π
2421
+
2422
+ R
2423
+ e−s2
2424
+ z
2425
+
2426
+ 2 − s ds
2427
+ =
2428
+
2429
+
2430
+
2431
+ iπe− z2
2432
+ 2
2433
+
2434
+ 1 − erf
2435
+
2436
+ −iz
2437
+
2438
+ 2
2439
+ ��
2440
+ ,
2441
+ if ℑz > 0,
2442
+ iπe− z2
2443
+ 2
2444
+
2445
+ −1 − erf
2446
+
2447
+ −iz
2448
+
2449
+ 2
2450
+ ��
2451
+ ,
2452
+ if ℑz < 0,
2453
+ (A.5)
2454
+ where in the first step, we have re-scaled s �→
2455
+
2456
+ 2s in the integral. Written more compactly,
2457
+ we arrive at
2458
+ Z(z) = i
2459
+ �π
2460
+ 2 e− z2
2461
+ 2
2462
+
2463
+ sign(ℑz) − erf
2464
+ �−iz
2465
+
2466
+ 2
2467
+ ��
2468
+ ,
2469
+ ℑz ̸= 0.
2470
+ (A.6)
2471
+ An an argument plot together with an modulus-argument plot of Z are shown in Figure
2472
+ A.1.
2473
+ Clearly, Z is discontinuous across the real line (albeit that Z|R exists in the sense
2474
+ of principal values as the Hilbert transform of a real Gaussian [13]). The properties
2475
+ |Z(z)|≤
2476
+ �π
2477
+ 2 , for z ∈ C \ R,
2478
+ 0 < arg Z(z) < π for ℑ(z) > 0,
2479
+ −π < arg Z(z) < 0 for ℑ(z) < 0,
2480
+ (A.7)
2481
+ are easy to show and can be read off from the plots (A.1) directly as well.
2482
+ Function (A.6) satisfies an ordinary differential equation (in the sense of complex analytic
2483
+
2484
+ 4
2485
+ 100=
2486
+ T
2487
+ 2
2488
+ 元/2
2489
+ 10=
2490
+ 0
2491
+ -
2492
+ -元/2
2493
+ -2
2494
+ 0.1 =
2495
+ -元
2496
+ -4
2497
+ 2
2498
+ 0
2499
+ 2
2500
+ 4Im()
2501
+ 0
2502
+ 100
2503
+ 1.
2504
+ 元/2
2505
+ -5/
2506
+ -0
2507
+ 1.0
2508
+ Zo()
2509
+ 一元2
2510
+ 0.5
2511
+ 0.1#
2512
+ 5
2513
+ 0
2514
+ Re()
2515
+ 530
2516
+ FLORIAN KOGELBAUER AND ILYA KARLIN
2517
+ functions) on the upper and on the lower half-plane. Indeed, integrating (4.39) by parts
2518
+ gives
2519
+ 1 =
2520
+ 1
2521
+
2522
+
2523
+
2524
+ R
2525
+ (v − z) e− v2
2526
+ 2
2527
+ v − z dv = −zZ +
2528
+ 1
2529
+
2530
+
2531
+
2532
+ R
2533
+ v e− v2
2534
+ 2
2535
+ v − z dv
2536
+ = −zZ −
2537
+ 1
2538
+
2539
+
2540
+
2541
+ R
2542
+ e− v2
2543
+ 2
2544
+ (v − z)2 dv = −zZ − d
2545
+ dz Z,
2546
+ (A.8)
2547
+ which implies that Z satisfies the differential equation
2548
+ d
2549
+ dz Z = −zZ − 1,
2550
+ (A.9)
2551
+ for z ∈ C \ R. Formula (A.9) can also be used as a recurrence relation for the higher
2552
+ derivatives of Z.
2553
+ Since we will be interested in function (A.6) for ℑz positive and negative as global functions,
2554
+ we define
2555
+ Z+(z) = i
2556
+ �π
2557
+ 2 e− z2
2558
+ 2
2559
+
2560
+ 1 − erf
2561
+ �−iz
2562
+
2563
+ 2
2564
+ ��
2565
+ ,
2566
+ Z−(z) = i
2567
+ �π
2568
+ 2 e− z2
2569
+ 2
2570
+
2571
+ −1 − erf
2572
+ �−iz
2573
+
2574
+ 2
2575
+ ��
2576
+ ,
2577
+ (A.10)
2578
+ for all z ∈ C. Both functions can be extended to analytic functions on the whole complex
2579
+ plane via analytic continuation.
2580
+ Recall that the error function has the properties that
2581
+ erf(−z) = −erf(z),
2582
+ erf(z∗) = erf(z)∗,
2583
+ (A.11)
2584
+ for all z ∈ C, which implies that for x ∈ R,
2585
+ erf(ix) = −erf(−ix) = −erf(ix)∗,
2586
+ (A.12)
2587
+ i.e, the error function maps imaginary numbers to imaginary numbers. Defining the imag-
2588
+ inary error function,
2589
+ erfi(z) := −ierf(iz),
2590
+ (A.13)
2591
+ for z ∈ C, which, by (A.12) satisfies erfi|R⊂ R, it follows that for x ∈ R:
2592
+ ℜZ+(x) = −
2593
+ �π
2594
+ 2 e− x2
2595
+ 2 erfi
2596
+ � x
2597
+
2598
+ 2
2599
+
2600
+ ,
2601
+ ℑZ+(x) = −
2602
+ �π
2603
+ 2 e− x2
2604
+ 2 ,
2605
+ (A.14)
2606
+ similarly for Z−(x).
2607
+ Next, let us prove the following asymptotic expansion of Z+:
2608
+ Z+(z) ∼ −
2609
+
2610
+
2611
+ n=0
2612
+ (2n − 1)! !
2613
+ z2n+1
2614
+ ,
2615
+ for |arg(z)|≤ π
2616
+ 2 − δ,
2617
+ z → ∞,
2618
+ (A.15)
2619
+
2620
+ EXACT HYDRODYNAMICS FROM LINEAR BGK
2621
+ 31
2622
+ for any 0 < δ ≤ π
2623
+ 2 . The proof will be based on a generalized version of Watson’s Lemma
2624
+ [41]. To this end, let us define the Laplace transform
2625
+ L[f](z) =
2626
+ � ∞
2627
+ 0
2628
+ f(x)e−zx dx,
2629
+ z ∈ C,
2630
+ (A.16)
2631
+ of an integrable function f : [0, ∞) → C.
2632
+ Lemma A.1. [Generalized Watson’s Lemma] Assume that (A.16) exists for some z = z0 ∈ C
2633
+ and assume that f admits an asymptotic expansion of the form
2634
+ f(x) =
2635
+ N
2636
+
2637
+ n=0
2638
+ anxβn−1 + o(xβN−1),
2639
+ x > 0,
2640
+ x → 0,
2641
+ (A.17)
2642
+ where an ∈ C and βn ∈ C with ℜβ0 > 0 and ℜβn > ℜβn−1 for 1 ≤ n ≤ N. Then L[f](z)
2643
+ admits an asymptotic expansion of the form
2644
+ L[f](z) =
2645
+ N
2646
+
2647
+ n=0
2648
+ anΓ(βn)z−βn + o(z−βN ),
2649
+ v,
2650
+ z → ∞,
2651
+ (A.18)
2652
+ for any real number 0 < δ ≤ π
2653
+ 2 , where Γ is the standard Gamma function.
2654
+ For a proof of the above Lemma, we refer e.g. to [16]. Classically, Lemma (A.1) is
2655
+ applied to prove that the imaginary error function admits an asymptotic expansion for
2656
+ x ∈ R of the form
2657
+ erfi(x) ∼ ex2
2658
+ √πx
2659
+
2660
+
2661
+ k=0
2662
+ (2k − 1)! !
2663
+ (2x2)k
2664
+ ,
2665
+ for x > 0,
2666
+ x → ∞,
2667
+ (A.19)
2668
+ see also [31], based on the classical version of Watson’s Lemma, whose assumptions are,
2669
+ however, unnecessarily restrictive [43].
2670
+ For completeness, we recall the derivation of (A.15) based on Lemma A.1. First, let us
2671
+ rewrite erfi as a Laplace transform using the change of variables t = √1 − s with dt =
2672
+ ds
2673
+ 2√1−s
2674
+ erfi(z) =
2675
+ � 1
2676
+ 0
2677
+ d
2678
+ dterfi(tz) dt = 2z
2679
+ √π
2680
+ � 1
2681
+ 0
2682
+ et2z2 dt = 2z
2683
+ √π
2684
+ � 1
2685
+ 0
2686
+ ez2(1−s)
2687
+ ds
2688
+ 2√1 − s
2689
+ = zez2
2690
+ √π
2691
+ � 1
2692
+ 0
2693
+ 1
2694
+ √1 − se−sz2 ds = zez2
2695
+ √π
2696
+ � ∞
2697
+ 0
2698
+ χ[0,1](s)
2699
+ √1 − s e−sz2 ds.
2700
+ (A.20)
2701
+ From the Taylor expansion of the Binomial function, we know that
2702
+ 1
2703
+ √1 − s =
2704
+
2705
+
2706
+ n=0
2707
+ �− 1
2708
+ 2
2709
+ n
2710
+
2711
+ (−s)n =
2712
+
2713
+
2714
+ n=0
2715
+ 4−n
2716
+ �2n
2717
+ n
2718
+
2719
+ sn,
2720
+ (A.21)
2721
+
2722
+ 32
2723
+ FLORIAN KOGELBAUER AND ILYA KARLIN
2724
+ which allows us to apply Lemma (A.1) with βn = n + 1 and an = 4−n�2n
2725
+ n
2726
+
2727
+ , thus leading to
2728
+ erfi(z) ∼ zez2
2729
+ √π
2730
+
2731
+
2732
+ n=0
2733
+ 4−n
2734
+ �2n
2735
+ n
2736
+
2737
+ Γ(n + 1)z−2(n+1)
2738
+ ∼ ez2
2739
+ √π
2740
+
2741
+
2742
+ n=0
2743
+ (2n)!
2744
+ 4nn! z−2n−1
2745
+ ∼ ez2
2746
+ z√π
2747
+
2748
+
2749
+ n=0
2750
+ (2n − 1)! !
2751
+ (2z)n
2752
+ ,
2753
+ (A.22)
2754
+ for z → ∞ and |arg(z)|≤ π
2755
+ 2 − δ, 0 < δ ≤ π
2756
+ 2 . This is consistent with formula (A.19) for the
2757
+ limit along the real line. Finally, we arrive at the following asymptotic expansion for Z:
2758
+ Z+(z) ∼ i
2759
+ �π
2760
+ 2 e− z2
2761
+ 2 −
2762
+
2763
+
2764
+ n=0
2765
+ (2n − 1)! !
2766
+ z2n+1
2767
+ ,
2768
+ for |arg(z)|≤ π
2769
+ 2 − δ,
2770
+ z → ∞,
2771
+ (A.23)
2772
+ which is, of course, equivalent to
2773
+ Z+(z) ∼ −
2774
+
2775
+
2776
+ n=0
2777
+ (2n − 1)! !
2778
+ z2n+1
2779
+ ,
2780
+ for |arg(z)|≤ π
2781
+ 2 − δ,
2782
+ z → ∞,
2783
+ (A.24)
2784
+ since |e−z2|2= e−2(x2−y2) → 0 for ℜz = x → ∞.
2785
+ References
2786
+ [1] M. Abramowitz and I. A. Stegun. Handbook of mathematical functions with formulas, graphs, and
2787
+ mathematical tables, volume 55. US Government printing office, 1948.
2788
+ [2] C. Bardos, F. Golse, and C. D. Levermore. Fluid dynamic limits of kinetic equations ii. Convergence
2789
+ proofs for the Boltzmann equation. Communications on pure and applied mathematics, 46(5):667–753,
2790
+ 1993.
2791
+ [3] P. L. Bhatnagar, E. P. Gross, and M. Krook. A model for collision processes in gases. I. small amplitude
2792
+ processes in charged and neutral one-component systems. Physical review, 94(3):511, 1954.
2793
+ [4] A. Bobylev. The Chapman-Enskog and Grad methods for solving the Boltzmann equation. In
2794
+ Akademiia Nauk SSSR Doklady, volume 262, pages 71–75, 1982.
2795
+ [5] A. Bobylev. The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules.
2796
+ Soviet Scientific Reviews. Section C, 7, 01 1988.
2797
+ [6] A. V. Bobylev. Instabilities in the Chapman–Enskog expansion and hyperbolic Burnett equations.
2798
+ Journal of statistical physics, 124(2):371–399, 2006.
2799
+ [7] R. E. Caflisch. The Boltzmann equation with a soft potential. Communications in Mathematical
2800
+ Physics, 74(1):71–95, 1980.
2801
+ [8] T. Carleman. Problemes math´ematiques dans la th´eorie cin´etique des gaz, volume 2. Almqvist & Wik-
2802
+ sells boktr., 1957.
2803
+ [9] T. Carty. Grossly determined solutions for a Boltzmann-like equation. Kinetic and Related Models,
2804
+ 10(4):957–976, 2017.
2805
+ [10] T. E. Carty. Elementary solutions for a model Boltzmann equation in one dimension and the connection
2806
+ to grossly determined solutions. Physica D: Nonlinear Phenomena, 347:1–11, 2017.
2807
+ [11] C. W. Chang, J. Foch, G. W. Ford, and G. E. Uhlenbeck. Studies in Statistical Mechanics. North-
2808
+ Holland, 1970.
2809
+
2810
+ EXACT HYDRODYNAMICS FROM LINEAR BGK
2811
+ 33
2812
+ [12] S. Chapman and T. Cowling. The Mathematical Theory of Non-uniform Gases: An Account of the
2813
+ Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge Mathematical
2814
+ Library. Cambridge University Press, 1990.
2815
+ [13] B. Conte and S. Conte. The Plasma Dispersion Function: The Hilbert Transform of the Gaussian.
2816
+ Academic Press, 1961.
2817
+ [14] L. Desvillettes, C. Mouhot, and C. Villani. Celebrating Cercignani’s conjecture for the Boltzmann
2818
+ equation. Kinetic and Related Models, 4, 09 2010.
2819
+ [15] R. S. Ellis and M. A. Pinsky. The first and second fluid approximations to the linearized Boltzmann
2820
+ equation. J. Math. Pures Appl, 54(9):125–156, 1975.
2821
+ [16] A. Erd´elyi. General asymptotic expansions of Laplace integrals. Archive for Rational Mechanics and
2822
+ Analysis, 7(1):1–20, 1961.
2823
+ [17] R. Fitzpatrick. Plasma Physics: An Introduction. Taylor & Francis, 2014.
2824
+ [18] A. Gorban and I. Karlin. Hilbert’s 6th problem: Exact and approximate hydrodynamic manifolds for
2825
+ kinetic equations. Bulletin of the American Mathematical Society, 51:186–246, 11 2013.
2826
+ [19] A. N. Gorban and I. V. Karlin. Method of invariant manifolds and regularization of acoustic spectra.
2827
+ Transport Theory and Statistical Physics, 23:559–632, 1994.
2828
+ [20] A. N. Gorban and I. V. Karlin. Uniqueness of thermodynamic projector and kinetic basis of molecular
2829
+ individualism. Physica A: Statistical Mechanics and its Applications, 336(3):391–432, 2004.
2830
+ [21] A. N. Gorban and I. V. Karlin. Invariant Manifolds for Physical and Chemical Kinetics, volume 660
2831
+ of Lecture Notes in Physics. Springer Science & Business Media, 2005.
2832
+ [22] H. Grad. On the kinetic theory of rarefied gases. Communications on pure and applied mathematics,
2833
+ 2(4):331–407, 1949.
2834
+ [23] H. Grad. Asymptotic theory of the Boltzmann equation. The physics of Fluids, 6(2):147–181, 1963.
2835
+ [24] H. Grad. Asymptotic equivalence of the Navier–Stokes and nonlinear Boltzmann equations. Magneto-
2836
+ Fluid Dynamics Division, Courant Institute of Mathematical Sciences, 1964.
2837
+ [25] D. Hilbert. Grundz¨uge einer allgemeinen Theorie der linearen Integralgleichungen, volume 3. BG Teub-
2838
+ ner, 1912.
2839
+ [26] D. Hilbert et al. Mathematical problems. Bulletin of American Mathematical Society, 37(4):407–436,
2840
+ 2000.
2841
+ [27] I. V. Karlin, M. Colangeli, and M. Kr¨oger. Exact linear hydrodynamics from the Boltzmann equation.
2842
+ Physical Review Letters, 100(21):214503, 2008.
2843
+ [28] F. Kogelbauer. Slow hydrodynamic manifolds for the three-component linearized Grad system. Con-
2844
+ tinuum Mechanics and Thermodynamics, Aug 2019.
2845
+ [29] F. Kogelbauer. Non-local hydrodynamics as a slow manifold for the one-dimensional kinetic equation.
2846
+ Continuum Mechanics and Thermodynamics, 33, 03 2021.
2847
+ [30] P. Kurasov and S.-T. Kuroda. Krein’s resolvent formula and perturbation theory. Journal of Operator
2848
+ Theory, pages 321–334, 2004.
2849
+ [31] F. Olver. Asymptotics and special functions. AK Peters/CRC Press, 1997.
2850
+ [32] B. Perthame. Global existence to the BGK model of Boltzmann equation. Journal of Differential
2851
+ equations, 82(1):191–205, 1989.
2852
+ [33] B. Perthame and M. Pulvirenti. Weighted L∞ bounds and uniqueness for the Boltzmann BGK model.
2853
+ Archive for rational mechanics and analysis, 125(3):289–295, 1993.
2854
+ [34] P. Rosenau. Extending hydrodynamics via the regularization of the Chapman–Enskog expansion. Phys.
2855
+ Rev. A, 40:7193–7196, Dec 1989.
2856
+ [35] L. Saint-Raymond. Discrete time Navier–Stokes limit for the BGK Boltzmann equation. Comm. in
2857
+ Partial Differential Equations, 27(1 and 2):149–184, 08 2006.
2858
+ [36] L. Saint-Raymond. A mathematical PDE perspective on the Chapman–Enskog expansion. Bulletin of
2859
+ the American Mathematical Society, 51(2):247–275, 2014.
2860
+ [37] M. Slemrod. Chapman–Enskog
2861
+ =⇒
2862
+ viscosity-capillarity. Quarterly of Applied Mathematics,
2863
+ 70(3):613–624, 2012.
2864
+
2865
+ 34
2866
+ FLORIAN KOGELBAUER AND ILYA KARLIN
2867
+ [38] G. Teschl. Jacobi operators and completely integrable nonlinear lattices. Number 72. American Mathe-
2868
+ matical Soc., 2000.
2869
+ [39] C. Truesdell and R. G. Muncaster. Fundamentals of Maxwel’s Kinetic Theory of a Simple Monatomic
2870
+ Gas: Treated as a Branch of Rational Mechanics. Academic Press, 1980.
2871
+ [40] C. Villani. Hypocoercivity. arXiv preprint math/0609050, 2006.
2872
+ [41] G. N. Watson. The harmonic functions associated with the parabolic cylinder. Proceedings of the
2873
+ London Mathematical Society, s2-17(1):116–148, 1918.
2874
+ [42] A. Weinstein. On nonselfadjoint perturbations of finite rank. Journal of Mathematical Analysis and
2875
+ Applications, 45(3):604–614, 1974.
2876
+ [43] R. Wong and M. Wyman. Generalization of Watson’s lemma. Canadian Journal of Mathematics,
2877
+ 24(2):185–208, 1972.
2878
+ ETH Z¨urich, Department of Mechanical and Process Engineering, Leonhardstrasse 27,
2879
+ 8092 Z¨urich, Switzerland
2880
+ Email address: [email protected]
2881
+ ETH Z¨urich, Department of Mechanical and Process Engineering, Leonhardstrasse 27,
2882
+ 8092 Z¨urich, Switzerland
2883
+ Email address: [email protected]
2884
+
4tE1T4oBgHgl3EQfSwM3/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
59AyT4oBgHgl3EQfpfhu/content/2301.00526v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03578ed614506b9b96fe52f523d5150508cd4fede3deceeeafef27b5c20ec505
3
+ size 3039389
59AyT4oBgHgl3EQfpfhu/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92e940083fcdb9a658ccb5807818e00a1681d73d345344f57e1c07ee850c0915
3
+ size 150229
6NAzT4oBgHgl3EQfEfqj/content/tmp_files/2301.00995v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
6NAzT4oBgHgl3EQfEfqj/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
6NAzT4oBgHgl3EQff_yv/content/2301.01462v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9e6a7b69094a7fe8c88cb34e27cb8ecfb433b2c41cac4e7737aedd899d9a200
3
+ size 726729
6NAzT4oBgHgl3EQff_yv/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22b6fdc719996988a2984c9a75e35fe757e0b90615f2fe5a5c9db41a4b7f481b
3
+ size 3342381
6NAzT4oBgHgl3EQff_yv/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cd2f1965fc3a2e4e5589a9d66b718383001bb2769054f0c05b41da17d1c6233
3
+ size 129879
6dA0T4oBgHgl3EQfN__p/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d89686d458e46b916af13eaed9fbab6255a526612cc04dd554dd2b566b3e5a7
3
+ size 3211309
79E0T4oBgHgl3EQffQDe/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99282173c2ea474d4104935e8cc9ff58442f9dc4a52d8cb7697dce9718b13380
3
+ size 3342381
7tFLT4oBgHgl3EQfAi4b/content/2301.11966v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4492414d534972cefe1c245b6dc143b1586540c026fc0fbd0db14303d7456ed
3
+ size 170060
7tFLT4oBgHgl3EQfAi4b/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1a37936b7f78fa436fb3472952b961244fca4d8d8ccba9224c3e440ff3b4732
3
+ size 2293805
7tFLT4oBgHgl3EQfAi4b/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2d9e4a910fd4639088e36e279acbef512663b7bad90607f574fc632f6050674
3
+ size 80203
8dFJT4oBgHgl3EQfnix6/content/tmp_files/2301.11592v1.pdf.txt ADDED
@@ -0,0 +1,2400 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Solving Constrained Reinforcement Learning through Augmented State and
2
+ Reward Penalties
3
+ Hao Jiang 1 Tien Mai 1 Pradeep Varakantham 1
4
+ Abstract
5
+ Constrained Reinforcement Learning has been
6
+ employed to enforce safety constraints on policy
7
+ through the use of expected cost constraints. The
8
+ key challenge is in handling expected cost accu-
9
+ mulated using the policy and not just in a single
10
+ step. Existing methods have developed innova-
11
+ tive ways of converting this cost constraint over
12
+ entire policy to constraints over local decisions
13
+ (at each time step). While such approaches have
14
+ provided good solutions with regards to objective,
15
+ they can either be overly aggressive or conserva-
16
+ tive with respect to costs. This is owing to use
17
+ of estimates for ”future” or ”backward” costs in
18
+ local cost constraints.
19
+ To that end, we provide an equivalent uncon-
20
+ strained formulation to constrained RL that has
21
+ an augmented state space and reward penalties.
22
+ This intuitive formulation is general and has in-
23
+ teresting theoretical properties. More importantly,
24
+ this provides a new paradigm for solving con-
25
+ strained RL problems effectively. As we show in
26
+ our experimental results, we are able to outper-
27
+ form leading approaches on multiple benchmark
28
+ problems from literature.
29
+ 1. Introduction
30
+ There are multiple objectives of interest when handling
31
+ safety depending on the type of domain: (a) ensuring safety
32
+ constraint is never violated; (b) ensuring safety constraint is
33
+ not violated in expectation; (c) ensuring the chance of safety
34
+ constraint violation is small (Value at Risk, VaR) (Lucas &
35
+ Klaassen, 1998); (d) ensuring the expected cost of violation
36
+ is bounded (Conditional Value at Risk, CVaR) (Rockafellar
37
+ et al., 2000; Yang et al., 2021); and others. One of the
38
+ main models in Reinforcement Learning to ensure safety is
39
+ Constrained RL, which employs objective (b) above. Our
40
+ focus in this paper is also on Constrained RL.
41
+ 1School of Computing and Information Systems, Singapore
42
+ Management University.
43
+ Preprint
44
+ Constrained RL problems are of relevance in domains that
45
+ can be represented using an underlying Constrained Markov
46
+ Decision Problem (CMDP) (Altman, 1999). The main chal-
47
+ lenge in solving Constrained RL problems is the expected
48
+ cost constraint, which requires averaging over multiple tra-
49
+ jectories from the policy. Such problems have many appli-
50
+ cations including but not limited to: (a) electric self driving
51
+ cars reaching destination at the earliest while minimizing
52
+ the risk of not getting stranded on the road with no charge;
53
+ (b) robots moving through unknown terrains to reach a des-
54
+ tination, while having a threshold on the average risk of
55
+ passing through unsafe areas (e.g., a ditch). Broadly, they
56
+ are also applicable to problems robot motion planning (Ono
57
+ et al., 2015; Moldovan & Abbeel, 2012; Chow et al., 2015a),
58
+ resource allocation (Mastronarde & van der Schaar, 2010;
59
+ Junges et al., 2015), and financial engineering (Abe et al.,
60
+ 2010; Di Castro et al., 2012).
61
+ Related Work: Many model free approaches have been pro-
62
+ posed to solve Constrained RL problems. One of the initial
63
+ approaches to be developed for addressing such constraints
64
+ is the Lagrangian method (Chow et al., 2015b). However,
65
+ such an approach does not provide either theoretical or em-
66
+ pirical guarantees in ensuring the constraints are enforced.
67
+ To counter the issue of safety guarantees, next set of ap-
68
+ proaches focused on transforming the cost constraint over
69
+ trajectories into cost constraint over individual decisions in
70
+ many different ways. One such approach imposed surrogate
71
+ constraints (El Chamie et al., 2016; G´abor et al., 1998) on
72
+ individual state and action pairs. Since the surrogate con-
73
+ straints are typically stricter than the original constraint on
74
+ the entire trajectory, they were able to provide theoretical
75
+ guarantees on safety. However, the issue with such type of
76
+ approaches is their conservative nature, which can poten-
77
+ tially hamper the expected reward objective. More recent
78
+ approaches such as CPO (Constrained Policy Optimiza-
79
+ tion) (Achiam et al., 2017), Lyapunov (Chow et al., 2019b),
80
+ BVF (Satija et al., 2020a) have since provided more tighter
81
+ local constraints (over individual decisions) and thereby
82
+ have improved the state of art in guaranteeing safety while
83
+ providing high quality solutions (with regards to expected
84
+ reward). In converting a trajectory based constraint to a
85
+ local constraint, there is an estimation of cost involved for
86
+ the rest of the trajectory. Due to such estimation, trans-
87
+ arXiv:2301.11592v1 [cs.LG] 27 Jan 2023
88
+
89
+ Solving Constrained RL through Augmented State and Reward Penalties
90
+ formed cost constraints over individual decisions are error
91
+ prone. In problems where the estimation is not close to the
92
+ actual, results with such approaches with regards to cost
93
+ constraint enforcement are poor (as we demonstrate in our
94
+ experimental results).
95
+ Contributions:
96
+ To that end, we focus on an approach that relies on exact
97
+ accumulated costs (and not on estimated costs). In this
98
+ paper, we make four key contributions:
99
+ • We provide a re-formulation of the constrained RL prob-
100
+ lem through augmenting the state space with cost ac-
101
+ cumulated so far and also considering reward penalties
102
+ when cost constraint is violated. This builds on the idea
103
+ of augmented MDPs (Hou et al., 2014) employed to
104
+ solve Risk Sensitive MDPs. The key advantage of this
105
+ reformulation is that by penalizing rewards (as opposed
106
+ to the entire expected value that is done typically using
107
+ Lagrangian methods), we get more fine grained control
108
+ on how to handle the constraints. Also, we can utilize
109
+ existing RL methods with minor modifications.
110
+ • We show theoretically that the reward penalties em-
111
+ ployed in the new formulation are not adhoc and can
112
+ equivalently represent different constraints mentioned
113
+ in the first paragraph of introduction, i.e. risk-neural,
114
+ chance constrained (or VAR) and CVaR constraints.
115
+ • We modify existing RL methods (DQN and SAC) to
116
+ solve the re-formulated RL problem with augmented
117
+ state space and reward penalties. A key advantage for
118
+ the new approaches is the knowledge of exact costs
119
+ incurred so far (available within the state space) and this
120
+ allows for assigning credit for cost constraint violations
121
+ more precisely during learning.
122
+ • Finally, we demonstrate the utility of our approach by
123
+ comparing against leading approaches for constrained
124
+ RL on multiple benchmark problems from literature.
125
+ We empirically demonstrate that our approaches are able
126
+ to outperform leading Constrained RL approaches from
127
+ the literature either with respect to expected value or in
128
+ enforcing the cost constraint or both.
129
+ 2. Constrained Markov Decision Process
130
+ A Constrained Markov Decision Process (CMDP) (Altman,
131
+ 1999) is defined using tuple ⟨S, A, r, p, d, s0, cmax⟩, where
132
+ S is set of states with initial state as s0, A is set of actions,
133
+ r : S × A → R is reward with respect to each state-action
134
+ pair, p : S × A → P is transition probability of each state.
135
+ d : S → d(S) is the cost function and cmax is the maximum
136
+ allowed cumulative cost. Here, we assume that d(s) ≥ 0
137
+ for all s ∈ S. This assumption is not restrictive as one
138
+ can always add positive amounts to d(s) and cmax to meet
139
+ the assumption. The objective in a risk-neural CMDP is to
140
+ compute a policy, π : S × A → [0, 1], which maximizes
141
+ reward over a finite horizon T while ensuring the cumulative
142
+ cost does not exceed the maximum allowed cumulative cost.
143
+ max
144
+ π
145
+ E
146
+ � T
147
+
148
+ t=0
149
+ γtr(st, at)|s0, π
150
+
151
+ s.t.
152
+ E
153
+ � T
154
+
155
+ t=0
156
+ d(st)|s0, π
157
+
158
+ ≤ cmax.
159
+ (RN-CMDP)
160
+ The literature has seen other types of constraints, e.g.,
161
+ chance constraints requiring that Pπ(D(τ) > cmax) ≤ α
162
+ for a risk level α ∈ [0, 1], or CVaR ones of the form
163
+ Eπ[(D(τ) − cmax)+] ≤ β. Handling different types of
164
+ constraints would require different techniques. In the next
165
+ section, we present our approach based on augmented state
166
+ and reward penalties that assembles all the aforementioned
167
+ constraint types into one single framework.
168
+ 3. Cost Augmented Formulation for Safe RL
169
+ We first present our extended MDP reformulation and pro-
170
+ vide several theoretical findings that connect our extended
171
+ formula with different variants of CMDP. We first focus
172
+ on the case of single-constrained MDP and show how the
173
+ results can be extended to the multi-constrained setting.
174
+ 3.1. Extended MDP Reformulation
175
+ We introduce our approach to track the accumulated cost
176
+ at each time period, which allows us to determine states
177
+ that potentially lead to high-cost trajectories. To this end,
178
+ let us define a new MDP with an extended state space
179
+
180
+ �S, A, �r, �p, d, s0, cmax
181
+
182
+ where �S = {(s, c)| s ∈ S, c ∈
183
+ R+}. That is, each state s′ of the extended MDP includes
184
+ an original state from S and information about the accumu-
185
+ lated cost. We the define the transition probabilities between
186
+ states in the extended space.
187
+
188
+
189
+
190
+
191
+
192
+ �p(s′
193
+ t+1, c′
194
+ t+1|(st, ct), at) = p(s′
195
+ t+1|st, at)
196
+ if c′
197
+ t+1 = ct + d(st)
198
+ �p(s′
199
+ t+1, c′
200
+ t+1|(st, ct), at) = 0 otherwise
201
+ and new rewards with penalties
202
+
203
+
204
+
205
+
206
+
207
+
208
+
209
+
210
+
211
+ �r(at|(st, ct)) = r(at|st) if ct + d(st) ≤ cmax
212
+ �r(at|(st, ct)) = r(at|st) − ∆(ct + d(st))/γt
213
+ if ct ≤ cmax and ct + d(st) > cmax
214
+ �r(at|(st, ct)) = r(at|st) − ∆d(st)/γt if ct > cmax
215
+ where ∆ is a positive scalar and ∆d(st) and ∆(ct +
216
+ d(st)) are penalties given to the agent if the accumu-
217
+ lated cost exceeds the upper bound cmax. Under these
218
+
219
+ Solving Constrained RL through Augmented State and Reward Penalties
220
+ reward penalties, the accumulated reward for each tra-
221
+ jectory τ = {(s0, a0), . . . , (sT , aT )} can be written as
222
+ �R(τ) = �
223
+ t γtr(at|st) if D(τ) ≤ cmax and �R(τ) =
224
+
225
+ t γtr(at|st) − ∆D(τ) if D(τ) > cmax, where D(τ) is
226
+ the total cost of trajectory τ, i.e., D(τ) = �
227
+ st∈τ d(st). So,
228
+ in fact, we penalize every trajectory that violates the cost
229
+ constraint.
230
+ We now consider the following extended MDP, which han-
231
+ dles the constraints in a relaxed manner through penalties.
232
+ max
233
+ π
234
+ E
235
+ � T
236
+
237
+ t=0
238
+ γt�r(at|(st, ct))
239
+ ���(s0, c0), π
240
+
241
+ (EMDP)
242
+ where c0 = 0. There are also other ways to penalize the
243
+ rewards, allowing us to establish equivalences between the
244
+ extended MDP to other risk-averse CMDP, which we will
245
+ discuss later in the next section.
246
+ 3.2. Theoretical Properties
247
+ To demonstrate the generality and power in representation of
248
+ the reward penalties along with state augmentation in the un-
249
+ constrained MDP (EMDP), we provide theoretical properties
250
+ that map reward penalties to different types of constraints
251
+ (expected cost, VaR, CVaR, Worst-case cost):
252
+ (i) Proposition 3.1 states that if the penalty parameter ∆ =
253
+ 0, then (EMDP) becomes the classical unconstrained
254
+ MDP.
255
+ (ii) Theorem 3.2 shows that if ∆ = ∞, then (EMDP) is
256
+ equivalent to a worst-case constrained MDP
257
+ (iii) Theorem 3.5 establishes a lower bound on ∆ from
258
+ which any solution to (EMDP) will satisfy the risk-
259
+ neural constraint in (RN-CMDP).
260
+ (iv) Theorem
261
+ 3.6
262
+ connects
263
+ (EMDP)
264
+ with
265
+ chance-
266
+ constrained MDP by providing a lower bound for ∆
267
+ from which any solution to (EMDP) will satisfy a VaR
268
+ constraint P(�
269
+ t d(st) ≤ cmax) ≤ α.
270
+ (v) Theorems 3.6 and 3.8 further strengthen the above re-
271
+ sults by showing that, under some different reward set-
272
+ tings, (EMDP) is equivalent to a chance-constrained (or
273
+ VaR) or equivalent to a CVaR CMDP.
274
+ We now describe our theoretical results in detail. All the
275
+ proofs can be found in the appendix. We first state, in Propo-
276
+ sition 3.1, a quite obvious result saying that if we set the
277
+ penalty parameter ∆ = 0, then the MDP with augmented
278
+ state space becomes the original unconstrained MDP.
279
+ Proposition 3.1. If ∆ = 0, then (EMDP) is equivalent to
280
+ the unconstrained MDP maxπ E
281
+ ��T
282
+ t=0 γtr(st, at)|s0, π
283
+
284
+ .
285
+ It can be seen that increasing ∆ will set more penalties to
286
+ trajectories whose costs exceed the maximum cost allowed
287
+ cmax, which also implies that (EMDP) would lower the prob-
288
+ abilities of taking these trajectories. So, intuitively, if we
289
+ raise ∆ to infinity, then (EMDP) will give policies that yield
290
+ zero probabilities to violating trajectories. We state this
291
+ result in Theorem 3.2 below.
292
+ Theorem 3.2 (Connection to worst-case CMDP). If we
293
+ set ∆ = ∞, then if π∗ solves (EMDP), it also solves the
294
+ following worst-case constrained MDP problem
295
+ max
296
+ π
297
+ E
298
+ � T
299
+
300
+ t=0
301
+ γtr(st, at)|s0, π
302
+
303
+ s.t.
304
+
305
+ st∈τ
306
+ d(st) ≤ cmax, ∀τ ∼ π.
307
+ (WC-CMDP)
308
+ As a result, π∗ is feasible to the risk-neural CMDP
309
+ (RN-CMDP).
310
+ The above theorem implies that if we set the penalties to
311
+ be very large (e.g., ∞), then all the trajectories generated
312
+ by the optimal policy π∗ will satisfy the constraint, i.e., the
313
+ accumulated cost will not exceed cmax. Such a conservative
314
+ policy would be useful in critical environments where the
315
+ agent is strictly not allowed to go beyond the maximum
316
+ allowed cost cmax. An example would be a routing problem
317
+ for electrical cars where the remaining energy needs not
318
+ become empty before reaching a charging station or the
319
+ destination. Note that the worst-case CMDP (WC-CMDP)
320
+ would be non-stationary and history-dependent, i.e., there
321
+ would be no stationary and history-independent policies
322
+ being optimal for the worst-case CMDP (WC-CMDP). This
323
+ remark is obviously seen, as at a stage, one needs to consider
324
+ the current accumulated cost to make feasible actions. Thus,
325
+ a policy that ignores the historical states and actions would
326
+ be not optimal (or even not feasible) for the worst-case MDP.
327
+ As a result, this worst-case CMDP can not be presented by
328
+ a standard-constrained MDP formulation.
329
+ Theorem 3.2 also tells us that one can get a feasible solution
330
+ to the risk-neural CMDP (RN-CMDP) by just raising ∆ to
331
+ infinity. In fact, ∆ does not need to be infinite to achieve
332
+ feasibility. Below we establish a lower bound for the penalty
333
+ parameter ∆ such that a solution to (EMDP) is always feasi-
334
+ ble to the risk-neural CMDP (RN-CMDP). Let us define Ψ∗
335
+ as the optimal value of the unconstrained MDP problem
336
+ Ψ∗ = max
337
+ π
338
+ E
339
+ � T
340
+
341
+ t=0
342
+ γtr(st, at)|s0, π
343
+
344
+ .
345
+ and Ψ be the optimal value of the worst-case CMDP
346
+ (WC-CMDP).
347
+ We define a conditional expectation
348
+ �Eπ [D(τ)| D(τ) ≤ cmax] as the expected cost over trajecto-
349
+ ries whose costs are less than cmax
350
+ �Eπ [D(τ)| D(τ) ≤ cmax] =
351
+
352
+ τ| D(τ)≤cmax
353
+ Pπ(τ)D(τ)
354
+
355
+ Solving Constrained RL through Augmented State and Reward Penalties
356
+ where Pπ(τ) is the probability of τ under policy π. Before
357
+ presenting the bound, we first need two lemmas. Lemma 3.3
358
+ establishes a condition under which a policy π is feasible to
359
+ the risk-neural CMDP.
360
+ Lemma
361
+ 3.3.
362
+ Let
363
+ φ∗
364
+ =
365
+ cmax
366
+
367
+ maxπ
368
+
369
+ �Eπ[D(τ)| D(τ) ≤ cmax]
370
+
371
+ . Given any policy π, if
372
+ �Eπ[D(τ)| D(τ) > cmax] ≤ φ∗, then Eπ[D(τ)] ≤ cmax.
373
+ Lemma 3.4 below further provides an upper bound for the
374
+ expected cost of violating trajectories under an optimal pol-
375
+ icy given by the extended MDP reformulation (EMDP).
376
+ Lemma 3.4. Given ∆ > 0, let π∗ be an optimal solution
377
+ to (EMDP). We have
378
+ �Eπ∗ [D(τ)| D(τ) > cmax] ≤ Ψ∗ − Ψ
379
+
380
+ .
381
+ Using Lemmas 3.3 and 3.4, we are ready to state the main
382
+ result in Theorem 3.5 below.
383
+ Theorem 3.5 (Connection to the risk-neural CMDP). For
384
+ any ∆ ≥ Ψ∗−Ψ
385
+ φ∗
386
+ , a solution to (EMDP) is always feasible to
387
+ the risk-neural CMDP (RN-CMDP).
388
+ To prove Lemmas 3.3, 3.4, we leverage the fact that the
389
+ objective of (EMDP) can be written equivalently as
390
+
391
+ ��
392
+ t
393
+ γtr(st, at)
394
+
395
+ − ∆�Eπ [D(τ)| D(τ) > cmax]
396
+ (1)
397
+ which allows us to establish a relation between ∆ and
398
+ �Eπ∗ [D(τ)| D(τ) > cmax], where π∗ is an optimal policy
399
+ of (EMDP). The bounds then come from this relation. We
400
+ refer the reader to the appendix for detailed proofs.
401
+ There is also a lower bound for ∆ from which any solution
402
+ to (EMDP) always satisfies a chance constraint (or VaR). To
403
+ state this result, let us first define the following VaR CMDP,
404
+ for any risk level α ∈ [0, 1].
405
+ max
406
+ π
407
+ E
408
+ � T
409
+
410
+ t=0
411
+ γtr(st, at)|s0, π
412
+
413
+ s.t.
414
+
415
+
416
+ (D(τ) > cmax
417
+
418
+ ≤ α.
419
+ (VaR-CMDP)
420
+ We have the following theorem showing a connection be-
421
+ tween (EMDP) and the VaR CMDP above.
422
+ Theorem 3.6 (Connection to VaR CMDP). For any ∆ ≥
423
+ (Ψ∗ − Ψ)/(αcmax), a solution to (EMDP) is always feasi-
424
+ ble to (VaR-CMDP).
425
+ We also leverage Eq. 1 to prove the theorem by show-
426
+ ing that when ∆ is sufficiently large, the conditional ex-
427
+ pectation �Eπ∗ [D(τ)| D(τ) > cmax] can be bounded from
428
+ above (π∗ is an optimal policy of (EMDP)).
429
+ We then
430
+ can link this to the chance constraint by noting that
431
+ �Eπ∗ [D(τ)| D(τ) > cmax] ≥ cmaxP(D(τ) > cmax).
432
+ Theorem 3.6 tells us that one can just raise ∆ to a suffi-
433
+ ciently large value to meet a chance constraint of any risk
434
+ level. Here, Theorem 3.6 only guarantees feasibility to
435
+ (VaR-CMDP). Interestingly, if we modify the reward penal-
436
+ ties by making them independent of the costs d(s), than
437
+ an equivalent mapping to (VaR-CMDP) can be obtained.
438
+ Specifically, let us re-define the following reward for the
439
+ extended MDP. That is, we replace the cost d(st) by a con-
440
+ stant. Theorem 3.7 below shows that (EMDP) is actually
441
+ equivalent to a chance-constrained CMDP under the new
442
+ reward setting.
443
+ Theorem 3.7 (VaR equivalence). If we modify the reward
444
+ penalties as
445
+
446
+
447
+
448
+
449
+
450
+
451
+
452
+
453
+
454
+ �r(at|(st, ct)) = r(at|st) if ct + d(st) ≤ cmax
455
+ �r(at|(st, ct)) = r(at|st) − ∆(t + 1)/γt
456
+ if ct ≤ cmax and ct + d(st) > cmax
457
+ �r(at|(st, ct)) = r(at|st) − ∆/γt if ct > cmax
458
+ then if π∗ is an optimal solution to (EMDP), then there is
459
+ α∆ ∈ [0; Ψ∗−Ψ
460
+ ∆T ] (α is dependent of ∆) such that π∗ is also
461
+ optimal to (VaR-CMDP). Moreover lim∆→∞ α∆ = 0.
462
+ It can be also seen that Theorem 3.2 is a special case of
463
+ Theorem 3.7 when ∆ = ∞.
464
+ We finally connect (EMDP) with a risk-averse CMDP that
465
+ has a CVaR intuition. The theorem below shows that, by
466
+ slightly changing the reward penalties, (EMDP) actually
467
+ solves a risk-averse CMDP problem.
468
+ Theorem 3.8 (CVaR CMDP equivalence). If we modify the
469
+ reward penalties as
470
+
471
+
472
+
473
+
474
+
475
+
476
+
477
+
478
+
479
+ �r(at|(st, ct)) = r(at|st) if ct + d(st) ≤ cmax
480
+ �r(at|(st, ct)) = r(at|st) − ∆(ct + d(st) − cmax)/γt
481
+ if ct ≤ cmax and ct + d(st) > cmax
482
+ �r(at|(st, ct)) = r(at|st) − ∆d(st)/γt if ct > cmax
483
+ then for any ∆ > 0, there is β∆ ∈
484
+
485
+ 0; Ψ∗−Ψ
486
+
487
+
488
+ (β∆ is de-
489
+ pendent of ∆) such that any optimal solution to the extended
490
+ CMDP (EMDP) is also optimal to the following risk-averse
491
+ CMDP
492
+ max
493
+ π
494
+ E
495
+ � T
496
+
497
+ t=0
498
+ γtr(st, at)|s0, π
499
+
500
+ s.t.
501
+ Eτ∼π
502
+
503
+ (D(τ) − cmax)+�
504
+ ≤ β∆.
505
+ (CVaR-CMDP)
506
+ Moreover, lim∆→∞ β∆ = 0.
507
+
508
+ Solving Constrained RL through Augmented State and Reward Penalties
509
+ In practice, since ∆ is just a scalar, one can just grad-
510
+ ually increase it from 0 to get a desired policy.
511
+ This
512
+ indicates the generality of the unconstrained exended
513
+ MDP formulation (EMDP). In summary, we show that
514
+ (EMDP) brings risk-neural, worst-case and VaR and CVaR
515
+ CMDPs in (RN-CMDP), (WC-CMDP), (VaR-CMDP) and
516
+ (CVaR-CMDP) under one umbrella.
517
+ 3.3. Multi-constrained CMDP
518
+ We now discuss extension to CMDP with multiple cost
519
+ constraints (e.g., limited fuel and bounded risk) and show
520
+ how the above theoretical results can be extended to the
521
+ multi-constrained variants. A multi-constrained risk-neural
522
+ CMDP can be formulated as
523
+ max
524
+ π
525
+ E
526
+ � T
527
+
528
+ t=0
529
+ γtr(st, at)|s0, π
530
+
531
+ s.t.
532
+ E
533
+ � T
534
+
535
+ t=0
536
+ dk(st)|s0, π
537
+
538
+ ≤ ck
539
+ max, ∀k ∈ [K]
540
+ (MRN-CMDP)
541
+ where [K] denotes the set {1, . . . , K}. Similar to the single
542
+ constraint case, to include cost functions in the rewards, we
543
+ extend the state space to keep track of the accumulated costs
544
+ as �S = {(s, c1, . . . , cK)| s ∈ S, ck ∈ R, ∀k ∈ [K]} and
545
+ define new transitions probabilities as
546
+
547
+
548
+
549
+
550
+
551
+ �p(st+1, cK
552
+ t+1|(st, cK
553
+ t ), at) = p(st+1|st, at)
554
+ if ck
555
+ t+1 = ck
556
+ t + dk(st)
557
+ �p(st+1, cK
558
+ t+1|(st, cK
559
+ t ), at) = 0 otherwise
560
+ where cK
561
+ t
562
+ = (c1
563
+ t, . . . , cK) for notational simplicity. The
564
+ new rewards are also updated in such a way that every
565
+ trajectory violating the constraints will be penalized.
566
+ �r(at|(st, cK
567
+ t )) = r(at|st) −
568
+
569
+ k∈[K]
570
+ ∆kδk(ct),
571
+ where δk(ct), ∀k ∈ [K], are defined as follows.
572
+ δk(ct) =
573
+
574
+
575
+
576
+
577
+
578
+
579
+
580
+
581
+
582
+ 0 if , ck
583
+ t + dk(st) ≤ ck
584
+ max
585
+ (ck
586
+ t + dk(st))/γt if ck
587
+ t ≤ ck
588
+ max,
589
+ ck
590
+ t + dk(st) ≥ ck
591
+ max
592
+ dk(st)/γt if ck
593
+ t > ck
594
+ max.
595
+ Here, we allow penalty parameters ∆k to be different over
596
+ constraints. We formulate the extended unconstrained MDP
597
+ as:
598
+ max
599
+ π
600
+
601
+ E
602
+ � T
603
+
604
+ t=0
605
+ γt�r(at|(st, cK
606
+ t ))
607
+ ���(s0, cK
608
+ 0 ), π
609
+ ��
610
+ .
611
+ (2)
612
+ Similar to the single-constrained case, the reward penalties
613
+ allow us to write the objective function of the extended
614
+ MDP as
615
+
616
+ ��
617
+ t
618
+ γtr(st, at)
619
+
620
+
621
+
622
+ k∈[K]
623
+ ∆k�Eπ
624
+
625
+ Dk(τ)| Dk(τ) > ck
626
+ max
627
+
628
+ (3)
629
+ where Dk(τ) is the accumulated cost dk(st) on trajectory τ,
630
+ i.e., Dk(τ) = �
631
+ st∈τ dk(st). As a result, when ∆k grows,
632
+ the extended MDP will discount the second term of (3), thus
633
+ yielding policies that satisfy or even solve risk-neural or
634
+ risk-averse CMDP problems. Specifically, the following
635
+ results can be proved:
636
+ • When ∆k = ∞, ∀k ∈ [K], then (2) is equivalent to
637
+ worst-case CMDP (i.e., all the trajectories generated
638
+ by the policy will satisfy all the cost constraints).
639
+ • There are lower bounds for ∆k from which any so-
640
+ lution to (2) will be feasible to risk-neural and VaR
641
+ CMDP with multiple constraints.
642
+ • For any ∆k > 0, under different reward penalty set-
643
+ tings, (2) is equivalent to a multi-constrained CVaR
644
+ CMDP or equivalent to a multi-constrained VaR
645
+ CMDP.
646
+ All the detailed proofs and discussions can be found in the
647
+ appendix.
