jackkuo commited on
Commit
38d97d6
·
verified ·
1 Parent(s): 56e21e0

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -NAzT4oBgHgl3EQf_P6F/content/tmp_files/2301.01945v1.pdf.txt +3160 -0
  2. -NAzT4oBgHgl3EQf_P6F/content/tmp_files/load_file.txt +0 -0
  3. -dAyT4oBgHgl3EQf3fmN/content/2301.00770v1.pdf +3 -0
  4. -dAyT4oBgHgl3EQf3fmN/vector_store/index.faiss +3 -0
  5. -dAyT4oBgHgl3EQf3fmN/vector_store/index.pkl +3 -0
  6. -dFQT4oBgHgl3EQf6zaC/content/tmp_files/2301.13440v1.pdf.txt +748 -0
  7. -dFQT4oBgHgl3EQf6zaC/content/tmp_files/load_file.txt +0 -0
  8. .gitattributes +85 -0
  9. 09FAT4oBgHgl3EQfjh3M/content/2301.08606v1.pdf +3 -0
  10. 1tAyT4oBgHgl3EQfofi7/content/tmp_files/2301.00509v1.pdf.txt +0 -0
  11. 1tAyT4oBgHgl3EQfofi7/content/tmp_files/load_file.txt +0 -0
  12. 2tA0T4oBgHgl3EQfM_-6/content/tmp_files/2301.02141v1.pdf.txt +955 -0
  13. 2tA0T4oBgHgl3EQfM_-6/content/tmp_files/load_file.txt +361 -0
  14. 2tE0T4oBgHgl3EQfuwEX/content/tmp_files/2301.02608v1.pdf.txt +1639 -0
  15. 2tE0T4oBgHgl3EQfuwEX/content/tmp_files/load_file.txt +0 -0
  16. 3NE0T4oBgHgl3EQfeABh/content/2301.02384v1.pdf +3 -0
  17. 3NE0T4oBgHgl3EQfeABh/vector_store/index.faiss +3 -0
  18. 3NE0T4oBgHgl3EQfeABh/vector_store/index.pkl +3 -0
  19. 3tFQT4oBgHgl3EQfHDWI/content/2301.13247v1.pdf +3 -0
  20. 3tFQT4oBgHgl3EQfHDWI/vector_store/index.faiss +3 -0
  21. 3tFQT4oBgHgl3EQfHDWI/vector_store/index.pkl +3 -0
  22. 4dAyT4oBgHgl3EQfpPgc/vector_store/index.faiss +3 -0
  23. 4dE0T4oBgHgl3EQfvQGV/vector_store/index.faiss +3 -0
  24. 4dE0T4oBgHgl3EQfvQGV/vector_store/index.pkl +3 -0
  25. 7NE0T4oBgHgl3EQffQAA/content/tmp_files/2301.02400v1.pdf.txt +2236 -0
  26. 7NE0T4oBgHgl3EQffQAA/content/tmp_files/load_file.txt +0 -0
  27. 7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf +3 -0
  28. 7NE1T4oBgHgl3EQfTgOa/vector_store/index.faiss +3 -0
  29. 7NE1T4oBgHgl3EQfTgOa/vector_store/index.pkl +3 -0
  30. 7dAyT4oBgHgl3EQfcvf_/content/2301.00291v1.pdf +3 -0
  31. 7dAyT4oBgHgl3EQfcvf_/vector_store/index.faiss +3 -0
  32. 7dAyT4oBgHgl3EQfcvf_/vector_store/index.pkl +3 -0
  33. 7tE2T4oBgHgl3EQf7whk/vector_store/index.faiss +3 -0
  34. 8tFST4oBgHgl3EQfaTh3/content/2301.13795v1.pdf +3 -0
  35. 8tFST4oBgHgl3EQfaTh3/vector_store/index.faiss +3 -0
  36. 8tFST4oBgHgl3EQfaTh3/vector_store/index.pkl +3 -0
  37. 99AyT4oBgHgl3EQfqfgS/content/2301.00542v1.pdf +3 -0
  38. 99AyT4oBgHgl3EQfqfgS/vector_store/index.faiss +3 -0
  39. 99AyT4oBgHgl3EQfqfgS/vector_store/index.pkl +3 -0
  40. 9NAyT4oBgHgl3EQfQ_Zv/content/2301.00057v1.pdf +3 -0
  41. 9NAyT4oBgHgl3EQfQ_Zv/vector_store/index.pkl +3 -0
  42. 9dFQT4oBgHgl3EQf5zZD/content/2301.13436v1.pdf +3 -0
  43. 9dFQT4oBgHgl3EQf5zZD/vector_store/index.faiss +3 -0
  44. 9dFQT4oBgHgl3EQf5zZD/vector_store/index.pkl +3 -0
  45. BNE2T4oBgHgl3EQf8gli/content/tmp_files/2301.04219v1.pdf.txt +741 -0
  46. BNE2T4oBgHgl3EQf8gli/content/tmp_files/load_file.txt +271 -0
  47. BNFAT4oBgHgl3EQfsB5-/content/tmp_files/2301.08656v1.pdf.txt +1052 -0
  48. BNFAT4oBgHgl3EQfsB5-/content/tmp_files/load_file.txt +0 -0
  49. C9E2T4oBgHgl3EQf9QlY/content/2301.04226v1.pdf +3 -0
  50. C9E2T4oBgHgl3EQf9QlY/vector_store/index.pkl +3 -0
-NAzT4oBgHgl3EQf_P6F/content/tmp_files/2301.01945v1.pdf.txt ADDED
@@ -0,0 +1,3160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Optimizing density-functional simulations for two-dimensional metals
2
+ Kameyab Raza Abidi and Pekka Koskinen∗
3
+ NanoScience Center, Department of Physics, University of Jyv¨askyl¨a, 40014 Jyv¨askyl¨a, Finland
4
+ (Dated: January 6, 2023)
5
+ Unlike covalent two-dimensional (2D) materials like graphene, 2D metals have non-layered struc-
6
+ tures due to their non-directional, metallic bonding. While experiments on 2D metals are still scarce
7
+ and challenging, density-functional theory (DFT) provides an ideal approach to predict their basic
8
+ properties and assist in their design. However, DFT methods have been rarely benchmarked against
9
+ metallic bonding at low dimensions. Therefore, to identify optimal DFT attributes for a desired
10
+ accuracy, we systematically benchmark exchange-correlation functionals from LDA to hybrids and
11
+ basis sets from plane waves to local basis with different pseudopotentials. With 1D chain, 2D hon-
12
+ eycomb, 2D square, 2D hexagonal, and 3D bulk metallic systems, we compare the DFT attributes
13
+ using bond lengths, cohesive energies, elastic constants, densities of states, and computational costs.
14
+ Although today most DFT studies on 2D metals use plane waves, our comparisons reveal that local
15
+ basis with often-used PBE exchange-correlation is well sufficient for most purposes, while plane
16
+ waves and hybrid functionals bring limited improvement compared to the greatly increased compu-
17
+ tational cost. These results ease the demands for generating DFT data for better interaction with
18
+ experiments and for data-driven discoveries of 2D metals incorporating machine learning algorithms.
19
+ I.
20
+ INTRODUCTION
21
+ The discovery of graphene nearly two decades ago
22
+ sparked an entire new research field of two-dimensional
23
+ (2D) materials [1]. The 2D materials pedigree has ex-
24
+ panded ever since, thanks to unique properties and vi-
25
+ sions for novel applications [2–5].
26
+ Most 2D materials
27
+ are covalently bound and have layered structures eas-
28
+ ily exfoliable from three-dimensional (3D) bulk matter
29
+ [6, 7]. However, in contrast to directional covalent bond-
30
+ ing, non-directional metallic bonding prefers large coor-
31
+ dination numbers, which renders low-dimensional metal
32
+ structures energetically unfavourable. Despite this pref-
33
+ erence for large coordination, in 2014 atomically thin sta-
34
+ ble iron patches were discovered in graphene pores [8].
35
+ This discovery has been followed by rapid progress in re-
36
+ search on 2D metals and alloys, making 2D metals a full
37
+ member the 2D materials family [9–14].
38
+ The wavering stability of 2D metals makes experi-
39
+ ments challenging, whereby research relies heavily on
40
+ computations. A reasonable description of metallic bond-
41
+ ing requires electronic structure simulations, which has
42
+ made the density-functional theory (DFT) [15, 16] the
43
+ workhorse method for modeling 2D metals [17–31]. Most
44
+ DFT studies have chosen plane wave (PW) basis sets [32]
45
+ and the non-empirical Perdew-Burke-Ernzerhof (PBE)
46
+ exchange-correlation functional [33].
47
+ These choices for
48
+ DFT attributes are plausible in the context of delocal-
49
+ ized electrons in periodic systems that are still lacking
50
+ experimental data. However, DFT attributes have not
51
+ been systematically benchmarked for metallic bonding
52
+ at low dimensions. It is not certain whether these stan-
53
+ dard choices are efficient and accurate enough or they if
54
+ simply waste computational resources.
55
+ ∗ pekka.j.koskinen@jyu.fi
56
+ The DFT attributes consist of few central choices. The
57
+ first choice is the flavor of exchange-correlation (xc) func-
58
+ tional, the level of which is of central importance for con-
59
+ sistent results. A functional performing well in some sys-
60
+ tems may perform poorly in others. Here we make use
61
+ of several xc-functionals to obtain a systematic picture
62
+ of their performance in low-dimensional metallic bond-
63
+ ing [34]. The second choice is the type of basis function.
64
+ Plane waves are suitable for periodic systems, whose elec-
65
+ trons fill out the entire simulation cell. Unfortunately,
66
+ the non-periodic directions of low-dimensional systems
67
+ require large vacuum regions that make PW simulations
68
+ inefficient compared to modeling bulk. Thus, an addi-
69
+ tional choice in PW simulations is an optimum size of the
70
+ vacuum. In this respect, PW and grid-based DFT share
71
+ the same challenges [35, 36]. Another alternative for ba-
72
+ sis is linear combination of atomic orbitals (LCAO), and
73
+ controlling its size provides a powerful handle to trade
74
+ between accuracy and efficiency [37].
75
+ The choice of basis type has implications beyond mere
76
+ accuracy. For example, PW is not suitable for studying
77
+ electron transport using nonequilibrium Green’s function
78
+ method in nanoscaled devices [38]. In addition, with the
79
+ coming of data science and machine learning in materials
80
+ science, lots of consistent DFT data is required for ma-
81
+ chine learning -enabled 2D metals studies [39–43]. This
82
+ efficiency demand calls for a critical examination of the
83
+ necessity of PW method to model metallic bonding in
84
+ low dimensions.
85
+ Third choice for periodic systems is the number of k-
86
+ points along periodic directions for the desired accuracy.
87
+ Fourth choice is the level of Fermi-broadening of elec-
88
+ tronic states, which is partly a physical choice but mostly
89
+ a necessity for rapid convergence of the self-consistent it-
90
+ eration of the electron density. In practice, there are a
91
+ plethora of other choices to make for numerical stability
92
+ and speedup, but they are often chosen as default val-
93
+ ues that have been previously fine-tuned for each DFT
94
+ arXiv:2301.01945v1 [cond-mat.mtrl-sci] 5 Jan 2023
95
+
96
+ 2
97
+ FIG. 1. Schematics of the systems with different dimensional-
98
+ ities and coordination numbers C: 1D chain (C = 2), 2D hon-
99
+ eycomb (C = 3), 2D square (C = 4), 2D hexagonal (C = 6),
100
+ and 3D bulk (C = 12). The quadrilaterals show the simula-
101
+ tion cells.
102
+ code. In this article, we consider the above-mentioned
103
+ choices of DFT attributes regarding xc-functionals, basis
104
+ sets, vacuum, k-point sampling, and Fermi-broadening,
105
+ and juxtapose their performance against various prop-
106
+ erties of selected low-dimensional metal systems.
107
+ The
108
+ selected systems include a one-dimensional chain (coor-
109
+ dination number C = 2), three two-dimensional lattices
110
+ (C = 3, 4, and 6), and a 3D bulk (C = 12) (Figure 1).
111
+ These systems enable comparative analysis of the perfor-
112
+ mance of DFT attributes in various dimensions. Being
113
+ low-dimensional systems, these structures are prone to
114
+ various symmetry-breaking deformations, such as out-of-
115
+ plane buckling in 2D or Peierls distortions in 1D [26, 44].
116
+ However, in order to enable unambiguous comparison of
117
+ the effect of dimensionality and coordination and avoid
118
+ making unfounded conclusions based on incomplete set
119
+ of deformations, we retain our focus on these ideal, non-
120
+ deformed systems.
121
+ We also compare the performance
122
+ and speed of DFT to the density-functional tight-binding
123
+ (DFTB) method, which is the next-in-line approximation
124
+ to DFT [45]. One of our main conclusions is that, for
125
+ general purposes, DFT-LCAO can be chosen over the de-
126
+ fault DFT-PW without compromising accuracy, a choice
127
+ which enables simulating transport and helps generating
128
+ DFT data more effortlessly.
129
+ Our treatise will advance
130
+ DFT modeling of 2D metals and help boosting the inter-
131
+ action with experiments.
132
+ II.
133
+ COMPUTATIONAL METHODS
134
+ The basic idea DFT is to use the variational principle
135
+ to generate exact ground state energy and density for the
136
+ systems of interest [15]. The ground state energy E is a
137
+ functional of the electron density (n),
138
+ E[n] = T[n] + Eext[n] + EH[n] + Exc[n] ,
139
+ (1)
140
+ where T[n] is the Kohn-Sham kinetic energy for the fic-
141
+ titious non-interacting electron system, Eext[n] is the ex-
142
+ TABLE I. Exchange-correlation functionals used in this work.
143
+ Functional and its family
144
+ Refs.
145
+ Local Density Approximation (LDA)
146
+ [15, 55]
147
+ Generalized Gradient Approximation (GGA)
148
+ [56]
149
+ RPBE
150
+ [57]
151
+ PW91
152
+ [58, 59]
153
+ PBE
154
+ [33]
155
+ Hybrid Functionals
156
+ [60]
157
+ B3LYP
158
+ [61]
159
+ PBE0
160
+ [62]
161
+ HSE03 (screening ω = 0.15 Bohr−1)
162
+ [63]
163
+ HSE06 (screening ω = 0.11 Bohr−1)
164
+ [64]
165
+ ternal potential energy, EH[n] is the Hartree energy, and
166
+ Exc[n] is the exchange-correlation energy. The xc term
167
+ attempts to capture the complex features of many-body
168
+ quantum mechanics, and a variety of approximate xc
169
+ functionals have been developed for different purposes
170
+ [34].
171
+ As a result, the quality of xc functional mostly
172
+ determines the quality of the results.
173
+ Here, using the
174
+ QuantumATK (S-2021.06) DFT implementation [46], we
175
+ explore the set of eight xc functionals ranging from local
176
+ density approximation to hybrid functionals (Table I).
177
+ We used two types of basis sets, plane waves and
178
+ LCAOs. The wave-function energy cutoff for plane waves
179
+ was 800 eV. Cutoff needed no separate analysis for low-
180
+ dimensional metals, because it depends only on element
181
+ and pseudopotential [47].
182
+ For LCAOs, we used three
183
+ variants: LCAO-M(edium), LCAO-H(igh), and LCAO-
184
+ U(ltra). These variants derive from the numerical basis
185
+ sets of the FHI-aims package [48], but are further opti-
186
+ mized for computational speed of the LCAO calculator.
187
+ For example, for Ag the radial functions for Medium ba-
188
+ sis are 3s/2p/1d (14), for High 4s/3p/5d/1f (35), and
189
+ for Ultra 4s/3p/5d/2f/1g (51), with brackets displaying
190
+ the total number of orbitals per atom [37, 48]. Local ba-
191
+ sis sets were used in conjunction with norm-conserving
192
+ PseudoDojo pseudopotentials [49].
193
+ Further, the total energy convergence criteria for self-
194
+ consistent electron density was ≤ 10−7eV. System ge-
195
+ ometries were optimized to forces below 1 meV�A
196
+ −1 and
197
+ stresses below 0.3 meV�A
198
+ −3 using the LBFGS [50] algo-
199
+ rithm.
200
+ The k-points were sampled by the Monkhorst-
201
+ Pack method [51]. All calculations were spin-polarized
202
+ and the initial guess for lattice parameters were adopted
203
+ from the Atlas of 2D metals [20].
204
+ To complement the results with various DFT at-
205
+ tributes with wider context, we analyzed the systems
206
+ with Ag also with DFTB method at the level of self-
207
+ consistent charge [45, 52]. The Ag parametrizations were
208
+ taken from earlier studies [53, 54].
209
+
210
+ (a) 1D Chain
211
+ (b) 2D Honeycomb (hc)
212
+ (c) 2D Square (sq)
213
+ OODD
214
+ (d) 2D Hexagonal (hex)
215
+ (e) 3D Bulk
216
+ X3
217
+ III.
218
+ RESULTS AND DISCUSSION
219
+ A.
220
+ Convergence Analysis
221
+ We made various systematic convergence analyses for
222
+ the group of coinage metals Cu, Ag, and Au [17–19].
223
+ Computational and experimental studies have shown
224
+ that the free-standing monolayer patches of these met-
225
+ als are stabilized by graphene pores [13, 22, 24, 31]. The
226
+ analyses were done using PBE xc-functional [33], projec-
227
+ tor augmented waves (PAW) for core electrons [65], and
228
+ plane waves for valence electrons.
229
+ a.
230
+ k-point convergence:
231
+ The k-point convergence
232
+ was studied using the 2D systems with a converged vac-
233
+ uum of 15 �A in the non-periodic direction (as confirmed
234
+ below).
235
+ The total energy is practically converged at
236
+ 30 × 30 × 1 k-point sampling, and we define the energy
237
+ tolerance using this value,
238
+ ∆E = ENk×Nk×1 − E30×30×1 .
239
+ (2)
240
+ Apart from rapid convergence at very few k-points, the
241
+ convergence is exponential. Chosen relative energy tol-
242
+ erance can therefore be approximated by
243
+ log δ = A1 + B1L ,
244
+ (3)
245
+ where δ =| ∆E | /E3D is an (approximate) relative en-
246
+ ergy tolerance, the ratio between energy tolerance to the
247
+ 3D cohesive energy E3D [66]. The length L = acNk, the
248
+ product of simulation box length and the number of k-
249
+ points in corresponding direction, is the maximum period
250
+ of the Bloch wave function. Using L as the convergence
251
+ parameter helps identifying the required k-point sam-
252
+ pling for variable simulation cell sizes in later research.
253
+ The k-point convergence is not monotonic; more k-
254
+ points does not necessarily mean better accuracy (Fig-
255
+ ure 2). However, for different system symmetries and cell
256
+ shapes and sizes, the ansatz (3) works satisfactorily. Lin-
257
+ ear regression analysis to the data gives the parameters
258
+ A1 = −1.29 and B1 = −0.036 �A
259
+ −1 (Figure 2). Inverting
260
+ Eq. (3), we can obtain an optimal number of k-points for
261
+ given simulation cell size ac and desired accuracy δ as
262
+ Nk(δ) = ceil
263
+ �L(δ)
264
+ ac
265
+
266
+ ,
267
+ (4)
268
+ where ceil(x) = ⌈x⌉ maps x to the least integer greater
269
+ than or equal to x. For instance, with relative accuracy
270
+ δ = 10−3 one obtains the Nk = ⌈47 ˚A/ac⌉, suggesting
271
+ Γ-point calculations for 4.7-nm-sized simulation cells. In
272
+ subsequent analyses, we use Nk = 13, suggesting ∼ δ =
273
+ 10−2.5...−3 relative tolerance.
274
+ b.
275
+ Vacuum convergence:
276
+ Using plane waves requires
277
+ periodicity in all directions, regardless of system dimen-
278
+ sions. Low-dimensional systems need therefore a large
279
+ vacuum region in the non-periodic direction to avoid spu-
280
+ rious interactions with periodic images of the system.
281
+ Larger vacuum means more volume and computational
282
+ FIG. 2. The k-point convergence of total energy for 2D sys-
283
+ tems made of coinage metals. δ is the relative energy toler-
284
+ ance and L is the maximum period of the Bloch function [cf.
285
+ Eq.(4)]. The linear fit refers to Eq. (3).
286
+ cost, implying a need to minimize the vacuum without
287
+ affecting the energy. For a complete picture, we inves-
288
+ tigate vacuum convergence not only in 2D systems and
289
+ but also in 1D chains and free atoms.
290
+ We normalize atoms’ dimensions by their van der
291
+ Waals radii RvdW and consider the normalized vacuum
292
+ Lnorm = Lvac/RvdW , where Lvac is the vacuum along the
293
+ non-periodic direction (i.e., the separation between peri-
294
+ odic images.) The total energy is practically converged
295
+ at 8-˚A vacuum, and we define the energy tolerance as
296
+ ∆E = E(Lvac) − E(8 �A) and relative energy tolerance
297
+ again as δ = ∆E/E3D. The tolerance converges roughly
298
+ exponentially, log δ = A2 + B2Lnorm (Figure 3). Conse-
299
+ quently, the vacuum for a desired relative energy accu-
300
+ racy for a given element can be estimated from
301
+ Lvac(δ) = RvdW
302
+ (log δ − A2)
303
+ B2
304
+ ,
305
+ (5)
306
+ where the parameters A2 = 2.38 and B2 = −1.65 were
307
+ obtained by linear regression. For instance, the relative
308
+ tolerance δ = 10−3 requires Lvac = 3.3 × RvdW .
309
+ In
310
+ subsequent analysis, if not said otherwise, we will use
311
+ Lvac = 10 �A, which for Ag means δ = 10−4.2, in rough
312
+ alignment with k-point convergence.
313
+ Still, such a single estimate is indicative at best. The
314
+ vacuum convergence follows roughly the coordination
315
+ number, free atom converging the slowest, hexagonal sys-
316
+ tem the fastest (Figure 3).
317
+ This suggests that for a
318
+ given element the vacuum should be set by the lowest-
319
+ coordinated atom—or by the free atom to be on the
320
+ safe side. After all, a modest 16 % increase in vacuum
321
+ (Lnorm = 2.5 → 3.0) may increase the relative accuracy
322
+ by an order of magnitude. Thus, a single fit as above
323
+ is not the best guideline and the vacuum convergence is
324
+ best considered by case basis, especially in the presence
325
+
326
+ Au
327
+ 100
328
+ Au.
329
+ Cu.
330
+ Ag.
331
+ SO
332
+ SC
333
+ Auhc
334
+ 10-1
335
+ Linear fit
336
+ 10-2
337
+ 10-3
338
+ 10-5
339
+ 10-6
340
+ 10-7
341
+ 10-8
342
+ 20
343
+ 40
344
+ 60
345
+ 80
346
+ 100
347
+ 120
348
+ 0
349
+ 140
350
+ L (A)4
351
+ FIG. 3. Vacuum convergence of the total energy for 1D and
352
+ 2D systems made of coinage metals. δ is the relative energy
353
+ tolerance and Lnorm is vacuum normalized in terms of van der
354
+ Waals radii. Free atom vacuum convergences are added for
355
+ comparison.
356
+ of possible charge transfer.
357
+ B.
358
+ Effect of Fermi broadening
359
+ In principle the Fermi-broadening is a physical param-
360
+ eter intimately linked to the electronic temperature T;
361
+ in practice it is frequently used as a technical parameter
362
+ to accelerate the self-consistency convergence. The tech-
363
+ nical attitude towards broadening is evident in available
364
+ methods other than the Fermi-function. Computational
365
+ literature shows a plethora of different values for Fermi-
366
+ broadening, but its effect is rarely discussed in detail. For
367
+ insulators and semiconductors the broadening is inconse-
368
+ quential, but for metals it matters. In this section, we
369
+ want to investigate its effect on the energetics systemat-
370
+ ically, for sheer completeness and future reference.
371
+ Ideally, broadening should be chosen to enable rapid
372
+ convergence without conflicting too much with other con-
373
+ vergence parameters. We investigated the effect of broad-
374
+ ening by increasing the electronic temperature T from
375
+ 10−5 K to 1000 K and looked at the energy difference
376
+ ∆E(T) = E(T) − E(10−5 K).
377
+ (6)
378
+ The temperature 10−5 K was the smallest that enabled
379
+ robust convergence for all systems. Vacuum was 15 ˚A
380
+ for all systems. As a result, 1D systems were most sensi-
381
+ tive to the broadening, 3D bulk systems were least sen-
382
+ sitive (Figure 4). This result is plausible, because the
383
+ density of states is the smallest for 1D systems. In 2D
384
+ and 3D systems there are more k-points, density of states
385
+ at Fermi-level is greater, and state occupations average
386
+ over a larger set of states, consequently diminishing the
387
+ influence of broadening. The 2D systems show energy
388
+ FIG. 4. The effect of electronic temperature on the cohesion
389
+ energy of coinage metals in different dimensions.
390
+ variation around ∼ 10 meV upon increasing temperature
391
+ to 1000 K, corresponding to 86 meV energy broaden-
392
+ ing (Figure 4). For the remainder of the calculations in
393
+ this article, we used the electronic temperature of 580 K
394
+ (�=0.05 eV).
395
+ C.
396
+ Performance of exchange-correlation functionals
397
+ We investigated the performance of xc functionals by
398
+ first fixing certain attributes.
399
+ To eliminate uncertain-
400
+ ties from an insufficient description of valence electrons,
401
+ we used the most complete PW basis set and the PAW
402
+ potential to describe the core electrons.
403
+ We used the
404
+ converged number of k-points and size of vacuum from
405
+ previous analysis, as well as the recently adopted 0.05 eV
406
+ broadening. With these choices, we may concentrate on
407
+ the performance of xc-functionals without worrying too
408
+ much about artifacts from other sources.
409
+ We also investigate xc functionals by using only Ag
410
+ systems. By belonging to the same group, the coinage
411
+ metals follow similar trends and it is reasonable to expect
412
+ other metals to follow the trends of Ag. Still, we do not
413
+ claim Ag displays completely universal trends, for there
414
+ are elements that have complex many-body effects even
415
+ beyond the capabilities of DFT.
416
+ In the following, we compare the xc-functional perfor-
417
+ mance against bond lengths, cohesive energies, and elas-
418
+ tic moduli of all 1D, 2D, and 3D systems. The electronic
419
+ structure is compared in terms of later-introduced char-
420
+ acteristic figures related to the density of states at the
421
+ Fermi-level.
422
+ a.
423
+ Cohesive Energies:
424
+ The cohesive energy was de-
425
+ fined as
426
+ Ecoh = Efree − E/N ,
427
+ (7)
428
+
429
+ 100
430
+ 10
431
+ Ag1D
432
+ Ag
433
+ AuFree
434
+ AuD
435
+ Auhex
436
+ ny
437
+ AU
438
+ CuiD
439
+ CuFree
440
+ hex
441
+ 10-4
442
+ Linear fit
443
+ 1.5
444
+ 2.0
445
+ 2.5
446
+ 3.0
447
+ 3.5
448
+ norm0
449
+ .5
450
+ (Aa)
451
+ △E
452
+ -10
453
+ -15
454
+ 3D
455
+ 2D
456
+ 1D
457
+ -20
458
+ 400
459
+ 0
460
+ 200
461
+ 600
462
+ 800
463
+ 1000
464
+ Electronic temperature
465
+ (K5
466
+ FIG. 5. The cohesive energies of optimized 1D, 2D (hc, sq,
467
+ and hex), and 3D systems of Ag with different xc-functionals.
468
+ where E is the energy of the system with N atoms and
469
+ Efree is the energy of free atom calculated by placing it
470
+ inside a 15-�A cube.
471
+ All functionals display similar trends, cohesive energy
472
+ increasing monotonically from 1D to 3D bulk (Figure 5).
473
+ Yet the quantitative differences are visible. LDA displays
474
+ its well-known tendency to overestimate cohesive ener-
475
+ gies. The 3D bulk cohesion shoots over the experimental
476
+ value by 23 % [66]. GGA functionals work significantly
477
+ better, where PW91 and PBE are now off by approx-
478
+ imately ≈ 13 − 14 %.
479
+ In contrast, RPBE shows con-
480
+ siderable underbinding and even less accurate cohesion
481
+ than LDA. Among hybrid functionals, the performance
482
+ of screened exchange HSE03 and HSE06 is better than
483
+ PBE0, which still suffers from the spurious Coulomb in-
484
+ teraction. B3LYP describes cohesion poorly and is out-
485
+ performed by practically all other functionals, and should
486
+ be avoided while modeling 2D metals—a conclusion not
487
+ surprising in the light of previous observations [67]. In
488
+ addition, convergence of free atom with B3LYP was dif-
489
+ ficult and required loosening the convergence criterion to
490
+ ≤ 10−6 eV (loosening had an insignificant effect on the
491
+ cohesion of Figure 5). As a rule, GGA and hybrid func-
492
+ tionals outperform LDA, but a hybrid functionals do not
493
+ necessarily outperform GGA. PW91 and PBE appear as
494
+ still as fair choices for robust energetics for general pur-
495
+ poses.
496
+ b.
497
+ Dimensionality-dependence of energetics:
498
+ In 2D
499
+ metal modeling, the coordination of single metal atoms
500
+ can range from C ∼ 1 to C ∼ 6 and occasionally beyond.
501
+ The computational method should therefore capture cor-
502
+ rectly the relative energetics of atoms at different coor-
503
+ dination numbers. In other words, the cohesion should
504
+ increase with the coordination number with an appropri-
505
+ ate dependence.
506
+ Our ansatz for the C-dependence for
507
+ FIG. 6. Trends of low-dimensional energetics with different
508
+ xc-functionals. The fitted scaling exponent γ is plotted for
509
+ different xc-functionals; smaller γ means that energy depends
510
+ less linearly on the coordination number [see Eq.(7)].
511
+ the cohesion Ecoh is
512
+ Ecoh(C) = E3D
513
+ coh × (C/12)γ ,
514
+ (8)
515
+ where E3D
516
+ coh is the 3D bulk cohesion and γ is an expo-
517
+ nent that quantifies the coordination- or dimensionality-
518
+ dependence of the cohesion energy. The ansatz has the
519
+ correct asymptotic limits [Ecoh(0) = 0 and Ecoh(12) =
520
+ E3D
521
+ coh] and suffices for our purposes in this article. (We
522
+ tested also more refined ansatzes, but the conclusions
523
+ remained the same.) The exponent γ was obtained by
524
+ fitting the Eq. (8) for energies from each functional.
525
+ As the result, LDA and all GGA and HSE function-
526
+ als show roughly the same γ, the same dimensionality-
527
+ dependence in energetics (Figure 6). Especially the de-
528
+ pendencies in different GGAs are nearly identical. Only
529
+ the dependencies in B3LYP and PBE0 are clear out-
530
+ liers, PBE0 showing more linear dependence on C (γ
531
+ closer to one) and B3LYP showing more non-linear de-
532
+ pendence on C (γ further away from one). Interestingly,
533
+ although LDA badly overestimates the absolute cohe-
534
+ sion energies, the dimensionality-dependence lies some-
535
+ where in between GGAs and HSE functionals. In conclu-
536
+ sion, GGA-PBE appears to capture the dimensionality-
537
+ dependence of energetics comparably well and be still a
538
+ serious competitor to the far more costly HSE function-
539
+ als.
540
+ c.
541
+ Bond Lengths:
542
+ The bond lengths were obtained
543
+ directly from the optimized lattice constants (Figure 7).
544
+ In accordance with overbinding, LDA functional shows
545
+ small bond lengths. In 3D, the functionals PW91, PBE,
546
+ PBE0, HSE03, and HSE06 are underbinding and show
547
+ 1 − 2 % too large bond lengths.
548
+ PBE0 shows short-
549
+ est bonds among hybrid functionals, and B3LYP shows
550
+ longest bonds among all functionals. Nearly all function-
551
+ als show monotonic increase of bond length with coor-
552
+
553
+ 4.0
554
+ Ag3D
555
+ Ag.
556
+ Ag
557
+ 0
558
+ hex
559
+ 3.5
560
+ 3.0 -
561
+ (eV)
562
+ 2.5
563
+ Cohesive energy (
564
+ 2.0
565
+ 1.5
566
+ 1.0-
567
+ 0.5-
568
+ 0.0
569
+ LDA
570
+ RPBE
571
+ PW91
572
+ PBE
573
+ B3LYP
574
+ PBEO
575
+ HSE03
576
+ HSE06
577
+ Exchange-correlation functional0.46
578
+ 0.44 -
579
+ 0.42 -
580
+ 0.40 -
581
+ 0.38 -
582
+ 0.36 -
583
+ 0.34 -
584
+ 0.32 -
585
+ 0.30
586
+ LDA
587
+ RPBE
588
+ PW91
589
+ PBE
590
+ B3LYP
591
+ PBEO
592
+ HSE03HSE06
593
+ Exchange-correlation functional6
594
+ dination number. Only LDA functional is an exception:
595
+ it has a slightly smaller bond length for 2D hexagonal
596
+ lattice than for 1D chain.
597
+ d.
598
+ Elastic constants (theory recap):
599
+ Due to colorful
600
+ practices in the notations of low-dimensional elasticity,
601
+ and to avoid any confusion, we wish to define explicitly
602
+ the elastic constants presented in this article.
603
+ Within the linear elastic regime the stresses {σi} and
604
+ strains {εi} (i = 1 . . . 6) satisfy the generalized Hooke’s
605
+ law
606
+ σi =
607
+ 6
608
+
609
+ j=1
610
+ Cijεj ,
611
+ (9)
612
+ where Cij are elastic constants and expressed as a 6 × 6
613
+ matrix and ε1 = εxx, ε2 = εyy, ε3 = εzz, ε4 = 2εyz, ε5 =
614
+ 2εxz, ε6 = 2εxy, when following the Voigt notation. We
615
+ adapted the formalism of Refs. [68–72] to evaluate the
616
+ elastic constants for 1D, 2D and 3D systems.
617
+ In 3D, the strain tensor is
618
+ ϵ3D =
619
+
620
+
621
+ ε1
622
+ ε6/2 ε5/2
623
+ ε6/2
624
+ ε2
625
+ ε4/2
626
+ ε5/2 ε4/2
627
+ ε3
628
+
629
+ � .
630
+ (10)
631
+ The elastic constants are obtained by applying selected
632
+ strains {εi} to the equilibrium simulation cell and by
633
+ calculating the partial derivatives
634
+ Cij = ∂2∆U
635
+ ∂εi∂εj
636
+ .
637
+ (11)
638
+ Here ∆U(εi) = U(εi)−U(0) is the elastic energy density
639
+ per unit volume, where U(εi) is the energy density at
640
+ strain εi. For a system with cubic symmetry, the energy
641
+ FIG. 7. Optimized bond lengths of 1D, 2D (hc, sq, and hex),
642
+ and 3D systems of Ag with different xc-functionals
643
+ density is
644
+ ∆U(εi) =1
645
+ 2
646
+
647
+ C11ε2
648
+ 1 + C11ε2
649
+ 2 + C11ε2
650
+ 3 + C12ε1ε2 + C12ε1ε3
651
+ +C12ε2ε1 + C12ε2ε3 + C12ε3ε1 + C12ε3ε2
652
+ +C44ε2
653
+ 4 + C44ε2
654
+ 5 + C44ε2
655
+ 6
656
+
657
+ .
658
+ (12)
659
+ For 2D systems, the strain tensor is
660
+ ϵ2D =
661
+
662
+ ε1
663
+ ε6/2
664
+ ε6/2
665
+ ε2
666
+
667
+ .
668
+ (13)
669
+ Again, the elastic constants are obtained by applying se-
670
+ lected strains {εi} to the equilibrium simulation cell and
671
+ by calculating the partial derivatives
672
+ Cij = ∂2∆U
673
+ ∂εi∂εj
674
+ (14)
675
+ Here ∆U(εi) = U(εi) − U(0) is the energy density per
676
+ unit area, where U(εi) is the energy density at strain εi.
677
+ For a system with square symmetry, the energy density
678
+ is
679
+ ∆U(εi) =1
680
+ 2(C11ε2
681
+ 1 + C22ε2
682
+ 2 + 2C12ε1ε2 + 2C16ε1ε6
683
+ +2C26ε2ε6 + C66ε2
684
+ 6)
685
+ (15)
686
+ and all three elastic constants C11, C12 and C66 are in-
687
+ dependent. However, for a hexagonal system, only con-
688
+ stants C11 and C12 are independent and C66 = (C11 −
689
+ C12)/2.
690
+ Finally, for 1D systems, the strain-tensor matrix is sim-
691
+ ply ϵ1D = (ε1). Yet again, the elastic constant is obtained
692
+ by applying the strain ε1 to the equilibrium simulation
693
+ cell and by taking the partial derivative
694
+ C1 = ∂2∆U
695
+ ∂2ε1
696
+ .
697
+ (16)
698
+ Here ∆U(εi) = U(εi) − U(0) is the energy density per
699
+ unit length, where U(εi) is the energy density at strain
700
+ εi. In other words,
701
+ ∆U(ε1) = 1
702
+ 2C11ε2
703
+ 1 .
704
+ (17)
705
+ Table II summarizes the formulae for the elastic con-
706
+ stants and their relations. Note that the elastic constants
707
+ in different dimensions have also different units: they are
708
+ GPa for 3D, GPa nm for 2D, and GPa nm2 for 1D (GPa
709
+ nm3−D or eV/˚AD in short, where D is the dimensional-
710
+ ity).
711
+ e.
712
+ Elastic
713
+ constants
714
+ (results):
715
+ Functionals
716
+ show
717
+ similar trends for bulk moduli, but there are quantita-
718
+ tive differences (Figure 8a).
719
+ We remind that because
720
+ the elastic moduli in different dimensions have different
721
+ units, the trend with respect to the coordination num-
722
+ ber can be compared only between different 2D lattices.
723
+ LDA overestimates the bulk moduli systematically, for
724
+ 3D bulk by almost 40 %. Only for 1D chain the modulus
725
+
726
+ Aghc
727
+ Ag3D
728
+ 3.0 -
729
+ bso
730
+ 2.90 -
731
+ Bond length (A)
732
+ 2.80
733
+ 2.70
734
+ 2.60
735
+ 2.50
736
+ LDA
737
+ RPBE
738
+ PW91
739
+ PBE
740
+ B3LYP
741
+ HSE03
742
+ HSE06
743
+ PBEO
744
+ Exchange-correlation functional7
745
+ FIG. 8. Elastic properties of low-dimensional systems of Ag
746
+ with different xc-functionals. Bulk moduli (a) and Young’s
747
+ moduli (b) are shown for all systems, shear moduli (c) and
748
+ Poisson’s ratio (d) are shown only for 3D and stable 2D sys-
749
+ tems. Units for moduli are GPa nm3−D, where D is the sys-
750
+ tem dimensionality.
751
+ TABLE II. Formulae for Bulk Modulus (K), Shear-modulus
752
+ (G), Young’s modulus (Y), and Poisson’s ratio (µ) for the
753
+ systems in Fig. 1.
754
+ System
755
+ K
756
+ G
757
+ Y
758
+ µ
759
+ 1D
760
+ C11
761
+ -
762
+ K
763
+ -
764
+ 2Dhex/hc
765
+ C11+C12
766
+ 2
767
+ C11−C12
768
+ 2
769
+ 4KG
770
+ K+G
771
+ K−G
772
+ K+G
773
+ 2Dsq
774
+ C11+C12
775
+ 2
776
+ C66
777
+ C2
778
+ 11−C2
779
+ 12
780
+ C11
781
+ C11
782
+ C12
783
+ 3D
784
+ C11+2C12
785
+ 3
786
+ 3C44+C11−C12
787
+ 5
788
+ 9KG
789
+ 3K+G
790
+ 3K−2G
791
+ 2(3K+G)
792
+ is in line with HSE06.
793
+ Among GGAs, the bulk mod-
794
+ uli of PW91 and PBE are nearly the same. The hybrid
795
+ functionals have fairly similar performance, with B3LYP
796
+ again showing a striking exception, especially related to
797
+ 1D modulus. These observations in bulk moduli apply
798
+ also to Young’s moduli (Figure 8b). Only GGAs show
799
+ somewhat larger stiffness and the trends in 2D moduli
800
+ for B3LYP and PBE0 are different.
801
+ The shear modulus and Poisson’s ratio are defined only
802
+ for 2D and 3D systems (Figures 8c and d). Moreover,
803
+ shear modulus is not reported for the 2D square lattice
804
+ due to instability against shear deformations. In addi-
805
+ tion, some deformations with PBE0 and B3LYP resulted
806
+ in consistent numerical errors, forcing us to omit shear
807
+ and Young’s modulus as well Poisson ratio for these func-
808
+ tionals.
809
+ In summary, the most consistent behavior in
810
+ elastic moduli is displayed by HSE and GGA function-
811
+ als. LDA, B3LYP and PBE0 functionals suffer from both
812
+ numerical challenges and deviant trends at least in some
813
+ elastic properties.
814
+ f.
815
+ Electronic structure (density of states):
816
+ To com-
817
+ plement pure energetic and geometric properties, we now
818
+ extend our investigations to electronic structure proper-
819
+ ties. Electronic structure is a complex topic with many
820
+ features. To reduce complexity and extract trends, we in-
821
+ vestigate the electronic structure simply in terms of the
822
+ density of states DOS(ϵ) and its projections DOSl(ϵ) to
823
+ s (l = 0), p (l = 1), and d (l = 2) angular momen-
824
+ tum states. In addition, we focus only on energies at the
825
+ vicinity of the Fermi-level ϵ = ϵF .
826
+ Consequently, we define the quantities
827
+ Nl =
828
+ � ∞
829
+ −∞
830
+ DOSl (ϵ) g (ϵ) dϵ
831
+ (18)
832
+ that give the number of l-type orbitals surrounding the
833
+ Fermi-level. The DOS is also normalized by the number
834
+ of atoms in the simulation cell. The envelope function
835
+ g(ϵ) has a Gaussian form
836
+ g (ϵ) = exp
837
+
838
+ −1
839
+ 2
840
+ �ϵ − ϵf
841
+ σ
842
+ �2�
843
+ (19)
844
+
845
+ 160 -
846
+ I AgiD
847
+ Agsg
848
+ 1 Ag3D
849
+ Aghc
850
+ Aghex
851
+ (a)
852
+ 140 -
853
+ 120
854
+ 80 -
855
+ 60 -
856
+ 20 -
857
+ 115
858
+ b
859
+ 100
860
+ 80 -
861
+ Young's modulus
862
+ 40 -
863
+ 20 -
864
+ C)
865
+ 40
866
+ 30 -
867
+ Shear modulus
868
+ 20 -
869
+ -01
870
+ d)
871
+ os'O
872
+ ratio
873
+ 0.45
874
+ s
875
+ 0.30 -
876
+ HSE03HSE06
877
+ Exchange-correlation functional8
878
+ FIG. 9. Effect of xc functional on the electronic structure of
879
+ low-dimensional metals made of Ag. Heatmap visualizes the
880
+ number of s-type states (Ns), p-type states (Np), d-type states
881
+ (Nd), and the total number of states (Nt) within a ∼ 1 eV
882
+ energy window around the Fermi-level [see Eq.(18)].
883
+ and we used σ = 1 eV energy window around ϵF .
884
+ In general, the s-orbital contribution decreases with in-
885
+ creasing coordination number for all xc functionals (Fig-
886
+ ure 9).
887
+ In 1D the main contribution comes from s-
888
+ orbitals, followed by p- and d-orbitals for all functionals.
889
+ In 2D this order is rearranged to p > s > d. In 3D this
890
+ same trend is retained by all hybrid functionals.
891
+ The
892
+ LDA, PW91, and PBE have very similar orbital contri-
893
+ bution ordering. For all xc functionals, the p contribu-
894
+ tion is the largest for honeycomb, smallest for 1D, and
895
+ smallest for hexagonal among 2D systems. The ordering
896
+ of Np with respect to different coordination number is
897
+ the same for GGAs, PBE0, and B3LYP. For HSE03 and
898
+ HSE06 all Nl are very similar. The d-orbital contribu-
899
+ tions follow trend similar to s-orbitals. The value of Nd
900
+ is the highest for LDA and the lowest for PBE0 for all
901
+ systems; the most visible difference is the generally low
902
+ Nd of all hybrid functionals, especially in 1D.
903
+ Regarding the total DOS, all GGAs produce nearly
904
+ identical Nt, apart from 3D bulk in RPBE. The total
905
+ DOS from hybrids differs somewhat from the LDA and
906
+ GGA functionals. HSE functionals show similar Nt for
907
+ C = 6 and 12 systems, but differ in other systems. Over-
908
+ all, trends in the total densities are inconsistent for LDA
909
+ and PBE0 functionals, but somewhat consistent among
910
+ GGA as well as B3LYP and HSE functionals.
911
+ g.
912
+ Conclusions on xc functionals:
913
+ To summarize,
914
+ PW91 and PBE perform similarly for forces, energies,
915
+ and densities of states, while RPBE shows underbinding,
916
+ smaller bond lengths, and smaller elastic constants. LDA
917
+ is inferior to GGA practically in all respects. Among hy-
918
+ brid functionals, the performances of HSE03 and HSE06
919
+ aligned in all respects. B3LYP failed to improve GGA in
920
+ terms of accuracy in the lattice constants and cohesive
921
+ energies, even if its electronic structures resembled those
922
+ of HSE functionals. Cohesion energy displayed congruent
923
+ dimensionality-dependencies, apart from visibly differing
924
+ dependencies by B3LYP and PBE0 functionals.
925
+ Before reaching ultimate conclusions, however, we have
926
+ to consider the computational cost (Table III). As ex-
927
+ pected by the nonlocal character of the hybrid function-
928
+ als, already minimal-cell systems require 2 − 3 orders
929
+ of magnitude more computational time for hybrids than
930
+ for LDA and GGA, and for larger systems the differ-
931
+ ence would increase even further. Considering the low
932
+ computational cost, GGA functionals perform extremely
933
+ well compared to hybrid functionals, compared even to
934
+ the most robust HSE family. To conclude, unless the low-
935
+ dimensional metals are studied for very specific purposes,
936
+ the standard PBE indeed remains the preferred weapon
937
+ of choice for low-dimensional metals modeling.
938
+ TABLE III. Computational cost of different xc-functionals:
939
+ Time in seconds to calculate the energy of minimal-cell sys-
940
+ tems using 24 cores. The cell has one atom for all systems
941
+ except for 2D honeycomb.
942
+ LDA RPBE PW91 PBE B3LYP PBE0 HSE03 HSE06
943
+ 1D
944
+ 39
945
+ 39
946
+ 44
947
+ 43
948
+ 476
949
+ 1360
950
+ 491
951
+ 1897
952
+ hc
953
+ 49
954
+ 59
955
+ 62
956
+ 58
957
+ 16786 20937
958
+ 18662
959
+ 15006
960
+ sq
961
+ 18
962
+ 24
963
+ 23
964
+ 22
965
+ 1469
966
+ 1739
967
+ 1535
968
+ 1493
969
+ hex
970
+ 16
971
+ 19
972
+ 20
973
+ 17
974
+ 1454
975
+ 1800
976
+ 1698
977
+ 1675
978
+ 3D
979
+ 14
980
+ 18
981
+ 19
982
+ 17
983
+ 88553 41352
984
+ 38802
985
+ 38704
986
+ D.
987
+ Performance of different basis sets
988
+ In this section, we choose PBE xc functional and repeat
989
+ the systematics of the previous section while this time
990
+ varying the basis set. The converged plane wave basis
991
+ gives the best results that provide the reference assessing
992
+ the performance of the three LCAO basis sets Medium,
993
+ High, and Ultra introduced in Section II.
994
+ To obtain a broader context, we compared the DFT-
995
+ LCAO with DFTB method, which uses a minimal local
996
+ basis and contains approximations speeding up the cal-
997
+ culations. Here we used the parameters available for Ag
998
+ developed earlier [53, 54]. However, parametrization can
999
+ be done in different ways, and one should not consider
1000
+ these results as unique and absolute representation of
1001
+ DFTB.
1002
+ a.
1003
+ Cohesive Energies:
1004
+ The LCAO-U and LCAO-H
1005
+ produce cohesive energies very close to those of PW (Fig-
1006
+ ure 10). LCAO-M overbinds slightly in comparison, but
1007
+ the accuracy for 2D systems is still 3 − 4 % compared to
1008
+ PW. The dependence of cohesion on coordination num-
1009
+ ber is reproduced with all basis sets, and differences are
1010
+ difficult to see on absolute scale. DFTB follows similar
1011
+ behavior, but shows significant overbinding, especially
1012
+ for 3D bulk.
1013
+
1014
+ 1.35
1015
+ Ag3D
1016
+ Aghex
1017
+ Agsq
1018
+ 1.20
1019
+ Aghc
1020
+ Agid
1021
+ 1.05
1022
+ Ag3D.
1023
+ Aghex -
1024
+ 0.90
1025
+ Aghc -
1026
+ 0.75
1027
+ Agid.
1028
+ Ag3D
1029
+ Aghex
1030
+ 0.60
1031
+ Agsq
1032
+ Aghc
1033
+ 0.45
1034
+ AgiD
1035
+ Ag3D
1036
+ 0.30
1037
+ Aghex -
1038
+ Agsq-
1039
+ 0.15
1040
+ Aghc -
1041
+ Agid:
1042
+ 0.00
1043
+ LDA
1044
+ RPBE
1045
+ PW91
1046
+ PBE
1047
+ B3LYP
1048
+ PBEO
1049
+ HSE03
1050
+ HSE06
1051
+ Exchange-correlation functional9
1052
+ FIG. 10. Cohesive energies of optimized 1D, 2D (hc, sq, and
1053
+ hex), and 3D systems made of Ag with different basis sets.
1054
+ Bars on the left show DFTB results with minimal basis for
1055
+ comparison.
1056
+ b.
1057
+ Dimensionality-dependence
1058
+ of
1059
+ energetics:
1060
+ As
1061
+ with xc functionals, we investigate how basis set affects
1062
+ the dependence of energetics on coordination number.
1063
+ Again this dependence is analyzed via the scaling
1064
+ exponent γ in Eq. (8) fitted to the cohesive energies as
1065
+ a function of C.
1066
+ Compared to PW, the dependence on C becomes sys-
1067
+ tematically more linear as we move from Ultra to High
1068
+ and ultimately to Medium basis (Figure 11). However,
1069
+ still the Medium basis reproduces γ to within 5 % accu-
1070
+ racy compared to PW basis. Even DFTB compares well
1071
+ in the overall coordination-dependence, although there
1072
+ are visible problems in capturing the DFT trends for
1073
+ 2D systems (the green bars for DFTB in Figure 10).
1074
+ However, to state the main point, the choice of basis in-
1075
+ fluences dimensionality-dependence of energetics far less
1076
+ than xc functional: note that Figs. 6 and 11 have the
1077
+ same scale in γ.
1078
+ c.
1079
+ Bond Lengths:
1080
+ The LCAO-U and LCAO-H bond
1081
+ lengths are very similar, accurate to within 0.77 % com-
1082
+ pared to PW (Figure 12). All LCAO variants overesti-
1083
+ mate all bonds, LCAO-M having the lowest performance
1084
+ with 1.6 % too long bonds. DFTB no longer captures the
1085
+ DFT trends in coordination-dependence. The 1D chain
1086
+ bond length is larger than honeycomb and the 2D bonds
1087
+ vary wildly, even if the C-ordering still remains correct.
1088
+ d.
1089
+ Elastic constants and moduli:
1090
+ For 1D and 2D sys-
1091
+ tems, elastic moduli have minor dependence on basis set
1092
+ (Figure 13). The largest deviation from PW occurs for
1093
+ 3D bulk, for all LCAO variants.
1094
+ This deviation likely
1095
+ stems from the better space-filling character of PW ba-
1096
+ sis. Moreover, although performing well in cohesion and
1097
+ bond lengths, LCAO-M performs poorly in all elastic
1098
+ properties. LCAO-U is close to PW in all respects, and
1099
+ FIG. 11. Trends of low-dimensional energetics with different
1100
+ basis sets. The fitted scaling exponent γ is plotted for different
1101
+ basis sets; smaller γ means that energy depends less linearly
1102
+ on the coordination number [see Eq.(7)]. The vertical scale is
1103
+ the same as in Fig. 6.
1104
+ FIG. 12. Bond lengths of optimized 1D, 2D (hc, sq, and hex),
1105
+ and 3D systems made of Ag with different basis sets.
1106
+ LCAO-M captures all the same trends, even if with some
1107
+ quantitative differences. These results suggest that, ex-
1108
+ cept perhaps for LCAO-M, LCAO basis can be reliable
1109
+ for studying mechanical properties of low-dimensional
1110
+ metallic systems.
1111
+ The LCAO variant -dependency of
1112
+ elastic properties is even smaller than the changes upon
1113
+ switching from GGA to hybrid functional (compare Figs.
1114
+ 8 and 13).
1115
+ In comparison, DFTB shows both trend differences
1116
+ and large absolute differences compared to DFT-LCAO
1117
+ (Figure 13). For example, the 1D elastic modulus is over-
1118
+ estimated by a factor of ∼ 5.
1119
+ Even the trend within
1120
+ 2D systems was not reproduced. It appears that the Ag
1121
+ parametrization should be revised for more reliable me-
1122
+
1123
+ Ag3D
1124
+ Ag.
1125
+ 4.0
1126
+ 1
1127
+ bss
1128
+ Shex
1129
+ 3.5
1130
+ 3.0 -
1131
+ 2.5
1132
+ 2.0.
1133
+ 1.5
1134
+ 1.0.
1135
+ 0.5
1136
+ 0.0
1137
+ DFTB
1138
+ LCAO-M
1139
+ LCAO-H
1140
+ LCAO-U
1141
+ PW
1142
+ Basis set0.46
1143
+ 0.44 -
1144
+ 0.42 -
1145
+ 0.40 -
1146
+ 0.38
1147
+ 0.36 -
1148
+ 0.34 -
1149
+ 0.32
1150
+ 0.30
1151
+ DFTB
1152
+ LCAO-M
1153
+ LCAO-H
1154
+ LCAO-U
1155
+ PW
1156
+ Basis setAgh
1157
+ Ag
1158
+ Shex
1159
+ S3D
1160
+ Shc
1161
+ bss
1162
+ 3.0
1163
+ 2.90
1164
+ Bond length (A)
1165
+ 2.80
1166
+ 2.70
1167
+ 2.60
1168
+ 2.50
1169
+ DFTB
1170
+ LCAO-M
1171
+ LCAO-H
1172
+ LCAO-U
1173
+ PW
1174
+ Basis set10
1175
+ chanical properties of low-dimensional Ag systems.
1176
+ e.
1177
+ Electronic structure (density of states):
1178
+ Also the
1179
+ electronic structure from LCAO is compared here against
1180
+ PW results,
1181
+ using the indicator numbers given by
1182
+ Eq. (18).
1183
+ For 2D structures PW gives orbital contri-
1184
+ butions in order p > s > d (Figure 14).
1185
+ For LCAO
1186
+ this trend shuffles to s > d > p, that is, the p contri-
1187
+ bution diminishes for all LCAO variants.
1188
+ For 1D sys-
1189
+ tem the orbital ordering for PW and LCAO basis re-
1190
+ mains the same. However, still all basis sets—including
1191
+ minimal-basis DFTB—show consistent C-dependence in
1192
+ orbital contributions around the Fermi-level. LCAO-H
1193
+ and LCAO-U results align better, while LCAO-M re-
1194
+ sults are different in some respects. In summary, the C-
1195
+ dependence of the total DOS in 2D metals is reproduced
1196
+ by LCAO to a fair degree, but the orbital contributions
1197
+ are different.
1198
+ f.
1199
+ Conclusions on basis sets:
1200
+ To conclude, LCAO
1201
+ basis competes extremely well with PW for studying
1202
+ energetic and geometric properties of low-dimensional
1203
+ metal systems. Even elastic moduli are reproduced rea-
1204
+ sonably well by LCAO-H and LCAO-U basis, compared
1205
+ to converged PW basis. The performance of LCAO-M
1206
+ basis was notably modest, regarding elastic properties
1207
+ and also the details of electronic structure.
1208
+ The or-
1209
+ bital breakup of the electronic structures at the vicin-
1210
+ ity of Fermi-level for PW and LCAO variants differed
1211
+ markedly.
1212
+ Regarding DFTB, the Ag parametrizations clearly re-
1213
+ quire revisiting. The cohesive energies are too large, bond
1214
+ lengths are both large and small, and elastic moduli are
1215
+ close to arbitrary. Still many of the qualitative trends
1216
+ regarding C-dependence were reproduced reliably.
1217
+ However, before again reaching ultimate conclusions,
1218
+ we have to consider the computational cost with differ-
1219
+ ent basis (Table IV). The cost was investigated by simula-
1220
+ tion cells with 32−64 atoms and a couple of dozen cores.
1221
+ The comparison is thus by no means unique or absolute,
1222
+ but it does give a rough inkling of the computational de-
1223
+ mands. As expected, DFTB outspeeds DFT by one to
1224
+ three orders of magnitude. Within DFT, switching from
1225
+ LCAO-M to LCAO-U results in cost increases from a fac-
1226
+ tor of two (1D) up to a factor of ∼ 15 (3D). Especially
1227
+ for low-dimensional systems LCAOs are faster than PW,
1228
+ nearly by two orders of magnitude.
1229
+ For 3D bulk PW
1230
+ is very competitive against LCAO due to lacking vac-
1231
+ uum region; here LCAO-U is even slower than PW. In
1232
+ conclusion, unless very high accuracy is of central impor-
1233
+ tance, LCAO has demonstrated a fair accuracy in most
1234
+ properties and should be prioritized over PW due to its
1235
+ superior efficiency. Even LCAO-M basis can be consid-
1236
+ ered for simulations where the improved speed wins over
1237
+ lost accuracy.
1238
+ FIG. 13. Elastic properties of low-dimensional systems of Ag
1239
+ with different basis sets. Bulk moduli (a) and Young’s moduli
1240
+ (b) are shown for all systems, shear moduli (c) and Poisson’s
1241
+ ratio (d) are shown only for 3D and stable 2D systems. Units
1242
+ for moduli are GPa nm3−D, where D is the system dimen-
1243
+ sionality.
1244
+
1245
+ Agid
1246
+ Ag3D
1247
+ Aghex
1248
+ Aghc
1249
+ Agsq
1250
+ (a)
1251
+ 120 -
1252
+ 100
1253
+ Bulk modulus
1254
+ 08
1255
+ 60 -
1256
+ 40 -
1257
+ 20-
1258
+ 0
1259
+ (b)
1260
+ 140 -
1261
+ 120 -
1262
+ 80
1263
+ Young's r
1264
+ F 09
1265
+ 40 -
1266
+ 20
1267
+ 0
1268
+ (c)
1269
+ 50 -
1270
+ 40 -
1271
+ modulus
1272
+ Shear r
1273
+ 1
1274
+ 20
1275
+ 0
1276
+ (d)
1277
+ Fos'O
1278
+ 0.35 -
1279
+ LCAO-M
1280
+ LCAO-H
1281
+ LCAO-U
1282
+ PW
1283
+ DFTB
1284
+ Basis set11
1285
+ FIG. 14.
1286
+ Effect of basis set on the electronic structure of
1287
+ low-dimensional metals made of Ag. Heatmap visualizes the
1288
+ number of s-type states (Ns), p-type states (Np), d-type states
1289
+ (Nd), and total number of states (Nt) within a ∼ 1 eV energy
1290
+ window around the Fermi-level [see Eq.(19)].
1291
+ TABLE IV. Computational cost of different basis sets: Time
1292
+ in seconds to calculate the energy of systems using 24 cores.
1293
+ The parenthesis contain the number of atoms in the supercell.
1294
+ Systems
1295
+ DFTB
1296
+ LCAO-M
1297
+ LCAO-H
1298
+ LCAO-U
1299
+ PW
1300
+ 1D (32)
1301
+ 10
1302
+ 175
1303
+ 265
1304
+ 310
1305
+ 11890
1306
+ 2D hc (64)
1307
+ 20
1308
+ 215
1309
+ 355
1310
+ 610
1311
+ 13120
1312
+ 2D sq (64)
1313
+ 18
1314
+ 190
1315
+ 300
1316
+ 500
1317
+ 12370
1318
+ 2D hex(64)
1319
+ 17
1320
+ 130
1321
+ 290
1322
+ 655
1323
+ 6885
1324
+ 3D (64)
1325
+ 19
1326
+ 145
1327
+ 855
1328
+ 2220
1329
+ 2050
1330
+ E.
1331
+ Combined scanning of xc functionals and basis
1332
+ sets
1333
+ Above we investigated xc functionals (with PW basis)
1334
+ and basis sets (with PBE functional) separately. How-
1335
+ ever, the performance of xc functionals and basis sets
1336
+ can be coupled.
1337
+ We therefore complement our analy-
1338
+ sis by combined scanning of different xc functionals with
1339
+ different basis sets. The bond lengths, cohesive energies,
1340
+ elastic constants, and orbital contributions to DOS ob-
1341
+ tained at different basis set-xc functional -combinations
1342
+ are shown in Tables V, VI, and VII in the Appendix.
1343
+ For LDA, the choice of basis set did not affect the co-
1344
+ hesion dependence on C (Table V). Changing the basis
1345
+ set from PW to LCAO increases the cohesive energy for
1346
+ C ≥ 4 and decreases it for C = 1 and 3.
1347
+ Decreasing
1348
+ the LCAO size also decreases the cohesion, as expected
1349
+ in the light of variational principle. Bond lengths with
1350
+ PW, LCAO-U and LCAO-H basis are nearly equal. With
1351
+ LCAO-M bonds are longer for all systems. The elastic
1352
+ properties are nearly basis-independent, with the notable
1353
+ exception of LCAO-M (Table VI). Most sensitive to the
1354
+ choice of basis is the electronic structure; all LCAO vari-
1355
+ ants show the same trend, which however differs signifi-
1356
+ cantly from PW (Table VII).
1357
+ For GGAs, the performance remains robust upon re-
1358
+ ducing the size of the basis set. In fact, the observations
1359
+ in Subsection III D with PBE are representative for other
1360
+ GGAs as well. Switching PW to LCAO-U or LCAO-H
1361
+ changes bond lengths and cohesive energies less than 1 %;
1362
+ less robust LCAO-M decreases cohesive energies by 4 %
1363
+ and increases bond lengths by ≈ 1.5 % (Table V). Basis
1364
+ set sensitivity is the smallest for PW91 and the largest
1365
+ for RPBE. Elastic constants follow the accuracy trends
1366
+ similar to those of energetics and geometric properties.
1367
+ PBE shows some basis set sensitivity, especially for the
1368
+ bulk moduli of 2D systems (Table VI).
1369
+ For hybrid functionals, the matters are less systematic.