648
+ 4. Safe RL Algorithms
649
+ In this section, we update existing RL methods to effectively
650
+ utilize the extended state space and reward penalties, while
651
+ considering RN-CMDP. Due to the theoretical properties
652
+ in the previous section, just by tweaking ∆, we can also
653
+ handle other Constrained MDPs.
654
+ 4.1. Safe DQN
655
+ Deep Q Network (DQN) (Mnih et al., 2015) is an efficient
656
+ method to learn in primarily discrete action Reinforcement
657
+ Learning problems. However, the original DQN does not
658
+ consider safety constraints and cannot be applied to any of
659
+ the CMDP variants.
660
+ The main modifications in the updated algorithm, referred
661
+ to as Safe DQN are with regards to exploiting the extended
662
+ state space and the reward penalties based on constraint
663
+ violations. The pseudo code for the Safe DQN algorithm is
664
+ provided in Algorithm 1.
665
+ The impact of extended state space on the algorithm can be
666
+ observed in almost every line of the algorithm. The penalty
667
+ for violation of constraints When selecting an action (line
668
+ 4), Safe DQN not consider the feasibility of the action with
669
+ respect to cost. Instead, like in the original DQN, it is purely
670
+ based on the current Q value. The assumption is that the
671
+
672
+ Solving Constrained RL through Augmented State and Reward Penalties
673
+ Algorithm 1 DQN with Extended State Space
674
+ Initialization: Relay buffer D with capacity N, action-
675
+ value function Q with weight θ, target action-value function
676
+ ˆQ with weight θ− = θ.
677
+ 1: for each episode do
678
+ 2:
679
+ Initialize with sequence (s0, c0 = 0).
680
+ 3:
681
+ for each time step t do
682
+ 4:
683
+ Select a random action at with probability ϵ, oth-
684
+ erwise select at = arg maxa Q((st, ct), a; θ).
685
+ 5:
686
+ Execute action at, observe (st+1, ct+1), rt.
687
+ 6:
688
+ Store ((st, ct), at, rt, (st+1, ct+1)) in D.
689
+ 7:
690
+ Update state-cost pair to (st+1, ct+1).
691
+ 8:
692
+ Sample ((sj, cj), aj, rj, (sj+1, cj+1)) from D.
693
+ 9:
694
+ if cj > cmax then
695
+ 10:
696
+ ˜rj = r(sj) − ∆d(sj)/γt
697
+ 11:
698
+ else if cj+1 > cmax then
699
+ 12:
700
+ ˜rj = r(sj) − ∆(ct + d(sj))/γt
701
+ 13:
702
+ else
703
+ 14:
704
+ ˜rj = r(sj)
705
+ 15:
706
+ end if
707
+ 16:
708
+ {”mask” indicates if the episode terminates}
709
+ 17:
710
+ yj = ˜rj + γ ∗ maxa′ ˆQ((sj+1, cj+1), a′; θ−) ∗
711
+ maskj+1.
712
+ 18:
713
+ Update θ using l = (yi − Q((sj, cj), aj; θ))2.
714
+ 19:
715
+ Every C steps reset ˆQ = Q.
716
+ 20:
717
+ end for
718
+ 21: end for
719
+ penalties accrued due to violation (in lines 9-12) will be suf-
720
+ ficient to force the agent away from cost infeasible actions.
721
+ Once the new rewards are obtained (based on considering
722
+ reward penalties), the Q network is updated using the mean
723
+ square error loss on line 17.
724
+ 4.2. Safe SAC
725
+ Soft Actor-Critic (SAC) (Haarnoja et al., 2018) is an off-
726
+ policy algorithm that learns a stochastic policy for discrete
727
+ and continuous action RL problems. SAC employs policy
728
+ entropy in conjunction with value function to ensure more
729
+ exploration. Q value function in SAC is defined as follows:
730
+ Q(s, a) =E[
731
+
732
+
733
+ t=0
734
+ γtr(st, at, st+1)+
735
+ α
736
+
737
+
738
+ t=1
739
+ γtH(π(·|st))|s0 = s, a0 = a]
740
+ (4)
741
+ where H(.) denotes the entropy of the action distribution
742
+ for a given state, st). SAC also employs the double Q-
743
+ trick, where we use the minimum of two Q value functions
744
+ (Qi(.), i ∈ 1, 2) as the target, y to avoid overestimation.
745
+ y =r(s, a, s′) + γ min
746
+ i=1,2 Qi(s′, ˜a′) − α log π(˜a′|s′)
747
+ (5)
748
+ where ˜a′ ∼ π(·|s′).
749
+ Our algorithm, referred to as Safe SAC builds on SAC by
750
+ having an extended state space and a new action selection
751
+ strategy that exploits the extended state space. In Safe
752
+ DQN, we primarily rely on violation of constraints, so as to
753
+ learn about the bad trajectories and avoid them. While such
754
+ approach works well for discrete action settings and in an
755
+ off policy setting, it is sample inefficient and can be slow
756
+ for actor-critic settings. In Safe SAC, apart from reward
757
+ penalty, we also focus on learning about feasible actions,
758
+ which are generated through the use of the cost accumulated
759
+ so far (available as part of the state space) and a Q value on
760
+ the future cost.
761
+ Formally, we define the optimization to select safe actions
762
+ (at each decision epoch) in Equation 6 and show safe SAC
763
+ algorithm in Algorithm 2. Extending on the double Q trick
764
+ for reward, we also have double Q for future cost, referred to
765
+ as {Qi
766
+ d}i∈1,2. At each step, the objective is to pick an action
767
+ that will maximize the reward Q value for the extended
768
+ state, action minus the weighted entropy of the action. The
769
+ constraint here is to pick only those actions, which will
770
+ not violate the cost constraint. In the left hand side of the
771
+ constraint, we calculate the overall expected cost from: (a)
772
+ (estimate) of the future cost, from the current state; (b)
773
+ (actual) cost incurred so far; and (c) subtracting the (actual)
774
+ cost incurred at the current step, as it is part of both (a) and
775
+ (b);
776
+ arg max
777
+ a
778
+ min
779
+ i=1,2 Qi((s, c), a) − α log π(a|(s, c))
780
+ s.t. max
781
+ i=1,2 Qi
782
+ D((s, c), a) + c − d((s, c)) ≤ cmax, ∀(s, c)
783
+ (6)
784
+ Algorithm 2 (in appendix) provides the pseudo code for
785
+ Safe SAC.
786
+ 5. Experiment
787
+ We empirically compare the performance of our approaches
788
+ on both discrete and continuous environments with respect
789
+ to expected reward and expected cost achieved against lead-
790
+ ing benchmark approaches. For an RL benchmark, we use
791
+ the original DQN (Mnih et al., 2015) and it is referred
792
+ to as unsafe DQN, as it does not account for cost con-
793
+ straints. For leading Constrained RL benchmarks, we use
794
+ BVF (Backward Value Function) (Satija et al., 2020b) and
795
+ Lyapunov (Chow et al., 2019a). We mostly show results
796
+ with respect to expected cost constraint, as there are many
797
+ model free approaches that solve the RN-CMDP problem.
798
+ For one example (Safety Gym), we also provide comparison
799
+ when a CVaR constraint is provided. The performance val-
800
+ ues (expected cost and expected reward) along with standard
801
+ deviation in each experiment are averaged over 5 runs.
802
+
803
+ Solving Constrained RL through Augmented State and Reward Penalties
804
+ Figure 1. Gridworld environment and reward, cost comparison of different approaches
805
+ Figure 2. Highway environment and reward, cost comparison of different approaches
806
+ 5.1. GridWorld: RN-CMDP
807
+ For a discrete state and discrete action environment, we
808
+ consider the stochastic 2D grid world problem introduced
809
+ previously (Leike et al., 2017; Chow et al., 2018; Satija
810
+ et al., 2020b; Jain et al., 2021). The grid on the left of Figure
811
+ 1 shows the environment. The agent starts at the bottom
812
+ right corner of the map (green cell) and the objective is to
813
+ move to the goal at the bottom left corner (blue cell). The
814
+ agent can only move in the adjoining cells in the cardinal
815
+ directions. Occasionally agent will execute a random action
816
+ with probability p = 0.05 instead of the one selected by
817
+ the agent. It gets a reward of +100 on reaching the goal,
818
+ and a penalty of -1 at every time step. There are a number
819
+ of pits in the map (red cell) and agent gets a random cost
820
+ ranging from 1 to 1.5 on passing through any pit cell. We
821
+ consider an 8x8 grid and the maximum time horizon is 200
822
+ steps, after which the episode terminates. This modified
823
+ GridWorld environment is challenging because agent can
824
+ travel to destination with a short path with a high cost, but if
825
+ it wishes to travel safely, it needs to explore enough to find
826
+ a safe path which is far from the shortest one. We set the
827
+ expected cost threshold, cmax = 2, meaning agent could
828
+ pass at most one pit. For discrete state environments, we
829
+ use the discrete SAC in (Christodoulou, 2019).
830
+ Figure 1 shows the performance of each method with respect
831
+ to expected reward (score) and expected cost (constraint).
832
+ Here are the key observations:
833
+ • With respect to expected reward, among safe approaches,
834
+ Lyapunov achieves the highest reward. However, it
835
+ violates the expected cost constraint by more than twice
836
+ the cost constraint value.
837
+ • Safe SAC and Safe DQN achieve similar expected re-
838
+ ward values, though Safe SAC reaches there faster. This
839
+ high expected reward value is achieved while satisfying
840
+ the expected cost constraint after 1000 episodes.
841
+ • The other constrained RL approach, BVF achieved the
842
+ lowest value while not being able to satisfy the expected
843
+ cost constraint.
844
+ • As expected, Unsafe DQN achieved the highest expected
845
+ reward but was unable to satisfy the expected cost con-
846
+ straint.
847
+ 5.2. Highway Environment:RN-CMDP
848
+ Inspired by experiment in GPIRL (Levine et al., 2011), we
849
+ test our safe methods in the highway environment (Leurent,
850
+ 2018) of Figure 2. The task in highway environment is to
851
+ navigate a car on a four-lane highway with all other vehicles
852
+
853
+ HAverage Score in each Episode
854
+ 100
855
+ 80
856
+ 60
857
+ Score
858
+ 40
859
+ 20
860
+ 0
861
+ Unsafe DQN
862
+ Safe DQN
863
+ BVF
864
+ -20
865
+ Safe SAC
866
+ Lyapunov
867
+ -40
868
+ 0
869
+ 2000
870
+ 4000
871
+ 6000
872
+ 8000
873
+ 10000
874
+ 12000
875
+ 14000
876
+ EpisodeAverage Constraint in each Episode
877
+ Unsafe DQN
878
+ Safe DON
879
+ 15.0
880
+ BVF
881
+ Safe SAC
882
+ 12.5
883
+ Lyapunov
884
+ 10.0
885
+ Constraint
886
+ 7.5
887
+ 5.0
888
+ 2.5
889
+ 0.0
890
+ 0
891
+ 2000
892
+ 4000
893
+ 6000
894
+ 8000
895
+ 10000
896
+ 12000
897
+ 14000
898
+ EpisodeAverage Score in each Episode
899
+ 22.5
900
+ 20.0
901
+ 17.5
902
+ Score
903
+ 15.0
904
+ 12.5
905
+ Unsafe DQN
906
+ 10.0
907
+ Safe DQN
908
+ BVF
909
+ 7.5
910
+ Safe SAC
911
+ Lyapunov
912
+ 2000
913
+ 4000
914
+ 6000
915
+ 8000
916
+ 10000
917
+ 12000
918
+ 14000
919
+ 0
920
+ EpisodeAverage Constraint in each Episode
921
+ 10
922
+ 8
923
+ Constraint
924
+ 6
925
+ 4
926
+ Unsafe DQN
927
+ Safe DQN
928
+ BVF
929
+ 2
930
+ Safe SAC
931
+ Lyapunov
932
+ 2000
933
+ 4000
934
+ 6000
935
+ 8000
936
+ 10000
937
+ 12000
938
+ 14000
939
+ 0
940
+ EpisodeSolving Constrained RL through Augmented State and Reward Penalties
941
+ Figure 3. Safety Gym Environment and reward, cost comparison of different approaches
942
+ acting randomly. The goal for the agent is to maximize its
943
+ reward by travelling on the right lane at the highest speed,
944
+ vmax. However, to ensure safety, we set the constraint on
945
+ the time the agent drives faster than a given speed in the
946
+ rightmost lane.
947
+ Figure 2 shows the expected reward and expected cost per-
948
+ formance of our safe methods compared to that of the bench-
949
+ marks. Safe SAC and Safe DQN were able to get high ex-
950
+ pected rewards while satisfying the expected cost constraint.
951
+ We also provide results on a highway merge environment in
952
+ the appendix.
953
+ 5.3. Safety Gym Environment: CVaR-CMDP
954
+ In this environment, we intend to compare the performance
955
+ of our safe methods with a CVaR optimizing CMDP method,
956
+ i.e., WCSAC (Yang et al., 2021). We test all the methods on
957
+ the same environment from (Yang et al., 2021) - StaticEnv
958
+ in Safety Gym (Ray et al., 2019). The environment is shown
959
+ in Figure 3. The point agent has two types of actions: one
960
+ is for turning and another is for moving forward/backward.
961
+ The objective is to reach the goal position while trying to
962
+ avoid hazardous areas. The agent gets a reward of r − 0.2
963
+ in each time step, where r is an original reward signal of
964
+ Safety Gym (distance towards goal plus a constant for being
965
+ within range of goal) while -0.2 functions as a time penalty.
966
+ In each step, if the agent is located in the hazardous area, it
967
+ gets a cost of 1. We set cmax = 8, meaning agent could stay
968
+ in hazardous area for at most 8 time steps. For risk level α
969
+ in WCSAC, we set α = 0.9 and use the almost risk-neutral
970
+ WCSAC, which is proven to reach the best performance in
971
+ both reward and cost in experiment.
972
+ We show the results in Figure 3. As can be seen from the
973
+ figure, Safe SAC is able to achieve similar performance
974
+ to that of WCSAC. Safe DQN was unable to handle this
975
+ environment due to large size of state. For BVF, although
976
+ it reaches a good performance in reward, it violates the
977
+ constraint for many episodes before converging.
978
+ 6. Conclusion
979
+ In this paper, we have provided a very generic and scalable
980
+ mechanism for handling a wide variety of policy based cost
981
+ constraints (expected cost, worst-case cost, VaR, CVaR) in
982
+ Constrained MDPs. Lagrangian based approaches, which
983
+ penalize with respect to expected cost are unable to as-
984
+ sign credit appropriately for a cost constraint violation, as
985
+ expected cost averages over all trajectories. Instead, we
986
+ propose to penalize with respect to individual reward while
987
+ maintaining a cost augmented state, thereby providing pre-
988
+ cise credit assignment with regards to cost constraint vio-
989
+ lations. We theoretically demonstrate that this simple cost
990
+ augmented state and reward penalized MDP (referred to
991
+ as EMDP) can represent all the aforementioned cost con-
992
+ straints. We then provide safety aware RL approaches, Safe
993
+ DQN and Safe SAC, which are able to outperform leading
994
+ expected cost constrained RL approaches (Lyapunov and
995
+ BVF) while at the same time providing similar performance
996
+ to leading approach for CVaR constrained RL (WCSAC).
997
+ References
998
+ Abe, N., Melville, P., Pendus, C., Reddy, C. K., Jensen,
999
+ D. L., Thomas, V. P., Bennett, J. J., Anderson, G. F.,
1000
+ Cooley, B. R., Kowalczyk, M., Domick, M., and Gar-
1001
+ dinier, T. Optimizing debt collections using constrained
1002
+ reinforcement learning.
1003
+ In Proceedings of the 16th
1004
+ ACM SIGKDD International Conference on Knowledge
1005
+ Discovery and Data Mining, KDD ’10, pp. 75–84,
1006
+ New York, NY, USA, 2010. Association for Comput-
1007
+ ing Machinery.
1008
+ ISBN 9781450300551.
1009
+ doi:
1010
+ 10.
1011
+ 1145/1835804.1835817. URL https://doi.org/
1012
+ 10.1145/1835804.1835817.
1013
+ Achiam, J., Held, D., Tamar, A., and Abbeel, P. Constrained
1014
+
1015
+ StaticEnv
1016
+ Goal
1017
+ Hazard
1018
+ AgentAverage Score in each Episode
1019
+ 0.6
1020
+ 0.4
1021
+ 0.2
1022
+ Unsafe DQN
1023
+ Safe DON
1024
+ Score
1025
+ BVF
1026
+ 0.0
1027
+ Safe SAC
1028
+ Lyapunov
1029
+ -0.2
1030
+ N
1031
+ WCSAC
1032
+ -0.4
1033
+ M
1034
+ -0.6
1035
+ 20
1036
+ 40
1037
+ 60
1038
+ 80
1039
+ 0
1040
+ 100
1041
+ EpisodeAverage Constraint in each Episode
1042
+ 40
1043
+ Unsafe DQN
1044
+ Safe DQN
1045
+ 35
1046
+ BVF
1047
+ Safe SAC
1048
+ 30
1049
+ Lyapunov
1050
+ WCSAC
1051
+ 25
1052
+ Constraint
1053
+ 20
1054
+ 15
1055
+ 10
1056
+ 5
1057
+ 0
1058
+ 20
1059
+ 40
1060
+ 60
1061
+ 80
1062
+ 100
1063
+ 0
1064
+ EpisodeSolving Constrained RL through Augmented State and Reward Penalties
1065
+ policy optimization. CoRR, abs/1705.10528, 2017. URL
1066
+ http://arxiv.org/abs/1705.10528.
1067
+ Altman, E.
1068
+ Constrained Markov decision processes:
1069
+ stochastic modeling. Routledge, 1999.
1070
+ Chow, Y., Pavone, M., Sadler, B. M., and Carpin, S. Trading
1071
+ safety versus performance: Rapid deployment of robotic
1072
+ swarms with robust performance constraints.
1073
+ CoRR,
1074
+ abs/1511.06982, 2015a. URL http://arxiv.org/
1075
+ abs/1511.06982.
1076
+ Chow, Y., Tamar, A., Mannor, S., and Pavone, M. Risk-
1077
+ sensitive and robust decision-making: a cvar optimization
1078
+ approach. CoRR, abs/1506.02188, 2015b. URL http:
1079
+ //arxiv.org/abs/1506.02188.
1080
+ Chow,
1081
+ Y.,
1082
+ Nachum,
1083
+ O.,
1084
+ Duenez-Guzman,
1085
+ E.,
1086
+ and
1087
+ Ghavamzadeh, M. A lyapunov-based approach to safe
1088
+ reinforcement learning. Advances in neural information
1089
+ processing systems, 31, 2018.
1090
+ Chow, Y., Nachum, O., Faust, A., Duenez-Guzman, E.,
1091
+ and Ghavamzadeh, M.
1092
+ Lyapunov-based safe policy
1093
+ optimization for continuous control.
1094
+ arXiv preprint
1095
+ arXiv:1901.10031, 2019a.
1096
+ Chow, Y., Nachum, O., Faust, A., Ghavamzadeh, M.,
1097
+ and Du´e˜nez-Guzm´an, E. A.
1098
+ Lyapunov-based safe
1099
+ policy optimization for continuous control.
1100
+ CoRR,
1101
+ abs/1901.10031, 2019b. URL http://arxiv.org/
1102
+ abs/1901.10031.
1103
+ Christodoulou, P. Soft actor-critic for discrete action settings.
1104
+ arXiv preprint arXiv:1910.07207, 2019.
1105
+ Di Castro, D., Tamar, A., and Mannor, S. Policy gradients
1106
+ with variance related risk criteria, 2012. URL https:
1107
+ //arxiv.org/abs/1206.6404.
1108
+ El Chamie, M., Yu, Y., and Ac¸ıkmes¸e, B. Convex synthesis
1109
+ of randomized policies for controlled markov chains with
1110
+ density safety upper bound constraints. In 2016 American
1111
+ Control Conference (ACC), pp. 6290–6295, 2016. doi:
1112
+ 10.1109/ACC.2016.7526658.
1113
+ G´abor, Z., Kalm´ar, Z., and Szepesv´ari, C. Multi-criteria
1114
+ reinforcement learning. In ICML, volume 98, pp. 197–
1115
+ 205, 1998.
1116
+ Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha,
1117
+ S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P.,
1118
+ et al. Soft actor-critic algorithms and applications. arXiv
1119
+ preprint arXiv:1812.05905, 2018.
1120
+ Hou, P., Yeoh, W., and Varakantham, P. Revisiting risk-
1121
+ sensitive mdps: New algorithms and results. In Pro-
1122
+ ceedings of the International Conference on Automated
1123
+ Planning and Scheduling, volume 24, pp. 136–144, 2014.
1124
+ Jain, A., Khetarpal, K., and Precup, D. Safe option-critic:
1125
+ learning safety in the option-critic architecture.
1126
+ The
1127
+ Knowledge Engineering Review, 36, 2021.
1128
+ Junges, S., Jansen, N., Dehnert, C., Topcu, U., and Katoen,
1129
+ J. Safety-constrained reinforcement learning for mdps.
1130
+ CoRR, abs/1510.05880, 2015. URL http://arxiv.
1131
+ org/abs/1510.05880.
1132
+ Leike, J., Martic, M., Krakovna, V., Ortega, P. A., Everitt,
1133
+ T., Lefrancq, A., Orseau, L., and Legg, S. Ai safety
1134
+ gridworlds. arXiv preprint arXiv:1711.09883, 2017.
1135
+ Leurent, E.
1136
+ An environment for autonomous driv-
1137
+ ing decision-making.
1138
+ https://github.com/
1139
+ eleurent/highway-env, 2018.
1140
+ Levine, S., Popovic, Z., and Koltun, V. Nonlinear inverse re-
1141
+ inforcement learning with gaussian processes. Advances
1142
+ in neural information processing systems, 24, 2011.
1143
+ Lucas, A. and Klaassen, P.
1144
+ Extreme returns, downside
1145
+ risk, and optimal asset allocation. Journal of Portfolio
1146
+ Management, 25(1):71, 1998.
1147
+ Mastronarde, N. and van der Schaar, M. Fast reinforcement
1148
+ learning for energy-efficient wireless communications.
1149
+ CoRR, abs/1009.5773, 2010. URL http://arxiv.
1150
+ org/abs/1009.5773.
1151
+ Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
1152
+ J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
1153
+ land, A. K., Ostrovski, G., et al. Human-level control
1154
+ through deep reinforcement learning. nature, 518(7540):
1155
+ 529–533, 2015.
1156
+ Moldovan, T. M. and Abbeel, P. Safe exploration in markov
1157
+ decision processes. CoRR, abs/1205.4810, 2012. URL
1158
+ http://arxiv.org/abs/1205.4810.
1159
+ Ono, M., Pavone, M., Kuwata, Y., and Balaram, J. Chance-
1160
+ constrained dynamic programming with application to
1161
+ risk-aware robotic space exploration. Auton. Robots, 39
1162
+ (4):555–571, dec 2015. ISSN 0929-5593. doi: 10.1007/
1163
+ s10514-015-9467-7. URL https://doi.org/10.
1164
+ 1007/s10514-015-9467-7.
1165
+ Ray, A., Achiam, J., and Amodei, D. Benchmarking safe ex-
1166
+ ploration in deep reinforcement learning. arXiv preprint
1167
+ arXiv:1910.01708, 7:1, 2019.
1168
+ Rockafellar, R. T., Uryasev, S., et al. Optimization of condi-
1169
+ tional value-at-risk. Journal of risk, 2:21–42, 2000.
1170
+ Satija, H., Amortila, P., and Pineau, J. Constrained markov
1171
+ decision processes via backward value functions.
1172
+ In
1173
+ ICML, 2020a.
1174
+
1175
+ Solving Constrained RL through Augmented State and Reward Penalties
1176
+ Satija, H., Amortila, P., and Pineau, J. Constrained markov
1177
+ decision processes via backward value functions. In In-
1178
+ ternational Conference on Machine Learning, pp. 8502–
1179
+ 8511. PMLR, 2020b.
1180
+ Yang, Q., Sim˜ao, T. D., Tindemans, S. H., and Spaan, M. T.
1181
+ Wcsac: Worst-case soft actor critic for safety-constrained
1182
+ reinforcement learning. In AAAI, pp. 10639–10646, 2021.
1183
+
1184
+ Solving Constrained RL through Augmented State and Reward Penalties
1185
+ A. SAC Pseudocode
1186
+ Algorithm 2 provides the pseudocode for the Safe SAC algorithm.
1187
+ Algorithm 2 SAC with Extended State Space
1188
+ 1: Initialize: policy network π with weight θ.
1189
+ 2: Value Function: Q1, Q2 with weights φ1, φ2, target Q value functions Qtarg,1, Qtarg,2 with weights φtarg
1190
+ 1
1191
+ =
1192
+ φ1, φtarg
1193
+ 2
1194
+ = φ2.
1195
+ 3: Cost Function: Q1
1196
+ D, Q2
1197
+ D with weights θ1,D, θ2,D, target cost functions Qtarg,1
1198
+ D
1199
+ , Qtarg,2
1200
+ D
1201
+ with weights θtarg
1202
+ 1,D
1203
+ =
1204
+ θ1,D, θtarg
1205
+ 2,D = φ2,D.
1206
+ 4: for episode=1,2,...,N do
1207
+ 5:
1208
+ Get initial state-cost pair (s0, c0 = 0); t ← 1
1209
+ 6:
1210
+ while t ≤ T do
1211
+ 7:
1212
+ tstart ← t
1213
+ 8:
1214
+ while t ≤ tstart + n or t == T do
1215
+ 9:
1216
+ Select action at using Equation 6.
1217
+ 10:
1218
+ Execute at, observe (st+1, ct+1) and rt.
1219
+ 11:
1220
+ t ← t + 1
1221
+ 12:
1222
+ end while
1223
+ 13:
1224
+ {Calculate targets for each network:}
1225
+ 14:
1226
+ ˜rt ← if ct > cmax then rt − ∆dt/γt elif ct+1 > cmax then rt − ∆(ct + dt)/γt else rt
1227
+ 15:
1228
+ R ← if t == T then 0 else ˜rt + γ mini=1,2 Qtarg,i((st+1, ct+1), ˜a′) − α log πθ(˜a′), ˜a′ ∼ πθ((st+1, ct+1))
1229
+ 16:
1230
+ RD ← if t == T then 0 else maxi=1,2 Qtarg,i
1231
+ D
1232
+ ((st+1, ct+1), at+1; θD)
1233
+ 17:
1234
+ {Update networks}
1235
+ 18:
1236
+ for i ∈ {t − 1, ..., tstart} do
1237
+ 19:
1238
+ R ← ri + αR, RD ← di + αRD
1239
+ 20:
1240
+ for j = 1, 2 do
1241
+ 21:
1242
+ dφj ← dφj + ∂(R − Qj)2/∂φj
1243
+ 22:
1244
+ dθj,D ← dθj,D + ∂(RD − Qj
1245
+ D)2/∂θj,D
1246
+ 23:
1247
+ end for
1248
+ 24:
1249
+ if the policy is safe then
1250
+ 25:
1251
+ dθ ← dθ + ∇θ log π(ai)(minj=1,2 Qtarg,j − α log π(ai))
1252
+ 26:
1253
+ else
1254
+ 27:
1255
+ dθ ← dθ − ∇θ log π(ai)RD
1256
+ 28:
1257
+ end if
1258
+ 29:
1259
+ end for
1260
+ 30:
1261
+ {Update target networks}
1262
+ 31:
1263
+ end while
1264
+ 32: end for
1265
+ B. Proofs
1266
+ B.1. Proof of Theorem 3.2
1267
+ Theorem 3.2.
1268
+ If we set ∆ = ∞, then if π∗ solves (EMDP), it also solves the following worst-case constrained MDP
1269
+ problem
1270
+ max
1271
+ π
1272
+ E
1273
+ � T
1274
+
1275
+ t=0
1276
+ γtr(st, at)|s0, π
1277
+
1278
+ s.t.
1279
+
1280
+ st∈τ
1281
+ d(st) ≤ cmax, ∀τ ∼ π.
1282
+ As a result, π∗ is feasible to the risk-neutral CMDP (RN-CMDP).
1283
+ Proof. We first see that there is a unique mapping between a trajectory τ = {s0, . . . , sT } from the original MDP to a
1284
+
1285
+ Solving Constrained RL through Augmented State and Reward Penalties
1286
+ trajectory of the extended MDP τ ′ = {(s0, c0), (s1, c1) . . . , (sT , cT )} with c0 = 0 and ct = �t−1
1287
+ i=0 d(st). Under the reward
1288
+ penalties, we can write the objective of the extended MDP as
1289
+ E
1290
+ � T
1291
+
1292
+ t=0
1293
+ γtr(at|st, ct)|s0, π
1294
+
1295
+ =
1296
+
1297
+ τ ′={(st,ct)}∼π
1298
+ Pπ(τ ′)
1299
+ ��
1300
+ t
1301
+ γt�r(at|st, ct)
1302
+
1303
+ =
1304
+
1305
+ τ={s0,s1,...}∼π
1306
+ D(τ)≤cmax
1307
+ Pπ(τ)
1308
+ ��
1309
+ t
1310
+ γtr(st, at)
1311
+
1312
+ +
1313
+
1314
+ τ={s0,s1,...}∼π
1315
+ D(τ)>cmax
1316
+ Pπ(τ)
1317
+ ��
1318
+ t
1319
+ γtr(st, at) − ∆
1320
+
1321
+ t
1322
+ d(st)
1323
+
1324
+ = Eπ
1325
+ ��
1326
+ t
1327
+ γtr(st, at)
1328
+
1329
+ − ∆
1330
+
1331
+ τ∼π
1332
+ D(τ)>cmax
1333
+ Pπ(τ)D(τ)
1334
+ (7)
1335
+ As a result, we can rewrite the MDP problem (EMDP) as
1336
+ max
1337
+ π
1338
+
1339
+
1340
+
1341
+
1342
+
1343
+
1344
+ ��
1345
+ t
1346
+ γtr(st, at)
1347
+
1348
+ − ∆
1349
+
1350
+ τ∼π
1351
+ D(τ)>cmax
1352
+ Pπ(τ)D(τ)
1353
+
1354
+
1355
+
1356
+
1357
+
1358
+ (8)
1359
+ So, if we set ∆ = ∞, to maximize the expected reward, we need to seek a policy that assigns zero probabilities for all
1360
+ the trajectories τ such that D(τ) > cmax. Let Π be the set of policies satisfying that condition (and assume that Π is not
1361
+ empty), i.e., for any policy π ∈ Π and any trajectory τ such that D(τ) > cmax, Pπ(τ) = 0. This implies that when ∆ = ∞,
1362
+ (8) is equivalent to
1363
+ Eπ∈Π
1364
+ ��
1365
+ t
1366
+ γtr(st, at)
1367
+
1368
+ which is also the worst-case CMDP problem.
1369
+ B.2. Proof of Lemma 3.3
1370
+ Lemma 3.3. Let φ∗ = cmax − maxπ
1371
+
1372
+ �Eπ[D(τ)| D(τ) ≤ cmax]
1373
+
1374
+ . Given any policy π, if �Eπ[D(τ)| D(τ) > cmax] ≤ φ∗,
1375
+ then Eπ[D(τ)] ≤ cmax.
1376
+ Proof. For a policy π satisfying �Eπ[D(τ)| D(τ) > cmax] ≤ φ∗, we have
1377
+
1378
+ τ| D(τ)>cmax
1379
+ Pπ(τ)D(τ) ≤ cmax − max
1380
+ π
1381
+
1382
+ �Eπ[D(τ)| D(τ) ≤ cmax]
1383
+
1384
+ ,
1385
+ which is equivalent to
1386
+
1387
+ τ| D(τ)>cmax
1388
+ Pπ(τ)D(τ) + max
1389
+ π
1390
+
1391
+ �Eπ[D(τ)| D(τ) ≤ cmax]
1392
+
1393
+ ≤ cmax
1394
+ implying
1395
+ cmax ≥
1396
+
1397
+ τ| D(τ)>cmax
1398
+ Pπ(τ)D(τ) +
1399
+
1400
+ τ| D(τ)≤cmax
1401
+ Pπ(τ)D(τ) = Eπ[D(τ)]
1402
+ which is the desired inequality.
1403
+ B.3. Proof of Lemma 3.4
1404
+ Lemma 3.4. Given ∆ > 0, let π∗ be an optimal solution to (EMDP). We have
1405
+ �Eπ∗ [D(τ)| D(τ) > cmax] ≤ Ψ∗ − Ψ
1406
+
1407
+ .
1408
+
1409
+ Solving Constrained RL through Augmented State and Reward Penalties
1410
+ Proof. We first note that, from (8), we can write
1411
+ π∗ = argmaxπ
1412
+
1413
+
1414
+
1415
+
1416
+
1417
+
1418
+ ��
1419
+ t
1420
+ γtr(st, at)
1421
+
1422
+ − ∆
1423
+
1424
+ τ
1425
+ D(τ)≥cmax
1426
+ Pπ(τ)D(τ)
1427
+
1428
+
1429
+
1430
+
1431
+
1432
+ Let π be an optimal policy to the worst-case CMDP (WC-CMDP). Since π is also feasible to the extended MDP (EMDP),
1433
+ we have
1434
+ Eπ∗
1435
+ ��
1436
+ t
1437
+ γtr(st, at)
1438
+
1439
+ − ∆
1440
+
1441
+ τ
1442
+ D(τ)≥cmax
1443
+ Pπ∗(τ)D(τ) ≥ Eπ
1444
+ ��
1445
+ t
1446
+ γtr(st, at)
1447
+
1448
+ = Ψ
1449
+ (9)
1450
+ Moreover, since Ψ∗ is the optimal value of the original unconstrained problem Ψ∗ = maxπ E
1451
+ ��T
1452
+ t=0 γtr(st, at)|s0, π
1453
+
1454
+ , we
1455
+ should have
1456
+ Ψ∗ ≥ Eπ∗
1457
+ ��
1458
+ t
1459
+ γtr(st, at)
1460
+
1461
+ (10)
1462
+ Combining (24) and (10) gives
1463
+ Ψ∗ − ∆
1464
+
1465
+ τ
1466
+ D(τ)≥cmax
1467
+ Pπ∗(τ)D(τ) ≥ Ψ,
1468
+ implying
1469
+
1470
+ τ| D(τ)≥cmax
1471
+ Pπ∗(τ)D(τ) ≤ Ψ∗ − Ψ
1472
+
1473
+ ,
1474
+ which is the desired inequality.
1475
+ B.4. Proof of Theorem 3.5
1476
+ Theorem 3.5. For any ∆ ≥ Ψ∗−Ψ
1477
+ φ∗
1478
+ a solution to (EMDP) is always feasible to the risk-neutral CMDP (RN-CMDP).
1479
+ Proof. The theorem is a direct result from Lemmas 3.3 and 3.4. That is, by selecting ∆ ≥ Ψ∗−Ψ
1480
+ φ∗
1481
+ , from Lemm 3.4 we can
1482
+ guarantee that
1483
+
1484
+ τ| D(τ)≥cmax
1485
+ Pπ∗(τ)D(τ) ≤ Ψ∗ − Ψ
1486
+
1487
+ ≤ φ∗,
1488
+ (11)
1489
+ where π∗ is an optimal policy to (EMDP). From Lemma 3.4, (11) also implies that π∗ is also feasible to the risk-neutral
1490
+ CMDP (RN-CMDP), as desired.
1491
+ B.5. Proof of Theorem 3.6
1492
+ Theorem 3.6. For any ∆ ≥ (Ψ∗ − Ψ)/(αcmax), a solution to (EMDP) is always feasible to (VaR-CMDP).
1493
+ Proof. We use Lemma 3.4 to see that if π∗ is a solution to (EMDP), then it satisfies
1494
+ �Eτ∼π∗
1495
+
1496
+ D(τ)| D(τ) > cmax
1497
+
1498
+ ≤ Ψ∗ − Ψ
1499
+
1500
+ .
1501
+ (12)
1502
+ On the other hand, we have
1503
+ �Eτ∼π∗
1504
+
1505
+ D(τ)| D(τ) > cmax
1506
+
1507
+ =
1508
+
1509
+ τ|D(τ)>cmax
1510
+ Pπ∗(τ)D(τ)
1511
+ > cmax
1512
+
1513
+ τ|D(τ)>cmax
1514
+ Pπ∗(τ)
1515
+ = cmaxPπ∗(D(τ) > cmax))
1516
+ (13)
1517
+
1518
+ Solving Constrained RL through Augmented State and Reward Penalties
1519
+ Thus, if we select ∆ ≥ (Ψ∗ − Ψ)/(αcmax), we will have the following chain of inequalities.
1520
+ α ≥ Ψ∗ − Ψ
1521
+ ∆cmax
1522
+ (a)
1523
+
1524
+ 1
1525
+ cmax
1526
+ �Eτ∼π∗
1527
+
1528
+ D(τ)| D(τ) > cmax
1529
+
1530
+ (b)
1531
+ ≥ Pπ∗(D(τ) > cmax).
1532
+ where (a) is due to (12) and (b) is due to (13). This implies that π∗ is feasible to the chance-constrained MDP (VaR-CMDP).
1533
+ We complete the proof.
1534
+ B.6. Proof of Theorem 3.7
1535
+ Theorem 3.7. If we define the reward penalties as
1536
+
1537
+
1538
+
1539
+
1540
+
1541
+
1542
+
1543
+
1544
+
1545
+ �r(at|(st, ct)) = r(at|st) if ct + d(st) ≤ cmax
1546
+ �r(at|(st, ct)) = r(at|st) − ∆(t + 1)/γt
1547
+ if ct ≤ cmax and ct + d(st) > cmax
1548
+ �r(at|(st, ct)) = r(at|st) − ∆/γt if ct > cmax
1549
+ then if π∗ is an optimal solution to (EMDP), then there is α∆ ∈ [0; Ψ∗−Ψ
1550
+ ∆T ] (α is dependent of ∆) such that π∗ is also optimal
1551
+ to (VaR-CMDP). Moreover lim∆→∞ α∆ = 0.
1552
+ Proof. Under the reward setting, we can write the objective of (EMDP) as
1553
+
1554
+ � T
1555
+
1556
+ t=0
1557
+ γtr(at|st, ct)|s0
1558
+
1559
+ =
1560
+
1561
+ τ ′={(st,ct)}∼π
1562
+ Pπ(τ ′)
1563
+ ��
1564
+ t
1565
+ γt�r(at|st, ct)
1566
+
1567
+ =
1568
+
1569
+ τ={s0,s1,...}∼π
1570
+ D(τ)≤cmax
1571
+ Pπ(τ)
1572
+ ��
1573
+ t
1574
+ γtr(st, at)
1575
+
1576
+ +
1577
+
1578
+ τ={s0,s1,...}∼π
1579
+ D(τ)>cmax
1580
+ Pπ(τ)
1581
+ ��
1582
+ t
1583
+ γtr(st, at) − ∆T
1584
+
1585
+ = Eπ
1586
+ ��
1587
+ t
1588
+ γtr(st, at)
1589
+
1590
+ − ∆TPπ(D(τ) > cmax).
1591
+ (14)
1592
+ We now show that if π∗ is an optimal policy to (EMDP), then it is also optimal for (VaR-CMDP) with where α∆ =
1593
+ Pπ∗(D(τ) > cmax). By contradiction, let us assume that it is not the case. Let π be optimal for (VaR-CMDP). We first see
1594
+ that π∗ is feasible to (VaR-CMDP), thus
1595
+ Eπ∗
1596
+ � T
1597
+
1598
+ t=0
1599
+ γtr(st, at)
1600
+
1601
+ < Eπ
1602
+ � T
1603
+
1604
+ t=0
1605
+ γtr(st, at)
1606
+
1607
+ .
1608
+ (15)
1609
+ Moreover, since π is feasible to (VaR-CMDP), we have:
1610
+ Pπ(D(τ) > cmax) ≤ Pπ∗(D(τ) > cmax).
1611
+ (16)
1612
+ Combine (15) and (16) and (14), it can be seen that π∗ is not an optimal policy to (EMDP), which is contrary to our initial
1613
+ assumption. So, π∗ is an optimal policy for the (VaR-CMDP). We now prove that lim∆→∞ α∆ = 0. To this end, we first
1614
+ see that if �π is an optimal solution to the worst-case CMDP (WC-CMDP), then P�π(D(τ) > cmax) = 0. Thus, we have the
1615
+
1616
+ Solving Constrained RL through Augmented State and Reward Penalties
1617
+ following chain of inequalities
1618
+ Ψ∗ − ∆Tα∆ ≥ Eπ∗
1619
+ ��
1620
+ t
1621
+ γtr(st, at)
1622
+
1623
+ − ∆TPπ∗(D(τ) > cmax)
1624
+ ≥ E�π
1625
+ ��
1626
+ t
1627
+ γtr(st, at)
1628
+
1629
+ − ∆TP�π(D(τ) > cmax)
1630
+ = E�π
1631
+ ��
1632
+ t
1633
+ γtr(st, at)
1634
+
1635
+ = Ψ
1636
+ Thus
1637
+ α∆ ≤ Ψ∗ − Ψ
1638
+ ∆T
1639
+ .
1640
+ implying lim∆→∞ α∆ = 0.
1641
+ B.7. Proof of Theorem 3.8
1642
+ Theorem 3.8. If we define the reward penalties as
1643
+
1644
+
1645
+
1646
+
1647
+
1648
+
1649
+
1650
+
1651
+
1652
+ �r(at|(st, ct)) = r(at|st) if ct + d(st) ≤ cmax
1653
+ �r(at|(st, ct)) = r(at|st) − ∆(ct + d(st) − cmax)/γt
1654
+ if ct ≤ cmax and ct + d(st) > cmax
1655
+ �r(at|(st, ct)) = r(at|st) − ∆d(st)/γt if ct > cmax
1656
+ then for any ∆ > 0, there is β∆ ∈ [0; Ψ∗−Ψ
1657
+
1658
+ ] (β∆ is dependent of ∆) such that any optimal solution to the extended CMDP
1659
+ (EMDP) is also optimal to the following risk-averse CMDP
1660
+ max
1661
+ π
1662
+ E
1663
+ � T
1664
+
1665
+ t=0
1666
+ γtr(st, at)|s0, π
1667
+
1668
+ s.t.
1669
+ Eτ∼π
1670
+
1671
+ (D(τ) − cmax)+�
1672
+ ≤ β∆.
1673
+ (CVaR-CMDP)
1674
+ Moreover, lim∆→∞ β∆ = 0.
1675
+ Proof. We first see that, under the reward penalties defined above, the objective of (EMDP) becomes
1676
+
1677
+ � T
1678
+
1679
+ t=0
1680
+ γtr(at|st, ct)|s0
1681
+
1682
+ =
1683
+
1684
+ τ ′={(st,ct)}∼π
1685
+ Pπ(τ ′)
1686
+ ��
1687
+ t
1688
+ γt�r(at|st, ct)
1689
+
1690
+ =
1691
+
1692
+ τ={s0,s1,...}∼π
1693
+ D(τ)≤cmax
1694
+ Pπ(τ)
1695
+ ��
1696
+ t
1697
+ γtr(st, at)
1698
+
1699
+ +
1700
+
1701
+ τ={s0,s1,...}∼π
1702
+ D(τ)>cmax
1703
+ Pπ(τ)
1704
+ ��
1705
+ t
1706
+ γtr(st, at) − ∆
1707
+ ��
1708
+ t
1709
+ d(st) − cmax
1710
+ ��
1711
+ = Eπ
1712
+ ��
1713
+ t
1714
+ γtr(st, at)
1715
+
1716
+ − ∆
1717
+
1718
+ τ∼π
1719
+ D(τ)>cmax
1720
+ Pπ(τ)(D(τ) − cmax)
1721
+ = Eπ
1722
+ ��
1723
+ t
1724
+ γtr(st, at)
1725
+
1726
+ − ∆Eτ∼π
1727
+
1728
+ (D(τ) − cmax)+�
1729
+ (17)
1730
+ We now show that if π∗ is an optimal policy to (EMDP), then it is also optimal for (CVaR-CMDP) with where β∆ =
1731
+ Eτ∼π∗
1732
+
1733
+ (D(τ) − cmax)+�
1734
+ . By contradiction, let us assume that π∗ is not optimal for (CVaR-CMDP). We then let π be
1735
+ optimal for (CVaR-CMDP). We first see that π∗ is feasible to (CVaR-CMDP), thus
1736
+ Eπ∗
1737
+ � T
1738
+
1739
+ t=0
1740
+ γtr(st, at)
1741
+
1742
+ < Eπ
1743
+ � T
1744
+
1745
+ t=0
1746
+ γtr(st, at)
1747
+
1748
+ (18)
1749
+
1750
+ Solving Constrained RL through Augmented State and Reward Penalties
1751
+ Moreover, since π is feasible to (CVaR-CMDP), we have:
1752
+ Eτ∼π
1753
+
1754
+ (D(τ) − cmax)+�
1755
+ ≤ β∆ = Eτ∼π∗
1756
+
1757
+ (D(τ) − cmax)+�
1758
+ (19)
1759
+ Combine (18) and (19) we get
1760
+ Eπ∗
1761
+ � T
1762
+
1763
+ t=0
1764
+ γtr(st, at)
1765
+
1766
+ − ∆Eτ∼π∗
1767
+
1768
+ (D(τ) − cmax)+�
1769
+ < Eπ
1770
+ � T
1771
+
1772
+ t=0
1773
+ γtr(st, at)
1774
+
1775
+ − ∆�Eτ∼π
1776
+
1777
+ (D(τ) − cmax)+�
1778
+ (20)
1779
+ Using (17), (20) implies that �π yields a strictly better objective value to the extended MDP, as compared to π∗, which
1780
+ is contrary to the assumption that π∗ is optimal for (EMDP). So, π∗ should be an optimal policy for the (CVaR-CMDP).
1781
+ We now prove that lim∆→∞ β∆ = 0. To this end, we first see that if �π is an optimal solution to the worst-case CMDP
1782
+ (WC-CMDP), then �Eτ∼�π
1783
+
1784
+ (D(τ) − cmax)+�
1785
+ = 0. Thus, we have the following chain of inequalities:
1786
+ Ψ∗ − ∆β∆ ≥ Eπ∗
1787
+ ��
1788
+ t
1789
+ γtr(st, at)
1790
+
1791
+ − ∆Eτ∼π∗ �
1792
+ (D(τ) − cmax)+�
1793
+ ≥ E�π
1794
+ ��
1795
+ t
1796
+ γtr(st, at)
1797
+
1798
+ − ∆Eτ∼�π
1799
+
1800
+ (D(τ) − cmax)+�
1801
+ = E�π
1802
+ ��
1803
+ t
1804
+ γtr(st, at)
1805
+
1806
+ (21)
1807
+ We recall that E�π [�
1808
+ t γtr(st, at)] = Ψ (i.e., objective value of the worst-case CMDP), thus,
1809
+ β∆ ≤ Ψ∗ − Ψ
1810
+
1811
+ ,
1812
+ implying lim∆→∞ β∆ = 0 as desired.
1813
+ C. Multi-constrained MDP
1814
+ We present, in the following, a series of theoretical results for the multi-constrained MDP discussed in the main body of the
1815
+ paper. Similar to the single-constrained case, we will show that
1816
+ • If ∆k = ∞ for all k ∈ [K], then (2) is equivalent to a worst-case CMDP.
1817
+ • There is a lower bound for each ∆k such that any optimal policy to (2) will always be feasible to a given risk-neutral or
1818
+ chance-constrained MDP.
1819
+ • By employing different reward penalty settings, (2) is equivalent to a VaR or CVaR CMDP.
1820
+ Since all the proofs are similar to those in the single-constrained case, we keep them brief.
1821
+ Proposition C.1. If we set ∆k = ∞ for all k ∈ [K], then the extended MDP is equivalent to the following worst-case
1822
+ CMDP
1823
+ max
1824
+ π
1825
+ E
1826
+ � T
1827
+
1828
+ t=0
1829
+ γtr(st, at)|s0, π
1830
+
1831
+ s.t.
1832
+
1833
+ st∈τ
1834
+ dk(st) ≤ ck
1835
+ max, ∀τ ∼ π, ∀k ∈ [K]
1836
+ (22)
1837
+
1838
+ Solving Constrained RL through Augmented State and Reward Penalties
1839
+ Proof. Similar to the proof of Theorem 3.2, we write the objective of the extended MDP as
1840
+ E
1841
+ � T
1842
+
1843
+ t=0
1844
+ γtr(at|st, cK
1845
+ t )|s0, π
1846
+
1847
+ =
1848
+
1849
+ τ ′={(st,cK
1850
+ t )}∼π
1851
+ Pπ(τ ′)
1852
+ ��
1853
+ t
1854
+ γt�r(at|st, cK
1855
+ t )
1856
+
1857
+ =
1858
+
1859
+ τ={s0,s1,...}∼π
1860
+ D(τ)≤cmax
1861
+ Pπ(τ)
1862
+ ��
1863
+ t
1864
+ γtr(st, at)
1865
+
1866
+ +
1867
+
1868
+ τ={s0,s1,...}∼π
1869
+ D(τ)>cmax
1870
+ Pπ(τ)
1871
+
1872
+ ��
1873
+ t
1874
+ γtr(st, at) −
1875
+
1876
+ k∈[K]
1877
+ ∆k
1878
+
1879
+ t
1880
+ dk(st)
1881
+
1882
+
1883
+ = Eπ
1884
+ ��
1885
+ t
1886
+ γtr(st, at)
1887
+
1888
+
1889
+
1890
+ k∈[K]
1891
+ ∆k
1892
+
1893
+ τ∼π
1894
+ Dk(τ)≥ck
1895
+ max
1896
+ Pπ(τ)Dk(τ).
1897
+ (23)
1898
+ So, if ∆k = ∞, then one needs to seek a policy that assigns zero probabilities to all the trajectories that violate the
1899
+ constraints, implying that the extended MDP would yield the same optimal policies as the worst-case CMDP (22).
1900
+ Proposition C.2. Let π∗ and π be optimal policies to the extended MDP (2) and the worst-case MDP, and φk = ck
1901
+ max −
1902
+ maxπ �Eπ[Dk(τ)|Dk(τ) ≤ ck
1903
+ max], ∀k ∈ [K]. If we choose ∆k such that ∆k > (Ψ∗ − Ψ)/φk, then any optimal policy of
1904
+ (2) is feasible to the risk-neutral CMDP with multiple constraints.
1905
+ Proof. Since π is also feasible to (2), we have:
1906
+ Eπ∗
1907
+ ��
1908
+ t
1909
+ γtr(st, at)
1910
+
1911
+
1912
+
1913
+ k∈[K]
1914
+ ∆k
1915
+
1916
+ τ
1917
+ Dk(τ)>ck
1918
+ max
1919
+ Pπ∗(τ)Dk(τ) ≥ Eπ
1920
+ ��
1921
+ t
1922
+ γtr(st, at)
1923
+
1924
+ = Ψ.
1925
+ (24)
1926
+ Moreover, since Ψ∗ is an optimal value of the original unconstrained MDP, we have Ψ∗ ≥ Eπ∗ [�
1927
+ t γtr(st, at)], leading to
1928
+
1929
+ k∈[K]
1930
+ ∆k
1931
+
1932
+ τ
1933
+ Dk(τ)≥ck
1934
+ max
1935
+ Pπ∗(τ)Dk(τ) ≤ Ψ∗ − Ψ.
1936
+ (25)
1937
+ Moreover, from Lemma 3.3, we know that if �Eπ[Dk(τ)| Dk(τ) > ck
1938
+ max] ≤ φk, then Eπ[Dk(τ)] < ck
1939
+ max, where
1940
+ φk = ck
1941
+ max − maxπ �Eπ[Dk(τ)|Dk(τ) ≤ cmax]. Therefore, if we select ∆k ≥ (Ψ∗ − Ψ)/φk, then from (25) we see that
1942
+ �Eπ∗[Dk(τ)| Dk(τ) > ck
1943
+ max] ≤ φk for all k ∈ [K], implying that π∗ satisfies all the constraints, as desired.
1944
+ Proposition C.3. Given any αk ∈ (0, 1), k ∈ [K], if we choose ∆k ≥ (Ψ∗ − Ψ)/(αkck
1945
+ max), ∀k ∈ [K], then a solution π∗
1946
+ to (2) is always feasible to the following VaR (or chance-constrained) MDP.
1947
+ max
1948
+ π
1949
+ E
1950
+ � T
1951
+
1952
+ t=0
1953
+ γtr(st, at)|s0, π
1954
+
1955
+ s.t.
1956
+
1957
+
1958
+ (Dk(τ) > ck
1959
+ max
1960
+
1961
+ ≤ αk, ∀k ∈ [K]
1962
+ (26)
1963
+ Proof. From the proof of Proposition C.2 above, we have the following inequalities
1964
+ Ψ∗ − Ψ ≥
1965
+
1966
+ k∈[K]
1967
+ ∆k
1968
+
1969
+ τ
1970
+ Dk(τ)>ck
1971
+ max
1972
+ Pπ∗(τ)Dk(τ)
1973
+
1974
+
1975
+ k∈[K]
1976
+ ∆kck
1977
+ maxPπ∗(Dk(τ) > ck
1978
+ max)
1979
+ So if we choose ∆k ≥ (Ψ∗ − Ψ)/(αkck
1980
+ max), ∀k ∈ [K], we will have
1981
+ Ψ∗ − Ψ ≥ (Ψ∗ − Ψ)
1982
+ (αkckmax)ck
1983
+ maxPπ∗(Dk(τ) > ck
1984
+ max), ∀k ∈ [K],
1985
+ implying Pπ∗(Dk(τ) > ck
1986
+ max) ≤ αk, as desired.
1987
+
1988
+ Solving Constrained RL through Augmented State and Reward Penalties
1989
+ Proposition C.4. If we define the reward penalties as
1990
+ �r(at|(st, cK
1991
+ t )) = r(at|st) −
1992
+
1993
+ k∈[K]
1994
+ ∆kδk(ct), ∀st, at, cK
1995
+ t ,
1996
+ where δk(ct), ∀k ∈ [K], are defined as follows:
1997
+ δk(ct) =
1998
+
1999
+
2000
+
2001
+
2002
+
2003
+ 0 if ck
2004
+ t + dk(st) ≤ ck
2005
+ max
2006
+ (T + 1)/γt if ck
2007
+ t ≤ ck
2008
+ max, ck
2009
+ t + dk(st) > ck
2010
+ max
2011
+ 1/γt if ck
2012
+ t > ck
2013
+ max,
2014
+ then if π∗ is an optimal solution to (EMDP), there is α∆
2015
+
2016
+
2017
+ k ∈ [0; Ψ∗−Ψ
2018
+ T ∆k ] (αk is dependent of ∆
2019
+
2020
+ ∆)1 such that π∗ is also optimal
2021
+ to the following VaR CMDP
2022
+ max
2023
+ π
2024
+ E
2025
+ � T
2026
+
2027
+ t=0
2028
+ γtr(st, at)|s0, π
2029
+
2030
+ s.t.
2031
+
2032
+
2033
+ (D(τ) > ck
2034
+ max
2035
+
2036
+ ≤ α∆
2037
+
2038
+
2039
+ k , ∀k ∈ [K].
2040
+ (27)
2041
+ Moreover lim∆k→∞ α∆
2042
+
2043
+
2044
+ k = 0, ∀k ∈ [K].
2045
+ Proof. Similar to the proof of Theorem 3.6, we can write the objective of the extended MDP as
2046
+
2047
+ ��
2048
+ t
2049
+ γtr(at|st, cK
2050
+ t )
2051
+
2052
+ = Eπ
2053
+ ��
2054
+ t
2055
+ γtr(st, at)
2056
+
2057
+
2058
+
2059
+ k∈[K]
2060
+ ∆kTPπ(Dk(τ) > ck
2061
+ max)
2062
+ Then, in a similar way, if we let α∆
2063
+
2064
+
2065
+ k = TPπ∗(Dk(τ) > ck
2066
+ max), then π∗ should be an optimal policy to (27). In addition, we
2067
+ can bound αk by deriving the following inequalities.
2068
+ Ψ∗ −
2069
+
2070
+ k∈[K]
2071
+ ∆kTα∆
2072
+
2073
+
2074
+ k ≥ Eπ∗
2075
+ ��
2076
+ t
2077
+ γtr(st, at)
2078
+
2079
+
2080
+
2081
+ k∈[K]
2082
+ ∆kTPπ∗(Dk(τ) > ck
2083
+ max)
2084
+ ≥ E�π
2085
+ ��
2086
+ t
2087
+ γtr(st, at)
2088
+
2089
+
2090
+
2091
+ k∈[K]
2092
+ ∆kTP�π(Dk(τ) > ck
2093
+ max)
2094
+ = E�π
2095
+ ��
2096
+ t
2097
+ γtr(st, at)
2098
+
2099
+ = Ψ,
2100
+ (28)
2101
+ where �π and Ψ are optimal policy and optimal value of the worst-case CMDP (22). This implies
2102
+
2103
+ k∈[K]
2104
+ ∆kTα∆
2105
+
2106
+
2107
+ k ≤ Ψ∗ − Ψ,
2108
+ which tells us that α∆
2109
+
2110
+
2111
+ k ≤ Ψ∗−Ψ
2112
+ T ∆k , implying that lim∆k→∞ α∆
2113
+
2114
+
2115
+ k = 0.
2116
+ Proposition C.5. For any ∆k > 0, k ∈ [K], if we define the reward penalties as
2117
+ �r(at|(st, cK
2118
+ t )) = r(at|st) −
2119
+
2120
+ k∈[K]
2121
+ ∆kδk(ct), ∀st, at, cK
2122
+ t ,
2123
+ where δk(ct), ∀k ∈ [K], are defined as follows:
2124
+ δk(ct) =
2125
+
2126
+
2127
+
2128
+
2129
+
2130
+ 0 if ck
2131
+ t + dk(st) ≤ ck
2132
+ max
2133
+ (ck
2134
+ t + dk
2135
+ t − ck
2136
+ max)/γt if ck
2137
+ t ≤ ck
2138
+ max, ck
2139
+ t + dk(st) > ck
2140
+ max
2141
+ dk
2142
+ t /γt if ck
2143
+ t > ck
2144
+ max,
2145
+ 1∆
2146
+
2147
+ ∆ denotes the vector (∆1, . . . , ∆K)
2148
+
2149
+ Solving Constrained RL through Augmented State and Reward Penalties
2150
+ then there are β∆
2151
+
2152
+
2153
+ k ∈ [0; Ψ∗−Ψ
2154
+ ∆k ] (β∆
2155
+
2156
+
2157
+ k is dependent of ∆
2158
+
2159
+ ∆) such that any optimal solution π∗ to the extended CMDP (2) is also
2160
+ optimal to the following multi-constrained CVaR CMDP
2161
+ max
2162
+ π
2163
+ E
2164
+ � T
2165
+
2166
+ t=0
2167
+ γtr(st, at)|s0, π
2168
+
2169
+ s.t.
2170
+ Eτ∼π
2171
+
2172
+ (D(τ) − cmax)+�
2173
+ ≤ β∆
2174
+
2175
+
2176
+ k , ∀k ∈ [K]
2177
+ (29)
2178
+ Moreover, lim∆k→∞ β∆
2179
+
2180
+
2181
+ k = 0.
2182
+ Proof. Under the reward setting, we first write the objective function of the extended MDP as
2183
+
2184
+ ��
2185
+ t
2186
+ γtr(at|st, cK
2187
+ t )
2188
+
2189
+ = Eπ
2190
+ ��
2191
+ t
2192
+ γtr(st, at)
2193
+
2194
+
2195
+
2196
+ k∈[K]
2197
+ ∆kEπ
2198
+
2199
+ (Dk(τ) − ck
2200
+ max)+�
2201
+ Following the same derivations as in the proof of Theorem 3.8, we can further show that, by contradiction, π∗ is also optimal
2202
+ for the CVaR CMDP (29) with β∆
2203
+
2204
+
2205
+ k = Eπ∗
2206
+
2207
+ (Dk(τ) − ck
2208
+ max)+�
2209
+ . To prove lim∆k→∞ β∆
2210
+
2211
+
2212
+ k = 0, we derive similar inequalities
2213
+ as in the proof of Proposition C.4, as follows:
2214
+ Ψ∗ −
2215
+
2216
+ k∈[K]
2217
+ ∆kβ∆
2218
+
2219
+
2220
+ k ≥ Eπ∗
2221
+ ��
2222
+ t
2223
+ γtr(st, at)
2224
+
2225
+
2226
+
2227
+ k∈[K]
2228
+ ∆kEπ∗ �
2229
+ (Dk(τ) − ck
2230
+ max)+�
2231
+ ≥ E�π
2232
+ ��
2233
+ t
2234
+ γtr(st, at)
2235
+
2236
+
2237
+
2238
+ k∈[K]
2239
+ ∆kE�π
2240
+
2241
+ (Dk(τ) − ck
2242
+ max)+�
2243
+ = E�π
2244
+ ��
2245
+ t
2246
+ γtr(st, at)
2247
+
2248
+ = Ψ,
2249
+ implying that β∆
2250
+
2251
+
2252
+ k ≤ Ψ∗−Ψ
2253
+ ∆k , thus lim∆k→∞ β∆
2254
+
2255
+
2256
+ k = 0 as desired.
2257
+ D. Experimental Results on Puddle Environment
2258
+ D.1. Continuous Puddle Environment: RN-CMDP
2259
+ Inspired by (Jain et al., 2021), we test all the methods on the continuous puddle environment. The environment is shown in
2260
+ Figure 4. It is a continuous two-dimensional state-space environment in [0, 1]. The agent starts at the bottom left corner of
2261
+ the map (0, 0) and the objective is to move to the goal at the upper right corner (1, 1). The agent can move in four directions
2262
+ and occasionally agent will execute a random action with probability p = 0.05 instead of the one selected by the agent.
2263
+ In each position transition, noise is drawn from the Uniform[−0.025, 0.025] distribution and added to both coordinates.
2264
+ When the agent is within 0.1 L1 distance from the goal state, the agent can be seen as reaching the goal and receive a reward
2265
+ of 100 while agent gets a time penalty as -0.1 at each time step. There is a square puddle region centering at (0.5, 0.5) with
2266
+ 0.4 height. In each time step, if agent is located in the puddle area, it gets a cost of 1. Due to the existence of noise, we
2267
+ cannot set the threshold cmax too small as it would be hard for agent to reach the goal, so we set cmax = 8, meaning agent
2268
+ could stay in puddle area for at most 8 time steps.
2269
+ We show the results in Figure 4. As can be seen from the figure, safe SAC could outperform other methods in both reward
2270
+ and cost. Although safe DQN can always satisfy the constraint, it always fail to reach the goal to get the maximum reward.
2271
+ For BVF, when the backward value function succeeds to estimate the cost, the reward starts to decrease and worse than safe
2272
+ SAC.
2273
+ E. Experimental Results on Highway Merge Environment
2274
+ We also evaluate our safe methods on another highway environment - merge. The environment is shown in Figure 5
2275
+ where agent needs to take actions to complete merging with other vehicles. The rewards are similar to those in highway
2276
+
2277
+ Solving Constrained RL through Augmented State and Reward Penalties
2278
+ Figure 4. Performance in Puddle Environment
2279
+ Figure 5. Merge environment and reward, cost comparison of different approaches
2280
+ environment. Figure 5 shows a comparison of our safe methods with other benchmarks. Although Safe DQN fails to
2281
+ complete the task in merge environment, Safe SAC still outperforms BVF and unsafe DQN with better score and lower cost.
2282
+ The reason that safe DQN fails is that the combinations of extended space is too large in merge environment for safe DQN
2283
+ to figure it out. That is also why safe DQN converges quite slowly in highway environment. As safe DQN is unable to deal
2284
+ with large size of state space, safe SAC outperforms safe DQN in continuous environments.
2285
+ F. Hyperparameters
2286
+ In case of discrete environment - GridWorld, the size of state space is 8 × 8 with 18 pits. In Highway environment (including
2287
+ merge), related parameters and their values are listed below. There is an additional reward in merge environment named
2288
+ mergingspeedreward with value of -0.5. It penalties the agent if it drives with speed less than 30 while merging.
2289
+ • lanes count: Number of lanes, setting as 4 in both environments.
2290
+ • vehicles count: Number of vehicles on lanes, setting as 50 in both environments.
2291
+ • controlled vehicles: Number of agents, setting as 1 in both environments.
2292
+ • duration: Duration of the game, setting as 40 in both environments.
2293
+ • ego spacing: The space of vehicles, setting as 2 in both environments.
2294
+ • vehicles density: The density of vehicles on lanes, setting as 1 in both environments.
2295
+ • reward speed range: The range where agent can receive high speed reward, setting as [20, 30] in both environ-
2296
+ ments.
2297
+ • high speed reward: Reward received when driving with speed in reward speed range, setting as 0.4 in highway
2298
+ while 0.2 in merge.
2299
+
2300
+ Average Score in each Episode
2301
+ 75
2302
+ Unsafe DQN
2303
+ Safe DQN
2304
+ BVF
2305
+ 50
2306
+ Safe SAC
2307
+ Lyapunov
2308
+ 25
2309
+ 0
2310
+ Score
2311
+ -25
2312
+ -50
2313
+ -75
2314
+ -100
2315
+ 250
2316
+ 500
2317
+ 750
2318
+ 1000
2319
+ 1250
2320
+ 1500
2321
+ 1750
2322
+ 2000
2323
+ 0
2324
+ EpisodeAverage Constraint in each Episode
2325
+ Unsafe DQN
2326
+ 350
2327
+ Safe DON
2328
+ BVF
2329
+ 300
2330
+ Safe SAC
2331
+ Lyapunov
2332
+ 250
2333
+ Constraint
2334
+ 200
2335
+ 150
2336
+ 100
2337
+ 50
2338
+ 0
2339
+ 0
2340
+ 250
2341
+ 500
2342
+ 750
2343
+ 1000
2344
+ 1250
2345
+ 1500
2346
+ 1750
2347
+ 2000
2348
+ EpisodeAverage Score in each Episode
2349
+ 15
2350
+ 14
2351
+ 13
2352
+ 12
2353
+ Unsafe DON
2354
+ Safe DQN
2355
+ Score
2356
+ 11
2357
+ BVF
2358
+ Safe SAC
2359
+ 10
2360
+ Lyapunov
2361
+ 9
2362
+ 8
2363
+ 7
2364
+ 0
2365
+ 2000
2366
+ 4000
2367
+ 6000
2368
+ 8000
2369
+ 10000
2370
+ 12000
2371
+ 14000
2372
+ EpisodeAverage Constraint in each Episode
2373
+ Unsafe DQN
2374
+ 16
2375
+ Safe DON
2376
+ BVF
2377
+ Safe SAC
2378
+ 14
2379
+ Lyapunov
2380
+ Constraint
2381
+ 12
2382
+ 10
2383
+ 8
2384
+ 6
2385
+ 2000
2386
+ 4000
2387
+ 6000
2388
+ 8000
2389
+ 10000
2390
+ 12000
2391
+ 14000
2392
+ 0
2393
+ EpisodeSolving Constrained RL through Augmented State and Reward Penalties
2394
+ • collision reward: Reward received when colliding with a vehicle, setting as -1 in both environments.
2395
+ • right lane reward: Reward received when driving on the right-most lane, setting as 0.1 in both environments.
2396
+ • lane change reward: Reward received when taking lane change action, setting as 0 in highway while -0.05 in merge.
2397
+ In all the methods, we use networks with a hidden layer size of 64,64,64 along with the ReLu activation and use Adam
2398
+ optimizer to optimize the networks. We test our methods on GridWorld, Highway, Safety Gym, Puddle, Highway for 15000,
2399
+ 15000, 1000, 2000, 15000 episodes respectively and update the network every 4 steps.
2400
+
8dFJT4oBgHgl3EQfnix6/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8tE3T4oBgHgl3EQfqgri/content/2301.04653v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:baa94911d44951382f0e2319006387f14a3583937a2639019029b4b9a429596e
3
+ size 1045248
8tE3T4oBgHgl3EQfqgri/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4cd12392e60ea48971d0e6752c7278369b34d61b81b6a754178796b6e42cbd7
3
+ size 252434
A9E2T4oBgHgl3EQf8Qn_/content/2301.04218v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:636898bcc99640cb2ee1c1abb8e52729206d398fa2da146c41cfaea1cf426a46
3
+ size 3047682
BdAzT4oBgHgl3EQfGPtU/content/2301.01024v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1daabb6f590d68569f63b1c2a009b6eb11dedc199c59dfedaf4426924ef37358
3
+ size 621456
BdAzT4oBgHgl3EQfGPtU/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be6b34dcd88db6bfe97d59b9686b03071232efa4677fbdb3774c9db5fed6ba97
3
+ size 2752557
BdAzT4oBgHgl3EQfGPtU/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:992be76deab4833ad76b37bb955ef138c463bce433d04be90ca51d138dbc72de
3
+ size 101722
BtE0T4oBgHgl3EQfyAJM/content/2301.02653v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13d2a97a4ae2ce19488f810525793f5dd2894a9bc1bf0c5aeddcfa8d4939a8b4
3
+ size 6178295
BtE0T4oBgHgl3EQfyAJM/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43ab7bc8967068df7c576869757fa17157e189fed87a7e1bbfc6748dcc9e9daa
3
+ size 4849709
BtE0T4oBgHgl3EQfyAJM/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e3f0c37430afe43db793d93c62584ddbe089722508a9930b5833d841820f067
3
+ size 178181
BtE1T4oBgHgl3EQf9gZu/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31a715046e9006154ec1ae1a1d7b87ab50ae8b0cb2a97172f6432448e9d07b4e
3
+ size 4063277
BtE1T4oBgHgl3EQf9gZu/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5cf0dab3ef0e9515b5e1a560471e63ec882e5f7360fc4260c5069a2bb597cfe
3
+ size 148859
CNE2T4oBgHgl3EQf9AkT/content/tmp_files/2301.04223v1.pdf.txt ADDED
@@ -0,0 +1,2202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Red Emission from Copper-Vacancy Color Centers in Zinc Sulfide Colloidal
2
+ Nanocrystals
3
+ Sarah M. Thompson,1 C¨uneyt S¸ahin,2, 3 Shengsong Yang,4 Michael E. Flatt´e,3, 5
4
+ Christopher B. Murray,4, 6 Lee C. Bassett,7, ∗ and Cherie R. Kagan1, 8, 9, ∗
5
+ 1Department of Electrical and Systems Engineering,
6
+ University of Pennsylvania, Philadelphia Pennsylvania 19104, USA
7
+ 2UNAM – National Nanotechnology Research Center and Institute of
8
+ Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
9
+ 3Department of Physics and Astronomy, University of Iowa, Iowa City IA, 52242, USA
10
+ 4Department of Chemistry, University of Pennsylvania, Philadelphia PA, 19104, USA
11
+ 5Department of Applied Physics, Eindhoven University of Technology,
12
+ P. O. Box 513, 5600 MB Eindhoven, The Netherlands
13
+ 6Department of Materials Science and Engineering,
14
+ University of Pennsylvania, Philadelphia PA, 19104, USA
15
+ 7Department of Electrical and Systems Engineering,
16
+ University of Pennsylvania, Philadelphia PA, 19104, USA
17
+ 8Department of Materials Science and Engineering,
18
+ University of Pennsylvania, Philadelphia Pennsylvania 19104, USA
19
+ 9Department of Chemistry, University of Pennsylvania, Philadelphia Pennsylvania 19104, USA
20
+ (Dated: January 12, 2023)
21
+ Copper-doped zinc sulfide (ZnS:Cu) exhibits down-conversion luminescence in the UV, visible,
22
+ and IR regions of the electromagnetic spectrum; the visible red, green, and blue emission is referred
23
+ to as R-Cu, G-Cu, and B-Cu, respectively. The sub-bandgap emission arises from optical transitions
24
+ between localized electronic states created by point defects, making ZnS:Cu a prolific phosphor ma-
25
+ terial and an intriguing candidate material for quantum information science, where point defects
26
+ excel as single-photon sources and spin qubits. Colloidal nanocrystals (NCs) of ZnS:Cu are partic-
27
+ ularly interesting as hosts for the creation, isolation, and measurement of quantum defects, since
28
+ their size, composition, and surface chemistry can be precisely tailored for bio-sensing and opto-
29
+ electronic applications. Here, we present a method for synthesizing colloidal ZnS:Cu NCs that emit
30
+ primarily R-Cu, which has been proposed to arise from the CuZn-VS complex, an impurity-vacancy
31
+ point defect structure analogous to well-known quantum defects in other materials that produce
32
+ favorable optical and spin dynamics. First principles calculations confirm the thermodynamic sta-
33
+ bility and electronic structure of CuZn-VS. Temperature- and time-dependent optical properties of
34
+ ZnS:Cu NCs show blueshifting luminescence and a non-monotonic intensity dependence as temper-
35
+ ature is increased from 19 K to 290 K, for which we propose an empirical dynamical model based
36
+ on thermally-activated coupling between two manifolds of states inside the ZnS bandgap. Under-
37
+ standing of R-Cu emission dynamics, combined with a controlled synthesis method for obtaining
38
+ R-Cu centers in colloidal NC hosts, will greatly facilitate the development of CuZn-VS and related
39
+ complexes as quantum point defects in ZnS.
40
+ I.
41
+ INTRODUCTION
42
+ Controlled impurity doping of wide-bandgap semi-
43
+ conductors can be used to introduce color centers,
44
+ which are point defects that activate sub-bandgap,
45
+ optical
46
+ photoluminescence
47
+ (PL).
48
+ Color
49
+ centers
50
+ can
51
+ serve as sources of tunable PL for bio-imaging and
52
+ opto-electronic applications[1, 2], as well as localized,
53
+ optically-addressable, electronic spin states for applica-
54
+ tions in quantum information science[3, 4].
55
+ For all of
56
+ these applications, colloidal nanocrystals (NCs) can pro-
57
+ vide unique advantages over analogous, bulk materials
58
+ because they can be processed using wet-chemical meth-
59
+ ods, and their large surface areas and effects of quantum
60
+ ∗ Corresponding
61
+ authors.
62
63
+ &
64
+ ka-
65
66
+ confinement allow for highly tunable optical and elec-
67
+ tronic properties[5].
68
+ Impurity-doped ZnS has long been exploited as a UV,
69
+ visible, and NIR luminescent material in its bulk and
70
+ colloidal NC forms, and it has more recently been studied
71
+ as a potential host material for defect-based quantum
72
+ emitters and quantum bits, or defect qubits[6, 7]. Cu-
73
+ doping of ZnS introduces sub-bandgap red, green, and
74
+ blue PL emission bands that are associated with color
75
+ centers known respectively as R-Cu, G-Cu, and B-Cu.
76
+ R-Cu color centers are particularly interesting thanks to
77
+ their peak PL emission in the NIR biological window.
78
+ However, R-Cu remains under-utilized since it is rarely
79
+ observed in colloidal ZnS:Cu NCs, which typically emit
80
+ visible PL dominated by B-Cu and G-Cu[8, 9].
81
+ Past studies have indicated that R-Cu emission in bulk
82
+ ZnS:Cu arises from a defect complex consisting of a sub-
83
+ stitutional copper impurity (CuZn) and a sulfur vacancy
84
+ arXiv:2301.04223v1 [cond-mat.mtrl-sci] 10 Jan 2023
85
+
86
+ 2
87
+ (VS) in a nearest-neighbor CuZn-VS complex[10]. Com-
88
+ pared to transition metal-doped phosphors like ZnS:Mn
89
+ that rely on electric-dipole-forbidden, intra-d-shell transi-
90
+ tions between substitutional MnZn levels to produce visi-
91
+ ble PL, the mixed orbital character and lowered symme-
92
+ try of the CuZn-VS complex are associated with more
93
+ dipole-allowed radiative transitions[11], and therefore
94
+ shorter optical lifetimes, as desired for many applications.
95
+ Moreover, the symmetry of the CuZn-VS complex is de-
96
+ scribed by the C3v point group, which is characteristic of
97
+ well-developed defect qubits [12, 13] and is a key factor in
98
+ producing favorable defect orbital and spin structures[4].
99
+ R-Cu emission has further been associated with electron
100
+ paramagnetic resonance (EPR) spectra which indicate a
101
+ paramagnetic ground state [14]. These characteristics are
102
+ especially compelling in combination with the favorable
103
+ properties of ZnS as a host for defect qubits, which in-
104
+ clude a high natural abundance of spin-free nuclei and
105
+ relatively weak spin-orbit coupling, as well as the ease
106
+ of ZnS colloidal NC synthesis and surface modification
107
+ compared to hosts materials such as diamond [5, 15].
108
+ Here, we report the synthesis and characterization of
109
+ colloidal ZnS:Cu NCs emitting visible PL dominated by
110
+ R-Cu. We study the structural, compositional, and time-
111
+ and temperature-dependent optical properties of NCs
112
+ synthesized with 0, 0.05, 0.075, and 0.1 mol% Cu:Zn.
113
+ The R-Cu emission intensity scales with the copper con-
114
+ centration, and the R-Cu emission band exhibits com-
115
+ plex temperature- and time-dependent properties that
116
+ are generally consistent with observations of R-Cu in
117
+ bulk ZnS:Cu [16]. In particular, the R-Cu emission peak
118
+ blueshifts with increasing temperature from 19 K to 290
119
+ K, and the R-Cu emission intensity increases with in-
120
+ creasing temperature between 150 K and 270 K, a phe-
121
+ nomenon known as negative thermal quenching (NTQ).
122
+ We propose a single mechanism to explain the blueshift
123
+ and the NTQ based on thermally-activated carrier trans-
124
+ fer between two manifolds of radiative states. This mech-
125
+ anism is consistent with time-resolved PL measurements
126
+ showing the presence of two distinct radiative transitions
127
+ in the R-Cu band at low temperature.
128
+ Drawing from
129
+ first-principles calculations, we discuss the role of defect
130
+ species, spatial arrangement, and charge state in produc-
131
+ ing the manifolds of states responsible for measured R-Cu
132
+ characteristics. A detailed understanding of these char-
133
+ acteristics can facilitate the realization of protocols for
134
+ initialization, readout, and control of the defect’s charge
135
+ and spin states for development of a quantum defect ar-
136
+ chitecture.
137
+ II.
138
+ RESULTS AND DISCUSSION
139
+ A.
140
+ Synthesis of ZnS:Cu NCs with R-Cu Emission
141
+ ZnS NCs are synthesized using the single-source pre-
142
+ cursor approach developed by Zhang et al., [17] in which
143
+ zinc diethyldithiocarbamate (Zn(Ddtc)2) is thermally de-
144
+ FIG. 1.
145
+ ZnS:Cu NC synthesis and structure.
146
+ (a)
147
+ Schematic of the synthesis of R-Cu emitting ZnS:Cu NCs,
148
+ where red represents the application of heat.
149
+ Photographs
150
+ show the reaction vessel before and after NC formation. (b)
151
+ Cu:Zn mol% measured by ICP-OES (black circles) as a func-
152
+ tion of the Cu:Zn mol% added to the synthesis pot.
153
+ The
154
+ component weight of the R-Cu peak when the total PL spec-
155
+ trum is decomposed by non-negative matrix factorization (red
156
+ squares and right-hand vertical axis) also scales with the
157
+ Cu:Zn mol% .
158
+ The R2 values for the linear regression fits
159
+ (black and red lines) are 0.917 and 0.957, respectively. (c)
160
+ TEM image and electron diffraction pattern of a sample of
161
+ ZnS:Cu NCs with 0.1 mol% Cu:Zn. (d) Distribution of NC
162
+ diameters for samples of 100 NCs measured from TEM images
163
+ obtained for each Cu:Zn ratio (0-0.1 mol%).
164
+ composed in oleic acid (OA) and oleylamine (OM); see
165
+ Figure 1a. In previously reported syntheses of colloidal
166
+ ZnS:Cu NCs, the absence of R-Cu emission may result
167
+ from unintentional Cl impurities introduced by CuCl2
168
+ precursors, which are known to quench R-Cu in bulk
169
+ ZnS:Cu along with Al, In, and Ga impurities [10, 14, 16].
170
+ To avoid the introduction of Cl impurities, we instead
171
+ add a fixed volume (0.1 mL) of Cu(CH3COO)2·H2O dis-
172
+ solved in ultrapure DI water, with concentrations corre-
173
+ sponding to Cu:Zn molar ratios of 0 %, 0.05 %, 0.075 %,
174
+ and 0.1 %, to the synthesis pot prior to degassing. In the
175
+ case of undoped ZnS NCs, the 0.1 mL addition consists
176
+ of DI water only. Inductively-coupled plasma - optical
177
+ emission spectroscopy (ICP-OES) and PL measurement
178
+ results (Figure 1b) show that varying the concentration of
179
+ the Cu precursor directly influences the final Cu concen-
180
+ tration in the NC samples, as well as the relative intensity
181
+ of the red PL emitted by the NCs. The PL measurement
182
+ results are discussed further in the next subsection.
183
+ A representative TEM image of ZnS:Cu NCs with 0.1
184
+ mol% Cu:Zn (Figure 1c) shows that the samples are com-
185
+ posed of 7.2±1.2 nm diameter particles.
186
+ The NC size
187
+ distribution remains consistent across differently-doped
188
+ samples (Figure 1d). Electron diffraction measurements
189
+ (inset, Figure 1c) exhibit peaks at 2Θ values that corre-
190
+
191
+ 0.25
192
+ 100
193
+ (a)
194
+ (b)
195
+ Red PL Component
196
+ 0.2
197
+ 80
198
+
199
+ 0.15
200
+ KOH
201
+ 60
202
+ Cu(C2HgO2)2°H,0
203
+ Inject
204
+ 0.1
205
+ 40
206
+ DI water
207
+ Zn(Ddtc)2
208
+ Oleylamine
209
+ Oleic Acid
210
+ 0.05
211
+ 20
212
+ %
213
+ precursor
214
+ nanocrysta
215
+ degasdegas
216
+ decomposition
217
+ formation
218
+ 0
219
+ 0
220
+ 0
221
+ 0.05
222
+ 0.1
223
+ Cu:Znmoi%DuringSynthesis
224
+ (c)
225
+ 22031
226
+ 10
227
+ (d)
228
+ 111
229
+ NC Diameter (nm)
230
+ 4
231
+ 0%0.05%0.075%0.1%
232
+ Cu:Znmol%DuringSvnthesis3
233
+ FIG. 2.
234
+ Room-temperature optical properties.
235
+ (a)
236
+ PL spectra under continuous-wave excitation at λex=375 nm,
237
+ normalized to the PL intensity at λem=442 nm from ZnS NCs
238
+ synthesized with 0–0.1 mol% Cu:Zn. (b) Absorption spectra
239
+ (black curves) and PLE spectra (colored curves) monitoring
240
+ the emission intensity at λem=670 nm as a function of λex,
241
+ from ZnS NCs synthesized with 0–0.1 mol% Cu:Zn.
242
+ spond to the ⟨111⟩, ⟨220⟩, and ⟨311⟩ planes of sphalerite
243
+ (zinc blende), according to PDF# 98-000-04053.
244
+ B.
245
+ Room-Temperature Optical Characterization
246
+ PL emission spectra from NC samples containing the
247
+ four different Cu concentrations are shown in Figure 2a.
248
+ The intrinsic, background PL peak with emission wave-
249
+ length, λem, between 430 nm and 600 nm, is present re-
250
+ gardless of Cu concentration. This PL feature is char-
251
+ acteristic of undoped ZnS NCs and is widely accepted
252
+ to arise from radiative transitions between intrinsic de-
253
+ fect states inside the ZnS bandgap created by Zn and S
254
+ vacancies (VZn and VS) and interstitials (Zni and Si)[18–
255
+ 20]. Similar PL is also observed from bulk, undoped ZnS,
256
+ with features being attributed to both intrinsic defects
257
+ and unintentional impurities[21].
258
+ Distinct emission with λem centered at 670 nm is ob-
259
+ served in the Cu-doped NCs with a relative intensity that
260
+ increases with the Cu:Zn molar ratio. The PL spectra
261
+ of Figure 2a are decomposed using nonnegative matrix
262
+ factorization (SI Section 1) in order to calculate the rela-
263
+ tive strengths of the intrinsic and dopant-induced compo-
264
+ nents, yielding the concentration dependence plotted in
265
+ Figure 1b.
266
+ Absorption spectra and λem=670 nm PLE
267
+ spectra for all NC materials are shown in Figure 2b.
268
+ From the absorption spectra, we construct Tauc plots (SI
269
+ Section 2) and extract bandgap energies between 3.77 eV
270
+ and 3.79 eV.
271
+ The λem=670 nm PL and PLE spectra in Figure 2 align
272
+ well with those reported for R-Cu in bulk ZnS:Cu, which
273
+ also peaks at λem=670 nm at room temperature and is at-
274
+ tributed to transitions between VS levels and CuZn levels
275
+ inside the ZnS bandgap.[16] The PLE spectra of Figure
276
+ 2b show that the λem=670 nm PL is broadly excited by
277
+ wavelengths in the range λex= 330 – 450 nm in all four
278
+ samples, consistent with measurements by Shionoya et
279
+ al. of R-Cu PLE in bulk ZnS:Cu[10]. The polarization
280
+ dependence of the PLE in their report also indicates a
281
+ nearest-neighbor configuration of VS and CuZn with C3v
282
+ point-group symmetry[10]. R-Cu is quenched when bulk
283
+ ZnS:Cu phosphors are fired in atmospheres containing
284
+ high sulfur pressure[10], further supporting the role of
285
+ VS levels in the PL.
286
+ Compared to their bulk counterparts, impurity dop-
287
+ ing of NC materials can be challenging to achieve and to
288
+ confirm.[22] The alignment between the R-Cu PL/PLE
289
+ spectra we measure here and those arising from bulk
290
+ ZnS:Cu is suggestive of successful Cu doping of the
291
+ ZnS:Cu NCs, since there is extensive evidence that R-
292
+ Cu in bulk ZnS:Cu is activated by Cu substitutionally
293
+ occupying Zn sites.
294
+ We additionally carry out studies
295
+ in which we deposit NC thin films and treat them with
296
+ methanol and methanolic Na2S and Zn(CO2CH3)2·2H2O
297
+ solutions known to remove organic ligands and to strip
298
+ surface cations[23], and to enrich the NC surface in S2-
299
+ or Zn2+, respectively,[24, 25] altering the presence or en-
300
+ vironment of Cu cations if they are on the surface. In
301
+ all cases, the surface treatments do not quench or en-
302
+ hance the R-Cu PL from our NCs, again consistent with
303
+ successful Cu doping of their cores (SI Section 3).
304
+ C.
305
+ Variable Temperature Studies Probing the
306
+ Origins of Cu-Induced Sub-Bandgap PL/PLE
307
+ NCs are drop-cast onto sapphire substrates and loaded
308
+ inside an evacuated cryostat for temperature- and time-
309
+ dependent spectroscopic measurements. Figure 3 shows
310
+ PL/PLE maps of ZnS NCs without Cu doping (Cu:Zn at
311
+ 0 mol%) and with Cu doping (Cu:Zn 0.1 mol%), mea-
312
+ sured at 19 K and at 290 K. PL from the undoped
313
+ ZnS NCs is dominated by intrinsic PL at all tempera-
314
+
315
+ 1.5
316
+ (a)
317
+ 0.1%
318
+ Normalized PL Intensity
319
+ Increasing
320
+ Cuaddition
321
+ 0.075%
322
+ 0.5
323
+ 0.05%
324
+ 0%
325
+ 0
326
+ 400
327
+ 500
328
+ 600
329
+ 700
330
+ 800
331
+ 006
332
+ Emission Wavelength,入..(nm)
333
+ (b)
334
+ ExcitationEnergy (eV)
335
+ 4.5
336
+ 4
337
+ 3.5
338
+ 3
339
+ 2.5
340
+ Cu:Zn 0%
341
+ Absorbance (a.u.)
342
+ 0.05%
343
+ 0.075%
344
+ E
345
+ e
346
+ 0.1%
347
+ 300
348
+ 350
349
+ 400
350
+ 450
351
+ 500
352
+ Excitation Wavelength, ^ox (nm)4
353
+ FIG. 3.
354
+ Temperature-dependent PL/PLE (a) PL spec-
355
+ tra (top) and PL/PLE maps (below) of films of ZnS NCs
356
+ synthesized with 0 mol% (left) and 0.1 mol% Cu:Zn (right),
357
+ measured at 19 K and room temperature. The PL spectra
358
+ extracted from the 19 K PL/PLE maps are photoexcited at
359
+ λex=375 nm and λex=320 nm for the ZnS NC and ZnS:Cu
360
+ NC films, respectively, to show the clearest peak separation
361
+ and spectrally reduce intrinsic PL in the case of ZnS:Cu NCs.
362
+ (b) Energy level diagrams showing key defect states respon-
363
+ sible for sub-bandgap PL emission in the undoped and doped
364
+ NCs. Dashed lines represent shallow surface defect states. Ar-
365
+ rows are used to indicate assigned radiative transitions in the
366
+ doped NCs, which involve different sub-levels of the CuZn 3d
367
+ shell. The t2 level is indicated with a heavier line to suggest
368
+ that it may be further split into e and a sub-levels depending
369
+ on the CuZn impurity site coordination.
370
+ tures.
371
+ The 19 K PL spectrum from the undoped ZnS
372
+ NCs (λex=375 nm) can be described using three Gaus-
373
+ sian peaks, which are labeled α, β, and γ in Figure 3a.
374
+ Peaks α and β dominate the PL for λex > 330 nm (corre-
375
+ sponding to below-bandgap excitation of the ZnS NCs),
376
+ and their peak emission wavelength varies with λex. The
377
+ third peak observable in the undoped film, peak γ, re-
378
+ mains relatively fixed regardless of λex and is the only
379
+ peak observed in this spectral region for λex <330 nm.
380
+ For ZnS:Cu NCs, the 19 K PL spectrum (λex=320 nm)
381
+ TABLE I. Peak positions and widths for I, II, R-Cu, and α,
382
+ β, and γ, from Gaussian fitting of PL data shown in Fig. 3
383
+ Cu:Zn mol% Label λem (nm) Eem (eV) FWHM (eV)
384
+ 0.1
385
+ I
386
+ 471
387
+ 2.61
388
+ 0.13
389
+ 0.1
390
+ II
391
+ 562
392
+ 2.19
393
+ 0.21
394
+ 0.1
395
+ R-Cu
396
+ 709
397
+ 1.74
398
+ 0.27
399
+ 0
400
+ α
401
+ 440
402
+ 2.81
403
+ 0.17
404
+ 0
405
+ β
406
+ 442
407
+ 2.65
408
+ 1.12
409
+ 0
410
+ γ
411
+ 560
412
+ 2.20
413
+ 0.30
414
+ shows R-Cu emission, as well as blue and green emission
415
+ peaks labeled I and II (Figure 3). The three PL peaks are
416
+ observed for λex ranging from 290 – 420 nm. For λex <
417
+ 330 nm, to the blue of the ZnS bandgap wavelength, the
418
+ sub-bandgap intrinsic PL is significantly diminished in
419
+ intensity compared to peaks I, II, and R-Cu. The R-Cu
420
+ peak is distinguishable at all temperatures, and the peak
421
+ emission wavelength blueshifts from 709 nm at 19 K to
422
+ 670 nm at room temperature. This observation is similar
423
+ to the reported blueshift in bulk ZnS:Cu from 700 nm at 4
424
+ K to 670 nm at room temperature.[10, 16] Peaks I and II,
425
+ with λem= 471 nm and λem= 562 nm, respectively, are
426
+ quenched at room temperature. The λem and FWHM
427
+ values for PL labeled in Figure 3 are listed in Table I.
428
+ Line plots of the spectral data in the PL/PLE maps of
429
+ Figure 3a are included in SI Section 5.
430
+ Figure 3b shows energy level diagrams containing key
431
+ defect levels believed to activate PL in the undoped and
432
+ doped NCs. In undoped ZnS, intrinsic PL is assigned to
433
+ transitions between Zni, VS, VZn, and Si levels, for which
434
+ the relative energy levels shown are agreed upon, but the
435
+ exact energies are not known[18, 26]. PL peaks activated
436
+ by Cu doping the ZnS NCs, which can be spectrally sep-
437
+ arated from intrinsic PL as discussed in this section, are
438
+ assigned to radiative transitions in the diagram. R-Cu
439
+ emission arises from transitions between states primarily
440
+ associated with VS and the CuZn t2 levels[16]. We assign
441
+ peak I to a transition between VS levels and the lower-
442
+ lying CuZn e levels [8]. This assignment is supported by
443
+ our measurement of a 0.87 eV energy difference between
444
+ peak I and R-Cu PL, similar to the reported 0.86 eV en-
445
+ ergy difference between CuZn t2 and e levels[27]. Peak II
446
+ is assigned to transitions between donor levels that are
447
+ shallower than VS, attributed here to surface defects, and
448
+ the CuZn t2 levels[28]. We note that the state labels and
449
+ identifications in Figure 3b are based on an approximate
450
+ picture of isolated VS and CuZn in cubic ZnS, whereas
451
+ the CuZn-VS is characterized by lowered C3v symmetry
452
+ and hybridization between these levels. We discuss this
453
+ point in more detail later in the next section, drawing
454
+ insight from theoretical calculations.
455
+ Figure 4a shows how time-resolved emission spec-
456
+ troscopy can be used to isolate R-Cu PL from the intrin-
457
+ sic background PL, since most of the intrinsic PL occurs
458
+ within 250 ns of excitation while the R-Cu PL is longer
459
+ lived. The room-temperature PL decay of ZnS:Cu NCs,
460
+ excited with a pulsed excitation source at λex= 375 nm
461
+
462
+ ZnS NCs
463
+ ZnS:Cu NCs
464
+ (a)
465
+ 375nmex.
466
+ 320nmex.
467
+ R-Cu
468
+ 2
469
+ 1.5
470
+ a
471
+ Cts
472
+ Cts
473
+ 0
474
+ /105
475
+ /105
476
+ 410
477
+ 10
478
+ 5
479
+ (wu)
480
+ 370
481
+ 330
482
+ 3
483
+ Excitation Wavelength.
484
+ 19K
485
+ 19K
486
+ 410
487
+ 2.6
488
+ 1
489
+ 2
490
+ 0.8
491
+ 370
492
+ 1.5
493
+ 0.6
494
+ 0.4
495
+ 330
496
+ 0.5
497
+ 0.2
498
+ 290K
499
+ 290K
500
+ 290
501
+ 430
502
+ 530
503
+ 630
504
+ 730
505
+ 830
506
+ 430
507
+ 530
508
+ 630
509
+ 730
510
+ 830
511
+ Emission Wavelength,
512
+ (nm)
513
+ em
514
+ (b)
515
+ CBM
516
+ CBM
517
+ Vs
518
+ Zn;
519
+ Energy
520
+ II R-Cu
521
+ Vzn
522
+ t2
523
+ Cuzn
524
+ S
525
+ e
526
+ VBM
527
+ VBM5
528
+ FIG. 4.
529
+ Isolation of Cu-Activated PL (a) Time-resolved
530
+ emission spectra from ZnS:Cu NC films at 290 K under 375
531
+ nm, 1 kHz pulsed excitation, in which counts from the first
532
+ 250 ns following the laser pulse (black) are plotted separately
533
+ from subsequent counts (red), effectively separating the in-
534
+ trinsic background from the R-Cu peak emission.
535
+ (b) PL
536
+ spectra from ZnS:Cu NC (black trace) and undoped ZnS NC
537
+ (grey trace) films, collected at 19 K with continuous wave, 375
538
+ nm excitation. Intensities are normalized at 430 nm. The dif-
539
+ ference spectrum (red curve) is almost identical to the time-
540
+ gated spectrum from ZnS:Cu NC films under 375 nm, 500
541
+ kHz pulsed excitation (purple dashed curve).
542
+ and monitored at λem= 670 nm, is tri-exponential with
543
+ decay time constants (τi) of τ1=1.85µs, τ2=8.72µs, and
544
+ τ3=26.47µs.
545
+ With 95% confidence, we find that these
546
+ τi are consistent among all three Cu-doped samples (SI
547
+ Section 4). At 19 K, time-resolved emission spectroscopy
548
+ separates peaks I and II as well as R-Cu from the intrin-
549
+ sic background PL. Figure 4b shows that time-gating the
550
+ PL from the ZnS:Cu NC samples yields an almost iden-
551
+ tical spectral shape to that of calculating the difference
552
+ between the normalized, CW PL spectra from the doped
553
+ NCs and the undoped NCs. The CW spectra in Figure 4b
554
+ are normalized such that the PL intensities collected at
555
+ 430 nm (the shortest emission wavelength in the measure-
556
+ ment) are the same, as PL at this wavelength is expected
557
+ to arise predominantly from intrinsic defects. The obser-
558
+ vation that nearly identical spectra are obtained, either
559
+ by time-gating the doped spectrum or by subtracting the
560
+ undoped CW spectrum, strongly supports that peaks I
561
+ and II arise from Cu doping, along with the R-Cu peak,
562
+ and these peaks coexist with the intrinsic PL in doped
563
+ samples for sub-bandgap excitation.
564
+ D.
565
+ First-principles calculations
566
+ R-Cu PL has been proposed to arise from a nearest-
567
+ neighbor (NN) complex of CuZn and VS defects, rather
568
+ than more distant associations[10]. To confirm the ther-
569
+ modynamic stability of the NN CuZn-VS complex, we
570
+ use density functional theory (DFT) to calculate the
571
+ formation energies, defect levels, and projected density
572
+ of states (PDOS) for ground-state configurations of the
573
+ complex in several charge states, as well as for the next-
574
+ nearest-neighbor (NNN) complex. The results of these
575
+ calculations are shown in Figure 5. We find that the for-
576
+ mation energy of the NN CuZn-VS complex is lower than
577
+ that of the NNN complex. The formation energy calcu-
578
+ lations in Figure 5a indicate that the two stable charge
579
+ states are either negative (−1) or positive (+1), depend-
580
+ ing on the Fermi level, with the neutral (0) configuration
581
+ always lying higher in energy. This is in contrast to the
582
+ calculation for NN CuZn-VS in an unrelaxed ZnS lattice,
583
+ which significantly increases the formation energy of all
584
+ charge states, but particularly the negative and neutral
585
+ configurations.
586
+ Figure 5b shows the defect levels and their projections
587
+ at k = 0 for each charge state of the NN complex. These
588
+ calculations qualitatively agree with the relative arrange-
589
+ ment of levels in Figure 3b, with orange lines indicating
590
+ the positions of two, higher-energy states derived from
591
+ Zn dangling bonds surrounding the VS site, and green
592
+ lines indicating ten, lower-energy states derived from the
593
+ CuZn d-shell. The total density of states for pure ZnS
594
+ and for ZnS containing a neutral CuZn-VS complex are
595
+ included in SI Section 9. In the negatively-charged com-
596
+ plex, all twelve states are occupied, and the VS-derived
597
+ states are strongly mixed with the CuZn-derived states.
598
+ In the neutral complex, the VS-derived states are only
599
+ partially filled and are no longer mixed with the CuZn-
600
+ derived states. In the positively-charged complex, only
601
+ the CuZn-derived states are occupied and the VS-derived
602
+ states are no longer easily isolated; likely because they
603
+ have been pushed far into the conduction band; however,
604
+ this may be an artifact of well-known DFT bandgap er-
605
+ rors (the estimated bandgap in this calculation is 2.14
606
+ eV, compared to the expected value around 3.6 eV), and
607
+ the VS states may still exist within the bandgap.
608
+ For the R-Cu transition depicted in Figure 3b to occur,
609
+ there must be a hole in the higher-energy CuZn states.