1370
+ Using LCAO-M in conjunction with unscreened B3LYP
1371
+ and PBE0 functionals results in significant overbinding;
1372
+ bond lengths are underestimated by more than 10 % (Ta-
1373
+ ble V). With LCAO-H and LCAO-U basis sets the same
1374
+ xc functionals underestimate bonds only by ≈ 2 %, while
1375
+ increase cohesive energies by ≤ 24 %. B3LYP and PBE0
1376
+ are thus extremely sensitive to the quality of LCAO ba-
1377
+ sis. Moreover, B3LYP and PBE0 are unable to produce
1378
+ elastic moduli due to persistent numerical errors. In con-
1379
+ trast, the screened HSE functionals produced robust ge-
1380
+ ometries, energetics and elastic properties upon changing
1381
+ the size of the LCAO basis. The robustness was even
1382
+ better than with PW91 and PBE, although admittedly
1383
+ at a considerable computational cost. The orbital con-
1384
+ tributions to DOS with PW and LCAO basis were dif-
1385
+ ferent; the same effect was observed for PBE functional
1386
+ (Figure 14). Among different LCAO variants, LCAO-H
1387
+ and LCAO-U show similar orbital contributions for all
1388
+ systems. In addition to energetic and geometric prop-
1389
+ erties, the peculiarities of B3LYP and PBE0 functionals
1390
+ are observable also in electronic properties (Table VII).
1391
+ In general, hybrid functionals in conjunction with LCAO-
1392
+ H and LCAO-U basis requires prohibitive computational
1393
+ resources even for single atom.
1394
+ F.
1395
+ The effect of DFT implementation
1396
+ In addition to DFT attributes, it is important also
1397
+ to be able to rely on the DFT implementation itself.
1398
+ For completeness, therefore, we briefly discuss the mag-
1399
+ nitude of differences related to the numerical imple-
1400
+ mentation of DFT. We calculated the cohesive ener-
1401
+ gies, bond lengths, and elastic moduli also with the
1402
+ GPAW code, using plane wave basis with the same
1403
+ 800 eV energy cutoff and default parameters [36]. The
1404
+ QuantumATK/GPAW cohesive energies were 1.1671 eV /
1405
+ 1.1661 eV (1D), 1.5062 eV / 1.5054 eV (2D hc), 1.8293 eV
1406
+ / 1.8286 eV (2D sq), 2.0583 eV / 2.0570 eV (2D hex),
1407
+ 2.5326 eV / 2.5323 eV (3D), bond lenghts 2.6480 ˚A/
1408
+ 2.6501 ˚A (1D), 2.6700 ˚A/ 2.6682 ˚A (2D hc), 2.6998 ˚A/
1409
+ 2.700567 ˚A
1410
+ (2D
1411
+ sq),
1412
+ 2.7877 ˚A/
1413
+ 2.7894 ˚A
1414
+ (2D
1415
+ hex),
1416
+
1417
+ 1.80
1418
+ Ag3D
1419
+ Aghex
1420
+ 1.60
1421
+ Aghc
1422
+ Agid
1423
+ 1.40
1424
+ Ag3D
1425
+ Aghex
1426
+ 1.20
1427
+ ABsq
1428
+ Aghc
1429
+ 1.00
1430
+ Agid
1431
+ Ag3D
1432
+ Aghex
1433
+ 0.80
1434
+ Agsq
1435
+ Aghc
1436
+ 0.60
1437
+ Agid
1438
+ Ag3D
1439
+ 0.40
1440
+ Aghex
1441
+ 0.20
1442
+ Aghc
1443
+ Agid
1444
+ 0.00
1445
+ LCAO-U
1446
+ PW
1447
+ DFTB
1448
+ LCAO-M
1449
+ LCAO-H
1450
+ Basis set12
1451
+ 2.9301 ˚A/ 2.9305 ˚A (3D), and bulk moduli 18.32 GPa nm2
1452
+ /18.73 GPa nm2 (1D), 17.20 GPa nm / 17.21 GPa nm (2D
1453
+ hc), 31.46 GPa nm / 31.26 GPa nm (2D sq), 38.07 GPa nm
1454
+ / 37.79 GPa nm (2D hex), 92.03 GPa / 90.37 GPa (3D).
1455
+ Thus, default parameters without tuning give code-
1456
+ related differences in cohesive energies ≲ 1.3 meV, in
1457
+ bond lengths ≲ 0.002 ˚A, and in bulk moduli ≲ 1 % (2D
1458
+ systems) or ≃ 2% (1D and 3D systems). Although the
1459
+ comparison used the PBE functional and plane waves, it
1460
+ is reasonable to suspect the level of differences to remain
1461
+ similar also for other functionals and basis sets. Over-
1462
+ all, code-related differences remain considerably smaller
1463
+ than the differences originating from physical attributes.
1464
+ IV.
1465
+ SUMMARY AND CONCLUSION
1466
+ In summary, we investigated the performance of vari-
1467
+ ous DFT attributes in the modeling of low-dimensional
1468
+ elemental metals.
1469
+ For future reference, the number of
1470
+ k-points, the size of the vacuum region, and the magni-
1471
+ tude of Fermi-broadening were given tolerance-dependent
1472
+ rules of thumb. Such rules help choosing combinations
1473
+ of attributes that result in commensurate accuracies.
1474
+ The most robust against the choice of basis set
1475
+ was HSE06, followed by HSE03, PBE, PW91, RPBE
1476
+ and LDA. The B3LYP produced inaccurate cohesions
1477
+ and bond lengths—with the highest computational cost.
1478
+ Only the electronic structure in B3LYP was in line with
1479
+ other hybrid functionals.
1480
+ The energetics, geometries, and elastic properties with
1481
+ PW, LCAO-U, and LCAO-H basis sets were in over-
1482
+ all good agreement.
1483
+ The greatest disparities between
1484
+ PW and LCAO methods resided in the orbital contribu-
1485
+ tions to the DOS, although in the total DOS they were
1486
+ moderated.
1487
+ On a general level, LCAO-U and LCAO-
1488
+ H performed similarly at different xc functionals; there-
1489
+ fore, for general purposes, LCAO-H should be preferred
1490
+ over LCAO-U due to superior efficiency (Table IV). The
1491
+ LCAO-M basis worked varyingly well in many respects,
1492
+ except when used in conjunction with B3LYP and PBE0
1493
+ functionals.
1494
+ To conclude, in the research of metallic bonding at
1495
+ low dimensions, the best value for a given cost is proba-
1496
+ bly given by semi-local PW91 and PBE xc functionals in
1497
+ conjunction with moderately-sized LCAO-U or LCAO-
1498
+ H basis sets.
1499
+ These results are encouraging for doing
1500
+ large-scale, high-throughput DFT simulations to gener-
1501
+ ate data for machine learning algorithms. In comparison,
1502
+ DFTB is a very speedy method and is capable of simu-
1503
+ lations unaccessible by DFT [73–75], but the quality of
1504
+ parametrization needs to be ensured first. We hope that
1505
+ our results and gentle recommendations help lifting 2D
1506
+ metal research to new heights, expedite better interac-
1507
+ tion with experiments, and feed machine learning algo-
1508
+ rithms with quality data to drive further discoveries in
1509
+ low-dimensional metals.
1510
+ ACKNOWLEDGMENTS
1511
+ We acknowledge the Finnish Grid and Cloud Infras-
1512
+ tructure (FGCI) for computational resources.
1513
+ [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D.-e. Jiang,
1514
+ Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A.
1515
+ Firsov, Science 306, 666 (2004).
1516
+ [2] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V.
1517
+ Khotkevich, S. V. Morozov, and A. K. Geim, Proceedings
1518
+ of the National Academy of Sciences 102, 10451 (2005).
1519
+ [3] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman,
1520
+ and M. S. Strano, Nature nanotechnology 7, 699 (2012).
1521
+ [4] V. Shanmugam, R. A. Mensah, K. Babu, S. Gawusu,
1522
+ A. Chanda, Y. Tu, R. E. Neisiany, M. F¨orsth, G. Sas, and
1523
+ O. Das, Particle & Particle Systems Characterization 39,
1524
+ 2200031 (2022).
1525
+ [5] X. Zhang, A. Chen, L. Chen, and Z. Zhou, Advanced
1526
+ Energy Materials 12, 2003841 (2022).
1527
+ [6] S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev,
1528
+ and A. Kis, Nature Reviews Materials 2, 1 (2017).
1529
+ [7] D. Geng and H. Y. Yang, Advanced Materials 30,
1530
+ 1800865 (2018).
1531
+ [8] J. Zhao, Q. Deng, A. Bachmatiuk, G. Sandeep, A. Popov,
1532
+ J. Eckert, and M. H. R¨ummeli, Science 343, 1228 (2014).
1533
+ [9] Y. Ma, B. Li, and S. Yang, Mater. Chem. Front. 2, 456
1534
+ (2018).
1535
+ [10] Y. Chen, Z. Fan, Z. Zhang, W. Niu, C. Li, N. Yang,
1536
+ B. Chen, and H. Zhang, Chemical Reviews 118, 6409
1537
+ (2018).
1538
+ [11] T. Wang, M. Park, Q. Yu, J. Zhang, and Y. Yang, Ma-
1539
+ terials Today Advances 8, 100092 (2020).
1540
+ [12] H. Q. Ta, R. G. Mendes, Y. Liu, X. Yang, J. Luo,
1541
+ A. Bachmatiuk, T. Gemming, M. Zeng, L. Fu, L. Liu, and
1542
+ M. H. R¨ummeli, Advanced Science 8, 2100619 (2021).
1543
+ [13] G. Zagler, M. Reticcioli, C. Mangler, D. Scheinecker,
1544
+ C. Franchini, and J. Kotakoski, 2D Materials 7, 045017
1545
+ (2020).
1546
+ [14] X. Wang, C. Chen, B. Jiang, H. Duan, and K. Du, Acta
1547
+ Materialia 229, 117844 (2022).
1548
+ [15] P. Hohenberg and W. Kohn, Physical Review 136, B864
1549
+ (1964).
1550
+ [16] W. Kohn and L. J. Sham, Physical Review 140, A1133
1551
+ (1965).
1552
+ [17] L.-M. Yang, T. Frauenheim, and E. Ganz, Physical
1553
+ Chemistry Chemical Physics 17, 19695 (2015).
1554
+ [18] L.-M. Yang, M. Dornfeld, T. Frauenheim, and E. Ganz,
1555
+ Physical Chemistry Chemical Physics 17, 26036 (2015).
1556
+ [19] L.-M. Yang, T. Frauenheim, and E. Ganz, Journal of
1557
+ Nanomaterials 2016, 8429510 (2016).
1558
+ [20] J. Nevalaita and P. Koskinen, Physical Review B 97,
1559
+ 035411 (2018).
1560
+ [21] J. Nevalaita and P. Koskinen, Physical Review B 98,
1561
+ 115433 (2018).
1562
+ [22] J. Nevalaita and P. Koskinen, Nanoscale 11, 22019
1563
+
1564
+ 13
1565
+ (2019).
1566
+ [23] J. Nevalaita and P. Koskinen, AIP Advances 10, 065327
1567
+ (2020).
1568
+ [24] S. Ono, Physical Review B 102, 165424 (2020).
1569
+ [25] Y. Ren, L. Hu, Y. Shao, Y. Hu, L. Huang, and X. Shi,
1570
+ Journal of Materials Chemistry C 9, 4554 (2021).
1571
+ [26] S. Ono, Physical Review Materials 5, 104004 (2021).
1572
+ [27] B. Anam and N. Gaston, Journal of Physics: Condensed
1573
+ Matter 33, 125901 (2021).
1574
+ [28] P. Kapoor, M. Sharma, and P. Ahluwalia, Physica
1575
+ E: Low-dimensional Systems and Nanostructures 131,
1576
+ 114745 (2021).
1577
+ [29] A. Kutana, T. Altalhi, Q. Ruan, J.-J. Zhang, E. S. Penev,
1578
+ and B. I. Yakobson, Nanoscale Adv. 4, 1408 (2022).
1579
+ [30] A. A. Sangolkar and R. Pawar, Physica status solidi (b)
1580
+ 259, 2100489 (2022).
1581
+ [31] A. A. Sangolkar, S. Jha, and R. Pawar, Advanced Theory
1582
+ and Simulations 5, 2200057 (2022).
1583
+ [32] G. Kresse and J. Furthm¨uller, Physical Review B 54,
1584
+ 11169 (1996).
1585
+ [33] J. P. Perdew, K. Burke, and M. Ernzerhof, Physical Re-
1586
+ view Letter 77, 3865 (1996).
1587
+ [34] S. Lehtola, C. Steigemann, M. J. Oliveira, and M. A.
1588
+ Marques, SoftwareX 7, 1 (2018).
1589
+ [35] E. L. Briggs, D. J. Sullivan, and J. Bernholc, Physical
1590
+ Review B 54, 14362 (1996).
1591
+ [36] J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen,
1592
+ M. Du�lak,
1593
+ L. Ferrighi,
1594
+ J. Gavnholt,
1595
+ C. Glinsvad,
1596
+ V.
1597
+ Haikola,
1598
+ H.
1599
+ A.
1600
+ Hansen,
1601
+ H.
1602
+ H.
1603
+ Kristoffersen,
1604
+ M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljung-
1605
+ berg,
1606
+ O. Lopez-Acevedo,
1607
+ P. G. Moses,
1608
+ J. Ojanen,
1609
+ T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-
1610
+ Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter,
1611
+ B. Hammer, H. H¨akkinen, G. K. H. Madsen, R. M. Niem-
1612
+ inen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz,
1613
+ K. S. Thygesen, and K. W. Jacobsen, Journal of Physics:
1614
+ Condensed Matter 22, 253202 (2010).
1615
+ [37] J. M. Soler, E. Artacho, J. D. Gale, A. Garc´ıa, J. Jun-
1616
+ quera, P. Ordej´on, and D. S´anchez-Portal, Journal of
1617
+ Physics: Condensed Matter 14, 2745 (2002).
1618
+ [38] M. Brandbyge, J.-L. Mozos, P. Ordej´on, J. Taylor, and
1619
+ K. Stokbro, Physical Review B 65, 165401 (2002).
1620
+ [39] J. Schmidt, M. R. G. Marques, S. Botti, and M. A. L.
1621
+ Marques, npj Comput Mater 5 (2019).
1622
+ [40] B. Mortazavi,
1623
+ I. S. Novikov,
1624
+ E. V. Podryabinkin,
1625
+ S. Roche, T. Rabczuk, A. V. Shapeev, and X. Zhuang,
1626
+ Applied Materials Today 20, 100685 (2020).
1627
+ [41] J. Cai, X. Chu, K. Xu, H. Li, and J. Wei, Nanoscale Adv.
1628
+ 2, 3115 (2020).
1629
+ [42] G. R. Schleder, C. M. Acosta, and A. Fazzio, ACS Ap-
1630
+ plied Materials & Interfaces 12, 20149 (2020).
1631
+ [43] B. Ryu, L. Wang, H. Pu, M. K. Y. Chan, and J. Chen,
1632
+ Chem. Soc. Rev. 51, 1899 (2022).
1633
+ [44] E. Canadell, M.-L. Doublet, and C. Iung, Orbital Ap-
1634
+ proach to the Electronic Structure of Solids (Oxford Uni-
1635
+ versity Press, 2012).
1636
+ [45] M. Elstner,
1637
+ D. Porezag,
1638
+ G. Jungnickel,
1639
+ J. Elsner,
1640
+ M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert, Phys-
1641
+ ical Review B 58, 7260 (1998).
1642
+ [46] S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellen-
1643
+ dorff, J. Schneider, T. Gunst, B. Verstichel, D. Stradi,
1644
+ P. A. Khomyakov, U. G. Vej-Hansen, M.-E. Lee, S. T.
1645
+ Chill, F. Rasmussen, G. Penazzi, F. Corsetti, A. Ojan-
1646
+ per¨a, K. Jensen, M. L. N. Palsgaard, U. Martinez,
1647
+ A. Blom, M. Brandbyge, and K. Stokbro, Journal of
1648
+ Physics: Condensed Matter 32, 015901 (2019).
1649
+ [47] R. K. Harris, P. Hodgkinson, C. J. Pickard, J. R. Yates,
1650
+ and V. Zorin, Magnetic Resonance in Chemistry 45, S174
1651
+ (2007).
1652
+ [48] V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu,
1653
+ X. Ren, K. Reuter, and M. Scheffler, Computer Physics
1654
+ Communications 180, 2175 (2009).
1655
+ [49] M. van Setten, M. Giantomassi, E. Bousquet, M. Ver-
1656
+ straete, D. Hamann, X. Gonze, and G.-M. Rignanese,
1657
+ Computer Physics Communications 226, 39 (2018).
1658
+ [50] D. C. Liu and J. Nocedal, Mathematical Programming
1659
+ 45, 503 (1989).
1660
+ [51] H. J. Monkhorst and J. D. Pack, Physical Review B 13,
1661
+ 5188 (1976).
1662
+ [52] P. Koskinen and V. M¨akinen, Computational Materials
1663
+ Science 47, 237 (2009).
1664
+ [53] B. Sz˝ucs, Z. Hajnal, T. Frauenheim, C. Gonz´alez, J. Or-
1665
+ tega, R. P´erez, and F. Flores, Applied Surface Science
1666
+ 212-213, 861 (2003).
1667
+ [54] B. Sz˝ucs, Z. Hajnal, R. Scholz, S. Sanna, and T. Frauen-
1668
+ heim, Applied Surface Science 234, 173 (2004).
1669
+ [55] J. P. Perdew and Y. Wang, Physical Review B 45, 13244
1670
+ (1992).
1671
+ [56] J. P. Perdew, K. Burke, and M. Ernzerhof, Physical Re-
1672
+ view Letter 77, 3865 (1996).
1673
+ [57] B. Hammer, L. B. Hansen, and J. K. Nørskov, Physical
1674
+ Review B 59, 7413 (1999).
1675
+ [58] J. P. Perdew, P. Ziesche, and H. Eschrig, Electronic struc-
1676
+ ture of solids’ 91 (1991).
1677
+ [59] K. Burke, J. P. Perdew, and Y. Wang, Derivation of
1678
+ a generalized gradient approximation: The pw91 den-
1679
+ sity functional, in Electronic density functional theory
1680
+ (Springer, 1998) pp. 81–111.
1681
+ [60] Y. Matsushita, K. Nakamura, and A. Oshiyama, Physical
1682
+ Review B 84, 075205 (2011).
1683
+ [61] A. D. Becke, The Journal of Chemical Physics 98, 5648
1684
+ (1993).
1685
+ [62] J. P. Perdew, M. Ernzerhof, and K. Burke, The Journal
1686
+ of Chemical Physics 105, 9982 (1996).
1687
+ [63] R. R. Pela, M. Marques, and L. K. Teles, Journal of
1688
+ Physics: Condensed Matter 27, 505502 (2015).
1689
+ [64] J. Heyd, G. E. Scuseria, and M. Ernzerhof, The Journal
1690
+ of Chemical Physics 118, 8207 (2003).
1691
+ [65] P. E. Bl¨ochl, Physical Review B 50, 17953 (1994).
1692
+ [66] C. Kittel, Introduction to solid state physics, 8th ed. (Wi-
1693
+ ley New York, 2005).
1694
+ [67] J. Paier, M. Marsman, and G. Kresse, The Journal of
1695
+ Chemical Physics 127, 024103 (2007).
1696
+ [68] S. Zhang and R. Zhang, Computer Physics Communica-
1697
+ tions 220, 403 (2017).
1698
+ [69] V. Wang, N. Xu, J.-C. Liu, G. Tang, and W.-T. Geng,
1699
+ Computer Physics Communications 267, 108033 (2021).
1700
+ [70] N. W. Tschoegl, Australian Journal of Physics 11, 154
1701
+ (1958).
1702
+ [71] M. Ma´zdziarz, 2D Materials 6, 048001 (2019).
1703
+ [72] M. Jamal, S. Jalali Asadabadi, I. Ahmad, and H. Rahna-
1704
+ maye Aliabad, Computational Materials Science 95, 592
1705
+ (2014).
1706
+ [73] P. Koskinen and T. Korhonen, Nanoscale 7, 10140
1707
+ (2015).
1708
+ [74] P. Koskinen, H. H¨akkinen, B. Huber, B. von Issendorff,
1709
+ and M. Moseler, Physical Review Letter 98, 015701
1710
+ (2007).
1711
+
1712
+ 14
1713
+ [75] P.
1714
+ Koskinen,
1715
+ H.
1716
+ H¨akkinen,
1717
+ G.
1718
+ Seifert,
1719
+ S.
1720
+ Sanna,
1721
+ T. Frauenheim, and M. Moseler, New Journal of Physics
1722
+ 8, 9 (2006).
1723
+
1724
+ 15
1725
+ APPENDIX
1726
+ TABLE V. Bond lengths d(�A) and Cohesive energies Ecoh(eV) for each lattice type corresponding to different DFT-attributes.
1727
+ 1D
1728
+ Honeycomb
1729
+ Square
1730
+ Hexagonal
1731
+ 3D
1732
+ DFT-Methods
1733
+ d
1734
+ Ecoh
1735
+ d
1736
+ Ecoh
1737
+ d
1738
+ Ecoh
1739
+ d
1740
+ Ecoh
1741
+ d
1742
+ Ecoh
1743
+ DFTB
1744
+ 2.572
1745
+ 1.691
1746
+ 2.562
1747
+ 2.450
1748
+ 2.636
1749
+ 2.804
1750
+ 2.819
1751
+ 2.967
1752
+ 3.008
1753
+ 3.891
1754
+ LDA-LCAO-M
1755
+ 2.584
1756
+ 1.513
1757
+ 2.591
1758
+ 2.012
1759
+ 2.623
1760
+ 2.475
1761
+ 2.712
1762
+ 2.761
1763
+ 2.840
1764
+ 3.547
1765
+ LDA-LCAO-H
1766
+ 2.553
1767
+ 1.563
1768
+ 2.562
1769
+ 2.105
1770
+ 2.606
1771
+ 2.563
1772
+ 2.693
1773
+ 2.858
1774
+ 2.827
1775
+ 3.660
1776
+ LDA-LCAO-U
1777
+ 2.542
1778
+ 1.587
1779
+ 2.553
1780
+ 2.126
1781
+ 2.598
1782
+ 2.590
1783
+ 2.685
1784
+ 2.887
1785
+ 2.826
1786
+ 3.672
1787
+ LDA-PW
1788
+ 2.542
1789
+ 1.591
1790
+ 2.542
1791
+ 2.138
1792
+ 2.595
1793
+ 2.586
1794
+ 2.682
1795
+ 2.881
1796
+ 2.828
1797
+ 3.638
1798
+ RPBE-LCAO-M
1799
+ 2.732
1800
+ 0.959
1801
+ 2.760
1802
+ 1.198
1803
+ 2.764
1804
+ 1.474
1805
+ 2.853
1806
+ 1.677
1807
+ 2.982
1808
+ 2.065
1809
+ RPBE-LCAO-H
1810
+ 2.710
1811
+ 0.989
1812
+ 2.731
1813
+ 1.251
1814
+ 2.745
1815
+ 1.531
1816
+ 2.831
1817
+ 1.738
1818
+ 2.965
1819
+ 2.130
1820
+ RPBE-LCAO-U
1821
+ 2.691
1822
+ 1.001
1823
+ 2.723
1824
+ 1.262
1825
+ 2.736
1826
+ 1.547
1827
+ 2.824
1828
+ 1.756
1829
+ 2.963
1830
+ 2.143
1831
+ RPBE-PW
1832
+ 2.689
1833
+ 0.992
1834
+ 2.709
1835
+ 1.248
1836
+ 2.734
1837
+ 1.523
1838
+ 2.822
1839
+ 1.732
1840
+ 2.962
1841
+ 2.100
1842
+ PW91-LCAO-M
1843
+ 2.679
1844
+ 1.145
1845
+ 2.700
1846
+ 1.470
1847
+ 2.717
1848
+ 1.806
1849
+ 2.807
1850
+ 2.026
1851
+ 2.941
1852
+ 2.529
1853
+ PW91-LCAO-H
1854
+ 2.655
1855
+ 1.171
1856
+ 2.670
1857
+ 1.522
1858
+ 2.703
1859
+ 1.858
1860
+ 2.790
1861
+ 2.083
1862
+ 2.932
1863
+ 2.586
1864
+ PW91-LCAO-U
1865
+ 2.642
1866
+ 1.186
1867
+ 2.668
1868
+ 1.536
1869
+ 2.696
1870
+ 1.876
1871
+ 2.785
1872
+ 2.103
1873
+ 2.932
1874
+ 2.598
1875
+ PW91-PW
1876
+ 2.639
1877
+ 1.185
1878
+ 2.659
1879
+ 1.534
1880
+ 2.693
1881
+ 1.862
1882
+ 2.783
1883
+ 2.089
1884
+ 2.928
1885
+ 2.560
1886
+ PBE-LCAO-M
1887
+ 2.690
1888
+ 1.126
1889
+ 2.710
1890
+ 1.441
1891
+ 2.724
1892
+ 1.771
1893
+ 2.814
1894
+ 1.994
1895
+ 2.945
1896
+ 2.501
1897
+ PBE-LCAO-H
1898
+ 2.668
1899
+ 1.155
1900
+ 2.685
1901
+ 1.497
1902
+ 2.710
1903
+ 1.826
1904
+ 2.797
1905
+ 2.053
1906
+ 2.932
1907
+ 2.558
1908
+ PBE-LCAO-U
1909
+ 2.651
1910
+ 1.170
1911
+ 2.677
1912
+ 1.510
1913
+ 2.702
1914
+ 1.844
1915
+ 2.790
1916
+ 2.073
1917
+ 2.932
1918
+ 2.571
1919
+ PBE-PW
1920
+ 2.648
1921
+ 1.167
1922
+ 2.670
1923
+ 1.506
1924
+ 2.700
1925
+ 1.829
1926
+ 2.788
1927
+ 2.058
1928
+ 2.930
1929
+ 2.533
1930
+ B3LYP-LCAO-M
1931
+ 2.373
1932
+ 3.734
1933
+ 2.410
1934
+ 5.164
1935
+ 2.457
1936
+ 6.029
1937
+ 2.558
1938
+ 6.586
1939
+ 2.725
1940
+ 8.340
1941
+ B3LYP-LCAO-H
1942
+ 2.655
1943
+ 1.067
1944
+ 2.691
1945
+ 1.426
1946
+ 2.714
1947
+ 1.772
1948
+ 2.812
1949
+ 1.977
1950
+ -
1951
+ -
1952
+ B3LYP-LCAO-U
1953
+ 2.642
1954
+ 1.100
1955
+ 2.679
1956
+ 1.461
1957
+ 2.705
1958
+ 1.816
1959
+ 2.803
1960
+ 2.025
1961
+ -
1962
+ -
1963
+ B3LYP-PW
1964
+ 2.681
1965
+ 0.944
1966
+ 2.715
1967
+ 1.211
1968
+ 2.737
1969
+ 1.470
1970
+ 2.830
1971
+ 1.659
1972
+ 2.986
1973
+ 1.963
1974
+ PBE0-LCAO-M
1975
+ 2.322
1976
+ 4.877
1977
+ 2.358
1978
+ 6.807
1979
+ 2.409
1980
+ 7.978
1981
+ 2.512
1982
+ 8.657
1983
+ -
1984
+ -
1985
+ PBE0-LCAO-H
1986
+ 2.635
1987
+ 1.092
1988
+ 2.654
1989
+ 1.523
1990
+ 2.679
1991
+ 1.970
1992
+ 2.773
1993
+ 2.219
1994
+ -
1995
+ -
1996
+ PBE0-LCAO-U
1997
+ 2.626
1998
+ 1.128
1999
+ 2.642
2000
+ 1.567
2001
+ 2.670
2002
+ 2.023
2003
+ 2.764
2004
+ 2.277
2005
+ -
2006
+ -
2007
+ PBE0-PW
2008
+ 2.649
2009
+ 0.963
2010
+ 2.671
2011
+ 1.288
2012
+ 2.690
2013
+ 1.640
2014
+ 2.779
2015
+ 1.879
2016
+ 2.910
2017
+ 2.444
2018
+ HSE03-LCAO-M
2019
+ 2.694
2020
+ 1.030
2021
+ 2.715
2022
+ 1.351
2023
+ 2.729
2024
+ 1.696
2025
+ 2.825
2026
+ 1.919
2027
+ 2.725
2028
+ 2.436
2029
+ HSE03-LCAO-H
2030
+ 2.668
2031
+ 1.044
2032
+ 2.693
2033
+ 1.385
2034
+ 2.714
2035
+ 1.728
2036
+ 2.807
2037
+ 1.949
2038
+ -
2039
+ -
2040
+ HSE03-LCAO-U
2041
+ 2.663
2042
+ 1.058
2043
+ 2.687
2044
+ 1.396
2045
+ 2.710
2046
+ 1.744
2047
+ 2.801
2048
+ 1.966
2049
+ -
2050
+ -
2051
+ HSE03-PW
2052
+ 2.651
2053
+ 1.049
2054
+ 2.664
2055
+ 1.392
2056
+ 2.697
2057
+ 1.742
2058
+ 2.787
2059
+ 1.971
2060
+ 2.925
2061
+ 2.484
2062
+ HSE06-LCAO-M
2063
+ 2.697
2064
+ 1.061
2065
+ 2.716
2066
+ 1.358
2067
+ 2.733
2068
+ 1.707
2069
+ 2.829
2070
+ 1.932
2071
+ 2.954
2072
+ 2.431
2073
+ HSE06-LCAO-H
2074
+ 2.676
2075
+ 1.075
2076
+ 2.693
2077
+ 1.391
2078
+ 2.719
2079
+ 1.738
2080
+ 2.812
2081
+ 1.961
2082
+ -
2083
+ -
2084
+ HSE06-LCAO-U
2085
+ 2.666
2086
+ 1.088
2087
+ 2.686
2088
+ 1.402
2089
+ 2.709
2090
+ 1.753
2091
+ 2.803
2092
+ 1.978
2093
+ -
2094
+ -
2095
+ HSE06-PW
2096
+ 2.650
2097
+ 1.075
2098
+ 2.664
2099
+ 1.396
2100
+ 2.695
2101
+ 1.750
2102
+ 2.786
2103
+ 1.982
2104
+ 2.923
2105
+ 2.479
2106
+ TABLE VI. Elastic constants for 1D (GPa nm2), 2D (GPa nm), and 3D (GPa) calculated by using different DFT-attributes.
2107
+ 1D
2108
+ Honeycomb
2109
+ Square
2110
+ Hexagonal
2111
+ 3D
2112
+ DFT-Methods
2113
+ C11
2114
+ C11
2115
+ C12
2116
+ C66
2117
+ C11
2118
+ C12
2119
+ C66
2120
+ C11
2121
+ C12
2122
+ C66
2123
+ C11
2124
+ C12
2125
+ C66
2126
+ DFTB
2127
+ 88.2
2128
+ 163.6
2129
+ 63.8
2130
+ 49.9
2131
+ 57.8
2132
+ 9.7
2133
+ -3.9
2134
+ 42.7
2135
+ 22.6
2136
+ 10.1
2137
+ 110.7
2138
+ 102.4
2139
+ 19.9
2140
+ LDA-LCAO-M
2141
+ 24.5
2142
+ 34.3
2143
+ 14.9
2144
+ 9.7
2145
+ 80.5
2146
+ 9.0
2147
+ -5.9
2148
+ 77.9
2149
+ 30.7
2150
+ 23.6
2151
+ 163.6
2152
+ 133.0
2153
+ 53.4
2154
+ LDA-LCAO-H
2155
+ 25.2
2156
+ 33.7
2157
+ 17.0
2158
+ 8.3
2159
+ 79.5
2160
+ 10.7
2161
+ -7.5
2162
+ 79.1
2163
+ 28.4
2164
+ 25.3
2165
+ 165.4
2166
+ 131.0
2167
+ 56.3
2168
+ LDA-LCAO-U
2169
+ 25.8
2170
+ 34.2
2171
+ 17.4
2172
+ 8.4
2173
+ 80.6
2174
+ 12.1
2175
+ -7.6
2176
+ 85.3
2177
+ 27.1
2178
+ 29.1
2179
+ 164.3
2180
+ 131.4
2181
+ 54.7
2182
+ LDA-PW
2183
+ 24.7
2184
+ 34.0
2185
+ 18.3
2186
+ 7.9
2187
+ 79.4
2188
+ 12.0
2189
+ -8.8
2190
+ 79.2
2191
+ 31.4
2192
+ 23.9
2193
+ 165.4
2194
+ 131.1
2195
+ 58.7
2196
+ RPBE-LCAO-M
2197
+ 15.5
2198
+ 19.0
2199
+ 8.7
2200
+ 5.1
2201
+ 48.6
2202
+ 4.6
2203
+ -2.9
2204
+ 43.5
2205
+ 13.8
2206
+ 14.9
2207
+ 103.4
2208
+ 88.0
2209
+ 35.9
2210
+ RPBE-LCAO-H
2211
+ 15.3
2212
+ 19.4
2213
+ 9.0
2214
+ 5.2
2215
+ 47.8
2216
+ 5.6
2217
+ -2.3
2218
+ 48.6
2219
+ 16.7
2220
+ 16.0
2221
+ 103.6
2222
+ 83.9
2223
+ 32.7
2224
+ RPBE-LCAO-U
2225
+ 15.1
2226
+ 19.6
2227
+ 8.4
2228
+ 5.6
2229
+ 47.9
2230
+ 6.5
2231
+ -2.7
2232
+ 44.6
2233
+ 21.8
2234
+ 11.4
2235
+ 103.4
2236
+ 82.9
2237
+ 31.3
2238
+ RPBE-PW
2239
+ 16.0
2240
+ 20.5
2241
+ 9.4
2242
+ 5.5
2243
+ 48.2
2244
+ 6.4
2245
+ -3.4
2246
+ 49.0
2247
+ 17.1
2248
+ 16.0
2249
+ 92.7
2250
+ 72.0
2251
+ 25.4
2252
+ PW91-LCAO-M
2253
+ 18.8
2254
+ 24.1
2255
+ 10.7
2256
+ 6.7
2257
+ 57.3
2258
+ 6.0
2259
+ -3.0
2260
+ 56.2
2261
+ -9.0
2262
+ 32.6
2263
+ 133.3
2264
+ 81.2
2265
+ 16.7
2266
+ PW91-LCAO-H
2267
+ 18.6
2268
+ 24.5
2269
+ 11.7
2270
+ 6.6
2271
+ 56.7
2272
+ 7.4
2273
+ -3.4
2274
+ 56.3
2275
+ 21.8
2276
+ 17.2
2277
+ 116.4
2278
+ 69.2
2279
+ 19.7
2280
+ PW91-LCAO-U
2281
+ 19.1
2282
+ 24.2
2283
+ 11.0
2284
+ 6.6
2285
+ 56.1
2286
+ 8.1
2287
+ -3.6
2288
+ 56.8
2289
+ 21.1
2290
+ 17.8
2291
+ 117.7
2292
+ 68.9
2293
+ 19.0
2294
+ PW91-PW
2295
+ 19.1
2296
+ 24.7
2297
+ 11.5
2298
+ 6.6
2299
+ 57.5
2300
+ 8.2
2301
+ -4.1
2302
+ 56.8
2303
+ 21.3
2304
+ 17.7
2305
+ 109.8
2306
+ 85.9
2307
+ 29.7
2308
+ PBE-LCAO-M
2309
+ 16.9
2310
+ 25.5
2311
+ 8.63
2312
+ 8.4
2313
+ 56.2
2314
+ 5.5
2315
+ -3.1
2316
+ 55.2
2317
+ 20.1
2318
+ 17.5
2319
+ 114.1
2320
+ 67.6
2321
+ 34.2
2322
+ PBE-LCAO-H
2323
+ 17.6
2324
+ 23.0
2325
+ 10.7
2326
+ 6.2
2327
+ 54.8
2328
+ 6.8
2329
+ -3.6
2330
+ 56.2
2331
+ 18.8
2332
+ 18.7
2333
+ 113.2
2334
+ 68.3
2335
+ 20.5
2336
+ PBE-LCAO-U
2337
+ 18.6
2338
+ 23.2
2339
+ 10.7
2340
+ 6.2
2341
+ 55.3
2342
+ 7.7
2343
+ -3.7
2344
+ 55.8
2345
+ 20.7
2346
+ 17.5
2347
+ 115.2
2348
+ 68.0
2349
+ 20.0
2350
+
2351
+ 16
2352
+ TABLE VI. (Continued)
2353
+ 1D
2354
+ Honeycomb
2355
+ Square
2356
+ Hexagonal
2357
+ 3D
2358
+ DFT-Methods
2359
+ C11
2360
+ C11
2361
+ C12
2362
+ C66
2363
+ C11
2364
+ C12
2365
+ C66
2366
+ C11
2367
+ C12
2368
+ C66
2369
+ C11
2370
+ C12
2371
+ C66
2372
+ PBE-PW
2373
+ 18.3
2374
+ 23.4
2375
+ 11.0
2376
+ 6.2
2377
+ 55.3
2378
+ 7.7
2379
+ -4.3
2380
+ 55.8
2381
+ 20.4
2382
+ 17.7
2383
+ 107.7
2384
+ 84.2
2385
+ 31.0
2386
+ B3LYP-LCAO-M
2387
+ 65.3
2388
+ 97.4
2389
+ 45.6
2390
+ 25.9
2391
+ 160.2
2392
+ 52.2
2393
+ -31.9
2394
+ 168.8
2395
+ 85.3
2396
+ 41.8
2397
+ -
2398
+ -
2399
+ -
2400
+ B3LYP-LCAO-H
2401
+ 19.4
2402
+ 23.3
2403
+ 10.5
2404
+ 6.4
2405
+ 44.9
2406
+ 17.0
2407
+ -3.6
2408
+ 51.3
2409
+ 19.2
2410
+ 16.0
2411
+ -
2412
+ -
2413
+ -
2414
+ B3LYP-LCAO-U
2415
+ 20.5
2416
+ 24.2
2417
+ 10.7
2418
+ 6.7
2419
+ 46.0
2420
+ 18.2
2421
+ -3.4
2422
+ 52.8
2423
+ 20.6
2424
+ 16.1
2425
+ -
2426
+ -
2427
+ -
2428
+ B3LYP-PW
2429
+ 35.9
2430
+ 20.8
2431
+ 9.6
2432
+ 5.6
2433
+ 38.9
2434
+ 15.5
2435
+ -1.8
2436
+ 47.2
2437
+ 17.6
2438
+ 14.8
2439
+ -
2440
+ -
2441
+ -
2442
+ PBE0-LCAO-M
2443
+ 80.4
2444
+ 115.1
2445
+ 58.9
2446
+ 28.1
2447
+ 205.4
2448
+ 60.0
2449
+ -90.1
2450
+ 203.9
2451
+ 103.2
2452
+ 50.3
2453
+ -
2454
+ -
2455
+ -
2456
+ PBE0-LCAO-H
2457
+ 20.2
2458
+ 25.1
2459
+ 11.1
2460
+ 7.0
2461
+ 48.4
2462
+ 23.8
2463
+ -8.0
2464
+ 58.3
2465
+ 20.2
2466
+ 19.1
2467
+ -
2468
+ -
2469
+ -
2470
+ PBE0-LCAO-U
2471
+ 20.8
2472
+ 26.3
2473
+ 14.8
2474
+ 5.8
2475
+ 45.2
2476
+ 25.2
2477
+ -8.3
2478
+ 59.9
2479
+ 21.9
2480
+ 19.0
2481
+ -
2482
+ -
2483
+ -
2484
+ PBE0-PW
2485
+ 17.6
2486
+ 22.5
2487
+ 11.0
2488
+ 5.7
2489
+ 40.0
2490
+ 22.2
2491
+ -5.3
2492
+ 55.1
2493
+ 19.6
2494
+ 17.6
2495
+ 138.4
2496
+ 73.0
2497
+ -
2498
+ HSE03-LCAO-M
2499
+ 17.7
2500
+ 23.1
2501
+ 10.2
2502
+ 6.5
2503
+ 53.9
2504
+ 8.3
2505
+ -3.1
2506
+ 54.0
2507
+ 19.6
2508
+ 17.2
2509
+ 96.4
2510
+ 84.5
2511
+ 27.9
2512
+ HSE03-LCAO-H
2513
+ 18.0
2514
+ 23.4
2515
+ 10.6
2516
+ 6.4
2517
+ 50.9
2518
+ 10.2
2519
+ -3.3
2520
+ 53.2
2521
+ 20.5
2522
+ 16.3
2523
+ -
2524
+ -
2525
+ -
2526
+ HSE03-LCAO-U
2527
+ 17.4
2528
+ 22.7
2529
+ 10.9
2530
+ 5.9
2531
+ 50.3
2532
+ 10.0
2533
+ -3.5
2534
+ 53.8
2535
+ 19.4
2536
+ 17.2
2537
+ -
2538
+ -
2539
+ -
2540
+ HSE03-PW
2541
+ 20.9
2542
+ 22.3
2543
+ 11.5
2544
+ 5.4
2545
+ 52.4
2546
+ 9.1
2547
+ -4.5
2548
+ 53.8
2549
+ 21.2
2550
+ 16.3
2551
+ 96.2
2552
+ 83.0
2553
+ 13.7
2554
+ HSE06-LCAO-M
2555
+ 17.4
2556
+ 23.1
2557
+ 10.3
2558
+ 6.4
2559
+ 52.1
2560
+ 8.6
2561
+ -3.1
2562
+ 52.8
2563
+ 19.3
2564
+ 16.8
2565
+ 113.5
2566
+ 95.6
2567
+ 36.5
2568
+ HSE06-LCAO-H
2569
+ 18.6
2570
+ 23.2
2571
+ 10.6
2572
+ 6.3
2573
+ 49.9
2574
+ 11.0
2575
+ -3.2
2576
+ 51.9
2577
+ 19.5
2578
+ 16.2
2579
+ -
2580
+ -
2581
+ -
2582
+ HSE06-LCAO-U
2583
+ 17.1
2584
+ 24.0
2585
+ 9.9
2586
+ 7.0
2587
+ 49.1
2588
+ 11.3
2589
+ -3.5
2590
+ 53.3
2591
+ 18.9
2592
+ 17.2
2593
+ -
2594
+ -
2595
+ -
2596
+ HSE06-PW
2597
+ 26.5
2598
+ 21.9
2599
+ 11.5
2600
+ 5.2
2601
+ 50.5
2602
+ 11.1
2603
+ -5.3
2604
+ 54.4
2605
+ 20.3
2606
+ 17.0
2607
+ 94.2
2608
+ 87.2
2609
+ 14.4
2610
+ TABLE VII. Estimation of contribution of s, p, and d orbitals to the density of states by implementing different DFT-attributes
2611
+ 1D
2612
+ Honeycomb
2613
+ Square
2614
+ Hexagonal
2615
+ 3D
2616
+ DFT-Methods
2617
+ Ns
2618
+ Np
2619
+ Nd
2620
+ Ns
2621
+ Np
2622
+ Nd
2623
+ Ns
2624
+ Np
2625
+ Nd
2626
+ Ns
2627
+ Np
2628
+ Nd
2629
+ Ns
2630
+ Np
2631
+ Nd
2632
+ DFTB
2633
+ 1.01
2634
+ 0.19
2635
+ 0.15
2636
+ 0.52
2637
+ 0.39
2638
+ 0.12
2639
+ 0.36
2640
+ 0.45
2641
+ 0.12
2642
+ 0.34
2643
+ 0.42
2644
+ 0.13
2645
+ 0.19
2646
+ 0.46
2647
+ 0.15
2648
+ LDA-LCAO-M
2649
+ 0.97
2650
+ 0.08
2651
+ 0.53
2652
+ 0.56
2653
+ 0.14
2654
+ 0.18
2655
+ 0.39
2656
+ 0.18
2657
+ 0.20
2658
+ 0.33
2659
+ 0.16
2660
+ 0.22
2661
+ 0.20
2662
+ 0.26
2663
+ 0.14
2664
+ LDA-LCAO-H
2665
+ 1.00
2666
+ 0.04
2667
+ 0.79
2668
+ 0.57
2669
+ 0.13
2670
+ 0.26
2671
+ 0.41
2672
+ 0.18
2673
+ 0.26
2674
+ 0.34
2675
+ 0.16
2676
+ 0.27
2677
+ 0.21
2678
+ 0.22
2679
+ 0.18
2680
+ LDA-LCAO-U
2681
+ 0.99
2682
+ 0.04
2683
+ 0.81
2684
+ 0.56
2685
+ 0.13
2686
+ 0.26
2687
+ 0.40
2688
+ 0.18
2689
+ 0.27
2690
+ 0.33
2691
+ 0.16
2692
+ 0.26
2693
+ 0.21
2694
+ 0.22
2695
+ 0.18
2696
+ LDA-PW
2697
+ 0.64
2698
+ 0.39
2699
+ 0.31
2700
+ 0.17
2701
+ 0.54
2702
+ 0.08
2703
+ 0.10
2704
+ 0.50
2705
+ 0.11
2706
+ 0.08
2707
+ 0.44
2708
+ 0.09
2709
+ 0.01
2710
+ 0.41
2711
+ 0.02
2712
+ RPBE-LCAO-M
2713
+ 1.04
2714
+ 0.08
2715
+ 0.37
2716
+ 0.67
2717
+ 0.13
2718
+ 0.13
2719
+ 0.45
2720
+ 0.17
2721
+ 0.13
2722
+ 0.40
2723
+ 0.17
2724
+ 0.18
2725
+ 0.26
2726
+ 0.26
2727
+ 0.12
2728
+ RPBE-LCAO-H
2729
+ 1.06
2730
+ 0.04
2731
+ 0.53
2732
+ 0.67
2733
+ 0.12
2734
+ 0.18
2735
+ 0.47
2736
+ 0.17
2737
+ 0.17
2738
+ 0.41
2739
+ 0.15
2740
+ 0.22
2741
+ 0.26
2742
+ 0.22
2743
+ 0.18
2744
+ RPBE-LCAO-U
2745
+ 1.05
2746
+ 0.04
2747
+ 0.54
2748
+ 0.67
2749
+ 0.12
2750
+ 0.18
2751
+ 0.47
2752
+ 0.17
2753
+ 0.18
2754
+ 0.40
2755
+ 0.15
2756
+ 0.22
2757
+ 0.26
2758
+ 0.22
2759
+ 0.18
2760
+ RPBE-PW
2761
+ 0.75
2762
+ 0.33
2763
+ 0.23
2764
+ 0.28
2765
+ 0.52
2766
+ 0.07
2767
+ 0.16
2768
+ 0.49
2769
+ 0.08
2770
+ 0.14
2771
+ 0.43
2772
+ 0.08
2773
+ 0.03
2774
+ 0.49
2775
+ 0.02
2776
+ PW91-LCAO-M
2777
+ 1.01
2778
+ 0.08
2779
+ 0.28
2780
+ 0.63
2781
+ 0.13
2782
+ 0.11
2783
+ 0.43
2784
+ 0.18
2785
+ 0.11
2786
+ 0.38
2787
+ 0.17
2788
+ 0.15
2789
+ 0.24
2790
+ 0.26
2791
+ 0.11
2792
+ PW91-LCAO-H
2793
+ 1.04
2794
+ 0.04
2795
+ 0.58
2796
+ 0.63
2797
+ 0.12
2798
+ 0.20
2799
+ 0.45
2800
+ 0.17
2801
+ 0.19
2802
+ 0.39
2803
+ 0.16
2804
+ 0.23
2805
+ 0.25
2806
+ 0.23
2807
+ 0.17
2808
+ PW91-LCAO-U
2809
+ 1.03
2810
+ 0.04
2811
+ 0.59
2812
+ 0.63
2813
+ 0.12
2814
+ 0.20
2815
+ 0.45
2816
+ 0.17
2817
+ 0.19
2818
+ 0.38
2819
+ 0.16
2820
+ 0.22
2821
+ 0.25
2822
+ 0.22
2823
+ 0.17
2824
+ PW91-PW
2825
+ 0.73
2826
+ 0.33
2827
+ 0.23
2828
+ 0.25
2829
+ 0.53
2830
+ 0.07
2831
+ 0.14
2832
+ 0.50
2833
+ 0.08
2834
+ 0.12
2835
+ 0.44
2836
+ 0.08
2837
+ 0.02
2838
+ 0.48
2839
+ 0.02
2840
+ PBE-LCAO-M
2841
+ 1.02
2842
+ 0.08
2843
+ 0.31
2844
+ 0.64
2845
+ 0.13
2846
+ 0.12
2847
+ 0.44
2848
+ 0.17
2849
+ 0.12
2850
+ 0.38
2851
+ 0.17
2852
+ 0.16
2853
+ 0.24
2854
+ 0.26
2855
+ 0.12
2856
+ PBE-LCAO-H
2857
+ 1.04
2858
+ 0.04
2859
+ 0.59
2860
+ 0.65
2861
+ 0.12
2862
+ 0.20
2863
+ 0.46
2864
+ 0.17
2865
+ 0.19
2866
+ 0.39
2867
+ 0.15
2868
+ 0.23
2869
+ 0.25
2870
+ 0.22
2871
+ 0.17
2872
+ PBE-LCAO-U
2873
+ 1.04
2874
+ 0.04
2875
+ 0.60
2876
+ 0.64
2877
+ 0.12
2878
+ 0.20
2879
+ 0.45
2880
+ 0.17
2881
+ 0.19
2882
+ 0.39
2883
+ 0.15
2884
+ 0.23
2885
+ 0.25
2886
+ 0.22
2887
+ 0.18
2888
+ PBE-PW
2889
+ 0.73
2890
+ 0.33
2891
+ 0.23
2892
+ 0.25
2893
+ 0.53
2894
+ 0.07
2895
+ 0.14
2896
+ 0.50
2897
+ 0.08
2898
+ 0.12
2899
+ 0.44
2900
+ 0.08
2901
+ 0.02
2902
+ 0.49
2903
+ 0.02
2904
+ B3LYP-LCAO-M
2905
+ 0.62
2906
+ 0.10
2907
+ 0.01
2908
+ 0.41
2909
+ 0.14
2910
+ 0.00
2911
+ 0.29
2912
+ 0.18
2913
+ 0.00
2914
+ 0.27
2915
+ 0.15
2916
+ 0.00
2917
+ 0.19
2918
+ 0.22
2919
+ 0.01
2920
+ B3LYP-LCAO-H
2921
+ 0.81
2922
+ 0.03
2923
+ 0.02
2924
+ 0.55
2925
+ 0.10
2926
+ 0.01
2927
+ 0.41
2928
+ 0.15
2929
+ -0.01
2930
+ 0.37
2931
+ 0.13
2932
+ 0.00
2933
+ -
2934
+ -
2935
+ -
2936
+ B3LYP-LCAO-U
2937
+ 0.78
2938
+ 0.03
2939
+ 0.02
2940
+ 0.55
2941
+ 0.10
2942
+ 0.01
2943
+ 0.41
2944
+ 0.15
2945
+ -0.01
2946
+ 0.37
2947
+ 0.14
2948
+ 0.00
2949
+ -
2950
+ -
2951
+ -
2952
+ B3LYP-PW
2953
+ 0.55
2954
+ 0.26
2955
+ 0.02
2956
+ 0.21
2957
+ 0.43
2958
+ 0.01
2959
+ 0.13
2960
+ 0.40
2961
+ 0.02
2962
+ 0.12
2963
+ 0.35
2964
+ 0.02
2965
+ 0.04
2966
+ 0.39
2967
+ 0.01
2968
+ PBE0-LCAO-M
2969
+ 0.50
2970
+ 0.10
2971
+ 0.01
2972
+ 0.37
2973
+ 0.14
2974
+ 0.00
2975
+ 0.25
2976
+ 0.19
2977
+ 0.00
2978
+ 0.24
2979
+ 0.16
2980
+ 0.00
2981
+ -
2982
+ -
2983
+ -
2984
+ PBE0-LCAO-H
2985
+ 0.71
2986
+ 0.03
2987
+ 0.02
2988
+ 0.51
2989
+ 0.10
2990
+ 0.01
2991
+ 0.38
2992
+ 0.15
2993
+ -0.01
2994
+ 0.34
2995
+ 0.13
2996
+ 0.00
2997
+ -
2998
+ -
2999
+ -
3000
+ PBE0-LCAO-U
3001
+ 0.70
3002
+ 0.03
3003
+ 0.02
3004
+ 0.50
3005
+ 0.10
3006
+ 0.01
3007
+ 0.37
3008
+ 0.15
3009
+ -0.01
3010
+ 0.34
3011
+ 0.13
3012
+ 0.00
3013
+ -
3014
+ -
3015
+ -
3016
+ PBE0-PW
3017
+ 0.47
3018
+ 0.26
3019
+ 0.01
3020
+ 0.18
3021
+ 0.42
3022
+ 0.01
3023
+ 0.10
3024
+ 0.39
3025
+ 0.02
3026
+ 0.10
3027
+ 0.34
3028
+ 0.01
3029
+ 0.01
3030
+ 0.38
3031
+ 0.01
3032
+ HSE03-LCAO-M
3033
+ 0.92
3034
+ 0.07
3035
+ 0.03
3036
+ 0.58
3037
+ 0.12
3038
+ 0.03
3039
+ 0.39
3040
+ 0.16
3041
+ 0.02
3042
+ 0.35
3043
+ 0.15
3044
+ 0.04
3045
+ 0.23
3046
+ 0.25
3047
+ 0.07
3048
+ HSE03-LCAO-H
3049
+ 0.94
3050
+ 0.04
3051
+ 0.05
3052
+ 0.57
3053
+ 0.12
3054
+ 0.05
3055
+ 0.40
3056
+ 0.16
3057
+ 0.04
3058
+ 0.35
3059
+ 0.14
3060
+ 0.06
3061
+ -
3062
+ -
3063
+ -
3064
+ HSE03-LCAO-U
3065
+ 0.93
3066
+ 0.04
3067
+ 0.05
3068
+ 0.57
3069
+ 0.12
3070
+ 0.05
3071
+ 0.40
3072
+ 0.16
3073
+ 0.04
3074
+ 0.35
3075
+ 0.14
3076
+ 0.06
3077
+ -
3078
+ -
3079
+ -
3080
+ HSE03-PW
3081
+ 0.67
3082
+ 0.30
3083
+ 0.03
3084
+ 0.22
3085
+ 0.49
3086
+ 0.01
3087
+ 0.13
3088
+ 0.45
3089
+ 0.02
3090
+ 0.11
3091
+ 0.40
3092
+ 0.02
3093
+ 0.02
3094
+ 0.46
3095
+ 0.01
3096
+ HSE06-LCAO-M
3097
+ 0.88
3098
+ 0.07
3099
+ 0.03
3100
+ 0.55
3101
+ 0.11
3102
+ 0.03
3103
+ 0.38
3104
+ 0.15
3105
+ 0.02
3106
+ 0.34
3107
+ 0.14
3108
+ 0.04
3109
+ 0.22
3110
+ 0.24
3111
+ 0.06
3112
+ HSE06-LCAO-H
3113
+ 0.90
3114
+ 0.03
3115
+ 0.04
3116
+ 0.55
3117
+ 0.11
3118
+ 0.04
3119
+ 0.39
3120
+ 0.15
3121
+ 0.04
3122
+ 0.34
3123
+ 0.13
3124
+ 0.05
3125
+ -
3126
+ -
3127
+ -
3128
+ HSE06-LCAO-U
3129
+ 0.89
3130
+ 0.03
3131
+ 0.04
3132
+ 0.55
3133
+ 0.11
3134
+ 0.05
3135
+ 0.39
3136
+ 0.15
3137
+ 0.04
3138
+ 0.34
3139
+ 0.13
3140
+ 0.05
3141
+ -
3142
+ -
3143
+ -
3144
+ HSE06-PW
3145
+ 0.63
3146
+ 0.29
3147
+ 0.02
3148
+ 0.21
3149
+ 0.47
3150
+ 0.01
3151
+ 0.12
3152
+ 0.43
3153
+ 0.02
3154
+ 0.11
3155
+ 0.38
3156
+ 0.02
3157
+ 0.02
3158
+ 0.45
3159
+ 0.01
3160
+
-NAzT4oBgHgl3EQf_P6F/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
-dAyT4oBgHgl3EQf3fmN/content/2301.00770v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2e43e242e82e9a21edb2013bfa5d1b31040b17036f7c12271d84a34632d3e3f
3
+ size 1228283
-dAyT4oBgHgl3EQf3fmN/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31e28e94a6e54e320298551e25c8c34e9a6fe55d6fa5d4104292ed27c856d46f
3
+ size 3080237
-dAyT4oBgHgl3EQf3fmN/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b014f782a61584d447e791f9ed652f7923830dcdf169b18989c1e01fe60a28b6
3
+ size 102790
-dFQT4oBgHgl3EQf6zaC/content/tmp_files/2301.13440v1.pdf.txt ADDED
@@ -0,0 +1,748 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.13440v1 [math.RT] 31 Jan 2023
2
+ Real characters in nilpotent blocks
3
+ Benjamin Sambale∗
4
+ February 1, 2023
5
+ Dedicated to Pham Huu Tiep on the occasion of his 60th birthday.
6
+ Abstract
7
+ We prove that the number of irreducible real characters in a nilpotent block of a finite group is locally
8
+ determined. We further conjecture that the Frobenius–Schur indicators of those characters can be
9
+ computed for p = 2 in terms of the extended defect group. We derive this from a more general conjecture
10
+ on the Frobenius–Schur indicator of projective indecomposable characters of 2-blocks with one simple
11
+ module. This extends results of Murray on 2-blocks with cyclic and dihedral defect groups.
12
+ Keywords: real characters; Frobenius–Schur indicators; nilpotent blocks
13
+ AMS classification: 20C15, 20C20
14
+ 1 Introduction
15
+ An important task in representation theory is to determine global invariants of a finite group G by means of
16
+ local subgroups. Dade’s conjecture, for instance, predicts the number of irreducible characters χ ∈ Irr(G)
17
+ such that the p-part χ(1)p is a given power of a prime p (see [23, Conjecture 9.25]). Since Gow’s work [7],
18
+ there has been an increasing interest in counting real (i. e. real-valued) characters and more generally
19
+ characters with a given field of values.
20
+ The quaternion group Q8 testifies that a real irreducible character χ is not always afforded by a repre-
21
+ sentation over the real numbers. The precise behavior is encoded by the Frobenius–Schur indicator (F-S
22
+ indicator, for short)
23
+ ǫ(χ) :=
24
+ 1
25
+ |G|
26
+
27
+ g∈G
28
+ χ(g2) =
29
+
30
+
31
+
32
+
33
+
34
+ 0
35
+ if χ ̸= χ,
36
+ 1
37
+ if χ is realized by a real representation,
38
+ −1
39
+ if χ is real, but not realized by a real representation.
40
+ (1)
41
+ A new interpretation of the F-S indicator in terms of superalgebras has been given recently in [13]. The case
42
+ of the dihedral group D8 shows that ǫ(χ) is not determined by the character table of G. The computation
43
+ ∗Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Leibniz Universität Hannover, Welfengarten 1, 30167 Han-
44
+ nover, Germany, [email protected]
45
+ 1
46
+
47
+ of F-S indicators can be a surprisingly difficult task, which has not been fully completed for the simple
48
+ groups of Lie type, for instance (see [25]). Problem 14 on Brauer’s famous list [2] asks for a group-theoretical
49
+ interpretation of the number of χ ∈ Irr(G) with ǫ(χ) = 1.
50
+ To obtain deeper insights, we fix a prime p and assume that χ lies in a p-block B of G with defect group
51
+ D. By complex conjugation we obtain another block B of G. If B ̸= B, then clearly ǫ(χ) = 0 for all
52
+ χ ∈ Irr(B). Hence, we assume that B is real, i. e. B = B. John Murray [18, 19] has computed the F-S
53
+ indicators when D is a cyclic 2-group or a dihedral 2-group (including the Klein four-group). His results
54
+ depend on the fusion system of B, on Erdmann’s classification of tame blocks and on the structure of the
55
+ so-called extended defect group E of B (see Definition 7 below). For p > 2 and D cyclic, he obtained in
56
+ [20] partial information on the F-S indicators in terms of the Brauer tree of B.
57
+ The starting point of my investigation is the well-known fact that 2-blocks with cyclic defect groups are
58
+ nilpotent. Assume that B is nilpotent and real. If B is the principal block, then G = Op′(G)D and
59
+ Irr(B) = Irr(G/Op′(G)) = Irr(D). In this case the F-S indicators of B are determined by D alone. Thus,
60
+ suppose that B is non-principal. By Broué–Puig [4], there exists a height-preserving bijection Irr(D) →
61
+ Irr(B), λ �→ λ ∗ χ0 where χ0 ∈ Irr(B) is a fixed character of height 0 (see also [16, Definition 8.10.2]).
62
+ However, this bijection does not in general preserve F-S indicators. For instance, the dihedral group D24
63
+ has a nilpotent 2-block with defect group C4 and a nilpotent 3-block with defect group C3, although every
64
+ character of D24 is real. Our main theorem asserts that the number of real characters in a nilpotent block
65
+ is nevertheless locally determined. To state it, we introduce the extended inertial group
66
+ NG(D, bD)∗ :=
67
+
68
+ g ∈ NG(D) : bg
69
+ D ∈ {bD, bD}
70
+
71
+ where bD is a Brauer correspondent of B in DCG(D).
72
+ Theorem A. Let B be a real, nilpotent p-block of a finite group G with defect group D. Let bD be a Brauer
73
+ correspondent of B in DCG(D). Then the number of real characters in Irr(B) of height h coincides with
74
+ the number of characters λ ∈ Irr(D) of degree ph such that λt = λ where
75
+ NG(D, bD)∗/DCG(D) = ⟨tDCG(D)⟩.
76
+ If p > 2, then all real characters in Irr(B) have the same F-S indicator.
77
+ In contrast to arbitrary blocks, Theorem A implies that nilpotent real blocks have at least one real character
78
+ (cf. [20, p. 92] and [8, Theorem 5.3]). If bD = bD, then B and D have the same number of real characters,
79
+ because NG(D, bD) = DCG(D). This recovers a result of Murray [18, Lemma 2.2]. As another consequence,
80
+ we will derive in Proposition 5 a real version of Eaton’s conjecture [5] for nilpotent blocks as put forward
81
+ by Héthelyi–Horváth–Szabó [12].
82
+ The F-S indicators of real characters in nilpotent blocks seem to lie somewhat deeper. We still conjecture
83
+ that they are locally determined by a defect pair (see Definition 7) for p = 2 as follows.
84
+ Conjecture B. Let B be a real, nilpotent, non-principal 2-block of a finite group G with defect pair (D, E).
85
+ Then there exists a height preserving bijection Γ : Irr(D) → Irr(B) such that
86
+ ǫ(Γ(λ)) =
87
+ 1
88
+ |D|
89
+
90
+ e∈E\D
91
+ λ(e2)
92
+ (2)
93
+ for all λ ∈ Irr(D).
94
+ 2
95
+
96
+ The right hand side of (2) was introduced and studied by Gow [8, Lemma 2.1] more generally for any
97
+ groups D ≤ E with |E : D| = 2. This invariant was later coined the Gow indicator by Murray [20, Eq.
98
+ (2)]. For 2-blocks of defect 0, Conjecture B confirms the known fact that real characters of 2-defect 0
99
+ have F-S indicator 1 (see [8, Theorem 5.1]). There is no such result for odd primes p. As a matter of fact,
100
+ every real character has p-defect 0 whenever p does not divide |G|. In Theorem 10 we prove Conjecture B
101
+ for abelian defect groups D. Then it also holds for all quasisimple groups G by work of An–Eaton [1].
102
+ Murray’s results mentioned above, imply Conjecture B also for dihedral D.