610
+ This hole is likely created by photo-ionization of a CuZn
611
+ electron into the conduction band based on the large
612
+ Stokes shift we observe between peak λem and peak λex
613
+ for R-Cu PL. It has also been proposed that this Stokes
614
+ shift is a result of lattice relaxation around the excited
615
+ complex when a CuZn electron is transferred directly to
616
+ a VS state[10, 29]. In this case, the excited VS level lies
617
+
618
+ (a)
619
+ 250ns-250μs
620
+ 290 K
621
+ 0-250ns
622
+ R-Cu
623
+ Intrinsic PL
624
+ 0
625
+ 400
626
+ 500
627
+ 600
628
+ 700
629
+ 800
630
+ EmissionWavelength,>
631
+ (nm)
632
+ (b)
633
+ 2.5
634
+ R-Cu
635
+ 19 K
636
+ Normalized PL Intensity
637
+ 6
638
+ 2
639
+ 1.5
640
+ 4
641
+ 0.5
642
+ 500
643
+ 600
644
+ 700
645
+ 800
646
+ 900
647
+ Emission Wavelength,
648
+ (nm)6
649
+ FIG. 5.
650
+ First-principles calculations (a) Formation en-
651
+ ergies for nearest- and next-nearest-neighbor (NN and NNN,
652
+ respectively) associations of CuZn and VS in ZnS, as a func-
653
+ tion of the Fermi level (solid curves).
654
+ Charge states with
655
+ respect to the ZnS lattice are indicated as -1, 0, and +1 for
656
+ the negatively charged, neutral, and positively charged com-
657
+ plex, respectively.
658
+ The dashed curve shows the formation
659
+ energy for the NN complex in an unrelaxed ZnS lattice. All
660
+ formation energy calculations are performed under zinc-rich
661
+ sulfur-poor thermodynamical stability conditions. (b) Defect
662
+ levels at k = 0 for three different charge states of the NN
663
+ CuZn-VS complex. Orange lines indicate VS-derived states,
664
+ and green lines indicate CuZn-derived states. Solid lines indi-
665
+ cate the valence band maximum (0 eV) and conduction band
666
+ minimum (2.14 eV). Dotted lines indicate the Fermi level.
667
+ above the conduction band minimum immediately after
668
+ excitation, and may therefore release an electron to the
669
+ conduction band before being lowered into the bandgap
670
+ following lattice relaxation. If the excited complex re-
671
+ sulting from either of the above processes contains an
672
+ electron in a Vs state, R-Cu emission can subsequently
673
+ occur.
674
+ Otherwise, an electron must be re-captured by
675
+ the complex into a Vs state for R-Cu emission to occur,
676
+ leading to a longer emission lifetime. Based on this ob-
677
+ servation, the electron occupations of the defect levels in
678
+ Figure 5b indicate how the charge state prior to excita-
679
+ tion determines the possible emission pathways, which
680
+ define the emission lifetime and the energy of the R-Cu
681
+ PL.
682
+ E.
683
+ R-Cu Emission Dynamics
684
+ Figure 6 shows how the spectral and temporal char-
685
+ acteristics of the R-Cu PL as a function of temperature
686
+ provide detailed insight regarding the emission mecha-
687
+ nisms and the states involved. At temperatures from 19
688
+ K to 290 K, we measure the PL emission spectrum to find
689
+ the peak λem, and we then measure the corresponding PL
690
+ decay curve for that λem. The PL spectra at each tem-
691
+ perature are converted to energy units (see Methods) and
692
+ fit using Gaussian functions to extract the peak energies
693
+ (Eem) and integrated intensities. The emission spectra
694
+ at 19 K, 110 K, 150 K, 190 K, and 290 K are plotted
695
+ as examples in Figure 6a along with the corresponding
696
+ fit results. The spectral data for all measurement tem-
697
+ peratures are shown in the pseudocolor plot of the inset,
698
+ and fitted spectra for all measurement temperatures not
699
+ included in Figure 6a are shown in SI Section 6.
700
+ For
701
+ the PL decay measurements at each temperature (Fig-
702
+ ure 6b), we find that a tri-exponential decay model most
703
+ effectively describes the data compared to fitting with
704
+ one, two, or four exponential terms or a stretched expo-
705
+ nential decay function. The best-fit lifetime components,
706
+ τi for i = 1,2,3 at every temperature are plotted in Figure
707
+ 6c, showing three, well-separated decay lifetimes.
708
+ At the lowest measurement temperature of 19 K (Fig-
709
+ ure 6d), we acquire PL decay curves across the R-Cu
710
+ emission band with 2.5 nm resolution, and we fit the data
711
+ to the tri-exponential model with fixed lifetimes based on
712
+ the fit results from Figure 6c. Figure 6d shows the PL
713
+ amplitudes corresponding to the decay components τ1,
714
+ τ2, and τ3 as a function of λem.
715
+ The fast component
716
+ τ1 likely reflects the tail of one or more peaks outside
717
+ the R-Cu emission band, with little spectral dependence.
718
+ However, separating the slow (τ3) and fast (τ2) PL con-
719
+ tributions this way reveals the presence of two distinct
720
+ peaks at 1.73 eV and 1.82 eV. The observation of en-
721
+ ergetically distinct PL peaks with different lifetimes is
722
+ consistent with the co-existence of two separate radia-
723
+ tive transitions.
724
+ Figure 6e shows the integrated PL intensity over the
725
+ R-Cu band and best-fit Eem at every temperature, ex-
726
+ tracted from Gaussian fits to the PL data in Figure 6a.
727
+ As noted previously, Eem blueshifts as the temperature
728
+ increases, and Figure 6e illustrates that the shift oc-
729
+ curs non-linearly, with a marked inflection between 100
730
+ K and 200 K and saturation at both higher and lower
731
+ temperatures. Meanwhile, the R-Cu emission intensity
732
+ varies non-monotonically with temperature; it decreases
733
+ with increasing temperature from 19 K to 190 K, then
734
+ temporarily increases between 190 K and 210 K, be-
735
+ fore decreasing again at higher temperatures. The ini-
736
+ tial decrease in intensity is consistent with quenching
737
+ through thermally-activated non-radiative recombination
738
+ pathways and is typical for defect emission. The tempo-
739
+ rary increase in intensity with increasing temperature is
740
+ referred to as negative thermal quenching (NTQ) and
741
+ is occasionally observed in defect emission; for example,
742
+
743
+ (a)
744
+ Formation Energy (eV)
745
+ 6
746
+ 0
747
+ 5.5
748
+ 5
749
+ 4.5
750
+ +1
751
+ --NN,unrelaxed
752
+ 4
753
+ NNN.relaxed
754
+ NN,relaxed
755
+ 3.5
756
+ 0
757
+ 0.5
758
+ 1
759
+ 1.5
760
+ 2
761
+ Fermi Level (eV)
762
+ (b)
763
+ (Cuzn-Vs)1- (Cuzn-Vs)0 (Cuzn-Vs)1+
764
+ 2.14
765
+ (eV)
766
+ Energy (
767
+ cuZn
768
+ 07
769
+ FIG. 6.
770
+ R-Cu Emission Dynamics (a) PL spectra measured at temperatures ranging from 19 K-290 K (data points for five
771
+ representative temperatures are shown, with all data plotted in the inset) and Gaussian fits (solid traces). (b) Time-dependent
772
+ PL emission following pulsed excitation at λex=375 nm, measured at the peak PL wavelength for temperatures from 19 K to
773
+ 290 K. (c) PL decay lifetimes extracted from a tri-exponential fit to the time-dependent PL curves in (d) at each measurement
774
+ temperature. (d) Amplitudes of each tri-exponential decay component at a single temperature (19 K) as a function of emission
775
+ energy. (e) Integrated emission intensity (black points) and peak energy (colored points) as a function of temperature, extracted
776
+ from the Gaussian fits of (a). Error bars represent 68% confidence intervals from fit results. The solid black curve is a fit to the
777
+ intensity data using the model described in the text. Red and blue shaded regions represent the relative temperature-dependent
778
+ intensities IA(T) and IB(T) from the best-fit model, and the dashed curve is a sum of the two emission energies resolved in (d),
779
+ weighted by their corresponding best-fit emission intensities. (f) Energy level diagram showing two manifolds of states inside
780
+ the ZnS bandgap with coupled relaxation processes, where radiative recombination from A to G results in 1.73 eV emission
781
+ and radiative recombination from B to G results in 1.82 eV emission.
782
+ in the case of the 2.65 eV PL (referred to as the YS1
783
+ peak) from ZnS:I[30]. NTQ has generally been explained
784
+ by thermally-activated carrier transfer from lower- to
785
+ higher- energy emissive defect states. ZnS:Cu NCs have
786
+ been synthesized in water at room temperature with the
787
+ same Cu(CH3COO)2 precursor[8] and then subsequently
788
+ annealed at 450 ◦C, but the resulting red peak (600 nm at
789
+ room temperature) is not resolvable from other emission
790
+ peaks when the temperature is less than 220 K, making
791
+ it impossible to observe a similar NTQ or blueshift.
792
+ In Figure 6f, we propose an empirical model to cap-
793
+ ture both the temperature-dependent blueshift and the
794
+ NTQ of R-Cu emission. Motivated by the time-resolved
795
+ observations of Figure 6d, we include two radiative re-
796
+ combination transitions with emission energies at 1.73 eV
797
+ (A→G) and 1.82 eV (B→G), corresponding to two dis-
798
+ tinct excited-state configurations. These radiative tran-
799
+ sitions compete with thermally-activated, non-radiative
800
+ transitions that generally tend to quench the emission
801
+ at elevated temperatures. However, as carriers are ther-
802
+ mally excited from state A to state B at temperatures
803
+ with thermal energy corresponding to the energy offset
804
+ ETR, the faster B→G transition increasingly becomes the
805
+ dominant radiative recombination pathway, resulting in
806
+ blueshifted PL and temporary NTQ. This mechanism is
807
+ consistent with our observation that inflection points in
808
+ the PL intensity align with the onset and saturation of
809
+ the blueshift in Eem.
810
+ To quantify this model, we derive the following ana-
811
+ lytical expressions for the temperature-dependent PL in-
812
+ tensities, I(A) and I(B), from the radiative transitions
813
+ occurring from excited states A and B, respectively:
814
+ IA(T) = IA(0)
815
+ krA
816
+ krA + knrA + kTR
817
+ ,
818
+ (1)
819
+ IB(T) = IB(0)
820
+ krB
821
+ krB + knrB
822
+ + IA(0)
823
+ kTRkrB
824
+ krB + knrB
825
+ .
826
+ (2)
827
+ Here, krA and krB are the radiative recombination rates
828
+ shown in Figure 6f (solid lines), which are independent
829
+ of temperature. The terms knrA and knrB are rates for
830
+ non-radiative relaxation, and kTR is the rate for non-
831
+ radiative transfer between states A and B (dashed lines
832
+ in Figure 6f). These non-radiative rates are temperature-
833
+ dependent with the form kj = Γj exp(−Ej/kBT), where
834
+ Γj is a proportionality constant, Ej is the activation en-
835
+ ergy of the transition, and kB is Boltzmann’s constant.
836
+ See SI Section 7 for a derivation of these expressions.
837
+
838
+ (b) 104
839
+ (c)
840
+ 200
841
+ 19K
842
+ 50
843
+ .110K
844
+ 8
845
+ 19K
846
+ 150K
847
+ (srl)
848
+ 150
849
+ 103
850
+ 72
851
+ 6
852
+ 190K
853
+ 290K
854
+ T3
855
+ 290K
856
+ Lifetime
857
+ 250
858
+ 100
859
+ 4
860
+ 1.5
861
+ Energy (eV)
862
+ 2
863
+ 50
864
+ 101
865
+ 0
866
+ 0
867
+ 1.4
868
+ 1.6
869
+ 1.8
870
+ 2
871
+ 2.2
872
+ 0
873
+ 0.5
874
+ 0
875
+ 100
876
+ 200
877
+ 300
878
+ Emission Energy (eV)
879
+ Time (ms)
880
+ Temperature (K)
881
+ (d)
882
+ (e)
883
+ (f)
884
+ ,=1.134 μs
885
+ Component Amplitude
886
+ 00
887
+ 1.82
888
+ B
889
+ 6
890
+ T2=18.57 μs
891
+ Counts/10
892
+ 10
893
+ <Energy (eV)
894
+ T3=180.8 μs
895
+ 1.8
896
+ "
897
+ TR
898
+ 8
899
+ A
900
+ 6
901
+ 1.78
902
+ KnrA
903
+ KnrB
904
+ Integrated
905
+ N
906
+ 4
907
+ 1.76
908
+ Peak I
909
+ KrA
910
+ KrB
911
+ 2
912
+ 0
913
+ 1.74
914
+ 0
915
+ 1.6
916
+ 1.8
917
+ 2
918
+ 0
919
+ 100
920
+ 200
921
+ 300
922
+ G
923
+ A
924
+ Emission Energy (eV)
925
+ Temperature (K)8
926
+ The sum of Equations (1) and (2) gives the total PL
927
+ intensity as a function of temperature. This expression
928
+ is used as a model to fit the temperature-dependent PL
929
+ intensity data in Figure 6e, from which we extract best-
930
+ fit values for the energies EnrA, EnrB, and ETR.
931
+ The
932
+ best-fit value of ETR is 153±22 meV. Details of the fit-
933
+ ting procedure along with best-fit results for other pa-
934
+ rameters are included in SI Section 7. To confirm the
935
+ validity of this model, the dashed curve in Figure 6e
936
+ represents a weighted sum of the 1.73 eV and 1.82 eV
937
+ PL contributions, with weights determined by the best-
938
+ fit IA(T) and IB(T) values (the intensities are repre-
939
+ sented by shaded regions in Figure 6e).
940
+ We recover
941
+ a temperature-dependent emission energy that closely
942
+ tracks the measured ∼90 meV blueshift of Eem between
943
+ 19 K and 290 K.
944
+ The states A and B in our empirical model might be
945
+ associated with different charge states or spatial config-
946
+ urations of CuZn and VS. Based on the defect level cal-
947
+ culations in Figure 5b, the energy levels associated with
948
+ both CuZn and VS shift in different charge states, as do
949
+ the degree of orbital hybridization between CuZn and VS
950
+ states.
951
+ The emission energies and lifetimes associated
952
+ with different charge states should therefore be different.
953
+ (Note, however, that this remains a qualitative obser-
954
+ vation since the ground-state PDOS calculations do not
955
+ fully capture the energies of excited-state configurations,
956
+ which would be required to calculate emission energies.)
957
+ We also consider the possibility that defects outside of
958
+ CuZn-VS complexes are responsible for activating R-Cu
959
+ at low or high temperatures. Possible candidates for de-
960
+ fects creating donor levels in ZnS include Zni or Cui in-
961
+ terstitial defects, as well as lone VS defects. Cui is a shal-
962
+ low donor in ZnS[31] and is therefore unlikely to play a
963
+ role as the donor level in R-Cu emission at any temper-
964
+ ature. At low temperatures, it is possible that the pri-
965
+ mary donors in the R-Cu emission mechanism are lone
966
+ VS defects in the NC core or at the surface, because their
967
+ more distant interaction with CuZn relative to VS in a
968
+ CuZn-VS complex would be consistent with longer-lived
969
+ and lower-energy radiative recombination. The inverse
970
+ situation, in which lone CuZn defects are primary accep-
971
+ tors at low temperatures, would be similar in a model
972
+ considering holes instead of electrons; however, this sit-
973
+ uation is less likely given the high concentration of VS
974
+ defects expected to exist at the NC surface compared to
975
+ the CuZn defects in these samples. Ultimately, carrier
976
+ transfer between two manifolds of states may be advan-
977
+ tageous for potential defect qubit architectures if it is
978
+ found to be spin-dependent, or mitigated if it is found to
979
+ be detrimental[32].
980
+ We also considered other potential explanations for the
981
+ R-Cu blueshift and NTQ. Previous reports of blueshifted
982
+ R-Cu emission upon increasing temperature from bulk
983
+ ZnS:Cu were attributed to changing occupation in the
984
+ vibrational levels of a highly-localized center[16]. How-
985
+ ever, that explanation is not consistent with the sat-
986
+ uration in the blueshift at high temperatures, which
987
+ we clearly observe and which also appears to occur in
988
+ their measurement around 200 K. Characteristic defect
989
+ PL in bulk and nanocrystalline ZnS:Mn also exhibits
990
+ a blueshift upon increasing temperature with magni-
991
+ tudes between 25 meV and 80 meV, which has been
992
+ attributed to crystal field variations due to lattice ex-
993
+ pansion [33, 34].
994
+ The crystal-field explanation would
995
+ also not predict saturating behavior, and accordingly the
996
+ temperature-dependent blueshift of ZnS:Mn defect PL
997
+ does not saturate, in contrast to the R-Cu observations.
998
+ As an additional indication that crystal field effects can-
999
+ not sufficiently explain the measured R-Cu blueshift, we
1000
+ calculate only a 16 ± 0.01 meV increase in the energy sep-
1001
+ aration between CuZn and VS levels of the neutral com-
1002
+ plex upon performing DFT computations with different
1003
+ ZnS lattice constants, corresponding to 0 K and 300 K
1004
+ based on the ZnS thermal expansion coefficient[35]. It is
1005
+ worth noting that in nanocrystalline ZnS:Mn, NTQ has
1006
+ also been reported between 50 K and 300 K, with posi-
1007
+ tive thermal quenching resuming above 300 K[34]. The
1008
+ authors attributed the NTQ to the thermal depopula-
1009
+ tion of localized trap states created by lattice defects,
1010
+ organic impurities, and surface defects which are all ex-
1011
+ pected to be more prevalent in NCs compared to bulk
1012
+ materials. None of the above alternative models for the
1013
+ R-Cu blueshift and NTQ can explain the clear presence
1014
+ of two distinct emission peaks with different radiative
1015
+ lifetimes at low temperature, as we observe in Figure 6d,
1016
+ nor do they capture the correspondence in Figure 6e be-
1017
+ tween the NTQ regime and the blueshift occurring at
1018
+ approximately the same temperature.
1019
+ CONCLUSION
1020
+ We present a synthetic method for obtaining colloidal
1021
+ ZnS:Cu NCs that emit primarily R-Cu, with a tailorable
1022
+ intensity depending on the Cu concentration.
1023
+ Using
1024
+ time- and temperature- resolved measurements and first-
1025
+ principles calculations, we find the sub-bandgap PL is
1026
+ consistent with radiative transitions from two, coupled
1027
+ manifolds of states involving CuZn-VS complexes.
1028
+ In
1029
+ the future, experimental methods unique to colloidal NC
1030
+ platforms will clarify the importance of defect type, lo-
1031
+ cation, concentration, and charge state on R-Cu PL. For
1032
+ example, post-synthesis NC modification (e.g., surface
1033
+ treatments that passivate traps and for remote doping,
1034
+ cation exchange, or sulfidation) and the growth of core-
1035
+ shell heterostructures will controllably alter the environ-
1036
+ ments and compositions of defects as well as the Fermi
1037
+ level of NCs.
1038
+ Spectroelectrochemical measurements of
1039
+ colloidal NC dispersions can also reveal the relationship
1040
+ between defect PL and the NC Fermi level. These stud-
1041
+ ies, combined with ESR and ODMR measurements that
1042
+ probe spin transitions, will yield valuable information
1043
+ about the R-Cu electronic structure and spin-dependent
1044
+ optical properties for potential development of R-Cu cen-
1045
+ ters as defect qubits.
1046
+
1047
+ 9
1048
+ Colloidal NC hosts will also facilitate the isolation and
1049
+ study of individual R-Cu color centers, compared to bulk
1050
+ hosts which have typically been used for the develop-
1051
+ ment of color centers as defect qubits. The deposition
1052
+ of sparse dispersions of colloidal NCs reduces the bulk
1053
+ purity requirement for single-quantum-emitter measure-
1054
+ ments by thousands of times[5, 36]. Furthermore, estab-
1055
+ lished methods for colloidal NC luminescence enhance-
1056
+ ment by integration with resonant photonic cavities or
1057
+ plasmonic nanostructures can improve the efficiency of
1058
+ quantum emitter measurements by reducing PL lifetimes
1059
+ through Purcell enhancement[37, 38].
1060
+ Our investigation of R-Cu color centers also moti-
1061
+ vates studying other transition-metal-vacancy complexes
1062
+ in ZnS as potential defect qubits; for example, transi-
1063
+ tion metals with fewer d-shell electrons than Cu, when
1064
+ placed in a similar defect and charge configuration, could
1065
+ produce a higher ground-state spin and a greater num-
1066
+ ber of internal radiative transitions. Such theoretically
1067
+ interesting materials systems are readily available for ex-
1068
+ perimentation through colloidal NC synthesis methods,
1069
+ which are fast and accessible compared to methods that
1070
+ exist for bulk crystals and can be atomically precise[39].
1071
+ All of the above opportunities will facilitate the develop-
1072
+ ment of color centers in ZnS as quantum defects while
1073
+ generally motivating colloidal NCs as a hosts for quan-
1074
+ tum defect development and engineering.
1075
+ III.
1076
+ METHODS
1077
+ 1.
1078
+ Synthesis of Colloidal ZnS:Cu NCs
1079
+ A 10 mL solution of Cu(CH3COO)2·H2O in DI water
1080
+ is prepared with the appropriate molar concentration of
1081
+ Cu, i.e., 0.05%, 0.075%, or 0.1% of the molar concen-
1082
+ tration of Zn in the reaction. 0.1 mL of this solution is
1083
+ then added to a 50 mL three-necked flask containing 20
1084
+ mmol OM. The mixture is degassed for 45 min at 120
1085
+ ◦C before the injection of 20 mmol OA and 0.2 mmol
1086
+ Zn(Ddtc)2, followed by 45 min additional degassing. The
1087
+ vessel is then heated to 300 ◦C under a nitrogen atmo-
1088
+ sphere and maintained at 300 ◦C for 45 min. It is then
1089
+ left to cool to 60 ◦C. The cooled contents are mixed with
1090
+ excess ethanol, and NCs are collected via centrifugation,
1091
+ washed in ethanol, and re-dispersed in hexanes to a con-
1092
+ centration of 10 mg/mL.
1093
+ 2.
1094
+ Tools and Instrumentation
1095
+ ICP-OES measurements are collected using a SPEC-
1096
+ TRO GENESIS ICP-OES spectrometer. To collect TEM
1097
+ images, 2 mg/mL NC dispersions in hexanes are drop-
1098
+ cast onto carbon-coated copper grids and imaged us-
1099
+ ing a JEOL-1400 TEM. TEM images are analyzed us-
1100
+ ing Fiji[40]. Absorption spectra are measured using an
1101
+ Agilent Cary 5000 spectrometer. PL and PLE spectra
1102
+ are measured using an Edinburgh Instruments FLS1000
1103
+ spectrometer with a PMT-980 photodetector. For con-
1104
+ tinuous PL and PLE measurements, the excitation source
1105
+ is a 450W Xe lamp.
1106
+ For time-resolved measurements,
1107
+ the excitation source is a 375 nm Picoquant LDH-series
1108
+ laser diode. For temperature-controlled measurements,
1109
+ samples are placed in an evacuated Advanced Research
1110
+ Systems DE-202 cryostat. The illustration of a spherical
1111
+ ZnS NC in the Table of Contents graphic was generated
1112
+ using NanoCrystal[41].
1113
+ 3.
1114
+ Analysis of PL Emission Spectra
1115
+ PL spectra are measured as a distribution function of
1116
+ wavelength and converted to energy units prior to Gaus-
1117
+ sian fitting to extract the positions and widths of individ-
1118
+ ual peaks. To properly account for the nonlinear relation-
1119
+ ship between wavelength and energy, we scale the spectra
1120
+ using the appropriate Jacobian transformation[42]:
1121
+ f(E) = f(λ) hc
1122
+ E2
1123
+ (3)
1124
+ The broad spectral range and large peak widths in our
1125
+ measurements make this scaling factor critical in our
1126
+ analysis. We find that simply converting the peak wave-
1127
+ lengths in the as-measured spectra to energy units would
1128
+ result in the extraction of dramatically incorrect peak en-
1129
+ ergies. This can be seen in the results of Table I, which
1130
+ take the scaling factor into account prior to peak extrac-
1131
+ tion on an energy scale.
1132
+ 4.
1133
+ Computational Details
1134
+ The electronic structures of the bulk ZnS, and defect
1135
+ centers such as CuZn and CuZn-VS complexes in ZnS are
1136
+ studied using density functional theory (DFT) with the
1137
+ Vienna Simulation Package[43] (VASP). VASP employs
1138
+ the Perdew-Burke-Ernzerhof (PBE) functional for the ex-
1139
+ change and correlation within the augmented plane wave
1140
+ (PAW) scheme [44, 45]. For the supercell, we use two
1141
+ different sizes: one with 64 atoms and the other with
1142
+ 212 atoms. Both calculations yield the same results for
1143
+ formation energies, electronic band structure, and total
1144
+ and projected DOS. We use a total energy cut-off of 300
1145
+ eV, and 6x6x6 and 12x12x12 Monkhorst-Pack k-point
1146
+ meshes for the density of states calculations in the larger
1147
+ and smaller supercells, respectively.
1148
+ The formation energies of differently charged config-
1149
+ urations are calculated from the well-known defect for-
1150
+ mula, [46]
1151
+ Eq
1152
+ f(ϵF ) = Eq
1153
+ tot − Ebulk
1154
+ tot
1155
+ + Ecorr +
1156
+
1157
+ i
1158
+ niµi
1159
+ (4)
1160
+ + q(EVBM + ϵF + ∆q/b)
1161
+ where the first two terms are the total energies of the
1162
+ bulk and defected supercell, and the correction term Ecorr
1163
+
1164
+ 10
1165
+ (first order Makov-Payne correction) originates from the
1166
+ interaction between periodic charged supercells.
1167
+ The
1168
+ chemical potentials µi correspond to adding Cu or re-
1169
+ moving Zn and S, ϵF is the Fermi level, EVBM is the
1170
+ valence band maximum. The final term ∆q/b is the po-
1171
+ tential alignment between the valence band edges for the
1172
+ bulk and neutral or charged supercells.
1173
+ Hybrid DFT calculations are also completed for the
1174
+ 64 atom supercell using the B3LYP hybrid functional.
1175
+ Charge transition levels of the formation energies are not
1176
+ affected by the hybrid calculation, but the conduction
1177
+ band minimum is pushed from about 2.14 eV to 3.55
1178
+ eV, yielding a band gap energy closer to that which is
1179
+ observed experimentally (SI Section 8).
1180
+ IV.
1181
+ FINANCIAL INTEREST STATEMENT
1182
+ The authors declare no competing financial interest.
1183
+ ACKNOWLEDGMENTS
1184
+ This work was supported by the National Science
1185
+ Foundation under Awards DMR-2019444 (S.Y., C.B.M.,
1186
+ L.C.B., and C.R.K., for synthesis, measurements, and
1187
+ analysis), and DMREF awards DMR-1922278 (L.C.B)
1188
+ and DMR-1921877 (C.S. and M. E. F.) for theory, first-
1189
+ principles calculations, and data analysis.
1190
+ S.M.T. ac-
1191
+ knowledges support from the National Science Foun-
1192
+ dation Graduate Research Fellowship under Grant No.
1193
+ DGE-1845298.
1194
+ [1] S. Castelletto and A. Boretti, Color centers in wide-
1195
+ bandgap semiconductors for subdiffraction imaging : a
1196
+ review, Advanced Photonics 3, 1 (2021).
1197
+ [2] V. Lahariya and S. J. Dhoble, Development and advance-
1198
+ ment of undoped and doped zinc sulfide for phosphor
1199
+ application, Displays 74, 102186 (2022).
1200
+ [3] V. A. Norman, S. Majety, Z. Wang, W. H. Casey,
1201
+ N. Curro, and M. Radulaski, Novel color center platforms
1202
+ enabling fundamental scientific discovery, InfoMat 3, 869
1203
+ (2021).
1204
+ [4] L. C. Bassett, A. Alkauskas, A. L. Exarhos, and K.-M. C.
1205
+ Fu, Quantum defects by design, Nanophotonics 8, 1867
1206
+ (2019).
1207
+ [5] C. R. Kagan, L. C. Bassett, C. B. Murray, and S. M.
1208
+ Thompson, Colloidal Quantum Dots as Platforms for
1209
+ Quantum Information Science, Chemical Reviews 121,
1210
+ 3186 (2020).
1211
+ [6] C. Stewart,
1212
+ M. Kianinia,
1213
+ R. Previdi,
1214
+ T. T. Tran,
1215
+ I. Aharonovich, and C. Bradac, Quantum emission from
1216
+ localized defects in zinc sulfide, Optics Letters 44, 4873
1217
+ (2019).
1218
+ [7] K. Hoang, Rare-earth defects and defect-related lumi-
1219
+ nescence in ZnS, Journal of Applied Physics 131, 015705
1220
+ (2022).
1221
+ [8] A. A. Bol, J. Ferwerda, J. A. Bergwerff, and A. Meijerink,
1222
+ Luminescence of nanocrystalline ZnS:Cu2+, Journal of
1223
+ Luminescence 99, 325 (2002).
1224
+ [9] A. L. Curcio, L. F. da Silva, M. I. B. Bernardi, E. Longo,
1225
+ and A. Mesquita, Nanostructured ZnS:Cu phosphor:
1226
+ Correlation between photoluminescence properties and
1227
+ local structure, Journal of Luminescence 206, 292 (2019).
1228
+ [10] S. Shionoya, K. Urabe, T. Koda, K. Era, and H. Fujiwara,
1229
+ Nature of the red-copper luminescence centre in ZnS
1230
+ crystals as elucidated by plolarization measurements, J.
1231
+ Phys. Chem. Solids 27, 865 (1966).
1232
+ [11] W. M. W. M. Yen, S. Shionoya, and H. Yamamoto, Phos-
1233
+ phor handbook. (CRC Press/Taylor and Francis, 2007) p.
1234
+ 1051.
1235
+ [12] M. W. Doherty, N. B. Manson, P. Delaney, and L. C. L.
1236
+ Hollenberg, The negatively charged nitrogen-vacancy
1237
+ centre in diamond: the electronic solution, New Journal
1238
+ of Physics 13, 025019 (2011).
1239
+ [13] W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calu-
1240
+ sine, and D. D. Awschalom, Room temperature coherent
1241
+ control of defect spin qubits in silicon carbide, Nature
1242
+ 479, 84 (2011).
1243
+ [14] W. C. Holton, M. De Wit, R. K. Watts, T. L. Estle, and
1244
+ J. Schneider, Paramagnetic copper centers in ZnS, Jour-
1245
+ nal of Physics and Chemistry of Solids 30, 963 (1969).
1246
+ [15] G. Wolfowicz, F. J. Heremans, C. P. Anderson, S. Kanai,
1247
+ H. Seo, A. Gali, G. Galli, and D. D. Awschalom, Quan-
1248
+ tum guidelines for solid-state spin defects, Nature Re-
1249
+ views Materials 6, 906 (2021).
1250
+ [16] S. Shionoya, T. Koda, K. Era, and H. Fujiwara, Nature
1251
+ of the Luminescence Transitions in ZnS Crystals, Journal
1252
+ of the Physical Society of Japan 19, 1157 (1964).
1253
+ [17] Y. Zhang, H. Xu, and Q. Wang, Ultrathin single crys-
1254
+ tal ZnS nanowires, Chemical Communications 46, 8941
1255
+ (2010).
1256
+ [18] D. Denzler, M. Olschewski, and K. Sattler, Luminescence
1257
+ studies of localized gap states in colloidal ZnS nanocrys-
1258
+ tals, Journal of Applied Physics 84, 2841 (1998).
1259
+ [19] N. Goswami and P. Sen, Photoluminescent properties of
1260
+ ZnS nanoparticles prepared by electro-explosion of Zn
1261
+ wires, Journal of Nanoparticle Research 9, 513 (2007).
1262
+ [20] V. Ramasamy, K. Praba, and G. Murugadoss, Synthesis
1263
+ and study of optical properties of transition metals doped
1264
+ ZnS nanoparticles, Spectrochimica Acta Part A: Molec-
1265
+ ular and Biomolecular Spectroscopy 96, 963 (2012).
1266
+ [21] M. Saleh, K. G. Lynn, L. G. Jacobsohn, and J. S. Mc-
1267
+ Cloy, Luminescence of undoped commercial ZnS crys-
1268
+ tals: A critical review and new evidence on the role of
1269
+ impurities using photoluminescence and electrical tran-
1270
+ sient spectroscopy, Journal of Applied Physics 125,
1271
+ 10.1063/1.5084738 (2019).
1272
+ [22] S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A.
1273
+ Kennedy,
1274
+ and
1275
+ D.
1276
+ J.
1277
+ Norris,
1278
+ Doping
1279
+ semiconductor
1280
+ nanocrystals., Nature 436, 91 (2005).
1281
+ [23] E. D. Goodwin, B. T. Diroll, S. J. Oh, T. Paik, C. B.
1282
+ Murray, and C. R. Kagan, Effects of Post-Synthesis Pro-
1283
+ cessing on CdSe Nanocrystals and Their Solids:
1284
+ Cor-
1285
+ relation between Surface Chemistry and Optoelectronic
1286
+
1287
+ 11
1288
+ Properties, Journal of Physical Chemistry C 118, 27097
1289
+ (2014).
1290
+ [24] S. J. S. Oh, N. E. N. Berry, J.-H. Choi, E. A. Gauld-
1291
+ ing, H. Lin, T. Paik, B. B. T. Diroll, S. Muramoto,
1292
+ C. B. C. Murray, and C. C. R. Kagan, Designing high-
1293
+ performance PbS and PbSe nanocrystal electronic de-
1294
+ vices through stepwise, post-synthesis, colloidal atomic
1295
+ layer deposition., Nano letters 14, 1559 (2014).
1296
+ [25] D. K. Kim, A. T. Fafarman, B. T. Diroll, S. H. Chan,
1297
+ T. R. Gordon, C. B. Murray, and C. R. Kagan, Solution-
1298
+ Based Stoichiometric Control over Charge Transport in
1299
+ Nanocrystalline CdSe Devices., ACS nano 7, 8760 (2013).
1300
+ [26] R. Kripal, A. K. Gupta, S. K. Mishra, R. K. Srivas-
1301
+ tava, A. C. Pandey, and S. G. Prakash, Spectrochimica
1302
+ Acta Part A : Molecular and Biomolecular Spectroscopy
1303
+ Photoluminescence and photoconductivity of ZnS : Mn 2
1304
+ + nanoparticles synthesized via co-precipitation method,
1305
+ Spectrochimica Acta Part A: Molecular and Biomolecu-
1306
+ lar Spectroscopy 76, 523 (2010).
1307
+ [27] P. Peka and H.-J. Schulz, Empirical one-electron model
1308
+ of optical transitions in Cu-doped ZnS and CdS, Physica
1309
+ B 193, 57 (1994).
1310
+ [28] C. Xue-Ying, X.-N. Wang, L. Jin-Hua, Y. Dan, F. Xuan,
1311
+ F. Fang, W. Zhi-Peng, and W. Xiao-Hua, Influence fac-
1312
+ tors and mechanism of emission of ZnS:Cu nanocrystals,
1313
+ Chinese Physics B 24, 067805 (2015).
1314
+ [29] T. Koda and S. Shionoya, Nature of the Self-Activated
1315
+ Blue Luminescence Center in Cubic ZnS:Cl Single Crys-
1316
+ tals, Physical Review 136, A541 (1964).
1317
+ [30] T. Yokogawa, T. Taguchi, S. Fujita, and M. Sato, Intense
1318
+ blue-emission band and the fabrication of blue light emit-
1319
+ ting diodes in I-doped and Ag-ion-implanted cubic ZnS,
1320
+ IEEE Transactions on Electron Devices 30 (1983).
1321
+ [31] K. Hoang, C. Latouche, and S. Jobic, Defect energy levels
1322
+ and persistent luminescence in Cu-doped ZnS, Computa-
1323
+ tional Materials Science 163, 63 (2019).
1324
+ [32] D. Hopper, H. Shulevitz, and L. Bassett, Spin Readout
1325
+ Techniques of the Nitrogen-Vacancy Center in Diamond,
1326
+ Micromachines 9, 437 (2018).
1327
+ [33] W. Chen, F. Su, G. Li, A. G. Joly, J. O. Malm, and J. O.
1328
+ Bovin, Temperature and pressure dependences of the Mn
1329
+ 2+ and donor-acceptor emissions in ZnS:Mn 2+ nanopar-
1330
+ ticles, Journal of Applied Physics 92, 1950 (2002).
1331
+ [34] J. S. Park, S. W. Mho, and J. C. Choi, Abnormal Ther-
1332
+ mal Properties of ZnS : Mn 2 + Nanophosphor, Journal
1333
+ of the Korean Physical Society 50, 571 (2007).
1334
+ [35] S. Q. Wang, First-principles study of the anisotropic ther-
1335
+ mal expansion of wurtzite ZnS, Applied Physics Letters
1336
+ 88, 061902 (2006).
1337
+ [36] H. J. Shulevitz, T.-y. Huang, J. Xu, S. J. Neuhaus, R. N.
1338
+ Patel, Y. C. Choi, L. C. Bassett, and C. R. Kagan,
1339
+ Template-Assisted Self-Assembly of Fluorescent Nanodi-
1340
+ amonds for Scalable Quantum Technologies, ACS Nano
1341
+ 16, 1847 (2022).
1342
+ [37] M. Saboktakin, X. Ye, U. Chettiar, N. Engheta, C. Mur-
1343
+ ray, and C. Kagan, Plasmonic enhancement of nanophos-
1344
+ phor upconversion luminescence in Au nanohole arrays,
1345
+ ACS Nano 7, 10.1021/nn402598e (2013).
1346
+ [38] M. Raha, S. Chen, C. M. Phenicie, S. Ourari, A. M. Di-
1347
+ bos, and J. D. Thompson, Optical quantum nondemoli-
1348
+ tion measurement of a single rare earth ion qubit, Nature
1349
+ Communications 11, 1605 (2020).
1350
+ [39] F. Muckel, J. Yang, S. Lorenz, W. Baek, H. Chang,
1351
+ T. Hyeon, G. Bacher, and R. Fainblat, Digital Doping in
1352
+ Magic-Sized CdSe Clusters, ACS Nano 10, 7135 (2016).
1353
+ [40] J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig,
1354
+ M. Longair,
1355
+ T. Pietzsch,
1356
+ S. Preibisch,
1357
+ C. Rueden,
1358
+ S. Saalfeld, B. Schmid, J.-y. Tinevez, D. J. White,
1359
+ V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Car-
1360
+ dona, Fiji : an open-source platform for biological-image
1361
+ analysis, Nature Methods 9, 676 (2019).
1362
+ [41] A. Chatzigoulas, K. Karathanou, D. Dellis, and Z. Cour-
1363
+ nia, NanoCrystal: A Web-Based Crystallographic Tool
1364
+ for the Construction of Nanoparticles Based on Their
1365
+ Crystal Habit, Journal of Chemical Information and
1366
+ Modeling 58, 2380 (2018).
1367
+ [42] J. Mooney and P. Kambhampati, Get the Basics Right:
1368
+ Jacobian Conversion of Wavelength and Energy Scales
1369
+ for Quantitative Analysis of Emission Spectra, The Jour-
1370
+ nal of Physical Chemistry Letters 4, 3316 (2013).
1371
+ [43] G. Kresse and J. Furthm¨uller, Efficient iterative schemes
1372
+ for ab initio total-energy calculations using a plane-wave
1373
+ basis set, Phys. Rev. B 54, 11169 (1996).
1374
+ [44] G. Kresse and J. Furthm¨uller, Efficiency of ab-initio total
1375
+ energy calculations for metals and semiconductors using
1376
+ a plane-wave basis set, Computational Materials Science
1377
+ 6, 15 (1996).
1378
+ [45] G. Kresse and D. Joubert, From ultrasoft pseudopoten-
1379
+ tials to the projector augmented-wave method, Phys.
1380
+ Rev. B 59, 1758 (1999).
1381
+ [46] S. B. Zhang and J. E. Northrup, Chemical potential de-
1382
+ pendence of defect formation energies in gaas: Applica-
1383
+ tion to ga self-diffusion, Phys. Rev. Lett. 67, 2339 (1991).
1384
+
1385
+ 1
1386
+ arXiv:2301.04223v1 [cond-mat.mtrl-sci] 10 Jan 2023
1387
+
1388
+ Supporting Information for: Red Emission from
1389
+ Copper-Vacancy Color Centers in Zinc Sulfide
1390
+ Colloidal Nanocrystals
1391
+ Sarah M. Thompson,† C¨uneyt S¸ahin,‡,¶ Shengsong Yang,§ Michael E. Flatt´e,¶,∥
1392
+ Christopher B. Murray,§ Lee C. Bassett,∗,# and Cherie R. Kagan∗,†,@,△
1393
+ †Department of Electrical and Systems Engineering, University of Pennsylvania,
1394
+ Philadelphia Pennsylvania 19104, USA
1395
+ ‡UNAM – National Nanotechnology Research Center and Institute of Materials Science
1396
+ and Nanotechnology, Bilkent University, Ankara, Turkey
1397
+ ¶Department of Physics and Astronomy, University of Iowa, Iowa City IA, 52242, USA
1398
+ §Department of Chemistry, University of Pennsylvania, Philadelphia PA, 19104, USA
1399
+ ∥Department of Applied Physics, Eindhoven University of Technology, P. O. Box 513, 5600
1400
+ MB Eindhoven, The Netherlands
1401
+ ⊥Department of Materials Science and Engineering, University of Pennsylvania,
1402
+ Philadelphia PA, 19104, USA
1403
+ #Department of Electrical and Systems Engineering, University of Pennsylvania,
1404
+ Philadelphia PA, 19104, USA
1405
+ @Department of Materials Science and Engineering, University of Pennsylvania,
1406
+ Philadelphia Pennsylvania 19104, USA
1407
+ △Department of Chemistry, University of Pennsylvania, Philadelphia Pennsylvania 19104,
1408
+ USA
1409
1410
+ 1
1411
+
1412
+ 1. Nonnegative Matrix Factorization of Room-Temperature
1413
+ Emission Spectra
1414
+ We use the built-in nnmf function in MATLAB R2021b to decompose room-temperature
1415
+ PL emission spectra from differently-doped ZnS:Cu NCs. The input matrix for factorization
1416
+ contains data from all materials and the rank of factors is 2. The relative weights of the
1417
+ decomposition components in each spectrum are used to plot the relative strength of the red
1418
+ spectral component in Figure 1b of the main text.
1419
+ Figure 1: NNMF decomposition of room-temperature PL emission spectra under 375 nm
1420
+ excitation from ZnS and ZnS:Cu NCs synthesized with 0 mol%, 0.05 mol%, 0.075 mol%, and
1421
+ 0.1 mol% Cu:Zn. The two spectral components in the factorization are plotted in blue and
1422
+ orange, with their sum plotted in yellow and the measured data plotted in purple.
1423
+ 2
1424
+
1425
+ 0at% Cu:Zn
1426
+ 0.05at% Cu:Zn
1427
+ 0.015
1428
+ 0.015
1429
+ 0.01
1430
+ 0.01
1431
+ 0
1432
+ 0
1433
+ 400
1434
+ 600
1435
+ 800
1436
+ 400
1437
+ 600
1438
+ 800
1439
+ Emission Wavelength (nm)
1440
+ Emission Wavelength (nm)
1441
+ 0.075at% Cu:Zn
1442
+ 0.01
1443
+ 0.1at% Cu:Zn
1444
+ 0.01
1445
+ 0.008
1446
+ 0.008
1447
+ 0.002
1448
+ 0.002
1449
+ 0
1450
+ 0
1451
+ 400
1452
+ 600
1453
+ 800
1454
+ 400
1455
+ 600
1456
+ 800
1457
+ Emission Wavelength (nm)
1458
+ Emission Wavelength (nm)2. Measurement and Calculation of NC Bandgap Ener-
1459
+ gies
1460
+ Table 1:
1461
+ Size distribution and bandgap energies for Cu-doped ZnS NCs synthesized with
1462
+ four different Cu:Zn molar ratios.
1463
+ Cu:Zn mol%
1464
+ NC Size (nm)
1465
+ Avg. Calculated Bandgap (eV)
1466
+ Measured Bandgap (eV)
1467
+ 0
1468
+ 7.0 ± 1.3
1469
+ 3.85
1470
+ 3.79
1471
+ 0.05
1472
+ 7.4 ± 1.2
1473
+ 3.84
1474
+ 3.77
1475
+ 0.075
1476
+ 7.2 ± 1.1
1477
+ 3.85
1478
+ 3.79
1479
+ 0.1
1480
+ 7.5 ± 1.2
1481
+ 3.83
1482
+ 3.79
1483
+ Figure 2: Tauc plots of absorption spectra data for extraction of NC bandgap energies.
1484
+ 3
1485
+
1486
+ Cu:Zn0mol%
1487
+ Cu:Zn0.05mo1%
1488
+ 10
1489
+ 10
1490
+ Data
1491
+ Data
1492
+ 8
1493
+ fit, xint=3.7855
1494
+ 8
1495
+ fit, xint=3.7679
1496
+ 6
1497
+ (ahv)
1498
+ 6
1499
+ a
1500
+ 4
1501
+ 4
1502
+ 2
1503
+ 2
1504
+ 0
1505
+ n
1506
+ 3.6
1507
+ 3.8
1508
+ 4
1509
+ 3.6
1510
+ 3.8
1511
+ 4
1512
+ hy/ey
1513
+ hv/eV
1514
+ Cu:Zn0.075mo1%
1515
+ Cu:Zn0.1mol%
1516
+ 10
1517
+ 10
1518
+ Data
1519
+ Data
1520
+ 8
1521
+ fit. xint=3.7896
1522
+ 8
1523
+ fit, xint=3.7883
1524
+ 6
1525
+ (ahv)
1526
+ 6
1527
+ 4
1528
+ a
1529
+ 4
1530
+ 2
1531
+ 2
1532
+ 0
1533
+ 3.6
1534
+ 3.8
1535
+ 4
1536
+ 3.6
1537
+ 3.8
1538
+ 4
1539
+ hy/ey
1540
+ hv/eVThe average NC radius according to TEM image analysis is used to calculate a bandgap
1541
+ energy for each sample using Equation 1, in which R is the NC radius, m∗
1542
+ e is the effective
1543
+ electron mass (0.25m0), m∗
1544
+ h is the effective hole mass (0.59m0), ϵr is the relative permittivity
1545
+ (8.9), and Eg is the bandgap energy of bulk ZnS (3.68 eV).1
1546
+ Eg +
1547
+ π2ℏ2
1548
+ 2m0R2( 1
1549
+ m∗
1550
+ e
1551
+ + 1
1552
+ m∗
1553
+ h
1554
+ ) −
1555
+ 1.8e2
1556
+ 4πϵrϵ0R
1557
+ (1)
1558
+ Figure 3: TEM images of ZnS NCs synthesized with 0 mol%, 0.05 mol%, 0.075 mol%, and
1559
+ 0.1 mol% Cu:Zn.
1560
+ 4
1561
+
1562
+ Oat% Cu:Zn
1563
+ 0.05at% cu.zn
1564
+ 100nm
1565
+ 100nm
1566
+ 0.075at%Cu:Zm
1567
+ 0.1at%Cu:Zn
1568
+ 100.nm
1569
+ 100nm3. Effects of Surface Treatments on Red PL
1570
+ To measure the effects of altering the presence or environment of Cu cations if they are on the
1571
+ surface, we deposit NC solids on MPTS-treated Si wafer substrates and treat them according
1572
+ to the description in Figure 4. The treatments we use involve soaking NC films in methanol
1573
+ and methanolic Na2S and Zn(CO2CH3)2·2H2O solutions.
1574
+ Methanol is known to remove
1575
+ organic ligands and to strip surface cations,2 and methanolic Na2S and Zn(CO2CH3)2·2H2O
1576
+ solutions are known to enrich the NC surface in S2- or Zn2+, respectively3,4
1577
+ Figure 4:
1578
+ Room-temperature PL spectra under 375 nm excitation from ZnS:Cu NC
1579
+ films before and after treatments in methanol solutions containing either Na2S or
1580
+ Zn(CH3COO)2.H2O.
1581
+ 5
1582
+
1583
+ 2500
1584
+ Untreated film
1585
+ 1, 4
1586
+ 2000
1587
+ 2, 2, 4
1588
+ 2, 3, 4
1589
+ 1500
1590
+ 3, 2, 4
1591
+ 1000
1592
+ Flood sample with methanol for 10 seconds,
1593
+ 500
1594
+ thenspinat2500rpmtoremoveexcess
1595
+ 2500
1596
+ 2. Flood sample with 10mM Na,S in methanol
1597
+ for 10 seconds, then spin at 2500rpm to
1598
+ 2000
1599
+ counts
1600
+ removeexcess
1601
+ 1500
1602
+ 3. Flood sample with 10mM Zn(CH,COO)2.2H,0
1603
+ 1000
1604
+ inmethanolfor1oseconds,thenspinat
1605
+ Inten
1606
+ 2500rpmtoremoveexcess
1607
+ 500
1608
+ 4.Floodwithmethanolandimmediatelyspin
1609
+ 0
1610
+ at 2500rpm for 30 seconds; repeat a total of
1611
+ 400
1612
+ 500
1613
+ 600
1614
+ 700
1615
+ 500
1616
+ 600
1617
+ 700
1618
+ 800
1619
+ 3 times
1620
+ EmissionWavelength
1621
+ Emission Wavelength4. Room-Temperature Lifetime Measurements for All
1622
+ Copper Concentrations
1623
+ The room-temperature PL decay of the 670 nm emission peak from each NC dispersion
1624
+ (Figure 5) was measured using a PMT-980 photomultiplier (standard for the FLS1000 Pho-
1625
+ toluminescence Spectrometer), a 5 nm monochromator collection bandwidth, and 1 kHz,
1626
+ 375 nm excitation. The parameters used to fit each signal to a tri-exponential decay (2) are
1627
+ given in Table 2 with 95% confidence intervals given in Table 3. The lifetimes τ1, τ2, and τ3
1628
+ extracted from these fits are consistent across samples, indicating that changing the copper
1629
+ concentration in this doping range has not noticeably altered the recombination kinetics for
1630
+ the associated red PL emission.