103
+ For p > 2, the common F-S indicator in the situation of Theorem A is not locally determined. For instance,
104
+ G = Q8⋊C9 = SmallGroup(72, 3) has a non-principal real 3-block with D ∼= C9 and common F-S indicator
105
+ −1, while its Brauer correspondent in NG(D) ∼= C18 has common F-S indicator 1. Nevertheless, for cyclic
106
+ defect groups D we find another way to compute this F-S indicator in Theorem 3 below.
107
+ Our second conjecture applies more generally to blocks with only one simple module.
108
+ Conjecture C. Let B be a real, non-principal 2-block with defect pair (D, E) and a unique projective
109
+ indecomposable character Φ. Then
110
+ ǫ(Φ) = |{x ∈ E \ D : x2 = 1}|.
111
+ Here ǫ(Φ) is defined by extending (1) linearly. If ǫ(Φ) = 0, then E does not split over D and Conjecture C
112
+ holds (see Proposition 8 below). Conjecture C implies a stronger, but more technical statement on 2-blocks
113
+ with a Brauer correspondent with one simple module (see Theorem 13 below). This allows us to prove the
114
+ following.
115
+ Theorem D. Conjecture C implies Conjecture B.
116
+ We remark that our proof of Theorem D does not work block-by-block. For solvable groups we offer a
117
+ purely group-theoretical version of Conjecture C at the end of Section 4.
118
+ Theorem E. Conjectures B and C hold for all nilpotent 2-blocks of solvable groups.
119
+ We have checked Conjectures B and C with GAP [6] in many examples using the libraries of small groups,
120
+ perfect groups and primitive groups.
121
+ 2 Theorem A and its consequences
122
+ Our notation follows closely Navarro’s book [22]. Let B be a p-block of a finite group G with defect group
123
+ D. Recall that a B-subsection is a pair (u, b) where u ∈ D and b is a Brauer correspondent of B in CG(u).
124
+ For χ ∈ Irr(B) and ϕ ∈ IBr(b) we denote the corresponding generalized decomposition number by du
125
+ χϕ. If
126
+ u = 1, we obtain the (ordinary) decomposition number dχϕ = d1
127
+ χϕ. We put l(b) = |IBr(b)| as usual.
128
+ Following [22, p. 114], we define a class function χ(u,b) by
129
+ χ(u,b)(us) :=
130
+
131
+ ϕ∈IBr(b)
132
+ du
133
+ χϕϕ(s)
134
+ 3
135
+
136
+ for s ∈ CG(u)0 and χ(u,b)(x) = 0 whenever x is outside the p-section of u. If R is a set of representatives
137
+ for the G-conjugacy classes of B-subsections, then χ = �
138
+ (u,b)∈R χ(u,b) by Brauer’s second main theorem
139
+ (see [22, Problem 5.3]). Now suppose that B is nilpotent and λ ∈ Irr(D). By [16, Proposition 8.11.4], each
140
+ Brauer correspondent b of B is nilpotent and in particular l(b) = 1. Broué–Puig [4] have shown that, if χ
141
+ has height 0, then
142
+ λ ∗ χ :=
143
+
144
+ (u,b)∈R
145
+ λ(u)χ(u,b) ∈ Irr(B)
146
+ and (λ ∗ χ)(1) = λ(1)χ(1). Note also that du
147
+ λ∗χ,ϕ = λ(u)du
148
+ χϕ.
149
+ Proof of Theorem A. Let R be a set of representatives for the G-conjugacy classes of B-subsections
150
+ (u, bu) ≤ (D, bB) (see [22, p. 219]). Since B is nilpotent, we have IBr(bu) = {ϕu} for all (u, bu) ∈ R.
151
+ Since the Brauer correspondence is compatible with complex conjugation, (u, bu)t ≤ (D, bD)t = (D, bD)
152
+ where NG(D, bD)∗/DCG(D) = ⟨tDCG(D)⟩. Thus, (u, bu)t is D-conjugate to some (u′, bu′) ∈ R.
153
+ If p > 2, there exists a unique p-rational character χ0 ∈ Irr(B) of height 0, which must be real by
154
+ uniqueness (see [4, Remark after Theorem 1.2]). If p = 2, there is a 2-rational real character χ0 ∈ Irr(B)
155
+ of height 0 by [8, Theorem 5.1]. Then du
156
+ χ0,ϕu = du
157
+ χ0,ϕu ∈ Z and
158
+ χ(u,bu)
159
+ 0
160
+ = χ(u,bu)
161
+ 0
162
+ = χ(u,bu)t
163
+ 0
164
+ = χ(u′,bu′)
165
+ 0
166
+ .
167
+ Now let λ ∈ Irr(D). Then
168
+ λ ∗ χ0 =
169
+
170
+ (u,bu)∈R
171
+ λ(u)χ(u,bu)
172
+ 0
173
+ =
174
+
175
+ (u,bu)∈R
176
+ λ(u)χ(u′,bu′)
177
+ 0
178
+ .
179
+ Since the class functions χ(u,b)
180
+ 0
181
+ have disjoint support, they are linearly independent. Therefore, λ ∗ χ0 is
182
+ real if and only if λ(ut) = λ(u′) = λ(u) for all (u, bu) ∈ R. Since every conjugacy class of D is represented
183
+ by some u with (u, bu) ∈ R, we conclude that λ ∗ χ0 is real if and only λt = λ. Moreover, if λ(1) = ph,
184
+ then λ ∗ χ0 has height h. This proves the first claim.
185
+ To prove the second claim, let p > 2 and IBr(B) = {ϕ}. Then the decomposition numbers dλ∗χ0,ϕ = λ(1)
186
+ are powers of p; in particular they are odd. A theorem of Thompson and Willems (see [26, Theorem 2.8])
187
+ states that all real characters χ with dχ,ϕ odd have the same F-S indicator. So in our situation all real
188
+ characters in Irr(B) have the same F-S indicator.
189
+ Since the automorphism group of a p-group is “almost always” a p-group (see [11]), the following conse-
190
+ quence is of interest.
191
+ Corollary 1. Let B be a real, nilpotent p-block with defect group D such that p and |Aut(D)| are odd.
192
+ Then B has a unique real character.
193
+ Proof. The hypothesis on Aut(D) implies that NG(D, bD)∗ = DCG(D). Hence by Theorem A, the number
194
+ of real characters in Irr(B) is the number of real characters in D. Since p > 2, the trivial character is the
195
+ only real character of D.
196
+ 4
197
+
198
+ The next lemma is a consequence of Brauer’s second main theorem and the fact that |{g ∈ G : g2 = x}| =
199
+ |{g ∈ CG(x) : g2 = x}| is locally determined for g, x ∈ G.
200
+ Lemma 2 (Brauer). For every p-block B of G and every B-subsection (u, b) with ϕ ∈ IBr(b) we have
201
+
202
+ χ∈Irr(B)
203
+ ǫ(χ)du
204
+ χϕ =
205
+
206
+ ψ∈Irr(b)
207
+ ǫ(ψ)du
208
+ ψϕ =
209
+
210
+ ψ∈Irr(b)
211
+ ǫ(ψ)ψ(u)
212
+ ψ(1) dψϕ.
213
+ If l(b) = 1, then
214
+
215
+ χ∈Irr(B)
216
+ ǫ(χ)du
217
+ χϕ =
218
+ 1
219
+ ϕ(1)
220
+
221
+ ψ∈Irr(b)
222
+ ǫ(ψ)ψ(u).
223
+ Proof. The first equality is [3, Theorem 4A]. The second follows from u ∈ Z(CG(u)). If l(b) = 1, then
224
+ ψ(1) = dψϕϕ(1) for ψ ∈ Irr(b) and the last claim follows.
225
+ Recall that a canonical character of B is a character θ ∈ Irr(DCG(D)) lying in a Brauer correspondent of
226
+ B such that D ≤ Ker(θ) (see [22, Theorem 9.12]). We define the extended stabilizer
227
+ NG(D)∗
228
+ θ :=
229
+
230
+ g ∈ NG(D) : θg ∈ {θ, θ}
231
+
232
+ .
233
+ The following results adds some detail to the nilpotent case of [20, Theorem 1].
234
+ Theorem 3. Let B be a real, nilpotent p-block with cyclic defect group D = ⟨u⟩ and p > 2. Let θ ∈
235
+ Irr(CG(D)) be a canonical character of B and set T := NG(D)∗
236
+ θ. Then one of the following holds:
237
+ (1) θ ̸= θ. All characters in Irr(B) are real with F-S indicator ǫ(θT ).
238
+ (2) θ = θ. The unique non-exceptional character χ0 ∈ Irr(B) is the only real character in Irr(B) and
239
+ ǫ(χ0) = sgn(χ0(u))ǫ(θ) where sgn(χ0(u)) is the sign of χ0(u).
240
+ Proof. Let bD be a Brauer correspondent of B in CG(D) containing θ. Then T = NG(D, bD)∗. If θ ̸= θ,
241
+ then T inverts the elements of D since p > 2. Thus, Theorem A implies that all characters in Irr(B) are
242
+ real. By [20, Theorem 1(v)], the common F-S indicator is the Gow indicator of θ with respect to T. This
243
+ is easily seen to be ǫ(θT ) (see [20, after Eq. (2)]).
244
+ Now assume that θ = θ. Here Theorem A implies that the unique p-rational character χ0 ∈ Irr(B) is the
245
+ only real character. In particular, χ0 must be the unique non-exceptional character. Note that (u, bD) is
246
+ a B-subsection and IBr(bD) = {ϕ}. Since χ0 is p-rational, du
247
+ χ0ϕ = ±1. Since all Brauer correspondents of
248
+ B in CG(u) are conjugate under NG(D), the generalized decomposition numbers are Galois conjugate, in
249
+ particular du
250
+ χ0ϕ does not depend on the choice of bD. Hence,
251
+ χ0(u) = |NG(D) : NG(D)θ|du
252
+ χ0ϕϕ(1)
253
+ and du
254
+ χ0ϕ = sgn(χ0(u)). Moreover, θ is the unique non-exceptional character of bD and θ(u) = θ(1). By
255
+ Lemma 2, we obtain
256
+ ǫ(χ0) = sgn(χ0(u))
257
+
258
+ χ∈Irr(B)
259
+ ǫ(χ)du
260
+ χϕ = sgn(χ0(u))
261
+ ϕ(1)
262
+
263
+ ψ∈Irr(bD)
264
+ ǫ(ψ)ψ(u) = sgn(χ0(u))ǫ(θ).
265
+ 5
266
+
267
+ If B is a nilpotent block with canonical character θ ̸= θ, the common F-S indicator of the real characters
268
+ in Irr(B) is not always ǫ(θT ) as in Theorem 3. A counterexample is given by a certain 3-block of G =
269
+ SmallGroup(288, 924) with defect group D ∼= C3 × C3.
270
+ We now restrict ourselves to 2-blocks. Héthelyi–Horváth–Szabó [12] introduced four conjectures, which
271
+ are real versions of Brauer’s conjecture, Olsson’s conjecture and Eaton’s conjecture. We only state the
272
+ strongest of them, which implies the remaining three. Let D(0) := D and D(k+1) := [D(k), D(k)] for k ≥ 0
273
+ be the members of the derived series of D.
274
+ Conjecture 4 (Héthelyi–Horváth–Szabó). Let B be a 2-block with defect group D. For every h ≥ 0, the
275
+ number of real characters in Irr(B) of height ≤ h is bounded by the number of elements of D/D(h+1) which
276
+ are real in NG(D)/D(h+1).
277
+ A conjugacy class K of G is called real if K = K−1 := {x−1 : x ∈ K}. A conjugacy class K of a normal
278
+ subgroup N ⊴ G is called real under G if there exists g ∈ G such that Kg = K−1.
279
+ Proposition 5. Let B be a nilpotent 2-block with defect group D and Brauer correspondent bD in DCG(D).
280
+ Then the number of real characters in Irr(B) of height ≤ h is bounded by the number of conjugacy classes
281
+ of D/D(h+1) which are real under NG(D, bD)∗/D(h+1). In particular, Conjecture 4 holds for B.
282
+ Proof. We may assume that B is real. As in the proof of Theorem A, we fix some 2-rational real character
283
+ χ0 ∈ Irr(B) of height 0. Now λ ∗ χ0 has height ≤ h if and only if λ(1) ≤ ph for λ ∈ Irr(B). By [14,
284
+ Theorem 5.12], the characters of degree ≤ ph in Irr(D) lie in Irr(D/D(h+1)). By Theorem A, λ ∗ χ0 is
285
+ real if and only if λt = λ. By Brauer’s permutation lemma (see [23, Theorem 2.3]), the number of those
286
+ characters λ coincides with the number of conjugacy classes K of D/D(h+1) such that Kt = K−1. Now
287
+ Conjecture 4 follows from NG(D, bD)∗ ≤ NG(D).
288
+ 3 Extended defect groups
289
+ We continue to assume that p = 2. As usual we choose a complete discrete valuation ring O such that
290
+ F := O/J(O) is an algebraically closed field of characteristic 2. Let Cl(G) be the set of conjugacy classes
291
+ of G. For K ∈ Cl(G) let K+ := �
292
+ x∈K x ∈ Z(FG) be the class sum of K. We fix a 2-block B of FG with
293
+ block idempotent 1B = �
294
+ K∈Cl(G) aKK+ where aK ∈ F. The central character of B is defined by
295
+ λB : Z(FG) → F,
296
+ K+ �→
297
+ �|K|χ(g)
298
+ χ(1)
299
+ �∗
300
+ where g ∈ K, χ ∈ Irr(B) and ∗ denotes the canonical reduction O → F (see [22, Chapter 2]).
301
+ Since λB(1B) = 1, there exists K ∈ Cl(G) such that aK ̸= 0 ̸= λB(K+). We call K a defect class of
302
+ B. By [22, Corollary 3.8], K consists of elements of odd order. According to [22, Corollary 4.5], a Sylow
303
+ 2-subgroup D of CG(x) where x ∈ K is a defect group of B. For x ∈ K let
304
+ CG(x)∗ := {g ∈ G : gxg−1 = x±1} ≤ G
305
+ be the extended centralizer of x.
306
+ 6
307
+
308
+ Proposition 6 (Gow, Murray). Every real 2-block B has a real defect class K. Let x ∈ K. Choose a
309
+ Sylow 2-subgroup E of CG(x)∗ and put D := E ∩ CG(x). Then the G-conjugacy class of the pair (D, E)
310
+ does not depend on the choice of K or x.
311
+ Proof. For the principal block (which is always real since it contains the trivial character), K = {1} is
312
+ a real defect class and E = D is a Sylow 2-subgroup of G. Hence, the uniqueness follows from Sylow’s
313
+ theorem. Now suppose that B is non-principal. The existence of K was first shown in [8, Theorem 5.5].
314
+ Let L be another real defect class of B and choose y ∈ L. By [9, Corollary 2.2], we may assume after
315
+ conjugation that E is also a Sylow 2-subgroup of CG(y)∗. Let Dx := E ∩ CG(x) and Dy := E ∩ CG(y).
316
+ We may assume that |E : Dx| = 2 = |E : Dy| (cf. the remark after the proof).
317
+ We now introduce some notation in order to apply [17, Proposition 14]. Let Σ = ⟨σ⟩ ∼= C2. We consider
318
+ FG as an F[G × Σ]-module where G acts by conjugation and gσ = g−1 for g ∈ G (observe that these
319
+ actions indeed commute). For H ≤ G × Σ let
320
+ TrG×Σ
321
+ H
322
+ : (FG)H → (FG)G×Σ, α �→
323
+
324
+ x∈R
325
+ αx
326
+ be the relative trace with respect to H, where R denotes a set of representatives of the right cosets of H
327
+ in G × Σ. By [17, Proposition 14], we have 1B ∈ TrG×Σ
328
+ Ex
329
+ (FG) where Ex := Dx⟨exσ⟩ for some ex ∈ E \ Dx.
330
+ By the same result we also obtain that Dy⟨eyσ⟩ with ey ∈ E \ Dy is G-conjugate to Ex. This implies that
331
+ Dy is conjugate to Dx inside NG(E). In particular, (Dx, E) and (Dy, E) are G-conjugate as desired.
332
+ Definition 7. In the situation of Proposition 6 we call E an extended defect group and (D, E) a defect
333
+ pair of B.
334
+ We stress that real 2-blocks can have non-real defect classes and non-real blocks can have real defect classes
335
+ (see [10, Theorem 3.5]).
336
+ It is easy to show that non-principal real 2-blocks cannot have maximal defect (see [22, Problem 3.8]).
337
+ In particular, the trivial class cannot be a defect class and consequently, |E : D| = 2 in those cases.
338
+ For non-real blocks we define the extended defect group by E := D for convenience. Every given pair of
339
+ 2-groups D ≤ E with |E : D| = 2 occurs as a defect pair of a real (nilpotent) block. To see this, let Q ∼= C3
340
+ and G = Q ⋊ E with CE(Q) = D. Then G has a unique non-principal block with defect pair (D, E).
341
+ We recall from [14, p. 49] that
342
+
343
+ χ∈Irr(G)
344
+ ǫ(χ)χ(g) = |{x ∈ G : x2 = g}|
345
+ (3)
346
+ for all g ∈ G. The following proposition provides some interesting properties of defect pairs.
347
+ Proposition 8 (Gow, Murray). Let B be a real 2-block with defect pair (D, E). Let bD be a Brauer
348
+ correspondent of B in DCG(D). Then the following holds:
349
+ (i) NG(D, bD)∗ = NG(D, bD)E. In particular, bD is real if and only if E = DCE(D).
350
+ (ii) For u ∈ D, we have �
351
+ χ∈Irr(B) ǫ(χ)χ(u) ≥ 0 with strict inequality if and only if u is G-conjugate to
352
+ e2 for some e ∈ E \ D. In particular, E splits over D if and only if �
353
+ χ∈Irr(B) ǫ(χ)χ(1) > 0.
354
+ 7
355
+
356
+ (iii) E/D′ splits over D/D′ if and only if all height zero characters in Irr(B) have non-negative F-S
357
+ indicator.
358
+ Proof.
359
+ (i) See [19, Lemma 1.8] and [18, Theorem 1.4].
360
+ (ii) See [19, Lemma 1.3].
361
+ (iii) See [8, Theorem 5.6].
362
+ The next proposition extends [18, Lemma 1.3].
363
+ Corollary 9. Suppose that B is a 2-block with defect pair (D, E) where D is abelian. Then E splits over
364
+ D if and only if all characters in Irr(B) have non-negative F-S indicator.
365
+ Proof. If B is non-real, then E = D splits over D and all characters in Irr(B) have F-S indicator 0. Hence,
366
+ let B = B. By Kessar–Malle [15], all characters in Irr(B) have height 0. Hence, the claim follows from
367
+ Proposition 8(iii).
368
+ Theorem 10. Let B be a real, nilpotent 2-block with defect pair (D, E) where D is abelian. If E splits over
369
+ D, then all real characters in Irr(B) have F-S indicator 1. Otherwise exactly half of the real characters
370
+ have F-S indicator 1. In either case, Conjecture B holds for B.
371
+ Proof. If E splits over D, then all real characters in Irr(B) have F-S indicator 1 by Corollary 9. Otherwise
372
+ we have �
373
+ χ∈Irr(B) ǫ(χ) = 0 by Proposition 8(ii), because all characters in Irr(B) have the same degree.
374
+ Hence, exactly half of the real characters have F-S indicator 1. Using Theorem A we can determine the
375
+ number of characters for each F-S indicator. For the last claim, we may therefore replace B by the unique
376
+ non-principal block of G = Q ⋊ E where Q ∼= C3 and CE(Q) = D (mentioned above). In this case
377
+ Conjecture B follows from Gow [8, Lemma 2.2] or Theorem E.
378
+ Example 11. Let B be a real block with defect group D ∼= C4 × C2. Then B is nilpotent since Aut(D)
379
+ is a 2-group and D is abelian. Moreover |Irr(B)| = 8. The F-S indicators depend not only on E, but also
380
+ on the way D embeds into E. The following cases can occur (here M16 denotes the modular group and
381
+ [16, 3] refers to the small group library):
382
+ F-S indicators
383
+ E
384
+ + + + + + + ++
385
+ D8 × C2
386
+ + + + + − − −−
387
+ Q8 × C2, C4 ⋊ C4 with Φ(D) = E′
388
+ + + + + 0 0 0 0
389
+ D, D × C2, D8 ∗ C4, [16, 3]
390
+ + + − − 0 0 0 0
391
+ C2
392
+ 4, C8 × C2, M16, C4 ⋊ C4 with Φ(D) ̸= E′
393
+ The F-S indicator ǫ(Φ) appearing in Conjecture C has an interesting interpretation as follows. Let Ω :=
394
+ {g ∈ G : g2 = 1}. The conjugation action of G on Ω turns FΩ into an FG-module, called the involution
395
+ module.
396
+ 8
397
+
398
+ Lemma 12 (Murray). Let B be a real 2-block and ϕ ∈ IBr(B). Then ǫ(Φϕ) is the multiplicity of ϕ as a
399
+ constituent of the Brauer character of FΩ.
400
+ Proof. See [18, Lemma 2.6].
401
+ Next we develop a local version of Conjecture C. Let B be a real 2-block with defect pair (D, E) and B-
402
+ subsection (u, b). If E = DCE(u), then b is real and (CD(u), CE(u)) is a defect pair of b by [19, Lemma 2.6]
403
+ applied to the subpair (⟨u⟩, b). Conversely, if b is real, we may assume that (CD(u), CE(u)) is a defect
404
+ pair of b by [19, Theorem 2.7]. If b is non-real, we may assume that (CD(u), CD(u)) = (CD(u), CE(u)) is
405
+ a defect pair of b.
406
+ Theorem 13. Let B be 2-block of a finite group G with defect pair (D, E). Suppose that Conjecture C
407
+ holds for all 2-blocks of sections of G. Let (u, b) be a B-subsection with defect pair (CD(u), CE(u)) such
408
+ that IBr(b) = {ϕ}. Then
409
+
410
+ χ∈Irr(B)
411
+ ǫ(χ)du
412
+ χϕ =
413
+
414
+ |{x ∈ D : x2 = u}|
415
+ if B is the principal block,
416
+ |{x ∈ E \ D : x2 = u}|
417
+ otherwise.
418
+ Proof. If B is not real, then B is non-principal and E = D. It follows that ǫ(χ) = 0 for all χ ∈ Irr(B) and
419
+ |{x ∈ E \ D : x2 = u}| = 0.
420
+ Hence, we may assume that B is real. By Lemma 2, we have
421
+
422
+ χ∈Irr(B)
423
+ ǫ(χ)du
424
+ χϕ =
425
+
426
+ ψ∈Irr(b)
427
+ ǫ(ψ)du
428
+ ψϕ =
429
+ 1
430
+ ϕ(1)
431
+
432
+ ψ∈Irr(b)
433
+ ǫ(ψ)ψ(u).
434
+ (4)
435
+ Suppose that B is the principal block. Then b is the principal block of CG(u) by Brauer’s third main
436
+ theorem (see [22, Theorem 6.7]). The hypothesis l(b) = 1 implies that ϕ = 1CG(u) and CG(u) has a normal
437
+ 2-complement N (see [22, Corollary 6.13]). It follows that Irr(b) = Irr(CG(u)/N) = Irr(CD(u)) and
438
+
439
+ ψ∈Irr(b)
440
+ ǫ(ψ)du
441
+ ψϕ =
442
+
443
+ λ∈Irr(CD(u))
444
+ ǫ(λ)λ(u) = |{x ∈ CD(u) : x2 = u}|
445
+ by (3). Since every x ∈ D with x2 = u lies in CD(u), we are done in this case.
446
+ Now let B be a non-principal real 2-block. If b is not real, then (4) shows that �
447
+ χ∈Irr(B) ǫ(χ)du
448
+ χϕ = 0. On
449
+ the other hand, we have CE(u) = CD(u) ≤ D and |{x ∈ E \ D : x2 = u}| = 0. Hence, we may assume
450
+ that b is real. Since every x ∈ E with x2 = u lies in CE(u), we may assume that u ∈ Z(G) by (4).
451
+ Then χ(u) = du
452
+ χϕϕ(1) for all χ ∈ Irr(B). If u2 /∈ Ker(χ), then χ(u) /∈ R and ǫ(χ) = 0. Thus, it suffices to
453
+ sum over χ with du
454
+ χϕ = ±dχϕ. Let Z := ⟨u⟩ ≤ Z(G) and G := G/Z. Let ˆB be the unique (real) block of
455
+ 9
456
+
457
+ G dominated by B. By [19, Lemma 1.7], (D, E) is a defect pair for ˆB. Then, using [14, Lemma 4.7] and
458
+ Conjecture C for B and ˆB, we obtain
459
+
460
+ χ∈Irr(B)
461
+ ǫ(χ)du
462
+ χϕ =
463
+
464
+ χ∈Irr(B)
465
+ ǫ(χ)(dχϕ + du
466
+ χϕ) −
467
+
468
+ χ∈Irr(B)
469
+ ǫ(χ)dχϕ
470
+ = 2
471
+
472
+ χ∈Irr( ˆB)
473
+ ǫ(χ)dχϕ −
474
+
475
+ χ∈Irr(B)
476
+ ǫ(χ)dχϕ
477
+ = 2|{x ∈ E \ D : x2 = 1}| − |{x ∈ E \ D : x2 = 1}|
478
+ =
479
+
480
+ λ∈Irr(E)
481
+ ǫ(λ)(λ(1) + λ(u)) −
482
+
483
+ λ∈Irr(D)
484
+ ǫ(λ)(λ(1) + λ(u))
485
+
486
+
487
+ λ∈Irr(E)
488
+ ǫ(λ)λ(1) +
489
+
490
+ λ∈Irr(D)
491
+ ǫ(λ)λ(1)
492
+ =
493
+
494
+ λ∈Irr(E)
495
+ ǫ(λ)λ(u) −
496
+
497
+ λ∈Irr(D)
498
+ ǫ(λ)λ(u) = |{x ∈ E \ D : x2 = u}|.
499
+ 4 Theorems D and E
500
+ The following result implies Theorem D.
501
+ Theorem 14. Suppose that B is a real, nilpotent, non-principal 2-block fulfilling the statement of Theorem 13.
502
+ Then Conjecture B holds for B.
503
+ Proof. Let (D, E) be defect pair of B. By Gow [8, Theorem 5.1], there exists a 2-rational character
504
+ χ0 ∈ Irr(B) of height 0 and ǫ(χ0) = 1. Let
505
+ Γ : Irr(D) → Irr(B),
506
+ λ �→ λ ∗ χ0
507
+ be the Broué–Puig bijection. Let (u1, b1), . . . , (uk, bk) be representatives for the conjugacy classes of B-
508
+ subsections. Since B is nilpotent, we may assume that u1, . . . , uk ∈ D represent the conjugacy classes of
509
+ D. Let IBr(bi) = {ϕi} for i = 1, . . . , k. Since χ0 is 2-rational, we have σi := du
510
+ χ0,ϕi ∈ {±1} for i = 1, . . . , k.
511
+ Hence, the generalized decomposition matrix of B has the form
512
+ Q = (λ(ui)σi : λ ∈ Irr(D), i = 1, . . . , k)
513
+ (see [16, Section 8.10]). Let v := (ǫ(Γ(λ)) : λ ∈ Irr(D)) and w := (w1, . . . , wk) where wi := |{x ∈ E \ D :
514
+ x2 = ui}|. Then Theorem 13 reads as vQ = w.
515
+ Let di := |CD(ui)| and d = (d1, . . . , dk). Then the second orthogonality relation yields QtQ = diag(d)
516
+ where Qt denotes the transpose of Q. It follows that Q−1 = diag(d)−1Q
517
+ t and
518
+ v = w diag(d)−1Q
519
+ t = w diag(d)−1Qt,
520
+ 10
521
+
522
+ because v = v. Since wi = |{x ∈ E \ D : x2 = uy
523
+ i }| for every y ∈ D, we obtain �k
524
+ i=1 wi|D : CD(ui)| =
525
+ |E \ D| = |D|. In particular,
526
+ 1 = ǫ(χ0) =
527
+ k
528
+
529
+ i=1
530
+ wiσi
531
+ |CD(ui)| ≤
532
+ k
533
+
534
+ i=1
535
+ wi|σi|
536
+ |CD(ui)| = 1.
537
+ Therefore, σi = 1 or wi = 0 for each i. This means that the signs σi have no impact on the solution of the
538
+ linear system xQ = w. Hence, we may assume that Q = (λ(ui)) is just the character table of D. Since Q
539
+ has full rank, v is the only solution of xQ = w. Setting µ(λ) :=
540
+ 1
541
+ |D|
542
+
543
+ e∈E\D λ(e2), it suffices to show that
544
+ (µ(λ) : λ ∈ Irr(D)) is another solution of xQ = w. Indeed,
545
+
546
+ λ∈Irr(D)
547
+ λ(ui)
548
+ |D|
549
+
550
+ e∈E\D
551
+ λ(e2) =
552
+ 1
553
+ |D|
554
+
555
+ e∈E\D
556
+
557
+ λ∈Irr(D)
558
+ λ(ui)λ(e2)
559
+ =
560
+ 1
561
+ |D|
562
+
563
+ e∈E\D
564
+ e2=u−1
565
+ i
566
+ |D : CD(ui)||CD(ui)| = wi
567
+ for i = 1, . . . , k.
568
+ Theorem E. Conjectures B and C hold for all nilpotent 2-blocks of solvable groups.
569
+ Proof. Let B be a real, nilpotent, non-principal 2-block of a solvable group G with defect pair (D, E).
570
+ We first prove Conjecture C for B. Since all sections of G are solvable and all blocks dominated by B-
571
+ subsections are nilpotent, Conjecture C holds for those blocks as well. Hence, the hypothesis of Theorem 13
572
+ is fulfilled for B. Now by Theorem 14, Conjecture B holds for B.
573
+ Let N := O2′(G) and let θ ∈ Irr(N) such that the block {θ} is covered by B. Since B is non-principal,
574
+ θ ̸= 1N and therefore θ ̸= θ as N has odd order. Since B also lies over θ, it follow that Gθ < G. Let b
575
+ be the Fong–Reynolds correspondent of B in the extended stabilizer G∗
576
+ θ. By [22, Theorem 9.14] and [20,
577
+ p. 94], the Clifford correspondence Irr(b) → Irr(B), ψ �→ ψG preserves decomposition numbers and F-S
578
+ indicators. Thus, we need to show that b has defect pair (D, E). Let β be the Fong–Reynolds correspondent
579
+ of B in Gθ. By [22, Theorem 10.20], β is the unique block over θ. In particular, the block idempotents
580
+ 1β = 1θ are the same (we identify θ with the block {θ}). Since b is also the unique block of G∗
581
+ θ over θ, we
582
+ have 1b = 1θ + 1θ = �
583
+ x∈N αxx for some αx ∈ F. Let S be a set of representatives for the cosets G/G∗
584
+ θ.
585
+ Then
586
+ 1B =
587
+
588
+ s∈S
589
+ (1θ + 1θ)s =
590
+
591
+ s∈S
592
+ 1s
593
+ b =
594
+
595
+ g∈N
596
+ ��
597
+ s∈S
598
+ αgs−1
599
+
600
+ g.
601
+ Hence, there exists a real defect class K of B such that αgs−1 ̸= 0 for some g ∈ K and s ∈ S. Of course
602
+ we can assume that g = gs−1. Then 1b does not vanish on g. By [22, Theorem 9.1], the central characters
603
+ λB, λb and λθ agree on N. It follows that K is also a real defect class of b. Hence, we may assume that
604
+ (D, E) is a defect pair of b.
605
+ It remains to consider G = G∗
606
+ θ and B = b. Then D is a Sylow 2-subgroup of Gθ by [22, Theorem 10.20]
607
+ and E is a Sylow 2-subgroup of G. Since |G : Gθ| = 2, it follows that Gθ ⊴ G and N = O2′(Gθ). By
608
+ 11
609
+
610
+ [21, Lemma 1 and 2], β is nilpotent and Gθ is 2-nilpotent, i. e. Gθ = N ⋊ D and G = N ⋊ E. Let
611
+ �Φ := �
612
+ χ∈Irr(B) χ(1)χ = ϕ(1)Φ where IBr(B) = {ϕ}. We need to show that
613
+ ǫ(�Φ) = ϕ(1)|{x ∈ E \ D : x2 = 1}|.
614
+ Note that χN = χ(1)
615
+ 2θ(1)(θ + θ). By Frobenius reciprocity, it follows that �Φ = 2θ(1)θG and
616
+ �ΦN = |G : N|θ(1)(θ + θ).
617
+ Since Φ vanishes on elements of even order, �Φ vanishes outside N. Since �ΦGθ is a sum of non-real characters
618
+ in β, we have
619
+ ǫ(�Φ) =
620
+ 1
621
+ |G|
622
+
623
+ g∈Gθ
624
+ �Φ(g2) + 1
625
+ |G|
626
+
627
+ g∈G\Gθ
628
+ �Φ(g2) =
629
+ 1
630
+ |G|
631
+
632
+ g∈G\Gθ
633
+ �Φ(g2).
634
+ Every g ∈ G \ Gθ = NE \ ND with g2 ∈ N is N-conjugate to a unique element of the form xy where
635
+ x ∈ E \ D is an involution and y ∈ CN(x) (Sylow’s theorem). Setting ∆ := {x ∈ E \ D : x2 = 1}, we
636
+ obtain
637
+ ǫ(�Φ) = θ(1)
638
+ |N|
639
+
640
+ x∈∆
641
+ |N : CN(x)|
642
+
643
+ y∈CN (x)
644
+ (θ(y) + θ(y)) = 2θ(1)
645
+
646
+ x∈∆
647
+ 1
648
+ |CN(x)|
649
+
650
+ y∈CN(x)
651
+ θ(y).
652
+ (5)
653
+ For x ∈ ∆ let Hx := N⟨x⟩. Again by Sylow’s theorem, the N-orbit of x is the set of involutions in Hx.
654
+ From θx = θ we see that θHx is an irreducible character of 2-defect 0. By [8, Theorem 5.1], we have
655
+ ǫ(θHx) = 1. Now applying the same argument as before, it follows that
656
+ 1 = ǫ(θHx) =
657
+ 1
658
+ |N|
659
+
660
+ g∈Hx\N
661
+ θHx(g2) =
662
+ 2
663
+ |CN(x)|
664
+
665
+ y∈CN(x)
666
+ θ(y).
667
+ Combined with (5), this yields ǫ(�Φ) = 2θ(1)|∆|. By Green’s theorem (see [22, Theorem 8.11]), ϕN = θ + θ
668
+ and ǫ(�Φ) = ϕ(1)|∆| as desired.
669
+ For non-principal blocks B of solvable groups with l(B) = 1 it is not true in general that Gθ is 2-
670
+ nilpotent in the situation of Theorem E. For example, a (non-real) 2-block of a triple cover of A4 × A4
671
+ has a unique simple module. Extending this group by an automorphism of order 2, we obtain the group
672
+ G = SmallGroup(864, 3988), which fulfills the assumptions with D ∼= C4
673
+ 2, N ∼= C3 and |G : NE| = 9.
674
+ In order to prove Conjecture C for arbitrary 2-blocks of solvable groups, we may follow the steps in the
675
+ proof above and invoke a result on fully ramified Brauer characters [24, Theorem 2.1]. The claim then
676
+ boils down to a purely group-theoretical statement: Let B be a real, non-principal 2-block of a solvable
677
+ group G with defect pair (D, E) and l(B) = 1. Let G := G/O2′(G). Then
678
+ |{x ∈ G \ Gθ : x2 = 1}| = |{x ∈ E \ D : x2 = 1}|
679
+
680
+ |G : EN|.
681
+ Unfortunately, I am unable to prove this.
682
+ Acknowledgment
683
+ I thank Gabriel Navarro for providing some arguments for Theorem E from his paper [21]. John Mur-
684
+ ray and three anonymous referees have made many valuable comments, which improved the quality of the
685
+ manuscript. The work is supported by the German Research Foundation (SA 2864/3-1 and SA 2864/4-1).
686
+ 12
687
+
688
+ References
689
+ [1] J. An and C. W. Eaton, Nilpotent Blocks of Quasisimple Groups for the Prime Two, Algebr. Represent.
690
+ Theory 16 (2013), 1–28.
691
+ [2] R. Brauer, Representations of finite groups, in: Lectures on Modern Mathematics, Vol. I, 133–175,
692
+ Wiley, New York, 1963.
693
+ [3] R. Brauer, Some applications of the theory of blocks of characters of finite groups. III, J. Algebra 3
694
+ (1966), 225–255.
695
+ [4] M. Broué and L. Puig, A Frobenius theorem for blocks, Invent. Math. 56 (1980), 117–128.
696
+ [5] C. W. Eaton, Generalisations of conjectures of Brauer and Olsson, Arch. Math. (Basel) 81 (2003),
697
+ 621–626.
698
+ [6] The
699
+ GAP
700
+ Group,
701
+ GAP
702
+
703
+ Groups,
704
+ Algorithms,
705
+ and
706
+ Programming,
707
+ Version
708
+ 4.12.0;
709
+ 2022,
710
+ (http://www.gap-system.org).
711
+ [7] R. Gow, Real-valued characters and the Schur index, J. Algebra 40 (1976), 258–270.
712
+ [8] R. Gow, Real-valued and 2-rational group characters, J. Algebra 61 (1979), 388–413.
713
+ [9] R. Gow, Real 2-blocks of characters of finite groups, Osaka J. Math. 25 (1988), 135–147.
714
+ [10] R. Gow and J. Murray, Real 2-regular classes and 2-blocks, J. Algebra 230 (2000), 455–473.
715
+ [11] G. T. Helleloid and U. Martin, The automorphism group of a finite p-group is almost always a p-group,
716
+ J. Algebra 312 (2007), 294–329.
717
+ [12] L. Héthelyi, E. Horváth and E. Szabó, Real characters in blocks, Osaka J. Math. 49 (2012), 613–623.
718
+ [13] T. Ichikawa and Y. Tachikawa, The Super Frobenius–Schur Indicator and Finite Group Gauge Theories
719
+ on Pin− Surfaces, to appear in Commun. Math. Phys., DOI: 10.1007/s00220-022-04601-9.
720
+ [14] I. M. Isaacs, Character theory of finite groups, AMS Chelsea Publishing, Providence, RI, 2006.
721
+ [15] R. Kessar and G. Malle, Quasi-isolated blocks and Brauer’s height zero conjecture, Ann. of Math. (2)
722
+ 178 (2013), 321–384.
723
+ [16] M. Linckelmann, The block theory of finite group algebras. Vol. II, London Mathematical Society
724
+ Student Texts, Vol. 92, Cambridge University Press, Cambridge, 2018.
725
+ [17] J. Murray, Strongly real 2-blocks and the Frobenius-Schur indicator, Osaka J. Math. 43 (2006), 201–
726
+ 213.
727
+ [18] J. Murray, Components of the involution module in blocks with cyclic or Klein-four defect group, J.
728
+ Group Theory 11 (2008), 43–62.
729
+ [19] J. Murray, Real subpairs and Frobenius-Schur indicators of characters in 2-blocks, J. Algebra 322
730
+ (2009), 489–513.
731
+ [20] J. Murray, Frobenius-Schur indicators of characters in blocks with cyclic defect, J. Algebra 533 (2019),
732
+ 90–105.
733
+ 13
734
+
735
+ [21] G. Navarro, Nilpotent characters, Pacific J. Math. 169 (1995), 343–351.
736
+ [22] G. Navarro, Characters and blocks of finite groups, London Mathematical Society Lecture Note Series,
737
+ Vol. 250, Cambridge University Press, Cambridge, 1998.
738
+ [23] G. Navarro, Character theory and the McKay conjecture, Cambridge Studies in Advanced Mathemat-
739
+ ics, Vol. 175, Cambridge University Press, Cambridge, 2018.
740
+ [24] G. Navarro, B. Späth and P. H. Tiep, On fully ramified Brauer characters, Adv. Math. 257 (2014),
741
+ 248–265.
742
+ [25] S. Trefethen and C. R. Vinroot, A computational approach to the Frobenius-Schur indicators of finite
743
+ exceptional groups, Internat. J. Algebra Comput. 30 (2020), 141–166.
744
+ [26] W. Willems, Duality and forms in representation theory, in: Representation theory of finite groups
745
+ and finite-dimensional algebras (Bielefeld, 1991), 509–520, Progr. Math., Vol. 95, Birkhäuser, Basel,
746
+ 1991.
747
+ 14
748
+
-dFQT4oBgHgl3EQf6zaC/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
.gitattributes CHANGED
@@ -6209,3 +6209,88 @@ xtFJT4oBgHgl3EQfhCzP/content/2301.11564v1.pdf filter=lfs diff=lfs merge=lfs -tex
6209
  79FAT4oBgHgl3EQfoh2y/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6210
  99AzT4oBgHgl3EQfSvs8/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6211
  SNFGT4oBgHgl3EQfgygC/content/2301.10699v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6209
  79FAT4oBgHgl3EQfoh2y/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6210
  99AzT4oBgHgl3EQfSvs8/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6211
  SNFGT4oBgHgl3EQfgygC/content/2301.10699v1.pdf filter=lfs diff=lfs merge=lfs -text
6212
+ OdFLT4oBgHgl3EQfPC8X/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6213
+ I9AyT4oBgHgl3EQfsPkA/content/2301.00571v1.pdf filter=lfs diff=lfs merge=lfs -text
6214
+ ptE3T4oBgHgl3EQf8As1/content/2301.04803v1.pdf filter=lfs diff=lfs merge=lfs -text
6215
+ q9FPT4oBgHgl3EQf9TVT/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6216
+ f9AzT4oBgHgl3EQfMfsT/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6217
+ xtFJT4oBgHgl3EQfhCzP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6218
+ I9AyT4oBgHgl3EQfsPkA/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6219
+ p9FPT4oBgHgl3EQf8DXy/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6220
+ HNFJT4oBgHgl3EQfuC2G/content/2301.11620v1.pdf filter=lfs diff=lfs merge=lfs -text
6221
+ KNFRT4oBgHgl3EQfDTe1/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6222
+ gNAyT4oBgHgl3EQfj_gw/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6223
+ HNFJT4oBgHgl3EQfuC2G/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6224
+ LdE4T4oBgHgl3EQfig1d/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6225
+ 8tFST4oBgHgl3EQfaTh3/content/2301.13795v1.pdf filter=lfs diff=lfs merge=lfs -text
6226
+ aNE2T4oBgHgl3EQfvgjw/content/2301.04093v1.pdf filter=lfs diff=lfs merge=lfs -text
6227
+ gtE0T4oBgHgl3EQf6QKw/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6228
+ PdE0T4oBgHgl3EQfTwBe/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6229
+ uNE0T4oBgHgl3EQf9gI3/content/2301.02801v1.pdf filter=lfs diff=lfs merge=lfs -text
6230
+ 7dAyT4oBgHgl3EQfcvf_/content/2301.00291v1.pdf filter=lfs diff=lfs merge=lfs -text
6231
+ ktFPT4oBgHgl3EQf2TWb/content/2301.13186v1.pdf filter=lfs diff=lfs merge=lfs -text
6232
+ sNE2T4oBgHgl3EQffAfS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6233
+ 8tFST4oBgHgl3EQfaTh3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6234
+ p9FPT4oBgHgl3EQf8DXy/content/2301.13207v1.pdf filter=lfs diff=lfs merge=lfs -text
6235
+ 7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf filter=lfs diff=lfs merge=lfs -text
6236
+ eNAyT4oBgHgl3EQfwvnx/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6237
+ r9FJT4oBgHgl3EQfbyya/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6238
+ ptE3T4oBgHgl3EQf8As1/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6239
+ 7NE1T4oBgHgl3EQfTgOa/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6240
+ SNFGT4oBgHgl3EQfgygC/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6241
+ 4dAyT4oBgHgl3EQfpPgc/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6242
+ odE3T4oBgHgl3EQfjQqW/content/2301.04587v1.pdf filter=lfs diff=lfs merge=lfs -text
6243
+ eNAyT4oBgHgl3EQfwvnx/content/2301.00656v1.pdf filter=lfs diff=lfs merge=lfs -text
6244
+ kb_47/content/kb_47.pdf filter=lfs diff=lfs merge=lfs -text
6245
+ b9E4T4oBgHgl3EQfPgyg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6246
+ c9FPT4oBgHgl3EQfyDV1/content/2301.13170v1.pdf filter=lfs diff=lfs merge=lfs -text
6247
+ c9FPT4oBgHgl3EQfyDV1/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6248
+ cNE5T4oBgHgl3EQfEg7V/content/2301.05415v1.pdf filter=lfs diff=lfs merge=lfs -text
6249
+ jdFMT4oBgHgl3EQf5zEl/content/2301.12457v1.pdf filter=lfs diff=lfs merge=lfs -text
6250
+ btE1T4oBgHgl3EQfKwNx/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6251
+ C9E2T4oBgHgl3EQf9QlY/content/2301.04226v1.pdf filter=lfs diff=lfs merge=lfs -text
6252
+ -dAyT4oBgHgl3EQf3fmN/content/2301.00770v1.pdf filter=lfs diff=lfs merge=lfs -text
6253
+ kb_47/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6254
+ 3NE0T4oBgHgl3EQfeABh/content/2301.02384v1.pdf filter=lfs diff=lfs merge=lfs -text
6255
+ u9AzT4oBgHgl3EQfP_sX/content/2301.01191v1.pdf filter=lfs diff=lfs merge=lfs -text
6256
+ 09FAT4oBgHgl3EQfjh3M/content/2301.08606v1.pdf filter=lfs diff=lfs merge=lfs -text
6257
+ K9E2T4oBgHgl3EQfAwYv/content/2301.03594v1.pdf filter=lfs diff=lfs merge=lfs -text
6258
+ 3tFQT4oBgHgl3EQfHDWI/content/2301.13247v1.pdf filter=lfs diff=lfs merge=lfs -text
6259
+ -dAyT4oBgHgl3EQf3fmN/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6260
+ PNFRT4oBgHgl3EQfIjco/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6261
+ o9E3T4oBgHgl3EQfLgkW/content/2301.04363v1.pdf filter=lfs diff=lfs merge=lfs -text
6262
+ 4dE0T4oBgHgl3EQfvQGV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6263
+ 7dAyT4oBgHgl3EQfcvf_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6264
+ U9FJT4oBgHgl3EQfNyw_/content/2301.11479v1.pdf filter=lfs diff=lfs merge=lfs -text
6265
+ GdE1T4oBgHgl3EQf_Aah/content/2301.03576v1.pdf filter=lfs diff=lfs merge=lfs -text
6266
+ bNE2T4oBgHgl3EQfwAiL/content/2301.04097v1.pdf filter=lfs diff=lfs merge=lfs -text
6267
+ Z9E2T4oBgHgl3EQfEwaS/content/2301.03639v1.pdf filter=lfs diff=lfs merge=lfs -text
6268
+ 3NE0T4oBgHgl3EQfeABh/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6269
+ XtFOT4oBgHgl3EQf9DQS/content/2301.12968v1.pdf filter=lfs diff=lfs merge=lfs -text
6270
+ 9dFQT4oBgHgl3EQf5zZD/content/2301.13436v1.pdf filter=lfs diff=lfs merge=lfs -text
6271
+ btE1T4oBgHgl3EQfKwNx/content/2301.02968v1.pdf filter=lfs diff=lfs merge=lfs -text
6272
+ gtE0T4oBgHgl3EQf6QKw/content/2301.02762v1.pdf filter=lfs diff=lfs merge=lfs -text
6273
+ hdE4T4oBgHgl3EQfSAzu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6274
+ YdA0T4oBgHgl3EQfFv8F/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6275
+ k9E2T4oBgHgl3EQfIwYe/content/2301.03683v1.pdf filter=lfs diff=lfs merge=lfs -text
6276
+ o9E3T4oBgHgl3EQfLgkW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6277
+ ydAyT4oBgHgl3EQfa_fL/content/2301.00255v1.pdf filter=lfs diff=lfs merge=lfs -text
6278
+ stFJT4oBgHgl3EQfcixn/content/2301.11544v1.pdf filter=lfs diff=lfs merge=lfs -text
6279
+ 7tE2T4oBgHgl3EQf7whk/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6280
+ PNFRT4oBgHgl3EQfIjco/content/2301.13492v1.pdf filter=lfs diff=lfs merge=lfs -text
6281
+ _tE1T4oBgHgl3EQfDAJg/content/2301.02871v1.pdf filter=lfs diff=lfs merge=lfs -text
6282
+ LNAyT4oBgHgl3EQfsfn-/content/2301.00580v1.pdf filter=lfs diff=lfs merge=lfs -text
6283
+ stFJT4oBgHgl3EQfcixn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6284
+ 99AyT4oBgHgl3EQfqfgS/content/2301.00542v1.pdf filter=lfs diff=lfs merge=lfs -text
6285
+ K9E2T4oBgHgl3EQfAwYv/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6286
+ RdAzT4oBgHgl3EQfI_vE/content/2301.01073v1.pdf filter=lfs diff=lfs merge=lfs -text
6287
+ bNE2T4oBgHgl3EQfwAiL/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6288
+ 9dFQT4oBgHgl3EQf5zZD/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6289
+ 99AyT4oBgHgl3EQfqfgS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6290
+ N9FRT4oBgHgl3EQfHDeZ/content/2301.13487v1.pdf filter=lfs diff=lfs merge=lfs -text
6291
+ PNE4T4oBgHgl3EQf-A73/content/2301.05361v1.pdf filter=lfs diff=lfs merge=lfs -text
6292
+ 3tFQT4oBgHgl3EQfHDWI/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6293
+ _tE1T4oBgHgl3EQfDAJg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6294
+ q9E1T4oBgHgl3EQf2wUi/content/2301.03481v1.pdf filter=lfs diff=lfs merge=lfs -text
6295
+ TNE2T4oBgHgl3EQfWwfK/content/2301.03838v1.pdf filter=lfs diff=lfs merge=lfs -text
6296
+ 9NAyT4oBgHgl3EQfQ_Zv/content/2301.00057v1.pdf filter=lfs diff=lfs merge=lfs -text
09FAT4oBgHgl3EQfjh3M/content/2301.08606v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b695af2616285d98273841018a18aa78094c4b40106abf6bf4f7a3f24cd300d4
3
+ size 943062
1tAyT4oBgHgl3EQfofi7/content/tmp_files/2301.00509v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
1tAyT4oBgHgl3EQfofi7/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
2tA0T4oBgHgl3EQfM_-6/content/tmp_files/2301.02141v1.pdf.txt ADDED
@@ -0,0 +1,955 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02141v1 [math.NT] 5 Jan 2023
2
+ A refinement of Lang’s formula for the sum of powers of integers
3
+ Jos´e Luis Cereceda
4
+ Collado Villalba, 28400 (Madrid), Spain
5
6
+ Abstract
7
+ In 2011, W. Lang derived a novel, explicit formula for the sum of powers of integers Sk(n) =
8
+ 1k + 2k + · · · + nk involving simultaneously the Stirling numbers of the first and second kind. In
9
+ this note, we first recall and then slightly refine Lang’s formula for Sk(n). As it turns out, the
10
+ modified Lang’s formula constitutes a special case of a general relationship discovered by Merca
11
+ between the power sums, the elementary symmetric functions, and the complete homogeneous
12
+ symmetric functions.
13
+ 1
14
+ Introduction
15
+ For integers n ≥ 1 and k ≥ 0, let Sk(n) denote the sum of k-th powers of the first n positive integers
16
+ 1k + 2k + · · · + nk. In a 2011 technical note [8], W. Lang derived the following explicit formula for
17
+ Sk(n) (in our notation):
18
+ Sk(n) =
19
+ min (k,n−1)
20
+
21
+ m=0
22
+ (−1)m(n − m)
23
+
24
+ n + 1
25
+ n + 1 − m
26
+ ��n + k − m
27
+ n
28
+
29
+ ,
30
+ (1)
31
+ see [8, Equation (10)], where
32
+ �k
33
+ j
34
+
35
+ and
36
+ �k
37
+ j
38
+
39
+ are the (unsigned) Stirling numbers of the first and second
40
+ kind, respectively.
41
+ For completeness and for its intrinsic interest, in Section 2 of the present note we outline the
42
+ proof of the formula (1) as given by Lang. Then, in Section 3, we slightly refine the formula (1). The
43
+ refinement made essentially amounts to the removal of n from the factor (n − m). In Section 4, we
44
+ show that the modified Lang’s formula arises as a direct consequence of the Newton-Girard identities
45
+ involving the power sums Sk(n) and the elementary symmetric functions with natural arguments.
46
+ Moreover, in Section 5, we point out that, actually, the modified Lang’s formula constitutes a
47
+ special case of a general relationship discovered by Merca (see [10, Lemma 2.1]) between the power
48
+ sums, the elementary symmetric functions, and the complete homogeneous symmetric functions.
49
+ 2
50
+ Proof of Lang’s formula
51
+ Following Lang’s own derivation [8], next we give a simplified proof sketch of the formula (1). We
52
+ start with the ordinary generating function of Sk(n), i.e.
53
+ Gn(x) =
54
+
55
+
56
+ k=0
57
+ (1k + 2k + · · · + nk)xk =
58
+ n
59
+
60
+ j=1
61
+ 1
62
+ 1 − jx.
63
+ This generating function can be rewritten in the form
64
+ Gn(x) =
65
+ Pn(x)
66
+ �n
67
+ j=1(1 − jx),
68
+ (2)
69
+ 1
70
+
71
+ where Pn(x) is the following polynomial in x of degree n − 1 with coefficients Pn,r:
72
+ Pn(x) =
73
+ n
74
+
75
+ j=1
76
+ n
77
+
78
+ l=1
79
+ l̸=j
80
+ (1 − lx) =
81
+ n−1
82
+
83
+ r=0
84
+ Pn,rxr.
85
+ (3)
86
+ Hence, noting that
87
+ 1
88
+ �n
89
+ j=1(1−jx) = �∞
90
+ m=0
91
+ �n+m
92
+ n
93
+
94
+ xm, from (2) and (3) it follows that
95
+ Sk(n) =
96
+ min (k,n−1)
97
+
98
+ m=0
99
+ Pn,m
100
+ �n + k − m
101
+ n
102
+
103
+ .
104
+ (4)
105
+ Now, as pointed out by Lang [8], the elementary symmetric functions σm(1, 2, . . . , n) enter the
106
+ scene because we have that
107
+ n
108
+
109
+ j=1
110
+ (1 − jx) =
111
+ n
112
+
113
+ m=0
114
+ (−1)mσm(1, 2, . . . , n)xm,
115
+ (5)
116
+ with σ0 = 1. In view of (3) and (5), it is clear that, by symmetry, Pn(x) must be of the form
117
+ Pn(x) =
118
+ n−1
119
+
120
+ m=0
121
+ Cn,m(−1)mσm(1, 2, . . . , n)xm,
122
+ for certain positive integer coefficients Cn,m. Indeed, it can be seen that
123
+ Pn,0 = n,
124
+ Pn,1 = (n − 1)(−1)(1 + 2 + · · · + n) = (n − 1)(−1)σ1(1, 2, . . . , n),
125
+ Pn,2 = (n − 2)(1 · 2 + 1 · 3 + · · · + (n − 1)n) = (n − 2)σ2(1, 2, . . . , n),
126
+ and, in general,
127
+ Pn,m = n
128
+ �n−1
129
+ m
130
+
131
+ �n
132
+ m
133
+ � (−1)mσm(1, 2, . . . , n) = (n − m)(−1)mσm(1, 2, . . . , n),
134
+ so that Cn,m = n − m, for m = 0, 1, . . . , n − 1.
135
+ Therefore, recalling (4), and invoking the well-known relationship σm(1, 2, . . . , n) =
136
+
137
+ n+1
138
+ n+1−m
139
+
140
+ (see, e.g., [7, Equation (2.6)]), we get (1).
141
+ 3
142
+ A refinement of Lang’s formula
143
+ Having considered Lang’s original formula for the sum of powers of integers, we show that this
144
+ formula can be simplified somewhat. To see this, we write (1) in the equivalent form
145
+ Sk(n) = n
146
+ min (k,n)
147
+
148
+ m=0
149
+ (−1)m
150
+
151
+ n + 1
152
+ n + 1 − m
153
+ ��n + k − m
154
+ n
155
+
156
+ +
157
+ min (k,n)
158
+
159
+ m=1
160
+ (−1)m−1 m
161
+
162
+ n + 1
163
+ n + 1 − m
164
+ ��n + k − m
165
+ n
166
+
167
+ ,
168
+ 2
169
+
170
+ where the second summation on the right-hand side is zero when k = 0 or, in other words, it applies
171
+ for the case that k ≥ 1. Regarding the first summation, it turns out that
172
+ min (k,n)
173
+
174
+ m=0
175
+ (−1)m
176
+
177
+ n + 1
178
+ n + 1 − m
179
+ ��n + k − m
180
+ n
181
+
182
+ = δk,0,
183
+ (6)
184
+ where δk,0 is the Kronecker’s delta. This is so because
185
+
186
+ �
187
+ i≥0
188
+ (−1)i
189
+ � n + 1
190
+ n + 1 − i
191
+
192
+ xi
193
+
194
+
195
+
196
+ �
197
+ j≥0
198
+ �n + j
199
+ n
200
+
201
+ xj
202
+
203
+  = 1.
204
+ Consequently, Lang’s original formula (1) can be reduced to
205
+ Sk(n) = n δk,0 +
206
+ min (k,n)
207
+
208
+ m=1
209
+ (−1)m−1 m
210
+
211
+ n + 1
212
+ n + 1 − m
213
+ ��n + k − m
214
+ n
215
+
216
+ ,
217
+ (7)
218
+ which holds for any integers n ≥ 1 and k ≥ 0, and where, as noted above, the summation on the
219
+ right-hand side is zero when k = 0. Moreover, for the general case where k ≥ 1, the formula (7)
220
+ can in turn be expressed without loss of generality as
221
+ Sk(n) =
222
+ k
223
+
224
+ m=1
225
+ (−1)m−1 m
226
+ ��
227
+ n + 1
228
+ n + 1 − m
229
+ ��n + k − m
230
+ n
231
+
232
+ ,
233
+ k ≥ 1,
234
+ (8)
235
+ assuming the natural convention that
236
+
237
+ n+1
238
+ n+1−m
239
+
240
+ = σm(1, 2, . . . , n) = 0 whenever m > n.
241
+ 4
242
+ Connection with the Newton-Girard identities
243
+ As we shall presently see, the modified Lang’s formula for Sk(n) in eq. (8) can be readily ob-
244
+ tained from the Newton-Girard identities (cf. Exercise 2 of [3]).
245
+ Let {x1, x2, . . . , xn} denote a
246
+ (possibly infinite) set of variables and let σm(x1, x2, . . . , xn) denote the corresponding elementary
247
+ symmetric function. Generally speaking, the Newton-Girard identities are, within the ring of sym-
248
+ metric functions, the connection formulas between the generating sets {σm(x1, x2, . . . , xn)}k
249
+ m=1 and
250
+ {pm(x1, x2, . . . , xn)}k
251
+ m=1, where k stands for any fixed positive integer and the pm’s stand for the
252
+ power sums pm(x1, x2, . . . , xn) = xm
253
+ 1 + xm
254
+ 2 + · · · + xm
255
+ n .
256
+ For our purposes here, we focus on the case where xi = i, ∀i. Also, to abbreviate the notation,
257
+ in what follows we write σm(1, 2, . . . , n) in the shortened form σm(n). Then, for any given positive
258
+ integer m, the Newton-Girard identities can be formulated as follows (see, e.g., [5, Equation (5)]
259
+ and [14, Theorem 1.2])
260
+ m−1
261
+
262
+ j=1
263
+ σm−j(n)Sj(n) + Sm(n) + mσm(n) = 0,
264
+ m ≥ 1,
265
+ (9)
266
+ where σj(n) = (−1)jσj(n), and where the summation on the left-hand side is zero when m = 1.
267
+ Thus, letting successively m = 1, 2, 3, . . . , k in (9) yields the following system of k equations in the
268
+ 3
269
+
270
+ unknowns S1(n), S2(n), . . . , Sk(n):
271
+ S1(n) = −σ1(n),
272
+ σ1(n)S1(n) + S2(n) = −2σ2(n),
273
+ σ2(n)S1(n) + σ1(n)S2(n) + S3(n) = −3σ3(n),
274
+ ...
275
+ σk−1(n)S1(n) + σk−2(n)S2(n) + · · · + σ1(n)Sk−1(n) + Sk(n) = −kσk(n),
276
+ which can be expressed in matrix form as
277
+
278
+
279
+
280
+
281
+
282
+
283
+
284
+
285
+
286
+ 1
287
+ 0
288
+ 0
289
+ · · ·
290
+ 0
291
+ σ1(n)
292
+ 1
293
+ 0
294
+ ...
295
+ 0
296
+ σ2(n)
297
+ σ1(n)
298
+ 1
299
+ ...
300
+ 0
301
+ ...
302
+ ...
303
+ ...
304
+ ...
305
+ 0
306
+ σk−1(n)
307
+ σk−2(n)
308
+ · · ·
309
+ σ1(n)
310
+ 1
311
+
312
+
313
+
314
+
315
+
316
+
317
+
318
+
319
+
320
+
321
+
322
+
323
+
324
+
325
+
326
+
327
+
328
+
329
+ S1(n)
330
+ S2(n)
331
+ S3(n)
332
+ ...
333
+ Sk(n)
334
+
335
+
336
+
337
+
338
+
339
+
340
+
341
+
342
+
343
+ =
344
+
345
+
346
+
347
+
348
+
349
+
350
+
351
+
352
+
353
+ −σ1(n)
354
+ −2σ2(n)
355
+ −3σ3(n)
356
+ ...
357
+ −kσk(n)
358
+
359
+
360
+
361
+
362
+
363
+
364
+
365
+
366
+
367
+ .
368
+ On the other hand, it is easily seen that the orthogonality relation in eq. (6) is equivalent to the
369
+ matrix identity
370
+
371
+
372
+
373
+
374
+
375
+
376
+
377
+
378
+
379
+ 1
380
+ 0
381
+ 0
382
+ · · ·
383
+ 0
384
+ σ1(n)
385
+ 1
386
+ 0
387
+ ...
388
+ 0
389
+ σ2(n)
390
+ σ1(n)
391
+ 1
392
+ ...
393
+ 0
394
+ ...
395
+ ...
396
+ ...
397
+ ...
398
+ 0
399
+ σk−1(n)
400
+ σk−2(n)
401
+ · · ·
402
+ σ1(n)
403
+ 1
404
+
405
+
406
+
407
+
408
+
409
+
410
+
411
+
412
+
413
+ −1
414
+ =
415
+
416
+
417
+
418
+
419
+
420
+
421
+
422
+
423
+
424
+ 1
425
+ 0
426
+ 0
427
+ · · ·
428
+ 0
429
+ h1(n)
430
+ 1
431
+ 0
432
+ ...
433
+ 0
434
+ h2(n)
435
+ h1(n)
436
+ 1
437
+ ...
438
+ 0
439
+ ...
440
+ ...
441
+ ...
442
+ ...
443
+ 0
444
+ hk−1(n)
445
+ hk−2(n)
446
+ · · ·
447
+ h1(n)
448
+ 1
449
+
450
+
451
+
452
+
453
+
454
+
455
+
456
+
457
+
458
+ ,
459
+ where hk(n) =
460
+ �n+k
461
+ n
462
+
463
+ and h0(n) = 1. Hence, it follows that
464
+
465
+
466
+
467
+
468
+
469
+
470
+
471
+
472
+
473
+ S1(n)
474
+ S2(n)
475
+ S3(n)
476
+ ...
477
+ Sk(n)
478
+
479
+
480
+
481
+
482
+
483
+
484
+
485
+
486
+
487
+ =
488
+
489
+
490
+
491
+
492
+
493
+
494
+
495
+
496
+
497
+ 1
498
+ 0
499
+ 0
500
+ · · ·
501
+ 0
502
+ h1(n)
503
+ 1
504
+ 0
505
+ ...
506
+ 0
507
+ h2(n)
508
+ h1(n)
509
+ 1
510
+ ...
511
+ 0
512
+ ...
513
+ ...
514
+ ...
515
+ ...
516
+ 0
517
+ hk−1(n)
518
+ hk−2(n)
519
+ · · ·
520
+ h1(n)
521
+ 1
522
+
523
+
524
+
525
+
526
+
527
+
528
+
529
+
530
+
531
+
532
+
533
+
534
+
535
+
536
+
537
+
538
+
539
+
540
+ −σ1(n)
541
+ −2σ2(n)
542
+ −3σ3(n)
543
+ ...
544
+ −kσk(n)
545
+
546
+
547
+
548
+
549
+
550
+
551
+
552
+
553
+
554
+ .
555
+ Finally, solving for Sk(n), we get (8).
556
+ We conclude this section with the following two remarks.
557
+ Remark 1. The Newton-Girard identities (9) can equally be written as the recurrence relation
558
+ Sm(n) = (−1)m−1mσm(n) −
559
+ m−1
560
+
561
+ j=1
562
+ (−1)jσj(n)Sm−j(n),
563
+ m ≥ 1,
564
+ giving Sm(n) in terms of σ1(n), σ2(n), . . . , σm(n) and the earlier power sums Sj(n), j = 1, 2, . . . , m−
565
+ 1. This recurrence may be compared with the following one appearing in [3, Remark 3]:
566
+ Sm(n) = m!
567
+ �n + m
568
+ m + 1
569
+
570
+
571
+ m−1
572
+
573
+ j=1
574
+ σj(m − 1)Sm−j(n),
575
+ m ≥ 1.
576
+ 4
577
+
578
+ Remark 2. It should be mentioned that the formula for Sk(n) in eq. (8) was (re)discovered by
579
+ Merca in [9, Theorem 1] by manipulating the formal power series for the Stirling numbers.
580
+ 5
581
+ Generalized Lang’s formula
582
+ The proof given in the preceding section of the formula (8) naturally generalizes to arbitrary
583
+ elementary symmetric functions σm(x1, x2, . . . , xn), complete homogenous symmetric functions
584
+ hm(x1, x2, . . . , xn), and associated power sums pm(x1, x2, . . . , xn). Indeed, as shown by Merca (see
585
+ [10, Lemma 2.1]), the power sum pk(x1, x2, . . . , xn) can be expressed in terms of the σm(x1, x2, . . . , xn)
586
+ and hk−m(x1, x2, . . . , xn) as
587
+ pk(x1, x2, . . . , xn) =
588
+ k
589
+
590
+ m=1
591
+ (−1)m−1mσm(x1, x2, . . . , xn)hk−m(x1, x2, . . . , xn),
592
+ (10)
593
+ which becomes the formula (8) when xi = i, ∀i. Next, we describe some other applications of the
594
+ formula (10).
595
+ Consider first the case in which xi = 1, ∀i. Then, recalling that σm(1, 1, . . . , 1) =
596
+ � n
597
+ m
598
+
599
+ and
600
+ hm(1, 1, . . . , 1) =
601
+ �n+m−1
602
+ m
603
+
604
+ , from (10) we obtain the identity
605
+ k
606
+
607
+ m=1
608
+ (���1)m−1 m
609
+ �n
610
+ m
611
+ ��n + k − m − 1
612
+ k − m
613
+
614
+ = n,
615
+ which holds for any integers k, n ≥ 1.
616
+ On the other hand, for integers 1 ≤ r ≤ n, it turns
617
+ out that the r-Stirling numbers of the first kind are the elementary symmetric functions of the
618
+ numbers r, r + 1, . . . , n, that is,
619
+
620
+ n+1
621
+ n+1−m
622
+
623
+ r = σm(r, r + 1, . . . , n); and the r-Stirling numbers of
624
+ the second kind are the complete symmetric functions of the numbers r, r + 1, . . . , n, that is,
625
+ �n+m
626
+ n
627
+
628
+ r = hm(r, r + 1, . . . , n) (see [2, Section 5]). Therefore, from (10), we find that
629
+ rk + (r + 1)k + · · · + nk =
630
+ k
631
+
632
+ m=1
633
+ (−1)m−1 m
634
+
635
+ n + 1
636
+ n + 1 − m
637
+
638
+ r
639
+ �n + k − m
640
+ n
641
+
642
+ r
643
+ ,
644
+ where
645
+
646
+ n+1
647
+ n+1−m
648
+
649
+ r = σm(r, r + 1, . . . , n) = 0 whenever m > n + 1 − r. In particular, for r = 1, this
650
+ equation reduces to (8). A further generalization of (8) in terms of the r-Whitney numbers of both
651
+ kinds and the Bernoulli polynomials can be found in [11].
652
+ As another application of eq. (10), we can evaluate the sum of even powers of the first n positive
653
+ integers, S2k(n) = 12k + 22k + · · · + n2k, by using the fact that (see [12])
654
+ u(n + 1, n + 1 − m) = (−1)mσm(12, 22, . . . , n2),
655
+ and
656
+ U(n + m, n) = hm(12, 22, . . . , n2),
657
+ where u(n, k) [respectively, U(n, k)] are the central factorial numbers of the first [respectively,
658
+ second] kind with even indices. Therefore, we have [12, Theorem 1.1]
659
+ 12k + 22k + · · · + n2k = −
660
+ k
661
+
662
+ m=1
663
+ m u(n + 1, n + 1 − m)U(n + k − m, n).
664
+ 5
665
+
666
+ Likewise, noting that (see [12])
667
+ v(n, n − m) = (−1)mσm(12, 32, . . . , (2n − 1)2),
668
+ and
669
+ V (n − 1 + m, n − 1) = hm(12, 32, . . . , (2n − 1)2),
670
+ where v(n, k) [respectively, V (n, k)] are the central factorial numbers of the first [respectively,
671
+ second] kind with odd indices, we can evaluate the sum of even powers of the first n odd integers,
672
+ 12k + 32k + · · · + (2n − 1)2k, as follows
673
+ 12k + 32k + · · · + (2n − 1)2k = −
674
+ k
675
+
676
+ m=1
677
+ m v(n, n − m)V (n − 1 + k − m, n − 1).
678
+ Incidentally, it is to be noted that the above power sum can alternatively be expressed in the form
679
+ (see [6, 4])
680
+ 12k + 32k + · · · + (2n − 1)2k = n
681
+ k
682
+
683
+ m=1
684
+ dk,mN m,
685
+ where N = (2n − 1)(2n + 1), and where the dk,m are certain (non-zero) rational coefficients.
686
+ Our last application concerns the so-called Legendre-Stirling (LS) numbers of the first and
687
+ second kind, which, following [1], we denote by Ps(j)
688
+ n
689
+ and PS(j)
690
+ n , respectively. Furthermore, we
691
+ assume that n and j are non-negative integers fulfilling 0 ≤ j ≤ n. Table 1 (2) displays the first
692
+ few LS numbers of the first (second) kind. The LS numbers of the first kind are the elementary
693
+ symmetric functions of the numbers 2, 6, . . . , n(n + 1), i.e
694
+ Ps(n+1−k)
695
+ n+1
696
+ = (−1)kσk(2, 6, . . . , n(n + 1)),
697
+ whereas the LS numbers of the second kind are the complete homogeneous symmetric functions of
698
+ the numbers 2, 6, . . . , n(n + 1), i.e
699
+ PS(n)
700
+ n+k = hk(2, 6, . . . , n(n + 1)).
701
+ Equivalently, we can write the above two expressions as
702
+ Ps(n+1−k)
703
+ n+1
704
+ = (−1)k2kσk(T1, T2, . . . , Tn),
705
+ n\ j
706
+ 0
707
+ 1
708
+ 2
709
+ 3
710
+ 4
711
+ 5
712
+ 6
713
+ 7
714
+ 0
715
+ 1
716
+ 1
717
+ 0
718
+ 1
719
+ 2
720
+ 0
721
+ −2
722
+ 1
723
+ 3
724
+ 0
725
+ 12
726
+ −8
727
+ 1
728
+ 4
729
+ 0
730
+ −144
731
+ 108
732
+ −20
733
+ 1
734
+ 5
735
+ 0
736
+ 2880
737
+ −2304
738
+ 508
739
+ −40
740
+ 1
741
+ 6
742
+ 0
743
+ −86400
744
+ 72000
745
+ −17544
746
+ 1708
747
+ −70
748
+ 1
749
+ 7
750
+ 0
751
+ 3628800
752
+ −3110400
753
+ 808848
754
+ −89280
755
+ 4648
756
+ −112
757
+ 1
758
+ Table 1: The LS numbers of the first kind, Ps(j)
759
+ n , up to n = 7.
760
+ 6
761
+
762
+ n\ j
763
+ 0
764
+ 1
765
+ 2
766
+ 3
767
+ 4
768
+ 5
769
+ 6
770
+ 7
771
+ 0
772
+ 1
773
+ 1
774
+ 0
775
+ 1
776
+ 2
777
+ 0
778
+ 2
779
+ 1
780
+ 3
781
+ 0
782
+ 4
783
+ 8
784
+ 1
785
+ 4
786
+ 0
787
+ 8
788
+ 52
789
+ 20
790
+ 1
791
+ 5
792
+ 0
793
+ 16
794
+ 320
795
+ 292
796
+ 40
797
+ 1
798
+ 6
799
+ 0
800
+ 32
801
+ 1936
802
+ 3824
803
+ 1092
804
+ 70
805
+ 1
806
+ 7
807
+ 0
808
+ 64
809
+ 11648
810
+ 47824
811
+ 25664
812
+ 3192
813
+ 112
814
+ 1
815
+ Table 2: The LS numbers of the second kind, PS(j)
816
+ n , up to n = 7.
817
+ and
818
+ PS(n)
819
+ n+k = 2khk(T1, T2, . . . , Tn),
820
+ where Tn = 1
821
+ 2n(n + 1) is the n-th triangular number. Therefore, we conclude from (10) that
822
+ T k
823
+ 1 + T k
824
+ 2 + · · · + T k
825
+ n = − 1
826
+ 2k
827
+ k
828
+
829
+ m=1
830
+ m Ps(n+1−m)
831
+ n+1
832
+ PS(n)
833
+ n+k−m.
834
+ (11)
835
+ In particular, for k = 1, we have
836
+ T1 + T2 + · · · + Tn =
837
+ �n + 2
838
+ 3
839
+
840
+ = −1
841
+ 2Ps(n)
842
+ n+1.
843
+ In addition, we note that the sum of k-th powers of the first n triangular numbers can also be
844
+ expressed by
845
+ T k
846
+ 1 + T k
847
+ 2 + · · · + T k
848
+ n = 1
849
+ 2k
850
+ k
851
+
852
+ j=0
853
+ �k
854
+ j
855
+
856
+ Sk+j(n) = 1
857
+ 2k
858
+ k
859
+
860
+ j=0
861
+ �k
862
+ j
863
+ �Bk+j+1(n + 1) − Bk+j+1(1)
864
+ k + j + 1
865
+ ,
866
+ (12)
867
+ where the Bk(n) are the Bernoulli polynomials. Moreover, Merca showed that, see [13, Corollary
868
+ 1.1] (in our notation)
869
+
870
+ k
871
+
872
+ m=1
873
+ m Ps(n+1−m)
874
+ n+1
875
+ PS(n)
876
+ n+k−m =
877
+ (−1)k
878
+ (k + 1)
879
+ �2k+2
880
+ k+1
881
+ � +
882
+ k
883
+
884
+ j=0
885
+ �k
886
+ j
887
+ �Bk+j+1(n + 1)
888
+ k + j + 1
889
+ .
890
+ (13)
891
+ Hence, combining (11) and (13), and taking into account (12), we obtain the identity
892
+ k
893
+
894
+ j=0
895
+ (−1)j
896
+ �k
897
+ j
898
+ � Bk+j+1
899
+ k + j + 1 =
900
+ 1
901
+ (k + 1)
902
+ �2k+2
903
+ k+1
904
+ �,
905
+ k ≥ 1,
906
+ where the Bk are the Bernoulli numbers.
907
+ 7
908
+
909
+ 6
910
+ Conclusion
911
+ In this note, we have brought to light an outstanding (though largely unnoticed) contribution of
912
+ W. Lang to the subject of sums of powers of integers, namely, his formula for Sk(n) stated in
913
+ eq. (1). We have shown that Lang’s original formula (1) can be slightly refined so that the integer
914
+ variable n can be effectively removed from the factor (n − m), as can be seen by looking at formula
915
+ (7). Furthermore, we have shown that the modified Lang’s formula for Sk(n) in eq. (8) follows
916
+ straightforwardly from the Newton-Girard identities formulated in eq. (9). Finally, to broaden the
917
+ scope of the present note, we have pointed out several extensions of the formula (8) achieved by
918
+ Merca [10, 11, 12, 13].
919
+ References
920
+ [1] G. E. Andrews, W. Gawronski, and L. L. Littlejohn, The Legendre-Stirling numbers, Discrete
921
+ Math., 311(14):1255–1272 (2011).
922
+ [2] A. Z. Broder, The r-Stirling numbers. Discrete Math., 49(3):241–259 (1984).
923
+ [3] J. L. Cereceda, Sums of powers of integers and Stirling numbers, Resonance, 27(5):769–784
924
+ (2022).
925
+ [4] J. L. Cereceda, Explicit polynomial for sums of powers of odd integers, Int. Math. Forum,
926
+ 9(30):1441–1446 (2014).
927
+ [5] H. W. Gould, The Girard-Waring power sum formulas for symmetric functions and Fibonacci
928
+ sequences, Fibonacci Quart., 37(2):135–140 (1999).
929
+ [6] S. Guo and Y. Shen, On sums of powers of odd integers, J. Math. Res. Appl., 33(6):666–672
930
+ (2013).
931
+ [7] D. E. Knuth, Two notes on notation, Amer. Math. Monthly, 99(5):403–422 (1992).
932
+ [8] W. Lang, A196837: Ordinary generating functions for sums of powers of the first n positive
933
+ integers, online note (2011), available at http://oeis.org/A196837/a196837.pdf
934
+ [9] M. Merca, An alternative to Faulhaber’s formula, Amer. Math. Monthly, 122(6):599–601
935
+ (2015).
936
+ [10] M. Merca, New convolutions for complete and elementary symmetric functions, Integral Trans-
937
+ forms Spec. Funct., 27(12):965–973 (2016).
938
+ [11] M. Merca, A new connection between r-Whitney numbers and Bernoulli polynomials, Integral
939
+ Transforms Spec. Funct., 25(12):937–942 (2014).
940
+ [12] M. Merca, Connections between central factorial numbers and Bernoulli polynomials, Period.
941
+ Math. Hungar., 73(2):259–264 (2016).
942
+ [13] M. Merca, A connection between Jacobi-Stirling numbers and Bernoulli polynomials, J. Num-
943
+ ber Theory, 151:223–229 (2015).
944
+ [14] M.
945
+ Moss´e,
946
+ Newton’s
947
+ identities,
948
+ online
949
+ note
950
+ (2019),
951
+ available
952
+ at
953
+ https://web.stanford.edu/~marykw/classes/CS250_W19/Netwons_Identities.pdf
954
+ 8
955
+
2tA0T4oBgHgl3EQfM_-6/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,361 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf,len=360
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
3
+ page_content='02141v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
4
+ page_content='NT] 5 Jan 2023 A refinement of Lang’s formula for the sum of powers of integers Jos´e Luis Cereceda Collado Villalba, 28400 (Madrid), Spain jl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
5
+ page_content='cereceda@movistar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
6
+ page_content='es Abstract In 2011, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
7
+ page_content=' Lang derived a novel, explicit formula for the sum of powers of integers Sk(n) = 1k + 2k + · · · + nk involving simultaneously the Stirling numbers of the first and second kind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
8
+ page_content=' In this note, we first recall and then slightly refine Lang’s formula for Sk(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
9
+ page_content=' As it turns out, the modified Lang’s formula constitutes a special case of a general relationship discovered by Merca between the power sums, the elementary symmetric functions, and the complete homogeneous symmetric functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
10
+ page_content=' 1 Introduction For integers n ≥ 1 and k ≥ 0, let Sk(n) denote the sum of k-th powers of the first n positive integers 1k + 2k + · · · + nk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
11
+ page_content=' In a 2011 technical note [8], W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
12
+ page_content=' Lang derived the following explicit formula for Sk(n) (in our notation): Sk(n) = min (k,n−1) � m=0 (−1)m(n − m) � n + 1 n + 1 − m ��n + k − m n � , (1) see [8, Equation (10)], where �k j � and �k j � are the (unsigned) Stirling numbers of the first and second kind, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
13
+ page_content=' For completeness and for its intrinsic interest, in Section 2 of the present note we outline the proof of the formula (1) as given by Lang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
14
+ page_content=' Then, in Section 3, we slightly refine the formula (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
15
+ page_content=' The refinement made essentially amounts to the removal of n from the factor (n − m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
16
+ page_content=' In Section 4, we show that the modified Lang’s formula arises as a direct consequence of the Newton-Girard identities involving the power sums Sk(n) and the elementary symmetric functions with natural arguments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
17
+ page_content=' Moreover, in Section 5, we point out that, actually, the modified Lang’s formula constitutes a special case of a general relationship discovered by Merca (see [10, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
18
+ page_content='1]) between the power sums, the elementary symmetric functions, and the complete homogeneous symmetric functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
19
+ page_content=' 2 Proof of Lang’s formula Following Lang’s own derivation [8], next we give a simplified proof sketch of the formula (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
20
+ page_content=' We start with the ordinary generating function of Sk(n), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
21
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
22
+ page_content=' Gn(x) = ∞ � k=0 (1k + 2k + · · · + nk)xk = n � j=1 1 1 − jx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
23
+ page_content=' This generating function can be rewritten in the form Gn(x) = Pn(x) �n j=1(1 − jx), (2) 1 where Pn(x) is the following polynomial in x of degree n − 1 with coefficients Pn,r: Pn(x) = n � j=1 n � l=1 l̸=j (1 − lx) = n−1 � r=0 Pn,rxr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
24
+ page_content=' (3) Hence, noting that 1 �n j=1(1−jx) = �∞ m=0 �n+m n � xm, from (2) and (3) it follows that Sk(n) = min (k,n−1) � m=0 Pn,m �n + k − m n � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
25
+ page_content=' (4) Now, as pointed out by Lang [8], the elementary symmetric functions σm(1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
26
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
27
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
28
+ page_content=' , n) enter the scene because we have that n � j=1 (1 − jx) = n � m=0 (−1)mσm(1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
29
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
30
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
31
+ page_content=' , n)xm, (5) with σ0 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
32
+ page_content=' In view of (3) and (5), it is clear that, by symmetry, Pn(x) must be of the form Pn(x) = n−1 � m=0 Cn,m(−1)mσm(1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
33
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
34
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
35
+ page_content=' , n)xm, for certain positive integer coefficients Cn,m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
36
+ page_content=' Indeed, it can be seen that Pn,0 = n, Pn,1 = (n − 1)(−1)(1 + 2 + · · · + n) = (n − 1)(−1)σ1(1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
37
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
38
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
39
+ page_content=' , n), Pn,2 = (n − 2)(1 · 2 + 1 · 3 + · · · + (n − 1)n) = (n − 2)σ2(1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
40
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
41
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
42
+ page_content=' , n), and, in general, Pn,m = n �n−1 m � �n m � (−1)mσm(1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
43
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
44
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
45
+ page_content=' , n) = (n − m)(−1)mσm(1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
46
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
47
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
48
+ page_content=' , n), so that Cn,m = n − m, for m = 0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
49
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
50
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
51
+ page_content=' , n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
52
+ page_content=' Therefore, recalling (4), and invoking the well-known relationship σm(1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
53
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
54
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
55
+ page_content=' , n) = � n+1 n+1−m � (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
56
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
57
+ page_content=', [7, Equation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
58
+ page_content='6)]), we get (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
59
+ page_content=' 3 A refinement of Lang’s formula Having considered Lang’s original formula for the sum of powers of integers, we show that this formula can be simplified somewhat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
60
+ page_content=' To see this, we write (1) in the equivalent form Sk(n) = n min (k,n) � m=0 (−1)m � n + 1 n + 1 − m ��n + k − m n � + min (k,n) � m=1 (−1)m−1 m � n + 1 n + 1 − m ��n + k − m n � , 2 where the second summation on the right-hand side is zero when k = 0 or, in other words, it applies for the case that k ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
61
+ page_content=' Regarding the first summation, it turns out that min (k,n) � m=0 (−1)m � n + 1 n + 1 − m ��n + k − m n � = δk,0, (6) where δk,0 is the Kronecker’s delta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
62
+ page_content=' This is so because \uf8eb \uf8ed� i≥0 (−1)i � n + 1 n + 1 − i � xi \uf8f6 \uf8f8 \uf8eb \uf8ed� j≥0 �n + j n � xj \uf8f6 \uf8f8 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
63
+ page_content=' Consequently, Lang’s original formula (1) can be reduced to Sk(n) = n δk,0 + min (k,n) � m=1 (−1)m−1 m � n + 1 n + 1 − m ��n + k − m n � , (7) which holds for any integers n ≥ 1 and k ≥ 0, and where, as noted above, the summation on the right-hand side is zero when k = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
64
+ page_content=' Moreover, for the general case where k ≥ 1, the formula (7) can in turn be expressed without loss of generality as Sk(n) = k � m=1 (−1)m−1 m � n + 1 n + 1 − m ��n + k − m n � , k ≥ 1, (8) assuming the natural convention that � n+1 n+1−m � = σm(1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
65
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
66
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
67
+ page_content=' , n) = 0 whenever m > n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
68
+ page_content=' 4 Connection with the Newton-Girard identities As we shall presently see, the modified Lang’s formula for Sk(n) in eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
69
+ page_content=' (8) can be readily ob- tained from the Newton-Girard identities (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
70
+ page_content=' Exercise 2 of [3]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
71
+ page_content=' Let {x1, x2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
72
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
73
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
74
+ page_content=' , xn} denote a (possibly infinite) set of variables and let σm(x1, x2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
75
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
76
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
77
+ page_content=' , xn) denote the corresponding elementary symmetric function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
78
+ page_content=' Generally speaking, the Newton-Girard identities are, within the ring of sym- metric functions, the connection formulas between the generating sets {σm(x1, x2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
79
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
80
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
81
+ page_content=' , xn)}k m=1 and {pm(x1, x2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
82
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
83
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
84
+ page_content=' , xn)}k m=1, where k stands for any fixed positive integer and the pm’s stand for the power sums pm(x1, x2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
85
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
86
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
87
+ page_content=' , xn) = xm 1 + xm 2 + · · · + xm n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
88
+ page_content=' For our purposes here, we focus on the case where xi = i, ∀i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
89
+ page_content=' Also, to abbreviate the notation, in what follows we write σm(1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
90
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
91
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
92
+ page_content=' , n) in the shortened form σm(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
93
+ page_content=' Then, for any given positive integer m, the Newton-Girard identities can be formulated as follows (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
94
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
95
+ page_content=', [5, Equation (5)] and [14, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
96
+ page_content='2]) m−1 � j=1 σm−j(n)Sj(n) + Sm(n) + mσm(n) = 0, m ≥ 1, (9) where σj(n) = (−1)jσj(n), and where the summation on the left-hand side is zero when m = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
97
+ page_content=' Thus, letting successively m = 1, 2, 3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
98
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
99
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
100
+ page_content=' , k in (9) yields the following system of k equations in the 3 unknowns S1(n), S2(n), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
101
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
102
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
103
+ page_content=' , Sk(n): S1(n) = −σ1(n), σ1(n)S1(n) + S2(n) = −2σ2(n), σ2(n)S1(n) + σ1(n)S2(n) + S3(n) = −3σ3(n), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
104
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
105
+ page_content=' σk−1(n)S1(n) + σk−2(n)S2(n) + · · · + σ1(n)Sk−1(n) + Sk(n) = −kσk(n), which can be expressed in matrix form as \uf8eb \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ed 1 0 0 · · 0 σ1(n) 1 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
106
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
107
+ page_content=' 0 σ2(n) σ1(n) 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
108
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
109
+ page_content=' 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
110
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
111
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
112
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
113
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
114
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
115
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
116
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
117
+ page_content=' 0 σk−1(n) σk−2(n) · · σ1(n) 1 \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f8 \uf8eb \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ed S1(n) S2(n) S3(n) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
118
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
119
+ page_content=' Sk(n) \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f8 = \uf8eb \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ed −σ1(n) −2σ2(n) −3σ3(n) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
120
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
121
+ page_content=' −kσk(n) \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
122
+ page_content=' On the other hand, it is easily seen that the orthogonality relation in eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
123
+ page_content=' (6) is equivalent to the matrix identity \uf8eb \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ed 1 0 0 · · 0 σ1(n) 1 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
124
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
125
+ page_content=' 0 σ2(n) σ1(n) 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
126
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
127
+ page_content=' 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
128
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
129
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
130
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
131
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
132
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
133
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
134
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
135
+ page_content=' 0 σk−1(n) σk−2(n) · · σ1(n) 1 \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f8 −1 = \uf8eb \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ed 1 0 0 · · 0 h1(n) 1 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
136
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
137
+ page_content=' 0 h2(n) h1(n) 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
138
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
139
+ page_content=' 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
140
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
141
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
142
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
143
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
144
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
145
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
146
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
147
+ page_content=' 0 hk−1(n) hk−2(n) · · h1(n) 1 \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f8 , where hk(n) = �n+k n � and h0(n) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
148
+ page_content=' Hence, it follows that \uf8eb \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ed S1(n) S2(n) S3(n) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
149
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
150
+ page_content=' Sk(n) \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f8 = \uf8eb \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ed 1 0 0 · · 0 h1(n) 1 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
151
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
152
+ page_content=' 0 h2(n) h1(n) 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
153
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
154
+ page_content=' 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
155
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
156
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
157
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
158
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
159
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
160
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
161
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
162
+ page_content=' 0 hk−1(n) hk−2(n) · · h1(n) 1 \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f8 \uf8eb \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ed −σ1(n) −2σ2(n) −3σ3(n) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
163
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
164
+ page_content=' −kσk(n) \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
165
+ page_content=' Finally, solving for Sk(n), we get (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
166
+ page_content=' We conclude this section with the following two remarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
167
+ page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
168
+ page_content=' The Newton-Girard identities (9) can equally be written as the recurrence relation Sm(n) = (−1)m−1mσm(n) − m−1 � j=1 (−1)jσj(n)Sm−j(n), m ≥ 1, giving Sm(n) in terms of σ1(n), σ2(n), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
169
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
170
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
171
+ page_content=' , σm(n) and the earlier power sums Sj(n), j = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
172
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
173
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
174
+ page_content=' , m− 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
175
+ page_content=' This recurrence may be compared with the following one appearing in [3, Remark 3]: Sm(n) = m!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
176
+ page_content=' �n + m m + 1 � − m−1 � j=1 σj(m − 1)Sm−j(n), m ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
177
+ page_content=' 4 Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
178
+ page_content=' It should be mentioned that the formula for Sk(n) in eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
179
+ page_content=' (8) was (re)discovered by Merca in [9, Theorem 1] by manipulating the formal power series for the Stirling numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
180
+ page_content=' 5 Generalized Lang’s formula The proof given in the preceding section of the formula (8) naturally generalizes to arbitrary elementary symmetric functions σm(x1, x2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
181
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
182
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
183
+ page_content=' , xn), complete homogenous symmetric functions hm(x1, x2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
184
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
185
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
186
+ page_content=' , xn), and associated power sums pm(x1, x2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
187
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
188
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
189
+ page_content=' , xn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
190
+ page_content=' Indeed, as shown by Merca (see [10, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
191
+ page_content='1]), the power sum pk(x1, x2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
192
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
193
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
194
+ page_content=' , xn) can be expressed in terms of the σm(x1, x2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
195
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
196
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
197
+ page_content=' , xn) and hk−m(x1, x2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
198
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
199
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
200
+ page_content=' , xn) as pk(x1, x2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
201
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
202
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
203
+ page_content=' , xn) = k � m=1 (−1)m−1mσm(x1, x2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
204
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
205
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
206
+ page_content=' , xn)hk−m(x1, x2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
207
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
208
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
209
+ page_content=' , xn), (10) which becomes the formula (8) when xi = i, ∀i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
210
+ page_content=' Next, we describe some other applications of the formula (10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
211
+ page_content=' Consider first the case in which xi = 1, ∀i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
212
+ page_content=' Then, recalling that σm(1, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
213
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
214
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
215
+ page_content=' , 1) = � n m � and hm(1, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
216
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
217
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
218
+ page_content=' , 1) = �n+m−1 m � , from (10) we obtain the identity k � m=1 (−1)m−1 m �n m ��n + k − m − 1 k − m � = n, which holds for any integers k, n ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
219
+ page_content=' On the other hand, for integers 1 ≤ r ≤ n, it turns out that the r-Stirling numbers of the first kind are the elementary symmetric functions of the numbers r, r + 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
220
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
221
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
222
+ page_content=' , n, that is, � n+1 n+1−m � r = σm(r, r + 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
223
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
224
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
225
+ page_content=' , n);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
226
+ page_content=' and the r-Stirling numbers of the second kind are the complete symmetric functions of the numbers r, r + 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
227
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
228
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
229
+ page_content=' , n, that is, �n+m n � r = hm(r, r + 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
230
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
231
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
232
+ page_content=' , n) (see [2, Section 5]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
233
+ page_content=' Therefore, from (10), we find that rk + (r + 1)k + · · · + nk = k � m=1 (−1)m−1 m � n + 1 n + 1 − m � r �n + k − m n � r , where � n+1 n+1−m � r = σm(r, r + 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
234
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
235
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
236
+ page_content=' , n) = 0 whenever m > n + 1 − r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
237
+ page_content=' In particular, for r = 1, this equation reduces to (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
238
+ page_content=' A further generalization of (8) in terms of the r-Whitney numbers of both kinds and the Bernoulli polynomials can be found in [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
239
+ page_content=' As another application of eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
240
+ page_content=' (10), we can evaluate the sum of even powers of the first n positive integers, S2k(n) = 12k + 22k + · · · + n2k, by using the fact that (see [12]) u(n + 1, n + 1 − m) = (−1)mσm(12, 22, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
241
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
242
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
243
+ page_content=' , n2), and U(n + m, n) = hm(12, 22, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
244
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
245
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
246
+ page_content=' , n2), where u(n, k) [respectively, U(n, k)] are the central factorial numbers of the first [respectively, second] kind with even indices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
247
+ page_content=' Therefore, we have [12, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
248
+ page_content='1] 12k + 22k + · · · + n2k = − k � m=1 m u(n + 1, n + 1 − m)U(n + k − m, n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
249
+ page_content=' 5 Likewise, noting that (see [12]) v(n, n − m) = (−1)mσm(12, 32, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
250
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
251
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
252
+ page_content=' , (2n − 1)2), and V (n − 1 + m, n − 1) = hm(12, 32, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
253
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
254
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
255
+ page_content=' , (2n − 1)2), where v(n, k) [respectively, V (n, k)] are the central factorial numbers of the first [respectively, second] kind with odd indices, we can evaluate the sum of even powers of the first n odd integers, 12k + 32k + · · · + (2n − 1)2k, as follows 12k + 32k + · · · + (2n − 1)2k = − k � m=1 m v(n, n − m)V (n − 1 + k − m, n − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
256
+ page_content=' Incidentally, it is to be noted that the above power sum can alternatively be expressed in the form (see [6, 4]) 12k + 32k + · · · + (2n − 1)2k = n k � m=1 dk,mN m, where N = (2n − 1)(2n + 1), and where the dk,m are certain (non-zero) rational coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
257
+ page_content=' Our last application concerns the so-called Legendre-Stirling (LS) numbers of the first and second kind, which, following [1], we denote by Ps(j) n and PS(j) n , respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
258
+ page_content=' Furthermore, we assume that n and j are non-negative integers fulfilling 0 ≤ j ≤ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
259
+ page_content=' Table 1 (2) displays the first few LS numbers of the first (second) kind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
260
+ page_content=' The LS numbers of the first kind are the elementary symmetric functions of the numbers 2, 6, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
261
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
262
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
263
+ page_content=' , n(n + 1), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
264
+ page_content='e Ps(n+1−k) n+1 = (−1)kσk(2, 6, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
265
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
266
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
267
+ page_content=' , n(n + 1)), whereas the LS numbers of the second kind are the complete homogeneous symmetric functions of the numbers 2, 6, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
268
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
269
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
270
+ page_content=' , n(n + 1), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
271
+ page_content='e PS(n) n+k = hk(2, 6, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
272
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
273
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
274
+ page_content=' , n(n + 1)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
275
+ page_content=' Equivalently, we can write the above two expressions as Ps(n+1−k) n+1 = (−1)k2kσk(T1, T2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
276
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
277
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
278
+ page_content=' , Tn), n\\ j 0 1 2 3 4 5 6 7 0 1 1 0 1 2 0 −2 1 3 0 12 −8 1 4 0 −144 108 −20 1 5 0 2880 −2304 508 −40 1 6 0 −86400 72000 −17544 1708 −70 1 7 0 3628800 −3110400 808848 −89280 4648 −112 1 Table 1: The LS numbers of the first kind, Ps(j) n , up to n = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
279
+ page_content=' 6 n\\ j 0 1 2 3 4 5 6 7 0 1 1 0 1 2 0 2 1 3 0 4 8 1 4 0 8 52 20 1 5 0 16 320 292 40 1 6 0 32 1936 3824 1092 70 1 7 0 64 11648 47824 25664 3192 112 1 Table 2: The LS numbers of the second kind, PS(j) n , up to n = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
280
+ page_content=' and PS(n) n+k = 2khk(T1, T2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
281
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
282
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
283
+ page_content=' , Tn), where Tn = 1 2n(n + 1) is the n-th triangular number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
284
+ page_content=' Therefore, we conclude from (10) that T k 1 + T k 2 + · · · + T k n = − 1 2k k � m=1 m Ps(n+1−m) n+1 PS(n) n+k−m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
285
+ page_content=' (11) In particular, for k = 1, we have T1 + T2 + · · · + Tn = �n + 2 3 � = −1 2Ps(n) n+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
286
+ page_content=' In addition, we note that the sum of k-th powers of the first n triangular numbers can also be expressed by T k 1 + T k 2 + · · · + T k n = 1 2k k � j=0 �k j � Sk+j(n) = 1 2k k � j=0 �k j �Bk+j+1(n + 1) − Bk+j+1(1) k + j + 1 , (12) where the Bk(n) are the Bernoulli polynomials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
287
+ page_content=' Moreover, Merca showed that, see [13, Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
288
+ page_content='1] (in our notation) − k � m=1 m Ps(n+1−m) n+1 PS(n) n+k−m = (−1)k (k + 1) �2k+2 k+1 � + k � j=0 �k j �Bk+j+1(n + 1) k + j + 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
289
+ page_content=' (13) Hence, combining (11) and (13), and taking into account (12), we obtain the identity k � j=0 (−1)j �k j � Bk+j+1 k + j + 1 = 1 (k + 1) �2k+2 k+1 �, k ≥ 1, where the Bk are the Bernoulli numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
290
+ page_content=' 7 6 Conclusion In this note, we have brought to light an outstanding (though largely unnoticed) contribution of W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
291
+ page_content=' Lang to the subject of sums of powers of integers, namely, his formula for Sk(n) stated in eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
292
+ page_content=' (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
293
+ page_content=' We have shown that Lang’s original formula (1) can be slightly refined so that the integer variable n can be effectively removed from the factor (n − m), as can be seen by looking at formula (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
294
+ page_content=' Furthermore, we have shown that the modified Lang’s formula for Sk(n) in eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
295
+ page_content=' (8) follows straightforwardly from the Newton-Girard identities formulated in eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
296
+ page_content=' (9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
297
+ page_content=' Finally, to broaden the scope of the present note, we have pointed out several extensions of the formula (8) achieved by Merca [10, 11, 12, 13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
298
+ page_content=' References [1] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
299
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
300
+ page_content=' Andrews, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
301
+ page_content=' Gawronski, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
302
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
303
+ page_content=' Littlejohn, The Legendre-Stirling numbers, Discrete Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
304
+ page_content=', 311(14):1255–1272 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
305
+ page_content=' [2] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
306
+ page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
307
+ page_content=' Broder, The r-Stirling numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
308
+ page_content=' Discrete Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
309
+ page_content=', 49(3):241–259 (1984).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
310
+ page_content=' [3] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
311
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
312
+ page_content=' Cereceda, Sums of powers of integers and Stirling numbers, Resonance, 27(5):769–784 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
313
+ page_content=' [4] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
314
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
315
+ page_content=' Cereceda, Explicit polynomial for sums of powers of odd integers, Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
316
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
317
+ page_content=' Forum, 9(30):1441–1446 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
318
+ page_content=' [5] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
319
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
320
+ page_content=' Gould, The Girard-Waring power sum formulas for symmetric functions and Fibonacci sequences, Fibonacci Quart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
321
+ page_content=', 37(2):135–140 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
322
+ page_content=' [6] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
323
+ page_content=' Guo and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
324
+ page_content=' Shen, On sums of powers of odd integers, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
325
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
326
+ page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
327
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
328
+ page_content=', 33(6):666–672 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
329
+ page_content=' [7] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
330
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
331
+ page_content=' Knuth, Two notes on notation, Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
332
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
333
+ page_content=' Monthly, 99(5):403–422 (1992).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
334
+ page_content=' [8] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
335
+ page_content=' Lang, A196837: Ordinary generating functions for sums of powers of the first n positive integers, online note (2011), available at http://oeis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
336
+ page_content='org/A196837/a196837.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
337
+ page_content='pdf [9] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
338
+ page_content=' Merca, An alternative to Faulhaber’s formula, Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
339
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
340
+ page_content=' Monthly, 122(6):599–601 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
341
+ page_content=' [10] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
342
+ page_content=' Merca, New convolutions for complete and elementary symmetric functions, Integral Trans- forms Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
343
+ page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
344
+ page_content=', 27(12):965–973 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
345
+ page_content=' [11] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
346
+ page_content=' Merca, A new connection between r-Whitney numbers and Bernoulli polynomials, Integral Transforms Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
347
+ page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
348
+ page_content=', 25(12):937–942 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
349
+ page_content=' [12] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
350
+ page_content=' Merca, Connections between central factorial numbers and Bernoulli polynomials, Period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
351
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
352
+ page_content=' Hungar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
353
+ page_content=', 73(2):259–264 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
354
+ page_content=' [13] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
355
+ page_content=' Merca, A connection between Jacobi-Stirling numbers and Bernoulli polynomials, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
356
+ page_content=' Num- ber Theory, 151:223–229 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
357
+ page_content=' [14] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
358
+ page_content=' Moss´e, Newton’s identities, online note (2019), available at https://web.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
359
+ page_content='stanford.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
360
+ page_content='edu/~marykw/classes/CS250_W19/Netwons_Identities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
361
+ page_content='pdf 8' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tA0T4oBgHgl3EQfM_-6/content/2301.02141v1.pdf'}
2tE0T4oBgHgl3EQfuwEX/content/tmp_files/2301.02608v1.pdf.txt ADDED
@@ -0,0 +1,1639 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A CAD System for Colorectal Cancer from WSI: A
2
+ Clinically Validated Interpretable ML-based Prototype
3
+ Pedro C. Netoa,b,1, Diana Montezumac,f,d,1, Sara P. Oliveiraa,b,1, Domingos
4
+ Oliveirac, Jo˜ao Fragae, Ana Monteiroc, Jo˜ao Monteiroc, Liliana Ribeiroc,
5
+ Sofia Gon¸calvesc, Stefan Reinhardg, Inti Zlobecg, Isabel M. Pintoc, Jaime S.
6
+ Cardosoa,b
7
+ aInstitute for Systems and Computer Engineering, Technology and Science (INESC
8
+ TEC), R. Dr. Roberto Frias, Porto, 4200-465, Porto, Portugal
9
+ bFaculty of Engineering, University of Porto (FEUP), R. Dr. Roberto
10
+ Frias, Porto, 4200-465, Porto, Portugal
11
+ cIMP Diagnostics, Praca do Bom Sucesso, 61, sala
12
+ 809, Porto, 4150-146, Porto, Portugal
13
+ dCancer Biology and Epigenetics Group, IPO-Porto, R. Dr. Ant´onio Bernardino de
14
+ Almeida 865, Porto, 4200-072, Porto, Portugal
15
+ eDepartment of Pathology, IPO-Porto, R. Dr. Ant´onio Bernardino de Almeida
16
+ 865, Porto, 4200-072, Porto, Portugal
17
+ fSchool of Medicine and Biomedical Sciences, University of Porto (ICBAS), R. Jorge de
18
+ Viterbo Ferreira 228, Porto, 4050-313, Porto, Portugal
19
+ gInstitute of Pathology, University of Bern, Uni Bern, Murtenstrasse
20
+ 31, Bern, 3008, Bern, Switzerland
21
+ Abstract
22
+ The integration of Artificial Intelligence (AI) and Digital Pathology has
23
+ been increasing over the past years. Nowadays, applications of deep learn-
24
+ ing (DL) methods to diagnose cancer from whole-slide images (WSI) are,
25
+ more than ever, a reality within different research groups. Nonetheless, the
26
+ development of these systems was limited by a myriad of constraints re-
27
+ garding the lack of training samples, the scaling difficulties, the opaqueness
28
+ of DL methods, and, more importantly, the lack of clinical validation. As
29
+ such, we propose a system designed specifically for the diagnosis of colorectal
30
+ samples. The construction of such a system consisted of four stages: (1) a
31
+ careful data collection and annotation process, which resulted in one of the
32
+ largest WSI colorectal samples datasets; (2) the design of an interpretable
33
+ 1These authors contributed equally.
34
+ Preprint submitted to .
35
+ January 9, 2023
36
+ arXiv:2301.02608v1 [eess.IV] 6 Jan 2023
37
+
38
+ mixed-supervision scheme to leverage the domain knowledge introduced by
39
+ pathologists through spatial annotations; (3) the development of an effective
40
+ sampling approach based on the expected severeness of each tile, which de-
41
+ creased the computation cost by a factor of almost 6x; (4) the creation of
42
+ a prototype that integrates the full set of features of the model to be eval-
43
+ uated in clinical practice. During these stages, the proposed method was
44
+ evaluated in four separate test sets, two of them are external and completely
45
+ independent. On the largest of those sets, the proposed approach achieved
46
+ an accuracy of 93.44%. DL for colorectal samples is a few steps closer to stop
47
+ being research exclusive and to become fully integrated in clinical practice.
48
+ Keywords:
49
+ Clinical Prototype, Colorectal Cancer, Interpretable Artificial
50
+ Intelligence, Deep Learning, Whole-Slide Images
51
+ 1. Introduction
52
+ Colorectal cancer (CRC) incidence and mortality are increasing, and it
53
+ is estimated that they will keep growing at least until 2040 [1], according to
54
+ estimations of the International Agency for Research on Cancer. Nowadays,
55
+ it is the third most incident (10.7% of all cancer diagnoses) and the second
56
+ most deadly type of cancer [1]. Due to the effect of lifestyle, genetics, envi-
57
+ ronmental factors and an increase in life expectancy, the current increase in
58
+ world wealth and the adoption of western lifestyles further advocates for an
59
+ increase in the capabilities to perform more CRC evaluations for potential
60
+ diagnosis [2, 3]. Despite the pessimist predictions for an increase in the in-
61
+ cidence, CRC is preventable and curable when detected in its earlier stages.
62
+ Thus, effective screening through medical examination, imaging techniques
63
+ and colonoscopy are of utmost importance [4, 5].
64
+ Despite the CRC detection capabilities shown by imaging techniques,
65
+ the diagnosis of cancer is always based on the pathologist’s evaluation of
66
+ biopsies/surgical specimen samples. The stratification of neoplasia develop-
67
+ ment stages consists of non-neoplastic (NNeo), low-grade dysplasia (LGD),
68
+ high-grade dysplasia (HGD, including intramucosal carcinomas), and inva-
69
+ sive carcinomas, from the initial to the latest stage of cancer progression,
70
+ respectively. In spite of the inherent subjectivity of the dysplasia grading
71
+ system [6], recent guidelines from the European Society of Gastrointestinal
72
+ Endoscopy (ESGE), as well as those from the US multi-society task force on
73
+ CRC, consistently recommend shorter surveillance intervals for patients with
74
+ 2
75
+
76
+ polyps with high-grade dysplasia, regardless of their dimension [5, 7]. Hence,
77
+ grading dysplasia is still routinely performed by pathologists worldwide when
78
+ assessing colorectal tissue samples.
79
+ Private datasets of digitised slides are becoming widely available, in the
80
+ form of whole-slide images (WSI), with an increase in the adoption of digital
81
+ workflows [8, 9, 10]. Despite the burden of the additional scanning step, WSI
82
+ eases the revision of old cases, data sharing and quick peer-review [11, 12].
83
+ It has also created several research opportunities within the computer vision
84
+ domain, especially due to the complexity of the problem and the high dimen-
85
+ sions of WSI [13, 14, 15, 16]. As such, robust and high-performance systems
86
+ can be valuable assets to the digital workflow of a laboratory, especially if
87
+ they are transparent and interpretable [11, 12]. However, some limitations
88
+ still affect the applicability of such solutions in practice [17].
89
+ The majority of the works on CRC diagnosis direct their focus towards the
90
+ classification of cropped regions of interest, or small tiles, instead of tackling
91
+ the challenging task of diagnosing the entire WSI [18, 19, 17, 20]. Notwith-
92
+ standing, some authors already presented methods to assess the grading of
93
+ the complete slide of colorectal samples. In 2020, Iizuka et al. [21] used a re-
94
+ current neural network (RNN) to aggregate the predictions of individual tiles
95
+ processed by an Inception-v3 network into non-neoplastic, adenoma (AD)
96
+ and adenocarcinoma (ADC). Due to the large dimensions of WSI related to
97
+ their pyramidal format (with several magnification levels) [22], usually over
98
+ 50,000 × 50,000 pixels, it is usual to use a scheme consisting of a grid of
99
+ tiles. This scheme permits the acceleration of the processing steps since the
100
+ tiles are small enough to fit in the memory of the graphics processing units
101
+ (GPU), popular units for the training of deep learning (DL). Wei et al. [23]
102
+ studied the usage of an ensemble of five distinct ResNet networks, in order to
103
+ distinguish the types of CRC adenomas H&E stained slides. Song et al. [24]
104
+ experimented with a modified DeepLab-v2 network for tile classification, and
105
+ proposed pixel probability thresholding to detect CRC adenomas. Both Xu et
106
+ al. [25] and Wang et al. [26, 27] looked into the performance of the Inception-
107
+ v3 architecture to detect CRC, with the latter also retrieving a cluster-based
108
+ slide classification and a map of predictions. The MuSTMIL [28] method,
109
+ classifieds five colon-tissue findings: normal glands, hyperplastic polyps, low-
110
+ grade dysplasias, high-grade dysplasias and carcinomas. This classification
111
+ originates from a multitask architecture that leverages several levels of mag-
112
+ nification of a slide. Ho et al. [29] extended the experiments with multitask
113
+ learning, but instead of leveraging the magnification, its model aims to jointly
114
+ 3
115
+
116
+ segment glands, detect tumour areas and sort the slides into low-risk (benign,
117
+ inflammation or reactive changes) and high-risk (adenocarcinoma or dyspla-
118
+ sia) categories. The architecture of this model is considerably more complex,
119
+ with regard to the number of parameters, and is known as Faster-RCNN with
120
+ a ResNet-101 backbone network for the segmentation task. Further to this
121
+ task, a gradient-boosted decision tree completes the pipeline that results in
122
+ the final grade.
123
+ As stated in the previous paragraph, recent state-of-the-art computer-
124
+ aided diagnosis systems are based on deep learning approaches. These sys-
125
+ tems rely on large volumes of data to learn how to perform a particular task.
126
+ Increasing the complexity of the task often demands an increase in the data
127
+ available. Collecting this data is expensive and tedious due to the annotation
128
+ complexity and the need for expert knowledge. Despite recent publications
129
+ that present approaches using large volumes of data to train CAD systems,
130
+ the majority do not publicly release the data used. To reverse this trend,
131
+ the novel and completely anonymised dataset introduced in this document
132
+ will have the majority of the available slides publicly released. This dataset
133
+ contains, approximately, 10500 high-quality slides. The available slides origi-
134
+ nate one of the largest colorectal samples (CRS) datasets to be made publicly
135
+ available. This high volume of data, in addition to the massive resolution
136
+ of the images, creates a significant bottleneck of deep learning approaches
137
+ that extract patches from the whole slide. Hence, we introduce an efficient
138
+ sampling approach that is performed once without sacrificing prediction per-
139
+ formance. The proposed sampling leverages knowledge learnt from the data
140
+ to create a proxy that reduces the rate of important information discarded,
141
+ when compared to random sampling. Due to the cost of annotating the en-
142
+ tire dataset, it is only annotated for a portion at the pixel level, while the
143
+ remaining portion is labelled for a portion at the slide level. To leverage these
144
+ two levels of supervision, we propose a mixed supervision training scheme.
145
+ One other increasingly relevant issue with current research is the lack
146
+ of external validation. It is not uncommon to observe models that perform
147
+ extremely well on a test set collected from the same data distribution used
148
+ to train, but fail on samples from other laboratories or scanners. Hence,
149
+ we validate our proposed model in two different external datasets that vary
150
+ in quality, country of origin and laboratory. While the results on a similar
151
+ dataset show the performance of the model if implemented in the institution
152
+ that collects that data, the test on external samples indicates its capabilities
153
+ to be deployed in other scenarios.
154
+ 4
155
+
156
+ In order to bring this CAD system into production, and to infer its ca-
157
+ pabilities within clinical practice, we developed a prototype that has been
158
+ used by pathologists in clinical practice. We further collected information on
159
+ the misdiagnoses and the pathologists’ feedback. Since it is expected that
160
+ the model indicates some rationale behind its predictions, we developed a
161
+ visual approach to explain the decision and guide pathologists’ focus toward
162
+ more aggressive areas. This mechanism increased the acceptance of the al-
163
+ gorithm in clinical practice, and its usefulness. When collected from routine
164
+ the slides can be digitised with duplicated tissue areas, known as fragments,
165
+ which might be of lower quality.
166
+ Hence, the workflow for the automatic
167
+ diagnostic also included an automatic fragment detection and counting sys-
168
+ tem [30]. Moreover, it was possible to utilize this prototype to do the second
169
+ round of labelling based on the test set prediction given by the model. This
170
+ second round led to the correction of certain labels (that the model pre-
171
+ dicted correctly and were mislabeled by the expert pathologist) and insights
172
+ regarding the areas where the model has to be improved.
173
+ To summarise, in this paper we propose a novel dataset with more than
174
+ thirteen million tiles, a sampling approach to reduce the difficulty of using
175
+ large datasets, a deep learning model that is trained with mixed supervision,
176
+ evaluated on two external datasets, and incorporated in a prototype that
177
+ provides a simple integration in clinical practice and visual explanations of
178
+ the model’s predictions. This way, we come a step closer to making CAD
179
+ tools a reality for colorectal diagnosis.
180
+ 2. Methods
181
+ In this section, after defining the problem at hand, we introduce the pro-
182
+ posed dataset used to train, validate and test the model, the external datasets
183
+ to evaluate the generalisation capabilities of the model and the pre-processing
184
+ pipeline. Afterwards, we describe in detail the methodology followed to cre-
185
+ ate the deep learning model and to design the experiments. Finally, we also
186
+ detail the clinical assessment and evaluation of the model.
187
+ 2.1. Problem definition
188
+ Digitised colorectal cancer histological samples have large dimensions,
189
+ which are far larger than the dimensions of traditional images used in medi-
190
+ cal or general computer vision problems. Labelling such images is expensive
191
+ and highly dependent on the availability of expert knowledge. It limits the
192
+ 5
193
+
194
+ availability of whole slide images, and, in scenarios where these are available,
195
+ meaningful annotations are usually lacking. On the other hand, it is easier
196
+ to label the dataset at the slide level. The inclusion of detailed spatial an-
197
+ notations on approximately 10% of the dataset has been shown to positively
198
+ impact the performance of deep learning algorithms [17, 31].
199
+ Figure 1: Problem definition as a fully supervised task (on top), and as a weakly-supervised
200
+ task (bottom).
201
+ To fully leverage the potential of spatial and slide labels, we propose a
202
+ deep learning pipeline, based on previous approaches [17, 31], using mixed
203
+ supervision. Each slide, S is composed of a set of tiles Ts,n, where s represents
204
+ the index of the slide and n ∈ {1, · · · , ns} the tile number. Furthermore,
205
+ there is an inherent order in the grading used to classify the input into one of
206
+ the C(k) classes, which represents a variation in severity. For fully supervised
207
+ learning, only strongly annotated slides are useful, and for those, the label of
208
+ each tile Cs,n is known. The remaining slides are deprived of these detailed
209
+ labels, hence, they can only be leveraged by training algorithms with weakly
210
+ supervision. To be used by these algorithms, the weakly annotated slides
211
+ have only a single label for the entire bag (set) of tiles, as seen in Figure 1.
212
+ 6
213
+
214
+ Following the order of the labels and the clinical knowledge, we assume that
215
+ the predicted slide label Cs is the most severe case of the tile labels:
216
+ Cs = maxn{Cs,n}.
217
+ In other words, if there is at least one tile classified as containing high-
218
+ grade dysplasia, then the entire slide that contains the tile is classified ac-
219
+ cordingly. On the other end of the spectrum, if the worst tile is classified as
220
+ non-neoplastic, then it is assumed that there is no dysplasia in the entire set
221
+ of tiles. This is a generalisation of multiple-instance learning (MIL) to an
222
+ ordinal classification problem, as proposed by Oliveira et al. [17].
223
+ 2.2. Datasets
224
+ The spectrum of large-scale CRC/CRS datasets is slowly increasing due to
225
+ the contributions of several researchers. Two datasets that have been recently
226
+ introduced in the literature are the CRS1K [17] and CRS4K [31] datasets.
227
+ Since the latter is an extension of the former with roughly four times more
228
+ slides, it will be the baseline dataset for the remaining of this document.
229
+ Moreover, we further extend these with the CRS10K dataset, which contains
230
+ 9.26x and 2.36x more slides than CRS1K and CRS4K, respectively. Similarly,
231
+ the number of tiles is multiplied by a factor of 12.2 and 2.58 (Table 1). This
232
+ volume of slides is translated into an increase in the flexibility to design
233
+ experiments and infer the robustness of the model. Thus, the inclusion of a
234
+ test set separated from the validation set is now facilitated.
235
+ The set is composed of colorectal biopsies and polypectomies (excluding
236
+ surgical specimens). Following the same annotation process as the previ-
237
+ ous datasets, CRS10K slides are labelled according to three main categories:
238
+ non-neoplastic (NNeo), low-grade lesions (LG), and high-grade lesions (HG).
239
+ The first, contains normal colorectal mucosa, hyperplasia and non-specific
240
+ inflammation. LG lesions categorise conventional adenomas with low-grade
241
+ dysplasia. Finally, HG lesions are composed of adenomas with high-grade
242
+ dysplasia (including intra-mucosal carcinomas) and invasive adenocarcino-
243
+ mas. In order to avoid diversions from the main goal, slides with suspicion
244
+ of known history of inflammatory bowel disease/infection, serrated lesions or
245
+ other polyp types were not included in the dataset.
246
+ The slides, retrieved from an archive of previous cases, were digitised with
247
+ Leica GT450 WSI scanners, at 40× magnification. The cases were initially
248
+ seen and classified (labelled) by one of three pathologists. The pathologist
249
+ revised and classified the slides, and then compared them with the initial
250
+ report diagnosis (which served as a second-grader). If there was a match
251
+ 7
252
+
253
+ between both, no further steps were taken.
254
+ In discordant cases, a third
255
+ pathologist served as a tie-breaker. Roughly 9% of the dataset (967 slides and
256
+ over a million tiles) were manually annotated by a pathologist and rechecked
257
+ by the other, in turn, using the Sedeen Viewer software [32]. For complex
258
+ cases, or when the agreement for a joint decision could not be reached, a
259
+ third pathologist reevaluated the annotation.
260
+ The CRS10K dataset was divided into train, validation and test sets.
261
+ The first includes all the strongly annotated slides and other slides randomly
262
+ selected.
263
+ Whereas the second is composed of only non-annotated slides.
264
+ Finally, the test set was selected from the new data added to extend the
265
+ previous datasets. Thus, it is completely separated from the training and
266
+ validation sets of previous works. The test set, will be publicly available, so
267
+ that future research can directly compare their results and use that set as a
268
+ benchmark.
269
+ Table 1: Dataset summary, with the number of slides (annotated samples are detailed in
270
+ parentheses) and tiles distributed by class for all the datasets used in this study.
271
+ NNeo
272
+ LG
273
+ HG
274
+ Total
275
+ # slides
276
+ 300 (6)
277
+ 552 (35)
278
+ 281 (59)
279
+ 1133 (100)
280
+ CRS1K dataset [17]
281
+ # annotated tiles
282
+ 49,640
283
+ 77,946
284
+ 83,649
285
+ 211,235
286
+ # non-annotated tiles
287
+ -
288
+ -
289
+ -
290
+ 1,111,361
291
+ # slides
292
+ 663 (12)
293
+ 2394 (207)
294
+ 1376 (181)
295
+ 4433 (400)
296
+ CRS4K dataset [31]
297
+ # annotated tiles
298
+ 145,898
299
+ 196,116
300
+ 163,603
301
+ 505,617
302
+ # non-annotated tiles
303
+ -
304
+ -
305
+ -
306
+ 5,265,362
307
+ # slides
308
+ 1740 (12)
309
+ 5387 (534)
310
+ 3369 (421)
311
+ 10,496 (967)
312
+ CRS10K dataset
313
+ # annotated tiles
314
+ 338,979
315
+ 371,587
316
+ 341,268
317
+ 1,051,834
318
+ # non-annotated tiles
319
+ -
320
+ -
321
+ -
322
+ 13,571,871
323
+ CRS Prototype
324
+ # slides
325
+ 28
326
+ 44
327
+ 28
328
+ 100
329
+ # non-annotated tiles
330
+ -
331
+ -
332
+ -
333
+ 244,160
334
+ PAIP [33]
335
+ # slides
336
+ -
337
+ -
338
+ 100
339
+ 100
340
+ # non-annotated tiles
341
+ -
342
+ -
343
+ -
344
+ 97,392
345
+ TCGA [34]
346
+ # slides
347
+ 1
348
+ 1
349
+ 230
350
+ 232
351
+ # non-annotated tiles
352
+ -
353
+ -
354
+ -
355
+ 1,568,584
356
+ Furthermore, as detailed in the following sections, this work comprises the
357
+ development of a fully-functional prototype to be used in clinical practice.
358
+ Leveraging this prototype, it was possible to further collect a new set with
359
+ 100 slides. It differs from the CRS10K dataset, in the sense that they were
360
+ not carefully selected from the archives. Instead, these cases were actively
361
+ collected from the current year’s routine exams. We argue that this might
362
+ 8
363
+
364
+ better reflect the real-world data distribution. Hence, we introduce this set as
365
+ a distinct dataset to evaluate the robustness of the presented methodology.
366
+ Differently from the datasets discussed below, the CRS Prototype dataset
367
+ has a more balanced distribution of the slide labels. Although it is useful
368
+ in practice, the usage of the fragment counting and selection algorithm for
369
+ the evaluation could potentiate the propagation of errors from one system
370
+ to another. Thus, in this evaluation, we did not use the fragment selection
371
+ algorithm, and as shown in Table 1, the number of tiles per slide doubles
372
+ when compared to CRS10K, which had its fragments carefully selected.
373
+ To evaluate the domain generalisation of the proposed approach, two
374
+ external datasets were used. We evaluate the proposed approaches on two
375
+ external datasets publicly available. The first dataset is composed of samples
376
+ of the TCGA-COAD [35] and TCGA-READ [36] collections from The Can-
377
+ cer Imaging Archive [34], which are composed in general by resection samples
378
+ (in contrast to our dataset, composed only of biopsies and polypectomies).
379
+ Samples containing pen markers, large air bubbles over tissue, tissue folds,
380
+ and other artefacts affecting large areas of the slide were excluded. The fi-
381
+ nal selection includes 232 whole-slide images reviewed and validated by the
382
+ same pathologists that reviewed the in-house datasets. 230 of those sam-
383
+ ples were diagnosed as high-grade lesions, whereas the remaining two have
384
+ been diagnosed as low-grade and non-neoplastic. For this dataset, the spe-
385
+ cific model of the scanner used to digitise the images is unknown, but the
386
+ file type (”.svs”) matches the file type of the training data. The second ex-
387
+ ternal dataset used to evaluate the model contains 100H&E slides from the
388
+ Pathology AI Platform [33] colorectal cohort, which contains all the cases
389
+ with a more superficial sampling of the lesion, for a better comparison with
390
+ our datasets. All the whole slide images in this dataset were digitised with
391
+ an Aperio AT2 at 20X magnification. Finally, the pathologists’ team fol-
392
+ lowed the same guidelines to review and validate all the WSI, which were all
393
+ classified as high-grade lesions. It is interesting to note that while the PAIP
394
+ contains significantly fewer tiles per slide, around 973, than the CRS10K
395
+ dataset, around 1293, the TCGA dataset shows the largest amount of tissue
396
+ per slide with an average of 6761 tiles as seen in Table 1.
397
+ 2.3. Data pre-processing
398
+ H&E slides are composed of two distinct elements, white background
399
+ and colourful tissue. Since the former is not meaningful for the diagnostic,
400
+ 9
401
+
402
+ the pre-processing of these slides incorporates an automatic tissue segmenta-
403
+ tion with Otsu’s thresholding [37] on the saturation (S) channel of the HSV
404
+ colour space, resulting in a separation between the tissue regions and the
405
+ background. The result of this step, which receives as input a 32× down-
406
+ sampled slide, is the mask used for the following steps.
407
+ Leveraging this
408
+ previous output, tiles with a dimension of 512 × 512 pixels (Figure 2) were
409
+ extracted from the original slide (without any downsampling) at its maxi-
410
+ mum magnification (40×), if they did not include any portion of background
411
+ (i.e. a 100% tissue threshold was used). Following previous experiments in
412
+ the literature, our empirical assessment, and the confirmation that smaller
413
+ tiles would significantly increase the number of tiles and the complexity of
414
+ the task, 512 × 512 was chosen as the tile size. Moreover, it is believed that
415
+ 512 × 512 is the smallest tile size that still incorporates enough information
416
+ to make a good diagnostic with the possibility of visually explaining the de-
417
+ cision [17]. The selected threshold of 100% further reduces the number of
418
+ tiles by not including the tissue at the edges and decreases the complexity
419
+ of the task, since the model does not see the background at any moment.