1631
+ I(t) = a1(t)e−t/τ1 + a2(t)e−t/τ2 + a3(t)e−t/τ3 + n
1632
+ (2)
1633
+ Figure 5: Room-temperature, 670 nm PL decay under 1 kHz, pulsed, 375 nm excitation
1634
+ (gray) with the full tri-exponential fit plotted in red and the three separate decay components
1635
+ plotted in black. Error bars represent the square root of the number of counts.
1636
+ 6
1637
+
1638
+ 0.05 mo1% Cu:Zn
1639
+ 0.075 mol% Cu:Zn
1640
+ 0.1 mol% Cu:Zn
1641
+ 104
1642
+ 104
1643
+ 2103
1644
+ 102
1645
+ 102
1646
+ 101
1647
+ 101
1648
+ 101
1649
+ 0
1650
+ 50
1651
+ 100
1652
+ 150
1653
+ 200
1654
+ 250
1655
+ 0
1656
+ 50
1657
+ 100
1658
+ 150
1659
+ 200
1660
+ 250
1661
+ 0
1662
+ 50
1663
+ 100
1664
+ 150
1665
+ 200
1666
+ 250
1667
+ Time (μs)
1668
+ Time (μs)
1669
+ Time (μs)Table 2: Tri-exponential fit parameters for room-temperature PL decay.
1670
+ Fit Parameter
1671
+ 0.05 mol% Cu:Zn
1672
+ 0.075 mol% Cu:Zn
1673
+ 0.1 mol% Cu:Zn
1674
+ τ1 (µs)
1675
+ 1.57
1676
+ 1.83
1677
+ 1.85
1678
+ τ2 (µs)
1679
+ 8.43
1680
+ 8.33
1681
+ 8.72
1682
+ τ3 (µs)
1683
+ 27.65
1684
+ 26.1
1685
+ 26.47
1686
+ a1 (counts)
1687
+ 1.07×104
1688
+ 1.17×104
1689
+ 1.64×104
1690
+ a2(counts)
1691
+ 8746
1692
+ 6734
1693
+ 1.158×104
1694
+ a3 (counts)
1695
+ 1561
1696
+ 1715
1697
+ 2278
1698
+ n (counts)
1699
+ 12.95
1700
+ 7.844
1701
+ 8.538
1702
+ Table 3: 95% confidence bounds of tri-exponential fit parameters for room-temperature PL
1703
+ decay.
1704
+ Fit Parameter
1705
+ 0.05 mol% Cu:Zn
1706
+ 0.075 mol% Cu:Zn
1707
+ 0.1 mol% Cu:Zn
1708
+ τ1 (µs)
1709
+ 1.44–1.70
1710
+ 1.67–1.99
1711
+ 1.72–1.97
1712
+ τ2 (µs)
1713
+ 7.93–8.92
1714
+ 7.85–8.82
1715
+ 8.32–9.13
1716
+ τ3 (µs)
1717
+ 26.62–28.68
1718
+ 25.08–27.12
1719
+ 25.62–27.33
1720
+ a1 (counts)
1721
+ 1.03×104–1.12×104
1722
+ 1.11×104–1.23×104
1723
+ 1.58×104–1.70×104
1724
+ a2(counts)
1725
+ 8245–9247
1726
+ 6386–7081
1727
+ 1.108×104–1.209×104
1728
+ a3 (counts)
1729
+ 1401–1720
1730
+ 1518–1911
1731
+ 2057–2500
1732
+ n (counts)
1733
+ 12.68–13.22
1734
+ 7.621–8.066
1735
+ 8.317–8.759
1736
+ 7
1737
+
1738
+ 5. 2D Plots of PL/PLE Data
1739
+ Spectral data used to construct the PL/PLE maps in Figure 3 of the main text are shown
1740
+ here as 2D plots to provide additional insight.
1741
+ Figure 6: PL spectra from undoped ZnS NCs, measured at 19 K and 290 K under excitation
1742
+ wavelengths from 290 nm to 420 nm.
1743
+ Figure 7: PL spectra from ZnS:Cu NCs, measured at 19 K and 290 K under excitation
1744
+ wavelengths from 290 nm to 420 nm.
1745
+ 8
1746
+
1747
+ ZnS NCs, 19 K
1748
+ ZnS NCs, 290 K
1749
+ 10
1750
+ 3
1751
+ Excitation Wavelength
1752
+ Excitation Wavelength
1753
+ 8
1754
+ 420 nm
1755
+ 420 nm
1756
+ 290 nm
1757
+ 290 nm
1758
+ 2
1759
+ 0
1760
+ 0
1761
+ 500
1762
+ 600
1763
+ 700
1764
+ 800
1765
+ 900
1766
+ 500
1767
+ 600
1768
+ 700
1769
+ 800
1770
+ 900
1771
+ Emission Wavelength (nm)
1772
+ Emission Wavelength (nm)ZnS:Cu NCs, 19 K
1773
+ ZnS:Cu NCs, 290 K
1774
+ 8
1775
+ 10
1776
+ Excitation Wavelength
1777
+ Excitation Wavelength
1778
+ Intensity (counts/10*)
1779
+ 8
1780
+ 420 nm
1781
+ 420 nm
1782
+ 6
1783
+ 6
1784
+ 290 nm
1785
+ 290 nm
1786
+ 2
1787
+ 2
1788
+ 0
1789
+ 0
1790
+ 500
1791
+ 600
1792
+ 700
1793
+ 800
1794
+ 900
1795
+ 500
1796
+ 600
1797
+ 700
1798
+ 800
1799
+ 900
1800
+ Emission Wavelength (nm)
1801
+ EmissionWavelength(nm)6. Fitting R-Cu Temperature-Dependent Spectra
1802
+ PL spectra are fit to two Gaussian peaks at each measurement temperature from 19 K to
1803
+ 290 K. Signal data are measured in counts per unit wavelength and converted to counts per
1804
+ unit energy for Gaussian fitting. For this conversion, the signal intensities are multiplied by
1805
+ a Jacobian transformation factor.5 The fits are obtained using a weighted least squares anal-
1806
+ ysis, where the weights are the uncertainty at each data point according to the assumption
1807
+ that measurement uncertainty is dominated by shot noise. The uncertainty at each point is
1808
+ therefore taken to be the Poisson variance, which is simply the number of counts, before any
1809
+ correction has been applied to the signal to account for the variable efficiency of the detector
1810
+ across wavelengths.
1811
+ The dominant peak between 1.73 eV and 1.82 eV at all temperatures corresponds to
1812
+ R-Cu emission and the higher-energy peak at approximately 2.2 eV corresponds to peak II
1813
+ in the main text. The fit results for all measured spectra are plotted below in Supporting
1814
+ Information Figure 8. The R2 values for each fit are given in Supporting Information Figure
1815
+ 9.
1816
+ 9
1817
+
1818
+ Figure 8: PL spectra measured at 19 K–290 K (blue circles) and corresponding Gaussian
1819
+ fits (red lines).
1820
+ Figure 9: R2 values for the Gaussian fits in Supplemental Figure 8 as a function of measure-
1821
+ ment temperature.
1822
+ 10
1823
+
1824
+ 19 K
1825
+ 10×106
1826
+ 10
1827
+ ×106
1828
+ 30 K
1829
+ 10 2
1830
+ ×106
1831
+ 50 K
1832
+ 10×106
1833
+ 70 K
1834
+ 10×106
1835
+ 90 K
1836
+ data
1837
+ data
1838
+ data
1839
+ data
1840
+ data
1841
+ 8
1842
+ ft
1843
+ 8
1844
+ 8
1845
+ fit
1846
+ 8
1847
+ fit
1848
+ 8
1849
+ fit
1850
+ 6
1851
+ 6
1852
+ 6
1853
+ 4
1854
+ 4
1855
+ 4
1856
+ 2
1857
+ 1.4
1858
+ 1.6
1859
+ 1.8
1860
+ 2
1861
+ 2.2
1862
+ 2.4
1863
+ 1.5
1864
+ 2
1865
+ 2.5
1866
+ 1.5
1867
+ 2
1868
+ 2.5
1869
+ 1.5
1870
+ 2
1871
+ 2.5
1872
+ 1.5
1873
+ 2
1874
+ 2.5
1875
+ Emission Energy (eV)
1876
+ Emission Energy (eV)
1877
+ Emission Energy (eV)
1878
+ Emission Energy (eV)
1879
+ Emission Energy (eV)
1880
+ 110 K
1881
+ ×106
1882
+ 140 K
1883
+ 150K
1884
+ ×106
1885
+ 170 K
1886
+ ×106
1887
+ 190 K
1888
+ data
1889
+ data
1890
+ data
1891
+ 5
1892
+ data
1893
+ data
1894
+ 6
1895
+ fit
1896
+ fit
1897
+ 6
1898
+ fit
1899
+ fit
1900
+ fit
1901
+ 4
1902
+ Counts
1903
+ 2
1904
+ 2
1905
+ 2.22.4
1906
+ 2
1907
+ 2.5
1908
+ 1.5
1909
+ 2
1910
+ 2.5
1911
+ 1.6
1912
+ 1.8
1913
+ 2.2
1914
+ 0
1915
+ 1.4
1916
+ 1.6
1917
+ 1.8
1918
+ 2
1919
+ 1.5
1920
+ 1.4
1921
+ 2
1922
+ 2.4
1923
+ 1.5
1924
+ 2
1925
+ 2.5
1926
+ Emission Energy (eV)
1927
+ Emission Energy (eV)
1928
+ Emission Energy (eV)
1929
+ Emission Energy (eV)
1930
+ Emission Energy (eV)
1931
+ 6×106
1932
+ 210 K
1933
+ 230 K
1934
+ 5×106
1935
+ 250 K
1936
+ 5106
1937
+ 270 K
1938
+ ×106
1939
+ 290 K
1940
+ 6×106
1941
+ data
1942
+ data
1943
+ data
1944
+ 4
1945
+ data
1946
+ data
1947
+ fit
1948
+ 4
1949
+ fit
1950
+ fit
1951
+ Counts
1952
+ Counts
1953
+ 2
1954
+ 2
1955
+ 1.5
1956
+ 2.5
1957
+ 1.5
1958
+ 2
1959
+ 2.5
1960
+ 1.5
1961
+ 2
1962
+ 2.5
1963
+ 1.5
1964
+ 2
1965
+ 2.5
1966
+ 1.4
1967
+ 2.22.4
1968
+ Emission Energy (eV)
1969
+ Emission Energy (eV)
1970
+ Emission Energy (eV)
1971
+ Emission Energy (eV)
1972
+ Emission Energy (eV)0.998
1973
+ O
1974
+ R 0.996
1975
+ 0.994
1976
+ 0
1977
+ 100
1978
+ 200
1979
+ 300
1980
+ Temperature (K)7. Derivation of NTQ Equation and Best-Fit Results
1981
+ Figure 10: Model electronic structure which is proposed to produce the measured R-Cu
1982
+ emission dynamics. Transitions occur between a ground state, G, and two excited states, A
1983
+ and B. Solid arrows indicate radiative transitions, and dashed arrows indicate nonradiative
1984
+ transitions. Labels accompanying each arrow are transition rates. Thermal carrier transfer
1985
+ from A to B occurs with a rate kTR and activation energy ETR and is key in producing the
1986
+ measured NTQ.
1987
+ First, we define the time derivatives of nA(T) and nB(T), which represent the electron
1988
+ populations of states A and B as functions of time (t) and temperature (T), using equations
1989
+ 3 and 4:
1990
+ ( ∂
1991
+ ∂t)nA(t, T) = GA(t, T) − nA(t, T)(krA + knrA) − nA(t, T)kTR
1992
+ (3)
1993
+ ( ∂
1994
+ ∂t)nB(t, T) = GB(t, T) − nB(t, T)(krB + knrB) + nA(t, T)kTR
1995
+ (4)
1996
+ where krA and krB are the radiative rates of recombination, knrA and knrB are non-radiative
1997
+ rates of recombination, and kTR is the non-radiative electron transfer rate between states A
1998
+ and B. The non-radiative rates are temperature dependent and given by:
1999
+ knri = Γnrie−Enri/kBT
2000
+ i = A, B, TR
2001
+ Solving for nA(T) and under steady-state conditions gives Equation 5:
2002
+ 11
2003
+
2004
+ B
2005
+ ....
2006
+
2007
+ A
2008
+ ....
2009
+ -
2010
+ -
2011
+ -
2012
+ KrA
2013
+ W
2014
+ -
2015
+ GnA(T) =
2016
+ GA(T)
2017
+ krA + knrA + kTR
2018
+ (5)
2019
+ We make the approximation that generation rates GA(T) and GB(T) are independent of
2020
+ temperature. Considering that the PL intensity from radiative A→G transitions, IA(T), is
2021
+ equal to the radiative rate krA times the excited state population nA(T), we obtain Equation
2022
+ 6, where GA(0) = IA(0):
2023
+ IA(T) = IA(0)
2024
+ krA
2025
+ krA + knrA + kTR
2026
+ (6)
2027
+ When we write out the full, temperature-dependent forms of the non-radiative rates and
2028
+ re-arrange the result using the constants CA and CTR defined below, we obtain Equation 7:
2029
+ CA = ΓnrA/krA
2030
+ CTR = ΓTR/krA
2031
+ IA(T) =
2032
+ IA(0)
2033
+ 1 + CAe−EnrA/kBT + CTRe−ET R/kBT
2034
+ (7)
2035
+ Solving for nB(T) under steady state conditions gives Equation 8, which is dependent
2036
+ upon nA(T):
2037
+ nB(T) = GB(T) + nA(T)kTR
2038
+ krB + knrB
2039
+ (8)
2040
+ 12
2041
+
2042
+ Again, multiplying nB(T) by the radiative rate krB to get the PL intensity IB(T) and
2043
+ making the approximation that GB(T) is constant (such that IB(0) = GB(0)), we write
2044
+ Equation 9:
2045
+ IB(T) = IB(0)krB + nA(T)kTRkrB
2046
+ krB + knrB
2047
+ (9)
2048
+ Expanding equation 9 gives us the following exact expression for nB(T):
2049
+ IB(T) = IB(0)
2050
+ krB
2051
+ krB + knrB
2052
+ + (
2053
+ kTRkrB
2054
+ krB + knrB
2055
+ )(
2056
+ IA(0)
2057
+ krA + knrA + kTR
2058
+ )
2059
+ (10)
2060
+ We again use the proportional relationship between the PL intensity from radiative B→G
2061
+ transitions and the population nB(T) to write an expression for IB(T). When we write out
2062
+ the full, temperature-dependent forms of the non-radiative rates and re-arrange the result
2063
+ using the constants CA and CTR as well as CB defined below, we obtain Equation 11:
2064
+ CB = ΓnrB/krB
2065
+ IB(T) =
2066
+ IB(0)
2067
+ 1 + CBe−EnrB/kBT +
2068
+ IA(0)CTRe−ET R/kBT
2069
+ (1 + CBe−EnrB/kBT)(1 + CAe−EnrA/kBT + CTRe−ET R/kBT) (11)
2070
+ We now use Equations 7 and 11 to fit measured I(T) data, which correspond to the
2071
+ integral of the Gaussian fit for the R-Cu peak at every temperature, such that I(T) =
2072
+ IA(T) + IB(T). We first use an approximate version of Equation 11 to fit the measured I(T)
2073
+ data, then take the resulting parameters as seed values for the fit to the exact equation. To
2074
+ write the approximate version of Equation 11, we expand the product in the denominator of
2075
+ Equation 11:
2076
+ 1 + CAe−EnrA/kBT + CBe−EnrB/kBT + CTRe−ET R/kBT + CBCAe−(EnrB+EnrA)/kBT +
2077
+ CBCTRe−(EnrB+ET R)/kBT
2078
+ 13
2079
+
2080
+ This expanded product contains two terms with effective activation energies EnrB +EnrA
2081
+ and EnrB + ETR. Assuming these effective activation energies are large compared to the
2082
+ measurement temperatures in our experiment, we neglect these terms in the approximate
2083
+ expression for IB(T).
2084
+ The total PL intensity is I(0) = IA(0) + IB(0). We define a proportionality factor WA
2085
+ such that WA = IA(0)/I(0) and 1 − WA = IB(0)/I(0). The result is Equation 12
2086
+ IB(T) ≈
2087
+ (1 − WA)I(0)
2088
+ 1 + CBe−EnrB/kBT +
2089
+ WAI(0)CTRe−ET R/kBT
2090
+ 1 + CAe−EnrA/kBT + CBe−EnrB/kBT + CTRe−ET R/kBT
2091
+ (12)
2092
+ Equations 13 and 14 are the exact equations for IA(T) and IB(T) used to fit measured
2093
+ I(T) data, in terms of the fit parameters listed below.
2094
+ IA(T) =
2095
+ WAI(0)
2096
+ 1 + CAe−EnrA/kBT + CTRe−ET R/kBT
2097
+ (13)
2098
+ IB(T) =
2099
+ (1 − WA)I(0)
2100
+ 1 + CBe−EnrB/kBT +
2101
+ WAI(0)CTRe−ET R/kBT
2102
+ (1 + CBe−EnrB/kBT)(1 + CAe−EnrA/kBT + CTRe−ET R/kBT) (14)
2103
+ 14
2104
+
2105
+ We use the measurement results in Figure 6d to fix the value of Wa for fitting and find
2106
+ that the energy parameters are reasonable well constrained while the coefficients CA, CB, and
2107
+ CTR are virtually unconstrained. The values of the parameters that best describe measured
2108
+ I(T) data are given below, with 68% confidence intervals in parentheses:
2109
+ WA = 0.9285
2110
+ I(0) = 1.074 × 109 counts (1.067, 1.08)
2111
+ EnrA = 105.8 meV (68.1, 143.5)
2112
+ EnrB = 214.3 meV (166.4, 262.1)
2113
+ ETR = 152.7 meV (131.8, 173.6)
2114
+ CA = 1372
2115
+ CB = 5301
2116
+ CTR = 1.47 × 104
2117
+ 15
2118
+
2119
+ 8. Hybrid DFT Calculations for Formation Energies
2120
+ Figure 11: Formation energies for negatively charged, neutral, and positively charged (-1,
2121
+ 0, and +1 charges with respect to the ZnS lattice as indicated on plots) nearest- and next-
2122
+ nearest-neighbor (NN and NNN, respectively) associations of CuZn and VS in ZnS, as a
2123
+ function of the Fermi level. Solid lines indicate calculations performed for a relaxed lattice.
2124
+ Dashed lines indicate calculations performed for an unrelaxed lattice. Black and grey lines
2125
+ indicate DFT calculations, and the red line indicates hybrid DFT calculations. Details of
2126
+ the DFT settings are in the Methods section of the main text.
2127
+ 16
2128
+
2129
+ -NN,unrelaxed
2130
+ NNN,relaxed
2131
+ 1
2132
+ 0
2133
+ NN,relaxed
2134
+ 6
2135
+ +1
2136
+ NN,relaxed,hybrid calculation
2137
+ +1
2138
+ 1
2139
+ +1
2140
+ -1
2141
+ +1
2142
+ 0
2143
+ 1
2144
+ 2
2145
+ 3
2146
+ FermiLevel(eV)9. Total Density of States of Pure and Defected ZnS
2147
+ -4
2148
+ -2
2149
+ 0
2150
+ 2
2151
+ 4
2152
+ 6
2153
+ -40
2154
+ -20
2155
+ 0
2156
+ 20
2157
+ 40
2158
+ Energy (eV)
2159
+ DOS (electrons/eV)
2160
+ -4
2161
+ -2
2162
+ 0
2163
+ 2
2164
+ 4
2165
+ 6
2166
+ -40
2167
+ -20
2168
+ 0
2169
+ 20
2170
+ 40
2171
+ Energy (eV)
2172
+ DOS (electrons/eV)
2173
+ Vs
2174
+ Vs
2175
+ Cu d
2176
+ (a)
2177
+ (b)
2178
+ Figure 12: The total DOS of (a) pure ZnS (b) ZnS with neutral CuZn-VS complex. The CuZn
2179
+ d-levels are closer the the valence band maximum and VS states are split into two distinct
2180
+ energies due to the nonzero total magnetic moment in the system introduced by the CuZn
2181
+ impurity. Here zero of the energy is chosen as the top of the valence band of pure ZnS.
2182
+ 17
2183
+
2184
+ References
2185
+ 1. Uzar, N.; Arikan, C. M. Synthesis and investigation of optical properties of ZnS nanos-
2186
+ tructures. Bull. Mater. Sci. 2011, 34, 287–292.
2187
+ 2. Goodwin, E. D.; Diroll, B. T.; Oh, S. J.; Paik, T.; Murray, C. B.; Kagan, C. R. Effects of
2188
+ Post-Synthesis Processing on CdSe Nanocrystals and Their Solids: Correlation between
2189
+ Surface Chemistry and Optoelectronic Properties. Journal of Physical Chemistry C 2014,
2190
+ 118, 27097–27105.
2191
+ 3. Oh, S. J. S.; Berry, N. E. N.; Choi, J.-H.; Gaulding, E. A.; Lin, H.; Paik, T.; Diroll, B.
2192
+ B. T.; Muramoto, S.; Murray, C. B. C.; Kagan, C. C. R. Designing high-performance
2193
+ PbS and PbSe nanocrystal electronic devices through stepwise, post-synthesis, colloidal
2194
+ atomic layer deposition. Nano letters 2014, 14, 1559–1566.
2195
+ 4. Kim, D. K.; Fafarman, A. T.; Diroll, B. T.; Chan, S. H.; Gordon, T. R.; Murray, C. B.;
2196
+ Kagan, C. R. Solution-Based Stoichiometric Control over Charge Transport in Nanocrys-
2197
+ talline CdSe Devices. ACS nano 2013, 7, 8760–70.
2198
+ 5. Mooney, J.; Kambhampati, P. Get the Basics Right: Jacobian Conversion of Wavelength
2199
+ and Energy Scales for Quantitative Analysis of Emission Spectra. The Journal of Physical
2200
+ Chemistry Letters 2013, 4, 3316–3318.
2201
+ 18
2202
+
CNE2T4oBgHgl3EQf9AkT/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
D9FJT4oBgHgl3EQfBywq/content/tmp_files/2301.11426v1.pdf.txt ADDED
@@ -0,0 +1,2613 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Model-based Offline Reinforcement Learning with Local Misspecification
2
+ Kefan Dong*, Yannis Flet-Berliac*, Allen Nie*, Emma Brunskill
3
+ Stanford University
4
+ {kefandong,yfletberliac,anie,ebrun}@stanford.edu
5
+ Abstract
6
+ We present a model-based offline reinforcement learning pol-
7
+ icy performance lower bound that explicitly captures dynam-
8
+ ics model misspecification and distribution mismatch and we
9
+ propose an empirical algorithm for optimal offline policy se-
10
+ lection. Theoretically, we prove a novel safe policy improve-
11
+ ment theorem by establishing pessimism approximations to
12
+ the value function. Our key insight is to jointly consider se-
13
+ lecting over dynamics models and policies: as long as a dy-
14
+ namics model can accurately represent the dynamics of the
15
+ state-action pairs visited by a given policy, it is possible to
16
+ approximate the value of that particular policy. We analyze
17
+ our lower bound in the LQR setting and also show compet-
18
+ itive performance to previous lower bounds on policy selec-
19
+ tion across a set of D4RL tasks.
20
+ Introduction
21
+ Offline reinforcement learning (RL) could leverage histor-
22
+ ical decisions made and their outcomes to improve data-
23
+ driven decision-making in areas like marketing (Thomas
24
+ et al. 2017), robotics (Quillen et al. 2018; Yu et al.
25
+ 2020, 2021; Swazinna, Udluft, and Runkler 2020; Singh
26
+ et al. 2020), recommendation systems (Swaminathan and
27
+ Joachims 2015), etc. Offline RL is particularly useful when
28
+ it is possible to deploy context-specific decision policies, but
29
+ it is costly or infeasible to do online reinforcement learning.
30
+ Prior work on offline RL for large state and/or action
31
+ spaces has primarily focused on one of two extreme settings.
32
+ One line of work makes minimal assumptions on the under-
33
+ lying stochastic process, requiring only no confounding, and
34
+ leverages importance-sampling estimators of potential poli-
35
+ cies (e.g., Thomas, Theocharous, and Ghavamzadeh (2015);
36
+ Thomas et al. (2019)). Unfortunately, such estimators have a
37
+ variance that scales exponentially with the horizon (Liu et al.
38
+ 2018b) and are often ill-suited to long horizon problems1.
39
+ An alternative, which is the majority of work in offline
40
+ RL, is to make a number of assumptions on the domain,
41
+ *These authors contributed equally.
42
+ Copyright © 2022, Association for the Advancement of Artificial
43
+ Intelligence (www.aaai.org). All rights reserved.
44
+ 1Marginalized importance sampling (MIS) methods (Liu et al.
45
+ 2018a; Xie, Ma, and Wang 2019; Yin and Wang 2020; Liu, Bacon,
46
+ and Brunskill 2020) help address this but rely on the system being
47
+ Markov in the underlying state space
48
+ behavior data generation process and the expressiveness of
49
+ the function classes employed. The work in this space typi-
50
+ cally assumes the domain satisfies the Markov assumption,
51
+ which has been recently shown in the off-policy evaluation
52
+ setting to enable provably more efficient policy value esti-
53
+ mation (Kallus and Uehara 2020). Historically, most work
54
+ (e.g., Munos (2003); Farahmand, Munos, and Szepesv´ari
55
+ (2010); Xie and Jiang (2020); Chen and Jiang (2019)) as-
56
+ sumes the batch data set has coverage on any state-action
57
+ pairs that could be visited under any possible policy. More
58
+ recent work relaxes this strong requirement using a pes-
59
+ simism under uncertainty approach that is model-based (Yu
60
+ et al. 2020, 2021; Kidambi et al. 2020), model-free (Liu et al.
61
+ 2020) or uses policy search (Curi, Berkenkamp, and Krause
62
+ 2020; van Hasselt, Hessel, and Aslanides 2019). Such work
63
+ still relies on realizability/lack of misspecification assump-
64
+ tions. For model-free approaches, a common assumption is
65
+ that the value function class can represent all policies. Liu
66
+ et al. (2020) assume that the value function class is closed
67
+ under (modified) Bellman backups. A recent exception is
68
+ Xie and Jiang (2020), which only requires the optimal Q-
69
+ function to be representable by the value function class.
70
+ However, their sample complexity scales non-optimally (Xie
71
+ and Jiang 2020, Theorem 2), and they also make strong
72
+ assumptions on the data coverage – essentially the dataset
73
+ must visit all states with sufficient probability. Model-based
74
+ approaches such as Malik et al. (2019); Yu et al. (2020) as-
75
+ sume the dynamics class has no misspecification.
76
+ These two lines of work hint at possibilities in the mid-
77
+ dle: can we leverage the sample-efficient benefits of Markov
78
+ structure and allow for minimal assumptions on the data-
79
+ gathering process and potential model misspecification?
80
+ This can be viewed as one step towards more best-in-class
81
+ results for offline RL. Such results are relatively rare in RL,
82
+ which tends to focus on obtaining optimal or near-optimal
83
+ policies for the underlying domain. Yet in many important
84
+ applications, it may be much more practical to hope to iden-
85
+ tify a strong policy within a particular policy class.
86
+ Our insight is that the algorithm may be able to lever-
87
+ age misspecified models and still leverage the Markov as-
88
+ sumption for increased data efficiency. In particular, we take
89
+ a model-based offline RL approach to leverage dynamics
90
+ models that can accurately fit the space of state-action pairs
91
+ visited under a particular policy (local small misspecifica-
92
+
93
+ tion), rather than being a good model of the entire possi-
94
+ ble state-action space (global small misspecification). Our
95
+ work is most closely related to the recently proposed Min-
96
+ imax Model Learning (MML) algorithm (Voloshin, Jiang,
97
+ and Yue 2021): MML optimizes for the model that mini-
98
+ mizes a value-aware error which upper bounds the differ-
99
+ ence of policy value in learned and real models. If the con-
100
+ sidered model class includes the true model, this can work
101
+ very well, but when the models are misspecified, this can be-
102
+ come overly conservative since it optimizes with respect to
103
+ a worst-case potential state-action distribution shift.
104
+ The key feature of our algorithm is to jointly optimize pol-
105
+ icy and dynamics. Prior model-based offline RL algorithms
106
+ typically estimate dynamics first, and then optimize a policy
107
+ w.r.t. the learned dynamics (Yu et al. 2020, 2021; Voloshin,
108
+ Jiang, and Yue 2021). But when the dynamics model class is
109
+ misspecified, there may not exist a unique “good dynamics”
110
+ that can approximate the value of every policy. As a result,
111
+ the learned policy may have a good estimated value under
112
+ the learned dynamics, but a poor performance in the real en-
113
+ vironment, or the learned policy may be overly conservative
114
+ due to the misestimated dynamics.
115
+ Our paper makes the following contributions. First, we
116
+ provide a finite sample bound that assumes a Markov model,
117
+ leverages the pessimism principle to work with many data-
118
+ gathering distributions, accounts for estimation error in the
119
+ behavior policy and, most importantly, directly accounts
120
+ for dynamics and value function model misspecification
121
+ (see Lemma 3). We prove the misspecification error of our
122
+ method is much tighter than other approaches because we
123
+ only look at the models’ ability to represent visited state-
124
+ action pairs for a particular policy. In that sense, we say
125
+ our algorithm relies on small local model dynamics mis-
126
+ specification. In Theorem 6, we show that when the dynam-
127
+ ics model class does not satisfy realizability, decoupling the
128
+ learning of policy and dynamics is suboptimal. This moti-
129
+ vates our algorithm which jointly optimizes the policy and
130
+ model dynamics across a finite set. Because of the tighter
131
+ pessimistic estimation, we can prove a novel safe policy im-
132
+ provement theorem (see Theorem 4) for offline policy opti-
133
+ mization (OPO). While our primary contribution is theoreti-
134
+ cal, our proposed method for policy selection improves over
135
+ the state-of-the-art MML Voloshin, Jiang, and Yue (2021) in
136
+ a simple linear Gaussian setting, and has solid performance
137
+ on policy selection on a set of D4RL benchmarks.
138
+ Related Works
139
+ There is an extensive and growing body of research on of-
140
+ fline RL and we focus here on methods that also assume a
141
+ Markov domain. Many papers focus on model-free meth-
142
+ ods (e.g., Fujimoto et al. (2018); Kumar et al. (2019, 2020)).
143
+ Nachum et al. (2019) and their follow-ups (Zhang et al.
144
+ 2019; Zhang, Liu, and Whiteson 2020) learn a distribution
145
+ correction term, on top of which they perform evaluation or
146
+ policy optimization tasks. Uehara, Huang, and Jiang (2020);
147
+ Jiang and Huang (2020) study the duality between learn-
148
+ ing Q-functions and learning importance weights. Liu et al.
149
+ (2020) explicitly consider the distribution shift in offline RL
150
+ and propose conservative Bellman equations.
151
+ Another line of research uses model-based methods (Ki-
152
+ dambi et al. 2020; Yu et al. 2020, 2021; Matsushima et al.
153
+ 2020; Swazinna, Udluft, and Runkler 2020; Fu and Levine
154
+ 2021; Farahmand, Barreto, and Nikovski 2017). Gelada
155
+ et al. (2019); Delgrange, Nowe, and P´erez (2022); Voloshin,
156
+ Jiang, and Yue (2021) learn the dynamics using different
157
+ loss functions. Yu et al. (2020) build an uncertainty quan-
158
+ tification on top of the learned dynamics and select a policy
159
+ that optimizes the lower confidence bound. (Argenson and
160
+ Dulac-Arnold 2020; Zhan, Zhu, and Xu 2021) focus on pol-
161
+ icy optimization instead of model learning.
162
+ In Table 1, we compare our error bounds with existing
163
+ results. Our statistical error (introduced by finite dataset) is
164
+ comparable with VAML (Farahmand, Barreto, and Nikovski
165
+ 2017), MBS-PI (Liu et al. 2020) and MML (Voloshin, Jiang,
166
+ and Yue 2021). In addition, we consider misspecification er-
167
+ rors and safe policy improvement (SPI).
168
+ Algorithm
169
+ Statistical Error
170
+ Misspecification
171
+ SPI
172
+ VAML
173
+
174
+ O
175
+
176
+ p
177
+ √n
178
+
179
+ 2
180
+ (global)
181
+ 
182
+ MBS-PI
183
+
184
+ O
185
+
186
+ Vmaxζ
187
+ (1−γ)2√n
188
+
189
+ (global)
190
+ 
191
+ MML
192
+ Rn3
193
+ (global)
194
+ 
195
+ Ours
196
+
197
+ O
198
+
199
+ Vmax
200
+ 1−γ
201
+
202
+ ζ
203
+ n
204
+
205
+ (local)
206
+ 
207
+ Table 1: Comparison of error bounds with prior works.
208
+ Problem Setup
209
+ A Markov Decision Process (MDP) is defined by a tuple
210
+ ⟨T, r, S, A, γ⟩ . S and A denote the state and action spaces.
211
+ T : S × A → ∆(S) is the transition and r : S × A → R+
212
+ is the reward. γ ∈ [0, 1) is the discount factor. For a policy
213
+ π : S → ∆(A), the value function is defined as
214
+ V π
215
+ T (s) = Es0=s,at∼π(st),st+1∼T (st,at)[�∞
216
+ t=0 γtr(st, at)].
217
+ Let Rmax ≜ maxs,a r(s, a) be the maximal reward and
218
+ Vmax ≜ Rmax/(1 − γ). Without loss of generality, we as-
219
+ sume that the initial state is fixed as s0. We use η(T, π) ≜
220
+ V π
221
+ T (s0) to denote the expected value of policy π. Let
222
+ ρπ
223
+ T (s, a) ≜ (1 − γ) �∞
224
+ t=0 γt Prπ
225
+ T (st = s, at = a | s0)
226
+ be the normalized state-action distribution when we execute
227
+ policy π in a domain with dynamics model T. For simplicity
228
+ in this paper we assume the reward function is known.
229
+ An
230
+ offline
231
+ RL
232
+ algorithm
233
+ takes
234
+ a
235
+ dataset
236
+ D
237
+ =
238
+ {(si, ai, s′
239
+ i)}n
240
+ i=1 as input, where n is the size of the dataset.
241
+ Each (si, ai, s′
242
+ i) tuple is drawn independently from a behav-
243
+ ior distribution µ. We assume that µ is consistent with the
244
+ MDP in the sense that µ(· | s, a) = T(s, a) for all (s, a).
245
+ For simplicity, we use ˆE to denote the empirical distribu-
246
+ tion over the dataset D. In this paper, we assume that the
247
+ 2VAML only considers linear function approximation and p is
248
+ the dimension of the feature vector.
249
+ 3The Rademacher complexity. For the finite hypothesis, the
250
+ best-known upper bound is in the same order of ours.
251
+
252
+ algorithm has access to an estimated behavior distribution ˆµ
253
+ such that TV(µ, ˆµ) is small. This estimation can be easily
254
+ obtained using a separate dataset (e.g., Liu et al. (2020)).
255
+ The algorithm can access three (finite) function classes
256
+ G, T , Π. G is a class of value functions, T a class of dy-
257
+ namics and Π a class of policies. We assume that g(s, a) ∈
258
+ [0, Vmax] for all g ∈ G. We use T ⋆ to denote the ground-
259
+ truth dynamics. Note that T ⋆ may not be in T . Our goal is
260
+ to return a policy π ∈ Π that maximizes η(T ⋆, π).
261
+ Main Results
262
+ A standard model-based RL algorithm learns the dynamics
263
+ models first, and then uses the learned dynamics to estimate
264
+ the value of a policy, or optimize it. In this approach, it is
265
+ crucial to link the estimation error of the dynamics to the
266
+ estimation error of the value. Therefore, as a starting point,
267
+ we invoke the simulation lemma.
268
+ Lemma 1 (Simulation Lemma (Yu et al. 2020; Kakade and
269
+ Langford 2002)). Consider two MDPs with dynamics T, T ⋆,
270
+ and the same reward function. Then,
271
+ η(T, π) − η(T ⋆, π) =
272
+ γ
273
+ 1 − γ E(s,a)∼ρπ
274
+ T [
275
+ Es′∼T (s,a)[V π
276
+ T ⋆(s′)] − Es′∼T ⋆(s,a)[V π
277
+ T ⋆(s′)]
278
+
279
+ .
280
+ (1)
281
+ For a fixed ground-truth dynamics T ⋆, we define
282
+
283
+ T (s, a) = Es′∼T (s,a)[V π
284
+ T ⋆(s′)] − Es′∼T ⋆(s,a)[V π
285
+ T ⋆(s′)].
286
+ The simulation lemma states that the dynamics will
287
+ provide an accurate estimate of the policy value if
288
+ Es′∼T (s,a)[V π
289
+ T ⋆(s′)] matches Es′∼T ⋆(s,a)[V π
290
+ T ⋆(s′)]. In other
291
+ words, to obtain a good estimate of a policy value, it is suf-
292
+ ficient to minimize the model error Gπ
293
+ T (s, a).
294
+ Since the value function V π
295
+ T ⋆ is unknown, Yu et al. (2020)
296
+ upper bound the model error by introducing a class of test
297
+ functions G : S → R. When V π
298
+ T ⋆ ∈ G, we have
299
+ |Gπ
300
+ T (s,a)|≤supg∈G
301
+ ��Es′∼T (s,a)g(s′)−Es′∼T ⋆(s,a)g(s′)]
302
+ ��.
303
+ In an offline dataset D, typically we can only observe one
304
+ sample from T ⋆(s, a) per state-action pair. Hence the al-
305
+ gorithm cannot compute this upper bound exactly. In ad-
306
+ dition, the distribution of the dataset D is also different
307
+ from the one required by the simulation lemma ρπ
308
+ T . To ad-
309
+ dress these issues, we explicitly introduce a density ratio
310
+ w : S × A → R+. For a test function g ∈ G and a dynam-
311
+ ics model T, let f g
312
+ T (s, a) ≜ Es′∼T (s,a)[g(s′)]. Recall that ˆE
313
+ denotes the empirical expectation over dataset D. Then our
314
+ model loss is defined as
315
+ ℓw(T, g) = |ˆE[w(s, a)(f g
316
+ T (s, a) − g(s′))]|.
317
+ (2)
318
+ Distribution mismatch. We aim to upper bound policy eval-
319
+ uation error by the loss function even if there are state ac-
320
+ tion pairs with small probability mass under behavior dis-
321
+ tribution µ (i.e., the offline dataset does not have a perfect
322
+ coverage). Following Liu et al. (2020), we treat the un-
323
+ known state-action pairs pessimistically. Let ζ be a fixed
324
+ cutoff threshold. Recall that ˆµ is an estimation of the behav-
325
+ ior distribution. For a policy π and dynamics T, we define
326
+ wπ,T (s, a) ≜ I
327
+
328
+ ρπ
329
+ T (s,a)
330
+ ˆµ(s,a) ≤ ζ
331
+
332
+ ρπ
333
+ T (s,a)
334
+ ˆµ(s,a) as the truncated den-
335
+ sity ratio. For a fixed policy π, when w = wπ,T ,
336
+ ���E(s,a)∼ρπ
337
+ T
338
+
339
+
340
+ T (s, a)
341
+ ����
342
+
343
+ ����E(s,a)∼ρπ
344
+ T
345
+
346
+ I
347
+ �ρπ
348
+ T (s, a)
349
+ ˆµ(s, a) ≤ ζ
350
+
351
+
352
+ T (s, a)
353
+ �����
354
+ +
355
+ ���E(s,a)∼ρπ
356
+ T
357
+
358
+ I
359
+ �ρπ
360
+ T (s, a)
361
+ ˆµ(s, a) > ζ
362
+
363
+
364
+ T (s, a)
365
+ ����
366
+ ≤ |E(s,a)∼ˆµ
367
+
368
+ w(s, a)Gπ
369
+ T (s, a)
370
+
371
+ |
372
+ + Vmax
373
+ ���E(s,a)∼ρπ
374
+ T
375
+
376
+ I
377
+ �ρπ
378
+ T (s, a)
379
+ ˆµ(s, a) > ζ
380
+ �����
381
+ ≤ |E(s,a)∼µ
382
+
383
+ w(s, a)Gπ
384
+ T (s, a)
385
+
386
+ | + ζVmaxTV (ˆµ, µ)
387
+ + Vmax
388
+ ������E(s,a)∼ρπ
389
+ T
390
+
391
+ I
392
+ �ρπ
393
+ T (s, a)
394
+ ˆµ(s, a) > ζ
395
+ ������.
396
+ Hence, ignoring statistical error due to finite dataset, we can
397
+ upper bound the estimation error |η(T ⋆, π) − η(T, π)| by
398
+ γ
399
+ 1 − γ
400
+
401
+ sup
402
+ g∈G
403
+ ���ℓwπ,T (g, T)
404
+ ��� + ζVmaxTV (ˆµ, µ)
405
+ + VmaxE(s,a)∼ρπ
406
+ T
407
+
408
+ I
409
+ �ρπ
410
+ T (s, a)
411
+ ˆµ(s, a) > ζ
412
+ ���
413
+ .
414
+ (3)
415
+ Intuitively, the first term measures the error caused by im-
416
+ perfect dynamics T, the second term captures the estimation
417
+ error of the behavior distribution, and the last term comes
418
+ from truncating the density ratios.
419
+ Pessimistic Policy Optimization with Model
420
+ Misspecification
421
+ In this section, we explicitly consider misspecifications of
422
+ the function classes used for representing the value func-
423
+ tion and dynamics models (G and T , respectively). Most
424
+ prior theoretical work on model-based RL make strong as-
425
+ sumptions on the realizability of the dynamics model class.
426
+ For example, in the offline setting, Voloshin, Jiang, and Yue
427
+ (2021) focus on exact realizability of the dynamics model
428
+ (that is, T ⋆ ∈ T ). In the online setting, Jin et al. (2020) pro-
429
+ vide bounds where there is a linear regret term due to global
430
+ model misspecification. Their bounds require a T ∈ T such
431
+ that TV (T(s, a), T ⋆(s, a)) ≤ ϵ for all (s, a), even if the
432
+ state-action pair (s, a) is only visited under some poorly per-
433
+ forming policies. We now show that offline RL tasks can
434
+ need much weaker realizability assumptions on the dynam-
435
+ ics model class.
436
+ Our key observation is that for a given dynamics T and
437
+ policy π, computing the density ratio wπ,T is statistically
438
+ efficient. Note that to compute wπ,T we do not need any
439
+ samples from the true dynamics: instead, we only need to be
440
+ able to estimate the state-action density under a dynamics
441
+ model T for policy π. This allows us to explicitly utilize the
442
+ density ratio to get a relaxed realizability assumption.
443
+ Definition 2. The local value function error for a particular
444
+
445
+ dynamics model T and policy π is defined as
446
+ ϵV (T, π) ≜ inf
447
+ g∈G |E(s,a)∼µ[wπ,T (s, a)(Es′∼T (s,a)[(g − V π
448
+ T ⋆)(s′)]
449
+ + Es′∼T ⋆(s,a)[(g − V π
450
+ T ⋆)(s′)])]|.
451
+ The term ϵV measures the local misspecification of the
452
+ value function class – that is, the error between the true
453
+ value of the policy V π
454
+ T ⋆ and the best fitting value function
455
+ in the class G – only on the state-action pairs that policy π
456
+ visits under a particular potential dynamics model T. In con-
457
+ trast, previous results (Jin et al. 2020; Nachum et al. 2019;
458
+ Voloshin, Jiang, and Yue 2021) take the global maximum
459
+ error over all (reachable) (s, a), which can be much larger
460
+ than the local misspecification error ϵV (T, π).
461
+ With this local misspecification error, we can establish a
462
+ pessimistic estimation of the true reward. Let E be a high
463
+ probability event under which the loss function ℓwπ,T (T, g)
464
+ is close to its expectation (randomness comes from the
465
+ dataset D). In the Appendix, we define this event formally
466
+ and prove that Pr(E) ≥ 1 − δ. The following lemma gives
467
+ a lower bound on the true reward. Proofs, when omitted, are
468
+ in the Appendix.
469
+ Lemma 3. Let ι = log(2|G||T ||Π|/δ). For any dynamics
470
+ model T and policy π, we define
471
+ lb(T, π) = η(T, π) −
472
+ 1
473
+ 1 − γ
474
+
475
+ sup
476
+ g∈G
477
+ ℓwπ,T (g, T)
478
+ + VmaxE(s,a)∼ρπ
479
+ T
480
+
481
+ I
482
+ �ρπ
483
+ T (s, a)
484
+ ˆµ(s, a) > ζ
485
+ ���
486
+ .
487
+ (4)
488
+ Then, under the event E, we have
489
+ η(T ⋆, π) ≥ lb(T, π) −
490
+ 1
491
+ 1 − γ
492
+
493
+ ϵV (T, π)
494
+ − 2Vmax
495
+
496
+ ζι/n − ζVmaxTV (ˆµ, µ)
497
+
498
+ .
499
+ (5)
500
+ We use this to define our offline policy selection Alg. 1.
501
+ Algorithm 1: Model-based Offline RL with Local
502
+ Misspecification Error
503
+ Require: estimated behavior distribution ˆµ,
504
+ truncation threshold ζ.
505
+ for π ∈ Π, T ∈ T do
506
+ Compute wπ,T (s, a) = I
507
+
508
+ ρπ
509
+ T (s,a)
510
+ ˆµ(s,a) ≤ ζ
511
+
512
+ ρπ
513
+ T (s,a)
514
+ ˆµ(s,a) .
515
+ Compute lb(T, π) by Eq. (4).
516
+ end
517
+ π ← argmaxπ∈Π maxT ∈T lb(T, π).
518
+ In contrast to existing offline model-based algorithms (Yu
519
+ et al. 2020; Voloshin, Jiang, and Yue 2021), our algorithm
520
+ optimizes the dynamics and policy jointly. For a given dy-
521
+ namics model, policy pair, our Alg. 1 computes the trun-
522
+ cated density ratio wπ,T which does not require collecting
523
+ new samples and then uses this to compute a lower bound
524
+ lb(T, π) (Eq. (4)). Finally, it outputs a policy that maximizes
525
+ the lower bound. We will shortly show this joint optimiza-
526
+ tion can lead to better offline learning.
527
+ Parameter ζ controls the truncation of the stationary im-
528
+ portance weights. Increasing ζ decreases the last term in the
529
+ lower bound objective lb(T, π), but it may also increase the
530
+ variance given the finite dataset size. Note that by setting
531
+ ζ = log(n) and letting n → ∞ (i.e., with infinite data), the
532
+ last term in Eq. (4) and the statistical error converge to zero.
533
+ Safe Policy Improvement
534
+ We now derive a novel safe policy improvement result, up
535
+ to the error terms given below. Intuitively this guarantees
536
+ that the policy returned by Alg. 1 will improve over the be-
537
+ havior policy when possible, which is an attractive property
538
+ in many applied settings. Note that recent work (Voloshin,
539
+ Jiang, and Yue 2021; Yu et al. 2020) on model-based of-
540
+ fline RL does not provide this guarantee when the dynamics
541
+ model class is misspecified. For a fixed policy π, define
542
+ ϵρ(π) ≜ infT ∈T E(s,a)∼ρπ
543
+ T ⋆ [TV (T(s, a), T ⋆(s, a))], (6)
544
+ ϵµ(π) ≜ E(s,a)∼ρπ
545
+ T ⋆
546
+
547
+ I
548
+ �ρπ
549
+ T ⋆(s, a)
550
+ ˆµ(s, a)
551
+ > ζ/2
552
+ ��
553
+ .
554
+ (7)
555
+ The term ϵρ measures the local misspecification error of the
556
+ dynamics model class in being able to represent the dynam-
557
+ ics for state-action pairs encountered for policy π. ϵµ rep-
558
+ resents that overlap of the dataset for an alternate policy π:
559
+ such a quantity is common in much of offline RL. In the fol-
560
+ lowing theorem, we prove that the true value of the policy
561
+ computed by Alg. 1 is lower bounded by that of the optimal
562
+ policy in the function class with some error terms.
563
+ Theorem 4. Consider a fixed parameter ζ. Let ˆπ be the pol-
564
+ icy computed by Alg. 1 and ˆT = argmaxT lb(T, ˆπ). Let
565
+ ι = log(2|G||T ||Π|/δ). Then, with probability at least 1−δ,
566
+ we have
567
+ η(T ⋆, ˆπ) ≥ sup
568
+ π
569
+
570
+ η(T ⋆, π) − 6Vmaxϵρ(π)
571
+ (1 − γ)2
572
+ − Vmaxϵµ(π)
573
+ 1 − γ
574
+
575
+ − ϵV ( ˆT, ˆπ)
576
+ 1 − γ
577
+ − 4Vmax
578
+ 1 − γ
579
+
580
+ ζι
581
+ n − 2ζVmaxTV (ˆµ, µ)
582
+ 1 − γ
583
+ .
584
+ (8)
585
+ To prove Theorem 4, we prove the tightness of lb(T, π) —
586
+ the lower bound maxT lb(T, π) is at least as high as the true
587
+ value of the policy with some errors. Consequently, maxi-
588
+ mizing the lower bound also maximizes the true value of the
589
+ policy. Formally speaking, we have the following Lemma.
590
+ Lemma 5. For any policy π ∈ Π, under the event E we have
591
+ max
592
+ T ∈T lb(T, π) ≥ η(T ⋆, π) − 6Vmaxϵρ(π)/(1 − γ)2
593
+
594
+ 1
595
+ 1 − γ
596
+
597
+ Vmaxϵµ(π) − 2Vmax
598
+
599
+ ζι/n − ζVmaxTV (ˆµ, µ)
600
+
601
+ .
602
+ In the sequel, we present a proof sketch for Lemma 5.
603
+ In this proof sketch, we hide 1/(1 − γ) factors in the big-
604
+ O notation. For a fixed policy π, let ˆT be the minimizer of
605
+ Eq. (6). We prove Lemma 5 by analyzing the terms in the
606
+ definition of lb( ˆT, π) (Eq. (4)) separately.
607
+ i. Following the definition of Eq. (6), we can show that
608
+ ∥ρπ
609
+ ˆT − ρπ
610
+ T ⋆∥1
611
+
612
+ O(ϵρ(π)). Consequently we get
613
+ η( ˆT, π) ≥ η(T ⋆, π) − O(ϵρ(π)).
614
+
615
+ ii. Recall that 0 ≤ g(s, a) ≤ Vmax for all g
616
+ ∈ G.
617
+ Then for any (s, a) we have supg∈G |Es′∼ ˆT (s,a)g(s′) −
618
+ Es′∼T ⋆(s,a)g(s′)]| ≤ VmaxTV( ˆT(s, a), T ⋆(s, a)). Com-
619
+ bining the definition of ℓw(g, T), Eq. (6) and statistical
620
+ error we get supg∈G ℓwπ,T (g, T) ≤ �
621
+ O(ϵρ(π) + 1/√n +
622
+ VmaxTV (ˆµ, µ)) under event E.
623
+ iii. For the last term regarding distribution mismatch, we
624
+ combine Eq. (7) and Lemma 8. We can upper bound this
625
+ term by O(ϵρ(π) + ϵµ(π)).
626
+ iv. The final term arises due to the potential estimation error
627
+ in the behavior policy distribution.
628
+ Theorem 4 follows directly from combining Lemma 3 and
629
+ Lemma 5. Note that Theorem 4 accounts for estimation er-
630
+ ror in the behavior policy, misspecification in the dynamics
631
+ model class, and misspecification in the value function class,
632
+ the latter two in a more local, tighter form than prior work.
633
+ Illustrative Example
634
+ To build intuition of where our approach may yield benefits,
635
+ we provide an illustrative example where Alg. 1 has better
636
+ performance than existing approaches: an MDP whose state
637
+ space is partitioned into several parts. The model class is re-
638
+ stricted so that every model can only be accurate on one part
639
+ of the state space. When each deterministic policy only vis-
640
+ its one part of the state space, the local misspecification error
641
+ is small — for each policy, there exists a dynamics model
642
+ in the set which can accurately estimate the distribution of
643
+ states and actions visited under that policy. In contrast, if the
644
+ dynamics are learned to fit the whole state space, the estima-
645
+ tion error will be large.
646
+ More precisely, for a fixed parameter d, consider a MDP
647
+ where S = {s0, · · · , sd} ∪ {sg, sb}. There are d actions
648
+ denoted by a1, · · · , ad. The true dynamics are deterministic
649
+ and given by
650
+ T ⋆(s0, ai) = si,
651
+ T ⋆(si, aj) =
652
+ �sg,
653
+ if I [i = j] ,
654
+ sb,
655
+ if I [i ̸= j] ,
656
+ (9)
657
+ T ⋆(sg, ai) = sg,
658
+ T ⋆(sb, ai) = sb, ∀i ∈ [d].
659
+ (10)
660
+ And the reward is r(s, ai) = I [s = sg] , ∀i ∈ [d].
661
+ The transition function class T is parameterized by θ ∈
662
+ Rd. For a fixed θ, the transition for states s1, . . . , sd is
663
+ Tθ(si, aj) =
664
+ �sg,
665
+ w.p. 1
666
+ 2
667
+
668
+ 1 + e⊤
669
+ j θ
670
+
671
+ ,
672
+ sb,
673
+ w.p. 1
674
+ 2
675
+
676
+ 1 − e⊤
677
+ j θ
678
+
679
+ ,
680
+ (11)
681
+ where ej is the j-th standard basis of Rd. The transitions
682
+ for states s0, sg, sb is identical to the true dynamics T ⋆.
683
+ But the transition model Tθ in the function class must use
684
+ the same parameter θ to approximate the dynamics in states
685
+ s1, · · · , sd, which makes it misspecified.
686
+ Decoupling learning the dynamics model and policy is
687
+ suboptimal. Most prior algorithms first learn a dynamics
688
+ model and then do planning with that model. However, note
689
+ here that the optimal action induced by MDP planning given
690
+ a particular Tθ is suboptimal (assuming a uniformly random
691
+ tie-breaking). This is because, for any given θ, that dynam-
692
+ ics model will estimate the dynamics of states s1, · · · , sd
693
+ as being identical, with identical resulting value functions.
694
+ Note this is suboptimality will occur in this example even if
695
+ the dataset is large and covers the state–action pairs visited
696
+ by any possible policy (ϵµ(π) = 0), the value function class
697
+ is tabular and can represent any value function ϵV = 0, the
698
+ behavior policy is known or the resulting estimation error is
699
+ small (TV (ˆµ, µ) = 0, and ζ = 0). In such a case, Theo-
700
+ rem 4 guarantees that with high probability, our algorithm
701
+ will learn the optimal policy because there exist couplings
702
+ of the dynamics models and optimal policies such that the
703
+ local misspecification error ϵρ = 0. This demonstrates that
704
+ prior algorithms (including MML (Voloshin, Jiang, and Yue
705
+ 2021)) that decouple the learning of dynamics and policy
706
+ can be suboptimal. We now state this more formally:
707
+ Theorem 6. Consider any (possibly stochastic) algorithm
708
+ that outputs an estimated dynamics Tθ ∈ T . Let πθ be the
709
+ greedy policy w.r.t. Tθ (with ties breaking uniformly at ran-
710
+ dom). Then
711
+ max
712
+ π
713
+ η(T ⋆, π) − η(T ⋆, πθ) ≥ (A − 1)γ2
714
+ A(1 − γ) .
715
+ (12)
716
+ As a side point, we also show that the off-policy estima-
717
+ tion error in Voloshin, Jiang, and Yue (2021) is large when
718
+ the dynamics model class is misspecified in Proposition 7.
719
+ We defer this result to the Appendix.
720
+ Experiments
721
+ While our primary contribution is theoretical, we now inves-
722
+ tigate how our method can be used for offline model-based
723
+ policy selection with dynamics model misspecification. We
724
+ first empirically evaluate our method on Linear-Quadratic
725
+ Regulator (LQR), a commonly used environment in optimal
726
+ control theory (Bertsekas et al. 2000), in order to assess: Can
727
+ Algorithm 1 return the optimal policy when we have both
728
+ model and distribution mismatch? We also evaluate our ap-
729
+ proach using D4RL (Fu et al. 2020), a standard offline RL
730
+ benchmark for continuous control tasks. Here we consider:
731
+ Given policies and dynamics pairs obtained using state-of-
732
+ the-art offline model-based RL methods with ensemble dy-
733
+ namics, does Alg. 1 allow picking the best policy, outper-
734
+ forming previous methods?
735
+ Linear-Quadratic Regulator (LQR)
736
+ LQR is defined by a linear transition dynamics st+1 =
737
+ Ast + Bat + η, where st ∈ Rn and at ∈ Rm are state and
738
+ action at time step t, respectively. η ∼ N(0, σ2I) is ran-
739
+ dom noise. LQR has a quadratic reward function R(s, a) =
740
+ −(sT Qs + aT Ra) with Q ∈ Rn×n and R ∈ Rm×m be-
741
+ ing positive semi-definite matrices, Q, R ⪰ 0. The op-
742
+ timal controller to maximize the sum of future rewards
743
+ �H
744
+ t=1 −(sT
745
+ t Qst+aT
746
+ t Rat) until the end of horizon H has the
747
+ form at = −Kst (K ∈ Rm×n) (Bertsekas et al. 2000). The
748
+ value function is also a quadratic function, V (s) = sT Us+q
749
+ for some constant q and positive semi-definite matrix U ⪰ 0.
750
+ In the experiment, the state space is [−1, 1].
751
+ Misspecified transition classes. Consider a 1D version of
752
+ LQR with A(x) = (1 + x/10), B(x) = (−0.5 − x/10),
753
+
754
+ -0.6
755
+ -0.4
756
+ -0.2
757
+ 0.0
758
+ 0.2
759
+ 0.4
760
+ 0.6
761
+ K
762
+ -12
763
+ -9
764
+ -6
765
+ -3
766
+ 0
767
+ Return
768
+ Returns of different policies under true environment
769
+ Ours
770
+ MML
771
+ 1
772
+ 2
773
+ 3
774
+ 4
775
+ 5
776
+ Rank
777
+ 0.0
778
+ 0.5
779
+ 1.0
780
+ 1.5
781
+ 2.0
782
+ 2.5
783
+ 3.0
784
+ 3.5
785
+ 4.0
786
+ Negative of lower bound
787
+ (0.00,-0.25)
788
+ (0.00,0.00)
789
+ (0.00,0.25)
790
+ (0.20,0.25)
791
+ (0.20,-0.25)
792
+ Ranking imposed by Eq 6 on policy-model pair
793
+ (T, )
794
+ Model Loss+Distribution Shift
795
+ 0.1
796
+ 0.2
797
+ 0.3
798
+ 0.4
799
+ MBLB
800
+ MML
801
+ MOPO
802
+ D4RL IQM
803
+ Normalized Score
804
+ Figure 1: Left: Visualization of true policy value η(T ⋆, π). Our algorithm picks the optimal policy, whereas MML picks a
805
+ suboptimal policy. Middle: Visualization of negative lower bounds lb(T, π) for different policies and models (indexed by the
806
+ values of (v, u)). Right: We show the interquartile mean (IQM) scores of two model-based lower bounds (MML and MBLB)
807
+ and a recent model-based policy learning algorithm (MOPO) on D4RL.
808
+ Q = 1, R = 1 and noise η ∼ N(0, 0.05). Our true dy-
809
+ namics is given by x∗ = 6, and the corresponding optimal
810
+ policy has K = −1.1. Function classes used by Alg. 1 are
811
+ finite and computed as follows: (i) the value function class
812
+ G contains the value functions of 1D LQR with parameters
813
+ x ∈ {2, 4, 10} and K ∈ {−1.1, −0.9, −0.7}; (ii) the transi-
814
+ tion class T is misspecified. We use the following transition
815
+ class Tu ∈ T parametrized by u,
816
+ Tu =
817
+ �st+1 = A(x∗)st − B(x∗)at,
818
+ st ∈ [u, u + 1],
819
+ st+1 = st,
820
+ otherwise,
821
+ with u ∈ {−0.75, −0.5, −0.25, 0, 0.25}. In other words,
822
+ the capacity of the transition class is limited – each func-
823
+ tion can only model the true dynamics of a part of the
824
+ states; (iii) the policy class is given by πv parameterized
825
+ by v, and πv(s) = −1.1(s − v) + N(0, 0.01) with v ∈
826
+ {−0.6, −0.4, −0.2, 0, 0.2, 0.4, 0.6}. Intuitively, πv tries to
827
+ push the state toward s = v.
828
+ Since the state and action spaces are one dimensional, we
829
+ can compute the density ratio wπ,T efficiently by discretiza-
830
+ tion. The implementation details are deferred to Appendix.
831
+ Baseline. We compare our algorithm to minimizing MML
832
+ loss as described in the OPO algorithm of Voloshin, Jiang,
833
+ and Yue (2021, Algorithm 2). MML strictly outperformed
834
+ VAML (Farahmand, Barreto, and Nikovski 2017) as shown
835
+ in the experiments of (Voloshin, Jiang, and Yue 2021);
836
+ hence, we only compare to MML in our experiments.
837
+ Results. Figure 1 (Left) shows the return of different poli-
838
+ cies under the true environment. Our method picks the op-
839
+ timal policy for the true model, whereas MML picks the
840
+ wrong policy. In Figure 1 (Middle), we also visualize dif-
841
+ ferent terms in the definition of lb(T, π) (Eq. (5)). Note that
842
+ the model loss for different policy is different (model loss for
843
+ (v, u) = (0, 0) is significantly larger than (0.0.−0.25), even
844
+ if the dynamics are the same). This is because the model loss
845
+ is evaluated with a different density ratio.
846
+ This highlights the main benefit of our method over the
847
+ baseline. Since the model class is misspecified, maximizing
848
+ over the weight function w in the MML loss results in an
849
+ unrealistically large loss value for some models. However,
850
+ if the chosen policy does not visit the part of the state space
851
+ with a large error, there is no need to incur a high penalty.
852
+ D4RL
853
+ D4RL (Fu et al. 2020) is an offline RL standardized bench-
854
+ mark designed and commonly used to evaluate the progress
855
+ of offline RL algorithms. This benchmark is standard for
856
+ evaluating offline policy learning algorithms. Here, we use
857
+ a state-of-the-art policy learning algorithm MOPO (Yu et al.
858
+ 2020) to propose a set of policy-transition model tuples –
859
+ for N policy hyperparameters and K transition models, we
860
+ can get M × K tuples: {(π1, T1), (π1, T2), ..., (πN, TK)}.
861
+ The MOPO algorithm learns an ensemble of transition mod-
862
+ els and randomly chooses one to sample trajectories during
863
+ each episode of training. Instead, we choose one transition
864
+ model to generate trajectories for the policy throughout the
865
+ entire training. In our experiment, we choose M = 1 and
866
+ K = 5, and train each tuple for 5 random seeds on Hopper
867
+ and HalfCheetah tasks (see Appendix). We then compute the
868
+ model-based lower bound for each (πi, Tj), and select the
869
+ optimal policy that has the highest lower bound. We learn the
870
+ dynamics using 300k iterations and we train each policy us-
871
+ ing 100k gradient iterations steps with SAC (Haarnoja et al.
872
+ 2018) as the policy gradient algorithm, imitating MOPO (Yu
873
+ et al. 2020) policy gradient update.
874
+ MML.
875
+ Voloshin, Jiang, and Yue (2021) recommended
876
+ two practical implementations for computing MML lower
877
+ bounds. The implementation parametrizes w(s, a)V (s′)
878
+ jointly via a new function h(s, a, s′). We refer readers to
879
+ Prop 3.5 from Voloshin, Jiang, and Yue (2021) for a detailed
880
+ explanation. We describe how we parametrize this function
881
+ as follows:
882
+ • Linear: Voloshin, Jiang, and Yue (2021) showed that if
883
+ T, V, µ are all from the linear function classes, then a
884
+ model T that minimizes MML loss is both unique and
885
+ identifiable. This provides a linear parametrization of
886
+ h(s, a, s′) = ψ(s, a, s′)T θ, where ψ is a basis function.
887
+ We choose ψ to be either a squared basis function or a
888
+ polynomial basis function with degree 2.
889
+ • Kernel: Using a radial basis function (RBF) over S ×
890
+
891
+ Dataset Type
892
+ Env
893
+ MOPO
894
+ MML
895
+ (Squared)
896
+ MML
897
+ (Polynomial)
898
+ MML
899
+ (RKHS)
900
+ MBLB
901
+ (Linear)
902
+ MBLB
903
+ (Quad)
904
+ medium
905
+ hopper
906
+ 175.4
907
+ (95.3)
908
+ 379.4
909
+ (466.4)
910
+ 375.6
911
+ (459.5)
912
+ 375.0
913
+ (459.9)
914
+ 591.7
915
+ (523.1)
916
+ 808.5
917
+ (502.7)
918
+ med-expert
919
+ hopper
920
+ 183.8
921
+ (94.4)
922
+ 160.9
923
+ (131.5)
924
+ 116.5
925
+ (148.4)
926
+ 61.4
927
+ (35.0)
928
+ 261.1
929
+ (157.9)
930
+ 242.5
931
+ (134.0)
932
+ expert
933
+ hopper
934
+ 80.4
935
+ (63.4)
936
+ 93.8
937
+ (87.9)
938
+ 61.6
939
+ (61.9)
940
+ 70.0
941
+ (56.2)
942
+ 118.2
943
+ (61.6)
944
+ 121.0
945
+ (72.5)
946
+ medium
947
+ halfcheetah
948
+ 599.8
949
+ (668.4)
950
+ 1967.6
951
+ (1707.5)
952
+ 2625.1
953
+ (937.2)
954
+ 3858.2
955
+ (1231.1)
956
+ 3290.4
957
+ (1753.1)
958
+ 2484.2
959
+ (1526.8)
960
+ med-expert
961
+ halfcheetah
962
+ -486.6
963
+ (48.1)
964
+ -188.5
965
+ (137.2)
966
+ -77.0
967
+ (252.5)
968
+ -343.2
969
+ (225.2)
970
+ 207.4
971
+ (509.5)
972
+ 192.8
973
+ (432.0)
974
+ Table 2: We report the mean and (standard deviation) of selected policy’s simulator environment performance across 5 random
975
+ seeds. MML and MBLB are used as model-selection procedures where they select the best policy for each seed. Our method is
976
+ choosing the most near-optimal policy across the datasets.
977
+ A × S and computing K((s, a, s′), (˜s, ˜a, ˜s′)), Voloshin,
978
+ Jiang, and Yue (2021) showed that there exists a closed-
979
+ form solution to compute the maxima of the MML loss
980
+ (RKHS). Here, there is no need for any gradient update,
981
+ we only sample s′ from T.
982
+ MBLB (Ours).
983
+ For a continuous control task, we compute
984
+ our model-based lower bound (MBLB) as follows:
985
+ Compute η(T, π). Although it is reasonable to directly use a
986
+ value function V π
987
+ T trained during policy learning to compute
988
+ η(T, π), Paine et al. (2020); Kumar et al. (2021) points out
989
+ how this value function often severely over-estimates the ac-
990
+ tual discounted return. Therefore, we estimate the expected
991
+ value of policy π using the generalized advantage estima-
992
+ tor (GAE) (Schulman et al. 2016). For a sequence of tran-
993
+ sitions {st, at, r(st, at), st+1}t∈[0,N], it is defined as: At =
994
+ �t+N
995
+ t′=t (γλ)t′−t(r(st′, at′) + γVφ(st′+1) − Vφ(st′)), with λ
996
+ a fixed hyperparameter and Vφ the value function estimator
997
+ at the previous optimization iteration. Then, to estimate the
998
+ value function, we solve the non-linear regression problem
999
+ minimizeφ
1000
+ �t+N
1001
+ t′=t (Vφ(st′)− ˆVt′)2 where ˆVt = At+Vφ(st′).
1002
+ We also provide a comparison to using the standard TD-1
1003
+ Fitted Q Evaluation (FQE) (Le, Voloshin, and Yue 2019) in-
1004
+ stead in Table A1 in the Appendix. We find that using GAE
1005
+ provides better policy evaluation estimations.
1006
+ Behavior density modeling. We use a state-of-the-art nor-
1007
+ malizing flow probability model to estimate the density of
1008
+ state-action pairs (Papamakarios et al. 2021). For ρπ
1009
+ T , we
1010
+ sample 10,000 trajectories from T, π, and estimate the cor-
1011
+ responding density; for the behavior distribution µ, we use
1012
+ the given dataset D. We empirically decide the number of
1013
+ training epochs that will give the model the best fit.
1014
+ Compute supg∈G |ℓwπ,T (g, T)|. We parametrize g either as
1015
+ a linear function of state: g(s) = mT s, or a quadratic func-
1016
+ tion of the state: g(s) = sT Ms + b. We use gradient ascent
1017
+ on ℓwπ,T (g, T) to maximize this objective.
1018
+ Results. We report the results in Table 2. There is gen-
1019
+ eral overlap across seeds for the performance between vari-
1020
+ ous methods, but our approach has the best average perfor-
1021
+ mance or is within the standard deviation of the best. We also
1022
+ show that for different choices of how we parameterize the
1023
+ w(s, a)V (s′) distribution (MML) and how we choose the
1024
+ family of g test function (MBLB), we are selecting differ-
1025
+ ent final policies. However, overall, MBLB can pick better-
1026
+ performing final policies with two different parametrizations
1027
+ while MML is choosing lower-performing policies with its
1028
+ three parametrizations. We find that our approach of select-
1029
+ ing among the set of policies computed from each of the
1030
+ models used by MOPO consistently outperforms the policy
1031
+ produced by MOPO in the considered tasks.
1032
+ To summarize these results, we report the interquartile
1033
+ mean (IQM) scores of each method in Figure 1 (Right). IQM
1034
+ is an outlier robust metric proposed by Agarwal et al. (2021)
1035
+ to compare deep RL algorithms. We create the plot by sam-
1036
+ pling with replacement over all runs on all datasets 50000
1037
+ times. Though there is significant overlap, our method gen-
1038
+ erally outperforms policies learned from MOPO.
1039
+ Conclusion
1040
+ There are many directions for future work. The current
1041
+ lb(T, π) implementation with density ratio wπ,T (s, a) is not
1042
+ differentiable: an interesting question is to make this differ-
1043
+ entiable so that we can directly optimize a policy. Another
1044
+ interesting question would be to construct estimators for the
1045
+ local misspecification errors ϵρ, ϵµ and ϵV , which could be
1046
+ used to refine the model class to optimize performance.
1047
+ To conclude, this paper studies model-based offline rein-
1048
+ forcement learning with local model misspecification errors,
1049
+ and proves a novel safe policy improvement theorem. Our
1050
+ theoretical analysis shows the benefit of this tighter analy-
1051
+ sis and approach. We illustrate the advantage of our method
1052
+ over prior work in a small linear quadratic example and
1053
+ also demonstrate that it is competitive or has stronger per-
1054
+ formance than recent model-based offline RL methods on
1055
+ policy selection in a set of D4RL tasks.
1056
+
1057
+ Acknowledgment
1058
+ Research reported in this paper was sponsored in part by
1059
+ NSF grant #2112926, the DEVCOM Army Research Lab-
1060
+ oratory under Cooperative Agreement W911NF-17-2-0196
1061
+ (ARL IoBT CRA) and a Stanford Hoffman-Yee grant. The
1062
+ views and conclusions contained in this document are those
1063
+ of the authors and should not be interpreted as representing
1064
+ the official policies, either expressed or implied, of the Army
1065
+ Research Laboratory or the U.S.Government. The U.S. Gov-
1066
+ ernment is authorized to reproduce and distribute reprints for
1067
+ Government purposes notwithstanding any copyright nota-
1068
+ tion herein.
1069
+ References
1070
+ Agarwal, R.; Schwarzer, M.; Castro, P. S.; Courville, A. C.;
1071
+ and Bellemare, M. 2021. Deep reinforcement learning at the
1072
+ edge of the statistical precipice. Advances in neural infor-
1073
+ mation processing systems, 34: 29304–29320.
1074
+ Argenson, A.; and Dulac-Arnold, G. 2020. Model-based of-
1075
+ fline planning. arXiv preprint arXiv:2008.05556.
1076
+ Bertsekas, D. P.; et al. 2000. Dynamic programming and
1077
+ optimal control: Vol. 1. Athena scientific Belmont.
1078
+ Chen, J.; and Jiang, N. 2019. Information-Theoretic Consid-
1079
+ erations in Batch Reinforcement Learning. In International
1080
+ Conference on Machine Learning, 1042–1051.
1081
+ Curi, S.; Berkenkamp, F.; and Krause, A. 2020. Efficient
1082
+ Model-Based Reinforcement Learning through Optimistic
1083
+ Policy Search and Planning. Advances in Neural Informa-
1084
+ tion Processing Systems, 33.
1085
+ Delgrange, F.; Nowe, A.; and P´erez, G. A. 2022. Distilla-
1086
+ tion of RL Policies with Formal Guarantees via Variational
1087
+ Abstraction of Markov Decision Processes.
1088
+ Farahmand, A.-m.; Barreto, A.; and Nikovski, D. 2017.
1089
+ Value-aware loss function for model-based reinforcement
1090
+ learning. In Artificial Intelligence and Statistics, 1486–1494.
1091
+ PMLR.
1092
+ Farahmand, A. M.; Munos, R.; and Szepesv´ari, C. 2010. Er-
1093
+ ror propagation for approximate policy and value iteration.
1094
+ In Advances in Neural Information Processing Systems.
1095
+ Fu, J.; Kumar, A.; Nachum, O.; Tucker, G.; and Levine, S.
1096
+ 2020.
1097
+ D4rl: Datasets for deep data-driven reinforcement
1098
+ learning. arXiv preprint arXiv:2004.07219.
1099
+ Fu, J.; and Levine, S. 2021.
1100
+ Offline Model-Based Opti-
1101
+ mization via Normalized Maximum Likelihood Estimation.
1102
+ arXiv preprint arXiv:2102.07970.
1103
+ Fujimoto, S.; van Hoof, H.; Meger, D.; et al. 2018.
1104
+ Ad-
1105
+ dressing function approximation error in actor-critic meth-
1106
+ ods. Proceedings of Machine Learning Research, 80.
1107
+ Gelada, C.; Kumar, S.; Buckman, J.; Nachum, O.; and Belle-
1108
+ mare, M. G. 2019. Deepmdp: Learning continuous latent
1109
+ space models for representation learning. In International
1110
+ Conference on Machine Learning, 2170–2179. PMLR.
1111
+ Haarnoja, T.; Zhou, A.; Abbeel, P.; and Levine, S. 2018.
1112
+ Soft actor-critic: Off-policy maximum entropy deep rein-
1113
+ forcement learning with a stochastic actor. arXiv preprint
1114
+ arXiv:1801.01290.
1115
+ Jiang, N.; and Huang, J. 2020. Minimax confidence inter-
1116
+ val for off-policy evaluation and policy optimization. arXiv
1117
+ preprint arXiv:2002.02081.
1118
+ Jin, C.; Yang, Z.; Wang, Z.; and Jordan, M. I. 2020. Provably
1119
+ efficient reinforcement learning with linear function approx-
1120
+ imation. In Conference on Learning Theory, 2137–2143.
1121
+ Kakade, S.; and Langford, J. 2002. Approximately Optimal
1122
+ Approximate Reinforcement Learning. In Proceedings of
1123
+ the Nineteenth International Conference on Machine Learn-
1124
+ ing, 267–274. Morgan Kaufmann Publishers Inc.
1125
+ Kallus, N.; and Uehara, M. 2020. Double Reinforcement
1126
+ Learning for Efficient Off-Policy Evaluation in Markov De-
1127
+ cision Processes. J. Mach. Learn. Res., 21: 167–1.
1128
+ Kidambi, R.; Rajeswaran, A.; Netrapalli, P.; and Joachims,
1129
+ T. 2020. Morel: Model-based offline reinforcement learning.
1130
+ arXiv preprint arXiv:2005.05951.
1131
+ Kumar, A.; Fu, J.; Soh, M.; Tucker, G.; and Levine, S. 2019.
1132
+ Stabilizing Off-Policy Q-Learning via Bootstrapping Error
1133
+ Reduction. Advances in Neural Information Processing Sys-
1134
+ tems, 32: 11784–11794.
1135
+ Kumar, A.; Singh, A.; Tian, S.; Finn, C.; and Levine, S.
1136
+ 2021. A Workflow for Offline Model-Free Robotic Rein-
1137
+ forcement Learning. In 5th Annual Conference on Robot
1138
+ Learning.
1139
+ Kumar, A.; Zhou, A.; Tucker, G.; and Levine, S. 2020. Con-
1140
+ servative Q-Learning for Offline Reinforcement Learning.
1141
+ In Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan, M. F.;
1142
+ and Lin, H., eds., Advances in Neural Information Process-
1143
+ ing Systems, volume 33, 1179–1191. Curran Associates, Inc.
1144
+ Le, H.; Voloshin, C.; and Yue, Y. 2019. Batch policy learning
1145
+ under constraints. In International Conference on Machine
1146
+ Learning, 3703–3712. PMLR.
1147
+ Liu, Q.; Li, L.; Tang, Z.; and Zhou, D. 2018a. Breaking the
1148
+ curse of horizon: infinite-horizon off-policy estimation. In
1149
+ Proceedings of the 32nd International Conference on Neural
1150
+ Information Processing Systems, 5361–5371.
1151
+ Liu, Y.; Bacon, P.-L.; and Brunskill, E. 2020. Understanding
1152
+ the curse of horizon in off-policy evaluation via conditional
1153
+ importance sampling. In International Conference on Ma-
1154
+ chine Learning, 6184–6193. PMLR.
1155
+ Liu, Y.; Gottesman, O.; Raghu, A.; Komorowski, M.; Faisal,
1156
+ A.; Doshi-Velez, F.; and Brunskill, E. 2018b. Representa-
1157
+ tion Balancing MDPs for Off-Policy Policy Evaluation. Ad-
1158
+ vances in neural information processing systems.
1159
+ Liu, Y.; Swaminathan, A.; Agarwal, A.; and Brunskill, E.
1160
+ 2020.
1161
+ Provably Good Batch Off-Policy Reinforcement
1162
+ Learning Without Great Exploration. Advances in Neural
1163
+ Information Processing Systems, 33.
1164
+ Malik, A.; Kuleshov, V.; Song, J.; Nemer, D.; Seymour, H.;
1165
+ and Ermon, S. 2019.
1166
+ Calibrated model-based deep rein-
1167
+ forcement learning. In International Conference on Machine
1168
+ Learning, 4314–4323. PMLR.
1169
+ Matsushima, T.; Furuta, H.; Matsuo, Y.; Nachum, O.; and
1170
+ Gu, S. 2020.
1171
+ Deployment-efficient reinforcement learn-
1172
+ ing via model-based offline optimization.
1173
+ arXiv preprint
1174
+ arXiv:2006.03647.
1175
+
1176
+ Munos, R. 2003. Error bounds for approximate policy itera-
1177
+ tion. In ICML, volume 3, 560–567.
1178
+ Nachum, O.; Chow, Y.; Dai, B.; and Li, L. 2019. DualDICE:
1179
+ Behavior-Agnostic Estimation of Discounted Stationary
1180
+ Distribution Corrections.
1181
+ Paine, T. L.; Paduraru, C.; Michi, A.; Gulcehre, C.; Zolna,
1182
+ K.; Novikov, A.; Wang, Z.; and de Freitas, N. 2020. Hyper-
1183
+ parameter selection for offline reinforcement learning. arXiv
1184
+ preprint arXiv:2007.09055.
1185
+ Papamakarios, G.; Nalisnick, E. T.; Rezende, D. J.; Mo-
1186
+ hamed, S.; and Lakshminarayanan, B. 2021. Normalizing
1187
+ Flows for Probabilistic Modeling and Inference. J. Mach.
1188
+ Learn. Res., 22(57): 1–64.
1189
+ Quillen, D.; Jang, E.; Nachum, O.; Finn, C.; Ibarz, J.; and
1190
+ Levine, S. 2018. Deep reinforcement learning for vision-
1191
+ based robotic grasping: A simulated comparative evaluation
1192
+ of off-policy methods.
1193
+ In 2018 IEEE International Con-
1194
+ ference on Robotics and Automation (ICRA), 6284–6291.
1195
+ IEEE.
1196
+ Schulman, J.; Moritz, P.; Levine, S.; Jordan, M.; and Abbeel,
1197
+ P. 2016. High-dimensional continuous control using gener-
1198
+ alized advantage estimation. In International Conference on
1199
+ Learning Representations.
1200
+ Singh, A.; Yu, A.; Yang, J.; Zhang, J.; Kumar, A.; and
1201
+ Levine, S. 2020. COG: Connecting New Skills to Past Expe-
1202
+ rience with Offline Reinforcement Learning. arXiv preprint
1203
+ arXiv:2010.14500.
1204
+ Swaminathan, A.; and Joachims, T. 2015.
1205
+ Batch learn-
1206
+ ing from logged bandit feedback through counterfactual risk
1207
+ minimization. The Journal of Machine Learning Research,
1208
+ 16(1): 1731–1755.
1209
+ Swazinna, P.; Udluft, S.; and Runkler, T. 2020. Overcoming
1210
+ Model Bias for Robust Offline Deep Reinforcement Learn-
1211
+ ing. arXiv preprint arXiv:2008.05533.
1212
+ Thomas, P.; Theocharous, G.; and Ghavamzadeh, M. 2015.
1213
+ High confidence policy improvement. In International Con-
1214
+ ference on Machine Learning, 2380–2388. PMLR.
1215
+ Thomas, P. S.; da Silva, B. C.; Barto, A. G.; Giguere, S.;
1216
+ Brun, Y.; and Brunskill, E. 2019.
1217
+ Preventing undesirable
1218
+ behavior of intelligent machines. Science, 366(6468): 999–
1219
+ 1004.
1220
+ Thomas, P. S.; Theocharous, G.; Ghavamzadeh, M.; Du-
1221
+ rugkar, I.; and Brunskill, E. 2017. Predictive Off-Policy Pol-
1222
+ icy Evaluation for Nonstationary Decision Problems, with
1223
+ Applications to Digital Marketing. In AAAI, 4740–4745.
1224
+ Uehara, M.; Huang, J.; and Jiang, N. 2020. Minimax weight
1225
+ and q-function learning for off-policy evaluation.
1226
+ In In-
1227
+ ternational Conference on Machine Learning, 9659–9668.
1228
+ PMLR.
1229
+ van Hasselt, H. P.; Hessel, M.; and Aslanides, J. 2019. When
1230
+ to use parametric models in reinforcement learning? In Wal-
1231
+ lach, H.; Larochelle, H.; Beygelzimer, A.; d'Alch´e-Buc, F.;
1232
+ Fox, E.; and Garnett, R., eds., Advances in Neural Informa-
1233
+ tion Processing Systems, volume 32. Curran Associates, Inc.
1234
+ Voloshin, C.; Jiang, N.; and Yue, Y. 2021. Minimax Model
1235
+ Learning. In International Conference on Artificial Intelli-
1236
+ gence and Statistics, 1612–1620. PMLR.
1237
+ Xie, T.; and Jiang, N. 2020.
1238
+ Batch value-function
1239
+ approximation with only realizability.
1240
+ arXiv preprint
1241
+ arXiv:2008.04990.
1242
+ Xie, T.; Ma, Y.; and Wang, Y. 2019. Towards optimal off-
1243
+ policy evaluation for reinforcement learning with marginal-
1244
+ ized importance sampling. Advances in neural information
1245
+ processing systems.
1246
+ Yin, M.; and Wang, Y.-X. 2020.
1247
+ Asymptotically effi-
1248
+ cient off-policy evaluation for tabular reinforcement learn-
1249
+ ing. In International Conference on Artificial Intelligence
1250
+ and Statistics, 3948–3958. PMLR.
1251
+ Yu, T.; Kumar, A.; Rafailov, R.; Rajeswaran, A.; Levine,
1252
+ S.; and Finn, C. 2021.
1253
+ Combo: Conservative of-
1254
+ fline model-based policy optimization.
1255
+ arXiv preprint
1256
+ arXiv:2102.08363.
1257
+ Yu, T.; Thomas, G.; Yu, L.; Ermon, S.; Zou, J.; Levine, S.;
1258
+ Finn, C.; and Ma, T. 2020. MOPO: Model-based Offline
1259
+ Policy Optimization. arXiv preprint arXiv:2005.13239.
1260
+ Zhan, X.; Zhu, X.; and Xu, H. 2021.
1261
+ Model-Based Of-
1262
+ fline Planning with Trajectory Pruning.
1263
+ arXiv preprint
1264
+ arXiv:2105.07351.
1265
+ Zhang, R.; Dai, B.; Li, L.; and Schuurmans, D. 2019. Gen-
1266
+ DICE: Generalized Offline Estimation of Stationary Values.
1267
+ In International Conference on Learning Representations.
1268
+ Zhang, S.; Liu, B.; and Whiteson, S. 2020. Gradientdice:
1269
+ Rethinking generalized offline estimation of stationary val-
1270
+ ues.
1271
+ In International Conference on Machine Learning,
1272
+ 11194–11203. PMLR.
1273
+
1274
+ Missing Proofs
1275
+ High Probability Events
1276
+ In this section, we introduce concentration inequalities and define the high probability events.
1277
+ Define the following quantities
1278
+ L(π, g, T) = E(s,a,s′)∼µ
1279
+
1280
+ wπ,T (s, a)(Ex∼T (s,a)[g(x)] − Ex∼T ⋆(s,a)[g(x)])
1281
+
1282
+ ,
1283
+ (13)
1284
+ l(π, g, T) = E(s,a,s′)∼D[wπ,T (s, a)(f g
1285
+ T (s, a) − g(s′))].
1286
+ (14)
1287
+ Recall that ι = log(2|G||T ||Π|/δ). Consider the event
1288
+ E =
1289
+
1290
+ |L(π, g, T) − l(π, g, T)| ≤ 2Vmax
1291
+
1292
+ ζι
1293
+ n ,
1294
+ ∀π ∈ Π, g ∈ G, T ∈ T
1295
+
1296
+ .
1297
+ (15)
1298
+ In the following, we show that
1299
+ Pr (E) ≥ 1 − δ.
1300
+ (16)
1301
+ Recall that D = {(si, ai, s′
1302
+ i)}n
1303
+ i=1 where (si, ai, s′
1304
+ i) ∼ µ are i.i.d. samples from distribution µ. For fixed π ∈ Π, g ∈ G, T ∈ T ,
1305
+ we have E[ˆl(π, g, T)] = l(π, g, T). Meanwhile, note that
1306
+ |wπ,T (s, a)(f g
1307
+ T (s, a) − g(s′))| ≤ ζVmax,
1308
+ (17)
1309
+ E(s,a,s′)∼µ[wπ,T (s, a)2(f g
1310
+ T (s, a) − g(s′))2]
1311
+ (18)
1312
+ ≤ E(s,a,s′)∼ρπ
1313
+ T [wπ,T (s, a)(f g
1314
+ T (s, a) − g(s′))2] ≤ V 2
1315
+ maxζ.
1316
+ (19)
1317
+ By Bernstein inequality, with probability at least 1 − δ/(|G||T ||Π|),
1318
+ |L(π, g, T) − l(π, g, T)| ≤
1319
+
1320
+ 2V 2
1321
+ maxζ log(2|G||T ||Π|/δ)
1322
+ n
1323
+ + ζVmax
1324
+ 3n
1325
+ log(2|G||T ||Π|/δ)
1326
+ (20)
1327
+ Recall that ι = log(2|G||T ||Π|/δ). When n ≥ ζ we have
1328
+ |L(π, g, T) − l(π, g, T)| ≤ 2Vmax
1329
+
1330
+ ζι
1331
+ n .
1332
+ (21)
1333
+ Note that when n < ζ, E trivially holds. As a result, applying union bound we prove Eq. (16).
1334
+ Proof of Lemma 3
1335
+ Proof. In the following, we consider a fixed policy π and dynamics T ∈ T . We use w to denote wπ,T when the context is clear.
1336
+ By basic algebra we get
1337
+ ���E(s,a)∼ρπ
1338
+ T [Gπ
1339
+ T (s, a)]
1340
+ ���
1341
+ (22)
1342
+
1343
+ ����E(s,a)∼ρπ
1344
+ T
1345
+
1346
+ I
1347
+ �ρπ
1348
+ T (s, a)
1349
+ ˆµ(s, a) ≤ ζ
1350
+
1351
+
1352
+ T (s, a)
1353
+ ����� + E(s,a)∼ρπ
1354
+ T
1355
+
1356
+ I
1357
+ �ρπ
1358
+ T (s, a)
1359
+ ˆµ(s, a) > ζ
1360
+
1361
+ |Gπ
1362
+ T (s, a)|
1363
+
1364
+ (23)
1365
+
1366
+ ��E(s,a)∼ˆµ[w(s, a)Gπ
1367
+ T (s, a)]
1368
+ �� + VmaxE(s,a)∼ρπ
1369
+ T
1370
+
1371
+ I
1372
+ �ρπ
1373
+ T (s, a)
1374
+ ˆµ(s, a) > ζ
1375
+ ��
1376
+ .
1377
+ (24)
1378
+ Note that
1379
+ E(s,a)∼ˆµ[w(s, a)Gπ
1380
+ T (s, a)] =
1381
+
1382
+ s,a
1383
+ ˆµ(s, a)w(s, a)Gπ
1384
+ T (s, a)
1385
+ (25)
1386
+ =
1387
+
1388
+ s,a
1389
+ (ˆµ(s, a) − µ(s, a) + µ(s, a))w(s, a)Gπ
1390
+ T (s, a)
1391
+ (26)
1392
+ =
1393
+
1394
+ s,a
1395
+ µ(s, a)w(s, a)Gπ
1396
+ T (s, a) +
1397
+
1398
+ s,a
1399
+ (ˆµ(s, a) − µ(s, a))w(s, a)Gπ
1400
+ T (s, a)
1401
+ (27)
1402
+ ≤ E(s,a)∼µ[w(s, a)Gπ
1403
+ T (s, a)] +
1404
+
1405
+ s,a
1406
+ |ˆµ(s, a) − µ(s, a)|ζVmax
1407
+ (28)
1408
+ ≤ E(s,a)∼µ[w(s, a)Gπ
1409
+ T (s, a)] + ζVmaxTV (ˆµ, µ) .
1410
+ (29)
1411
+
1412
+ Continuing Eq. (24) we get
1413
+ ���E(s,a)∼ρπ
1414
+ T [Gπ
1415
+ T (s, a)]
1416
+ ���
1417
+ (30)
1418
+
1419
+ ��E(s,a)∼µ[w(s, a)Gπ
1420
+ T (s, a)]
1421
+ �� + VmaxE(s,a)∼ρπ
1422
+ T
1423
+
1424
+ I
1425
+ �ρπ
1426
+ T (s, a)
1427
+ ˆµ(s, a) > ζ
1428
+ ��
1429
+ + ζVmaxTV (ˆµ, µ) .
1430
+ (31)
1431
+ Consequently, in the following we prove
1432
+ ��E(s,a)∼µ[w(s, a)Gπ
1433
+ T (s, a)]
1434
+ �� ≤ sup
1435
+ g∈G
1436
+ ℓw(g, T) + ϵV (T, π) + 2Vmax
1437
+
1438
+ ζι
1439
+ n .
1440
+ Let Lw(g, T) =
1441
+ ��E(s,a,s′)∼µ
1442
+
1443
+ w(s, a)(Ex∼T (s,a)[g(x)] − Ex∼T ⋆(s,a)[g(x)])
1444
+ ��� be the population error. Recall that under the high
1445
+ probability event E in Eq. (15), for any g ∈ G and T ∈ T
1446
+ |Lw(g, T) − ℓw(g, T)| ≤ 2Vmax
1447
+
1448
+ ζι
1449
+ n .
1450
+ (32)
1451
+ Now by the definition of Gπ
1452
+ T (s, a), for any g ∈ G we have
1453
+ ��E(s,a)∼µ[w(s, a)Gπ
1454
+ T (s, a)]
1455
+ ��
1456
+ (33)
1457
+ =
1458
+ ��E(s,a)∼µ
1459
+
1460
+ w(s, a)
1461
+
1462
+ Es′∼T (s,a)[V π
1463
+ T ⋆(s′)] − Es′∼T ⋆(s,a)[V π
1464
+ T ⋆(s′)]
1465
+ ����
1466
+ (34)
1467
+
1468
+ ��E(s,a)∼µ
1469
+
1470
+ w(s, a)
1471
+
1472
+ Es′∼T (s,a)[g(s′)] − Es′∼T ⋆(s,a)[g(s′)]
1473
+ ����
1474
+ (35)
1475
+ +
1476
+ ��E(s,a)∼µ
1477
+
1478
+ w(s, a)
1479
+
1480
+ Es′∼T (s,a)[g(s′) − V π
1481
+ T ⋆(s′)] + Es′∼T ⋆(s,a)[g(s′) − V π
1482
+ T ⋆(s′)]
1483
+ ����.
1484
+ (36)
1485
+ Define
1486
+ ˆg = argmin
1487
+ g∈G
1488
+ ��E(s,a)∼µ
1489
+
1490
+ w(s, a)
1491
+
1492
+ Es′∼T (s,a)[g(s′) − V π
1493
+ T ⋆(s′)] + Es′∼T ⋆(s,a)[g(s′) − V π
1494
+ T ⋆(s′)]
1495
+ ����.
1496
+ Since g is arbitrarily, continuing Eq. (36) and recalling Definition 2 we get
1497
+ ��E(s,a)∼µ[w(s, a)Gπ
1498
+ T (s, a)]
1499
+ ��
1500
+ (37)
1501
+
1502
+ ��E(s,a)∼µ
1503
+
1504
+ w(s, a)
1505
+
1506
+ Es′∼T (s,a)[ˆg(s′)] − Es′∼T ⋆(s,a)[ˆg(s′)]
1507
+ ���� + ϵV (T, π)
1508
+ (38)
1509
+ ≤ sup
1510
+ g∈G
1511
+ ��E(s,a)∼µ
1512
+
1513
+ w(s, a)
1514
+
1515
+ Es′∼T (s,a)[g(s′)] − Es′∼T ⋆(s,a)[g(s′)]
1516
+ ���� + ϵV (T, π).
1517
+ (39)
1518
+ Combining Eq. (39) and Eq. (32) we get,
1519
+ ��E(s,a)∼µ[w(s, a)Gπ
1520
+ T (s, a)]
1521
+ �� ≤ sup
1522
+ g∈G
1523
+ Lw(g, T) + ϵV (T, π)
1524
+ (40)
1525
+ ≤ sup
1526
+ g∈G
1527
+ ℓw(g, T) + ϵV (T, π) + 2Vmax
1528
+
1529
+ ζι
1530
+ n .
1531
+ (41)
1532
+ Now plugging in Eq. (31) we get,
1533
+ ���E(s,a)∼ρπ
1534
+ T [Gπ
1535
+ T (s, a)]
1536
+ ���
1537
+ ≤ sup
1538
+ g∈G
1539
+ ℓw(g, T) + ϵV (T, π) + 2Vmax
1540
+
1541
+ ζι
1542
+ n + VmaxE(s,a)∼ρπ
1543
+ T
1544
+
1545
+ I
1546
+ �ρπ
1547
+ T (s, a)
1548
+ ˆµ(s, a) > ζ
1549
+ ��
1550
+ + ζVmaxTV (ˆµ, µ) .
1551
+ Finally, combining with simulation lemma (Lemma 1) we finish the proof.
1552
+ Proof of Lemma 5
1553
+ Proof of Lemma 5. Consider a fixed π ∈ Π. When the context is clear, we use ϵρ and ϵµ to denote ϵρ(π) and ϵµ(π) respectively.
1554
+ Consider the dynamics
1555
+ ˆT = argmin
1556
+ T ∈T
1557
+ E(s,a)∼ρπ
1558
+ T ⋆ [TV (T(s, a), T ⋆(s, a))].
1559
+ (42)
1560
+ By the definition of ϵρ we get
1561
+ E(s,a)∼ρπ
1562
+ T ⋆
1563
+
1564
+ TV
1565
+
1566
+ ˆT(s, a), T ⋆(s, a)
1567
+ ��
1568
+ ≤ ϵρ.
1569
+
1570
+ Applying Lemma 9 we get
1571
+ ��ρπ
1572
+ ˆT − ρπ
1573
+ T ⋆
1574
+ ��
1575
+ 1 ≤
1576
+ ϵρ
1577
+ (1 − γ).
1578
+ (43)
1579
+ The rest of the proof is organized in the following way. We bound the three terms in RHS of Eq. (4) respectively as follows
1580
+ η( ˆT, π) ≥ η(T ⋆, π) − Vmax
1581
+ 1 − γ ϵρ,
1582
+ (44)
1583
+ sup
1584
+ g∈G
1585
+ ℓw(g, ˆT) ≤ 2Vmaxϵρ
1586
+ 1 − γ
1587
+ + 2Vmax
1588
+
1589
+ ζι
1590
+ n + ζVmaxTV (ˆµ, µ) ,
1591
+ (45)
1592
+ E(s,a)∼ρπ
1593
+ ˆ
1594
+ T
1595
+
1596
+ I
1597
+
1598
+ ρπ
1599
+ ˆT (s, a)
1600
+ ˆµ(s, a) > ζ
1601
+ ��
1602
+ ≤ ϵµ +
1603
+ 3ϵρ
1604
+ (1 − γ).
1605
+ (46)
1606
+ Then we combine these inequalities together to prove Lemma 5.
1607
+ Step 1: Proving Eq. (44). Note that for every T and π, η(T, π) =
1608
+ 1
1609
+ 1−γ ⟨ρπ
1610
+ T , r⟩ where r is the reward function. Then we have
1611
+ η(T ⋆, π) − η( ˆT, π) =
1612
+ 1
1613
+ 1 − γ
1614
+
1615
+ ρπ
1616
+ T ⋆ − ρπ
1617
+ ˆT , r
1618
+
1619
+
1620
+ 1
1621
+ 1 − γ
1622
+ ��ρπ
1623
+ T ⋆ − ρπ
1624
+ ˆT
1625
+ ��
1626
+ 1 ∥r∥∞ .
1627
+ (47)
1628
+ Combining with Eq. (43) we get Eq. (44).