420
+ Due to tissue variations in different images, there is also a different number
421
+ of tiles extracted per image.
422
+ 2.4. Methodology
423
+ The massive size of images, which translates to thousands of tiles per
424
+ image, allied to a large number of samples in the CRS10K dataset, bottle-
425
+ necks the training of weakly-supervised models based on multiple instance
426
+ learning (MIL). Hence, in this document, we propose a mix-supervision ap-
427
+ proach with self-contained tile sampling to diagnose colorectal cancer samples
428
+ from whole-slide images. This subsection comprises the methodology, which
429
+ includes supervised training, sampling and weakly-supervised learning.
430
+ 2.4.1. Supervised Training
431
+ As mentioned in previous sections, spatial annotations are rare in large
432
+ quantities. However, these include domain information, given by the expert
433
+ annotator, concerning the most meaningful areas and what are the most and
434
+ less severe tiles. Thus, they can facilitate the initial optimisation of a deep
435
+ neural network. As shown in the literature, there has been some research on
436
+ the impact of starting the training with a few iterations of fully-supervised
437
+ training [17, 38]. We further explore this in three different ways. First, we
438
+ have 967 annotated slides resulting in more than one million annotated tiles
439
+ 10
440
+
441
+ Figure 2: Examples of regions with and a sample tile with 512 × 512 pixels (40× mag-
442
+ nification), representing each class: non-neoplastic (on top), low-grade dysplasia (on the
443
+ middle) and high-grade dysplasia (on the bottom).
444
+ for supervised training. Secondly, attending to the size of our dataset and
445
+ the need for a stronger initial supervised training, the models are trained
446
+ for 50 epochs, and their performance was monitored over specific checkpoint
447
+ epochs. Finally, we explore this pre-trained model as the main tool to sample
448
+ useful tiles for the weakly-supervised task.
449
+ 11
450
+
451
+ Figure 3: Overall scheme of the proposed methodology containing the mix-supervision
452
+ framework that is responsible for diagnosing colorectal samples from WSI.
453
+ 2.4.2. Tile Sampling
454
+ Our scenario presents a particularly difficult condition for scaling the
455
+ training data. First, let’s consider the structure of the data, which consists
456
+ of, on average, more than one thousand tiles per slide. Within this set of
457
+ tiles, some tiles provide meaningful value for the prediction, and others do
458
+ not add extra information. In other words, for the CRS10K dataset, the
459
+ extensive, lengthy, time and energy-consuming process of going through 13
460
+ million tiles every epoch can be avoided, and as result, these models can be
461
+ trained for more epochs. Nowadays, there is an increasing concern regarding
462
+ energy and electricity consumption. Thus, these concerns, together with the
463
+ sustainability goals, further support the importance of more efficient training
464
+ processes.
465
+ Let T be the original set of tiles, and Ts be the original set of tiles from
466
+ the slide s, the former is composed by a union of the latter of all the slides
467
+ (Eq. 1). We propose to map T to a smaller set of tiles M without affecting
468
+ the overall performance and behaviour of the trained algorithm.
469
+ 12
470
+
471
+ 85
472
+ annotated WsI
473
+ annotatedtiles (512x512px)
474
+ tiles classifier
475
+ non-annotated WSI
476
+ tiles set (512x512 px)
477
+ tiles classifier
478
+ tiles ranking
479
+ tiles sampling
480
+ (inference)
481
+ (top 200)
482
+ orw grad
483
+ T
484
+ sampled tiles
485
+ tiles classifier
486
+ tiles ranking
487
+ tiles classifier
488
+ slide diagnosis
489
+ (inference)
490
+ (training with top 5)
491
+ (top tile prediction)T =
492
+ S�
493
+ s=1
494
+ Ts
495
+ (1)
496
+ The model trained in a fully supervised task, previously described, pro-
497
+ vides a good estimation of the utility of each tile.
498
+ Hence, we utilise the
499
+ function (Φ) learned by the model to compute the predicted severity of each
500
+ tile. As will be shown below, the weakly-supervised method utilises only the
501
+ five most severe tiles per slide to train in each epoch. As such, we select M
502
+ tiles per slide (M=200 in our experimental setup) utilising a Top-k function
503
+ (with k set to 200) to be retained for the weakly-supervised training. As in-
504
+ dicated by the results presented in the following sections, the value of M was
505
+ selected in accordance with a trade-off between information lost and training
506
+ time. This is formalised in Eq. 2.
507
+ Ms = Top-k(Φ(Ts))
508
+ (2)
509
+ For instance, in the CRS10K dataset, the total number of tiles after
510
+ sampling would be at most 2,099,200, which represents a reduction of 6.46×
511
+ when compared to the total number of slides. Despite this upper bound on
512
+ the number of tiles, there are WSI samples that contain less than M tiles, and
513
+ as such, they remain unsampled and the actual total number of tiles after
514
+ sampling is potentially lower. During the evaluation and test time, there is
515
+ no sampling.
516
+ We conducted extensive studies on the performance of our methodology,
517
+ without sampling, with sampling on the training data, and with sampling
518
+ on training and validation. The results on the CRS4K dataset validate our
519
+ proposal. The number of selected tiles considers a trade-off between compu-
520
+ tational cost and information potentially lost, and for that reason, it is the
521
+ success of empirical optimization.
522
+ 2.4.3. Weakly-Supervised Learning
523
+ The weakly-supervised learning approach designed for our methodology
524
+ follows the same principles of recent work [31]. It is divided into two distinct
525
+ stages, tile severity analysis and training. The former utilises the pre-trained
526
+ model to evaluate the severity of every tile in a set of tiles. In the first epoch,
527
+ T , the set of all the tiles in the complete dataset is used. This is possible
528
+ since the model used to assess the severity in this epoch is the same one used
529
+ for sampling. Hence, both tasks are integrated with the initial epoch. The
530
+ 13
531
+
532
+ following epochs utilise the sampled tile set M instead of the original set.
533
+ This overall structure is represented in Figure 3.
534
+ The link between both stages is guided by a slide-wise tile ranking ap-
535
+ proach based on the expected severity. For tile Ts,n, the expected severity is
536
+ defined as
537
+ E( ˆCs,n) =
538
+ K
539
+
540
+ i=1
541
+ i × p
542
+
543
+ ˆCs,n = C(i)�
544
+ (3)
545
+ where ˆCs,n is a random variable on the set of possible class labels {C(1), · · · , C(K)}
546
+ and p
547
+
548
+ ˆCs,n = C(i)�
549
+ are the K output values of the neural network. After
550
+ this analysis, the five most severe tiles are selected for training. The number
551
+ of selected tiles was chosen in accordance with previous studies [31]. These
552
+ five tiles per slide are used to train the proposed model for one more epoch.
553
+ Each epoch is composed of both stages, which means that the tiles used for
554
+ training vary across epochs. The slide label is used as the ground truth of
555
+ all five tiles of that same slide used for network optimisation. For validation
556
+ and evaluation, only the most severe tile is used for diagnostics. Although
557
+ it might lead to an increase in false positives, it shall significantly reduce
558
+ false negatives. Furthermore, we argue that increasing the variability and
559
+ quantity of data available leads to a better balance between the reduction of
560
+ these two types of errors.
561
+ 2.5. Confidence Interval
562
+ In order to quantify the uncertainty of a result, it is common to compute
563
+ the 95 percent confidence interval. In this way, two different models can
564
+ be easily understood and compared based on the overlap of their confidence
565
+ intervals. The standard approach to calculating these intervals requires sev-
566
+ eral runs of a single experiment. As we increase the number of runs, our
567
+ interval becomes narrower. However, this procedure is impractical for the
568
+ computationally intensive experiments presented in this document. Hence,
569
+ we use an independent test set to approximate the confidence interval as a
570
+ Gaussian function [39]. To do so, we compute the standard error (SE) of an
571
+ evaluation metric m, which is dependent on the number of samples (n), as
572
+ seen in Equation 4.
573
+ SE =
574
+
575
+ 1
576
+ n × m × (1 − m)
577
+ (4)
578
+ 14
579
+
580
+ For the SE computation to be mathematically correct, the metric m must
581
+ originate from a set of Bernoulli trials. In other words, if each prediction is
582
+ considered a Bernoulli trial, then the metric should classify them as correct
583
+ or incorrect. The number of correct samples is then given by a Binomial
584
+ distribution X ∼ (n, p), where p is the probability of correctly predicting a
585
+ label, and n is the number of samples. For instance, the accuracy is a metric
586
+ that fits all these constraints.
587
+ Following the definition and the properties of a Normal distribution, we
588
+ compute the number of standard deviations (z), known as a standard score,
589
+ that can be translated to the desired confidence (c) set to 95% of the area
590
+ under a normal distribution. This is a well-studied value, which is approx-
591
+ imately z ≈ 1.96.
592
+ This value z is then used to calculate the confidence
593
+ interval, calculated as the product of z and SE as seen in Equation 5.
594
+ M ± z ∗
595
+
596
+ 1
597
+ n × m × (1 − m)
598
+ (5)
599
+ 2.6. Experimental setup
600
+ For our experimental setup, we divide our data into training and valida-
601
+ tion sets. Besides, we further evaluate the performance of the former in our
602
+ test set composed of slides never seen by any of the methods presented or
603
+ in the literature. Following the split of these three sets, we have 8587, 1009
604
+ and 900 stratified non-overlapping samples in the training, validation and
605
+ test set, respectively.
606
+ In an attempt to also contribute to reproducible research, the training of
607
+ all the versions of the proposed algorithm uses the deterministic constraints
608
+ available on Pytorch. The usage of deterministic constraints implies a trade-
609
+ off between performance, either in terms of algorithmic efficiency or on its
610
+ predictive power, and the complement with reproducible research guidelines.
611
+ As such, due to the current progress in the field, we have chosen to comply
612
+ with the reproducible research guidelines.
613
+ All the trained backbone networks were ResNet-34 [40]. Pytorch was used
614
+ to train these networks with the Adaptive Moment Estimation (Adam) [41]
615
+ optimiser, a learning rate of 6 × 10−6 and a weight decay of 3 × 10−4. The
616
+ training batch size was set to 32 for both fully and weakly supervised train-
617
+ ing, while the test and inference batch size was 256. The performance of the
618
+ model was evaluated on the validation set used for model selection in terms
619
+ of the best accuracies and quadratic weighted kappa (QWK). The training
620
+ 15
621
+
622
+ was accelerated by an Nvidia Tesla V100 (32GB) GPU for 50 epochs of both
623
+ weakly and fully supervised learning. In addition to the proposed method-
624
+ ology, we extended our experiments to include the aggregation approach
625
+ proposed by Neto et al. [31] on top of our best-performing method.
626
+ 2.7. Label correction
627
+ The complex process of labelling thousands of whole-slide images with
628
+ colorectal cancer diagnostic grades is a task of increased difficulty. It should
629
+ also be noted and taken into account that grading colorectal dysplasia is hur-
630
+ dled by considerable subjectivity, so it is to be expected that some borderline
631
+ cases will be classified by some pathologists as low-grade and others as high-
632
+ grade. Moreover, as the number of cases increases, it becomes increasingly
633
+ difficult to maintain perfect criteria and avoid mislabelling. For this reason,
634
+ we have extended the analysis of the model’s performance to understand its
635
+ errors and its capability to detect mislabelled slides.
636
+ After training the proposed model, it was evaluated on the test data. Fol-
637
+ lowing this evaluation, we identified the misclassified slides and conducted
638
+ a second round of labelling. These cases were all blindly reviewed by two
639
+ pathologists, and discordant cases from the initial ground truth were dis-
640
+ cussed and classified by both pathologists (and in case of doubt/complexity,
641
+ a third pathologist was also consulted). We tried to maintain similar criteria
642
+ between the graders and always followed the same guidelines. These new
643
+ labels were used to rectify the performance of all the algorithms evaluated in
644
+ the test set. We argue that the information regarding the strength/confidence
645
+ of predictions of a model used as a second opinion is of utter importance. A
646
+ correct integration of this feature can be shown as extremely insightful for
647
+ the pathologists using the developed tool.
648
+ 2.8. Prototype and Interpretability Assessment
649
+ The proposed algorithm was integrated into a fully functional prototype
650
+ to enable its use and validation in a real clinical workflow.
651
+ This system
652
+ was developed as a server-side web application that can be accessed by any
653
+ pathologist in the lab. The system supports the evaluation of either a sin-
654
+ gle slide or a batch of slides simultaneously and in real time. It also caches
655
+ the most recent results, allowing re-evaluation without the need to re-upload
656
+ slides. In addition to displaying the slide diagnosis, and confidence level for
657
+ each class, a visual explanation map is also retrieved, to draw the patholo-
658
+ gist’s attention to key tissue areas within each slide (all seen in Figure 4).
659
+ 16
660
+
661
+ The opaqueness of the map can be set to different thresholds, allowing the
662
+ pathologist to control its overlay over the tissue. An example of the zoomed
663
+ version of a slide with lower overlay of the map is shown in Figure 5.
664
+ Figure 4: Main view of the CAD system prototype for CRS: Slide identification, confidence
665
+ per class, diagnostic, mask overlay controller, results download as csv and slide search are
666
+ some of the features visible. Slide identification is anonymised.
667
+ Furthermore, the prototype also allows user feedback where the user can
668
+ accept/reject a result and provide a justification (Figure 6), an important
669
+ feature for software updates, research development and possible active learn-
670
+ ing frameworks that can be developed in the future. These results can be
671
+ downloaded with the corrected labels to allow for further retraining of the
672
+ model.
673
+ There are several advantages to developing such a system as a server-
674
+ side web application. First, it does not require any specific installation or
675
+ dedicated local storage in the user’s device. Secondly, it can be accessed at
676
+ the same time by several pathologists from different locations, allowing for
677
+ a quick review of a case by multiple pathologists without data transference.
678
+ Moreover, the lack of local storage of clinical data increases the privacy of
679
+ patient data, which can only be accessed through a highly encrypted virtual
680
+ private network (VPN). Finally, all the processing can be moved to an effi-
681
+ cient graphics processing unit (GPU), thus reducing the processing time by
682
+ 17
683
+
684
+ CADPath
685
+ +
686
+ 1
687
+
688
+ CADPath
689
+ Search
690
+ Search
691
+ Download Results
692
+ 00000000001-A-
693
+ OOOO
694
+ 01-001_xxx_000
695
+ 000001.svs
696
+ processed
697
+ Processed
698
+ 00000000002-A-
699
+ Case: 00000000003
700
+ 02-002_xxx_000
701
+ Specimen: A
702
+ _000002.svs
703
+ Block: 03
704
+ processed
705
+ Slide: 003
706
+ Mask
707
+ 00000000003-A
708
+ 03-003_xxx_000
709
+ _000003.svs
710
+ Model Results
711
+ processed
712
+ High grade
713
+ 100%
714
+ Low grade
715
+ 00000000004-A-
716
+ Normal
717
+ 04-004_xxx_000
718
+ _000004.svs
719
+ processed
720
+ High Grade
721
+ 00000000005-A-
722
+ Results approved
723
+ 05-005_xxx_000
724
+ _000005.svs
725
+ processed
726
+ 00000000006-A.
727
+ 06-006_xxx_000
728
+ _000006.svs
729
+ Upload new slidesFigure 5: Zoomed view of a slide from the CAD system prototype, with the predictions
730
+ map with a small overlay threshold. Slide identification is anonymised.
731
+ several orders of magnitude. Similar behaviour on a local machine would
732
+ require the installation of dedicated GPUs in the pathologists’ personal de-
733
+ vices. This platform is the first Pathology prototype for colorectal diagnosis
734
+ developed in Portugal, and, as far as we know, one of the pioneers in the
735
+ world. Its design was also carefully thought to be aligned with the needs of
736
+ the pathologists.
737
+ 3. Results
738
+ In this section, we present the results of the proposed method. The results
739
+ are organised to first demonstrate the effectiveness of sampling, followed by
740
+ an evaluation of the model in the two internal datasets (CRS10K and the
741
+ prototype dataset), and finalise with the results on external datasets. We also
742
+ discuss the advantages and disadvantages of the proposed approach, perform
743
+ an analysis of the results from a clinical perspective, provide pathologists’
744
+ feedback on the use of the prototype, and finally discuss future directions.
745
+ 18
746
+
747
+ CADPath
748
+ +
749
+ 人☆
750
+ CADPath
751
+ Search
752
+ Search
753
+ Download Results
754
+ processed
755
+ 00000000006-A
756
+ 06-006_xxx_000
757
+ Upload new slides
758
+ +0:00000000Figure 6: CAD system prototype report tool: the user can report if the result is either
759
+ correct, wrong or inconclusive and leave a comment for each case individually.
760
+ Slide
761
+ identification is anonymised.
762
+ 3.1. On the effectiveness of sampling
763
+ To find the most suitable threshold for sampling the tiles used in the
764
+ weakly supervised training, we evaluated the percentage of relevant tiles that
765
+ would be left out of the selection, if the original set was reduced to 75, 100,
766
+ 150 or 200 tiles, over the first five inference epochs.
767
+ A tile is considered
768
+ relevant if it shares the same label as the slide, or if it would take part in
769
+ the learning process in the weakly-supervised stage. As it is possible to see
770
+ in Figure 7, if we set the maximum number of tiles to 200 after the second
771
+ loop of inference, we would discard only 3.5% of the potentially informative
772
+ tiles, in the worst-case scenario. On the other side of the spectrum, a more
773
+ radical sampling of only 50 tiles would lead to a cut of up to 8%.
774
+ Moreover, to assess the impact of this sampling on the model’s perfor-
775
+ mance, we also evaluated the accuracy and the QWK with and without
776
+ sampling the top 200 tiles after the first inference iteration (Table 2). This
777
+ evaluation considered sampling applied only to the training tile set, and to
778
+ both the training and validation tile sets. As can be noticed, the performance
779
+ is not degraded and the model is trained in a much faster way. In fact, using
780
+ the setup previously mentioned, the first epoch of inference, with the full set
781
+ 19
782
+
783
+ CADPath
784
+ x
785
+ 人☆
786
+ CADPath
787
+ Search
788
+ Download Results
789
+ ownload
790
+ Feedback
791
+ Approval State:
792
+ 00000000001-A-
793
+ 01-001_xxx_000
794
+ 000001.svs
795
+ Expected:
796
+ (Low Grade
797
+ Normal
798
+ High Grade
799
+ processed
800
+ Processed
801
+ Comments
802
+ 00000000002-A-
803
+ Case: 00000000002
804
+ 02-002_xxx_000
805
+ Specimen: A
806
+ 000002.svS
807
+ Block: 02
808
+ processed
809
+ Slide: 002
810
+ Mask
811
+ 00000000003-A-
812
+ 03-003_xxx_000
813
+ 000003.SvS
814
+ Model Results
815
+ processed
816
+ 80%
817
+ Low grade
818
+ 20%
819
+ 00000000004-A-
820
+ Save changes
821
+ Normal
822
+ 04-004_xxx_000
823
+ 000004.svs
824
+ High Grade
825
+ processed
826
+ 00000000005-A.
827
+ Results rejected!
828
+ 05-005_xxx_000
829
+ 000005.SVS
830
+ processed
831
+ O
832
+ 00000000006-A-
833
+ 06-006_xxx_000
834
+ 000006.svs
835
+ Upload new slidesFigure 7: Tile sampling impact on information loss: percentage of tiles not selected due
836
+ to sampling with different thresholds, over the first four inference epochs.
837
+ of tiles takes 28h to be completed, while from the second loop the training
838
+ time decreases to only 5h per epoch. Without sampling, training the model
839
+ for 50 epochs would take around 50 days, whereas with sampling it takes
840
+ around 10.
841
+ 3.2. CRS10K and Prototype
842
+ CRS10K test set and the prototype dataset were collected through dif-
843
+ ferent procedures. The first followed the same data collection process as the
844
+ complete dataset, whereas the second originated from routine samples. Thus,
845
+ the evaluation of both these sets is done separately.
846
+ The first experiment was conducted on the CRS10K test set.
847
+ As ex-
848
+ pected, the steep increase in the number of training samples led to a signif-
849
+ icantly better algorithm in this test set. Initially, the model trained on the
850
+ CRS10K correctly predicted the class of 819 out of 900 samples. For the
851
+ 20
852
+
853
+ 8
854
+ Info
855
+ Samplingof 20o tiles
856
+ sampling
857
+ Sampling of 1oo tiles
858
+ selected
859
+ Sampling of 75 tiles
860
+ Sampling of 50 tiles
861
+ 01
862
+ due
863
+ tiles
864
+ not selected
865
+ of
866
+ total number
867
+ 4
868
+ 3
869
+ tiles
870
+ 2
871
+ 1
872
+ 0
873
+ 1
874
+ 2
875
+ 3
876
+ 4
877
+ 5
878
+ EpochsTable 2: Model performance comparison with and without tile sampling of the top 200
879
+ tiles from the first inference iteration. Compared the best epoch of the initial five epochs
880
+ and of the initial ten epochs. Validation is represented as Val.
881
+ Best Accuracy at
882
+ Best QWK at
883
+ Sampling
884
+ 5th epoch
885
+ 10th epoch
886
+ 5th epoch
887
+ 10th epoch
888
+ No
889
+ 84.94% ± 2.20
890
+ 86.42% ± 2.11
891
+ 0.809 ± 0.024
892
+ 0.829 ± 0.023
893
+ Train
894
+ 85.43% ± 2.18
895
+ 86.82% ± 2.08
896
+ 0.817 ± 0.024
897
+ 0.828 ± 0.023
898
+ Train and Val.
899
+ 86.12% ± 2.13
900
+ 86.92% ± 2.08
901
+ 0.824 ± 0.023
902
+ 0.829 ± 0.023
903
+ Table 3: Model performance evaluation on the CRS10K test set. The binary accuracy is
904
+ calculated as NNeo vs all. Accuracy is represented as (ACC). In bold are the best results
905
+ per column.
906
+ Method
907
+ ACC
908
+ Binary ACC
909
+ Sensitivity
910
+ iMIL4Path
911
+ 91.33% ± 1.84
912
+ 97.00% ± 1.11
913
+ 0.997 ± 0.004
914
+ Ours (CRS4K)
915
+ 89.44% ± 2.01
916
+ 96.11% ± 1.26
917
+ 0.997 ± 0.004
918
+ Ours (CRS10K) wo/ Agg
919
+ 93.44% ± 1.62
920
+ 97.78% ± 0.96
921
+ 0.996 ± 0.005
922
+ Ours (CRS10K) w/ Agg
923
+ 90.67% ± 1.90
924
+ 97.55% ± 1.01
925
+ 0.985 ± 0.009
926
+ wrong 81 cases, the pathologists performed a blind review of these cases and
927
+ found that the algorithm was indeed correct in 22 of them. This led to a
928
+ correction in the labels of the test set, and the appropriate adjustment of
929
+ the metrics. In Table 3, the performance of the different algorithms is pre-
930
+ sented. CRS10K outperforms the other approaches by a reasonable margin.
931
+ We further applied the aggregation proposed by Neto et al. [31] to the best
932
+ performing method, but without gains in performance. Despite being trained
933
+ on the same dataset iMIL4Path and the proposed methodology trained on
934
+ CRS4K, utilise different splits for training and validation, as well as different
935
+ optimisation techniques due to the deterministic approach.
936
+ In addition to examining quantitative metrics, such as the accuracy of
937
+ the model, we extended our study to include an analysis of the confidence in
938
+ the model when it correctly predicts a class and when it makes an incorrect
939
+ prediction. To this end, we recorded the confidence of the model for the
940
+ predicted class and divided it into the set of correct and incorrect predictions.
941
+ These were then used to fit a kernel density estimator (KDE). Figure 8 shows
942
+ the density estimation of the confidence values for the three different models.
943
+ It is worth noting that, when correct, the model trained on the CRS10K,
944
+ 21
945
+
946
+ Figure 8: Kernel density estimation of the confidences of correct and incorrect predic-
947
+ tions performed on the three-class classification problem by three distinct models on the
948
+ CRS10K test set. The plots represent, from left to right, the proposed method trained on
949
+ CRS10K, the proposed method trained on CRS4K and iMIL4Path.
950
+ returns higher confidence levels as shown by the shift of its mean towards
951
+ values close to one. On the other hand, the confidence values of its incorrect
952
+ predictions decrease significantly, and although it does not present the lowest
953
+ values, it shows the largest gap between correct and incorrect means.
954
+ Table 4: Model performance evaluation on the prototype test set. Accuracy is represented
955
+ as (ACC). The binary accuracy is calculated as NNeo vs all. In bold are the best results
956
+ per column.
957
+ Method
958
+ ACC
959
+ Binary ACC
960
+ Sensitivity
961
+ iMIL4Path
962
+ 89.00% ± 6.13
963
+ 96.00% ± 3.84
964
+ 1.000 ± 0.000
965
+ Ours (CRS4K)
966
+ 85.00% ± 6.99
967
+ 93.00% ± 5.00
968
+ 1.000 ± 0.000
969
+ Ours (CRS10K) wo/ Agg
970
+ 89.00% ± 6.13
971
+ 98.00% ± 2.74
972
+ 0.986 ± 0.026
973
+ Ours (CRS10K) w/ Agg
974
+ 85.00% ± 6.99
975
+ 98.00% ± 2.74
976
+ 0.986 ± 0.026
977
+ When tested on the prototype data (n=100), the importance of a higher
978
+ volume of data remains visible (Table 4). Nonetheless, the performance of
979
+ iMIL4Path [31] approach is comparable to the proposed approach trained on
980
+ CRS10K. It is worth noting that the latter achieves better performance on
981
+ the binary accuracy at the cost of a decrease in sensibility. In other words,
982
+ the capability to detect negatives increases significantly. Due to the smaller
983
+ 22
984
+
985
+ CRS10KTest Set-Ours(CRS10K)
986
+ CRS10KTestSet-Ours(CRS4K)
987
+ CRS10K Test Set - iMIL4Path
988
+ 8
989
+ 8
990
+ 8
991
+ Correct
992
+ Correct
993
+ Correct
994
+ Mean = 0.961
995
+ Mean = 0.953
996
+ .
997
+ Mean = 0.956
998
+ 7
999
+ Incorrect
1000
+ 7
1001
+ Incorrect
1002
+ 7
1003
+ Incorrect
1004
+ Mean = 0.769
1005
+ Mean = 0.762
1006
+ Mean = 0.773
1007
+ 6
1008
+ 6
1009
+ 6
1010
+ 5
1011
+ 5
1012
+ 5
1013
+ /p(c)
1014
+ /p(c)
1015
+ ........
1016
+ 3
1017
+ 3
1018
+ 3
1019
+ 2
1020
+ 2
1021
+ 2
1022
+ 1
1023
+ 1
1024
+ 1
1025
+ 0
1026
+ 0
1027
+ 0
1028
+ 0.0
1029
+ 0.2
1030
+ 0.4
1031
+ 0.6
1032
+ 0.8
1033
+ 1.0
1034
+ 0.0
1035
+ 0.2
1036
+ 0.4
1037
+ 0.6
1038
+ 0.8
1039
+ 1.0
1040
+ 0.0
1041
+ 0.2
1042
+ 0.4
1043
+ 0.6
1044
+ 0.8
1045
+ 1.0
1046
+ Confidencec
1047
+ Confidencec
1048
+ Confidence cset of slides, the confidence interval is much wider, as such, the performance
1049
+ on the CRS10K test set is a good indication of how these values would shift
1050
+ if more data was added. Similar performance drops were linked with the
1051
+ introduction of aggregation.
1052
+ Figure 9: Kernel density estimation of the confidences of correct and incorrect predictions
1053
+ performed on the three-class classification problem by three distinct models on the proto-
1054
+ type set. The plots represent, from left to right, the proposed method trained on CRS10K,
1055
+ the proposed method trained on CRS4K and iMIL4Path.
1056
+ Despite similar results, the confidence of the model in its predictions is
1057
+ distinct in all three approaches, as seen in Figure 9. The proposed approach
1058
+ when trained on the CRS10K dataset has a larger density on values close
1059
+ to one when the predictions are correct, and the mean confidence of those
1060
+ predictions is, once more, higher than the other approaches. However, espe-
1061
+ cially when compared to the proposed approach trained on the CRS4K, the
1062
+ confidence of wrong predictions is also higher. It can be a result of a larger
1063
+ set of wrong predictions available on the latter approach. Nonetheless, the
1064
+ steep increase in the density of values closer to one further indicates that
1065
+ there is room to explore other effects of extending the number of training
1066
+ samples, besides benefits in quantitative metrics.
1067
+ 3.3. Domain Generalisation Evaluation
1068
+ To ensure the generalisation of the proposed approach across external
1069
+ datasets, we have evaluated their performance on TCGA and PAIP. More-
1070
+ 23
1071
+
1072
+ Prototype-Ours(CRS10K)
1073
+ Prototype-Ours(CRS4K)
1074
+ Prototype - iMIL4Path
1075
+ 8
1076
+ 8
1077
+ 8
1078
+ Correct
1079
+ Correct
1080
+ Correct
1081
+ Mean = 0.943
1082
+ Mean = 0.923
1083
+ Mean = 0.916
1084
+ 7
1085
+ Incorrect
1086
+ 7
1087
+ Incorrect
1088
+ 7
1089
+ Incorrect
1090
+ ....
1091
+ Mean = 0.84
1092
+ Mean = 0.757
1093
+ Mean =0.818
1094
+ 9
1095
+ 6
1096
+ 6
1097
+ 5
1098
+ 5
1099
+ 5
1100
+ p(c)
1101
+ / p(c)
1102
+ 3
1103
+ 3
1104
+ 3
1105
+ 2
1106
+ 2
1107
+ 2
1108
+ 1
1109
+ 1
1110
+ 1
1111
+ 0
1112
+ 0
1113
+ 0
1114
+ 0.0
1115
+ 0.2
1116
+ 0.4
1117
+ 0.6
1118
+ 0.8
1119
+ 1.0
1120
+ 0.0
1121
+ 0.2
1122
+ 0.4
1123
+ 0.6
1124
+ 0.8
1125
+ 1.0
1126
+ 0.0
1127
+ 0.2
1128
+ 0.4
1129
+ 0.6
1130
+ 0.8
1131
+ 1.0
1132
+ Confidencec
1133
+ Confidencec
1134
+ Confidence cover, we conducted a similar analysis of both of these datasets, as the one
1135
+ done for the internal datasets.
1136
+ Table 5: Model performance evaluation on the PAIP test set. The binary accuracy is
1137
+ calculated as NNeo vs all. Accuracy is represented as (ACC). In bold are the best results
1138
+ per column.
1139
+ Method
1140
+ ACC
1141
+ Binary ACC
1142
+ Sensitivity
1143
+ iMIL4Path
1144
+ 99.00% ± 1.95
1145
+ 100.00% ± 0.00
1146
+ 1.000 ± 0.000
1147
+ Ours (CRS4K)
1148
+ 69.00% ± 9.06
1149
+ 100.00% ± 0.00
1150
+ 1.000 ± 0.000
1151
+ Ours (CRS10K) wo/ Agg
1152
+ 100.00% ± 0.00
1153
+ 100.00% ± 0.00
1154
+ 1.000 ± 0.000
1155
+ Ours (CRS10K) w/ Agg
1156
+ 52.00 ± 9.79
1157
+ 100.00% ± 0.00
1158
+ 1.000 ± 0.000
1159
+ From the two datasets, PAIP is arguably the closest to CRS10K. It con-
1160
+ tains similar tissue, despite its colour differences. The performances of the
1161
+ proposed approaches were expected to match the performance of iMIL4Path
1162
+ in this dataset. However, it did not happen for the version trained on the
1163
+ CRS4K dataset, as seen in Table 5. A viable explanation concerns potential
1164
+ overfitting to the training data potentiated by an increase in the number of
1165
+ epochs of fully and weakly supervised training, a slight decrease in the tile
1166
+ variability in the latter approach, and a smaller number of samples when
1167
+ compared to the version trained on CRS10K. This version, trained on the
1168
+ larger set, mitigates the problems of the other method due to a significant
1169
+ increase in the training samples. Moreover, it is worth noting that in all
1170
+ three approaches, the errors corresponded only to a divergence between low
1171
+ and high-grade cases, with no non-neoplastic cases being classified as high-
1172
+ grade or vice-versa. As in previous sets, the version trained on the CRS10K
1173
+ dataset outperforms the remaining approaches. Using aggregation in this
1174
+ dataset leads to a discriminative power to distinguish between high- and
1175
+ low-grade lesions that is close to random.
1176
+ In two of the three approaches, the number of incorrect samples is one
1177
+ or zero, as such, there is no density estimation for wrong samples in their
1178
+ confidence plot as seen in Figure 10. Yet, it is visible the shift towards higher
1179
+ values of confidence in the proposed approach trained on the CRS10K when
1180
+ compared to the method of iMIL4Path.
1181
+ The version trained on CRS4K
1182
+ shows very little separability between the confidence of correct and incorrect
1183
+ predictions.
1184
+ The TCGA dataset has established itself as the most challenging for the
1185
+ proposed approaches. Besides the expected differences in colour and other
1186
+ 24
1187
+
1188
+ Figure 10: Kernel density estimation of the confidences of correct and incorrect predictions
1189
+ performed on the three-class classification problem by three distinct models on the PAIP
1190
+ dataset. The plots represent, from left to right, the proposed method trained on CRS10K,
1191
+ the proposed method trained on CRS4K and iMIL4Path.
1192
+ Table 6: Model performance evaluation on the TCGA test set. The binary accuracy is
1193
+ calculated as NNeo vs all. Accuracy is represented as (ACC). In bold are the best results
1194
+ per column.
1195
+ Method
1196
+ ACC
1197
+ Binary ACC
1198
+ Sensitivity
1199
+ iMIL4Path
1200
+ 71.55% ± 5.80
1201
+ 80.60% ± 5.05
1202
+ 0.805 ± 0.051
1203
+ Ours (CRS4K) wo/ Agg
1204
+ 70.69% ± 5.86
1205
+ 98.71% ± 1.45
1206
+ 0.991 ± 0.012
1207
+ Ours (CRS10K) wo/ Agg
1208
+ 84.91% ± 4.61
1209
+ 99.13% ± 1.19
1210
+ 0.996 ± 0.008
1211
+ Ours (CRS10K) w/ Agg
1212
+ 69.83% ± 5.91
1213
+ 97.41% ± 2.04
1214
+ 0.983 ± 0.017
1215
+ elements, this dataset is mostly composed of resection samples, which are not
1216
+ present in the training dataset. As such, this presents itself as an excellent
1217
+ dataset to assess the capability of the model to handle these different types of
1218
+ samples. Both iMIL4Path and the proposed method trained on CRS4K have
1219
+ shown substantial problems in correctly classifying TCGA slides, as shown
1220
+ in Table 6. Despite having a lower performance on the general accuracy,
1221
+ the binary accuracy shows that our proposed method trained on CRS4K has
1222
+ much lower misclassification errors regarding the classification of high-grade
1223
+ samples as normal, demonstrating higher robustness of the new training ap-
1224
+ proach against errors with a gap of two classes. As with other datasets, the
1225
+ proposed approach trained on CRS10K shows better results, this time by a
1226
+ 25
1227
+
1228
+ PAIP -Ours(CRS10K)
1229
+ PAIP - Ours(CRS4K)
1230
+ PAIP - iMIL4Path
1231
+ 8
1232
+ 8
1233
+ 8
1234
+ Correct
1235
+ Correct
1236
+ Correct
1237
+ Mean = 0.99
1238
+ Mean = 0.843
1239
+ Mean = 0.964
1240
+ 7
1241
+ 7
1242
+ Incorrect
1243
+ 7
1244
+ Mean =0.835
1245
+ 9
1246
+ 6
1247
+ 6
1248
+ 5
1249
+ 5
1250
+ 5
1251
+ / p(c)
1252
+ p(c)
1253
+ 3
1254
+ 3
1255
+ 3
1256
+ 2
1257
+ 2
1258
+ 2
1259
+ 1
1260
+ 1
1261
+ 1
1262
+ 0
1263
+ :
1264
+ 0
1265
+ 0
1266
+ 0.0
1267
+ 0.2
1268
+ 0.4
1269
+ 0.6
1270
+ 0.8
1271
+ 1.0
1272
+ 0.0
1273
+ 0.2
1274
+ 0.4
1275
+ 0.6
1276
+ 0.8
1277
+ 1.0
1278
+ 0.0
1279
+ 0.2
1280
+ 0.4
1281
+ 0.6
1282
+ 0.8
1283
+ 1.0
1284
+ Confidencec
1285
+ Confidencec
1286
+ Confidence csignificant margin with no overlapping between the confidence intervals.
1287
+ Figure 11: Kernel density estimation of the confidences of correct and incorrect predictions
1288
+ performed on the three-class classification problem by three distinct models on the TCGA
1289
+ dataset. The plots represent, from left to right, the proposed method trained on CRS10K,
1290
+ the proposed method trained on CRS4K and iMIL4Path.
1291
+ Inspecting the predictions’ confidence for the three models indicates a be-
1292
+ haviour in line with the accuracy-based performance (Figure 11). Moreover,
1293
+ a confidence shift of wrong predictions’ confidence towards smaller values is
1294
+ clearly visible in the plot corresponding to the model trained on CRS10K.
1295
+ The shown gap of 0.2 between the confidence of correct and wrong predic-
1296
+ tions, indicates that it is possible to quantify the uncertainty of the model
1297
+ and avoid the majority of the wrong predictions. In other words, when the
1298
+ uncertainty is above a learnt threshold, then the model refuses to make any
1299
+ prediction. It is extremely useful in models designed as a second opinion
1300
+ system.
1301
+ 3.4. Prototype usability in clinical practice
1302
+ As it is currently designed, the algorithm works preferentially as a “second
1303
+ opinion”, allowing the assessment of difficult and troublesome cases, without
1304
+ the immediate need for the intervention of a second pathologist. Due to its
1305
+ “user-friendly” nature and very practical interface, the cases can be easily
1306
+ introduced into the system and results are rapidly shown and easily accessed.
1307
+ Also, by not only providing results but presenting visualisation maps (cor-
1308
+ responding to each diagnostic class), the pathologist is able to compare his
1309
+ 26
1310
+
1311
+ TCGA-Ours(CRS10K)
1312
+ TCGA-Ours(CRS4K)
1313
+ TCGA- iMIL4Path
1314
+ 8
1315
+ 8
1316
+ 8
1317
+ Correct
1318
+ Correct
1319
+ Correct
1320
+ Mean=0.965
1321
+ Mean=0.956
1322
+ .
1323
+ Mean=0.932
1324
+ 7
1325
+ Incorrect
1326
+ 7
1327
+ Incorrect
1328
+ 7
1329
+ Incorrect
1330
+ Mean = 0.764
1331
+ Mean = 0.876
1332
+ Mean = 0.815
1333
+ 6
1334
+ 6
1335
+ 6
1336
+ 5
1337
+ 5
1338
+ 5
1339
+ p(c)
1340
+ p(c)
1341
+ 3
1342
+ 3
1343
+ 3
1344
+ 2
1345
+ 2
1346
+ 2
1347
+ 1
1348
+ 1
1349
+ 1
1350
+ 0
1351
+ 0
1352
+ 0
1353
+ 0.0
1354
+ 0.2
1355
+ 0.4
1356
+ 0.6
1357
+ 0.8
1358
+ 1.0
1359
+ 0.0
1360
+ 0.2
1361
+ 0.4
1362
+ 0.6
1363
+ 0.8
1364
+ 1.0
1365
+ 0.0
1366
+ 0.2
1367
+ 0.4
1368
+ 0.6
1369
+ 0.8
1370
+ 1.0
1371
+ Confidencec
1372
+ Confidencec
1373
+ Confidencecown remarks to those of the algorithm itself, towards a future “AI-assisted
1374
+ diagnosis”. Another relevant aspect is the fact that the prototype allows for
1375
+ user feedback (agreeing or not with the model’s proposed result), which can
1376
+ be further integrated into further updates of the software. Also interesting,
1377
+ is the possibility of using the prototype as a triage system on a pathologist’s
1378
+ daily workflow (by running front, before the pathologist checks the cases).
1379
+ Signalling the cases that would need to be more urgently observed (namely
1380
+ high-risk lesions) would allow the pathologists to prioritise their workflow.
1381
+ Further, by providing a previous assessment of the cases, it would also con-
1382
+ tribute to enhancing the pathologists’ efficiency. Although it is possible to
1383
+ use the model as it is upfront, it would classify some samples incorrectly
1384
+ (since it was not trained on the full spectrum of colorectal pathology). As
1385
+ such, the uncertainty quantification based on the provided confidence given
1386
+ in the user interface could also be extremely useful. Presently, there is no rec-
1387
+ ommendation for dual independent diagnosis of colorectal biopsies (contrary
1388
+ to gastric biopsies, where, in cases in which surgical treatment is considered,
1389
+ it is recommended to obtain a pre-treatment diagnostic second opinion [42]),
1390
+ but, in case that in the future this also becomes a requirement, a tool such as
1391
+ CADPath.AI prototype could assist in this task. This has increased impor-
1392
+ tance due to the worldwide shortage of pathologists and so, such CAD tools
1393
+ can really make a difference in patient care (in similarity, for example, with
1394
+ Google Health’s research, using deep learning to screen diabetic retinopa-
1395
+ thy in low/middle-income countries, in which the system showed real-time
1396
+ retinopathy detection capability similar to retina specialists, alleviating the
1397
+ significant manpower constrictions in this setting [43]). Lastly, we also an-
1398
+ ticipate that this prototype, and similar tools, can be used in a teaching
1399
+ environment since its easy use and explainable capability (through the visu-
1400
+ alisation maps) allows for easy understanding of the given classifications and
1401
+ having a web-based interface allows for easy sharing.
1402
+ 3.5. Future work
1403
+ The proposed algorithm still has potential for improvement.
1404
+ We aim
1405
+ to include the recognition of serrated lesions, to distinguish normal mucosa
1406
+ from significant inflammatory alterations/diseases, to stratify high-risk le-
1407
+ sions into high-grade dysplasia and invasive carcinomas and to identify other
1408
+ neoplasia subtypes. Further, we would like to leverage the model to be able
1409
+ to evaluate also surgical specimens. Another relevant step will be the merge
1410
+ of our dataset and external ones for training, besides only testing it on ex-
1411
+ 27
1412
+
1413
+ ternal samples. This will enhance its generalisation capabilities and provide
1414
+ a more robust system. Lastly, we intend to measure the “user experience”
1415
+ and feedback from the pathologists, by its gradual implementation in general
1416
+ laboratory routine work.
1417
+ The following goals comprise a more extensive evaluation of the model
1418
+ across more scanner brands and labs.
1419
+ We also want to promote certain
1420
+ behaviours that would allow for more direct and integrated uncertainty esti-
1421
+ mation. We have also been looking towards aggregation methods, but, since
1422
+ in the majority of them there is an increased risk of false negatives, we have
1423
+ work to do in that research direction.
1424
+ 4. Discussion
1425
+ In this document, we have redesigned the previous methodology on MIL
1426
+ for colorectal cancer diagnosis. First, we extended and leveraged the mixed
1427
+ supervision approach to design a sampling strategy, which utilises the knowl-
1428
+ edge from the full supervision training as a proxy to tile utility. Secondly, we
1429
+ studied the confidence that the model shows in its predictions when they are
1430
+ correct and when they are incorrect. Additionally, this confidence is shown to
1431
+ be a potential resource to quantify uncertainty and avoid wrong predictions
1432
+ on low-certainty scenarios. This is entirely integrated within a web-based
1433
+ prototype to aid pathologists in their routine work.
1434
+ The proposed methodology was evaluated on several datasets, including
1435
+ two external sets. Through this evaluation, it was possible to infer that the
1436
+ performance of the proposed methodology benefits from a larger dataset and
1437
+ surpasses the performance of previous state-of-the-art models. As such, and
1438
+ given the excelling results that originated from the increase in the dataset,
1439
+ we are also publicly releasing the majority of the CRS10K dataset, one of
1440
+ the largest publicly available colorectal datasets composed of H&E images in
1441
+ the literature, including the test set for the benchmark of distinct approaches
1442
+ across the literature.
1443
+ Finally, we have clearly defined a set of potential future directions to be
1444
+ explored, either for better model design, the development of useful prototypes
1445
+ or even the integration of uncertainty in the predictions.
1446
+ References
1447
+ [1] International Agency for Research on Cancer (IARC), Global cancer
1448
+ observatory, https://gco.iarc.fr/ (2022).
1449
+ 28
1450
+
1451
+ [2] H. Brody, Colorectal cancer, Nature 521 (2015) S1.
1452
+ doi:10.1038/
1453
+ 521S1a.
1454
+ [3] D. Holmes, A disease of growth, Nature 521 (2015) S2–S3. doi:10.
1455
+ 1038/521S2a.
1456
+ [4] Digestive Cancers Europe (DiCE), Colorectal screening in europe,
1457
+ https://bit.ly/3rFxSEL.
1458
+ [5] C. Hassan, G. Antonelli, J.-M. Dumonceau, J. Regula, M. Bretthauer,
1459
+ S. Chaussade, E. Dekker, M. Ferlitsch, A. Gimeno-Garcia, R. Jover,
1460
+ M. Kalager, M. Pellis´e, C. Pox, L. Ricciardiello, M. Rutter, L. M.
1461
+ Helsingen, A. Bleijenberg, C. Senore, J. E. van Hooft, M. Dinis-Ribeiro,
1462
+ E. Quintero, Post-polypectomy colonoscopy surveillance: European so-
1463
+ ciety of gastrointestinal endoscopy guideline - update 2020, Endoscopy
1464
+ 52 (8) (2020) 687–700. doi:10.1055/a-1185-3109.
1465
+ [6] D. Mahajan, E. Downs-Kelly, X. Liu, R. Pai, D. Patil, L. Rybicki,
1466
+ A. Bennett, T. Plesec, O. Cummings, D. Rex, J. Goldblum, Repro-
1467
+ ducibility of the villous component and high-grade dysplasia in col-
1468
+ orectal adenomas <1 cm:
1469
+ Implications for endoscopic surveillance,
1470
+ American Journal of Surgical Pathology 37 (3) (2013) 427–433. doi:
1471
+ 10.1097/PAS.0b013e31826cf50f.
1472
+ [7] S. Gupta, D. Lieberman, J. C. Anderson, C. A. Burke, J. A. Dominitz,
1473
+ T. Kaltenbach, D. J. Robertson, A. Shaukat, S. Syngal, D. K. Rex,
1474
+ Recommendations for follow-up after colonoscopy and polypectomy: A
1475
+ consensus update by the us multi-society task force on colorectal cancer,
1476
+ Gastrointestinal Endoscopy (2020). doi:10.1016/j.gie.2020.01.014.
1477
+ [8] C. Eloy, J. Vale, M. Curado, A. Pol´onia, S. Campelos, A. Caramelo,
1478
+ R. Sousa, M. Sobrinho-Sim˜oes, Digital pathology workflow imple-
1479
+ mentation at ipatimup, Diagnostics 11 (11) (2021).
1480
+ doi:10.3390/
1481
+ diagnostics11112111.
1482
+ URL https://www.mdpi.com/2075-4418/11/11/2111
1483
+ [9] F. Fraggetta, A. Caputo, R. Guglielmino, M. G. Pellegrino, G. Runza,
1484
+ V. L’Imperio, A survival guide for the rapid transition to a fully digital
1485
+ workflow: The “caltagirone example”, Diagnostics 11 (10) (2021). doi:
1486
+ 29
1487
+
1488
+ 10.3390/diagnostics11101916.
1489
+ URL https://www.mdpi.com/2075-4418/11/10/1916
1490
+ [10] D. Montezuma, A. Monteiro, J. Fraga, L. Ribeiro, S. Gon¸calves,
1491
+ A. Tavares, J. Monteiro, I. Macedo-Pinto, Digital pathology implemen-
1492
+ tation in private practice: Specific challenges and opportunities, Diag-
1493
+ nostics 12 (2) (2022) 529.
1494
+ [11] A. Madabhushi, G. Lee, Image analysis and machine learning in digital
1495
+ pathology: challenges and opportunities, Medical Image Analysis 33
1496
+ (2016) 170–175. doi:10.1016/j.media.2016.06.037.
1497
+ [12] E. A. Rakha, M. Toss, S. Shiino, P. Gamble, R. Jaroensri, C. H. Mermel,
1498
+ P.-H. C. Chen, Current and future applications of artificial intelligence in
1499
+ pathology: a clinical perspective, Journal of Clinical Pathology (2020).
1500
+ doi:10.1136/jclinpath-2020-206908.
1501
+ [13] M. Veta, P. J. van Diest, S. M. Willems, H. Wang, A. Madabhushi,
1502
+ A. Cruz-Roa, F. Gonzalez, A. B. Larsen, J. S. Vestergaard, A. B. Dahl,
1503
+ D. C. Cire¸san, J. Schmidhuber, A. Giusti, L. M. Gambardella, F. B.
1504
+ Tek, T. Walter, C.-W. Wang, S. Kondo, B. J. Matuszewski, F. Precioso,
1505
+ V. Snell, J. Kittler, T. E. de Campos, A. M. Khan, N. M. Rajpoot,
1506
+ E. Arkoumani, M. M. Lacle, M. A. Viergever, J. P. Pluim, Assessment of
1507
+ algorithms for mitosis detection in breast cancer histopathology images,
1508
+ Medical Image Analysis 20 (1) (2015) 237–248. doi:10.1016/j.media.
1509
+ 2014.11.010.
1510
+ [14] G. Campanella, M. G. Hanna, L. Geneslaw, A. Miraflor, V. Werneck
1511
+ Krauss Silva, K. J. Busam, E. Brogi, V. E. Reuter, D. S. Klimstra, T. J.
1512
+ Fuchs, Clinical-grade computational pathology using weakly supervised
1513
+ deep learning on whole slide images, Nat. Med. 25 (8) (2019) 1301–1309.
1514
+ doi:10.1038/s41591-019-0508-1.
1515
+ [15] S. P. Oliveira, J. Ribeiro Pinto, T. Gon¸calves, R. Canas-Marques, M.-
1516
+ J. Cardoso, H. P. Oliveira, J. S. Cardoso, Weakly-supervised classifi-
1517
+ cation of HER2 expression in breast cancer haematoxylin and eosin
1518
+ stained slides, Applied Sciences 10 (14) (2020) 4728.
1519
+ doi:10.3390/
1520
+ app10144728.
1521
+ 30
1522
+
1523
+ [16] T. Albuquerque, A. Moreira, J. S. Cardoso, Deep ordinal focus assess-
1524
+ ment for whole slide images, in: Proceedings of the IEEE/CVF Inter-
1525
+ national Conference on Computer Vision, 2021, pp. 657–663.
1526
+ [17] S. P. Oliveira, P. C. Neto, J. Fraga, D. Montezuma, A. Monteiro,
1527
+ J. Monteiro, L. Ribeiro, S. Gon¸calves, I. M. Pinto, J. S. Cardoso, CAD
1528
+ systems for colorectal cancer from WSI are still not ready for clini-
1529
+ cal acceptance, Scientific Reports 11 (1) (2021) 14358. doi:10.1038/
1530
+ s41598-021-93746-z.
1531
+ [18] N. Thakur, H. Yoon, Y. Chong, Current trends of artificial intelligence
1532
+ for colorectal cancer pathology image analysis: a systematic review,
1533
+ Cancers 12 (7) (2020). doi:10.3390/cancers12071884.
1534
+ [19] Y. Wang, X. He, H. Nie, J. Zhou, P. Cao, C. Ou, Application of artificial
1535
+ intelligence to the diagnosis and therapy of colorectal cancer, Am. J.
1536
+ Cancer Res. 10 (11) (2020) 3575–3598.
1537
+ [20] A. Davri, E. Birbas, T. Kanavos, G. Ntritsos, N. Giannakeas, A. T.
1538
+ Tzallas, A. Batistatou, Deep learning on histopathological images for
1539
+ colorectal cancer diagnosis: A systematic review, Diagnostics 12 (4)
1540
+ (2022) 837.
1541
+ [21] O. Iizuka, F. Kanavati, K. Kato, M. Rambeau, K. Arihiro, M. Tsuneki,
1542
+ Deep learning models for histopathological classification of gastric and
1543
+ colonic epithelial tumours, Scientific Rep. 10 (2020).
1544
+ doi:10.1038/
1545
+ s41598-020-58467-9.
1546
+ [22] H. Tizhoosh, L. Pantanowitz, Artificial intelligence and digital pathol-
1547
+ ogy:
1548
+ challenges and opportunities, J. Pathol. Inform 9 (1) (2018).
1549
+ doi:10.4103/jpi.jpi\_53\_18.
1550
+ [23] J. W. Wei, A. A. Suriawinata, L. J. Vaickus, B. Ren, X. Liu, M. Lisovsky,
1551
+ N. Tomita, B. Abdollahi, A. S. Kim, D. C. Snover, J. A. Baron, E. L.
1552
+ Barry, S. Hassanpour, Evaluation of a deep neural network for auto-
1553
+ mated classification of colorectal polyps on histopathologic slides, JAMA
1554
+ Network Open 3 (4) (2020).
1555
+ doi:10.1001/jamanetworkopen.2020.
1556
+ 3398.
1557
+ [24] Z. Song, C. Yu, S. Zou, W. Wang, Y. Huang, X. Ding, J. Liu, L. Shao,
1558
+ J. Yuan, X. Gou, W. Jin, Z. Wang, X. Chen, H. Chen, C. Liu, G. Xu,
1559
+ 31
1560
+
1561
+ Z. Sun, C. Ku, Y. Zhang, X. Dong, S. Wang, W. Xu, N. Lv, H. Shi,
1562
+ Automatic deep learning-based colorectal adenoma detection system and
1563
+ its similarities with pathologists, BMJ Open 10 (9) (2020). doi:10.
1564
+ 1136/bmjopen-2019-036423.
1565
+ [25] L. Xu, B. Walker, P.-I. Liang, Y. Tong, C. Xu, Y. Su, A. Karsan, Col-
1566
+ orectal cancer detection based on deep learning, J. Pathol. Inf. 11 (1)
1567
+ (2020). doi:10.4103/jpi.jpi\_68\_19.
1568
+ [26] K.-S. Wang, G. Yu, C. Xu, X.-H. Meng, J. Zhou, C. Zheng, Z. Deng,
1569
+ L. Shang, R. Liu, S. Su, et al., Accurate diagnosis of colorectal can-
1570
+ cer based on histopathology images using artificial intelligence, BMC
1571
+ medicine 19 (1) (2021) 1–12. doi:10.1186/s12916-021-01942-5.
1572
+ [27] G. Yu, K. Sun, C. Xu, X.-H. Shi, C. Wu, T. Xie, R.-Q. Meng, X.-H.
1573
+ Meng, K.-S. Wang, H.-M. Xiao, et al., Accurate recognition of colorec-
1574
+ tal cancer with semi-supervised deep learning on pathological images,
1575
+ Nature communications 12 (1) (2021) 1–13.
1576
+ [28] N. Marini, S. Ot´alora, F. Ciompi, G. Silvello, S. Marchesin, S. Vatrano,
1577
+ G. Buttafuoco, M. Atzori, H. M¨uller, Multi-scale task multiple instance
1578
+ learning for the classification of digital pathology images with global
1579
+ annotations, in: M. Atzori, N. Burlutskiy, F. Ciompi, Z. Li, F. Minhas,
1580
+ H. M¨uller, T. Peng, N. Rajpoot, B. Torben-Nielsen, J. van der Laak,
1581
+ M. Veta, Y. Yuan, I. Zlobec (Eds.), Proceedings of the MICCAI Work-
1582
+ shop on Computational Pathology, Vol. 156 of Proceedings of Machine
1583
+ Learning Research, PMLR, 2021, pp. 170–181.
1584
+ [29] C. Ho, Z. Zhao, X. F. Chen, J. Sauer, S. A. Saraf, R. Jialdasani,
1585
+ K. Taghipour, A. Sathe, L.-Y. Khor, K.-H. Lim, et al., A promising
1586
+ deep learning-assistive algorithm for histopathological screening of col-
1587
+ orectal cancer, Scientific Reports 12 (1) (2022) 1–9.
1588
+ [30] T. Albuquerque, A. Moreira, B. Barros, D. Montezuma, S. P. Oliveira,
1589
+ P. C. Neto, J. Monteiro, L. Ribeiro, S. Gon¸calves, A. Monteiro, I. M.
1590
+ Pinto, J. S. Cardoso, Quality control in digital pathology: Automatic
1591
+ fragment detection and counting, in: 2022 44th Annual International
1592
+ Conference of the IEEE Engineering in Medicine & Biology Society
1593
+ (EMBC), 2022, pp. 588–593. doi:10.1109/EMBC48229.2022.9871208.
1594
+ 32
1595
+
1596
+ [31] P. C. Neto, S. P. Oliveira, D. Montezuma, J. Fraga, A. Monteiro,
1597
+ L. Ribeiro, S. Gon¸calves, I. M. Pinto, J. S. Cardoso, imil4path: A
1598
+ semi-supervised interpretable approach for colorectal whole-slide images,
1599
+ Cancers 14 (10) (2022) 2489.
1600
+ [32] Pathcore, Sedeen viewer, https://pathcore.com/sedeen (2020).
1601
+ [33] P. A. Platform, Paip, http://www.wisepaip.org, last accessed on
1602
+ 20/01/22 (2020).
1603
+ [34] K. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel,
1604
+ S. Moore, S. Phillips, D. Maffitt, M. Pringle, L. Tarbox, F. Prior, The
1605
+ cancer imaging archive (TCIA): Maintaining and operating a public in-
1606
+ formation repository, Journal of Digital Imaging 26 (2013) 1045–1057.
1607
+ doi:10.1007/s10278-013-9622-7.
1608
+ [35] S. Kirk, Y. Lee, C. A. Sadow, S. Levine, C. Roche, E. Bonaccio, J. Fil-
1609
+ iippini, Radiology data from the cancer genome atlas colon adenocarci-
1610
+ noma [TCGA-COAD] collection. (2016). doi:10.7937/K9/TCIA.2016.
1611
+ HJJHBOXZ.
1612
+ [36] S. Kirk, Y. Lee, C. A. Sadow, S. Levine, Radiology data from the cancer
1613
+ genome atlas rectum adenocarcinoma [TCGA-READ] collection. (2016).
1614
+ doi:10.7937/K9/TCIA.2016.F7PPNPNU.
1615
+ [37] N. Otsu, A threshold selection method from gray-level histograms, IEEE
1616
+ Transactions on Systems, Man, and Cybernetics 9 (1) (1979) 62–66.
1617
+ doi:10.1109/TSMC.1979.4310076.
1618
+ [38] J. Boˇziˇc, D. Tabernik, D. Skoˇcaj, Mixed supervision for surface-defect
1619
+ detection: From weakly to fully supervised learning, Computers in In-
1620
+ dustry 129 (2021) 103459.
1621
+ [39] S. Raschka, Model evaluation, model selection, and algorithm selection
1622
+ in machine learning, arXiv preprint arXiv:1811.12808 (2018).
1623
+ [40] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image
1624
+ recognition, in: Proceedings of the IEEE conference on computer vision
1625
+ and pattern recognition, 2016, pp. 770–778. doi:10.1109/CVPR.2016.
1626
+ 90.
1627
+ 33
1628
+
1629
+ [41] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, in:
1630
+ ICLR (Poster), 2015.
1631
+ [42] W. C. of Tumours Editorial Board, WHO classification of tumours of
1632
+ the digestive system, no. Ed. 5, World Health Organization, 2019.
1633
+ [43] P. Ruamviboonsuk, R. Tiwari, R. Sayres, V. Nganthavee, K. Hemarat,
1634
+ A. Kongprayoon, R. Raman, B. Levinstein, Y. Liu, M. Schaekermann,
1635
+ et al., Real-time diabetic retinopathy screening by deep learning in a
1636
+ multisite national screening programme: a prospective interventional
1637
+ cohort study, The Lancet Digital Health 4 (4) (2022) e235–e244.
1638
+ 34
1639
+
2tE0T4oBgHgl3EQfuwEX/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
3NE0T4oBgHgl3EQfeABh/content/2301.02384v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44edec5b3f481e72d9b56d0fc5b31803c065aaf3faee3765a64d63b089c0879a
3
+ size 347933
3NE0T4oBgHgl3EQfeABh/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14624e64cdd30113541af8f70d07edd0a0dcaf0abbd95296d05afe130a9907ef
3
+ size 2293805
3NE0T4oBgHgl3EQfeABh/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0a5d69744d79c569f32eb517c2aa5a10f794e2ad3cb7bc38d2acf6ab3bbd618
3
+ size 77683
3tFQT4oBgHgl3EQfHDWI/content/2301.13247v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53cc2003fd204352489201d57931cf871fa65b07c427461100a5b6593e39fbdc
3
+ size 2425722
3tFQT4oBgHgl3EQfHDWI/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9966a9144a046a56e8921f8b39f978c527a73306f6a7954da3e990304edc070f
3
+ size 5832749
3tFQT4oBgHgl3EQfHDWI/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76a088ee89284b4c4181a14d348a3ea15bd0f08245dd35547f80f79082762b1b
3
+ size 191278
4dAyT4oBgHgl3EQfpPgc/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a98d90550a166ad0ed06d6d8060718d7c46b7fccf6c97867ce92a56d57487482
3
+ size 5308461
4dE0T4oBgHgl3EQfvQGV/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f730d428de41eded28e91ac7c54e034fa2a3ff133a9fec074f17dbb59a882f4
3
+ size 458797
4dE0T4oBgHgl3EQfvQGV/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb0ef2120cc7ce0b2d91dad1a8bec2a41a884c9775898dd663aa34929dcafc92
3
+ size 17939
7NE0T4oBgHgl3EQffQAA/content/tmp_files/2301.02400v1.pdf.txt ADDED
@@ -0,0 +1,2236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02400v1 [cs.IT] 6 Jan 2023
2
+ Springer Nature 2021 LATEX template
3
+ A Direct Construction of Optimal 2D-ZCACS
4
+ with Flexible Array Size and Large Set Size
5
+ Gobinda Ghosh1, Sudhan Majhi2* and Shubhabrata Paul1
6
+ 1Mathematics, IIT Patna, Bihta, Patna, 801103, Bihar, India.
7
+ 2*Electrical Communication Engineering, IISc Bangalore, CV
8
+ Raman Rd, Bengaluru, 560012, Karnataka, India.
9
+ *Corresponding author(s). E-mail(s): [email protected];
10
+ Contributing authors: gobinda [email protected];
11
12
+ Abstract
13
+ In this paper, we propose a direct construction of optimal two-
14
+ dimensional
15
+ Z-complementary
16
+ array
17
+ code
18
+ sets
19
+ (2D-ZCACS)
20
+ using
21
+ multivariable functions (MVFs). In contrast to earlier works, the
22
+ proposed construction allows for a flexible array size and a large
23
+ set size. Additionally, the proposed design can be transformed into
24
+ a one-dimensional Z-complementary code set (1D-ZCCS). Many of
25
+ the 1D-ZCCS described in the literature appeared to be special
26
+ cases of this proposed construction. At last, we compare our work
27
+ with the current state of the art and then draw our conclusions.
28
+ Keywords: Two dimensional complete complementary codes (2D-CCC),
29
+ multivariable function (MVF), two dimensional Z- complementary array code
30
+ set (2D-ZCACS).
31
+ 1 Introduction
32
+ For an asynchronous two dimensional multi-carrier code-division multiple
33
+ access (2D-MC-CDMA) system, the ideal 2D correlation properties of two
34
+ dimensional complete complementary codes (2D-CCCs)[1] can be properly uti-
35
+ lized to obtain interference-free performance [2]. Similar to one dimensional
36
+ complete complementary code (1D-CCC)[3–5], one of the most significant
37
+ 1
38
+
39
+ Springer Nature 2021 LATEX template
40
+ 2
41
+ A Direct Construction of Optimal 2D-ZCACS
42
+ drawbacks of 2D-CCC is that the set size is restricted [6]. Motivated by
43
+ the scarcity of 2D-CCC with flexible set sizes, Zeng et al. proposed 2D Z-
44
+ complementary array code sets (2D-ZCACSs) in [6, 7]. For a 2D − (K, Z1 ×
45
+ Z2)−ZCACSL1×L2
46
+ M
47
+ , K, Z1×Z2, L1×L2 and M denote the set size, two dimen-
48
+ sional zero-correlation zone (2D-ZCZ) width, array size and the number of
49
+ constituent arrays, respectively. In [6, 7], authors obtained ternary 2D-ZCACSs
50
+ by inserting some zeros into the existing binary 2D-ZCACSs. In 2021, Pai
51
+ et al. presented a new construction method of 2D binary Z-complementary
52
+ array pairs (2D-ZCAP) [8]. Recently, Das et al. in [9] proposed a construction
53
+ of 2D-ZCACS by using Z-paraunitary (ZPU) matrices. All these construc-
54
+ tions of 2D-ZCACS depend heavily on initial sequences and matrices which
55
+ increase hardware storage. For the first time in the literature, Roy et al. in
56
+ [10] proposed a direct construction of 2D-ZCACS based on MVF. The array
57
+ size of the proposed 2D-ZCACS is of the form L1 × L2, where L1 = 2m,
58
+ L2 = 2pm1
59
+ 1 pm2
60
+ 2
61
+ . . . pmk
62
+ k , m ≥ 1, mi ≥ 2 and the set size is of the form 2p2
63
+ 1p2
64
+ 2 . . . p2
65
+ k
66
+ where pi is a prime number. Therefore the array size and the set size is
67
+ restricted to some even numbers.
68
+ Existing array and set size limitations through direct construction in the
69
+ literature motivates us to search multivariable function (MVF) for more flex-
70
+ ible array and set sizes. Our proposed construction provides 2D-ZCACS with
71
+ parameter 2D − (R1R2M1M2, N1 × N2) − ZCACSR1N1×R2N2
72
+ M1M2
73
+ where M1 =
74
+ �a
75
+ i=1 pki
76
+ i , M2 = �b
77
+ j=1 qtj
78
+ j , pi is any prime or 1, qj is prime, a, b, ki, tj ≥ 1, R1
79
+ and R2 are positive integer, such that R1 ≥ 1 and R2 ≥ 2, N1 = �a
80
+ i=1 pmi
81
+ i ,
82
+ N2 = �b
83
+ j=1 qnj
84
+ j , mi, nj ≥ 1. The set size in our proposed 2D-ZCACS construc-
85
+ tion, R1R2M1M2, is more adaptable than the set size of 2D-ZCACS given in
86
+ [10]. Unlike [10], the proposed 2D-ZCACS can be reduced to 1D-ZCCS [11–18]
87
+ also. As a result, many existing optimal 1D-ZCCSs have become special cases
88
+ of the proposed construction [16–18]. The proposed construction also derived a
89
+ new set of optimal 1D-ZCCS that had not previously been presented by direct
90
+ method.
91
+ The rest of the paper is organized as follows. Section 2 discusses construc-
92
+ tion related definitions and lemmas. Section 3 contains the construction of
93
+ 2D-ZCACS and the comparison with the existing state-of-the-art. Finally, in
94
+ Section 4, the conclusions are drawn.
95
+ 2 Notations and definitions
96
+ The following notations will be followed throughout this paper: ωn
97
+ =
98
+ exp
99
+
100
+ 2π√−1/n
101
+
102
+ , An = {0, 1, . . ., n− 1} ⊂ Z, where n is a positive integer and
103
+ Z is the ring of integer.
104
+ 2.1 Two Dimensional Array
105
+ Definition 1 ([9]) Let A =
106
+
107
+ ag,i
108
+
109
+ and B =
110
+
111
+ bg,i
112
+
113
+ be complex-valued arrays of size
114
+ l1 × l2 where 0 ≤ g < l1, 0 ≤ i < l2. The two dimensional aperiodic cross correlation
115
+
116
+ Springer Nature 2021 LATEX template
117
+ A Direct Construction of Optimal 2D-ZCACS
118
+ 3
119
+ function (2D-ACCF) of arrays A and B at shift (τ1, τ2) is defined as
120
+ C (A, B) (τ1, τ2) =
121
+
122
+
123
+
124
+
125
+
126
+
127
+
128
+
129
+
130
+
131
+
132
+
133
+
134
+
135
+
136
+
137
+
138
+
139
+
140
+
141
+
142
+
143
+
144
+
145
+
146
+ �l1−1−τ1
147
+ g=0
148
+ �l2−1−τ2
149
+ i=0
150
+ ag,ib∗
151
+ g+τ1,i+τ2, if
152
+ 0 ≤ τ1 < l1,
153
+ 0 ≤ τ2 < l2;
154
+ �l1−1−τ1
155
+ g=0
156
+ �l2−1+τ2
157
+ i=0
158
+ ag,i−τ2b∗
159
+ g+τ1,i, if
160
+ 0 ≤ τ1 < l1,
161
+ −l2 < τ2 < 0;
162
+ �l1−1+τ1
163
+ g=0
164
+ �l2−1−τ2
165
+ i=0
166
+ ag−τ1,ib∗
167
+ g,i+τ2, if −l1 < τ1 < 0,
168
+ 0 ≤ τ2 < l2;
169
+ �l1−1+τ1
170
+ g=0
171
+ �l2−1+τ2
172
+ i=0
173
+ ag−τ1,i−τ2b∗
174
+ g,i, if −l1 < τ1 < 0,
175
+ −l2 < τ2 < 0.
176
+ Here, (.)∗ denotes the complex conjugate. If A = B, then C (A, B) (τ1, τ2)
177
+ is called the two dimensional aperiodic auto correlation function (2D-AACF)
178
+ of A and referred to as C (A) (τ1, τ2).
179
+ When l1 = 1, the complex-valued arrays A and B are reduced to one
180
+ dimensional complex-valued sequences A = (aj)l2−1
181
+ j=0 and B = (bj)l2−1
182
+ j=0 with
183
+ the corresponding one dimensional aperiodic cross correlation function (1D-
184
+ ACCF) given by
185
+ C(A, B)(τ2) =
186
+
187
+
188
+
189
+
190
+
191
+
192
+
193
+ �l2−1−τ2
194
+ i=0
195
+ aib∗
196
+ i+τ2,
197
+ 0 ≤ τ2 < l2,
198
+ �l2+τ2−1
199
+ i=0
200
+ ai−τ2b∗
201
+ i ,
202
+ −l2 < τ2 < 0,
203
+ 0,
204
+ otherwise.
205
+ (1)
206
+ Definition 2 [19],[9] For a set of s sets of arrays A =
207
+
208
+ Ak | k = 0, 1, . . . , s − 1},
209
+ each set Ak =
210
+
211
+ Ak
212
+ 0, Ak
213
+ 1, . . . , Ak
214
+ s−1
215
+
216
+ is composed of s arrays of size is l1 × l2. The
217
+ set A is said to be 2D-CCC with parameters (s, s, l1, l2) if the following holds
218
+ C
219
+
220
+ Ak, Ak′�
221
+ (τ1, τ2) =
222
+ s−1
223
+
224
+ i=0
225
+ C
226
+
227
+ Ak
228
+ i , Ak′
229
+ i
230
+
231
+ (τ1, τ2)
232
+ =
233
+
234
+
235
+
236
+
237
+
238
+
239
+
240
+ sl1l2,
241
+ (τ1, τ2) = (0, 0), k = k′;
242
+ 0,
243
+ (τ1, τ2) ̸= (0, 0), k = k′;
244
+ 0,
245
+ k ̸= k′.
246
+ (2)
247
+ Definition 3 [10],[9] Let z1, z2, l1, l2 are positive integers and z1 ≤ l1, z2 ≤ l2.
248
+ Consider the sets of ˆs set of arrays A =
249
+
250
+ Ak | k = 0, 1, . . . , ˆs − 1}, where each set
251
+ Ak =
252
+
253
+ Ak
254
+ 0, . . . , Ak
255
+ s−1
256
+
257
+ is composed of s arrays of size l1 × l2. The set A is said to
258
+
259
+ Springer Nature 2021 LATEX template
260
+ 4
261
+ A Direct Construction of Optimal 2D-ZCACS
262
+ be 2D − (ˆs, z1 × z2) − ZCACSl1×l2
263
+ s
264
+ if the following holds
265
+ C
266
+
267
+ Ak, Ak′�
268
+ (τ1, τ2) =
269
+ s−1
270
+
271
+ i=0
272
+ C
273
+
274
+ Ak
275
+ i , Ak′
276
+ i
277
+
278
+ (τ1, τ2)
279
+ =
280
+
281
+
282
+
283
+
284
+
285
+
286
+
287
+ sl1l2,
288
+ (τ1, τ2) = (0, 0), k = k′;
289
+ 0,
290
+ (τ1, τ2) ̸= (0, 0),|τ1| < z1,|τ2| < z2, k = k′;
291
+ 0,
292
+ |τ1| < z1,|τ2| < z2, k ̸= k′.
293
+ (3)
294
+ When z1 = l1, z2 = l2, ˆs = s the 2D-ZCACS becomes 2D-CCC[19, 20] with
295
+ parameter (s, l1, l2). It should be noted that for l1 = 1, each array Ak
296
+ i becomes
297
+ l2-length sequence. Therefore, 2D-ZCACS can be reduced to a conventional
298
+ 1D-(ˆs, z2) − ZCCSl2
299
+ s [21], [22],[23], where, ˆs, s, z2, l2 represents no. of set, set
300
+ size, ZCZ width and sequence length respectively.
301
+ Lemma 1 [9] For a 2D − (ˆs, z1 × z2) − ZCACSl1×l2
302
+ s
303
+ , the following inequality holds
304
+ ˆsz1z2 ≤ s (l1 + z1 − 1) (l2 + z2 − 1) .
305
+ (4)
306
+ We called 2D-ZCACS is optimal if the following equality holds
307
+ ˆs = s
308
+ � l1
309
+ z1
310
+ �� l2
311
+ z2
312
+
313
+ ,
314
+ (5)
315
+ where ⌊.⌋ denotes the floor function.
316
+ 2.2 Multivariable Function
317
+ Let a, b, mi, and nj be positive integers for 1 ≤ i ≤ a and 1 ≤ j ≤ b. Let pi be
318
+ any prime or 1, and qj be a prime number. A multivariable function (MVF)
319
+ can be defined as
320
+ f : Am1
321
+ p1 × Am2
322
+ p2 × · · · × Ama
323
+ pa × An1
324
+ q1 × An2
325
+ q2 × · · · × Anb
326
+ qb → Z.
327
+ Let c, d ≥ 0 be integers such that 0 ≤ c < r and 0 ≤ d < s where r =
328
+ pm1
329
+ 1 pm2
330
+ 2
331
+ . . . pma
332
+ a
333
+ and s = qn1
334
+ 1 qn2
335
+ 2 . . . qnb
336
+ b . Then c and d can be written as
337
+ c = c1 + c2pm1
338
+ 1
339
+ + · · · + capm1
340
+ 1 pm2
341
+ 2
342
+ . . . pma−1
343
+ a−1 ,
344
+ d = d1 + d2qn1
345
+ 1 + · · · + dbqn1
346
+ 1 qn2
347
+ 2 . . . qnb−1
348
+ b−1 ,
349
+ (6)
350
+ where, 0 ≤ ci < pmi
351
+ i
352
+ and 0 ≤ dj < qnj
353
+ j . Let Ci = (ci,1, ci,2, . . . , ci,mi) ∈ Ami
354
+ pi ,
355
+ be the vector representation of ci with base pi, i.e., ci = �mi
356
+ k=1 ci,kpk−1
357
+ i
358
+ and
359
+ Dj = (dj,1, dj,2, . . . , dj,nj) ∈ Anj
360
+ qj be the vector representation of dj with base
361
+ qj, i.e., dj = �nj
362
+ l=1 dj,lql−1
363
+ j
364
+ where 0 ≤ ci,k < pi, and 0 ≤ dj,l < qj. We define
365
+ vectors associated with c and d as
366
+ φ(c) = (C1, C2, . . . , Ca) ∈ Am1
367
+ p1 × Am2
368
+ p2 × · · · × Ama
369
+ pa ,
370
+ φ(d) = (D1, D2, . . . , Db) ∈ An1
371
+ q1 × An2
372
+ q2 × · · · × Anb
373
+ qb ,
374
+
375
+ Springer Nature 2021 LATEX template
376
+ A Direct Construction of Optimal 2D-ZCACS
377
+ 5
378
+ respectively. We also define an array associated with f as
379
+ ψλ(f) =
380
+
381
+
382
+
383
+
384
+
385
+
386
+
387
+ ωf0,0
388
+ λ
389
+ ωf0,1
390
+ λ
391
+ · · ·
392
+ ωf0,r−1
393
+ λ
394
+ ωf1,0
395
+ λ
396
+ ωf1,1
397
+ λ
398
+ · · ·
399
+ ωf1,r−1
400
+ λ
401
+ ...
402
+ ...
403
+ ...
404
+ ...
405
+ ωfs−1,0
406
+ λ
407
+ ωfs−1,1
408
+ λ
409
+ · · · ωfs−1,r−1
410
+ λ
411
+
412
+
413
+
414
+
415
+
416
+
417
+
418
+ ,
419
+ (7)
420
+ where fc,d = f
421
+
422
+ φ(c), φ(d)
423
+
424
+ and λ is a positive integer.
425
+ Lemma 2 ([24]) Let t and t′ be two non-negative integers, where t ̸= t′, and p is a
426
+ prime number. Then
427
+ p−1
428
+
429
+ j=0
430
+ ω(t−t′)j
431
+ p
432
+ = 0.
433
+ (8)
434
+ Let us consider the set C as
435
+ C =
436
+
437
+ Am1
438
+ p1 × Am2
439
+ p2 × · · · × Ama
440
+ pa
441
+
442
+ ×
443
+
444
+ An1
445
+ q1 × An2
446
+ q2 × · · · × Anb
447
+ qb
448
+
449
+ .
450
+ (9)
451
+ Let 0 ≤ γ < pm1
452
+ 1 pm2
453
+ 2
454
+ . . . pma
455
+ a
456
+ and 0 ≤ µ < qn1
457
+ 1 qn2
458
+ 2 . . . qnb
459
+ b
460
+ be positive integers
461
+ such that
462
+ γ = γ1 +
463
+ a
464
+
465
+ i=2
466
+ γi
467
+
468
+
469
+ i−1
470
+
471
+ i1=1
472
+ p
473
+ mi1
474
+ i1
475
+
476
+  ,
477
+ µ = µ1 +
478
+ b
479
+
480
+ j=2
481
+ µj
482
+
483
+
484
+ j−1
485
+
486
+ j1=1
487
+ q
488
+ nj1
489
+ j1
490
+
491
+  ,
492
+ (10)
493
+ where 0 ≤ γi < pmi
494
+ i
495
+ and 0 ≤ µj < qnj
496
+ j . Let γi = (γi,1, γi,2, . . . , γi,mi) ∈
497
+ Ami
498
+ pi be the vector representation of γi with base pi, i.e., γi = �mi
499
+ k=1 γi,kpk−1
500
+ i
501
+ ,
502
+ where 0 ≤ γi,k < pi. Similarly µj = (µj,1, µj,2, . . . , µj,nj) ∈ Anj
503
+ qj be the vector
504
+ representation of µj with base qj i.e., µj = �nj
505
+ l=1 µj,lql−1
506
+ j
507
+ where 0 ≤ µj,l < qj.
508
+ Let
509
+ φ(γ) = (γ1, γ2, . . . , γa) ∈ Am1
510
+ p1 ×Am2
511
+ p2 × · · · × Ama
512
+ pa ,
513
+ (11)
514
+ be the vector associated with γ and
515
+ φ(µ) = (µ1, µ2, . . . , µb) ∈ An1
516
+ q1×An2
517
+ q2 × · · · × Anb
518
+ qb ,
519
+ (12)
520
+ be the vector associated with µ. Let πi and σj be any permutations of the
521
+ set {1, 2, . . ., mi} and {1, 2, . . ., nj}, respectively. Let us also define the MVF
522
+
523
+ Springer Nature 2021 LATEX template
524
+ 6
525
+ A Direct Construction of Optimal 2D-ZCACS
526
+ f : C → Z, as
527
+ f(φ(γ), φ(µ))
528
+ = f (γ1, γ2, . . . , γa, µ1, µ2, . . . , µb)
529
+ =
530
+ a
531
+
532
+ i=1
533
+ λ
534
+ pi
535
+ mi−1
536
+
537
+ e=1
538
+ γi,πi(e)γi,πi(e+1) +
539
+ a
540
+
541
+ i=1
542
+ mi
543
+
544
+ e=1
545
+ di,eγi,e +
546
+ b
547
+
548
+ j=1
549
+ λ
550
+ qj
551
+ nj−1
552
+
553
+ o=1
554
+ µj,σj(o)µj,σj(o+1)
555
+ +
556
+ b
557
+
558
+ j=1
559
+ nj
560
+
561
+ o=1
562
+ cj,oµj,o,
563
+ (13)
564
+ where di,e, cj,o ∈ {0, 1, . . ., λ − 1} and λ = l.c.m.(p1, . . . , pa, q1, . . . , qb). Let us
565
+ define the set Θ and T as
566
+ Θ = {θ : θ = (r1, r2, . . . , ra, s1, s2, . . . , sb)},
567
+ T = {t : t = (x1, x2, . . . , xa, y1, y2, . . . , yb)},
568
+ where 0 ≤ ri, xi < pki
569
+ i
570
+ and 0 ≤ sj, yj < qrj
571
+ j
572
+ and ki, rj are positive integers.
573
+ Now, we define a function aθ
574
+ t: C →Z, as
575
+
576
+ t
577
+
578
+ φ(γ), φ(µ)
579
+
580
+ = aθ
581
+ t (γ1, γ2, . . . , γa, µ1, µ2, . . . , µb)
582
+ =f
583
+
584
+ φ(γ), φ(µ)
585
+
586
+ +
587
+ a
588
+
589
+ i=1
590
+ λ
591
+ pi
592
+ γi,πi(1)ri +
593
+ b
594
+
595
+ j=1
596
+ λ
597
+ qj
598
+ µj,σj(1)sj +
599
+ a
600
+
601
+ i=1
602
+ λ
603
+ pi
604
+ γi,πi(mi)xi
605
+ +
606
+ b
607
+
608
+ j=1
609
+ λ
610
+ qj
611
+ µj,σj(nj)yj + dθ,
612
+ (14)
613
+ where 0 ≤ dθ < λ, γi,πi(1), γi,πi(mi) denote πi(1)−th and πi(mi)−th element
614
+ of γi respectively. Similarly, µj,σj(1), µj,σj(nj) denote σj(1)−th and σj(nj)−th
615
+ element of µj respectively. For simplicity, we denote aθ
616
+ t
617
+
618
+ φ(γ), φ(µ)
619
+
620
+ by (aθ
621
+ t)γ,µ
622
+ and f
623
+
624
+ φ(γ), φ(µ)
625
+
626
+ by fγ,µ.
627
+ Lemma 3 ([20]) We define the ordered set of arrays At = {ψλ
628
+
629
+
630
+ t
631
+
632
+ : θ ∈ Θ}.
633
+ Then the set {At : t ∈ T } forms a 2D-CCC with parameter (α, α, m, n), where, α =
634
+ �a
635
+ i=1 pki
636
+ i
637
+ �b
638
+ j=1 qrj
639
+ j , m = �a
640
+ i=1 pmi
641
+ i
642
+ , n = �b
643
+ j=1 qnj
644
+ j
645
+ and ki, mi, nj, rj are non-negative
646
+ integers.
647
+
648
+ Springer Nature 2021 LATEX template
649
+ A Direct Construction of Optimal 2D-ZCACS
650
+ 7
651
+ 3 Proposed construction of 2D-ZCACS
652
+ Let a′, b′ be positive integers for 1 ≤ i′ ≤ a′ and 1 ≤ j′ ≤ b′, p′
653
+ i′ be any
654
+ prime or 1, and q′
655
+ j′ be prime number. Let γ′, µ′ are positive integers such that
656
+ 0 ≤ γ′ <
657
+ ��a
658
+ i=1 pmi
659
+ i
660
+ � ��a′
661
+ i′=1 p′
662
+ i′
663
+
664
+ and 0 ≤ µ′ <
665
+ ��b
666
+ j=1 qnj
667
+ j
668
+ � ��b′
669
+ j′=1 q′
670
+ j′
671
+
672
+ . Then
673
+ γ′, µ′ can be written as
674
+ γ′ =γ1+
675
+ a
676
+
677
+ i=2
678
+ γi
679
+
680
+
681
+ i−1
682
+
683
+ i1=1
684
+ p
685
+ mi1
686
+ i1
687
+
688
+ +
689
+
690
+
691
+ γ′
692
+ 1 +
693
+ a′
694
+
695
+ i′=2
696
+ γ′
697
+ i′
698
+
699
+
700
+ i′−1
701
+
702
+ i1=1
703
+ p′
704
+ i1
705
+
706
+
707
+
708
+
709
+  m,
710
+ µ′ =µ1+
711
+ b
712
+
713
+ j=2
714
+ µj
715
+
716
+
717
+ j−1
718
+
719
+ j1=1
720
+ q
721
+ nj1
722
+ j1
723
+
724
+ +
725
+
726
+
727
+ µ′
728
+ 1 +
729
+ b′
730
+
731
+ j′=2
732
+ µ′
733
+ j′
734
+
735
+
736
+ j′−1
737
+
738
+ j1=1
739
+ q′
740
+ j1
741
+
742
+
743
+
744
+
745
+  n,
746
+ (15)
747
+ where m = �a
748
+ i=1 pmi
749
+ i , n = �b
750
+ j=1 qnj
751
+ j , 0 ≤ γi < pmi
752
+ i , 0 ≤ µj < qnj
753
+ j , 0 ≤ γ′
754
+ i′ < p′
755
+ i′
756
+ and 0 ≤ µ′
757
+ j′ < q′
758
+ j′. We denote the vectors associated with γ′ and µ′ are
759
+ φ(γ′) =
760
+
761
+ γ1, . . . , γa, γ′
762
+ 1, . . . , γ′
763
+ a
764
+
765
+ ∈ Am1
766
+ p1 × . . . × Ama
767
+ pa × Ap′
768
+ 1 × . . . × Ap′
769
+ a′ ,
770
+ φ(µ′) =
771
+
772
+ µ1, . . . , µb, µ′
773
+ 1, . . . , µ′
774
+ b
775
+
776
+ ∈ An1
777
+ q1 × . . . × Anb
778
+ qb × Aq′
779
+ 1 × . . . × Aq′
780
+ b′ ,
781
+ (16)
782
+ respectively, where γi ∈ Ami
783
+ pi , µj ∈ Anj
784
+ qj
785
+ are the vectors associated with
786
+ γi and µj
787
+ respectively i.e., γi
788
+ =
789
+ (γi,1, γi,2, . . . , γi,mi)
790
+
791
+ Ami
792
+ pi , µj
793
+ =
794
+ (µj,1, µj,2, . . . , µj,nj) ∈ Anj
795
+ qj , γi = �mi
796
+ k=1 γi,kpk−1
797
+ i
798
+ , µj = �nj
799
+ l=1 µi,lql−1
800
+ j
801
+ , 0 ≤
802
+ γi,k < pi and 0 ≤ µj,l < qj. Let us consider the set D as
803
+ D = Am1
804
+ p1 ×. . .×Ama
805
+ pa ×Ap′
806
+ 1 ×. . .×Ap′
807
+ a′ ×An1
808
+ q1 ×. . .×Anb
809
+ qb ×Aq′
810
+ 1 ×. . .×Aq′
811
+ b′ . (17)
812
+ Let f be the function as defined (13). We define the MVF M c,d : D → Z as
813
+ M c,d �
814
+ φ(γ′), φ(µ′)
815
+
816
+ = M c,d �
817
+ γ1, . . . , γa, γ′
818
+ 1, . . . , γ′
819
+ a′, µ1, . . . , µb, µ′
820
+ 1, . . . , µ′
821
+ b′
822
+
823
+ = δ
824
+ λf (γ1, . . . , γa, µ1, . . . , µb)+
825
+ a′
826
+
827
+ i′=1
828
+ ci′ δ
829
+ p′
830
+ i′ γ′
831
+ i′ +
832
+ b′
833
+
834
+ j′=1
835
+ dj′ δ
836
+ q′
837
+ j′ µ′
838
+ j′,
839
+ (18)
840
+ where
841
+ 0
842
+
843
+ ci′
844
+ <
845
+ p′
846
+ i′,
847
+ 0
848
+
849
+ dj′
850
+ <
851
+ q′
852
+ j′,
853
+ c
854
+ =
855
+ (c1, c2, . . . , ca′)
856
+ and
857
+ d
858
+ =
859
+ (d1, d2, . . . , db′).
860
+ For
861
+ simplicity,
862
+ now
863
+ on-wards
864
+ we
865
+ denote
866
+ M c,d(γ1, . . . , γa, γ′
867
+ 1, . . . , γ′
868
+ a′, µ1, . . . , µb, µ′
869
+ 1, . . . , µ′
870
+ b′) by M c,d. Consider the set
871
+ Θ and T as
872
+ Θ = {θ : θ = (r1, r2, . . . , ra, s1, s2, . . . , sb)},
873
+ T = {t : t = (x1, x2, . . . , xa, y1, y2, . . . , yb)},
874
+
875
+ Springer Nature 2021 LATEX template
876
+ 8
877
+ A Direct Construction of Optimal 2D-ZCACS
878
+ where 0 ≤ ri, xi < pki
879
+ i
880
+ and 0 ≤ sj, yj < qrj
881
+ j
882
+ and ki, rj are positive integers. Let
883
+ us define MVF, bθ,c,d
884
+ t
885
+ : D → Z, as
886
+ bθ,c,d
887
+ t
888
+ =M c,d +
889
+ a
890
+
891
+ i=1
892
+ δ
893
+ pi
894
+ γi,πi(1)ri +
895
+ b
896
+
897
+ j=1
898
+ δ
899
+ qj
900
+ µj,σj(1)sj +
901
+ a
902
+
903
+ i=1
904
+ δ
905
+ pi
906
+ γi,πi(mi)xi
907
+ +
908
+ b
909
+
910
+ j=1
911
+ δ
912
+ qj
913
+ µj,σj(nj)yj + δ
914
+ λdθ,
915
+ (19)
916
+ where 0 ≤ dθ < λ. By (14), (18) and (19) we have
917
+ bθ,c,d
918
+ t
919
+ = δ
920
+ λaθ
921
+ t +
922
+ a′
923
+
924
+ i′=1
925
+ ci′ δ
926
+ p′
927
+ i′ γ′
928
+ i′ +
929
+ b′
930
+
931
+ j′=1
932
+ dj′ δ
933
+ q′
934
+ j′ µ′
935
+ j′.
936
+ (20)
937
+ We define the ordered set of arrays as
938
+ Ωc,d
939
+ t
940
+ = {ψδ(bθ,c,d
941
+ t
942
+ ) : θ ∈ Θ}.
943
+ (21)
944
+ where δ = l.c.m(λ, p′
945
+ 1, p′
946
+ 2, . . . , p′
947
+ a′, q′
948
+ 1, q′
949
+ 2, . . . , q′
950
+ b′).
951
+ Theorem 1 Let m = �a
952
+ i=1 pmi
953
+ i
954
+ , n = �b
955
+ j=1 qnj
956
+ j , c = (c1, . . . , ca′), d = (d1, . . . , db′).
957
+ Then the set S = {Ωc,d
958
+ t
959
+ : t ∈ T, 0 ≤ ci′ < p′
960
+ i′, 0 ≤ dj′ < q′
961
+ j′} forms a 2D − (α1, z1 ×
962
+ z2) − ZCACSl1×l2
963
+ α
964
+ , where, α1 =
965
+ ��a′
966
+ i′=1 p′
967
+ i′
968
+ � ��b′
969
+ j′=1 q′
970
+ j′
971
+
972
+ α, l1 = m
973
+ ��a′
974
+ i′=1 p′
975
+ i′
976
+
977
+ ,
978
+ l2 = n
979
+ ��b′
980
+ j′=1 q′
981
+ j′
982
+
983
+ , z1 = m ,z2 = n, α = (�a
984
+ i=1 pki
985
+ i )(�b
986
+ j=1 qrj
987
+ j ), ki, rj, mi, nj ≥ 1.
988
+ Proof Let ˆγ, ˆµ are positive integers such that 0 ≤ ˆγ < l1 and 0 ≤ ˆµ < l2. Then ˆγ, ˆµ
989
+ can be written as
990
+ ˆγ = γ1+
991
+ a
992
+
993
+ i=2
994
+ γi
995
+
996
+
997
+ i−1
998
+
999
+ i1=1
1000
+ p
1001
+ mi1
1002
+ i1
1003
+
1004
+ +
1005
+
1006
+
1007
+ γ′
1008
+ 1 +
1009
+ a′
1010
+
1011
+ i′=2
1012
+ γ′
1013
+ i′
1014
+
1015
+
1016
+ i′−1
1017
+
1018
+ i1=1
1019
+ p′
1020
+ i1
1021
+
1022
+
1023
+
1024
+
1025
+  m,
1026
+ ˆµ = µ1+
1027
+ b
1028
+
1029
+ j=2
1030
+ µj
1031
+
1032
+
1033
+ j−1
1034
+
1035
+ j1=1
1036
+ qnj1
1037
+ j1
1038
+
1039
+ +
1040
+
1041
+
1042
+
1043
+ µ′
1044
+ 1 +
1045
+ b′
1046
+
1047
+ j′=2
1048
+ µ′
1049
+ j′
1050
+
1051
+
1052
+
1053
+ j′−1
1054
+
1055
+ j1=1
1056
+ q′
1057
+ j1
1058
+
1059
+
1060
+
1061
+
1062
+
1063
+
1064
+  n,
1065
+ where 0 ≤ γi < pmi
1066
+ i
1067
+ , 0 ≤ µj < qnj
1068
+ j , 0 ≤ γ′
1069
+ i′ < p′
1070
+ i′ and 0 ≤ µ′
1071
+ j′ < q′
1072
+ j′. The proof will
1073
+ be split into following cases
1074
+ Case 1. (τ1 = 0, τ2 = 0)
1075
+
1076
+ Springer Nature 2021 LATEX template
1077
+ A Direct Construction of Optimal 2D-ZCACS
1078
+ 9
1079
+ The ACCF between Ωc,d
1080
+ t
1081
+ and Ωc′,d′
1082
+ t′
1083
+ at τ1 = 0 and τ2 = 0 can be expressed as
1084
+ C(Ωc,d
1085
+ t
1086
+ , Ωc′,d′
1087
+ t′
1088
+ )(0, 0)
1089
+ =
1090
+
1091
+ θ∈Θ
1092
+ C(ψδ((bθ,c,d
1093
+ t
1094
+ )), ψδ((bθ,c′,d′
1095
+ t′
1096
+ )))(0, 0)
1097
+ =
1098
+
1099
+ θ∈Θ
1100
+ l1−1
1101
+
1102
+ ˆγ=0
1103
+ l2−1
1104
+
1105
+ ˆµ=0
1106
+ ω
1107
+ (bθ,c,d
1108
+ t
1109
+ )ˆγ,ˆ
1110
+ µ−(bθ,c′,d′
1111
+ t′
1112
+ )ˆγ,ˆ
1113
+ µ
1114
+ δ
1115
+ =
1116
+
1117
+ θ∈Θ
1118
+ m−1
1119
+
1120
+ γ=0
1121
+ n−1
1122
+
1123
+ µ=0
1124
+ p′
1125
+ 1−1
1126
+
1127
+ γ′
1128
+ 1=0
1129
+ . . .
1130
+ p′
1131
+ a′ −1
1132
+
1133
+ γ′
1134
+ a′=0
1135
+ q′
1136
+ 1−1
1137
+
1138
+ µ1=0
1139
+ . . .
1140
+ q′
1141
+ b′ −1
1142
+
1143
+ µ′
1144
+ b′ =0
1145
+ ωD
1146
+ δ ,
1147
+ (22)
1148
+ where D = δ
1149
+ λ
1150
+
1151
+ (aθ
1152
+ t )γ,µ − (aθ
1153
+ t′)γ,µ
1154
+
1155
+ +�a′
1156
+ i′=1
1157
+ δ
1158
+ p′
1159
+ i′ (ci′ −c′
1160
+ i′)γi′ +�b′
1161
+ j′=1
1162
+ δ
1163
+ q′
1164
+ j′ (dj′ −d′
1165
+ j′)µj′.
1166
+ After splitting (22), we get
1167
+ C(Ωc,d
1168
+ t
1169
+ , Ωc′,d′
1170
+ t′
1171
+ )(0, 0)
1172
+ =
1173
+
1174
+ �
1175
+ θ∈Θ
1176
+ m−1
1177
+
1178
+ γ=0
1179
+ n−1
1180
+
1181
+ µ=0
1182
+ ω
1183
+ δ
1184
+ λ
1185
+
1186
+ (aθ
1187
+ t )γ,µ−(aθ
1188
+ t′ )γ,µ
1189
+
1190
+ δ
1191
+
1192
+  EF
1193
+ =
1194
+
1195
+ �
1196
+ θ∈Θ
1197
+ m−1
1198
+
1199
+ γ=0
1200
+ n−1
1201
+
1202
+ µ=0
1203
+ ω
1204
+
1205
+ (aθ
1206
+ t )γ,µ−(aθ
1207
+ t′ )γ,µ
1208
+
1209
+ λ
1210
+
1211
+  EF
1212
+ = C(At, At′
1213
+ )(0, 0)EF,
1214
+ (23)
1215
+ where
1216
+ E =
1217
+ a′
1218
+
1219
+ i′=1
1220
+
1221
+
1222
+
1223
+ p′
1224
+ i′ −1
1225
+
1226
+ γ′
1227
+ i′ =0
1228
+ ω
1229
+ (ci′−c′
1230
+ i′)γ′
1231
+ i′
1232
+ p′
1233
+ i′
1234
+
1235
+
1236
+  ,
1237
+ F =
1238
+ b′
1239
+
1240
+ j′=1
1241
+
1242
+
1243
+
1244
+
1245
+ q′
1246
+ j′ −1
1247
+
1248
+ µ′
1249
+ j′ =0
1250
+ ω
1251
+ (dj′ −d′
1252
+ j′ )µ′
1253
+ j′
1254
+ q′
1255
+ j′
1256
+
1257
+
1258
+
1259
+  .
1260
+ (24)
1261
+ Subcase (i): (t ̸= t′)
1262
+ By lemma 2 we know, the set {At : t ∈ T } forms a 2D-CCC. Hence By lemma 2, we
1263
+ have
1264
+ C(At, At′
1265
+ )(0, 0) = 0.
1266
+ (25)
1267
+ Hence by (23) and (25) we have
1268
+ C(Ωc,d
1269
+ t
1270
+ , Ωc′,d′
1271
+ t′
1272
+ )(0, 0) = 0.
1273
+ (26)
1274
+ Subcase (ii): (t = t′)
1275
+ By lemma 2, we know
1276
+ C(At, At′
1277
+ )(0, 0) =
1278
+
1279
+
1280
+ a
1281
+
1282
+ i=1
1283
+ pmi+ki
1284
+ i
1285
+
1286
+
1287
+
1288
+
1289
+ b
1290
+
1291
+ j=1
1292
+ qnj+rj
1293
+ j
1294
+
1295
+  .
1296
+ (27)
1297
+
1298
+ Springer Nature 2021 LATEX template
1299
+ 10
1300
+ A Direct Construction of Optimal 2D-ZCACS
1301
+ Let M =
1302
+ ��a
1303
+ i=1 pmi+ki
1304
+ i
1305
+ � ��b
1306
+ j=1 qnj+rj
1307
+ j
1308
+
1309
+ hence by Lemma 2, (23), (24), (27), we
1310
+ have the following
1311
+ C(Ωc,d
1312
+ t
1313
+ , Ωc′,d′
1314
+ t
1315
+ )(0, 0) =
1316
+
1317
+
1318
+
1319
+
1320
+
1321
+
1322
+
1323
+
1324
+
1325
+
1326
+
1327
+
1328
+
1329
+ M
1330
+ ��a′
1331
+ i′=1 p′
1332
+ i′
1333
+ � ��b′
1334
+ j′=1 q′
1335
+ j′
1336
+
1337
+ c = c′, d = d′
1338
+ 0,
1339
+ c ̸= c′, d = d′
1340
+ 0,
1341
+ c = c′, d ̸= d′
1342
+ 0,
1343
+ c ̸= c′, d ̸= d′.
1344
+ (28)
1345
+ Case 2. (0 < τ1 < �a
1346
+ i=1 pmi
1347
+ i
1348
+ , 0 < τ2 < �b
1349
+ j=1 qnj
1350
+ j )
1351
+ Let σ, ρ are positive integers such that 0 ≤ σ < m′ and 0 ≤ ρ < n′ where m′ =
1352
+ �a′
1353
+ i′=1 p′
1354
+ i′, n′ = �b′
1355
+ j′=1 q′
1356
+ j′. Then σ and ρ can be written as
1357
+ σ = σ1 + σ2p′
1358
+ 1 + . . . + σa′
1359
+
1360
+
1361
+ a′−1
1362
+
1363
+ i′=1
1364
+ p′
1365
+ i′
1366
+
1367
+  ,
1368
+ ρ = ρ1 + ρ2q′
1369
+ 1 + . . . + ρb′
1370
+
1371
+
1372
+ b′−1
1373
+
1374
+ j′=1
1375
+ q′
1376
+ j′
1377
+
1378
+  ,
1379
+ (29)
1380
+ respectively where 0 ≤ σi′ < p′
1381
+ i′ and 0 ≤ ρj′ < q′
1382
+ j′ . We define vectors associated
1383
+ with σ and ρ to be
1384
+ φ(σ) = (σ1, . . . , σa′) ∈ Ap′
1385
+ 1 × . . . × Ap′
1386
+ a′ ,
1387
+ φ(ρ) = (ρ1, . . . , ρb′) ∈ Aq′
1388
+ 1 × . . . × Aq′
1389
+ b′ ,
1390
+ (30)
1391
+ respectively. The ACCF between Ωc,d
1392
+ t
1393
+ and Ωc′,d′
1394
+ t′
1395
+ for 0 < τ1 < �a
1396
+ i=1 pmi
1397
+ i
1398
+ and 0 <
1399
+ τ2 < �b
1400
+ j=1 qnj
1401
+ j , can be derived as
1402
+ C(Ωc,d
1403
+ t
1404
+ , Ωc′,d′
1405
+ t′
1406
+ )(τ1, τ2) =C(At, At′
1407
+ )(τ1, τ2)DE+C(At, At′
1408
+ )(τ1−
1409
+ a
1410
+
1411
+ i=1
1412
+ pmi
1413
+ i
1414
+ , τ2)D′E+
1415
+ C(At, At′
1416
+ )(τ1, τ2 −
1417
+ b
1418
+
1419
+ j=1
1420
+ qnj
1421
+ j )DE′ + C(At, At′
1422
+ )(τ1 −
1423
+ a
1424
+
1425
+ i=1
1426
+ pmi
1427
+ i
1428
+ , τ2 −
1429
+ b
1430
+
1431
+ j=1
1432
+ qnj
1433
+ j )D′E′,
1434
+ (31)
1435
+ where
1436
+ D =
1437
+ m′−1
1438
+
1439
+ σ=0
1440
+
1441
+
1442
+ a′
1443
+
1444
+ i′=1
1445
+ ω
1446
+ (ci′−c′
1447
+ i′ )(σi′ )
1448
+ p′
1449
+ i′
1450
+
1451
+  ,
1452
+ (32)
1453
+ E =
1454
+ n′−1
1455
+
1456
+ ρ=0
1457
+
1458
+
1459
+ b′
1460
+
1461
+ j′=1
1462
+ ω
1463
+ (dj′ −d′
1464
+ j′)(ρj′ )
1465
+ q′
1466
+ j′
1467
+
1468
+  ,
1469
+ (33)
1470
+ D′ =
1471
+ m′−2
1472
+
1473
+ σ=0
1474
+
1475
+
1476
+ a′
1477
+
1478
+ i′=1
1479
+ ω(ci′(σi′ )−c′
1480
+ i′ (σ+1)i′)
1481
+ p′
1482
+ i′
1483
+
1484
+  ,
1485
+ (34)
1486
+ E′ =
1487
+ n′−2
1488
+
1489
+ ρ=0
1490
+
1491
+
1492
+ b′
1493
+
1494
+ j′=1
1495
+ ω
1496
+
1497
+ dj′ (ρj′ )−d′
1498
+ j′(ρ+1)j′
1499
+
1500
+ q′
1501
+ j′
1502
+
1503
+  ,
1504
+ (35)
1505
+
1506
+ Springer Nature 2021 LATEX template
1507
+ A Direct Construction of Optimal 2D-ZCACS
1508
+ 11
1509
+ and (σ + 1)i′ , (ρ + 1)j′ denotes the i′-th and j′-th components of φ (σ + 1) and
1510
+ φ (ρ + 1) respectively. By Lemma 2, for 0 < τ1 < �a
1511
+ i=1 pmi
1512
+ i
1513
+ and 0 < τ2 < �b
1514
+ j=1 qnj
1515
+ j ,
1516
+ we have
1517
+ C(At, At′
1518
+ )(τ1, τ2) = 0,
1519
+ (36)
1520
+ C(At, At′
1521
+ )(τ1−
1522
+ a
1523
+
1524
+ i=1
1525
+ pmi
1526
+ i
1527
+ , τ2) = 0,
1528
+ (37)
1529
+ C(At, At′
1530
+ )(τ1, τ2 −
1531
+ b
1532
+
1533
+ j=1
1534
+ qnj
1535
+ j ) = 0,
1536
+ (38)
1537
+ C(At, At′
1538
+ )(τ1 −
1539
+ a
1540
+
1541
+ i=1
1542
+ pmi
1543
+ i
1544
+ , τ2 −
1545
+ b
1546
+
1547
+ j=1
1548
+ qnj
1549
+ j ) = 0.
1550
+ (39)
1551
+ By (31), (36), (37), (38), (39) we have
1552
+ C(Ωc,d
1553
+ t
1554
+ , Ωc
1555
+ ′ ,d
1556
+
1557
+ t′
1558
+ )(τ1, τ2) = 0.
1559
+ (40)
1560
+ Case 3. (0 < τ1 < �a
1561
+ i=1 pmi
1562
+ i
1563
+ , − �b
1564
+ j=1 qnj
1565
+ j
1566
+ < τ2 < 0)
1567
+ The ACCF between Ωc,d
1568
+ t
1569
+ and Ωc′,d′
1570
+ t′
1571
+ for 0 < τ1 < �a
1572
+ i=1 pmi
1573
+ i
1574
+ and − �b
1575
+ j=1 qnj
1576
+ j
1577
+ < τ2 <
1578
+ 0, can be derived as
1579
+ C(Ωc,d
1580
+ t
1581
+ , Ωc′,d′
1582
+ t′
1583
+ )(τ1, τ2)
1584
+ =C(At, At′
1585
+ )(τ1, τ2)DE+C(At, At′
1586
+ )(τ1 −
1587
+ a
1588
+
1589
+ i=1
1590
+ pmi
1591
+ i
1592
+ , τ2)D′E
1593
+ + C(At, At′
1594
+ )(τ1,
1595
+ b
1596
+
1597
+ j=1
1598
+ qnj
1599
+ j
1600
+ + τ2)DE′′ + C(At, At′
1601
+ )(τ1 −
1602
+ a
1603
+
1604
+ i=1
1605
+ pmi
1606
+ i
1607
+ ,
1608
+ b
1609
+
1610
+ j=1
1611
+ qnj
1612
+ j
1613
+ + τ2)D′E′′,
1614
+ (41)
1615
+ where
1616
+ E′′ =
1617
+ n′−2
1618
+
1619
+ ρ=0
1620
+
1621
+
1622
+ b′
1623
+
1624
+ j′=1
1625
+ ω
1626
+
1627
+ dj′ (ρ+1)j′ −d′
1628
+ j′ (ρj′ )
1629
+
1630
+ q′
1631
+ j′
1632
+
1633
+  .
1634
+ (42)
1635
+ By Lemma 2, for 0 < τ1 < �a
1636
+ i=1 pmi
1637
+ i
1638
+ and − �b
1639
+ j=1 qnj
1640
+ j
1641
+ < τ2 < 0, we have
1642
+ C(At, At′
1643
+ )(τ1,
1644
+ b
1645
+
1646
+ j=1
1647
+ qnj
1648
+ j
1649
+ + τ2) = 0,
1650
+ (43)
1651
+ C(At, At′
1652
+ )(τ1 −
1653
+ a
1654
+
1655
+ i=1
1656
+ pmi
1657
+ i
1658
+ ,
1659
+ b
1660
+
1661
+ j=1
1662
+ qnj
1663
+ j
1664
+ + τ2) = 0.
1665
+ (44)
1666
+ By (41) , (43) and (44) we have
1667
+ C(Ωc,d
1668
+ t
1669
+ , Ωc′,d′
1670
+ t′
1671
+ )(τ1, τ2) = 0.
1672
+ (45)
1673
+ Case 4. (0 < τ1 < �a
1674
+ i=1 pmi
1675
+ i
1676
+ , τ2 = 0)
1677
+
1678
+ Springer Nature 2021 LATEX template
1679
+ 12
1680
+ A Direct Construction of Optimal 2D-ZCACS
1681
+ The ACCF between Ωc,d
1682
+ t
1683
+ and Ωc′,d′
1684
+ t′
1685
+ for 0 < τ1 < �a
1686
+ i=1 pmi
1687
+ i
1688
+ and τ2 = 0 , can be
1689
+ derived as
1690
+ C(Ωc,d
1691
+ t
1692
+ , Ωc′,d′
1693
+ t′
1694
+ )(τ1, 0) =C(At, At′
1695
+ )(τ1, 0)DE+ C(At, At′
1696
+ )(τ1 −
1697
+ a
1698
+
1699
+ i=1
1700
+ pmi
1701
+ i
1702
+ , 0)D′E.
1703
+ (46)
1704
+ By Lemma 2, for 0 < τ1 < �a
1705
+ i=1 pmi
1706
+ i
1707
+ , we have
1708
+ C(At, At′
1709
+ )(τ1, 0) = 0.
1710
+ C(At, At′
1711
+ )(τ1 −
1712
+ a
1713
+
1714
+ i=1
1715
+ pmi
1716
+ i
1717
+ , 0) = 0,
1718
+ (47)
1719
+ by (46) and (47) we have
1720
+ C(Ωc,d
1721
+ t
1722
+ , Ωc′,d′
1723
+ t′
1724
+ )(τ1, 0) = 0.
1725
+ (48)
1726
+ Case 5.
1727
+ (τ1 = 0, 0 < τ2 < �b
1728
+ j=1 qnj
1729
+ j )
1730
+ The ACCF between Ωc,d
1731
+ t
1732
+ and Ωc′,d′
1733
+ t′
1734
+ for τ1 = 0 and 0 < τ2 < �b
1735
+ j=1 qnj
1736
+ j , can be
1737
+ derived as
1738
+ C(Ωc,d
1739
+ t
1740
+ , Ωc′,d′
1741
+ t′
1742
+ )(0, τ2) =C(At, At′
1743
+ )(0, τ2)DE+ C(At, At′
1744
+ )(0, τ2 −
1745
+ b
1746
+
1747
+ j=1
1748
+ qnj
1749
+ j )DE′.
1750
+ (49)
1751
+ By Lemma 2, for 0 < τ2 < �b
1752
+ j=1 qnj
1753
+ j , we have
1754
+ C(At, At′
1755
+ )(0, τ2) = 0,
1756
+ C(At, At′
1757
+ )(0, τ2 −
1758
+ b
1759
+
1760
+ j=1
1761
+ qnj
1762
+ j ) = 0.
1763
+ (50)
1764
+ By (49) and (50) we have
1765
+ C(Ωc,d
1766
+ t
1767
+ , Ωc′,d′
1768
+ t′
1769
+ )(0, τ2) = 0.
1770
+ (51)
1771
+ Case 6. (τ1 = 0, − �b
1772
+ j=1 qnj
1773
+ j
1774
+ < τ2 < 0)
1775
+ Similarly the ACCF between Ωc,d
1776
+ t
1777
+ and Ωc′,d′
1778
+ t′
1779
+ for τ1 = 0 and − �b
1780
+ j=1 qnj
1781
+ j
1782
+ < τ2 < 0 is
1783
+ C(Ωc,d
1784
+ t
1785
+ , Ωc′,d′
1786
+ t′
1787
+ )(0, τ2) =C(At, At′
1788
+ )(0, τ2)DE+ C(At, At′
1789
+ )(0, τ2 +
1790
+ b
1791
+
1792
+ j=1
1793
+ qnj
1794
+ j )DE′′.
1795
+ (52)
1796
+ By Lemma 2, for − �b
1797
+ j=1 qnj
1798
+ j
1799
+ < τ2 < 0, we have
1800
+ C(At, At′
1801
+ )(0, τ2 +
1802
+ b
1803
+
1804
+ j=1
1805
+ qnj
1806
+ j ) = 0.
1807
+ (53)
1808
+ Hence by (50), (52) and (53) we have
1809
+ C(Ωc,d
1810
+ t
1811
+ , Ωc′,d′
1812
+ t′
1813
+ )(0, τ2) = 0.
1814
+ (54)
1815
+
1816
+ Springer Nature 2021 LATEX template
1817
+ A Direct Construction of Optimal 2D-ZCACS
1818
+ 13
1819
+ Combining all the cases we have
1820
+ C(Ωc,d
1821
+ t
1822
+ , Ωc′,d′
1823
+ t′
1824
+ )(τ1, τ2) =
1825
+
1826
+
1827
+
1828
+
1829
+
1830
+
1831
+
1832
+
1833
+
1834
+
1835
+
1836
+
1837
+
1838
+
1839
+
1840
+
1841
+
1842
+
1843
+
1844
+
1845
+
1846
+
1847
+
1848
+
1849
+
1850
+
1851
+
1852
+
1853
+
1854
+
1855
+
1856
+ M
1857
+ ��a′
1858
+ i′=1 p′
1859
+ i′
1860
+ � ��b′
1861
+ j′=1 q′
1862
+ j′
1863
+
1864
+ ,
1865
+ (c, d, t) = (c′, d′, t′)
1866
+ (τ1, τ2) = (0, 0),
1867
+ 0,
1868
+ (c, d, t) ̸= (c′, d′, t′)
1869
+ (τ1, τ2) = (0, 0),
1870
+ 0,
1871
+ 0 ≤ τ1 < �a
1872
+ i=1 pmi
1873
+ i
1874
+ ,
1875
+ (τ1, τ2) ̸= (0, 0).
1876
+ (55)
1877
+ Similarly it can be shown
1878
+ C(Ωc,d
1879
+ t
1880
+ , Ωc′,d′
1881
+ t′
1882
+ )(τ1, τ2) = 0, −
1883
+ a
1884
+
1885
+ i=1
1886
+ pmi
1887
+ i
1888
+ < τ1 < 0.
1889
+ (56)
1890
+ Hence from (55), (56) we derive our conclusion.
1891
+
1892
+ Example 1 Suppose that a = 1, b = 1, a′ = 1, b′ = 1, p1 = 2, m1 = 2, k1 = 1, q1 = 3,
1893
+ n1 = 2, r1 = 1, p′
1894
+ 1 = 3, q′
1895
+ 1 = 2. Let δ = 6, λ = 6, γ1 = (γ11, γ12) ∈ A2
1896
+ 2 = {0, 1}2
1897
+ be the vector associated with γ1 where 0 ≤ γ1 ≤ 3, i.e., γ1 = γ11 + 2γ12 and
1898
+ µ1 = (µ11, µ12) ∈ A2
1899
+ 3 = {0, 1, 2}2 be the vector associated with µ1 where 0 ≤ µ1 ≤ 8,
1900
+ i.e., µ1 = µ11+3µ12 and 0 ≤ γ′
1901
+ 1 ≤ 2, 0 ≤ µ′
1902
+ 1 ≤ 1. We define the MVF f : A2
1903
+ 2×A2
1904
+ 3 → Z
1905
+ as
1906
+ f (γ1, µ1)=3γ1,2γ1,1+γ1,1+2γ1,2+2µ1,2µ1,1+2µ1,1+µ1,2.
1907
+ Consider the MVF, Mc,d : A2
1908
+ 2 × A3 × A2
1909
+ 3 × A2 → Z as
1910
+ Mc,d �
1911
+ γ1, γ′
1912
+ 1, µ1, µ′
1913
+ 1
1914
+
1915
+ = f(γ1, µ1) + 2c1γ′
1916
+ 1 + 3d1µ′
1917
+ 1
1918
+ = 3γ1,2γ1,1 + γ1,1 + 2γ1,2 + 2µ1,2µ1,1 + 2µ1,1 + µ1,2 + 2c1γ′
1919
+ 1 + 3d1µ′
1920
+ 1,
1921
+ (57)
1922
+ where 0 ≤ c1 < p′
1923
+ 1 = 2, 0 ≤ d1 < q′
1924
+ 1 = 3, c = c1 ∈ {0, 1}, and d = d1 ∈ {0, 1, 2}. We
1925
+ have
1926
+ Θ = {θ : θ = (r1, s1) : 0 ≤ r1 ≤ 1, 0 ≤ s1 ≤ 2},
1927
+ T = {t : t = (x1, y1) : 0 ≤ x1 ≤ 1, 0 ≤ y1 ≤ 2}.
1928
+ (58)
1929
+ Let dθ = 0, now from (19) we have
1930
+ bθ,c,d
1931
+ t
1932
+ = Mc,d + 3γ1,2r1 + 2µ1,2s1 + 3γ1,1x1 + 2µ1,2y1,
1933
+ (59)
1934
+ and
1935
+ Ωc,d
1936
+ t
1937
+ =
1938
+
1939
+ ψ6(bθ,c,d
1940
+ t
1941
+ ) : θ = (r1, s1) ∈ {0, 1} × {0, 1, 2}
1942
+
1943
+ .
1944
+ (60)
1945
+ Therefore, the set
1946
+ S = {Ωc,d
1947
+ t
1948
+ : t ∈ T, 0 ≤ c1 ≤ 1, 0 ≤ d1 ≤ 2},
1949
+ (61)
1950
+ forms an optimal 2D − (36, 4 × 9) − ZCACS12×18
1951
+ 6
1952
+ over Z6.
1953
+
1954
+ Springer Nature 2021 LATEX template
1955
+ 14
1956
+ A Direct Construction of Optimal 2D-ZCACS
1957
+ Table 1 Comparison with Previous Works
1958
+ Source
1959
+ No. of set
1960
+ Array Size
1961
+ Condition
1962
+ Based on
1963
+ [7]
1964
+ K = K′r
1965
+ L′
1966
+ 1×(L′
1967
+ 2 + r + 1)
1968
+ r ≥ 0
1969
+ 2D − ZCACS of
1970
+ set size K′ and
1971
+ array size L′
1972
+ 1×L′
1973
+ 2
1974
+ [8]
1975
+ 1
1976
+ 2m × 2nL
1977
+ m, n ≥ 0
1978
+ ZCP of length L
1979
+ [9]
1980
+ K
1981
+ K × K
1982
+ K divides set size
1983
+ BH matrices
1984
+ [10]
1985
+ 2 �ki
1986
+ i=1 p2
1987
+ i
1988
+ 2m × �ki
1989
+ i=1 pmi
1990
+ i
1991
+ ki, mi ≥ 1, pi’s are prime
1992
+ MVF
1993
+ Thm 2
1994
+ rsα
1995
+ rm × sn
1996
+ α = (�a
1997
+ i=1 pki
1998
+ i )(�b
1999
+ j=1 q
2000
+ rj
2001
+ j ),
2002
+ m=�a
2003
+ i=1pmi
2004
+ i
2005
+ , n=�b
2006
+ j=1q
2007
+ nj
2008
+ j ,
2009
+ r, s, α ≥ 1, pi, qjareprimes
2010
+ MVF
2011
+ Remark 1 In Theorem 1, if we take a = 1, p1 = 1, a′ = 1, p′
2012
+ 1 = 1, b = 1, q1 =
2013
+ 2, b′ = l, r1 ≥ 2, we have optimal 1D-ZCCS with parameter (�l
2014
+ i=1 q′
2015
+ i2r1, 2n1) −
2016
+ ZCCS
2017
+ �l
2018
+ i=1 q′
2019
+ i2n1
2020
+ 2r1
2021
+ , which is exactly the same result as in [18]. Also if we take l = 1, then
2022
+ we have optimal 1D-ZCCS of the form (q′
2023
+ 12r1, 2n1) − ZCCSq′
2024
+ 12n1
2025
+ 2r1
2026
+ , which is exactly
2027
+ the same result in [17]. Therefore the optimal 1D-ZCCS given by [17, 18] appears as
2028
+ a special case of the proposed construction
2029
+ Remark 2 In Theorem 1, if a = 1, p1 = 1, a′ = 1, p′
2030
+ 1 = 1, b = 1, q1 = 2, b′ = l, r1 = 1,
2031
+ we have 1d-ZCCS with parameter (2 �l
2032
+ i=1 q′
2033
+ i, 2n1) − ZCCS
2034
+ �l
2035
+ i=1 q′
2036
+ i2n1
2037
+ 2
2038
+ , which is just
2039
+ a collection of 2 �l
2040
+ i=1 q′
2041
+ i ZCPs with sequence length �l
2042
+ i=1 q′
2043
+ i2n1 and ZCZ width 2n1.
2044
+ Hence our work produces collections of ZCPs[15] as well.
2045
+ Remark 3 In Theorem 1, if we take a = 1, p1 = 1, a′ = 1, p′
2046
+ 1 = 1, b = 1, q1 = 2,
2047
+ b′ = r, q′
2048
+ 1 = q′
2049
+ 2 = . . . = q′r = 2, n1 = m − r and r1 = s + 1 then we have 1D-ZCCS
2050
+ with parameter (2s+r+1, 2m−r)−ZCCS2m
2051
+ 2s+1, which is exactly the same result in [16].
2052
+ Hence, the ZCCS in [16] appears as a special case of our proposed construction.
2053
+ Remark 4 The 2D-ZCACS given by the proposed construction satisfies the equality
2054
+ given in (5). Therefore the 2D-ZCACS obtained by the proposed construction is
2055
+ optimal.
2056
+ Remark 5 If we take a = 1, a′ = 1, p1 = 1 and p′
2057
+ 1 = 1, in Theorem 1, we have optimal
2058
+ 1D-ZCCS with parameter
2059
+ ���b′
2060
+ j′=1 q′
2061
+ j′
2062
+ � �b
2063
+ j=1 qrj
2064
+ j , n
2065
+
2066
+ − ZCCS
2067
+ n
2068
+ ��b′
2069
+ j′=1 q′
2070
+ j′
2071
+
2072
+ �b
2073
+ j=1 q
2074
+ rj
2075
+ j
2076
+ where,
2077
+ n = �b
2078
+ j=1 qnj
2079
+ j . Hence, we have optimal 1D-ZCCS of length nm where, n, m > 1 and
2080
+ m = �b′
2081
+ j′=1 q′
2082
+ j′. Therefore our construction produces optimal 1D-ZCCS with a new
2083
+ length which is not present in the literature by direct method.
2084
+
2085
+ Springer Nature 2021 LATEX template
2086
+ A Direct Construction of Optimal 2D-ZCACS
2087
+ 15
2088
+ Remark
2089
+ 6 The
2090
+ set
2091
+ size
2092
+ of
2093
+ our
2094
+ proposed
2095
+ 2D-ZCACS
2096
+ is
2097
+ ��a′
2098
+ i′=1 p′
2099
+ i′
2100
+ � ��b′
2101
+ j′=1 q′
2102
+ j′
2103
+ � �a
2104
+ i=1 pki
2105
+ i
2106
+ �b
2107
+ j=1 qrj
2108
+ j
2109
+ where,
2110
+ ki, tj
2111
+
2112
+ 1.
2113
+ If
2114
+ we
2115
+ take
2116
+ a = 1, p1 = 1, a′ = 1, p′
2117
+ 1 = 1, r1 = r2 = . . . = rb = 2, b′ = 1, and q′
2118
+ 1 = 2 then we
2119
+ have set size 2 �b
2120
+ j=1 q2
2121
+ j which is the set size of the 2D-ZCACS in [10]. Therefore, we
2122
+ have flexible number of set sizes compared to [10].
2123
+ 3.1 Comparison with Previous Works
2124
+ Table I compares the proposed work with indirect constructions from [7–9] and
2125
+ direct construction from [10]. The constructions in [7–9] heavily rely on initial
2126
+ sequences, increasing hardware storage. The construction in [10] is direct, but
2127
+ set size and array sizes are limited to some even numbers. Our construction
2128
+ doesn’t require initial matrices or sequences and produces flexible parameters.
2129
+ 4 Conclusion
2130
+ In this paper, 2D-ZCACSs are designed by using MVF. The proposed design
2131
+ does not depend on initial sequences or matrices, so it is direct. Our proposed
2132
+ design produces flexible array size and set size compared to existing works.
2133
+ Also, our proposed construction can be reduced to 1D-ZCCS. As a result,
2134
+ many 1D-ZCCSs become special cases of our work. Finally, we compare our
2135
+ work to the existing state-of-the-art and show that it’s more versatile.
2136
+ References
2137
+ [1] Farkas, P., Turcs´any, M.: Two-dimensional orthogonal complete com-
2138
+ plementary codes. In: Joint IEEE 1st Workshop on Mobile Future and
2139
+ Symposium on Trends in Communications (sympoTIC), pp. 21–24 (2003)
2140
+ [2] Turcs´any, M., Farkaˇs, P.: New 2d-mc-ds-ss-cdma techniques based on two-
2141
+ dimensional orthogonal complete complementary codes. in Multi-Carrier
2142
+ Spread-Spectrum, Berlin, Germany: Springer, 49–56 (2004)
2143
+ [3] Chen, C.-Y., Wang, C.-H., Chao, C.-C.: Complete complementary codes
2144
+ and generalized reed-muller codes. IEEE Commun. Lett. 12(11), 849–851
2145
+ (2008)
2146
+ [4] Das, S., Majhi, S., Liu, Z.: A novel class of complete complementary codes
2147
+ and their applications for apu matrices. IEEE Sig. Process. Lett. 25(9),
2148
+ 1300–1304 (2018)
2149
+ [5] Liu, Z., Guan, Y.L., Parampalli, U.: New complete complementary codes
2150
+ for peak-to-mean power control in multi-carrier cdma. IEEE Trans.
2151
+ Commun. 62(3), 1105–1113 (2014)
2152
+
2153
+ Springer Nature 2021 LATEX template
2154
+ 16
2155
+ A Direct Construction of Optimal 2D-ZCACS
2156
+ [6] Xeng, F., Zhang, Z., Ge, L.: Theoretical limit on two dimensional gener-
2157
+ alized complementary orthogonal sequence set with zero correlation zone
2158
+ in ultra wideband communications. International Workshop on UWBST
2159
+ & IWUWBS, 197–201 (2004)
2160
+ [7] Zeng, F., Zhang, Z., Ge, L.: Construction of two-dimensional comple-
2161
+ mentary orthogonal sequences with ZCZ and their lower bound. IET
2162
+ (2005)
2163
+ [8] Pai,
2164
+ C.-Y.,
2165
+ Ni,
2166
+ Y.-T.,
2167
+ Chen,
2168
+ C.-Y.:
2169
+ Two-dimensional
2170
+ binary
2171
+ Z-
2172
+ complementary array pairs. IEEE Trans. Inf. Theory 67(6), 3892–3904
2173
+ (2021)
2174
+ [9] Das, S., Majhi, S.: Two-dimensional Z-complementary array code sets
2175
+ based on matrices of generating polynomials. IEEE Trans. Signal Process.
2176
+ 68, 5519–5532 (2020)
2177
+ [10] Roy, A., Majhi, S.: Construction of inter-group complementary code set
2178
+ and 2D Z-complementary array code set based on multivariable functions
2179
+ (2021). https://doi.org/10.48550/arXiv.2109.00970
2180
+ [11] Shen, B., Meng, H., Yang, Y., Zhou, Z.: New constructions of z-
2181
+ complementary code sets and mutually orthogonal complementary
2182
+ sequence sets. Des. Codes Cryptogr., 1–19 (2022)
2183
+ [12] Sarkar, P., Roy, A., Majhi, S.: Construction of z-complementary code sets
2184
+ with non-power-of-two lengths based on generalized boolean functions.
2185
+ IEEE Commun. Lett. 24(8), 1607–1611 (2020)
2186
+ [13] Sarkar, P., Majhi, S.: A direct construction of optimal zccs with maximum
2187
+ column sequence pmepr two for mc-cdma system. IEEE Commun. Lett
2188
+ 25(2), 337–341 (2020)
2189
+ [14] Wu, S.-W., S¸ahin, A., Huang, Z.-M., Chen, C.-Y.: Z-complementary code
2190
+ sets with flexible lengths from generalized boolean functions. IEEE Access
2191
+ 9, 4642–4652 (2020)
2192
+ [15] Kumar, P., Sarkar, P., Majhi, S., Paul, S.: A direct construction of even
2193
+ length zcps with large zcz ratio. Cryptogr. Commun., 1–10 (2022)
2194
+ [16] Sarkar, P., Majhi, S., Liu, Z.: Optimal Z-complementary code set from
2195
+ generalized Reed-Muller codes. IEEE Trans. Commun. 67(3), 1783–1796
2196
+ (2018)
2197
+ [17] Sarkar, P., Majhi, S., Liu, Z.: Pseudo-Boolean functions for optimal Z-
2198
+ complementary code sets with flexible lengths. IEEE Signal Process. Lett.
2199
+ 28, 1350–1354 (2021)
2200
+
2201
+ Springer Nature 2021 LATEX template
2202
+ A Direct Construction of Optimal 2D-ZCACS
2203
+ 17
2204
+ [18] Ghosh, G., Majhi, S., Sarkar, P., Upadhaya, A.K.: Direct construction of
2205
+ optimal Z-complementary code sets with even lengths by using generalized
2206
+ boolean functions. IEEE Signal Process. Lett. 29, 872–876 (2022)
2207
+ [19] Pai, C.-Y., Liu, Z., Zhao, Y.-Q., Huang, Z.-M., Chen, C.-Y.: Design-
2208
+ ing two-dimensional complete complementary codes for omnidirectional
2209
+ transmission in massive mimo systems. In: International Symposium on
2210
+ Information Theory (ISIT), pp. 2285–2290 (2022). IEEE
2211
+ [20] Ghosh, G., Majhi, S., Upadhyay, A.K.: A direct construction of 2D-CCC
2212
+ with arbitrary array size and flexible set size using multivariable function
2213
+ (2022). https://doi.org/10.48550/arXiv.2207.13395
2214
+ [21] Wu, S.-W., Chen, C.-Y.: Optimal Z-complementary sequence sets with
2215
+ good peak-to-average power-ratio property. IEEE Signal Process. Lett.
2216
+ 25(10), 1500–1504 (2018)
2217
+ [22] Yu, T., Adhikary, A.R., Wang, Y., Yang, Y.: New class of optimal Z-
2218
+ complementary code sets. IEEE Trans. Signal Process. 29, 1477–1481
2219
+ (2022)
2220
+ [23] Shen,
2221
+ B.,
2222
+ Yang,
2223
+ Y.,
2224
+ Fan,
2225
+ P.,
2226
+ Zhou,
2227
+ Z.:
2228
+ New
2229
+ z-
2230
+ complementary/complementary sequence sets with non-power-of-two
2231
+ length and low papr. Cryptogr. Commun. 14(4), 817–832 (2022)
2232
+ [24] Vaidyanathan, P.: Ramanujan sums in the context of signal process-
2233
+ ing���part i: Fundamentals. IEEE Trans. Signal Process. 62(16), 4145–
2234
+ 4157 (2014)
2235
+
2236
+
7NE0T4oBgHgl3EQffQAA/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
7NE1T4oBgHgl3EQfTgOa/content/2301.03079v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25195e416ca02bf6e54fdf64a8da957ecf23ce821b1d3c4b7ec9d4960e77e789
3
+ size 193776
7NE1T4oBgHgl3EQfTgOa/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9677a5744679db229a3c6f6e8feb3484fd0d953696f509d7c23fc33eb302c6a9
3
+ size 1769517
7NE1T4oBgHgl3EQfTgOa/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c99fa220eec1b6ec02f5a6f546cc39307755d2479d1ea8fe19b63440cb1d04f
3
+ size 73770
7dAyT4oBgHgl3EQfcvf_/content/2301.00291v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e4bbf14b29cb6c69027850cd8177ed73b3c75f57cde996b953503a483a34d42
3
+ size 1038570
7dAyT4oBgHgl3EQfcvf_/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46aaedc39643a3935c0acbe5ec93bc600f5303db66a769bb42254451f51c58a5
3
+ size 3538989
7dAyT4oBgHgl3EQfcvf_/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e5caf710b94e7e717b4d6a7ef39d03cc389ec24d3473e774f6e305890a3f305
3
+ size 154934
7tE2T4oBgHgl3EQf7whk/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1840ff0cf247ec59d7b8a13afe8394a523525caab92bb4304d62c7581ae87041
3
+ size 2031661
8tFST4oBgHgl3EQfaTh3/content/2301.13795v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc3143438268239655c5c080276647dbb1a530bfdc8730e9e5edf5cacec39a79
3
+ size 2542622
8tFST4oBgHgl3EQfaTh3/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b08492e11b4988f3eb45ab26329827f09ed99bf887748c0ab40c2635f76a430
3
+ size 3866669
8tFST4oBgHgl3EQfaTh3/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:751a8fe33ac92cc1ab56bb7843b2a31f7164559bf9124ce78d1f5918fe2406a7
3
+ size 135947
99AyT4oBgHgl3EQfqfgS/content/2301.00542v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49e50df0b4cfc15f7f2a7745aed106a68343f2dbab2e2485e072c148e3f4cfdd
3
+ size 1761809
99AyT4oBgHgl3EQfqfgS/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85b57d5419628f66ceb2db578324133dfd812826880e670d17e32ee003142c29
3
+ size 4587565
99AyT4oBgHgl3EQfqfgS/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76221a79ea8ddbc14c684225b2459b6ef2f3a01e8b28edbb32c8e86d5d7bf970
3
+ size 169574
9NAyT4oBgHgl3EQfQ_Zv/content/2301.00057v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a52f23f1d936ba35c19df5fe1ad3d8d6be76eba9afcd095abf52bafbef53407
3
+ size 476678
9NAyT4oBgHgl3EQfQ_Zv/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2ff7b4e5eb4686090a6d867f5aea9ac39ba1d0e695b1183f8a53ddf81717724
3
+ size 140386
9dFQT4oBgHgl3EQf5zZD/content/2301.13436v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68db25aff4d2427f42d5d67b4d172d2a0621d24e2c1e11361ea801facdeff276
3
+ size 208947
9dFQT4oBgHgl3EQf5zZD/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba63630d9875ff436065035bfd43fa331c51e276671a2455fbf1420e9ccbb197
3
+ size 3211309
9dFQT4oBgHgl3EQf5zZD/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c61314c21670e5f567e50cc19fe70e26f10349a17d3fadb8001bb49af7b6dd47
3
+ size 119903
BNE2T4oBgHgl3EQf8gli/content/tmp_files/2301.04219v1.pdf.txt ADDED
@@ -0,0 +1,741 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.04219v1 [math.CO] 10 Jan 2023
2
+ EXTENSIONS OF A FAMILY FOR SUNFLOWERS
3
+ JUNICHIRO FUKUYAMA
4
+ Abstract. This paper refines the original construction of the recent proof
5
+ of the sunflower conjecture to prove the same general bound [ck log(k + 1)]m
6
+ on the cardinality of a family of m-cardinality sets without a sunflower of k
7
+ elements. Our proof uses a structural claim on an extension of a family that
8
+ has been previously developed.
9
+ 1. Motivation, Terminology and Related Facts
10
+ The sunflower conjecture states that a family F of sets each of cardinality at
11
+ most m includes a k-sunflower if |F| > cm
12
+ k for some ck ∈ R>0 depending only on
13
+ k, where k-sunflower stands for a family of k different sets with common pair-wise
14
+ intersections. It had been open since the sunflower lemma was presented in 1960
15
+ [1], until it was recently proven [2] with the following statement confirmed.
16
+ Theorem 1.1. There exists c ∈ R>0 such that for every k, m ∈ Z>0, a family F of
17
+ sets each of cardinality at most m includes a k-sunflower if |F| > [ck log(k + 1)]m.
18
+
19
+ The base of the obtained bound [ck log(k + 1)]m is asymptotically close to the
20
+ lower bound k − 1. Our investigation on finding such a near-optimal bound had
21
+ continued from the previous work [3]. The paper attempts to explore some combi-
22
+ natorial structure involving sunflowers, to prove that a uniform family F includes
23
+ three mutually disjoint sets, not just a 3-sunflower, if it satisfies the Γ
24
+
25
+ cm
26
+ 1
27
+ 2 +ǫ�
28
+ -
29
+ condition for any given ǫ ∈ (0, 1) and c depending on ǫ only. Here the Γ (b)-condition
30
+ of F (b ∈ R>0) means |{U : U ∈ F, S ⊂ U}| < b−|S||F| for all nonempty sets S.
31
+ The original construction [4] of the work [2] proves the most noted three-petal
32
+ case of the conjecture, referring to Theorem 1.2 given below that derives the exten-
33
+ sion generator theorem presented in [3]. The goal of this paper is to further refine1
34
+ the original construction to prove the same [ck log(k + 1)]m bound. We will find
35
+ such proof at the end of the next section.
36
+ The rest of this section describes the similar terminology and related facts. De-
37
+ note the universal set by X, its cardinality by n, and a sufficiently small positive
38
+ 2010 Mathematics Subject Classification. 05D05: Extremal Set Theory (Primary).
39
+ Key words and phrases. sunflower lemma, sunflower conjecture, ∆-system.
40
+ 1Extra information on this paper and the references [2, 3, 4] is available at Penn State Sites.
41
+ Web address: https://sites.psu.edu/sunflowerconjecture/2023/01/10/index-page/
42
+ 1
43
+
44
+ 2
45
+ JUNICHIRO FUKUYAMA
46
+ number depending on no other variables by ǫ ∈ (0, 1). In addition,
47
+ i, j, m, p, r ∈ Z≥0,
48
+ [b] = [1, b] ∩ Z,
49
+ F ⊂ 2X,
50
+ �X′
51
+ m
52
+
53
+ = {U : U ⊂ X′, |U| = m} ,
54
+ for X′ ⊂ X,
55
+ and
56
+ F[S] = {U : U ∈ F, S ⊂ U} ,
57
+ for S ⊂ X,
58
+ A set means a subset of X, and one in
59
+ �X
60
+ m
61
+
62
+ is called m-set.
63
+ Weight X by some w : 2X → R≥0, which induces the norm ∥ · ∥ of a family
64
+ defined by ∥F∥ = �
65
+ U∈F w(U) for any F. Denote set/family subtraction by −,
66
+ while we use the symbol \ for the different notion described below.
67
+ Use ← to
68
+ express substitution into a variable. For simplicity, a real interval may denote the
69
+ integral interval of the same range, e.g., use (1, t] instead of (1, t] ∩ Z if it is clear
70
+ by context. Obvious floor/ceiling functions will be ommited throughout the paper.
71
+ Now let F be a family of m-sets, i.e., F ⊂
72
+ �X
73
+ m
74
+
75
+ . We say
76
+ κ (F) =
77
+ �n
78
+ m
79
+
80
+ − ln |F|.
81
+ is the sparsity of F. The family satisfies the Γ (b)-condition on ∥ · ∥ (b ∈ R>0) if
82
+ ∥G∥ = ∥G ∩ F∥,
83
+ for all G ⊂ 2X,
84
+ and
85
+ ∥F[S]∥ < b−|S|∥F∥,
86
+ for every nonempty set S ⊂ X.
87
+ As used above, the norm ∥ · ∥ can be omitted if it is induced by the unit weight,
88
+ i.e.,
89
+ w : V �→
90
+ � 1,
91
+ if V ∈ F,
92
+ 0,
93
+ otherwise.
94
+ The following theorem is proven2 in [3].
95
+ Theorem 1.2. Let X be weighted to induce the norm ∥ · ∥. For every sufficiently
96
+ small ǫ ∈ (0, 1), and F ⊂
97
+ �X
98
+ m
99
+
100
+ satisfying the Γ
101
+ � 4γn
102
+ l
103
+
104
+ -condition on ∥ · ∥ for some
105
+ l ∈ [n], m ∈ [l], and γ ∈
106
+
107
+ ǫ−2, lm−1�
108
+ , there are
109
+ ��n
110
+ l
111
+
112
+ (1 − ǫ)
113
+
114
+ sets Y ∈
115
+ �X
116
+ l
117
+
118
+ such
119
+ that
120
+
121
+ 1 −
122
+ � 2
123
+ ǫγ
124
+ � � l
125
+ m
126
+
127
+ � n
128
+ m
129
+ � ∥F∥ <
130
+ ����
131
+ �Y
132
+ m
133
+ ����� <
134
+
135
+ 1 +
136
+ � 2
137
+ ǫγ
138
+ � � l
139
+ m
140
+
141
+ � n
142
+ m
143
+ � ∥F∥ .
144
+
145
+ With Theorem 1.2, we can prove the aforementioned extention generator theorem
146
+ that is about the l-extension of F, i.e.,
147
+ Ext (F, l) =
148
+
149
+ T : T ∈
150
+ �X
151
+ l
152
+
153
+ , and ∃U ∈ F, U ⊂ T
154
+
155
+ ,
156
+ for l ∈ [n] − [m].
157
+ It is not difficult to see
158
+ (1.1)
159
+ κ [Ext (F, l)] ≤ κ (F) ,
160
+ as in [3], where it is also shown:
161
+ Lemma 1.3. For F ⊂
162
+ �X
163
+ m
164
+
165
+ such that m ≤ n/2,
166
+ κ
167
+ �� X
168
+ 2m
169
+
170
+ − Ext (F, 2m)
171
+
172
+ ≥ 2κ
173
+ ��X
174
+ m
175
+
176
+ − F
177
+
178
+ .
179
+
180
+ 2In [3], the theorem uses so called Γ2 (b, 1)-condition on ∥ · ∥. It is straightforward to check it
181
+ means the Γ (b)-condition on ∥ · ∥ here.
182
+
183
+ EXTENSIONS OF A FAMILY FOR SUNFLOWERS
184
+ 3
185
+ Further denote
186
+ Gp = G × G × · · · × G
187
+
188
+ ��
189
+
190
+ p
191
+ ,
192
+ X = (X1, X2, . . . , Xp) ∈
193
+
194
+ 2X�p ,
195
+ Rank (X) = p,
196
+ and
197
+ Union (X) =
198
+ p�
199
+ j=1
200
+ Xj.
201
+ Suppose m divides n and p = m. If Union (X) = X, and all Xi are mutually
202
+ disjoint n/m-sets, then such an X is an m-split of X with Xi called strips. Its
203
+ subsplit X′ of rank r ∈ [m], or r-subsplit of X, is the tuple of some r strips of X
204
+ preserving the order.
205
+ A set S is on X′ if S ⊂ Union
206
+
207
+ X′�
208
+ , and |Xi ∩ S| ∈ {0, 1} for every strip Xi of
209
+ X′. Denote
210
+ - by 2X′ the family of all sets on X′,
211
+ - by
212
+ �X′
213
+ p
214
+
215
+ the family of p-sets on X′,
216
+ - by X \ X′ the subsplit of rank m − m′ consisting of the strips in X but not in
217
+ X′,
218
+ - and by X′ \ B for a set B, abusing the symbol \, the subsplit of X consisting of
219
+ the strips each disjoint with B.
220
+ For notational convenience, allow Rank
221
+
222
+ X′�
223
+ = 0 for which X′ = (∅), Union
224
+
225
+ X′�
226
+ =
227
+ ∅, and
228
+ �X′
229
+ p
230
+
231
+ = {∅}. We have:
232
+ Lemma 1.4. For any nonempty family F ⊂
233
+ �X
234
+ m
235
+
236
+ such that m divides n = |X|,
237
+ there exists an m-split X of X such that
238
+ ����F ∩
239
+ �X
240
+ m
241
+ ����� ≥
242
+ � n
243
+ m
244
+ �m |F|
245
+ � n
246
+ m
247
+ � > |F| exp (−m) .
248
+
249
+ The lemma proven in [2] poses a special case of the general statement presented in
250
+ [3].
251
+ 2. Proof of Theorem 1.1
252
+ We prove Theorem 1.1 with Theorem 1.2 in the two subsections below. Given F
253
+ and k, we will find a subfamily ˆF ⊂ F with a property that implies the existence
254
+ of a k-sunflower in itself.
255
+ 2.1. Formulation and Construction. Letting
256
+ h = exp
257
+ �1
258
+ ǫ
259
+
260
+ ,
261
+ and
262
+ c = exp (h) ,
263
+ assume WLOG that
264
+ - k ≥ 3,
265
+ - n = |X| is larger than ckm and divisible by m. Otherwise add some extra elements
266
+ to X.
267
+ - F ⊂
268
+ �X
269
+ m
270
+
271
+ for an m-split X of X by Lemma 1.4, satisfying the Γ (cck ln k)-condition
272
+ and |F| > (cck ln k)m.
273
+ - |F| < (km)m and m > cc ln k, otherwise F includes a k-sunflower by the sunflower
274
+ lemma.
275
+
276
+ 4
277
+ JUNICHIRO FUKUYAMA
278
+ FindCores
279
+ Input:
280
+ i) the family F ⊂
281
+ �X
282
+ m
283
+
284
+ .
285
+ Outputs:
286
+ i) C ⊂
287
+ �X
288
+ r0
289
+
290
+ for some r0 ∈ [0, m].
291
+ ii) ˆF ⊂ �
292
+ C∈C F[C] such that | ˆF| ≥ 3−m−1|F|.
293
+ 1. F′ ← F;
294
+ ˆF ← ∅;
295
+ C ← ∅;
296
+ 2. for r = m down to 0 do:
297
+ 2-1. repeat:
298
+ a) find an r-set C such that |F′[C]| ≥ f(r) putting TC ← F′[C];
299
+ b) if found then:
300
+ F′ ← F′ − TC;
301
+ ˆF ← ˆF ∪ TC;
302
+ C ← C ∪ {C};
303
+ else exit Loop 2-1;
304
+ 2-2. if | ˆF| ≥ 3−m+r−1|F| then return
305
+
306
+ r, C, ˆF
307
+
308
+ ;
309
+ Figure 1. Algorithm FindCores
310
+ Let
311
+ i ∈ [k],
312
+ r ∈ [0, m],
313
+ b = ck ln k,
314
+ δ =
315
+ ǫ
316
+ k ln k,
317
+ F′, Fi ⊂ F,
318
+ C ∈ 2X,
319
+ and
320
+ Yi ∈ 2X.
321
+ A tuple Z = (C, Y1; F1, Y2; F2, · · · , Yk; Fk) is said to be a partial sunflower of
322
+ rank r over F′ if there exists an r-subsplit X∗ of X satisfying the four conditions:
323
+ Z-i) C ∈ �m/c
324
+ u=0
325
+ �X∗
326
+ u
327
+
328
+ .
329
+ Z-ii) Yi are mutually disjoint k subsets of Union (X∗ \ C) such that
330
+ |Yi ∩ X†| = δ|X†| for each strip X† of X∗ \ C.
331
+ Z-iii) The k families Fi are each nonempty included in
332
+ F′[C] ∩
333
+ �X − Union (X∗ \ C) ∪ Yi
334
+ m
335
+
336
+ ,
337
+ and are identical if Rank (X∗ \ C) = 0.
338
+ Z-iv) |Fi| < 2|Fi′| for i ∈ [k] and i′ ∈ [k] − {i}.
339
+ We say that such an Fi occurs on Z and in Z with the core C. Also Z and
340
+ Fi are on X∗. A family Z of Z on one or more X∗ is a partial sunflower family
341
+ (PSF) of rank r over F′, if each two Fi occurring on two different Z are mutually
342
+ disjoint, i.e., the universal disjoint property of Z is met. Denote
343
+ F (Z) :=
344
+
345
+ Z∈Z
346
+ i∈[k]
347
+ Fi of Z,
348
+ for any PSF Z abusing the symbol F.
349
+ In the rest of our proof, we construct a nonempty PSF of rank m over F. This
350
+ means a k-sunflower in F proving Theorem 1.1.
351
+ With
352
+ f : Z≥0 → R≥0,
353
+ x �→ ǫ3m(chk)−x
354
+ k
355
+ |F|,
356
+
357
+ EXTENSIONS OF A FAMILY FOR SUNFLOWERS
358
+ 5
359
+ obtain the families C and ˆF by the algorithm FindCores described in Fig. 1. It
360
+ is straightforward to see that the two outputs correctly satisfy the properties i)-ii).
361
+ In addition:
362
+ A) | ˆF[U]| < f(|U|) for all U ∈ �m
363
+ r′=r0+1
364
+ �X
365
+ r′
366
+
367
+ .
368
+ B) We will construct partial sunflowers over ˆF with cores C in C. The families TC
369
+ Step 2-1 finds for r = r0 are mutually disjoint each with |TC| ≥ f(r0). By the
370
+ Γ (cck ln k)-condition of F and cc ln k < m,
371
+ k−1ǫ3m(chk ln k)−|C||F| = f (r0) ≤ |TC| ≤ |F[C]| < (cck ln k)−|C||F|,
372
+
373
+ r0 = |C| < ln k − 3m ln ǫ
374
+ (c − h) ln c
375
+ < m
376
+ 2c
377
+ �ln k
378
+ m + 1
379
+
380
+ < m
381
+ c .
382
+ Define a statement on the obtained objects.
383
+ Proposition Πr for r ∈ [r0, m]: there exists a PSF Z of rank r over ˆF such that
384
+ |F(Z)| > ǫ2r−2r0| ˆF|.
385
+
386
+ Such a Z is said to be r-normal. By definition, Z is the union of PSFs ZX∗ on
387
+ r-subsplits X∗ satisfying the universal disjoint property.
388
+ Our final goal of finding a nonempty PSF of rank m over F would be met if Πm.
389
+ The proposition Πr0 holds since
390
+ Z =
391
+
392
+
393
+
394
+
395
+ C, ∅; TC, ∅; TC, · · · , ∅; TC
396
+
397
+ ��
398
+
399
+ k
400
+
401
+  : C ∈ ˆC
402
+
403
+
404
+
405
+ is an r0-normal PSF such that F (Z) = ˆF by B) where TC are the ones mentioned
406
+ there. So it suffices to show
407
+ (2.1)
408
+ Πr ⇒ Πr+1,
409
+ for every r ∈ [r0, m),
410
+ to have proof of a k-sunflower in F.
411
+ 2.2. Proof of (2.1). We start showing (2.1) as the only remaining task. Assume
412
+ Πr for a particular r ∈ [r0, m), so we have an r-normal PSF Z that is the union of
413
+ ZX∗ on some r-subsplits X∗ by definition. We confirm Πr+1 in four steps.
414
+ Step 1. Reconstruct Z into another PSF Z′. Obtain such a Z′ by the algorithm
415
+ Reconstruct described in Fig. 2. It is a PSF of rank r over F (Z) satisfying the
416
+ two conditions:
417
+ C) |F (Z′) | > 2−1ǫ|F (Z) |.
418
+ D) For each Z ∈ Z′ on an r-subsplit X∗, there exists an r+1-subsplit X′ containing
419
+ X∗ such that each Fi on Z meets
420
+ |Fi[S]| < 1
421
+ b |Fi|,
422
+ ∀S ∈
423
+ �X′ \ X∗
424
+ 1
425
+
426
+ .
427
+
428
+ We see their truth by the notes below. Such a Z ∈ Z′ is said to be on the split
429
+ pair
430
+
431
+ X∗, X′�
432
+ . In Steps 2 and 3, we will construct our desired r + 1-normal PSF
433
+ Z′′ from Z′ confirming Πr+1.
434
+ Justification of Z′ being a PSF with C) and D).
435
+ - F (ZX′) of an X′ disregarded by Step 2-3 is negligible as their union will be
436
+ smaller than 2−m� m
437
+ r+1
438
+
439
+ <
440
+ � 3
441
+ 2
442
+ �−m <
443
+ � 3
444
+ 2
445
+ �−cc ln k < ǫ3/k of F (Z).
446
+
447
+ 6
448
+ JUNICHIRO FUKUYAMA
449
+ Reconstruct
450
+ Input:
451
+ an r-normal PSF Z for some r ∈ [r0, m).
452
+ Output:
453
+ a PSF Z′ of rank r over F (Z) satisfying C) and D).
454
+ 1. X ← the family of all r-subsplits X∗;
455
+ /* The given Z is the union of PSFs ZX∗ on some X∗ by definition. */
456
+ 2. for each r + 1-subsplit X′ do:
457
+ 2-1. X∗ ← the family of all X∗ ∈ X that are r-subsplits of X′;
458
+ 2-2. ZX′ ← �
459
+ X∗∈X∗ ZX∗;
460
+ 2-3. if |F (ZX′) | < 3−m|F (Z) | then go to Step 2 for the next X′ else X ← X − X∗;
461
+ 2-4. for each Fi in ZX′ do F′
462
+ i ← Fi;
463
+ 2-5. for each Fi in ZX′ and on X∗, and sets B ∈
464
+ �X∗
465
+ r
466
+
467
+ and U ∈
468
+ � X′
469
+ r+1
470
+
471
+ [B] such that
472
+ |Fi[U]| >
473
+
474
+ c
475
+
476
+ hk ln k
477
+ �−r−1
478
+ |Fi[B]| do F′
479
+ i ← F′
480
+ i − Fi[U];
481
+ 2-6. for each Z ∈ ZX′ do:
482
+ a) if |F′
483
+ i| < ǫ|Fi| for some Fi on Z then delete Z from ZX′;
484
+ b) else normalize Z for the condition Z-iv) as follows:
485
+ b)-i) for each Fi on Z do:
486
+ γi ← |F′
487
+ i|−1 mini′∈[k] |F′
488
+ i′|;
489
+ F′
490
+ i ← any subfamily of F′
491
+ i of cardinality min (|F′
492
+ i|, ⌊2γi|F′
493
+ i|⌋);
494
+ b)-ii) replace all Fi by the F′
495
+ i to reconstruct Z;
496
+ 3. return the union of all ZX′ found in Loop 2 as Z′;
497
+ Figure 2. Algorithm Reconstruct
498
+ - |F(ZX′)[U]| ≤ | ˆF[U]| < f (r + 1) for all U ∈
499
+ � X
500
+ r+1
501
+
502
+ by A). So,
503
+ |F (ZX′) [U]|
504
+ |F (ZX′) |
505
+ <
506
+ f (r + 1)
507
+ 3−mǫ2r−2r0| ˆF|
508
+ <
509
+
510
+ chk ln k
511
+ �−r−1
512
+ k
513
+ ,
514
+ before Step 2-4.
515
+ - Fi[B] are mutually disjoint for all different Fi occurring in ZX′ each on an X∗,
516
+ and B ∈
517
+ �X∗
518
+ r
519
+
520
+ right before Step 2-5, by the universal disjoint property of Z. (By
521
+ the rule Z-iii), Fi on a single Z are identified when r = r0.) In addition, Fi[U]
522
+ are mutually disjoint for all Fi and U ∈
523
+ � X′
524
+ r+1
525
+
526
+ meeting
527
+
528
+ X∗∈X∗, Fi in ZX′ and on X∗
529
+ B∈(X∗
530
+ r ), U∈(X′
531
+ m′)[B]
532
+ Fi[U] = F(ZX′).
533
+ - By the above two, Step 2-5 may reduce
534
+ V =
535
+
536
+ Fi in ZX′
537
+ F′
538
+ i
539
+ by less than its ǫ3/k, leaving only Fi, B, and U such that
540
+ |F′
541
+ i[U]| < (cb)−r−1|F′
542
+ i[B]|,
543
+
544
+ |F′
545
+ i[B]| > (cb)r+1.
546
+ - By Z-iv) of Z, Step 2-6-a) may only reduce less than 2ǫ3 of V.
547
+ - The process of normalization is well-defined by Step 2-6-b) due to |F′
548
+ i| > (cb)r+1
549
+ before it. It could further reduce V into its ǫ/2 or larger.
550
+
551
+ EXTENSIONS OF A FAMILY FOR SUNFLOWERS
552
+ 7
553
+ - The condition Z-iv) of the obtained Z′ follows the above as well as the two
554
+ properties C) and D).
555
+ Step 2. For each Fi occurring in Z′, construct a family Yi of Y ∈
556
+
557
+ X†
558
+ δ|X†|
559
+
560
+ such
561
+ that Fi ∩
562
+ �X−X†∪Y
563
+ m
564
+
565
+ is sufficiently large, where X† = Union(X′ \ X∗). Consider
566
+ each Z ∈ Z′ on (X∗, X′) with the unique strip X† of X′ \ X∗, and an Fi on Z.
567
+ Weight X† by 2X† → Z≥0, W �→ |Fi[W]| inducing the norm ∥ · ∥ as in Section 1.
568
+ The family H =
569
+ �X†
570
+ 1
571
+
572
+ satisfies the Γ(b)-condition on ∥ ·∥ by D). Apply Theorem 1.2
573
+ to H. There exists Yi ⊂
574
+ � X†
575
+ δ|X†|
576
+
577
+ such that
578
+ |Yi| >
579
+ � |X†|
580
+ δ|X†|
581
+
582
+ [1 − exp (−h)] ,
583
+ (2.2)
584
+ δ [1 − exp (−h)] |Fi| <
585
+ ��FY
586
+ i
587
+ �� < δ [1 + exp (−h)] |Fi|,
588
+ for every Y ∈ Yi,
589
+ where
590
+ FY
591
+ i ⊂ Fi ∩
592
+ �X − X† ∪ Y
593
+ m
594
+
595
+ .
596
+ Step 3. Find Z′′ by (2.2). Now consider the same Z with the k families Fi and
597
+ sets Yi. Put
598
+ δ′ = 2δ ln k,
599
+ and
600
+ Y′
601
+ i = Ext (Yi, δ′|X†|) ,
602
+ for each Fi to see
603
+ |Y′
604
+ i| >
605
+ � |X†|
606
+ δ′|X†|
607
+
608
+ [1 − exp (−h ln k)] >
609
+ � |X†|
610
+ δ′|X†|
611
+ � �
612
+ 1 − ǫ
613
+ k
614
+
615
+ ,
616
+ by Lemma 1.3, (1.1) and (2.2): to the Yi, repeatedly apply the lemma ⌈log2 ln k⌉
617
+ times doubling the second parameter of Ext. Then κ
618
+ ��
619
+ X†
620
+ δ′|X†|
621
+
622
+ − Y′
623
+ i
624
+
625
+ > h ln k.
626
+ Hence, there exist more than
627
+ � |X†|
628
+ δ′|X†|
629
+ ��|X†| − δ′|X†|
630
+ δ′|X†|
631
+
632
+ · · ·
633
+ �|X†| − (k − 1)δ′|X†|
634
+ δ′|X†|
635
+
636
+ (1 − ǫ)
637
+ tuples (Y ′
638
+ 1, Y ′
639
+ 2, . . . , Y ′
640
+ k) ∈
641
+
642
+ X†
643
+ δ′|X†|
644
+ �k such that each Y ′
645
+ i is in Y′
646
+ i, disjoint with the other
647
+ k − 1.
648
+ For such a (Y ′
649
+ 1, Y ′
650
+ 2, . . . , Y ′
651
+ k), find a δ|X†|-set Y †
652
+ i ∈ Yi included in each Y ′
653
+ i . Add
654
+ the tuple
655
+
656
+ C, Y1 ∪ Y †
657
+ 1 ; F
658
+ Y †
659
+ 1
660
+ 1 , Y2 ∪ Y †
661
+ 2 ; F
662
+ Y †
663
+ 2
664
+ 2 , . . . , Yk ∪ Y †
665
+ k ; F
666
+ Y †
667
+ k
668
+ k
669
+
670
+ to Z′′, where the set C is that of Z. By construction, it satisfies the conditions Z-i)
671
+ to iii) with F′ ← F (Z′).
672
+ Subtract �k
673
+ i=1 F
674
+ Y †
675
+ 1
676
+ i
677
+ from Fi. Repeat the above ǫ−1/2 times including Step 2 for
678
+ the current Z. Then denote an element of Z′′ by Z′, and family F
679
+ Y †
680
+ i
681
+ i
682
+ by F′
683
+ i. Such
684
+ a Z′ and F′
685
+ i are produced from Z and Fi, and we assume it for the four objects
686
+ anywhere below.
687
+ Finally, normalize each Z′ for Z-iv) the same way as Step 2-6-b)-i) of Recon-
688
+ struct with the γi given there. It possibly reduces F′
689
+ i into its 1 − exp (−h/2) or
690
+ larger.
691
+ Perform the process for all Z ∈ Z′ to complete our construction of Z′′.
692
+
693
+ 8
694
+ JUNICHIRO FUKUYAMA
695
+ Step 4. Confirm Πr+1 to finish the proof. For the r + 1-normality of Z′′, it can
696
+ be checked by straightforward recursive arguments with (2.2) that
697
+ 1
698
+ 2ǫ1/2|Fi| < ∆|Fi| < 2ǫ1/2|Fi|,
699
+ where |Fi| expresses the value after Step 1, and ∆|Fi| the difference between |Fi|
700
+ and its final value. This means Step 2 can use the Γ
701
+
702
+ b
703
+
704
+ 1 − 2ǫ1/2��
705
+ -condition on ∥ ·
706
+ ∥B instead of the Γ (b)-condition throughout the construction, constantly achieving
707
+ (2.2) for a Z. In addition, the normalization of each Z′ always keeps more than
708
+ half of its �k
709
+ i=1 F′
710
+ i.
711
+ Hence, the recursive loop for every Z terminates without an exception defining
712
+ our Z′′ with |F (Z′′) | > ǫ2/3|F (Z′) | > ǫ2|F (Z) | by C). As it is a PSF with the
713
+ universal disjoint property by construction, we confirm the proposition Πr+1 to
714
+ complete our proof of (2.1).
715
+ We now have Theorem 1.1.
716
+ References
717
+ 1. Erd¨os, P., Rado, R. : Intersection theorems for systems of sets. Journal of the London Math-
718
+ ematical Society, Second Series, 35 (1), pp. 85 - 90 (1960)
719
+ 2. Fukuyama, J. : The sunflower conjecture proven. arXiv:2212.13609 [math.CO] (2022)
720
+ 3. Fukuyama,
721
+ J.:
722
+ Improved
723
+ bound
724
+ on
725
+ sets
726
+ including
727
+ no
728
+ sunflower
729
+ with
730
+ three
731
+ petals.
732
+ arXiv:1809.10318v3 [math.CO] (2021)
733
+ 4. Fukuyama, J. : The case k = 3 of the sunflower conjecture. Private work available at Penn
734
+ State Sites.
735
+ Web address:
736
+ https://sites.psu.edu/sunflowerconjecture/files/2023/01/Proof-of-the-3-petal-
737
+ sunflower-conjecture.pdf (2023)
738
+ Department of Computer Science and Engineering, The Pennsylvania State Univer-
739
+ sity, PA 16802, USA
740
+ E-mail address: [email protected]
741
+
BNE2T4oBgHgl3EQf8gli/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,271 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf,len=270
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
3
+ page_content='04219v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
4
+ page_content='CO] 10 Jan 2023 EXTENSIONS OF A FAMILY FOR SUNFLOWERS JUNICHIRO FUKUYAMA Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
5
+ page_content=' This paper refines the original construction of the recent proof of the sunflower conjecture to prove the same general bound [ck log(k + 1)]m on the cardinality of a family of m-cardinality sets without a sunflower of k elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
6
+ page_content=' Our proof uses a structural claim on an extension of a family that has been previously developed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
7
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
8
+ page_content=' Motivation, Terminology and Related Facts The sunflower conjecture states that a family F of sets each of cardinality at most m includes a k-sunflower if |F| > cm k for some ck ∈ R>0 depending only on k, where k-sunflower stands for a family of k different sets with common pair-wise intersections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
9
+ page_content=' It had been open since the sunflower lemma was presented in 1960 [1], until it was recently proven [2] with the following statement confirmed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
10
+ page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
11
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
12
+ page_content=' There exists c ∈ R>0 such that for every k, m ∈ Z>0, a family F of sets each of cardinality at most m includes a k-sunflower if |F| > [ck log(k + 1)]m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
13
+ page_content=' □ The base of the obtained bound [ck log(k + 1)]m is asymptotically close to the lower bound k − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
14
+ page_content=' Our investigation on finding such a near-optimal bound had continued from the previous work [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
15
+ page_content=' The paper attempts to explore some combi- natorial structure involving sunflowers, to prove that a uniform family F includes three mutually disjoint sets, not just a 3-sunflower, if it satisfies the Γ � cm 1 2 +ǫ� condition for any given ǫ ∈ (0, 1) and c depending on ǫ only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
16
+ page_content=' Here the Γ (b)-condition of F (b ∈ R>0) means |{U : U ∈ F, S ⊂ U}| < b−|S||F| for all nonempty sets S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
17
+ page_content=' The original construction [4] of the work [2] proves the most noted three-petal case of the conjecture, referring to Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
18
+ page_content='2 given below that derives the exten- sion generator theorem presented in [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
19
+ page_content=' The goal of this paper is to further refine1 the original construction to prove the same [ck log(k + 1)]m bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
20
+ page_content=' We will find such proof at the end of the next section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
21
+ page_content=' The rest of this section describes the similar terminology and related facts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
22
+ page_content=' De- note the universal set by X, its cardinality by n, and a sufficiently small positive 2010 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
23
+ page_content=' 05D05: Extremal Set Theory (Primary).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
24
+ page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
25
+ page_content=' sunflower lemma, sunflower conjecture, ∆-system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
26
+ page_content=' 1Extra information on this paper and the references [2, 3, 4] is available at Penn State Sites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
27
+ page_content=' Web address: https://sites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
28
+ page_content='psu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
29
+ page_content='edu/sunflowerconjecture/2023/01/10/index-page/ 1 2 JUNICHIRO FUKUYAMA number depending on no other variables by ǫ ∈ (0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
30
+ page_content=' In addition, i, j, m, p, r ∈ Z≥0, [b] = [1, b] ∩ Z, F ⊂ 2X, �X′ m � = {U : U ⊂ X′, |U| = m} , for X′ ⊂ X, and F[S] = {U : U ∈ F, S ⊂ U} , for S ⊂ X, A set means a subset of X, and one in �X m � is called m-set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
31
+ page_content=' Weight X by some w : 2X → R≥0, which induces the norm ∥ · ∥ of a family defined by ∥F∥ = � U∈F w(U) for any F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
32
+ page_content=' Denote set/family subtraction by −, while we use the symbol \\ for the different notion described below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
33
+ page_content=' Use ← to express substitution into a variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
34
+ page_content=' For simplicity, a real interval may denote the integral interval of the same range, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
35
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
36
+ page_content=', use (1, t] instead of (1, t] ∩ Z if it is clear by context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
37
+ page_content=' Obvious floor/ceiling functions will be ommited throughout the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
38
+ page_content=' Now let F be a family of m-sets, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
39
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
40
+ page_content=', F ⊂ �X m � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
41
+ page_content=' We say κ (F) = �n m � − ln |F|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
42
+ page_content=' is the sparsity of F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
43
+ page_content=' The family satisfies the Γ (b)-condition on ∥ · ∥ (b ∈ R>0) if ∥G∥ = ∥G ∩ F∥, for all G ⊂ 2X, and ∥F[S]∥ < b−|S|∥F∥, for every nonempty set S ⊂ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
44
+ page_content=' As used above, the norm ∥ · ∥ can be omitted if it is induced by the unit weight, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
45
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
46
+ page_content=', w : V �→ � 1, if V ∈ F, 0, otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
47
+ page_content=' The following theorem is proven2 in [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
48
+ page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
49
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
50
+ page_content=' Let X be weighted to induce the norm ∥ · ∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
51
+ page_content=' For every sufficiently small ǫ ∈ (0, 1), and F ⊂ �X m � satisfying the Γ � 4γn l � condition on ∥ · ∥ for some l ∈ [n], m ∈ [l], and γ ∈ � ǫ−2, lm−1� , there are ��n l � (1 − ǫ) � sets Y ∈ �X l � such that � 1 − � 2 ǫγ � � l m � � n m � ∥F∥ < ���� �Y m ����� < � 1 + � 2 ǫγ � � l m � � n m � ∥F∥ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
52
+ page_content=' □ With Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
53
+ page_content='2, we can prove the aforementioned extention generator theorem that is about the l-extension of F, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
54
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
55
+ page_content=', Ext (F, l) = � T : T ∈ �X l � , and ∃U ∈ F, U ⊂ T � , for l ∈ [n] − [m].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
56
+ page_content=' It is not difficult to see (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
57
+ page_content='1) κ [Ext (F, l)] ≤ κ (F) , as in [3], where it is also shown: Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
58
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
59
+ page_content=' For F ⊂ �X m � such that m ≤ n/2, κ �� X 2m � − Ext (F, 2m) � ≥ 2κ ��X m � − F � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
60
+ page_content=' □ 2In [3], the theorem uses so called Γ2 (b, 1)-condition on ∥ · ∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
61
+ page_content=' It is straightforward to check it means the Γ (b)-condition on ∥ · ∥ here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
62
+ page_content=' EXTENSIONS OF A FAMILY FOR SUNFLOWERS 3 Further denote Gp = G × G × · · · × G � �� � p , X = (X1, X2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
63
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
64
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
65
+ page_content=' , Xp) ∈ � 2X�p , Rank (X) = p, and Union (X) = p� j=1 Xj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
66
+ page_content=' Suppose m divides n and p = m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
67
+ page_content=' If Union (X) = X, and all Xi are mutually disjoint n/m-sets, then such an X is an m-split of X with Xi called strips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
68
+ page_content=' Its subsplit X′ of rank r ∈ [m], or r-subsplit of X, is the tuple of some r strips of X preserving the order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
69
+ page_content=' A set S is on X′ if S ⊂ Union � X′� , and |Xi ∩ S| ∈ {0, 1} for every strip Xi of X′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
70
+ page_content=' Denote by 2X′ the family of all sets on X′, by �X′ p � the family of p-sets on X′, by X \\ X′ the subsplit of rank m − m′ consisting of the strips in X but not in X′, and by X′ \\ B for a set B, abusing the symbol \\, the subsplit of X consisting of the strips each disjoint with B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
71
+ page_content=' For notational convenience, allow Rank � X′� = 0 for which X′ = (∅), Union � X′� = ∅, and �X′ p � = {∅}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
72
+ page_content=' We have: Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
73
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
74
+ page_content=' For any nonempty family F ⊂ �X m � such that m divides n = |X|, there exists an m-split X of X such that ����F ∩ �X m ����� ≥ � n m �m |F| � n m � > |F| exp (−m) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
75
+ page_content=' □ The lemma proven in [2] poses a special case of the general statement presented in [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
76
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
77
+ page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
78
+ page_content='1 We prove Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
79
+ page_content='1 with Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
80
+ page_content='2 in the two subsections below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
81
+ page_content=' Given F and k, we will find a subfamily ˆF ⊂ F with a property that implies the existence of a k-sunflower in itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
82
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
83
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
84
+ page_content=' Formulation and Construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
85
+ page_content=' Letting h = exp �1 ǫ � , and c = exp (h) , assume WLOG that k ≥ 3, n = |X| is larger than ckm and divisible by m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
86
+ page_content=' Otherwise add some extra elements to X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
87
+ page_content=' F ⊂ �X m � for an m-split X of X by Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
88
+ page_content='4, satisfying the Γ (cck ln k)-condition and |F| > (cck ln k)m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
89
+ page_content=' |F| < (km)m and m > cc ln k, otherwise F includes a k-sunflower by the sunflower lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
90
+ page_content=' 4 JUNICHIRO FUKUYAMA FindCores Input: i) the family F ⊂ �X m � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
91
+ page_content=' Outputs: i) C ⊂ �X r0 � for some r0 ∈ [0, m].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
92
+ page_content=' ii) ˆF ⊂ � C∈C F[C] such that | ˆF| ≥ 3−m−1|F|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
93
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
94
+ page_content=' F′ ← F;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
95
+ page_content=' ˆF ← ∅;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
96
+ page_content=' C ← ∅;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
97
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
98
+ page_content=' for r = m down to 0 do: 2-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
99
+ page_content=' repeat: a) find an r-set C such that |F′[C]| ≥ f(r) putting TC ← F′[C];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
100
+ page_content=' b) if found then: F′ ← F′ − TC;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
101
+ page_content=' ˆF ← ˆF ∪ TC;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
102
+ page_content=' C ← C ∪ {C};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
103
+ page_content=' else exit Loop 2-1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
104
+ page_content=' 2-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
105
+ page_content=' if | ˆF| ≥ 3−m+r−1|F| then return � r, C, ˆF � ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
106
+ page_content=' Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
107
+ page_content=' Algorithm FindCores Let i ∈ [k], r ∈ [0, m], b = ck ln k, δ = ǫ k ln k, F′, Fi ⊂ F, C ∈ 2X, and Yi ∈ 2X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
108
+ page_content=' A tuple Z = (C, Y1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
109
+ page_content=' F1, Y2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
110
+ page_content=' F2, · · · , Yk;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
111
+ page_content=' Fk) is said to be a partial sunflower of rank r over F′ if there exists an r-subsplit X∗ of X satisfying the four conditions: Z-i) C ∈ �m/c u=0 �X∗ u � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
112
+ page_content=' Z-ii) Yi are mutually disjoint k subsets of Union (X∗ \\ C) such that |Yi ∩ X†| = δ|X†| for each strip X† of X∗ \\ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
113
+ page_content=' Z-iii) The k families Fi are each nonempty included in F′[C] ∩ �X − Union (X∗ \\ C) ∪ Yi m � , and are identical if Rank (X∗ \\ C) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
114
+ page_content=' Z-iv) |Fi| < 2|Fi′| for i ∈ [k] and i′ ∈ [k] − {i}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
115
+ page_content=' We say that such an Fi occurs on Z and in Z with the core C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
116
+ page_content=' Also Z and Fi are on X∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
117
+ page_content=' A family Z of Z on one or more X∗ is a partial sunflower family (PSF) of rank r over F′, if each two Fi occurring on two different Z are mutually disjoint, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
118
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
119
+ page_content=', the universal disjoint property of Z is met.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
120
+ page_content=' Denote F (Z) := � Z∈Z i∈[k] Fi of Z, for any PSF Z abusing the symbol F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
121
+ page_content=' In the rest of our proof, we construct a nonempty PSF of rank m over F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
122
+ page_content=' This means a k-sunflower in F proving Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
123
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
124
+ page_content=' With f : Z≥0 → R≥0, x �→ ǫ3m(chk)−x k |F|, EXTENSIONS OF A FAMILY FOR SUNFLOWERS 5 obtain the families C and ˆF by the algorithm FindCores described in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
125
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
126
+ page_content=' It is straightforward to see that the two outputs correctly satisfy the properties i)-ii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
127
+ page_content=' In addition: A) | ˆF[U]| < f(|U|) for all U ∈ �m r′=r0+1 �X r′ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
128
+ page_content=' B) We will construct partial sunflowers over ˆF with cores C in C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
129
+ page_content=' The families TC Step 2-1 finds for r = r0 are mutually disjoint each with |TC| ≥ f(r0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
130
+ page_content=' By the Γ (cck ln k)-condition of F and cc ln k < m, k−1ǫ3m(chk ln k)−|C||F| = f (r0) ≤ |TC| ≤ |F[C]| < (cck ln k)−|C||F|, ⇒ r0 = |C| < ln k − 3m ln ǫ (c − h) ln c < m 2c �ln k m + 1 � < m c .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
131
+ page_content=' Define a statement on the obtained objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
132
+ page_content=' Proposition Πr for r ∈ [r0, m]: there exists a PSF Z of rank r over ˆF such that |F(Z)| > ǫ2r−2r0| ˆF|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
133
+ page_content=' □ Such a Z is said to be r-normal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
134
+ page_content=' By definition, Z is the union of PSFs ZX∗ on r-subsplits X∗ satisfying the universal disjoint property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
135
+ page_content=' Our final goal of finding a nonempty PSF of rank m over F would be met if Πm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
136
+ page_content=' The proposition Πr0 holds since Z = \uf8f1 \uf8f2 \uf8f3 \uf8eb \uf8edC, ∅;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
137
+ page_content=' TC, ∅;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
138
+ page_content=' TC, · · · , ∅;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
139
+ page_content=' TC � �� � k \uf8f6 \uf8f8 : C ∈ ˆC \uf8fc \uf8fd \uf8fe is an r0-normal PSF such that F (Z) = ˆF by B) where TC are the ones mentioned there.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
140
+ page_content=' So it suffices to show (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
141
+ page_content='1) Πr ⇒ Πr+1, for every r ∈ [r0, m), to have proof of a k-sunflower in F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
142
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
143
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
144
+ page_content=' Proof of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
145
+ page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
146
+ page_content=' We start showing (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
147
+ page_content='1) as the only remaining task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
148
+ page_content=' Assume Πr for a particular r ∈ [r0, m), so we have an r-normal PSF Z that is the union of ZX∗ on some r-subsplits X∗ by definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
149
+ page_content=' We confirm Πr+1 in four steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
150
+ page_content=' Step 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
151
+ page_content=' Reconstruct Z into another PSF Z′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
152
+ page_content=' Obtain such a Z′ by the algorithm Reconstruct described in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
153
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
154
+ page_content=' It is a PSF of rank r over F (Z) satisfying the two conditions: C) |F (Z′) | > 2−1ǫ|F (Z) |.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
155
+ page_content=' D) For each Z ∈ Z′ on an r-subsplit X∗, there exists an r+1-subsplit X′ containing X∗ such that each Fi on Z meets |Fi[S]| < 1 b |Fi|, ∀S ∈ �X′ \\ X∗ 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
156
+ page_content=' □ We see their truth by the notes below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
157
+ page_content=' Such a Z ∈ Z′ is said to be on the split pair � X∗, X′� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
158
+ page_content=' In Steps 2 and 3, we will construct our desired r + 1-normal PSF Z′′ from Z′ confirming Πr+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
159
+ page_content=' Justification of Z′ being a PSF with C) and D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
160
+ page_content=' F (ZX′) of an X′ disregarded by Step 2-3 is negligible as their union will be smaller than 2−m� m r+1 � < � 3 2 �−m < � 3 2 �−cc ln k < ǫ3/k of F (Z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
161
+ page_content=' 6 JUNICHIRO FUKUYAMA Reconstruct Input: an r-normal PSF Z for some r ∈ [r0, m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
162
+ page_content=' Output: a PSF Z′ of rank r over F (Z) satisfying C) and D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
163
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
164
+ page_content=' X ← the family of all r-subsplits X∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
165
+ page_content=' /* The given Z is the union of PSFs ZX∗ on some X∗ by definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
166
+ page_content=' */ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
167
+ page_content=' for each r + 1-subsplit X′ do: 2-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
168
+ page_content=' X∗ ← the family of all X∗ ∈ X that are r-subsplits of X′;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
169
+ page_content=' 2-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
170
+ page_content=' ZX′ ← � X∗∈X∗ ZX∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
171
+ page_content=' 2-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
172
+ page_content=' if |F (ZX′) | < 3−m|F (Z) | then go to Step 2 for the next X′ else X ← X − X∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
173
+ page_content=' 2-4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
174
+ page_content=' for each Fi in ZX′ do F′ i ← Fi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
175
+ page_content=' 2-5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
176
+ page_content=' for each Fi in ZX′ and on X∗, and sets B ∈ �X∗ r � and U ∈ � X′ r+1 � [B] such that |Fi[U]| > � c √ hk ln k �−r−1 |Fi[B]| do F′ i ← F′ i − Fi[U];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
177
+ page_content=' 2-6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
178
+ page_content=' for each Z ∈ ZX′ do: a) if |F′ i| < ǫ|Fi| for some Fi on Z then delete Z from ZX′;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
179
+ page_content=' b) else normalize Z for the condition Z-iv) as follows: b)-i) for each Fi on Z do: γi ← |F′ i|−1 mini′∈[k] |F′ i′|;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
180
+ page_content=' F′ i ← any subfamily of F′ i of cardinality min (|F′ i|, ⌊2γi|F′ i|⌋);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
181
+ page_content=' b)-ii) replace all Fi by the F′ i to reconstruct Z;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
182
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
183
+ page_content=' return the union of all ZX′ found in Loop 2 as Z′;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
184
+ page_content=' Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
185
+ page_content=' Algorithm Reconstruct |F(ZX′)[U]| ≤ | ˆF[U]| < f (r + 1) for all U ∈ � X r+1 � by A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
186
+ page_content=' So, |F (ZX′) [U]| |F (ZX′) | < f (r + 1) 3−mǫ2r−2r0| ˆF| < � chk ln k �−r−1 k , before Step 2-4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
187
+ page_content=' Fi[B] are mutually disjoint for all different Fi occurring in ZX′ each on an X∗, and B ∈ �X∗ r � right before Step 2-5, by the universal disjoint property of Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
188
+ page_content=' (By the rule Z-iii), Fi on a single Z are identified when r = r0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
189
+ page_content=') In addition, Fi[U] are mutually disjoint for all Fi and U ∈ � X′ r+1 � meeting � X∗∈X∗, Fi in ZX′ and on X∗ B∈(X∗ r ), U∈(X′ m′)[B] Fi[U] = F(ZX′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
190
+ page_content=' By the above two, Step 2-5 may reduce V = � Fi in ZX′ F′ i by less than its ǫ3/k, leaving only Fi, B, and U such that |F′ i[U]| < (cb)−r−1|F′ i[B]|, ⇒ |F′ i[B]| > (cb)r+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
191
+ page_content=' By Z-iv) of Z, Step 2-6-a) may only reduce less than 2ǫ3 of V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
192
+ page_content=' The process of normalization is well-defined by Step 2-6-b) due to |F′ i| > (cb)r+1 before it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
193
+ page_content=' It could further reduce V into its ǫ/2 or larger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
194
+ page_content=' EXTENSIONS OF A FAMILY FOR SUNFLOWERS 7 The condition Z-iv) of the obtained Z′ follows the above as well as the two properties C) and D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
195
+ page_content=' Step 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
196
+ page_content=' For each Fi occurring in Z′, construct a family Yi of Y ∈ � X† δ|X†| � such that Fi ∩ �X−X†∪Y m � is sufficiently large, where X† = Union(X′ \\ X∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
197
+ page_content=' Consider each Z ∈ Z′ on (X∗, X′) with the unique strip X† of X′ \\ X∗, and an Fi on Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
198
+ page_content=' Weight X† by 2X† → Z≥0, W �→ |Fi[W]| inducing the norm ∥ · ∥ as in Section 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
199
+ page_content=' The family H = �X† 1 � satisfies the Γ(b)-condition on ∥ ·∥ by D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
200
+ page_content=' Apply Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
201
+ page_content='2 to H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
202
+ page_content=' There exists Yi ⊂ � X† δ|X†| � such that |Yi| > � |X†| δ|X†| � [1 − exp (−h)] , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
203
+ page_content='2) δ [1 − exp (−h)] |Fi| < ��FY i �� < δ [1 + exp (−h)] |Fi|, for every Y ∈ Yi, where FY i ⊂ Fi ∩ �X − X† ∪ Y m � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
204
+ page_content=' Step 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
205
+ page_content=' Find Z′′ by (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
206
+ page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
207
+ page_content=' Now consider the same Z with the k families Fi and sets Yi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
208
+ page_content=' Put δ′ = 2δ ln k, and Y′ i = Ext (Yi, δ′|X†|) , for each Fi to see |Y′ i| > � |X†| δ′|X†| � [1 − exp (−h ln k)] > � |X†| δ′|X†| � � 1 − ǫ k � , by Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
209
+ page_content='3, (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
210
+ page_content='1) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
211
+ page_content='2): to the Yi, repeatedly apply the lemma ⌈log2 ln k⌉ times doubling the second parameter of Ext.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
212
+ page_content=' Then κ �� X† δ′|X†| � − Y′ i � > h ln k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
213
+ page_content=' Hence, there exist more than � |X†| δ′|X†| ��|X†| − δ′|X†| δ′|X†| � · · �|X†| − (k − 1)δ′|X†| δ′|X†| � (1 − ǫ) tuples (Y ′ 1, Y ′ 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
214
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
215
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
216
+ page_content=' , Y ′ k) ∈ � X† δ′|X†| �k such that each Y ′ i is in Y′ i, disjoint with the other k − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
217
+ page_content=' For such a (Y ′ 1, Y ′ 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
218
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
219
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
220
+ page_content=' , Y ′ k), find a δ|X†|-set Y † i ∈ Yi included in each Y ′ i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
221
+ page_content=' Add the tuple � C, Y1 ∪ Y † 1 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
222
+ page_content=' F Y † 1 1 , Y2 ∪ Y † 2 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
223
+ page_content=' F Y † 2 2 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
224
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
225
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
226
+ page_content=' , Yk ∪ Y † k ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
227
+ page_content=' F Y † k k � to Z′′, where the set C is that of Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
228
+ page_content=' By construction, it satisfies the conditions Z-i) to iii) with F′ ← F (Z′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
229
+ page_content=' Subtract �k i=1 F Y † 1 i from Fi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
230
+ page_content=' Repeat the above ǫ−1/2 times including Step 2 for the current Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
231
+ page_content=' Then denote an element of Z′′ by Z′, and family F Y † i i by F′ i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
232
+ page_content=' Such a Z′ and F′ i are produced from Z and Fi, and we assume it for the four objects anywhere below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
233
+ page_content=' Finally, normalize each Z′ for Z-iv) the same way as Step 2-6-b)-i) of Recon- struct with the γi given there.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
234
+ page_content=' It possibly reduces F′ i into its 1 − exp (−h/2) or larger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
235
+ page_content=' Perform the process for all Z ∈ Z′ to complete our construction of Z′′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
236
+ page_content=' 8 JUNICHIRO FUKUYAMA Step 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
237
+ page_content=' Confirm Πr+1 to finish the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
238
+ page_content=' For the r + 1-normality of Z′′, it can be checked by straightforward recursive arguments with (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
239
+ page_content='2) that 1 2ǫ1/2|Fi| < ∆|Fi| < 2ǫ1/2|Fi|, where |Fi| expresses the value after Step 1, and ∆|Fi| the difference between |Fi| and its final value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
240
+ page_content=' This means Step 2 can use the Γ � b � 1 − 2ǫ1/2�� condition on ∥ · ∥B instead of the Γ (b)-condition throughout the construction, constantly achieving (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
241
+ page_content='2) for a Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
242
+ page_content=' In addition, the normalization of each Z′ always keeps more than half of its �k i=1 F′ i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
243
+ page_content=' Hence, the recursive loop for every Z terminates without an exception defining our Z′′ with |F (Z′′) | > ǫ2/3|F (Z′) | > ǫ2|F (Z) | by C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
244
+ page_content=' As it is a PSF with the universal disjoint property by construction, we confirm the proposition Πr+1 to complete our proof of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
245
+ page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
246
+ page_content=' We now have Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
247
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
248
+ page_content=' References 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
249
+ page_content=' Erd¨os, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
250
+ page_content=', Rado, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
251
+ page_content=' : Intersection theorems for systems of sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
252
+ page_content=' Journal of the London Math- ematical Society, Second Series, 35 (1), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
253
+ page_content=' 85 - 90 (1960) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
254
+ page_content=' Fukuyama, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
255
+ page_content=' : The sunflower conjecture proven.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
256
+ page_content=' arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
257
+ page_content='13609 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
258
+ page_content='CO] (2022) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
259
+ page_content=' Fukuyama, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
260
+ page_content=': Improved bound on sets including no sunflower with three petals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
261
+ page_content=' arXiv:1809.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
262
+ page_content='10318v3 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
263
+ page_content='CO] (2021) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
264
+ page_content=' Fukuyama, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
265
+ page_content=' : The case k = 3 of the sunflower conjecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
266
+ page_content=' Private work available at Penn State Sites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
267
+ page_content=' Web address: https://sites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
268
+ page_content='psu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
269
+ page_content='edu/sunflowerconjecture/files/2023/01/Proof-of-the-3-petal- sunflower-conjecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
270
+ page_content='pdf (2023) Department of Computer Science and Engineering, The Pennsylvania State Univer- sity, PA 16802, USA E-mail address: jxf140@psu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
271
+ page_content='edu' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE2T4oBgHgl3EQf8gli/content/2301.04219v1.pdf'}
BNFAT4oBgHgl3EQfsB5-/content/tmp_files/2301.08656v1.pdf.txt ADDED
@@ -0,0 +1,1052 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantum Control of Trapped Polyatomic Molecules for eEDM Searches
2
+ Lo¨ıc Anderegg,1, 2, ∗ Nathaniel B. Vilas,1, 2 Christian Hallas,1, 2 Paige
3
+ Robichaud,1, 2 Arian Jadbabaie,3 John M. Doyle,1, 2 and Nicholas R. Hutzler3, †
4
+ 1Department of Physics, Harvard University, Cambridge, MA 02138, USA
5
+ 2Harvard-MIT Center for Ultracold Atoms, Cambridge, MA 02138, USA
6
+ 3Division of Physics, Mathematics, and Astronomy,
7
+ California Institute of Technology, Pasadena, CA 91125, USA
8
+ (Dated: January 23, 2023)
9
+ Ultracold polyatomic molecules are promising candidates for experiments in quantum science,
10
+ quantum sensing, ultracold chemistry, and precision measurements of physics beyond the Standard
11
+ Model. A key, yet unrealized, requirement of these experiments is the ability to achieve full quantum
12
+ control over the complex internal structure of the molecules. Here, we establish coherent control of
13
+ individual quantum states in a polyatomic molecule, calcium monohydroxide (CaOH), and use these
14
+ techniques to demonstrate a method for searching for the electron electric dipole moment (eEDM).
15
+ Optically trapped, ultracold CaOH molecules are prepared in a single quantum state, polarized in
16
+ an electric field, and coherently transferred into an eEDM sensitive state where an electron spin
17
+ precession measurement is performed. To extend the coherence time of the measurement, we utilize
18
+ eEDM sensitive states with tunable, near-zero magnetic field sensitivity. The spin precession coher-
19
+ ence time is limited by AC Stark shifts and uncontrolled magnetic fields. These results establish a
20
+ path for eEDM searches with trapped polyatomic molecules, towards orders-of-magnitude improved
21
+ experimental sensitivity to time-reversal-violating physics.
22
+ The rich structure of polyatomic molecules makes them
23
+ an appealing platform for experiments in quantum sci-
24
+ ence [1–4], ultracold chemistry [5], and precision mea-
25
+ surements [6–10]. Key to this structure is the presence
26
+ of near-degenerate states of opposite parity, which allow
27
+ the molecules to be easily polarized in the laboratory
28
+ frame with the application of a small electric field. Such
29
+ states are a novel resource, generic among polyatomic
30
+ molecules while rare in diatomics, that may be useful
31
+ for applications such as analog simulation of quantum
32
+ magnetism models [1, 2] or for realizing switchable inter-
33
+ actions and long-lived qubit states for quantum comput-
34
+ ing [4]. Additionally, the parity-doublet states in trapped
35
+ polyatomic molecules are expected to be an invaluable
36
+ tool for systematic error rejection in precision measure-
37
+ ments of physics beyond the Standard Model (BSM) [6].
38
+ To date, several species of polyatomic molecules have
39
+ been laser cooled and/or trapped at ultracold temper-
40
+ atures [11–17].
41
+ One powerful avenue for tabletop BSM searches is
42
+ probing for the electric dipole moment of the electron
43
+ (eEDM) [18–22], de, which violates time-reversal (T)
44
+ symmetry and is predicted by many BSM theories to
45
+ be orders of magnitude larger than the Standard Model
46
+ prediction [19, 20]. Current state-of-the-art eEDM ex-
47
+ periments are broadly sensitive to T-violating physics at
48
+ energies much greater than 1 TeV [23–28]. All such ex-
49
+ periments use Ramsey spectroscopy to measure an en-
50
+ ergy shift due to the interaction of the electron with the
51
+ large electric field present inside a polarized molecule [24–
52
+ 27, 29]. Molecular beam experiments have achieved high
53
+ statistical sensitivity by measuring a large number of
54
+ molecules over a ≈ 1 ms coherence time [24, 25], while
55
+ molecular ion-based experiments have used long Ram-
56
+ sey interrogation times (≈ 1 s) though with lower num-
57
+ bers [26, 27, 29].
58
+ Measurements with trapped neutral
59
+ polyatomic molecules can potentially combine the best
60
+ features of each approach to achieve orders-of-magnitude
61
+ improved statistical sensitivity [6].
62
+ In this Report, we demonstrate full quantum control
63
+ over the internal states of a trapped polyatomic molecule
64
+ in a vibrational bending mode with high polarizability
65
+ in small electric fields. The method starts with prepar-
66
+ ing ultracold, optically trapped molecules in a single hy-
67
+ perfine level, after which a static electric field is applied
68
+ to polarize the molecules.
69
+ The strength of the polar-
70
+ izing electric field is tuned to obtain near-zero g-factor
71
+ spin states, which have strongly suppressed sensitivity
72
+ to magnetic field noise while retaining eEDM sensitivity.
73
+ Microwave pulses are applied to create a coherent super-
74
+ position of these zero g-factor spin states that precesses
75
+ under the influence of an external magnetic field. The
76
+ precession phase is then read out by a combination of
77
+ microwave pulses and optical cycling.
78
+ We observe spin precession over a range of electric and
79
+ magnetic fields and characterize the current limitations
80
+ to the coherence time of the measurement. With readily
81
+ attainable experimental parameters, coherence times on
82
+ the order of the state lifetime (>100 ms) could be realisti-
83
+ cally achieved. We therefore realize the key components
84
+ of an eEDM measurement in this system. Although the
85
+ light mass of CaOH precludes a competitive eEDM mea-
86
+ surement [30], the protocol demonstrated here is directly
87
+ transferable to heavier laser-cooled alkaline earth mono-
88
+ hydroxides with identical internal level structures, such
89
+ as SrOH, YbOH, and RaOH, which have significantly en-
90
+ arXiv:2301.08656v1 [physics.atom-ph] 20 Jan 2023
91
+
92
+ 2
93
+ FIG. 1.
94
+ (a) A geometric picture of the bending molecule at the zero g-factor crossing, showing the electron spin (⃗S) has a finite
95
+ projection on the molecule axis (ˆn), giving eEDM sensitivity. However, the electron spin (⃗S) is orthogonal to the magnetic field
96
+ ( ⃗B), resulting in suppressed magnetic field sensitivity. (b) The magnetic sensitivity (upper plot) and eEDM sensitivity (lower
97
+ plot) for a pair of zero g-factor states (N = 1, J = 1/2+, F = 1, MF = ±1) are shown as a function of the applied electric
98
+ field. (c) Experimental sequence to prepare the eEDM sensitive state. First, the molecules are pumped into a single quantum
99
+ state (N = 1, J = 1/2−, F = 0) with a combination of microwave drives and optical pumping (I). Next, a microwave π-pulse
100
+ drives the molecules into the N = 2, J = 3/2−, F = 2, MF = 0 state (II). Lastly, the eEDM measurement state is prepared as
101
+ a coherent superposition of the N = 1, J = 1/2−, F = 1 MF = ±1 states with a microwave π-pulse (III). The states which are
102
+ optically detectable with the detection light are shown in black, while those not addressed by the detection light are in grey.
103
+ hanced sensitivity to the eEDM [6, 11, 12, 30, 31].
104
+ In eEDM measurements with polarized molecules, the
105
+ electron spin ⃗S precesses under the influence of an ex-
106
+ ternal magnetic field BZ and the internal electric field of
107
+ the molecule, Eeff, which can be large due to relativistic
108
+ effects. Time evolution is described by the Hamiltonian
109
+ H = gSµBBZ ⃗S · ˆZ − deEeff⃗S · ˆn
110
+ = gSµBBZMS − deEeffΣ.
111
+ (1)
112
+ Here, gS ≈ 2 is the electron spin g-factor, µB is the
113
+ Bohr magneton, BZ points along the lab ˆZ axis, and
114
+ the internal field Eeff points along the molecule’s inter-
115
+ nuclear axis ˆn.
116
+ We define the quantities MS = ⃗S · ˆZ
117
+ and Σ = ⃗S · ˆn to describe the electron’s magnetic sen-
118
+ sitivity and EDM sensitivity, respectively. The effect of
119
+ the eEDM can be isolated by switching the orientation of
120
+ the applied magnetic field or, alternatively, by switching
121
+ internal states to change the sign of MS or Σ. Perform-
122
+ ing both switches is a powerful technique for suppressing
123
+ systematic errors [25, 26].
124
+ Current EDM bounds rely on specific states in di-
125
+ atomic molecules that have an unusually small g-factor,
126
+ reducing sensitivity to stray magnetic fields [24, 26].
127
+ However, CaOH, like other laser-coolable molecules with
128
+ structure amenable to eEDM searches [6, 31–33], has
129
+ a single valence electron, which results in large mag-
130
+ netic g-factors. In this work, we engineer reduced mag-
131
+ netic sensitivity by using an applied electric field EZ to
132
+ tune MS to a zero-crossing, while maintaining signifi-
133
+ cant eEDM sensitivity Σ. This technique is generic to
134
+ polyatomic molecules with parity-doublets. Details of a
135
+ specific M = ±1 pair of zero g-factor states are shown
136
+ in Figure 1 (a)-(b), with further information in the Sup-
137
+ plemental Material. Sensitivity to transverse magnetic
138
+ fields is also suppressed in these zero g-factor states (see
139
+ Supplemental Material).
140
+ The
141
+ experiment
142
+ begins
143
+ with
144
+ laser-cooled
145
+ CaOH
146
+ molecules loaded from a magneto-optical trap [14] into
147
+ an optical dipole trap (ODT) formed by a 1064 nm laser
148
+ beam with a 25 µm waist size, as described in previous
149
+ work [15]. The ODT is linearly polarized and its polar-
150
+ ization vector ⃗ϵODT defines the ˆZ axis, along which we
151
+ also apply magnetic and electric fields, ⃗B = BZ ˆZ and
152
+ ⃗E = EZ ˆZ, respectively, as depicted in Figure 1(a). We
153
+ first non-destructively image the molecules in the ODT
154
+ for 10 ms as normalization against variation in the num-
155
+ ber of trapped molecules. The molecules are then opti-
156
+ cally pumped into the N = 1− levels of the �
157
+ X2Σ+(010)
158
+ vibrational bending mode [15] (Figure 1(c)), and the trap
159
+ depth is adiabatically lowered by 3.5× to reduce the effect
160
+ of AC Stark shifts from the trap light and to lower the
161
+ temperature of the molecules to 34 µK. Any molecules
162
+ that were not pumped into N = 1− levels of the bending
163
+
164
+ (c)
165
+ A21(010)2-
166
+ (a)
167
+ (b)
168
+ 1/2
169
+ 0,1+
170
+ μb(Ms) (MHz/G)
171
+ 0.3
172
+ 0.2
173
+ 623 nm
174
+ 2
175
+ M=
176
+ E,B,EoDT
177
+ 0. 0
178
+ (Z)= . 0
179
+ 1
180
+ M=+1
181
+ 3/2
182
+ -0.2
183
+ 2-
184
+ n
185
+ Ca
186
+ 40 GHz
187
+ (010)+3zX
188
+ 0.6
189
+ Sensitivity (22)
190
+ Relative EDM
191
+ 0.4
192
+ M=-1
193
+ 0.2
194
+ 0+
195
+ 1/2
196
+ <Ms) = 3.2 = 0
197
+ 1+
198
+ 0.0
199
+ -0.2
200
+ 21
201
+ M=+1
202
+ 3/2
203
+ 0.4
204
+ 0-
205
+ 0.6.
206
+ _1/2
207
+ 1-
208
+ 40
209
+ 50
210
+ 60
211
+ 70
212
+ 80
213
+ +1
214
+ N
215
+ J
216
+ MF
217
+ F
218
+ E (Vlcm)
219
+ (I)
220
+ (II)
221
+ (III)3
222
+ FIG. 2. (a) Spin precession of the eEDM sensitive state in the presence of a bias magnetic field. (b) Magnetic field sensitivity
223
+ of the eEDM state in CaOH as a function of electric field. The field sensitivity is determined by measuring the spin precession
224
+ frequency at different electric fields with an applied magnetic field of BZ = 110 mG. Error bars are smaller than the markers.
225
+ The solid curve is the calculated magnetic field sensitivity in the presence of trap shifts using known molecular parameters, as
226
+ described in the Supplemental Material.
227
+ mode are heated out of the trap with a pulse of resonant
228
+ laser light.
229
+ Following transfer to the �
230
+ X2Σ+(010)(N = 1−) state,
231
+ the molecular population is initially spread across twelve
232
+ hyperfine Zeeman sublevels in the spin-rotation compo-
233
+ nents J = 1/2 and J = 3/2. To prepare the molecules in
234
+ a single hyperfine state, we use a combination of optical
235
+ pumping and microwave pulses, as shown in Figure 1(c).
236
+ We first apply microwaves from the (N = 1, J = 3/2−)
237
+ state up to the (N = 2, J = 3/2−) state.
238
+ As this
239
+ transition is parity-forbidden, we apply a small electric
240
+ field EZ = 7.5 V/cm to slightly mix the parity of the
241
+ N = 1 levels and provide transition strength. From the
242
+ N = 2 state, we drive an optical transition to the excited
243
+ �A2Π(010)κ2Σ(−), J = 1/2+ state. This state predomi-
244
+ nately decays to both F = 0 (the target state) and F = 1
245
+ states in the N = 1, J = 1/2− manifold. After 3 ms of
246
+ optical pumping, the microwaves are switched to drive
247
+ the accumulated N = 1, J = 1/2−, F = 1 population to
248
+ the same N = 2, J = 3/2− state in �
249
+ X(010), where they
250
+ are excited by the optical light and pumped into the tar-
251
+ get F = 0 state. Once this optical pumping sequence
252
+ is complete, we adiabatically ramp the electric field to
253
+ EZ =150 V/cm to significantly mix parity, then drive
254
+ population up to the N = 2, J = 3/2−, F = 2, M = 0
255
+ state with a microwave π-pulse (Figure 1(c)(II)). We
256
+ clean out any remaining population in the N = 1 state
257
+ with a depletion laser that resonantly drives population
258
+ to undetected rotational levels.
259
+ To perform spin precession in the eEDM sensitive
260
+ state, we first adiabatically ramp the electric field to a
261
+ value EZ, then turn on a small bias magnetic field BZ.
262
+ We measure the electron spin precession frequency using
263
+ a procedure analogous to Ramsey spectroscopy [24, 25].
264
+ The molecules are prepared by driving a π-pulse (2.5
265
+ µs), with microwaves linearly polarized along the lab ˆX
266
+ axis, into the “bright” superposition state |B⟩ = (|M =
267
+ 1⟩ + |M = −1⟩)/
268
+
269
+ 2 within the N = 1, J = 1/2+, F =
270
+ 1, M = ±1 eEDM sensitive manifold (Figure 1(c)). The
271
+ state begins to oscillate between the bright state and the
272
+ “dark” state |D⟩ = (|M = 1⟩ − |M = −1⟩)/
273
+
274
+ 2 at a
275
+ rate ωSP = µeffBZ, where the effective magnetic moment
276
+ µeff = µBgeff = gSµB(⟨MS⟩M=1 − ⟨MS⟩M=−1) is tuned
277
+ via the applied electric field EZ (Figure 1(b)). The con-
278
+ tribution from the deEeff term in eqn. 1 is negligible in
279
+ CaOH, but could be measured in heavier molecules with
280
+ much larger Eeff. After a given time, a second π-pulse
281
+ is applied to stop spin precession and transfer the bright
282
+ state to the optically detectable N = 2, J = 3/2− level.
283
+ Once the electric field is ramped down, the population
284
+ remaining in the eEDM manifold, which has the oppo-
285
+ site parity, is not optically detectable. We then image
286
+ the ODT again and take the ratio of the first and sec-
287
+ ond images (Figure 2(a)). At long spin precession times
288
+ (> 10 ms), losses from background gas collisions (∼1 sec),
289
+ blackbody excitation (∼1 sec), and the spontaneous life-
290
+ time of the bending mode (∼0.7 sec) lead to an overall
291
+ loss of signal, as characterized in Ref. [15]. This effect
292
+ is mitigated with a fixed duration between the first and
293
+ second images, making the loss independent of the pre-
294
+ cession time.
295
+ To map out the location of the zero g-factor cross-
296
+ ing, we perform spin precession measurements at a fixed
297
+ magnetic field BZ = 110 mG for different electric fields
298
+ (Figure 2(b)). The spin precession frequency corresponds
299
+ to an effective g-factor at that electric field.
300
+ We find
301
+ that the zero g-factor crossing within the N = 1, J =
302
+ 1/2+, F = 1, M = ±1 eEDM manifold occurs at an elec-
303
+ tric field of 59.6 V/cm, in agreement with theory cal-
304
+ culations described in the Supplemental Material.
305
+ We
306
+ note that there is another zero g-factor crossing for the
307
+ N = 1, J = 3/2+, F = 1 manifold at ≈ 64 V/cm, which
308
+
309
+ (a)
310
+ (b)
311
+ (au)
312
+ 0.6
313
+ 0.5
314
+ remaining
315
+ (MHz/G)
316
+ 0.55
317
+ 0
318
+ 0.05
319
+ 0.5
320
+ eff
321
+ Fraction
322
+ 0
323
+ 0.45
324
+ -0.05
325
+ -0.5
326
+ 58
327
+ 59
328
+ 60
329
+ 61
330
+ 0.4
331
+ 40
332
+ 50
333
+ 60
334
+ 70
335
+ 500
336
+ 1000
337
+ 80
338
+ 0
339
+ Time (μs)
340
+ E- (V/cm)4
341
+ FIG. 3. Coherence time of the spin precession signal. (a) Measured coherence times τ versus BZ at different electric fields
342
+ (red and blue markers, corresponding to different magnetic field sensitivity). The coherence time scales as 1/BZ due to AC
343
+ Stark shift broadening, then plateaus at a limit set by the magnetic field instability δB. This limit increases as the g-factor
344
+ approaches zero. Solid and dashed curves are fit to the data. The ambient magnetic field noise determined from the fit is
345
+ δB = 4+2
346
+ −1 mG, while the fitted decoherence time due to light shifts is τ = (1/BZ) × 80+20
347
+ −10 ms×mG. (b) The spin precession
348
+ coherence time at BZ = 15 mG is extended by 16× by approching the zero g-factor point.
349
+ has a smaller eEDM sensitivity but the opposite slope
350
+ of geff vs.
351
+ EZ, thereby providing a powerful resource
352
+ to reject systematic errors related to imperfect field re-
353
+ versals (see Supplemental Material). We emphasize that
354
+ while the location of these crossings is dependent on the
355
+ structure of a specific molecule, their existence is generic
356
+ in polyatomic molecules, which naturally have parity-
357
+ doublet structure [6].
358
+ A critical component of the spin precession measure-
359
+ ment is the coherence time, which sets the sensitivity
360
+ of an eEDM search.
361
+ Figure 3(a) shows the measured
362
+ coherence time of our system at different applied fields
363
+ BZ and EZ. We characterize two dominant limitations
364
+ that wash out oscillations at long times. Variations in
365
+ the spin precession frequency can be linearly expanded
366
+ as δωSP = µeff(δBZ) + (δµeff)BZ.
367
+ The first term de-
368
+ scribes magnetic field noise and drift of the applied bias
369
+ field, given by δBZ. The second term describes noise and
370
+ drifts in the g-factor, δgeff, which can arise from insta-
371
+ bility in the applied electric field, EZ, or from AC Stark
372
+ shifts (described below). Drifts in the bias electric field
373
+ EZ are found to be negligible in our apparatus.
374
+ Decoherence due to magnetic field noise, δBZ, is inde-
375
+ pendent of the applied magnetic field but is proportional
376
+ to µeff, and can be mitigated by operating near the zero g-
377
+ factor crossing. As shown in Fig. 3(b), at an electric field
378
+ of 90 V/cm, corresponding to a large magnetic moment
379
+ of µeff = 1.0 MHz/G, we realize a magnetic field noise-
380
+ limited coherence time of 0.5 ms at BZ ≈ 15 mG. At an
381
+ electric field of 61.5 V/cm, corresponding to µeff = 0.06
382
+ MHz/G, much closer to the zero g-factor location, we
383
+ find a coherence time of 4 ms at the same BZ.
384
+ At higher magnetic fields, the primary limitation to
385
+ the coherence time is due to AC stark shifts from the
386
+ optical trapping light (Fig. 4). The intense Z-polarized
387
+ ODT light leads to a shift in the electric field at which the
388
+ zero g-factor crossing occurs. Due to the finite temper-
389
+ ature of the molecules within the trap, they will explore
390
+ different intensities of trap light and hence have differ-
391
+ ent values of geff. The spread δgeff causes variation of
392
+ ωSP, which leads to decoherence. In contrast to the mag-
393
+ netic field noise term, this effect is independent of the
394
+ electric field EZ but decreases monotonically with BZ,
395
+ which scales the frequency sensitivity to g-factor vari-
396
+ ations, δωSP = BZδµeff.
397
+ The insensitivity of g-factor
398
+ broadening to the exact value of geff is demonstrated in
399
+ Fig. 4(c). Decoherence due to AC Stark shifts can be
400
+ reduced by cooling the molecules to lower temperatures
401
+ or by decreasing BZ.
402
+ The bias magnetic field can be
403
+ reduced arbitrarily far until either transverse magnetic
404
+ fields or magnetic field noise become dominant.
405
+ From
406
+ the decoherence rates measured in this work, it is ex-
407
+ pected that AC Stark shift-limited coherence times ∼1 s
408
+ could be achieved at bias fields of BZ ∼ 100 µG.
409
+ From the above discussion, it is expected that the
410
+ longest achievable coherence times will occur for very
411
+ small g-factors, geff ≈ 0, and very small bias fields,
412
+ BZ ≈ 0. Minimizing BZ requires reducing the effects of
413
+
414
+ (a)
415
+ (b)
416
+ 0.55
417
+ 0.06 MHz/G
418
+ Ambient Magnetic Field Noise
419
+ (ne)
420
+ 10
421
+ 1.0 MHz/G
422
+ raction
423
+ 0.5
424
+ 5
425
+ Trap Light Shift
426
+ 0.45
427
+ 0
428
+ 1000
429
+ 2000
430
+ 3000
431
+ 4000
432
+ 5000
433
+ 6000
434
+ 7000
435
+ (sw
436
+ Time (μus)
437
+ Abient Magnetic Field Noise
438
+ 0.5
439
+ 0.5
440
+ 0.1
441
+ 0
442
+ 0.06 MHz/G
443
+ g
444
+ 1.0 MHz/G
445
+ 0.45
446
+ 5
447
+ 10
448
+ 50
449
+ 100
450
+ 500
451
+ 0
452
+ 100
453
+ 200
454
+ 300
455
+ 400
456
+ 500
457
+ 600
458
+ (mG)
459
+ Time (μs)5
460
+ FIG. 4. Effect of trap light on coherence time. (a) The trap
461
+ light shifts the location of the zero crossing in µeff. As a result,
462
+ molecules at a finite temperature explore different magnetic
463
+ field sensitivities µeff. (b) Dependence of the spin precession
464
+ frequency (scaled by the trap depth U0) on position within
465
+ the trap.
466
+ At lower magnetic fields, the relative change in
467
+ spin precession frequency is reduced. (c) Two spin precession
468
+ curves taken at the same magnetic field (BZ = 210 mG) but
469
+ at different electric fields, showing that the AC Stark shift
470
+ limitation is independent of the effective g-factor, since AC
471
+ Stark shifts dominate the coherence time for large bias fields.
472
+ both magnetic field noise and transverse magnetic fields
473
+ to well below the level of the bias field energy shifts. We
474
+ cancel the transverse magnetic fields to below 1 mG by
475
+ maximizing the spin precession period under the influ-
476
+ ence of transverse B fields only, and actively monitor
477
+ and feedback on the magnetic field along each axis to
478
+ minimize noise and drifts in BZ. Note that the stainless
479
+ steel vacuum chamber has no magnetic shielding, lead-
480
+ ing to high levels of magnetic field noise which would not
481
+ be present in an apparatus designed for an eEDM search.
482
+ Even under these conditions, we achieve a coherence time
483
+ of 30 ms at an electric field of 60.3 V/cm (corresponding
484
+ to µeff = 0.02 MHz/G) and a bias field of BZ ≈ 2 mG,
485
+ (see Supplemental Material). However, at such a low bias
486
+ field, the molecules are sensitive to 60 Hz magnetic field
487
+ noise present in the unshielded apparatus, which is on
488
+ the same order as the bias field. Since the experiment is
489
+ phase stable with respect to the AC line frequency, this
490
+ 60 Hz magnetic field fluctuation causes a time-dependent
491
+ spin precession frequency. Nevertheless, our prototype
492
+ experiment confirms that long coherence times are possi-
493
+ ble. Any future eEDM experiment would have magnetic
494
+ shielding that would greatly suppress nefarious magnetic
495
+ fields from the environment. Such shielding could readily
496
+ enable coherence times exceeding that of the ∼ 0.5 s life-
497
+ time of the bending modes of similar linear polyatomic
498
+ molecules with larger eEDM sensitivity [15].
499
+ In summary, we have realized coherent control of opti-
500
+ cally trapped polyatomic molecules and demonstrated a
501
+ realistic experimental roadmap for future eEDM mea-
502
+ surements.
503
+ By leveraging the unique features of the
504
+ quantum levels in polyatomic molecules, we achieve a
505
+ coherence time of 30 ms for paramagnetic molecules in a
506
+ stainless steel chamber with no magnetic shielding. With
507
+ common shielding techniques employed in past EDM ex-
508
+ periments, there is a clear path to reducing stray fields
509
+ and extending coherence times to > 100 ms.
510
+ At such
511
+ a level, the dominant limitation becomes the finite life-
512
+ time of the bending mode [15]. Even longer coherence
513
+ times are possible with the right choice of parity dou-
514
+ blet states, as found in symmetric or asymmetric top
515
+ molecules [6, 13, 34, 35].
516
+ Following
517
+ our
518
+ established
519
+ roadmap
520
+ with
521
+ heavier
522
+ trapped polyatomic molecules has the potential to
523
+ provide orders-of-magnitude improvements to current
524
+ bounds on T-violating physics.
525
+ Using a recent study
526
+ of the �
527
+ X(010) state in YbOH [36], we have identified
528
+ similar N = 1 zero g-factor states for eEDM measure-
529
+ ments with significantly improved sensitivity. In addi-
530
+ tion to the g-factor tuning demonstrated in this work,
531
+ polyatomic molecules provide the ability to reverse the
532
+ sign of Σ without reversing MS - a crucial feature of re-
533
+ cent experiments that have greatly improved the limit
534
+ on the eEDM [25, 27]. For example, in the N = 1 mani-
535
+ fold of CaOH, there is another zero g-factor crossing at a
536
+ nearby electric field value, with 69% smaller values of Σ
537
+ and opposite sign. Since the ratio of eEDM sensitivity to
538
+ g-factor vs. EZ slope differs between these two crossings,
539
+ measurements at both points could be used to suppress
540
+ systematics due to non-reversing fields coupling to the
541
+ electric field dependence of the g-factor [25].
542
+ This work provides a first experimental demonstration
543
+ of the advantages of the rich level structure of polyatomic
544
+ molecules for precision measurements.
545
+ While we have
546
+ focused here on spin precession with T-reversed states
547
+ (M = ±1), many levels of interest can be favorably en-
548
+ gineered for precision measurement experiments.
549
+ In a
550
+ recent proposal [9], parity-doublets, magnetically tuned
551
+ to degeneracy in optically trapped polyatomic molecules,
552
+ were shown to be advantageous for searches for parity vi-
553
+ olating physics. In another recent work [7], a microwave
554
+ clock between rovibrational states in SrOH was proposed
555
+ as a sensitive probe of ultra-light dark matter, utilizing
556
+ transitions tuned to electric and/or magnetic insensitiv-
557
+ ity. In these proposals, and now experimentally demon-
558
+ strated in our work, coherent control and state engineer-
559
+ ing in polyatomic molecules can mitigate systematic er-
560
+ rors and enable robust searches for new physics.
561
+
562
+ (a)
563
+ (b)
564
+ 0.04
565
+ 10
566
+ μeff (MHz/G)
567
+ 0.02
568
+ 100 mG
569
+ I=1/2
570
+ I=0
571
+ 0.
572
+ 5
573
+ 50 mG
574
+ -0.02
575
+ 10 mG
576
+ 0
577
+ -0.04
578
+ 59
579
+ 60
580
+ 61
581
+ -wo
582
+ 0
583
+ Wo
584
+ Ez (V/cm)
585
+ Position in trap
586
+ (c)
587
+ 0.58
588
+ 0.01 MHz/G, 210 mG
589
+ (a.u.)
590
+ 0.06 MHz/G, 210 mG
591
+ 0.55
592
+ Fraction remaining (
593
+ 0.52
594
+ 0.49
595
+ 0.46
596
+ 0.43
597
+ 0.4
598
+ 0
599
+ 200
600
+ 400
601
+ 600
602
+ 800
603
+ 1000
604
+ Time (μs)6
605
+ This work was supported by the AFOSR and the NSF.
606
+ LA acknowledges support from the HQI, NBV from the
607
+ DoD NDSEG fellowship program, and PR from the NSF
608
+ GRFP. NRH and AJ acknowledge support from NSF CA-
609
+ REER (PHY-1847550), The Gordon and Betty Moore
610
+ Foundation (GBMF7947), and the Alfred P. Sloan Foun-
611
+ dation (G-2019-12502). AJ acknowledges helpful discus-
612
+ sions with Chi Zhang and Phelan Yu.
613
614
615
+ [1] M. L. Wall, K. Maeda, and L. D. Carr, Simulating quan-
616
+ tum magnets with symmetric top molecules, Ann. Phys.
617
+ (Berlin) 525, 845 (2013).
618
+ [2] M. Wall, K. Maeda, and L. D. Carr, Realizing un-
619
+ conventional quantum magnetism with symmetric top
620
+ molecules, New J. Phys. 17, 025001 (2015).
621
+ [3] Q. Wei, S. Kais, B. Friedrich, and D. Herschbach, Entan-
622
+ glement of polar symmetric top molecules as candidate
623
+ qubits, J. Chem Phys 135, 154102 (2011).
624
+ [4] P. Yu, L. W. Cheuk, I. Kozyryev, and J. M. Doyle, A
625
+ scalable quantum computing platform using symmetric-
626
+ top molecules, New J. Phys. 21, 093049 (2019).
627
+ [5] L. D. Augustoviˇcov´a and J. L. Bohn, Ultracold collisions
628
+ of polyatomic molecules: CaOH, New J. Phys. 21, 103022
629
+ (2019).
630
+ [6] I. Kozyryev and N. R. Hutzler, Precision measurement of
631
+ time-reversal symmetry violation with laser-cooled poly-
632
+ atomic molecules, Phys. Rev. Lett. 119, 133002 (2017).
633
+ [7] I. Kozyryev, Z. Lasner, and J. M. Doyle, Enhanced sen-
634
+ sitivity to ultralight bosonic dark matter in the spectra
635
+ of the linear radical SrOH, Phys. Rev. A 103, 043313
636
+ (2021).
637
+ [8] N. R. Hutzler, Polyatomic molecules as quantum sensors
638
+ for fundamental physics, Quantum Science and Technol-
639
+ ogy 5, 044011 (2020).
640
+ [9] E. B. Norrgard, D. S. Barker, S. Eckel, J. A. Fedchak,
641
+ N. N. Klimov, and J. Scherschligt, Nuclear-spin depen-
642
+ dent parity violation in optically trapped polyatomic
643
+ molecules, Communications Physics 2, 1 (2019).
644
+ [10] Y.
645
+ Hao,
646
+ P.
647
+ Navr´atil,
648
+ E.
649
+ B.
650
+ Norrgard,
651
+ M.
652
+ Iliaˇs,
653
+ E. Eliav, R. G. E. Timmermans, V. V. Flambaum, and
654
+ A. Borschevsky, Nuclear spin-dependent parity-violating
655
+ effects in light polyatomic molecules, Phys. Rev. A 102,
656
+ 052828 (2020).
657
+ [11] I. Kozyryev, L. Baum, K. Matsuda, B. L. Augenbraun,
658
+ L. Anderegg, A. P. Sedlack, and J. M. Doyle, Sisyphus
659
+ laser cooling of a polyatomic molecule, Phys. Rev. Lett.
660
+ 118, 173201 (2017).
661
+ [12] B. L. Augenbraun, Z. D. Lasner, A. Frenett, H. Sawaoka,
662
+ C. Miller, T. C. Steimle, and J. M. Doyle, Laser-
663
+ cooled polyatomic molecules for improved electron elec-
664
+ tric dipole moment searches, New J. Phys. 22, 022003
665
+ (2020).
666
+ [13] D. Mitra, N. B. Vilas, C. Hallas, L. Anderegg, B. L.
667
+ Augenbraun, L. Baum, C. Miller, S. Raval, and J. M.
668
+ Doyle, Direct laser cooling of a symmetric top molecule,
669
+ Science 369, 1366 (2020).
670
+ [14] N. B. Vilas, C. Hallas, L. Anderegg, P. Robichaud,
671
+ A. Winnicki, D. Mitra, and J. M. Doyle, Magneto-
672
+ optical trapping and sub-Doppler cooling of a polyatomic
673
+ molecule, Nature 606, 70 (2022).
674
+ [15] C. Hallas, N. B. Vilas, L. Anderegg, P. Robichaud,
675
+ A. Winnicki, C. Zhang, L. Cheng, and J. M. Doyle, Opti-
676
+ cal trapping of a polyatomic molecule in an ℓ-type parity
677
+ doublet state, arXiv:2208.13762 (2022).
678
+ [16] M. Zeppenfeld, B. G. Englert, R. Gl¨ockner, A. Prehn,
679
+ M. Mielenz, C. Sommer, L. D. van Buuren, M. Motsch,
680
+ and G. Rempe, Sisyphus cooling of electrically trapped
681
+ polyatomic molecules, Nature 491, 570 (2012).
682
+ [17] A. Prehn, M. Ibr¨ugger, R. Gl¨ockner, G. Rempe, and
683
+ M. Zeppenfeld, Optoelectrical cooling of polar molecules
684
+ to submillikelvin temperatures, Phys. Rev. Lett. 116,
685
+ 063005 (2016).
686
+ [18] D. DeMille, J. M. Doyle, and A. O. Sushkov, Probing
687
+ the frontiers of particle physics with tabletop-scale ex-
688
+ periments, Science 357, 990 (2017).
689
+ [19] T. E. Chupp, P. Fierlinger, M. J. Ramsey-Musolf, and
690
+ J. T. Singh, Electric dipole moments of atoms, molecules,
691
+ nuclei, and particles, Rev. Mod. Phys. 91, 015001 (2019).
692
+ [20] M. S. Safronova, D. Budker, D. DeMille, D. F. J. Kimball,
693
+ A. Derevianko, and C. W. Clark, Search for new physics
694
+ with atoms and molecules, Rev. Mod. Phys. 90, 025008
695
+ (2018).
696
+ [21] C. Cesarotti, Q. Lu, Y. Nakai, A. Parikh, and M. Reece,
697
+ Interpreting the electron EDM constraint, Journal of
698
+ High Energy Physics 2019, 59 (2019).
699
+ [22] M. Pospelov and A. Ritz, Electric dipole moments as
700
+ probes of new physics, Annals of Physics 318, 119 (2005).
701
+ [23] J. J. Hudson, D. M. Kara, I. J. Smallman, B. E. Sauer,
702
+ M. R. Tarbutt, and E. A. Hinds, Improved measurement
703
+ of the shape of the electron, Nature 473, 493 (2011).
704
+ [24] J. Baron, W. C. Campbell, D. DeMille, J. M. Doyle,
705
+ G. Gabrielse, Y. V. Gurevich, P. W. Hess, N. R. Hut-
706
+ zler, E. Kirilov, I. Kozyryev, et al., Order of magnitude
707
+ smaller limit on the electric dipole moment of the elec-
708
+ tron, Science 343, 269 (2014).
709
+ [25] A. Collaboration et al., Improved limit on the electric
710
+ dipole moment of the electron., Nature 562, 355 (2018).
711
+ [26] W. B. Cairncross, D. N. Gresh, M. Grau, K. C. Cossel,
712
+ T. S. Roussy, Y. Ni, Y. Zhou, J. Ye, and E. A. Cornell,
713
+ Precision measurement of the electron’s electric dipole
714
+ moment using trapped molecular ions, Phys. Rev. Lett.
715
+ 119, 153001 (2017).
716
+ [27] T. S. Roussy, L. Caldwell, T. Wright, W. B. Cairncross,
717
+ Y. Shagam, K. B. Ng, N. Schlossberger, S. Y. Park,
718
+ A. Wang, J. Ye, and E. A. Cornell, A new bound on
719
+ the electron’s electric dipole moment, arXiv:2212.11841
720
+ (2022).
721
+ [28] R. Alarcon, J. Alexander, V. Anastassopoulos, T. Aoki,
722
+ R. Baartman, S. Baeßler, L. Bartoszek, D. H. Beck,
723
+ F. Bedeschi, R. Berger, et al., Electric dipole moments
724
+ and the search for new physics, arXiv:2203.08103 (2022).
725
+ [29] Y. Zhou, Y. Shagam, W. B. Cairncross, K. B. Ng, T. S.
726
+ Roussy, T. Grogan, K. Boyce, A. Vigil, M. Pettine,
727
+ T. Zelevinsky, J. Ye, and E. A. Cornell, Second-Scale
728
+ Coherence Measured at the Quantum Projection Noise
729
+ Limit with Hundreds of Molecular Ions, Phys. Rev. Lett.
730
+ 124, 053201 (2020).
731
+ [30] K. Gaul and R. Berger, Ab initio study of parity
732
+ and time-reversal violation in laser-coolable triatomic
733
+ molecules, Phys. Rev. A 101, 012508 (2020).
734
+ [31] T. A. Isaev, A. V. Zaitsevskii, and E. Eliav, Laser-
735
+
736
+ 7
737
+ coolable polyatomic molecules with heavy nuclei, J. Phys.
738
+ B 50, 225101 (2017).
739
+ [32] T. A. Isaev and R. Berger, Polyatomic candidates for
740
+ cooling of molecules with lasers from simple theoretical
741
+ concepts, Phys. Rev. Lett. 116, 063006 (2016).
742
+ [33] I. Kozyryev, L. Baum, K. Matsuda, and J. M. Doyle, Pro-
743
+ posal for laser cooling of complex polyatomic molecules,
744
+ ChemPhysChem 17, 3641 (2016).
745
+ [34] B. L. Augenbraun, J. M. Doyle, T. Zelevinsky, and
746
+ I. Kozyryev, Molecular asymmetry and optical cycling:
747
+ Laser cooling asymmetric top molecules, Phys. Rev. X
748
+ 10, 031022 (2020).
749
+ [35] B. L. Augenbraun, Z. D. Lasner, A. Frenett, H. Sawaoka,
750
+ A. T. Le, J. M. Doyle, and T. C. Steimle, Observa-
751
+ tion and laser spectroscopy of ytterbium monomethoxide,
752
+ YbOCH3, Phys. Rev. A 103, 022814 (2021).
753
+ [36] A. Jadbabaie, Y. Takahashi, N. H. Pilgram, C. J.
754
+ Conn,
755
+ C. Zhang, and N. R. Hutzler, Characteriz-
756
+ ing the fundamental bending vibration of a linear
757
+ polyatomic molecule for symmetry violation searches,
758
+ arXiv:2301.04124 (2022).
759
+
760
+ 8
761
+ Supplemental Material for “Quantum Control of Trapped Polyatomic Molecules for
762
+ eEDM Searches”
763
+ ZERO g-FACTOR STATES
764
+ Origin
765
+ In 2Σ electronic states of linear polyatomic molecules, the spin-rotation interaction, γ ⃗N · ⃗S, couples the molecular
766
+ rotation N and the electron spin S to form the total angular momentum J. These states are well described in the
767
+ Hund’s case (b) coupled basis. An applied electric field EZ will interact with the molecular-frame electric dipole
768
+ moment µE, connecting states with opposite parity, ∆MF = 0, and ∆J ≤ 1. When µEEZ ≫ γ, N and S are
769
+ uncoupled and well described by their lab frame projections MN and MS. However, in the intermediate field regime
770
+ with µEEZ ∼ γ, the molecular eigenstates are mixed in both the Hund’s case (b) coupled basis and the decoupled
771
+ basis. MF remains a good quantum number in the absence of transverse fields. In this regime, MF ̸= 0 states with
772
+ ⟨MS⟩ = 0 can arise at specific field values. These states have no first order electron spin magnetic sensitivity, and,
773
+ unlike MF = 0 clock states, have large eEDM sensitivity near BZ = 0. We refer to these states as zero g-factor
774
+ states [6].
775
+ Zero g-factor states arise from avoided level crossings as free field states are mixed by the electric field. One of the
776
+ crossing states has ⟨MS⟩ < 0, the other state has ⟨MS⟩ > 0, and both have mixed MN. The spin-rotation interaction
777
+ couples the states and lifts the crossing degeneracy, resulting in eigenstates that are superpositions of electron spin
778
+ up and down with ⟨MS⟩ = 0, while retaining non-zero molecular orientation with ⟨ˆn⟩ = ⟨MNℓ⟩ ̸= 0. The lab frame
779
+ projection of ˆn ensures that the eEDM interaction in the molecule frame does not rotationally average away.
780
+ Zero g-factor states are generically present in the Stark tuning of polyatomic molecules. The reduction of symmetry
781
+ in a polyatomic molecule allows for rotation about the internuclear axis, resulting in closely spaced doublets of opposite
782
+ parity. When these doublets are mixed by an applied electric field, they split into 2N +1 groups of levels representing
783
+ the values of the molecular orientation ⟨MNℓ⟩. For each N manifold with parity doubling, avoided level crossings
784
+ generically occur between an MNℓ = ±1 Stark manifold and an MNℓ = 0 Stark manifold.
785
+ In diatomic molecules without parity-doubling, the existence of zero g-factor states requires an inverted spin rotation
786
+ structure (γ < 0), such that the two J states are tuned closer to each other by an electric field. For example, the
787
+ YbF molecule (γ = −13.4 MHz [37, 38]) has zero g-factor states at E ≈ 866 V/cm in the N = 1 manifold, while
788
+ CaF does not. However, since |γ|/B ≪ 1 for most 2Σ diatomic molecules, the electric fields that mix spin-rotation
789
+ states are much less than those that polarize the molecule. Therefore, zero g-factor states occur when the molecule
790
+ has negligible lab-frame polarization, limiting eEDM sensitivity. For example, the aforementioned states in YbF have
791
+ |⟨Σ⟩| ≈ 0.006, which is ∼3% the value of Σ in the zero g-factor states used in this work.
792
+ Characterization
793
+ To locate zero g-factor crossings and calculate eEDM sensitivities, we model the �
794
+ X(010) level structure using an
795
+ effective Hamiltonian approach [40–42]:
796
+ Heff = HRot + HSR + Hℓ + HHyp + HZeeman + HStark + HODT
797
+ (2a)
798
+ HRot = B
799
+
800
+ ⃗N 2 − ℓ2�
801
+ (2b)
802
+ HSR = γ
803
+
804
+ ⃗N · ⃗S − NzSz
805
+
806
+ (2c)
807
+ Hℓ = −qℓ
808
+
809
+ N 2
810
+ +e−i2φ + N 2
811
+ −ei2φ�
812
+ (2d)
813
+ HHyp = bF ⃗I · ⃗S + c
814
+ 3
815
+
816
+ 3IzSz − ⃗I · ⃗S
817
+
818
+ (2e)
819
+ HZeeman = gSµBBZSZ
820
+ (2f)
821
+ HStark = −µZEZ
822
+ (2g)
823
+ HODT = −⃗d · ⃗EODT
824
+ (2h)
825
+
826
+ 9
827
+ Here, we use a similar Hamilton as Ref. [7].
828
+ HRot is the rotational energy; HSR is the spin-rotation interaction
829
+ accurate for low-N bending mode levels, with z defined in the molecule frame; Hℓ is the ℓ-type doubling Hamiltonian,
830
+ with ± defined in the molecule frame, φ as the nuclear bending coordinate, and using the same phase convention as
831
+ Ref. [43]; HHyp is the hyperfine Fermi-contact and dipolar spin interactions, defined in the molecule frame; HZeeman
832
+ describes the interaction of the electron spin magnetic moment with the lab-frame magnetic field; HStark is the
833
+ interaction of the Z-component of molecule-frame electric dipole moment µE with the lab frame DC electric field,
834
+ EZ; and HODT is the interaction of the molecular dipole moment operator ⃗d with the electric field of the ODT laser,
835
+ ⃗EODT = E0/2(ˆϵODTe−iωt + c.c.).
836
+ To evaluate the molecule frame matrix elements, we follow the techniques outlined in Refs. [40, 41] to transform into
837
+ the lab frame. The field-free Hamiltonian parameters are taken from Ref. [44], except for the hyperfine parameters,
838
+ which were determined by the observed line positions to be bF = 2.45 MHz and c = 2.6 MHz, similar to those of the
839
+
840
+ X(000) state [45]. We use the same dipole moment, |µ| = 1.47 D, as the �
841
+ X(000) state, determined in Ref. [46]. Matrix
842
+ elements of HODT are calculated following Ref. [47] using the 1064nm dynamic polarizabilities reported in Ref. [15].
843
+ For the calculations discussed below and in the main text, the ODT is polarized along the laboratory Z axis and
844
+ the molecules sit at a fixed trap depth of 160 µK (corresponding to the average trap intensity seen by the molecules in
845
+ the experiment). As detailed in the main text, when the trapping light is aligned with EZ, it acts like a weak electric
846
+ field, shifting the zero g-factor crossing by ∼ 1 V/cm from the field-free value. If the trapping light polarization is
847
+ rotated relative to EZ, tensor light shifts can couple states with ∆MF = ±2 or ±1 (the linearity of the light ensures
848
+ there are no ∆MF = ±1 vector shifts) [47]. The effects of this coupling are similar to those of transverse magnetic
849
+ fields, which we discuss below.
850
+ In the current work, we ignore nuclear and rotational Zeeman effects. Specifically, the magnetic sensitivity of CaOH
851
+ receives small contributions from nuclear spin of the H atom and the rotational magnetic moment of both the electrons
852
+ and the nuclear framework. While they have not yet been fully characterized, all of these effects will contribute at the
853
+ 10−3µB level or less. These additional g-factors do not depend strongly on the applied electric field, and result in a
854
+ small shift of the zero g-factor crossing location. Future work characterizing rotational magnetic moments of �
855
+ X(010)
856
+ states of laser-coolable metal hydroxides can enable more accurate predictions of zero g-factor field values.
857
+ In CaOH, each rotational state N supports multiple M = ±1 pairs of zero g-factor states. The states at finite
858
+ electric field can be labeled in terms of their adiabatically correlated zero-field quantum numbers |N, Jp, F, M⟩. In the
859
+ presence of trap shifts, the zero g-factor states for N = 1 occur at E = 59.6 V/cm for |J = 1/2+, F = 1, M = ±1⟩ and
860
+ at E = 64.1 V/cm for |J = 3/2+, F = 1, M = ±1⟩. The J = 1/2, M = 1 state is a superposition of 47% MNℓ = −1,
861
+ 50% MNℓ = 0, and 3% MNℓ = 1, while the J = 3/2, M = 1 state is 43% MNℓ = −1, 48% MN = 0, and 9% MNℓ = 1.
862
+ Both states are weak-electric-field seekers, yet the opposite molecule frame orientation of the spin results in differences
863
+ (a)
864
+ (b)
865
+ FIG. S1. Electric field tuning of N = 1 zero g-factor states near BZ = 0 in the absence of trap shifts. Blue lines denote
866
+ MF = +1 states and red lines MF = −1. Solid traces denote the J = 1/2 state pair and dashed traces denote the J = 3/2
867
+ pair. The dotted vertical lines mark the electric field value of the zero g-factor crossing without trap shifts, ≈60.5 V/cm for
868
+ J = 1/2 and ≈64.4 V/cm for J = 3/2. Grayed out traces are other states in the N = 1 manifold. (a) The g-factor gSµB⟨MS⟩
869
+ as a function of the applied electric field. (b) eEDM sensitivity ⟨Σ⟩ as a function of the applied electric field. A consequence of
870
+ the Hund’s case (b) coupling scheme is that Σ asymptotes to a maximum magnitude of S/(N(N + 1)) = 1/4 for fields where
871
+ the parity doublets are fully mixed but rotational mixing is negligible [39]. For fields where J is not fully mixed, some states
872
+ can exhibit |Σ| > 1/4.
873
+
874
+ 10
875
+ (a)
876
+ (b)
877
+ (d)
878
+ (c)
879
+ FIG. S2. Full electric and magnetic characterization of zero g-factor states in the N = 1 manifold of CaOH, without trap shifts.
880
+ (a, b) 2D plots of the effective g-factor difference between two M = ±1 states, defined by geff = gSµB (⟨MS⟩M=+1 − ⟨MS⟩M=−1).
881
+ The plotted g-factor is normalized by gSµB. The black line represents the contour where the M = ±1 levels are nominally
882
+ degenerate. (c, d) 2D plots of the eEDM sensitivity, ⟨Σ⟩M=+1 − ⟨Σ⟩M=−1. The black line represents the geff = 0 contour.
883
+ in the value of Σ and the g-factor slope. For CaOH, the magnetic sensitivity and eEDM sensitivity of N = 1 zero
884
+ g-factor states are shown in Fig. S1.
885
+ By diagonalizing Heff over a grid of (EZ, BZ) values, we can obtain 2D plots of g-factors and eEDM sensitivities
886
+ shown in Fig. S2. For generality, we consider the molecular structure in the absence of trap shifts. Using the Z-
887
+ symmetry of the Hamiltonian, we separately diagonalize each MF block to avoid degeneracies at BZ = 0. Continuous
888
+ 2D surfaces for eigenvalues and eigenvectors are obtained by ordering eigenstates at each value of (E, B) according to
889
+ their adiabatically correlated free field state. The application of an external magnetic field parallel to the electric field
890
+ results in ⟨MS⟩ ̸= 0 for an individual zero g-factor state, but the differential value between a zero g-factor pair can
891
+ still have ∆⟨MS⟩ = 0. This differential value means the superposition of a zero g-factor pair can maintain magnetic
892
+ insensitivity and EDM sensitivity over a range of fields, for example up to ∼5 G for the J = 1/2, N = 1 pair.
893
+ The procedure we use here for identifying zero g-factor states can be generically extended to searching for favorable
894
+ transitions between states with differing eEDM sensitivities, similar to what has been already demonstrated in a
895
+ recent proposal to search for ultra-light dark matter using SrOH [7]. In addition, there are also fields of BZ ≈ 10 − 20
896
+ G and EZ ≈ 0 where opposite parity states are tuned to near degeneracy. This is the field regime that has been
897
+ proposed for precision measurements of parity-violation in optically trapped polyatomic molecules [9].
898
+ We note that zero g-factor pairs also occur in N = 2−. The crossings occur around 400 − 500 V/cm for states
899
+
900
+ 11
901
+ MF = 0-
902
+ MF = 0+
903
+ MF = 1
904
+ MF = -1
905
+ SXBX
906
+ ~540 kHz
907
+ ~980 kHz
908
+ geffBZ
909
+ SXBX
910
+ SXBX
911
+ SXBX
912
+ (a)
913
+ (b)
914
+ FIG. S3. (a) Stark shifts for N = 1 in CaOH. The J = 1/2+ zero g-factor states are shown with a solid green line, while the
915
+ J = 3/2+ zero g-factor states are indicated with a dashed green line. All other levels are grayed out. A vertical dotted line
916
+ indicates the location of the J = 1/2+ zero g-factor crossing. (b) A zoomed in level diagram of the J = 1/2+ zero g-factor
917
+ hyperfine manifold. The bias field splitting geffBZ is not to scale. Transverse field couplings are shown with double sided
918
+ arrows, with blue (red) indicating negative (positive) SX matrix element.
919
+ correlated with the negative parity manifold.
920
+ Since many interactions increase in magnitude with larger N, the
921
+ overall electric field scale of the intermediate regime increases. Additionally, the robustness of zero g-factor states
922
+ also improves, with some pairs able to maintain ∆⟨MS⟩ = 0 for magnetic fields up to 40 G. These N = 2 pairs also
923
+ have non-zero eEDM sensitivity for a wide range of magnetic field values.
924
+ TRANSVERSE MAGNETIC FIELDS
925
+ Transverse Field Sensitivity
926
+ We now expand our discussion to include the effect of transverse magnetic fields. Their effects can by modeled by
927
+ adding BXSX and BY SY terms to the effective Hamiltonian, which have the selection rule ∆MF = ±1. For this
928
+ discussion, we focus on the level structure of the N = 1, J = 1/2+ manifold in CaOH near the zero g-factor crossing
929
+ at 60.5 V/cm in the absence of trap shifts, shown in Figure S3. We note if there were no nuclear spin I, the two zero
930
+ g-factor states would be MJ = ±1/2 states separated by ∆M = 1. In such a case these degenerate states would be
931
+ directly sensitive to transverse fields at first order, thereby reducing the g-factor suppression.
932
+ Due to the hyperfine structure from the nuclear spin of the H atom in CaOH, the degenerate MF = ±1 states in a
933
+ zero g-factor pair are coupled by second order transverse field interactions. These interactions are mediated via the
934
+ MF = 0± states, where ± denotes the upper or lower states. Using a Schrieffer–Wolff (aka Van-Vleck) transformation,
935
+ we can express the effective Hamiltonian matrix for second order coupling between the MF = ±1 states. We write
936
+ the states as |MF ⟩, and for convenience we take the transverse field to point along X:
937
+
938
+ 12
939
+ H+1,−1 = −(gSµBBX)2
940
+ �⟨−1|SX|0+⟩⟨0+|SX| + 1⟩
941
+ ∆E0+
942
+ + ⟨−1|SX|0−⟩⟨0−|SX| + 1⟩
943
+ ∆E0−
944
+
945
+ (3)
946
+ Here, ∆E0± is the energy difference of the MF = 0± levels from the MF = ±1 levels. Our model provides the following
947
+ values: ⟨0−|SX|+1⟩ = ⟨0−|SX|−1⟩ = −0.18, ⟨0+|SX|+1⟩ = −0.16, and ⟨0+|SX|−1⟩ = 0.16. The difference in sign is
948
+ a result of Clebsh-Gordon coefficient phases, and only the relative phase is relevant. We also have ∆E0+ = 0.98 MHz
949
+ and ∆E0− = −0.54 MHz. The combination of phases precludes the possibility of destructive interference. With these
950
+ parameters and defining g⊥ = H+1,−1/BX, then eqn. 3 evaluates to (gSµBBX)2(0.086/MHz) ≈ (0.68 MHz/G2)B2
951
+ X.
952
+ Our model estimates the transverse sensitivity at BX ∼ 1 mG to be g⊥µB ∼ 7 × 10−4 MHz/G, of the same order as
953
+ the neglected nuclear and rotational Zeeman terms. The suppressed transverse field sensitivity bounds the magnitude
954
+ of BZ, which must be large enough to define a quantization axis for the spin, geffBZ ≫ g⊥B⊥.
955
+ Cancellation of transverse magnetic fields
956
+ When transverse magnetic fields are dominant, the electron will be quantized along the transverse axis and there
957
+ is minimal spin precession by the bias BZ field. The transverse coupling results in eigenstates given by (|MF =
958
+ 1⟩±eiφ|MF = −1⟩)/
959
+
960
+ 2, where the phase φ is set by the direction of ⃗B in the transverse plane. If φ = 0 or π, only one
961
+ of these states is bright to the ˆX-polarized state preparation microwaves, which means the initial state is stationary
962
+ under the transverse fields. For all other orientations, the transverse field causes spin precession with varying contrast,
963
+ depending on the specific value of φ.
964
+ We are able to use transverse spin precesion to measure and zero transverse fields to the mG level. We do so by
965
+ operating with minimal bias field BZ ≈ 0 and operating EZ near the zero g-factor crossing, such that geffBZ < g⊥B⊥.
966
+ We then apply a small transverse magnetic field to perform transverse spin precession.
967
+ Here, the dynamics are
968
+ dominated by the transverse fields rather than the Z fields.
969
+ We obtain field zeros by iteratively minimizing the
970
+ precession frequency by tuning the bias fields BX and BY .
971
+ IMPERFECT FIELD REVERSAL
972
+ We briefly present a systematic effect involving non-reversing fields in eEDM measurements with zero g-factor
973
+ states and discuss methods for its mitigation. The electric field dependence of geff can mimic an eEDM signal when
974
+ combined with other systematic effects, very much like in 3∆1 molecules [25, 26]. When the sign of EZ is switched, a
975
+ non-reversing electric field ENR will cause a g-factor difference of gNR = (dgeff/dEZ)ENR. This will give an additional
976
+ spin precession signal gNRBZ. By perfectly reversing BZ as well, this precession signal can be distinguished from a
977
+ true EDM signal. However, if there is also a non-reversing magnetic field BNR, there will still be a residual EDM signal
978
+ given by (dg/dE)ENRBNR. Using the measured slope of ∼0.03 (MHz/G)/(V/cm), and using conservative estimates
979
+ of ENR ∼ 1 mV/cm and BNR ∼ 1 µG, we obtain an estimate precession frequency of ∼30 µHz. While this is an order
980
+ of magnitude smaller than the statistical error for the current best eEDM measurement measurement [48], it is still
981
+ desirable to devise methods to reduce the effect further.
982
+ Performing eEDM measurements at different zero g-factor states can help suppress systematic errors resulting from
983
+ the above mechanism. For example, the N = 1, J = 3/2 zero crossing has a different magnitude for Σ, which can be
984
+ used to distinguish a true eEDM from a systematic effect. Both N = 1 crossings are only separated by ∼4 V/cm.
985
+ Furthermore, the zero g-factor states in N = 2− can also be used for systematic checks, as they additionally offer
986
+ different geff vs EZ slopes as well as different Σ values.
987
+ The N = 2− states can be populated directly by the
988
+ photon-cycling used to pump into the bending mode.
989
+ SPIN PRECESSION NEAR ZERO G-FACTOR
990
+ As discussed in the main text, the longest achievable coherence times occur at at combination of low effective g-
991
+ factors (which suppress δBZ decoherence) and low magnetic bias fields (which suppress δµeff decoherence). These low
992
+ g-factors and bias fields only very weakly enforce a quantization axis along Z, enhancing the potential for transverse
993
+ magnetic fields B⊥ to contribute. Such fields have the effect of (a) reducing the spin precession contrast and (b)
994
+
995
+ 13
996
+ FIG. S4. Spin precession at EZ = 60.3 V/cm and BZ = 2 mG. The fit includes a 60 Hz time-varying magnetic field whose
997
+ amplitude and phase are measured with a magnetometer. The coherence time fits to 30 ms.
998
+ altering the observed precession frequency. To avoid these effects, the condition geffBZ > g⊥B⊥ must therefore be
999
+ satisfied. To achieve this, we zero the transverse magnetic fields by intentionally taking spin precession data at BZ ≈ 0
1000
+ and geff ≈ 0 while varying the transverse fields BX and BY . By minimizing the spin precession frequency as a function
1001
+ of the transverse fields, we reduce B⊥ to approximately 1 mG. In addition, long-term drifts in the dc magnetic field
1002
+ along all three axes are compensated by actively feeding back on the magnetic field as measured with a fluxgate
1003
+ magnetometer. Under these conditions, at an electric field of 60.3 V/cm (corresponding to µeff = 0.02 MHz/G) and
1004
+ a bias field of BZ ≈ 2 mG, we achieve a coherence time of 30 ms (Fig. S4).
1005
+ At these very low bias fields, the molecules are also sensitive to 60 Hz magnetic field noise present in the unshielded
1006
+ apparatus, whose amplitude is on the same order as BZ. Since the experiment is phase stable with respect to the AC
1007
+ line frequency, this 60 Hz magnetic field fluctuation causes a time-dependent spin precession frequency. A fluxgate
1008
+ magnetometer is used to measure the amplitude and phase of this 60 Hz field, which are then used as fixed parameters
1009
+ in the fit shown in Figure S4.
1010
+ [37] B. E. Sauer, J. Wang, and E. A. Hinds, Laser-rf double resonance spectroscopy of 174YbF in the X2Σ+ state: Spin-rotation,
1011
+ hyperfine interactions, and the electric dipole moment, J. Chem. Phys. 105, 7412 (1996).
1012
+ [38] C. S. Dickinson, J. A. Coxon, N. R. Walker, and M. C. L. Gerry, Fourier transform microwave spectroscopy of the 2Σ+
1013
+ ground states of YbX (X=F, Cl, Br): Characterization of hyperfine effects and determination of the molecular geometries,
1014
+ J. Chem. Phys. 115, 6979 (2001).
1015
+ [39] A. Petrov and A. Zakharova, Sensitivity of the YbOH molecule to P,T-odd effects in an external electric field, Phys. Rev.
1016
+ A 105, L050801 (2022).
1017
+ [40] J. M. Brown and A. Carrington, Rotational spectroscopy of diatomic molecules (Cambridge University Press, 2003).
1018
+ [41] E. Hirota, High-Resolution Spectroscopy of Transient Molecules, Springer Series in Chemical Physics, Vol. 40 (Springer
1019
+ Berlin Heidelberg, Berlin, Heidelberg, 1985).
1020
+ [42] A. Merer and J. Allegretti, Rotational energies of linear polyatomic molecules in vibrationally degenerate levels of electronic
1021
+ 2Σ and 3Σ states, Canadian Journal of Physics 49, 2859 (1971).
1022
+ [43] J. M. Brown, The rotational dependence of the Renner-Teller interaction: a new term in the effective Hamiltonian for
1023
+ linear triatomic molecules in Π electronic states, Mol. Phys. 101, 3419 (2003).
1024
+ [44] M. Li and J. A. Coxon, High-resolution analysis of the fundamental bending vibrations in the ˜A2Π and ˜
1025
+ X2Σ+ states of
1026
+ caoh and caod: Deperturbation of Renner-Teller, spin-orbit and K-type resonance interactions, J. Chem. Phys. 102, 2663
1027
+ (1995).
1028
+ [45] C. Scurlock, D. Fletcher, and T. Steimle, Hyperfine structure in the (0,0,0) ˜
1029
+ X2Σ+ state of CaOH observed by pump/probe
1030
+ microwave-optical double resonance, J. Mol. Spectrosc. 159, 350 (1993).
1031
+ [46] T. Steimle, D. Fletcher, K. Jung, and C. Scurlock, A supersonic molecular beam optical stark study of CaOH and SrOH,
1032
+ J. Chem. Phys. 96, 2556 (1992).
1033
+ [47] L. Caldwell and M. R. Tarbutt, Sideband cooling of molecules in optical traps, Phys. Rev. Res. 2, 013251 (2020).
1034
+ [48] Z. Lasner, Order-of-magnitude-tighter bound on the electron electric dipole moment, Ph.D. thesis, Yale University (2019).
1035
+
1036
+ Q
1037
+ 60.3 V/cm
1038
+ 0.44
1039
+ Spin Precession with 60 Hz Modulation
1040
+ Fraction (au)
1041
+ 0.42
1042
+ 0.4
1043
+ 0.38
1044
+ 0
1045
+ 10
1046
+ 20
1047
+ 30
1048
+ 40
1049
+ 50
1050
+ 60
1051
+ 70
1052
+ Time (ms)
BNFAT4oBgHgl3EQfsB5-/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
C9E2T4oBgHgl3EQf9QlY/content/2301.04226v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83bb576b7fd1b1fdc39c5a8669c7e89ade832960507420b2e91457d43888260c
3
+ size 421763
C9E2T4oBgHgl3EQf9QlY/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ab0031dd62b4e3e231e1d7297ee5152f0df10d5fe21817026086a97c2c0569f
3
+ size 146323