1629
+ Step 2: Proving Eq. (45). For any fixed function g ∈ G. Let w = wπ, ˆT be a shorthand. Define
1630
+ Lw(g, T) =
1631
+ ��E(s,a,s′)∼µ[w(s, a)(f g
1632
+ T (s, a) − g(s′))]
1633
+ ��
1634
+ to be the population error. Then we have
1635
+ Lw(g, ˆT)
1636
+ =
1637
+ ���E(s,a)∼µ
1638
+ ���
1639
+ w(s, a)
1640
+
1641
+ Es′∼ ˆT (s,a)[g(s′)] − Es′∼T ⋆(s,a)[g(s′)]
1642
+ �����
1643
+
1644
+ ���E(s,a)∼ˆµ
1645
+
1646
+ w(s, a)
1647
+
1648
+ Es′∼ ˆT (s,a)[g(s′)] − Es′∼T ⋆(s,a)[g(s′)]
1649
+ ����� + ζVmaxTV (ˆµ, µ)
1650
+ =
1651
+ �����E(s,a)∼ρπ
1652
+ ˆ
1653
+ T
1654
+
1655
+ I
1656
+
1657
+ ρπ
1658
+ ˆT (s, a)
1659
+ ˆµ(s, a) ≤ ζ
1660
+ � �
1661
+ Es′∼ ˆT (s,a)[g(s′)] − Es′∼T ⋆(s,a)[g(s′)]
1662
+ ������� + ζVmaxTV (ˆµ, µ)
1663
+ ≤ VmaxE(s,a)∼ρπ
1664
+ ˆ
1665
+ T
1666
+
1667
+ I
1668
+
1669
+ ρπ
1670
+ ˆT (s, a)
1671
+ ˆµ(s, a) ≤ ζ
1672
+
1673
+ TV
1674
+
1675
+ ˆT(s, a), T ⋆(s, a)
1676
+ ��
1677
+ + ζVmaxTV (ˆµ, µ)
1678
+ ≤ VmaxE(s,a)∼ρπ
1679
+ T ⋆
1680
+
1681
+ TV
1682
+
1683
+ ˆT(s, a), T ⋆(s, a)
1684
+ ��
1685
+ + Vmaxϵρ
1686
+ 1 − γ + ζVmaxTV (ˆµ, µ)
1687
+ (By Eq. (43))
1688
+ ≤ Vmax
1689
+
1690
+ ϵρ +
1691
+ ϵρ
1692
+ 1 − γ
1693
+
1694
+ + ζVmaxTV (ˆµ, µ) ≤ 2Vmaxϵρ
1695
+ 1 − γ
1696
+ + ζVmaxTV (ˆµ, µ) .
1697
+ Under event E we have
1698
+ ℓw(g, ˆT) ≤ Lw(g, ˆT) + 2Vmax
1699
+
1700
+ ζι
1701
+ n .
1702
+ (48)
1703
+ Because g is arbitrary, we get Eq. (45).
1704
+ Step 3: Proving Eq. (46). Note that
1705
+ E(s,a)∼ρπ
1706
+ ˆ
1707
+ T
1708
+
1709
+ I
1710
+ �ρˆπ
1711
+ T (s, a)
1712
+ ˆµ(s, a) > ζ
1713
+ ��
1714
+ (49)
1715
+ = E(s,a)∼ρπ
1716
+ ˆ
1717
+ T
1718
+
1719
+ I
1720
+
1721
+ ρπ
1722
+ ˆT (s, a)
1723
+ ρπ
1724
+ T ⋆(s, a)
1725
+ ρπ
1726
+ T ⋆(s, a)
1727
+ ˆµ(s, a)
1728
+ > ζ
1729
+ ��
1730
+ (50)
1731
+ ≤ E(s,a)∼ρπ
1732
+ ˆ
1733
+ T
1734
+
1735
+ I
1736
+
1737
+ ρπ
1738
+ ˆT (s, a)
1739
+ ρπ
1740
+ T ⋆(s, a) > 2
1741
+ ��
1742
+ + E(s,a)∼ρπ
1743
+ ˆ
1744
+ T
1745
+
1746
+ I
1747
+ �ρπ
1748
+ T ⋆(s, a)
1749
+ ˆµ(s, a)
1750
+ > ζ/2
1751
+ ��
1752
+ .
1753
+ (51)
1754
+
1755
+ With the help of Lemma 8, we can upper bound the first term of Eq. (51) by the total variation between ρπ
1756
+ ˆT and ρπ
1757
+ T ⋆. Combining
1758
+ Lemma 8 and Eq. (43) we get
1759
+ E(s,a)∼ρπ
1760
+ ˆ
1761
+ T
1762
+
1763
+ I
1764
+ � ρˆπ
1765
+ T (s, a)
1766
+ ρπ
1767
+ T ⋆(s, a) > 2
1768
+ ��
1769
+
1770
+ 2ϵρ
1771
+ 1 − γ .
1772
+ (52)
1773
+ On the other hand, by combining Eq. (43) and the definition of ϵµ we get
1774
+ E(s,a)∼ρπ
1775
+ ˆ
1776
+ T
1777
+
1778
+ I
1779
+ �ρπ
1780
+ T ⋆(s, a)
1781
+ ˆµ(s, a)
1782
+ > ζ/2
1783
+ ��
1784
+ ≤ E(s,a)∼ρπ
1785
+ T ⋆
1786
+
1787
+ I
1788
+ �ρπ
1789
+ T ⋆(s, a)
1790
+ ˆµ(s, a)
1791
+ > ζ/2
1792
+ ��
1793
+ +
1794
+ ϵρ
1795
+ 1 − γ ≤ ϵµ +
1796
+ ϵρ
1797
+ 1 − γ .
1798
+ Consequently, we get Eq. (46).
1799
+ Now we stitch Eq. (43), Eq. (44) and Eq. (45) together. Combining with the definition of lb( ˆT, π) in Eq. (4), we have
1800
+ lb( ˆT, π) = η( ˆT, π) −
1801
+ 1
1802
+ 1 − γ
1803
+
1804
+ sup
1805
+ g∈G
1806
+ ���ℓwπ,T (g, ˆT)
1807
+ ��� + VmaxE(s,a)∼ρπ
1808
+ T
1809
+
1810
+ I
1811
+
1812
+ ρπ
1813
+ ˆT (s, a)
1814
+ ˆµ(s, a) > ζ
1815
+ ��
1816
+ + 2ζVmaxTV (ˆµ, µ)
1817
+
1818
+ ≥ η(T ⋆, π) − Vmaxϵρ
1819
+ 1 − γ − 2Vmaxϵρ
1820
+ (1 − γ)2 − 2Vmax
1821
+ 1 − γ
1822
+
1823
+ ζι
1824
+ n − Vmax
1825
+ 1 − γ
1826
+ � 3ϵρ
1827
+ 1 − γ + ϵµ
1828
+
1829
+ − 2ζVmaxTV (ˆµ, µ)
1830
+ 1 − γ
1831
+ ≥ η(T ⋆, π) − 6Vmaxϵρ
1832
+ (1 − γ)2 − Vmaxϵµ
1833
+ 1 − γ − 2Vmax
1834
+ 1 − γ
1835
+
1836
+ ζι
1837
+ n − 2ζVmaxTV (ˆµ, µ)
1838
+ 1 − γ
1839
+ .
1840
+ Note that ˆT ∈ T , we have
1841
+ max
1842
+ T ∈T lb(T, π) ≥ lb( ˆT, π),
1843
+ (53)
1844
+ which finishes the proof.
1845
+ Proof of Theorem 4
1846
+ Proof of Theorem 4. Let ˆT, ˆπ ← argmaxT ∈T ,π∈Π lb(T, π) be the dynamics and policy that maximizes the lower bound. Note
1847
+ that ˆπ is the output of Algorithm 1.
1848
+ Now under the event E, by Lemma 5, for any policy π we have
1849
+ max
1850
+ T ∈T lb(T, π) ≥ η(T ⋆, π) − 6Vmaxϵρ(π)
1851
+ (1 − γ)2
1852
+ − Vmaxϵµ(π)
1853
+ 1 − γ
1854
+ − 2Vmax
1855
+ 1 − γ
1856
+
1857
+ ζι
1858
+ n − 2ζVmaxTV (ˆµ, µ)
1859
+ 1 − γ
1860
+ .
1861
+ (54)
1862
+ On the other hand, under the event E, by Lemma 3 we get
1863
+ η(T ⋆, π) ≥ lb( ˆT, ˆπ) − ϵV ( ˆT, ˆπ)
1864
+ 1 − γ
1865
+ − 2Vmax
1866
+ 1 − γ
1867
+
1868
+ ζι
1869
+ n .
1870
+ (55)
1871
+ By the optimality of ˆT, ˆπ, we have lb( ˆT, ˆπ) ≥ supT ∈T lb(T, π) for any π. As a result, combining with Eq. (54) and Eq. (55)
1872
+ we get
1873
+ η(T ⋆, ˆπ) ≥ lb( ˆT, ˆπ) − ϵV ( ˆT, ˆπ)
1874
+ 1 − γ
1875
+ − 2Vmax
1876
+ 1 − γ
1877
+
1878
+ ζι
1879
+ n
1880
+ (56)
1881
+ ≥ sup
1882
+ π∈Π
1883
+ sup
1884
+ T ∈T
1885
+ lb(T, π) − ϵV ( ˆT, ˆπ)
1886
+ 1 − γ
1887
+ − 2Vmax
1888
+ 1 − γ
1889
+
1890
+ ζι
1891
+ n
1892
+ (57)
1893
+ ≥ sup
1894
+ π
1895
+
1896
+ η(T ⋆, π) − 6Vmaxϵρ(π)
1897
+ (1 − γ)2
1898
+ − Vmaxϵµ(π)
1899
+ 1 − γ
1900
+
1901
+ − ϵV ( ˆT, ˆπ)
1902
+ 1 − γ
1903
+ − 4Vmax
1904
+ 1 − γ
1905
+
1906
+ ζι
1907
+ n − 2ζVmaxTV (ˆµ, µ)
1908
+ 1 − γ
1909
+ .
1910
+ (58)
1911
+ Proof of Theorem 6
1912
+ Proof of Theorem 6. Note that for any fixed θ ∈ Rd, the transition function for state s1, · · · , sd are identical. As a result,
1913
+
1914
+ Tθ(si, aj) = Qπ
1915
+ Tθ(si′, aj), ∀i, i′ ∈ [d] for any policy π. Recall that πθ is the optimal policy of Tθ (with ties breaking uniformly
1916
+ at random). Therefore, πθ(s0) = 1/A and πθ(si) = πθ(si′), ∀i, i′ ∈ [d].
1917
+ By the definition of the ground-truth dynamics T ⋆ in Eqs. (9)-(10), we have Qπθ
1918
+ T ⋆(si, aj) = I [i = j]
1919
+ γ
1920
+ 1−γ . Therefore,
1921
+ η(T ⋆, πθ) = γ
1922
+ A
1923
+ d
1924
+
1925
+ i=1
1926
+ Qπθ
1927
+ T ⋆(si, πθ(si)) ≤ γ
1928
+ A max
1929
+ a
1930
+ d
1931
+
1932
+ i=1
1933
+ Qπθ
1934
+ T ⋆(si, a) ≤
1935
+ γ2
1936
+ A(1 − γ).
1937
+ (59)
1938
+
1939
+ Since maxπ η(T ⋆, π) =
1940
+ γ2
1941
+ 1−γ , we have
1942
+ max
1943
+ π
1944
+ η(T ⋆, π) − η(T ⋆, πθ) ≥ (A − 1)γ2
1945
+ A(1 − γ) .
1946
+ OPE Error of MML
1947
+ In this section, we show that the off-policy estimation error in Voloshin, Jiang, and Yue (2021) can be large when the dynamics
1948
+ model class is misspecified in Proposition 7.
1949
+ The MML algorithm requires an density ratio class W : S × A → R+ and prove that when wπ,T ∈ W and V π
1950
+ T ⋆ ∈ G,
1951
+ |η(T, π) − η(T ⋆, π)| ≤ γ min
1952
+ T ∈T
1953
+ max
1954
+ w∈W,g∈G |ℓw(g, T)|.
1955
+ (60)
1956
+ Unfortunately, this is suboptimal since the error may not converge to zero even given infinite data:
1957
+ Proposition 7. Consider the set the dynamics class T = {Tθ : θ ∈ Sd−1, θi ≥ 0, ∀i ∈ [d]}. Let Π = {πx : x ∈ [d]} where
1958
+ πx(si) = ax for 0 ≤ i ≤ d and πx(sg) = πx(sb) = a1. Let W be the density ratio class induced by π running on {T ⋆} ∪ T .
1959
+ Even with G = {V πx
1960
+ T ⋆ : x ∈ [d]} and infinite number of data, we have
1961
+ min
1962
+ T ∈T
1963
+ max
1964
+ w∈W,g∈G |ℓw(g, T)| ≥
1965
+ γ
1966
+ 8(1 − γ).
1967
+ (61)
1968
+ In contrast, the error terms in Theorem 4 converge to 0 when ζ > poly(d, 1/(1 − γ)) and n → ∞ in the same setting.
1969
+ Proof of Proposition 7. Recall that we set the dynamics class T = {Tθ : θ ∈ Sd−1}. Let Π = {πx : x ∈ [d]} where
1970
+ πx(si) = ax for 0 ≤ i ≤ d and πx(sg) = πx(sb) = a1. Let W be the density ratio induced by π. For any x ∈ [d], we can
1971
+ compute
1972
+ ρπx
1973
+ T ⋆(s0, ai) = (1 − γ)I [i = x] ,
1974
+ ρπx
1975
+ T ⋆(si, aj) = γ(1 − γ)I [i = x, j = x] ,
1976
+ (62)
1977
+ ρπx
1978
+ T ⋆(sg, aj) = γ2(1 − γ)I [j = 1] ,
1979
+ ρπx
1980
+ T ⋆(sb, aj) = 0.
1981
+ (63)
1982
+ Let µ be uniform distribution over 3d + d2 state action pairs. Then we can define W = {wx : x ∈ [d]} where wx(s, a) ≜
1983
+ 1
1984
+ 1−γ
1985
+ ρπx
1986
+ T ⋆(s,a)
1987
+ µ(s,a) .
1988
+ Now for any fixed θ ∈ Sd−1, θ ≥ 0, consider
1989
+ max
1990
+ w∈W,g∈G |ℓw(g, Tθ)|.
1991
+ (64)
1992
+ Let x = argmini θi. We claim that
1993
+ ℓwx(V πx
1994
+ T ⋆ , Tθ) ≥
1995
+ γ
1996
+ 8(1 − γ).
1997
+ Indeed, with infinite data we have
1998
+ ℓwx(V πx
1999
+ T ⋆ , Tθ) =
2000
+ ��E(s,a)∼µ
2001
+
2002
+ wx(s, a)
2003
+
2004
+ Es′∼T (s,a)[V πx
2005
+ T ⋆ (s′)] − Es′∼T ⋆(s,a)[V πx
2006
+ T ⋆ (s′)]
2007
+ ����
2008
+ =
2009
+ 1
2010
+ 1 − γ
2011
+ ���E(s,a)∼ρπx
2012
+ T ⋆
2013
+ ��
2014
+ Es′∼T (s,a)[V πx
2015
+ T ⋆ (s′)] − Es′∼T ⋆(s,a)[V πx
2016
+ T ⋆ (s′)]
2017
+ �����.
2018
+ Recall that Tθ = T ⋆ for states s0, sg, sb. As a result, we continue the equation by
2019
+ 1
2020
+ 1 − γ
2021
+ ���E(s,a)∼ρπx
2022
+ T ⋆
2023
+ ��
2024
+ Es′∼T (s,a)[V πx
2025
+ T ⋆ (s′)] − Es′∼T ⋆(s,a)[V πx
2026
+ T ⋆ (s′)]
2027
+ �����
2028
+ = γ
2029
+ ��Es′∼T (sx,ax)[V πx
2030
+ T ⋆ (s′)] − Es′∼T ⋆(sx,ax)[V πx
2031
+ T ⋆ (s′)]
2032
+ ��
2033
+ (by the definition of ρ)
2034
+ = γ
2035
+ ����
2036
+ 1
2037
+ 2(1 + θx)V πx
2038
+ T ⋆ (sg) + 1
2039
+ 2(1 − θx)V πx
2040
+ T ⋆ (sb) − V πx
2041
+ T ⋆ (sg)
2042
+ ����
2043
+ (by the definition of Tθ)
2044
+ = γ
2045
+ 2 (1 − θx)(V πx
2046
+ T ⋆ (sg) − V πx
2047
+ T ⋆ (sb)).
2048
+ By basic algebra, V πx
2049
+ T ⋆ (sg) = (1 − γ)−1 and V πx
2050
+ T ⋆ (sb) = 0. As a result, we get
2051
+ ℓwx(V πx
2052
+ T ⋆ , Tθ) ≥
2053
+ γ
2054
+ 2(1 − γ)(1 − θx).
2055
+ (65)
2056
+ Recall that x = argmini θi. Since θ ∈ Sd−1 and θi ≥ 0, ∀i, we have 1 = �d
2057
+ i=1 θ2
2058
+ i ≥ dθ2
2059
+ x. As a result, when d > 2 we have
2060
+ θx ≤ 1/
2061
+
2062
+ 2. Therefore
2063
+ ℓwx(V πx
2064
+ T ⋆ , Tθ) ≥
2065
+ γ
2066
+ 2(1 − γ)(1 − θx) ≥
2067
+ γ
2068
+ 8(1 − γ).
2069
+ (66)
2070
+
2071
+ Helper Lemmas
2072
+ In this section, we present several helper lemmas used in Appendix .
2073
+ Lemma 8. For two distribution p, q over x ∈ X, if we have ∥p − q∥1 ≤ ϵ, then for any ζ > 1,
2074
+ Ex∼p
2075
+
2076
+ I
2077
+ �p(x)
2078
+ q(x) > ζ
2079
+ ��
2080
+
2081
+ ζ
2082
+ ζ − 1ϵ.
2083
+ Proof. Define E(x) = I
2084
+
2085
+ p(x)
2086
+ q(x) > ζ
2087
+
2088
+ . Note that under event E(x) we have
2089
+ p(x) > q(x)ζ =⇒ p(x) − q(x) > q(x)(ζ − 1).
2090
+ (67)
2091
+ As a result,
2092
+ ϵ ≥ ∥p − q∥1 ≥
2093
+
2094
+ |p(x) − q(x)|E(x) dx
2095
+ (68)
2096
+
2097
+
2098
+ (ζ − 1)q(x)E(x) dx = Ex∼q[E(x)](ζ − 1)
2099
+ (69)
2100
+ ≥ (Ex∼p[E(x)] − ϵ)(ζ − 1).
2101
+ (70)
2102
+ By algebraic manipulation we get Ex∼p[E(x)] ≤
2103
+ ζ
2104
+ ζ−1ϵ.
2105
+ Lemma 9. Consider a fixed policy π and two dynamics model T, ¯T. Suppose
2106
+ E(s,a)∼ρπ
2107
+ T
2108
+
2109
+ TV
2110
+
2111
+ T(s, a), ¯T(s, a)
2112
+ ��
2113
+ ≤ ϵ,
2114
+ we get
2115
+ ��ρπ
2116
+ T − ρπ
2117
+ ¯T
2118
+ ��
2119
+ 1 ≤
2120
+ 1
2121
+ 1 − γ ϵ.
2122
+ (71)
2123
+ Proof. First of all let G, ¯G be the transition kernel from S × A to S × A induced by T, π and ¯T, π respectively. Then for any
2124
+ distribution ρ ∈ ∆(S × A) we have
2125
+ ��Gρ − ¯Gρ
2126
+ ��
2127
+ 1 ≤ E(s,a)∼ρ
2128
+
2129
+ TV
2130
+ � ¯T(s, a), T(s, a)
2131
+ ��
2132
+ .
2133
+ (72)
2134
+ Let ρh (or ¯ρh) be the state-action distribution on step h under dynamics T (or ¯T). Then we have
2135
+ ρh − ¯ρh =
2136
+
2137
+ Gh − ¯Gh�
2138
+ ρ0 =
2139
+ h−1
2140
+
2141
+ h′=0
2142
+ ¯Gh−h′−1�
2143
+ G − ¯G
2144
+
2145
+ Gh′ρ0.
2146
+ (73)
2147
+ As a result,
2148
+ ∥ρh − ¯ρh∥1 ≤
2149
+ h−1
2150
+
2151
+ h′=0
2152
+ ��� ¯Gh−h′−1�
2153
+ G − ¯G
2154
+
2155
+ Gh′ρ0
2156
+ ���
2157
+ 1
2158
+ (74)
2159
+
2160
+ h−1
2161
+
2162
+ h′=0
2163
+ ���
2164
+
2165
+ G − ¯G
2166
+
2167
+ Gh′ρ0
2168
+ ���
2169
+ 1 ≤
2170
+ h−1
2171
+
2172
+ h′=0
2173
+ E(s,a)∼ρh′
2174
+
2175
+ TV
2176
+ � ¯T(s, a), T(s, a)
2177
+ ��
2178
+ .
2179
+ (75)
2180
+ It follows that
2181
+ ��ρπ
2182
+ T − ρπ
2183
+ ¯T
2184
+ ��
2185
+ 1 ≤ (1 − γ)
2186
+
2187
+
2188
+ h=0
2189
+ γh ∥ρh − ¯ρh∥1
2190
+ (76)
2191
+ ≤(1 − γ)
2192
+
2193
+
2194
+ h=0
2195
+ γh
2196
+ h−1
2197
+
2198
+ h′=0
2199
+ E(s,a)∼ρh′
2200
+
2201
+ TV
2202
+ � ¯T(s, a), T(s, a)
2203
+ ��
2204
+ (77)
2205
+ ≤(1 − γ)
2206
+
2207
+
2208
+ h=0
2209
+ γh
2210
+ 1 − γ E(s,a)∼ρh
2211
+
2212
+ TV
2213
+ � ¯T(s, a), T(s, a)
2214
+ ��
2215
+ (78)
2216
+ =
2217
+
2218
+
2219
+ h=0
2220
+ γhE(s,a)∼ρh
2221
+
2222
+ TV
2223
+ � ¯T(s, a), T(s, a)
2224
+ ��
2225
+ (79)
2226
+ =
2227
+ 1
2228
+ 1 − γ E(s,a)∼ρπ
2229
+ T
2230
+
2231
+ TV
2232
+ � ¯T(s, a), T(s, a)
2233
+ ��
2234
+ .
2235
+ (80)
2236
+
2237
+ LQR Experimental Details
2238
+ Data generation
2239
+ The
2240
+ of���ine
2241
+ dataset
2242
+ is
2243
+ generated
2244
+ by
2245
+ running
2246
+ several
2247
+ πv
2248
+ under
2249
+ the
2250
+ true
2251
+ dynamics
2252
+ with
2253
+ v
2254
+
2255
+ {−1, −0.75, −0.5, −0.25, 0, 0.25, 0.5, 0.75} and added noise N(0, 0.5) to the policy. As a result, the behavior dataset
2256
+ covers most of the state-action space. The dataset contains 2000 trajectories with length 20 from each policy.
2257
+ Implementation
2258
+ We compute the density ratio by approximating the behavior distribution µ and the state-action distribution ρπ
2259
+ T respectively. By
2260
+ discretizing the state-action space into 10 × 10 bins uniformly, the distribution µ(s, a) is approximated by the frequency of the
2261
+ corresponding bin. For ρπ
2262
+ T , we first collect 2000 trajectories of policy π under T and compute the distribution similarly. Because
2263
+ all the function classes are finite, we enumerate over the function classes to compute lb(T, π) for every pair of dynamics and
2264
+ policy.
2265
+ Hyperparameters
2266
+ In the experiments, we use the following hyperparameters.
2267
+ • Cutoff threshold in Line 3 of Alg. 1: ζ = 50.
2268
+ • Random seeds for three runs: 1, 2, 3.
2269
+ • State noise: η ∼ N(0, 0.05).
2270
+ • Policy noise: N(0, 0.01).
2271
+ • Discount factor: γ = 0.9.
2272
+ • Mean of initial state: 0.5.
2273
+ • Noise added to initial state: 0.2.
2274
+ • Number of trajectories per policy: 2000.
2275
+ We do not require parameter tuning for optimization procedures. We tried cutoff threshold with ζ ∈ {10, 20, 50} and number
2276
+ of trajectories in {20, 500, 2000}. Smaller cutoff leads to an over-pessimistic lower bound, and fewer trajectories introduce
2277
+ variance to the final result.
2278
+ Computing resources
2279
+ These experiments run on a machine with 2 CPUs, 4GB RAM, and Ubuntu 20.04. We don’t require GPU resources. We use
2280
+ Python 3.9.5 and numpy 1.20.2.
2281
+ D4RL Experimental Details
2282
+ Tasks
2283
+ Hopper. The Hopper task is to make a hopper with three joints and four body parts hop forward as fast as possible. The state
2284
+ space is 11-dimension, the action is a 3-dimensional continuous space.
2285
+ HalfCheetah. The HalfCheetah task is to make a 2D robot with 7 rigid links, including 2 legs and a torso run forward as fast
2286
+ as possible. The state space is 17-dimension, the action is a 6-dimensional continuous space.
2287
+ Model Choice and Hyperparameters
2288
+ For all the dynamics, each model is parametrized as a 4-layer feedforward neural network with 200 hidden units. For the
2289
+ SAC (Haarnoja et al. 2018) updates (serving as the policy gradient updates subroutine), the function approximations used for
2290
+ the policy and value function are 2-layer feedforward neural networks with 256 hidden units.
2291
+ The hyperparameter choices for behavior density modeling are based on the training progress of the normalizing flow model.
2292
+ We pre-select a few (less than 10) combinations of hyperparameters and pick the set that gives us the lowest training loss.
2293
+ Usually, this is not the best practice. However, the small number of combinations (non-exhaustive search) and small model size
2294
+ reduced our concern for training set overfitting.
2295
+ MOPO (Yu et al. 2020):
2296
+ • Batch size: 100.
2297
+ • Rollout horizon: 5.
2298
+ • Lambda: 1.
2299
+ MBLB:
2300
+ • Random seeds for five runs: 1, 2, 3, 4, 5.
2301
+
2302
+ • Number of trajectories to sample: 100.
2303
+ • Rollout horizon: 5.
2304
+ • Batch size: 32.
2305
+ • Cutoff threshold in Line 3 of Alg. 1: ζ = 5.
2306
+ • Discount factor γ: 0.99.
2307
+ • GAE λ: 0.95.
2308
+ • g function latent size: 8.
2309
+ MML:
2310
+ • Random seeds for five runs: 1, 2, 3, 4, 5.
2311
+ • Batch size: 32.
2312
+ • Basis function class: square, polynomial
2313
+ • Ratio-Value function parametrization: linear, reproducing kernel hilbert space (RKHS)
2314
+ For MML, we first need to make a decision on how to parametrize h(s, a, s′). If we choose a linear parametrization such as
2315
+ h(s, a, s′) = ψ(s, a, s′)T θ, we need to decide what ψ is. There are two obvious choices: ψ(x) = [x, x2, 1] (square basis func-
2316
+ tion), or a polynomial basis function with degree 2: given x = [x1, x2, ..., xd], ψ(x) = [x2
2317
+ 1, x1x2, x1x3, ..., x2
2318
+ 2, x2x3, ..., x2
2319
+ d],
2320
+ which can be efficiently computed as the upper triangular entries of xxT . If we choose the ratio-value function parametrization
2321
+ to be RKHS, then we use radial basis function (RBF) as K((s, a, s′), (˜s, ˜a, ˜s′)).
2322
+ Computing resources
2323
+ These experiments run on a machine with 4 CPUs, 10GB RAM, and Ubuntu 20.04. We don’t require GPU resources. We use
2324
+ Python 3.9.5 and numpy 1.20.2.
2325
+ Algorithms
2326
+ We describe the MML and MBLB algorithms in this section. Algorithm 2 describes how we compute MBLB. Note that we
2327
+ compute three components of lower bound explicitly. Algorithm 3 describes how we compute MML with linear parametrization.
2328
+ Algorithm 4 describes how we compute MML with RKHS parametrization.
2329
+ Algorithm 2: MBLB: Model-based Lower Bound
2330
+ Input: offline RL data D; set of dynamics, policy pairs
2331
+ [(π1, T1), ..., (πK, TK)], Vmax, γ, ζ.
2332
+ Output: optimal policy π∗
2333
+ ˆµ(·, ·) = trainFlow (D)
2334
+ scores = []
2335
+ for i ← 1...K do
2336
+ Qπi = trainFQE (Sample (D, Ti, πi), πi)
2337
+ ρTi
2338
+ πi(·, ·) = trainFlow (Sample (D, Ti, πi))
2339
+ η = E(s,a)∼D[Qπi(s, πi(s))]
2340
+ Initialize (θ)
2341
+ L = 0; ∆ = 0
2342
+ for (s, a, s′) ∈ D do
2343
+ w = max(min(
2344
+ ρ
2345
+ Ti
2346
+ πi(s,a)
2347
+ ˆµ(s,a) , ζ), 0)
2348
+ ℓ = −|w · (Ex∼Ti(s)[gθ(x)] − gθ(s′))|
2349
+ θ = θ + ∇θℓ
2350
+ ∆ = ∆ − Vmax · I
2351
+
2352
+ ρ
2353
+ Ti
2354
+ πi(s,a)
2355
+ ˆµ(s,a) > ζ
2356
+
2357
+ L = L + ℓ
2358
+ end
2359
+ score =
2360
+ 1
2361
+ |D|(η +
2362
+ 1
2363
+ 1−γ (∆ + L))
2364
+ scores ← score
2365
+ end
2366
+ i = argmax(scores)
2367
+ return πi
2368
+
2369
+ Algorithm 3: MML-Linear: Minimax Model Learning Bound
2370
+ Input: offline RL data D; set of dynamics, policy pairs
2371
+ [(π1, T1), ..., (πK, TK)].
2372
+ Output: optimal policy π∗
2373
+ scores = []
2374
+ for i ← 1...K do
2375
+ Initialize (θ)
2376
+ L = 0
2377
+ for (s, a, s′) ∈ D do
2378
+ ℓ = −(Ex∼Ti(s)[ψ(s, a, x)T θ] − ψ(s, a, s′)T θ)
2379
+ θ = θ + ∇θℓ
2380
+ L = L + ℓ
2381
+ end
2382
+ score =
2383
+ L
2384
+ |D|
2385
+ scores ← score
2386
+ end
2387
+ i = argmax(scores)
2388
+ return πi
2389
+ Algorithm 4: MML-RKHS: Minimax Model Learning Bound
2390
+ Input: offline RL data D; set of dynamics, policy pairs
2391
+ [(π1, T1), ..., (πK, TK)], kernel K.
2392
+ Output: optimal policy π∗
2393
+ scores = []
2394
+ for i ← 1...K do
2395
+ L = 0
2396
+ for (s, a, s′), (˜s, ˜a, ˜s′) ∈ D do
2397
+ ℓ1 = Ex∼T (s),˜x∼T (˜s)[K((s, a, x), (˜s, ˜a, ˜x))]
2398
+ ℓ2 = −2Ex∼T (s)[K((s, a, x), (˜s, ˜a, ˜s′))]
2399
+ ℓ3 = K((s, a, s′), (˜s, ˜a, ˜s′))
2400
+ L = L + ℓ1 + ℓ2 + ℓ3
2401
+ end
2402
+ score =
2403
+ L
2404
+ |D|
2405
+ scores ← score
2406
+ end
2407
+ i = argmax(scores)
2408
+ return πi
2409
+ D4RL Additional Experiments
2410
+ Ablation Study
2411
+ We conduct an ablation study in Table A1 where we evaluate the final performance of the policies selected using either FQE
2412
+ with TD-1 estimation or FQE with GAE estimation. We observe that using GAE for offline policy selection allows for picking
2413
+ better policies on average.
2414
+ MBLB with RKHS
2415
+ In this section, we derive the closed-form solution to supg∈G ℓw(g, T) when the test function g belongs to a reproducing kernel
2416
+ Hilbert space (RKHS), and empirically evaluate the MBLB method with RKHS parameterization.
2417
+ Let K : S ×S → R be a symmetric and positive definite kernel and HK its corresponding RKHS with inner product ⟨·, ·⟩HK.
2418
+ Then we have the following lemma.
2419
+ Lemma 10. When G = {g ∈ HK : ⟨g, g⟩HK ≤ 1}, we have
2420
+ sup
2421
+ g∈G
2422
+ ℓw(g, T)2 = Es,a,s′∼D,x∼T (s,a)E˜s,˜a,˜s′∼D,˜x∼T (˜s,˜a) [w(s, a)w(˜s, ˜a)(K(x, ˜x) + K(s′, ˜s′) − K(x, ˜s′) − K(˜x, s′)]
2423
+ (81)
2424
+ Proof. Let Kx ≜ K(x, ·) ∈ HK. By the reproducing property, we have ⟨Kx, Ky⟩HK = K(x, y) and ⟨Kx, g⟩HK = g(x). As a
2425
+
2426
+ Dataset Type
2427
+ Environment
2428
+ FQE
2429
+ (TD-1)
2430
+ FQE
2431
+ (GAE)
2432
+ medium
2433
+ hopper
2434
+ 507.8
2435
+ (549.6)
2436
+ 533.5
2437
+ (532.6)
2438
+ med-expert
2439
+ hopper
2440
+ 149.3
2441
+ (146.2)
2442
+ 261.1
2443
+ (157.9)
2444
+ expert
2445
+ hopper
2446
+ 39.0
2447
+ (34.6)
2448
+ 120.7
2449
+ (78.7)
2450
+ medium
2451
+ halfcheetah
2452
+ 1802.5
2453
+ (1011.9)
2454
+ 2117.4
2455
+ (1215.6)
2456
+ med-expert
2457
+ halfcheetah
2458
+ 302.1
2459
+ (605.2)
2460
+ 394.9
2461
+ (632.0)
2462
+ Table A1: We report the mean and (standard deviation) of the selected policy’s environment performance across 3 random seeds
2463
+ using different variants of FQE.
2464
+ result,
2465
+ sup
2466
+ g∈G
2467
+ ℓw(g, T)2 =
2468
+ sup
2469
+ g:⟨g,g⟩HK ≤1
2470
+ Es,a,s′∼D,x∼T (s,a)[w(s, a)(⟨Kx, g⟩HK − ⟨Ks′, g⟩HK)]2
2471
+ (82)
2472
+ =
2473
+ sup
2474
+ g:⟨g,g⟩HK ≤1
2475
+
2476
+ Es,a,s′∼D,x∼T (s,a)[w(s, a)(Kx − Ks′)], g
2477
+ �2
2478
+ HK
2479
+ (83)
2480
+ = ∥Es,a,s′∼D,x∼T (s,a)[w(s, a)(Kx − Ks′)]∥2
2481
+ HK
2482
+ (Cauchy-Schwarz)
2483
+ =
2484
+
2485
+ Es,a,s′∼D,x∼T (s,a)[w(s, a)(Kx − Ks′)], E˜s,˜a,˜s′∼D,˜x∼T (˜s,˜a)[w(˜s, ˜a)(K˜x − K˜s′)]
2486
+
2487
+ HK
2488
+ (84)
2489
+ = Es,a,s′∼D,x∼T (s,a)E˜s,˜a,˜s′∼D,˜x∼T (˜s,˜a)[⟨w(s, a)(Kx − Ks′), w(˜s, ˜a)(K˜x − K˜s′)⟩HK]
2490
+ (85)
2491
+ = Es,a,s′∼D,x∼T (s,a)E˜s,˜a,˜s′∼D,˜x∼T (˜s,˜a)[w(s, a)w(˜s, ˜a)(K(x, ˜x) + K(s′, ˜s′) − K(x, ˜s′) − K(˜x, s′)].
2492
+ (86)
2493
+ Table A2 presents the performance of the MBLB algorithm with RKHS parameterization. On most of the environments,
2494
+ MBLB-RKHS performs better than/comparable with MML-RKHS. However, MBLB-Quad consistently outperforms MBLB-
2495
+ RKHS on all the environments. We suspect that MBLB-RKHS could outperform MBLB-Quad with different choices of kernels
2496
+ because the quadratic parameterization can be seen as a special case of RKHS parameterization (with quadratic kernels).
2497
+ Dataset Type
2498
+ Env
2499
+ MOPO
2500
+ MML
2501
+ (Squared)
2502
+ MML
2503
+ (Polynomial)
2504
+ MML
2505
+ (RKHS)
2506
+ MBLB
2507
+ (Linear)
2508
+ MBLB
2509
+ (Quad)
2510
+ MBLB
2511
+ (RKHS)
2512
+ medium
2513
+ hopper
2514
+ 175.4
2515
+ (95.3)
2516
+ 379.4
2517
+ (466.4)
2518
+ 375.6
2519
+ (459.5)
2520
+ 375.0
2521
+ (459.9)
2522
+ 591.7
2523
+ (523.1)
2524
+ 808.5
2525
+ (502.7)
2526
+ 317.8
2527
+ (476.4)
2528
+ med-expert
2529
+ hopper
2530
+ 183.8
2531
+ (94.4)
2532
+ 160.9
2533
+ (131.5)
2534
+ 116.5
2535
+ (148.4)
2536
+ 61.4
2537
+ (35.0)
2538
+ 261.1
2539
+ (157.9)
2540
+ 242.5
2541
+ (134.0)
2542
+ 208.1
2543
+ (144.3)
2544
+ expert
2545
+ hopper
2546
+ 80.4
2547
+ (63.4)
2548
+ 93.8
2549
+ (87.9)
2550
+ 61.6
2551
+ (61.9)
2552
+ 70.0
2553
+ (56.2)
2554
+ 118.2
2555
+ (61.6)
2556
+ 121.0
2557
+ (72.5)
2558
+ 120.9
2559
+ (61.8)
2560
+ medium
2561
+ halfcheetah
2562
+ 599.8
2563
+ (668.4)
2564
+ 1967.6
2565
+ (1707.5)
2566
+ 2625.1
2567
+ (937.2)
2568
+ 3858.2
2569
+ (1231.1)
2570
+ 3290.4
2571
+ (1753.1)
2572
+ 2484.2
2573
+ (1526.8)
2574
+ 2229.7
2575
+ (1949.8)
2576
+ med-expert
2577
+ halfcheetah
2578
+ -486.6
2579
+ (48.1)
2580
+ -188.5
2581
+ (137.2)
2582
+ -77.0
2583
+ (252.5)
2584
+ -343.2
2585
+ (225.2)
2586
+ 207.4
2587
+ (509.5)
2588
+ 192.8
2589
+ (432.0)
2590
+ -2.1
2591
+ (690.6)
2592
+ Table A2: We report the mean and (standard deviation) of selected policy’s simulator environment performance across 5 random
2593
+ seeds. MML and MBLB are used as model-selection procedures where they select the best policy for each seed. Our method is
2594
+ choosing the most near-optimal policy across the datasets.
2595
+
2596
+ 0.0
2597
+ 0.2
2598
+ 0.4
2599
+ 0.6
2600
+ 0.8
2601
+ 1.0
2602
+ Normalized Score (τ)
2603
+ 0.00
2604
+ 0.25
2605
+ 0.50
2606
+ 0.75
2607
+ 1.00
2608
+ Fraction of runs with score > τ
2609
+ MBLB
2610
+ MML
2611
+ MOPO
2612
+ Figure A1: Performance profile between three methods.
2613
+
DdE2T4oBgHgl3EQfoQiw/content/2301.04017v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd45e0ea00df38d25d220134f77827964036bbd33ec4fe1dc8801e5856a789bd
3
+ size 1498985
DdE2T4oBgHgl3EQfoQiw/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea14c078524703282769e10b5b22eff99e4b3f7d4e6ab3473cf960e19ec8cb8e
3
+ size 3932205
DdE2T4oBgHgl3EQfoQiw/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d65f20b4d3a3d2dac74406b34118a592d316949aade63844aca04702c4d8f293
3
+ size 178979
EdFKT4oBgHgl3EQfZy6F/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9fb468a6af382278afaddde6f469b0f09608f6d1349fb8fd76a258529655891e
3
+ size 2162733
EdFKT4oBgHgl3EQfZy6F/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:246d92fa65f64c42814f1d4bde839de4f54a7918db6cf0dd903fda2abb9643ba
3
+ size 84081
FNFJT4oBgHgl3EQfCyyx/content/tmp_files/2301.11431v1.pdf.txt ADDED
@@ -0,0 +1,1411 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Semidefinite Relaxations for Robust Multiview Triangulation
2
+ Linus H¨arenstam-Nielsen1, Niclas Zeller2, Daniel Cremers1
3
+ 1Technical University of Munich, 2Karlsruhe University of Applied Sciences
4
5
+ Abstract
6
+ We propose the first convex relaxation for multiview tri-
7
+ angulation that is robust to both noise and outliers. To this
8
+ end, we extend existing semidefinite relaxation approaches
9
+ to loss functions that include a truncated least squares cost
10
+ to account for outliers. We propose two formulations, one
11
+ based on epipolar constraints and one based on the frac-
12
+ tional reprojection equations. The first is lower dimensional
13
+ and remains tight under moderate noise and outlier levels,
14
+ while the second is higher dimensional and therefore slower
15
+ but remains tight even under extreme noise and outlier lev-
16
+ els. We demonstrate through extensive experiments that the
17
+ proposed approach allows us to compute provably optimal
18
+ reconstructions and that empirically the relaxations remain
19
+ tight even under significant noise and a large percentage of
20
+ outliers.
21
+ 1. Introduction
22
+ Triangulation refers to the problem of recovering the 3D
23
+ location of a set of points from their observed 2D locations
24
+ in two or more images under known camera transforma-
25
+ tions.
26
+ Since the 2D projections are typically noisy (due
27
+ to lens distortions or inaccurate feature point localization),
28
+ the optimal solution is often phrased as a non-convex opti-
29
+ mization problem. While solutions are mostly computed us-
30
+ ing faster but sub-optimal local optimization methods, there
31
+ have been some efforts to compute globally optimal triangu-
32
+ lations [1, 4]. While these works show that one can obtain
33
+ globally optimal solutions for triangulation problems with
34
+ noisy input, their practical value remains limited as they are
35
+ not well adapted to the challenges of real-world data where
36
+ even a single outlier can deteriorate the result.
37
+ Despite their often slower runtime, globally optimal
38
+ methods offer several advantages: Firstly, in safety-critical
39
+ systems it may be required to complement the computed so-
40
+ lution with some guarantee that it really is the best solution
41
+ or at least within a bound of the optimal solution. Secondly,
42
+ in many offline applications runtime is actually not critical
43
+ and then one may want to trade off better accuracy for extra
44
+ (a) 22 views, no outliers
45
+ (b) 22 views, 19 outliers
46
+ Figure 1.
47
+ Example of a triangulated point from the Reichstag
48
+ dataset. Blue point: ground truth. Red point: non-robust global
49
+ optimum found by the relaxation found by [1] (Eq. (T)). Green
50
+ point: robust global optimum found by our proposed relaxation in
51
+ Eq. (RT).
52
+ runtime. Thirdly, globally optimal solutions of real-world
53
+ problems can serve as ground truth for assessing the perfor-
54
+ mance of local optimization methods.
55
+ In this work, we revisit the problem of computing prov-
56
+ ably optimal triangulations in the presense of outliers. To
57
+ this end, we develop two possible convex relaxations for
58
+ the truncated least squares cost function so as to combine
59
+ the robustness with the capacity to compute globally opti-
60
+ mal solutions. Our main contributions can be summarized
61
+ as follows:
62
+ • We extend the convex triangulation methods from [1]
63
+ and [4] with a truncated least squares cost function and
64
+ derive the corresponding convex relaxations.
65
+ • We show that the relaxations are always tight in the
66
+ noise-free and outlier-free case by explicitly construct-
67
+ ing the globally optimal Lagrange multipliers (which
68
+ 1
69
+ arXiv:2301.11431v1 [cs.CV] 26 Jan 2023
70
+
71
+ furthermore satisfy the corank 1, restricted slater and
72
+ non-branch point criteria required for local stability
73
+ with respect to noise).
74
+ • We validate empirically that both relaxations remain
75
+ tight even under large amounts of noise and high out-
76
+ lier ratios.
77
+ To the best of our knowledge, this is the first example of
78
+ a successful semidefinite relaxation of a robust estimation
79
+ problem with reprojection errors.
80
+ 2. Related work
81
+ Triangulation is a core subroutine for structure from mo-
82
+ tion and therefore has been studied extensively. For two
83
+ views there are many solution variants, including comput-
84
+ ing the roots of a degree 6 polynomial [9] for the repro-
85
+ jection error, and [15] for the angular error. Multiview tri-
86
+ angulation is typically performed using non-optimal meth-
87
+ ods such as local search or the linear method from [9].
88
+ Robust triangulation is typically tackled using RANSAC
89
+ [13, 16, 20] where a 2-view solver is used repeatedly for
90
+ randomly sampled pairs of views until an inlier set can be
91
+ established.
92
+ Semidefinite relaxations have been used to obtain certi-
93
+ fiably optimal algorithms for many computer vision prob-
94
+ lems. Examples include semidefinite relaxations for parti-
95
+ tioning, grouping and restoration [14], for minimizing re-
96
+ projection error [12], for multiview triangulation [1, 4], for
97
+ essential matrix estimation [28], for hand-eye calibration
98
+ [7, 22, 23], for robust point cloud registration [24, 26, 27],
99
+ and for 3D shape from 2D landmarks [25].
100
+ The work
101
+ [26] also considers outlier-robust estimation applied to rota-
102
+ tion averaging, mesh registration, absolute pose registration
103
+ and category-level object pose+shape estimation. Solving
104
+ semidefinite relaxations is typically slow and memory in-
105
+ tensive, stemming from the fact that the number of vari-
106
+ ables is the square of the number of variables in the orig-
107
+ inal problem. However there has been recent interest in
108
+ developing solvers that can scale to larger problems. In-
109
+ cluding [6] which uses a reformulation in terms of eigen-
110
+ value optimization based on [10] which can take advantage
111
+ of GPUs, and [26] which uses efficient non-global solvers
112
+ for speeding up the convergence of the global solver.
113
+ In a limited number of cases, semidefinite relaxations
114
+ can be shown to always solve the original problem when
115
+ excluding degenerate configurations.
116
+ Including the dual
117
+ quaternion formulation of hand-eye calibration [7] and 2-
118
+ view triangulation using epipolar constraints [1]. In both
119
+ cases the problem has two quadratic constraints one of
120
+ which equals zero. Another case is the rotation alignment
121
+ problem which has a closed form solution in terms of an
122
+ eigenvalue decomposition (quaternion formulation) or sin-
123
+ gular value decomposition (rotation matrix formulation).
124
+ Outlier-robust estimation is inapproximable in general
125
+ [2], so one typically has to rely on empirical experiments
126
+ to validate how stable the relaxation is. Though it is some
127
+ times possible to find sets of special cases where the relax-
128
+ ation can be shown to be always tight (or non-tight), as in
129
+ the recent work [19] for robust rotation alignment of point
130
+ clouds.
131
+ 3. Notation and preliminaries
132
+ For t, s ∈ R3 we write [t]× for the 3×3 skew-symmetric
133
+ matrix such that t × s = [t]×s. Sk is the set of k × k
134
+ real symmetric matrices. (a; b) denotes the vertical con-
135
+ catenation of vectors a and b and for a collection of vec-
136
+ tors a1, . . . , an the subscript-free version denotes the cor-
137
+ responding stacked vector a = (a1; . . . ; an).
138
+ We use a
139
+ bar to denote the homogeneous version of a vector, that is
140
+ ¯a := (a; 1). When dimensionality is understood we define
141
+ ei to be the ith unit vector and Ei = eieT
142
+ i . For a vector of
143
+ monomials m = (m1; . . . ; md) we define em
144
+ mi as the unit
145
+ vector whose only non-zero entry corresponds to the index
146
+ of mi in m, meaning em
147
+ mi = ei ∈ Rd. For a vector x ∈ Rk
148
+ we define:
149
+ Mx :=
150
+ � I
151
+ −x
152
+ −xT
153
+ ∥x∥2
154
+
155
+ ∈ Sk+1
156
+ (1)
157
+ such that for y ∈ Rk we have ¯yT Mx¯y = ∥x − y∥2. The
158
+ operator ⊗ denotes the Kronecker product, and ⊕ denotes
159
+ the tensor sum. For example, for 2 × 2 matrices A and B:
160
+ A ⊕ B =
161
+ �A
162
+ 0
163
+ 0
164
+ B
165
+
166
+ , A ⊗ B =
167
+ �a11B
168
+ a12B
169
+ a21B
170
+ a22B
171
+
172
+ .
173
+ (2)
174
+ 3.1. Semidefinite relaxations
175
+ As a general strategy, we aim to solve the triangu-
176
+ lation problem by relaxing a Quadratically Constrained
177
+ Quadratic Program, which has the following form:
178
+ min
179
+ z∈Rd
180
+ zT Mz
181
+ s.t.
182
+ zT Ez = 1
183
+ zT Aiz = 0,
184
+ i = 1, . . . , k.
185
+ (3)
186
+ This is a very general formulation with applications in com-
187
+ puter vision but it is NP-hard to solve in most cases, so an
188
+ imperfect method is typically necessary. One such strat-
189
+ egy is to lift the problem from Rd to Sd by introducing a
190
+ new variable Z = zzT and using the fact that zT Mz =
191
+ tr(MzzT ) = tr(MZ) to arrive at:
192
+ min
193
+ Z∈Sd
194
+ tr(MZ)
195
+ s.t.
196
+ tr(EZ) = 1
197
+ tr(AiZ) = 0,
198
+ i = 1, . . . , k
199
+ Z ≽ 0.
200
+ (4)
201
+ 2
202
+
203
+ Eq. (4) is a relaxation of Eq. (3) since if z satisfies the con-
204
+ straints of Eq. (3) we always have that Z = zzT satisfies
205
+ the constraints of Eq. (4) with the same objective value.
206
+ However, the converse is unfortunately not always true. In
207
+ particular, if ˆZ is optimal for Eq. (4) we can obtain a cor-
208
+ responding solution ˆz for Eq. (3) with the same objective
209
+ value if and only if ˆZ is rank one. In this case we have
210
+ ˆZ = ˆzˆzT and we then say that the relaxation is tight.
211
+ The main advantage of working with the relaxation
212
+ Eq. (4) as opposed to the original problem Eq. (3) is that the
213
+ relaxation is a convex optimization problem, in particular
214
+ a semidefinite program, for which a variety of polynomial-
215
+ time solvers are available, including [3, 17]. We can verify
216
+ whether a potential solution to Eq. (3) is optimal by comput-
217
+ ing the corresponding Lagrange multipliers, as summarized
218
+ in the following fact:
219
+ Fact 1. If ˆz ∈ Rd satisfies the constraints of Eq. (3) (primal
220
+ feasibility) and there are Lagrange multipliers ˆλ ∈ R, ˆξ ∈
221
+ Rk and a corresponding multiplier matrix S(ˆλ, ˆξ) = M +
222
+ �k
223
+ i=1 ˆξiAi − ˆλE satisfying:
224
+ i) Dual feasibility: S(ˆλ, ˆξ) ≽ 0
225
+ ii) Complementarity: S(ˆλ, ˆξ)ˆz = 0
226
+ then the relaxation Eq. (4) is tight and ˆz is optimal for
227
+ Eq. (3).
228
+ If the relaxation is not tight we can at best expect an
229
+ optimal ˆZ to generate an approximation of the optimal ˆz.
230
+ Therefore, a key metric to consider when applying a re-
231
+ laxation is the percentage of encountered problem cases
232
+ in which it remains tight. Fortunately, [5] shows that the
233
+ relaxation is well behaved for problems that are close in
234
+ parameter-space to solutions where the multiplier matrix
235
+ has corank 11, which we will show later occurs in the noise-
236
+ free case. We restate the main result in loose terms here:
237
+ Fact 2. If we, in addition to the conditions in Fact 1, have
238
+ that S(λ, µ) is corank 1 and ACQ (which is a smoothness
239
+ condition, see [5] Definition 3.1) holds, then the relaxation
240
+ Eq. (4) is locally stable, meaning that it will remain tight
241
+ also for perturbed objective functions M + ε ˜
242
+ M for small
243
+ enough ε.
244
+ The practical usefulness of Fact 2 comes from the con-
245
+ sideration that it’s often possible to show that the relaxation
246
+ is tight and the stability conditions hold for noise-free mea-
247
+ surements. This means that there is some surrounding re-
248
+ gion of noisy measurements for which the relaxation is tight
249
+ as well. There is also a version of Fact 2 which covers per-
250
+ turbations to the constraints, however, we will not make use
251
+ of it here.
252
+ 1corank(A) = n - rank(A) for an n × n matrix A.
253
+ 4. Relaxations for multiview triangulation
254
+ Given n views of a point X from cameras located at Pi =
255
+ (Ri, ti) ∈ SE(3) with intrinsic matrices Ki ∈ R3×3, and
256
+ with, possibly noisy, observations denoted as ˜xi ∈ R2, the
257
+ n-view triangulation problem with reprojection error is de-
258
+ fined as:
259
+ min
260
+ X∈R3
261
+ n
262
+
263
+ i=1
264
+ ∥˜xi − π(Ki, Pi, X)∥2
265
+ (5)
266
+ where π(Ki, Pi, X) is the reprojection of the point X ∈ R3
267
+ to camera i. This is a nonconvex problem but it is not yet in
268
+ QCQP form as in Eq. (3) since π(Ki, Pi, X) is not quadratic
269
+ in X. In the next section we will recap two ways in which
270
+ it can be converted to a QCQP, from which we can generate
271
+ the corresponding semidefinite relaxations.
272
+ 4.1. Triangulation with epipolar constraints
273
+ As described in [1] we can reformulate Eq. (5) as a poly-
274
+ nomial optmization problem of degree 2 by reparametrizing
275
+ X in terms of it’s n reprojections xi subject to the epipolar
276
+ constraints:
277
+ min
278
+ xi∈R2
279
+ n
280
+
281
+ i=1
282
+ ∥xi − ˜xi∥2
283
+ s.t.
284
+ ¯xT
285
+ i Fij ¯xj = 0
286
+ i, j = 1, . . . , n
287
+ i ̸= j
288
+ (6)
289
+ where Fij = K−T
290
+ i
291
+ [tij]×RijK−1
292
+ j
293
+ is the fundamental matrix
294
+ corresponding to the relative transformation between poses
295
+ i and j. Since the estimated reprojections xi all satisfy the
296
+ epipolar constraints, the solution of Eq. (5) can be recovered
297
+ exactly from Eq. (6) using the linear method from [9].
298
+ Using the parametrization z = (x; 1) = ¯x the semidefi-
299
+ nite relaxation of Eq. (6) is:
300
+ min
301
+ Z∈S2n+1
302
+ tr(M˜xZ)
303
+ s.t.
304
+ tr(En+1Z) = 1
305
+ tr( ¯FijZ) = 0,
306
+ i = 1, . . . , k
307
+ Z ≽ 0
308
+ (T)
309
+ where ¯Fij
310
+
311
+ S2n+1 is defined such that ¯xT ¯Fij ¯x
312
+ =
313
+ ¯xT
314
+ i Fij ¯xj. It was shown already in both [1] and [5] that
315
+ Eq. (T) is a locally stable relaxation for noise-free measure-
316
+ ments, whenever the views are not co-planar. In particu-
317
+ lar, since noise-free observations ˜x by definition satisfy the
318
+ constraints of the original problem Eq. (T), the solution is
319
+ obtained by setting z = (˜x; 1), and since M˜x is positive
320
+ semidefinite and corank 1, the conditions of Fact 1 are sat-
321
+ isfied by setting all Lagrange multipliers to zero, such that
322
+ ˆS = M˜x.
323
+ 3
324
+
325
+ (a) 3 views
326
+ (b) 5 views
327
+ (c) 7 views
328
+ (d) 3 views, 1 outlier
329
+ (e) 5 views, 2 outliers
330
+ (f) 7 views, 4 outliers
331
+ Figure 2. Examples of simulated triangulation problems from Sec. 5.1 with σ = 50px for various number of views and outliers. Blue
332
+ point: ground truth, Red point: non-robust global optimum found by the relaxation found by [4] (Eq. (TF)). Green point: robust global
333
+ optimum found by our proposed relaxation in Eq. (RTF). With no outliers the robust and non-robust methods give the same result.
334
+ 4.2. Triangulation with fraction constraints
335
+ As an alternative to Eq. (6) we can also solve Eq. (5) by
336
+ explicitly parametrizing the 3D point X in homogeneous
337
+ coordinates and multiplying out the fractional equations:
338
+ min
339
+ ¯
340
+ X∈R4,xi∈R2
341
+ n
342
+
343
+ i=1
344
+ ∥xi − ˜xi∥2
345
+ s.t.
346
+ ¯XT ¯X = 1
347
+ xk
348
+ i bT
349
+ i ¯X − aT
350
+ ik ¯X = 0
351
+ i = 1, . . . , n
352
+ k = 1, 2
353
+ (7)
354
+ Where ai1, ai2 and bi are given by the rows of the corre-
355
+ sponding camera matrix Ki
356
+
357
+ RT
358
+ i
359
+ −RT
360
+ i ti
361
+
362
+ . A naive ap-
363
+ proach to relaxing Eq. (7) would be to use the parametriza-
364
+ tion z = (x; ¯X), but unfortunately, as shown in [4], this
365
+ leads to a problem whose optimal value is always zero. To
366
+ circumvent this issue, [4] proposes parametrizing the prob-
367
+ lem in terms of all possible products between the elements
368
+ of x and X. They also show through experiments that while
369
+ the resulting relaxation has more parameters and constraints
370
+ than Eq. (T), it is also tight in a significantly wider range of
371
+ cases, leading to a tradeoff between reliability and compu-
372
+ tation time.
373
+ 4
374
+
375
+ We will use a similar relaxation, though we will skip
376
+ the initial change of variables to get a slightly different
377
+ but equivalent formulation which can be extended to the
378
+ robust case more conveniently. We start by setting z =
379
+ (x ⊗ ¯X; ¯X) = ¯x ⊗ ¯X and then we multiply each repro-
380
+ jection constraint in Eq. (7) with zj to get 8n + 4 quadratic
381
+ constraints:
382
+ (xk
383
+ i bT
384
+ i ¯X − aT
385
+ ik ¯X)zj = zT (e¯x
386
+ xk
387
+ i ⊗ bi − e¯x
388
+ 1 ⊗ aik)eT
389
+ j z
390
+ = 0
391
+ (8)
392
+ Note that in Eq. (8) we have made use of the unit vector no-
393
+ tation from Sec. 3, meaning in particular e¯x
394
+ xk
395
+ i = e2i+k and
396
+ e¯x
397
+ 1 = e2n+1. We also need to indoduce constraints to pre-
398
+ serve the fact that z comes from a (2n + 1) × 4 kronecker
399
+ product. When Z = zzT is rank one, it turns out that this
400
+ condition is equivalent to Z being composed of 2n+1 sym-
401
+ metric 4×4 blocks, see [4] for more details. We will denote
402
+ this constraint as Z ∈ kron(2n + 1, 4). The relaxation of
403
+ can now be written as2:
404
+ min
405
+ Z∈S8n+4
406
+ +
407
+ tr(Z(M˜x ⊗ I4))
408
+ s.t.
409
+ tr(Z(08n×8n ⊕ I4)) = 1
410
+ Z ∈ kron(2n + 1, 4)
411
+ tr(Z(e¯x
412
+ xk
413
+ i ⊗ bi − e¯x
414
+ 1 ⊗ aik)eT
415
+ j ) = 0
416
+ i = 1, . . . n,
417
+ k = 1, 2
418
+ j = 1, . . . , 8n + 4.
419
+ (TF)
420
+ We have now introduced two relaxations for the multiview
421
+ triangulation problem. In the next two sections we will ex-
422
+ tend each to the robust case.
423
+ 4.3. Robust triangulation with epipolar constraints
424
+ Now that we have introduced the two main relaxations
425
+ of Eq. (6) we move to the the main contribution of this pa-
426
+ per, which is to introduce the corresponding truncated least
427
+ squares (TLS) extensions. Similarly to [26] we will use the
428
+ fact that the TLS cost function can be written as a minimiza-
429
+ tion problem by introducing a binary decision variable for
430
+ each residual
431
+ ρi(r2
432
+ i ) = min(r2
433
+ i , ci) =
434
+ min
435
+ θi∈{0,1} θir2
436
+ i + (1 − θi)ci
437
+ (9)
438
+ where ci > 0 is the square of the inlier threshold. Meaning
439
+ that the TLS extension of Eq. (6) can be written as:
440
+ min
441
+ xi∈R2,θi∈R
442
+ n
443
+
444
+ i=1
445
+
446
+ θi∥xi − ˜xi∥2 + (1 − θi)ci
447
+
448
+ s.t.
449
+ ¯xT
450
+ i Fij ¯xj = 0,
451
+ θ2
452
+ i − θi = 0.
453
+ i, j = 1, . . . , n
454
+ i ̸= j.
455
+ (10)
456
+ 2The cost functions in Eq. (7) and Eq. (TF) are equivalent, since ( ¯
457
+ X ⊗
458
+ ¯x)T (M˜x ⊗ I4)( ¯
459
+ X ⊗ ¯x) = (¯xT M˜x¯x) ¯
460
+ XT ¯
461
+ X.
462
+ However this cost function is a 3rd degree polynomial in
463
+ the variables as it contains terms like θi∥xi∥2, so we can’t
464
+ apply the relaxation directly. But we can obtain a 2nd order
465
+ formulation by noting that θ2
466
+ i = θi implies θi∥xi − ˜xi∥2 =
467
+ ∥θixi − θi˜xi∥2 and making the substitution yi = θixi:
468
+ min
469
+ yi∈R2,θi∈R
470
+ n
471
+
472
+ i=1
473
+
474
+ ∥yi − θi˜xi∥2 + (1 − θi)ci
475
+
476
+ s.t.
477
+ (yi; θi)T Fij(yj; θj) = 0
478
+ θ2
479
+ i − θi = 0
480
+ θiyi = yi
481
+ i, j = 1, . . . , n,
482
+ i ̸= j.
483
+ (11)
484
+ The last set of constraints θiyi = yi is redundant but we’ve
485
+ found that it is necessary for the relaxation to remain tight
486
+ in the presence of noise. We can recover the solution to
487
+ Eq. (10) from Eq. (11) by triangulating the estimated inliers
488
+ and setting each xi to be the reprojection of the resulting
489
+ point onto view i.
490
+ Using the parametrization z = (y; θ; 1) the semidefinite
491
+ relaxation of Eq. (11) is:
492
+ min
493
+ Z∈S3n+1
494
+ +
495
+ tr(M c
496
+ ˜xZ)
497
+ s.t.
498
+ tr( ¯FijZ) = 0
499
+ Zθi,θi − Z1,θi = 0
500
+ Zθi,yi − Z1,yi = 0
501
+ tr(E3n+1Z) = 1
502
+ i, j = 1, . . . , n
503
+ i ̸= j
504
+ (RT)
505
+ where M c
506
+ ˜x is the robust extension of M˜x, defined as:
507
+ M c
508
+ ˜x =
509
+
510
+
511
+ I
512
+ −B(˜x)
513
+ 0
514
+ −B(˜x)T
515
+ diag(∥˜xi∥2)
516
+ −c
517
+ 0
518
+ −cT
519
+ �n
520
+ i=0 ci
521
+
522
+ � ,
523
+ B(˜x) =
524
+
525
+
526
+
527
+
528
+
529
+ ˜x1
530
+ 0
531
+ . . .
532
+ 0
533
+ 0
534
+ ˜x2
535
+ . . .
536
+ 0
537
+ ...
538
+ ...
539
+ ...
540
+ 0
541
+ 0
542
+ 0
543
+ 0
544
+ ˜xn
545
+
546
+
547
+
548
+
549
+ � .
550
+ (12)
551
+ and Zmi,mj is the entry of Z corresponding to the index of
552
+ the monomials mi and mj in z. As shown in [2] solving
553
+ Eq. (11) in the presence of outliers is NP hard even in the
554
+ noise-free case. However, in the noise-free and outlier-free
555
+ case we can show that the relaxation is tight with a corank 1
556
+ multiplier matrix, meaning that the relaxation is also locally
557
+ stable with respect to noise, assuming ACQ holds:
558
+ Theorem 1. Assuming ACQ holds, the relaxation Eq. (RT)
559
+ is tight locally stable for noise-free and outlier-free mea-
560
+ surements ˜xi, i = 1, . . . , n.
561
+ 5
562
+
563
+ Proof. Partiton the lagrange multipliers as ξ = (ϕ; µ; η),
564
+ where ϕij ∈ R µi ∈ R2 and η ∈ R corresponds to the
565
+ constraints (yi; θi)T Fij(yj; θj) = 0, θiyi = yi and θ2
566
+ i = θi
567
+ respectively. Then we have:
568
+ S(λ, ϕ, µ, η) =
569
+ F(ϕ) +
570
+
571
+
572
+ I
573
+ −B(˜xi − µi)
574
+ −µ
575
+
576
+ diag(∥˜xi∥2 + 2ηi)
577
+ − 1
578
+ 2c − η
579
+
580
+
581
+ �n
582
+ i=1 ci − λ
583
+
584
+ � . (13)
585
+ Where F(ϕ) = �
586
+ ij ϕij ¯Fij. Now let ˆλ = ˆϕij = ˆµi = 0
587
+ and ˆηi = 1
588
+ 2ci to get:
589
+ ˆS = S(ˆλ, ˆϕ, ˆµ, ˆη) = S(0, 0, 0, 1
590
+ 2c) =
591
+
592
+
593
+ I
594
+ −B(˜xi)
595
+ 0
596
+
597
+ diag(∥˜xi∥2 + ci)
598
+ −c
599
+
600
+
601
+ �n
602
+ i=1 ci
603
+
604
+ � .
605
+ (14)
606
+ This way, with ˆz = (˜x; 1n; 1) we have ˆSˆz = 0. And fur-
607
+ thermore, for arbitrary x, θ, α:
608
+ (x; θ; α)T ˆS(x; θ; α) =
609
+ =
610
+ n
611
+
612
+ i=0
613
+
614
+ ∥xi∥2 − 2θi˜xi + θ2
615
+ i (∥˜xi∥2+ci) − 2ciθiα + ciα2
616
+
617
+ =
618
+ n
619
+
620
+ i=0
621
+
622
+ ∥xi − θi˜xi∥2 + ci(α − θi)2
623
+
624
+ ≥ 0
625
+ so ˆS is positive semidefinite.
626
+ So the relaxation is tight
627
+ by Fact 1.
628
+ And since the only nonzero solution to
629
+ (x; θ; α)T ˆS(x; θ; α) = 0 up to scale is (x; θ; α) = ˆz we
630
+ have that ˆS is corank 1. So, assuming ACQ holds, the re-
631
+ laxation is locally stable by Fact 2.
632
+ In the following section we will furthermore introduce a
633
+ higher order relaxation which can handle higher noise and
634
+ outlier levels.
635
+ 4.4. Robust triangulation with fraction constraints
636
+ Since the fractional constraints in Eq. (TF) are more sta-
637
+ ble with respect to noise than the epipolar constraints in
638
+ Eq. (T), we might also expect that extending Eq. (TF) to
639
+ handle outliers will result in a relaxation which is more sta-
640
+ ble than Eq. (RT). In this section we will show how the
641
+ robust extension can be formulated, and as we will see in
642
+ Sec. 5 it is indeed significantly more stable with respect to
643
+ both noise and outliers.
644
+ In order to extend Eq. (TF) to handle outliers we will
645
+ proceed in a similar manner as in the case with epipolar
646
+ constraints. Starting by writing the cost function in terms of
647
+ Problem
648
+ Relaxation
649
+ Robust
650
+ Constraints
651
+ Variables
652
+ Eq. (6)
653
+ Eq. (T)
654
+ 
655
+ 1
656
+ 2n2 − 1
657
+ 2n + 1
658
+ 2n + 1
659
+ Eq. (11)
660
+ Eq. (RT)
661
+ 
662
+ 1
663
+ 2n2 + 2.5n + 1
664
+ 3n + 1
665
+ Eq. (7)
666
+ Eq. (TF)
667
+ 
668
+ 28n2 + 14n + 1
669
+ 8n + 4
670
+ Eq. (15)
671
+ Eq. (RTF)
672
+ 
673
+ 51n2 + 65n + 1
674
+ 12n + 4
675
+ Table 1. Summary of relaxations for the triangulation problem and
676
+ its robust extension.
677
+ the 2nd order variables yi = θixi:
678
+ min
679
+ ¯
680
+ X∈R4,xi∈R2
681
+ n
682
+
683
+ i=1
684
+
685
+ ∥yi − θi˜xi∥2 + (1 − θi)ci
686
+
687
+ s.t.
688
+ ¯XT ¯X = 1
689
+ yk
690
+ i bT
691
+ i ¯X − aT
692
+ ik ¯X = 0
693
+ θ2
694
+ i − θi = 0
695
+ θiyi = yi
696
+ i = 1, . . . , n
697
+ k = 1, 2.
698
+ (15)
699
+ For convenience we will denote the vertical concatenation
700
+ of y and θ as (y; θ) = yθ. For the relaxation we will then
701
+ use the parametrization z = (yθ⊗ ¯X; ¯X) = ¯yθ⊗ ¯X and gen-
702
+ erate redundant constraints from θ2
703
+ i − θi = 0 and θiyi = yi
704
+ by multiplying each equation by ¯Xs ¯Xt for s, t = 1, . . . , 4.
705
+ Resulting in the following relaxation:
706
+ min
707
+ Z∈S12n+4
708
+ +
709
+ tr(Z((M c
710
+ ˜x ⊗ I4) ⊕ 04×4))
711
+ s.t.
712
+ tr(Z(012n×12n ⊕ I4)) = 1
713
+ Z ∈ kron(3n + 1, 4)
714
+ tr(Z(e¯yθ
715
+ yk
716
+ i ⊗ bi − e¯yθ
717
+ θi ⊗ aik)eT
718
+ j ) = 0
719
+ Z ¯
720
+ Xsθi, ¯
721
+ Xtθi − Z ¯
722
+ Xs, ¯
723
+ Xtθi = 0
724
+ Z ¯
725
+ Xsθi, ¯
726
+ Xtyi − Z ¯
727
+ Xs, ¯
728
+ Xtyi = 0
729
+ i = 1, . . . n,
730
+ k = 1, 2
731
+ s, t = 1, . . . , 4
732
+ j = 1, . . . , 12n + 4.
733
+ (RTF)
734
+ Similarly to the epipolar case we are able to show that the
735
+ relaxation is tight in the noise and outlier-free case by ex-
736
+ plicitly constructing the globally optimal Lagrange multi-
737
+ pliers. Using the same approach we are also able to show
738
+ part of the criteria required for local stability with respect to
739
+ noise in the outlier-free case. See Appendix A for details.
740
+ With this we have 4 relaxations for the triangulation
741
+ problem corresponding to the non-robust and robust case
742
+ with the epipolar and the fractional parametrization. We
743
+ summarize the relaxations and their number of variables and
744
+ constraints in Tab. 1.
745
+ 6
746
+
747
+ 0
748
+ 20
749
+ 40
750
+ 60
751
+ 80
752
+ 100
753
+ noise level ( )
754
+ 20
755
+ 40
756
+ 60
757
+ 80
758
+ 100
759
+ % tight relaxations
760
+ 3 views
761
+ 0 outliers
762
+ 1 outliers
763
+ 2 outliers
764
+ 3 outliers
765
+ 4 outliers
766
+ 5 outliers
767
+ robust epipolar (RT)
768
+ robust fractional (RTF)
769
+ 0
770
+ 20
771
+ 40
772
+ 60
773
+ 80
774
+ 100
775
+ noise level ( )
776
+ 20
777
+ 40
778
+ 60
779
+ 80
780
+ 100
781
+ % tight relaxations
782
+ 5 views
783
+ 0
784
+ 20
785
+ 40
786
+ 60
787
+ 80
788
+ 100
789
+ noise level ( )
790
+ 20
791
+ 40
792
+ 60
793
+ 80
794
+ 100
795
+ % tight relaxations
796
+ 7 views
797
+ 0
798
+ 20
799
+ 40
800
+ 60
801
+ 80
802
+ 100
803
+ noise level ( )
804
+ 10
805
+ 2
806
+ 10
807
+ 1
808
+ 100
809
+ 101
810
+ average error
811
+ 3 views
812
+ 0
813
+ 20
814
+ 40
815
+ 60
816
+ 80
817
+ 100
818
+ noise level ( )
819
+ 10
820
+ 2
821
+ 10
822
+ 1
823
+ 100
824
+ 101
825
+ average error
826
+ 5 views
827
+ 0
828
+ 20
829
+ 40
830
+ 60
831
+ 80
832
+ 100
833
+ noise level ( )
834
+ 10
835
+ 2
836
+ 10
837
+ 1
838
+ 100
839
+ 101
840
+ average error
841
+ 7 views
842
+ Figure 3. Average number of tight relaxation (top) and estimation error (bottom) for 3, 5 and 7 views for the robust epipolar relaxation
843
+ Eq. (RT) and the robust fractional relaxation Eq. (RTF). We generate experiments for various noise levels and number of outliers as
844
+ described in Sec. 5.1.
845
+ 4.5. Rounding in the non-tight case
846
+ For non-tight cases the optimal ˆZ will have rank of at
847
+ least 2, which means we can’t recover the optimal solution
848
+ ˆz for the original problem Eq. (3). However we can still
849
+ construct an approximate solution through a rounding pro-
850
+ cedure. We start by setting ˆz to be the eigenvector corre-
851
+ sponding to the minimal eigenvalue, normalized such that
852
+ ˆzT Eˆz = 1 as in Eq. (3). We then apply a different pro-
853
+ cedure for each problem depending on the constraints. For
854
+ Eq. (T) we triangulate the resulting ˆxi (which in this case
855
+ will generally not satisfy the epipolar constraints) using the
856
+ linear method from [9] after rounding the smallest singu-
857
+ lar value of the data matrix to 0. For Eq. (RT) we do the
858
+ same except that we first determine the inlier parameters ˆθi
859
+ by rounding the corresponding entries of ˆz to 0 or 1. For
860
+ Eq. (TF) and Eq. (RTF) we compute the best-fitting tensor
861
+ product decomposition of ˆz using a singular value decom-
862
+ position, as described in [21] and use the same method as in
863
+ the epipolar case for determining the inlier parameters.
864
+ 5. Experiments
865
+ We
866
+ implement
867
+ all
868
+ relaxations
869
+ using
870
+ CVXPY
871
+ [8]
872
+ with
873
+ the
874
+ solver
875
+ MOSEK
876
+ [3]
877
+ using
878
+ the
879
+ setting
880
+ 0
881
+ 20
882
+ 40
883
+ 60
884
+ 80
885
+ 100
886
+ noise level ( )
887
+ 0
888
+ 20
889
+ 40
890
+ 60
891
+ 80
892
+ 100
893
+ % tight relaxations
894
+ 25 views
895
+ 0 outliers
896
+ 10 outliers
897
+ 20 outliers
898
+ 25 outliers
899
+ 0
900
+ 20
901
+ 40
902
+ 60
903
+ 80
904
+ 100
905
+ noise level ( )
906
+ 0
907
+ 20
908
+ 40
909
+ 60
910
+ 80
911
+ 100
912
+ % tight relaxations
913
+ 30 views
914
+ 0
915
+ 20
916
+ 40
917
+ 60
918
+ 80
919
+ 100
920
+ noise level ( )
921
+ 10
922
+ 2
923
+ 10
924
+ 1
925
+ 100
926
+ average error
927
+ 25 views
928
+ 0
929
+ 20
930
+ 40
931
+ 60
932
+ 80
933
+ 100
934
+ noise level ( )
935
+ 10
936
+ 2
937
+ 10
938
+ 1
939
+ 100
940
+ average error
941
+ 30 views
942
+ Figure 4. Average number of tight relaxation (top) and estimation
943
+ error(bottom) for 25 and 30 views using Eq. (RT).
944
+ MSK DPAR INTPNT CO TOL REL GAP
945
+ =
946
+ 10−14 for
947
+ the simulated experiments and 10−10 for the Reichstag
948
+ 7
949
+
950
+ 5
951
+ 10
952
+ 15
953
+ 20
954
+ 25
955
+ 30
956
+ number of views
957
+ 10
958
+ 1
959
+ 100
960
+ 101
961
+ solver time (s)
962
+ epipolar (T)
963
+ fractional (TF)
964
+ robust epipolar (RT)
965
+ robust fractional (RTF)
966
+ Figure 5. Average computation time for each solver, averaged over
967
+ all noise levels and number of outliers.
968
+ experiments, all other parameters are left on their defaults.
969
+ We find that working in units of pixels results in poorly
970
+ conditioned solutions, leading to ˆz not satisfying the
971
+ constraints to high accuracy even in cases where the
972
+ problem is known to be tight. To avoid this issue we use
973
+ the change of variables xi →
974
+ 1
975
+ W xi and adjust the intrinsics
976
+ accordingly. Since the scaling is the same for each point
977
+ the optimal solution remains unchanged, but we get much
978
+ closer to rank one solutions in practice due to the improved
979
+ numerical stability.
980
+ 5.1. Simulated experiments
981
+ We simulate triangulation problems as initially proposed
982
+ in [18] by placing n cameras on a sphere of radius 2 and
983
+ sample a point to be triangulated from the unit cube, see
984
+ Fig. 2 for some examples. The same setup was also used for
985
+ experiments in [1, 4]. For the reprojection model we simu-
986
+ late a pinhole camera with dimensions with width W =
987
+ 2108 and height H = 1162, focal length f = 1012.0027
988
+ and principal point p = (1054, 581). We simulate noisy
989
+ observations by adding Gaussian noise with standard devi-
990
+ ation σ to the ground truth image coordinates. When gener-
991
+ ating an outlier we select a view at random and replace the
992
+ measurement with a random point in the image.
993
+ We run the experiment for each method at various dif-
994
+ ferent noise levels and number of outliers. For each noise
995
+ level we run Eq. (RT) 375 times and Eq. (RTF) 60 times
996
+ for n = 3, 5 and 7 views and in each case add up to n − 2
997
+ outliers. The percentage of tight relaxations and the estima-
998
+ tion error can be seen in Fig. 3. We also run Eq. (RT) 30
999
+ times each for n = 25 and 30 with 0, 10, 20 and 25 out-
1000
+ liers, the results of which can be seen in Fig. 4. We don’t
1001
+ run Eq. (RTF) for these cases since we run into memory
1002
+ limitations with MOSEK.
1003
+ From Fig. 3 we can see that in general the fractional
1004
+ relaxation in Eq. (15) is significantly more stable than the
1005
+ epipolar relaxation Eq. (RT). In fact, across all experiments
1006
+ the fractional relaxation is tight in 99.8% of cases. How-
1007
+ ever, we can also note that the epipolar relaxation remains
1008
+ viable for lower noise levels, for instance in the case with
1009
+ n = 7 the relaxations perform similarly in terms of aver-
1010
+ age estimation error up until σ ≈ 60px and 3 outliers, after
1011
+ which the percentage of tight relaxations drop drastically.
1012
+ As can be seen from the average solver timings in Fig. 5
1013
+ 0
1014
+ 1
1015
+ 2
1016
+ 3
1017
+ 4
1018
+ 5
1019
+ number of outliers
1020
+ 75
1021
+ 80
1022
+ 85
1023
+ 90
1024
+ 95
1025
+ 100
1026
+ % tight relaxations
1027
+ 3, 5, 7 views
1028
+ 3 views
1029
+ 5 views
1030
+ 7 views
1031
+ 25 views
1032
+ 30 views
1033
+ robust epipolar (RT)
1034
+ robust fractional (RTF)
1035
+ 0
1036
+ 5
1037
+ 10
1038
+ 15
1039
+ 20
1040
+ 25
1041
+ number of outliers
1042
+ 0
1043
+ 20
1044
+ 40
1045
+ 60
1046
+ 80
1047
+ 100
1048
+ % tight relaxations
1049
+ 25, 30 views
1050
+ 0
1051
+ 1
1052
+ 2
1053
+ 3
1054
+ 4
1055
+ 5
1056
+ number of outliers
1057
+ 10
1058
+ 2
1059
+ 10
1060
+ 1
1061
+ 100
1062
+ 101
1063
+ error (m)
1064
+ 3, 5, 7 views
1065
+ 0
1066
+ 5
1067
+ 10
1068
+ 15
1069
+ 20
1070
+ 25
1071
+ number of outliers
1072
+ 10
1073
+ 2
1074
+ 10
1075
+ 1
1076
+ 100
1077
+ 101
1078
+ error (m)
1079
+ 25, 30 views
1080
+ Figure 6. Average number of tight relaxation (top) and estimation
1081
+ error(bottom) for Eq. (RT) and Eq. (RTF) on the Reichstag dataset
1082
+ as descriped in section Sec. 5.2.
1083
+ the fractional relaxations is also over one order of magni-
1084
+ tude slower than the epipolar relaxation, meaning that it
1085
+ might be preferable to use Eq. (RT) in cases where the qual-
1086
+ ity of observations is known to be high.
1087
+ 5.2. Reichstag dataset
1088
+ We also validate our relaxations on the Reichstag dataset
1089
+ from [11]. The dataset consits of 75 views of roughly 18k
1090
+ 3D points. We use the ground truth correspondences es-
1091
+ timated by structure from motion as detailed in [11] and
1092
+ generate each triangulation problem by selecting n views
1093
+ which all observe a common point. We then add up to n−2
1094
+ outliers by replacing the ground truth observations with a
1095
+ randomly selected keypoints in the same image. See Fig. 1
1096
+ for an example point with n = 22 views and 19 outliers.
1097
+ For n = 3, 5 and 7 views we run Eq. (RT) 375 times and
1098
+ Eq. (RTF) 60 times for each possible number of outliers.
1099
+ And similarly we run Eq. (RT) 120 times for n = 25 and 30
1100
+ views. The results are summarized in Fig. 6.
1101
+ Similarly to the simulated experiments we can note that
1102
+ the percentage of tight relaxations (and mean error) de-
1103
+ creases (and increases) steadily as more outliers are added,
1104
+ with a sharp drop when the number of inliers gets close
1105
+ to 2, with the fractional method outperforming the epipo-
1106
+ lar method.
1107
+ 6. Conclusion
1108
+ We proposed a global optimization framework robust
1109
+ multiview triangulation. To this end we derive semidefi-
1110
+ nite relaxations for triangulation losses that incorporate a
1111
+ truncated quadratic cost making them robust to both noise
1112
+ and outliers. On synthetic and real data we confirm that
1113
+ provably optimal triangulations can be computed and relax-
1114
+ ations remain empirically tight despite significant amounts
1115
+ of noise and outliers.
1116
+ References
1117
+ [1] Chris Aholt, Sameer Agarwal, and Rekha Thomas. A qcqp
1118
+ approach to triangulation. In European Conference on Com-
1119
+ 8
1120
+
1121
+ puter Vision, pages 654–667. Springer, 2012. 1, 2, 3, 8
1122
+ [2] Pasquale Antonante, Vasileios Tzoumas, Heng Yang, and
1123
+ Luca Carlone. Outlier-robust estimation: Hardness, mini-
1124
+ mally tuned algorithms, and applications. IEEE Transactions
1125
+ on Robotics, 38(1):281–301, 2022. 2, 5
1126
+ [3] MOSEK ApS. The MOSEK optimization toolbox for Python
1127
+ manual. Version 10.0., 2022. 3, 7
1128
+ [4] Diego Cifuentes. A convex relaxation to compute the nearest
1129
+ structured rank deficient matrix. SIAM Journal on Matrix
1130
+ Analysis and Applications, 42(2):708–729, 2021. 1, 2, 4, 5,
1131
+ 8, 10
1132
+ [5] Diego Cifuentes, Sameer Agarwal, Pablo A Parrilo, and
1133
+ Rekha R Thomas. On the local stability of semidefinite relax-
1134
+ ations. Mathematical Programming, 193(2):629–663, 2022.
1135
+ 3, 10
1136
+ [6] Sumanth Dathathri,
1137
+ Krishnamurthy Dvijotham,
1138
+ Alexey
1139
+ Kurakin, Aditi Raghunathan, Jonathan Uesato, Rudy R
1140
+ Bunel, Shreya Shankar, Jacob Steinhardt, Ian Goodfellow,
1141
+ Percy S Liang, et al. Enabling certification of verification-
1142
+ agnostic networks via memory-efficient semidefinite pro-
1143
+ gramming. Advances in Neural Information Processing Sys-
1144
+ tems, 33:5318–5331, 2020. 2
1145
+ [7] Amit Dekel, Linus Harenstam-Nielsen, and Sergio Cac-
1146
+ camo. Optimal least-squares solution to the hand-eye cali-
1147
+ bration problem. In Proceedings of the IEEE/CVF Confer-
1148
+ ence on Computer Vision and Pattern Recognition (CVPR),
1149
+ June 2020. 2
1150
+ [8] Steven Diamond and Stephen Boyd. CVXPY: A Python-
1151
+ embedded modeling language for convex optimization. Jour-
1152
+ nal of Machine Learning Research, 17(83):1–5, 2016. 7
1153
+ [9] Richard I. Hartley and Peter Sturm. Triangulation. Computer
1154
+ Vision and Image Understanding, 68(2):146–157, 1997. 2,
1155
+ 3, 7
1156
+ [10] Christoph Helmberg and Franz Rendl.
1157
+ A spectral bundle
1158
+ method for semidefinite programming. SIAM Journal on Op-
1159
+ timization, 10(3):673–696, 2000. 2
1160
+ [11] Yuhe Jin, Dmytro Mishkin, Anastasiia Mishchuk, Jiri Matas,
1161
+ Pascal Fua, Kwang Moo Yi, and Eduard Trulls.
1162
+ Image
1163
+ Matching across Wide Baselines: From Paper to Practice.
1164
+ International Journal of Computer Vision, 2020. 8
1165
+ [12] Fredrik Kahl and Didier Henrion. Globally optimal estimates
1166
+ for geometric reconstruction problems. International Jour-
1167
+ nal of Computer Vision, 74(1):3–15, 2007. 2
1168
+ [13] Lai Kang, Lingda Wu, and Yee-Hong Yang. Robust multi-
1169
+ view L2 triangulation via optimal inlier selection and 3D
1170
+ structure refinement. Pattern Recognition, 47(9):2974–2992,
1171
+ September 2014. 2
1172
+ [14] Jens Keuchel, Christoph Schnorr, Christian Schellewald, and
1173
+ Daniel Cremers.
1174
+ Binary partitioning, perceptual group-
1175
+ ing, and restoration with semidefinite programming. IEEE
1176
+ Transactions on Pattern Analysis and Machine Intelligence,
1177
+ 25(11):1364–1379, 2003. 2
1178
+ [15] Seong Hun Lee and Javier Civera. Closed-form optimal two-
1179
+ view triangulation based on angular errors.
1180
+ pages 2681–
1181
+ 2689, 10 2019. 2
1182
+ [16] Seong Hun Lee and Javier Civera. Robust uncertainty-aware
1183
+ multiview triangulation. CoRR, abs/2008.01258, 2020. 2
1184
+ [17] Brendan O’Donoghue, Eric Chu, Neal Parikh, and Stephen
1185
+ Boyd. Conic optimization via operator splitting and homoge-
1186
+ neous self-dual embedding. Journal of Optimization Theory
1187
+ and Applications, 169(3):1042–1068, June 2016. 3
1188
+ [18] Carl Olsson, Fredrik Kahl, and Richard Hartley.
1189
+ Projec-
1190
+ tive least-squares: Global solutions with local optimization.
1191
+ In 2009 IEEE Conference on Computer Vision and Pattern
1192
+ Recognition, pages 1216–1223, 2009. 8
1193
+ [19] Liangzu Peng, Mahyar Fazlyab, and Ren´e Vidal. Semidefi-
1194
+ nite relaxations of truncated least-squares in robust rotation
1195
+ search: Tight or not. In European Conference on Computer
1196
+ Vision, pages 673–691. Springer, 2022. 2
1197
+ [20] Johannes L. Sch¨onberger and Jan-Michael Frahm. Structure-
1198
+ from-motion revisited.
1199
+ In Proceedings of the IEEE/CVF
1200
+ Conference on Computer Vision and Pattern Recognition
1201
+ (CVPR), pages 4104–4113, 2016. 2
1202
+ [21] C. F. Van Loan and N. Pitsianis. Approximation with Kro-
1203
+ necker Products, pages 293–314. Springer Netherlands, Dor-
1204
+ drecht, 1993. 7
1205
+ [22] Emmett Wise, Matthew Giamou, Soroush Khoubyarian, Ab-
1206
+ hinav Grover, and Jonathan Kelly.
1207
+ Certifiably optimal
1208
+ monocular hand-eye calibration. In 2020 IEEE International
1209
+ Conference on Multisensor Fusion and Integration for Intel-
1210
+ ligent Systems (MFI), pages 271–278. IEEE, 2020. 2
1211
+ [23] Thomas Wodtko, Markus Horn, Michael Buchholz, and
1212
+ Klaus Dietmayer. Globally optimal multi-scale monocular
1213
+ hand-eye calibration using dual quaternions. In 2021 Inter-
1214
+ national Conference on 3D Vision (3DV), pages 249–257.
1215
+ IEEE, 2021. 2
1216
+ [24] Heng Yang and Luca Carlone. A quaternion-based certifi-
1217
+ ably optimal solution to the wahba problem with outliers. In
1218
+ Proceedings of the IEEE/CVF International Conference on
1219
+ Computer Vision (ICCV), October 2019. 2
1220
+ [25] Heng Yang and Luca Carlone. In perfect shape: Certifiably
1221
+ optimal 3d shape reconstruction from 2d landmarks. In Pro-
1222
+ ceedings of the IEEE/CVF Conference on Computer Vision
1223
+ and Pattern Recognition (CVPR), June 2020. 2
1224
+ [26] Heng Yang and Luca Carlone. Certifiably optimal outlier-
1225
+ robust geometric perception: Semidefinite relaxations and
1226
+ scalable global optimization. IEEE Transactions on Pattern
1227
+ Analysis and Machine Intelligence, 2022. 2, 5
1228
+ [27] Heng Yang, Jingnan Shi, and Luca Carlone. Teaser: Fast
1229
+ and certifiable point cloud registration. IEEE Transactions
1230
+ on Robotics, 37(2):314–333, 2020. 2
1231
+ [28] Ji Zhao. An efficient solution to non-minimal case essential
1232
+ matrix estimation. IEEE Transactions on Pattern Analysis
1233
+ and Machine Intelligence, 2020. 2
1234
+ 9
1235
+
1236
+ A. Local stability of fractional method
1237
+ In this section we will prove two of the criteria required
1238
+ for local stability for the robust fractional method Eq. (RTF)
1239
+ for noise-free and outlier-free measurements. Local stabil-
1240
+ ity for the non-robust case was shown already in [4] but we
1241
+ will provide an alternate proof here in our notation, since
1242
+ it will lead into the extension to the robust case. For this
1243
+ we will need the stronger version of Fact 2, which we will
1244
+ restate here loosely (see [5] Theorem 4.5 for more details).
1245
+ Using the definition A(ξ) = �k
1246
+ i=1 ξiAi:
1247
+ Fact 3. If we, in addition to the conditions in Fact 1, have
1248
+ that:
1249
+ (i) (ACQ) ACQ holds
1250
+ (ii) (smoothness) The the constraint set is smooth with re-
1251
+ spect to pertubations to the constraints
1252
+ (iii) (non-branch point) The nullspace of the multiplier ma-
1253
+ trix and the tangent space of the constrant-set at the
1254
+ optimum don’t intersect nontrivially: ker( ˆS) ∩ Tˆz =
1255
+ {0}
1256
+ (iv) (restricted slater) There exists ξ′, λ′ such that A(ξ′)−
1257
+ λ′E is positive definite on the subspace of vectors z⊥
1258
+ for which ˆSz⊥ = 0 and ˆzT z⊥ ̸= 0. In other words the
1259
+ part of the nullspace of ˆS which is orthogonal to the
1260
+ solution ˆz.
1261
+ The
1262
+ tangent
1263
+ space
1264
+ in
1265
+ (iii)
1266
+ is
1267
+ given
1268
+ by
1269
+ Tˆz
1270
+ =
1271
+ ker(ˆzT A1; . . . ; ˆzT Ak; ˆzT E).
1272
+ A.1. Non-robust version
1273
+ We will show (iii-iv) for a version of Eq. (TF) with some-
1274
+ what less constraints, noting that if we show (iii-iv) for the
1275
+ problem with less constraints we can then add in the remain-
1276
+ ing constraints back in and set the corresponding multipliers
1277
+ to zero to show that (iii-iv) holds for the original problem as
1278
+ well. Note however that since we don’t show (i-ii) the full
1279
+ proof is incomplete and is left for future work.
1280
+ Theorem 2. Assuming (i-ii) holds, the fractional relax-
1281
+ ation Eq. (TF) is tight and locally stable for noise-free and
1282
+ outlier-free measurements ˜xi, i = 1, . . . , n.
1283
+ Proof. We start by partitioning the Lagrange multipliers as
1284
+ ξ = (ϕ; α). Where ϕ = (ϕ1; . . . ; ϕ2n), and each ϕi ∈ R4
1285
+ contains the multipliers corresponding to ith reprojection
1286
+ constraint multiplied by the entries of ¯X (recall that there
1287
+ are two reprojection constraints per observation). Note that
1288
+ in the original formulation we also multiply by all the en-
1289
+ tries of x ⊗ ¯X as well, but as we will see these are not
1290
+ necessary for the proof to hold. And α corresponds to the
1291
+ kronecker product constraints.
1292
+ Since the observations ˜x are noise free we can denote the
1293
+ corresponding unique3 3D point in homogeneous coordi-
1294
+ nates as ˆX ∈ R4, normalized such that ∥ ˆX∥ = 1. It will be
1295
+ convenient to introduce the reparametrization u = ˜x which
1296
+ is the same as the observation vector, except partitioned
1297
+ such that u = (u1; . . . ; u2n), ui ∈ R, i.e. u2i+k = ˜xik
1298
+ for i = 1, . . . , n, k = 1, 2. The primal optimum is then ob-
1299
+ tained at ˆz = ¯u ⊗ ˆX, which is verified by setting ˆξ = ˆλ = 0
1300
+ to get ˆSˆz = (M˜x ⊗ I4)(¯u ⊗ ˆX) = (M˜x¯u) ⊗ ˆX = 0.
1301
+ We then note that, due to the properties of the kronecker
1302
+ product4 and that M˜x is positive semidefintie with corank 1,
1303
+ we have that M˜x ⊗ I4 is positive semidefinite with corank
1304
+ 4. So the conditions of Fact 1 are satisfied.
1305
+ Since the nullspace ker( ˆS) is 4-dimensional and contains
1306
+ the four orthogonal vectors ˆz = ¯u ⊗ ˆX and ˆzl = ¯u ⊗ ˆXl
1307
+ where ˆXT ˆXl = 0, ˆXT
1308
+ l ˆXk = 0 for k ̸= l = 1, 2, 3 we can
1309
+ parametrize z⊥ from (iv) as z⊥ = ¯u⊗ ˆX⊥ where ˆXT
1310
+ ⊥ ˆX = 0.
1311
+ For (iii) we need to show that the vectors that span
1312
+ ker( ˆS) are not in Tˆz, i.e. for any z ∈ ker( ˆS) either that
1313
+ ˆzT Aiz ̸= 0 for some constraint i, or that ˆzT Ez ̸= 0. This is
1314
+ the case since ˆzT Eˆz = 1 ̸= 0 and, letting Kijst be the kro-
1315
+ necker constraint matrix corresponding to index st of block
1316
+ ij, ˆzT Kijstzl = uiuj( ˆXs ˆXlt − ˆXt ˆXls) is nonzero for at
1317
+ least some index ijst unless u = 0 or ˆX and ˆXl are paral-
1318
+ lel, which is not the case by construction.
1319
+ To show (iv), we set α′ = λ′ = 0 and ϕ′
1320
+ i = uibi − ai,
1321
+ and verify that with z⊥ as above:
1322
+ zT
1323
+ ⊥A(ϕ′, 0)z⊥ =
1324
+ 2n
1325
+
1326
+ i=1
1327
+ ˆXT
1328
+ ⊥ϕ′
1329
+ i(uibi − ai) ˆX⊥
1330
+ =
1331
+ 2n
1332
+
1333
+ i=1
1334
+ ((uibi − ai)T ˆX⊥)2 > 0
1335
+ (16)
1336
+ where the final strict inequality follows from the fact that
1337
+ each term is strictly positive as (uibi − ai)T ˆX = 0 by the
1338
+ original constraints and ˆX⊥ is orthogonal to ˆX.
1339
+ We note that, while not all constraints used in Eq. (TF)
1340
+ are required for (iii-iv) to hold, we have found some cases
1341
+ where adding the additional constraints results in a tighter
1342
+ relaxation in the presence of noise, so we used the full set
1343
+ of constraints in our experiments.
1344
+ A.2. Robust version
1345
+ We now move on to the robust fractional method
1346
+ Theorem 3. Assuming (i-ii) holds, the fractional relax-
1347
+ ation Eq. (RTF) is tight and locally stable for noise-free and
1348
+ outlier-free measurements ˜xi, i = 1, . . . , n.
1349
+ 3assuming the observations are not degenerate, e.g. not all on a line.
1350
+ 4For matrices A ∈ Sn, B ∈ Sm with eigenvalues αi, βj the eigen-
1351
+ values of the kronecker product A ⊗ B are given by the products of the
1352
+ eigenvalues αiβj for i = 1, . . . , n, j = 1, . . . , m.
1353
+ 10
1354
+
1355
+ Proof. Partition
1356
+ the
1357
+ Lagrange
1358
+ multipliers
1359
+ as
1360
+ ξ
1361
+ =
1362
+ (ϕ; µ; η; α), where as in Theorem 2 ϕ corresponds to the
1363
+ reprojection constraints and α corresponds to the kronecker
1364
+ constraints. We let µ ∈ R32n correspond to the constraints
1365
+ ¯Xs ¯Xt(yikθi − yik) = 0 for s, t = 1, 2, 3, 4, k = 1, 2
1366
+ and i = 1, . . . , n.
1367
+ And finally we similarly have that
1368
+ η ∈ R16n = (η1; . . . ; ηn), ηi ∈ R16 corresponds to the
1369
+ constraints ¯Xs ¯Xt(θ2
1370
+ i − θi) = 0. For each view i we collect
1371
+ the corresponding subset of η into a 4×4 matrix Hi defined
1372
+ such that ¯XT Hi ¯X = �4
1373
+ s,t=1 ηist ¯Xs ¯Xt.
1374
+ To verify the global optimum we start by setting ˆz =
1375
+ ¯uθ ⊗ ˆX where uθ = (˜x; 1n). We then note that the con-
1376
+ straint matrices for for the ηi-constraints can be written as a
1377
+ kronecker product to get:
1378
+ S(0, 0, η, 0) = M c
1379
+ ˜x ⊗ I4 +
1380
+ n
1381
+
1382
+ i=1
1383
+ Ti ⊗ Hi
1384
+ (17)
1385
+ where each Ti ∈ S3n+1 is defined such that ¯yT
1386
+ θ Ti¯yθ = θ2
1387
+ i −
1388
+ θi for arbitrary yθ as in Sec. 4.4. We then set ˆη such that
1389
+ ˆHi = ciI4 and ˆϕ = ˆµ = ˆα = ˆλ = 0 to get:
1390
+ ˆS = S(0, 0, ˆη, 0) = (M c
1391
+ ˜x +
1392
+ n
1393
+
1394
+ i=1
1395
+ ciTi) ⊗ I4.
1396
+ (18)
1397
+ Now, by the same argument as in Theorem 1 the matrix
1398
+ M c
1399
+ ˜x + �n
1400
+ i=1 ciTi is positive semidefinite with corank 1, so
1401
+ ˆS is positive semidefinite with corank 4. Meaning that the
1402
+ conditions of Fact 1 are satisfied. (iii) also follows using
1403
+ the same argument based on the kronecker constraints as in
1404
+ Theorem 2.
1405
+ Finally, for (iv) we note that ker( ˆS) is spanned by ˆz and
1406
+ ˆzl = ¯uθ ⊗ ˆXl, l = 1, 2, 3, so by setting µ′ = η′ = α′ =
1407
+ λ′ = 0 and ϕ′
1408
+ i = uibi − ai restricted slater for ˆS follows in
1409
+ the same way as in Eq. (16).
1410
+ 11
1411
+
FNFJT4oBgHgl3EQfCyyx/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff