jackkuo commited on
Commit
36553a6
·
verified ·
1 Parent(s): 949e502

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -tAzT4oBgHgl3EQfFfrV/content/tmp_files/2301.01013v1.pdf.txt +2053 -0
  2. -tAzT4oBgHgl3EQfFfrV/content/tmp_files/load_file.txt +0 -0
  3. .gitattributes +51 -0
  4. 09AzT4oBgHgl3EQf8v5L/content/2301.01908v1.pdf +3 -0
  5. 09AzT4oBgHgl3EQf8v5L/vector_store/index.faiss +3 -0
  6. 0dAzT4oBgHgl3EQf8f7E/content/tmp_files/2301.01906v1.pdf.txt +1628 -0
  7. 0dAzT4oBgHgl3EQf8f7E/content/tmp_files/load_file.txt +0 -0
  8. 0dFRT4oBgHgl3EQfkjfS/content/tmp_files/2301.13596v1.pdf.txt +704 -0
  9. 0dFRT4oBgHgl3EQfkjfS/content/tmp_files/load_file.txt +0 -0
  10. 1tE2T4oBgHgl3EQf5Qgr/content/tmp_files/2301.04188v1.pdf.txt +0 -0
  11. 1tE2T4oBgHgl3EQf5Qgr/content/tmp_files/load_file.txt +0 -0
  12. 2dAzT4oBgHgl3EQfRvud/content/2301.01221v1.pdf +3 -0
  13. 2dAzT4oBgHgl3EQfRvud/vector_store/index.pkl +3 -0
  14. 4NAzT4oBgHgl3EQfuv1g/content/2301.01695v1.pdf +3 -0
  15. 4NAzT4oBgHgl3EQfuv1g/vector_store/index.pkl +3 -0
  16. 4NE2T4oBgHgl3EQf6Qhs/content/2301.04198v1.pdf +3 -0
  17. 4NE2T4oBgHgl3EQf6Qhs/vector_store/index.faiss +3 -0
  18. 4NE2T4oBgHgl3EQf6Qhs/vector_store/index.pkl +3 -0
  19. 5dFKT4oBgHgl3EQfSi3T/content/2301.11776v1.pdf +3 -0
  20. 5dFKT4oBgHgl3EQfSi3T/vector_store/index.pkl +3 -0
  21. 79AyT4oBgHgl3EQfc_dz/content/2301.00293v1.pdf +3 -0
  22. 79AyT4oBgHgl3EQfc_dz/vector_store/index.faiss +3 -0
  23. 79AyT4oBgHgl3EQfc_dz/vector_store/index.pkl +3 -0
  24. 7dE3T4oBgHgl3EQfRgmQ/content/tmp_files/2301.04422v1.pdf.txt +847 -0
  25. 7dE3T4oBgHgl3EQfRgmQ/content/tmp_files/load_file.txt +0 -0
  26. 7tE1T4oBgHgl3EQfnQST/content/2301.03307v1.pdf +3 -0
  27. 9NE2T4oBgHgl3EQfQAZl/vector_store/index.faiss +3 -0
  28. 9dFST4oBgHgl3EQfbDi0/content/tmp_files/2301.13798v1.pdf.txt +757 -0
  29. 9dFST4oBgHgl3EQfbDi0/content/tmp_files/load_file.txt +456 -0
  30. 9tFQT4oBgHgl3EQf6DZi/content/tmp_files/2301.13437v1.pdf.txt +2112 -0
  31. 9tFQT4oBgHgl3EQf6DZi/content/tmp_files/load_file.txt +0 -0
  32. A9E4T4oBgHgl3EQfEwz_/content/2301.04881v1.pdf +3 -0
  33. A9E4T4oBgHgl3EQfEwz_/vector_store/index.pkl +3 -0
  34. AdE0T4oBgHgl3EQfPgCp/content/tmp_files/2301.02180v1.pdf.txt +1237 -0
  35. AdE0T4oBgHgl3EQfPgCp/content/tmp_files/load_file.txt +429 -0
  36. AdFJT4oBgHgl3EQfrS3C/content/2301.11608v1.pdf +3 -0
  37. AdFJT4oBgHgl3EQfrS3C/vector_store/index.pkl +3 -0
  38. BtE1T4oBgHgl3EQfDgPC/content/tmp_files/2301.02879v1.pdf.txt +1870 -0
  39. BtE1T4oBgHgl3EQfDgPC/content/tmp_files/load_file.txt +0 -0
  40. CtE1T4oBgHgl3EQfpwVv/vector_store/index.faiss +3 -0
  41. CtFAT4oBgHgl3EQftB7D/content/tmp_files/2301.08662v1.pdf.txt +1047 -0
  42. CtFAT4oBgHgl3EQftB7D/content/tmp_files/load_file.txt +0 -0
  43. ENFKT4oBgHgl3EQfZy4X/content/2301.11804v1.pdf +3 -0
  44. ENFKT4oBgHgl3EQfZy4X/vector_store/index.faiss +3 -0
  45. ENFKT4oBgHgl3EQfZy4X/vector_store/index.pkl +3 -0
  46. FdAyT4oBgHgl3EQfSvci/content/tmp_files/2301.00090v1.pdf.txt +2719 -0
  47. FdAyT4oBgHgl3EQfSvci/content/tmp_files/load_file.txt +0 -0
  48. FdAyT4oBgHgl3EQfrPl7/content/2301.00557v1.pdf +3 -0
  49. FdAyT4oBgHgl3EQfrPl7/vector_store/index.pkl +3 -0
  50. GNE3T4oBgHgl3EQfWAqd/content/2301.04465v1.pdf +3 -0
-tAzT4oBgHgl3EQfFfrV/content/tmp_files/2301.01013v1.pdf.txt ADDED
@@ -0,0 +1,2053 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Generalised (non-singular) entropy functions with applications to cosmology and
2
+ black holes
3
+ Sergei D. Odintsov1,2 , Tanmoy Paul3
4
+ 1) ICREA, Passeig Luis Companys, 23, 08010 Barcelona, Spain
5
+ 2) Institute of Space Sciences (ICE, CSIC) C. Can Magrans s/n, 08193 Barcelona, Spain
6
+ 3) Department of Physics, Chandernagore College, Hooghly - 712 136, India.
7
+ The growing interest of different entropy functions proposed so far (like the Bekenstein-Hawking,
8
+ Tsallis, R´enyi, Barrow, Sharma-Mittal, Kaniadakis and Loop Quantum Gravity entropies) towards
9
+ black hole thermodynamics as well as towards cosmology lead to the natural question that whether
10
+ there exists a generalized entropy function that can generalize all these known entropies. With this
11
+ spirit, we propose a new 4-parameter entropy function that seems to converge to the aforementioned
12
+ known entropies for certain limits of the entropic parameters. The proposal of generalized entropy
13
+ is extended to non-singular case, in which case , the entropy proves to be singular-free during the
14
+ entire cosmological evolution of the universe. The hallmark of such generalized entropies is that it
15
+ helps us to fundamentally understand one of the important physical quantities namely “entropy”.
16
+ Consequently we address the implications of the generalized entropies on black hole thermodynamics
17
+ as well as on cosmology, and discuss various constraints of the entropic parameters from different
18
+ perspectives.
19
+ I.
20
+ INTRODUCTION
21
+ One of the most important discoveries in theoretical physics is the black body radiation of a black hole, which
22
+ is described by a certain temperature and by a Bekenstein-Hawking entropy function [1, 2] (see [3, 4] for extensive
23
+ reviews). On contrary to classical thermodynamics where the entropy is proportional to volume of the system under
24
+ consideration, the Bekenstein-Hawking entropy is proportional to the area of the black hole horizon. Such unusual
25
+ behaviour of the black hole entropy leads to the proposals of different entropy functions, such as, the Tsallis [5],
26
+ R´enyi [6], Barrow [7], Sharma-Mittal [8], Kaniadakis [9] and the Loop Quantum Gravity entropies [10] are well known
27
+ entropy functions proposed so far. All of these known entropies have the common properties like – (1) they seem
28
+ to be the monotonic increasing function with respect to the Bekenstein-Hawkinh entropy variable, (2) they obey the
29
+ third law of thermodynamics, in particular, all of these entropies tend to zero as S → 0 (where S represents the
30
+ Bekenstein-Hawking entropy) and (3) they converge to the Bekenstein-Hawking entropy for suitable choices of the
31
+ respective entropic parameter, for example, the Tsallis entropy goes to the Bekenstein-Hawking entropy when the
32
+ Tsallis exponent tends to unity. Furthermore, these entropies have rich consequences towards cosmology, particularly
33
+ in describing the dark energy era of the universe [16–49]. The growing interest of such known entropies and due to
34
+ their common properties lead to a natural question that whether there exists some generalized entropy function which
35
+ is able to generalize all the known entropies proposed so far for suitable limits of the parameters.
36
+ The entropy functions are extensively applied in the realm of black hole thermodynamics and cosmological evolution
37
+ of the universe. Recently we showed that the entropic cosmology corresponding to different entropy functions can be
38
+ equivalently represented by holographic cosmology where the equivalent holographic cut-offs come in terms of either
39
+ particle horizon and its derivative or the future horizon and its derivative. One of the mysteries in today’s cosmology
40
+ is to explain the acceleration of the universe in the high as well as in the low curvature regime, known as inflation and
41
+ the dark energy era respectively. These eras are well described by entropic cosmology or equivalently by holographic
42
+ cosmology [16–51, 53–60], and more interestingly, the entropic cosmology proves to be useful to unify the early inflation
43
+ and the late dark energy era of the universe in a covariant manner [61]. Apart from the inflation, the holographic
44
+ cosmology turns out to be useful in describing the bouncing scenario [62, 63]. In regard to the bounce scenario, the
45
+ energy density sourced from the holographic principle or from some entropy function under consideration helps to
46
+ violate the null energy condition at a finite time, which in turn triggers a non-singular bouncing universe. However
47
+ here it deserves mentioning that all the known entropies mentioned above (like Tsallis , R´enyi, Barrow, Sharma-
48
+ Mittal, Kaniadakis and the Loop Quantum Gravity entropies) become singular (or diverge) at a certain cosmological
49
+ evolution of the universe, particularly in the context of bounce cosmology. Actually such entropies contain a factor
50
+ that is proportional to 1/H2 (where H is the Hubble parameter), and thus they diverge at the instant when the
51
+ Hubble parameter vanishes, i.e, at the instant of a bounce in bouncing cosmology. This makes such known entropies
52
+ ill-defined in describing a non-singular bounce scenario.
53
+ Based on the above arguments, the questions that naturally arise are following:
54
+ • Does there exist a generalized entropy function that generalizes all the known entropies proposed so far ?
55
+ arXiv:2301.01013v1 [gr-qc] 3 Jan 2023
56
+
57
+ 2
58
+ • If so, then what is its implications on black hole thermodynamics as well as on cosmology ?
59
+ • Similar to the known entropies, is the generalized entropy becomes singular at the instant when the Hubble
60
+ parameter of the universe vanishes, for instance, in the bounce cosmology ? If so, then does there exist an
61
+ entropy function that generalizes all the known entropies, and at the same time, also proves to be singular-free
62
+ during the entire cosmic evolution of the universe ?
63
+ The present article, based on some of our previous works [50–52], gives a brief review in answering the above
64
+ questions. The notations or conventions in this article are following: we will follow the (−, +, +, +) signature of the
65
+ spacetime metric, and κ2 = 8πG =
66
+ 1
67
+ M 2
68
+ Pl where G is the Newton’s constant or MPl denotes the four dimensional Planck
69
+ mass. In regard to the cosmological evolution, a(t) and H(t) are the scale factor and the Hubble parameter of the
70
+ universe respectively, N being the e-folding number, an overprime will denote
71
+ d
72
+ dη where η is the conformal time, an
73
+ overdot will symbolize
74
+ d
75
+ dt with t being the cosmic time, otherwise an overprime with some argument will represent
76
+ the derivative of the function with respect to that argument.
77
+ II.
78
+ POSSIBLE GENERALIZATIONS OF KNOWN ENTROPIES
79
+ Here we will propose a generalized four-parameter entropy function which can lead to various known entropy
80
+ functions proposed so far for suitable choices of the parameters.
81
+ Let us start with the Bekenstein-Hawking entropy, the very first proposal of thermodynamical entropy of black hole
82
+ physics [1, 2],
83
+ S = A
84
+ 4G ,
85
+ (1)
86
+ where A = 4πr2
87
+ h is the area of the horizon and rh is the horizon radius. Consequently, different entropy functions have
88
+ been introduced depending on the system under consideration. Let us briefly recall some of the entropy functions
89
+ proposed so far:
90
+ • For the systems with long range interactions where the Boltzmann-Gibbs entropy is not applied, one needs to
91
+ introduce the Tsallis entropy which is given by [5],
92
+ ST = A0
93
+ 4G
94
+ � A
95
+ A0
96
+ �δ
97
+ ,
98
+ (2)
99
+ where A0 is a constant and δ is the exponent.
100
+ • The R´enyi entropy is given by [6],
101
+ SR = 1
102
+ α ln (1 + αS) ,
103
+ (3)
104
+ where S is identified with the Bekenstein-Hawking entropy and α is a parameter.
105
+ • The Barrow entropy is given by [7],
106
+ SB =
107
+ � A
108
+ APl
109
+ �1+∆/2
110
+ ,
111
+ (4)
112
+ where A is the usual black hole horizon area and APl = 4G is the Planck area. The Barrow entropy describes
113
+ the fractal structures of black hole that may generate from quantum gravity effects.
114
+ • The Sharma-Mittal entropy is given by [8],
115
+ SSM = 1
116
+ R
117
+
118
+ (1 + δ S)R/δ − 1
119
+
120
+ ,
121
+ (5)
122
+ where R and δ are two parameters. The Sharma-Mittal entropy can be regarded as a possible combination of
123
+ the Tsallis and R´enyi entropies.
124
+
125
+ 3
126
+ • The Kaniadakis entropy function is of the following form [9]:
127
+ SK = 1
128
+ K sinh (KS) ,
129
+ (6)
130
+ where K is a phenomenological parameter.
131
+ • In the context of Loop Quantum Gravity, one may get the following entropy function [10]:
132
+ Sq =
133
+ 1
134
+ (1 − q)
135
+
136
+ e(1−q)Λ(γ0)S − 1
137
+
138
+ ,
139
+ (7)
140
+ where q is the exponent and Λ(γ0) = ln 2/
141
+ �√
142
+ 3πγ0
143
+
144
+ with γ0 being the Barbero-Immirzi parameter. The γ0
145
+ generally takes either γ0 =
146
+ ln 2
147
+ π
148
+
149
+ 3 or γ0 =
150
+ ln 3
151
+
152
+
153
+ 2. However with γ0 =
154
+ ln 2
155
+ π
156
+
157
+ 3, Λ(γ0) becomes unity and Sq resembles
158
+ with the Bekenstein-Hawking entropy for q → 1.
159
+ All the above entropies – (1) obeys the generalized third law of thermodynamics, i.e the entropy function(s) vanishes
160
+ at the limit S → 0; (2) monotonically increases with respect to the Bekenstein-Hawking variable and (3) converges to
161
+ the Bekenstein-Hawking entropy for suitable limit of the entropic parameter, for example, the Tsallis entropy tends
162
+ to S at δ = 1.
163
+ In [50, 51], we proposed two different entropy functions containing 6-parameters and 4-parameters respectively,
164
+ which can generalize all the known entropies mentioned from Eq.(2) to Eq.(7). In particular, the generalized entropies
165
+ are given by,
166
+ 6 parameter entropy :
167
+ S6 [α±, β±, γ±] =
168
+ 1
169
+ α+ + α−
170
+ ��
171
+ 1 + α+
172
+ β+
173
+ Sγ+
174
+ �β+
175
+
176
+
177
+ 1 + α−
178
+ β−
179
+ Sγ−
180
+ �−β−�
181
+ ,
182
+ (8)
183
+ 4 parameter entropy :
184
+ Sg [α+, α−, β, γ] = 1
185
+ γ
186
+ ��
187
+ 1 + α+
188
+ β
189
+ S
190
+ �β
191
+
192
+
193
+ 1 + α−
194
+ β
195
+ S
196
+ �−β�
197
+ ,
198
+ (9)
199
+ where the respective parameters are given in the argument and they are assumed to be positive.
200
+ Here S is the
201
+ Bekenstein-Hawking entropy. Below we prove the generality of the above generalized entropy functions, in particular,
202
+ we show that both the generalized entropies reduce to the known entropies mentioned in Eqs. (2), (3), (4), (5), (6),
203
+ and (7) for suitable choices of the respective parameters. Here we establish it particularly for the 4-parameter entropy
204
+ function, while the similar calculations hold for the 6-parameter entropy as well [50].
205
+ • For α+ → ∞ and α− = 0, one gets
206
+ Sg = 1
207
+ γ
208
+ �α+
209
+ β
210
+ �β
211
+ Sβ .
212
+ If we further choose γ = (α+/β)β, then the generalized entropy reduces to
213
+ Sg = Sβ .
214
+ Therefore with β = δ or β = 1 + ∆, the generalized entropy resembles with the Tsallis entropy or with the
215
+ Barrow entropy respectively.
216
+ • For α− = 0, β → 0 and α+
217
+ β → finite – Eq. (9) leads to,
218
+ Sg = 1
219
+ γ
220
+ ��
221
+ 1 + α+
222
+ β
223
+ S
224
+ �β
225
+ − 1
226
+
227
+ = 1
228
+ γ
229
+
230
+ exp
231
+
232
+ β ln
233
+
234
+ 1 + α+
235
+ β
236
+ S
237
+ ��
238
+ − 1
239
+
240
+
241
+ 1
242
+ (γ/β) ln
243
+
244
+ 1 + α+
245
+ β
246
+ S
247
+
248
+ .
249
+ Further choosing γ = α+ and identifying α+
250
+ β = α, we can write the above expression as,
251
+ Sg = 1
252
+ α ln (1 + α S) ,
253
+ (10)
254
+ i.e., Sg reduces to the R´enyi entropy.
255
+
256
+ 4
257
+ • In the case when α− = 0, the generalized entropy becomes,
258
+ Sg = 1
259
+ γ
260
+ ��
261
+ 1 + α+
262
+ β
263
+ S
264
+ �β
265
+ − 1
266
+
267
+ .
268
+ (11)
269
+ Thereby identifying γ = R, α+ = R and β = R/δ, the generalized entropy function Sg gets similar to the
270
+ Sharma-Mittal entropy.
271
+ • For β → ∞, α+ = α− = γ
272
+ 2 = K, we may write Eq. (9) as,
273
+ Sg = 1
274
+ 2K lim
275
+ β→∞
276
+ ��
277
+ 1 + K
278
+ β S
279
+ �β
280
+
281
+
282
+ 1 + K
283
+ β S
284
+ �−β�
285
+ = 1
286
+ 2K
287
+
288
+ eKS − e−KS�
289
+ = 1
290
+ K sinh (KS) → Kaniadakis entropy .
291
+ (12)
292
+ • Finally, with α− = 0, β → ∞ and γ = α+ = (1 − q), Eq. (9) immediately yields,
293
+ Sg =
294
+ 1
295
+ (1 − q)
296
+
297
+ e(1−q)S − 1
298
+
299
+ ,
300
+ which is the Loop Quantum Gravity entropy with Λ(γ0) = 1 or equivalently γ0 =
301
+ ln 2
302
+ π
303
+
304
+ 3.
305
+ Furthermore, the generalized entropy function in Eq. (9) shares the following properties: (1) Sg → 0 for S → 0.
306
+ (2) The entropy Sg [α+, α−, β, γ] is a monotonically increasing function with S because both the terms
307
+
308
+ 1 + α+
309
+ β S
310
+ �β
311
+ and −
312
+
313
+ 1 + α−
314
+ β
315
+ S
316
+ �−β
317
+ present in the expression of Sg increase with S. (3) Sg [α+, α−, β, γ] seems to converge to the
318
+ Bekenstein-Hawking entropy at certain limit of the parameters. In particular, for α+ → ∞, α− = 0, γ = (α+/β)β
319
+ and β = 1, the generalized entropy function in Eq. (9) becomes equivalent to the Bekenstein-Hawking entropy.
320
+ Here it deserves mentioning that beside the entropy function proposed in Eq. (9) which contains four parameters,
321
+ one may consider a three parameter entropy having the following form:
322
+ S3[α, β, γ] = 1
323
+ γ
324
+ ��
325
+ 1 + α
326
+ β S
327
+ �β
328
+ − 1
329
+
330
+ ,
331
+ (13)
332
+ where α, β and γ are the parameters. The above form of S3[α, β, γ] satisfies all the properties, like – (1) S3[α, β, γ] → 0
333
+ for S → 0, (2) S3 is an increasing function with S and (3) S3 has a Bekenstein-Hawking entropy limit for the choices:
334
+ α → ∞, γ = (α/β)β and β = 1 respectively. However S3[α, β, γ] is not able to generalize all the known entropies
335
+ mentioned from Eq. (2) to Eq. (7), in particular, S3[α, β, γ] does not reduce to the Kaniadakis entropy for any
336
+ possible choices of the parameters.
337
+ Conjecture - I: Based on our findings, we propose the following postulate in regard to the generalized entropy
338
+ function – “The minimum number of parameters required in a generalized entropy function that can generalize all
339
+ the known entropies mentioned from Eq. (2) to Eq. (7) is equal to four”.
340
+ Below we will address the possible implications of such generalized entropies on black hole thermodynamics as well
341
+ as on cosmology.
342
+ III.
343
+ BLACK HOLE THERMODYNAMICS WITH 3-PARAMETER GENERALIZED ENTROPY
344
+ It is interesting to see what happens when the generalized entropy (13) is ascribed to the prototypical black hole,
345
+ given by the Schwarzschild geometry [50]
346
+ ds2 = −f(r) dt2 + dr2
347
+ f(r) + r2dΩ2
348
+ (2) ,
349
+ f(r) = 1 − 2GM
350
+ r
351
+ ,
352
+ (14)
353
+
354
+ 5
355
+ where M is the black hole mass and dΩ2
356
+ (2) = dϑ2 + sin2 ϑ dϕ2 is the line element on the unit two-sphere. The black
357
+ hole event horizon is located at the Schwarzschild radius
358
+ rH = 2GM .
359
+ (15)
360
+ Studying quantum field theory on the spacetime with this horizon, Hawking discovered that the Schwarzschild black
361
+ hole radiates with a blackbody spectrum at the temperature
362
+ TH =
363
+ 1
364
+ 8πGM .
365
+ (16)
366
+ As explained in general below, if we assume that the mass M coincides with the thermodynamical energy, then the
367
+ temperature obtained from the thermodynamical law is different from the Hawking temperature, a contradiction for
368
+ observers detecting Hawking radiation. Alternatively, if the Hawking temperature TH is identified with the physical
369
+ black hole temperature, the obtained thermodynamical energy differs from the Schwarzschild mass M even for the
370
+ Tsallis entropy or the R´enyi entropy, which seems to imply a breakdown of energy conservation.
371
+ If the mass M coincides with the thermodynamical energy E of the system due to energy conservation, as in,
372
+ in order for this system to be consistent with the thermodynamical equation dSG = dE/T one needs to define the
373
+ generalized temperature TG as
374
+ 1
375
+ TG
376
+ ≡ dSG
377
+ dM
378
+ (17)
379
+ which is, in general, different from the Hawking temperature TH. For example, in the case of the entropy (13), one
380
+ has
381
+ 1
382
+ TG
383
+ = α
384
+ γ
385
+
386
+ 1 + α
387
+ β S
388
+ �β−1 dS
389
+ dM = α
390
+ γ
391
+
392
+ 1 + α
393
+ β S
394
+ �β−1 1
395
+ TH
396
+ ,
397
+ (18)
398
+ where
399
+ S = A
400
+ 4G = 4πGM 2 =
401
+ 1
402
+ 16πGTH
403
+ 2 .
404
+ (19)
405
+ Because α
406
+ γ
407
+
408
+ 1 + α
409
+ β S
410
+ �β−1
411
+ ̸= 1, it is necessarily TG ̸= TH. Since the Hawking temperature (16) is the temperature
412
+ perceived by observers detecting Hawking radiation, the generalized temperature TG in (18) cannot be a physically
413
+ meaningful temperature.
414
+ In Eq. (17), assuming that the thermodynamical energy E is the black hole mass M leads to an unphysical result.
415
+ As an alternative, assume that the thermodynamical temperature T coincides with the Hawking temperature TH
416
+ instead of assuming E = M. This assumption leads to
417
+ dEG = TH dSG = dSG
418
+ dS
419
+ dS
420
+
421
+ 16πGS
422
+ (20)
423
+ which, in the case of Eq. (13), yields
424
+ dEG = α
425
+ γ
426
+
427
+ 1 + α
428
+ β S
429
+ �β−1
430
+ dS
431
+
432
+ 16πGS
433
+ =
434
+ α
435
+ γ
436
+
437
+ 16πG
438
+
439
+ S−1/2 + α (β − 1)
440
+ β
441
+ S1/2 + O
442
+
443
+ S3/2��
444
+ .
445
+ (21)
446
+ The integration of Eq. (21) gives
447
+ EG =
448
+ α
449
+ γ
450
+
451
+ 16πG
452
+
453
+ 2S1/2 + 2α (β − 1)
454
+
455
+ S3/2 + O
456
+
457
+ S5/2��
458
+ = α
459
+ γ
460
+
461
+ M + 4πGα (β − 1)
462
+
463
+ M 3 + O
464
+
465
+ M 5��
466
+ ,
467
+ (22)
468
+ where the integration constant is determined by the condition that EG = 0 when M = 0. Even when α = γ, due to
469
+ the correction 4πGα(β−1)
470
+
471
+ M 3, the expression (22) of the thermodynamical energy ER obtained differs from the black
472
+ hole mass M, EG ̸= E, which seems unphysical.
473
+
474
+ 6
475
+ IV.
476
+ COSMOLOGY WITH THE 4-PARAMETER GENERALIZED ENTROPY
477
+ Here we consider the 4-parameter generalized entropy (9), which is indeed more generalized compared to the 3-
478
+ parameter entropy function of Eq.(13), to describe the cosmological behaviour of the universe [51]. In particular, we
479
+ examine whether the 4-parameter entropy function results to an unified scenario of early inflation and the late dark
480
+ energy era of the universe.
481
+ The Friedmann-Lemaˆıtre-Robertson-Walker space-time with flat spacial part will serve our purpose, in particular,
482
+ ds2 = −dt2 + a2(t)
483
+
484
+ i=1,2,3
485
+
486
+ dxi�2 .
487
+ (23)
488
+ Here a(t) is called as a scale factor.
489
+ The radius rH of the cosmological horizon is given by
490
+ rH = 1
491
+ H ,
492
+ (24)
493
+ with H = ˙a/a is the Hubble parameter of the universe. Then the entropy contained within the cosmological horizon
494
+ can be obtained from the Bekenstein-Hawking relation [65]. Furthermore the flux of the energy E, or equivalently,
495
+ the increase of the heat Q in the region comes as
496
+ dQ = −dE = −4π
497
+ 3 r3
498
+ H ˙ρdt = − 4π
499
+ 3H3 ˙ρ dt = 4π
500
+ H2 (ρ + p) dt ,
501
+ (25)
502
+ where, in the last equality, we use the conservation law: 0 = ˙ρ + 3H (ρ + p). Then from the Hawking temperature
503
+ [66]
504
+ T =
505
+ 1
506
+ 2πrH
507
+ = H
508
+ 2π ,
509
+ (26)
510
+ and by using the first law of thermodynamics TdS = dQ, one obtains ˙H = −4πG (ρ + p). Integrating the expression
511
+ immediately leads to the first FRW equation,
512
+ H2 = 8πG
513
+ 3
514
+ ρ + Λ
515
+ 3 ,
516
+ (27)
517
+ where the integration constant Λ can be treated as a cosmological constant.
518
+ Instead of the Bekenstein-Hawking entropy of Eq. (1), we may use the generalized entropy in Eq. (9), in regard to
519
+ which, the first law of thermodynamics leads to the following equation:
520
+ ˙H
521
+ �∂Sg
522
+ ∂S
523
+
524
+ = −4πG (ρ + p) .
525
+ (28)
526
+ With the explicit form of Sg from Eq. (9), the above equation turns out to be,
527
+ 1
528
+ γ
529
+
530
+ α+
531
+
532
+ 1 + πα+
533
+ βGH2
534
+ �β−1
535
+ + α−
536
+
537
+ 1 + πα−
538
+ βGH2
539
+ �−β−1�
540
+ ˙H = −4πG (ρ + p)
541
+ (29)
542
+ where we use S = A/(4G) = π/(GH2). Using the conservation relation of the matter fields, i.e., ˙ρ + 3H (ρ + p) = 0,
543
+ Eq. (29) can be written as,
544
+ 2
545
+ γ
546
+
547
+ α+
548
+
549
+ 1 + πα+
550
+ βGH2
551
+ �β−1
552
+ + α−
553
+
554
+ 1 + πα−
555
+ βGH2
556
+ �−β−1�
557
+ H dH =
558
+ �8πG
559
+ 3
560
+
561
+ dρ ,
562
+ on integrating which, we obtain,
563
+ GH4β
564
+ πγ
565
+
566
+ 1
567
+ (2 + β)
568
+ �GH2β
569
+ πα−
570
+ �β
571
+ 2F1
572
+
573
+ 1 + β, 2 + β, 3 + β, −GH2β
574
+ πα−
575
+
576
+ +
577
+ 1
578
+ (2 − β)
579
+ �GH2β
580
+ πα+
581
+ �−β
582
+ 2F1
583
+
584
+ 1 − β, 2 − β, 3 − β, −GH2β
585
+ πα+
586
+ ��
587
+ = 8πGρ
588
+ 3
589
+ + Λ
590
+ 3 ,
591
+ (30)
592
+ where Λ is the integration constant (known as the cosmological constant) and 2F1(arguments) denotes the Hypergeo-
593
+ metric function. Eq. (29) and Eq. (30) represent the modified Friedmann equations corresponding to the generalized
594
+ entropy function Sg. In the next section, we aim to study the cosmological implications of the modified Friedmann
595
+ Eq. (29) and Eq. (30).
596
+
597
+ 7
598
+ A.
599
+ Early universe cosmology from the 4-parameter generalized entropy
600
+ During the early stage of the universe we consider the matter field and the cosmological constant (Λ) to be absent,
601
+ i.e., ρ = p = Λ = 0. During the early universe, the cosmological constant is highly suppressed with respect to the
602
+ entropic energy density and thus we can safely neglect the Λ in studying the early inflationary scenario of the universe.
603
+ Therefore during the early universe, Eq. (30) becomes,
604
+
605
+ 1
606
+ (2 + β)
607
+ �GH2β
608
+ πα−
609
+ �β
610
+ 2F1
611
+
612
+ 1 + β, 2 + β, 3 + β, −GH2β
613
+ πα−
614
+
615
+ +
616
+ 1
617
+ (2 − β)
618
+ �GH2β
619
+ πα+
620
+ �−β
621
+ 2F1
622
+
623
+ 1 − β, 2 − β, 3 − β, −GH2β
624
+ πα+
625
+ ��
626
+ = 0 .
627
+ (31)
628
+ Here it may be mentioned that the typical energy scale during early universe is of the order ∼ 1016GeV (= 10−3MPl
629
+ where recall that MPl is the Planck mass and MPl = 1/
630
+
631
+ 16πG). This indicates that the condition GH2 ≪ 1 holds
632
+ during the early phase of the universe. Owing to such condition, we can safely expand the Hypergeometric function
633
+ of Eq. (31) as the Taylor series with respect to the argument containing GH2, and as a result, the above equation
634
+ provides a constant Hubble parameter as the solution:
635
+ H = 4πMPl
636
+ �α+
637
+ β
638
+
639
+ (3 − β)
640
+ (2 − β)(1 − β)
641
+
642
+ .
643
+ (32)
644
+ For α+
645
+ β ∼ 10−6 and β ≲ O(1), the constant Hubble parameter can be fixed at H ∼ 10−3MPl which can be identified
646
+ with typical inflationary energy scale. Therefore the entropic cosmology corresponding to the generalized entropy
647
+ function Sg leads to a de-Sitter inflationary scenario during the early universe. However, a de-Sitter inflation has no
648
+ exit mechanism, and moreover, the primordial curvature perturbation gets exactly scale invariant in the context of a
649
+ de-Sitter inflation, which is not consistent with the recent Planck data [75] at all. This indicates that the constant
650
+ Hubble parameter obtained in Eq. (32) does not lead to a good inflationary scenario of the universe. Thus in order
651
+ to achieve a viable quasi de-Sitter inflation in the present context, we consider the parameters of Sg to be slowly
652
+ varying functions with respect to the cosmic time. In particular, we consider the parameter γ to vary and the other
653
+ parameters (i.e., α+, α− and β) remain constant with t. In particular,
654
+ γ(N) =
655
+
656
+ γ0 exp
657
+
658
+
659
+ � Nf
660
+ N
661
+ σ(N) dN
662
+
663
+ ; N ≤ Nf
664
+ γ0
665
+ ; N ≥ Nf ,
666
+ (33)
667
+ where γ0 is a constant and N denotes the inflationary e-folding number with Nf being the total e-folding number of
668
+ the inflationary era. The function σ(N) has the following form,
669
+ σ(N) = σ0 + e−(Nf −N) ,
670
+ (34)
671
+ where σ0 is a constant. The second term in the expression of σ(N) becomes effective only when N ≈ Nf, i.e., near
672
+ the end of inflation. The term e−(Nf −N) in Eq. (34) is actually considered to ensure an exit from inflation era and
673
+ thus proves to be an useful one to make the inflationary scenario viable. In such scenario where γ varies with N, the
674
+ Friedmann equation turns out to be,
675
+
676
+ �2π
677
+ G
678
+
679
+
680
+ ��
681
+ α+
682
+
683
+ 1 + α+
684
+ β S
685
+ �β−1
686
+ + α−
687
+
688
+ 1 + α−
689
+ β
690
+ S
691
+ �−β−1
692
+
693
+ 1 + α+
694
+ β S
695
+ �β
696
+
697
+
698
+ 1 + α−
699
+ β
700
+ S
701
+ �−β
702
+
703
+ �� H′(N)
704
+ H3
705
+ = σ(N) .
706
+ (35)
707
+ By using S = π/(GH2), or equivalently, 2HdH = −
708
+ π
709
+ GS2 dS, one can integrate Eq.(35) to get H(N) as,
710
+ H(N) = 4πMPl
711
+ �α+
712
+ β
713
+
714
+ ����
715
+ 21/(2β) exp
716
+
717
+ − 1
718
+
719
+ � N
720
+ 0 σ(N)dN
721
+
722
+
723
+ 1 +
724
+
725
+ 1 + 4 (α+/α−)β exp
726
+
727
+ −2
728
+ � N
729
+ 0 σ(N)dN
730
+ ��1/(2β)
731
+
732
+ ���� .
733
+ (36)
734
+
735
+ 8
736
+ The above solution of H(N) allows an exit from inflation at finite e-fold number which can be fixed at Nf = 58 for
737
+ suitable choices of the entropic parameters [51]. Moreover we determine the spectral index for curvature perturbation
738
+ (ns) and the tensor-to-scalar ratio (r) in the present context of entropic cosmology, and they are given by [51]:
739
+ ns = 1 −
740
+ 2σ0
741
+
742
+ 1 + 4 (α+/α−)β exp [−2 (1 + σ0Nf)]
743
+ (1 + σ0)
744
+
745
+ 1 + 4 (α+/α−)β
746
+ − 8σ0 (α+/α−)β
747
+ 1 + 4 (α+/α−)β ,
748
+ (37)
749
+ and
750
+ r =
751
+ 16σ0
752
+
753
+ 1 + 4 (α+/α−)β exp [−2 (1 + σ0Nf)]
754
+ (1 + σ0)
755
+
756
+ 1 + 4 (α+/α−)β
757
+ (38)
758
+ respectively. It turns out that the theoretical expectations of ns and r get simultaneously compatible with the Planck
759
+ data for the following ranges of the parameters:
760
+ σ0 = [0.013, 0.017] ,
761
+ (α+/α−)β ≥ 7.5 ,
762
+ β = (0, 0.4] and (α+/β) ≈ 10−6 ,
763
+ (39)
764
+ for Nf = 58. The consideration of α+
765
+ β ∼ 10−6 leads to the energy scale at the onset of inflation as H ∼ 10−3MPl.
766
+ B.
767
+ Dark energy era from the 4-parameter generalized entropy
768
+ In this section we will concentrate on late time cosmological implications of the generalized entropy function (Sg),
769
+ where the cosmological constant Λ is considered to be non-zero. During the late time, the parameter γ becomes
770
+ constant, in particular γ = γ0, as we demonstrated in Eq. (33). As a result, the entropy function at the late time
771
+ takes the following form,
772
+ Sg = 1
773
+ γ0
774
+ ��
775
+ 1 + α+
776
+ β
777
+ S
778
+ �β
779
+
780
+
781
+ 1 + α−
782
+ β
783
+ S
784
+ �−β�
785
+ ,
786
+ (40)
787
+ with S = π/(GH2). Consequently, the energy density and pressure corresponding to the Sg are given by,
788
+ ρg = 3H2
789
+ 8πG
790
+
791
+ 1 −
792
+ α+
793
+ γ0(2 − β)
794
+ �GH2β
795
+ πα+
796
+ �1−β�
797
+ ,
798
+ pg = −
799
+ ˙H
800
+ 4πG
801
+
802
+ 1 − α+
803
+ γ0
804
+ �GH2β
805
+ πα+
806
+ �1−β
807
+
808
+ �α+
809
+ γ0
810
+ � �α+
811
+ α−
812
+ �β �GH2β
813
+ πα+
814
+ �1+β�
815
+ − ρg .
816
+ (41)
817
+ Therefore the dark energy density (ρD) is contributed from the entropic energy density (ρg) as well as from the
818
+ cosmological constant. In particular
819
+ ρD = ρg +
820
+ 3
821
+ 8πG
822
+ �Λ
823
+ 3
824
+
825
+ ,
826
+ ρD + pD = ρg + pg .
827
+ (42)
828
+ Consequently, the dark energy EoS parameter comes with the following expression:
829
+ ωD = pD/ρD = −1 −
830
+
831
+ 2 ˙H
832
+ 3H2
833
+ � �
834
+ ��
835
+ 1 − α+
836
+ γ0
837
+
838
+ GH2β
839
+ πα+
840
+ �1−β
841
+
842
+
843
+ α+
844
+ γ0
845
+ � �
846
+ α+
847
+ α−
848
+ �β �
849
+ GH2β
850
+ πα+
851
+ �1+β
852
+ 1 −
853
+ α+
854
+ γ0(2−β)
855
+
856
+ GH2β
857
+ πα+
858
+ �1−β
859
+ +
860
+ Λ
861
+ 3H2
862
+
863
+ �� .
864
+ (43)
865
+ In presence of the cosmological constant, the Friedmann equations are written as,
866
+ H2 = 8πG
867
+ 3
868
+ (ρm + ρD) = 8πG
869
+ 3
870
+ (ρm + ρg) + Λ
871
+ 3 ,
872
+
873
+ 9
874
+ ˙H = −4πG [ρm + (ρD + pD)] = −4πG [ρm + (ρg + pg)] .
875
+ (44)
876
+ As usual, the fractional energy density of the pressureless matter and the dark energy satisfy Ωm + ΩD = 1 which
877
+ along with ρm = ρm0
878
+ � a0
879
+ a
880
+ �3 (with ρm0 being the present matter energy density) result to the Hubble parameter in
881
+ terms of the red shift factor (z) as follows,
882
+ H(z) = H0
883
+
884
+ Ωm0(1 + z)3
885
+ √1 − ΩD
886
+ .
887
+ (45)
888
+ Plugging the expression of ρg from Eq. (41) into ΩD =
889
+ � 8πG
890
+ 3H2
891
+
892
+ ρg + Λ
893
+ 3 , and using the above form of H(z), we obtain,
894
+ ΩD(z) = 1 −
895
+
896
+ α+
897
+ γ0(2−β)
898
+
899
+ 1
900
+ 2−β �
901
+ GH2
902
+
903
+ πα+
904
+ Ωm0(1 + z)3� 1−β
905
+ 2−β
906
+
907
+ 1 +
908
+ Λ
909
+ 3H2
910
+ 0Ωm0(1+z)3
911
+ �1/(2−β)
912
+ .
913
+ (46)
914
+ By using the above expressions, we determine the DE EoS parameter from Eq. (43) as follows (see [51]),
915
+ ωD(z) = −1 +
916
+ 1
917
+ (2 − β)
918
+
919
+ 1 +
920
+ Λ
921
+ 3H2
922
+ 0Ωm0(1+z)3
923
+
924
+ �N
925
+ D
926
+
927
+ ,
928
+ (47)
929
+ where N (the numerator) and D (the denominator) have the following forms,
930
+ N = 1 − Ωm0(2 − β) (1 + z)
931
+ 3(1−β)
932
+ (2−β)
933
+ � �
934
+ 1 +
935
+ Λ
936
+ 3H2
937
+ 0Ωm0
938
+ [f(Λ, Ωm0, H0, z)]1−β
939
+
940
+ +
941
+ �α+
942
+ α−
943
+ �β
944
+ [Ωm0(2 − β)γ0/α+]
945
+
946
+ 1−β (1 + z)
947
+
948
+ 2−β
949
+ ×
950
+
951
+
952
+
953
+
954
+ 1 +
955
+ Λ
956
+ 3H2
957
+ 0Ωm0
958
+ �(1+β)/(1−β)
959
+ [f(Λ, Ωm0, H0, z)]1+β
960
+
961
+
962
+
963
+
964
+ ,
965
+ and
966
+ D = 1 − Ωm0 (1 + z)
967
+ 3(1−β)
968
+ (2−β)
969
+
970
+ 1 +
971
+ Λ
972
+ 3H2
973
+ 0Ωm0
974
+ [f(Λ, Ωm0, H0, z)]1−β
975
+
976
+ +
977
+ Λ
978
+ 3H2
979
+ 0
980
+ �f(Λ, Ωm0, H0, z)
981
+ (1 + z)3/(2−β)
982
+
983
+ (48)
984
+ respectively.
985
+ Therefore ωD depends on the parameters: β, (α+/α−)β, γ0 and α+.
986
+ Recall that the inflationary
987
+ quantities are found to be simultaneously compatible with the Planck data if some of the parameters like α+, α− and
988
+ β get constrained according to Eq. (39), while the parameter γ0 remains free from the inflationary requirement. With
989
+ the aforementioned ranges of α+, α− and β, ωD(0) becomes compatible with the Planck observational data, provided
990
+ γ0 lies within a small window as follows,
991
+ 1.5 × 10−4 ≤
992
+ γ0
993
+ (8πGH2
994
+ 0)1−β ≤ 2 × 10−4 .
995
+ (49)
996
+ Furthermore the deceleration parameter (symbolized by q) at present universe is obtained as,
997
+ q = −1 +
998
+ 3
999
+ 2(2 − β)
1000
+
1001
+ 1 +
1002
+ Λ
1003
+ 3H2
1004
+ 0Ωm0
1005
+ � .
1006
+ (50)
1007
+ Therefore for γm = [1.5×10−4, 2×10−4], the theoretical expression of q lies within q = [−0.56, −0.42] which certainly
1008
+ contains the observational value of q = −0.535 from the Planck data [76]. In particular, q = −0.535 occurs for
1009
+ γm = 1.8 × 10−4. Considering this value of γm and by using Eq.(47), we give the plot of ωD(z) vs. z, see Fig. 1.
1010
+ The figure reveals that that the theoretical expectation of the DE EoS parameter at present time acquires the value:
1011
+ ωD(0) = −0.950 which is well consistent with the Planck observational data [76].
1012
+ As a whole, we may argue that the entropic cosmology from the generalized entropy function Sg can unify the early
1013
+ inflation to the late dark energy era of the universe, for suitable ranges of the parameters given by:
1014
+ σ0 = [0.013, 0.017] ,
1015
+ (α+/α−)β ≥ 7.5 ,
1016
+
1017
+ 10
1018
+ -1.0
1019
+ -0.5
1020
+ 0.0
1021
+ 0.5
1022
+ 1.0
1023
+ -3.0
1024
+ -2.5
1025
+ -2.0
1026
+ -1.5
1027
+ -1.0
1028
+ z
1029
+ ωD(z)
1030
+ FIG. 1: ωD(z) vs. z for a particular set of values of the parameters from their viable ranges as per Eq.(39) and Eq.(49), say
1031
+ β = 0.35, (α+/α−)β = 10, α+/β = 10−6 and γm = 1.8 × 10−4.
1032
+ β = (0, 0.4] and γm = [1.5 × 10−4, 2 × 10−4] .
1033
+ (51)
1034
+ Despite these successes, here it deserves mentioning that the entropy function Sg seems to be plagued with singularity
1035
+ for certain cosmological evolution of the universe, in particular, in the context of bounce cosmology. Due to the reason
1036
+ that the Bekenstein-Hawking entropy can be expressed as S = π/
1037
+
1038
+ GH2�
1039
+ , the generalized entropy Sg contains factor
1040
+ that is proportional to 1/H2 which diverges at H = 0, for instance at the instant of bounce in the context of bounce
1041
+ cosmology. Therefore in a bounce scenario, the generalized entropy function shown in Eq.(9) is not physical, and
1042
+ thus, we need to search for a different generalized entropy function which can lead to various known entropy functions
1043
+ for suitable choices of the parameters, and at the same time, proves to be non-singular for the entire cosmological
1044
+ evolution of the universe even at H = 0.
1045
+ V.
1046
+ SEARCH FOR A SINGULAR-FREE GENERALIZED ENTROPY
1047
+ With this spirit, we propose a new singular-free entropy function given by [52],
1048
+ Sns [α±, β, γ, ϵ] = 1
1049
+ γ
1050
+ � �
1051
+ 1 + 1
1052
+ ϵ tanh
1053
+ �ϵα+
1054
+ β
1055
+ S
1056
+ ��β
1057
+
1058
+
1059
+ 1 + 1
1060
+ ϵ tanh
1061
+ �ϵα−
1062
+ β
1063
+ S
1064
+ ��−β �
1065
+ ,
1066
+ (52)
1067
+ where α±, β, γ and ϵ are the parameters which are considered to be positive, S symbolizes the Bekenstein-Hawking
1068
+ entropy and the suffix ’ns’ stands for ’non-singular’. In regard to the number of parameters, we propose a conjecture at
1069
+ the end of this section. First we demonstrate that the above entropy function remains finite, and thus is non-singular,
1070
+ during the whole cosmological evolution of a bouncing universe. In particular, the Sg takes the following form at the
1071
+ instant of bounce:
1072
+ Sns [α±, β, γ, ϵ] = 1
1073
+ γ
1074
+ � �
1075
+ 1 + 1
1076
+ ϵ
1077
+ �β
1078
+
1079
+
1080
+ 1 + 1
1081
+ ϵ
1082
+ �−β �
1083
+ .
1084
+ (53)
1085
+ Having demonstrated the non-singular behaviour of the entropy function, we now show that Sns of Eq.(52), for suitable
1086
+ choices of the parameters, reduces to various known entropies proposed so far.
1087
+ • For ϵ → 0, α+ → ∞ and α− = 0 along with the identification γ = (α+/β)β, Sns converges to the Tsallis entropy
1088
+ or to the Barrow entropy respectively.
1089
+ • The limit ϵ → 0, α− = 0, β → 0 and α+
1090
+ β → finite results to the similarity between the non-singular generalized
1091
+ entropy Sg and the R´enyi entropy.
1092
+
1093
+ 11
1094
+ • For ϵ → 0 and α− → 0, the non-singular generalized entropy converges to the following form,
1095
+ Sns = 1
1096
+ γ
1097
+ ��
1098
+ 1 + α+
1099
+ β
1100
+ S
1101
+ �β
1102
+ − 1
1103
+
1104
+ (54)
1105
+ Therefore with γ = R, α+ = R and β = R/δ, the above form of Sns becomes similar to the Sharma-Mittal
1106
+ entropy.
1107
+ • For ϵ → 0, β → ∞, α+ = α− = γ
1108
+ 2 = K – the generalized entropy converges to the form of Kaniadakis entropy,
1109
+ • Finally, ϵ → 0, α− → 0, β → ∞ and γ = α+ = (1 − q), the generalized entropy of Eq. (52) gets resemble with
1110
+ the Loop Quantum Gravity entropy.
1111
+ Furthermore, the generalized entropy function in Eq. (52) shares the following properties: (1) the non-singular
1112
+ generalized entropy satisfies the generalized third law of thermodynamics.
1113
+ (2) Sns [α±, β, γ, ϵ] turns out to be a
1114
+ monotonically increasing function of S. (3) Sns [α±, β, γ, ϵ] proves to converge to the Bekenstein-Hawking entropy at
1115
+ certain limit of the parameters.
1116
+ At this stage it deserves mentioning that we have proposed two different generalized entropy functions in Eq.(9)
1117
+ and in Eq.(52) respectively – the former entropy function contains four independent parameters while the latter
1118
+ one has five parameters.
1119
+ Furthermore both the entropies are able to generalize the known entropies for suitable
1120
+ choices of the respective parameters. However as mentioned earlier that the entropy with four parameters becomes
1121
+ singular at H = 0 (for instance, in a bounce scenario when the Hubble parameter vanishes at the instant of bounce),
1122
+ while the entropy function having five parameters proves to be singular-free during the whole cosmological evolution
1123
+ of the universe. Based on these findings, we give a second conjecture regarding the number of parameters in the
1124
+ non-singular generalized entropy function:
1125
+ Conjecture - II: “The minimum number of parameters required in a generalized entropy function that can gen-
1126
+ eralize all the known entropies, and at the same time, is also singular-free during the universe’s evolution – is equal
1127
+ to five”.
1128
+ VI.
1129
+ COSMOLOGY WITH THE NON-SINGULAR GENERALIZED ENTROPY
1130
+ Applying the thermodynamic laws to the non-singular generalized entropy function Sns and by following the same
1131
+ procedure as of Sec.[IV], one gets the cosmological field equations corresponding to the Sgns [52]:
1132
+ 1
1133
+ γ
1134
+
1135
+ α+ sech2
1136
+ � ϵπα+
1137
+ βGH2
1138
+ � �
1139
+ 1 + 1
1140
+ ϵ tanh
1141
+ � ϵπα+
1142
+ βGH2
1143
+ ��β−1
1144
+ + α− sech2
1145
+ � ϵπα−
1146
+ βGH2
1147
+ � �
1148
+ 1 + 1
1149
+ ϵ tanh
1150
+ � ϵπα−
1151
+ βGH2
1152
+ ��−β−1 �
1153
+ ˙H = −4πG (ρ + p)
1154
+ .
1155
+ (55)
1156
+ Owing to the conservation equation of matter fields, in particular ˙ρ + 3H (ρ + p) = 0, the above expression can be
1157
+ integrated to get
1158
+ f (H; α±, β, γ, ϵ) = 8πGρ
1159
+ 3
1160
+ + Λ
1161
+ 3 .
1162
+ (56)
1163
+ Here the integration constant is symbolized by Λ and the function f has the following form:
1164
+ f (H; α±, β, γ, ϵ) = 2
1165
+ γ
1166
+
1167
+
1168
+ α+ sech2
1169
+ � ϵπα+
1170
+ βGH2
1171
+ � �
1172
+ 1 + 1
1173
+ ϵ tanh
1174
+ � ϵπα+
1175
+ βGH2
1176
+ ��β−1
1177
+ + α− sech2
1178
+ � ϵπα−
1179
+ βGH2
1180
+ � �
1181
+ 1 + 1
1182
+ ϵ tanh
1183
+ � ϵπα−
1184
+ βGH2
1185
+ ��−β−1 �
1186
+ H dH .
1187
+ (57)
1188
+ In regard to the functional form of f (H; α±, β, γ, ϵ), we would like to mention that the integration in Eq.(57) may not
1189
+ be performed in a closed form, unless certain conditions are imposed. For example, we consider GH2 ≪ 1 which is, in
1190
+
1191
+ 12
1192
+ fact, valid during the universe’s evolution (i.e the Hubble parameter is less than the Planck scale). With GH2 ≪ 1,
1193
+ the functional form of f turns out to be,
1194
+ f (H; α±, β, γ, ϵ) = 4
1195
+ γ H2
1196
+
1197
+ α+
1198
+
1199
+ 1 + 1
1200
+ ϵ
1201
+ �β−1 �
1202
+ exp
1203
+
1204
+ −2ϵπα+
1205
+ βGH2
1206
+
1207
+ +
1208
+ �2ϵπα+
1209
+ βGH2
1210
+
1211
+ Ei
1212
+
1213
+ −2ϵπα+
1214
+ βGH2
1215
+ ��
1216
+ + α−
1217
+
1218
+ 1 + 1
1219
+ ϵ
1220
+ �−β−1 �
1221
+ exp
1222
+
1223
+ −2ϵπα−
1224
+ βGH2
1225
+
1226
+ +
1227
+ �2ϵπα−
1228
+ βGH2
1229
+
1230
+ Ei
1231
+
1232
+ −2ϵπα−
1233
+ βGH2
1234
+ �� �
1235
+ .
1236
+ (58)
1237
+ Therefore as a whole, Eq. (55) and Eq. (56) are the cosmological field equations corresponding to the generalized
1238
+ entropy Sg.
1239
+ A.
1240
+ Non-singular entropy on bounce cosmology
1241
+ In this section, we will address the implications of the generalized entropy Sns on non-singular bounce cosmology,
1242
+ in particular, we will investigate whether the entropic energy density can trigger a viable bounce during the early
1243
+ stage of the universe that is consistent with the observational constraints. For this purpose, we take the matter field
1244
+ and the cosmological constant to be absent, i.e., ρ = p = Λ = 0. In effect, Eq. (55) becomes,
1245
+ 1
1246
+ γ
1247
+
1248
+ α+ sech2
1249
+ � ϵπα+
1250
+ βGH2
1251
+ � �
1252
+ 1 + 1
1253
+ ϵ tanh
1254
+ � ϵπα+
1255
+ βGH2
1256
+ ��β−1
1257
+ + α− sech2
1258
+ � ϵπα−
1259
+ βGH2
1260
+ � �
1261
+ 1 + 1
1262
+ ϵ tanh
1263
+ � ϵπα−
1264
+ βGH2
1265
+ ��−β−1 �
1266
+ ˙H = 0 .
1267
+ (59)
1268
+ The parameters (α±, β, γ, ϵ) are positive, and thus the solution of the above equation is given by: ˙H = 0 or equivalently
1269
+ H = constant. Clearly H = constant does not lead to the correct evolution of the universe. Thus similar to the
1270
+ previous case, we consider the parameters of Sns[α±, β, γ, ϵ] vary with time. In particular, we consider the parameter
1271
+ γ to vary with time, and all the other parameters remain fixed, i.e.
1272
+ γ = γ(N) ,
1273
+ (60)
1274
+ with N being the e-fold number of the universe. In such scenario where γ(N) varies with time, the Friedmann equation
1275
+ corresponds to Sns[α±, β, γ, ϵ] gets modified compared to Eq.(59), and is given by:
1276
+
1277
+ ��
1278
+ α+ sech2 �
1279
+ ϵα+
1280
+ β S
1281
+ � �
1282
+ 1 + 1
1283
+ ϵ tanh
1284
+
1285
+ ϵα+
1286
+ β S
1287
+ ��β−1
1288
+ + α− sech2 �
1289
+ ϵα−
1290
+ β S
1291
+ � �
1292
+ 1 + 1
1293
+ ϵ tanh
1294
+
1295
+ ϵα−
1296
+ β S
1297
+ ��−β−1
1298
+
1299
+ 1 + 1
1300
+ ϵ tanh
1301
+
1302
+ ϵα+
1303
+ β S
1304
+ ��β
1305
+
1306
+
1307
+ 1 + 1
1308
+ ϵ tanh
1309
+
1310
+ ϵα−
1311
+ β S
1312
+ ��−β
1313
+
1314
+ �� dS = γ′(N)
1315
+ γ(N) dN (61)
1316
+ where an overprime denotes
1317
+ d
1318
+ dη. Eq.(61) can be integrated to get,
1319
+ tanh
1320
+ � ϵπα
1321
+ βGH2
1322
+
1323
+ =
1324
+
1325
+ γ(N) +
1326
+
1327
+ γ2(N) + 4
1328
+ 2
1329
+ �1/β
1330
+ − 1 .
1331
+ (62)
1332
+ where we take α+ = α− = α (say, without losing any generality) in order to extract an explicit solution of H(N).
1333
+ Due to the appearance of quadratic power of H, Eq.(62) allows a positive branch as well as a negative branch of the
1334
+ Hubble parameter. This leads to a natural possibility of symmetric bounce in the present context of singular free
1335
+ generalized entropic cosmology. Moreover Eq.(62) also demonstrates that the explicit evolution of H(N) does depend
1336
+ on the form of γ(N). In the following, we will consider two cases where we will determine the form of γ(N) such that
1337
+ it gives two different symmetric bounce scenarios respectively.
1338
+ 1. The exponential bounce described by the scale factor,
1339
+ a(t) = exp
1340
+
1341
+ a0t2�
1342
+ .
1343
+ (63)
1344
+ This results to a symmetric bounce at t = 0. Here a0 is a constant having mass dimension [+2] – this constant
1345
+ is related with the entropic parameters of Sns and thus, without losing any generality, we take a0 = ϵπα
1346
+ 4Gβ . Such
1347
+ an exponential bounce can be achieved from singular free entropic cosmology provided the γ(N) is given by,
1348
+ γ(N) =
1349
+
1350
+ 1 + 1
1351
+ ϵ tanh
1352
+ � 1
1353
+ N
1354
+ ��β
1355
+
1356
+
1357
+ 1 + 1
1358
+ ϵ tanh
1359
+ � 1
1360
+ N
1361
+ ��−β
1362
+ .
1363
+ (64)
1364
+
1365
+ 13
1366
+ 2. The quasi-matter bounce is described by, In this case, the scale factor is,
1367
+ a(t) =
1368
+
1369
+ 1 + a0
1370
+ � t
1371
+ t0
1372
+ �2�n
1373
+ (65)
1374
+ which is symmetric about t = 0 when the bounce happens. The n, a0 and t0 considered in the scale factor are
1375
+ related to the entropic parameters, and we take it as follows:
1376
+ n = √α
1377
+ ,
1378
+ a0 = π
1379
+
1380
+ and
1381
+ t0 =
1382
+
1383
+ G/ϵ ,
1384
+ (66)
1385
+ with G being the gravitational constant. The relation between (n, a0, t0) with the entropic parameters can be
1386
+ considered in a different way compared to the Eq.(66), however for a simplified expression of γ(N) we consider
1387
+ the relations as of Eq.(66). Consequently the γ(N) which leads to such quasi-matter bounce, comes as,
1388
+ γ(N) =
1389
+
1390
+ 1 + 1
1391
+ ϵ tanh
1392
+
1393
+ e−N/√α �
1394
+ eN/√α − 1
1395
+ � 1
1396
+ 2 ��β
1397
+
1398
+
1399
+ 1 + 1
1400
+ ϵ tanh
1401
+
1402
+ e−N/√α �
1403
+ eN/√α − 1
1404
+ � 1
1405
+ 2 ��−β
1406
+ .
1407
+ (67)
1408
+ Here it deserves mentioning that in the case of exponential bounce, the comoving Hubble radius asymptotically goes
1409
+ to zero and thus the perturbation modes remain at the super-Hubble regime at the distant past. This may results to
1410
+ the “horizon problem” in the exponential bounce scenario. On contrary, the comoving Hubble radius in the case of
1411
+ quasi-matter bounce asymptotically diverges to infinity at both sides of the bounce, and thus the perturbation modes
1412
+ lie within the deep sub-Hubble regime at the distant past – this resolves the horizon issue. Based on this arguments,
1413
+ we will concentrate on the quasi-matter bounce to perform the perturbation analysis.
1414
+ In regard to the perturbation analysis, we represent the present entropic cosmology with the ghost free Gauss-
1415
+ Bonnet (GB) theory of gravity proposed in [67]. The motivation of such representation is due to the rich structure of
1416
+ the Gauss-Bonnet theory in various directions of cosmology [68–71]. The action for f(G) gravity is given by [67],
1417
+ S =
1418
+
1419
+ d4x√−g
1420
+ � 1
1421
+ 2κ2 R + λ
1422
+ �1
1423
+ 2∂µχ∂µχ + µ4
1424
+ 2
1425
+
1426
+ − 1
1427
+ 2∂µχ∂µχ + h (χ) G − V (χ)
1428
+
1429
+ ,
1430
+ (68)
1431
+ where µ is a constant having mass dimension [+1], λ represents the Lagrange multiplier, χ is a scalar field and V (χ)
1432
+ is its potential. Moreover G = R2 − 4RµνRµν + RµναβRµναβ is the Gauss-Bonnet scalar and h(χ) symbolizes the
1433
+ Gauss-Bonnet coupling with the scalar field. Moreover we consider such class of Gauss-Bonnet coupling functions
1434
+ that satisfy ¨h = ˙hH. This condition actually leads to the speed of the gravitational wave as unity in the context of
1435
+ GB theory and makes the model compatible with the GW170817 event. For a certain γ(N) in the context of entropic
1436
+ cosmology, there exists an equivalent set of GB parameters in the side of Gauss-Bonnet cosmology that results to the
1437
+ same cosmological evolution as of the generalized entropy. In particular, the equivalent forms of ˜V (χ) and λ(t) for a
1438
+ certain γ(N) turn out to be,
1439
+ ˜V (χ) = −8πG F1 [γ(N), γ′(N)]
1440
+ � 1
1441
+ κ2 + 8h0a(t)H(t)
1442
+ � ����
1443
+ t=χ/µ2 ,
1444
+ (69)
1445
+ µ4λ(t) = −8πG F2 [γ(N), γ′(N)]
1446
+ � 1
1447
+ κ2 − 8h0a(t)H(t)
1448
+
1449
+ ,
1450
+ (70)
1451
+ where the functions F1 [γ(N), γ′(N)] and F2 [γ(N), γ′(N)] are given by,
1452
+ F1 [γ(N), γ′(N)] = −
1453
+ � 3ϵα
1454
+ 4βG2
1455
+
1456
+
1457
+ ����ln
1458
+
1459
+
1460
+
1461
+
1462
+
1463
+
1464
+
1465
+
1466
+
1467
+ 1
1468
+ 2
1469
+
1470
+ 2
1471
+ γ(N)+√
1472
+ γ2(N)+4
1473
+ �1/β
1474
+ − 1
1475
+
1476
+
1477
+
1478
+
1479
+
1480
+
1481
+
1482
+
1483
+
1484
+
1485
+ ����
1486
+ −1
1487
+ + H4
1488
+ � γ′(N)
1489
+ 8π2γ(N)
1490
+
1491
+ ×
1492
+
1493
+
1494
+ 1 + 1
1495
+ ϵ tanh
1496
+
1497
+ ϵπα
1498
+ βGH2
1499
+ ��β
1500
+
1501
+
1502
+ 1 + 1
1503
+ ϵ tanh
1504
+
1505
+ ϵπα
1506
+ βGH2
1507
+ ��−β
1508
+ α sech2 �
1509
+ ϵπα
1510
+ βGH2
1511
+ � ��
1512
+ 1 + 1
1513
+ ϵ tanh
1514
+
1515
+ ϵπα
1516
+ βGH2
1517
+ ��β−1
1518
+ +
1519
+
1520
+ 1 + 1
1521
+ ϵ tanh
1522
+
1523
+ ϵπα
1524
+ βGH2
1525
+ ��−β−1�
1526
+
1527
+
1528
+ 14
1529
+ and
1530
+ F2 [γ(N), γ′(N)] = H4
1531
+ � γ′(N)
1532
+ 8π2γ(N)
1533
+
1534
+
1535
+ ���
1536
+
1537
+ 1 + 1
1538
+ ϵ tanh
1539
+
1540
+ ϵπα
1541
+ βGH2
1542
+ ��β
1543
+
1544
+
1545
+ 1 + 1
1546
+ ϵ tanh
1547
+
1548
+ ϵπα
1549
+ βGH2
1550
+ ��−β
1551
+ α sech2 �
1552
+ ϵπα
1553
+ βGH2
1554
+ � ��
1555
+ 1 + 1
1556
+ ϵ tanh
1557
+
1558
+ ϵπα
1559
+ βGH2
1560
+ ��β−1
1561
+ +
1562
+
1563
+ 1 + 1
1564
+ ϵ tanh
1565
+
1566
+ ϵπα
1567
+ βGH2
1568
+ ��−β−1�
1569
+
1570
+ ���
1571
+ respectively. Based on Eq.(69) and Eq.(70), we may argue that the entropic cosmology of Sns can be equivalently
1572
+ represented by Gauss-Bonnet cosmology.
1573
+ As mentioned earlier that we consider the quasi-matter bounce scenario described by the scale factor (65) to analyze
1574
+ the perturbation, where the perturbation modes generate during the contracting phase deep in the sub-Hubble regime,
1575
+ which in turn ensures the resolution of the horizon problem. The important quantities that we will need are,
1576
+ Qa = −8˙hH2 = −4n2(1 + 2n)
1577
+
1578
+ �R
1579
+ πG
1580
+ � �R
1581
+ R0
1582
+ � 1
1583
+ 2 −n
1584
+ ,
1585
+ Qb = −16˙hH = 4n(1 + 2n)
1586
+ πG
1587
+ � �R
1588
+ R0
1589
+ � 1
1590
+ 2 −n
1591
+ ,
1592
+ Qc = Qd = 0
1593
+ ,
1594
+ Qe = −32˙h ˙H = 8n(1 + 2n)
1595
+
1596
+ �R
1597
+ πG
1598
+ � �R
1599
+ R0
1600
+ � 1
1601
+ 2 −n
1602
+ ,
1603
+ Qf = 16
1604
+
1605
+ ¨h − ˙hH
1606
+
1607
+ = 0 ,
1608
+ (71)
1609
+ respectively, where R0 =
1610
+ 1
1611
+ t2
1612
+ 0 and �R(t) =
1613
+ R(t)
1614
+ 12n(1−4n). In regard to curvature perturbation, the Mukhanov-Sasaki (MS)
1615
+ equation in Fourier mode comes as,
1616
+ d2vk(η)
1617
+ dη2
1618
+ +
1619
+
1620
+ k2 − σ
1621
+ η2
1622
+
1623
+ vk(η) = 0 ,
1624
+ (72)
1625
+ here η symbolizes the conformal time coordinate and v(k, η) is the scalar MS variable. Moreover σ is given by,
1626
+ σ = ξ(ξ − 1)
1627
+
1628
+ �1 + 24
1629
+
1630
+ 1 − 4n2�
1631
+ � �R
1632
+ R0
1633
+ � 1
1634
+ 2 −n�
1635
+ � ,
1636
+ (73)
1637
+ which is approximately a constant during the generation era of the perturbation modes in the sub-Hubble regime
1638
+ during the contracting phase, due to the condition n < 1/2 (required to solve the horizon problem). In effect of which
1639
+ and considering the Bunch-Davies initial condition, the scalar power spectrum PΨ(k, η) in the super-horizon scale
1640
+ becomes,
1641
+ PΨ(k, η) =
1642
+ �� 1
1643
+
1644
+
1645
+ 1
1646
+ z |η|
1647
+ Γ(ν)
1648
+ Γ(3/2)
1649
+ �2 �k|η|
1650
+ 2
1651
+ �3−2ν
1652
+ ,
1653
+ (74)
1654
+ In regard to the tensor perturbation, the Mukhanov-Sasaki equation takes the following form,
1655
+ d2vT (k, η)
1656
+ dη2
1657
+ +
1658
+
1659
+ k2 − σT
1660
+ η2
1661
+
1662
+ vT (k, η) = 0 ,
1663
+ (75)
1664
+ where vT (k, η) being the Fourier mode for the tensor MS variable, and σT has the following form,
1665
+ σT = ξ(ξ − 1)
1666
+
1667
+ �1 − 16(1 − 4n2)
1668
+ � �R
1669
+ R0
1670
+ � 1
1671
+ 2 −n�
1672
+ � .
1673
+ (76)
1674
+ Due to n < 1/2, the quantity σT can be safely considered to be a constant during the generation era of the perturbation
1675
+ modes at the contracting phase of the universe. Here it may be mentioned that both the tensor polarization modes
1676
+ (+ and × polarization modes) obey the same evolution Eq.(75) – this means that the two polarization modes equally
1677
+ contribute to the energy density of the tensor perturbation variable, and thus we will multiply by the factor ’2’ in the
1678
+ final expression of the tensor power spectrum. Similar to the curvature perturbation variable, the tensor perturbation
1679
+ initiates from the Bunch-Davies vacuum at the distant past, i.e. vT (k, η), i.e limk|η|≫1 vT (k, η) =
1680
+ 1
1681
+
1682
+ 2ke−ikη. With
1683
+ such initial condition, we obtain the tensor power spectrum for kth mode in the super-Hubble regime as,
1684
+ PT (k, τ) = 2
1685
+ � 1
1686
+
1687
+ 1
1688
+ zT |η|
1689
+ Γ(θ)
1690
+ Γ(3/2)
1691
+ �2 �k|η|
1692
+ 2
1693
+ �3−2θ
1694
+ ,
1695
+ (77)
1696
+
1697
+ 15
1698
+ where θ =
1699
+
1700
+ σT + 1
1701
+ 4. Having obtained the scalar and tensor power spectra, we determine ns and r, and they are
1702
+ given by (the suffix ’h’ with a quantity represents the quantity at the instant of horizon crossing),
1703
+ ns = 4 −
1704
+
1705
+ 1 + 4σh ,
1706
+ r = 2
1707
+ � z(ηh)
1708
+ zT (ηh)
1709
+ Γ(θ)
1710
+ Γ(ν)
1711
+ �2
1712
+ (k |ηh|)2(ν−θ) ,
1713
+ (78)
1714
+ where the quantities have the following forms,
1715
+ ν =
1716
+
1717
+ σh + 1
1718
+ 4 ;
1719
+ σh = ξ(ξ − 1)
1720
+
1721
+ �1 + 24
1722
+
1723
+ 1 − 4n2�
1724
+ � �Rh
1725
+ R0
1726
+ � 1
1727
+ 2 −n�
1728
+ � ,
1729
+ θ =
1730
+
1731
+ σT,h + 1
1732
+ 4 ;
1733
+ σT,h = ξ(ξ − 1)
1734
+
1735
+ �1 − 16(1 − 4n2)
1736
+ � �Rh
1737
+ R0
1738
+ � 1
1739
+ 2 −n�
1740
+ � ,
1741
+ z(ηh) = −
1742
+ 1
1743
+ √n
1744
+
1745
+ an
1746
+ 0
1747
+ κ �Rn
1748
+ h
1749
+ � �
1750
+ �1 − 24n(1 + 2n)
1751
+ � �Rh
1752
+ R0
1753
+ � 1
1754
+ 2 −n�
1755
+ � ,
1756
+ zT (ηh) = 1
1757
+
1758
+ 2
1759
+
1760
+ an
1761
+ 0
1762
+ κ �Rn
1763
+ h
1764
+ � �
1765
+ �1 + 16n(1 + 2n)
1766
+ � �Rh
1767
+ R0
1768
+ � 1
1769
+ 2 −n�
1770
+ � .
1771
+ (79)
1772
+ 0.960 0.962 0.964 0.966 0.968 0.970
1773
+ 0.01177
1774
+ 0.01178
1775
+ 0.01179
1776
+ 0.01180
1777
+ 0.01181
1778
+ 0.01182
1779
+ ns
1780
+ r
1781
+ FIG. 2: Parametric plot of ns (along x-axis) vs. r (along y-axis) with respect to n. Here we take α = [0.0938, 0.0939] and
1782
+ β =
1783
+ π
1784
+ 16.
1785
+ Here �Rh represents the Ricci scalar at the horizon crossing, and using the horizon crossing condition kηh =
1786
+ 2n
1787
+ 1−2n,
1788
+ it comes as,
1789
+ �Rh =
1790
+
1791
+ 1
1792
+ 26nan
1793
+ 0
1794
+ �2/(1−2n)
1795
+ By−2 .
1796
+ (80)
1797
+ Therefore it is clear that ns and r in the present context depends on the parameters n and a0. Here we need to recall
1798
+ that n and a0 are related to the entropic parameters as n = √α and a0 = π/ (4β) respectively. It turns out that the
1799
+ theoretical predictions for ns and r get simultaneously compatible with the recent Planck data for a small range of
1800
+ the entropic parameters given by: α = [0.0938, 0.0939] and β = π
1801
+ 16, see Fig.[2].
1802
+
1803
+ 16
1804
+ VII.
1805
+ CONCLUSION
1806
+ In this short review article, we have proposed generalized entropic function(s) and have addressed their implications
1807
+ on black hole thermodynamics as well as on cosmology. In the first half of the paper, a 4-parameter and a 3-parameter
1808
+ generalized entropy functions are shown, which are able to generalize the known entropies proposed so far, like the
1809
+ Tsallis, R´enyi, Barrow, Sharma-Mittal, Kaniadakis and Loop Quantum Gravity entropies for suitable choices of the
1810
+ respective entropic parameters. However the 4-parameter entropy functions proves to be more general compared to
1811
+ the 3-parameter entropy function, in particular, the 3-parameter entropy does not converge to the Kaniadakis entropy
1812
+ for any choices of the parameters, unlike to the entropy having 4 parameters which generalizes all the known entropies
1813
+ including the Kaniadakis one. Thus regarding to the number of parameters in a generalized entropy function, we have
1814
+ provided a conjecture – “The minimum number of parameters required in a generalized entropy function that can
1815
+ generalize all the known entropies mentioned above is equal to four”. Consequently the interesting implications of
1816
+ 3-parameter entropy on black hole thermodynamics and the 4-parameter entropy on cosmology have been addressed.
1817
+ It turns out that the entropic cosmology corresponding to the 4-parameter generalized entropy results to an unified
1818
+ cosmological scenario of early inflation and the late dark energy era of the universe, where the observable quantities
1819
+ are found to be compatible with the recent Planck data for certain viable ranges of the entropic parameters.
1820
+ Despite these successes, here it deserves mentioning that the 4-parameter entropy function (Sg) seems to be plagued
1821
+ with singularity for certain cosmological evolution of the universe. In particular, Sg diverges at the instant when the
1822
+ Hubble parameter vanishes, for instance at the instant of bounce in the context of bounce cosmology. With this
1823
+ spirit, we have proposed a singular-free 5-parameter entropy function (Sns) which converges to all the known entropy
1824
+ functions for particular limits of the entropic parameters, and at the same time, also proves to be non-singular for the
1825
+ entire cosmological evolution of the universe even at H = 0 (where H represents the Hubble parameter). Regarding
1826
+ to the non-singular entropy, a second conjecture has been given : “The minimum number of parameters required in
1827
+ a generalized entropy function that can generalize all the known entropies, and at the same time, is also singular-free
1828
+ during the universe’s evolution – is equal to five”. Such non-singular behaviour of Sns proves to be useful in describing
1829
+ the bounce cosmology, in particular, the entropic cosmology corresponding to Sns naturally allows symmetric bounce
1830
+ universe. With the perturbation analysis in the context of entropic bounce, it has been shown that the observable
1831
+ quantities like the spectral tilt and the tensor-to-scalar ratio are simultaneously compatible with the Planck data in
1832
+ the background of symmetric quasi-matter bounce scenario.
1833
+ Finally we would like to mention that the proposals of generalized entropy functions (Sg or Sns) opens a new
1834
+ directions in theoretical physics, and its vast consequences may hint some unexplored directions of black hole thermo-
1835
+ dynamics as well as of cosmology. For example, it will be of utmost interest to study the aspects of the generalized
1836
+ entropy functions on primordial black hole formation or primordial gravitational wave or the recently found astro-
1837
+ physical black holes as well. With the recent and future advancements of different detectors (like the GW detectors
1838
+ or regarding the black hole detection), we hope that these study can indirectly quantify the viable ranges of entropic
1839
+ parameters.
1840
+ Acknowledgments
1841
+ This work was supported by MINECO (Spain), project PID2019-104397GB-I00 and also partially supported by the
1842
+ program Unidad de Excelencia Maria de Maeztu CEX2020-001058-M, Spain (SDO). This research was also supported
1843
+ in part by the International Centre for Theoretical Sciences (ICTS) for the online program - Physics of the Early
1844
+ Universe (code: ICTS/peu2022/1) (TP).
1845
+ [1] J. D. Bekenstein, Phys. Rev. D 7 (1973), 2333-2346 doi:10.1103/PhysRevD.7.2333
1846
+ [2] S. W. Hawking, Commun. Math. Phys. 43 (1975), 199-220 [erratum:
1847
+ Commun. Math. Phys. 46 (1976), 206]
1848
+ doi:10.1007/BF02345020
1849
+ [3] J. M. Bardeen, B. Carter and S. W. Hawking, Commun. Math. Phys. 31 (1973), 161-170 doi:10.1007/BF01645742
1850
+ [4] R. M. Wald, Living Rev. Rel. 4 (2001), 6 doi:10.12942/lrr-2001-6 [arXiv:gr-qc/9912119 [gr-qc]].
1851
+ [5] C. Tsallis, J. Statist. Phys. 52 (1988), 479-487 doi:10.1007/BF01016429
1852
+ [6] A. R´enyi, Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics and Probability, University of Cali-
1853
+ fornia Press (1960), 547-56.
1854
+ [7] J. D. Barrow, Phys. Lett. B 808 (2020), 135643 doi:10.1016/j.physletb.2020.135643 [arXiv:2004.09444 [gr-qc]].
1855
+ [8] A. Sayahian Jahromi, S. A. Moosavi, H. Moradpour, J. P. Morais Gra¸ca, I. P. Lobo, I. G. Salako and A. Jawad, Phys.
1856
+ Lett. B 780 (2018), 21-24 doi:10.1016/j.physletb.2018.02.052 [arXiv:1802.07722 [gr-qc]].
1857
+
1858
+ 17
1859
+ [9] G. Kaniadakis, Phys. Rev. E 72 (2005), 036108 doi:10.1103/PhysRevE.72.036108 [arXiv:cond-mat/0507311 [cond-mat]].
1860
+ [10] A. Majhi, Phys. Lett. B 775 (2017), 32-36 doi:10.1016/j.physletb.2017.10.043 [arXiv:1703.09355 [gr-qc]].
1861
+ [11] E. Witten, Adv. Theor. Math. Phys. 2 (1998), 253-291 doi:10.4310/ATMP.1998.v2.n2.a2 [arXiv:hep-th/9802150 [hep-th]].
1862
+ [12] L. Susskind and E. Witten, [arXiv:hep-th/9805114 [hep-th]].
1863
+ [13] W. Fischler and L. Susskind, [arXiv:hep-th/9806039 [hep-th]].
1864
+ [14] S. Nojiri, S. D. Odintsov and T. Paul, Symmetry 13 (2021) no.6, 928 doi:10.3390/sym13060928 [arXiv:2105.08438 [gr-qc]].
1865
+ [15] S. Nojiri,
1866
+ S. D. Odintsov and T. Paul,
1867
+ Phys. Lett. B 825 (2022),
1868
+ 136844 doi:10.1016/j.physletb.2021.136844
1869
+ [arXiv:2112.10159 [gr-qc]].
1870
+ [16] M. Li, Phys. Lett. B 603 (2004) 1 doi:10.1016/j.physletb.2004.10.014 [hep-th/0403127].
1871
+ [17] M. Li, X. D. Li, S. Wang and Y. Wang, Commun. Theor. Phys. 56 (2011), 525-604 doi:10.1088/0253-6102/56/3/24
1872
+ [arXiv:1103.5870 [astro-ph.CO]].
1873
+ [18] S. Wang, Y. Wang and M. Li, Phys. Rept. 696 (2017) 1 doi:10.1016/j.physrep.2017.06.003 [arXiv:1612.00345 [astro-ph.CO]].
1874
+ [19] D. Pavon and W. Zimdahl, Phys. Lett. B 628 (2005) 206 doi:10.1016/j.physletb.2005.08.134 [gr-qc/0505020].
1875
+ [20] S. Nojiri and S. D. Odintsov, Gen. Rel. Grav. 38 (2006) 1285 doi:10.1007/s10714-006-0301-6 [hep-th/0506212].
1876
+ [21] R. G. Landim, Phys. Rev. D 106 (2022) no.4, 043527 doi:10.1103/PhysRevD.106.043527 [arXiv:2206.10205 [astro-ph.CO]].
1877
+ [22] X. Zhang, Int. J. Mod. Phys. D 14 (2005) 1597 doi:10.1142/S0218271805007243 [astro-ph/0504586].
1878
+ [23] B. Guberina, R. Horvat and H. Stefancic, JCAP 0505 (2005) 001 doi:10.1088/1475-7516/2005/05/001 [astro-ph/0503495].
1879
+ [24] E. Elizalde, S. Nojiri, S. D. Odintsov and P. Wang, Phys. Rev. D 71 (2005) 103504 doi:10.1103/PhysRevD.71.103504
1880
+ [hep-th/0502082].
1881
+ [25] M. Ito, Europhys. Lett. 71 (2005) 712 doi:10.1209/epl/i2005-10151-x [hep-th/0405281].
1882
+ [26] Y. g. Gong, B. Wang and Y. Z. Zhang, Phys. Rev. D 72 (2005) 043510 doi:10.1103/PhysRevD.72.043510 [hep-th/0412218].
1883
+ [27] M. Bouhmadi-Lopez, A. Errahmani and T. Ouali, Phys. Rev. D 84 (2011) 083508 doi:10.1103/PhysRevD.84.083508
1884
+ [arXiv:1104.1181 [astro-ph.CO]].
1885
+ [28] M. Malekjani, Astrophys. Space Sci. 347 (2013) 405 doi:10.1007/s10509-013-1522-2 [arXiv:1209.5512 [gr-qc]].
1886
+ [29] M. Khurshudyan, Astrophys. Space Sci. 361 (2016) no.12, 392 doi:10.1007/s10509-016-2981-z
1887
+ [30] R. C. G. Landim, Int. J. Mod. Phys. D 25 (2016) no.04, 1650050 doi:10.1142/S0218271816500504 [arXiv:1508.07248
1888
+ [hep-th]].
1889
+ [31] C. Gao, F. Wu, X. Chen and Y. G. Shen, Phys. Rev. D 79 (2009) 043511 doi:10.1103/PhysRevD.79.043511 [arXiv:0712.1394
1890
+ [astro-ph]].
1891
+ [32] M. Li, C. Lin and Y. Wang, JCAP 0805 (2008) 023 doi:10.1088/1475-7516/2008/05/023 [arXiv:0801.1407 [astro-ph]].
1892
+ [33] F. K. Anagnostopoulos, S. Basilakos and E. N. Saridakis, [arXiv:2005.10302 [gr-qc]].
1893
+ [34] X. Zhang and F. Q. Wu, Phys. Rev. D 72 (2005) 043524 doi:10.1103/PhysRevD.72.043524 [astro-ph/0506310].
1894
+ [35] M. Li, X. D. Li, S. Wang and X. Zhang, JCAP 0906 (2009) 036 doi:10.1088/1475-7516/2009/06/036 [arXiv:0904.0928
1895
+ [astro-ph.CO]].
1896
+ [36] C. Feng, B. Wang, Y. Gong and R. K. Su, JCAP 0709 (2007) 005 doi:10.1088/1475-7516/2007/09/005 [arXiv:0706.4033
1897
+ [astro-ph]].
1898
+ [37] X. Zhang, Phys. Rev. D 79 (2009) 103509 doi:10.1103/PhysRevD.79.103509 [arXiv:0901.2262 [astro-ph.CO]].
1899
+ [38] J. Lu,
1900
+ E. N. Saridakis,
1901
+ M. R. Setare and L. Xu,
1902
+ JCAP 1003 (2010) 031 doi:10.1088/1475-7516/2010/03/031
1903
+ [arXiv:0912.0923 [astro-ph.CO]].
1904
+ [39] S. M. R. Micheletti, JCAP 1005 (2010) 009 doi:10.1088/1475-7516/2010/05/009 [arXiv:0912.3992 [gr-qc]].
1905
+ [40] P. Mukherjee, A. Mukherjee, H. Jassal, A. Dasgupta and N. Banerjee, Eur. Phys. J. Plus 134 (2019) no.4, 147
1906
+ doi:10.1140/epjp/i2019-12504-7 [arXiv:1710.02417 [astro-ph.CO]].
1907
+ [41] S. Nojiri and S. Odintsov, Eur. Phys. J. C 77 (2017) no.8, 528 doi:10.1140/epjc/s10052-017-5097-x [arXiv:1703.06372
1908
+ [hep-th]].
1909
+ [42] S. Nojiri, S. D. Odintsov and E. N. Saridakis, Eur. Phys. J. C 79 (2019) no.3, 242 [arXiv:1903.03098 [gr-qc]].
1910
+ [43] E. N. Saridakis, Phys. Rev. D 102 (2020) no.12, 123525 doi:10.1103/PhysRevD.102.123525 [arXiv:2005.04115 [gr-qc]].
1911
+ [44] J. D. Barrow, S. Basilakos and E. N. Saridakis, Phys. Lett. B 815 (2021), 136134 doi:10.1016/j.physletb.2021.136134
1912
+ [arXiv:2010.00986 [gr-qc]].
1913
+ [45] P. Adhikary, S. Das, S. Basilakos and E. N. Saridakis, [arXiv:2104.13118 [gr-qc]].
1914
+ [46] S. Srivastava and U. K. Sharma, Int. J. Geom. Meth. Mod. Phys. 18 (2021) no.01, 2150014 doi:10.1142/S0219887821500146
1915
+ [arXiv:2010.09439 [physics.gen-ph]].
1916
+ [47] V. K. Bhardwaj,
1917
+ A. Dixit and A. Pradhan,
1918
+ New Astron. 88 (2021),
1919
+ 101623 doi:10.1016/j.newast.2021.101623
1920
+ [arXiv:2102.09946 [gr-qc]].
1921
+ [48] G. Chakraborty and S. Chattopadhyay, Int. J. Mod. Phys. D 29 (2020) no.03, 2050024 doi:10.1142/S0218271820500248
1922
+ [arXiv:2006.07142 [physics.gen-ph]].
1923
+ [49] A. Sarkar and S. Chattopadhyay, Int. J. Geom. Meth. Mod. Phys. 18 (2021) no.09, 2150148 doi:10.1142/S0219887821501486
1924
+ [50] S. Nojiri, S. D. Odintsov and V. Faraoni, Phys. Rev. D 105 (2022) no.4, 044042 doi:10.1103/PhysRevD.105.044042
1925
+ [arXiv:2201.02424 [gr-qc]].
1926
+ [51] S. Nojiri,
1927
+ S. D. Odintsov and T. Paul,
1928
+ Phys. Lett. B 831 (2022),
1929
+ 137189 doi:10.1016/j.physletb.2022.137189
1930
+ [arXiv:2205.08876 [gr-qc]].
1931
+ [52] S. D. Odintsov and T. Paul, [arXiv:2212.05531 [gr-qc]].
1932
+ [53] R. Horvat, Phys. Lett. B 699 (2011), 174-176 doi:10.1016/j.physletb.2011.04.004 [arXiv:1101.0721 [hep-ph]].
1933
+ [54] S. Nojiri, S. D. Odintsov and E. N. Saridakis, Phys. Lett. B 797 (2019), 134829 doi:10.1016/j.physletb.2019.134829
1934
+ [arXiv:1904.01345 [gr-qc]].
1935
+
1936
+ 18
1937
+ [55] T. Paul, EPL 127 (2019) no.2, 20004 doi:10.1209/0295-5075/127/20004 [arXiv:1905.13033 [gr-qc]].
1938
+ [56] A.
1939
+ Bargach,
1940
+ F.
1941
+ Bargach,
1942
+ A.
1943
+ Errahmani
1944
+ and
1945
+ T.
1946
+ Ouali,
1947
+ Int.
1948
+ J.
1949
+ Mod.
1950
+ Phys.
1951
+ D
1952
+ 29
1953
+ (2020)
1954
+ no.02,
1955
+ 2050010
1956
+ doi:10.1142/S0218271820500108 [arXiv:1904.06282 [hep-th]].
1957
+ [57] E. Elizalde and A. Timoshkin, Eur. Phys. J. C 79 (2019) no.9, 732 doi:10.1140/epjc/s10052-019-7244-z [arXiv:1908.08712
1958
+ [gr-qc]].
1959
+ [58] A. Oliveros and M. A. Acero, EPL 128 (2019) no.5, 59001 doi:10.1209/0295-5075/128/59001 [arXiv:1911.04482 [gr-qc]].
1960
+ [59] A. Mohammadi, [arXiv:2203.06643 [gr-qc]].
1961
+ [60] G.
1962
+ Chakraborty
1963
+ and
1964
+ S.
1965
+ Chattopadhyay,
1966
+ Int.
1967
+ J.
1968
+ Geom.
1969
+ Meth.
1970
+ Mod.
1971
+ Phys.
1972
+ 17
1973
+ (2020)
1974
+ no.5,
1975
+ 2050066
1976
+ doi:10.1142/S0219887820500668 [arXiv:2006.07143 [physics.gen-ph]].
1977
+ [61] S.
1978
+ Nojiri,
1979
+ S.
1980
+ D.
1981
+ Odintsov,
1982
+ V.
1983
+ K.
1984
+ Oikonomou
1985
+ and
1986
+ T.
1987
+ Paul,
1988
+ Phys.
1989
+ Rev.
1990
+ D
1991
+ 102
1992
+ (2020)
1993
+ no.2,
1994
+ 023540
1995
+ doi:10.1103/PhysRevD.102.023540 [arXiv:2007.06829 [gr-qc]].
1996
+ [62] S. Nojiri, S. D. Odintsov and E. N. Saridakis, Nucl. Phys. B 949 (2019), 114790 doi:10.1016/j.nuclphysb.2019.114790
1997
+ [arXiv:1908.00389 [gr-qc]].
1998
+ [63] I. Brevik and A. Timoshkin, doi:10.1142/S0219887820500231 [arXiv:1911.09519 [gr-qc]].
1999
+ [64] S. Nojiri, S. D. Odintsov and V. Faraoni, [arXiv:2208.10235 [gr-qc]].
2000
+ [65] T. Padmanabhan, Rept. Prog. Phys. 73, 046901 (2010) [arXiv:0911.5004 [gr-qc]].
2001
+ [66] R. G. Cai and S. P. Kim, JHEP 02 (2005), 050 doi:10.1088/1126-6708/2005/02/050 [arXiv:hep-th/0501055 [hep-th]].
2002
+ [67] S. Nojiri, S. D. Odintsov and V. K. Oikonomou, Phys. Rev. D 99 (2019) no.4, 044050 doi:10.1103/PhysRevD.99.044050
2003
+ [arXiv:1811.07790 [gr-qc]].
2004
+ [68] S. D. Odintsov and T. Paul, Universe 8 (2022) no.5, 292 doi:10.3390/universe8050292 [arXiv:2205.09447 [gr-qc]].
2005
+ [69] E.
2006
+ Elizalde,
2007
+ S.
2008
+ D.
2009
+ Odintsov,
2010
+ V.
2011
+ K.
2012
+ Oikonomou
2013
+ and
2014
+ T.
2015
+ Paul,
2016
+ Nucl.
2017
+ Phys.
2018
+ B
2019
+ 954
2020
+ (2020),
2021
+ 114984
2022
+ doi:10.1016/j.nuclphysb.2020.114984 [arXiv:2003.04264 [gr-qc]].
2023
+ [70] K. Bamba, E. Elizalde, S. D. Odintsov and T. Paul, JCAP 04 (2021), 009 doi:10.1088/1475-7516/2021/04/009
2024
+ [arXiv:2012.12742 [gr-qc]].
2025
+ [71] S. Nojiri,
2026
+ S. D. Odintsov and T. Paul,
2027
+ Phys. Dark Univ. 35 (2022),
2028
+ 100984 doi:10.1016/j.dark.2022.100984
2029
+ [arXiv:2202.02695 [gr-qc]].
2030
+ [72] S.
2031
+ D.
2032
+ Odintsov,
2033
+ V.
2034
+ K.
2035
+ Oikonomou
2036
+ and
2037
+ F.
2038
+ P.
2039
+ Fronimos,
2040
+ Nucl.
2041
+ Phys.
2042
+ B
2043
+ 958
2044
+ (2020),
2045
+ 115135
2046
+ doi:10.1016/j.nuclphysb.2020.115135 [arXiv:2003.13724 [gr-qc]].
2047
+ [73] J. c. Hwang and H. Noh, Phys. Rev. D 71 (2005) 063536 doi:10.1103/PhysRevD.71.063536 [gr-qc/0412126].
2048
+ [74] H. Noh and J. c. Hwang, Phys. Lett. B 515 (2001) 231 doi:10.1016/S0370-2693(01)00875-9 [astro-ph/0107069].
2049
+ [75] Y. Akrami et al. [Planck Collaboration], arXiv:1807.06211 [astro-ph.CO].
2050
+ [76] N. Aghanim et al. [Planck], Astron. Astrophys. 641 (2020), A6 [erratum:
2051
+ Astron. Astrophys. 652 (2021), C4]
2052
+ doi:10.1051/0004-6361/201833910 [arXiv:1807.06209 [astro-ph.CO]].
2053
+
-tAzT4oBgHgl3EQfFfrV/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
.gitattributes CHANGED
@@ -8990,3 +8990,54 @@ tNE_T4oBgHgl3EQf9Bzr/content/2301.08379v1.pdf filter=lfs diff=lfs merge=lfs -tex
8990
  MtE4T4oBgHgl3EQfjA23/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8991
  NdFAT4oBgHgl3EQfyB5j/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8992
  etE4T4oBgHgl3EQfQwzS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8990
  MtE4T4oBgHgl3EQfjA23/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8991
  NdFAT4oBgHgl3EQfyB5j/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8992
  etE4T4oBgHgl3EQfQwzS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8993
+ kdFPT4oBgHgl3EQfGjRx/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8994
+ ENFKT4oBgHgl3EQfZy4X/content/2301.11804v1.pdf filter=lfs diff=lfs merge=lfs -text
8995
+ 9NE2T4oBgHgl3EQfQAZl/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8996
+ 09AzT4oBgHgl3EQf8v5L/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8997
+ stFAT4oBgHgl3EQfgh1S/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8998
+ rtFJT4oBgHgl3EQfbiyy/content/2301.11540v1.pdf filter=lfs diff=lfs merge=lfs -text
8999
+ c9FST4oBgHgl3EQfEDj7/content/2301.13713v1.pdf filter=lfs diff=lfs merge=lfs -text
9000
+ 5dFKT4oBgHgl3EQfSi3T/content/2301.11776v1.pdf filter=lfs diff=lfs merge=lfs -text
9001
+ c9AyT4oBgHgl3EQfjPg-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9002
+ kdFST4oBgHgl3EQfITgg/content/2301.13728v1.pdf filter=lfs diff=lfs merge=lfs -text
9003
+ w9FKT4oBgHgl3EQf5i7o/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9004
+ 79AyT4oBgHgl3EQfc_dz/content/2301.00293v1.pdf filter=lfs diff=lfs merge=lfs -text
9005
+ JdE1T4oBgHgl3EQfGAPd/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9006
+ 4NAzT4oBgHgl3EQfuv1g/content/2301.01695v1.pdf filter=lfs diff=lfs merge=lfs -text
9007
+ 79AyT4oBgHgl3EQfc_dz/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9008
+ tNE_T4oBgHgl3EQf9Bzr/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9009
+ 09AzT4oBgHgl3EQf8v5L/content/2301.01908v1.pdf filter=lfs diff=lfs merge=lfs -text
9010
+ ENFKT4oBgHgl3EQfZy4X/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9011
+ kdFST4oBgHgl3EQfITgg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9012
+ t9E0T4oBgHgl3EQfbQDV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9013
+ OtFRT4oBgHgl3EQfHzf5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9014
+ 4NE2T4oBgHgl3EQf6Qhs/content/2301.04198v1.pdf filter=lfs diff=lfs merge=lfs -text
9015
+ ftE0T4oBgHgl3EQf6AJn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9016
+ aNFQT4oBgHgl3EQffjaD/content/2301.13340v1.pdf filter=lfs diff=lfs merge=lfs -text
9017
+ FdAyT4oBgHgl3EQfrPl7/content/2301.00557v1.pdf filter=lfs diff=lfs merge=lfs -text
9018
+ CtE1T4oBgHgl3EQfpwVv/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9019
+ HNE5T4oBgHgl3EQfWQ9u/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9020
+ NdFAT4oBgHgl3EQfyB5j/content/2301.08690v1.pdf filter=lfs diff=lfs merge=lfs -text
9021
+ OtE3T4oBgHgl3EQfCAnu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9022
+ ydE4T4oBgHgl3EQfYgwr/content/2301.05049v1.pdf filter=lfs diff=lfs merge=lfs -text
9023
+ etE0T4oBgHgl3EQf5wIr/content/2301.02754v1.pdf filter=lfs diff=lfs merge=lfs -text
9024
+ RNFQT4oBgHgl3EQfaTZS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9025
+ 4NE2T4oBgHgl3EQf6Qhs/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9026
+ 7tE1T4oBgHgl3EQfnQST/content/2301.03307v1.pdf filter=lfs diff=lfs merge=lfs -text
9027
+ 2dAzT4oBgHgl3EQfRvud/content/2301.01221v1.pdf filter=lfs diff=lfs merge=lfs -text
9028
+ c9AyT4oBgHgl3EQf-fqE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9029
+ AdFJT4oBgHgl3EQfrS3C/content/2301.11608v1.pdf filter=lfs diff=lfs merge=lfs -text
9030
+ ytE0T4oBgHgl3EQf-wLX/content/2301.02819v1.pdf filter=lfs diff=lfs merge=lfs -text
9031
+ dNE4T4oBgHgl3EQfQAz9/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9032
+ r9E5T4oBgHgl3EQflw-X/content/2301.05674v1.pdf filter=lfs diff=lfs merge=lfs -text
9033
+ OtFRT4oBgHgl3EQfHzf5/content/2301.13490v1.pdf filter=lfs diff=lfs merge=lfs -text
9034
+ JdE1T4oBgHgl3EQfGAPd/content/2301.02910v1.pdf filter=lfs diff=lfs merge=lfs -text
9035
+ YNAzT4oBgHgl3EQfKvsF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9036
+ r9E5T4oBgHgl3EQfKA7Y/content/2301.05463v1.pdf filter=lfs diff=lfs merge=lfs -text
9037
+ A9E4T4oBgHgl3EQfEwz_/content/2301.04881v1.pdf filter=lfs diff=lfs merge=lfs -text
9038
+ JdE2T4oBgHgl3EQf_wnL/content/2301.04252v1.pdf filter=lfs diff=lfs merge=lfs -text
9039
+ P9E4T4oBgHgl3EQf-g5_/content/2301.05364v1.pdf filter=lfs diff=lfs merge=lfs -text
9040
+ p9FST4oBgHgl3EQfODiE/content/2301.13750v1.pdf filter=lfs diff=lfs merge=lfs -text
9041
+ zNE1T4oBgHgl3EQfkQT7/content/2301.03273v1.pdf filter=lfs diff=lfs merge=lfs -text
9042
+ tdE3T4oBgHgl3EQf9wsO/content/2301.04818v1.pdf filter=lfs diff=lfs merge=lfs -text
9043
+ GNE3T4oBgHgl3EQfWAqd/content/2301.04465v1.pdf filter=lfs diff=lfs merge=lfs -text
09AzT4oBgHgl3EQf8v5L/content/2301.01908v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32026a7246e15f999cd5e544e6ae69b91cff42effed6fcac24234f893a4323d1
3
+ size 1049598
09AzT4oBgHgl3EQf8v5L/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9aed3896f61b375583733d55e1e7a54f8a50c83f3e09a31b5d5b5f5b78aca4d0
3
+ size 2555949
0dAzT4oBgHgl3EQf8f7E/content/tmp_files/2301.01906v1.pdf.txt ADDED
@@ -0,0 +1,1628 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ Realtime Safety Control for Bipedal Robots to
3
+ Avoid Multiple Obstacles via CLF-CBF Constraints
4
+ Jinze Liu∗, Minzhe Li∗, Jiunn-Kai Huang, and Jessy W. Grizzle
5
+ Abstract—This paper presents a reactive planning system that
6
+ allows a Cassie-series bipedal robot to avoid multiple non-
7
+ overlapping obstacles via a single, continuously differentiable
8
+ control barrier function (CBF). The overall system detects an
9
+ individual obstacle via a height map derived from a LiDAR
10
+ point cloud and computes an elliptical outer approximation,
11
+ which is then turned into a CBF. The QP-CLF-CBF formalism
12
+ developed by Ames et al. is applied to ensure that safe trajectories
13
+ are generated. Liveness is ensured by an analysis of induced
14
+ equilibrium points that are distinct from the goal state. Safe
15
+ planning in environments with multiple obstacles is demonstrated
16
+ both in simulation and experimentally on the Cassie biped.
17
+ THIS IS AN INITIAL DRAFT
18
+ While the paper is not yet polished, it allows the co-
19
+ first authors to highlight their research skills while they
20
+ are seeking a PhD position. The full autonomy videos are
21
+ upload to our YouTube channel and the video for this
22
+ particular paper can be viewed here. This draft has been
23
+ approved by Huang and Grizzle.
24
+ I. INTRODUCTION AND CONTRIBUTIONS
25
+ Bipedal robots are typically conceived to achieve agile-
26
+ legged locomotion over irregular terrains, and maneuver in
27
+ cluttered environments [1]–[3]. To explore safely in such
28
+ environments, it is critical for robots to generate quick, yet
29
+ smooth responses to any changes in the obstacles, map, and
30
+ environment. In this paper, we propose a means to design and
31
+ compose control barrier functions (CBFs) for multiple non-
32
+ overlapping obstacles and evaluate the system on a 20-degree-
33
+ of-freedom (DoF) bipedal robot.
34
+ In an autonomous system, the task of avoiding obstacles
35
+ is usually handled by a planning algorithm because it has
36
+ access to the map of an entire environment. Given the map,
37
+ the planning algorithm is then able to design a collision-free
38
+ path from the robot’s current position to a goal. If the map
39
+ is updated due to a change in the environment, the planner
40
+ then needs to update the planned path, so-called replanning,
41
+ to accommodate the new environment. Such maps are typically
42
+ large and contain rich information such as semantics, terrain
43
+ characteristics, and uncertainty, and thus are slow to update.
44
+ This raises a concern when obstacles either move into the
45
+ planned path but the map has not been updated or a robot’s
46
+ new pose allows the detection of previously unseen obstacles.
47
+ The slow update rate of the map leads to either collision or
48
+ ∗ equal contribution.
49
+ Jinze Liu, Minzhe Li, Jiunn-Kai Huang, and Jessy W. Grizzle are with the
50
+ Robotics Institute, University of Michigan, Ann Arbor, MI 48109, USA. {
51
+ minzlee, jzliu, bjhuang, grizzle}@umich.edu.
52
+ Fig. 1: In the top figure, Cassie Blue autonomously avoids multiple obstacles
53
+ via the developed CLF-CBF-QP obstacle avoidance system, comprised of
54
+ an intermediate goal selector, obstacle detection, and a CLF-CBF quadratic
55
+ programming solver. The bottom figure is the elevation map built in real time.
56
+ The blue and cyan blobs are obstacles that Cassie detects and avoids in real
57
+ time. A gantry is used in the experiments because the lab-built perception
58
+ system that has been added to the robot is unprotected in case of falls.
59
+ abrupt maneuvers to avoid collisions. The non-smooth aspects
60
+ arising from the map updates or changes in the perceived
61
+ environment can be detrimental to the stability of the overall
62
+ system.
63
+ Research on obstacle avoidance has been studied for sev-
64
+ eral decades as pioneered in classic probabilistic roadmap
65
+ approaches (PRM) [4] and cell decomposition [5, Chapter
66
+ arXiv:2301.01906v1 [cs.RO] 5 Jan 2023
67
+
68
+ 6]. However, the omission of robot dynamics and the extra
69
+ computation for map discretization make these methods hard
70
+ to use in real-time applications. Artificial potential fields [6]–
71
+ [15] stand out for their simplicity, extendability, and efficiency,
72
+ leading to their wide adoption for real-time obstacle avoidance
73
+ planning problems. A drawback of potential field methods
74
+ is that they require the entire map of an environment to be
75
+ available when designing a potential function that will render
76
+ attractive one or more goal points in the map. Moreover, un-
77
+ wanted local minima and oscillations in the potential field have
78
+ limited their deployment in the field. A control barrier function
79
+ (CBF) [16], on the other hand, enables real-time controller
80
+ synthesis with provable safety for mobile robots operating in a
81
+ continuous (non-discretized) space and can work with a partial
82
+ (or incomplete) map. A control Lyapunov function (CLF) is a
83
+ (candidate) positive definite function for a closed-loop system
84
+ where at any given time instance there exists a control input
85
+ that renders the derivative of the Lyapunov function along
86
+ the system dynamics negative definite. The CLF is typically
87
+ designed to vanish at a desired goal state or pose.
88
+ The main theme of [16] is that a real-time quadratic program
89
+ (QP) can be used to combine a CLF and a CBF in such a way
90
+ that closed-loop trajectories induced by the CLF are minimally
91
+ modified to provide provable safety, that is, non-collision with
92
+ obstacles. This design philosophy has been explored in [16]–
93
+ [18].
94
+ One means of avoiding obstacles is to come to a complete
95
+ stop, though it is at the cost of not reaching the goal state.
96
+ The papers [19]–[22] showed that such behavior can be an
97
+ unintended outcome of the CLF-CBF-QP design approach
98
+ of [16]. Specifically, the inequality constraints (of the QP)
99
+ associated with the derivatives of the control Lyapunov and
100
+ control barrier functions can induce equilibria in the closed-
101
+ loop system that are distinct from the equilibrium of the
102
+ CLF. Reference [19] characterizes these equilibria via the
103
+ KKT conditions associated with the QP, while reference [20]
104
+ emphasizes that if an induced equilibrium is unstable, then
105
+ “natural noise” in the environment will avoid the robot being
106
+ deadlocked at an unstable equilibrium.
107
+ Inspired by the above-cited works on CLF-CBF-QPs for
108
+ planning and control, we incorporate high-bandwidth obstacle
109
+ avoidance into the CLF-RRT* reactive planner of [1]. The
110
+ CLF in [1] takes into account features specific to bipeds, such
111
+ as the limited lateral leg motion that renders lateral walking
112
+ more laborious than sagittal plane walking. This paper seeks
113
+ to utilize the CLF designed specifically for bipedal robots
114
+ in tandem with a CBF to avoid multiple, non-overlapping
115
+ obstacles in a smooth fashion, while ensuring progress to a
116
+ goal state.
117
+ The main contributions of the new proposed CLF-CBF
118
+ system are the following:
119
+ 1) We propose a novel CLF-CBF-QP obstacle avoidance
120
+ system specifically adapted for bipedal robots locomoting
121
+ in the presence of multiple non-overlapping obstacles.
122
+ The full system provides for real-time obstacle detection,
123
+ CBF design, and safe control input generation through a
124
+ QP.
125
+ 2) We mathematically prove the validity of the proposed
126
+ CBF for both single and multiple obstacles. We also
127
+ analytically analyze the existence of spurious equilibrium
128
+ points induced by the CLF-CBF constraints on the QP.
129
+ 3) We provide simulations that support the mathematical
130
+ analysis for obstacle avoidance while reaching a goal.
131
+ 4) The overall reactive planning system is demonstrated
132
+ experimentally on a 20-degree-of-freedom Cassie-series
133
+ bipedal robot.
134
+ 5) We
135
+ open-source
136
+ the
137
+ implementations
138
+ of
139
+ the
140
+ system
141
+ in
142
+ C++
143
+ with
144
+ Robot
145
+ Operating
146
+ System
147
+ (ROS)
148
+ [23]
149
+ and
150
+ associated
151
+ videos
152
+ of
153
+ the
154
+ experiments;
155
+ see
156
+ https://github.com/UMich-
157
+ BipedLab/multi_object_avoidance_via_clf_cbf.
158
+ The rest of the paper is organized as follows. Section II
159
+ overviews related work. The design and validation of the
160
+ proposed CBF is presented in Sec. III. We analyze equilibrium
161
+ points of the proposed CBF in Appendix A. Section IV
162
+ proposes a novel and simple method to combine CBFs for non-
163
+ overlapping obstacles. Simulation and experimental results are
164
+ given in Sec. V.
165
+ II. RELATED WORK ON CONTROL WITH SAFETY
166
+ A continuously differentiable, proper, positive definite func-
167
+ tion V (x) that vanishes at a single point is called a candidate
168
+ Lyapunov function [24]. If the derivative of V (x) along the
169
+ trajectories of a control system can be rendered negative
170
+ definite by proper choice of the control input, it is called a
171
+ control Lyapunov Function, or CLF for short [25]–[27]. CLFs
172
+ are widely used in the design of controllers to asymptotically
173
+ drive a system to a goal state. Safety involves steering a control
174
+ system to a goal state while avoiding self-collisions, obstacles,
175
+ or other undesirable states, collectively referred to as unsafe
176
+ states. The set complement of the unsafe states is the set of
177
+ safe states.
178
+ A. Artificial Potential Fields and Navigation Functions
179
+ The first systematic method for real-time control and ob-
180
+ stacle avoidance was introduced by Khatib in [28]. Called
181
+ the method of Artificial Potential Functions, it revolutionized
182
+ feedback control for manipulators in that hard constraints
183
+ could be enforced in both the robot’s task space and joint space
184
+ in real time. Prior to this seminal work, obstacle avoidance,
185
+ or more generally the generation of safe paths, was relegated
186
+ to a path planner operating at a much slower time scale. A
187
+ survey of the method of potential functions can be found in
188
+ [29].
189
+ Potential functions seek to construct “repulsive fields”
190
+ around obstacles that are active throughout the entire state
191
+ space of the robot’s dynamical system, without destroying
192
+ the presence of an attractive field steering the system to a
193
+ goal state. It has been recognized that superimposed attracting
194
+ and repelling fields can create undesired spurious equilibria,
195
+ which prevent a robot from reaching its goal state [30]. In
196
+ addition, potential fields have been observed to introduce tra-
197
+ jectory oscillations as a robot passes near obstacles. Heuristic
198
+ 2
199
+
200
+ modifications have been proposed to avoid local minima [11]–
201
+ [13], while potential fields have been combined with other
202
+ gradient-based functions to reduce oscillations [14], [15].
203
+ The method of Navigation Functions by Koditschek and
204
+ Rimon [31] sought to design a single function whose gradient
205
+ produces trajectories avoiding multiple obstacles while asymp-
206
+ totically converging to a single goal state from almost all
207
+ initial conditions [32]–[35]; specifically, all equilibria except
208
+ the goal state should be unstable. Because the design of a
209
+ navigation function takes into account the global topology
210
+ of the method of navigation functions is not appropriate for
211
+ problems requiring the online identification and avoidance of
212
+ obstacles; in addition, there are topological restrictions to the
213
+ existence of navigation functions.
214
+ B. Control Barrier Functions and Control Lyapunov Func-
215
+ tions
216
+ Barrier Functions provide Lyapunov-like conditions for
217
+ proving a given set of safe states is forward invariant, meaning
218
+ that trajectories starting in the safe set remain in the safe
219
+ set. The natural extension of a barrier function to a system
220
+ with control inputs is a Control Barrier Function or CBF
221
+ for short, first proposed by [36]. CBFs parallel the extension
222
+ of Lyapunov functions to CLFs, in that the key point is to
223
+ impose inequality constraints on the derivative of a candidate
224
+ CBF (resp., CLF) to establish entire classes of controllers
225
+ that render a given set forward invariant (resp., asymptotically
226
+ stable).
227
+ Importantly, barrier functions and CBFs focus solely on
228
+ safety and do not seek to simultaneously steer a system
229
+ to any particular point in the safe set. This allows CBFs
230
+ to be combined with other “goal-oriented” control methods
231
+ as a (maximally permissive) supervisor that only modifies
232
+ a trajectory when it is in conflict with the safety criteria
233
+ established by the CBF. The papers [37], [38] introduced the
234
+ notion of using a real-time quadratic program (QP) to combine
235
+ a CBF with a CLF to achieve convergence to a goal state
236
+ while avoiding unsafe states. The overall method goes by the
237
+ acronym CLF-CBF-QP.
238
+ For control systems that are affine in the control variable,
239
+ CLF-CBF-QPs have proven to be enormously popular in and
240
+ out of robotics applications [16]–[18], [39]–[43]. To highlight
241
+ just a few example, reference [17] uses a CLF-CBF-QP to
242
+ achieve stable walking for bipedal robots, while trajectory
243
+ planning under spatiotemporal and control input constraints
244
+ is presented in [18], [39], [40]. Applications to obstacle
245
+ avoidance are addressed in [41]–[43].
246
+ The recent paper [44] shows that CBFs are a strict general-
247
+ ization of artificial potential functions and that in a practical
248
+ example, a CLF-CBF-QP has reduced issues with oscillations
249
+ as a robot passes near obstacles and improved liveness, mean-
250
+ ing the ability to reach the goal state. Hence, we use the
251
+ method of CLF-CBF-QPs in this paper.
252
+ C. Combining Multiple CBFs
253
+ Usually, a control barrier function is designed for a single
254
+ obstacle. When there are multiple obstacles in the control
255
+ system, the barrier functions for each obstacle must be com-
256
+ bined in some manner to provide safety guarantees. Reference
257
+ [45] shows that if the intersection of the set of “allowable
258
+ controls” of individual CBFs is non-empty, then the CLF-
259
+ CBF-QP method can be extended to several obstacles; the
260
+ reference does not show how to check this condition online (in
261
+ real time). Multiple CBF functions have also been combined
262
+ to obtain a single CBF so that existing methods can be
263
+ applied. Reference [46] combines several CBFs into an overall
264
+ CBF using max-min operations. The resulting CBF is non-
265
+ differentiable and hence this technique is not used here. Ref-
266
+ erence [47] combines multiple CBFS for disjoint unsafe sets
267
+ with a single CLF to produce a new CLF that simultaneously
268
+ provides asymptotic stability and obstacle avoidance. This
269
+ work is therefore related to the method navigation functions
270
+ reviewed above and suffers from the same drawbacks; how-
271
+ ever, a key technique used in this reference to combine the
272
+ CBFs before merging them with a CLF will be exploited in the
273
+ current paper, namely a continuously differentiable saturation
274
+ function.
275
+ D. CLF-CBF-QPs and Unwanted Equilibrium Points
276
+ The presence of multiple stable equilibrium points intro-
277
+ duces “deadlock” in a control system. Reference [19] shows
278
+ that the use of real-time QPs to combine safety and goal-
279
+ reaching in navigation problems can lead to unwanted equi-
280
+ librium points. With this awareness, the authors of [21] modify
281
+ the cost function in the quadratic program to remove the
282
+ unwanted equilibria. The modification induces a rotational
283
+ motion in the closed-loop system that steers it around the
284
+ obstacle, something a bipedal robot can do naturally. Hence,
285
+ here we only exploit their analysis method for finding the
286
+ unwanted equilibria and show that our method introduces
287
+ at most one undesired equilibrium point when obstacles are
288
+ disjoint. Moreover, we do not need to remove the unwanted
289
+ equilibrium using the methods in [22], [48] by transforming
290
+ the system’s state space into a convex manifold, or by increas-
291
+ ing the complexity of the system’s state space.
292
+ E. Summary
293
+ The presence of multiple obstacles is common in practice.
294
+ While existing works can treat disjoint obstacles, they are not
295
+ appropriate for use where obstacles are identified in real-time
296
+ via an onboard perception system. In this work, for a biped-
297
+ appropriate planning model, we propose a simple means to
298
+ combine CBFs for disjoint obstacles so that the complexity
299
+ of the real-time CLF-CBF-QP remains constant and induced
300
+ equilibrium points are easy to characterize and avoid.
301
+ III. CONSTRUCTION OF CONTROL LYAPUNOV FUNCTION
302
+ AND CONTROL BARRIER FUNCTION
303
+ This section introduces the CLF proposed in [1] and ana-
304
+ lyzes its trajectories when combined with a quadratic CBF
305
+ through a real-time QP. The goal is to ensure the closed-
306
+ loop system is able to reach a goal state while smoothly
307
+ avoiding a single obstacle. This section lays the foundation
308
+ for considering multiple obstacles in the next section.
309
+ 3
310
+
311
+ Fig. 2: The red line is the distance between the obstacle and the robot.
312
+ A. State Representation
313
+ Denote P = (xr, yr, θ) the robot pose, G = (xt, yt) the
314
+ goal position in the world frame. We simplify an obstacle O
315
+ as a circle (and hence convex) described as its center (xo, yo)
316
+ and its radius ro. We define the robot state as
317
+ x =
318
+
319
+
320
+ r
321
+ δ
322
+ θ
323
+
324
+ � ,
325
+ (1)
326
+ where r =
327
+
328
+ (xt − xr)2 + (yt − yr)2, θ is the heading angle
329
+ of the robot, and δ is the angle between θ and the line of sight
330
+ from the robot to the goal, as shown in Fig. 2.
331
+ The dynamics of the control system is defined as
332
+ ˙x = f(x) + g(x)u
333
+ =
334
+
335
+
336
+ 0
337
+ 0
338
+ 0
339
+
340
+ � +
341
+
342
+
343
+ − cos(δ)
344
+ − sin(δ)
345
+ 0
346
+ sin(δ)
347
+ r
348
+ − cos(δ)
349
+ r
350
+ 1
351
+ 0
352
+ 0
353
+ −1
354
+
355
+
356
+
357
+
358
+ vx
359
+ vy
360
+ ω
361
+
362
+ � ,
363
+ (2)
364
+ where we view u =
365
+ �vx,
366
+ vy,
367
+ ω�T as the control variables
368
+ in the robot frame, as shown in Fig. 2.
369
+ B. Design of CLF and CBF for Bipedal Robots
370
+ The control Lyapunov function leveraged in the reactive
371
+ planner proposed in [1] takes into account features specific
372
+ to bipeds, such as the limited lateral leg motion that renders
373
+ lateral walking more laborious than sagittal plane walking.
374
+ Therefore, we also define the CLF as
375
+ V (x) = r2 + γ2 sin2(βδ)
376
+ 2
377
+ ,
378
+ (3)
379
+ where γ is the weight on the orientation, and β controls the
380
+ size of the field of view (FoV). Given P and G, we have a
381
+ closed-form solution for control u in (2),
382
+ ωref = r cos(δ) [rvδ cos(δ) − vr sin(δ)]
383
+ α + r2 cos2(δ)
384
+ vref
385
+ y
386
+ = α(vr sin(δ) − rvδ cos(δ))
387
+ r2cos(δ)2 + α
388
+ vref
389
+ x
390
+ = vr cos(δ)r2 + αvδ sin(δ)r + αvr cos(δ)
391
+ r2cos(δ)2 + α
392
+ ;
393
+ (4)
394
+ where vr and vδ are defined as:
395
+ vr = kr1
396
+ r
397
+ kr2 + r
398
+ vδ = − 2
399
+ β kδ1
400
+ r
401
+ kδ2 + r sin(2βδ).
402
+ (5)
403
+ In (4) and (5), α, β, kr1, kr2, kδ1, kδ2 are positive constants.
404
+ See [1] for more details.
405
+ Next, we introduce a candidate CBF as
406
+ B(x) =
407
+ � xr − xo
408
+ yr − yo
409
+ �⊤
410
+ Q
411
+ � xr − xo
412
+ yr − yo
413
+
414
+ − r2
415
+ o,
416
+ (6)
417
+ where (xo, yo) gives the center of the obstacle, ro specifies the
418
+ “radius” of the obstacle, and Q is positive definite. We next
419
+ verify that (6) is a valid CBF.
420
+ C. Proof of CBF Validity
421
+ Following [49], we define the sets
422
+ D := {x ∈ R3 | B(x) ̸= −r2
423
+ o, and r ̸= 0}
424
+ C := {x ∈ D | B(x) ≥ 0}
425
+ (7)
426
+ associated with the candidate CBF (6) and note that Int(C) ̸=
427
+ ∅ and Int(C) = C. From [49], for (6) to be a valid CBF
428
+ function of (2), there must exist some η > 0, such that,
429
+ ∀x ∈ D, ∃u ∈ R3, ˙B(x, u) + ηB(x) ≥ 0,
430
+ (8)
431
+ where ˙B(x, u) := LfB(x) + LgB(x)u is the time derivative
432
+ of B(x) along the dynamics of (2), η > 0 sets the repulsive
433
+ effort of the CBF, and
434
+ LfB(x) := ∂B(x)
435
+ ∂x
436
+ f(x)
437
+ (9)
438
+ LgB(x) := ∂B(x)
439
+ ∂x
440
+ g(x).
441
+ (10)
442
+ Because the drift term f(x) in (2) is identically zero, the
443
+ zero control u ≡ 0 satisfies (8) for x ∈ C. Hence, we need to
444
+ show that (8) can be met for x ∈∼ C, the set complement of
445
+ C. Direct application of the chain rule gives that
446
+ LgB(x) = a(x)b(x)g(x),
447
+ where
448
+ a(x) := 2 [ xt − r cos(δ + θ) − xo,
449
+ yt − r sin(δ + θ) − yo ] Q
450
+ = 2
451
+ � xr − xo,
452
+ yr − yo
453
+
454
+ Q
455
+ b(x) :=
456
+ � − cos(δ + θ)
457
+ r sin(δ + θ)
458
+ r sin(δ + θ)
459
+ − sin(δ + θ)
460
+ −r cos(δ + θ)
461
+ −r cos(δ + θ)
462
+
463
+ g(x) =
464
+
465
+ ���
466
+ − cos(δ)
467
+ − sin(δ)
468
+ 0
469
+ sin(δ)
470
+ r
471
+ − cos(δ)
472
+ r
473
+ 1
474
+ 0
475
+ 0
476
+ −1
477
+
478
+ ��� .
479
+ (11)
480
+ Moreover, a(x) only vanishes at the center of an obstacle,
481
+ the rows of b(x) are linearly independent for all r > 0, and
482
+ det (g(x)) = − 1
483
+ r ̸= 0 for all 0 < r < ∞. It follows that for
484
+ all x ∈ D, LgB(x) ̸= 0 and hence (8) is satisfied, proving
485
+ that (6) is a valid CBF.
486
+ 4
487
+
488
+ V
489
+ W
490
+ O =(x
491
+ X
492
+ X
493
+ JD. Quadratic Program of the Proposed CLF-CBF System
494
+ A quadratic program (QP) is set up to optimize the control
495
+ u with the slack variable s while enforcing both the CLF and
496
+ CBF constraints. Let L(x, u, s) be the CLF constraints
497
+ L(x, u, s) := LfV (x) + LgV (x)u + µV (x) − s ≤ 0,
498
+ (12)
499
+ where Lpq(x) := ∇q(x) · p(x) is the Lie derivative, µ serves
500
+ as a decay rate of the upper bound of V (x). Next, we denote
501
+ B(x, u) the CBF constraints
502
+ B(x, u) := −LfB(x) − LgB(x)u − ηB(x) ≤ 0,
503
+ (13)
504
+ where η serves as a decay rate of the lower bound of B(x).
505
+ Finally, the QP for the control values is formulated as
506
+ u∗, s∗ = arg min
507
+ L(x,u,s)≤0
508
+ B(x,u)≤0
509
+ J(u, s),
510
+ (14)
511
+ where the cost function J(u, s) is defined as
512
+ J(u, s) := 1
513
+ 2(u − uref)T H(u − uref) + 1
514
+ 2ps2,
515
+ (15)
516
+ the positive definite, diagonal matrix H := diag([h1, h2, h3])
517
+ weights the control variables, uref :=
518
+ �vref
519
+ x
520
+ vref
521
+ y
522
+ ωref�T is
523
+ the control vector from the CLF (3) without obstacles, and
524
+ p ≥ 0 is the weight of the slack variable, s.
525
+ In the proposed CLF-CBF-QP system, uref is the closed-
526
+ form solution obtained from the CLF without obstacles, and H
527
+ assigns weights for different control variables. The proposed
528
+ CLF-CBF-QP cost function captures inherent features of a
529
+ Cassie-series robot, such as the low-cost of longitudinal move-
530
+ ment and high-cost of lateral movement, while guaranteeing
531
+ safety. We next look at liveness, that is, the ability of the
532
+ system to reach the desired goal.
533
+ E. Analysis for Unwanted Equilibria
534
+ Paper [19] points out very clearly that the CLF-CBF-QP
535
+ formulation of Sec. III-D can introduce unwanted equilibria
536
+ that may prevent the robot from reaching a goal state. The
537
+ paper [20] also considered this problem and noted that if the
538
+ equilibria are unstable, then liveness is preserved for almost
539
+ all initial conditions. In Appendix A, we follow the KKT-
540
+ analysis of the CLF-CBF-QP presented in [19] and show that
541
+ Fig. 3: Illustration of a case when the robot directly faces the obstacle and the
542
+ target creates an equilibrium in the continuous-time system. In a simulation
543
+ with discrete-time control updates, the robot walks back and forth at the
544
+ obstacle boundary.
545
+ Fig.
546
+ 4:
547
+ Illustration
548
+ of
549
+ breaking
550
+ the
551
+ equilibrium
552
+ by
553
+ using
554
+ uref
555
+ 2 :
556
+ �vref
557
+ x
558
+ vref
559
+ y
560
+ ωref + ϵ�T when δ = 0. The robot successfully reaches the
561
+ target position without colliding with the obstacle.
562
+ only one equilibrium point is created by the QP. Moreover, the
563
+ equilibrium occurs at an obstacle boundary for δ = 0, dy =
564
+ 0, dx > 0, in other words, when the robot’s heading faces
565
+ directly to the obstacle and the target, as shown in Fig. 3. The
566
+ robot will move directly toward the obstacle and stop at the
567
+ obstacle boundary.
568
+ Remark 1. When the robot encounters the above equilibrium
569
+ state, we can add a constant ϵ > 0 to uref in (14) such that
570
+ uref =
571
+ �vref
572
+ x
573
+ vref
574
+ y
575
+ ωref + ϵ�T. As is shown in Fig. 4, the
576
+ robot breaks its equilibrium state, avoids the obstacle, and
577
+ reaches the target position. This is related to, but distinct
578
+ from, the method presented in [19] for resolving unwanted
579
+ equilibria.
580
+ IV. COMBINING CBFS FOR MULTIPLE OBSTACLES
581
+ So far, we have assumed there is only one obstacle perceived
582
+ by the robot. In this section, we will discuss how to handle
583
+ multiple obstacles in the environment when each obstacle is a
584
+ positive distance apart from the others [47]. Specifically, for
585
+ i ∈ {1, 2, . . . , M}, suppose that
586
+ Bi(x) :=
587
+ � xr − xo,i
588
+ yr − yo,i
589
+ �⊤
590
+ Qi
591
+ � xr − xo,i
592
+ yr − yo,i
593
+
594
+ − r2
595
+ o,i
596
+ Di := {x ∈ R3 | Bi(x) ̸= −r2
597
+ o,i, and r ̸= 0}
598
+ Ci := {x ∈ Di | Bi(x) ≥ 0}
599
+ (16)
600
+ are valid CBF functions for the dynamics (2). For i ̸= j, the
601
+ obstacles corresponding to Bi : R3 → R and Bj : R3 → R are
602
+ a positive distance apart if
603
+ ∆ij :=
604
+ inf
605
+ x ∈∼ Ci
606
+ y ∈∼ Cj
607
+ ||x − y|| > 0.
608
+ (17)
609
+ A key innovation with respect to [46] is that we will
610
+ compose the associated CBFs in a smooth (C1) manner.
611
+ A potential drawback with respect to [46] is that we will
612
+ assume the obstacles giving rise to the CBFs are a positive
613
+ distance apart. Similar to [47], we saturate standard quadratic
614
+ CBFs before seeking to combine them. Distinct from [47], we
615
+ multiply the saturated CBFs instead of creating a weighted
616
+ 5
617
+
618
+ -2
619
+ -4
620
+ -6
621
+ -8
622
+ -10E
623
+ -6
624
+ -4
625
+ -2
626
+ 0
627
+ 2
628
+ 4
629
+ 6
630
+ X
631
+ m-2
632
+ -4
633
+
634
+ -6
635
+ -8
636
+ -10
637
+ -6
638
+ -4
639
+ -2
640
+ 0
641
+ 2
642
+ 4
643
+ 6
644
+ X
645
+ msum. This greatly simplifies the analysis of the composite CBF
646
+ with respect to all previous works.
647
+ A. Smooth Saturation Function
648
+ We introduce a continuously differentiable saturation func-
649
+ tion that will allow us to compose in a simple manner CBFs
650
+ corresponding to obstacles that are a positive distance apart.
651
+ Consider σ : R → R by
652
+ σ(s) :=
653
+
654
+
655
+
656
+
657
+
658
+ s
659
+ s ≤ 0
660
+ s(1 + s − s2)
661
+ 0 < s < 1
662
+ 1
663
+ s ≥ 1.
664
+ (18)
665
+ Then straightforward calculations show that for all s ∈ R,
666
+ dσ(s)
667
+ ds
668
+ exists and satisfies
669
+ dσ(s)
670
+ ds
671
+ :=
672
+
673
+
674
+
675
+
676
+
677
+ 1
678
+ s ≤ 0
679
+ 1 + 2s − 3s2
680
+ 0 < s < 1
681
+ 0
682
+ s ≥ 1.
683
+ (19)
684
+ Upon noting that for all 0 < s < 1, 0 < dσ(s)
685
+ ds
686
+ < 1, it follows
687
+ that σ : R → R is continuously differentiable and monotonic.
688
+ Remark 2. For 0 ≤ s ≤ 1, σ is constructed from a degree-
689
+ three Bézier polynomial p : [0, 1] → R such that p(0) = 0,
690
+ dp(0)
691
+ ds
692
+ = 1, p(1) = 1, dp(1)
693
+ ds
694
+ = 0. Moreover, for 0 < s < 1,
695
+ dp(s)
696
+ ds
697
+ > 0.
698
+ Definition 1. For κ > 0, we define σκ : R → R by
699
+ σκ(s) := σ( s
700
+ κ).
701
+ (20)
702
+ Proposition 1. Suppose that κ > 0 and B : D → R is a
703
+ candidate CBF with D and C defined as in (7). Then σκ ◦ B :
704
+ D → R is a valid CBF for the system (2) if, and only if,
705
+ B : D → R is a valid CBF.
706
+ Proof. For x ∈ C, σκ ◦ B(x) > 0 and hence satisfies (8) for
707
+ u = 0. For x ∈∼ C, by the chain rule and the construction of
708
+ σ : R → R,
709
+ ∂σκ ◦ B(x)
710
+ ∂x
711
+ = dσ(s)
712
+ ds
713
+ ����
714
+ s= B(x)
715
+ κ
716
+ ∂B(x)
717
+ ∂x
718
+ = 1
719
+ κ
720
+ ∂B(x)
721
+ ∂x
722
+ .
723
+ (21)
724
+ Hence, the proof of Sect. III-C applies.
725
+
726
+ Proposition 2. Suppose for 1 ≤ i ≤ M, the CBFs Bi(x) :
727
+ R3 → R are a positive distance apart. Then there exist κ1 > 0,
728
+ κ2 > 0, . . ., κM > 0, such that for all i ̸= j,
729
+ {x ∈ R3 | σκi ◦ Bi(x) < 1} ∩ {x ∈ R3 | Bj(x) < 0} = ∅.
730
+ (22)
731
+ Proof. By the disjointness property, ∆i := min
732
+ j̸=i
733
+ ∆ij > 0.
734
+ For S ⊂ R3 and x ∈ R3, define the distance from x to S
735
+ by
736
+ d(x, S) := inf
737
+ y∈S ||x − y||.
738
+ (23)
739
+ Then, because (i) Bi is continuous, (ii) the set complement of
740
+ Ci is bounded, and (iii) d(x, ∼ Ci) > 0 =⇒ Bi(x) > 0, it
741
+ follows that
742
+ m∗
743
+ i :=
744
+ sup
745
+ d(x,∼Ci)≤∆i
746
+ Bi(x)
747
+ (24)
748
+ is a finite positive number. Therefore, for all 0 < κi < m∗
749
+ i ,
750
+ {x ∈ R3 | σκi ◦ Bi(x) < 1} ⊂ {x ∈ R3 | d(x, ∼ Ci) ≤ ∆i},
751
+ (25)
752
+ and hence (22) holds.
753
+
754
+ B. Multiplication Property of Smooth Saturated CBFs
755
+ For M ≥ 2 CBFs corresponding to disjoint obstacles, define
756
+ the sets
757
+ DM :=
758
+ M
759
+
760
+ i=1
761
+ Di
762
+ CM :=
763
+ M
764
+
765
+ i=1
766
+ {x ∈ DM | Bi(x) ≥ 0}
767
+ =
768
+ M
769
+
770
+ i=1
771
+ Ci.
772
+ (26)
773
+ Theorem 1. Under the assumed disjointness property, the
774
+ product of smoothly saturated valid CBFs,
775
+ BM(x) :=
776
+ M
777
+
778
+ i=1
779
+ σκi ◦ Bi(x),
780
+ (27)
781
+ is a valid CBF for DM, CM, and the dynamic system (2).
782
+ Proof. For x ∈ CM, the zero control u ≡ 0 satisfies (8)
783
+ because the drift term f(x) is zero. We show that for x ̸∈ CM,
784
+ (8) can be satisfied.
785
+ By the disjoint property of the assumed CBF functions,
786
+ when BM(x) < 0, we have ∃i, such that σκi ◦ Bi(x) =
787
+ Bi(x) < 0, and σκj ◦ Bj(x) = 1 for j ̸= i. Hence,
788
+ BM(x) = Bi(x). Because Bi(x) is assumed to be a valid
789
+ CBF function, and both DM ⊂ Di and CM ⊂ Ci hold, the
790
+ CBF property holds for BM(x).
791
+
792
+ Remark 3. Due to the way we have constructed the multi-
793
+ obstacle CBF, the equilibrium analysis for a single obstacle
794
+ carries over here without changes. This is because, when
795
+ the robot is at a boundary of an obstacle, the values of the
796
+ saturated CBFs for the other obstacles will all be one.
797
+ V. SIMULATION RESULTS WITH SINGLE AND MULTIPLE
798
+ OBSTACLES
799
+ In this section, we first use simulation to study the behavior
800
+ and liveness of the proposed CLF-CBF system with a single
801
+ obstacle. Next, we run the system on several synthetic envi-
802
+ ronments with 20 obstacles in Robot Operating System (ROS)
803
+ [23] with C++.
804
+ Remark 4. For the CBF in (6), we take Q = I and in
805
+ Prop. 1, we take κ1 = · · · = κM = min{∆2
806
+ i }M
807
+ i=1, which
808
+ is the minimum of the square of the distance between any of
809
+ the obstacles.
810
+ 6
811
+
812
+ A. Robot Model in Simulation
813
+ In MATLAB and ROS, the bipedal robot is represented
814
+ by the Angular momentum Linear Inverted Pendulum (ALIP)
815
+ model [2]. The ALIP robot takes piece-wise constant inputs
816
+ from the CLF-CBF-QP system. Let g, H, τ be the gravitational
817
+ constant, the robot’s center of mass height, and the time
818
+ interval of a swing phase, respectively. The motion of an ALIP
819
+ model on the x-axis satisfies
820
+ �xk+1
821
+ ˙xk+1
822
+
823
+ =
824
+ � cosh(ξ)
825
+ 1
826
+ ρ sinh(ξ)
827
+ ρ sinh(ξ)
828
+ cosh(ξ)
829
+ � �xk
830
+ ˙xk
831
+
832
+ +
833
+ �1 − cosh(ξ)
834
+ −ρ sinh(ξ)
835
+
836
+ px,
837
+ (28)
838
+ where xk and ˙xk are the contact position and velocity of the
839
+ swing foot on the x-axis, px is the center of mass (CoM)
840
+ position on the x-axis of the robot, ξ = ρτ and ρ =
841
+
842
+ g/H.
843
+ The motion of the robot on the y-axis can be similarly defined.
844
+ Fig. 5: Illustration of how the trajectories vary as a function of differ-
845
+ ent obstacle positions. The target (marked in black) and the robot pose
846
+ (−15, −15, −15◦) are fixed throughout all of the simulations. The different
847
+ colors denote different simulations with only one obstacle present at a time.
848
+ The red trajectory is generated without any obstacle present from the QP only
849
+ containing CLF constraint.
850
+ B. Behavior Study with Single Obstacle in MATLAB
851
+ The optimal control command of the robot is the solution of
852
+ the CLF-CBF-QP problem defined in (14). The time interval
853
+ of a swing phase is set to τ = 0.3s. The robot updates its pose
854
+ based on the ALIP model and the optimal control command.
855
+ The updated pose is then fed back to the CLF-CBF-QP system
856
+ to compute the optimal control for the next iteration. This
857
+ process continues until the robot reaches the target or collides
858
+ with an obstacle.
859
+ Figure 5 shows how the trajectories vary as a function of
860
+ a single obstacle’s position with a fixed initial robot pose
861
+ of (−15, −15, −15◦), marked as the magenta arrow. The
862
+ red trajectory is the nominal trajectory without any obstacles
863
+ present. Each colored trajectory and matching circle represent
864
+ a distinct simulation result. The robot successfully avoids the
865
+ obstacle in all cases. In Fig. 6, we show how the trajectories
866
+ vary as a function of different robot orientations with a fixed
867
+ obstacle location.
868
+ Remark 5. When the robot is within an obstacle, there is also
869
+ a valid solution that pushes the robot outside of the obstacle.
870
+ Fig. 6: Illustration of how the trajectories vary as a function of different robot
871
+ orientations with a fixed obstacle location. The target (marked in cyan) and
872
+ obstacle at (−4, −4) are fixed through out all the simulations. A different
873
+ color stands for a different robot orientation.
874
+ Consider the CBF constraint (13),
875
+ LfB(x) + LgB(x)u + ηB(x) ≥ 0.
876
+ (29)
877
+ When the robot is withing an obstacle, B(x) < 0 and the QP
878
+ selects u such that LfB(x) + LgB(x)u ≥ −ηB(x), causing
879
+ the robot to leave the obstacle.
880
+ Fig. 7: Liveness analysis for the CLF-CBF system. The initial pose is
881
+ (−15, −15, −15◦), and the target is located at (0, 0). Each dot in the figure
882
+ represents the center of an object with radius (r = 1). The interval between
883
+ each center dots are 0.2 meter in both x and y direction. Note that all the red
884
+ points either originally collide with the robot or the target.
885
+ C. Liveness Analysis in MATLAB
886
+ We analyze the liveness by placing an obstacle with a
887
+ fixed radius (r = 1) at different locations. The robot starts
888
+ at (−15, −15, −15◦) and the target is located at (0, 0). The
889
+ obstacle is placed at every 0.2 meter. If the robot successfully
890
+ reaches the target without collision, the obstacle location is
891
+ marked in green otherwise in red, as shown in Fig. 7. All the
892
+ red points either originally collide with the robot or the target.
893
+ D. Multi-Obstacle Simulation with ROS in C++
894
+ In this simulation, we implement a local map centering at
895
+ robot position with a fixed size and a sub-goal selector to place
896
+ a target within the local map to achieve long-term planning
897
+ as not all the obstacles are perceived by the robot at the
898
+ beginning in practice. Even though the global map is available
899
+ in simulation but it is not available in practice, therefore, only
900
+ 7
901
+
902
+ 0
903
+ -2
904
+ -4
905
+ -6
906
+ -10
907
+ -12
908
+ -14
909
+ -16
910
+ -15
911
+ -10
912
+ -5
913
+ 00
914
+ -1
915
+ -2
916
+ -3
917
+ -4
918
+ -5
919
+ -6
920
+ -7
921
+ -8
922
+ -9
923
+ -10
924
+ -10
925
+ -8
926
+ 9-
927
+ -4
928
+ -2
929
+ 0
930
+ x m0
931
+ success
932
+ hit
933
+ -2
934
+ -4
935
+ -6
936
+ -10
937
+ -12
938
+ -14
939
+ -16
940
+ -16
941
+ -14
942
+ -12
943
+ -10
944
+ -8
945
+ 9-
946
+ -4
947
+ -2
948
+ 0
949
+ 2
950
+ x [m](a)
951
+ (b)
952
+ (c)
953
+ (d)
954
+ Fig. 8: Trajectories of 39 obstacles in noise-free (top two) and 20 obstacles in noisy (bottom two) synthetic maps with the size of 50 × 30 meters. The
955
+ highlighted areas are the local map at that specific timestamp. The dark blue circles are the obstacles. Different colors represent different runs in the map.
956
+ the information within the local map at the specific timestamp
957
+ is provided to the robot. The robot model is the same ALIP
958
+ model in Sec. V-A.
959
+ In Fig. 8, we generate two noise-free and two noisy syn-
960
+ thetic maps with the size of 50×30 meters. Each map contains
961
+ 20 obstacles marked as blue circles. We run six different initial
962
+ poses and final goals for each map. Different colors represent
963
+ different runs in the map. The highlighted area is the local
964
+ map at that specific timestamp. An intermediate goal is chosen
965
+ at the intersection between the boundary of the local map
966
+ and the line connecting the robot and the final goal at the
967
+ current timestamp. If the intermediate goal collides with an
968
+ obstacle, it is moved back along the line. The intermediate
969
+ goal is updated when it is reached or becomes inside of an
970
+ obstacle due to the update of the local map. The robot with
971
+ ALIP model successfully reaches the goals in all 6 × 4 = 24
972
+ runs.
973
+ VI. EXPERIMENTAL RESULTS ON A BIPEDAL ROBOT
974
+ We perform several experiments of the proposed CLF-
975
+ CBF-QP system on Cassie Blue, a bipedal robot with 20
976
+ degrees of freedom. The entire system integrates elevation
977
+ mapping, intermediate goal selection, and the low-level CLF-
978
+ CBF obstacle avoidance system.
979
+ (a)
980
+ (b)
981
+ Fig. 9: The left shows the sensor suite with different sensors, and the right
982
+ shows the sensor suite mounted on Cassie Blue.
983
+ A. Autonomy System Integration
984
+ The following is summarized from [1] for the completeness
985
+ of the paper. To allow the robot to perceive its surroundings
986
+ under different lighting conditions and environments, we de-
987
+ signed a perception suite that consists of an RGB-D camera
988
+ 8
989
+
990
+ (a)
991
+ (b)
992
+ (c)
993
+ (d)
994
+ Fig. 10: Autonomy experiments with Cassie Blue on the first floor of FRB. The green arrow is Cassie’s pose and the green lines are the resulting trajectories.
995
+ The blue sphere is the selected target position. The map is colored by height and the highlighted area is the local map.
996
+ (Intel RealSense™ D435) and a 32-Beam Velodyne ULTRA
997
+ Puck LiDAR, as shown in Fig. 9. The sensor calibrations are
998
+ performed via [50]–[53]. The invariant extended Kalman filter
999
+ (InEKF) [54] estimates the pose of Cassie at 2k Hz. The raw
1000
+ point cloud is motion compensated by the InEKF and then
1001
+ used to build an elevation map.
1002
+ B. Autonomy Experiment on Cassie Blue
1003
+ We conducted several indoor experiments with Cassie Blue
1004
+ on the first floor of the Ford Robotics Building (FRB) where
1005
+ tables and chairs are considered obstacles. To detect obstacles
1006
+ in the environment, an occupancy grid map is updated in real-
1007
+ time using the timestamped elevation map. Grids with heights
1008
+ greater than 0.2 meters are considered occupied. An occupied
1009
+ grid is defined as the boundary of obstacles if there is an
1010
+ unoccupied grid in its neighborhood. The Breadth First Search
1011
+ (BFS) algorithm [55] is utilized to find the separated obstacles
1012
+ in the map. Next, we apply the Gift Wrapping Algorithm [56]
1013
+ to the boundary grids of obstacles to find the convex hulls of
1014
+ the obstacles. Finally, the minimum bounding ball algorithm
1015
+ [57] is applied to the convex hulls to find the minimum
1016
+ bounding circles of the obstacles. The circles are used to
1017
+ represent obstacles in the CBF function (6). The target position
1018
+ is selected by clicking a point in the global map. If the final
1019
+ target is not within the current local map, an intermediate goal
1020
+ will be selected within the local map. When an intermediate
1021
+ goal is reached by Cassie or becomes invalid because of the
1022
+ update of the local map, it is updated. In the experiments,
1023
+ Cassie successfully avoids all the obstacles and reaches the
1024
+ target position, as shown in Fig. 10.
1025
+ VII. CONCLUSION
1026
+ This paper presented a reactive planning system that al-
1027
+ lows a Cassie-series bipedal robot to avoid multiple non-
1028
+ overlapping obstacles via a single, continuously differentiable
1029
+ control barrier function (CBF). The overall system detects an
1030
+ individual obstacle via a height map derived from a LiDAR
1031
+ point cloud and computes an elliptical outer approximation,
1032
+ which is then turned into a quadratic CBF. A continuously
1033
+ differentiable saturation function is presented that preserves
1034
+ the CBF property of a quadratic CBF while allowing the
1035
+ 9
1036
+
1037
+ saturated CBFs for individual obstacles to be turned into a
1038
+ single CBF. The CLF-CBF-QP formalism developed by Ames
1039
+ et al. can then be applied to ensure that safe trajectories are
1040
+ generated in the presence of multiple obstacles. Liveness is
1041
+ ensured by an analysis of induced equilibrium points that are
1042
+ distinct from the goal state. Safe planning in environments
1043
+ with multiple obstacles is demonstrated both in simulation and
1044
+ experimentally on the Cassie bipedal robot.
1045
+ ACKNOWLEDGMENT
1046
+ Toyota Research Institute provided funds to support this work.
1047
+ Funding for J. Grizzle was in part provided by NSF Award
1048
+ No. 1808051. This article solely reflects the opinions and conclusions
1049
+ of its authors and not the funding entities.
1050
+ REFERENCES
1051
+ [1] J.-K. Huang and J. W. Grizzle, “Efficient anytime clf reactive plan-
1052
+ ning system for a bipedal robot on undulating terrain,” arXiv preprint
1053
+ arXiv:2108.06699, 2021.
1054
+ [2] Y. Gong and J. Grizzle, “Angular momentum about the contact point
1055
+ for control of bipedal locomotion: Validation in a lip-based controller,”
1056
+ arXiv preprint arXiv:2008.10763, 2020.
1057
+ [3] G. Gibson, O. Dosunmu-Ogunbi, Y. Gong, and J. Grizzle, “Terrain-
1058
+ adaptive, alip-based bipedal locomotion controller via model predictive
1059
+ control and virtual constraints,” 2021. [Online]. Available: https:
1060
+ //arxiv.org/abs/2109.14862
1061
+ [4] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
1062
+ abilistic roadmaps for path planning in high-dimensional configuration
1063
+ spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
1064
+ pp. 566–580, 1996.
1065
+ [5] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.
1066
+ [6] J. Borenstein and Y. Koren, “Real-time obstacle avoidance for fast
1067
+ mobile robots,” IEEE Transactions on systems, Man, and Cybernetics,
1068
+ vol. 19, no. 5, pp. 1179–1187, 1989.
1069
+ [7] Y. K. Hwang, N. Ahuja, et al., “A potential field approach to path
1070
+ planning.” IEEE transactions on robotics and automation, vol. 8, no. 1,
1071
+ pp. 23–32, 1992.
1072
+ [8] K. P. Valavanis, T. Hebert, R. Kolluru, and N. Tsourveloudis, “Mobile
1073
+ robot navigation in 2-d dynamic environments using an electrostatic
1074
+ potential field,” IEEE Transactions on Systems, Man, and Cybernetics-
1075
+ Part A: Systems and Humans, vol. 30, no. 2, pp. 187–196, 2000.
1076
+ [9] O. Montiel, U. Orozco-Rosas, and R. Sepúlveda, “Path planning for
1077
+ mobile robots using bacterial potential field for avoiding static and
1078
+ dynamic obstacles,” Expert Systems with Applications, vol. 42, no. 12,
1079
+ pp. 5177–5191, 2015.
1080
+ [10] Y. Rasekhipour, A. Khajepour, S.-K. Chen, and B. Litkouhi, “A potential
1081
+ field-based model predictive path-planning controller for autonomous
1082
+ road vehicles,” IEEE Transactions on Intelligent Transportation Systems,
1083
+ vol. 18, no. 5, pp. 1255–1267, 2017.
1084
+ [11] J. Sfeir, M. Saad, and H. Saliah-Hassane, “An improved artificial
1085
+ potential field approach to real-time mobile robot path planning in
1086
+ an unknown environment,” in 2011 IEEE International Symposium on
1087
+ Robotic and Sensors Environments (ROSE), 2011, pp. 208–213.
1088
+ [12] W. Lu, G. Zhang, and S. Ferrari, “An information potential approach
1089
+ to integrated sensor path planning and control,” IEEE Transactions on
1090
+ Robotics, vol. 30, no. 4, pp. 919–934, 2014.
1091
+ [13] F. Bounini, D. Gingras, H. Pollart, and D. Gruyer, “Modified artificial
1092
+ potential field method for online path planning applications,” in 2017
1093
+ IEEE Intelligent Vehicles Symposium (IV), 2017, pp. 180–185.
1094
+ [14] J. Ren, K. McIsaac, and R. Patel, “Modified newton’s method applied to
1095
+ potential field-based navigation for mobile robots,” IEEE Transactions
1096
+ on Robotics, vol. 22, no. 2, pp. 384–391, 2006.
1097
+ [15] K. Biswas and I. Kar, “On reduction of oscillations in target tracking by
1098
+ artificial potential field method,” in 2014 9th International Conference
1099
+ on Industrial and Information Systems (ICIIS), 2014, pp. 1–6.
1100
+ [16] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function
1101
+ based quadratic programs with application to adaptive cruise control,” in
1102
+ 53rd IEEE Conference on Decision and Control, 2014, pp. 6271–6278.
1103
+ [17] S.-C. Hsu, X. Xu, and A. D. Ames, “Control barrier function based
1104
+ quadratic programs with application to bipedal robotic walking,” in 2015
1105
+ American Control Conference (ACC), 2015, pp. 4542–4548.
1106
+ [18] J. Zeng, B. Zhang, Z. Li, and K. Sreenath, “Safety-critical control
1107
+ using optimal-decay control barrier function with guaranteed point-wise
1108
+ feasibility,” in 2021 American Control Conference (ACC), 2021, pp.
1109
+ 3856–3863.
1110
+ [19] M. F. Reis, A. P. Aguiar, and P. Tabuada, “Control barrier function-
1111
+ based quadratic programs introduce undesirable asymptotically stable
1112
+ equilibria,” IEEE Control Systems Letters, vol. 5, no. 2, pp. 731–736,
1113
+ 2020.
1114
+ [20] M. Jankovic, M. Santillo, and Y. Wang, “Multi-agent systems with cbf-
1115
+ based controllers – collision avoidance and liveness from instability,”
1116
+ 2022. [Online]. Available: https://arxiv.org/abs/2207.04915
1117
+ [21] X. Tan and D. V. Dimarogonas, “On the undesired equilibria induced
1118
+ by control barrier function based quadratic programs,” 2021. [Online].
1119
+ Available: https://arxiv.org/abs/2104.14895
1120
+ [22] G. Notomista and M. Saveriano, “Safety of dynamical systems with
1121
+ multiple non-convex unsafe sets using control barrier functions,” IEEE
1122
+ Control Systems Letters, vol. 6, pp. 1136–1141, 2022.
1123
+ [23] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
1124
+ R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
1125
+ System,” in ICRA workshop on open source software, 2009.
1126
+ [24] H. Khalil, Nonlinear Systems - 3rd Edition.
1127
+ Upper Saddle River, NJ:
1128
+ Prentice Hall, 2002.
1129
+ [25] E. Sontag, “A Lyapunov-like stabilization of asymptotic controllability,”
1130
+ SIAM Journal of Control and Optimization, vol. 21, no. 3, pp. 462–471,
1131
+ 1983.
1132
+ [26] ——, “A ’universal’ contruction of Artstein’s theorem on nonlinear
1133
+ stabilization,” Systems & Control Letters, vol. 13, pp. 117–123, 1989.
1134
+ [27] R. A. Freeman and P. V. Kokotovi´c, Robust Nonlinear Control Design.
1135
+ Birkhäuser, 1996.
1136
+ [28] O. Khatib, “Real-time obstacle avoidance for manipulators and mo-
1137
+ bile robots,” in Proceedings. 1985 IEEE International Conference on
1138
+ Robotics and Automation, vol. 2.
1139
+ IEEE, 1985, pp. 500–505.
1140
+ [29] D. E. Koditschek, “Robot planning and control via potential functions,”
1141
+ The robotics review, p. 349, 1989.
1142
+ [30] Y. Koren, J. Borenstein, et al., “Potential field methods and their inherent
1143
+ limitations for mobile robot navigation.” in ICRA, vol. 2, 1991, pp. 1398–
1144
+ 1404.
1145
+ [31] E. Rimon and D. Koditschek, “Exact robot navigation using artificial
1146
+ potential functions,” IEEE Transactions on Robotics and Automation,
1147
+ vol. 8, no. 5, pp. 501–518, 1992.
1148
+ [32] D. E. Koditschek and E. Rimon, “Robot navigation functions on
1149
+ manifolds with boundary,” Advances in applied mathematics, vol. 11,
1150
+ no. 4, pp. 412–442, 1990.
1151
+ [33] O. Arslan and D. E. Koditschek, “Exact robot navigation using power
1152
+ diagrams,” in Proc. IEEE Int. Conf. Robot. and Automation, 2016, pp.
1153
+ 1–8.
1154
+ [34] ——, “Sensor-based reactive navigation in unknown convex sphere
1155
+ worlds,” The International Journal of Robotics Research, vol. 38, no.
1156
+ 2-3, pp. 196–223, 2019.
1157
+ [35] S. Paternain, D. E. Koditschek, and A. Ribeiro, “Navigation functions for
1158
+ convex potentials in a space with convex obstacles,” IEEE Transactions
1159
+ on Automatic Control, vol. 63, no. 9, pp. 2944–2959, 2017.
1160
+ [36] P. Wieland and F. Allgöwer, “Constructive safety using control barrier
1161
+ functions,” in Proceedings of the 7th IFAC Symposium on Nonlinear
1162
+ Control System, 2007, pp. 462–467.
1163
+ [37] Z. Li, “Comparison between safety methods control barrier function
1164
+ vs. reachability analysis,” 2021. [Online]. Available: https://arxiv.org/
1165
+ abs/2106.13176
1166
+ [38] A. Singletary, S. Kolathaya, and A. D. Ames, “Safety-critical kinematic
1167
+ control of robotic systems,” IEEE Control Systems Letters, vol. 6, pp.
1168
+ 139–144, 2022.
1169
+ [39] M. Jankovic, “Combining control lyapunov and barrier functions for
1170
+ constrained stabilization of nonlinear systems,” in 2017 American Con-
1171
+ trol Conference (ACC), 2017, pp. 1916–1922.
1172
+ [40] K. Garg and D. Panagou, “Control-lyapunov and control-barrier func-
1173
+ tions based quadratic program for spatio-temporal specifications,” in
1174
+ 2019 IEEE 58th Conference on Decision and Control (CDC), 2019,
1175
+ pp. 1422–1429.
1176
+ [41] M. Desai and A. Ghaffari, “Clf-cbf based quadratic programs for safe
1177
+ motion control of nonholonomic mobile robots in presence of moving
1178
+ obstacles,” in 2022 IEEE/ASME International Conference on Advanced
1179
+ Intelligent Mechatronics (AIM).
1180
+ IEEE, 2022, pp. 16–21.
1181
+ [42] E. A. Basso, E. H. Thyri, K. Y. Pettersen, M. Breivik, and R. Skjetne,
1182
+ “Safety-critical control of autonomous surface vehicles in the presence
1183
+ of ocean currents,” in 2020 IEEE Conference on Control Technology
1184
+ and Applications (CCTA).
1185
+ IEEE, 2020, pp. 396–403.
1186
+ 10
1187
+
1188
+ [43] A. Agrawal and K. Sreenath, “Discrete control barrier functions for
1189
+ safety-critical control of discrete systems with application to bipedal
1190
+ robot navigation.” in Robotics: Science and Systems, vol. 13.
1191
+ Cam-
1192
+ bridge, MA, USA, 2017.
1193
+ [44] A. Singletary, K. Klingebiel, J. Bourne, A. Browning, P. Tokumaru,
1194
+ and A. Ames, “Comparative analysis of control barrier functions and
1195
+ artificial potential fields for obstacle avoidance,” in 2021 IEEE/RSJ
1196
+ International Conference on Intelligent Robots and Systems (IROS),
1197
+ 2021, pp. 8129–8136.
1198
+ [45] M. Rauscher, M. Kimmel, and S. Hirche, “Constrained robot control
1199
+ using control barrier functions,” in 2016 IEEE/RSJ International Con-
1200
+ ference on Intelligent Robots and Systems (IROS).
1201
+ IEEE, 2016, pp.
1202
+ 279–285.
1203
+ [46] P. Glotfelter, J. Cortés, and M. Egerstedt, “Nonsmooth barrier functions
1204
+ with applications to multi-robot systems,” IEEE control systems letters,
1205
+ vol. 1, no. 2, pp. 310–315, 2017.
1206
+ [47] M. Z. Romdlony and B. Jayawardhana, “Stabilization with guaranteed
1207
+ safety using control lyapunov–barrier function,” Automatica, vol. 66, pp.
1208
+ 39–47, 2016.
1209
+ [48] P. Thontepu, B. G. Goswami, N. Singh, S. P, S. S. M. G, S. Sundaram,
1210
+ V. Katewa, and S. Kolathaya., “Control barrier functions in ugvs
1211
+ for kinematic obstacle avoidance: A collision cone approach,” 2022.
1212
+ [Online]. Available: https://arxiv.org/abs/2209.11524
1213
+ [49] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and
1214
+ P. Tabuada, “Control barrier functions: Theory and applications,” in 2019
1215
+ 18th European control conference (ECC). IEEE, 2019, pp. 3420–3431.
1216
+ [50] J. Huang and J. W. Grizzle, “Improvements to Target-Based 3D LiDAR
1217
+ to Camera Calibration,” IEEE Access, vol. 8, pp. 134 101–134 110, 2020.
1218
+ [51] J. K. Huang, S. Wang, M. Ghaffari, and J. W. Grizzle, “LiDARTag: A
1219
+ Real-Time Fiducial Tag System for Point Clouds,” IEEE Robotics and
1220
+ Automation Letters, pp. 1–1, 2021.
1221
+ [52] J.-K. Huang, C. Feng, M. Achar, M. Ghaffari, and J. W. Grizzle, “Global
1222
+ Unifying Intrinsic Calibration for Spinning and Solid-State LiDARs,”
1223
+ arXiv preprint arXiv:2012.03321, 2020.
1224
+ [53] J.-K. Huang, W. Clark, and J. W. Grizzle, “Optimal target shape for
1225
+ lidar pose estimation,” arXiv preprint arXiv:2109.01181, 2021.
1226
+ [54] R. Hartley, M. Ghaffari, R. M. Eustice, and J. W. Grizzle, “Contact-
1227
+ aided invariant extended kalman filtering for robot state estimation,” The
1228
+ International Journal of Robotics Research, vol. 39, no. 4, pp. 402–430,
1229
+ 2020.
1230
+ [55] A. Bundy and L. Wallen, “Breadth-first search,” in Catalogue of artificial
1231
+ intelligence tools.
1232
+ Springer, 1984, pp. 13–13.
1233
+ [56] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, “Finding the convex
1234
+ hull. introduction to algorithms,” 2009.
1235
+ [57] A. M. N. Alzubaidi, “Minimum bounding circle of 2d convex hull,”
1236
+ International journal of Science and research, vol. 3, pp. 364–367, 2014.
1237
+ [58] S. I. Gass and C. M. Harris, “Encyclopedia of operations research and
1238
+ management science,” Journal of the Operational Research Society,
1239
+ vol. 48, no. 7, pp. 759–760, 1997.
1240
+ APPENDIX A
1241
+ EQUILIBRIUM ANALYSIS OF MULTI-OBSTACLE SYSTEMS
1242
+ We give the complete analysis for a single obstacle, following
1243
+ the work of [19]. Because the drift term of our model is zero, any
1244
+ equilibrium points are where the optimal control is the zero vector.
1245
+ To avoid this undesirable situation, we seek to find all equilibrium
1246
+ points E = {x|u∗ = [0, 0, 0]T, r > 0, and δ, θ ∈ (−π, π]}, where
1247
+ u∗ is the optimal control variable. Recall thatf =
1248
+ �0
1249
+ 0
1250
+ 0�T in (2),
1251
+ which leads to LfV (x) = LfB(x) = 0. We denote the following to
1252
+ re-write the CLF and the CBF constraints:
1253
+ �dx
1254
+ dy
1255
+ 0�
1256
+ = −LgB(x)
1257
+ �ax
1258
+ ay
1259
+
1260
+
1261
+ = LgV (x),
1262
+ (30)
1263
+ where
1264
+ ax = −r cos(δ) + βγ2 sin(2βδ) sin(δ)
1265
+ 2r
1266
+ ay = −r sin(δ) − βγ2 sin(2βδ) cos(δ)
1267
+ 2r
1268
+ aω = βγ sin(2βδ)
1269
+ 2
1270
+ .
1271
+ (31)
1272
+ The constraints become
1273
+ L(x, u, s) = axvx + ayvy + aωω − s + µV (x),
1274
+ (32)
1275
+ B(x, u) = dxvx + dyvy − ηB(x),
1276
+ (33)
1277
+ and the cost function (15) of the QP can then be re-written as:
1278
+ J(u, s) = 1
1279
+ 2h1(vx − vref
1280
+ x )2 + 1
1281
+ 2h2(vy − vref
1282
+ y )2
1283
+ + 1
1284
+ 2h3(ω − ωref)2 + 1
1285
+ 2ps2,
1286
+ (34)
1287
+ where {hi}3
1288
+ i=1 are the diagonal elements of H in (15), the weights
1289
+ of control variables [vx, vy, ω] with hi > 0.
1290
+ The KKT conditions [58] of this quadratic program are:
1291
+ ∂L
1292
+ ∂u = Hu∗ − Huref + λ1LgV T − λ2LgBT = 0
1293
+ (35)
1294
+ ∂L
1295
+ ∂s = ps − λ1 = 0
1296
+ (36)
1297
+ 0 = λ1(LfV + LgV u∗ + µV − s)
1298
+ (37)
1299
+ 0 = λ2(−LfB − LgBu∗ − ηB)
1300
+ (38)
1301
+ 0 ≥ LfV + LgV u∗ + µV − s
1302
+ (39)
1303
+ 0 ≥ −LfB − LgBu∗ − ηB
1304
+ (40)
1305
+ 0 ≤ λ1, λ2,
1306
+ (41)
1307
+ where λ1, λ2 ∈ R, and L is the Lagrangian function and defined as
1308
+ L(u, s, λ1, λ2) = J(u, s) + λ1L(x, u, s) + λ2B(x, u).
1309
+ (42)
1310
+ Next, we analyze equilibrium points (if any) via four cases
1311
+ depending on whether each CLF or CBF constraint is active or
1312
+ inactive following [19].
1313
+ A. Both CLF and CBF are inactive
1314
+ When both constraints are inactive, we have
1315
+ λ1 = 0
1316
+ λ2 = 0
1317
+ 0 > LfV + LgV u∗ + µV − s
1318
+ 0 > −LfB − LgBu∗ − ηB.
1319
+ (43)
1320
+ With (35) and (36), u∗ and s∗ in this case are
1321
+ u∗ = uref
1322
+ s∗ = 0.
1323
+ (44)
1324
+ From (4), as long as the goal is not reached, uref is not a zero vector.
1325
+ Hence, there is no equilibrium point in this case.
1326
+ B. CLF constraint inactive and CBF constraint active
1327
+ We prove that there is no equilibrium point in this case by
1328
+ contradiction. When the CLF constraint is inactive and the CBF
1329
+ constraint is active, we have
1330
+ λ1 = 0
1331
+ λ2 ≥ 0
1332
+ 0 > LfV + LgV u∗ + µV − s
1333
+ 0 = −LfB − LgBu∗ − ηB.
1334
+ (45)
1335
+ With (35) and (36), u∗, s∗ and λ2 in this case are
1336
+ u∗ = uref + λ2H−1LgBT
1337
+ s∗ = 0
1338
+ λ2 = −ηB + LfB + LgBuref
1339
+ LgBH−1LgBT
1340
+ .
1341
+ (46)
1342
+ 11
1343
+
1344
+ If there is an equilibrium point, then u∗ is the zero vector. Hence, at
1345
+ the equilibrium point, by LfV (x) = 0, u∗ = 0 and s∗ = 0, we have
1346
+ LfV + LgV u∗ + µV − s∗ = µV > 0,
1347
+ (47)
1348
+ which conflicts with (45). Therefore, there is no equilibrium point in
1349
+ this case.
1350
+ C. CLF constraint active and CBF constraint inactive
1351
+ When the CLF constraint is active and the CBF constraint is
1352
+ inactive, we have
1353
+ λ1 ≥ 0
1354
+ λ2 = 0
1355
+ 0 = LfV + LgV u∗ + µV − s
1356
+ 0 > −LfB − LgBu∗ − ηB.
1357
+ (48)
1358
+ With (35) and (36), u∗, s∗ and λ1 in this case are
1359
+ u∗ = uref − λ1H−1LgV T
1360
+ s∗ = λ1
1361
+ p
1362
+ λ1 = pµV + pLfV + pLgV uref
1363
+ pLgV H−1LgV T + 1
1364
+ .
1365
+ (49)
1366
+ Using the variables defined in (30), u∗ can be rewritten as:
1367
+ u∗ =
1368
+
1369
+
1370
+ v∗
1371
+ x
1372
+ v∗
1373
+ y
1374
+ ω∗
1375
+
1376
+ � =
1377
+
1378
+ ��
1379
+ vref
1380
+ x
1381
+ − λ1ax
1382
+ h1
1383
+ vref
1384
+ y
1385
+ − λ1ay
1386
+ h2
1387
+ ωref − λ1aω
1388
+ h3
1389
+
1390
+ �� .
1391
+ (50)
1392
+ We know from (31) that
1393
+ (ay = 0 & aω = 0) ⇐⇒ δ = 0.
1394
+ (51)
1395
+ In addition, we know from (4) that
1396
+ (vref
1397
+ y
1398
+ = 0 & ωref = 0) ⇐⇒ δ = 0.
1399
+ (52)
1400
+ Therefore, we split this case into three cases based on the value of
1401
+ δ.
1402
+ 1) δ = 0 (Case I): Substituting δ = 0 to (30), we have ax =
1403
+ −r < 0, ay = 0, aω = 0, and to (4), we have vref
1404
+ x
1405
+ > 0, vref
1406
+ y
1407
+ =
1408
+ 0, ωref = 0. Finally, with (41), the optimal control command (50)
1409
+ can be simplified as:
1410
+ u∗ =
1411
+
1412
+
1413
+ v∗
1414
+ x
1415
+ v∗
1416
+ y
1417
+ ω∗
1418
+
1419
+ � =
1420
+
1421
+
1422
+ vref
1423
+ x
1424
+ + λ1r
1425
+ h1 > 0
1426
+ 0
1427
+ 0
1428
+
1429
+ � .
1430
+ (53)
1431
+ The optimal control command is not a zero vector, and hence there
1432
+ is no equilibrium point in this case.
1433
+ 2) δ > 0 (Case II): When δ > 0, by the definitions in (31), we
1434
+ have ay < 0, aω > 0, and by (4), we have vref
1435
+ y
1436
+ > 0, ωref < 0. With
1437
+ (41) and (50), we have
1438
+ v∗
1439
+ y = vref
1440
+ y
1441
+ − λ1ay
1442
+ h2
1443
+ > 0
1444
+ ω∗ = ωref − λ1aω
1445
+ h3
1446
+ < 0.
1447
+ (54)
1448
+ The optimal control command is not a zero vector in this case.
1449
+ Therefore, there is no equilibrium points in this case either.
1450
+ 3) δ < 0 (Case III): Similarly, by (30) and (4), we have ay >
1451
+ 0, aω < 0 and vref
1452
+ y
1453
+ < 0, ωref > 0. With (41) and (50), we have
1454
+ v∗
1455
+ y = vref
1456
+ y
1457
+ − λ1ay
1458
+ h2
1459
+ < 0
1460
+ ω∗ = ωref − λ1aω
1461
+ h3
1462
+ > 0
1463
+ (55)
1464
+ The optimal control command is not a zero vector in this case; there
1465
+ is, thus, no equilibrium point in this case.
1466
+ In summary, there is no equilibrium point when the CLF constraint
1467
+ is active and the CBF constraint is inactive.
1468
+ D. Both CLF and CBF constraint are active
1469
+ When the CLF constraint is active and the CBF constraint is active,
1470
+ we have
1471
+ λ1 ≥ 0
1472
+ λ2 ≥ 0
1473
+ 0 = LfV + LgV u∗ + µV − s
1474
+ 0 = −LfB − LgBu∗ − ηB.
1475
+ (56)
1476
+ We can rewrite (35) and (36) as:
1477
+ u∗ = uref − λ1H−1LgV T + λ2H−1LgBT
1478
+ s∗ = λ1
1479
+ p
1480
+ (57)
1481
+ Using the variables defined in (30), u∗ can be rewritten as:
1482
+ u∗ =
1483
+
1484
+
1485
+ v∗
1486
+ x
1487
+ v∗
1488
+ y
1489
+ ω∗
1490
+
1491
+ � =
1492
+
1493
+ ��
1494
+ vref
1495
+ x
1496
+ − λ1ax
1497
+ h1
1498
+ − λ2dx
1499
+ h1
1500
+ vref
1501
+ y
1502
+ − λ1ay
1503
+ h2
1504
+ − λ2dy
1505
+ h2
1506
+ ωref − λ1aω
1507
+ h3
1508
+
1509
+ �� .
1510
+ (58)
1511
+ When the robot is at an equilibrium point, u∗ is the zero vector.
1512
+ By (56) and LfB = 0, u∗ = 0, we have B = 0, which implies that
1513
+ the robot is at the boundary of an obstacle. In the following proof of
1514
+ Sec. A-D, we will assume the robot is at the boundary of obstacles.
1515
+ The property of B = 0 leads to an immediate proposition which
1516
+ is helpful in finding the equilibrium point in the system when one of
1517
+ the components of the optimal control is 0.
1518
+ Proposition 3. dy = 0 =⇒ v∗
1519
+ x = 0.
1520
+ Proof. By the proof in III-C, we have LgB(x) = ∇B(x) · g(x) ̸= 0
1521
+ for x ∈ D. Therefore, when dy = 0, we have dx ̸= 0. Then, we can
1522
+ further have LgB(x)u∗ = 0 =⇒ v∗
1523
+ x = 0.
1524
+
1525
+ In addition, with the properties (51) and (52), we split this case
1526
+ into four cases based on whether δ and dy are zero.
1527
+ 1) dy = δ = 0 (Case I): Substituting to (30), we have ax =
1528
+ −r < 0, ay = 0, aω = 0, and to (4), we have vref
1529
+ x
1530
+ > 0, vref
1531
+ y
1532
+ =
1533
+ 0, ωref = 0. Finally, with Proposition 3, in this case the optimal
1534
+ control command (58) can be written as:
1535
+ u∗ =
1536
+
1537
+
1538
+ v∗
1539
+ x
1540
+ v∗
1541
+ y
1542
+ ω∗
1543
+
1544
+ � =
1545
+
1546
+
1547
+ vref
1548
+ x
1549
+ − λ1ax
1550
+ h1
1551
+ − λ2dx
1552
+ h1
1553
+ 0
1554
+ 0
1555
+
1556
+ � =
1557
+
1558
+
1559
+ 0
1560
+ 0
1561
+ 0
1562
+
1563
+ � .
1564
+ (59)
1565
+ λ1 and λ2 can be obtained by (59), (56) and (57):
1566
+ λ1 = pµV > 0
1567
+ λ2 = h1vref
1568
+ x
1569
+ − pµV ax
1570
+ dx
1571
+ (60)
1572
+ By (41) and (60), we have
1573
+ ∵ vref
1574
+ x
1575
+ > 0, ax < 0, h1vref
1576
+ x
1577
+ − pµV ax
1578
+ dx
1579
+ ≥ 0 −→ dx > 0.
1580
+ (61)
1581
+ Hence, there is an equilibrium point when B = 0, dy = δ = 0 and
1582
+ dx > 0.
1583
+ 2) dy ̸= 0, δ = 0 (Case II): When δ = 0, by (30) and (4),
1584
+ we have ax = −r < 0, ay = 0, aω = 0 and vref
1585
+ x
1586
+ > 0, vref
1587
+ y
1588
+ =
1589
+ 0, ωref = 0. Finally, with (41), the optimal control command (58)
1590
+ can be simplified as:
1591
+ u∗ =
1592
+
1593
+
1594
+ v∗
1595
+ x
1596
+ v∗
1597
+ y
1598
+ ω∗
1599
+
1600
+ � =
1601
+
1602
+
1603
+ vref
1604
+ x
1605
+ − λ1ax
1606
+ h1
1607
+ − λ2dx
1608
+ h1
1609
+ − λ2dy
1610
+ h2
1611
+ ̸= 0
1612
+ 0
1613
+
1614
+ � .
1615
+ (62)
1616
+ Because v∗
1617
+ y ̸= 0, the optimal command is not a zero vector in this
1618
+ case. Equilibrium points don’t exist when dy ̸= and δ = 0.
1619
+ 12
1620
+
1621
+ 3) δ > 0 (Case III): When δ > 0, by (54), ω∗ < 0. Hence, the
1622
+ optimal command is not a zero vector and there are no equilibrium
1623
+ points in this case.
1624
+ 4) δ < 0 (Case IV): When δ < 0, by (55), ω∗ > 0. Hence, the
1625
+ optimal command is not a zero vector and there are no equilibrium
1626
+ points in this case.
1627
+ 13
1628
+
0dAzT4oBgHgl3EQf8f7E/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
0dFRT4oBgHgl3EQfkjfS/content/tmp_files/2301.13596v1.pdf.txt ADDED
@@ -0,0 +1,704 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Confinement of fractional excitations in a triangular lattice antiferromagnet
2
+ L. Facheris,1, ∗ S. D. Nabi,1 A. Glezer Moshe,2 U. Nagel,2 T. R˜o˜om,2
3
+ K. Yu. Povarov,1, 3 J. R. Stewart,4 Z. Yan,1 and A. Zheludev1, †
4
+ 1Laboratory for Solid State Physics, ETH Z¨urich, 8093 Z¨urich, Switzerland
5
+ 2National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
6
+ 3Present address: Dresden High Magnetic Field Laboratory
7
+ (HLD-EMFL) and W¨urzburg-Dresden Cluster of Excellence ct.qmat,
8
+ Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
9
+ 4ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot, OX11 0QX, United Kingdom
10
+ (Dated: February 1, 2023)
11
+ High-resolution neutron and THz spectroscopies are used to study the magnetic excitation spec-
12
+ trum of Cs2CoBr4, a distorted-triangular-lattice antiferromagnet with nearly XY-type anisotropy.
13
+ What was previously thought of as a broad excitation continuum [Phys. Rev. Lett. 129, 087201
14
+ (2022)] is shown to be a series of dispersive bound states reminiscent of “Zeeman ladders” in quasi-
15
+ one-dimensional Ising systems. At wave vectors where inter-chain interactions cancel at the Mean
16
+ Field level, they can indeed be interpreted as bound finite-width kinks in individual chains. Else-
17
+ where in the Brillouin zone their true two-dimensional structure and propagation are revealed.
18
+ In conventional magnetic insulators the dynamic re-
19
+ sponse is typically dominated by coherent single-particle
20
+ S = 1 excitations, aka magnons or spin waves. In many
21
+ low-dimensional and highly frustrated quantum spin sys-
22
+ tems elementary excitations carry fractional quantum
23
+ numbers, be they spinons in Heisenberg spin chains [1–4]
24
+ or Majorana fermions in the now-famous Kitaev model
25
+ [5–7].
26
+ The physical excitation spectrum, such as that
27
+ measured by neutron spectroscopy, is then dominated by
28
+ broad multi-particle continua [8–11]. In addition to the
29
+ continuum, fractional excitations may also form bound
30
+ states due to attractive interactions between them.
31
+ A
32
+ spectacular new phenomenon emerges when interactions
33
+ are confining, i.e. do not fall off with distance, much like
34
+ strong forces that bind quarks in hadrons [12]. This pro-
35
+ duces an entire series of bound states inside the resulting
36
+ potential well. An example is the sequence of domain wall
37
+ (kink) bound states in quasi-one-dimensional Ising spin
38
+ chains [13–15].
39
+ The confining potential for this model
40
+ is linear and results from 3-dimensional couplings, which
41
+ generate an effective field acting on individual chains [14].
42
+ The binding energies are, in supreme mathematical ele-
43
+ gance, spaced according to the negative zeros of the Airy
44
+ function [13, 15].
45
+ The best-known experimental examples of such “Zee-
46
+ man ladder” spectra are the quasi-one-dimensional Ising
47
+ ferromagnet CoNb2O6 [16] and antiferromagnet (AF)
48
+ BaCo2V2O8
49
+ [17], as well as the isostructural com-
50
+ pound SrCo2V2O8 [18], where as many as 8 consecutive
51
+ bound states are observed. Shorter sequences have been
52
+ found in another prototypical Ising spin chain material,
53
+ RbCoCl3 [19].
54
+ In the present work we report the ob-
55
+ servation of a somewhat similar phenomenon in an en-
56
+ tirely different type of system, namely in a quasi-two-
57
+ dimensional distorted-triangular-lattice AF where the
58
+ effective magnetic anisotropy is predominantly of XY,
59
+ rather than Ising character.
60
+ That the quintessentially
61
+ one-dimensional physics of bound kinks survives in two
62
+ dimensions is remarkable. We argue that it is “rescued”
63
+ at certain special wave vectors by the intrinsic frustration
64
+ in triangular lattice geometry. Elsewhere in the Brillouin
65
+ zone the bound states are no longer restricted to sin-
66
+ gle chains and are to be viewed as 2-dimensional objects
67
+ propagating on the entire triangular plane.
68
+ The material in question, Cs2CoBr4 (space group
69
+ Pnma, a = 10.19, b = 7.73, c = 13.51 ˚A), is a very
70
+ interesting J − J′ model distorted-triangular-lattice AF
71
+ [20, 21].
72
+ Despite a prominent triangular motif in its
73
+ structure, it demonstrates certain one-dimensional fea-
74
+ tures such as a field-induced incommensurate spin den-
75
+ sity wave with Tomonaga-Luttinger spin liquid type dy-
76
+ namics and a propagation vector controlled by a one-
77
+ dimensional nesting in the spinon Fermi sea.
78
+ Its true
79
+ 2-dimensional nature is manifest in the presence of a ro-
80
+ bust m = 1/3 magnetization plateau, typical of a trian-
81
+ gular AF. The model magnetic Hamiltonian is described
82
+ in detail in Refs. [20, 21]. The key structural features
83
+ are chains of Co2+ ions that run along the crystallo-
84
+ graphic b axis of the orthorhombic lattice (see Fig.
85
+ 1
86
+ in Ref. [20]). The chains are coupled in the (bc) plane in
87
+ a zigzag fashion to form a distorted triangular network
88
+ (inset of Fig. 1(d)). Easy-plane single-ion anisotropy en-
89
+ sures that the low-energy physics of the spin-3/2 Co2+
90
+ ions can be described in terms of effective S = 1/2
91
+ pseudo-spins. The components of the effective exchange
92
+ coupling constants are subject to restrictions imposed
93
+ by the pseudo-spin projection.
94
+ A simplistic spin-wave
95
+ analysis of previous inelastic neutron data provided a
96
+ rough estimate for the nearest-neighbor in-chain AF ex-
97
+ change tensor components:
98
+ JXX ∼ J, JY Y
99
+ ∼ 1.1J,
100
+ JZZ ∼ 0.25J, J = 0.8 meV [21]. Here Y is chosen along
101
+ the b crystallographic direction, and X and Z alternate
102
+ between adjacent chains, where anisotropy planes are al-
103
+ most orthogonal. Note that this is practically a planar
104
+ arXiv:2301.13596v1 [cond-mat.str-el] 31 Jan 2023
105
+
106
+ 2
107
+ (b)
108
+ (c)
109
+ (d)
110
+ (a)
111
+ ground state
112
+ J
113
+ J'
114
+ bound state m3
115
+ FIG. 1.
116
+ (a)-(b) Neutron scattering intensity (solid sym-
117
+ bols) measured at T = 40 mK versus energy transfer at
118
+ the one-dimensional AF zone-centers q = (0, 0.5, 0.5) and
119
+ q = (0, 1, 0.5), respectively.
120
+ The data are integrated fully
121
+ along h direction and in ±0.025 r.l.u. and ±0.25 r.l.u. along
122
+ k and l, respectively. Solid lines are fits to a series of Gaus-
123
+ sian peaks.
124
+ Dashed Gaussians represent the calculated ex-
125
+ perimental energy resolution. Black dotted lines indicate the
126
+ fitted flat background.
127
+ (c) Measured terahertz absorption
128
+ (solid line) versus absorbed photon energy for light propa-
129
+ gating along the c axis at 0.2 K. Dashed areas highlight the
130
+ individual components that find counterparts in the neutron
131
+ spectra. (d) Measured excitation energy plotted versus the
132
+ value of negative roots of the Airy function. The solid line is
133
+ a linear fit as described in the text. The blue area highlights
134
+ the points used for the fit. Inset: cartoons of the magnetic
135
+ ground state and a representative m = 3 2-kink bound state.
136
+ exchange anisotropy, with only a tiny in-plane Ising com-
137
+ ponent to account for the ∆ ∼ 0.4 meV spectral gap
138
+ found in this system.
139
+ The frustrated inter-chain cou-
140
+ pling J′ is significant, of the order of 0.45J, and is of
141
+ predominantly Ising (Y Y ) character. Inter-plane inter-
142
+ actions J′′ are not frustrated. The material orders mag-
143
+ netically in a colinear stripe-type structure, with an or-
144
+ dering wavevector (0, 1/2, 1/2) (see inset in Fig. 1(d)).
145
+ The N´eel temperature TN = 1.3 K allows us to esti-
146
+ mate J′′. If this were the only coupling between chains
147
+ with no additional frustration due to J′, we could expect
148
+ kBTN ∼ 2∆/ ln(∆/J′′) [22]. The actual value of J′′ must
149
+ be larger than thus obtained, as the in-plane frustration
150
+ interferes with the emerging magnetic structure. A cer-
151
+ tain upper estimate is given by the mean field picture
152
+ where kBTN ∼ 2J′′S(S + 1). This leads us to conclude
153
+ that 3 · 10−4 meV ≲ J′′ ≲ 0.075 meV ≪ J, confirming
154
+ the quasi-2-dimensional character of the material.
155
+ Our previous inelastic neutron scattering experiments
156
+ indicated that the excitation spectrum in zero applied
157
+ field is a gapped continuum of states, with intensity con-
158
+ centrated on its lower bound, and a strong dispersion
159
+ along the chain axis [21].
160
+ The central finding of the
161
+ present work is that this “continuum” is actually a se-
162
+ quence of at least 9 sharp bound states that previously
163
+ could not be observed due to poor experimental energy
164
+ resolution. New neutron data were collected at the LET
165
+ time-of-flight spectrometer at ISIS (UK), using 2.35 meV
166
+ incident energy neutrons in repetition-rate-multiplication
167
+ mode [23].
168
+ We used the same 1.16 g single crystal as
169
+ in [21] mounted on a 3He-4He dilution refrigerator. All
170
+ measurements were performed at a base temperature of
171
+ 40 mK. In the experiment the sample was rotated 180◦
172
+ around the a axis in steps of 1◦. The spectra were mea-
173
+ sured for ∼ 10 minute counting time at each sample po-
174
+ sition.
175
+ We first focus on the one-dimensional AF zone-centers
176
+ (qb = 0, π), where inter-chain interactions within the tri-
177
+ angular planes cancel out at the Mean Field-RPA level,
178
+ and where spin wave theory predicts no transverse disper-
179
+ sion or intensity modulation of excitations. Fig. 1(a),(b)
180
+ show constant-q cuts through the data at wave vectors
181
+ q = (0, 0.5, 0.5) and q = (0, 1, 0.5), respectively. A se-
182
+ quence of sharp peaks is clearly apparent in both cases.
183
+ A fit to the data using empirical Gaussian profiles yields
184
+ an accurate measure of the peak positions and shows
185
+ that their widths are essentially resolution-limited.
186
+ In
187
+ Fig. 1(a),(b) this is emphasized by the shaded Gaussians
188
+ representing the computed experimental resolution [24].
189
+ Corroborative evidence is also obtained by THz spec-
190
+ troscopy. The experiment was performed with a Martin-
191
+ Puplett-type interferometer and a 3He-4He dilution re-
192
+ frigerator with base temperature of 150 mK using a 3He-
193
+ cooled Si bolometer at 0.3 K. The sample was a circu-
194
+ lar plate approximately 1 mm thick in c direction and
195
+ 4 mm in diameter. THz radiation propagating along the
196
+
197
+ 3
198
+ crystal c axis was unpolarized and the apodized instru-
199
+ mental resolution was 0.025 meV. The THz absorption
200
+ spectrum is shown in Fig. 1(c). It is calculated as a dif-
201
+ ference of spectra measured at 0.2 K and 2 K, i.e. in
202
+ the magnetically ordered phase and above TN. The THz
203
+ spectrum appears to have some features absent in the
204
+ neutron spectrum, but all peaks found in the latter are
205
+ also present here. The positions of these peaks were de-
206
+ termined in Gaussian fits (shaded peaks) in a narrow
207
+ range ±0.025 meV near each peak value.
208
+ The spacing between the excitation peaks present in
209
+ both measurements corresponds to confinement in an ap-
210
+ proximately linear one-dimensional potential. To demon-
211
+ strate this, we plot the excitation energies deduced from
212
+ neutron spectra at several wave vectors, as well as the
213
+ positions of corresponding THz peaks, versus the neg-
214
+ ative roots zi of the Airy function in Fig. 1(d). For a
215
+ precise linear attractive potential λ|x| between the dis-
216
+ persive particles, near the minimum ϵ(k) = m0+ℏ2k2/2µ
217
+ we expect the excitation energies to be [15, 16]
218
+ mi = 2m0 + (ℏλ)2/3µ−1/3zi with i = 1, 2, . . . .
219
+ (1)
220
+ In the actual data, the linear dependence is appar-
221
+ ent for all but the first few points.
222
+ As will be ad-
223
+ dressed in more detail below, this slight deviation in-
224
+ dicates that the confining force increases somewhat at
225
+ short distances. From a linear fit to the higher-energy
226
+ peaks we can immediately extract the slope 0.072(3) meV
227
+ and the energy of a single particle m0 = 0.18(1) meV
228
+ (half-intercept).
229
+ Using the single-particle kinetic mass
230
+ ℏ2/µ = 0.39 meV×b2 [24], we estimate the confining force
231
+ constant λ = 0.031(2) meV/b [25].
232
+ The next point that we make is that the observed
233
+ bound states at the one-dimensional AF zone-center are
234
+ essentially one-dimensional objects. This is concluded by
235
+ analyzing the neutron spectra shown in Figs. 2(a),(b).
236
+ The bound states do not propagate in either transverse
237
+ direction and thus have an essentially flat dispersion.
238
+ Moreover, their intensity shows no modulation trans-
239
+ verse to the chains, as shown for the first two modes in
240
+ Figs. 2(e),(f). The measured transverse wave vector de-
241
+ pendencies are entirely accounted for (solid lines) by the
242
+ combined effects of i) the magnetic form factor of Co2+
243
+ and ii) a neutron polarization factor for spin components
244
+ perpendicular to the chain axis (to the direction of or-
245
+ dered moments in the ground state). This implies that
246
+ these excitations do not involve cross-chain correlations
247
+ and are confined to a single chain.
248
+ This consideration prompts a simple interpretation
249
+ of the observed behavior.
250
+ Similarly to the situation
251
+ in CoNb2O6 and BaCo2V2O8, the observed modes are
252
+ bound states of two kinks (domain walls) in individual
253
+ chains.
254
+ Such an excitation is illustrated by the car-
255
+ toon in the inset of Fig. 1(d).
256
+ Since the ordered mo-
257
+ ments are along the b crystallographic axis, they are po-
258
+ (a)
259
+ (b)
260
+ (c)
261
+ (d)
262
+ (e)
263
+ (f)
264
+ (g)
265
+ (h)
266
+ FIG. 2. (a)-(d) False color plot of neutron scattering inten-
267
+ sity measured at T = 40 mK plotted versus energy transfer
268
+ and momentum transfer transverse to the crystallographic b-
269
+ axis. Gray areas mask regions of elastic-incoherent scattering.
270
+ Background subtraction has been performed as described in
271
+ [24].
272
+ The orange regions represent energy-integration win-
273
+ dows used to extract the cuts in panels below.
274
+ (e)-(h)
275
+ Intensity-momentum cuts (solid symbols) for the first two
276
+ modes in the Zeeman ladder. The blue line shows the product
277
+ of calculated neutron polarization factor for excitations polar-
278
+ ized perpendicular to the direction of the ordered moment and
279
+ the magnetic form-factor-squared for Co2+.
280
+ larized transverse to that direction [21], in agreement
281
+ with the measurement.
282
+ The energy m0 is to be asso-
283
+ ciated with that of a single domain wall. As a consis-
284
+ tency check, we can compare that to the computed en-
285
+ ergy of a domain wall in a classical spin chain. Using
286
+ JY Y /JXX ∼ 1.1 as estimated for Cs2CoBr4, with a triv-
287
+ ial numerical classical-energy minimization procedure we
288
+ get m0 ∼ 0.9JS2 = 0.18 meV, in excellent agreement
289
+ with the measured value.
290
+ Geometric frustration ensures that at the magnetic
291
+ zone-center these strings of flipped spins within a single
292
+ chain incur no energy cost due to interactions with adja-
293
+ cent chains within the triangular lattice. Moreover, any
294
+ transverse dispersion is suppressed. At the same time,
295
+ the interaction energy due to unfrustrated inter-layer
296
+ coupling is proportional to the string length, resulting
297
+ in confinement. In this simplistic picture, the confining
298
+ force is λ = 2J′′S2/b. This yields an inter-layer coupling
299
+ constant J′′ = 0.062(4) meV, inside the possible range
300
+ deduced from TN. The first lowest-energy bound state
301
+ with energy m1 corresponds to a single spin flip in the
302
+ chain, in other words to a single-magnon excitation. The
303
+ i-th higher-energy states are two domain walls separated
304
+ by a length-i string of spins that are aligned opposite to
305
+ the ground state AF spin configuration.
306
+
307
+ 4
308
+ The deviation from linear-potential behavior at low en-
309
+ ergies is also readily explained by this picture. Since the
310
+ material is almost planar, the domain walls are not con-
311
+ fined to a single bond as in the ideal Ising case, but have
312
+ a characteristic size l [26]. We can estimate that quan-
313
+ tity in a classical spin chain using the above-mentioned
314
+ anisotropy parameters: l ∼ 2b. The energy of the first
315
+ few bound states is thus modified due to a physical over-
316
+ lap of the two bounding domain walls. Experimentally,
317
+ the bound state energy is reduced, which corresponds to
318
+ an additional attractive interaction between kinks. Once
319
+ the kinks are separated by a distance of more than ∼ l,
320
+ this interaction becomes negligible and the confinement
321
+ potential becomes linear, originating only from inter-
322
+ layer interactions.
323
+ Away from the one-dimensional AF zone-centers, the
324
+ excitations are considerably more complex. This is very
325
+ clear in the longitudinal dispersion of the bound states
326
+ shown in Fig. 3(a),(b). Other than at qb = 0, π (k =
327
+ 0, 1/2) the m1 mode splits into two branches, each with
328
+ an asymmetric dispersion relation. In fact, the m1 state
329
+ at qb = π seems to be continuously connected to the m2
330
+ excitations at qb = 2π (k = 1) and vice versa. Fitting
331
+ the dispersion of the strongest low-energy mode in the
332
+ vicinity of qb = π to a Lorentz-invariant relativistic form
333
+ (ℏωq)2 = ℏ2∆ (qb)2 /µ + ∆2,
334
+ (2)
335
+ yields the value of kinetic mass quoted above.
336
+ A look at the intensities reveals that other than at the
337
+ special wave vectors, the bound states can no longer be
338
+ seen as strings in a single chain, but are “dressed” with
339
+ correlations extending to several neighboring chains in
340
+ the triangular plane.
341
+ This conclusion is reached from
342
+ Fig. 2(c),(d), that show a transverse cut of the spectrum
343
+ at qb = 5π/4 and qb = 3π/2, respectively.
344
+ As plot-
345
+ ted in Fig. 2(g),(h), the measured intensity of the first
346
+ two modes now shows a much steeper transverse wave
347
+ vector dependence than computed from just the polar-
348
+ ization and form factors (solid line). The second mode
349
+ even seems to show signs of intensity oscillations.
350
+ Our data reveal that away from the special wave vec-
351
+ tors the bound states also propagate in two dimensions,
352
+ albeit with a small bandwidth. Indeed, in Fig. 2(d) one
353
+ can see that at qb = 3π/2 the bound states develop a
354
+ non-zero dispersion along the c∗ direction, in contrast to
355
+ what is seen at qb = 0, π. Although the bandwidth of
356
+ transverse dispersion, 0.08 meV, is at the limit of our
357
+ experimental resolution, qualitatively one can say that
358
+ qc = 0, 4π are dispersion minima for the m1 mode, while
359
+ the maximum is at qc = 2π. That periodicity is consis-
360
+ tent with having two chains per unit cell along the c-axis
361
+ direction in the crystal structure.
362
+ Overall, the differences between our results and spectra
363
+ of Ising spin chains [16, 17] are striking. In the latter,
364
+ all bound states, including the first one, are much less
365
+ dispersive than the lower edge of the entire spectrum,
366
+ (a)
367
+ (b)
368
+ FIG. 3. (a)-(b) False color plot of neutron scattering inten-
369
+ sity measured at T = 40 mK plotted versus energy transfer
370
+ and momentum transfer along q = (0, k, 0.5) and q = (0, k, 1)
371
+ respectively. The data were fully integrated along h, and in
372
+ the range ±0.25 r.l.u. along l around the central value. The
373
+ gray areas mask regions where the incoherent scattering domi-
374
+ nates the signal. Background subtraction has been performed
375
+ as described in [24].
376
+ which approximately corresponds to the lower edge of the
377
+ two-kink continuum in the absence of long-range order.
378
+ As a result, each bound state persists only in a restricted
379
+ area in the Brillouin zone. In contrast, in Cs2CoBr4 a
380
+ few of the lower-energy bound states are highly dispersive
381
+ and span across the entire zone.
382
+ In summary,
383
+ we demonstrate that “Zeeman lad-
384
+ ders” of confined fractional excitations can exist in a
385
+ bona fide quasi-two-dimensional system.
386
+ These states
387
+ are inherently related to those in the one-dimensional
388
+ model, as revealed at special wave vectors where two-
389
+ dimensional interactions are canceled by geometric frus-
390
+ tration.
391
+ However, elsewhere in reciprocal space their
392
+ true 2-dimensional character is manifest.
393
+ Once again,
394
+ the distorted triangular lattice model provides a link be-
395
+ tween one- and two-dimensional quantum magnetism.
396
+ This work was supported by a MINT grant of the Swiss
397
+ National Science Foundation. We acknowledge support
398
+ by the Estonian Research Council grants PRG736 and
399
+ MOBJD1103, and by European Regional Development
400
+ Fund Project No. TK134. Experiments at the ISIS Neu-
401
+ tron and Muon Source were supported by beamtime allo-
402
+ cation RB2210048 from the Science and Technology Fa-
403
+ cilities Council [27].
404
405
+
406
+ AA5
407
+ [email protected]; http://www.neutron.ethz.ch/
408
+ [1] L. D. Faddeev and L. A. Takhtajan, What is the spin of
409
+ a spin wave?, Phys. Lett. A 85, 375 (1981).
410
+ [2] G. M¨uller, H. Thomas, H. Beck, and J. C. Bonner, Quan-
411
+ tum spin dynamics of the antiferromagnetic linear chain
412
+ in zero and nonzero magnetic field, Phys. Rev. B 24, 1429
413
+ (1981).
414
+ [3] M. B. Stone, D. H. Reich, C. Broholm, K. Lefmann,
415
+ C. Rischel, C. P. Landee, and M. M. Turnbull, Extended
416
+ Quantum Critical Phase in a Magnetized Spin- 1
417
+ 2 Antifer-
418
+ romagnetic Chain, Phys. Rev. Lett. 91, 037205 (2003).
419
+ [4] T. Giamarchi, Quantum Physics in One Dimension
420
+ (Clarendon Press, U.K., 2004).
421
+ [5] A. Kitaev, Anyons in an exactly solved model and be-
422
+ yond, Ann. Phys. 321, 2 (2006).
423
+ [6] S. M. Winter, A. A. Tsirlin, M. Daghofer, J. van den
424
+ Brink, Y. Singh, P. Gegenwart, and R. Valent´ı, Mod-
425
+ els and materials for generalized Kitaev magnetism, J.
426
+ Phys.: Cond. Mat. 29, 493002 (2017).
427
+ [7] H. Takagi, T. Takayama, G. Jackeli, G. Khaliullin, and
428
+ S. E. Nagler, Concept and realization of Kitaev quantum
429
+ spin liquids, Nat. Rev. Phys. 1, 264 (2019).
430
+ [8] M. Mourigal, M. Enderle, A. Kl¨opperpieper, J.-S. Caux,
431
+ A. Stunault, and H. M. Rønnow, Fractional spinon ex-
432
+ citations in the quantum Heisenberg antiferromagnetic
433
+ chain, Nat. Phys. 9, 435 (2013).
434
+ [9] D. Schmidiger, P. Bouillot, T. Guidi, R. Bewley, C. Kol-
435
+ lath, T. Giamarchi, and A. Zheludev, Spectrum of a Mag-
436
+ netized Strong-Leg Quantum Spin Ladder, Phys. Rev.
437
+ Lett. 111, 107202 (2013).
438
+ [10] P.-L. Dai, G. Zhang, Y. Xie, C. Duan, Y. Gao, Z. Zhu,
439
+ E. Feng, Z. Tao, C.-L. Huang, H. Cao, A. Podlesnyak,
440
+ G. E. Granroth,
441
+ M. S. Everett,
442
+ J. C. Neuefeind,
443
+ D. Voneshen, S. Wang, G. Tan, E. Morosan, X. Wang,
444
+ H.-Q. Lin, L. Shu, G. Chen, Y. Guo, X. Lu, and P. Dai,
445
+ Spinon Fermi Surface Spin Liquid in a Triangular Lat-
446
+ tice Antiferromagnet NaYbSe2, Phys. Rev. X 11, 021044
447
+ (2021).
448
+ [11] D. A. Tennant, Studies of Spinons, Majoranas, and
449
+ Monopoles in Spin Liquid and Quantum Critical Magnets
450
+ with Neutrons, J. Phys. Soc. Jpn. 88, 081009 (2019).
451
+ [12] F. Wilczek, Quantum Chromodynamics:
452
+ The Modern
453
+ Theory of the Strong Interaction, Ann. Rev. Nucl. Part.
454
+ Sci. 32, 177 (1989).
455
+ [13] B. M. McCoy and T. T. Wu, Two-dimensional Ising field
456
+ theory in a magnetic field: Breakup of the cut in the
457
+ two-point function, Phys. Rev. D 18, 1259 (1978).
458
+ [14] H. Shiba, Quantization of Magnetic Excitation Con-
459
+ tinuum Due to Interchain Coupling in Nearly One-
460
+ Dimensional Ising-Like Antiferromagnets, Prog. Theor.
461
+ Phys. 64, 466 (1980).
462
+ [15] S. B. Rutkevich, Energy Spectrum of Bound-Spinons
463
+ in the Quantum Ising Spin-Chain Ferromagnet, J. Stat.
464
+ Phys. 131, 917 (2008).
465
+ [16] R. Coldea, D. A. Tennant, E. M. Wheeler, E. Wawrzyn-
466
+ ska, D. Prabhakaran, M. Telling, K. Habicht, P. Smeibidl,
467
+ and K. Kiefer, Quantum Criticality in an Ising Chain:
468
+ Experimental Evidence for Emergent E8 Symmetry, Sci-
469
+ ence 327, 177 (2010).
470
+ [17] B. Grenier, S. Petit, V. Simonet, E. Can´evet, L.-P. Reg-
471
+ nault, S. Raymond, B. Canals, C. Berthier, and P. Le-
472
+ jay, Longitudinal and Transverse Zeeman Ladders in
473
+ the Ising-Like Chain Antiferromagnet BaCo2V2O8, Phys.
474
+ Rev. Lett. 114, 017201 (2015).
475
+ [18] A. K. Bera, B. Lake, F. H. L. Essler, L. Vanderstraeten,
476
+ C. Hubig, U. Schollw¨ock, A. T. M. N. Islam, A. Schnei-
477
+ dewind, and D. L. Quintero-Castro, Spinon confinement
478
+ in a quasi-one-dimensional anisotropic Heisenberg mag-
479
+ net, Phys. Rev. B 96, 054423 (2017).
480
+ [19] M. Mena, N. H¨anni, S. Ward, E. Hirtenlechner, R. Be-
481
+ wley, C. Hubig, U. Schollw¨ock, B. Normand, K. W.
482
+ Kr¨amer, D. F. McMorrow, and C. R¨uegg, Thermal Con-
483
+ trol of Spin Excitations in the Coupled Ising-Chain Ma-
484
+ terial RbCoCl3, Phys. Rev. Lett. 124, 257201 (2020).
485
+ [20] K. Y. Povarov,
486
+ L. Facheris,
487
+ S. Velja,
488
+ D. Blosser,
489
+ Z. Yan, S. Gvasaliya, and A. Zheludev, Magnetization
490
+ plateaux cascade in the frustrated quantum antiferro-
491
+ magnet Cs2CoBr4, Phys. Rev. Research 2, 043384 (2020).
492
+ [21] L. Facheris, K. Y. Povarov, S. D. Nabi, D. G. Mazzone,
493
+ J. Lass, B. Roessli, E. Ressouche, Z. Yan, S. Gvasaliya,
494
+ and A. Zheludev, Spin Density Wave versus Fractional
495
+ Magnetization Plateau in a Triangular Antiferromagnet,
496
+ Phys. Rev. Lett. 129, 087201 (2022).
497
+ [22] S. T. Carr and A. M. Tsvelik, Spectrum and Correlation
498
+ Functions of a Quasi-One-Dimensional Quantum Ising
499
+ Model, Phys. Rev. Lett. 90, 177206 (2003).
500
+ [23] R. Bewley, J. Taylor, and S. Bennington., LET, a cold
501
+ neutron multi-disk chopper spectrometer at ISIS, Nuclear
502
+ Instruments and Methods in Physics Research Section A:
503
+ Accelerators, Spectrometers, Detectors and Associated
504
+ Equipment 637, 128 (2011).
505
+ [24] See Supplemental Material for detailed discussion of the
506
+ resolution calculations, additional inelastic neutron scat-
507
+ tering data, background subtraction procedure, and esti-
508
+ mate of the kinetic mass for a kink.
509
+ [25] This force of ∼ 6 fN corresponds to the gravity pull be-
510
+ tween two average humans at a separation of 8 km.
511
+ [26] We define the domain wall width in a spin-S chain as the
512
+ distance over which the z-axis spin component changes
513
+ from S/2 to −S/2 near its center.
514
+ [27] L. Facheris, et al.;
515
+ (2022):
516
+ Spin-density wave dy-
517
+ namics in a 2D distorted triangular lattice antifer-
518
+ romagnet,
519
+ STFC
520
+ ISIS
521
+ Neutron
522
+ and
523
+ Muon
524
+ Source,
525
+ https://doi.org/10.5286/ISIS.E.RB2210048 .
526
+
527
+ Supplemental Material for “Confinement of fractional excitations in a triangular
528
+ lattice antiferromagnet”
529
+ L. Facheris,1, ∗ S. D. Nabi,1 A. Glezer Moshe,2 U. Nagel,2 T. R˜o˜om,2
530
+ K. Yu. Povarov,1, 3 J. R. Stewart,4 Z. Yan,1 and A. Zheludev1, †
531
+ 1Laboratory for Solid State Physics, ETH Z¨urich, 8093 Z¨urich, Switzerland
532
+ 2National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
533
+ 3Present address: Dresden High Magnetic Field Laboratory
534
+ (HLD-EMFL) and W¨urzburg-Dresden Cluster of Excellence ct.qmat,
535
+ Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
536
+ 4ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot, OX11 0QX, United Kingdom
537
+ (Dated: January 31, 2023)
538
+ This Supplemental Material provides further details supporting the main text that may be of
539
+ interest to the specialized reader.
540
+ In particular, the resolution calculations, additional inelastic
541
+ data, the background subtraction for the neutron spectroscopic measurements, and estimate for the
542
+ kink’s kinetic mass are presented.
543
+ CONTENTS
544
+ I. Determination of energy resolution for the LET
545
+ experiment
546
+ 1
547
+ II. Additional cuts used for Fig. 1(d)
548
+ 1
549
+ III. Background subtraction procedure for LET data
550
+ 1
551
+ IV. Estimating a kink’s kinetic mass µ.
552
+ 2
553
+ References
554
+ 2
555
+ I.
556
+ DETERMINATION OF ENERGY
557
+ RESOLUTION FOR THE LET EXPERIMENT
558
+ The neutron scattering data presented in the main text
559
+ were obtained on the direct-geometry time-of-flight LET
560
+ spectrometer at ISIS (UK) [1]. The instrument was op-
561
+ erated in the high-flux mode, with a chopper resolution
562
+ frequency of 210 Hz and a pulse remover frequency of
563
+ 140 Hz. A phase delay time for chopper 2 of 87000 µs
564
+ was introduced to avoid contamination on the main in-
565
+ coming channel Ei = 2.35 meV by slower neutrons. The
566
+ resolution calculations were performed with the PyChop
567
+ interface of Mantid Workbench [2]. The obtained resolu-
568
+ tion profile is shown in SUPP. FIG. 1.
569
+ The widths of the shaded Gaussian profiles in Fig.
570
+ 1(a),(b) of the main text were calculated based on the
571
+ fitted peak positions and the data in SUPP. FIG. 1.
572
573
+ [email protected]; http://www.neutron.ethz.ch/
574
+ SUPP. FIG. 1. Calculated energy resolution (solid line) ver-
575
+ sus neutron energy transfer for the spectrometer settings
576
+ listed in the text.
577
+ Dotted lines mark the positions mi at
578
+ q = (0, 0.5, 0.5) as obtained from Fig. 1(a) of the main text.
579
+ II.
580
+ ADDITIONAL CUTS USED FOR FIG. 1(d)
581
+ The additional cuts at q = (0, 0.5, 1) and q = (0, 1, 1)
582
+ (not shown in the main text) are displayed in SUPP. FIG.
583
+ 2. The fit is performed in full analogy to Fig. 1(a),(b) as
584
+ described in the main text. The extracted peak positions
585
+ from SUPP. FIG. 2 (a),(b) are plotted in Fig. 1(d) of the
586
+ main text.
587
+ III.
588
+ BACKGROUND SUBTRACTION
589
+ PROCEDURE FOR LET DATA
590
+ The inelastic neutron scattering data presented in Fig.
591
+ 2 and Fig. 3 of the main text are background subtracted.
592
+ Although the dataset was rather clean, a background
593
+ subtraction similar to that in [3] was nonetheless per-
594
+ formed. In this section the model adopted to describe
595
+ the background is outlined. The analysis was performed
596
+ using the Horace software package [4].
597
+ SUPP. FIG. 3 shows raw data corresponding to Fig. 3
598
+ of the main text. Strong sharp lines at the edges of the
599
+
600
+ 2
601
+ (a)
602
+ (b)
603
+ SUPP. FIG. 2.
604
+ (a)-(b) Neutron scattering intensity (solid
605
+ symbols) measured at T = 40 mK versus energy transfer at
606
+ q = (0, 0.5, 1) and q = (0, 1, 1), respectively. The data are
607
+ integrated fully along h direction and in ±0.025 r.l.u. and
608
+ ±0.25 r.l.u. along k and l, respectively. Solid lines are fits to
609
+ a series of Gaussian peaks. Dashed Gaussians represent the
610
+ calculated experimental energy resolution. Black dotted lines
611
+ indicate the fitted flat background.
612
+ dataset below 0.4 meV are known spurious originating
613
+ from scattering from the sample environment employed.
614
+ The total background was modeled assuming no mag-
615
+ netic scattering below the gap and above the top of the
616
+ spectrum. Thus, the background dataset is identical to
617
+ original data for ℏω ≤ 0.34 meV and ℏω ≥ 1.28 meV
618
+ (see dashed horizontal lines in SUPP. FIG. 3 for the
619
+ background regions projected on these particular cuts).
620
+ In the intermediate energy region, momentum-dependent
621
+ boxes were constructed as shown in SUPP. FIG. 3 and
622
+ numerically interpolated over the total explored (q, ℏω)-
623
+ space. The so-obtained background was then point-to-
624
+ point subtracted from the original data.
625
+ IV.
626
+ ESTIMATING A KINK’S KINETIC MASS µ.
627
+ Near it’s minimum at a one-dimensional wave vector
628
+ k0 = π
629
+ b , the dispersion relation for a single kink can be
630
+ approximated as
631
+ ϵk = m0 + ℏ2
632
+ 2µ(k − k0)2.
633
+ (S.1)
634
+ The parameter µ is the kinetic “mass” of this quasiparti-
635
+ cle. We can access it from the experimentally measured
636
+ spectrum of two-kink excitations. For a two-kink state,
637
+ energy-momentum conservation dictates
638
+ ℏω(2−kink)
639
+ q
640
+ = ϵk+ϵq−k = 2m0+ ℏ2
641
+
642
+
643
+ (k − k0)2 + (q − k + k0)2�
644
+ .
645
+ (S.2)
646
+ Minimizing (S.2) with respect to the “hidden” quasi-
647
+ momentum k, we find that the lower boundary of the
648
+ two-particle continuum lies at k = q. Thus, the lowest
649
+ magnon-like dispersion is given by:
650
+ ℏωq = 2m0 + ℏ2
651
+
652
+
653
+ (q − k0)2 + k2
654
+ 0
655
+
656
+ (S.3)
657
+ Near the minimum wavevector q0 = k0 → π/b, we find
658
+ that the curvature of the parabola-like dispersion is ac-
659
+ tually the same for a single kink and the lowest bound
660
+ state.
661
+ (a)
662
+ (b)
663
+ SUPP. FIG. 3. (a)-(b) False color plot of raw neutron scat-
664
+ tering intensity measured at T = 40 mK plotted versus en-
665
+ ergy transfer and momentum transfer along q = (0, k, 0.5)
666
+ and q = (0, k, 1) respectively. The data were fully integrated
667
+ along h, and in the range ±0.25 r.l.u.
668
+ along l around the
669
+ central value. The gray areas mask regions where the inco-
670
+ herent scattering dominates the signal. Orange dashed lines
671
+ and boxes delimit the edges of the background dataset, as de-
672
+ scribed in the text.
673
+ [1] R. Bewley, J. Taylor, and S. Bennington., LET, a cold
674
+ neutron multi-disk chopper spectrometer at ISIS, Nuclear
675
+ Instruments and Methods in Physics Research Section
676
+
677
+ AA3
678
+ A: Accelerators, Spectrometers, Detectors and Associated
679
+ Equipment 637, 128 (2011).
680
+ [2] O. Arnold, J. C. Bilheux, J. M. Borreguero, A. Buts, S. I.
681
+ Campbell, L. Chapon, M. Doucet, N. Draper, R. Fer-
682
+ raz Leal, M. A. Gigg, V. E. Lynch, A. Markvardsen,
683
+ D. J. Mikkelson, R. L. Mikkelson, R. Miller, K. Palmen,
684
+ P. Parker, G. Passos, T. G. Perring, P. F. Peterson, S. Ren,
685
+ M. A. Reuter, A. T. Savici, J. W. Taylor, R. J. Taylor,
686
+ R. Tolchenov, W. Zhou, and J. Zikovsky, Mantid—Data
687
+ analysis and visualization package for neutron scattering
688
+ and µSR experiments, Nuclear Instruments and Meth-
689
+ ods in Physics Research Section A: Accelerators, Spec-
690
+ trometers, Detectors and Associated Equipment 764, 156
691
+ (2014).
692
+ [3] L. Facheris, K. Y. Povarov, S. D. Nabi, D. G. Mazzone,
693
+ J. Lass, B. Roessli, E. Ressouche, Z. Yan, S. Gvasaliya,
694
+ and A. Zheludev, Spin Density Wave versus Fractional
695
+ Magnetization Plateau in a Triangular Antiferromagnet,
696
+ Phys. Rev. Lett. 129, 087201 (2022).
697
+ [4] R. A. Ewings, A. Buts, M. D. Le, J. van Duijn, I. Bustin-
698
+ duy, and T. G. Perring, Horace: Software for the anal-
699
+ ysis of data from single crystal spectroscopy experiments
700
+ at time-of-flight neutron instruments, Nuclear Instruments
701
+ and Methods in Physics Research Section A: Accelerators,
702
+ Spectrometers, Detectors and Associated Equipment 834,
703
+ 132 (2016).
704
+
0dFRT4oBgHgl3EQfkjfS/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
1tE2T4oBgHgl3EQf5Qgr/content/tmp_files/2301.04188v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
1tE2T4oBgHgl3EQf5Qgr/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
2dAzT4oBgHgl3EQfRvud/content/2301.01221v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65b92d5c438305ae3d0f4285afd0b0bf639472213e830c6b9a4ceca14d515b53
3
+ size 546241
2dAzT4oBgHgl3EQfRvud/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54d6da884c7f70f340656793c70f0f6a1c64df3d1153bfd7aa57d7dcd98c13bb
3
+ size 310041
4NAzT4oBgHgl3EQfuv1g/content/2301.01695v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f01ddc0dee9989d4bd4f504c45350e9957794b9a0e4f50333254a705e319b95
3
+ size 827524
4NAzT4oBgHgl3EQfuv1g/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e944dbc1acf8ab2951024e01384d6867de96144801e4553b671f40e91fa57c5
3
+ size 507903
4NE2T4oBgHgl3EQf6Qhs/content/2301.04198v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d20764d233dab7f4225a7bf3c3d2bc67a660de19fcd23d80205cea9820aed0b5
3
+ size 249302
4NE2T4oBgHgl3EQf6Qhs/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0dfed692641226520b06318681b67daf1273ac76fca79efa172cb24ca423e375
3
+ size 2359341
4NE2T4oBgHgl3EQf6Qhs/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcc3caddef3c780bd7945c5e922173c9d4c6b263bcb0cf7139b111dcf84379a1
3
+ size 101902
5dFKT4oBgHgl3EQfSi3T/content/2301.11776v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99535ba1c8c4b1fd39689500ffd1b1ca851d6174368c09b4026097f4cf20da12
3
+ size 797241
5dFKT4oBgHgl3EQfSi3T/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c39e43b6b9912abd6372bc43b8b194bc821aff7b0e566d58089fbf9c40e7498
3
+ size 241375
79AyT4oBgHgl3EQfc_dz/content/2301.00293v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c850463682bf4ac72c620fc43f26484b752451d9dac89f8c5bb04a84c0edb511
3
+ size 1279984
79AyT4oBgHgl3EQfc_dz/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d80d9f201aa2cf82dff72265ef1178e45aada8071050414e22d925a56649a0bd
3
+ size 3211309
79AyT4oBgHgl3EQfc_dz/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbd2948829221137cc167058c5b6c1bc0dc1a7ace949942d11d59521b60dd6af
3
+ size 118102
7dE3T4oBgHgl3EQfRgmQ/content/tmp_files/2301.04422v1.pdf.txt ADDED
@@ -0,0 +1,847 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Optical Flow for Autonomous Driving: Applications, Challenges
2
+ and Improvements
3
+ Shihao Shen 1, Louis Kerofsky 2 and Senthil Yogamani 3
4
+ 1Carnegie Mellon University, Pittsburgh, Pennsylvania, U.S.
5
+ 2Qualcomm Technologies, Inc., San Diego, California, U.S.
6
+ 3Automated Driving, QT Technologies Ireland Limited.
7
+ ABSTRACT
8
+ Optical flow estimation is a well-studied topic for automated
9
+ driving applications. Many outstanding optical flow estimation
10
+ methods have been proposed, but they become erroneous when
11
+ tested in challenging scenarios that are commonly encountered.
12
+ Despite the increasing use of fisheye cameras for near-field sens-
13
+ ing in automated driving, there is very limited literature on optical
14
+ flow estimation with strong lens distortion. Thus we propose and
15
+ evaluate training strategies to improve a learning-based optical
16
+ flow algorithm by leveraging the only existing fisheye dataset with
17
+ optical flow ground truth. While trained with synthetic data, the
18
+ model demonstrates strong capabilities to generalize to real world
19
+ fisheye data. The other challenge neglected by existing state-of-
20
+ the-art algorithms is low light. We propose a novel, generic semi-
21
+ supervised framework that significantly boosts performances of
22
+ existing methods in such conditions. To the best of our knowl-
23
+ edge, this is the first approach that explicitly handles optical flow
24
+ estimation in low light.
25
+ I
26
+ INTRODUCTION
27
+ Advancement in the field of computer vision has enabled the
28
+ rapid development of perception systems for autonomous vehicles
29
+ (AV) in recent years. Optical flow estimation, known as the study
30
+ of how to estimate per-pixel 2D motion between two temporally
31
+ consecutive frames, is one of the fundamental problems in com-
32
+ puter vision that are widely used in autonomous driving. Specif-
33
+ ically, optical flow estimation helps vehicles perceive the tempo-
34
+ ral continuity of the surrounding environment and hence it plays
35
+ significant roles in time-series-based tasks such as object track-
36
+ ing [1, 2], visual odometry [3], semantic segmentation [4], motion
37
+ segmentation [5], and SLAM systems [6], to point out a few. Horn
38
+ and Schunck [7] introduce the first method to compute optical
39
+ flow through energy minimization and many excellent methods
40
+ obtain better results based on it. However, the optimizing problem
41
+ of a complex objective is usually computationally expensive in
42
+ terms of real-time applications such as AV. To achieve faster and
43
+ more reliable performance, end-to-end neural networks are pro-
44
+ posed [8, 9, 10, 11]. These data-driven learning-based methods
45
+ are more efficient and robust against challenges, such as occlu-
46
+ sions, large displacement and motion blur, that break the bright-
47
+ ness constancy and small motion assumptions traditional methods
48
+ are built upon. Nevertheless, there are still a few unique chal-
49
+ lenges in AV applications that have been neglected by existing
50
+ state-of-the-art methods. In this paper, we investigate two com-
51
+ Figure 1: Erroneous optical flow estimation by feeding fisheye images into
52
+ off-the-shelf RAFT [11]. From left to right in each row: current frame,
53
+ next frame, color coded result, sparse vector overlay plots for better visu-
54
+ alization. Note how the estimated flow vectors on the ground are either
55
+ missing or inconsistent with the vehicle motion.
56
+ monly encountered challenges among them and propose the solu-
57
+ tions respectively: lens distortion and low-light scenes.
58
+ Near-field sensing is a ubiquitous topic for automated driv-
59
+ ing.
60
+ Some primary use cases are automated parking systems
61
+ and traffic jam assistance systems. Near-field sensing is usually
62
+ achieved by building a surround-view system with a number of
63
+ wide-angle cameras that come with strong radial distortion. For
64
+ example, fisheye cameras offer a significantly wider field-of-view
65
+ (FoV) than standard pinhole cameras, and in practice four fish-
66
+ eye cameras located at the front, rear, and on each wing mirror
67
+ are sufficient to build a surround-view system for a full-size ve-
68
+ hicle [12]. Although such fisheye systems are widely deployed,
69
+ to the best of our knowledge, there is no previous work explic-
70
+ itly handling optical flow estimation on images with strong lens
71
+ distortion, such as fisheye imagery. As shown in Figure 1, one
72
+ of the current state-of-the-art methods [11] shows erroneous re-
73
+ sults when taking in fisheye images from WoodScape [13] due to
74
+ its focus on narrow field-of-view cameras with mild radial distor-
75
+ tion only. An intuitive way to solve this is to correct the distor-
76
+ tion in the input images as a preprocessing step before passing
77
+ through the neural network. However, this inevitably leads to re-
78
+ duced field-of-view and resampling distortion artifacts at the pe-
79
+ riphery [14]. Without rectification, building an automotive dataset
80
+ is the major bottleneck in optical flow estimation on fisheye im-
81
+ agery. Very few synthetic datasets provide optical flow ground
82
+ truth associated with fisheye images [15], whereas no real-world
83
+ dataset exists with optical flow ground truth. This is due to the
84
+ fact that per-pixel motion between every two consecutive frames
85
+ is extremely difficult to be manually labelled. Simulators [16, 17]
86
+ can readily generate background motion but dynamic foreground
87
+ objects need to be explicitly taken care of. In this paper, we inves-
88
+ arXiv:2301.04422v1 [cs.CV] 11 Jan 2023
89
+
90
+ tigate and boost the performance of RAFT on strongly distorted
91
+ inputs by making use of the only existing dataset with optical flow
92
+ groundtruth, SynWoodScape [15].
93
+ Most AV applications are expected to operate not only dur-
94
+ ing the day but also at night. Cameras become unreliable and
95
+ camera-based computations are prone to failure under low-light
96
+ conditions due to its susceptibility to noise and inconsistent expo-
97
+ sure. Alternatively, LiDAR sensors can perform robustly in low-
98
+ light autonomous driving [18] because active sensors that measure
99
+ the time-of-flight of the emitted lasers are independent of illumi-
100
+ nation. However, LiDAR is bulky, costly, and requires much more
101
+ computation as well as memory resources to process the output,
102
+ which makes it inferior to cameras if the latter can provide equiv-
103
+ alently reliable results in low light. Thermal cameras [19] provide
104
+ robust low light performance but they are not commonly used in
105
+ recent automated driving systems. Current optical flow methods
106
+ show poor capabilities of dealing with low-light data because low
107
+ light is a complex scenario coming with low signal-to-noise ratio,
108
+ motion blur and local illumination changes brought by multiple
109
+ light sources. In addition, current optical flow datasets [20, 21, 22]
110
+ are dominated by daytime images.
111
+ In this paper, we propose
112
+ a novel, generic architecture that facilitates learning nighttime-
113
+ robust representations in a semi-supervised manner, without the
114
+ help of any extra data or sacrificing the daytime performance. To
115
+ the best of our knowledge, this is the first learning-based method
116
+ that explicitly handles optical flow estimation in low light. The
117
+ main contributions of this paper are:
118
+ 1. Introduction and investigation of two challenges in optical
119
+ flow estimation for AV applications: strong lens distortion
120
+ and low-light scenes.
121
+ 2. Implementation and improvement of a baseline optical flow
122
+ algorithm on fisheye inputs and experimental evaluation.
123
+ 3. Implementation of an effective but also generic framework
124
+ of novel strategies to learn nighttime-robust representations
125
+ for learning-based optical flow algorithms.
126
+ The paper is organized as follows. Section II discusses re-
127
+ lated work on optical flow estimation in the automotive industry
128
+ and existing attempts to solve the two aforementioned challenges.
129
+ Section III describes the implementation of our proposed flow es-
130
+ timation algorithms for fisheye and low-light inputs respectively,
131
+ as well as presents the experimental evaluation and results anal-
132
+ ysis. Finally, Section IV discusses the remaining challenges for
133
+ flow estimation in AV applications and concludes the paper.
134
+ II
135
+ RELATED WORK
136
+ Optical Flow Estimation: Traditional solutions have been stud-
137
+ ied and adapted for decades [7, 23]. In order to be robust against
138
+ more challenging open world problems including lack of features,
139
+ motions in different scales, and occlusions, recent learning-based
140
+ methods outperform traditional ones. Dosovitskiy et al. [8] pro-
141
+ pose FlowNetS and FlowNetC, which is a pioneer work in show-
142
+ ing the feasibility of directly estimating optical flow given im-
143
+ ages. Sun et al. [9] design PWC-Net, a much more efficient solu-
144
+ tion based on pyramidal processing, warping and the use of a cost
145
+ volume. RAFT [11], proposed by Teed and Deng, demonstrates
146
+ notable improvement by building multi-scale 4D correlation vol-
147
+ umes for all pairs of pixels and iteratively updating flow estimates
148
+ through refinement module based on gated recurrent units (GRU).
149
+ All these methods are fully supervised and trained using imagery
150
+ from a standard pinhole camera. The training data are also col-
151
+ lected during the day with sufficient brightness. None of them
152
+ pays attention to the performance of optical flow in more chal-
153
+ lenging AV applications such as strong lens distortion and driving
154
+ at night, which leads to errors and even catastrophic failures.
155
+ Strong Lens Distortion: There is very limited work on percep-
156
+ tion tasks for strongly distorted images such as fisheye images.
157
+ Popular approaches include rectifying the radial distortion before
158
+ passing images into any regular perception pipeline. However,
159
+ this will inevitably bring reduced field-of-view and resampling
160
+ distortion artifacts especially at the image borders [14].
161
+ Spa-
162
+ tially variant distortion that makes closer objects appear larger
163
+ also poses scaling problems and complexity to geometric percep-
164
+ tion tasks. Additionally, Rashed et al. [24] show that the com-
165
+ mon use of bounding boxes for object detection no longer fit well
166
+ for rectangular objects in distorted images. More sophisticated
167
+ representations for detected objects, such as a curved bounding
168
+ box exploiting the known radial distortion, are explored in [25].
169
+ Although there is some literature using distorted images with-
170
+ out rectification on other perception tasks, such as depth estima-
171
+ tion [26, 27], soiling [28], visual odometry [29] and multi-task
172
+ models [30, 31], there is no previous work estimating optical flow
173
+ due to the difficulty in labeling ground truth. WoodScape [13],
174
+ KITTI 360 [32] and Oxford RobotCar [33] are some well-known
175
+ autonomous driving datasets containing strongly distorted im-
176
+ ages such as fisheye images, but none of them has optical flow
177
+ ground truth. In this paper, we take advantage of the synthetic
178
+ fisheye dataset published recently, SynWoodScape [15], which is
179
+ the first dataset providing optical flow for both foreground and
180
+ background motions by computing it analytically using other data
181
+ modalities extracted from the simulator. We train our network
182
+ using synthetic data from SynWoodScape and evaluate it on real-
183
+ world fisheye data from WoodScape.
184
+ Low-Light Scenes: Similar to optical flow estimation on strongly
185
+ distorted images, there is some work handling low light in a few
186
+ perception tasks [18, 34, 35] but none of them has proposed an
187
+ optical flow estimation algorithm that is robust against low-light
188
+ scenes. Very related to ours, Zheng et al. [36] propose a method
189
+ to synthesize low-light optical flow data by simulating the noise
190
+ model on dark raw images, which is then used to finetune an off-
191
+ the-shelf network. However, their method is not able to synthe-
192
+ size more realistic characteristics of real-world low-light scenes
193
+ one would observe in AV applications, such as the motion blur
194
+ and local illumination changes brought by multiple light sources.
195
+ Their improvement is also very limited due to the off-the-shelf
196
+ network is not designed nor trained to learn nighttime-robust rep-
197
+ resentations. In addition, a variety of techniques have been de-
198
+ veloped for low-light image enhancement [37, 38] and image-to-
199
+ image translation [39, 40]. The former can preprocess inputs to
200
+ a flow estimation network during inference by brightening up a
201
+ given low-light image, whereas the latter can translate a daytime
202
+ image into its nighttime counterpart so as to complement the lack
203
+ of optical flow datasets in low light [18]. But neither approach fa-
204
+ cilitates the network training in that the processed data bring in ex-
205
+ tra complexities such as additional artificial noise, overexposure,
206
+ or inconsistent image translation across frames. Finally, semi-
207
+ supervised learning is a common approach to tackling the lack of
208
+
209
+ Figure 2: Optical flow estimation (color coded) on real-world automotive data from WoodScape [13]. Input frames are from the fisheye cameras of front
210
+ view, right-side view, and left-side view respectively.
211
+ optical flow data in particular scenarios, where a set of predefined
212
+ transformations are applied to the original labeled data and the
213
+ output of the perturbed data are enforced to agree with the out-
214
+ puts of the original data [41]. For example, Jeong et al. [42] use
215
+ a semi-supervised setup to impose translation and rotation con-
216
+ sistency equivariance for optical flow estimation. Yan et al. [43]
217
+ synthesize foggy images from clean and labelled images in or-
218
+ der to avoid flow estimation errors caused in dense foggy scenes.
219
+ Similar to these semi-supervised methods, we incorporate low-
220
+ light consistency that facilitates learning explicit nighttime-robust
221
+ representations without additional labeling.
222
+ III
223
+ PROPOSED ALGORITHMS AND RESULTS
224
+ In this section, we describe the two proposed optical flow es-
225
+ timation algorithms for strongly distorted inputs and low-light in-
226
+ puts respectively. We also present the corresponding experimental
227
+ evaluation and results analysis.
228
+ III. A
229
+ Strong Lens Distortion
230
+ The limited availability of datasets with strong lens distortion
231
+ is the bottleneck that prevents recent methods from generalizing
232
+ to more distorted inputs. With the help of SynWoodScape [15],
233
+ the first fisheye dataset providing optical flow ground truth for
234
+ both foreground and background motions, we are able to train
235
+ an optical flow model, using RAFT [11] as the backbone, that
236
+ generalizes well on strongly distorted lenses without sacrificing
237
+ its original performance on pinhole cameras.
238
+ We run the off-the-shelf RAFT on real-world fisheye auto-
239
+ motive dataset, e.g. WoodScape [13] and we find sharp and incon-
240
+ sistent optical flow estimation, which is especially illustrated on
241
+ the ground plane in Figure 1. To solve this, we provide two base-
242
+ lines and their qualitative as well as quantitative evaluation. One
243
+ is to finetune the pretrained RAFT using SynWoodScape, follow-
244
+ ing the training schedule in Table 1a. The other is to jointly train
245
+ RAFT on both SynWoodScape and images from pinhole cam-
246
+ era that are regularly used in learning-based optical flow meth-
247
+ ods [8, 20, 21, 22, 44]. The jointly training baseline follows the
248
+ training schedule in Table 1b.
249
+ Table 1: Details of the training schedule. Column header abbreviations:
250
+ LR: learning rate, BS: batch size, WD: weight decay, CS: crop size. Train-
251
+ ing dataset abbreviations: C: FlyingChairs, W: SynWoodScape, S: Sintel,
252
+ T: FlyingThings3D, K: KITTI-2015, H: HD1K.
253
+ (a) Finetuning baseline. During the Sintel stage, the dataset distribution is
254
+ S(.67), T(.12), K(.13), H(.08).
255
+ Stage
256
+ Weights
257
+ Dataset
258
+ LR
259
+ BS
260
+ WD
261
+ CS
262
+ Chairs
263
+ -
264
+ C
265
+ 4e-4
266
+ 6
267
+ 1e-4
268
+ [368, 496]
269
+ Things
270
+ Chairs
271
+ T
272
+ 1.2e-4
273
+ 3
274
+ 1e-4
275
+ [400, 720]
276
+ Sintel
277
+ Things
278
+ S+T+K+H
279
+ 1.2e-4
280
+ 3
281
+ 1e-5
282
+ [368, 768]
283
+ Finetune
284
+ Sintel
285
+ W
286
+ 1e-4
287
+ 3
288
+ 1e-5
289
+ [600, 800]
290
+ (b) Jointly training baseline. During the Joint stage, the dataset distribu-
291
+ tion is W(.65), S(.17), T(.13), K(.03), H(.02).
292
+ Stage
293
+ Weights
294
+ Dataset
295
+ LR
296
+ BS
297
+ WD
298
+ CS
299
+ Chairs
300
+ -
301
+ C
302
+ 4e-4
303
+ 6
304
+ 1e-4
305
+ [368, 496]
306
+ Things
307
+ Chairs
308
+ T
309
+ 1.2e-4
310
+ 3
311
+ 1e-4
312
+ [400, 720]
313
+ Joint
314
+ Things
315
+ W+S+T+K+H
316
+ 1e-4
317
+ 3
318
+ 1e-5
319
+ [368, 768]
320
+
321
+ Finetuned on SynWoodScape
322
+ Current Frame
323
+ Pretrained on Sintel
324
+ Jointly TrainedFigure 3: Overview of our proposed framework. During training, the framework takes two consecutive frames as input and passes them through a set
325
+ of low-light-specific data augmentations as well as applies a random illumination mask. Then the optical flow estimator estimates flow on two pairs of
326
+ augmented frames in parallel. The network is supervised by two losses: the conventional optical flow loss and the novel brightness consistency loss.
327
+ During inference, the input frames are directly passed into the estimator which outputs optical flow, as is the standard way in the existing state of the art.
328
+ We then show the quantitative results in Table 2. We use
329
+ the endpoint error (EPE) as the metric, which is the standard er-
330
+ ror measure for optical flow estimation. It is the Euclidean dis-
331
+ tance between the estimated flow vector and the ground truth,
332
+ averaged over all pixels. We evaluate the two baselines (Stages
333
+ ”Finetune” and ”Joint”) described above along with the pretrained
334
+ model (Stage ”Sintel”) provided by the author on four hold-out
335
+ test sets from SynWoodScape, Sintel (clean and final passes), and
336
+ KITTI. SynWoodScape is the only test set of strongly distorted
337
+ inputs, while the other three assume a pinhole camera model with
338
+ very little distortion. Although the pretrained model gives out-
339
+ standing performance on pinhole cameras, its performance sig-
340
+ nificantly drops on fisheye inputs. Our first baseline, the one fine-
341
+ tuned on fisheye images, gives the best result on SynWoodScape
342
+ but has very poor performance on the others. This matches our
343
+ expectation because both the pretrained and the finetuned mod-
344
+ els are trained to the best for pinhole camera and fisheye camera
345
+ respectively, without taking generalization into account. On the
346
+ other hand, our second baseline, the jointly trained model, keeps
347
+ the second best while being very close to the best score on all four
348
+ datasets. Therefore, jointly training provides a straightforward yet
349
+ strong baseline that generalizes well over lenses with distinct dis-
350
+ tortions.
351
+ Table 2: Endpoint-error results on datasets with diverse lens distortion.
352
+ Stage
353
+ SynWoodScape
354
+ Sintel - Clean
355
+ Sintel - Final
356
+ KITTI
357
+ Sintel
358
+ 5.12
359
+ 1.94
360
+ 3.18
361
+ 5.10
362
+ Finetune
363
+ 1.40
364
+ 5.44
365
+ 10.32
366
+ 14.34
367
+ Joint
368
+ 1.48
369
+ 2.44
370
+ 4.14
371
+ 7.31
372
+ In Figure 2, we further show their qualitative results on
373
+ WoodScape that support the improvements we obtain by jointly
374
+ training RAFT on a mixture of lens distortions. In the front view
375
+ case, note how the jointly trained model is able to consistently
376
+ estimate the flow on the ground as is the major failure of recent
377
+ methods shown in Figure 1. The results on side-view cameras also
378
+ show the jointly trained model captures finer details than its fine-
379
+ tuned counterpart. For example in the right-side view, not only the
380
+ inconsistency on the ground is solved, but optical flow associated
381
+ with the bicycle wheel in the upper right corner is also clearly
382
+ estimated. In the left-side view, the finetuned model misses the
383
+ flow associated with the vehicle’s front wheel, which is captured
384
+ by the pretrained model, but the jointly trained model ”regains”
385
+ such detailed estimations. In other words, the finetuned model es-
386
+ timates more consistent optical flow, which poses a challenge to
387
+ the pretrained model due to markedly different projection geome-
388
+ tries between fisheye and pinhole cameras, but in return, it loses
389
+ some details observed by the pretrained model because interesting
390
+ local features become much less significant given the strong lens
391
+ distortion. However, the jointly trained model achieves a great
392
+ trade-off among the previous two: it re-captures the details lo-
393
+ cally while maintaining good performance globally across differ-
394
+ ent camera views.
395
+ III. B
396
+ Low-Light Scenes
397
+ We propose a novel and generic semi-supervised framework
398
+ that significantly boosts performances of existing state-of-the-art
399
+ methods in low light conditions. Figure 3 shows the architec-
400
+ ture of the framework. The benefit of our framework is three-
401
+ fold. First, it is independent from the design of the existing meth-
402
+ ods, so one can apply it generically to an estimator of his choice
403
+ (e.g. [8, 9, 11, 45]) and augment its nighttime performance out of
404
+ the box. Second, semi-supervised learning does not require any
405
+ extra data as the labeling cost for nighttime optical flow datasets is
406
+ immense. Lastly, it maintains the estimator’s competitive perfor-
407
+ mance on the original daytime data without making any trade-off.
408
+ We first break down the root causes of failures in optical flow
409
+ estimation under low light and then describe our proposed strate-
410
+ gies in the framework that address these root causes accordingly:
411
+ 1. the complex noise model of images captured at night,
412
+ 2. severe motion blur caused by longer exposure time,
413
+ 3. inconsistent local brightness brought by multiple indepen-
414
+ dent light sources in the scene.
415
+ Images captured in low light tend to have more complex
416
+ noises than those captured with sufficient ambient light. Such
417
+ noises are never synthesized in the data augmentation step by ex-
418
+ isting methods, which is the first reason why the optical flow esti-
419
+ mators fail in low light. Similar to [36], we decompose the noise
420
+ model in low light as an aggregate of the photon shot noise and
421
+
422
+ Ground Truth Flow
423
+ Photometric
424
+ Motion Blur
425
+ Input Pair w/o Brightness Mask
426
+ Original Input
427
+ Low-light Noise
428
+ It+1
429
+ Occlusion
430
+ Estimator
431
+ Estimated Flow
432
+ Supervised Loss
433
+ Spatial
434
+ Ls
435
+ V
436
+ Shared Weights
437
+ Data
438
+ Augmentation
439
+ Input Pair w/ Brightness Mask
440
+ I!
441
+ Local Brightness
442
+ Estimator
443
+ Estimated Flow
444
+ RE
445
+ Consistency Loss
446
+ Lb
447
+ Random MaskFigure 4: Effects of low-light noise augmentation and motion blur aug-
448
+ mentation.
449
+ thermal noise. The former is due to the changing amount of pho-
450
+ tons hitting the sensor with different exposure levels and pixel lo-
451
+ cations. The photon shot noise is approximated by a Poisson dis-
452
+ tribution. Thermal noise refers to the noise in readout circuitry in
453
+ the sensor and is approximated by a Gaussian distribution. There-
454
+ fore, we synthesize the low-light noise onto the input frames as
455
+ one extra data transform in the data augmentation step. Specif-
456
+ ically, we sample Poisson and Gaussian parameters, (a,b), from
457
+ ranges observed in real-world low-light images, formulate it into
458
+ a single heteroscedastic Gaussian (Equation 1), and apply it to an
459
+ input frame I. With probability 0.5, the low-light noise augmen-
460
+ tation is performed on each pair of consecutive frames.
461
+ I(x) = N
462
+
463
+ µ = x,σ2 = ax+b
464
+
465
+ (1)
466
+ Motion blur is another root cause we need to address when
467
+ estimating optical flow in low light. In order to mimic the blurring
468
+ effects caused by longer exposure length, we generate authentic
469
+ motion blur kernels using Point Spread Functions (PSF) at dif-
470
+ ferent kernel sizes and intensities. The intensity determines how
471
+ non-linear and shaken the motion blur looks. Similar to low-light
472
+ noise, we apply the authentic blurring to a pair of input frames
473
+ as one extra data augmentation, with probability 0.6. An illustra-
474
+ tion of the two introduced data augmentation strategies is shown
475
+ in Figure 4.
476
+ Inconsistent local brightness is the last but not least root
477
+ cause. This is due to multiple independent lighting sources exist-
478
+ ing in a low-light scene (street light, headlight, moonlight, etc.),
479
+ which leads to uneven bright areas in an image. For example,
480
+ the ground plane in the original input in Figure 3 is illuminated
481
+ only in front of vehicles’ headlights but remains dark elsewhere.
482
+ Unlike in the daytime where sun is the dominant lighting source,
483
+ images captured at night have inconsistent local brightness even
484
+ on the same object. Because optical flow is estimated by match-
485
+ ing pixels across two images, such inconsistencies cause exist-
486
+ ing methods to fail easily. For instance, in Figure 5, the first
487
+ row shows the catastrophic failure of RAFT when a pedestrian
488
+ walks from the dark into the vehicle headlight and his illumina-
489
+ tion changes drastically across frames. In order to resolve this, we
490
+ resort to semi-supervised learning. Similar to [42], we also adopt
491
+ the cow-mask [46] to create sufficiently random yet locally con-
492
+ nected illumination patterns as the inconsistent local brightness
493
+ occurs in any size, shape and position in images while exhibiting
494
+ Figure 5: Optical flow estimation on low-speed sequences from CU-
495
+ Lane [47].
496
+ locally explainable structures, depending on the driving environ-
497
+ ment and the time. We apply the same binary mask to the original
498
+ pair of input frames and randomly adjust the brightness of pix-
499
+ els according to the mask. The true area of the binary mask is
500
+ uniformly sampled from 40% to 70% of the image. With a proba-
501
+ bility of 0.5, we increase the absolute brightness of the true area,
502
+ whereas in the remaining time we increase the brightness of the
503
+ false area. Finally, we introduce the local brightness consistency
504
+ regularization. We use (I′t,I′
505
+ t+1) and (It,It+1) to denote the input
506
+ pair after data augmentation with and without applying a random
507
+ brightness mask. Both passes in Figure 3 are independent ex-
508
+ cept that the spatial transform is shared in order to keep the same
509
+ cropped areas for consistency loss calculation. The local bright-
510
+ ness consistency loss is calculated as follows
511
+ Lb =
512
+ ��Estimator(It,It+1)−Estimator
513
+
514
+ I′
515
+ t,I′
516
+ t+1
517
+ ���2
518
+ 2 .
519
+ (2)
520
+ This regularization explicitly constrains the network to output
521
+ consistent optical flow on (I′t,I′
522
+ t+1) as on (It,It+1), which enforces
523
+ illumination invariance between the estimated optical flow for the
524
+ original pair the estimated optical flow for the randomly trans-
525
+ formed pair. Note how this semi-supervised approach is different
526
+ from simply adjusting brightness randomly as another data aug-
527
+ mentation scheme, which expand training samples without impo-
528
+ sition of a sophisticated consistency loss during training.
529
+ We choose RAFT [11] as the estimator and we supervise our
530
+ network on the aggregated loss L = Ls +Lb. Ls is the l1 distance
531
+ between the predicted flow ˜f i(It,It+1) and ground truth flow ft
532
+ over all iterations i, as in [11]:
533
+ Ls =
534
+ N
535
+
536
+ i=1
537
+ γN−i ��� ˜f i(It,It+1)− ft
538
+ ���
539
+ 1 .
540
+ (3)
541
+ Due to the lack of nighttime data with optical flow ground
542
+ truth, we are restricted to qualitatively evaluating our approach,
543
+ which we call RAFT-Dark for short. We use CULane [47], a large
544
+ automotive dataset containing a lot of challenging real-world low
545
+ light sequences. In Figure 5, we show the comparison between
546
+ vanilla RAFT and RAFT-Dark on some low-speed sequences.
547
+ RAFT-Dark demonstrates superior performance to RAFT. In the
548
+
549
+ Original ImagePair
550
+ After Low-Light Noise Augmentation
551
+ Original ImagePair
552
+ AfterMotionBlurAugmentationInput
553
+ RAFT
554
+ RAFT-Dark (Ours)Figure 6: Optical flow estimation on high-speed sequences from CU-
555
+ Lane [47].
556
+ first, third and fourth rows, RAFT-Dark is able to detect motions
557
+ associated with pedestrians and vehicles that either experience
558
+ some drastic illumination change or appear to be too dark and
559
+ noisy. In the other cases, note how RAFT-Dark gives a signif-
560
+ icantly better estimation on the ground plane as well as the di-
561
+ rections and magnitudes that are consistent with the ego vehi-
562
+ cle’s motion. For convenience, a color coding wheel to visualize
563
+ per-pixel optical flow vectors is attached to the top right corner:
564
+ color denotes direction of the flow vector while intensity denotes
565
+ length of the displacement. Since the ego vehicle always heads
566
+ forward, the ground truth optical flow vectors in the front cam-
567
+ era’s image should intuitively point to the image boundaries and
568
+ away from the image center. And due to the motion parallax, one
569
+ should expect larger magnitudes of flow vectors toward the im-
570
+ age boundaries and small magnitudes around the image center.
571
+ In other words, although we have no access to numerical ground
572
+ truth flow, we know the color coded ground truth should exhibit
573
+ the same pattern as the color wheel: bluish or greenish on the
574
+ left side while reddish or yellowish on the right side of the image.
575
+ With this in mind, RAFT fails to estimate correct optical flow con-
576
+ sistent with the vehicle’s motion, especially in background areas
577
+ such as the ground plane. On the other hand, RAFT-Dark not only
578
+ performs well on these areas but also learns to separate the dark
579
+ sky in some cases and to capture details such as the street light
580
+ in the second row. Such improvements are further illustrated in
581
+ high-speed sequences from CULane in Figure 6.
582
+ Our framework of learning strategies enables RAFT to im-
583
+ prove estimation accuracy by more than 50% on average (based
584
+ on visual observations), and even solves some catastrophic fail-
585
+ ures. Although we show our results based on RAFT as the esti-
586
+ mator, our framework is generic and one can replace RAFT with
587
+ any existing state-of-the-art method of one’s choice.
588
+ III. C
589
+ Discussion
590
+ The goal of this work is to emphasize the importance of
591
+ addressing optical flow challenges which are not well explored
592
+ in automated driving. We investigate two of them and propose
593
+ our solutions accordingly, but the others require further research.
594
+ Lack of data tends to be the major bottleneck for most data-driven
595
+ optical flow algorithms. We are able to leverage synthetic data to
596
+ improve existing methods’ adaptation of various lens distortions
597
+ but the sim-to-real gap still exists when these methods are evalu-
598
+ ated on real world fisheye data. Optical flow in low light cannot
599
+ be addressed in the same way without any synthetic data avail-
600
+ able. We experiment image enhancement prior to the network
601
+ inference, but it leads to even worse results because enhancement
602
+ happens per frame rather than per pair of frames and temporal
603
+ consistency is easily broken. Without any extra data, our approach
604
+ takes full advantage of publicly available data and simulates three
605
+ root causes through novel data augmentation schemes and semi-
606
+ supervised learning. However, low light is merely one of many
607
+ scenarios that make optical flow estimation harder. Others in-
608
+ clude foggy, rainy or snowy weather [48]. A unified and robust
609
+ approach aiming for all these cases is encouraged and we see it
610
+ also as an opportunity for further investigation by the community.
611
+ IV
612
+ Conclusion
613
+ Both lens distortion and low light are important problems for
614
+ higher levels of automated driving, but they are not explored in
615
+ detail in the optical flow community as there is no public dataset
616
+ available. Thus we propose our approaches to these two respec-
617
+ tively. We implement and improve a state-of-the-art optical flow
618
+ algorithm by training it on synthetic fisheye data and demonstrat-
619
+ ing its adaptation to real-world distorted images as well as gen-
620
+ eralizability over various lens distortions. We implement a novel,
621
+ generic framework that facilitates learning nighttime-robust rep-
622
+ resentations in a semi-supervised manner, which shows superior
623
+ performance to the existing state of the art. In future work, we
624
+ plan to integrate our current solutions into higher-level pipelines
625
+ as well as explore other unique challenges of optical flow estima-
626
+ tion in the context of automated driving.
627
+ REFERENCES
628
+ [1] K. Kale, S. Pawar, and P. Dhulekar, “Moving object tracking us-
629
+ ing optical flow and motion vector estimation,” in 2015 4th interna-
630
+ tional conference on reliability, infocom technologies and optimiza-
631
+ tion (ICRITO)(trends and future directions), pp. 1–6, IEEE, 2015.
632
+ [2] H. Zhou, B. Ummenhofer, and T. Brox, “Deeptam: Deep tracking
633
+ and mapping,” in Proceedings of the European conference on com-
634
+ puter vision (ECCV), pp. 822–838, 2018.
635
+ [3] S. Wang, R. Clark, H. Wen, and N. Trigoni, “Deepvo: Towards
636
+ end-to-end visual odometry with deep recurrent convolutional neu-
637
+ ral networks,” in 2017 IEEE international conference on robotics
638
+ and automation (ICRA), pp. 2043–2050, IEEE, 2017.
639
+ [4] H. Rashed, A. El Sallab, S. Yogamani, and M. ElHelw, “Motion
640
+ and depth augmented semantic segmentation for autonomous navi-
641
+ gation,” in Proceedings of the IEEE/CVF Conference on Computer
642
+ Vision and Pattern Recognition Workshops, 2019.
643
+ [5] E. Mohamed, M. Ewaisha, M. Siam, H. Rashed, S. Yogamani,
644
+ W. Hamdy, M. El-Dakdouky, and A. El-Sallab, “Monocular instance
645
+ motion segmentation for autonomous driving: Kitti instancemotseg
646
+ dataset and multi-task baseline,” in 2021 IEEE Intelligent Vehicles
647
+ Symposium (IV), pp. 114–121, IEEE, 2021.
648
+
649
+ Input
650
+ RAFT
651
+ RAFT-Dark (Ours)[6] Z. Teed and J. Deng, “Droid-slam: Deep visual slam for monoc-
652
+ ular, stereo, and rgb-d cameras,” Advances in Neural Information
653
+ Processing Systems, vol. 34, pp. 16558–16569, 2021.
654
+ [7] B. K. Horn and B. G. Schunck, “Determining optical flow,” Artificial
655
+ intelligence, vol. 17, no. 1-3, pp. 185–203, 1981.
656
+ [8] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,
657
+ P. Van Der Smagt, D. Cremers, and T. Brox, “Flownet: Learning op-
658
+ tical flow with convolutional networks,” in Proceedings of the IEEE
659
+ international conference on computer vision, pp. 2758–2766, 2015.
660
+ [9] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz, “Pwc-net: Cnns for opti-
661
+ cal flow using pyramid, warping, and cost volume,” in Proceedings
662
+ of the IEEE conference on computer vision and pattern recognition,
663
+ pp. 8934–8943, 2018.
664
+ [10] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz, “Models matter, so does
665
+ training: An empirical study of cnns for optical flow estimation,”
666
+ IEEE transactions on pattern analysis and machine intelligence,
667
+ vol. 42, no. 6, pp. 1408–1423, 2019.
668
+ [11] Z. Teed and J. Deng, “Raft: Recurrent all-pairs field transforms for
669
+ optical flow,” in European conference on computer vision, pp. 402–
670
+ 419, Springer, 2020.
671
+ [12] V. R. Kumar, C. Eising, C. Witt, and S. Yogamani, “Surround-view
672
+ fisheye camera perception for automated driving: Overview, survey
673
+ and challenges,” IEEE Transactions on Intelligent Transportation
674
+ Systems, 2023.
675
+ [13] S. Yogamani, C. Hughes, J. Horgan, G. Sistu, P. Varley, D. O’Dea,
676
+ M. Uric´ar, S. Milz, M. Simon, K. Amende, et al., “Woodscape: A
677
+ multi-task, multi-camera fisheye dataset for autonomous driving,”
678
+ in Proceedings of the IEEE/CVF International Conference on Com-
679
+ puter Vision, pp. 9308–9318, 2019.
680
+ [14] V. R. Kumar, M. Klingner, S. Yogamani, M. Bach, S. Milz, T. Fin-
681
+ gscheidt, and P. M¨ader, “Svdistnet: Self-supervised near-field dis-
682
+ tance estimation on surround view fisheye cameras,” IEEE Transac-
683
+ tions on Intelligent Transportation Systems, 2021.
684
+ [15] A. R. Sekkat, Y. Dupuis, V. R. Kumar, H. Rashed, S. Yoga-
685
+ mani, P. Vasseur, and P. Honeine, “Synwoodscape:
686
+ Synthetic
687
+ surround-view fisheye camera dataset for autonomous driving,”
688
+ IEEE Robotics Automation Letters, 2022.
689
+ [16] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
690
+ “Carla: An open urban driving simulator,” in Conference on robot
691
+ learning, pp. 1–16, PMLR, 2017.
692
+ [17] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity
693
+ visual and physical simulation for autonomous vehicles,” in Field
694
+ and service robotics, pp. 621–635, Springer, 2018.
695
+ [18] H. Rashed, M. Ramzy, V. Vaquero, A. El Sallab, G. Sistu, and S. Yo-
696
+ gamani, “Fusemodnet: Real-time camera and lidar based moving
697
+ object detection for robust low-light autonomous driving,” in Pro-
698
+ ceedings of the IEEE/CVF International Conference on Computer
699
+ Vision Workshops, pp. 0–0, 2019.
700
+ [19] K. Dasgupta, A. Das, S. Das, U. Bhattacharya, and S. Yogamani,
701
+ “Spatio-contextual deep network-based multimodal pedestrian de-
702
+ tection for autonomous driving,” IEEE Transactions on Intelligent
703
+ Transportation Systems, 2022.
704
+ [20] M. Menze and A. Geiger, “Object scene flow for autonomous ve-
705
+ hicles,” in Proceedings of the IEEE conference on computer vision
706
+ and pattern recognition, pp. 3061–3070, 2015.
707
+ [21] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy,
708
+ and T. Brox, “A large dataset to train convolutional networks for
709
+ disparity, optical flow, and scene flow estimation,” in Proceedings
710
+ of the IEEE conference on computer vision and pattern recognition,
711
+ pp. 4040–4048, 2016.
712
+ [22] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A natural-
713
+ istic open source movie for optical flow evaluation,” in European
714
+ conference on computer vision, pp. 611–625, Springer, 2012.
715
+ [23] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High accuracy
716
+ optical flow estimation based on a theory for warping,” in European
717
+ conference on computer vision, pp. 25–36, Springer, 2004.
718
+ [24] H. Rashed, E. Mohamed, G. Sistu, V. R. Kumar, C. Eising, A. El-
719
+ Sallab, and S. Yogamani, “Generalized object detection on fisheye
720
+ cameras for autonomous driving: Dataset, representations and base-
721
+ line,” in Proceedings of the IEEE/CVF Winter Conference on Appli-
722
+ cations of Computer Vision, pp. 2272–2280, 2021.
723
+ [25] H. Rashed, E. Mohamed, G. Sistu, C. E. Ganesh, A. El-Sallab, and
724
+ S. Yogamani, “Fisheyeyolo: Object detection on fisheye cameras for
725
+ autonomous driving,” in Machine Learning for Autonomous Driving
726
+ NeurIPS 2020 Virtual Workshop, vol. 8, 2020.
727
+ [26] V. R. Kumar, S. Milz, C. Witt, M. Simon, K. Amende, J. Pet-
728
+ zold, S. Yogamani, and T. Pech, “Near-field depth estimation using
729
+ monocular fisheye camera: A semi-supervised learning approach us-
730
+ ing sparse lidar data,” in CVPR Workshop, vol. 7, p. 2, 2018.
731
+ [27] V. R. Kumar, S. A. Hiremath, M. Bach, S. Milz, C. Witt, C. Pinard,
732
+ S. Yogamani, and P. M¨ader, “Fisheyedistancenet: Self-supervised
733
+ scale-aware distance estimation using monocular fisheye camera for
734
+ autonomous driving,” in 2020 IEEE international conference on
735
+ robotics and automation (ICRA), pp. 574–581, IEEE, 2020.
736
+ [28] M. Uric´ar, J. Ulicny, G. Sistu, H. Rashed, P. Krizek, D. Hurych,
737
+ A. Vobecky, and S. Yogamani, “Desoiling dataset:
738
+ Restoring
739
+ soiled areas on automotive fisheye cameras,” in Proceedings of
740
+ the IEEE/CVF International Conference on Computer Vision Work-
741
+ shops, pp. 0–0, 2019.
742
+ [29] P. Liu, L. Heng, T. Sattler, A. Geiger, and M. Pollefeys, “Direct
743
+ visual odometry for a fisheye-stereo camera,” in 2017 IEEE/RSJ In-
744
+ ternational Conference on Intelligent Robots and Systems (IROS),
745
+ pp. 1746–1752, IEEE, 2017.
746
+ [30] I. Leang, G. Sistu, F. B¨urger, A. Bursuc, and S. Yogamani, “Dy-
747
+ namic task weighting methods for multi-task networks in au-
748
+ tonomous driving systems,” in 2020 IEEE 23rd International Con-
749
+ ference on Intelligent Transportation Systems (ITSC), pp. 1–8,
750
+ IEEE, 2020.
751
+ [31] V. R. Kumar, S. Yogamani, H. Rashed, G. Sitsu, C. Witt, I. Leang,
752
+ S. Milz, and P. M¨ader, “Omnidet: Surround view cameras based
753
+ multi-task visual perception network for autonomous driving,” IEEE
754
+ Robotics and Automation Letters, vol. 6, no. 2, pp. 2830–2837,
755
+ 2021.
756
+ [32] Y. Liao, J. Xie, and A. Geiger, “Kitti-360: A novel dataset and
757
+ benchmarks for urban scene understanding in 2d and 3d,” IEEE
758
+ Transactions on Pattern Analysis and Machine Intelligence, 2022.
759
+ [33] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 year, 1000
760
+ km: The oxford robotcar dataset,” The International Journal of
761
+ Robotics Research, vol. 36, no. 1, pp. 3–15, 2017.
762
+ [34] H. Alismail, M. Kaess, B. Browning, and S. Lucey, “Direct visual
763
+ odometry in low light using binary descriptors,” IEEE Robotics and
764
+ Automation Letters, vol. 2, no. 2, pp. 444–451, 2016.
765
+ [35] J. Ge, Y. Luo, and G. Tei, “Real-time pedestrian detection and track-
766
+ ing at nighttime for driver-assistance systems,” IEEE Transactions
767
+ on Intelligent Transportation Systems, vol. 10, no. 2, pp. 283–298,
768
+ 2009.
769
+ [36] Y. Zheng, M. Zhang, and F. Lu, “Optical flow in the dark,” in Pro-
770
+ ceedings of the IEEE/CVF Conference on Computer Vision and Pat-
771
+
772
+ tern Recognition, pp. 6749–6757, 2020.
773
+ [37] C. Chen, Q. Chen, J. Xu, and V. Koltun, “Learning to see in the
774
+ dark,” in Proceedings of the IEEE conference on computer vision
775
+ and pattern recognition, pp. 3291–3300, 2018.
776
+ [38] F. Lv, F. Lu, J. Wu, and C. Lim, “Mbllen: Low-light image/video
777
+ enhancement using cnns.,” in British Machine Vision Conference
778
+ (BMVC), 2018.
779
+ [39] M.-Y. Liu, T. Breuel, and J. Kautz, “Unsupervised image-to-image
780
+ translation networks,” Advances in neural information processing
781
+ systems, vol. 30, 2017.
782
+ [40] X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz, “Multimodal un-
783
+ supervised image-to-image translation,” in Proceedings of the Euro-
784
+ pean conference on computer vision (ECCV), pp. 172–189, 2018.
785
+ [41] S. Laine and T. Aila, “Temporal ensembling for semi-supervised
786
+ learning,” arXiv preprint arXiv:1610.02242, 2016.
787
+ [42] J. Jeong, J. M. Lin, F. Porikli, and N. Kwak, “Imposing consis-
788
+ tency for optical flow estimation,” in Proceedings of the IEEE/CVF
789
+ Conference on Computer Vision and Pattern Recognition, pp. 3181–
790
+ 3191, 2022.
791
+ [43] W. Yan, A. Sharma, and R. T. Tan, “Optical flow in dense foggy
792
+ scenes using semi-supervised learning,” in Proceedings of the
793
+ IEEE/CVF Conference on Computer Vision and Pattern Recogni-
794
+ tion, pp. 13259–13268, 2020.
795
+ [44] D. Kondermann, R. Nair, K. Honauer, K. Krispin, J. Andrulis,
796
+ A. Brock, B. Gussefeld, M. Rahimimoghaddam, S. Hofmann,
797
+ C. Brenner, et al., “The hci benchmark suite: Stereo and flow ground
798
+ truth with uncertainties for urban autonomous driving,” in Proceed-
799
+ ings of the IEEE Conference on Computer Vision and Pattern Recog-
800
+ nition Workshops, pp. 19–28, 2016.
801
+ [45] H. Xu, J. Zhang, J. Cai, H. Rezatofighi, and D. Tao, “Gmflow:
802
+ Learning optical flow via global matching,” in Proceedings of the
803
+ IEEE/CVF Conference on Computer Vision and Pattern Recogni-
804
+ tion, pp. 8121–8130, 2022.
805
+ [46] G. French, A. Oliver, and T. Salimans, “Milking cowmask for semi-
806
+ supervised image classification,” arXiv preprint arXiv:2003.12022,
807
+ 2020.
808
+ [47] X. Pan, J. Shi, P. Luo, X. Wang, and X. Tang, “Spatial as deep:
809
+ Spatial cnn for traffic scene understanding,” in Proceedings of the
810
+ AAAI Conference on Artificial Intelligence, vol. 32, 2018.
811
+ [48] M. M. Dhananjaya, V. R. Kumar, and S. Yogamani, “Weather and
812
+ light level classification for autonomous driving: Dataset, baseline
813
+ and active learning,” in 2021 IEEE International Intelligent Trans-
814
+ portation Systems Conference (ITSC), pp. 2816–2821, IEEE, 2021.
815
+ AUTHORS BIOGRAPHY
816
+ Shihao Shen is a second-year graduate student in the Robotics
817
+ Institute at Carnegie Mellon University and expects to receive his
818
+ M.Sc. in Robotic Systems Development in 2023. He worked as
819
+ an Interim Engineering Intern in the Multimedia Research and
820
+ Development department at Qualcomm in summer 2022 and this
821
+ is his work done during his internship. His main research focus
822
+ is machine learning with applications in computer vision as well
823
+ as simultaneous localization and mapping (SLAM).
824
+ Louis Kerofsky is researcher in video compression, video
825
+ processing and display. He received M.S. and Ph.D. degrees in
826
+ Mathematics from the University of Illinois, Urbana-Champaign
827
+ (UIUC). He has over 20 years of experience in research and al-
828
+ gorithm development and standardization of video compression.
829
+ He has served as an expert in the ITU and ISO video compression
830
+ standards committees. He is an author of over 40 publications
831
+ which have over 5000 citations. He is an inventor on over 130
832
+ issued US patents. He is a senior member of IEEE, member of
833
+ Society for Information Display.
834
+ Senthil Yogamani is an artificial intelligence architect for au-
835
+ tonomous driving and holds a principal engineer position at
836
+ Qualcomm. He leads the research and design of AI algorithms
837
+ for various modules of autonomous driving systems. He has over
838
+ 17 years of experience in computer vision and machine learn-
839
+ ing including 14 years of experience in industrial automotive sys-
840
+ tems. He is an author of 110+ publications which have 4000+
841
+ citations and 150+ inventions with 85 filed patent families. He
842
+ serves on the editorial board of various leading IEEE automotive
843
+ conferences including ITSC and IV and advisory board of various
844
+ industry consortia including Khronos, Cognitive Vehicles and IS
845
+ Auto. He is a recipient of the best associate editor award at ITSC
846
+ 2015 and best paper award at ITST 2012.
847
+
7dE3T4oBgHgl3EQfRgmQ/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
7tE1T4oBgHgl3EQfnQST/content/2301.03307v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:378a379878cb425c5af4753ec9f7a79d95f5e9bca9a8db2e94cd87b2920f8246
3
+ size 3452062
9NE2T4oBgHgl3EQfQAZl/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:982ca6ebdfda4927e9a5c8980e697fd7d5d429f64078dcc9d1eea60b46213c80
3
+ size 6225965
9dFST4oBgHgl3EQfbDi0/content/tmp_files/2301.13798v1.pdf.txt ADDED
@@ -0,0 +1,757 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
2
+ CERN-EP-2023-005
3
+ 23 January 2023
4
+ © 2023 CERN for the benefit of the ALICE Collaboration.
5
+ Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.
6
+ Exploring the non-universality of charm hadronisation through the
7
+ measurement of the fraction of jet longitudinal momentum carried by Λ+
8
+ c
9
+ baryons in pp collisions
10
+ ALICE Collaboration
11
+ Abstract
12
+ Recent measurements of charm-baryon production in hadronic collisions have questioned the univer-
13
+ sality of charm-quark fragmentation across different collision systems. In this work the fragmentation
14
+ of charm quarks into charm baryons is probed, by presenting the first measurement of the longitudinal
15
+ jet momentum fraction carried by Λ+
16
+ c baryons, 𝑧ch
17
+ || , in hadronic collisions. The results are obtained
18
+ in proton–proton (pp) collisions at √𝑠 = 13 TeV at the LHC, with Λ+
19
+ c baryons and track-based jets
20
+ reconstructed in the transverse momentum intervals of 3 ≤ 𝑝Λ+
21
+ c
22
+ T < 15 GeV/𝑐 and 7 ≤ 𝑝jet ch
23
+ T
24
+ < 15
25
+ GeV/𝑐, respectively. The 𝑧ch
26
+ || distribution is compared to a measurement of D0-tagged charged jets in
27
+ pp collisions as well as to PYTHIA 8 simulations. The data hints that the fragmentation of charm
28
+ quarks into charm baryons is softer with respect to charm mesons, as predicted by hadronisation
29
+ models which include colour correlations beyond leading-colour in the string formation.
30
+ arXiv:2301.13798v1 [nucl-ex] 31 Jan 2023
31
+
32
+ ALICEIn-jet Λ+
33
+ c production in pp collisions at √𝑠 = 13 TeV
34
+ ALICE Collaboration
35
+ Heavy-flavour hadrons are produced in high-energy particle collisions through the fragmentation of heavy
36
+ (charm and beauty) quarks, which typically originate in hard scattering processes in the early stages of
37
+ the collisions. The most common theoretical approach to describe heavy-flavour production in hadronic
38
+ collisions is based on the quantum chromodynamics (QCD) factorisation approach [1], and consists of a
39
+ convolution of three independent terms: the parton distribution functions of the incoming hadrons, the
40
+ cross sections of the partonic scattering producing the heavy quarks, and the fragmentation functions that
41
+ parametrise the evolution of a heavy quark into given species of heavy-flavour hadrons. As the transition
42
+ of quarks to hadrons cannot be described in perturbation theory, the fragmentation functions cannot be
43
+ calculated and must be extracted from data.
44
+ Fragmentation functions of charm quarks to charm baryons and mesons have been constrained in e+e−
45
+ and e−p collisions [2–5], using a variety of different observables, such as the hadron momentum as a
46
+ fraction of its maximum possible momentum, as dictated by the centre-of-mass energy of the collision.
47
+ Another method to probe the fragmentation of quarks to hadrons is to parametrise the hadron momentum
48
+ in relation to the momentum of jets, which are collimated bunches of hadrons giving experimental access
49
+ to the properties of the scattered quark. Recently, the production of charm mesons in jets, probed via the
50
+ fractional longitudinal momentum of the jet carried by the D meson, was measured in pp collisions at the
51
+ Large Hadron Collider (LHC) [6–8] and appears consistent with Monte Carlo (MC) simulations tuned
52
+ on e+e− data. These measurements support the assumption of fragmentation universality across collision
53
+ systems in the charm-meson sector. This assumption underpins theoretical calculations describing the
54
+ production of heavy-flavour hadrons in hadronic collisions, which make use of fragmentation functions
55
+ tuned on e+e− and e−p data.
56
+ Measurements of the production cross sections of baryons in pp collisions have questioned the hypothesis
57
+ of fragmentation universality across collision systems [9]. In the charm sector, which provides a clean
58
+ probe of hadronisation phenomena due to the large mass of the charm quark, recent measurements
59
+ performed by the ALICE Collaboration [10–18] in pp collisions have shown that the ratio of the Λ+
60
+ c (and
61
+ other charm baryons) and D0 production cross sections measured at low 𝑝T (≲ 12 GeV/𝑐) is significantly
62
+ larger than the value expected from MC simulations in which the charm fragmentation is tuned on e+e−
63
+ and e−p measurements, such as PYTHIA 8 [19] with the Monash tune [20] or HERWIG 7 [21]. A recent
64
+ measurement of the Λ+
65
+ c/D0 ratio in pp collisions, performed by the ALICE Collaboration in intervals
66
+ of charged-particle multiplicity, also points to a substantial increase of the Λ+
67
+ c/D0 ratio with increasing
68
+ multiplicity, with respect to e+e− collisions, starting at very low multiplicities [14].
69
+ The study of charm-baryon production in jets can provide more differential insights into hadronisation
70
+ mechanisms in pp collisions, compared to 𝑝T-differential cross sections and yield ratios of heavy-flavour
71
+ hadrons, allowing for a more accurate study of the dynamical properties of baryon production. In this
72
+ letter, the first measurement of the longitudinal momentum fraction of the jet carried by Λ+
73
+ c baryons, 𝑧ch
74
+ || , is
75
+ presented. The measurement is performed in pp collisions at √𝑠 = 13 TeV in the interval 0.4 ≤ 𝑧ch
76
+ || ≤ 1.0.
77
+ The 𝑧ch
78
+ || distribution, fully corrected to particle level, is presented for prompt (charm-quark initiated)
79
+ Λ+
80
+ c-tagged jets with 7 ≤ 𝑝jet ch
81
+ T
82
+ < 15 GeV/𝑐 and 3 ≤ 𝑝Λ+
83
+ c
84
+ T < 15 GeV/𝑐. The results are then compared
85
+ to PYTHIA 8 simulations [19, 22], including a version where mechanisms beyond the leading-colour
86
+ approximation are considered in string formation processes during hadronisation [20], and to an analogous
87
+ measurement of the 𝑧ch
88
+ || distribution of D0 mesons, performed by the ALICE Collaboration [6].
89
+ A full description of the ALICE setup and apparatus can be found in Refs. 23, 24. The main detectors
90
+ used in this analysis are the Inner Tracking System (ITS), which is used for vertex reconstruction and
91
+ tracking; the Time Projection Chamber (TPC), which is used for tracking and particle identification (PID);
92
+ and the Time-Of-Flight (TOF) detector, which is used for PID. These detectors cover a pseudorapidity
93
+ interval of |𝜂| < 0.9. The analysis was performed on pp collisions at √𝑠 = 13 TeV, collected using a
94
+ minimum-bias (MB) trigger during the years 2016, 2017, and 2018. The trigger condition required
95
+ 2
96
+
97
+ In-jet Λ+
98
+ c production in pp collisions at √𝑠 = 13 TeV
99
+ ALICE Collaboration
100
+ coincident signals in the two scintillator arrays of the V0 detector, with background events originating
101
+ from beam–gas interactions removed offline using timing information from the V0. To mitigate against
102
+ pile-up effects, events with multiple reconstructed primary vertices were rejected. To ensure uniform
103
+ acceptance, only events with a primary-vertex position along the beam axis direction of |𝑧vtx| < 10 cm
104
+ around the nominal interaction point were accepted. After the selections described above, the data sample
105
+ consisted of 1.7×109 events, corresponding to an integrated luminosity of Lint = 29 nb−1 [25].
106
+ The Λ+
107
+ c candidates and their charge conjugates were reconstructed via the hadronic Λ+
108
+ c → pK0
109
+ S → pπ+π−
110
+ decay channel with a total branching ratio of (1.10 ± 0.06)% [26], in the Λ+
111
+ c transverse-momentum
112
+ interval of 3 ≤ 𝑝Λ+
113
+ c
114
+ T < 15 GeV/𝑐. Only tracks with |𝜂| < 0.8 and 𝑝T > 0.4 GeV/𝑐, which fulfilled the track
115
+ quality selections described in Ref. 13, were considered for the Λ+
116
+ c reconstruction. The Λ+
117
+ c candidates
118
+ themselves were reconstructed in the |𝑦Λ+c | < 0.8 rapidity interval.
119
+ The Λ+
120
+ c-candidate selection was
121
+ performed using a multivariate technique based on the Boosted Decision Tree (BDT) algorithm provided
122
+ by the XGBoost package [27]. The features considered in the optimisation include the PID signal for
123
+ the proton track, the invariant mass of the K0
124
+ S-meson candidate, and topological variables that exploit the
125
+ kinematic properties of the displaced K0
126
+ S-meson decay vertex. The training was performed in intervals
127
+ of Λ+
128
+ c-candidate 𝑝T, considering prompt signal candidates from PYTHIA 8 events with the Monash
129
+ tune [19, 20], transported through a realistic description of the detector geometry and material budget
130
+ using GEANT 3 [28]. Background candidates were extracted from the sidebands of the invariant-mass
131
+ distributions in data. The probability thresholds of the BDT selections were tuned, using MC simulations,
132
+ to maximise the statistical significance for the signal. Further details on the Λ+
133
+ c-candidate reconstruction
134
+ and machine learning procedure are provided in Ref. 14, where the same reconstruction and BDT model
135
+ were employed.
136
+ For the events where at least one selected Λ+
137
+ c candidate was identified, a jet-finding procedure was
138
+ performed, using the FastJet package [29]. Prior to jet clustering, the Λ+
139
+ c-candidate daughter tracks were
140
+ replaced by the reconstructed Λ+
141
+ c-candidate four-momentum vector. Track-based jet finding was carried
142
+ out on charged tracks with |𝜂| < 0.9 and 𝑝T > 0.15 GeV/𝑐, using the anti-𝑘T algorithm [30], with a
143
+ resolution parameter of 𝑅 = 0.4. Tracks were combined using the 𝐸-scheme recombination [31], with the
144
+ jet transverse momentum limited to the interval of 5 ≤ 𝑝jet ch
145
+ T
146
+ < 35 GeV/𝑐. The full jet cone was required
147
+ to be within the ALICE central barrel acceptance, limiting the jet axis to the interval |𝜂jet| < 0.5. Only
148
+ jets tagged via the presence of a reconstructed Λ+
149
+ c candidate amongst their constituents were considered
150
+ for the analysis. For events where more than one Λ+
151
+ c candidate was found, the jet finding and tagging
152
+ pass was performed independently for each candidate, with only the daughters of that particular candidate
153
+ replaced by the corresponding Λ+
154
+ c four-vector each time. In mechanisms of hadronisation that include
155
+ colour correlations beyond the leading-colour approximation [20], which have been shown to be relevant
156
+ in hadronic collisions at LHC energies [9], hadrons can be formed in processes that combine quarks from
157
+ the parton shower with those from the underlying event [32]. As such, the underlying event is not well
158
+ defined with respect to the measured hadron distributions. Therefore no underlying event correction is
159
+ implemented in this work.
160
+ The fragmentation of charm quarks to Λ+
161
+ c baryons is probed by measuring the fraction of the jet momentum
162
+ carried by the Λ+
163
+ c along the direction of the jet axis, 𝑧ch
164
+ || . This is calculated for each jet using
165
+ 𝑧ch
166
+ || = 𝒑jet · 𝒑Λ+c
167
+ 𝒑jet · 𝒑jet
168
+ ,
169
+ (1)
170
+ where 𝒑jet and 𝒑Λ+c are the jet and Λ+
171
+ c three-momentum vectors, respectively.
172
+ The 𝑧ch
173
+ || distributions of true Λ+
174
+ c-tagged jets were extracted in intervals of Λ+
175
+ c 𝑝T and 𝑝jet ch
176
+ T
177
+ using a sideband
178
+ subtraction procedure. To enact this subtraction, the invariant-mass (𝑚inv) distributions of Λ+
179
+ c candidates,
180
+ obtained for each Λ+
181
+ c 𝑝T and 𝑝jet ch
182
+ T
183
+ interval, were fitted with a function comprising a Gaussian for the signal
184
+ 3
185
+
186
+ In-jet Λ+
187
+ c production in pp collisions at √𝑠 = 13 TeV
188
+ ALICE Collaboration
189
+ and an exponential for the background. The fit parameters were then used to define signal (containing the
190
+ majority of true signal candidates) and sideband (entirely composed of background candidates) regions,
191
+ defined by |𝑚inv − 𝜇fit| < 2𝜎fit and 4𝜎fit < |𝑚inv − 𝜇fit| < 9𝜎fit, respectively, where 𝜇fit and 𝜎fit represent
192
+ the mean and sigma of the fitted Gaussian distributions. The 𝑧ch
193
+ || (𝑝Λ+
194
+ c
195
+ T ,𝑝jet ch
196
+ T
197
+ ) distributions were extracted
198
+ in the signal and sideband regions, with the sideband distribution scaled by the ratio of the background
199
+ function integrals in the signal and sideband regions. The sideband distribution was then subtracted from
200
+ the signal one, with the resulting distribution scaled to account for the fact that the 2𝜎fit width of the
201
+ signal region only encompasses approximately 95% of the total signal, to obtain the sideband subtracted
202
+ 𝑧ch
203
+ || yield in each 𝑝Λ+
204
+ c
205
+ T and 𝑝jet ch
206
+ T
207
+ interval.
208
+ To account for the reconstruction and selection efficiency of the Λ+
209
+ c-tagged jet signal, the sideband
210
+ subtracted 𝑧ch
211
+ || distributions in each 𝑝Λ+
212
+ c
213
+ T and 𝑝jet ch
214
+ T
215
+ interval, 𝑁(𝑧ch
216
+ || , 𝑝Λ+
217
+ c
218
+ T , 𝑝jet ch
219
+ T
220
+ ), were scaled by the recon-
221
+ struction efficiency of prompt Λ+
222
+ c-tagged jets, 𝜖prompt, and summed over the entire 𝑝Λ+
223
+ c
224
+ T interval to obtain
225
+ the efficiency-corrected 𝑧ch
226
+ || yield of Λ+
227
+ c-tagged jets, 𝑁corr(𝑧ch
228
+ || , 𝑝jet ch
229
+ T
230
+ ), given by
231
+ 𝑁corr(𝑧ch
232
+ || , 𝑝jet ch
233
+ T
234
+ ) =
235
+ ∑︁
236
+ 𝑝Λ+c
237
+ T
238
+ 𝑁(𝑧ch
239
+ || , 𝑝Λ+
240
+ c
241
+ T , 𝑝jet ch
242
+ T
243
+ )
244
+ 𝜖prompt(𝑝Λ+c
245
+ T )
246
+ .
247
+ (2)
248
+ The 𝜖prompt(𝑝Λ+
249
+ c
250
+ T ) efficiency is strongly dependent on 𝑝Λ+
251
+ c
252
+ T , ranging from about 20% at 3 < 𝑝Λ+
253
+ c
254
+ T < 4 GeV/𝑐
255
+ to 40% at 12 < 𝑝Λ+
256
+ c
257
+ T < 24 GeV/𝑐, and was calculated using PYTHIA 8 simulations with the Monash tune
258
+ containing prompt Λ+
259
+ c-tagged jets, transported through the detector using GEANT 3. This efficiency does
260
+ not exhibit a 𝑝jet ch
261
+ T
262
+ dependence.
263
+ In order to isolate the 𝑁corr(𝑧ch
264
+ || , 𝑝jet ch
265
+ T
266
+ ) distribution of prompt Λ+
267
+ c-tagged jets, a feed-down subtraction
268
+ was employed to remove the non-prompt (beauty-quark initiated) contribution. The non-prompt cross
269
+ section was obtained from particle level POWHEG [33] + PYTHIA 6 [34] + EvtGen [35] simulations, as
270
+ a function of 𝑝jet ch
271
+ T
272
+ , 𝑝Λ+
273
+ c
274
+ T and 𝑧ch
275
+ || , and was scaled according to the integrated luminosity of the analysed
276
+ data sample and the branching ratio of the Λ+
277
+ c → pK0
278
+ S → pπ+π− decay channel. The resulting particle-
279
+ level yield was multiplied by the ratio of the non-prompt to prompt Λ+
280
+ c-tagged jet reconstruction and
281
+ selection efficiency in intervals of 𝑝Λ+c
282
+ T
283
+ and integrated over the 𝑝Λ+c
284
+ T
285
+ range. The simulated non-prompt
286
+ results were then folded to reconstructed level, using a four-dimensional response matrix generated using
287
+ non-prompt Λ+
288
+ c-tagged jets in PYTHIA 8 with the Monash tune, transported through a simulation of
289
+ the ALICE detector using GEANT 3. The response matrix was constructed as a function of 𝑝jet ch
290
+ T
291
+ and
292
+ 𝑧ch
293
+ || at generator and reconstruction levels. The folded results were then subtracted from the measured
294
+ 𝑁corr(𝑧ch
295
+ || , 𝑝jet ch
296
+ T
297
+ ) distribution in data, removing the non-prompt contribution. The estimated fraction of
298
+ Λ+
299
+ c-tagged jets coming from b-quark fragmentation is found to be about 5%, with no significant 𝑧ch
300
+ ||
301
+ dependence.
302
+ A two-dimensional Bayesian unfolding procedure [36] was performed to correct for detector effects and
303
+ obtain the 𝑧ch
304
+ || distribution for prompt Λ+
305
+ c-tagged jets at particle level.
306
+ A four-dimensional response
307
+ matrix as a function of 𝑝jet ch
308
+ T
309
+ and 𝑧ch
310
+ || , at generator and reconstruction levels, was populated with prompt
311
+ Λ+
312
+ c-tagged jets, obtained with PYTHIA 8 simulations with the Monash tune, passed through a simulation
313
+ of the ALICE detector using GEANT 3. The measured data and response matrix were provided in the
314
+ intervals of 5 ≤ 𝑝jet ch
315
+ T
316
+ < 35 GeV/𝑐 and 0.4 ≤ 𝑧ch
317
+ || ≤ 1.0, with the final unfolded results reported in the
318
+ intervals 7 ≤ 𝑝jet ch
319
+ T
320
+ < 15 GeV/𝑐 and 0.4 ≤ 𝑧ch
321
+ || ≤ 1.0. Corrections accounting for migrating entries in
322
+ and out of the response matrix ranges, as modelled by the same MC simulation, were also applied. The
323
+ corrected 𝑧ch
324
+ || distribution is normalised to the total number of Λ+
325
+ c-tagged jets in the reported 𝑧ch
326
+ || and 𝑝jet ch
327
+ T
328
+ interval.
329
+ 4
330
+
331
+ In-jet Λ+
332
+ c production in pp collisions at √𝑠 = 13 TeV
333
+ ALICE Collaboration
334
+ 0.4
335
+ 0.5
336
+ 0.6
337
+ 0.7
338
+ 0.8
339
+ 0.9
340
+ 1
341
+ ch
342
+ z
343
+ 1
344
+ 1.5
345
+ 2
346
+ 2.5
347
+ 3
348
+ 3.5
349
+ 4
350
+ 4.5
351
+ ch
352
+ z
353
+ /d
354
+ N
355
+ ) d
356
+ jet
357
+ N
358
+ (1/
359
+ -tagged jets
360
+ +
361
+ c
362
+ Λ
363
+ data
364
+ Monash
365
+ CR-BLC Mode 2
366
+ PYTHIA 8:
367
+ = 13 TeV
368
+ s
369
+ , pp,
370
+ ALICE
371
+ = 0.4
372
+ R
373
+ ,
374
+ T
375
+ k
376
+ charged jets, anti-
377
+ 0.5
378
+
379
+
380
+ jet
381
+ η
382
+ ,
383
+ c
384
+ < 15 GeV/
385
+ jet ch
386
+ T
387
+ p
388
+
389
+
390
+ 7
391
+ 0.8
392
+
393
+
394
+ +
395
+ c
396
+ Λ
397
+ y
398
+ ,
399
+ c
400
+ < 15 GeV/
401
+ +
402
+ c
403
+ Λ
404
+ T
405
+ p
406
+
407
+
408
+ 3
409
+ 0.4
410
+ 0.5
411
+ 0.6
412
+ 0.7
413
+ 0.8
414
+ 0.9
415
+ 1
416
+ ch
417
+ z
418
+ 1
419
+ 1.5
420
+ 2
421
+ MC/data
422
+ 0.4
423
+ 0.5
424
+ 0.6
425
+ 0.7
426
+ 0.8
427
+ 0.9
428
+ 1
429
+ ch
430
+ z
431
+ 1
432
+ 1.5
433
+ 2
434
+ 2.5
435
+ 3
436
+ 3.5
437
+ 4
438
+ 4.5
439
+ 5
440
+ ch
441
+ z
442
+ /d
443
+ N
444
+ ) d
445
+ jet
446
+ N
447
+ (1/
448
+ -tagged jets
449
+ +
450
+ c
451
+ Λ
452
+ -tagged jets
453
+ 0
454
+ D
455
+ = 13 TeV
456
+ s
457
+ , pp,
458
+ ALICE
459
+ = 0.4
460
+ R
461
+ ,
462
+ T
463
+ k
464
+ charged jets, anti-
465
+ 0.5
466
+
467
+
468
+ jet
469
+ η
470
+ ,
471
+ c
472
+ < 15 GeV/
473
+ jet ch
474
+ T
475
+ p
476
+
477
+
478
+ 7
479
+ 0.8
480
+
481
+
482
+ h
483
+ y
484
+ ,
485
+ c
486
+ < 15 GeV/
487
+ h
488
+ T
489
+ p
490
+
491
+
492
+ 3
493
+ 0.4
494
+ 0.5
495
+ 0.6
496
+ 0.7
497
+ 0.8
498
+ 0.9
499
+ 1
500
+ ch
501
+ z
502
+ 0.5
503
+ 1
504
+ 1.5
505
+ 2
506
+ 0
507
+ /D
508
+ +
509
+ c
510
+ Λ
511
+ data
512
+ PYTHIA 8 Monash
513
+ PYTHIA 8 CR-BLC Mode 2
514
+ Figure 1: (Left) Fully corrected 𝑧ch
515
+ || distribution of Λ+
516
+ c-tagged track-based jets (black open circles) measured in the
517
+ 7 ≤ 𝑝jet ch
518
+ T
519
+ < 15 GeV/𝑐 and 3 ≤ 𝑝Λ+
520
+ c
521
+ T < 15 GeV/𝑐 intervals in pp collisions at √𝑠 = 13 TeV, compared with predictions
522
+ from different PYTHIA 8 tunes [19, 20, 22] (red-dotted and green-dashed lines). The ratios of the MC simulations
523
+ to the data are shown in the bottom panel. (Right) Comparison of the measured 𝑧ch
524
+ || distribution of Λ+
525
+ c-tagged jets
526
+ and the previously measured 𝑧ch
527
+ || distribution of D0-tagged jets [6], obtained in the same kinematic interval. The
528
+ ratio of the 𝑧ch
529
+ || distribution of Λ+
530
+ c-tagged and D0-tagged jets is shown in the bottom panel for both the data and the
531
+ different PYTHIA tunes.
532
+ The systematic uncertainties affecting the measurement were evaluated, in each 𝑧ch
533
+ || interval, by modifying
534
+ the strategy adopted at various steps of the analysis procedure and assessing the impact on the unfolded
535
+ 𝑧ch
536
+ || distribution. The total systematic uncertainty includes contributions from multiple sources. The
537
+ first considered source is the sideband subtraction procedure (ranging from 3.7% to 7.6% depending
538
+ on the 𝑧ch
539
+ || inteval), whose contribution was estimated by varying the invariant-mass fit parameters as
540
+ well as the invariant-mass intervals of the signal and sideband regions. The contribution from the BDT
541
+ selection of Λ+
542
+ c candidates (from 7.3% to 19%) was estimated by varying the BDT probability thresholds
543
+ to induce a 25% variation in the Λ+
544
+ c-tagged jet reconstruction and selection efficiency. The uncertainty
545
+ from the jet energy resolution (from 4.5% to 19%) was estimated by recalculating the response matrix
546
+ used for unfolding with a 4% reduced tracking efficiency. The reduction in the tracking efficiency was
547
+ evaluated by varying the track-selection criteria and propagating the ITS–TPC track-matching efficiency
548
+ uncertainty. The uncertainty on the feed-down subtraction (< 2%) was estimated by varying the choice
549
+ of POWHEG parameters considered to generate the feed-down cross section, including the factorisation
550
+ and renormalisation scales, as well as the mass of the beauty quark, which were varied according to
551
+ theoretical prescriptions [37]. Finally the contribution from the unfolding procedure (from 1.1% to 2.7%)
552
+ was estimated by altering the choice of prior, regularisation parameter, and ranges of the response matrix.
553
+ For each of the aforementioned categories, several variations were made and the root-mean-square of
554
+ the resulting distributions was considered. The exceptions are related to the contribution associated to
555
+ the choice of parameters of the POWHEG calculations, where only the largest deviation from the central
556
+ result, in each direction, was considered, as well as the uncertainty on the jet energy resolution where
557
+ the variation with respect to the central result was taken as the uncertainty. All uncertainties (other than
558
+ from the feed-down subtraction) were then symmetrised. The uncertainties were combined in quadrature
559
+ to obtain the total systematic uncertainty on the measurement, which ranges from 13% to 28%.
560
+ 5
561
+
562
+ In-jet Λ+
563
+ c production in pp collisions at √𝑠 = 13 TeV
564
+ ALICE Collaboration
565
+ The fully corrected 𝑧ch
566
+ || distribution of prompt Λ+
567
+ c-tagged track-based jets in the intervals of 7 ≤ 𝑝jet ch
568
+ T
569
+ <
570
+ 15 GeV/𝑐 and 3 ≤ 𝑝Λ+
571
+ c
572
+ T < 15 GeV/𝑐 is presented in the left-hand panel of Fig. 1 and compared to PYTHIA 8
573
+ simulations with two different tunes. In PYTHIA 8 the Lund string model of fragmentation is employed,
574
+ where endpoints are confined by linear potentials encoded in strings. For the case of heavy quarks, the
575
+ Lund fragmentation function is modified to account for the slower propagation of the massive endpoints
576
+ compared to their massless counterparts. The Monash tune (red-dotted line) [19], in which the charm
577
+ fragmentation is tuned on e+e− measurements, predicts a harder fragmentation than the measurement.
578
+ An evaluation of the 𝜒2/ndf between the measured data points and the model was performed, combining
579
+ the statistical and systematic uncertainties on the data in quadrature and assuming the uncertainties are
580
+ uncorrelated across the 𝑧ch
581
+ || intervals. This exercise determines that there is a 0.4% probability that the
582
+ model describes the data. A better agreement is achieved by the PYTHIA 8 with the CR-BLC Mode 2
583
+ tune, that includes colour reconnection mechanisms beyond the leading-colour approximation [22] (green-
584
+ dashed line). In this model, the minimisation of the string potential is implemented considering the SU(3)
585
+ multiplet structure of QCD in a more realistic way than in the leading-colour approximation, allowing
586
+ for the formation of “baryonic” configurations where for example two colours can combine coherently to
587
+ form an anti-colour. The same 𝜒2/ndf approach results in a 78% probability that the model describes the
588
+ data. The simulation with PYTHIA 8 with the CR-BLC Mode 2 tune also provides a much more accurate
589
+ description of the Λ+
590
+ c/D0 cross section ratio, previously measured in pp collisions at the LHC [10–14, 38].
591
+ In the right-hand panel of Fig. 1, a comparison of the 𝑧ch
592
+ || distribution of Λ+
593
+ c-tagged jets and the 𝑧ch
594
+ || distri-
595
+ bution previously measured for D0-tagged jets [6] is presented. The latter is consistent with PYTHIA 8
596
+ simulations using both the Monash and CR-BLC Mode 2 tunes. The ratio of the two distributions is
597
+ also presented in the bottom panel. The uncertainty from the jet energy resolution was considered to
598
+ be correlated between the Λ+
599
+ c-tagged jet and D0-tagged jet measurements and was evaluated directly on
600
+ the ratio of the distributions. The remaining uncertainties were considered uncorrelated when taking
601
+ the ratio and were then combined in quadrature with the uncertainty of the jet energy resolution. The
602
+ uncertainties were considered uncorrelated across the 𝑧ch
603
+ || intervals. The same 𝜒2/ndf exercise described
604
+ above determines that there is a 12% probability that the measured ratio is described by a flat distribution
605
+ at unity, hinting at a softer fragmentation of charm quarks into charm baryons than charm mesons. The
606
+ ratio is better described by the PYTHIA 8 simulations with the CR-BLC Mode 2 compared to the ones
607
+ with the Monash tune, with the former describing the data with 88% probability compared to a 0.03%
608
+ probability for the latter.
609
+ In summary the first measurement in hadronic collisions of the longitudinal momentum fraction of the
610
+ jet carried by Λ+
611
+ c baryons was presented for pp collisions at √𝑠 = 13 TeV. The result is fully corrected to
612
+ particle level and obtained in the jet and Λ+
613
+ c transverse-momentum intervals of 7 ≤ 𝑝jet ch
614
+ T
615
+ < 15 GeV/𝑐
616
+ and 3 ≤ 𝑝Λ+c
617
+ T < 15 GeV/𝑐, respectively. The measurement presented in this Letter hints that charm quarks
618
+ have a softer fragmentation into Λ+
619
+ c baryons compared to D0 mesons, in the measured kinematic interval.
620
+ One possible explanation is that charm-baryon production is favoured in the presence of higher particle
621
+ multiplicity originating from both the jet fragmentation and the underlying event, which could be tested
622
+ with future measurements of the in-jet multiplicity of Λ+
623
+ c-tagged jets. The fragmentation of charm quarks
624
+ into Λ+
625
+ c baryons in hadronic collisions exhibits tension with simulations tuned on e+e− data that employ
626
+ a leading-colour formalism of hadronisation, such as in the Monash tune of PYTHIA 8. This occurs
627
+ despite their successful description of the fragmentation of charm quarks into D0 mesons. However, the
628
+ inclusion of mechanisms sensitive to the surrounding partonic density that feature colour reconnection
629
+ beyond the leading-colour approximation results in a better agreement with data. This result also partially
630
+ explains the 𝑝T shape of the prompt Λ+
631
+ c/D0 cross section ratio [10–14, 38], which shows a peak at low
632
+ 𝑝T (≈ 3 GeV/𝑐) and is also described within uncertainties by PYTHIA 8 with the CR-BLC Mode 2 tune.
633
+ The 𝑝T trend of this ratio is driven by the fact that the Λ+
634
+ c baryons produced from the fragmenting charm
635
+ quark carry a significantly lower fraction of the charm-quark transverse momentum than the D0 mesons
636
+ 6
637
+
638
+ In-jet Λ+
639
+ c production in pp collisions at √𝑠 = 13 TeV
640
+ ALICE Collaboration
641
+ produced in a similar way.
642
+ References
643
+ [1] J. C. Collins, D. E. Soper, and G. F. Sterman, “Factorization of Hard Processes in QCD”, Adv. Ser.
644
+ Direct. High Energy Phys. 5 (1989) 1–91, arXiv:hep-ph/0409313.
645
+ [2] ALEPH Collaboration, R. Barate et al., “Study of charm production in Z decays”, Eur. Phys. J. C
646
+ 16 (2000) 597–611, arXiv:hep-ex/9909032.
647
+ [3] Belle Collaboration, R. Seuster et al., “Charm hadrons from fragmentation and B decays in e+e−
648
+ annihilation at √𝑠 = 10.6 GeV”, Phys. Rev. D 73 (2006) 032002, arXiv:hep-ex/0506068.
649
+ [4] ZEUS Collaboration, S. Chekanov et al., “Measurement of the charm fragmentation function in
650
+ D* photoproduction at HERA”, JHEP 04 (2009) 082, arXiv:0901.1210 [hep-ex].
651
+ [5] Belle Collaboration, M. Niiyama et al., “Production cross sections of hyperons and charmed
652
+ baryons from e+e− annihilation near √𝑠 = 10.52 GeV”, Phys. Rev. D 97 (2018) 072005,
653
+ arXiv:1706.06791 [hep-ex].
654
+ [6] ALICE Collaboration, S. Acharya et al., “Measurement of the production of charm jets tagged
655
+ with D0 mesons in pp collisions at √𝑠 = 5.02 and 13 TeV”, arXiv:2204.10167 [nucl-ex].
656
+ [7] ALICE Collaboration, S. Acharya et al., “Measurement of the production of charm jets tagged
657
+ with D0 mesons in pp collisions at √𝑠 = 7 TeV”, JHEP 08 (2019) 133, arXiv:1905.02510
658
+ [nucl-ex].
659
+ [8] ATLAS Collaboration, G. Aad et al., “Measurement of D∗± meson production in jets from pp
660
+ collisions at √𝑠 = 7 TeV with the ATLAS detector”, Phys. Rev. D 85 (2012) 052005,
661
+ arXiv:1112.4432 [hep-ex].
662
+ [9] ALICE Collaboration, J. Adam et al., “Enhanced production of multi-strange hadrons in
663
+ high-multiplicity proton-proton collisions”, Nature Phys. 13 (2017) 535–539,
664
+ arXiv:1606.07424 [nucl-ex].
665
+ [10] ALICE Collaboration, S. Acharya et al., “Λ+
666
+ c production in pp collisions at √𝑠 = 7 TeV and in
667
+ p–Pb collisions at √𝑠NN = 5.02 TeV”, JHEP 04 (2018) 108, arXiv:1712.09581 [nucl-ex].
668
+ [11] ALICE Collaboration, S. Acharya et al., “Λ+
669
+ c Production and Baryon-to-Meson Ratios in pp and
670
+ p–Pb Collisions at √𝑠NN = 5.02 TeV at the LHC”, Phys. Rev. Lett. 127 (2021) 202301,
671
+ arXiv:2011.06078 [nucl-ex].
672
+ [12] ALICE Collaboration, S. Acharya et al., “Measurement of Prompt D0, Λ+
673
+ c, and Σ0,++
674
+ c
675
+ (2455)
676
+ Production in Proton–Proton Collisions at √𝑠 = 13 TeV”, Phys. Rev. Lett. 128 (2022) 012001,
677
+ arXiv:2106.08278 [hep-ex].
678
+ [13] ALICE Collaboration, S. Acharya et al., “Λ+
679
+ c production in pp and in p–Pb collisions at
680
+ √𝑠NN = 5.02 TeV”, Phys. Rev. C 104 (2021) 054905, arXiv:2011.06079 [nucl-ex].
681
+ [14] ALICE Collaboration, S. Acharya et al., “Observation of a multiplicity dependence in the
682
+ 𝑝T-differential charm baryon-to-meson ratios in proton–proton collisions at √𝑠 = 13 TeV”, Phys.
683
+ Lett. B 829 (2022) 137065, arXiv:2111.11948 [nucl-ex].
684
+ [15] ALICE Collaboration, S. Acharya et al., “Charm-quark fragmentation fractions and production
685
+ cross section at midrapidity in pp collisions at the LHC”, Phys. Rev. D 105 (2022) L011103,
686
+ arXiv:2105.06335 [nucl-ex].
687
+ 7
688
+
689
+ In-jet Λ+
690
+ c production in pp collisions at √𝑠 = 13 TeV
691
+ ALICE Collaboration
692
+ [16] ALICE Collaboration, “First measurement of Ω0
693
+ c production in pp collisions at √𝑠 = 13 TeV”,
694
+ arXiv:2205.13993 [nucl-ex].
695
+ [17] ALICE Collaboration, S. Acharya et al., “First measurement of Ξ0
696
+ c production in pp collisions at
697
+ √𝑠 = 7 TeV”, Phys. Lett. B 781 (2018) 8–19, arXiv:1712.04242 [hep-ex].
698
+ [18] ALICE Collaboration, S. Acharya et al., “Measurement of the Cross Sections of 𝛯0
699
+ 𝑐 and 𝛯+
700
+ 𝑐
701
+ Baryons and of the Branching-Fraction Ratio BR(𝛯0
702
+ 𝑐 → 𝛯−𝑒+𝜈𝑒)/BR(𝛯0
703
+ 𝑐 → 𝛯−𝜋+) in pp
704
+ collisions at 13 TeV”, Phys. Rev. Lett. 127 (2021) 272001, arXiv:2105.05187 [nucl-ex].
705
+ [19] P. Skands, S. Carrazza, and J. Rojo, “Tuning PYTHIA 8.1: the Monash 2013 Tune”, Eur. Phys. J.
706
+ C 74 (2014) 3024, arXiv:1404.5630 [hep-ph].
707
+ [20] T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, Comput. Phys. Commun. 191 (2015)
708
+ 159–177, arXiv:1410.3012 [hep-ph].
709
+ [21] M. Bahr et al., “Herwig++ Physics and Manual”, Eur. Phys. J. C 58 (2008) 639–707,
710
+ arXiv:0803.0883 [hep-ph].
711
+ [22] J. R. Christiansen and P. Z. Skands, “String Formation Beyond Leading Colour”, JHEP 08 (2015)
712
+ 003, arXiv:1505.01681 [hep-ph].
713
+ [23] ALICE Collaboration, K. Aamodt et al., “The ALICE experiment at the CERN LHC”, JINST 3
714
+ (2008) S08002.
715
+ [24] ALICE Collaboration, B. B. Abelev et al., “Performance of the ALICE Experiment at the CERN
716
+ LHC”, Int. J. Mod. Phys. A 29 (2014) 1430044, arXiv:1402.4476 [nucl-ex].
717
+ [25] ALICE Collaboration, S. Acharya et al., “ALICE 2016-2017-2018 luminosity determination for
718
+ pp collisions at √𝑠 = 13 TeV”,. https://cds.cern.ch/record/2776672.
719
+ [26] Particle Data Group Collaboration, P. Zyla et al., “Review of Particle Physics”, PTEP 2020
720
+ (2020) 083C01.
721
+ [27] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system”, in Proceedings of the 22nd
722
+ ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16,
723
+ pp. 785–794. ACM, 2016. arXiv:1603.02754 [cs.LG].
724
+ [28] R. Brun, F. Bruyant, M. Maire, A. C. McPherson, and P. Zanarini, GEANT 3 : user’s guide Geant
725
+ 3.10, Geant 3.11; rev. version. CERN, Geneva, 1987.
726
+ https://cds.cern.ch/record/1119728.
727
+ [29] M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual”, Eur. Phys. J. C 72 (2012) 1896,
728
+ arXiv:1111.6097 [hep-ph].
729
+ [30] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-𝑘t jet clustering algorithm”, JHEP 04 (2008)
730
+ 063, arXiv:0802.1189 [hep-ph].
731
+ [31] M. Cacciari, G. P. Salam, and G. Soyez, “The Catchment Area of Jets”, JHEP 04 (2008) 005,
732
+ arXiv:0802.1188 [hep-ph].
733
+ [32] K. C. Han, R. J. Fries, and C. M. Ko, “Jet Fragmentation via Recombination of Parton Showers”,
734
+ Phys. Rev. C 93 (2016) 045207, arXiv:1601.00708 [nucl-th].
735
+ [33] S. Alioli, P. Nason, C. Oleari, and E. Re, “A general framework for implementing NLO
736
+ calculations in shower Monte Carlo programs: the POWHEG BOX”, JHEP 06 (2010) 043,
737
+ arXiv:1002.2581 [hep-ph].
738
+ 8
739
+
740
+ In-jet Λ+
741
+ c production in pp collisions at √𝑠 = 13 TeV
742
+ ALICE Collaboration
743
+ [34] T. Sjöstrand, S. Mrenna, and P. Z. Skands, “PYTHIA 6.4 Physics and Manual”, JHEP 05 (2006)
744
+ 026, arXiv:hep-ph/0603175.
745
+ [35] D. J. Lange, “The EvtGen particle decay simulation package”, Nuclear Instruments and Methods
746
+ in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
747
+ 462 (2001) 152–155.
748
+ [36] G. D’Agostini, “A multidimensional unfolding method based on Bayes’ theorem”, Nucl. Instrum.
749
+ Meth. A 362 (1995) 487–498.
750
+ [37] M. Cacciari, P. Nason, and R. Vogt, “QCD predictions for charm and bottom production at RHIC”,
751
+ Phys. Rev. Lett. 95 (2005) 122001, arXiv:hep-ph/0502203.
752
+ [38] CMS Collaboration, A. M. Sirunyan et al., “Production of Λ+
753
+ c baryons in proton-proton and
754
+ lead-lead collisions at √𝑠NN = 5.02 TeV”, Phys. Lett. B 803 (2020) 135328, arXiv:1906.03322
755
+ [hep-ex].
756
+ 9
757
+
9dFST4oBgHgl3EQfbDi0/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,456 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf,len=455
2
+ page_content='EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN-EP-2023-005 23 January 2023 © 2023 CERN for the benefit of the ALICE Collaboration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
3
+ page_content=' Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
4
+ page_content='0 license.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
5
+ page_content=' Exploring the non-universality of charm hadronisation through the measurement of the fraction of jet longitudinal momentum carried by Λ+ c baryons in pp collisions ALICE Collaboration Abstract Recent measurements of charm-baryon production in hadronic collisions have questioned the univer- sality of charm-quark fragmentation across different collision systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
6
+ page_content=' In this work the fragmentation of charm quarks into charm baryons is probed, by presenting the first measurement of the longitudinal jet momentum fraction carried by Λ+ c baryons, 𝑧ch || , in hadronic collisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
7
+ page_content=' The results are obtained in proton–proton (pp) collisions at √𝑠 = 13 TeV at the LHC, with Λ+ c baryons and track-based jets reconstructed in the transverse momentum intervals of 3 ≤ 𝑝Λ+ c T < 15 GeV/𝑐 and 7 ≤ 𝑝jet ch T < 15 GeV/𝑐, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
8
+ page_content=' The 𝑧ch || distribution is compared to a measurement of D0-tagged charged jets in pp collisions as well as to PYTHIA 8 simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
9
+ page_content=' The data hints that the fragmentation of charm quarks into charm baryons is softer with respect to charm mesons, as predicted by hadronisation models which include colour correlations beyond leading-colour in the string formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
10
+ page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
11
+ page_content='13798v1 [nucl-ex] 31 Jan 2023 ALICEIn-jet Λ+ c production in pp collisions at √𝑠 = 13 TeV ALICE Collaboration Heavy-flavour hadrons are produced in high-energy particle collisions through the fragmentation of heavy (charm and beauty) quarks, which typically originate in hard scattering processes in the early stages of the collisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
12
+ page_content=' The most common theoretical approach to describe heavy-flavour production in hadronic collisions is based on the quantum chromodynamics (QCD) factorisation approach [1], and consists of a convolution of three independent terms: the parton distribution functions of the incoming hadrons, the cross sections of the partonic scattering producing the heavy quarks, and the fragmentation functions that parametrise the evolution of a heavy quark into given species of heavy-flavour hadrons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
13
+ page_content=' As the transition of quarks to hadrons cannot be described in perturbation theory, the fragmentation functions cannot be calculated and must be extracted from data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
14
+ page_content=' Fragmentation functions of charm quarks to charm baryons and mesons have been constrained in e+e− and e−p collisions [2–5], using a variety of different observables, such as the hadron momentum as a fraction of its maximum possible momentum, as dictated by the centre-of-mass energy of the collision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
15
+ page_content=' Another method to probe the fragmentation of quarks to hadrons is to parametrise the hadron momentum in relation to the momentum of jets, which are collimated bunches of hadrons giving experimental access to the properties of the scattered quark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
16
+ page_content=' Recently, the production of charm mesons in jets, probed via the fractional longitudinal momentum of the jet carried by the D meson, was measured in pp collisions at the Large Hadron Collider (LHC) [6–8] and appears consistent with Monte Carlo (MC) simulations tuned on e+e− data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
17
+ page_content=' These measurements support the assumption of fragmentation universality across collision systems in the charm-meson sector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
18
+ page_content=' This assumption underpins theoretical calculations describing the production of heavy-flavour hadrons in hadronic collisions, which make use of fragmentation functions tuned on e+e− and e−p data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
19
+ page_content=' Measurements of the production cross sections of baryons in pp collisions have questioned the hypothesis of fragmentation universality across collision systems [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
20
+ page_content=' In the charm sector,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
21
+ page_content=' which provides a clean probe of hadronisation phenomena due to the large mass of the charm quark,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
22
+ page_content=' recent measurements performed by the ALICE Collaboration [10–18] in pp collisions have shown that the ratio of the Λ+ c (and other charm baryons) and D0 production cross sections measured at low 𝑝T (≲ 12 GeV/𝑐) is significantly larger than the value expected from MC simulations in which the charm fragmentation is tuned on e+e− and e−p measurements,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
23
+ page_content=' such as PYTHIA 8 [19] with the Monash tune [20] or HERWIG 7 [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
24
+ page_content=' A recent measurement of the Λ+ c/D0 ratio in pp collisions, performed by the ALICE Collaboration in intervals of charged-particle multiplicity, also points to a substantial increase of the Λ+ c/D0 ratio with increasing multiplicity, with respect to e+e− collisions, starting at very low multiplicities [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
25
+ page_content=' The study of charm-baryon production in jets can provide more differential insights into hadronisation mechanisms in pp collisions, compared to 𝑝T-differential cross sections and yield ratios of heavy-flavour hadrons, allowing for a more accurate study of the dynamical properties of baryon production.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
26
+ page_content=' In this letter, the first measurement of the longitudinal momentum fraction of the jet carried by Λ+ c baryons, 𝑧ch || , is presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
27
+ page_content=' The measurement is performed in pp collisions at √𝑠 = 13 TeV in the interval 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
28
+ page_content='4 ≤ 𝑧ch || ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
29
+ page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
30
+ page_content=' The 𝑧ch || distribution, fully corrected to particle level, is presented for prompt (charm-quark initiated) Λ+ c-tagged jets with 7 ≤ 𝑝jet ch T < 15 GeV/𝑐 and 3 ≤ 𝑝Λ+ c T < 15 GeV/𝑐.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
31
+ page_content=' The results are then compared to PYTHIA 8 simulations [19, 22], including a version where mechanisms beyond the leading-colour approximation are considered in string formation processes during hadronisation [20], and to an analogous measurement of the 𝑧ch || distribution of D0 mesons, performed by the ALICE Collaboration [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
32
+ page_content=' A full description of the ALICE setup and apparatus can be found in Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
33
+ page_content=' 23, 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
34
+ page_content=' The main detectors used in this analysis are the Inner Tracking System (ITS), which is used for vertex reconstruction and tracking;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
35
+ page_content=' the Time Projection Chamber (TPC), which is used for tracking and particle identification (PID);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
36
+ page_content=' and the Time-Of-Flight (TOF) detector, which is used for PID.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
37
+ page_content=' These detectors cover a pseudorapidity interval of |𝜂| < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
38
+ page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
39
+ page_content=' The analysis was performed on pp collisions at √𝑠 = 13 TeV, collected using a minimum-bias (MB) trigger during the years 2016, 2017, and 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
40
+ page_content=' The trigger condition required 2 In-jet Λ+ c production in pp collisions at √𝑠 = 13 TeV ALICE Collaboration coincident signals in the two scintillator arrays of the V0 detector, with background events originating from beam–gas interactions removed offline using timing information from the V0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
41
+ page_content=' To mitigate against pile-up effects, events with multiple reconstructed primary vertices were rejected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
42
+ page_content=' To ensure uniform acceptance, only events with a primary-vertex position along the beam axis direction of |𝑧vtx| < 10 cm around the nominal interaction point were accepted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
43
+ page_content=' After the selections described above, the data sample consisted of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
44
+ page_content='7×109 events, corresponding to an integrated luminosity of Lint = 29 nb−1 [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
45
+ page_content=' The Λ+ c candidates and their charge conjugates were reconstructed via the hadronic Λ+ c → pK0 S → pπ+π− decay channel with a total branching ratio of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
46
+ page_content='10 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
47
+ page_content='06)% [26], in the Λ+ c transverse-momentum interval of 3 ≤ 𝑝Λ+ c T < 15 GeV/𝑐.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
48
+ page_content=' Only tracks with |𝜂| < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
49
+ page_content='8 and 𝑝T > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
50
+ page_content='4 GeV/𝑐, which fulfilled the track quality selections described in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
51
+ page_content=' 13, were considered for the Λ+ c reconstruction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
52
+ page_content=' The Λ+ c candidates themselves were reconstructed in the |𝑦Λ+c | < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
53
+ page_content='8 rapidity interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
54
+ page_content=' The Λ+ c-candidate selection was performed using a multivariate technique based on the Boosted Decision Tree (BDT) algorithm provided by the XGBoost package [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
55
+ page_content=' The features considered in the optimisation include the PID signal for the proton track, the invariant mass of the K0 S-meson candidate, and topological variables that exploit the kinematic properties of the displaced K0 S-meson decay vertex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
56
+ page_content=' The training was performed in intervals of Λ+ c-candidate 𝑝T, considering prompt signal candidates from PYTHIA 8 events with the Monash tune [19, 20], transported through a realistic description of the detector geometry and material budget using GEANT 3 [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
57
+ page_content=' Background candidates were extracted from the sidebands of the invariant-mass distributions in data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
58
+ page_content=' The probability thresholds of the BDT selections were tuned, using MC simulations, to maximise the statistical significance for the signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
59
+ page_content=' Further details on the Λ+ c-candidate reconstruction and machine learning procedure are provided in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
60
+ page_content=' 14, where the same reconstruction and BDT model were employed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
61
+ page_content=' For the events where at least one selected Λ+ c candidate was identified, a jet-finding procedure was performed, using the FastJet package [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
62
+ page_content=' Prior to jet clustering, the Λ+ c-candidate daughter tracks were replaced by the reconstructed Λ+ c-candidate four-momentum vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
63
+ page_content=' Track-based jet finding was carried out on charged tracks with |𝜂| < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
64
+ page_content='9 and 𝑝T > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
65
+ page_content='15 GeV/𝑐, using the anti-𝑘T algorithm [30], with a resolution parameter of 𝑅 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
66
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
67
+ page_content=' Tracks were combined using the 𝐸-scheme recombination [31], with the jet transverse momentum limited to the interval of 5 ≤ 𝑝jet ch T < 35 GeV/𝑐.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
68
+ page_content=' The full jet cone was required to be within the ALICE central barrel acceptance, limiting the jet axis to the interval |𝜂jet| < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
69
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
70
+ page_content=' Only jets tagged via the presence of a reconstructed Λ+ c candidate amongst their constituents were considered for the analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
71
+ page_content=' For events where more than one Λ+ c candidate was found, the jet finding and tagging pass was performed independently for each candidate, with only the daughters of that particular candidate replaced by the corresponding Λ+ c four-vector each time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
72
+ page_content=' In mechanisms of hadronisation that include colour correlations beyond the leading-colour approximation [20], which have been shown to be relevant in hadronic collisions at LHC energies [9], hadrons can be formed in processes that combine quarks from the parton shower with those from the underlying event [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
73
+ page_content=' As such, the underlying event is not well defined with respect to the measured hadron distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
74
+ page_content=' Therefore no underlying event correction is implemented in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
75
+ page_content=' The fragmentation of charm quarks to Λ+ c baryons is probed by measuring the fraction of the jet momentum carried by the Λ+ c along the direction of the jet axis, 𝑧ch || .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
76
+ page_content=' This is calculated for each jet using 𝑧ch || = 𝒑jet · 𝒑Λ+c 𝒑jet · 𝒑jet , (1) where 𝒑jet and 𝒑Λ+c are the jet and Λ+ c three-momentum vectors, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
77
+ page_content=' The 𝑧ch || distributions of true Λ+ c-tagged jets were extracted in intervals of Λ+ c 𝑝T and 𝑝jet ch T using a sideband subtraction procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
78
+ page_content=' To enact this subtraction, the invariant-mass (𝑚inv) distributions of Λ+ c candidates, obtained for each Λ+ c 𝑝T and 𝑝jet ch T interval, were fitted with a function comprising a Gaussian for the signal 3 In-jet Λ+ c production in pp collisions at √𝑠 = 13 TeV ALICE Collaboration and an exponential for the background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
79
+ page_content=' The fit parameters were then used to define signal (containing the majority of true signal candidates) and sideband (entirely composed of background candidates) regions, defined by |𝑚inv − 𝜇fit| < 2𝜎fit and 4𝜎fit < |𝑚inv − 𝜇fit| < 9𝜎fit, respectively, where 𝜇fit and 𝜎fit represent the mean and sigma of the fitted Gaussian distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
80
+ page_content=' The 𝑧ch || (𝑝Λ+ c T ,𝑝jet ch T ) distributions were extracted in the signal and sideband regions, with the sideband distribution scaled by the ratio of the background function integrals in the signal and sideband regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
81
+ page_content=' The sideband distribution was then subtracted from the signal one, with the resulting distribution scaled to account for the fact that the 2𝜎fit width of the signal region only encompasses approximately 95% of the total signal, to obtain the sideband subtracted 𝑧ch || yield in each 𝑝Λ+ c T and 𝑝jet ch T interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
82
+ page_content=' To account for the reconstruction and selection efficiency of the Λ+ c-tagged jet signal,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
83
+ page_content=' the sideband subtracted 𝑧ch || distributions in each 𝑝Λ+ c T and 𝑝jet ch T interval,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
84
+ page_content=' 𝑁(𝑧ch || ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
85
+ page_content=' 𝑝Λ+ c T ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
86
+ page_content=' 𝑝jet ch T ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
87
+ page_content=' were scaled by the recon- struction efficiency of prompt Λ+ c-tagged jets,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
88
+ page_content=' 𝜖prompt,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
89
+ page_content=' and summed over the entire 𝑝Λ+ c T interval to obtain the efficiency-corrected 𝑧ch || yield of Λ+ c-tagged jets,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
90
+ page_content=' 𝑁corr(𝑧ch || ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
91
+ page_content=' 𝑝jet ch T ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
92
+ page_content=' given by 𝑁corr(𝑧ch || ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
93
+ page_content=' 𝑝jet ch T ) = ∑︁ 𝑝Λ+c T 𝑁(𝑧ch || ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
94
+ page_content=' 𝑝Λ+ c T ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
95
+ page_content=' 𝑝jet ch T ) 𝜖prompt(𝑝Λ+c T ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
96
+ page_content=' (2) The 𝜖prompt(𝑝Λ+ c T ) efficiency is strongly dependent on 𝑝Λ+ c T , ranging from about 20% at 3 < 𝑝Λ+ c T < 4 GeV/𝑐 to 40% at 12 < 𝑝Λ+ c T < 24 GeV/𝑐, and was calculated using PYTHIA 8 simulations with the Monash tune containing prompt Λ+ c-tagged jets, transported through the detector using GEANT 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
97
+ page_content=' This efficiency does not exhibit a 𝑝jet ch T dependence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
98
+ page_content=' In order to isolate the 𝑁corr(𝑧ch || , 𝑝jet ch T ) distribution of prompt Λ+ c-tagged jets, a feed-down subtraction was employed to remove the non-prompt (beauty-quark initiated) contribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
99
+ page_content=' The non-prompt cross section was obtained from particle level POWHEG [33] + PYTHIA 6 [34] + EvtGen [35] simulations, as a function of 𝑝jet ch T , 𝑝Λ+ c T and 𝑧ch || , and was scaled according to the integrated luminosity of the analysed data sample and the branching ratio of the Λ+ c → pK0 S → pπ+π− decay channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
100
+ page_content=' The resulting particle- level yield was multiplied by the ratio of the non-prompt to prompt Λ+ c-tagged jet reconstruction and selection efficiency in intervals of 𝑝Λ+c T and integrated over the 𝑝Λ+c T range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
101
+ page_content=' The simulated non-prompt results were then folded to reconstructed level, using a four-dimensional response matrix generated using non-prompt Λ+ c-tagged jets in PYTHIA 8 with the Monash tune, transported through a simulation of the ALICE detector using GEANT 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
102
+ page_content=' The response matrix was constructed as a function of 𝑝jet ch T and 𝑧ch || at generator and reconstruction levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
103
+ page_content=' The folded results were then subtracted from the measured 𝑁corr(𝑧ch || , 𝑝jet ch T ) distribution in data, removing the non-prompt contribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
104
+ page_content=' The estimated fraction of Λ+ c-tagged jets coming from b-quark fragmentation is found to be about 5%, with no significant 𝑧ch || dependence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
105
+ page_content=' A two-dimensional Bayesian unfolding procedure [36] was performed to correct for detector effects and obtain the 𝑧ch || distribution for prompt Λ+ c-tagged jets at particle level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
106
+ page_content=' A four-dimensional response matrix as a function of 𝑝jet ch T and 𝑧ch || , at generator and reconstruction levels, was populated with prompt Λ+ c-tagged jets, obtained with PYTHIA 8 simulations with the Monash tune, passed through a simulation of the ALICE detector using GEANT 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
107
+ page_content=' The measured data and response matrix were provided in the intervals of 5 ≤ 𝑝jet ch T < 35 GeV/𝑐 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
108
+ page_content='4 ≤ 𝑧ch || ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
109
+ page_content='0, with the final unfolded results reported in the intervals 7 ≤ 𝑝jet ch T < 15 GeV/𝑐 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
110
+ page_content='4 ≤ 𝑧ch || ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
111
+ page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
112
+ page_content=' Corrections accounting for migrating entries in and out of the response matrix ranges, as modelled by the same MC simulation, were also applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
113
+ page_content=' The corrected 𝑧ch || distribution is normalised to the total number of Λ+ c-tagged jets in the reported 𝑧ch || and 𝑝jet ch T interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
114
+ page_content=' 4 In-jet Λ+ c production in pp collisions at √𝑠 = 13 TeV ALICE Collaboration 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
115
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
116
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
117
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
118
+ page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
119
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
120
+ page_content='9 1 ch z 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
121
+ page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
122
+ page_content='5 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
123
+ page_content='5 4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
124
+ page_content='5 ch z /d N ) d jet N (1/ tagged jets + c Λ data Monash CR-BLC Mode 2 PYTHIA 8: = 13 TeV s , pp, ALICE = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
125
+ page_content='4 R , T k charged jets, anti- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
126
+ page_content='5 ≤ jet η , c < 15 GeV/ jet ch T p ≤ 7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
127
+ page_content='8 ≤ + c Λ y , c < 15 GeV/ + c Λ T p ≤ 3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
128
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
129
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
130
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
131
+ page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
132
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
133
+ page_content='9 1 ch z 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
134
+ page_content='5 2 MC/data 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
135
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
136
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
137
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
138
+ page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
139
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
140
+ page_content='9 1 ch z 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
141
+ page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
142
+ page_content='5 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
143
+ page_content='5 4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
144
+ page_content='5 5 ch z /d N ) d jet N (1/ tagged jets + c Λ tagged jets 0 D = 13 TeV s , pp, ALICE = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
145
+ page_content='4 R , T k charged jets, anti- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
146
+ page_content='5 ≤ jet η , c < 15 GeV/ jet ch T p ≤ 7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
147
+ page_content='8 ≤ h y , c < 15 GeV/ h T p ≤ 3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
148
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
149
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
150
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
151
+ page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
152
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
153
+ page_content='9 1 ch z 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
154
+ page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
155
+ page_content='5 2 0 /D + c Λ data PYTHIA 8 Monash PYTHIA 8 CR-BLC Mode 2 Figure 1: (Left) Fully corrected 𝑧ch || distribution of Λ+ c-tagged track-based jets (black open circles) measured in the 7 ≤ 𝑝jet ch T < 15 GeV/𝑐 and 3 ≤ 𝑝Λ+ c T < 15 GeV/𝑐 intervals in pp collisions at √𝑠 = 13 TeV, compared with predictions from different PYTHIA 8 tunes [19, 20, 22] (red-dotted and green-dashed lines).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
156
+ page_content=' The ratios of the MC simulations to the data are shown in the bottom panel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
157
+ page_content=' (Right) Comparison of the measured 𝑧ch || distribution of Λ+ c-tagged jets and the previously measured 𝑧ch || distribution of D0-tagged jets [6], obtained in the same kinematic interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
158
+ page_content=' The ratio of the 𝑧ch || distribution of Λ+ c-tagged and D0-tagged jets is shown in the bottom panel for both the data and the different PYTHIA tunes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
159
+ page_content=' The systematic uncertainties affecting the measurement were evaluated, in each 𝑧ch || interval, by modifying the strategy adopted at various steps of the analysis procedure and assessing the impact on the unfolded 𝑧ch || distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
160
+ page_content=' The total systematic uncertainty includes contributions from multiple sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
161
+ page_content=' The first considered source is the sideband subtraction procedure (ranging from 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
162
+ page_content='7% to 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
163
+ page_content='6% depending on the 𝑧ch || inteval), whose contribution was estimated by varying the invariant-mass fit parameters as well as the invariant-mass intervals of the signal and sideband regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
164
+ page_content=' The contribution from the BDT selection of Λ+ c candidates (from 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
165
+ page_content='3% to 19%) was estimated by varying the BDT probability thresholds to induce a 25% variation in the Λ+ c-tagged jet reconstruction and selection efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
166
+ page_content=' The uncertainty from the jet energy resolution (from 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
167
+ page_content='5% to 19%) was estimated by recalculating the response matrix used for unfolding with a 4% reduced tracking efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
168
+ page_content=' The reduction in the tracking efficiency was evaluated by varying the track-selection criteria and propagating the ITS–TPC track-matching efficiency uncertainty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
169
+ page_content=' The uncertainty on the feed-down subtraction (< 2%) was estimated by varying the choice of POWHEG parameters considered to generate the feed-down cross section, including the factorisation and renormalisation scales, as well as the mass of the beauty quark, which were varied according to theoretical prescriptions [37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
170
+ page_content=' Finally the contribution from the unfolding procedure (from 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
171
+ page_content='1% to 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
172
+ page_content='7%) was estimated by altering the choice of prior, regularisation parameter, and ranges of the response matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
173
+ page_content=' For each of the aforementioned categories, several variations were made and the root-mean-square of the resulting distributions was considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
174
+ page_content=' The exceptions are related to the contribution associated to the choice of parameters of the POWHEG calculations, where only the largest deviation from the central result, in each direction, was considered, as well as the uncertainty on the jet energy resolution where the variation with respect to the central result was taken as the uncertainty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
175
+ page_content=' All uncertainties (other than from the feed-down subtraction) were then symmetrised.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
176
+ page_content=' The uncertainties were combined in quadrature to obtain the total systematic uncertainty on the measurement, which ranges from 13% to 28%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
177
+ page_content=' 5 In-jet Λ+ c production in pp collisions at √𝑠 = 13 TeV ALICE Collaboration The fully corrected 𝑧ch || distribution of prompt Λ+ c-tagged track-based jets in the intervals of 7 ≤ 𝑝jet ch T < 15 GeV/𝑐 and 3 ≤ 𝑝Λ+ c T < 15 GeV/𝑐 is presented in the left-hand panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
178
+ page_content=' 1 and compared to PYTHIA 8 simulations with two different tunes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
179
+ page_content=' In PYTHIA 8 the Lund string model of fragmentation is employed, where endpoints are confined by linear potentials encoded in strings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
180
+ page_content=' For the case of heavy quarks, the Lund fragmentation function is modified to account for the slower propagation of the massive endpoints compared to their massless counterparts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
181
+ page_content=' The Monash tune (red-dotted line) [19], in which the charm fragmentation is tuned on e+e− measurements, predicts a harder fragmentation than the measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
182
+ page_content=' An evaluation of the 𝜒2/ndf between the measured data points and the model was performed, combining the statistical and systematic uncertainties on the data in quadrature and assuming the uncertainties are uncorrelated across the 𝑧ch || intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
183
+ page_content=' This exercise determines that there is a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
184
+ page_content='4% probability that the model describes the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
185
+ page_content=' A better agreement is achieved by the PYTHIA 8 with the CR-BLC Mode 2 tune, that includes colour reconnection mechanisms beyond the leading-colour approximation [22] (green- dashed line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
186
+ page_content=' In this model, the minimisation of the string potential is implemented considering the SU(3) multiplet structure of QCD in a more realistic way than in the leading-colour approximation, allowing for the formation of “baryonic” configurations where for example two colours can combine coherently to form an anti-colour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
187
+ page_content=' The same 𝜒2/ndf approach results in a 78% probability that the model describes the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
188
+ page_content=' The simulation with PYTHIA 8 with the CR-BLC Mode 2 tune also provides a much more accurate description of the Λ+ c/D0 cross section ratio, previously measured in pp collisions at the LHC [10–14, 38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
189
+ page_content=' In the right-hand panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
190
+ page_content=' 1, a comparison of the 𝑧ch || distribution of Λ+ c-tagged jets and the 𝑧ch || distri- bution previously measured for D0-tagged jets [6] is presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
191
+ page_content=' The latter is consistent with PYTHIA 8 simulations using both the Monash and CR-BLC Mode 2 tunes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
192
+ page_content=' The ratio of the two distributions is also presented in the bottom panel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
193
+ page_content=' The uncertainty from the jet energy resolution was considered to be correlated between the Λ+ c-tagged jet and D0-tagged jet measurements and was evaluated directly on the ratio of the distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
194
+ page_content=' The remaining uncertainties were considered uncorrelated when taking the ratio and were then combined in quadrature with the uncertainty of the jet energy resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
195
+ page_content=' The uncertainties were considered uncorrelated across the 𝑧ch || intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
196
+ page_content=' The same 𝜒2/ndf exercise described above determines that there is a 12% probability that the measured ratio is described by a flat distribution at unity, hinting at a softer fragmentation of charm quarks into charm baryons than charm mesons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
197
+ page_content=' The ratio is better described by the PYTHIA 8 simulations with the CR-BLC Mode 2 compared to the ones with the Monash tune, with the former describing the data with 88% probability compared to a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
198
+ page_content='03% probability for the latter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
199
+ page_content=' In summary the first measurement in hadronic collisions of the longitudinal momentum fraction of the jet carried by Λ+ c baryons was presented for pp collisions at √𝑠 = 13 TeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
200
+ page_content=' The result is fully corrected to particle level and obtained in the jet and Λ+ c transverse-momentum intervals of 7 ≤ 𝑝jet ch T < 15 GeV/𝑐 and 3 ≤ 𝑝Λ+c T < 15 GeV/𝑐, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
201
+ page_content=' The measurement presented in this Letter hints that charm quarks have a softer fragmentation into Λ+ c baryons compared to D0 mesons, in the measured kinematic interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
202
+ page_content=' One possible explanation is that charm-baryon production is favoured in the presence of higher particle multiplicity originating from both the jet fragmentation and the underlying event, which could be tested with future measurements of the in-jet multiplicity of Λ+ c-tagged jets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
203
+ page_content=' The fragmentation of charm quarks into Λ+ c baryons in hadronic collisions exhibits tension with simulations tuned on e+e− data that employ a leading-colour formalism of hadronisation, such as in the Monash tune of PYTHIA 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
204
+ page_content=' This occurs despite their successful description of the fragmentation of charm quarks into D0 mesons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
205
+ page_content=' However, the inclusion of mechanisms sensitive to the surrounding partonic density that feature colour reconnection beyond the leading-colour approximation results in a better agreement with data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
206
+ page_content=' This result also partially explains the 𝑝T shape of the prompt Λ+ c/D0 cross section ratio [10–14, 38], which shows a peak at low 𝑝T (≈ 3 GeV/𝑐) and is also described within uncertainties by PYTHIA 8 with the CR-BLC Mode 2 tune.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
207
+ page_content=' The 𝑝T trend of this ratio is driven by the fact that the Λ+ c baryons produced from the fragmenting charm quark carry a significantly lower fraction of the charm-quark transverse momentum than the D0 mesons 6 In-jet Λ+ c production in pp collisions at √𝑠 = 13 TeV ALICE Collaboration produced in a similar way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
208
+ page_content=' References [1] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
209
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
210
+ page_content=' Collins, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
211
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
212
+ page_content=' Soper, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
213
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
214
+ page_content=' Sterman, “Factorization of Hard Processes in QCD”, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
215
+ page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
216
+ page_content=' Direct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
217
+ page_content=' High Energy Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
218
+ page_content=' 5 (1989) 1–91, arXiv:hep-ph/0409313.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
219
+ page_content=' [2] ALEPH Collaboration, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
220
+ page_content=' Barate et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
221
+ page_content=', “Study of charm production in Z decays”, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
222
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
223
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
224
+ page_content=' C 16 (2000) 597–611, arXiv:hep-ex/9909032.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
225
+ page_content=' [3] Belle Collaboration, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
226
+ page_content=' Seuster et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
227
+ page_content=', “Charm hadrons from fragmentation and B decays in e+e− annihilation at √𝑠 = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
228
+ page_content='6 GeV”, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
229
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
230
+ page_content=' D 73 (2006) 032002, arXiv:hep-ex/0506068.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
231
+ page_content=' [4] ZEUS Collaboration, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
232
+ page_content=' Chekanov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
233
+ page_content=', “Measurement of the charm fragmentation function in D* photoproduction at HERA”, JHEP 04 (2009) 082, arXiv:0901.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
234
+ page_content='1210 [hep-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
235
+ page_content=' [5] Belle Collaboration, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
236
+ page_content=' Niiyama et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
237
+ page_content=', “Production cross sections of hyperons and charmed baryons from e+e− annihilation near √𝑠 = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
238
+ page_content='52 GeV”, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
239
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
240
+ page_content=' D 97 (2018) 072005, arXiv:1706.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
241
+ page_content='06791 [hep-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
242
+ page_content=' [6] ALICE Collaboration, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
243
+ page_content=' Acharya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
244
+ page_content=', “Measurement of the production of charm jets tagged with D0 mesons in pp collisions at √𝑠 = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
245
+ page_content='02 and 13 TeV”, arXiv:2204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
246
+ page_content='10167 [nucl-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
247
+ page_content=' [7] ALICE Collaboration, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
248
+ page_content=' Acharya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
249
+ page_content=', “Measurement of the production of charm jets tagged with D0 mesons in pp collisions at √𝑠 = 7 TeV”, JHEP 08 (2019) 133, arXiv:1905.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
250
+ page_content='02510 [nucl-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
251
+ page_content=' [8] ATLAS Collaboration, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
252
+ page_content=' Aad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
253
+ page_content=', “Measurement of D∗± meson production in jets from pp collisions at √𝑠 = 7 TeV with the ATLAS detector”, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
254
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
255
+ page_content=' D 85 (2012) 052005, arXiv:1112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
256
+ page_content='4432 [hep-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
257
+ page_content=' [9] ALICE Collaboration, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
258
+ page_content=' Adam et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
259
+ page_content=', “Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions”, Nature Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
260
+ page_content=' 13 (2017) 535–539, arXiv:1606.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
261
+ page_content='07424 [nucl-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
262
+ page_content=' [10] ALICE Collaboration, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
263
+ page_content=' Acharya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
264
+ page_content=', “Λ+ c production in pp collisions at √𝑠 = 7 TeV and in p–Pb collisions at √𝑠NN = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
265
+ page_content='02 TeV”, JHEP 04 (2018) 108, arXiv:1712.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
266
+ page_content='09581 [nucl-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
267
+ page_content=' [11] ALICE Collaboration, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
268
+ page_content=' Acharya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
269
+ page_content=', “Λ+ c Production and Baryon-to-Meson Ratios in pp and p–Pb Collisions at √𝑠NN = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
270
+ page_content='02 TeV at the LHC”, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
271
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
272
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
273
+ page_content=' 127 (2021) 202301, arXiv:2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
274
+ page_content='06078 [nucl-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
275
+ page_content=' [12] ALICE Collaboration, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
276
+ page_content=' Acharya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
277
+ page_content=', “Measurement of Prompt D0, Λ+ c, and Σ0,++ c (2455) Production in Proton–Proton Collisions at √𝑠 = 13 TeV”, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
278
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
279
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
280
+ page_content=' 128 (2022) 012001, arXiv:2106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
281
+ page_content='08278 [hep-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
282
+ page_content=' [13] ALICE Collaboration, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
283
+ page_content=' Acharya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
284
+ page_content=', “Λ+ c production in pp and in p–Pb collisions at √𝑠NN = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
285
+ page_content='02 TeV”, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
286
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
287
+ page_content=' C 104 (2021) 054905, arXiv:2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
288
+ page_content='06079 [nucl-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
289
+ page_content=' [14] ALICE Collaboration, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
290
+ page_content=' Acharya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
291
+ page_content=', “Observation of a multiplicity dependence in the 𝑝T-differential charm baryon-to-meson ratios in proton–proton collisions at √𝑠 = 13 TeV”, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
292
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
293
+ page_content=' B 829 (2022) 137065, arXiv:2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
294
+ page_content='11948 [nucl-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
295
+ page_content=' [15] ALICE Collaboration, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
296
+ page_content=' Acharya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
297
+ page_content=', “Charm-quark fragmentation fractions and production cross section at midrapidity in pp collisions at the LHC”, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
298
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
299
+ page_content=' D 105 (2022) L011103, arXiv:2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
300
+ page_content='06335 [nucl-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
301
+ page_content=' 7 In-jet Λ+ c production in pp collisions at √𝑠 = 13 TeV ALICE Collaboration [16] ALICE Collaboration, “First measurement of Ω0 c production in pp collisions at √𝑠 = 13 TeV”, arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
302
+ page_content='13993 [nucl-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
303
+ page_content=' [17] ALICE Collaboration, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
304
+ page_content=' Acharya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
305
+ page_content=', “First measurement of Ξ0 c production in pp collisions at √𝑠 = 7 TeV”, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
306
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
307
+ page_content=' B 781 (2018) 8–19, arXiv:1712.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
308
+ page_content='04242 [hep-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
309
+ page_content=' [18] ALICE Collaboration, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
310
+ page_content=' Acharya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
311
+ page_content=', “Measurement of the Cross Sections of 𝛯0 𝑐 and 𝛯+ 𝑐 Baryons and of the Branching-Fraction Ratio BR(𝛯0 𝑐 → 𝛯−𝑒+𝜈𝑒)/BR(𝛯0 𝑐 → 𝛯−𝜋+) in pp collisions at 13 TeV”, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
312
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
313
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
314
+ page_content=' 127 (2021) 272001, arXiv:2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
315
+ page_content='05187 [nucl-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
316
+ page_content=' [19] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
317
+ page_content=' Skands, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
318
+ page_content=' Carrazza, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
319
+ page_content=' Rojo, “Tuning PYTHIA 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
320
+ page_content='1: the Monash 2013 Tune”, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
321
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
322
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
323
+ page_content=' C 74 (2014) 3024, arXiv:1404.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
324
+ page_content='5630 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
325
+ page_content=' [20] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
326
+ page_content=' Sjöstrand et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
327
+ page_content=', “An introduction to PYTHIA 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
328
+ page_content='2”, Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
329
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
330
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
331
+ page_content=' 191 (2015) 159–177, arXiv:1410.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
332
+ page_content='3012 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
333
+ page_content=' [21] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
334
+ page_content=' Bahr et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
335
+ page_content=', “Herwig++ Physics and Manual”, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
336
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
337
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
338
+ page_content=' C 58 (2008) 639–707, arXiv:0803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
339
+ page_content='0883 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
340
+ page_content=' [22] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
341
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
342
+ page_content=' Christiansen and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
343
+ page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
344
+ page_content=' Skands, “String Formation Beyond Leading Colour”, JHEP 08 (2015) 003, arXiv:1505.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
345
+ page_content='01681 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
346
+ page_content=' [23] ALICE Collaboration, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
347
+ page_content=' Aamodt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
348
+ page_content=', “The ALICE experiment at the CERN LHC”, JINST 3 (2008) S08002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
349
+ page_content=' [24] ALICE Collaboration, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
350
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
351
+ page_content=' Abelev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
352
+ page_content=', “Performance of the ALICE Experiment at the CERN LHC”, Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
353
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
354
+ page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
355
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
356
+ page_content=' A 29 (2014) 1430044, arXiv:1402.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
357
+ page_content='4476 [nucl-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
358
+ page_content=' [25] ALICE Collaboration, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
359
+ page_content=' Acharya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
360
+ page_content=', “ALICE 2016-2017-2018 luminosity determination for pp collisions at √𝑠 = 13 TeV”,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
361
+ page_content=' https://cds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
362
+ page_content='cern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
363
+ page_content='ch/record/2776672.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
364
+ page_content=' [26] Particle Data Group Collaboration, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
365
+ page_content=' Zyla et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
366
+ page_content=', “Review of Particle Physics”, PTEP 2020 (2020) 083C01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
367
+ page_content=' [27] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
368
+ page_content=' Chen and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
369
+ page_content=' Guestrin, “XGBoost: A scalable tree boosting system”, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
370
+ page_content=' 785–794.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
371
+ page_content=' ACM, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
372
+ page_content=' arXiv:1603.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
373
+ page_content='02754 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
374
+ page_content='LG].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
375
+ page_content=' [28] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
376
+ page_content=' Brun, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
377
+ page_content=' Bruyant, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
378
+ page_content=' Maire, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
379
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
380
+ page_content=' McPherson, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
381
+ page_content=' Zanarini, GEANT 3 : user’s guide Geant 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
382
+ page_content='10, Geant 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
383
+ page_content='11;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
384
+ page_content=' rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
385
+ page_content=' version.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
386
+ page_content=' CERN, Geneva, 1987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
387
+ page_content=' https://cds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
388
+ page_content='cern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
389
+ page_content='ch/record/1119728.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
390
+ page_content=' [29] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
391
+ page_content=' Cacciari, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
392
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
393
+ page_content=' Salam, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
394
+ page_content=' Soyez, “FastJet user manual”, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
395
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
396
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
397
+ page_content=' C 72 (2012) 1896, arXiv:1111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
398
+ page_content='6097 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
399
+ page_content=' [30] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
400
+ page_content=' Cacciari, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
401
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
402
+ page_content=' Salam, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
403
+ page_content=' Soyez, “The anti-𝑘t jet clustering algorithm”, JHEP 04 (2008) 063, arXiv:0802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
404
+ page_content='1189 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
405
+ page_content=' [31] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
406
+ page_content=' Cacciari, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
407
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
408
+ page_content=' Salam, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
409
+ page_content=' Soyez, “The Catchment Area of Jets”, JHEP 04 (2008) 005, arXiv:0802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
410
+ page_content='1188 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
411
+ page_content=' [32] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
412
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
413
+ page_content=' Han, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
414
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
415
+ page_content=' Fries, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
416
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
417
+ page_content=' Ko, “Jet Fragmentation via Recombination of Parton Showers”, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
418
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
419
+ page_content=' C 93 (2016) 045207, arXiv:1601.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
420
+ page_content='00708 [nucl-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
421
+ page_content=' [33] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
422
+ page_content=' Alioli, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
423
+ page_content=' Nason, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
424
+ page_content=' Oleari, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
425
+ page_content=' Re, “A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX”, JHEP 06 (2010) 043, arXiv:1002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
426
+ page_content='2581 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
427
+ page_content=' 8 In-jet Λ+ c production in pp collisions at √𝑠 = 13 TeV ALICE Collaboration [34] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
428
+ page_content=' Sjöstrand, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
429
+ page_content=' Mrenna, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
430
+ page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
431
+ page_content=' Skands, “PYTHIA 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
432
+ page_content='4 Physics and Manual”, JHEP 05 (2006) 026, arXiv:hep-ph/0603175.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
433
+ page_content=' [35] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
434
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
435
+ page_content=' Lange, “The EvtGen particle decay simulation package”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 462 (2001) 152–155.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
436
+ page_content=' [36] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
437
+ page_content=' D’Agostini, “A multidimensional unfolding method based on Bayes’ theorem”, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
438
+ page_content=' Instrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
439
+ page_content=' Meth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
440
+ page_content=' A 362 (1995) 487–498.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
441
+ page_content=' [37] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
442
+ page_content=' Cacciari, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
443
+ page_content=' Nason, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
444
+ page_content=' Vogt, “QCD predictions for charm and bottom production at RHIC”, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
445
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
446
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
447
+ page_content=' 95 (2005) 122001, arXiv:hep-ph/0502203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
448
+ page_content=' [38] CMS Collaboration, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
449
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
450
+ page_content=' Sirunyan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
451
+ page_content=', “Production of Λ+ c baryons in proton-proton and lead-lead collisions at √𝑠NN = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
452
+ page_content='02 TeV”, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
453
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
454
+ page_content=' B 803 (2020) 135328, arXiv:1906.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
455
+ page_content='03322 [hep-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
456
+ page_content=' 9' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFST4oBgHgl3EQfbDi0/content/2301.13798v1.pdf'}
9tFQT4oBgHgl3EQf6DZi/content/tmp_files/2301.13437v1.pdf.txt ADDED
@@ -0,0 +1,2112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Astronomy & Astrophysics manuscript no. aanda
2
+ ©ESO 2023
3
+ February 1, 2023
4
+ KiDS-1000: cross-correlation with Planck cosmic microwave
5
+ background lensing and intrinsic alignment removal with
6
+ self-calibration
7
+ Ji Yao1, 2, 3⋆ , Huanyuan Shan1⋆⋆ , Pengjie Zhang2, 3, 4⋆⋆⋆, Xiangkun Liu5, Catherine Heymans6, 7, Benjamin
8
+ Joachimi8, Marika Asgari9, Maciej Bilicki10, Hendrik Hildebrandt6, Konrad Kuijken11, Tilman Tröster6, Jan Luca van
9
+ den Busch8, 12, Angus Wright7, and Ziang Yan7
10
+ 1 Shanghai Astronomical Observatory (SHAO), Nandan Road 80, Shanghai 200030, China
11
+ 2 Department of Astronomy, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
12
+ 3 Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai 200240, China
13
+ 4 Tsung-Dao Lee Institute, Shanghai, 200240, China
14
+ 5 South-Western Institute for Astronomy Research, Yunnan University, Kunming, 650500, China
15
+ 6 Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK
16
+ 7 Ruhr-Universität Bochum, Astronomisches Institut, German Centre for Cosmological Lensing (GCCL), Universitätsstr. 150,
17
+ 44801, Bochum, Germany
18
+ 8 Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
19
+ 9 E.A Milne Centre, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
20
+ 10 Center for Theoretical Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
21
+ 11 Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, the Netherlands
22
+ 12 Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany
23
+ Received January 30, 2023; accepted ?
24
+ ABSTRACT
25
+ Context. Galaxy shear - cosmic microwave background (CMB) lensing convergence cross-correlations contain additional informa-
26
+ tion on cosmology to auto-correlations. While being immune to certain systematic effects, they are affected by the galaxy intrinsic
27
+ alignments (IA). This may be responsible for the reported low lensing amplitude of the galaxy shear × CMB convergence cross-
28
+ correlations, compared to the standard Planck ΛCDM (cosmological constant and cold dark matter) cosmology prediction.
29
+ Aims. In this work, we investigate how IA affects the Kilo-Degree Survey (KiDS) galaxy lensing shear - Planck CMB lensing
30
+ convergence cross-correlation and compare it to previous treatments with or without IA taken into consideration.
31
+ Methods. More specifically, we compare marginalization over IA parameters and the IA self-calibration (SC) method (with additional
32
+ observables defined only from the source galaxies) and prove that SC can efficiently break the degeneracy between the CMB lensing
33
+ amplitude Alens and the IA amplitude AIA. We further investigate how different systematics affect the resulting AIA and Alens, and
34
+ validate our results with the MICE2 simulation.
35
+ Results. We find that by including the SC method to constrain IA, the information loss due to the degeneracy between CMB lensing
36
+ and IA is strongly reduced. The best-fit values are Alens = 0.84+0.22
37
+ −0.22 and AIA = 0.60+1.03
38
+ −1.03, while different angular scale cuts can affect
39
+ Alens by ∼ 10%. We show that appropriate treatment of the boost factor, cosmic magnification, and photometric redshift modeling is
40
+ important for obtaining the correct IA and cosmological results.
41
+ Key words. cosmology – weak lensing – CMB lensing – intrinsic alignment – self-calibration
42
+ 1. Introduction
43
+ Weak lensing due to the distortion of light by gravity is a power-
44
+ ful probe of the underlying matter distribution and the encoded
45
+ secrets of cosmological physics such as dark matter, dark energy,
46
+ and the nature of gravity (Refregier 2003; Mandelbaum 2018).
47
+ The auto-correlation statistics have been widely used in the anal-
48
+ ysis, both for galaxy lensing shear, e.g. “cosmic shear” (Hilde-
49
+ brandt et al. 2017; Hamana et al. 2020; Hikage et al. 2019; As-
50
+ gari et al. 2021; Secco et al. 2022; Amon et al. 2022), and CMB
51
+ lensing convergence (Planck Collaboration et al. 2020c; Omori
52
+ et al. 2017). Furthermore, cross-correlations between galaxy
53
+ ⋆ e-mail: [email protected]
54
+ ⋆⋆ e-mail: [email protected]
55
+ ⋆⋆⋆ e-mail: [email protected]
56
+ shear and CMB lensing have been measured extensively (Hand
57
+ et al. 2015; Chisari et al. 2015; Liu & Hill 2015; Kirk et al. 2016;
58
+ Harnois-Déraps et al. 2016; Singh et al. 2017a; Harnois-Déraps
59
+ et al. 2017; Omori et al. 2019; Namikawa et al. 2019; Marques
60
+ et al. 2020; Robertson et al. 2021). Cross-correlation statistics
61
+ contain highly complementary information to auto-correlations,
62
+ both for cosmology and the cross-check of systematics. They
63
+ partly reveal the hidden redshift information in CMB lensing
64
+ and are more sensitive to structure growth at redshifts between
65
+ the epochs probed by galaxy shear and CMB lensing. Cross-
66
+ correlations are also immune to additive errors in shear measure-
67
+ ment and provide an external diagnosis of multiplicative errors
68
+ (Schaan et al. 2017).
69
+ Most existing cross-correlation measurements have found a
70
+ lower CMB lensing amplitude than the prediction of their as-
71
+ Article number, page 1 of 15
72
+ arXiv:2301.13437v1 [astro-ph.CO] 31 Jan 2023
73
+
74
+ A&A proofs: manuscript no. aanda
75
+ sumed ΛCDM cosmology (Hand et al. 2015; Liu & Hill 2015;
76
+ Kirk et al. 2016; Harnois-Déraps et al. 2016, 2017; Singh et al.
77
+ 2017a; Marques et al. 2020; Robertson et al. 2021). The ra-
78
+ tio, which is normally referred as the CMB lensing amplitude,
79
+ Alens ∼ 0.5-0.9, although the deviation from unity is only within
80
+ 1-2σ. The low lensing amplitude is consistent across many com-
81
+ binations of data sets and analysis methods, suggesting the ex-
82
+ istence of a common systematic errors or a deviation from the
83
+ best-fit Planck cosmology. This might be related to the tension
84
+ between galaxy lensing surveys and Planck CMB observation
85
+ (Lin & Ishak 2017; Chang et al. 2019; Heymans et al. 2021),
86
+ and the Planck internal inconsistencies (Planck Collaboration
87
+ et al. 2020a,b). In this paper we focus on the galaxy intrinsic
88
+ alignment (IA), which can mimic weak lensing signals (Croft &
89
+ Metzler 2000; Catelan et al. 2001; Crittenden et al. 2001; Lee
90
+ & Pen 2001; Jing 2002; Hirata & Seljak 2004; Heymans et al.
91
+ 2004; Bridle & King 2007; Okumura et al. 2009; Joachimi et al.
92
+ 2013; Kiessling et al. 2015; Blazek et al. 2015; Rong et al. 2015;
93
+ Krause et al. 2016; Blazek et al. 2019; Troxel et al. 2018; Chis-
94
+ ari et al. 2017; Xia et al. 2017; Samuroff et al. 2019; Yao et al.
95
+ 2020a; Samuroff et al. 2021; Yao et al. 2020b). Here the CMB
96
+ lensing convergence is expected to be anti-correlated with the
97
+ intrinsic ellipticities of the foreground galaxy field, resulting in
98
+ a dilution of the overall cross-correlation signal (Troxel & Ishak
99
+ 2014; Chisari et al. 2015; Kirk et al. 2015; Omori et al. 2019;
100
+ Robertson et al. 2021). Taking IA into account can alleviate the
101
+ tension in Alens, at the expense of a significant loss of lensing
102
+ constraining power, because of the degeneracy between the lens-
103
+ ing amplitude Alens and the IA amplitude AIA. Therefore, a com-
104
+ mon compromise is to fix both the IA model and its amplitude
105
+ AIA (Kirk et al. 2016; Harnois-Déraps et al. 2017; Omori et al.
106
+ 2019) or assume a strong prior (Robertson et al. 2021).
107
+ Since IA is already a major limiting factor in the current
108
+ cross-correlation analysis, its mitigation will be essential for up-
109
+ coming measurements with significantly smaller statistical er-
110
+ rors. We utilize the IA self-calibration (SC) method (Zhang
111
+ 2010a,b; Troxel & Ishak 2012a,b; Yao et al. 2017, 2019), which
112
+ is a galaxy-galaxy lensing method but with a different weight-
113
+ ing scheme, to mitigate the IA problem in the shear-convergence
114
+ cross-correlation. It is based on the fact that the IA-galaxy cor-
115
+ relation is insensitive to the redshift order, while it matters for
116
+ lensing-galaxy correlation whether the lens is in front of the
117
+ source or not. Therefore, we can isolate IA by comparing ex-
118
+ tra observables, i.e., the galaxy shear × number density cross-
119
+ correlation with a different weighting of the redshift pairs. This
120
+ measurement of IA is independent of a physical model of the
121
+ IA and requires no data external to the shear data. SC was first
122
+ applied to KiDS450/KV450 (Yao et al. 2020a; Pedersen et al.
123
+ 2020) and DECaLS DR3 (Yao et al. 2020b) and has enabled
124
+ significant IA detections. The detected IA signal can then be
125
+ applied to remove IA in the lensing shear auto-correlation and
126
+ shear-convergence cross-correlation. The IA information is ob-
127
+ tained from a shear × number density cross-correlation within
128
+ the same photometric redshift (photo-z) bin, more importantly,
129
+ with different weighting schemes on the photo-z ordering, which
130
+ is usually not used for cosmological parameter constraints. We
131
+ find that this removal of IA losses almost no cosmological infor-
132
+ mation.
133
+ In previous work Yao et al. (2020b), we have demonstrated
134
+ the importance and methodology of including certain types of
135
+ systematics in the SC lensing-IA separation method, namely
136
+ galaxy bias, the covariance between the separated lensing signal
137
+ and IA signal, the IA signal drop QIg due to the photo-z selection,
138
+ and the scale dependency of the signal drops QGg and QIg. In this
139
+ work, we further investigate other sources of systematics, includ-
140
+ ing the boost factor (Mandelbaum et al. 2005), photo-z modeling
141
+ bias (Yao et al. 2020a), and cosmic magnification (Bartelmann
142
+ 1995; Bartelmann & Schneider 2001; Yang et al. 2017; Liu et al.
143
+ 2021). Interestingly, as the survey goes to higher redshift, the
144
+ contamination to the SC method from magnification will quickly
145
+ increase to a non-negligible level. The cosmic magnification will
146
+ change the observed galaxy number density due to the lensing-
147
+ magnified flux and lensing-enlarged area, therefore biasing our
148
+ SC analysis. We investigate the proper treatments for the above
149
+ systematics together with the cosmological study.
150
+ This paper is organized as follows. In Sect. 2 we review the
151
+ physics of galaxy shear × CMB convergence and how our SC
152
+ method works to subtract the IA information. In Sect. 3 we in-
153
+ troduce the KiDS-1000 and Planck data used in this work, and
154
+ the MICE2 simulation (van den Busch et al. 2020; Fosalba et al.
155
+ 2015) we use to validate how the SC method is affected by differ-
156
+ ent systematics. We show the measurements of the observables
157
+ in Sect. 4. The results and summary are shown in Sect. 5 and 6.
158
+ 2. Methods
159
+ We apply our self-calibration method to separate the intrinsic
160
+ alignment and the lensing signals and show how the intrinsic
161
+ alignment will bias the galaxy shear-CMB convergence corre-
162
+ lation. In this section, we review the theory of lensing cross-
163
+ correlation and the self-calibration method, with a modification
164
+ to account for the contamination from cosmic magnification.
165
+ 2.1. Galaxy shear × CMB convergence
166
+ The gravitational field can distort the shape of the background
167
+ source galaxy image and introduce an extra shape that is tan-
168
+ gentially aligned to the lens. This gravitational shear γG of the
169
+ source galaxy contains integral information of the foreground
170
+ overdensity along the line of sight (Bartelmann & Schneider
171
+ 2001). Similarly, the photons from the CMB are deflected, and
172
+ the lensing convergence κ can be reconstructed from the CMB
173
+ temperature and polarization observations (Planck Collabora-
174
+ tion et al. 2020c). By correlating these two quantities
175
+
176
+ γGκ
177
+
178
+ ,
179
+ we probe the clustering of the underlying matter field ⟨δδ⟩. In
180
+ harmonic space while assuming flat space (Omori et al. 2019;
181
+ Marques et al. 2020), we have:
182
+ CκgalκCMB(ℓ) =
183
+ � χCMB
184
+ 0
185
+ qgal(χ)qCMB(χ)
186
+ χ2
187
+
188
+
189
+ k = ℓ + 1/2
190
+ χ
191
+ , z
192
+
193
+ dχ.
194
+ (1)
195
+ Eq. (1) is the galaxy-lensing CMB-lensing cross angular
196
+ power spectrum, which probes the matter power spectrum
197
+ Pδ(k, z), as well as the background geometry χ(z) if precision
198
+ allows. Here z is the redshift, χ is the comoving distance, k is
199
+ the wavenumber, ℓ is the angular mode, qgal(χ) and qCMB(χ) are
200
+ the lensing efficiency functions for galaxy-lensing and CMB-
201
+ lensing, with the analytical forms:
202
+ qgal(χl) = 3
203
+ 2Ωm
204
+ H2
205
+ 0
206
+ c2 (1 + zl)
207
+ � ∞
208
+ χl
209
+ n(χs)(χs − χl)χl
210
+ χs
211
+ dχs,
212
+ (2)
213
+ qCMB(χl) = 3
214
+ 2Ωm
215
+ H2
216
+ 0
217
+ c2 (1 + zl)(χs − χl)χl
218
+ χs
219
+ ,
220
+ (3)
221
+ where χs and χl are the comoving distance to the source and
222
+ lens, and the χs in Eq. (3) takes CMB as the source of light
223
+ (z ∼ 1100). We note the spacial curvature Ωk = 0 is assumed
224
+ Article number, page 2 of 15
225
+
226
+ Yao et al 2022: KiDS shear × Planck lensing and IA removal
227
+ so that the comoving angular diameter distances in Eqs. (2) and
228
+ (3) are replaced with the comoving radial distances. Here n(χ)
229
+ gives the source galaxy distribution as a function of comoving
230
+ distance, and it is connected with the galaxy redshift distribution
231
+ via n(χ) = n(z)dz/dχ. In this work, we only use one redshift bin
232
+ due to the limit of the total S/N on the CMB lensing signal, while
233
+ a tomographic example can be found in Harnois-Déraps et al.
234
+ (2017). In the future with higher S/N, for example, for CMB-S4
235
+ × LSST, tomography can be used to subtract more cosmological
236
+ information.
237
+ The shear-convergence cross-correlation function measured
238
+ in real space is given by the Hankel transformation:
239
+ wGκ(θ) = 1
240
+
241
+ � ∞
242
+ 0
243
+ dℓℓCκgalκCMB(ℓ)J2(ℓθ),
244
+ (4)
245
+ where J2(x) is the Bessel function of the first kind and order 2.
246
+ The “G” represents the gravitational lensing shear γG, to be sep-
247
+ arated from the intrinsic alignment γI in the following section.
248
+ Also for the current low S/N reasons, we choose not to in-
249
+ vestigate full cosmological constraints in this work. Instead, we
250
+ perform a matched-filter fitting, with lensing amplitude Alens that
251
+ suits ˆwGκ = AlenswGκ, where ˆwGκ is the measured correlation
252
+ function, and wGκ is the theoretical model.
253
+ 2.2. Intrinsic alignment of galaxies
254
+ The observed galaxy shear estimator contains three components:
255
+ gravitational shear, an intrinsic alignment term, and random
256
+ noise, namely, ˆγ = γG + γI + γN. Both the gravitational shear
257
+ and the IA term are related to the underlying matter overdensity
258
+ δ and are associated with the large-scale structure. This means
259
+ that when we cross-correlate the galaxy shape and the CMB con-
260
+ vergence, there will be contributions from both lensing and IA:
261
+ ⟨ˆγκ⟩ =
262
+
263
+ γGκ
264
+
265
+ +
266
+
267
+ γIκ
268
+
269
+ .
270
+ (5)
271
+ Therefore the IA part of the correlation will contaminate the
272
+ measurement and lead to a bias in the lensing amplitude Alens
273
+ or the cosmological parameters when assuming ⟨ˆγκ⟩ =
274
+
275
+ γGκ
276
+
277
+ .
278
+ The IA-convergence correlation function is linked to the IA-
279
+ convergence power spectrum
280
+ CIκCMB =
281
+ � χCMB
282
+ 0
283
+ n(χ)qCMB(χ)
284
+ χ2
285
+ Pδ,γI
286
+
287
+ k = ℓ + 1/2
288
+ χ
289
+ , z
290
+
291
+ dχ.
292
+ (6)
293
+ Here Pδ,γI is the 3D matter-IA power spectrum. The conventional
294
+ method is to assume an IA model with some nuisance parame-
295
+ ters, which will enter the fitting process. The most widely used
296
+ IA model is the non-linear linear tidal alignment model (Cate-
297
+ lan et al. 2001; Hirata & Seljak 2004; Bridle & King 2007), ex-
298
+ pressed as:
299
+ P��,γI = −AIA(L, z)C1ρm,0
300
+ D(z) Pδ(k; χ),
301
+ (7)
302
+ which is proportional to the non-linear matter power spectrum
303
+ Pδ, suggesting that the IA is caused by the gravitational tidal
304
+ field. AIA is the IA amplitude, which can be redshift(z)- and
305
+ luminosity(L)- dependent (Joachimi et al. 2011). Its redshift evo-
306
+ lution has been measured recently in simulations (Chisari et al.
307
+ 2016; Samuroff et al. 2021) and suggestions in observations with
308
+ low significance (Johnston et al. 2019; Yao et al. 2020b; Secco
309
+ et al. 2022; Tonegawa & Okumura 2022). The other related
310
+ quantities include: the mean matter density of the universe at z =
311
+ 0, expressed as ρm,0 = ρcritΩm,0; C1 = 5 × 10−14(h2Msun/Mpc−3)
312
+ the empirical amplitude taken from Brown et al. (2002) and the
313
+ normalized linear growth factor D(z). We note that the IA model
314
+ in Eq. (7) can be replaced by more complicated models as in
315
+ Krause et al. (2016); Blazek et al. (2015, 2019); Fortuna et al.
316
+ (2021) for different samples (Yao et al. 2020b; Samuroff et al.
317
+ 2021; Zjupa et al. 2020). The self-calibration method can intro-
318
+ duce new observables to constrain IA with additional constrain-
319
+ ing power, and in the future when the signal-to-noise (S/N) al-
320
+ lows, it can be extended to constrain more complicated IA mod-
321
+ els.
322
+ 2.3. Self-calibration of intrinsic alignment
323
+ The IA self-calibration (SC) method (Zhang 2010b; Yao et al.
324
+ 2017, 2019, 2020a,b) uses the same galaxy sample as both the
325
+ source and the lens, which is different from most galaxy-galaxy
326
+ lensing studies. It introduces two observables: the shape-galaxy
327
+ correlation in the same redshift bin wγg, and a similar correlation
328
+ wγg|S using the pairs where the photo-z of the source galaxy is
329
+ lower than the photo-z of the lens galaxy, namely
330
+ zP
331
+ γ < zP
332
+ g
333
+ (8)
334
+ (this will be denoted as “the SC selection”).
335
+ In this work, we extend our methodology to include the im-
336
+ pact from cosmic magnification (Bartelmann 1995; Bartelmann
337
+ & Schneider 2001; Yang et al. 2017; Liu et al. 2021). Because of
338
+ the existence of magnification, the intrinsic galaxy number den-
339
+ sity field δg is affected by the foreground lensing convergence
340
+ κgal, leading to a lensed galaxy overdensity
341
+ δL
342
+ g = δg + gmagκgal,
343
+ (9)
344
+ where the prefactor writes gmag = 2(α − 1) for a complete and
345
+ flux-limited sample. It accounts for the increase in galaxy num-
346
+ ber density due to lensing-magnified flux (α = −d ln N/d ln F,
347
+ where N(F) denotes the galaxy number N that is brighter than
348
+ the flux limit F) and the decrease of galaxy number density
349
+ due to the lensing-area-enlargement (-2 in gmag). The observed
350
+ shape-galaxy correlation is given by
351
+
352
+ ˆγδL
353
+ g
354
+
355
+ =
356
+
357
+ (γG + γI)(δg + gmagκgal)
358
+
359
+ .
360
+ (10)
361
+ The two SC observables can be written as:
362
+ wγgL
363
+ ii (θ) = wGg
364
+ ii (θ) + wIg
365
+ ii (θ) + gmag
366
+
367
+ wGκgal
368
+ ii
369
+ (θ) + wIκgal
370
+ ii
371
+ (θ)
372
+
373
+ ,
374
+ (11)
375
+ wγgL
376
+ ii |S(θ) = wGg
377
+ ii |S(θ) + wIg
378
+ ii |S(θ) + gmag
379
+
380
+ wGκgal
381
+ ii
382
+ |S(θ) + wIκgal
383
+ ii
384
+ |S(θ)
385
+
386
+ ,
387
+ (12)
388
+ where the “|S” denotes the SC selection, and i denotes the i-th
389
+ redshift bin if tomography is applied. The lensing-galaxy wGg
390
+ and the IA-galaxy wIg signal are affected by this SC selection, as
391
+ quantified by the Q parameters:
392
+ QGg
393
+ i (θ) ≡ wGg
394
+ ii |S(θ)
395
+ wGg
396
+ ii (θ)
397
+ ,
398
+ (13)
399
+ QIg
400
+ i (θ) ≡ wIg
401
+ ii |S(θ)
402
+ wIg
403
+ ii (θ)
404
+ .
405
+ (14)
406
+ For the lensing signal to exist, the redshift of the source, zγ,
407
+ needs to be greater than the redshift of the lens, zg: zγ > zg.
408
+ Article number, page 3 of 15
409
+
410
+ A&A proofs: manuscript no. aanda
411
+ 0.4
412
+ 0.45
413
+ 0.5
414
+ 0.55
415
+ 0.6
416
+ zP
417
+ g
418
+ -0.0004
419
+ -0.0002
420
+ 0
421
+ 0.0002
422
+ 0.0004
423
+ wXg(zP|zP
424
+ g = 0.5,
425
+ )
426
+ X=G, lensing,
427
+ = 1'
428
+ X=I, IA,
429
+ = 1'
430
+ X=G, lensing,
431
+ = 5'
432
+ X=I, IA,
433
+ = 5'
434
+ X=G, lensing,
435
+ = 50'
436
+ X=I, IA,
437
+ = 50'
438
+ Fig. 1. A toy model to illustrate the different redshift dependences for
439
+ the lensing signal and the IA signal, and why the SC selection Eq. (8)
440
+ works. We place many lens galaxies at photo-z zP
441
+ g = 0.5 (the grey dotted
442
+ line), while allowing the photo-z of the source galaxies zP
443
+ γ to change (x-
444
+ axis) to evaluate the corresponding lensing correlation function wGg or
445
+ IA correlation function wIg at different angular separation θ. The true-z
446
+ has a Gaussian scatter of 0.04 (this number is chosen for exhibition, so
447
+ that the lensing/IA signals have comparable maximum/minimum val-
448
+ ues) around the photo-z, for both source galaxies and lens galaxies. As
449
+ the gravitational lensing shear is an optical shape that requires zg < zγ, it
450
+ will have a non-symmetric power around zP
451
+ g, as the positive solid curves
452
+ show. This also demonstrate QGg ≪ 1 according to Eq. (13). As the
453
+ IA shape is a dynamical shape, it does not have requirements on the
454
+ relative redshifts, leading to a symmetric power around zP
455
+ g, as the neg-
456
+ ative dashed curves show. This also demonstrate QIg ∼ 1 according to
457
+ Eq. (14). These relations hold for signals at different angular separa-
458
+ tions (different colors). The different IA models (which could deviate
459
+ from Eq. 7 and AIA = 1 being assumed) will only change the rela-
460
+ tive amplitudes of the negative signals at different scales, but not the
461
+ redshift-dependency around zP
462
+ g. We note at such a redshift range, the
463
+ magnification signal is much smaller than the IA signal.
464
+ The SC photo-z selection zP
465
+ γ < zP
466
+ g largely reduces the lensing
467
+ signal, leading to QGg ≪ 1. The IA signal does not rely on the
468
+ ordering along the line-of-sight, with QIg ∼ 1. The lensing-drop
469
+ QGg and the IA-drop QIg are dependent on the photo-z quality,
470
+ as described in Zhang (2010b); Yao et al. (2017, 2020a,b). If the
471
+ photo-z quality is perfect, the SC selection will result in no lens-
472
+ ing signal so that QGg approaches 0. For incorrect photo-zs, the
473
+ SC selection fails and QGg is ∼ 1. Given a photo-z distribution
474
+ nP(zP) and the true-z distribution n(z), the lensing-drop QGg and
475
+ IA-drop QIg can be theoretically derived, following Yao et al.
476
+ (2020a,b), with more technical details in Appendix A. We also
477
+ present a toy model to visualize how the SC selection works in
478
+ Fig. 1.
479
+ We quantitatively test the terms in Eq. (11), and they gener-
480
+ ally follow |wIκgal| < |wGκgal| ≪ |wIg| < |wGg| for z < 0.9 data,
481
+ therefore in previous analysis (Zhang 2010b; Yao et al. 2020a,b)
482
+ the magnification terms were neglected. For the z ∼ 1 galax-
483
+ ies, however, the magnification term wGκgal quickly approaches
484
+ wIg and becomes a non-negligible source of contamination to
485
+ the SC method. In Fig. 2 we show a theoretical comparison of
486
+ the angular power spectra. We can write the SC selection for the
487
+ magnification term as wGκgal|S = QGκwGκgal. The drop of the sig-
488
+ nal QGκ ∼ QIg ∼ 1 given that these are not z-pair-dependent
489
+ correlations, therefore the magnification signal wGκgal will con-
490
+ 10
491
+ 100
492
+ 1000
493
+
494
+ 10−10
495
+ 10−9
496
+ 10−8
497
+ 10−7
498
+ C(ℓ)
499
+ CGg, bg,eff = 0.88
500
+ CIg, bg,eff = 0.88, AIA = 0.6
501
+ gmagCGκgal, gmag = −0.3
502
+ Fig. 2. A theoretical comparison between the galaxy-shear CGg(ℓ),
503
+ galaxy-IA CIg(ℓ) and shear-magnification gmagCGκgal(ℓ) angular power
504
+ spectra, with the best-fit of our baseline analysis and the redshift distri-
505
+ bution n(z) from KiDS-1000 0.5 < zP < 1.2 shear catalog. The dashed
506
+ lines represent negative signals. This figure demonstrates that the mag-
507
+ nification contamination is important in the self-calibration method for
508
+ the high-z KiDS source sample.
509
+ taminate the IA signal wIg due to similar behavior, leaving the
510
+ lensing signal wGg unaffected. We note the wIκ term is negligible
511
+ in this work.
512
+ After measuring the galaxy-galaxy lensing observables
513
+ {wγgL, wγgL|S} and the drops of the signals {QGg, QIg} (see
514
+ Eq. (13), (14) and Appendix A for more details), the corre-
515
+ sponding lensing-galaxy correlation wGg, IA-galaxy correlation
516
+ wIg and shear-magnification correlation wGκ can be linearly ob-
517
+ tained:
518
+ wGg
519
+ ii (θ) = QIg
520
+ i (θ)wγgL
521
+ ii (θ) − wγgL
522
+ ii |S(θ)
523
+ QIg
524
+ i (θ) − QGg
525
+ i (θ)
526
+ ,
527
+ (15)
528
+ wIg
529
+ ii (θ) + wGκgal
530
+ ii
531
+ (θ) = wγgL
532
+ ii |S(θ) − QGg
533
+ i (θ)wγgL
534
+ ii (θ)
535
+ QIg
536
+ i (θ) − QGg
537
+ i (θ)
538
+ .
539
+ (16)
540
+ In previous work, the IA information was directly extracted
541
+ in wIg. However, as shown in Fig. 2 and Eq. 16, for KiDS the
542
+ subtracted signal suffers from the contamination from a magni-
543
+ fication term wGκ. By constraining the measurements of {wGg,
544
+ wIg+wGκgal, wγκCMB} together, including the covariance, will lead
545
+ to robust constraints on both the lensing amplitude and the nui-
546
+ sance parameters. For the current stage where the S/N for the
547
+ measurements are not very high, we choose to ignore the pos-
548
+ sible scale-dependent features for the effective galaxy bias bg,eff
549
+ and IA amplitude AIA, and assume they are linear and determin-
550
+ istic. The parameters {Alens, AIA, bg,eff, gmag} are connected to
551
+ the observables following:
552
+ wGg(θ) = bg,effwGm
553
+ theory(θ),
554
+ (17)
555
+ wIg(θ) + wGκgal(θ) = bg,effAIAwIm
556
+ theory(θ) + gmagwGκgal
557
+ theory(θ),
558
+ (18)
559
+ wγκCMB(θ) = AlenswGκCMB
560
+ theory (θ) + AIAwIκCMB
561
+ theory(θ),
562
+ (19)
563
+ where “m” stands for matter, which is the case if one sets the ef-
564
+ fective galaxy bias bg,eff = 1. We separate the CMB convergence
565
+ and the galaxy convergence (due to magnification) with κCMB
566
+ Article number, page 4 of 15
567
+
568
+ Yao et al 2022: KiDS shear × Planck lensing and IA removal
569
+ Table 1. The ΛCDM cosmological parameters adopted in this work,
570
+ corresponding to the best-fit cosmology from Planck Collaboration
571
+ et al. (2020a), and the KiDS-1000 multivariate maximum posterior
572
+ (MAP) results from the two-point correlation functions ξ±, the band
573
+ powers C(ℓ), and the COSEBIs (Complete Orthogonal Sets of E/B-
574
+ Integrals) as in Asgari et al. (2021).
575
+ Survey
576
+ h0
577
+ Ωbh2
578
+ Ωch2
579
+ ns
580
+ σ8
581
+ Planck
582
+ 0.673
583
+ 0.022
584
+ 0.120
585
+ 0.966
586
+ 0.812
587
+ KiDS ξ±
588
+ 0.711
589
+ 0.023
590
+ 0.088
591
+ 0.928
592
+ 0.895
593
+ KiDS C(ℓ)
594
+ 0.704
595
+ 0.022
596
+ 0.132
597
+ 0.999
598
+ 0.723
599
+ KiDS COSEBI
600
+ 0.727
601
+ 0.023
602
+ 0.105
603
+ 0.949
604
+ 0.772
605
+ and κgal. On the LHS of Eq. (17), (18) and (19) are the measure-
606
+ ments, while on the RHS the correlations w(θ) are the theoreti-
607
+ cal predictions assuming Planck cosmology (Planck Collabora-
608
+ tion et al. 2020a), see Table 1. We note the Q values being used
609
+ to obtain the LHS are also cosmology dependent, however, the
610
+ sensitivity is weak as the cosmological part is mostly canceled
611
+ when taking the ratio in Eq. (13) and (14). We tested if the fidu-
612
+ cial cosmology is changed to any of the KiDS-1000 cosmolo-
613
+ gies in Table 1, the Qs will change by ∼ 1%, similar to Yao et al.
614
+ (2020b), and the resulting changes to the fitting parameters {AIA,
615
+ bg,eff, gmag, Alens} are negligible. However, considering the RHS,
616
+ those four fitting parameters are sensitive to the fiducial cosmol-
617
+ ogy used to produce the wtheory values when magnification exists,
618
+ which differs from previous analysis (Yao et al. 2020b). The the-
619
+ oretical predictions wtheory are calculated with ccl1 (Chisari et al.
620
+ 2019) and camb2 (Lewis et al. 2000). The effective galaxy bias
621
+ bg,eff in this work is used to separate from the true galaxy bias of
622
+ this sample, as we will discuss later it can absorb several sources
623
+ of systematics.
624
+ The theoretical prediction of wGκCMB
625
+ theory (θ) is given in Eq. (4),
626
+ and wIκgal
627
+ theory(θ) is obtained similarly with the Hankel transform
628
+ from its power spectrum as in Eq. (6). The wGm
629
+ theory, wIm
630
+ theory and
631
+ wGκgal
632
+ theory terms are the Hankel transform from the following angu-
633
+ lar power spectra:
634
+ CGm(ℓ) =
635
+ � zmax
636
+ zmin
637
+ qgal(χ)n(χ)
638
+ χ2
639
+
640
+
641
+ k = ℓ + 1/2
642
+ χ
643
+ , z
644
+
645
+ dχ,
646
+ (20)
647
+ CIm(ℓ) =
648
+ � zmax
649
+ zmin
650
+ n(χ)n(χ)
651
+ χ2
652
+ Pδ,γI
653
+
654
+ k = ℓ + 1/2
655
+ χ
656
+ , z
657
+
658
+ dχ,
659
+ (21)
660
+ CGκgal(ℓ) =
661
+ � zmax
662
+ zmin
663
+ qgal(χ)qgal(χ)
664
+ χ2
665
+
666
+
667
+ k = ℓ + 1/2
668
+ χ
669
+ , z
670
+
671
+ dχ.
672
+ (22)
673
+ As discussed in previous work (Yao et al. 2020b), by in-
674
+ cluding the effective galaxy bias bg,eff, we can obtain an unbi-
675
+ ased estimation of AIA. This information will be propagated into
676
+ Eq. (19) to break the degeneracy between AIA and Alens. In this
677
+ work, we further extend the fitting to include the impact from
678
+ magnification with the nuisance parameter gmag. We will show
679
+ later that an unbiased CMB lensing amplitude Alens can be ob-
680
+ tained from the simultaneous fitting of Eq. (17), (18) and (19).
681
+ 3. Data
682
+ In this section, we introduce the data we use for the
683
+
684
+ γκCMB�
685
+ cross-correlation study. Additionally, we use mock KiDS data,
686
+ 1 Core Cosmology Library, https://github.com/LSSTDESC/CCL
687
+ 2 Code for Anisotropies in the Microwave Background, https://
688
+ camb.info/
689
+ based on the MICE2 simulation (see van den Busch et al. (2020)
690
+ for details) to quantify the potential bias in the SC method due
691
+ to magnification, photo-z modeling, and the boost factor.
692
+ 3.1. KiDS-1000 shear catalog
693
+ We use the fourth data release of the Kilo-Degree Survey that
694
+ covers 1006 deg2, known as KiDS-1000 (Kuijken et al. 2019). It
695
+ has images from four optical bands ugri and five near-infrared
696
+ bands ZYJHKs. The observed galaxies can reach a primary
697
+ r−band median limiting 5σ point source magnitude at ∼ 25. The
698
+ shear catalog (Giblin et al. 2021) contains ∼ 21 M galaxies and
699
+ is divided into five tomographic bins in the range 0.1 < zB < 1.2
700
+ based on the bpz (Benitez 2000) algorithm. The ellipticity dis-
701
+ persion σϵ is ∼ 0.27 per component, and the shear multiplicative
702
+ bias is generally consistent with 0.
703
+ The KiDS data are processed by theli (Erben et al. 2013)
704
+ and Astro-WISE (Begeman et al. 2013; de Jong et al. 2015).
705
+ Shears are measured using lensfit (Miller et al. 2013), and pho-
706
+ tometric redshifts are obtained from PSF-matched photometry
707
+ and calibrated using external overlapping spectroscopic surveys
708
+ (Hildebrandt et al. 2021).
709
+ The application of SC requires not only an accurate redshift
710
+ distribution n(z), but also relatively accurate photo-z for each
711
+ galaxy, serving for the SC selection (Eq. 8). We discussed in pre-
712
+ vious work (Yao et al. 2020a) that the quality of photo-z is very
713
+ important for the lensing-IA separation. Therefore in this work,
714
+ we choose to combine the three high-z bins, namely bin 3+4+5
715
+ in KiDS-1000 data, as a large bin so that the photo-z error for
716
+ an individual galaxy is relatively small compared to the total
717
+ bin width. The photo-z and the SOM-calibrated redshift distri-
718
+ butions are shown in Fig. 3. We choose to use the high-z bins be-
719
+ cause the CMB lensing efficiency Eq. (3) peaks at z ∼ 1 to 2 (see
720
+ lower panel of Fig. 3), while the S/N for the cross-correlation is
721
+ very low for the two low-z bins of KiDS-1000.
722
+ To account for the selection functions for the shape of the
723
+ footprint (Mandelbaum et al. 2006) of the overlapped region and
724
+ the varying galaxy number density due to observation (Johnston
725
+ et al. 2021; Rezaie et al. 2020), we divide the region into 200
726
+ sub-regions with a resolution of Healpix Nside = 512 (∼ 50
727
+ arcmin2 per pixel), and generate random points with 20 times
728
+ the number of galaxies of the KiDS-1000 shear catalog in each
729
+ sub-region. The pixels within the same sub-region are assigned
730
+ the same galaxy numbers. This random catalog is used for the
731
+ SC-related galaxy-galaxy lensing calculation, while its potential
732
+ defects will not extend to cross-correlations.
733
+ 3.2. Planck legacy lensing map
734
+ We use the CMB lensing map κ(θ) from the Planck data release
735
+ (Planck Collaboration et al. 2020c). The CMB lensing map is
736
+ reconstructed with the quadratic estimator with the minimum-
737
+ variance method combining the temperature map and the polar-
738
+ ization map, after foreground removal with the SMICA method
739
+ (Planck Collaboration et al. 2020a). It covers fsky = 0.671 of the
740
+ whole sky with the maximum multiple ℓ = 4096.
741
+ In this work we combine the footprint from the Planck lens-
742
+ ing map and the mask of the KiDS-1000 shear catalog, leading
743
+ to an overlapped region of ∼ 829 deg2. We include the Planck
744
+ Wiener filter (Planck Collaboration et al. 2020c)
745
+ ˆκWF
746
+ ℓm =
747
+ Cφφ,fid
748
+
749
+ Cφφ,fid
750
+
751
+ + Nφφ
752
+
753
+ ˆκMV
754
+ ℓm
755
+ (23)
756
+ Article number, page 5 of 15
757
+
758
+ A&A proofs: manuscript no. aanda
759
+ 0
760
+ 0.5
761
+ 1
762
+ 1.5
763
+ 2
764
+ 2.5
765
+ n(z)
766
+ n(z)
767
+ nP(zP)
768
+ 0
769
+ 0.5
770
+ 1
771
+ 1.5
772
+ 2
773
+ z
774
+ 0
775
+ 0.2
776
+ 0.4
777
+ 0.6
778
+ 0.8
779
+ 1
780
+ lensing efficiency
781
+ galaxy lensing
782
+ CMB lensing
783
+ Fig. 3. The photo-z distribution and the SOM-reconstructed redshift dis-
784
+ tribution of the combined galaxy sample in this work. The correspond-
785
+ ing galaxy lensing efficiency Eq. (2) and its comparison with CMB lens-
786
+ ing efficiency Eq. (3) are shown in the lower panel.
787
+ to strengthen the CMB lensing signal at large scales, which will
788
+ also lead to a suppression of the power spectrum at small scales,
789
+ where the noise dominates (Dong et al. 2021). The Wiener filter
790
+ is used both in the CMB lensing κ map and in the theoretical pre-
791
+ dictions of Eq. (1) to prevent potential bias. After the application
792
+ of the Wiener filter, we use Healpy3 (Górski et al. 2005; Zonca
793
+ et al. 2019) to convert the κℓm to the desired κ-map, and rotate
794
+ from the galactic coordinates of Planck to the J2000 coordinates
795
+ of KiDS with Astropy (Astropy Collaboration et al. 2013). The
796
+ two-point correlation functions are calculated with TreeCorr 4
797
+ (Jarvis et al. 2004).
798
+ 3.3. MICE2 mock catalog
799
+ Additionally, we use the MICE2 simulation gold samples (van
800
+ den Busch et al. 2020; Fosalba et al. 2015), which highly
801
+ mimic the KiDS-1000 shear catalog galaxies, to validate our
802
+ SC method, concerning cosmic magnification and photo-z PDF
803
+ model bias. MICE2 uses a simulation box width of 3.1 h−1Gpc,
804
+ particle mass resolution of 2.9 × 1010 h−1M⊙, and a total particle
805
+ number of ∼ 6.9 × 1010. The fiducial cosmology is flat ΛCDM
806
+ with Ωm = 0.25, σ8 = 0.8, Ωb = 0.044, ΩΛ = 0.75 and h = 0.7.
807
+ The halos are identified with Friends-of-Friends as in Crocce
808
+ et al. (2015). The galaxies are populated within the halos with
809
+ a mixture of halo abundance matching (HAM) and halo occupa-
810
+ tion distribution (HOD) up to z ∼ 1.4 (Carretero et al. 2015).
811
+ We note that in the MICE2 simulation that we use for the
812
+ KiDS samples, intrinsic alignment is not yet included in the
813
+ galaxy shapes (while an IA-included version can be found in
814
+ Hoffmann et al. (2022), but for DES). So that we aim to get
815
+ AIA = 0 to validate the SC method, while considering system-
816
+ atics from cosmic magnification and photo-z model bias, in ad-
817
+ 3 https://github.com/healpy/healpy
818
+ 4 https://github.com/rmjarvis/TreeCorr
819
+ 101
820
+ 102
821
+ 103
822
+ 104
823
+
824
+ 0.2
825
+ 0.4
826
+ 0.6
827
+ 0.8
828
+ 1.0
829
+ Q(ℓ) & Q(θ)
830
+ QGg(ℓ)
831
+ QIg(ℓ)
832
+ 100
833
+ 101
834
+ 102
835
+ θ [arcmin]
836
+ QGg(θ)
837
+ QIg(θ)
838
+ Fig. 4. The lensing-drop QGg and the IA-drop QIg as a function of ℓ and
839
+ θ by applying the SC selection Eq. (8), see Eq. (13) and (14). These val-
840
+ ues are adopted to obtain the separation of wGg and wIg + wGκgal, follow-
841
+ ing Eq. (15) and (16). The left panel shows the calculation from power
842
+ spectra and the right panel from correlation functions. The right panel
843
+ is used to transfer {wγg, wγg|S } to {wGg, wIg} later in Fig. 6.
844
+ dition to what has been addressed in Yao et al. (2020b). We use
845
+ the galaxy positions (ra, dec), the two noiseless shear compo-
846
+ nents (γ1, γ2), and BPZ-measured photo-z zB to calculate the
847
+ SC correlations as in Eq. (11) and (12). We test the signal drop
848
+ Qs of Eq. (13) and (14) with our photo-z PDF model and with
849
+ true-z from simulation (van den Busch et al. 2020). We compare
850
+ the results using MICE2 gold samples (which highly mimic the
851
+ KiDS-1000 shear catalog galaxies) with magnification (Eq. 9)
852
+ and without magnification. For the MICE2 galaxies with mag-
853
+ nification, we tested how it will bias the IA measurement, and
854
+ proved that when the magnification effect is also included in the
855
+ model, IA can be measured in an unbiased way. The validations
856
+ will be shown later in our results with some details in Appendix
857
+ A.
858
+ 4. Measurements
859
+ We show the estimation of the signal-drops for lensing and IA
860
+ due to the SC selection (as in Eqs. 13 and 14), i.e. the lensing-
861
+ drop QGg and the IA-drop QIg in Fig. 4. They are responsible for
862
+ the lensing-IA separation later in Fig. 6, following Eq. (15) and
863
+ (16). We follow the processes in Yao et al. (2020a,b) and adopt
864
+ a bi-Gaussian photo-z probability distribution function (PDF)
865
+ model with a secondary peak representing the photo-z outlier
866
+ problem. We require the PDF model to have the same mean-z as
867
+ in Fig. 3, while closest describing the projection from nP(zP) to
868
+ n(z). We will also show for the first time how the assumed photo-
869
+ z PDF model can affect the results in the next section, with more
870
+ details shown in Appendix A.
871
+ We calculate the SC correlation function estimator,
872
+ wγg(θ) = B(θ)
873
+
874
+ ED wjγ+
875
+ j
876
+ (1 + ¯m) �
877
+ ED wj
878
+
879
+
880
+ ER wjγ+
881
+ j
882
+ (1 + ¯m) �
883
+ ER wj
884
+ ,
885
+ (24)
886
+ to obtain the measurements of wγg and wγg|S from the tangential
887
+ shear of each galaxy γ+
888
+ j . Here we sum over the ellipticity-density
889
+ pairs (�
890
+ ED) and the ellipticity-random pairs (�
891
+ ER) in an annulus
892
+ centered on θ, where the shear weight wj of the j-th galaxy and
893
+ the average multiplicative bias ¯m are accounted for. The estima-
894
+ tor is binned in angular θ space, with 9 logarithmic bins from 0.5
895
+ Article number, page 6 of 15
896
+
897
+ Yao et al 2022: KiDS shear × Planck lensing and IA removal
898
+ 100
899
+ 101
900
+ 102
901
+ θ [arcmin]
902
+ 1.0
903
+ 1.1
904
+ 1.2
905
+ 1.3
906
+ 1.4
907
+ B
908
+ Boost
909
+ BoostS
910
+ Fig. 5. The boost factors for wγgL and wγgL|S are shown in blue and
911
+ orange, respectively. The overlapping lines suggest the two signals are
912
+ affected by the boost factor in almost the same way. We show the boost
913
+ factor is significant at small scales for the SC observables.
914
+ to 300 arcmin. We use the averaged multiplicative bias ¯m from
915
+ averaging over the three z-bins, weighted by the effective galaxy
916
+ number density. This gives ¯m = −0.0036.
917
+ We account for the impact of the boost factor (Mandelbaum
918
+ et al. 2005; Singh et al. 2017b; Joachimi et al. 2021), which is B
919
+ in Eq. (24). It is defined as
920
+ B(θ) =
921
+
922
+ ED wj
923
+
924
+ RD wj
925
+ ,
926
+ (25)
927
+ which is used to quantify the small-scale bias due to the clus-
928
+ tering of lens galaxies and source galaxies (Bernardeau 1998;
929
+ Hamana et al. 2002; Yu et al. 2015). We show the measurements
930
+ of the boost factor for wγgL and wγgL|S as in Eq. (11) and (12)
931
+ in Fig. 5. The fact that the boost factors for wγgL and wγgL|S are
932
+ identical suggests this bias can be absorbed by the galaxy bias
933
+ bg,eff parameter if magnification is absent (gmag = 0), leading to
934
+ an unbiased AIA and Alens. The impact from the boost factor can
935
+ potentially break the linear galaxy bias assumption, but later in
936
+ Fig.6 we show the linear assumption is fine. The impact of the
937
+ boost factor and magnification existing together will be shown
938
+ later.
939
+ In Fig. 6 we show the SC measurements. In the left panel, the
940
+ measured shape-galaxy correlations wγgL are shown in blue: (1)
941
+ the boost factor ignored case (B = 1) is shown as blue crosses,
942
+ while (2) the boost factor corrected case is shown as blue up-
943
+ triangles. With the SC selection Eq. (8), requiring zP
944
+ γ < zP
945
+ g for
946
+ each galaxy pair, the lensing component will drop to QGg ∼ 0.3
947
+ and the IA component will drop to QIg ∼ 0.85 (for more details
948
+ on QGg and QIg, see Fig. 4 and Appendix A). Therefore, the se-
949
+ lected correlations wγg|S will drop to the orange down-triangles.
950
+ Similarly, the boost factor ignored case is shown as crosses.
951
+ The separated lensing-galaxy signal wGg and IA-galaxy sig-
952
+ nal wIg (which is contaminated by magnification-shear signal
953
+ gmagwGκ) are shown in the right panel of Fig. 6. The blue and or-
954
+ ange curves are the theoretical predictions with the best-fit {AIA,
955
+ bg,eff, gmag}. For the fitting, we cut off the shaded regions at both
956
+ large scales and small scales. The small scale cut at θ = 1 ar-
957
+ cmin is based on the linear galaxy bias assumption, as including
958
+ the θ < 1 arcmin data will make the fitting significantly worse
959
+ (increasing the fitting χ2 from 7.5 to 50, with degree-of-freedom
960
+ changed from 8 to 10). We note this scale cut could include the
961
+ impacts from the 3D non-linear galaxy bias (Fong & Han 2021)
962
+ and other small-scale effects such as massive neutrinos or baryon
963
+ feedback in the matter power spectrum (Hildebrandt et al. 2017;
964
+ Asgari et al. 2021). We emphasize that these systematics will be
965
+ absorbed by the effective galaxy bias parameter bg,eff —- with-
966
+ out breaking the scale-independent bias assumption —- so that
967
+ the IA amplitude will not be affected. As discussed previously
968
+ in Yao et al. (2020a,b), the SC method requires significant sep-
969
+ aration between wγgL and wγgL|S to accurately get wGg and wIg.
970
+ Therefore, we introduce a large-scale cut at θ = 20 arcmin due
971
+ to insufficient separation for the left panel of Fig. 6.
972
+ Similarly, we measure the ⟨γκ⟩ correlation with the estimator
973
+ wγκ(θ) =
974
+
975
+ i j wjγ+
976
+ j κi
977
+ (1 + ¯m) �
978
+ i j wj
979
+ ,
980
+ (26)
981
+ where κi is the CMB lensing convergence in the i-th pixel of
982
+ the pixelized map, taking the pixel center for its (ra, dec) co-
983
+ ordinates, with nside = 2048 in Healpy. The measured wγκ are
984
+ shown in Fig. 7. The tangential shear is shown as blue dots. We
985
+ also show the measurements with randomly shuffling galaxy po-
986
+ sitions and the shear in red crosses as a null test. We test the
987
+ 45 deg rotated cross shear for both the above cases and they are
988
+ consistent with zero. The theoretical prediction with the best-fit
989
+ Alens and AIA are shown as the green curve. If one assumes there
990
+ is no IA in the measurements and uses AIA = 0, the theoretical
991
+ values for the pure lensing signal are shown in orange.
992
+ Note in Fig. 7, because we use the Wiener-filtered κ map
993
+ from Planck, both the wγκ measurements and the theoretical pre-
994
+ dictions are suppressed at small scales. The Wiener filter can
995
+ significantly reduce the impact of the noise of the Planck lens-
996
+ ing map and improve the S/N of the measurements.
997
+ Together with the measurements in Figs. 6 and 7, we obtain
998
+ observables of this work, which are the LHS terms of Eqs. (17),
999
+ (18) and (19). We use Jackknife resampling to obtain the co-
1000
+ variance. 200 Jackknife regions are used, which is much larger
1001
+ than the length of the data vector (12), based on the analy-
1002
+ sis of Mandelbaum et al. (2006); Hartlap et al. (2007). The
1003
+ Jackknife regions are separated using the K-means algorithm
1004
+ kmeans_radec5. The normalized covariance matrix is shown in
1005
+ Fig. 8. We find strong anti-correlation between wGg and wIg as
1006
+ expected (Yao et al. 2020b). Note here in Fig. 8, wIg means the
1007
+ separated signal in the RHS of Eq. (16), including both the IA
1008
+ part and the contamination from magnification. There is no sig-
1009
+ nificant correlation between wγκ and the other two observables.
1010
+ This covariance will be used in the Monte Carlo Markov Chain
1011
+ (MCMC) to find the best-fit parameters of {AIA, bg,eff, gmag,
1012
+ Alens}, while all the other cosmological parameters are fixed to
1013
+ Planck as in Table 1.
1014
+ 5. Results
1015
+ 5.1. Validation with MICE2
1016
+ In this subsection, we apply the IA self-calibration to the MICE2
1017
+ mock catalog to test the impact of the systematics and validate
1018
+ the recovery of the IA signal. The processes of the mock data are
1019
+ identical to the descriptions in Sec. 4, but only focusing on the
1020
+ self-calibration part. The measurements are similar to Fig. 6 so
1021
+ 5 https://github.com/esheldon/kmeansradec
1022
+ Article number, page 7 of 15
1023
+
1024
+ A&A proofs: manuscript no. aanda
1025
+ 1
1026
+ 3
1027
+ 10
1028
+ 30
1029
+ θ [arcmin]
1030
+ -1
1031
+ 0
1032
+ 1
1033
+ 2
1034
+ 3
1035
+ 4
1036
+ w(θ) × 104
1037
+ wγgL
1038
+ wγgL|S
1039
+ 1
1040
+ 3
1041
+ 10
1042
+ 30
1043
+ θ [arcmin]
1044
+ -1
1045
+ 0
1046
+ 1
1047
+ 2
1048
+ 3
1049
+ 4
1050
+ wIg
1051
+ gmagwGκgal
1052
+ tot
1053
+ wGg
1054
+ wIg (+gmagwGκgal)
1055
+ Fig. 6. The measurements of SC. The left panel shows the measurement of the two introduced observables wγgL and the one with the SC selection
1056
+ wγgL|S, while the corresponding 45-deg rotation test is consistent with 0 for both measurements. The significant separation of the two signals shows
1057
+ that SC is applicable. The right panel shows the separated lensing signal wGg and wIg, where the latter is contaminated by the magnification signal
1058
+ as shown in Eq. (16). The up- and down-triangles are the results that take the boost factor (Fig. 5) into consideration, while the crosses are the
1059
+ results that ignore this correction, setting B = 1. The curves are the theoretical value with the best-fit {AIA, bg,eff, gmag} of this work. The blue curve
1060
+ represents the separated lensing signal as in Eq. (17). The orange curve represents the total contribution of IA and magnification as in Eq. (18).
1061
+ 3
1062
+ 10
1063
+ 30
1064
+ 100
1065
+ 300
1066
+ θ [arcmin]
1067
+ -1
1068
+ 0
1069
+ 1
1070
+ 2
1071
+ 3
1072
+ wκγ(θ) × 106
1073
+ wGκ lensing
1074
+ w(G+I)κ
1075
+ best−fit
1076
+ ⟨κγt⟩
1077
+ ⟨κγshuffle⟩
1078
+ Fig. 7. The measurement of the cross-correlation between Planck con-
1079
+ vergence κ and KiDS-1000 shear γ, based on Eq. (19). The blue dots are
1080
+ the measurements using tangential shear, with the green curve showing
1081
+ the best-fit considering both lensing and IA, while the orange curve
1082
+ shows only the lensing-lensing component. The red crosses show the
1083
+ null test by randomly shuffling the shear galaxies. The 45-deg rotation
1084
+ tests for both the blue dots and the red dots are consistent with 0. The
1085
+ differently shaded regions correspond to our angular scale cuts at 2, 20
1086
+ (default), and 40 arcmin.
1087
+ we choose to skip them. We perform the MCMC calculation us-
1088
+ ing emcee (Foreman-Mackey et al. 2013). We consider flat priors
1089
+ in −5 < AIA < 5, 0 < bg,eff < 2 and −3 < gmag < 3.
1090
+ 5.1.1. Impact from magnification
1091
+ We show how the magnification signal affects the original SC
1092
+ method (Zhang 2010b; Yao et al. 2020a,b) and the correction
1093
+ introduced in this work, focusing on the gmag − AIA space.
1094
+ wGg
1095
+ wIg
1096
+ wγκ
1097
+ wGg
1098
+ wIg
1099
+ wγκ
1100
+ correlation coefficient
1101
+ −0.75
1102
+ −0.50
1103
+ −0.25
1104
+ 0.00
1105
+ 0.25
1106
+ 0.50
1107
+ 0.75
1108
+ 1.00
1109
+ Fig. 8. The normalized covariance matrix (i.e. the correlation coeffi-
1110
+ cient) used in this work. There exists a strong anti-correlation between
1111
+ the lensing-galaxy correlation wGg and the IA-galaxy correlation wIg
1112
+ (including the contamination from wGκgal) as we found in previous work.
1113
+ The covariance of the 12 data points is calculated from Jackknife re-
1114
+ sampling with 200 regions. We note the IA information is passed from
1115
+ 1 < θ < 20 [arcmin] for wIg to 20 < θ < 300 [arcmin] for wγκ with the
1116
+ scale-independent AIA assumption.
1117
+ In Fig. 9, we show that if magnification is not included in the
1118
+ modeling, gmag is therefore not constrained. The existing mag-
1119
+ nification signal will be treated as the IA signal, leading to a
1120
+ non-vanishing AIA ∼ 0.3, which significantly deviates from the
1121
+ MICE2 input AIA = 0. When the magnification model is in-
1122
+ cluded in the analysis, AIA is then consistent with 0. This demon-
1123
+ strates the importance of including the magnification model in
1124
+ the SC analysis with high-z data. The results are also summa-
1125
+ Article number, page 8 of 15
1126
+
1127
+ Yao et al 2022: KiDS shear × Planck lensing and IA removal
1128
+ MICE IA
1129
+ MICE IA+mag
1130
+ −0.30
1131
+ −0.15
1132
+ 0.00
1133
+ 0.15
1134
+ 0.30
1135
+ AIA
1136
+ −0.45
1137
+ −0.30
1138
+ −0.15
1139
+ 0.00
1140
+ gmag
1141
+ Fig. 9. The impact of the magnification signal on the IA measurement
1142
+ in MICE2. The green and blue contours are with and without magni-
1143
+ fication models, respectively. If the magnification model is used in the
1144
+ fitting, as in green, the IA amplitude AIA is consistent with 0, which is
1145
+ the MICE2 input.
1146
+ rized later in the comparisons in Fig. 11 for MICE2, and in
1147
+ Fig. 14 for KiDS data.
1148
+ We note that in the green case of Fig. 9 that considered both
1149
+ IA and magnification, gmag and AIA strongly degenerate. There-
1150
+ fore the constraining power in AIA has a significant loss com-
1151
+ pared with the blue case, which ignores magnification. This de-
1152
+ generacy can be broken in the future with higher S/N in the ob-
1153
+ servables. This is because the shape of wIg and wGκ are different
1154
+ at small scales for correlation functions as in Fig. 6, and on large
1155
+ scales for power spectra as in Fig. 2. The IA-model-dependency
1156
+ will be discussed later with other results. Based on the above
1157
+ analysis, we conclude it is important to include magnification
1158
+ modeling for SC when using high-z data.
1159
+ 5.1.2. Impact from modeling p(z|zP)
1160
+ Since the SC selection Eq. (8) plays an important role in the
1161
+ lensing-IA separation process, it is crucial to understand how the
1162
+ following aspects affect SC: (1) the quality of the photo-z zP, (2)
1163
+ the true redshift distribution n(z), and (3) the link between them
1164
+ p(z|zP). The quality of photo-z and the reconstruction of n(z) has
1165
+ been studied thoroughly for KiDS data (Kuijken et al. 2019; van
1166
+ den Busch et al. 2022; Hildebrandt et al. 2021; van den Busch
1167
+ et al. 2020), we, therefore, trust these results and leave the al-
1168
+ ternative studies for SC to future works. The uncalibrated PDF
1169
+ that projects zP → z, on the other hand, has some known prob-
1170
+ lems, for example when Probability Integral Transform (PIT) is
1171
+ applied (Newman & Gruen 2022; Hasan et al. 2022).
1172
+ In this work, we use a bi-Gaussian PDF model to project the
1173
+ photo-z distribution nP(zP) to the SOM redshift distribution n(z),
1174
+ which are previously shown in Fig. 3. This modeling ignores the
1175
+ potential differences for galaxies in the same z-bin (Peng et al.
1176
+ 2022; Xu et al. 2023). However, this is an alternative process,
1177
+ MICE Qsim+mag
1178
+ MICE Qmodel
1179
+ MICE Qmodel+mag
1180
+ −0.4
1181
+ −0.2
1182
+ 0.0
1183
+ 0.2
1184
+ AIA
1185
+ −0.4
1186
+ 0.0
1187
+ 0.4
1188
+ gmag
1189
+ Fig. 10. The impact from photo-z PDF model bias. The blue case uses
1190
+ photo-z from the BPZ algorithm and true-z for each galaxy to calcu-
1191
+ late Eq. A.7 and the resulting QGg and QIg, which are the “sim” cases
1192
+ in Fig. A.1. This AIA is consistent with 0, which is the MICE2 input.
1193
+ The green case uses the bi-Gaussian photo-z model for the calculation,
1194
+ which are the “model” cases in Fig. A.1, while ignoring the magnifica-
1195
+ tion contribution. This lead to unconstrained gmag and biased AIA. In the
1196
+ red case, which also uses the photo-z model, but includes the magnifi-
1197
+ cation model, the resulting AIA is still consistent with 0, with the bias
1198
+ from photo-z model error absorbed by gmag.
1199
+ considering the PDF problem for a single galaxy. This analytical
1200
+ approach is also much faster in calculation than using different
1201
+ PDFs for different galaxies.
1202
+ We use Fig. 10 to demonstrate how large this photo-z PDF
1203
+ modeling bias is with different approaches. We use MICE2 sim-
1204
+ ulation with galaxy number density affected by magnification.
1205
+ When the SC calculation uses true-z to calculate the signal drops
1206
+ QGg and QIg, and the magnification model is also considered, we
1207
+ find the resulting AIA is consistent with 0, which is the MICE2
1208
+ input. The scatter on AIA is ∼ 0.1, thanks to the noiseless shapes
1209
+ in MICE2. If the Qs are calculated with the assumed photo-z
1210
+ PDF model, without including the magnification model, then
1211
+ AIA will be biased towards the negative direction. We proved
1212
+ with our fiducial analysis that, even if there exists a bias in QGg
1213
+ due to the assumed photo-z model, as long as the magnification
1214
+ model is used, this bias will be absorbed by the gmag parameter,
1215
+ so that the IA amplitude AIA is unbiased (consistent with 0 in
1216
+ the MICE2 case). The results are also shown later in the com-
1217
+ parisons in Fig. 11 for MICE2, and in Fig. 14 for KiDS data.
1218
+ We note that the bias due to photo-z modeling is not an es-
1219
+ sential problem for SC. In the future, if the photo-z outlier prob-
1220
+ lem (or the redshift-color degeneracy problem) can be under-
1221
+ stood better, then a more reliable photo-z model can be used for
1222
+ our SC study. Alternatively, if the photo-z algorithms can give
1223
+ unbiased PDFs for each galaxy, this problem can also be directly
1224
+ solved.
1225
+ Article number, page 9 of 15
1226
+
1227
+ A&A proofs: manuscript no. aanda
1228
+ -0.4
1229
+ -0.3
1230
+ -0.2
1231
+ -0.1
1232
+ 0
1233
+ 0.1
1234
+ 0.2
1235
+ 0.3
1236
+ AIA
1237
+ MICE(mag), Q(sim), w/o mag
1238
+ MICE(mag), Q(sim), w/ mag
1239
+ MICE(mag), Q(model), w/o mag
1240
+ MICE(mag), Q(model), w/ mag
1241
+ MICE(nomag), Q(model), w/ mag
1242
+ Fig. 11. We validate our SC method with MICE2 simulation, which
1243
+ does not have IA implemented; therefore, AIA = 0 is expected. The re-
1244
+ sults are shown in green, with “MICE(mag)” meaning magnification is
1245
+ included in the MICE simulation, while “MICE(nomag)” means mag-
1246
+ nification is not included, “Q(sim)” and “Q(model)” mean if the signal
1247
+ drops Q values are calculated from true-z from simulation or photo-z
1248
+ PDF model, and “w/o mag” and “w/ mag” show if the case includes
1249
+ magnification model in the fitting process. The upper two data are the
1250
+ results from Fig. 9, showing the impact of the modeling magnification.
1251
+ The 2nd to the 4th data are the results from Fig. 10, showing the impact
1252
+ of Q calculation using different PDFs. The 4th data correspond to our
1253
+ fiducial analysis later for KiDS data, with potential bias ∆AIA < 0.1.
1254
+ The bottom data is a reference case assuming no magnification effects
1255
+ in the data, corresponding to our previous work Yao et al. (2020b,a).
1256
+ 5.2. Inference on real data
1257
+ With the above demonstration that our treatments for magnifica-
1258
+ tion and photo-z PDF are appropriate, and the resulting bias in
1259
+ AIA is very small (∆AIA < 0.1 and < 1σ as shown in Fig. 11),
1260
+ we move on to apply SC to KiDS data and its cross-correlation
1261
+ with Planck lensing. We show the analysis of the following three
1262
+ situations:
1263
+ (1) The case “ignore IA”. We only use the observed wγκ, while
1264
+ only including Alens in the fit and ignoring the contamination by
1265
+ IA (by setting AIA = 0).
1266
+ (2) The case “IA w/o SC”. We only use the observed wγκ, but
1267
+ consider both Alens and AIA following Eq. (19).
1268
+ (3) The case “with SC”. We use both wγκ in Fig. 7 and the SC
1269
+ correlations in Fig. 6. Both the CMB lensing amplitude Alens and
1270
+ the nuisance parameters {AIA, bg,eff, gmag} will be used in the
1271
+ analysis, following Eqs. (17), (18) and (19).
1272
+ The results are shown in Fig. 12. We use flat priors in 0 <
1273
+ Alens < 2, −5 < AIA < 5, and for the IA self-calibration nuisance
1274
+ parameters we use 0 < bg,eff < 4, −5 < gmag < 5.
1275
+ For case (1) “ignore IA”, shown in blue, AIA is unconstrained in
1276
+ the fitting, giving the best-fit Alens = 0.74+0.18
1277
+ −0.17.
1278
+ For case (2) “IA w/o SC”, when we consider the existence of IA
1279
+ and apply the IA model as in Eq. (7), but do not use the mea-
1280
+ surements from SC (Fig. 6 and Eq. 17, 18), there will be a strong
1281
+ degeneracy between Alens and AIA, as shown in orange. There is
1282
+ a significant loss of constraining power in the lensing amplitude,
1283
+ with the best-fit Alens = 0.79+0.43
1284
+ −0.46 and AIA = 0.47+3.11
1285
+ −3.47.
1286
+ For case (3) “with SC”, the introduced measurements of wGg
1287
+ and wIg can not only break the degeneracy between Alens and AIA
1288
+ (see Eq. 17, 18 and 19), but also bring more constraining power
1289
+ to AIA, so that the best-fit of Alens will not only be unbiased
1290
+ (according to the validation using simulation) but also has sig-
1291
+ −2
1292
+ −1
1293
+ 0
1294
+ 1
1295
+ 2
1296
+ 3
1297
+ 4
1298
+ AIA
1299
+ 0.2
1300
+ 0.6
1301
+ 1.0
1302
+ 1.4
1303
+ 1.8
1304
+ Alens
1305
+ 0.2
1306
+ 0.6
1307
+ 1.0
1308
+ 1.4
1309
+ 1.8
1310
+ Alens
1311
+ ignore IA
1312
+ IA w/o SC
1313
+ with SC
1314
+ Fig. 12. The constraints on lensing amplitude Alens and the IA ampli-
1315
+ tude AIA, with three different methods: assume there is no IA in the
1316
+ measured wκγ (blue), consider the impact of IA with conventional IA
1317
+ model but do not use SC (orange), use SC to subtract IA information
1318
+ and constrain together with the CMB lensing cross-correlation (green).
1319
+ When IA is ignored, AIA is unconstrained. The similar height and width
1320
+ of Alens PDFs between blue and green prove that by including SC, the
1321
+ AIA − Alens degeneracy can be efficiently broken so that the constraining
1322
+ power loss in Alens is very small.
1323
+ nificantly improved constraining power. The best-fit values are
1324
+ Alens = 0.84+0.22
1325
+ −0.22, AIA = 0.60+1.03
1326
+ −1.03, bg,eff = 0.88+0.06
1327
+ −0.06, and gmag =
1328
+ −0.30+1.60
1329
+ −1.62. In Fig. 12 we only show AIA and Alens, which are the
1330
+ focus of this work, while bg,eff and gmag are only related with
1331
+ the SC observables but not CMB lensing. Also as discussed in
1332
+ Yao et al. (2020b), the existence of the effective galaxy bias bg,eff
1333
+ can also absorb some systematics (so it could be a biased bias),
1334
+ leaving the constraint on AIA unbiased (as shown in Fig. 11). For
1335
+ example, we tested if magnification is absent, the effect of boost
1336
+ factor will be purely absorbed by bg,eff, giving unbiased AIA and
1337
+ Alens. The effective galaxy bias could also absorb the differences
1338
+ in the assumed fiducial cosmology, with bg,eff ∼ 1.24 with KiDS
1339
+ COSEBI cosmology, for example. The redshift distribution n(z)
1340
+ can differ slightly with/without accounting for the lensing weight
1341
+ (considering the lensing/clustering part in the galaxy-shape cor-
1342
+ relation), with a ∼ 0.024 difference in the mean-z, which can lead
1343
+ to ∼ 8% difference in the theoretical lensing signal and ∼ 2% dif-
1344
+ ference in the theoretical IA signal. Other unaddressed sources
1345
+ of systematics such as baryonic feedback and massive neutrinos
1346
+ could have similar effects. We can also see from the validation
1347
+ using MICE data that although the resulting bg,eff is lower than
1348
+ the expectation, the AIA result is unbiased. The gmag result also
1349
+ resides in a reasonable range, considering the KiDS i-band mag-
1350
+ nitude (Kuijken et al. 2019) and comparing it with Duncan et al.
1351
+ (2014). The above three cases of IA treatments are also summa-
1352
+ rized later in Fig. 13 and 14 together with more tests and other
1353
+ works.
1354
+ The corresponding best-fit curves are shown in Fig. 2 and 6
1355
+ with AIA = 0.60+1.03
1356
+ −1.03, bg,eff = 0.88+0.06
1357
+ −0.06, and gmag = −0.30+1.60
1358
+ −1.62
1359
+ . Even though the impact of magnification is comparable to the
1360
+ IA signal, we can see in both the angular power spectrum and
1361
+ correlation function that the shapes of IA and magnification are
1362
+ different. For example, as shown in Fig. 6, the tidal alignment
1363
+ model wIg and magnification gmagwGκ are comparable at large
1364
+ Article number, page 10 of 15
1365
+
1366
+ Yao et al 2022: KiDS shear × Planck lensing and IA removal
1367
+ 0.5
1368
+ 1
1369
+ 1.5
1370
+ 2
1371
+ Alens
1372
+ with SC (Planck)
1373
+ ignore IA
1374
+ IA w/o SC
1375
+ wγκCMB scale > 40 arcmin
1376
+ wγκCMB scale > 2 arcmin
1377
+ SC ignore mag
1378
+ SC ignore boost
1379
+ with SC (KiDS COSEBI)
1380
+ Hand+ 2015 Planck
1381
+ Hand+ 2015 WMAP
1382
+ Liu+ 2015
1383
+ Kirk+ 2016 SPT
1384
+ Kirk+ 2016 SPT fix-IA
1385
+ Kirk+ 2016 Planck
1386
+ Harnois-Deraps+ 2016, CFHT
1387
+ Harnois-Deraps+ 2016, RCSLenS
1388
+ Singh+ 2017
1389
+ Harnois-Deraps+ 2017, KiDS
1390
+ Harnois-Deraps+ 2017, Planck
1391
+ Omori+ 2018 fix-IA
1392
+ Namikawa+ 2019
1393
+ Marques+ 2020
1394
+ Robertson+ 2021, Planck
1395
+ Robertson+ 2021, KiDS
1396
+ baseline
1397
+ comparisons
1398
+ previous w/o IA
1399
+ previous IA prior
1400
+ Fig. 13. The comparisons of the constraints on Alens with previous mea-
1401
+ surements. Our baseline analysis “with SC” is consistent with 1. We
1402
+ also show some cases where IA is ignored in the analysis and if IA is
1403
+ considered but the AIA − Alens degeneracy is not broken with SC. These
1404
+ main results in blue are similar to Fig. 12. We show tests with differ-
1405
+ ent scale cuts and different treatments to magnification, boost factor,
1406
+ and different (KiDS) fiducial cosmology in red. We compare with other
1407
+ works, separated into ignoring IA (orange) and assuming a strong prior
1408
+ of IA (green). We note that for different work, the different fiducial cos-
1409
+ mology (the “Planck”, “WMAP”, “KiDS” labels on the y-axis) can lead
1410
+ to ∼ 10% difference in Alens.
1411
+ scale, while different at small scale. Therefore, in principle, the
1412
+ degeneracy between IA and magnification can be broken for fu-
1413
+ ture data with higher S/N so that the shape/slope information of
1414
+ the observables can be used. The current degeneracy is due to
1415
+ the low S/N so that the amplitudes of AIA and gmag degenerate.
1416
+ Furthermore, if a more complicated IA model is used, for ex-
1417
+ ample, as in Blazek et al. (2019); Abbott et al. (2022), the small-
1418
+ scale IA will be different. Based on the study of Shi et al. (2021),
1419
+ for a wide range of stellar mass, the small-scale IA should have
1420
+ a higher amplitude (either a direct raise in the amplitude or a
1421
+ “drop-raise” pattern as we go to smaller scales) than the current
1422
+ model so that the IA-magnification degeneracy can be broken
1423
+ further. The appropriate IA model will require studies in many
1424
+ aspects, and with higher S/N in the measurements, thus we leave
1425
+ this topic for future work.
1426
+ We investigate how different choices can change our results.
1427
+ We first compare the different scale cuts for wκγ. Besides the
1428
+ baseline analysis of Alens = 0.84+0.22
1429
+ −0.22 with θ > 20 arcmin, two
1430
+ more tests are made with a larger scale cut of θ > 40 arcmin and
1431
+ a smaller scale cut of θ > 2 arcmin, as shown in Fig. 7, which
1432
+ give us Alens = 0.97+0.25
1433
+ −0.25 and Alens = 0.77+0.21
1434
+ −0.22, respectively. The
1435
+ comparisons are shown in Fig. 13. The large-scale lensing am-
1436
+ plitude is higher than the small-scale one, which agrees with the
1437
+ finding in Planck Collaboration et al. (2020c) and other cross-
1438
+ correlation work (Sun et al. 2022). In this work, we only re-
1439
+ port this large-scale v.s. small scale difference. However, the cur-
1440
+ rent S/N of CMB convergence - galaxy shear correlation and the
1441
+ model assumptions do not allow us to investigate further on this
1442
+ topic.
1443
+ -3
1444
+ -2
1445
+ -1
1446
+ 0
1447
+ 1
1448
+ 2
1449
+ 3
1450
+ 4
1451
+ AIA
1452
+ with SC (Planck)
1453
+ IA w/o SC
1454
+ SC ignore mag
1455
+ SC ignore boost
1456
+ with SC (KiDS COSEBI)
1457
+ Robertson+ 2021 prior
1458
+ Asgari+ 2021 C(ℓ)
1459
+ Asgari+ 2021 COSEBI
1460
+ Asgari+ 2021 ξ±
1461
+ DES Y3 Secco+
1462
+ HSC Y1 ξ± Hamana+
1463
+ HSC Y1 C(ℓ) Hikage+
1464
+ this work
1465
+ KiDS
1466
+ others
1467
+ Fig. 14. The comparisons of the constraints on AIA. We show the results
1468
+ of this work in blue, which contains our fiducial analysis with SC ap-
1469
+ plied, and the comparisons of (1) without SC, (2) with SC but ignoring
1470
+ magnification, (3) with SC but ignoring boost factor, and (4) switching
1471
+ to KiDS fiducial cosmology. We show comparisons with other works
1472
+ using KiDS-1000 data in orange, and some works using DES or HSC
1473
+ data in green.
1474
+ We then compare the different choices in the SC method. We
1475
+ find that if the magnification model is ignored in the analysis,
1476
+ the existing magnification signal in the data will be treated as
1477
+ an IA signal, leading to an over-estimated AIA = 0.81+0.36
1478
+ −0.41 and
1479
+ an over-estimated Alens = 0.87+0.18
1480
+ −0.18. On the other hand, we pre-
1481
+ viously argued that, when magnification is absent, the impact
1482
+ from the boost factor will be purely absorbed by the effective
1483
+ galaxy bias bg,eff, leaving AIA and Alens unbiased. Unfortunately,
1484
+ this does not hold anymore when magnification is present: if the
1485
+ boost factor is not corrected, all the parameters will be biased
1486
+ as follows AIA = 1.86+1.01
1487
+ −1.05, bg,eff = 0.67+0.06
1488
+ −0.06, Alens = 1.00+0.23
1489
+ −0.23
1490
+ and gmag = 1.55+1.28
1491
+ −1.31. We include the comparisons of Alens and
1492
+ AIA for the above-described cases in Fig. 13 and 14 and empha-
1493
+ sis the importance of taking magnification and boost factor into
1494
+ consideration. We also show the impact of the assumed fiducial
1495
+ cosmology: if the fiducial cosmology is switched from Planck
1496
+ to KiDS-1000 COSEBI as in Table 1, both Alens and AIA will
1497
+ change as shown in Fig. 13 (bottom-red) and 14 (bottom-blue).
1498
+ With the above results in simulation and data, summarized
1499
+ in Fig. 11, 13 and 14, we show that our measurements on AIA
1500
+ and Alens are unbiased from magnification, boost factor, and the
1501
+ assumed photo-z PDF model. These are the new developments
1502
+ considering the existence of magnification at high redshift z ∼ 1,
1503
+ beyond the study of Yao et al. (2020b).
1504
+ Additionally, we compare our analysis with previous works.
1505
+ The comparisons of Alens are shown in Fig. 13. We find that most
1506
+ of the previous works ignored the IA contamination (Hand et al.
1507
+ 2015; Liu & Hill 2015; Kirk et al. 2016; Harnois-Déraps et al.
1508
+ 2016; Singh et al. 2017a; Harnois-Déraps et al. 2017; Namikawa
1509
+ et al. 2019; Marques et al. 2020). For the ones that considered IA,
1510
+ they either fixed the IA amplitude (Kirk et al. 2016; Omori et al.
1511
+ 2019) or used a strong prior (Robertson et al. 2021) to break the
1512
+ degeneracy between Alens and AIA, which will otherwise cause
1513
+ a strong loss in constraining power as we show in Fig. 12. We
1514
+ are the first to directly achieve the IA amplitude measurement
1515
+ within the same data and break the lensing-IA degeneracy. Our
1516
+ Article number, page 11 of 15
1517
+
1518
+ A&A proofs: manuscript no. aanda
1519
+ -0.5
1520
+ 0
1521
+ 0.5
1522
+ 1
1523
+ 1.5
1524
+ AIA
1525
+ Asgari+ 2021 C(ℓ)
1526
+ SC, C(ℓ) cosmo
1527
+ Asgari+ 2021 COSEBI
1528
+ SC, COSEBI cosmo
1529
+ Asgari+ 2021 ξ±
1530
+ SC, ξ± cosmo
1531
+ SC
1532
+ cosmic shear
1533
+ Fig. 15. The comparisons of AIA between SC-subtracted results (blue)
1534
+ and cosmic shear tomography subtracted results (orange) with cosmolo-
1535
+ gies from different 2-point statistics. The cosmologies are shown in Ta-
1536
+ ble 1.
1537
+ baseline analysis is consistent with most of the previous results,
1538
+ showing the contamination from IA is not significant, mainly due
1539
+ to the total S/N of CMB lensing - galaxy shear cross-correlation
1540
+ is only at 3 ∼ 5 σ level at the current stage. However, the correct
1541
+ treatment for IA will be more and more important in the future
1542
+ with stage IV cosmic shear surveys and CMB observations.
1543
+ The comparisons of the AIA constraint with other results us-
1544
+ ing KiDS-1000 data are shown in Fig. 14, including the prior
1545
+ assumed in Robertson et al. (2021) and the cosmic shear tomog-
1546
+ raphy constraint in Asgari et al. (2021). Although the redshift
1547
+ range is slightly different, the above works have consistent re-
1548
+ sults on AIA. These comparisons will become more interesting
1549
+ for the next-stage observations.
1550
+ As an extended study, we investigate how the choice of fidu-
1551
+ cial cosmology affects the SC results, namely AIA. In Fig. 14
1552
+ we show the results with the fiducial Planck cosmology and the
1553
+ KiDS-1000 two-point correlation function ξ± best-fit cosmology.
1554
+ We further compare the results with the KiDS-1000 band power
1555
+ C(ℓ) cosmology and the COSEBIs cosmology in Fig. 15. The re-
1556
+ sults from Asgari et al. (2021) (shown in orange) are arranged in
1557
+ increasing order from bottom to top. We find that when assuming
1558
+ the same cosmology, the SC results (shown in blue) also follow
1559
+ the same (weak) trend, meanwhile, they agree very well with the
1560
+ cosmic shear results. We note the SC results will provide extra
1561
+ information in constraining IA in cosmic shear in the future.
1562
+ 6. Summary
1563
+ In this work, we achieved the first application of the self-
1564
+ calibration (SC) method of intrinsic alignment (IA) of galax-
1565
+ ies to its cosmological application. We proved that with SC, the
1566
+ lensing-IA degeneracy could be efficiently broken, i.e., in this
1567
+ CMB lensing × galaxy shear cross-correlation work, it means
1568
+ breaking the degeneracy between the lensing amplitude Alens and
1569
+ the IA amplitude AIA. We showed that for previous treatments,
1570
+ IA are either ignored or being considered with a strong assumed
1571
+ prior on AIA. We demonstrated in Fig. 12, 13 and 14 that with
1572
+ SC to break the degeneracy, the constraining power in both Alens
1573
+ and AIA is preserved.
1574
+ We demonstrated that the proper angular scale cuts on wκγ
1575
+ are important. Our baseline analysis using information from
1576
+ θ > 20 arcmin gives Alens = 0.84+0.22
1577
+ −0.22. If we use informa-
1578
+ tion only at larger scales with θ > 40 arcmin, the constraint is
1579
+ Alens = 0.97+0.25
1580
+ −0.25. If we include information at much smaller
1581
+ scales with θ > 2 arcmin, the constraint is Alens = 0.77+0.21
1582
+ −0.22.
1583
+ At the current stage, they do not differ significantly from each
1584
+ other (even considering they are strongly correlated), as shown
1585
+ in Fig. 13. However, we note that these differences at differ-
1586
+ ent scales also exist in other works Planck Collaboration et al.
1587
+ (2020c) and Sun et al. (2022). We, therefore, emphasize the im-
1588
+ portance of understanding the possible systematics at different
1589
+ scales for future studies with higher S/N.
1590
+ Comparing our CMB lensing amplitude Alens with other
1591
+ works in Fig. 13, we found consistent results with different treat-
1592
+ ments of IA throughout almost all the works. We conclude that
1593
+ IA is not a significant source of systematics for the current stage.
1594
+ However, it will soon become more important with the stage IV
1595
+ observations. Nevertheless, we emphasize that the correct treat-
1596
+ ment to break the lensing-IA degeneracy is very important to
1597
+ maintain the cosmological constraining power. Our constraint
1598
+ on the IA amplitude AIA in Fig. 14 is also consistent with the
1599
+ existing analysis on IA with KiDS-1000 data. We note that the
1600
+ SC-subtracted IA information can be used as extra constraining
1601
+ power for any of these analyses.
1602
+ On the technique side, we further developed the SC method
1603
+ considering more sources of systematics beyond Yao et al.
1604
+ (2020b). We showed at z ∼ 1, the impact of galaxy shear × cos-
1605
+ mic magnification component wGκgal contaminates the separated
1606
+ IA × galaxy number density signal wIg, and is non-negligible as
1607
+ shown in Fig. 2 and 6. We use Eq. (16) and (18) to show how the
1608
+ magnification term enters our observable and how we include
1609
+ it in the theory as a correction. We show in Fig. 13 and 14 that
1610
+ the correction of magnification is important when applying SC
1611
+ to higher redshift data, in order to get the correct constraint on
1612
+ IA. We also discussed that, with the contamination from mag-
1613
+ nification, boost factor can no longer be absorbed by the effec-
1614
+ tive galaxy bias bg,eff, and need to be accounted for correctly, as
1615
+ shown in Eq. (24), (25) and Fig. 6, 13, 14.
1616
+ We also validated our analysis with MICE2 simulation, fo-
1617
+ cusing on two aspects: (1) how good can the magnification
1618
+ model mitigate the contamination from the magnification-shear
1619
+ signal; and (2) will the assumed photo-z PDF model (which is
1620
+ used to calculate the signal drop QGg and QIg) bias the IA mea-
1621
+ surement. With the strong constraining power from MICE2 with
1622
+ no shape noise, we can show in Fig. 11 that, when the magnifi-
1623
+ cation model is included in the analysis, the IA amplitude can be
1624
+ obtained correctly (consistent within 1σ range of 0, which is the
1625
+ input of MICE2). Additionally, the bias from the assumed photo-
1626
+ z model is negligible when the magnification model is used, as
1627
+ the effective magnification prefactor gmag will absorb the intro-
1628
+ duced error. We, therefore, emphasize the importance of includ-
1629
+ ing the magnification model in the SC analysis, especially for fu-
1630
+ ture high-z surveys like LSST, Euclid, WFIRST, and CSST. We
1631
+ further notice the contamination from magnification will make
1632
+ SC no longer an IA-model-independent method, therefore, SC
1633
+ is more suitable for low-z data when considering alternative IA
1634
+ models.
1635
+ Comparing with our first measurements with KV-450 data
1636
+ (Yao et al. 2020a), a lot of improvements have been added in the
1637
+ SC method, including:
1638
+ (1) the covariance, the galaxy bias, the scale-dependency for the
1639
+ lensing-drop QGg, the IA-drop QIg, and appropriate scale-cuts,
1640
+ Article number, page 12 of 15
1641
+
1642
+ Yao et al 2022: KiDS shear × Planck lensing and IA removal
1643
+ which have been introduced in Yao et al. (2020b);
1644
+ (2) the boost factor, the cosmic magnification, and the photo-z
1645
+ PDF modeling, which are introduced in this work;
1646
+ (3) its first validation using simulation, and its first application
1647
+ to cosmology in order to break the lensing-IA degeneracy, intro-
1648
+ duced in this work.
1649
+ With these improvements, we manage to achieve consistent IA
1650
+ results between SC and cosmic shear, as shown in Fig. 15, while
1651
+ previously we got AIA = 2.31+0.42
1652
+ −0.42 with the old version of SC
1653
+ (Yao et al. 2020a) and AIA = 0.981+0.694
1654
+ −0.678 for cosmic shear (Hilde-
1655
+ brandt et al. 2020) with KV-450 data.
1656
+ Despite SC-obtained AIA is consistent with the MICE input
1657
+ IA, and when applying to data it is consistent with the KiDS cos-
1658
+ mic shear results Asgari et al. (2021) and the other CMB lensing
1659
+ work Robertson et al. (2021), as well as gmag is in reasonable
1660
+ agreement with (Duncan et al. 2014), our results still suffer from
1661
+ an unrealisticly low effective galaxy bias bg,eff = 0.88, which
1662
+ is different from our previous work (Yao et al. 2020b). We dis-
1663
+ cussed this value may absorb the contribution from (1) fiducial
1664
+ cosmology, (2) lensing weight in n(z), (3) insufficient modeling
1665
+ in non-linear galaxy bias, baryonic effects, and massive neutri-
1666
+ nos, (4) incorrect photo-z v.s. true-z connection as discussed in
1667
+ Appendix A and (5) possible other sources of systematics. We
1668
+ emphasize the complication and leave this point for future stud-
1669
+ ies.
1670
+ We note that there could still exist other systematics other
1671
+ than the galaxy bias, such as beyond Limber approximation
1672
+ (Fang et al. 2020), non-flat ΛCDM (Yu et al. 2021), selection
1673
+ bias on shear measurement (Li et al. 2021). But they have either
1674
+ much smaller impacts compared with IA or are strongly reduced
1675
+ due to our scale cuts. Therefore, they are beyond the scope of
1676
+ this paper.
1677
+ Acknowledgements. The authors thank Yu Yu, Hai Yu, Jiaxin Wang for useful
1678
+ discussions.
1679
+ This work is supported by National Key R&D Program of China No.
1680
+ 2022YFF0503403. JY acknowledges the support of the National Science
1681
+ Foundation of China (12203084), the China Postdoctoral Science Foundation
1682
+ (2021T140451), and the Shanghai Post-doctoral Excellence Program (2021419).
1683
+ HYS acknowledges the support from CMS-CSST-2021-A01 and CMS-CSST-
1684
+ 2021-B01, NSFC of China under grant 11973070, the Shanghai Committee of
1685
+ Science and Technology grant No.19ZR1466600 and Key Research Program
1686
+ of Frontier Sciences, CAS, Grant No. ZDBS-LY-7013. PZ acknowledges the
1687
+ support of the National Science Foundation of China (11621303, 11433001).
1688
+ XL acknowledges the support of NSFC of China under Grant No. 11803028,
1689
+ YNU Grant No. C176220100008, and a grant from the CAS Interdisciplinary
1690
+ Innovation Team. BJ acknowledges support by STFC Consolidated Grant
1691
+ ST/V000780/1. MB is supported by the Polish National Science Center through
1692
+ grants no. 2020/38/E/ST9/00395, 2018/30/E/ST9/00698, 2018/31/G/ST9/03388
1693
+ and 2020/39/B/ST9/03494, and by the Polish Ministry of Science and Higher
1694
+ Education through grant DIR/WK/2018/12. HH is supported by a Heisenberg
1695
+ grant of the Deutsche Forschungsgemeinschaft (Hi 1495/5-1) as well as
1696
+ an ERC Consolidator Grant (No. 770935). TT acknowledges support from
1697
+ the Leverhulme Trust. AW is supported by an European Research Council
1698
+ Consolidator Grant (No. 770935). ZY acknowledges support from the Max
1699
+ Planck Society and the Alexander von Humboldt Foundation in the framework
1700
+ of the Max Planck-Humboldt Research Award endowed by the Federal Ministry
1701
+ of Education and Research (Germany). The computations in this paper were run
1702
+ on the π 2.0 cluster supported by the Center for High Performance Computing
1703
+ at Shanghai Jiao Tong University.
1704
+ The codes JY produced for this paper were written in Python. JY thanks all its
1705
+ developers and especially the people behind the following packages: SCIPY
1706
+ (Jones et al. 2001–), NUMPY (van der Walt et al. 2011), ASTROPY (Astropy
1707
+ Collaboration et al. 2013) and MATPLOTLIB (Hunter 2007), TreeCorr (Jarvis
1708
+ et al. 2004), CCL (Chisari et al. 2019), CAMB (Lewis et al. 2000), Healpy
1709
+ (Górski et al. 2005; Zonca et al. 2019), emcee (Foreman-Mackey et al. 2013),
1710
+ fitsio6, kmeans_radec7, corner (Foreman-Mackey 2016), ChainConsumer8. The
1711
+ 6 https://github.com/esheldon/fitsio
1712
+ 7 https://github.com/esheldon/kmeansradec
1713
+ 8 https://github.com/Samreay/ChainConsumer
1714
+ KiDS-1000 results in this paper are based on data products from observations
1715
+ made with ESO Telescopes at the La Silla Paranal Observatory under pro-
1716
+ gramme IDs 177.A-3016, 177.A-3017 and 177.A-3018, and on data products
1717
+ produced by Target/OmegaCEN, INAF-OACN, INAF-OAPD, and the KiDS
1718
+ production team, on behalf of the KiDS consortium.
1719
+ Author contributions: All authors contributed to the development and writing
1720
+ of this paper. The authorship list is given in three groups: the lead authors (JY,
1721
+ HS, PZ, XL) followed by two alphabetical groups. The first alphabetical group
1722
+ includes those who are key contributors to both the scientific analysis and the
1723
+ data products. The second group covers those who have either made a significant
1724
+ contribution to the data products, or to the scientific analysis.
1725
+ References
1726
+ Abbott, T. M. C., Aguena, M., Alarcon, A., et al. 2022, Phys. Rev. D, 105,
1727
+ 023520
1728
+ Amon, A., Gruen, D., Troxel, M. A., et al. 2022, Phys. Rev. D, 105, 023514
1729
+ Asgari, M., Lin, C.-A., Joachimi, B., et al. 2021, A&A, 645, A104
1730
+ Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A, 558,
1731
+ A33
1732
+ Bartelmann, M. 1995, A&A, 298, 661
1733
+ Bartelmann, M. & Schneider, P. 2001, Phys. Rep., 340, 291
1734
+ Begeman, K., Belikov, A. N., Boxhoorn, D. R., & Valentijn, E. A. 2013, Experi-
1735
+ mental Astronomy, 35, 1
1736
+ Benitez, N. 2000, ApJ, 536, 571
1737
+ Bernardeau, F. 1998, A&A, 338, 375
1738
+ Blazek, J., Vlah, Z., & Seljak, U. 2015, J. Cosmology Astropart. Phys., 8, 015
1739
+ Blazek, J. A., MacCrann, N., Troxel, M. A., & Fang, X. 2019, Phys. Rev. D, 100,
1740
+ 103506
1741
+ Bridle, S. & King, L. 2007, New Journal of Physics, 9, 444
1742
+ Brown, M. L., Taylor, A. N., Hambly, N. C., & Dye, S. 2002, MNRAS, 333, 501
1743
+ Carretero, J., Castander, F. J., Gaztañaga, E., Crocce, M., & Fosalba, P. 2015,
1744
+ MNRAS, 447, 646
1745
+ Catelan, P., Kamionkowski, M., & Blandford, R. D. 2001, MNRAS, 320, L7
1746
+ Chang, C., Wang, M., Dodelson, S., et al. 2019, MNRAS, 482, 3696
1747
+ Chisari, N., Laigle, C., Codis, S., et al. 2016, MNRAS, 461, 2702
1748
+ Chisari, N. E., Alonso, D., Krause, E., et al. 2019, ApJS, 242, 2
1749
+ Chisari, N. E., Dunkley, J., Miller, L., & Allison, R. 2015, MNRAS, 453, 682
1750
+ Chisari, N. E., Koukoufilippas, N., Jindal, A., et al. 2017, MNRAS, 472, 1163
1751
+ Crittenden, R. G., Natarajan, P., Pen, U.-L., & Theuns, T. 2001, ApJ, 559, 552
1752
+ Crocce, M., Castander, F. J., Gaztañaga, E., Fosalba, P., & Carretero, J. 2015,
1753
+ MNRAS, 453, 1513
1754
+ Croft, R. A. C. & Metzler, C. A. 2000, ApJ, 545, 561
1755
+ de Jong, J. T. A., Verdoes Kleijn, G. A., Boxhoorn, D. R., et al. 2015, A&A, 582,
1756
+ A62
1757
+ Dong, F., Zhang, P., Zhang, L., et al. 2021, ApJ, 923, 153
1758
+ Duncan, C. A. J., Joachimi, B., Heavens, A. F., Heymans, C., & Hildebrandt, H.
1759
+ 2014, MNRAS, 437, 2471
1760
+ Erben, T., Hildebrandt, H., Miller, L., et al. 2013, MNRAS, 433, 2545
1761
+ Fang, X., Krause, E., Eifler, T., & MacCrann, N. 2020, J. Cosmology Astropart.
1762
+ Phys., 2020, 010
1763
+ Fong, M. & Han, J. 2021, MNRAS, 503, 4250
1764
+ Foreman-Mackey, D. 2016, The Journal of Open Source Software, 1, 24
1765
+ Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125,
1766
+ 306
1767
+ Fortuna, M. C., Hoekstra, H., Joachimi, B., et al. 2021, MNRAS, 501, 2983
1768
+ Fosalba, P., Gaztañaga, E., Castander, F. J., & Crocce, M. 2015, MNRAS, 447,
1769
+ 1319
1770
+ Giblin, B., Heymans, C., Asgari, M., et al. 2021, A&A, 645, A105
1771
+ Górski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759
1772
+ Hamana, T., Colombi, S. T., Thion, A., et al. 2002, MNRAS, 330, 365
1773
+ Hamana, T., Shirasaki, M., Miyazaki, S., et al. 2020, PASJ, 72, 16
1774
+ Hand, N., Leauthaud, A., Das, S., et al. 2015, Phys. Rev. D, 91, 062001
1775
+ Harnois-Déraps, J., Tröster, T., Chisari, N. E., et al. 2017, MNRAS, 471, 1619
1776
+ Harnois-Déraps, J., Tröster, T., Hojjati, A., et al. 2016, MNRAS, 460, 434
1777
+ Hartlap, J., Simon, P., & Schneider, P. 2007, A&A, 464, 399
1778
+ Hasan, I. S., Schmidt, S. J., Schneider, M. D., & Tyson, J. A. 2022, MNRAS,
1779
+ 511, 1029
1780
+ Heymans, C., Brown, M., Heavens, A., et al. 2004, MNRAS, 347, 895
1781
+ Heymans, C., Tröster, T., Asgari, M., et al. 2021, A&A, 646, A140
1782
+ Hikage, C., Oguri, M., Hamana, T., et al. 2019, PASJ, 71, 43
1783
+ Hildebrandt, H., Köhlinger, F., van den Busch, J. L., et al. 2020, A&A, 633, A69
1784
+ Hildebrandt, H., van den Busch, J. L., Wright, A. H., et al. 2021, A&A, 647,
1785
+ A124
1786
+ Hildebrandt, H. et al. 2017, MNRAS, 465, 1454
1787
+ Hirata, C. M. & Seljak, U. 2004, Phys. Rev. D, 70, 063526
1788
+ Hoffmann, K., Secco, L. F., Blazek, J., et al. 2022, Phys. Rev. D, 106, 123510
1789
+ Article number, page 13 of 15
1790
+
1791
+ A&A proofs: manuscript no. aanda
1792
+ Hunter, J. D. 2007, Computing in Science Engineering, 9, 90
1793
+ Jarvis, M., Bernstein, G., & Jain, B. 2004, MNRAS, 352, 338
1794
+ Jing, Y. P. 2002, MNRAS, 335, L89
1795
+ Joachimi, B., Lin, C. A., Asgari, M., et al. 2021, A&A, 646, A129
1796
+ Joachimi, B., Mandelbaum, R., Abdalla, F. B., & Bridle, S. L. 2011, A&A, 527,
1797
+ A26
1798
+ Joachimi, B., Semboloni, E., Hilbert, S., et al. 2013, MNRAS, 436, 819
1799
+ Johnston, H., Georgiou, C., Joachimi, B., et al. 2019, A&A, 624, A30
1800
+ Johnston, H., Wright, A. H., Joachimi, B., et al. 2021, A&A, 648, A98
1801
+ Jones, E., Oliphant, T., Peterson, P., et al. 2001–, SciPy: Open source scientific
1802
+ tools for Python, [Online; accessed <today>]
1803
+ Kiessling, A., Cacciato, M., Joachimi, B., et al. 2015, Space Sci. Rev., 193, 67
1804
+ Kirk, D., Brown, M. L., Hoekstra, H., et al. 2015, Space Sci. Rev., 193, 139
1805
+ Kirk, D., Omori, Y., Benoit-Lévy, A., et al. 2016, MNRAS, 459, 21
1806
+ Krause, E., Eifler, T., & Blazek, J. 2016, MNRAS, 456, 207
1807
+ Kuijken, K., Heymans, C., Dvornik, A., et al. 2019, A&A, 625, A2
1808
+ Lee, J. & Pen, U.-L. 2001, arXiv e-prints, astro
1809
+ Lewis, A., Challinor, A., & Lasenby, A. 2000, ApJ, 538, 473
1810
+ Li, H., Zhang, J., Liu, D., et al. 2021, ApJ, 908, 93
1811
+ Lin, W. & Ishak, M. 2017, Phys. Rev. D, 96, 083532
1812
+ Liu, J. & Hill, J. C. 2015, Phys. Rev. D, 92, 063517
1813
+ Liu, X., Liu, D., Gao, Z., et al. 2021, Phys. Rev. D, 103, 123504
1814
+ Mandelbaum, R. 2018, ARA&A, 56, 393
1815
+ Mandelbaum, R., Hirata, C. M., Ishak, M., Seljak, U., & Brinkmann, J. 2006,
1816
+ MNRAS, 367, 611
1817
+ Mandelbaum, R., Hirata, C. M., Seljak, U., et al. 2005, Monthly Notices of the
1818
+ Royal Astronomical Society, 361, 1287
1819
+ Marques, G. A., Liu, J., Huffenberger, K. M., & Colin Hill, J. 2020, ApJ, 904,
1820
+ 182
1821
+ Miller, L., Heymans, C., Kitching, T. D., et al. 2013, MNRAS, 429, 2858
1822
+ Namikawa, T., Chinone, Y., Miyatake, H., et al. 2019, ApJ, 882, 62
1823
+ Newman, J. A. & Gruen, D. 2022, ARA&A, 60, 363
1824
+ Okumura, T., Jing, Y. P., & Li, C. 2009, ApJ, 694, 214
1825
+ Omori, Y., Baxter, E. J., Chang, C., et al. 2019, Phys. Rev. D, 100, 043517
1826
+ Omori, Y., Chown, R., Simard, G., et al. 2017, ApJ, 849, 124
1827
+ Pedersen, E. M., Yao, J., Ishak, M., & Zhang, P. 2020, ApJ, 899, L5
1828
+ Peng, H., Xu, H., Zhang, L., Chen, Z., & Yu, Y. 2022, MNRAS, 516, 6210
1829
+ Planck Collaboration, Aghanim, N., Akrami, Y., et al. 2020a, A&A, 641, A1
1830
+ Planck Collaboration, Aghanim, N., Akrami, Y., et al. 2020b, A&A, 641, A6
1831
+ Planck Collaboration, Aghanim, N., Akrami, Y., et al. 2020c, A&A, 641, A8
1832
+ Refregier, A. 2003, ARA&A, 41, 645
1833
+ Rezaie, M., Seo, H.-J., Ross, A. J., & Bunescu, R. C. 2020, MNRAS, 495, 1613
1834
+ Robertson, N. C., Alonso, D., Harnois-Déraps, J., et al. 2021, A&A, 649, A146
1835
+ Rong, Y., Yi, S.-X., Zhang, S.-N., & Tu, H. 2015, MNRAS, 451, 2536
1836
+ Samuroff, S., Blazek, J., Troxel, M. A., et al. 2019, MNRAS, 489, 5453
1837
+ Samuroff, S., Mandelbaum, R., & Blazek, J. 2021, MNRAS, 508, 637
1838
+ Schaan, E., Krause, E., Eifler, T., et al. 2017, Phys. Rev. D, 95, 123512
1839
+ Secco, L. F., Samuroff, S., Krause, E., et al. 2022, Phys. Rev. D, 105, 023515
1840
+ Shi, J., Kurita, T., Takada, M., et al. 2021, J. Cosmology Astropart. Phys., 2021,
1841
+ 030
1842
+ Singh, S., Mandelbaum, R., & Brownstein, J. R. 2017a, MNRAS, 464, 2120
1843
+ Singh, S., Mandelbaum, R., Seljak, U., Slosar, A., & Vazquez Gonzalez, J.
1844
+ 2017b, Monthly Notices of the Royal Astronomical Society, 471, 3827
1845
+ Sun, Z., Yao, J., Dong, F., et al. 2022, MNRAS, 511, 3548
1846
+ Tonegawa, M. & Okumura, T. 2022, ApJ, 924, L3
1847
+ Troxel, M. A. & Ishak, M. 2012a, MNRAS, 427, 442
1848
+ Troxel, M. A. & Ishak, M. 2012b, MNRAS, 419, 1804
1849
+ Troxel, M. A. & Ishak, M. 2014, Phys. Rev. D, 89, 063528
1850
+ Troxel, M. A., Krause, E., Chang, C., et al. 2018, MNRAS, 479, 4998
1851
+ van den Busch, J. L., Hildebrandt, H., Wright, A. H., et al. 2020, A&A, 642,
1852
+ A200
1853
+ van den Busch, J. L., Wright, A. H., Hildebrandt, H., et al. 2022, A&A, 664,
1854
+ A170
1855
+ van der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, Computing in Science
1856
+ and Engineering, 13, 22
1857
+ Xia, Q., Kang, X., Wang, P., et al. 2017, ApJ, 848, 22
1858
+ Xu, H., Zhang, P., Peng, H., et al. 2023, MNRAS[arXiv:2209.03967]
1859
+ Yang, X., Zhang, J., Yu, Y., & Zhang, P. 2017, ApJ, 845, 174
1860
+ Yao, J., Ishak, M., Lin, W., & Troxel, M. 2017, J. Cosmology Astropart. Phys.,
1861
+ 2017, 056
1862
+ Yao, J., Ishak, M., Troxel, M. A., & LSST Dark Energy Science Collaboration.
1863
+ 2019, MNRAS, 483, 276
1864
+ Yao, J., Pedersen, E. M., Ishak, M., et al. 2020a, MNRAS, 495, 3900
1865
+ Yao, J., Shan, H., Zhang, P., Kneib, J.-P., & Jullo, E. 2020b, ApJ, 904, 135
1866
+ Yu, H., Zhang, P., Wang, J., Yao, J., & Wang, F.-y. 2021, arXiv e-prints,
1867
+ arXiv:2106.03298
1868
+ Yu, Y., Zhang, P., Lin, W., & Cui, W. 2015, ApJ, 803, 46
1869
+ Zhang, P. 2010a, MNRAS, 406, L95
1870
+ Zhang, P. 2010b, ApJ, 720, 1090
1871
+ Zjupa, J., Schäfer, B. M., & Hahn, O. 2020, arXiv e-prints, arXiv:2010.07951
1872
+ Zonca, A., Singer, L., Lenz, D., et al. 2019, Journal of Open Source Software, 4,
1873
+ 1298
1874
+ Article number, page 14 of 15
1875
+
1876
+ Yao et al 2022: KiDS shear × Planck lensing and IA removal
1877
+ Appendix A: The signal drop Q
1878
+ We keep the main text of this paper focused on the physics while
1879
+ keeping the details of the SC method, more specifically the cal-
1880
+ culation for the lensing-drop QGg and the IA-drop QIg in this ap-
1881
+ pendix. The Qs are calculated through Eq. (13) and (14), while
1882
+ the correlation functions being used are just the Hankel trans-
1883
+ form (similar to Eq. (4)) of the angular power spectrum CGg and
1884
+ CIg. The associated CGg and CGg|S are calculated by:
1885
+ CGg
1886
+ ii (ℓ) =
1887
+ � ∞
1888
+ 0
1889
+ qi(χ)ni(χ)
1890
+ χ2
1891
+ bg,effPδ
1892
+
1893
+ k = ℓ
1894
+ χ; χ
1895
+
1896
+ dχ,
1897
+ (A.1)
1898
+ CGg
1899
+ ii |S(ℓ) =
1900
+ � ∞
1901
+ 0
1902
+ qi(χ)ni(χ)
1903
+ χ2
1904
+ bg,effPδ
1905
+
1906
+ k = ℓ
1907
+ χ; χ
1908
+
1909
+ ηGg
1910
+ i (z)dχ.
1911
+ (A.2)
1912
+ Similarly, the CIg and CIg|S are given by:
1913
+ CIg
1914
+ ii (ℓ) =
1915
+ � ∞
1916
+ 0
1917
+ ni(χ)ni(χ)
1918
+ χ2
1919
+ bg,effPδ,γI
1920
+
1921
+ k = ℓ
1922
+ χ; χ
1923
+
1924
+ dχ,
1925
+ (A.3)
1926
+ CIg
1927
+ ii |S(ℓ) =
1928
+ � ∞
1929
+ 0
1930
+ ni(χ)ni(χ)
1931
+ χ2
1932
+ bg,effPδ,γI
1933
+
1934
+ k = ℓ
1935
+ χ; χ
1936
+
1937
+ ηIg
1938
+ i (z)dχ.
1939
+ (A.4)
1940
+ Here ηGg
1941
+ i (z) = ηGg
1942
+ i (zL = zg = z) is the function that account
1943
+ for the effect of the SC selection Eq. (8) in the Limber integral,
1944
+ similarly for ηIg. They are expressed
1945
+ ηGg
1946
+ i (zL, zg) =
1947
+ 2
1948
+
1949
+ dzP
1950
+ G
1951
+
1952
+ dzP
1953
+ g
1954
+ � ∞
1955
+ 0 dzGWL(zL, zG)S (zP
1956
+ G, zP
1957
+ g)K
1958
+
1959
+ dzP
1960
+ G
1961
+
1962
+ dzPg
1963
+ � ∞
1964
+ 0 dzGWL(zL, zG)K
1965
+ , (A.5)
1966
+ ηIg
1967
+ i (zL, zg) =
1968
+ 2
1969
+
1970
+ dzP
1971
+ G
1972
+
1973
+ dzP
1974
+ g
1975
+ � ∞
1976
+ 0 dzGS (zP
1977
+ G, zP
1978
+ g)K
1979
+
1980
+ dzP
1981
+ G
1982
+
1983
+ dzPg
1984
+ � ∞
1985
+ 0 dzGK
1986
+ ,
1987
+ (A.6)
1988
+ as in Yao et al. (2020b), where K is the galaxy-pair redshift dis-
1989
+ tribution kernel
1990
+ K(zG, zg, zP
1991
+ G, zP
1992
+ g) = p(zG|zP
1993
+ G)p(zg|zP
1994
+ g)nP
1995
+ i (zP
1996
+ G)nP
1997
+ i (zP
1998
+ g),
1999
+ (A.7)
2000
+ and S is the SC selection function
2001
+ S (zP
2002
+ G, zP
2003
+ g) =
2004
+ �1
2005
+ for zP
2006
+ G < zP
2007
+ g,
2008
+ 0
2009
+ otherwise ,
2010
+ (A.8)
2011
+ which correspond to Eq. 8 in the main text, and the lensing kernel
2012
+ is
2013
+ WL(zL, zS ) =
2014
+ �������
2015
+ 3
2016
+ 2Ωm
2017
+ H2
2018
+ 0
2019
+ c2 (1 + zL)χL(1 − χL
2020
+ χS )
2021
+ for zL < zS
2022
+ 0
2023
+ otherwise
2024
+ .
2025
+ (A.9)
2026
+ Here zx is the true-z where x can be “G” the source, “L” the
2027
+ lens, or “g” the galaxy number density. The galaxy photo-z dis-
2028
+ tribution is nP(zP), and the redshift PDF (probability distribution
2029
+ function) is p(z|zP).
2030
+ As shown above, when the galaxy photo-z distribution and
2031
+ the corresponding true-z distribution are given, as shown in
2032
+ Fig. 3 in this work, we can follow the above procedure to calcu-
2033
+ late the lensing-drop QGg and QIg. The results of QGg and QIg for
2034
+ this work are shown in Fig. 4 for your interest. Generally, given
2035
+ the tomographic bin width, the better photo-z is, the smaller QGg
2036
+ will be (it reaches ∼ 0 for perfect photo-z). On the other hand,
2037
+ non-symmetric photo-z distribution and non-symmetric true-z
2038
+ distribution will make GIg deviate from 1. For more details on
2039
+ the Q calculation and its properties, see discussions in Yao et al.
2040
+ (2020a,b).
2041
+ 101
2042
+ 102
2043
+ 103
2044
+ 104
2045
+
2046
+ 0.4
2047
+ 0.5
2048
+ 0.6
2049
+ 0.7
2050
+ 0.8
2051
+ 0.9
2052
+ 1.0
2053
+ Q
2054
+ gG model
2055
+ gI model
2056
+ gG sim
2057
+ gI sim
2058
+ 100
2059
+ 101
2060
+ 102
2061
+ θ [arcmin]
2062
+ 0.4
2063
+ 0.5
2064
+ 0.6
2065
+ 0.7
2066
+ 0.8
2067
+ 0.9
2068
+ 1.0
2069
+ gG model
2070
+ gI model
2071
+ gG sim
2072
+ gI sim
2073
+ Fig. A.1. The effect of photo-z modeling with MICE2. By applying the
2074
+ SC selection Eq. (8) or (A.8), the lensing-drop GGg from photo-z model
2075
+ (green) is slightly biased compared with the results from true-z (blue),
2076
+ while the IA-drop GIg from photo-z model (red) is immune to such bias
2077
+ and agrees with the true-z result (orange).
2078
+ We note that for the SC calculation, the redshift PDF p(z|zP)
2079
+ for each galaxy is required. Due to the fact that the PDFs from
2080
+ photo-z algorithm can be biased due to the color-redshift degen-
2081
+ eracy in the photometric surveys, calibration is needed (Hilde-
2082
+ brandt et al. 2017, 2021; Abbott et al. 2022). However, we can
2083
+ only statistically calibrate the overall redshift distribution n(z)
2084
+ but not the PDF p(z|zP) for each galaxy. This means in order to
2085
+ calculate Eq. A.7 we need to assume a photo-z PDF model. We
2086
+ choose to use a bi-Gaussian model Yao et al. (2020a)
2087
+ p2G(z|zP) = (1 − fout)pmain(z|zP; ∆1, σ1) + foutpoutlier(z|zP; ∆2, σ2),
2088
+ (A.10)
2089
+ with a main Gaussian peak and a Gaussian outlier peak with
2090
+ different bias ∆i and scatter σi, and an outlier rate fout.
2091
+ We fit the bi-Gaussian model Eq. (A.10), requiring it to have
2092
+ same mean redshift ⟨z⟩ with the SOM calibrated n(z) (Asgari
2093
+ et al. 2021), and minimize the difference between the resulting
2094
+ model z-distribution
2095
+
2096
+ nP(zP)p(z|zP)dzP and the SOM n(z). The
2097
+ best-fit will then be a good description of the photo-z quality and
2098
+ can be used in Eq. (A.7). The resulting signal drops are shown in
2099
+ Fig. 4 in the main text.
2100
+ We validate the bi-Gaussian photo-z model for SC with
2101
+ MICE2 simulation. We compare with the results that use the
2102
+ photo-z distribution and true-z distribution in the calculation of
2103
+ Eq. (A.7). We show in Fig. A.1 that the bi-Gaussian model can
2104
+ produce the IA-drop QIg measurement very consistent with the
2105
+ ones with true-z from simulation. However, we find the lensing-
2106
+ drop QGg from the photo-z model is slightly higher than the true
2107
+ values from the simulation. This error will be propagated to the
2108
+ separated lensing signal wGg and the IA+magnification signal
2109
+ wIg + gmagwGκ according to Eq. (15) and (16). Its impact in AIA
2110
+ is shown in Fig. 10 and 11.
2111
+ Article number, page 15 of 15
2112
+
9tFQT4oBgHgl3EQf6DZi/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
A9E4T4oBgHgl3EQfEwz_/content/2301.04881v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6cbc06bdaf6ea9aa78225d67b87e2c84728685d4eafe5e01f56752ab89906747
3
+ size 216122
A9E4T4oBgHgl3EQfEwz_/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37ec59e87fd253e1f7e078900ab615a6e4d9a817467b707c983ed1c67422bb75
3
+ size 98306
AdE0T4oBgHgl3EQfPgCp/content/tmp_files/2301.02180v1.pdf.txt ADDED
@@ -0,0 +1,1237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02180v1 [math.DS] 5 Jan 2023
2
+ Existence of robust non-uniformly hyperbolic
3
+ endomorphism in homotopy classes
4
+ Victor Janeiro
5
+ [email protected], ICEx-UFMG, Belo Horizonte-MG, Brazil.
6
+ Abstract
7
+ We extend the results of [1] by showing that any homothety in 핋2 is homo-
8
+ topic to a non-uniformly hyperbolic ergodic area preserving map, provided that
9
+ its degree is at least 52. We also address other small topological degree cases not
10
+ considered in the previous article. This proves the existence of a 1 open set
11
+ of non-uniformly hyperbolic systems, that intersects essentially every homotopy
12
+ classes in 핋2, where the Lyapunov exponents vary continuously.
13
+ 1
14
+ Introduction
15
+ We study conservative maps of the two-torus 핋2 from the point of view of smooth
16
+ ergodic theory. We are interested in the Lyapunov exponents of these systems, in
17
+ particular, in extending the results obtained in [1] to the homothety case and some
18
+ cases with lower topological degree, which were not included in the previous results.
19
+ With this in mind, some familiarity with the results of [1] is desirable.
20
+ For a differentiable covering map 푓 ∶ 핋2 → 핋2 and a pair (푥, 푣) ∈ 푇핋2, the number
21
+ ̃(푥, 푣) = lim sup
22
+ 푛→∞
23
+ log ‖퐷푥푓 푛(푣)‖
24
+
25
+ is the Lyapunov exponent of 푓 at (푥, 푣). See [2] for background in Smooth Ergodic
26
+ Theory. Due to Oseledet’s Theorem [3] , there is a full area set 푀0 on 핋2 where the
27
+ previous limit exists for every 푣, and there exists a measurable bundle 퐸− defined on
28
+ 푀0 such that for 푥 ∈ 푀0, 푣 ≠ 0 ∈ 퐸−(푥):
29
+ (푥, 푣) ∶= lim
30
+ 푛→∞
31
+ log ‖퐷푥푓 푛(푣)‖
32
+
33
+ = lim
34
+ 푛→∞
35
+ log 푚(퐷푥푓 푛)
36
+
37
+ ∶= −(푥),
38
+ while for 푣 ∈ ℝ2 ⧵ 퐸−(푥):
39
+ (푥, 푣) = lim
40
+ 푛→∞
41
+ log ‖퐷푥푓 푛‖
42
+
43
+ ∶= +(푥),
44
+ Moreover, if 휇 denotes the Lebesgue (Haar) measure on 핋2, then:
45
+ ∫ (+(푥) + −(푥))푑휇(푥) = ∫ log | det 퐷푥푓 |푑휇(푥) > 0,
46
+ (1)
47
+ 1
48
+
49
+ so +(푥) > 0 almost everywhere. At last, we say that 푓 is non-uniformly hyperbolic
50
+ (NUH) if −(푥) < 0 < +(푥) almost everywhere.
51
+ Non uniformly hyperbolic systems provide a generalization of the classical Anosov
52
+ surface maps [4]. Here, we will only be concerned with the non-invertible case in an
53
+ attempt to aid the understanding of their statistical properties, which is still under
54
+ development. For the general ergodic theory of endomorphisms, the reader is directed
55
+ to [5].
56
+ Any map 푓 ∶ 핋2 → 핋2 is homotopic to a linear endomorphism 퐸 ∶ 핋2 → 핋2,
57
+ induced by an integer matrix that we denote by the same letter. In [1], it is established
58
+ the existence of a 1 open set of non-uniformly hyperbolic systems that intersects
59
+ every homotopy class that does not contain a homothety, provided that the degree is
60
+ not too small. The authors then conjecture that the same is true for homotheties. In
61
+ this article, we prove this conjecture, provided that the degree is at least 52. There are
62
+ other low topological degree cases not covered by Andersson, Carrasco and Saghin,
63
+ which we also address here.
64
+ Let End푟
65
+ 휇(핋2) be the set of 푟 local diffeomorphisms of 핋2 preserving the Lebesgue
66
+ measure 휇, that are not invertible. For 푓 ∈ End푟
67
+ 휇(핋2), (푥, 푣) ∈ 푇 1핋2 define:
68
+ 퐼(푥, 푣; 푓 푛) =
69
+
70
+ 푦∈푓 −푛(푥)
71
+ log ‖(퐷푦푓 푛)−1푣‖
72
+ det(퐷푦푓 푛)
73
+ ,
74
+ and
75
+ 퐶(푓 ) = ∑
76
+ 푛∈ℕ
77
+ 1
78
+
79
+ inf
80
+ (푥,푣)∈푇 1핋2 퐼(푥, 푣; 푓 푛).
81
+ Define the set
82
+  ∶= {푓 ∈ End푟
83
+ 휇(핋2) ∶ 퐶(푓 ) > 0},
84
+ which is open in the 1-topology. On Subsection 2.3 of the main reference [1], it is
85
+ proved:
86
+ Theorem 1. If 푓 ∈  , then 푓 is non-uniformly hyperbolic.
87
+ Our main results are:
88
+ Theorem A. For 퐸 = 푘 ⋅퐼푑 ∈ 푀2×2(ℤ), with |푘| ≥ 5, the intersection [퐸]∩ is non-empty
89
+ and in fact contains maps that are real analytically homotopic to E.
90
+ Theorem B. If 퐸 ∈ 푀2×2(ℤ) is not a homothety and 푑푒푡(퐸) > 4, the intersection [퐸] ∩ 
91
+ is non-empty and in fact contains maps that are real analytically homotopic to E.
92
+ Our Theorem B is equivalent to the Theorem A of [1] but includes three cases
93
+ which are not proved there. The main difficulty for our results is that, in the case of
94
+ 2
95
+
96
+ a homothety, the induced projective action is trivial; non-triviality of this projective
97
+ action is a central piece in the method of Andersson et al.
98
+ Finally, by inspection on the proofs of Theorems B and C of [1], we can see that it
99
+ works for all cases included here. Hence, defining:
100
+ 퐶det(푓 ) ∶= sup
101
+ 푛∈ℕ
102
+ 1
103
+ 푛 inf
104
+ 푥∈핋2 log(det(퐷푥푓 푛)) > 0,
105
+ and the open set:
106
+ 1 ∶=
107
+ {
108
+ 푓 ∈ End푟
109
+ 휇(핋2) ∶ 퐶(푓 ) > −1
110
+ 2퐶det(푓 )
111
+ }
112
+ ,
113
+ we have from Theorems A and B that if a linear endomorphism 퐸 satisfies the condi-
114
+ tions of either of the Theorems, then [퐸] ∩ 1 ≠ ∅. Therefore, by Theorem 퐵 of [1], we
115
+ have conituity of the maps 1 ∋ 푓 ↦ ∫핋2 ±(푓 )푑휇 in the 1 topology.
116
+ From Theorem C of [1], we conclude that for any linear endomorphism E as in
117
+ Theorem A or B. If ±1 is not an eigenvalue of 퐸, then [퐸] ∩  contains stably ergodic
118
+ endomorphisms. In fact, it contains stably Bernoulli endomorphisms and, in particular,
119
+ maps that are mixing of all orders.
120
+ Acknowledgements
121
+ The results presented here were conjectured by Martin Andersson, Pablo D. Carrasco
122
+ and Radu Saghin in [1], I thank Pablo D. Carrasco, who is also my MSc advisor, for the
123
+ suggestion of the problem and for the hours of conversations on the subject that were
124
+ crucial to this article.
125
+ This work has been supported by the Brazillian research agencies CAPES and
126
+ CNPq.
127
+ 2
128
+ Preliminary
129
+ In order to prove Theorems A and B, we require a result on the computation of the
130
+ numbers 퐼(푥, 푣; 푓 푛) which the proof can be found in [1]:
131
+ Proposition 2.1. For any 푛 ∈ ℕ, it holds:
132
+ 퐼(푥, 푣; 푓 푛) =
133
+ 푛−1
134
+
135
+ 푖=0
136
+
137
+ 푦∈푓 −푖(푥)
138
+ 퐼(푦, 퐹 −푖
139
+ 푦 푣; 푓 )
140
+ det(퐷푦푓 푖) ,
141
+ (2)
142
+ where 퐹 −푖
143
+ 푦 푣 =
144
+ (퐷푦푓 푖)−1푣
145
+ ‖(퐷푦푓 푖)−푖푣‖.
146
+ 3
147
+
148
+ 2.1
149
+ Shears
150
+ For fixed points 푧1, 푧2, 푧3, 푧4 ∈ 핋1, in this order, take the closed intervals 퐼1 = [푧1, 푧2],
151
+ 퐼3 = [푧3, 푧4], and the open intervals 퐼2 = (푧2, 푧3) and 퐼4 = (푧4, 푧1).
152
+ Definition 2.1. We define the horizontal and vertical critical regions in 핋2 as ℎ = (퐼1 ∪
153
+ 퐼3) × 핋1, 푣 = 핋1 × (퐼1 ∪ 퐼3) and its complements ℎ = 핋2 ⧵ ℎ , 푣 = 핋2 ⧵ 푣 are respectively
154
+ the horizontal and vertical good region.
155
+ We then divide the good regions into +
156
+ ℎ = 퐼4 × 핋1, −
157
+ ℎ = 퐼2 × 핋1, +
158
+ 푣 = 핋1 × 퐼4 and
159
+ −
160
+ 푣 = 핋1 × 퐼2.
161
+ For fixed numbers 0 < 푎 < 푏, we take 푠 ∶ 핋1 → ℝ as an analytic map satisfying
162
+ the following conditions:
163
+ 1. If 푧 ∈ 퐼4, then 푎 < 푠′(푧) < 푏;
164
+ 2. If 푧 ∈ 퐼2, then −푏 < 푠′(푧) < −푎;
165
+ 3. If 푧 ∈ 퐼1 ∪ 퐼3, then |푠′(푧)| < 푏.
166
+ Consider the two families of conservative diffeomorphisms of the torus given by:
167
+ ℎ푡(푥1, 푥2) = (푥1, 푥2 + 푡푠(푥1)), 푣푟(푥1, 푥2) = (푥1 + 푟푠(푥2), 푥2),
168
+ 푡, 푟 ∈ ℝ.
169
+ Note that:
170
+ 퐷(푥1,푥2)ℎ푡 = (
171
+ 1
172
+ 0
173
+ 푡푠′(푥1)
174
+ 1) ,
175
+ 퐷(푥1,푥2)푣푟 = (
176
+ 1
177
+ 푟푠′(푥2)
178
+ 0
179
+ 1
180
+ ) .
181
+ In order to simplify the computations we will consider the maximum norm on 푇핋2
182
+ as ‖(푢1, 푢2)‖ = max{|푢1|, |푢2|}, and all the computations from now on are performed
183
+ using this norm. This way, we get, for every 푥 ∈ 핋2:
184
+ ‖퐷푥ℎ푡‖ < 푏푡 + 1, and ‖퐷푥푣푟‖ < 푏푡 + 1.
185
+ Definition 2.2. Given 훼 > 0, the corresponding horizontal cone is Δℎ
186
+ 훼 = {(푢1, 푢2) ∈ ℝ2 ∶
187
+ |푢2| ≤ 훼|푢1|}, while the corresponding vertical cone is its complement Δ푣
188
+ 훼 = ℝ2 ⧵ Δℎ
189
+ 훼,
190
+ Lemma 2.1. For 훼 > 1, let Δℎ
191
+ 훼 and Δ푣
192
+ 훼 be the corresponding horizontal and vertical cones.
193
+ Then, for every 푡, 푟 > 2훼
194
+ 푎 , and, for every unit vector 푢 ∈ 푇푥핋2, the following holds:
195
+ 1. If 푢 ∈ Δ푣
196
+ 훼, and:
197
+ (a) 푥 ∈ 푣, then
198
+ • (퐷푥푣푟)−1푢 ∈ Δℎ
199
+ 훼 (퐷푥푣−1
200
+ 푟 Δ푣
201
+ 훼 ⊂ Δℎ
202
+ 훼);
203
+ • ‖(퐷푥푣푟)−1푢‖ > 푎푟−훼
204
+
205
+ = 푟
206
+ 푎− 훼
207
+
208
+ 훼 ;
209
+ 4
210
+
211
+ (b) 푥 ∈ 푣, then ‖(퐷푥푣푟)−1푢‖ > 1
212
+ 훼 .
213
+ 2. If 푢 = ±(1, 푢2) ∈ Δℎ
214
+ 훼, then:
215
+ (a) either for every 푥 ∈ +
216
+ 푣 ( if 푢2 ≤ 0) or for every 푥 ∈ −
217
+ 푣 (if 푢2 ≥ 0) it holds:
218
+ • (퐷푥푣푟)−1푢 ∈ Δℎ
219
+ 훼;
220
+ • ‖(퐷푥푣푟)−1푢‖ > 1;
221
+ (b) for all other 푥, we have ‖(퐷푥푣푟)−1푢‖ >
222
+ 1
223
+ 푏푟+1.
224
+ 3. If 푢 ∈ Δℎ
225
+ 훼, and:
226
+ (a) 푥 ∈ ℎ, then
227
+ • (퐷푥ℎ푡)−1푢 ∈ Δ푣
228
+ 훼 (퐷푥ℎ−1
229
+ 푡 Δℎ
230
+ 훼 ⊂ Δ푣
231
+ 훼);
232
+ • ‖(퐷푥ℎ푡)−1푢‖ > 푎푡−훼
233
+
234
+ = 푡
235
+ 푎− 훼
236
+
237
+ 훼 ;
238
+ (b) 푥 ∈ ℎ, then ‖(퐷푥ℎ푡)−1푢‖ > 1
239
+ 훼 .
240
+ 4. If 푢 = ±(푢1, 1) ∈ Δ푣
241
+ 훼, then:
242
+ (a) either for every 푥 ∈ +
243
+ ℎ ( if 푢1 ≤ 0) or for every 푥 ∈ −
244
+ ℎ (if 푢1 ≥ 0) it holds:
245
+ • (퐷푥ℎ푡)−1푢 ∈ Δ푣
246
+ 훼;
247
+ • ‖(퐷푥ℎ푡)−1푢‖ > 1;
248
+ (b) for all other 푥, we have ‖(퐷푥ℎ푡)−1푢‖ >
249
+ 1
250
+ 푏푡+1.
251
+ Proof. We prove items 1 and 2, the case for ℎ푡 is analogous. Let 푥 = (푥1, 푥2) ∈ 푣, and
252
+ 푢± = (1, ±훼) then:
253
+ (퐷푥푣푟)−1푢± = (
254
+ 1
255
+ −푟푠′(푥2)
256
+ 0
257
+ 1
258
+ ) (
259
+ 1
260
+ ±훼) = (
261
+ 1 ∓ 푟푠′(푥2)훼
262
+ ±훼
263
+ ) ,
264
+ also since 푥 ∈ 푣, 푎 < |푠′(푥2)| < 푏, we also have 훼 > 1 and 푟 > 2훼
265
+ 푎 , hence:
266
+ |1 ∓ 푟푠′(푥2)훼| ≥ 푟훼푎 − 1 > 2훼2 − 1 > 훼 > 1,
267
+ which shows that (퐷푥푣푟)−1Δ푣
268
+ 훼 ⊂ Δℎ
269
+ 훼. Also, ‖(퐷푥푣푟)−1푢‖ = |1 ∓ 푟푠′(푥2)훼| > 푟푎훼 − 1. Now,
270
+ noticing that the minimal expansion of vectors in Δ푣
271
+ 훼 occurs on either of (1, ±훼), we
272
+ have for every unit vector 푢 ∈ Δ푣
273
+ 훼:
274
+ ‖(퐷푥푣푟)−1푢‖ ≥ ‖(퐷푥푣푟)−1(1, ±훼)‖
275
+ ‖(1, ±훼)‖
276
+ > 푟훼 − 1
277
+
278
+ .
279
+ For part 2 (a), we have for x ∈ +
280
+ 푣 푠′(푥2) > 푎 > 0, and for 푥 ∈ −
281
+ 푣, 푠′(푥2) < −푎 < 0,
282
+ thus, by simple calculations analogous to the last one, we get the results. Finally, for
283
+ (b) we just use 푚((퐷푥푣푟)−1) =
284
+ 1
285
+ ‖퐷푥푣푟‖ >
286
+ 1
287
+ 푏푟+1 for every 푥 ∈ 핋2.
288
+ 5
289
+
290
+ 3
291
+ Endomorphisms and Shears: Proof of Theorem A
292
+ Fix 퐸 = 푘 ⋅ 퐼푑, for some 푘 ∈ ℕ (we shall make the entire argument on 푘 ∈ ℕ for the
293
+ sake of simplicity of notation, we emphasize that the entire argument works for 푘 ∈ ℤ
294
+ by replacing 푘 for |푘| when necessary). Fix a 훿 <
295
+ 1
296
+ 4푘 and define the critical and good
297
+ regions as in Def. 2.1 for points 푧1, 푧2, 푧3, 푧4 ∈ 핋1 such that:
298
+ • 퐼1 = [푧1, 푧2] and 퐼3 = [푧3, 푧4] have size 2훿;
299
+ • The translation of 퐼1 by a multiple of 1
300
+ 푘 does not intersect 퐼3.
301
+ • 퐼2 = (푧2, 푧3) and 퐼4 = (푧4, 푧1) have size strictly larger than 1
302
+ 푘 [
303
+ 푘−1
304
+ 2 ], where [푝]
305
+ denotes the floor of 푝.
306
+ It is obtained directly from the definitions that:
307
+ Proposition 3.1. For every 푥 = (푥1, 푥2) ∈ 핋2, 퐸−1(푥) has 푘2 points given by:
308
+ 퐸−1(푥1, 푥2) =
309
+ {
310
+ (
311
+ 푥1 + 푖
312
+
313
+ , 푥2 + 푗
314
+
315
+ ) ∶ 푖, 푗 = 0, ⋯ , 푘 − 1
316
+ }
317
+ .
318
+ At least 푘 [
319
+ 푘−1
320
+ 2 ] are inside each of +
321
+ 푣, −
322
+ 푣, +
323
+ ℎ and −
324
+ ℎ, and at most 푘 of them are inside
325
+ each of 푣, ℎ.
326
+ From now on, in this section, we fix any 훼 > 1 and the corresponding cones as in
327
+ Def. 2.2. We consider the analytic maps:
328
+ 푓(푡,푟) = 퐸◦푣푟◦ℎ푡,
329
+ which we shall denote only by 푓 = 푓(푡,푟). Clearly 푓 is an area preserving endomorphism
330
+ isotopic to E. We observe that, given 푥 ∈ 핋2 and 푦 ∈ 푓 −1(푥), we have:
331
+ (퐷푦푓 )−1 = (퐷푦ℎ푡)−1(퐷ℎ푡(푦)푣푟)−1퐸−1.
332
+ The goal is for (퐷ℎ푡(푦)푣푟)−1 to take vectors in the vertical cone and expand them
333
+ in the horizontal direction and then (퐷푦ℎ푡)−1 takes its images and expands them in
334
+ the vertical direction, resulting in (퐷푦푓 )−1 expanding in the vertical direction for most
335
+ points in 푓 −1(푥). Thus, in order to keep track of this derivative, we must localize the
336
+ points 푦 ∈ 푓 −1(푥) in regard to which of ℎ or ℎ they belong, and {ℎ푡(푦) ∶ 푦 ∈ 푓 −1(푥)} =
337
+ (퐸◦푣푟)−1(푥) regarding which of 푣 or 푣 they belong.
338
+ Lemma 3.1. For every 푥 ∈ 핋2, we have:
339
+ 1. (푣푟◦퐸)−1(푥) has 푘2 points of which at least 푘 [
340
+ 푘−1
341
+ 2 ] of them are in each one of +
342
+ 푣 and
343
+ −
344
+ 푣 and at most 푘 of them are in 푣;
345
+ 6
346
+
347
+ 2. 푓 −1(푥) has 푘2 points of which at least 푘 [
348
+ 푘−1
349
+ 2 ] of them are in each one of +
350
+ ℎ and −
351
+
352
+ and at most 푘 of them are in ℎ.
353
+ Proof.
354
+ 1. It is a direct consequence of Prop. 3.1 along with the fact that the regions
355
+ +
356
+ 푣, −
357
+ 푣 and 푣 are invariant under 푣푟.
358
+ 2. Notice that in each row of pre-images by E of a point 푥 = (푥1, 푥2) given by
359
+ {
360
+ (
361
+ 푥1+푖
362
+ 푘 , 푥2+푗0
363
+ 푘 ) ∶ 푖 = 0, ⋯ , 푘 − 1
364
+ }
365
+ for a fixed 푗0 ∈ {0, ⋯ , 푘 − 1}, 푣−1
366
+
367
+ is a rotation
368
+ by −푟푠 (
369
+ 푥2+푗0
370
+ 푘 ) in the circle 핋1 ×
371
+ { 푥2+푗0
372
+
373
+ }
374
+ . Hence, at least [
375
+ 푘−1
376
+ 2 ] of the 푘 points of
377
+ this row are inside each one of +
378
+ ℎ and −
379
+ ℎ, and at most 1 is in ℎ.
380
+ As this is also true for all the 푘 rows of pre-images by E, we get at least 푘 [
381
+ 푘−1
382
+ 2 ]
383
+ pre-images by 퐸◦푣푟 are inside each one of +
384
+ ℎ and −
385
+ ℎ, and at most 푘 pre-images
386
+ by 퐸◦푣푟 are inside ℎ. Finally, since these sets are invariant under ℎ푡, we get the
387
+ desired result.
388
+ Remark 3.1. Even knowing which regions is a point 푦 ∈ (퐸◦푣푟)−1(푥), we cannot de-
389
+ termine the region which ℎ−1
390
+ 푡 (푦) is inside, as 푡 is varying. That is, there may be points
391
+ 푦 ∈ 푓 −1(푥) that are in ℎ such that ℎ푡(푦) ∈ 푣 and vice-versa.
392
+ Definition 3.1. In order to keep track of the vectors, define:
393
+ • For 푢 = (푢1, 푢2) ∈ ℝ2 with 푢2 ≠ 0:
394
+ ∗ (푢) =
395
+ {
396
+ −sgn (
397
+ 푢1
398
+ 푢2) , if 푢1 ≠ 0,
399
+ −sgn(푢2),
400
+ if 푢1 = 0.
401
+ Notice that ∗ (푢) = ∗ (퐸−1푢), for every 푢 ∈ ℝ2.
402
+ • For 푥 ∈ 핋2, 푦 ∈ 푓 −1(푥) and 푢 ∈ ℝ2, let (푤1, 푤2) = (퐷ℎ푡(푦)푣푟)−1퐸−1푢:
403
+ ∗푦 (푢) =
404
+ ⎧⎪⎪
405
+ ⎨⎪⎪⎩
406
+ −sgn (
407
+ 푤1
408
+ 푤2) , if 푤1, 푤2 ≠ 0,
409
+ −sgn(푤2),
410
+ if 푤2 ≠ 0, 푤1 = 0,
411
+ −sgn(푤1),
412
+ if 푤1 ≠ 0, 푤2 = 0.
413
+ In view of item 4 of Lemma 2.1, even though (퐷ℎ푡(푦)푣푟)−1 may not send a vector
414
+ 푢 ∈ Δ푣
415
+ 훼 to the horizontal cone if ℎ푡(푦) ∈ 푣, we can still end up having expansion in the
416
+ vertical direction, depending on whether 푦 ∈ 
417
+ ∗푦(푢)
418
+
419
+ or not. In this regard, from Lemma
420
+ 3.1, there are 푘 points 푦 ∈ 푓 −1(푥) such that ℎ푡(푦) are in 푣, and these points (ℎ푡(푦)) are
421
+ all in the same circle 핋1 ×
422
+ { 푥2+푗0
423
+
424
+ }
425
+ , hence the derivative (퐷ℎ푡(푦)푣푟)−1 is the same for those
426
+ points. We get:
427
+ 7
428
+
429
+ Proposition 3.2. For every 푢 ∈ ℝ2, 푥 ∈ 핋2, then the sign ∗푦 (푢) = sg (
430
+ 푤1
431
+ 푤2) is the same for
432
+ all points 푦 ∈ 푓 −1(푥) such that ℎ푡(푦) ∈ 푣, where ∗푦 (푢) is as in Definition 3.1.
433
+ Definition 3.2. For a fixed 푥 ∈ 핋2 and:
434
+ • 푢 ∈ Δ푣
435
+ 훼, define:
436
+ ⎧⎪⎪⎪⎪
437
+ ⎨⎪⎪⎪⎪⎩
438
+ 퐴 = {푦 ∈ 푓 −1(푥) ∶ 푦 ∈ ℎ, ℎ푡(푦) ∈ 푣}.
439
+ 퐵 = {푦 ∈ 푓 −1(푥) ∶ 푦 ∈ 
440
+ ∗푦(푢)
441
+
442
+ , ℎ푡(푦) ∈ 푣},
443
+ 푣 = 퐴 ∪ 퐵,
444
+ ℎ = 푓 −1(푥) ⧵ 푣.
445
+ • 푢 ∈ Δℎ
446
+ 훼, define:
447
+ ⎧⎪⎪⎪⎪
448
+ ⎨⎪⎪⎪⎪⎩
449
+ 퐶 = {푦 ∈ 푓 −1(푥) ∶ 푦 ∈ ℎ, ℎ푡(푦) ∈ ∗(푢)
450
+ 푣 }.
451
+ 퐷 = {푦 ∈ 푓 −1(푥) ∶ 푦 ∈ 
452
+ ∗푦(푢)
453
+
454
+ , ℎ푡(푦) ∈ 푣 ∪ −∗(푢)
455
+
456
+ },
457
+ 푣 = 퐶 ∪ 퐷,
458
+ ℎ = 푓 −1(푥) ⧵ 푣.
459
+ A direct consequence of Lemma 3.1 and Prop. 3.2, having Remark. 3.1 in mind, is
460
+ the following:
461
+ Lemma 3.2. For a fixed (푥, 푢) ∈ 푇핋2, 푓 −1(푥) has 푘2 points, of which:
462
+ 1. For 푢 ∈ Δ푣
463
+ 훼, at most 2푘 − 1 − [
464
+ 푘−1
465
+ 2 ] of them are in ℎ and at least (푘 − 1)2 + [
466
+ 푘−1
467
+ 2 ]
468
+ are inside 푣, because:
469
+ • At least (푘 − 1)2 are in A and,
470
+ • at least [
471
+ 푘−1
472
+ 2 ] are in B.
473
+ 2. For 푢 ∈ Δℎ
474
+ 훼, at most 푘2 − [
475
+ 푘−1
476
+ 2 ] (푘 + [
477
+ 푘−1
478
+ 2 ]) are in ℎ and at least [
479
+ 푘−1
480
+ 2 ] (푘 + [
481
+ 푘−1
482
+ 2 ])
483
+ are in 푣, because:
484
+ • At least (푘 − 1) [
485
+ 푘−1
486
+ 2 ] are in C and,
487
+ • at least [
488
+ 푘−1
489
+ 2 ] (1 + [
490
+ 푘−1
491
+ 2 ]) are in D.
492
+ Knowing that for every unit vector 푢 ∈ ℝ2 we have ‖퐸−1푢‖ = 1
493
+ 푘 (maximum norm),
494
+ from Lemma 2.1 we get:
495
+ Lemma 3.3. For 푡, 푟 > 2훼
496
+ 푎 and for fixed 푥 ∈ 핋2, it holds:
497
+ 1. If 푢 ∈ Δ푣
498
+ 훼, then for all 푦 ∈ 푣 we have (퐷푦푓 )−1푢 ∈ Δ푣
499
+ 훼;
500
+ 2. If 푢 ∈ Δ푣
501
+ 훼 is a unit vector, then:
502
+ ‖(퐷푦푓 )−1푢‖ >
503
+ ⎧⎪⎪⎪
504
+ ⎨⎪⎪⎪⎩
505
+ (
506
+ 푎− 훼
507
+
508
+ 훼 ) (
509
+ 푎− 훼
510
+
511
+ 훼 )
512
+ 푡푟
513
+ 푘 , 푦 ∈ 퐴,
514
+ 1
515
+ 훼푘,
516
+ 푦 ∈ 퐵,
517
+ 1
518
+ (푏푡+1)훼푘,
519
+ 푦 ∈ ℎ;
520
+ 8
521
+
522
+ 3. If 푢 ∈ Δℎ
523
+ 훼, then for all 푦 ∈ 푣 we have (퐷푦푓 )−1푢 ∈ Δ푣
524
+ 훼;
525
+ 4. If 푢 ∈ Δℎ
526
+ 훼 is a unit vector, then:
527
+ ‖(퐷푦푓 )−1푢‖ >
528
+ ⎧⎪⎪⎪
529
+ ⎨⎪⎪⎪⎩
530
+ (
531
+ 푎− 훼
532
+
533
+ 훼 )
534
+
535
+ 푘,
536
+ 푦 ∈ 퐶,
537
+ 1
538
+ (푏푟+1)푘,
539
+ 푦 ∈ 퐷,
540
+ 1
541
+ (푏푡+1)(푏푟+1)푘, 푦 ∈ ℎ.
542
+ 3.1
543
+ Non-uniform hyperbolicity
544
+ For (푥, 푢) ∈ 푇핋2 with 푢 ≠ 0 and for 푛 ∈ ℕ denote by
545
+ 퐷푓 −푛(푥, 푢) = {(푦, 푤) ∈ 푇핋2 ∶ 푓 푛(푦) = 푥, 퐷푦푓 푛푤 = 푢}.
546
+ For any non-zero tangent vector (푥, 푢) and 푛 ≥ 0, define:
547
+ 푛 = {(푧, 푤) ∈ 퐷푓 −푛(푥, 푢) ∶ 푤 ∈ Δ푣
548
+ 훼},
549
+ 푛 = 퐷푓 −푛(푥, 푢) ⧵ 푛,
550
+ 푔푛 = #푛,
551
+ 푏푛 = #푛 = 푘2푛 − 푔푛.
552
+ From Lemmas 3.2, 3.3 one deduces:
553
+ Lemma 3.4. Let (푥, 푢) ∈ 푇핋2.
554
+ 1. If 푢 ∈ Δ푣
555
+ 훼, then at least (푘 − 1)2 + [
556
+ 푘−1
557
+ 2 ] of its pre-images under 퐷푓 are also in Δ푣
558
+ 훼;
559
+ 2. If 푢 ∈ Δℎ
560
+ 훼, then at least [
561
+ 푘−1
562
+ 2 ] (푘 + [
563
+ 푘−1
564
+ 2 ]) of its pre-images under 퐷푓 are in Δ푣
565
+ 훼.
566
+ By the lemma above, we get:
567
+ 푔푛+1 ≥ ((푘 − 1)2 + [
568
+ 푘 − 1
569
+ 2
570
+ ]) 푔푛 + [
571
+ 푘 − 1
572
+ 2
573
+ ] (푘 + [
574
+ 푘 − 1
575
+ 2
576
+ ]) 푏푛
577
+ = ((푘 − 1)2 − [
578
+ 푘 − 1
579
+ 2
580
+ ] (푘 − 1 + [
581
+ 푘 − 1
582
+ 2
583
+ ])) 푔푛 + [
584
+ 푘 − 1
585
+ 2
586
+ ] (푘 + [
587
+ 푘 − 1
588
+ 2
589
+ ]) 푘2푛,
590
+ hence:
591
+ 푔푛+1
592
+ 푘2(푛+1) ≥ 1
593
+ 푘2 ((푘 − 1)2 − [
594
+ 푘 − 1
595
+ 2
596
+ ] (푘 − 1 + [
597
+ 푘 − 1
598
+ 2
599
+ ]))
600
+ 푔푛
601
+ 푘2푛
602
+ + 1
603
+ 푘2 [
604
+ 푘 − 1
605
+ 2
606
+ ] (푘 + [
607
+ 푘 − 1
608
+ 2
609
+ ]) .
610
+ 9
611
+
612
+ Denoting by 푎푛 = 푔푛
613
+ 푘2푛 and
614
+ 푐 = 1
615
+ 푘2 ((푘 − 1)2 − [
616
+ 푘 − 1
617
+ 2
618
+ ] (푘 − 1 + [
619
+ 푘 − 1
620
+ 2
621
+ ])) ,
622
+ 푒 = 1
623
+ 푘2 [
624
+ 푘 − 1
625
+ 2
626
+ ] (푘 + [
627
+ 푘 − 1
628
+ 2
629
+ ]) ,
630
+ the inequality above becomes:
631
+ 푎푛+1 ≥ 푐 ⋅ 푎푛 + 푒.
632
+ Lemma 3.5. For every (푥, 푢) ∈ 푇핋2, 푢 ≠ 0, and 푛 ≥ 0 it holds:
633
+ 푎푛 ≥
634
+
635
+ 1 − 푐 (1 − 푐푛)
636
+ =
637
+ [
638
+ 푘−1
639
+ 2 ] (푘 + [
640
+ 푘−1
641
+ 2 ])
642
+ 2푘 − 1 + [
643
+ 푘−1
644
+ 2 ] (푘 − 1 + [
645
+ 푘−1
646
+ 2 ])
647
+ (1 − 푐푛)
648
+ In particular,
649
+ lim inf 푎푛 ≥
650
+ [
651
+ 푘−1
652
+ 2 ] (푘 + [
653
+ 푘−1
654
+ 2 ])
655
+ 2푘 − 1 + [
656
+ 푘−1
657
+ 2 ] (푘 − 1 + [
658
+ 푘−1
659
+ 2 ])
660
+ ∶= 퐿(푘),
661
+ uniformly in (푥, 푢) ∈ 핋2.
662
+ From now on we shall denote by 퐿(푘) =
663
+ [ 푘−1
664
+ 2 ](푘+[ 푘−1
665
+ 2 ])
666
+ 2푘−1+[ 푘−1
667
+ 2 ](푘−1+[ 푘−1
668
+ 2 ]). As another direct con-
669
+ sequence of Lemmas 3.2 and 3.3 we have the following:
670
+ Lemma 3.6. If 푟, 푡 > 2훼
671
+ 푎 , then for all (푥, 푢) ∈ 푇핋2 we have:
672
+ 1. If 푢 ∈ Δ푣
673
+ 훼, then:
674
+ 퐼(푥, 푢; 푓) ≥(푘 − 1)2
675
+ 푘2
676
+ log 푟 + (
677
+ 푘2 − 4푘 + 2 + [
678
+ 푘−1
679
+ 2 ]
680
+ 푘2
681
+ ) log 푡
682
+ + log (
683
+ 1
684
+ 훼푘 ((푎 − 훼
685
+ 푡 ) (푎 − 훼
686
+ 푟 ))
687
+ (푘−1)2
688
+ 푘2
689
+ (푏 + 1
690
+ 푡 )
691
+ − 1
692
+ 푘2(2푘−1−[ 푘−1
693
+ 2 ])
694
+ ) .
695
+ 2. If 푢 ∈ Δℎ
696
+ 훼, then:
697
+ 퐼(푥, 푢; 푓) ≥ − (
698
+ 푘2 − (푘 − 1) [
699
+ 푘−1
700
+ 2 ]
701
+ 푘2
702
+ ) log 푟 − (
703
+ 푘2 − [
704
+ 푘−1
705
+ 2 ] (2푘 − 1 + [
706
+ 푘−1
707
+ 2 ])
708
+ 푘2
709
+ ) log 푡
710
+ + log (
711
+ 1
712
+ 푘 (
713
+ 1
714
+ 훼 (푎 − 훼
715
+ 푡 ))
716
+ 푘−1
717
+ 푘2 [ 푘−1
718
+ 2 ]−1
719
+ (푏 + 1
720
+ 푡 )
721
+ 1
722
+ 푘2[ 푘−1
723
+ 2 ](푘+[ 푘−1
724
+ 2 ])−1
725
+ ) .
726
+ 10
727
+
728
+ Now, to calculate (푓 ), we use Prop. 2.1 to compute:
729
+ 퐼(푥, 푢; 푓 푛) =
730
+ 푛−1
731
+
732
+ 푖=0
733
+
734
+ 푦∈푓 −푖(푥)
735
+ 퐼(푦, (퐷푦푓 푖)−1푢; 푓)
736
+ 푘2푖
737
+ ∶=
738
+ 푛−1
739
+
740
+ 푖=0
741
+ 퐽푖,
742
+ and, if 푡, 푟 > 2훼
743
+ 푎 , for each 푖 we obtain:
744
+ 퐽푖 = 1
745
+ 푘2푖
746
+
747
+ 푦∈푓 −1(푥)
748
+ 퐼(푦, (퐷푦푓 푖)−1푢; 푓 ) = 1
749
+ 푘2푖
750
+
751
+ (푦,푤)∈푖
752
+ 퐼(푦, 푤; 푓) + 1
753
+ 푘2푖
754
+
755
+ (푦,푤)∈푖
756
+ 퐼(푦, 푤; 푓)
757
+ ≥ 푎푖푉(푡, 푟, 푘) + (1 − 푎푖)퐻(푡, 푟, 푘),
758
+ where V and H are the right side of the inequalities obtained in Lemma 3.6 for 푢 ∈ Δ푣
759
+
760
+ and 푢 ∈ Δℎ
761
+ 훼 respectively. It follows from Lemma 3.5, with 퐿(푘) as above and 푐푘 = [
762
+ 푘−1
763
+ 2 ],
764
+ to simplify the notation, that:
765
+ lim
766
+ 푖→∞ 퐽푖 ≥ 퐿(푘)푉(푡, 푟, 푘) + (1 − 퐿(푘))퐻(푡, 푟, 푘)
767
+ = 퐶(푡, 푟, 푘) + 1
768
+ 푘2 (퐿(푘) ((푘 − 1) (2푘 − 푐푘) + 1) − (푘2 − (푘 − 1)푐푘)) log 푟 +
769
+ 1
770
+ 푘2 (퐿(푘) (2(푘 − 1)2 − 푐푘 (2(푘 − 1) + 푐푘)) − (푘2 − 푐푘 (2푘 − 1 + 푐푘))) log 푡
771
+ ,
772
+ where
773
+ 퐶(푡, 푟, 푘) = 퐿(푘)퐶1(푡, 푟, 푘) + (1 − 퐿(푘))퐶2(푡, 푟, 푘),
774
+ with
775
+ 퐶1(푡, 푟, 푘) = log (
776
+ 1
777
+ 훼푘 ((푎 − 훼
778
+ 푡 ) (푎 − 훼
779
+ 푟 ))
780
+ (푘−1)2
781
+ 푘2
782
+ (푏 + 1
783
+ 푡 )
784
+ − 1
785
+ 푘2(2푘−1−[ 푘−1
786
+ 2 ])
787
+ )
788
+ 퐶2(푡, 푟, 푘) = log (
789
+ 1
790
+ 푘 (
791
+ 1
792
+ 훼 (푎 − 훼
793
+ 푡 ))
794
+ 푘−1
795
+ 푘2 [ 푘−1
796
+ 2 ]−1
797
+ (푏 + 1
798
+ 푡 )
799
+ 1
800
+ 푘2[ 푘−1
801
+ 2 ](푘+[ 푘−1
802
+ 2 ])−1
803
+ ) ,
804
+ as in Lemma 3.6. From this, we get that for any 푘, 퐶(푡, 푟, 푘) is growing as 푡 and 푟 grow,
805
+ then for 푡, 푟 > 2훼
806
+ 푎 , 퐶(푡, 푟, 푘) > 퐶 is uniformly bounded from below by some constant 퐶.
807
+ Now, in order to get lim
808
+ 푖→∞ 퐽푖 > 0, we can either make 푡 or 푟 large, depending on
809
+ whether the constant (which depends on 푘) multiplying log 푡 or log 푟 is positive or
810
+ negative. However, for both of them, we only get positivity of the constant if 푘 ≥ 5.
811
+ Thus, for 푘 ≥ 5, since all the bounds above are uniform for all non-zero tangent
812
+ vectors (푥, 푢), we obtain that for 푡 (or 푟) sufficiently large, for all 푖 greater than some 푖0,
813
+ and for all nonzero tangent vectors (푥, 푢), 퐽푖(푥, 푢) > 푁 > 0 for some constant 푁. Hence,
814
+ there exists some 푛0 such that
815
+ 1
816
+ 푛0
817
+ 퐼(푥, 푢; 푓 푛0) = 1
818
+ 푛0
819
+ 푛0−1
820
+
821
+ 푖=0
822
+ 퐽푖(푥, 푢) > 푁
823
+ 2 > 0,
824
+ 11
825
+
826
+ for all nonzero tangent vectors (푥, 푢). Therefore, (푓 ) > 0 which by Theorem 1 con-
827
+ cludes the proof of Theorem A.
828
+ We finish this section by including some examples for a better visualization that
829
+ for a fixed 푘 ∈ ℕ, the bounds obtained in this section are quite simple. For that, we fix
830
+ 푘 = 5, we get 퐿(5) = 2
831
+ 3, the limitations of our last calculations become:
832
+ lim
833
+ 푖→∞ 퐽푖 ≥ 퐶(푡, 푟, 5) + 5 log 푟 + 5 log 푡,
834
+ with
835
+ 퐶(푡, 푟, 5) = log (
836
+ 1
837
+ 5
838
+
839
+ 17
840
+ 25
841
+ 푎2/3 (푎 − 훼
842
+ 푡 )
843
+ 1
844
+ 5
845
+ (푎 − 훼
846
+ 푟 )
847
+ 32
848
+ 75
849
+ (푏 + 1
850
+ 푡 )
851
+ − 18
852
+ 25
853
+ )
854
+ Thus, taking the map 푠 ∶ 핋1 → ℝ as 푠(푢) = sin(2휋푢), 훿 = 1
855
+ 20, 푎 = 2휋 sin( 휋
856
+ 10), 푏 = 2휋,
857
+ and 훼 = 1.1, we get that for every 푡, 푟 ⪆ 2푎
858
+ 훼 ≈ 1.77 the number 퐶(푡, 푟, 5)+5 log 푟 +5 log 푡
859
+ is positive. Thus, the maps 푓(푡, 푟) = 퐸◦푣푟◦ℎ푡 satisfy the results of Theorem A.
860
+ 4
861
+ Proof of Theorem B
862
+ For 푘 ⋅ 퐼푑 ≠ 퐸 ∈ 푀2×2(ℤ), let 휏1(퐸) be the greatest common divisor of the entries of
863
+ E, 휏2(퐸) = det(퐸)/휏1(퐸), so that 푑 = 휏1 ⋅ 휏2 coincides with the topological degree of the
864
+ induced endomorphism 퐸 ∶ 핋2 → 핋2.
865
+ We want to make a slight change in the argument used in [1] so that for every
866
+ 푥 ∈ 핋2, 푓 −1(푥) has at most one point in the critical zone. This solves the cases where
867
+ the pair (휏1, 휏2) is (2, 4), (3, 3) or (4, 4). For the remaining four cases (1, 2), (1, 3), (1, 4)
868
+ and (2, 2), even with this improvement in the argument, the proportion we obtain for
869
+ vectors in the good region (which in these cases is the optimum one for the argument
870
+ presented here) is still insufficient to obtain expansion in the vertical direction, given
871
+ the small amount of pre-images.
872
+ The numbers 휏1, 휏2 are the elementary divisors of E and, as in Section 2.4 of [1],
873
+ there exists 푃 ∈ 퐺퐿2(ℤ) such that the matrix 퐺 = 푃−1 ⋅ 퐸 ⋅ 푃 satisfies:
874
+ 퐺−1(ℤ) =
875
+ {
876
+ (
877
+
878
+ 휏2푗
879
+ 휏1) ∶ 푖, 푗 ∈ ℤ
880
+ }
881
+ Moreover, as E is not a homothety, by another change of coordinates if necessary
882
+ we may assume that E does not have (0, 1) as an eigenvector.
883
+ With this in mind, we assume that ℙ퐸 does not fix [(0, 1)] and that 퐸−1ℤ2 = 1
884
+ 휏2ℤ× 1
885
+ 휏1ℤ.
886
+ So there exists an 훼 > 휏2 > 1 such that if Δℎ
887
+ 훼 and Δ푣
888
+ 훼 are the corresponding horizontal
889
+ and vertical cones as in Def. 2.2, then 퐸−1Δ푣훼 ⊂ 퐼푛푡(Δℎ
890
+ 훼). From now on, we fix such
891
+ 훼 > 휏2.
892
+ Let 퐿 < max
893
+ {
894
+ 1
895
+ 4휏2, 휏−1
896
+ 2 −훼−1
897
+ 2
898
+ }
899
+ , choose points 푧1, 푧2, 푧2, 푧4 ∈ 핋1, in this order, such that:
900
+ 12
901
+
902
+ • 퐼1 = [푧1, 푧2] and 퐼3 = [푧3, 푧4] have size 퐿;
903
+ • the translation of 퐼1 by a multiple of 1/휏2 does not intersect 퐼3;
904
+ • 퐼2 = (푧2, 푧3) and 퐼4 = (푧4, 푧1) have size strictly larger than 1
905
+ 휏2 [
906
+ 휏2−1
907
+ 2 ],
908
+ and define the critical and good regions ℎ, ℎ and ±
909
+ ℎ as in Def. 2.1. As an immediate
910
+ consequence of the definition we get:
911
+ Proposition 4.1. For every 푥 ∈ 핋2, 퐸−1(푥) has 푑 points of which at least 1
912
+ 휏2 [
913
+ 휏2−1
914
+ 2 ] are
915
+ inside each of +
916
+ ℎ and −
917
+ ℎ, and at most 휏1 of them are inside of ℎ.
918
+ In order to have at most one pre-image of each point in the critical zone of the shear
919
+ ℎ푡(푥1, 푥2) = (푥1, 푥2+푡푠(푥1) defined as before, we define the conservative diffeomorphism
920
+ of the torus 푣(푥1, 푥2) = (푥1 + ̃푠(푥2), 푥2), with ̃푠 ∶ 핋1 → ℝ an analytic map which we shall
921
+ impose restrictions later. We then study the family:
922
+ 푓푡 = 퐸◦푣◦ℎ푡,
923
+ of area preserving endomorphism of the torus isotopic to E. We shall denote 푓 = 푓푡 to
924
+ simplify the notation.
925
+ Given 푥 ∈ 핋2, the set 푓 −1(푥) = ℎ−1
926
+ 푡 ◦푣−1◦퐸−1(푥) is composed by d points, and given
927
+ 푦 ∈ 푓 −1(푥), we have (퐷푦푓 )−1 = (퐷푦ℎ푡)−1◦(퐷ℎ푡(푦)푣)−1◦퐸−1.
928
+ In order to define 푣 in a way that only one pre-image of 푥 by 푓 remains in the
929
+ critical zone, we notice that 퐸−1(푥) is composed by 푑 points which, by the change of
930
+ coordinates made initially, are aligned in a lattice of height 휏1 and length 휏2. We also
931
+ notice that the map ℎ−1
932
+ 푡 keeps the vertical lines invariant. Therefore, the map 푣−1 needs
933
+ to act in a way that it moves points on a vertical line enough so that only one remains
934
+ in the critical zone, and, also, it cannot move them so much that we have new points
935
+ entering the critical zone.
936
+ In this way, we took the analytic map ̃푠 ∶ 핋1 → ℝ satisfying:
937
+ 1. If 퐿 is the size of the intervals 퐼1, 퐼3 then |̃푠(푢)| < 1
938
+ 휏2 − 퐿, for all 푢 ∈ 핋1.
939
+ 2. For all 푢 ∈ 핋1, we have that |||̃푠 (푢 + 푗
940
+ 휏1)||| > 퐿 for all 푗 ∈ {0, 1, ⋯ , 휏1 − 1} except at
941
+ most one index.
942
+ 3. |̃푠′(푢)| < (2훼)−1, for all 푢 ∈ 핋1, where 훼 is the size of the cones fixed in the previous
943
+ subsection.
944
+ Notice that conditions 2 and 3 are not mutually exclusives thanks to the conditions
945
+ for 훼 and 퐿 imposed in the previous subsection. Now, conditions 1 and 2 give us:
946
+ 13
947
+
948
+ Lemma 4.1. For all 푥 ∈ 핋2, 푓 −1(푥) is composed by 푑 points of which at most one is inside
949
+ ℎ. At least 푑 − 1 of the pre-images are inside  of which at least 휏1 [
950
+ 휏2−1
951
+ 2 ] are inside each
952
+ of +
953
+ ℎ and −
954
+ ℎ.
955
+ Proof. In the case where 퐸−1(푥) has no points in the critical zone, due to condition 1
956
+ together with the fact that ℎ푡 preserves vertical lines, the map ℎ−1
957
+ 푡 ◦푣−1 does not take
958
+ any of those points to the critical zone.
959
+ In the case where 퐸−1(푥) has a point in the critical zone, it implies that we have
960
+ exactly 휏1 points there. Due to condition 2, only one of those points is able to remain
961
+ there, and due to condition 1, none of the other points is getting inside.
962
+ For the minimum amount of points in each of +
963
+ ℎ and −
964
+ ℎ, we notice that, by Prop.
965
+ 4.1, 퐸−1(푥) already has at least 휏1 [
966
+ 휏2−1
967
+ 2 ] points inside each one, and, due to condition 1,
968
+ those points must remain there.
969
+ At last, condition 3 gives us the next lemma, required for the whole construction
970
+ to work:
971
+ Lemma 4.2. There exists 훽 > 훼 such that for all 푦 ∈ 핋2, (퐷푦푣)−1◦퐸−1Δ푣
972
+ 훽 ⊂ Δℎ
973
+ 훽, where Δ푣
974
+
975
+ and Δℎ
976
+ 훽 are the corresponding vertical and horizontal cones of size 훽 as in Def. 2.2.
977
+ Proof. For 푦 = (푦1, 푦2), 퐷푦푣 = (
978
+ 1
979
+ ̃푠′(푦2)
980
+ 0
981
+ 1
982
+ ). Then, due to condition 3, for all 휆 ∈ ℝ,
983
+ 퐷푦푣 ⋅ 휆푒2 = 휆(̃푠′(푦2), 1) ∈ Δ푣
984
+ 2훼. Since, by the definition of 훼, we have 퐸−1 ⋅ 휆푒2 ∈ 푖푛푡(Δℎ
985
+ 훼),
986
+ we conclude that for all 푦 ∈ 핋2, ℙ((퐷푦푣)−1◦퐸−1)⋅[푒2] is uniformly away from [푒2], hence
987
+ there exists such 훽 as we wanted.
988
+ Remark 4.1. Items 3 and 4 of Lemma 2.1 also works in this cases for Δ푣
989
+ 훽 and Δℎ
990
+ 훽.
991
+ We give the correspondent to Lemma 3.3 for this case, as a consequence of items
992
+ 3 and 4 of Lemma 2.1, Remark 4.1 and Lemma 4.2 . From now on, we fix 훽 > 훼 as in
993
+ Lemma 4.2 and let:
994
+ 푒푣 = inf
995
+ {
996
+ ‖(퐷푥푣)−1◦퐸−1푢‖ ∶ (푥, 푢) ∈ 푇 1핋2, 푢 ∈ Δ푣
997
+
998
+ }
999
+ ,
1000
+ 푒ℎ = inf
1001
+ {
1002
+ ‖(퐷푥푣)−1◦퐸−1푢‖ ∶ (푥, 푢) ∈ 푇 1핋2, 푢 ∈ Δℎ
1003
+
1004
+ }
1005
+ .
1006
+ Lemma 4.3. For 푡 > 2훽
1007
+ 푎 it holds:
1008
+ 1. if 푦 ∈ ℎ then (퐷푦푓 )−1Δ푣
1009
+ 훽 ⊂ Δ푣
1010
+ 훽, it is strictly invariant.
1011
+ 2. if 푢 ∈ Δ푣
1012
+ 훽 is a unit vector, then
1013
+ ‖(퐷푦푓 )−1푢‖ >
1014
+ {
1015
+ 푒푣(푎−훽/푡))
1016
+
1017
+ 푡, 푦 ∈ ℎ,
1018
+ 푒푣
1019
+ 훽 ,
1020
+ 푦 ∈ ℎ.
1021
+ 14
1022
+
1023
+ 3. if 푢 ∈ Δℎ
1024
+ 훽, and (퐷ℎ푡(푦)푣)−1◦퐸−1 ⋅ 푢 = (푤1, 푤2) let ∗푦 (푢) be as in Def. 3.1. Then if
1025
+ 푦 ∈ 
1026
+ ∗푦(푢)
1027
+
1028
+ we have (퐷푦푓 )−1(푢) ∈ Δ푣
1029
+ 훽.
1030
+ 4. if 푢 ∈ Δℎ
1031
+ 훽 is a unit vector, then
1032
+ ‖(퐷푦푓 )−1푢‖ >
1033
+ {
1034
+ 푒ℎ,
1035
+ 푦 ∈ 
1036
+ ∗푦(푢)
1037
+
1038
+ ,
1039
+ 푒ℎ
1040
+ 푏+ 1
1041
+ 푡 푡−1, 푦 ∉ 
1042
+ ∗푦(푢)
1043
+
1044
+ .
1045
+ We notice that, analogously to the homothety case, we have the problem that ∗푦 (푢)
1046
+ depends on 푦 ∈ 푓 −1(푥), therefore even though we have at least 휏1 [
1047
+ 휏2−1
1048
+ 2 ] points in each
1049
+ of ±
1050
+ ℎ, there could be a vector 푢 ∈ ℝ2 such that for all 푦 ∈ +
1051
+ ℎ, ∗푦 (푢) = − and vice-versa.
1052
+ However, we can see that this is not the case:
1053
+ Proposition 4.2. For every 푥 ∈ 핋2, 푢 ∈ ℝ2, there are at least 휏2 [
1054
+ 휏2−1
1055
+ 2 ] points 푦 ∈ 푓 −1(푥)
1056
+ such that 푦 ∈ 
1057
+ ∗푦(푢)
1058
+
1059
+ , where ∗푦 (푢) is as in Def. 3.1 changing 푣푟 for 푣.
1060
+ Proof. By the same argument used in Prop. 3.2, we can see that ∗푦 (푢) is constant for
1061
+ points 푦 ∈ 푓 −1(푥) such that ℎ푡(푦) lies in the same horizontal line. There are exactly
1062
+ 휏2 pre-images 푦′ such that ℎ푡(푦) and ℎ푡(푦′) are in the same horizontal line, hence at
1063
+ least [
1064
+ 휏2−1
1065
+ 2 ] of these lies in 
1066
+ ∗푦(푢)
1067
+
1068
+ . As 푣−1◦퐸−1(푥) has 휏1 different vertical lines, we get the
1069
+ result.
1070
+ 4.1
1071
+ Non-uniform hyperbolicity
1072
+ We end up having calculations completely mirrored in those made in Subsection 3.1,
1073
+ and for that reason we will skip the details. For (푥, 푢) ∈ 푇핋2 with 푢 ≠ 0 and for 푛 ∈ ℕ,
1074
+ we define the sets 퐷푓 −푛(푥, 푢), 푛, 푛, and the numbers 푔푛, 푏푛 = 푑푛 − 푔푛 as before. From
1075
+ Lemmas 4.1, 4.3 and Prop. 4.2 we deduce:
1076
+ Lemma 4.4. Let (푥, 푢) ∈ 푇핋2.
1077
+ 1. If 푢 ∈ Δ푣
1078
+ 훽, then at least 푑 − 1 of its pre-images under 퐷푓 are also in Δ푣
1079
+ 훽.
1080
+ 2. If 푢 ∈ Δℎ
1081
+ 훽, then at least 휏1 [
1082
+ 휏2−1
1083
+ 2 ] of its pre-images under 퐷푓 are in Δℎ
1084
+ 훽.
1085
+ For that, we get for all 푛 ∈ ℕ:
1086
+ 푔푛+1 ≥ (푑 − 1 − 휏1 [
1087
+ 휏2 − 1
1088
+ 2
1089
+ ]) 푔푛 + 휏1 [
1090
+ 휏2 − 1
1091
+ 2
1092
+ ] 푑푛,
1093
+ hence, putting 푎푛 = 푔푛
1094
+ 푑푛 :
1095
+ 푎푛+1 ≥ (
1096
+ 푑 − 1
1097
+
1098
+ − 1
1099
+ 휏2 [
1100
+ 휏2 − 1
1101
+ 2
1102
+ ]) 푎푛 + 1
1103
+ 휏2 [
1104
+ 휏2 − 1
1105
+ 2
1106
+ ] .
1107
+ Thus, we get:
1108
+ 15
1109
+
1110
+ Lemma 4.5. For every (푥, 푢) ∈ 푇핋2, 푢 ≠ 0, and 푛 ≥ 0, it holds:
1111
+ lim inf 푎푛 ≥ 1
1112
+ 휏2 [
1113
+ 휏2 − 1
1114
+ 2
1115
+ ]
1116
+
1117
+ 1 + 휏1 [
1118
+ 휏2−1
1119
+ 2 ]
1120
+ ∶= 퐿(휏1, 휏2).
1121
+ Remark 4.2. This is where we are able to verify that this argument will work for the cases
1122
+ (휏1, 휏2) as (2, 4), (3, 3) and (4, 4), where we have 퐿(휏1, 휏2) as 2/3, 3/4 and 4/5, respectively.
1123
+ And it won’t work for the other cases (1, 2), (1, 3), (1, 4) and (2, 2) where we will get 퐿(휏1, 휏2)
1124
+ as 0, 1/2, 1/2 and 0, respectively. As we will see, for the rest of the argument to work, we
1125
+ need this lower bound strictly greater than 1/2.
1126
+ As another consequence of Lemmas 4.1, 4.3 and Prop. 4.2, we get:
1127
+ Lemma 4.6. If 푡 > 2훽
1128
+ 푎 , then for all (푥, 푢) ∈ 푇핋2, it holds:
1129
+ 1. If 푢 ∈ Δ푣
1130
+ 훽, then:
1131
+ 퐼(푥, 푢; 푓) ≥ 푑 − 1
1132
+
1133
+ log 푡 + log (
1134
+ 푒푣
1135
+ 훽 (푎 − 훽
1136
+ 푡 )
1137
+ 푑−1
1138
+
1139
+ ) .
1140
+ 2. If 푢 ∈ Δℎ
1141
+ 훽, then:
1142
+ 퐼(푥, 푢; 푓) ≥ − (1 − 1
1143
+ 휏2 [
1144
+ 휏2 − 1
1145
+ 2
1146
+ ]) log 푡 + log (푒ℎ (푏 + 1
1147
+ 푡 )
1148
+ −(1− 1
1149
+ 휏2[
1150
+ 휏2−1
1151
+ 2 ])
1152
+ ) .
1153
+ Again, by Prop. 2.1, we have:
1154
+ 퐼(푥, 푢; 푓 푛) =
1155
+ 푛−1
1156
+
1157
+ 푖=0
1158
+
1159
+ 푦∈푓 −푖(푥)
1160
+ 퐼(푦, (퐷푦푓 푖)−1푢; 푓)
1161
+ 푘2푖
1162
+ ∶=
1163
+ 푛−1
1164
+
1165
+ 푖=0
1166
+ 퐽푖,
1167
+ we compute, for 푡 > 2훽
1168
+ 푎 , for all 푖 ≥ 0:
1169
+ 퐽푖 = 1
1170
+
1171
+
1172
+ (푦,푤)∈푖
1173
+ 퐼(푦, 푤; 푓) + 1
1174
+
1175
+
1176
+ (푦,푤)∈푖
1177
+ 퐼(푦, 푤; 푓)
1178
+ ≥ 푎푖푉(푡, 휏1, 휏2) + (1 − 푎푖)퐻(푡, 휏1, 휏2),
1179
+ where 푎푖 is as in Lemma 4.5, 푉 and 퐻 are the right side of the inequalities obtained in
1180
+ Lemma 4.6 for 푢 ∈ Δ푣
1181
+ 훽 and 푢 ∈ Δℎ
1182
+ 훽 respectively. It follows:
1183
+ lim
1184
+ 푖→∞ 퐽푖 ≥ 퐿(휏1, 휏2)푉(푡, 휏1, 휏2) + (1 − 퐿(휏1, 휏2))퐻(푡, 휏1, 휏2)
1185
+ = (휏1 − 2
1186
+ 휏2) [
1187
+ 휏2−1
1188
+ 2 ] − 1
1189
+ 1 + 휏1 [
1190
+ 휏2−1
1191
+ 2 ]
1192
+ log 푡 + 퐶(푡, 휏1, 휏2),
1193
+ 16
1194
+
1195
+ where:
1196
+ 퐶(푡, 휏1, 휏2) =퐿(휏1, 휏2) log (
1197
+ 푒푣
1198
+ 훽 (푎 − 훽
1199
+ 푡 )
1200
+ 푑−1
1201
+
1202
+ )
1203
+ + (1 − 퐿(휏1, 휏2)) log (푒ℎ (푏 + 1
1204
+ 푡 )
1205
+ −(1− 1
1206
+ 휏2[
1207
+ 휏2−1
1208
+ 2 ])
1209
+ ) > 퐶,
1210
+ for all 푡 > 2훽
1211
+ 푎 , that is, 퐶(푡, 휏1, 휏2) is uniformly bounded from below by some constant C.
1212
+ Since 푑 = 휏1 ⋅ 휏2 > 4, the constant multiplying log 푡 is positive. Therefore, since all
1213
+ the bounds above are uniform for all non-zero tangent vectors (푥, 푢), as in the homo-
1214
+ thety case we obtain that for 푡 sufficiently large, for all 푛 greater than some 푛0, and for
1215
+ all nonzero tangent vectors (푥, 푢):
1216
+ 1
1217
+ 푛퐼(푥, 푢; 푓 푛) = 1
1218
+
1219
+ 푛−1
1220
+
1221
+ 푖=0
1222
+ 퐽푖(푥, 푢) > 0,
1223
+ hence, (푓 ) > 0 which by Theorem 1 concludes the proof of Theorem B.
1224
+ References
1225
+ [1] M. Andersson, P. D. Carrasco, and R. Saghin, “Non-uniformly hyperbolic endo-
1226
+ morphisms,” 2022.
1227
+ [2] L. Barreira and Y. Pesin, Introduction to Smooth Ergodic Theory. Graduate Studies
1228
+ in Mathematics, American Mathematical Society, 2013.
1229
+ [3] V. I. Oseledets, “A multiplicative ergodic theorem. characteristic ljapunov, expo-
1230
+ nents of dynamical systems,” Trudy Moskovskogo Matematicheskogo Obshchestva,
1231
+ vol. 19, pp. 179–210, 1968.
1232
+ [4] D. V. Anosov, “Geodesic flows on closed riemannian manifolds of negative curva-
1233
+ ture,” Trudy Mat. Inst. Steklov, vol. 90, pp. 3–210, 1967.
1234
+ [5] M. Qian, J.-S. Xie, and S. Zhu, Smooth Ergodic Theory for Endomorphisms, vol. 1978
1235
+ of Lecture Notes in Mathematics. 01 2009.
1236
+ 17
1237
+
AdE0T4oBgHgl3EQfPgCp/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,429 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf,len=428
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
3
+ page_content='02180v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
4
+ page_content='DS] 5 Jan 2023 Existence of robust non-uniformly hyperbolic endomorphism in homotopy classes Victor Janeiro victorgjaneiro@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
5
+ page_content='com, ICEx-UFMG, Belo Horizonte-MG, Brazil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
6
+ page_content=' Abstract We extend the results of [1] by showing that any homothety in 핋2 is homo- topic to a non-uniformly hyperbolic ergodic area preserving map, provided that its degree is at least 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
7
+ page_content=' We also address other small topological degree cases not considered in the previous article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
8
+ page_content=' This proves the existence of a \ue22f1 open set of non-uniformly hyperbolic systems, that intersects essentially every homotopy classes in 핋2, where the Lyapunov exponents vary continuously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
9
+ page_content=' 1 Introduction We study conservative maps of the two-torus 핋2 from the point of view of smooth ergodic theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
10
+ page_content=' We are interested in the Lyapunov exponents of these systems, in particular, in extending the results obtained in [1] to the homothety case and some cases with lower topological degree, which were not included in the previous results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
11
+ page_content=' With this in mind, some familiarity with the results of [1] is desirable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
12
+ page_content=' For a differentiable covering map 푓 ∶ 핋2 → 핋2 and a pair (푥, 푣) ∈ 푇핋2, the number ̃\ue244(푥, 푣) = lim sup 푛→∞ log ‖퐷푥푓 푛(푣)‖ 푛 is the Lyapunov exponent of 푓 at (푥, 푣).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
13
+ page_content=' See [2] for background in Smooth Ergodic Theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
14
+ page_content=' Due to Oseledet’s Theorem [3] ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
15
+ page_content=' there is a full area set 푀0 on 핋2 where the previous limit exists for every 푣,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
16
+ page_content=' and there exists a measurable bundle 퐸− defined on 푀0 such that for 푥 ∈ 푀0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
17
+ page_content=' 푣 ≠ 0 ∈ 퐸−(푥): \ue244(푥,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
18
+ page_content=' 푣) ∶= lim 푛→∞ log ‖퐷푥푓 푛(푣)‖ 푛 = lim 푛→∞ log 푚(퐷푥푓 푛) 푛 ∶= \ue244−(푥),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
19
+ page_content=' while for 푣 ∈ ℝ2 ⧵ 퐸−(푥): \ue244(푥,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
20
+ page_content=' 푣) = lim 푛→∞ log ‖퐷푥푓 푛‖ 푛 ∶= \ue244+(푥),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
21
+ page_content=' Moreover,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
22
+ page_content=' if 휇 denotes the Lebesgue (Haar) measure on 핋2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
23
+ page_content=' then: ∫ (\ue244+(푥) + \ue244−(푥))푑휇(푥) = ∫ log | det 퐷푥푓 |푑휇(푥) > 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
24
+ page_content=' (1) 1 so \ue244+(푥) > 0 almost everywhere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
25
+ page_content=' At last, we say that 푓 is non-uniformly hyperbolic (NUH) if \ue244−(푥) < 0 < \ue244+(푥) almost everywhere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
26
+ page_content=' Non uniformly hyperbolic systems provide a generalization of the classical Anosov surface maps [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
27
+ page_content=' Here, we will only be concerned with the non-invertible case in an attempt to aid the understanding of their statistical properties, which is still under development.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
28
+ page_content=' For the general ergodic theory of endomorphisms, the reader is directed to [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
29
+ page_content=' Any map 푓 ∶ 핋2 → 핋2 is homotopic to a linear endomorphism 퐸 ∶ 핋2 → 핋2, induced by an integer matrix that we denote by the same letter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
30
+ page_content=' In [1], it is established the existence of a \ue22f1 open set of non-uniformly hyperbolic systems that intersects every homotopy class that does not contain a homothety, provided that the degree is not too small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
31
+ page_content=' The authors then conjecture that the same is true for homotheties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
32
+ page_content=' In this article, we prove this conjecture, provided that the degree is at least 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
33
+ page_content=' There are other low topological degree cases not covered by Andersson, Carrasco and Saghin, which we also address here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
34
+ page_content=' Let End푟 휇(핋2) be the set of \ue22f푟 local diffeomorphisms of 핋2 preserving the Lebesgue measure 휇, that are not invertible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
35
+ page_content=' For 푓 ∈ End푟 휇(핋2), (푥, 푣) ∈ 푇 1핋2 define: 퐼(푥, 푣;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
36
+ page_content=' 푓 푛) = ∑ 푦∈푓 −푛(푥) log ‖(퐷푦푓 푛)−1푣‖ det(퐷푦푓 푛) , and 퐶\ue244(푓 ) = ∑ 푛∈ℕ 1 푛 inf (푥,푣)∈푇 1핋2 퐼(푥, 푣;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
37
+ page_content=' 푓 푛).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
38
+ page_content=' Define the set \ue241 ∶= {푓 ∈ End푟 휇(핋2) ∶ 퐶\ue244(푓 ) > 0}, which is open in the \ue22f1-topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
39
+ page_content=' On Subsection 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
40
+ page_content='3 of the main reference [1], it is proved: Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
41
+ page_content=' If 푓 ∈ \ue241 , then 푓 is non-uniformly hyperbolic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
42
+ page_content=' Our main results are: Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
43
+ page_content=' For 퐸 = 푘 ⋅퐼푑 ∈ 푀2×2(ℤ), with |푘| ≥ 5, the intersection [퐸]∩\ue241 is non-empty and in fact contains maps that are real analytically homotopic to E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
44
+ page_content=' Theorem B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
45
+ page_content=' If 퐸 ∈ 푀2×2(ℤ) is not a homothety and 푑푒푡(퐸) > 4, the intersection [퐸] ∩ \ue241 is non-empty and in fact contains maps that are real analytically homotopic to E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
46
+ page_content=' Our Theorem B is equivalent to the Theorem A of [1] but includes three cases which are not proved there.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
47
+ page_content=' The main difficulty for our results is that, in the case of 2 a homothety, the induced projective action is trivial;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
48
+ page_content=' non-triviality of this projective action is a central piece in the method of Andersson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
49
+ page_content=' Finally, by inspection on the proofs of Theorems B and C of [1], we can see that it works for all cases included here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
50
+ page_content=' Hence, defining: 퐶det(푓 ) ∶= sup 푛∈ℕ 1 푛 inf 푥∈핋2 log(det(퐷푥푓 푛)) > 0, and the open set: \ue2411 ∶= { 푓 ∈ End푟 휇(핋2) ∶ 퐶\ue244(푓 ) > −1 2퐶det(푓 ) } , we have from Theorems A and B that if a linear endomorphism 퐸 satisfies the condi- tions of either of the Theorems, then [퐸] ∩ \ue2411 ≠ ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
51
+ page_content=' Therefore, by Theorem 퐵 of [1], we have conituity of the maps \ue2411 ∋ 푓 ↦ ∫핋2 \ue244±(푓 )푑휇 in the \ue22f1 topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
52
+ page_content=' From Theorem C of [1], we conclude that for any linear endomorphism E as in Theorem A or B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
53
+ page_content=' If ±1 is not an eigenvalue of 퐸, then [퐸] ∩ \ue241 contains stably ergodic endomorphisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
54
+ page_content=' In fact, it contains stably Bernoulli endomorphisms and, in particular, maps that are mixing of all orders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
55
+ page_content=' Acknowledgements The results presented here were conjectured by Martin Andersson, Pablo D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
56
+ page_content=' Carrasco and Radu Saghin in [1], I thank Pablo D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
57
+ page_content=' Carrasco, who is also my MSc advisor, for the suggestion of the problem and for the hours of conversations on the subject that were crucial to this article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
58
+ page_content=' This work has been supported by the Brazillian research agencies CAPES and CNPq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
59
+ page_content=' 2 Preliminary In order to prove Theorems A and B, we require a result on the computation of the numbers 퐼(푥, 푣;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
60
+ page_content=' 푓 푛) which the proof can be found in [1]: Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
61
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
62
+ page_content=' For any 푛 ∈ ℕ, it holds: 퐼(푥, 푣;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
63
+ page_content=' 푓 푛) = 푛−1 ∑ 푖=0 ∑ 푦∈푓 −푖(푥) 퐼(푦, 퐹 −푖 푦 푣;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
64
+ page_content=' 푓 ) det(퐷푦푓 푖) , (2) where 퐹 −푖 푦 푣 = (퐷푦푓 푖)−1푣 ‖(퐷푦푓 푖)−푖푣‖.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
65
+ page_content=' 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
66
+ page_content='1 Shears For fixed points 푧1, 푧2, 푧3, 푧4 ∈ 핋1, in this order, take the closed intervals 퐼1 = [푧1, 푧2], 퐼3 = [푧3, 푧4], and the open intervals 퐼2 = (푧2, 푧3) and 퐼4 = (푧4, 푧1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
67
+ page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
68
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
69
+ page_content=' We define the horizontal and vertical critical regions in 핋2 as \ue22fℎ = (퐼1 ∪ 퐼3) × 핋1, \ue22f푣 = 핋1 × (퐼1 ∪ 퐼3) and its complements \ue233ℎ = 핋2 ⧵ \ue22fℎ , \ue233푣 = 핋2 ⧵ \ue22f푣 are respectively the horizontal and vertical good region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
70
+ page_content=' We then divide the good regions into \ue233+ ℎ = 퐼4 × 핋1, \ue233− ℎ = 퐼2 × 핋1, \ue233+ 푣 = 핋1 × 퐼4 and \ue233− 푣 = 핋1 × 퐼2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
71
+ page_content=' For fixed numbers 0 < 푎 < 푏, we take 푠 ∶ 핋1 → ℝ as an analytic map satisfying the following conditions: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
72
+ page_content=' If 푧 ∈ 퐼4, then 푎 < 푠′(푧) < 푏;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
73
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
74
+ page_content=' If 푧 ∈ 퐼2, then −푏 < 푠′(푧) < −푎;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
75
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
76
+ page_content=' If 푧 ∈ 퐼1 ∪ 퐼3, then |푠′(푧)| < 푏.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
77
+ page_content=' Consider the two families of conservative diffeomorphisms of the torus given by: ℎ푡(푥1, 푥2) = (푥1, 푥2 + 푡푠(푥1)), 푣푟(푥1, 푥2) = (푥1 + 푟푠(푥2), 푥2), 푡, 푟 ∈ ℝ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
78
+ page_content=' Note that: 퐷(푥1,푥2)ℎ푡 = ( 1 0 푡푠′(푥1) 1) , 퐷(푥1,푥2)푣푟 = ( 1 푟푠′(푥2) 0 1 ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
79
+ page_content=' In order to simplify the computations we will consider the maximum norm on 푇핋2 as ‖(푢1, 푢2)‖ = max{|푢1|, |푢2|}, and all the computations from now on are performed using this norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
80
+ page_content=' This way, we get, for every 푥 ∈ 핋2: ‖퐷푥ℎ푡‖ < 푏푡 + 1, and ‖퐷푥푣푟‖ < 푏푡 + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
81
+ page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
82
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
83
+ page_content=' Given 훼 > 0, the corresponding horizontal cone is Δℎ 훼 = {(푢1, 푢2) ∈ ℝ2 ∶ |푢2| ≤ 훼|푢1|}, while the corresponding vertical cone is its complement Δ푣 훼 = ℝ2 ⧵ Δℎ 훼, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
84
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
85
+ page_content=' For 훼 > 1, let Δℎ 훼 and Δ푣 훼 be the corresponding horizontal and vertical cones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
86
+ page_content=' Then, for every 푡, 푟 > 2훼 푎 , and, for every unit vector 푢 ∈ 푇푥핋2, the following holds: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
87
+ page_content=' If 푢 ∈ Δ푣 훼, and: (a) 푥 ∈ \ue233푣, then (퐷푥푣푟)−1푢 ∈ Δℎ 훼 (퐷푥푣−1 푟 Δ푣 훼 ⊂ Δℎ 훼);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
88
+ page_content=' ‖(퐷푥푣푟)−1푢‖ > 푎푟−훼 훼 = 푟 푎− 훼 푟 훼 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
89
+ page_content=' 4 (b) 푥 ∈ \ue22f푣, then ‖(퐷푥푣푟)−1푢‖ > 1 훼 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
90
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
91
+ page_content=' If 푢 = ±(1, 푢2) ∈ Δℎ 훼, then: (a) either for every 푥 ∈ \ue233+ 푣 ( if 푢2 ≤ 0) or for every 푥 ∈ \ue233− 푣 (if 푢2 ≥ 0) it holds: (퐷푥푣푟)−1푢 ∈ Δℎ 훼;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
92
+ page_content=' ‖(퐷푥푣푟)−1푢‖ > 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
93
+ page_content=' (b) for all other 푥, we have ‖(퐷푥푣푟)−1푢‖ > 1 푏푟+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
94
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
95
+ page_content=' If 푢 ∈ Δℎ 훼, and: (a) 푥 ∈ \ue233ℎ, then (퐷푥ℎ푡)−1푢 ∈ Δ푣 훼 (퐷푥ℎ−1 푡 Δℎ 훼 ⊂ Δ푣 훼);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
96
+ page_content=' ‖(퐷푥ℎ푡)−1푢‖ > 푎푡−훼 훼 = 푡 푎− 훼 푡 훼 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
97
+ page_content=' (b) 푥 ∈ \ue22fℎ, then ‖(퐷푥ℎ푡)−1푢‖ > 1 훼 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
98
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
99
+ page_content=' If 푢 = ±(푢1, 1) ∈ Δ푣 훼, then: (a) either for every 푥 ∈ \ue233+ ℎ ( if 푢1 ≤ 0) or for every 푥 ∈ \ue233− ℎ (if 푢1 ≥ 0) it holds: (퐷푥ℎ푡)−1푢 ∈ Δ푣 훼;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
100
+ page_content=' ‖(퐷푥ℎ푡)−1푢‖ > 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
101
+ page_content=' (b) for all other 푥, we have ‖(퐷푥ℎ푡)−1푢‖ > 1 푏푡+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
102
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
103
+ page_content=' We prove items 1 and 2, the case for ℎ푡 is analogous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
104
+ page_content=' Let 푥 = (푥1, 푥2) ∈ \ue233푣, and 푢± = (1, ±훼) then: (퐷푥푣푟)−1푢± = ( 1 −푟푠′(푥2) 0 1 ) ( 1 ±훼) = ( 1 ∓ 푟푠′(푥2)훼 ±훼 ) , also since 푥 ∈ \ue233푣, 푎 < |푠′(푥2)| < 푏, we also have 훼 > 1 and 푟 > 2훼 푎 , hence: |1 ∓ 푟푠′(푥2)훼| ≥ 푟훼푎 − 1 > 2훼2 − 1 > 훼 > 1, which shows that (퐷푥푣푟)−1Δ푣 훼 ⊂ Δℎ 훼.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
105
+ page_content=' Also, ‖(퐷푥푣푟)−1푢‖ = |1 ∓ 푟푠′(푥2)훼| > 푟푎훼 − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
106
+ page_content=' Now, noticing that the minimal expansion of vectors in Δ푣 훼 occurs on either of (1, ±훼), we have for every unit vector 푢 ∈ Δ푣 훼: ‖(퐷푥푣푟)−1푢‖ ≥ ‖(퐷푥푣푟)−1(1, ±훼)‖ ‖(1, ±훼)‖ > 푟훼 − 1 훼 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
107
+ page_content=' For part 2 (a), we have for x ∈ \ue233+ 푣 푠′(푥2) > 푎 > 0, and for 푥 ∈ \ue233− 푣, 푠′(푥2) < −푎 < 0, thus, by simple calculations analogous to the last one, we get the results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
108
+ page_content=' Finally, for (b) we just use 푚((퐷푥푣푟)−1) = 1 ‖퐷푥푣푟‖ > 1 푏푟+1 for every 푥 ∈ 핋2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
109
+ page_content=' 5 3 Endomorphisms and Shears: Proof of Theorem A Fix 퐸 = 푘 ⋅ 퐼푑, for some 푘 ∈ ℕ (we shall make the entire argument on 푘 ∈ ℕ for the sake of simplicity of notation, we emphasize that the entire argument works for 푘 ∈ ℤ by replacing 푘 for |푘| when necessary).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
110
+ page_content=' Fix a 훿 < 1 4푘 and define the critical and good regions as in Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
111
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
112
+ page_content='1 for points 푧1, 푧2, 푧3, 푧4 ∈ 핋1 such that: 퐼1 = [푧1, 푧2] and 퐼3 = [푧3, 푧4] have size 2훿;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
113
+ page_content=' The translation of 퐼1 by a multiple of 1 푘 does not intersect 퐼3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
114
+ page_content=' 퐼2 = (푧2, 푧3) and 퐼4 = (푧4, 푧1) have size strictly larger than 1 푘 [ 푘−1 2 ], where [푝] denotes the floor of 푝.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
115
+ page_content=' It is obtained directly from the definitions that: Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
116
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
117
+ page_content=' For every 푥 = (푥1, 푥2) ∈ 핋2, 퐸−1(푥) has 푘2 points given by: 퐸−1(푥1, 푥2) = { ( 푥1 + 푖 푘 , 푥2 + 푗 푘 ) ∶ 푖, 푗 = 0, ⋯ , 푘 − 1 } .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
118
+ page_content=' At least 푘 [ 푘−1 2 ] are inside each of \ue233+ 푣, \ue233− 푣, \ue233+ ℎ and \ue233− ℎ, and at most 푘 of them are inside each of \ue22f푣, \ue22fℎ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
119
+ page_content=' From now on, in this section, we fix any 훼 > 1 and the corresponding cones as in Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
120
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
121
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
122
+ page_content=' We consider the analytic maps: 푓(푡,푟) = 퐸◦푣푟◦ℎ푡, which we shall denote only by 푓 = 푓(푡,푟).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
123
+ page_content=' Clearly 푓 is an area preserving endomorphism isotopic to E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
124
+ page_content=' We observe that, given 푥 ∈ 핋2 and 푦 ∈ 푓 −1(푥), we have: (퐷푦푓 )−1 = (퐷푦ℎ푡)−1(퐷ℎ푡(푦)푣푟)−1퐸−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
125
+ page_content=' The goal is for (퐷ℎ푡(푦)푣푟)−1 to take vectors in the vertical cone and expand them in the horizontal direction and then (퐷푦ℎ푡)−1 takes its images and expands them in the vertical direction, resulting in (퐷푦푓 )−1 expanding in the vertical direction for most points in 푓 −1(푥).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
126
+ page_content=' Thus, in order to keep track of this derivative, we must localize the points 푦 ∈ 푓 −1(푥) in regard to which of \ue233ℎ or \ue22fℎ they belong, and {ℎ푡(푦) ∶ 푦 ∈ 푓 −1(푥)} = (퐸◦푣푟)−1(푥) regarding which of \ue233푣 or \ue22f푣 they belong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
127
+ page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
128
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
129
+ page_content=' For every 푥 ∈ 핋2, we have: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
130
+ page_content=' (푣푟◦퐸)−1(푥) has 푘2 points of which at least 푘 [ 푘−1 2 ] of them are in each one of \ue233+ 푣 and \ue233− 푣 and at most 푘 of them are in \ue22f푣;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
131
+ page_content=' 6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
132
+ page_content=' 푓 −1(푥) has 푘2 points of which at least 푘 [ 푘−1 2 ] of them are in each one of \ue233+ ℎ and \ue233− ℎ and at most 푘 of them are in \ue22fℎ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
133
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
134
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
135
+ page_content=' It is a direct consequence of Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
136
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
137
+ page_content='1 along with the fact that the regions \ue233+ 푣, \ue233− 푣 and \ue22f푣 are invariant under 푣푟.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
138
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
139
+ page_content=' Notice that in each row of pre-images by E of a point 푥 = (푥1, 푥2) given by { ( 푥1+푖 푘 , 푥2+푗0 푘 ) ∶ 푖 = 0, ⋯ , 푘 − 1 } for a fixed 푗0 ∈ {0, ⋯ , 푘 − 1}, 푣−1 푟 is a rotation by −푟푠 ( 푥2+푗0 푘 ) in the circle 핋1 × { 푥2+푗0 푘 } .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
140
+ page_content=' Hence, at least [ 푘−1 2 ] of the 푘 points of this row are inside each one of \ue233+ ℎ and \ue233− ℎ, and at most 1 is in \ue22fℎ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
141
+ page_content=' As this is also true for all the 푘 rows of pre-images by E, we get at least 푘 [ 푘−1 2 ] pre-images by 퐸◦푣푟 are inside each one of \ue233+ ℎ and \ue233− ℎ, and at most 푘 pre-images by 퐸◦푣푟 are inside \ue22fℎ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
142
+ page_content=' Finally, since these sets are invariant under ℎ푡, we get the desired result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
143
+ page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
144
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
145
+ page_content=' Even knowing which regions is a point 푦 ∈ (퐸◦푣푟)−1(푥), we cannot de- termine the region which ℎ−1 푡 (푦) is inside, as 푡 is varying.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
146
+ page_content=' That is, there may be points 푦 ∈ 푓 −1(푥) that are in \ue233ℎ such that ℎ푡(푦) ∈ \ue22f푣 and vice-versa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
147
+ page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
148
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
149
+ page_content=' In order to keep track of the vectors, define: For 푢 = (푢1, 푢2) ∈ ℝ2 with 푢2 ≠ 0: ∗ (푢) = { −sgn ( 푢1 푢2) , if 푢1 ≠ 0, −sgn(푢2), if 푢1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
150
+ page_content=' Notice that ∗ (푢) = ∗ (퐸−1푢), for every 푢 ∈ ℝ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
151
+ page_content=' For 푥 ∈ 핋2, 푦 ∈ 푓 −1(푥) and 푢 ∈ ℝ2, let (푤1, 푤2) = (퐷ℎ푡(푦)푣푟)−1퐸−1푢: ∗푦 (푢) = ⎧⎪⎪ ⎨⎪⎪⎩ −sgn ( 푤1 푤2) , if 푤1, 푤2 ≠ 0, −sgn(푤2), if 푤2 ≠ 0, 푤1 = 0, −sgn(푤1), if 푤1 ≠ 0, 푤2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
152
+ page_content=' In view of item 4 of Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
153
+ page_content='1, even though (퐷ℎ푡(푦)푣푟)−1 may not send a vector 푢 ∈ Δ푣 훼 to the horizontal cone if ℎ푡(푦) ∈ \ue22f푣, we can still end up having expansion in the vertical direction, depending on whether 푦 ∈ \ue233 ∗푦(푢) ℎ or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
154
+ page_content=' In this regard, from Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
155
+ page_content='1, there are 푘 points 푦 ∈ 푓 −1(푥) such that ℎ푡(푦) are in \ue22f푣, and these points (ℎ푡(푦)) are all in the same circle 핋1 × { 푥2+푗0 푘 } , hence the derivative (퐷ℎ푡(푦)푣푟)−1 is the same for those points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
156
+ page_content=' We get: 7 Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
157
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
158
+ page_content=' For every 푢 ∈ ℝ2, 푥 ∈ 핋2, then the sign ∗푦 (푢) = sg ( 푤1 푤2) is the same for all points 푦 ∈ 푓 −1(푥) such that ℎ푡(푦) ∈ \ue22f푣, where ∗푦 (푢) is as in Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
159
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
160
+ page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
161
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
162
+ page_content=' For a fixed 푥 ∈ 핋2 and: 푢 ∈ Δ푣 훼, define: ⎧⎪⎪⎪⎪ ⎨⎪⎪⎪⎪⎩ 퐴 = {푦 ∈ 푓 −1(푥) ∶ 푦 ∈ \ue233ℎ, ℎ푡(푦) ∈ \ue233푣}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
163
+ page_content=' 퐵 = {푦 ∈ 푓 −1(푥) ∶ 푦 ∈ \ue233 ∗푦(푢) ℎ , ℎ푡(푦) ∈ \ue22f푣}, \ue242푣 = 퐴 ∪ 퐵, \ue242ℎ = 푓 −1(푥) ⧵ \ue242푣.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
164
+ page_content=' 푢 ∈ Δℎ 훼, define: ⎧⎪⎪⎪⎪ ⎨⎪⎪⎪⎪⎩ 퐶 = {푦 ∈ 푓 −1(푥) ∶ 푦 ∈ \ue233ℎ, ℎ푡(푦) ∈ \ue233∗(푢) 푣 }.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
165
+ page_content=' 퐷 = {푦 ∈ 푓 −1(푥) ∶ 푦 ∈ \ue233 ∗푦(푢) ℎ , ℎ푡(푦) ∈ \ue22f푣 ∪ \ue233−∗(푢) 푣 }, \ue234푣 = 퐶 ∪ 퐷, \ue234ℎ = 푓 −1(푥) ⧵ \ue234푣.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
166
+ page_content=' A direct consequence of Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
167
+ page_content='1 and Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
168
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
169
+ page_content='2, having Remark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
170
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
171
+ page_content='1 in mind, is the following: Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
172
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
173
+ page_content=' For a fixed (푥, 푢) ∈ 푇핋2, 푓 −1(푥) has 푘2 points, of which: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
174
+ page_content=' For 푢 ∈ Δ푣 훼, at most 2푘 − 1 − [ 푘−1 2 ] of them are in \ue242ℎ and at least (푘 − 1)2 + [ 푘−1 2 ] are inside \ue242푣, because: At least (푘 − 1)2 are in A and, at least [ 푘−1 2 ] are in B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
175
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
176
+ page_content=' For 푢 ∈ Δℎ 훼, at most 푘2 − [ 푘−1 2 ] (푘 + [ 푘−1 2 ]) are in \ue234ℎ and at least [ 푘−1 2 ] (푘 + [ 푘−1 2 ]) are in \ue234푣, because: At least (푘 − 1) [ 푘−1 2 ] are in C and, at least [ 푘−1 2 ] (1 + [ 푘−1 2 ]) are in D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
177
+ page_content=' Knowing that for every unit vector 푢 ∈ ℝ2 we have ‖퐸−1푢‖ = 1 푘 (maximum norm), from Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
178
+ page_content='1 we get: Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
179
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
180
+ page_content=' For 푡, 푟 > 2훼 푎 and for fixed 푥 ∈ 핋2, it holds: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
181
+ page_content=' If 푢 ∈ Δ푣 훼, then for all 푦 ∈ \ue242푣 we have (퐷푦푓 )−1푢 ∈ Δ푣 훼;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
182
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
183
+ page_content=' If 푢 ∈ Δ푣 훼 is a unit vector, then: ‖(퐷푦푓 )−1푢‖ > ⎧⎪⎪⎪ ⎨⎪⎪⎪⎩ ( 푎− 훼 푡 훼 ) ( 푎− 훼 푟 훼 ) 푡푟 푘 , 푦 ∈ 퐴, 1 훼푘, 푦 ∈ 퐵, 1 (푏푡+1)훼푘, 푦 ∈ \ue242ℎ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
184
+ page_content=' 8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
185
+ page_content=' If 푢 ∈ Δℎ 훼, then for all 푦 ∈ \ue234푣 we have (퐷푦푓 )−1푢 ∈ Δ푣 훼;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
186
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
187
+ page_content=' If 푢 ∈ Δℎ 훼 is a unit vector, then: ‖(퐷푦푓 )−1푢‖ > ⎧⎪⎪⎪ ⎨⎪⎪⎪⎩ ( 푎− 훼 푡 훼 ) 푡 푘, 푦 ∈ 퐶, 1 (푏푟+1)푘, 푦 ∈ 퐷, 1 (푏푡+1)(푏푟+1)푘, 푦 ∈ \ue234ℎ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
188
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
189
+ page_content='1 Non-uniform hyperbolicity For (푥, 푢) ∈ 푇핋2 with 푢 ≠ 0 and for 푛 ∈ ℕ denote by 퐷푓 −푛(푥, 푢) = {(푦, 푤) ∈ 푇핋2 ∶ 푓 푛(푦) = 푥, 퐷푦푓 푛푤 = 푢}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
190
+ page_content=' For any non-zero tangent vector (푥, 푢) and 푛 ≥ 0, define: \ue233푛 = {(푧, 푤) ∈ 퐷푓 −푛(푥, 푢) ∶ 푤 ∈ Δ푣 훼}, \ue22e푛 = 퐷푓 −푛(푥, 푢) ⧵ \ue233푛, 푔푛 = #\ue233푛, 푏푛 = #\ue22e푛 = 푘2푛 − 푔푛.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
191
+ page_content=' From Lemmas 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
192
+ page_content='2, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
193
+ page_content='3 one deduces: Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
194
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
195
+ page_content=' Let (푥, 푢) ∈ 푇핋2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
196
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
197
+ page_content=' If 푢 ∈ Δ푣 훼, then at least (푘 − 1)2 + [ 푘−1 2 ] of its pre-images under 퐷푓 are also in Δ푣 훼;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
198
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
199
+ page_content=' If 푢 ∈ Δℎ 훼, then at least [ 푘−1 2 ] (푘 + [ 푘−1 2 ]) of its pre-images under 퐷푓 are in Δ푣 훼.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
200
+ page_content=' By the lemma above, we get: 푔푛+1 ≥ ((푘 − 1)2 + [ 푘 − 1 2 ]) 푔푛 + [ 푘 − 1 2 ] (푘 + [ 푘 − 1 2 ]) 푏푛 = ((푘 − 1)2 − [ 푘 − 1 2 ] (푘 − 1 + [ 푘 − 1 2 ])) 푔푛 + [ 푘 − 1 2 ] (푘 + [ 푘 − 1 2 ]) 푘2푛, hence: 푔푛+1 푘2(푛+1) ≥ 1 푘2 ((푘 − 1)2 − [ 푘 − 1 2 ] (푘 − 1 + [ 푘 − 1 2 ])) 푔푛 푘2푛 + 1 푘2 [ 푘 − 1 2 ] (푘 + [ 푘 − 1 2 ]) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
201
+ page_content=' 9 Denoting by 푎푛 = 푔푛 푘2푛 and 푐 = 1 푘2 ((푘 − 1)2 − [ 푘 − 1 2 ] (푘 − 1 + [ 푘 − 1 2 ])) , 푒 = 1 푘2 [ 푘 − 1 2 ] (푘 + [ 푘 − 1 2 ]) , the inequality above becomes: 푎푛+1 ≥ 푐 ⋅ 푎푛 + 푒.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
202
+ page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
203
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
204
+ page_content=' For every (푥, 푢) ∈ 푇핋2, 푢 ≠ 0, and 푛 ≥ 0 it holds: 푎푛 ≥ 푒 1 − 푐 (1 − 푐푛) = [ 푘−1 2 ] (푘 + [ 푘−1 2 ]) 2푘 − 1 + [ 푘−1 2 ] (푘 − 1 + [ 푘−1 2 ]) (1 − 푐푛) In particular, lim inf 푎푛 ≥ [ 푘−1 2 ] (푘 + [ 푘−1 2 ]) 2푘 − 1 + [ 푘−1 2 ] (푘 − 1 + [ 푘−1 2 ]) ∶= 퐿(푘), uniformly in (푥, 푢) ∈ 핋2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
205
+ page_content=' From now on we shall denote by 퐿(푘) = [ 푘−1 2 ](푘+[ 푘−1 2 ]) 2푘−1+[ 푘−1 2 ](푘−1+[ 푘−1 2 ]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
206
+ page_content=' As another direct con- sequence of Lemmas 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
207
+ page_content='2 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
208
+ page_content='3 we have the following: Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
209
+ page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
210
+ page_content=' If 푟, 푡 > 2훼 푎 , then for all (푥, 푢) ∈ 푇핋2 we have: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
211
+ page_content=' If 푢 ∈ Δ푣 훼, then: 퐼(푥, 푢;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
212
+ page_content=' 푓) ≥(푘 − 1)2 푘2 log 푟 + ( 푘2 − 4푘 + 2 + [ 푘−1 2 ] 푘2 ) log 푡 + log ( 1 훼푘 ((푎 − 훼 푡 ) (푎 − 훼 푟 )) (푘−1)2 푘2 (푏 + 1 푡 ) − 1 푘2(2푘−1−[ 푘−1 2 ]) ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
213
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
214
+ page_content=' If 푢 ∈ Δℎ 훼, then: 퐼(푥, 푢;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
215
+ page_content=' 푓) ≥ − ( 푘2 − (푘 − 1) [ 푘−1 2 ] 푘2 ) log 푟 − ( 푘2 − [ 푘−1 2 ] (2푘 − 1 + [ 푘−1 2 ]) 푘2 ) log 푡 + log ( 1 푘 ( 1 훼 (푎 − 훼 푡 )) 푘−1 푘2 [ 푘−1 2 ]−1 (푏 + 1 푡 ) 1 푘2[ 푘−1 2 ](푘+[ 푘−1 2 ])−1 ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
216
+ page_content=' 10 Now, to calculate \ue22f\ue244(푓 ), we use Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
217
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
218
+ page_content='1 to compute: 퐼(푥, 푢;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
219
+ page_content=' 푓 푛) = 푛−1 ∑ 푖=0 ∑ 푦∈푓 −푖(푥) 퐼(푦, (퐷푦푓 푖)−1푢;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
220
+ page_content=' 푓) 푘2푖 ∶= 푛−1 ∑ 푖=0 퐽푖, and, if 푡, 푟 > 2훼 푎 , for each 푖 we obtain: 퐽푖 = 1 푘2푖 ∑ 푦∈푓 −1(푥) 퐼(푦, (퐷푦푓 푖)−1푢;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
221
+ page_content=' 푓 ) = 1 푘2푖 ∑ (푦,푤)∈\ue233푖 퐼(푦, 푤;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
222
+ page_content=' 푓) + 1 푘2푖 ∑ (푦,푤)∈\ue22e푖 퐼(푦, 푤;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
223
+ page_content=' 푓) ≥ 푎푖푉(푡, 푟, 푘) + (1 − 푎푖)퐻(푡, 푟, 푘), where V and H are the right side of the inequalities obtained in Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
224
+ page_content='6 for 푢 ∈ Δ푣 훼 and 푢 ∈ Δℎ 훼 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
225
+ page_content=' It follows from Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
226
+ page_content='5,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
227
+ page_content=' with 퐿(푘) as above and 푐푘 = [ 푘−1 2 ],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
228
+ page_content=' to simplify the notation,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
229
+ page_content=' that: lim 푖→∞ 퐽푖 ≥ 퐿(푘)푉(푡,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
230
+ page_content=' 푟,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
231
+ page_content=' 푘) + (1 − 퐿(푘))퐻(푡,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
232
+ page_content=' 푟,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
233
+ page_content=' 푘) = 퐶(푡,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
234
+ page_content=' 푟,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
235
+ page_content=' 푘) + 1 푘2 (퐿(푘) ((푘 − 1) (2푘 − 푐푘) + 1) − (푘2 − (푘 − 1)푐푘)) log 푟 + 1 푘2 (퐿(푘) (2(푘 − 1)2 − 푐푘 (2(푘 − 1) + 푐푘)) − (푘2 − 푐푘 (2푘 − 1 + 푐푘))) log 푡 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
236
+ page_content=' where 퐶(푡,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
237
+ page_content=' 푟,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
238
+ page_content=' 푘) = 퐿(푘)퐶1(푡,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
239
+ page_content=' 푟,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
240
+ page_content=' 푘) + (1 − 퐿(푘))퐶2(푡,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
241
+ page_content=' 푟,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
242
+ page_content=' 푘),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
243
+ page_content=' with 퐶1(푡,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
244
+ page_content=' 푟,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
245
+ page_content=' 푘) = log ( 1 훼푘 ((푎 − 훼 푡 ) (푎 − 훼 푟 )) (푘−1)2 푘2 (푏 + 1 푡 ) − 1 푘2(2푘−1−[ 푘−1 2 ]) ) 퐶2(푡,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
246
+ page_content=' 푟,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
247
+ page_content=' 푘) = log ( 1 푘 ( 1 훼 (푎 − 훼 푡 )) 푘−1 푘2 [ 푘−1 2 ]−1 (푏 + 1 푡 ) 1 푘2[ 푘−1 2 ](푘+[ 푘−1 2 ])−1 ) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
248
+ page_content=' as in Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
249
+ page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
250
+ page_content=' From this, we get that for any 푘, 퐶(푡, 푟, 푘) is growing as 푡 and 푟 grow, then for 푡, 푟 > 2훼 푎 , 퐶(푡, 푟, 푘) > 퐶 is uniformly bounded from below by some constant 퐶.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
251
+ page_content=' Now, in order to get lim 푖→∞ 퐽푖 > 0, we can either make 푡 or 푟 large, depending on whether the constant (which depends on 푘) multiplying log 푡 or log 푟 is positive or negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
252
+ page_content=' However, for both of them, we only get positivity of the constant if 푘 ≥ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
253
+ page_content=' Thus, for 푘 ≥ 5, since all the bounds above are uniform for all non-zero tangent vectors (푥, 푢), we obtain that for 푡 (or 푟) sufficiently large, for all 푖 greater than some 푖0, and for all nonzero tangent vectors (푥, 푢), 퐽푖(푥, 푢) > 푁 > 0 for some constant 푁.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
254
+ page_content=' Hence, there exists some 푛0 such that 1 푛0 퐼(푥, 푢;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
255
+ page_content=' 푓 푛0) = 1 푛0 푛0−1 ∑ 푖=0 퐽푖(푥, 푢) > 푁 2 > 0, 11 for all nonzero tangent vectors (푥, 푢).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
256
+ page_content=' Therefore, \ue22f\ue244(푓 ) > 0 which by Theorem 1 con- cludes the proof of Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
257
+ page_content=' We finish this section by including some examples for a better visualization that for a fixed 푘 ∈ ℕ, the bounds obtained in this section are quite simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
258
+ page_content=' For that, we fix 푘 = 5, we get 퐿(5) = 2 3, the limitations of our last calculations become: lim 푖→∞ 퐽푖 ≥ 퐶(푡, 푟, 5) + 5 log 푟 + 5 log 푡, with 퐶(푡, 푟, 5) = log ( 1 5 훼 17 25 푎2/3 (푎 − 훼 푡 ) 1 5 (푎 − 훼 푟 ) 32 75 (푏 + 1 푡 ) − 18 25 ) Thus, taking the map 푠 ∶ 핋1 → ℝ as 푠(푢) = sin(2휋푢), 훿 = 1 20, 푎 = 2휋 sin( 휋 10), 푏 = 2휋, and 훼 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
259
+ page_content='1, we get that for every 푡, 푟 ⪆ 2푎 훼 ≈ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
260
+ page_content='77 the number 퐶(푡, 푟, 5)+5 log 푟 +5 log 푡 is positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
261
+ page_content=' Thus, the maps 푓(푡, 푟) = 퐸◦푣푟◦ℎ푡 satisfy the results of Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
262
+ page_content=' 4 Proof of Theorem B For 푘 ⋅ 퐼푑 ≠ 퐸 ∈ 푀2×2(ℤ), let 휏1(퐸) be the greatest common divisor of the entries of E, 휏2(퐸) = det(퐸)/휏1(퐸), so that 푑 = 휏1 ⋅ 휏2 coincides with the topological degree of the induced endomorphism 퐸 ∶ 핋2 → 핋2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
263
+ page_content=' We want to make a slight change in the argument used in [1] so that for every 푥 ∈ 핋2, 푓 −1(푥) has at most one point in the critical zone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
264
+ page_content=' This solves the cases where the pair (휏1, 휏2) is (2, 4), (3, 3) or (4, 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
265
+ page_content=' For the remaining four cases (1, 2), (1, 3), (1, 4) and (2, 2), even with this improvement in the argument, the proportion we obtain for vectors in the good region (which in these cases is the optimum one for the argument presented here) is still insufficient to obtain expansion in the vertical direction, given the small amount of pre-images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
266
+ page_content=' The numbers 휏1, 휏2 are the elementary divisors of E and, as in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
267
+ page_content='4 of [1], there exists 푃 ∈ 퐺퐿2(ℤ) such that the matrix 퐺 = 푃−1 ⋅ 퐸 ⋅ 푃 satisfies: 퐺−1(ℤ) = { ( 푖 휏2푗 휏1) ∶ 푖, 푗 ∈ ℤ } Moreover, as E is not a homothety, by another change of coordinates if necessary we may assume that E does not have (0, 1) as an eigenvector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
268
+ page_content=' With this in mind, we assume that ℙ퐸 does not fix [(0, 1)] and that 퐸−1ℤ2 = 1 휏2ℤ× 1 휏1ℤ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
269
+ page_content=' So there exists an 훼 > 휏2 > 1 such that if Δℎ 훼 and Δ푣 훼 are the corresponding horizontal and vertical cones as in Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
270
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
271
+ page_content='2, then 퐸−1Δ푣훼 ⊂ 퐼푛푡(Δℎ 훼).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
272
+ page_content=' From now on, we fix such 훼 > 휏2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
273
+ page_content=' Let 퐿 < max { 1 4휏2, 휏−1 2 −훼−1 2 } , choose points 푧1, 푧2, 푧2, 푧4 ∈ 핋1, in this order, such that: 12 퐼1 = [푧1, 푧2] and 퐼3 = [푧3, 푧4] have size 퐿;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
274
+ page_content=' the translation of 퐼1 by a multiple of 1/휏2 does not intersect 퐼3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
275
+ page_content=' 퐼2 = (푧2, 푧3) and 퐼4 = (푧4, 푧1) have size strictly larger than 1 휏2 [ 휏2−1 2 ], and define the critical and good regions \ue22fℎ, \ue233ℎ and \ue233± ℎ as in Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
276
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
277
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
278
+ page_content=' As an immediate consequence of the definition we get: Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
279
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
280
+ page_content=' For every 푥 ∈ 핋2, 퐸−1(푥) has 푑 points of which at least 1 휏2 [ 휏2−1 2 ] are inside each of \ue233+ ℎ and \ue233− ℎ, and at most 휏1 of them are inside of \ue22fℎ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
281
+ page_content=' In order to have at most one pre-image of each point in the critical zone of the shear ℎ푡(푥1, 푥2) = (푥1, 푥2+푡푠(푥1) defined as before, we define the conservative diffeomorphism of the torus 푣(푥1, 푥2) = (푥1 + ̃푠(푥2), 푥2), with ̃푠 ∶ 핋1 → ℝ an analytic map which we shall impose restrictions later.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
282
+ page_content=' We then study the family: 푓푡 = 퐸◦푣◦ℎ푡, of area preserving endomorphism of the torus isotopic to E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
283
+ page_content=' We shall denote 푓 = 푓푡 to simplify the notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
284
+ page_content=' Given 푥 ∈ 핋2, the set 푓 −1(푥) = ℎ−1 푡 ◦푣−1◦퐸−1(푥) is composed by d points, and given 푦 ∈ 푓 −1(푥), we have (퐷푦푓 )−1 = (퐷푦ℎ푡)−1◦(퐷ℎ푡(푦)푣)−1◦퐸−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
285
+ page_content=' In order to define 푣 in a way that only one pre-image of 푥 by 푓 remains in the critical zone, we notice that 퐸−1(푥) is composed by 푑 points which, by the change of coordinates made initially, are aligned in a lattice of height 휏1 and length 휏2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
286
+ page_content=' We also notice that the map ℎ−1 푡 keeps the vertical lines invariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
287
+ page_content=' Therefore, the map 푣−1 needs to act in a way that it moves points on a vertical line enough so that only one remains in the critical zone, and, also, it cannot move them so much that we have new points entering the critical zone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
288
+ page_content=' In this way, we took the analytic map ̃푠 ∶ 핋1 → ℝ satisfying: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
289
+ page_content=' If 퐿 is the size of the intervals 퐼1, 퐼3 then |̃푠(푢)| < 1 휏2 − 퐿, for all 푢 ∈ 핋1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
290
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
291
+ page_content=' For all 푢 ∈ 핋1, we have that |||̃푠 (푢 + 푗 휏1)||| > 퐿 for all 푗 ∈ {0, 1, ⋯ , 휏1 − 1} except at most one index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
292
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
293
+ page_content=' |̃푠′(푢)| < (2훼)−1, for all 푢 ∈ 핋1, where 훼 is the size of the cones fixed in the previous subsection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
294
+ page_content=' Notice that conditions 2 and 3 are not mutually exclusives thanks to the conditions for 훼 and 퐿 imposed in the previous subsection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
295
+ page_content=' Now, conditions 1 and 2 give us: 13 Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
296
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
297
+ page_content=' For all 푥 ∈ 핋2, 푓 −1(푥) is composed by 푑 points of which at most one is inside \ue22fℎ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
298
+ page_content=' At least 푑 − 1 of the pre-images are inside \ue233 of which at least 휏1 [ 휏2−1 2 ] are inside each of \ue233+ ℎ and \ue233− ℎ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
299
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
300
+ page_content=' In the case where 퐸−1(푥) has no points in the critical zone, due to condition 1 together with the fact that ℎ푡 preserves vertical lines, the map ℎ−1 푡 ◦푣−1 does not take any of those points to the critical zone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
301
+ page_content=' In the case where 퐸−1(푥) has a point in the critical zone, it implies that we have exactly 휏1 points there.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
302
+ page_content=' Due to condition 2, only one of those points is able to remain there, and due to condition 1, none of the other points is getting inside.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
303
+ page_content=' For the minimum amount of points in each of \ue233+ ℎ and \ue233− ℎ, we notice that, by Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
304
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
305
+ page_content='1, 퐸−1(푥) already has at least 휏1 [ 휏2−1 2 ] points inside each one, and, due to condition 1, those points must remain there.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
306
+ page_content=' At last, condition 3 gives us the next lemma, required for the whole construction to work: Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
307
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
308
+ page_content=' There exists 훽 > 훼 such that for all 푦 ∈ 핋2, (퐷푦푣)−1◦퐸−1Δ푣 훽 ⊂ Δℎ 훽, where Δ푣 훽 and Δℎ 훽 are the corresponding vertical and horizontal cones of size 훽 as in Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
309
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
310
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
311
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
312
+ page_content=' For 푦 = (푦1, 푦2), 퐷푦푣 = ( 1 ̃푠′(푦2) 0 1 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
313
+ page_content=' Then, due to condition 3, for all 휆 ∈ ℝ, 퐷푦푣 ⋅ 휆푒2 = 휆(̃푠′(푦2), 1) ∈ Δ푣 2훼.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
314
+ page_content=' Since, by the definition of 훼, we have 퐸−1 ⋅ 휆푒2 ∈ 푖푛푡(Δℎ 훼), we conclude that for all 푦 ∈ 핋2, ℙ((퐷푦푣)−1◦퐸−1)⋅[푒2] is uniformly away from [푒2], hence there exists such 훽 as we wanted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
315
+ page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
316
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
317
+ page_content=' Items 3 and 4 of Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
318
+ page_content='1 also works in this cases for Δ푣 훽 and Δℎ 훽.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
319
+ page_content=' We give the correspondent to Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
320
+ page_content='3 for this case, as a consequence of items 3 and 4 of Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
321
+ page_content='1, Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
322
+ page_content='1 and Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
323
+ page_content='2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
324
+ page_content=' From now on, we fix 훽 > 훼 as in Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
325
+ page_content='2 and let: 푒푣 = inf { ‖(퐷푥푣)−1◦퐸−1푢‖ ∶ (푥, 푢) ∈ 푇 1핋2, 푢 ∈ Δ푣 훽 } , 푒ℎ = inf { ‖(퐷푥푣)−1◦퐸−1푢‖ ∶ (푥, 푢) ∈ 푇 1핋2, 푢 ∈ Δℎ 훽 } .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
326
+ page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
327
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
328
+ page_content=' For 푡 > 2훽 푎 it holds: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
329
+ page_content=' if 푦 ∈ \ue233ℎ then (퐷푦푓 )−1Δ푣 훽 ⊂ Δ푣 훽, it is strictly invariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
330
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
331
+ page_content=' if 푢 ∈ Δ푣 훽 is a unit vector, then ‖(퐷푦푓 )−1푢‖ > { 푒푣(푎−훽/푡)) 훽 푡, 푦 ∈ \ue233ℎ, 푒푣 훽 , 푦 ∈ \ue22fℎ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
332
+ page_content=' 14 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
333
+ page_content=' if 푢 ∈ Δℎ 훽, and (퐷ℎ푡(푦)푣)−1◦퐸−1 ⋅ 푢 = (푤1, 푤2) let ∗푦 (푢) be as in Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
334
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
335
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
336
+ page_content=' Then if 푦 ∈ \ue233 ∗푦(푢) ℎ we have (퐷푦푓 )−1(푢) ∈ Δ푣 훽.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
337
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
338
+ page_content=' if 푢 ∈ Δℎ 훽 is a unit vector, then ‖(퐷푦푓 )−1푢‖ > { 푒ℎ, 푦 ∈ \ue233 ∗푦(푢) ℎ , 푒ℎ 푏+ 1 푡 푡−1, 푦 ∉ \ue233 ∗푦(푢) ℎ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
339
+ page_content=' We notice that, analogously to the homothety case, we have the problem that ∗푦 (푢) depends on 푦 ∈ 푓 −1(푥), therefore even though we have at least 휏1 [ 휏2−1 2 ] points in each of \ue233± ℎ, there could be a vector 푢 ∈ ℝ2 such that for all 푦 ∈ \ue233+ ℎ, ∗푦 (푢) = − and vice-versa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
340
+ page_content=' However, we can see that this is not the case: Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
341
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
342
+ page_content=' For every 푥 ∈ 핋2, 푢 ∈ ℝ2, there are at least 휏2 [ 휏2−1 2 ] points 푦 ∈ 푓 −1(푥) such that 푦 ∈ \ue233 ∗푦(푢) ℎ , where ∗푦 (푢) is as in Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
343
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
344
+ page_content='1 changing 푣푟 for 푣.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
345
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
346
+ page_content=' By the same argument used in Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
347
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
348
+ page_content='2, we can see that ∗푦 (푢) is constant for points 푦 ∈ 푓 −1(푥) such that ℎ푡(푦) lies in the same horizontal line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
349
+ page_content=' There are exactly 휏2 pre-images 푦′ such that ℎ푡(푦) and ℎ푡(푦′) are in the same horizontal line, hence at least [ 휏2−1 2 ] of these lies in \ue233 ∗푦(푢) ℎ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
350
+ page_content=' As 푣−1◦퐸−1(푥) has 휏1 different vertical lines, we get the result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
351
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
352
+ page_content='1 Non-uniform hyperbolicity We end up having calculations completely mirrored in those made in Subsection 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
353
+ page_content='1, and for that reason we will skip the details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
354
+ page_content=' For (푥, 푢) ∈ 푇핋2 with 푢 ≠ 0 and for 푛 ∈ ℕ, we define the sets 퐷푓 −푛(푥, 푢), \ue233푛, \ue22e푛, and the numbers 푔푛, 푏푛 = 푑푛 − 푔푛 as before.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
355
+ page_content=' From Lemmas 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
356
+ page_content='1, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
357
+ page_content='3 and Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
358
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
359
+ page_content='2 we deduce: Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
360
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
361
+ page_content=' Let (푥, 푢) ∈ 푇핋2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
362
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
363
+ page_content=' If 푢 ∈ Δ푣 훽, then at least 푑 − 1 of its pre-images under 퐷푓 are also in Δ푣 훽.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
364
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
365
+ page_content=' If 푢 ∈ Δℎ 훽, then at least 휏1 [ 휏2−1 2 ] of its pre-images under 퐷푓 are in Δℎ 훽.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
366
+ page_content=' For that, we get for all 푛 ∈ ℕ: 푔푛+1 ≥ (푑 − 1 − 휏1 [ 휏2 − 1 2 ]) 푔푛 + 휏1 [ 휏2 − 1 2 ] 푑푛, hence, putting 푎푛 = 푔푛 푑푛 : 푎푛+1 ≥ ( 푑 − 1 푑 − 1 휏2 [ 휏2 − 1 2 ]) 푎푛 + 1 휏2 [ 휏2 − 1 2 ] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
367
+ page_content=' Thus, we get: 15 Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
368
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
369
+ page_content=' For every (푥, 푢) ∈ 푇핋2, 푢 ≠ 0, and 푛 ≥ 0, it holds: lim inf 푎푛 ≥ 1 휏2 [ 휏2 − 1 2 ] 푑 1 + 휏1 [ 휏2−1 2 ] ∶= 퐿(휏1, 휏2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
370
+ page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
371
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
372
+ page_content=' This is where we are able to verify that this argument will work for the cases (휏1, 휏2) as (2, 4), (3, 3) and (4, 4), where we have 퐿(휏1, 휏2) as 2/3, 3/4 and 4/5, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
373
+ page_content=' And it won’t work for the other cases (1, 2), (1, 3), (1, 4) and (2, 2) where we will get 퐿(휏1, 휏2) as 0, 1/2, 1/2 and 0, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
374
+ page_content=' As we will see, for the rest of the argument to work, we need this lower bound strictly greater than 1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
375
+ page_content=' As another consequence of Lemmas 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
376
+ page_content='1, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
377
+ page_content='3 and Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
378
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
379
+ page_content='2, we get: Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
380
+ page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
381
+ page_content=' If 푡 > 2훽 푎 , then for all (푥, 푢) ∈ 푇핋2, it holds: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
382
+ page_content=' If 푢 ∈ Δ푣 훽, then: 퐼(푥, 푢;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
383
+ page_content=' 푓) ≥ 푑 − 1 푑 log 푡 + log ( 푒푣 훽 (푎 − 훽 푡 ) 푑−1 푑 ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
384
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
385
+ page_content=' If 푢 ∈ Δℎ 훽, then: 퐼(푥, 푢;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
386
+ page_content=' 푓) ≥ − (1 − 1 휏2 [ 휏2 − 1 2 ]) log 푡 + log (푒ℎ (푏 + 1 푡 ) −(1− 1 휏2[ 휏2−1 2 ]) ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
387
+ page_content=' Again, by Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
388
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
389
+ page_content='1, we have: 퐼(푥, 푢;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
390
+ page_content=' 푓 푛) = 푛−1 ∑ 푖=0 ∑ 푦∈푓 −푖(푥) 퐼(푦, (퐷푦푓 푖)−1푢;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
391
+ page_content=' 푓) 푘2푖 ∶= 푛−1 ∑ 푖=0 퐽푖, we compute, for 푡 > 2훽 푎 , for all 푖 ≥ 0: 퐽푖 = 1 푑 ∑ (푦,푤)∈\ue233푖 퐼(푦, 푤;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
392
+ page_content=' 푓) + 1 푑 ∑ (푦,푤)∈\ue22e푖 퐼(푦, 푤;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
393
+ page_content=' 푓) ≥ 푎푖푉(푡, 휏1, 휏2) + (1 − 푎푖)퐻(푡, 휏1, 휏2), where 푎푖 is as in Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
394
+ page_content='5, 푉 and 퐻 are the right side of the inequalities obtained in Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
395
+ page_content='6 for 푢 ∈ Δ푣 훽 and 푢 ∈ Δℎ 훽 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
396
+ page_content=' It follows: lim 푖→∞ 퐽푖 ≥ 퐿(휏1, 휏2)푉(푡, 휏1, 휏2) + (1 − 퐿(휏1, 휏2))퐻(푡, 휏1, 휏2) = (휏1 − 2 휏2) [ 휏2−1 2 ] − 1 1 + 휏1 [ 휏2−1 2 ] log 푡 + 퐶(푡, 휏1, 휏2), 16 where: 퐶(푡, 휏1, 휏2) =퐿(휏1, 휏2) log ( 푒푣 훽 (푎 − 훽 푡 ) 푑−1 푑 ) + (1 − 퐿(휏1, 휏2)) log (푒ℎ (푏 + 1 푡 ) −(1− 1 휏2[ 휏2−1 2 ]) ) > 퐶, for all 푡 > 2훽 푎 , that is, 퐶(푡, 휏1, 휏2) is uniformly bounded from below by some constant C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
397
+ page_content=' Since 푑 = 휏1 ⋅ 휏2 > 4, the constant multiplying log 푡 is positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
398
+ page_content=' Therefore, since all the bounds above are uniform for all non-zero tangent vectors (푥, 푢), as in the homo- thety case we obtain that for 푡 sufficiently large, for all 푛 greater than some 푛0, and for all nonzero tangent vectors (푥, 푢): 1 푛퐼(푥, 푢;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
399
+ page_content=' 푓 푛) = 1 푛 푛−1 ∑ 푖=0 퐽푖(푥, 푢) > 0, hence, \ue22f\ue244(푓 ) > 0 which by Theorem 1 concludes the proof of Theorem B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
400
+ page_content=' References [1] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
401
+ page_content=' Andersson, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
402
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
403
+ page_content=' Carrasco, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
404
+ page_content=' Saghin, “Non-uniformly hyperbolic endo- morphisms,” 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
405
+ page_content=' [2] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
406
+ page_content=' Barreira and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
407
+ page_content=' Pesin, Introduction to Smooth Ergodic Theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
408
+ page_content=' Graduate Studies in Mathematics, American Mathematical Society, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
409
+ page_content=' [3] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
410
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
411
+ page_content=' Oseledets, “A multiplicative ergodic theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
412
+ page_content=' characteristic ljapunov, expo- nents of dynamical systems,” Trudy Moskovskogo Matematicheskogo Obshchestva, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
413
+ page_content=' 19, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
414
+ page_content=' 179–210, 1968.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
415
+ page_content=' [4] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
416
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
417
+ page_content=' Anosov, “Geodesic flows on closed riemannian manifolds of negative curva- ture,” Trudy Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
418
+ page_content=' Inst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
419
+ page_content=' Steklov, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
420
+ page_content=' 90, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
421
+ page_content=' 3–210, 1967.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
422
+ page_content=' [5] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
423
+ page_content=' Qian, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
424
+ page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
425
+ page_content=' Xie, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
426
+ page_content=' Zhu, Smooth Ergodic Theory for Endomorphisms, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
427
+ page_content=' 1978 of Lecture Notes in Mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
428
+ page_content=' 01 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
429
+ page_content=' 17' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdE0T4oBgHgl3EQfPgCp/content/2301.02180v1.pdf'}
AdFJT4oBgHgl3EQfrS3C/content/2301.11608v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f30c38e865c67f3fd5ba0b3e123feae2903dfe4c4bcc04578a8131405d274b58
3
+ size 461368
AdFJT4oBgHgl3EQfrS3C/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fbe1f0ddfb8193d5e777a8113074863cc1db0fec5841132e1ed7ec15827093b
3
+ size 156658
BtE1T4oBgHgl3EQfDgPC/content/tmp_files/2301.02879v1.pdf.txt ADDED
@@ -0,0 +1,1870 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ First Principles Assessment of CdTe as a Tunnel Barrier at the α-Sn/InSb Interface
2
+ Malcolm J. A. Jardine,1, ∗ Derek Dardzinski,2, ∗ Maituo Yu,2 Amrita Purkayastha,1
3
+ A.-H. Chen,3 Yu-Hao Chang,4 Aaron Engel,4 Vladimir N. Strocov,5 Mo¨ıra
4
+ Hocevar,3 Chris J. Palmstrøm,4, 6 Sergey M. Frolov,1 and Noa Marom2, 7, 8, †
5
+ 1Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, 15260, USA
6
+ 2Department of Materials Science and Engineering,
7
+ Carnegie Mellon University, Pittsburgh, PA 15213, USA
8
+ 3Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut N´eel, 38000 Grenoble, France
9
+ 4Materials Department, University of California-Santa Barbara, Santa Barbara, CA, USA
10
+ 5Paul Scherrer Institut, Swiss Light Source, CH-5232 Villigen PSI, Switzerland
11
+ 6Department of Electrical and Computer Engineering,
12
+ University of California-Santa Barbara, Santa Barbara, CA, USA
13
+ 7Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
14
+ 8Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
15
+ Majorana zero modes, with prospective applications in topological quantum computing, are ex-
16
+ pected to arise in superconductor/semiconductor interfaces, such as β-Sn and InSb. However, prox-
17
+ imity to the superconductor may also adversely affect the semiconductor’s local properties. A tunnel
18
+ barrier inserted at the interface could resolve this issue. We assess the wide band gap semiconduc-
19
+ tor, CdTe, as a candidate material to mediate the coupling at the lattice-matched interface between
20
+ α-Sn and InSb. To this end, we use density functional theory (DFT) with Hubbard U corrections,
21
+ whose values are machine-learned via Bayesian optimization (BO) [npj Computational Materials 6,
22
+ 180 (2020)]. The results of DFT+U(BO) are validated against angle resolved photoemission spec-
23
+ troscopy (ARPES) experiments for α-Sn and CdTe. For CdTe, the z-unfolding method [Advanced
24
+ Quantum Technologies, 5, 2100033 (2022)] is used to resolve the contributions of different kz values
25
+ to the ARPES. We then study the band offsets and the penetration depth of metal-induced gap
26
+ states (MIGS) in bilayer interfaces of InSb/α-Sn, InSb/CdTe, and CdTe/α-Sn, as well as in tri-layer
27
+ interfaces of InSb/CdTe/α-Sn with increasing thickness of CdTe. We find that 16 atomic layers
28
+ (3.5 nm) of CdTe can serve as a tunnel barrier, effectively shielding the InSb from MIGS from the
29
+ α-Sn. This may guide the choice of dimensions of the CdTe barrier to mediate the coupling in
30
+ semiconductor-superconductor devices in future Majorana zero modes experiments.
31
+ I.
32
+ INTRODUCTION
33
+ A promising route toward the realization of fault-
34
+ tolerant quantum computing schemes is developing ma-
35
+ terials systems that can host topologically protected Ma-
36
+ jorana zero modes (MZMs) [1, 2].
37
+ MZMs may ap-
38
+ pear in one-dimensional topological superconductors [3–
39
+ 5], which can be effectively realized by proximity cou-
40
+ pling a conventional superconductor and a semiconduc-
41
+ tor nanowire that possesses strong spin-orbit coupling
42
+ (SOC). Adding in a magnetic field enables this system to
43
+ behave as an effective spinless p-wave topological super-
44
+ conductor, which allows for MZM states [6]. Recently,
45
+ there have been new developments in material choices
46
+ and experimental methods to identify MZMs in semicon-
47
+ ductor nanowire-superconductor systems [7], designed to
48
+ overcome challenges identified during the first wave of
49
+ experiments [8–10]. These include trying new combina-
50
+ tions of semiconductors and epitaxial superconductors,
51
+ e.g. Pb, Sn, Nb, to maximize the electron mobility and
52
+ utilize larger superconducting gaps and higher critical
53
+ magnetic fields [11–16]. Additionally, new proposed ar-
54
+ ∗ These authors contributed equally to this work
55
+ † Corresponding author: [email protected]
56
+ chitectures include creating nanowire networks and in-
57
+ ducing the field via micromagnets [17, 18].
58
+ One of the challenges presented by the superconduc-
59
+ tor/semiconductor nanowire construct, is that excessive
60
+ coupling between the superconducting metal and semi-
61
+ conductor may “metallize” the semiconductor, thus ren-
62
+ dering the topological phase out of reach. Theoretical
63
+ studies that treated the semiconducting and supercon-
64
+ ducting properties via the Poisson-Schr¨odinger equation,
65
+ have shown that excessive coupling between the mate-
66
+ rials may lead to the semiconductor’s requisite proper-
67
+ ties, such as the Lande´e g-factor and spin-orbit-coupling
68
+ (SOC), being renormalized to a value closer to the
69
+ metal’s. In addition, large unwanted band shifts may be
70
+ induced [12, 19–22]. Having a tunnel barrier could modu-
71
+ late the superconductor-semiconductor coupling strength
72
+ and thus the induced proximity effect, which is critical
73
+ for controlling experiments. It is currently unknown what
74
+ the required width range of a tunnel barrier is. Another
75
+ potential benefit of a CdTe layer is InSb surface passiva-
76
+ tion.
77
+ InSb and Sn are among the materials used to fabricate
78
+ devices for Majorana search [23]. InSb is the backbone of
79
+ such systems because it has the highest electron mobility,
80
+ strongest spin-orbit coupling (SOC) and a large Land´e
81
+ g-factor in the conduction band compared to other III-
82
+ V semiconductors. β−Sn has a bulk critical field of 30
83
+ arXiv:2301.02879v1 [cond-mat.mtrl-sci] 7 Jan 2023
84
+
85
+ 2
86
+ mT and a superconducting critical temperature of 3.7 K,
87
+ higher than the 10 mT and 1 K, respectively, of Al. Re-
88
+ cently, β-Sn shells have been grown on InSb nanowires,
89
+ inducing a hard superconducting gap [12].
90
+ The large
91
+ band gap semiconductor CdTe is a promising candidate
92
+ to serve as a tunnel barrier. Thanks to its relative in-
93
+ ertness, it may simultaneously act as a passivation layer
94
+ protecting the InSb from environmental effects and po-
95
+ tentially minimizing disorder [24, 25]. Advantageously,
96
+ CdTe is lattice matched to InSb [26].
97
+ Sn has two al-
98
+ lotropes. The β form, with a BCT crystal structure, is
99
+ of direct relevance to MZM experiments thanks to its su-
100
+ perconducting properties. However, the semi-metallic α
101
+ form has a diamond structure, which is lattice matched
102
+ to InSb and CdTe, making it an ideal model system for
103
+ investigating, both theoretically and experimentally, the
104
+ electronic structure of Sn/InSb heterostructures.
105
+ Much experimental work, such as growth and ARPES
106
+ studies, has been undertaken on α-Sn. Previously, α-Sn
107
+ has been found to possess a topologically trivial band in-
108
+ version, with SOC inducing a second band inversion and
109
+ a topological surface state (TSS) [27, 28]. The effect of
110
+ strain on the topological properties of α-Sn has also been
111
+ studied [21, 29–38]. In-plane compressive strain has been
112
+ reported to make α-Sn a topological Dirac-semi-metal
113
+ and induce a second TSS to appear [27].
114
+ Conversely,
115
+ tensile strain has been reported to induce a transition
116
+ to a topological insulator. CdTe [25] and α-Sn [12, 28]
117
+ have been epitaxially grown on InSb. Depositing Sn on
118
+ InSb often leads to growth of epitaxially matched α-Sn,
119
+ although β-Sn may appear under some conditions [39].
120
+ In addition, α-Sn can transition to β-Sn if the Sn layer is
121
+ above a critical thickness or if heat is applied during fab-
122
+ rication processes [40, 41]. Studying the interface with
123
+ the lattice matched α-Sn may provide insight, which is
124
+ also pertinent to β-Sn as both could be present in hy-
125
+ brid systems. Therefore, these are promising materials
126
+ to investigate for future device construction.
127
+ MZM experiments rely on finely tuned proximity cou-
128
+ pling between a superconducting metal and a semicon-
129
+ ductor. By adding a tunnel barrier at the interface be-
130
+ tween the two materials and varying its width, one could
131
+ potentially mediate the proximity coupling strength to
132
+ achieve precise control over the interface transparency.
133
+ To the best of our knowledge, this idea has not yet been
134
+ tested in experiments and it is presently unknown which
135
+ material(s) would be the best choice for a barrier and
136
+ what would be the optimal thickness.
137
+ Simulations of
138
+ a tri-layer system with a tunnel barrier are therefore
139
+ needed to inform MZM experiments. Here, we use den-
140
+ sity functional theory (DFT) to study a tri-layer system,
141
+ in which InSb is separated from α-Sn by a CdTe tunnel
142
+ barrier. Despite recent progress towards treating super-
143
+ conductivity within the framework of DFT [42, 43] the
144
+ description of proximity-induced superconductivity at an
145
+ interface with a semiconductor is still outside the reach of
146
+ present-day methods. However, DFT can provide useful
147
+ information on properties, such as the band alignment at
148
+ the interface. Conduction band offsets are of particular
149
+ importance because the proximity effect in most experi-
150
+ ments on InSb primarily concerns the conduction band.
151
+ In addition, DFT can provide information on the pene-
152
+ tration depth of metal induced gap states (MIGS) into
153
+ the semiconductor [20, 25, 44, 45], which is important
154
+ for determining the appropriate thickness of the tunnel
155
+ barrier.
156
+ Within DFT, computationally efficient (semi-)local
157
+ exchange-correlation functionals severely underestimate
158
+ the band gap of semiconductors to the extent that
159
+ some narrow-gap semiconductors, such as InSb, are er-
160
+ roneously predicted to be metallic [46–49]. This is at-
161
+ tributed to the self-interaction error (SIE), a spurious
162
+ repulsion of an electron from its own charge density [50–
163
+ 52]. Hybrid functionals, which include a fraction of exact
164
+ (Fock) exchange, mitigate the SIE and yield band gaps in
165
+ better agreement with experiment. However, their com-
166
+ putational cost is too high for simulations of large in-
167
+ terface systems, such as the α-Sn/CdTe/InSb tri-layer
168
+ system studied here. The DFT+U approach, whereby a
169
+ Hubbard U correction is added to certain atomic orbitals,
170
+ provides a good balance between accuracy and computa-
171
+ tional cost[46, 53, 54]. Recently, some of us have pro-
172
+ posed a method of machine learning the U parameter for
173
+ a given material by Bayesian optimization (BO) [55]. The
174
+ DFT+U(BO) method has been employed successfully for
175
+ InSb and CdTe [56].
176
+ It has been shown that (semi-)local functionals fail
177
+ to describe the bulk band structure of α-Sn correctly,
178
+ specifically the band ordering and the orbital compo-
179
+ sition of the valence bands at the Γ point.
180
+ DFT+U,
181
+ hybrid functionals, or many-body perturbation theory
182
+ within the GW approximation are necessary to obtain a
183
+ correct description of the band structure [29, 35, 57–59].
184
+ DFT+U simulations have required slab models of more
185
+ than 30 monolayers of Sn to converge towards a bulk
186
+ regime, where quantum confinement is no longer domi-
187
+ nant. With a small number of layers α-Sn may exhibit
188
+ topological properties [26, 60, 61].
189
+ Some DFT studies
190
+ have considered slab models of bi-axially strained α-Sn.
191
+ DFT simulations of strained α-Sn on InSb have been con-
192
+ ducted with a small number of layers of both materials
193
+ [26, 62]. The DFT+U approach has reproduced the ef-
194
+ fects of strain and compared well with experimental data
195
+ [28, 60, 62].
196
+ Here,
197
+ we perform first principles calculations us-
198
+ ing DFT+U(BO) for a (110) tri-layer semiconduc-
199
+ tor/tunnel barrier/metal interface composed of the ma-
200
+ terials InSb/CdTe/α-Sn, owing to their relevance to cur-
201
+ rent Majorana search experiments [12, 25]. To date, DFT
202
+ studies of large interface slab models with a vacuum re-
203
+ gion have not been conducted for these interfaces. Pre-
204
+ viously, the results of DFT+U(BO) for InSb(110) have
205
+ been shown to be in good agreement with angle-resolved
206
+ photoemission spectroscopy (ARPES) experiments [63].
207
+ Here, we also compare the results of DFT+U(BO) to
208
+ ARPES for α-Sn (Section III A) and CdTe (Section
209
+
210
+ 3
211
+ III B). Excellent agreement with experiment is obtained.
212
+ In particular, for CdTe the z-unfolding scheme (Section
213
+ II A) helps resolve the contributions of different kz values
214
+ and modelling the 2 × 2 surface reconstruction repro-
215
+ duces the spectral signatures of surface states. We then
216
+ proceed to study the bi-layer interfaces of InSb/CdTe,
217
+ CdTe/α-Sn, and InSb/α-Sn (Section III C). Finally, to
218
+ assess the effectiveness of the tunnel barrier, we study
219
+ tri-layer interfaces with 2 to 16 monolayers (0.5 nm to 3.5
220
+ nm) of CdTe inserted between the InSb substrate and the
221
+ α-Sn (Section III D). This thickness is within the thick-
222
+ ness range of CdTe shells grown on InSb nanowires. For
223
+ all interfaces, our simulations provide information on the
224
+ band alignment and the presence of MIGS. We find that
225
+ 16 layers of CdTe (about 3.5 nm) form an effective tunnel
226
+ barrier, insulating the InSb from the α-Sn. However, this
227
+ may be detrimental for transport at the interface. Based
228
+ on this, we estimate that the relevant thickness regime
229
+ for tuning the coupling between InSb and Sn may be in
230
+ the range of 6-10 layers of CdTe.
231
+ II.
232
+ METHODS
233
+ A.
234
+ Z-Unfolding
235
+ Simulations of large supercell models produce complex
236
+ band structures with a large number of bands, as shown
237
+ in Figure 1a,b for a CdTe(111) slab with 25 atomic layers,
238
+ whose band structure was calculated using PBE+U(BO),
239
+ as described in Section II B. Band structure unfolding
240
+ is a method of projecting the band structure of a su-
241
+ percell model onto the appropriate smaller cell ([63–68].
242
+ This can help resolve the contributions of states emerg-
243
+ ing from of e.g., defects and surface reconstructions vs.
244
+ the bulk bands of the material. In addition, it can fa-
245
+ cilitate the comparison to angle-resolved photoemission
246
+ spectroscopy (ARPES) experiments. The “bulk band un-
247
+ folding” scheme [63] projects the supercell band struc-
248
+ ture onto the primitive unit cell, illustrated in Figure
249
+ 1c. The resulting band structure, shown in Figure 1d,
250
+ appears bulk-like. Bulk-unfolded band structures have
251
+ been shown to compare well with ARPES experiments
252
+ using high photon energies, which are not surface sensi-
253
+ tive owing to the large penetration depth.
254
+ The “z-unfolding” scheme [63] projects the band struc-
255
+ ture of a slab model with a finite thickness onto the Bril-
256
+ louin zone (BZ) of a single layer of the slab supercell
257
+ with the same orientation, illustrated in Figure 1e. The
258
+ resulting band structure, shown in Figure 1f, contains ex-
259
+ tra bands that are not present in the bulk-unfolded band
260
+ structure. The extra bands originate from different kz
261
+ values in the 3D primitive Brillouin zone projecting onto
262
+ the surface Brillouin zone (SBZ), creating overlapping
263
+ paths. For example, panel Figure 1g shows cross sections
264
+ through the BZ at values of kz = 0 and kz = 0.5. The
265
+ bulk-paths of Γ − L, Γ − K and Γ − X all overlap with
266
+ the surface k-path Γ − M, possibly with contributions
267
+ from additional paths, such as X − U. The plane cuts at
268
+ different kz values are derived from the tessellated bulk
269
+ BZ structure, shown in Figure 1h. When z-unfolding is
270
+ performed, the value of kz may be treated as a free pa-
271
+ rameter. The dependence on kz manifests as a smooth
272
+ change in the spectral function over the possible range
273
+ of kz which varies the mixture of different constituent
274
+ bulk-paths that overlap the SBZ-path, as shown in Fig-
275
+ ure 1i for Γ − M. The BZ for z-unfolding is a surface BZ
276
+ with a finite thickness, shown in red in Figure 1j. The
277
+ simulation cell for the DFT calculations is set up to be
278
+ the corresponding real-space unit cell. The z-unfolded k-
279
+ paths are parallel to the (111) surface at a constant value
280
+ of kz.
281
+ In ARPES experiments, the relation of the experimen-
282
+ tal spectra to kz may be less straightforward. First, the
283
+ dependence of the inelastic mean free path of the elec-
284
+ trons on their kinetic energy is given by the universal
285
+ curve [69, 70].
286
+ Using photon energies that correspond
287
+ to a small mean free path is advantageous for probing
288
+ surface states.
289
+ However, it can produce prominent kz
290
+ broadening due to the Heisenberg uncertainty principle
291
+ [71–75] that implies integration of the ARPES signal over
292
+ kz through the broadening interval. Second, deviations of
293
+ the photoemission final states from the free electron ap-
294
+ proximation can cause contributions from different values
295
+ of kz to appear in the ARPES spectra. The photoelec-
296
+ trons are often treated as free electrons, based on the as-
297
+ sumption that the photoelectron kinetic energy is much
298
+ larger than the modulations of the crystal potential. In
299
+ this case, kz for a given photoelectron kinetic energy, Ek,
300
+ and the in-plane momentum, K//, is one single value,
301
+ which is determined by:
302
+ kz =
303
+ √2m0
304
+
305
+
306
+ Ek − ℏ2
307
+ 2m0
308
+ K2
309
+ // − V0
310
+ (1)
311
+ where m0 is the free-electron mass and V0 the inner po-
312
+ tential in the crystal. However, a considerable body of
313
+ evidence has accumulated that the final states even in
314
+ metals [76, 77] and to a greater extent in complex ma-
315
+ terials such as transition metal dichalcogenides [78, 79]
316
+ can significantly deviate from the free electron approx-
317
+ imation.
318
+ Such deviations can appear, first, as non-
319
+ parabolic dispersions of the final states and, second, as
320
+ their multiband composition. The latter means that for
321
+ given Ek and K// the final-state wavefunction Φf incor-
322
+ porates a few Bloch waves φkz with different kz values,
323
+ Φf = �
324
+ kz Akzφkz, which give comparable contributions
325
+ to the total photocurrent determined by the Akz ampli-
326
+ tudes [76]. A detailed theoretical description of the multi-
327
+ band final states, treated as the time-reversed low-energy
328
+ electron diffraction (LEED) states [73] within the wave-
329
+ function matching approach, as well as further examples
330
+ for various materials can be found in Refs. [78, 79] and
331
+ the references therein. An insightful analysis of the multi-
332
+ band final states extending into the soft-X-ray photon
333
+ energies can be found in Ref. [77]. A rigorous analysis of
334
+
335
+ 4
336
+ FIG. 1.
337
+ (a) Side view of the CdTe(111) slab (b) Folded band structure of CdTe(111) 25 monolayer slab. (c) Primitive unit cell
338
+ of CdTe (d) bulk-unfolded band structure (e) unit cell of CdTe(111) slab used in z-unfolding. (f) Z-unfolded band structure
339
+ along k-path M − Γ − M for kz = 0.5, and (g) as a function of kz. (h) FCC bulk BZ (grey), (111) unit-cell BZ (red) and
340
+ (111) surface BZ (blue). (i) Intersecting planes slice through the bulk BZ for kz = 0 (green) and kz = 0.5 (red) with the SBZ
341
+ indicated. (j) tessellated bulk BZs showing (111) orientated intersecting planes for given kz values.
342
+ final state effects in ARPES is beyond the scope of this
343
+ work. Here, we will only mention that all these effects
344
+ trace back to hybridization of free-electron plane waves
345
+ through the higher Fourier components of the crystal po-
346
+ tential. In cases where significant kz broadening and/or
347
+ final states effects are present, z-unfolding, rather than
348
+ bulk unfolding, should be used in order to resolve the
349
+ contributions of different kz values to the measured spec-
350
+ trum. This is demonstrated for CdTe in Section III B,
351
+ where the final states appear to incorporate two Bloch
352
+ waves with kz = 0 and kz = 0.5.
353
+ B.
354
+ Computational Details
355
+ DFT calculations were conducted using the Vienna Ab
356
+ Initio Simulation Package (VASP) [80] with the projector
357
+ augmented wave method (PAW) [81, 82]. The general-
358
+ ized gradient approximation (GGA) of Perdew, Burke,
359
+ and Ernzerhof (PBE) [83] was employed to describe the
360
+ exchange-correlation interactions among electrons with a
361
+ Hubbard U correction [84]. The U values were machine
362
+ learned using Bayesian optimization (BO) [55]. Briefly,
363
+ the BO objective function is formulated to reproduce as
364
+ closely as possible the band structure obtained from the
365
+ Heyd-Scuseria-Ernzerhof (HSE) [85] hybrid functional.
366
+ The reference HSE calculations were conducted for bulk
367
+ CdTe with a lattice parameter of 6.482 ˚A and α-Sn with
368
+ a lattice parameter of 6.489 ˚A and compared to the re-
369
+ sults with the lattice constant of InSb, 6.479 ˚A, which
370
+ was used for interface models. It was verified that using
371
+ the lattice constant of InSb does not have an appreciable
372
+ effect on the electronic properties of CdTe and α-Sn, as
373
+ shown in the SI.
374
+ The hyperparameters of our BO implementation are
375
+ the coefficients α1 and α2, which assign different weights
376
+ to the band gap vs. the band structure in the objective
377
+ function, the number of valence and conduction bands
378
+ used for the calculation of the objective function, Nb, and
379
+ the parameter κ that controls the balance between explo-
380
+ ration and exploitation in the upper confidence bound ac-
381
+ quisition function. For InSb the values of U In,p
382
+ eff
383
+ = −0.2
384
+ and U Sb,p
385
+ eff
386
+ = −6.1 were used, following Ref. [55, 63].
387
+ It has been shown that PBE+U(BO) produces a band
388
+ structure in good agreement with ARPES for InSb [63].
389
+ Because α-Sn is a semi-metal, only the band shape
390
+ was considered in the optimization, i.e. α1 was set to
391
+ 0 and α2 = 1 [59].The other BO hyperparameters used
392
+ for Sn were κ = 7.5 and Nb = (5, 5). This resulted in a
393
+ value of U Sn,p
394
+ eff
395
+ = −3.04 eV, slightly different than in Refs.
396
+ [29, 35, 61], which used empirical methods to choose a
397
+ U value that yields a correct band ordering. As shown
398
+ in Ref. [59], PBE+U(BO) reproduces the correct band
399
+ ordering of α-Sn with the band inversion at the Γ point,
400
+
401
+ a) full slab side view
402
+ c) CdTe primitive cell
403
+ e) CdTe(111) unit cell
404
+ h)
405
+ ↑[111]
406
+ g)
407
+ k²= 0.0
408
+ k,= 0.5
409
+ SBZ
410
+ k,= 0.5
411
+ M-
412
+ 0
413
+ k_= 0.0
414
+ CdO In
415
+ z unfolded - kz
416
+ 0.00
417
+ 0.25
418
+ 0.50
419
+ b)
420
+ d)
421
+ f)
422
+ folded
423
+ )
424
+ bulk unfolded
425
+ z unfolded - k_ = 0.5
426
+ 3
427
+ 3
428
+ D
429
+ 3
430
+ [111]
431
+ 2
432
+ 2
433
+ 2
434
+ 2
435
+ 1
436
+ 1
437
+ M
438
+ 「k
439
+ M
440
+ 1
441
+ 02
442
+ 6
443
+ 0
444
+ (eV)
445
+ 0
446
+ 0
447
+ 0
448
+
449
+ -1
450
+ -1
451
+ .1
452
+ 1
453
+ -2
454
+ 2
455
+ -3
456
+ -3
457
+ -3
458
+ -4
459
+ -4
460
+ -5
461
+ 5
462
+ M
463
+ L
464
+ L
465
+ M
466
+ M
467
+ L
468
+ M5
469
+ in agreement with other studies using DFT+U [27, 28].
470
+ For CdTe, we applied a U correction to both the Cd-d
471
+ orbitals and Te-p orbitals, unlike earlier studies [56, 86].
472
+ The hyperparameters used for CdTe were κ = 7.5, Nb =
473
+ (5, 5), α1 = 0.5 and α2 = 0.5. The latter two parameters
474
+ were chosen to assign equal weights to the band gap and
475
+ the band shape. This led to U values of U Cd,d
476
+ eff
477
+ = 7.381
478
+ and U T e,p
479
+ eff
480
+ = −7.912. The Cd-d U value obtained here
481
+ is similar to the 7 eV used in Ref. [86] and somewhat
482
+ lower than U Cd,d
483
+ eff
484
+ = 8.3 eV in Ref. [56]. The gap of 1.21
485
+ eV, obtained here by applying the Hubbard U correction
486
+ to both the Te-p states and the Cd-d states is closer to
487
+ experimental values of around 1.5 eV [87, 88] and the
488
+ HSE value of 1.31 eV than previous calculations [56].
489
+ Spin-orbit coupling (SOC) was used in all calculations
490
+ and dipole corrections were applied to slab models [89].
491
+ The tags used for convergence of calculations were BMIX
492
+ = 3, AMIN = 0.01, ALGO = Fast, and EDIFF = 1·10−5.
493
+ The kinetic energy cutoff was set to 400 eV for all bulk
494
+ calculations and 350 eV for surface and interface slab
495
+ models.
496
+ A 9 × 9 × 9 k-point mesh was used for bulk
497
+ calculations and a k-point mesh of 7 × 7 × 1 was used for
498
+ surface and interface calculations. All interface density
499
+ of states (DOS) calculations used a k-point mesh of 13 ×
500
+ 13 × 1.
501
+ All band structure and density of states plots were gen-
502
+ erated using the open-source Python package, VaspVis
503
+ [59], which is freely available from The Python Package
504
+ Index (PyPI) via the command: pip install vaspvis, or on
505
+ GitHub at:
506
+ https://github.com/DerekDardzinski/
507
+ vaspvis
508
+ C.
509
+ Slab Construction
510
+ All slab models were constructed using the experimen-
511
+ tal InSb lattice constant value of 6.479 ˚A [90], assuming
512
+ that the epitaxial films of CdTe and α-Sn would conform
513
+ to the substrate. The length of two monolayers of a (110)
514
+ slab was 4.5815 ˚Ain the z-direction. A vacuum region of
515
+ around 40 ˚A was added to each slab model in the z-
516
+ direction to avoid spurious interactions between periodic
517
+ replicas. The surfaces of all slab models were passivated
518
+ by pseudo-hydrogen atoms such that there were no sur-
519
+ face states from dangling bonds [91]. Despite α-Sn being
520
+ a semi-metal passivation is required to remove spurious
521
+ surface states, as shown in the supplemental information
522
+ (SI). The pseudo-hydrogen fractional charges utilized to
523
+ passivate each atom were 1.25 for In and 0.75 for Sb
524
+ in InSb, 1.5 for Cd and 0.5 for Te in CdTe, and 1 for
525
+ Sn. Structural relaxation of the pseudo-hydrogen atoms
526
+ was performed until the maximal force was below 0.001
527
+ eV/˚A. The InSb/CdTe interface structure has In-Te and
528
+ Sb-Cd bonds with each In interface atom connected to 3
529
+ Sb and 1 Te. The configuration with In-Cd and Sb-Te
530
+ bonds was also considered but this was found to be less
531
+ stable by 1.33 eV. Ideal interfaces were considered with
532
+ no intermixing and no relaxation of the interface atoms
533
+ was performed.
534
+ When constructing such slab models, it is necessary
535
+ to converge the number of layers to avoid quantum size
536
+ effects and approach the bulk properties [92]. For InSb
537
+ it has previously been shown that 42 monolayers are suf-
538
+ ficiently converged [63]. Plots of the band gap vs. the
539
+ number of atomic layers for CdTe(110) and α-Sn (110)
540
+ slabs are provided in the SI. CdTe was deemed converged
541
+ with 42 monolayers with a gap value of 1.23 eV, which
542
+ is only slightly larger than the bulk PBE+U(BO) value.
543
+ The z-unfolded band structures of CdTe(111) were cal-
544
+ culated for a 40 monolayer slab. A 26 monolayer slab
545
+ model was used to simulate the 2 × 2 reconstruction,
546
+ due to the higher computational cost of the 2 × 2 su-
547
+ percell. Structural relaxation was performed for the top
548
+ two monolayers of the 2 × 2 reconstruction. For the slab
549
+ of unstrained (110) α-Sn, 70 monolayers were needed to
550
+ close the gap at the zero-gap point of the semi-metal,
551
+ which corresponds to around 16 nm. The tri-layer slab
552
+ models comprised 42 layers of InSb, 70 layers of α-Sn and
553
+ between 0 and 16 layers of CdTe in two-layer increments,
554
+ amounting to a total slab thickness of around 300 nm
555
+ (not including vacuum). The (110) bi-layer slab models
556
+ comprised 42 layers of CdTe and InSb, and 70 layers of
557
+ α-Sn as these were deemed converged.
558
+ D.
559
+ ARPES Experimental details
560
+ The α-Sn samples were grown by molecular beam epi-
561
+ taxy on an In-terminated c(8 × 2) InSb(001) surface pre-
562
+ pared by atomic hydrogen cleaning. 51 monolayers (16.5
563
+ nm) of α-Sn were deposited as calibrated via Rutherford
564
+ backscattering spectrometry. Growth was performed at a
565
+ substrate temperature of -20 ◦C and a base pressure bet-
566
+ ter than 1·10−10 Torr. The ARPES measurements were
567
+ taken at Beamline 10.0.1.2 at the Advanced Light Source
568
+ in Berkeley. The base pressure was better than 5·10−11
569
+ Torr while the sample temperature was held at 68 K.
570
+ The sample was illuminated with 63 eV p-polarized light
571
+ and spectra were collected using a Scienta R4000 detector
572
+ with energy resolution better than 40 meV and angular
573
+ resolution better than 0.1◦. The sample was transferred
574
+ via vacuum suitcase with a base pressure better than
575
+ ·10−11 Torr between the growth chamber and beamline.
576
+ A photon energy of 63 eV corresponds to a kz approxi-
577
+ mately 0.15 ˚A−1 above the Γ002 point.
578
+ III.
579
+ RESULTS AND DISCUSSION
580
+ A.
581
+ α-Sn
582
+ Figure 2a shows the bulk unfolded PBE+U(BO) band
583
+ structure for a 51 monolayer thick α-Sn (001) slab, com-
584
+ pared to ARPES data for a sample of the same thickness
585
+ taken at a photon energy of 63 eV . The point M is at
586
+
587
+ 6
588
+ FIG. 2. Electronic structure of α-Sn: (a) Bulk-unfolded band
589
+ structure of an α-Sn (001) slab with 51 atomic layers (light
590
+ blue) compared with ARPES data for a sample of the same
591
+ thickness. The point M is at 0.9298 ˚A−1. The ARPES data
592
+ is cutoff at 0.9 ˚A−1 due to experimental artifacts at the edges.
593
+ Spin-polarized band structures projected onto (b) the top sur-
594
+ face atoms and (c) the bottom surface atoms, indicated by the
595
+ green boxes on the slab structure illustrated in (d).
596
+ 0.9298 ˚A−1. The ARPES data is cutoff at 0.9 ˚A−1 due to
597
+ experimental artifacts at the edges. The PBE+U (BO)
598
+ band structure is in excellent agreement with ARPES.
599
+ The top of the valence band in the ARPES and the sim-
600
+ ulated band structure lines up and the bulk bands are
601
+ reproduced well. The bandwidth of the heavy hole band,
602
+ Γ8, is slightly underestimated, consistent with Ref. [63].
603
+ This is corrected by the HSE functional, as shown in the
604
+ SI for a bulk unit cell of α-Sn with a (001) orientation.
605
+ However, it is not feasible to use HSE for the large inter-
606
+ face models studied here, owing to its high computational
607
+ cost.
608
+ The previously reported topological properties of α-
609
+ Sn slabs are also observed here [27–31, 35, 36, 62]. The
610
+ spin-polarized topological surface state (TSS) is shown
611
+ in panels (b) and (c) of Fig. 2 for a (001) 51 monolayer
612
+ slab along the X − Γ − X k-path. As expected, the TSS
613
+ is characterized by a linear dispersion with the top and
614
+ bottom surfaces having opposite spin polarization. The
615
+ associated Rashba-like surface states are also observed
616
+ along the K − Γ − K k-path, as shown in the SI. This
617
+ linear surface state is also observed in the (110) slabs used
618
+ to construct the bilayer and tri-layer models. Notably
619
+ there is an energy gap between the top and bottom TSSs,
620
+ which closes at 70 layers, the same thickness at which
621
+ the band gap closes.
622
+ This gap is possibly induced by
623
+ the hybridization of the top and bottom surface states in
624
+ under-converged slabs. We note that the effect of strain
625
+ on the electronic structure of α-Sn is not studied here.
626
+ B.
627
+ CdTe
628
+ Fig. 3 shows a comparison of band structures obtained
629
+ using PBE+U(BO) to the ARPES experiments of Ren et
630
+ al. [93] for CdTe(111). Ren et al. collected ARPES data
631
+ at photon energies of 19, 25 and 30 eV . Here, we com-
632
+ pare our results with the second-derivative maps of the
633
+ ARPES data taken at 25 eV along the k-paths Γ − M
634
+ (panels (a) and (b)) and Γ − K − M (panels (c) and
635
+ (d)). The original data has been converted to gray scale
636
+ and reflected around kx = 0.
637
+ To facilitate the quali-
638
+ tative comparison of the DFT band structure features
639
+ with the ARPES experiment, we apply a Fermi energy
640
+ shift of 0.25 eV to line up the VBM and a stretch factor
641
+ of 1.22 to compensate for the bandwidth underestima-
642
+ tion of PBE+U(BO), particularly for bands deep below
643
+ the Fermi energy [94]. Bandwidth underestimation by
644
+ PBE+U(BO) compared with HSE and ARPES has also
645
+ been reported for InAs and InSb in [63, 95]. The original
646
+ computed band structure without the shift and stretch is
647
+ provided in the SI.
648
+ Owing to the low mean free path at this photon energy,
649
+ the spectrum appears integrated over a certain kz inter-
650
+ val and surface contributions are readily visible in the
651
+ ARPES [69, 70]. To account for the different kz contribu-
652
+ tions, the z-unfolding method was employed, as described
653
+ in Section II A. Panels (a) and (c) show the z-unfolded
654
+ band structures as a function of kz for slab models with-
655
+ out a surface reconstruction (figures with single values of
656
+ kz are provided in the SI). This is used determine which
657
+ kz values are likely present in the experiment. A mixture
658
+ of kz = 0 and k = 0.5 provides the best agreement with
659
+ the ARPES data. This combination of kz values is used
660
+ for the DFT data shown in cyan in panels (b) and (d).
661
+ This is consistent with the kz broadening with contribu-
662
+ tions centered around kz = 0 and k = 0.5 often present
663
+ in ARPES data taken at low mean field path energies in
664
+ gapped materials [71? , 72].
665
+ To account for the presence of surface states, we mod-
666
+ eled the CdTe(111)A-(2 × 2) surface reconstruction [96],
667
+ illustrated in panel (e). The atom-projected band struc-
668
+ tures of the bottom layer (indicated by pink dashed box)
669
+ are plotted in pink in panels (b) and (d).
670
+ The addi-
671
+ tional bands arising from the surface reconstruction are
672
+ in close agreement with the bands in the ARPES labeled
673
+ as surface states by Ren et al., indicated by red arrows.
674
+ These surface states are unaffected by the choice of kz.
675
+ By accounting for the contributions of different kz values
676
+ and for the presence of surface states excellent agreement
677
+ with experiment is achieved, as the DFT band structures
678
+ reproduce all the features of the ARPES.
679
+ C.
680
+ Bilayer Interfaces
681
+ We begin by probing the local electronic structure at
682
+ the the InSb/α-Sn bi-layer interface. Fig. 4a shows the
683
+
684
+ d)
685
+ 0
686
+ b)
687
+ UP
688
+ a)
689
+ ↓ DOWN
690
+ (Λa)
691
+ 0.0
692
+ -1
693
+ 00
694
+ 1
695
+ E-0.5
696
+ 00
697
+ -2
698
+ E(eV)
699
+ x
700
+ -3
701
+ 00
702
+ UP
703
+ C)
704
+ (a)
705
+ DOWN
706
+ 00
707
+ 0.0
708
+ 00
709
+ -4
710
+ 1
711
+ E -0.5
712
+ 0
713
+ 0.4
714
+ -0.8-0.4
715
+ 0.0
716
+ 0.8
717
+ T
718
+ ↑M
719
+ M→
720
+ X
721
+ k, (A-1)7
722
+ FIG. 3.
723
+ Electronic structure of CdTe: Z-unfolded band structures of CdTe(111) compared with second-derivative map of
724
+ ARPES data (black and white), adapted with permission from “Spectroscopic studies of CdTe(111) bulk and surface electronic
725
+ structure” by J. Ren et al., Phys. Rev. B, 91, 235303 (2015); Copyright (2015) by the American Physical Society [93]. Z-
726
+ unfolded band structures compared to ARPES data along (a), (b) Γ − M and (c), (d) Γ − K − M. (a), (c) Dependence of the
727
+ band structure on kz. (b), (d) Mixture of kz = 0.0 and kz = 0.5 (cyan) for a model with a 2 × 2 surface reconstruction with
728
+ the contributions of the surface atoms shown in pink. DFT has shift of -0.25 eV and stretch factor of 1.22 for comparison. (e)
729
+ Illustration of the 2 × 2 surface reconstruction with the Cd atom removed indicated by a blue circle. The atoms used for the
730
+ surface projection are indicated by a pink dashed box
731
+ DOS as a function of position across the interface, in-
732
+ dicated by the atomic layer number. Fig. 4b shows the
733
+ local DOS at select positions. The Fermi level is posi-
734
+ tioned at the semi-metal point of the α-Sn and in the
735
+ gap of the InSb. We note that the α-Sn appears as if it
736
+ has a small gap due to an artifact of the 10−4 cutoff ap-
737
+ plied in the log plot in panels (a) and (d). The local DOS
738
+ plots shown in panels (b) and (e) and the band structure
739
+ plots shown in panels (c) and (f) clearly show the semi-
740
+ metal point. No significant band bending is found for
741
+ InSb, as expected from branching point theory [97, 98].
742
+ Based on the element-projected band structure, shown
743
+ in panel (c), the InSb conduction band minimum (CBM)
744
+ lies 0.09 eV above the α-Sn semi-metal point and the
745
+ InSb valence band maximum (VBM) lies 0.16 eV below
746
+ it. A linear TSS is present in the α-Sn. Based on an
747
+ atom projected band structure, shown in the SI, the ori-
748
+ gin of this state is the top surface of α-Sn, adjacent to
749
+ the vacuum region. A TSS is no longer present in the
750
+ α-Sn layers at the interface with InSb, possibly owing to
751
+ hybridization between the α-Sn and InSb [62]. Metal-
752
+ induced gap states (MIGS) are an inherent property of
753
+ a metal/semiconductor interface, produced by the pen-
754
+ etration of exponentially decaying metallic Bloch states
755
+ into the gap of the semiconductor [99–102]. The pres-
756
+ ence of MIGS manifests in Figure Fig. 4a as a gradually
757
+ decaying non-zero DOS in the band gap of the InSb in
758
+ the vicinity of the interface. Figure 4b shows that the
759
+ MIGS are prominent in the first few atomic layers and
760
+ become negligible beyond 8 layers from the interface.
761
+ Fig. 4d shows the DOS as a function of position across
762
+ the CdTe/α-Sn interface, indicated by the atomic layer
763
+ number. Fig. 4e shows the local DOS at select positions.
764
+ The Fermi level is positioned at the semi-metal point of
765
+ the α-Sn and in the gap of the CdTe.
766
+ Based on the
767
+ projected band structure, shown in panel (f), the CdTe
768
+ CBM is positioned 0.18 eV above the Fermi level and
769
+ the CdTe VBM is located 1.03 eV below the Fermi level.
770
+ This agrees with previous reports that interfacing with
771
+ Sn brings the conduction band of the CdTe closer to the
772
+ Fermi energy, with downward band-bending of 0.25 eV
773
+ [103] and 0.1 eV [104].
774
+ We find a valence band offset
775
+ of around 1 eV, similar to the (110) and (111) interface
776
+ reported in [33, 104–108]. Close to the interface there is
777
+ a significant density of MIGS, which decay within about
778
+ 10 layers (3-4 nm) into the CdTe. This suggests that this
779
+ number of CdTe layers may be required for an effective
780
+ tunnel barrier.
781
+ Fig. 4g shows the DOS as a function of position across
782
+ the InSb/CdTe interface, indicated by the atomic layer
783
+ number. Fig. 4h shows the local DOS at select positions.
784
+ The band alignment is type-I with the CdTe band gap
785
+ straddling the InSb band-edges. The Fermi level is close
786
+ to the InSb VBM and around the middle of the gap of
787
+ the CdTe. No band bending is found in either material.
788
+ Based on the projected band structure, shown in panel
789
+ (i), the CdTe CBM lies 0.28 eV above the InSb CBM
790
+ and the CdTe VBM lies 0.75 eV below the InSb VBM.
791
+ These values are similar to the band offsets reported in
792
+ references [25, 88, 109]. Because the band gap of InSb
793
+ is significantly smaller than that of CdTe, states from
794
+ the InSb penetrate into the gap of the CdTe, similar to
795
+ MIGS. These states decay gradually and vanish at a dis-
796
+ tance greater than 12 layers from the interface.
797
+ D.
798
+ Tri-layer Interfaces
799
+ Fig. 5 shows the DOS as a function of position across
800
+ InSb/CdTe/α-Sn tri-layer interfaces with varying thick-
801
+
802
+ Kz
803
+ 0.2s
804
+ OCdOIn
805
+ 0.25
806
+ 0.00
807
+ 0.50
808
+ 0.00
809
+ 0.50
810
+ a)
811
+ b)
812
+ d)
813
+ c)
814
+ e)
815
+ .
816
+ 0:
817
+ 0
818
+ 0
819
+ -1
820
+ -1
821
+ -2
822
+ -2
823
+ (na)
824
+ -3
825
+
826
+ 4
827
+ -4
828
+ -4
829
+ -5
830
+ -5
831
+ -5
832
+ -5
833
+ surface
834
+ states
835
+ surface
836
+ -6
837
+ -6
838
+ 19-
839
+ -6.
840
+ states
841
+ 12
842
+ 8
843
+ 0
844
+ 4
845
+ 12
846
+ 8
847
+ 4
848
+ 8
849
+ 4
850
+ 4
851
+ 12
852
+ 8
853
+ 12
854
+ 4
855
+ 0
856
+ 4
857
+ 8
858
+ 0
859
+ 8
860
+ 8
861
+ 8
862
+ M
863
+ M
864
+ K
865
+ IF
866
+ K
867
+ M
868
+ M
869
+ M
870
+ M
871
+ T
872
+ M
873
+ K
874
+ K
875
+ M
876
+ k (A-1)
877
+ k (A-1)
878
+ k (A-1)
879
+ k (A-1)8
880
+ FIG. 4. Electronic structure of bilayer interfaces: Density of states in the (a) InSb/α-Sn, (d) CdTe/α-Sn and (g) InSb/CdTe
881
+ interfaces as a function of position. The atomic layers are numbered based on distance from the interface, which is located at
882
+ zero. The structure of each interface is illustrated on top. (b Local density of states for selected layers in the (b) InSb/α-Sn, (e)
883
+ CdTe/α-Sn and (h) InSb/CdTe interfaces, indicated by dashed lines in the same colors in panels (a), (d), and (g), respectively.
884
+ Element projected band structures of the (c) InSb/α-Sn, (f) CdTe/α-Sn and (i) InSb/CdTe interfaces, with bands originating
885
+ from α-Sn colored in red, bands originating from InSb colored in light blue, and bands originating from CdTe colored in purple.
886
+ ness of the CdTe tunnel barrier. The position is indicated
887
+ by the atomic layer number, with the layer of InSb clos-
888
+ est to the CdTe considered as zero. Panels (a) and (b)
889
+ show that with 6 atomic layers of CdTe, the MIGS from
890
+ the α-Sn penetrate through the tunnel barrier into the
891
+ first 12 layers of the InSb.
892
+ For a thin layer of CdTe,
893
+ the band gap is expected to be significantly larger than
894
+ the bulk value because of the quantum size effect (see
895
+ the gap convergence plot in the SI). However, owing to
896
+ the presence of MIGS, the gap of the CdTe remains con-
897
+ siderably smaller than its bulk value. With 10 layers of
898
+ CdTe, shown in panels (c) and (d), there is still a sig-
899
+ nificant presence of MIGS throughout the CdTe, which
900
+ decay by 6 layers into the InSb. Panels (e) and (f) show
901
+ that with 16 layers of CdTe the InSb is completely insu-
902
+ lated from MIGS coming from the α-Sn. The gap of the
903
+ CdTe reaches a maximum of around 0.3 eV at a distance
904
+ of 5 layers from the InSb. This is because MIGS from
905
+ the α-Sn penetrate into the CdTe from one side, whereas
906
+ states from the InSb penetrate from the other side, such
907
+ that the band gap of the CdTe never reaches its expected
908
+ value.
909
+ Figure 6 summarizes the band alignment at the bilayer
910
+ and tri-layer interfaces studied here. For the tri-layer in-
911
+ terfaces, the band alignment between the InSb and the
912
+ α-Sn is not significantly affected by the presence of CdTe,
913
+ as shown in the element-projected band structures in the
914
+ SI. The α-Sn semi-metal point remains pinned at the
915
+ Fermi level, as in the bilayer InSb/α-Sn (see also Fig-
916
+ ure 4c). The InSb VBM remains at 0.17 eV below the
917
+ Fermi level, similar to its position in the bilayer interface,
918
+ regardless of the CdTe thickness. The InSb CBM posi-
919
+ tion decreases slightly with the thickness of the CdTe
920
+ from 0.09 eV above the Fermi level without CdTe, to
921
+
922
+ 8.8.8.8181818818.818
923
+ .8.818.8181818.818
924
+ .:1:
925
+ :
926
+ :1:
927
+ :1:
928
+ :
929
+ a)(
930
+ d)
931
+ g)
932
+ :
933
+ :
934
+ I
935
+ 0.2
936
+ CdTe/Sn
937
+ 100
938
+ InSb/Sn
939
+ InSb/CdTe
940
+ 0.2
941
+ 0.4
942
+ (arb. units)
943
+ 0.0
944
+ 0.2
945
+ EF (eV)
946
+ 0.1
947
+ -0.2
948
+ 0.0
949
+ log(DOS)(
950
+ 0.0
951
+ -0.4 1
952
+ -0.2
953
+ E
954
+ -0.6-
955
+ 10-
956
+ -3
957
+ -0.1
958
+ 0.4
959
+ -0.8
960
+ -0.6
961
+ -0.2
962
+ 8 -15
963
+ 3
964
+ 3
965
+ 18
966
+ 5 -12
967
+ -9
968
+ -6-3
969
+ -18
970
+ 3 -15 -12
971
+ 9- 6
972
+ m-
973
+ -3
974
+ 0
975
+ 3
976
+ 6
977
+ 12
978
+ 0
979
+ 0
980
+ 9
981
+
982
+ b)
983
+ Layers
984
+ e)
985
+ Layers
986
+ h)
987
+ Layers
988
+ 5 J
989
+ 5
990
+ -17
991
+ Sn
992
+ -12
993
+ 41
994
+ 41
995
+ 0
996
+ 4
997
+ -8
998
+ -17
999
+ 4
1000
+ (e-OL)
1001
+ 3 1
1002
+ -8
1003
+ 3 1
1004
+ 6
1005
+ -6
1006
+ Sb
1007
+ DOS
1008
+ -4
1009
+ 8
1010
+ 2 1
1011
+ 2 1
1012
+ 2
1013
+ -4
1014
+ 0
1015
+ 12
1016
+ Cd
1017
+
1018
+ 0
1019
+ 4
1020
+ 17
1021
+
1022
+ 11
1023
+ 1
1024
+ 11
1025
+ 4
1026
+ Te
1027
+ 01
1028
+ 0,
1029
+ 0.2
1030
+ 0.2
1031
+ -0.2
1032
+ -0.1
1033
+ 0.0
1034
+ 0.1
1035
+ -1.0 -0.8 -0.6 -0.4 -0.2
1036
+ 0.2
1037
+ -0.2
1038
+ 0.4
1039
+ -1.2
1040
+ 0.0
1041
+ -0.6
1042
+ -0.4
1043
+ 0.0
1044
+ 0.6
1045
+ E-E (eV)
1046
+ E-Ef (eV)
1047
+ (
1048
+ f)
1049
+ E-Eε (eV)
1050
+ i)
1051
+ 0.2
1052
+ 0.18.
1053
+ .0.38.
1054
+ 0.2
1055
+ 0.4
1056
+ 0.09
1057
+ Sn
1058
+ 0.1
1059
+ TSS
1060
+ 0.0
1061
+ 0.2
1062
+ 0.1.
1063
+ 0.0
1064
+ InSb
1065
+ -0.2
1066
+ 0.0
1067
+ (eV)
1068
+ -0.1
1069
+ -0.1.
1070
+ CdTe
1071
+ -0.16
1072
+ -0.4
1073
+ -0.2
1074
+ -0.2
1075
+ TSS
1076
+ -0.6
1077
+ -0.4
1078
+ E -0.3
1079
+ -0.8
1080
+ -0.6
1081
+ 0.4
1082
+ -1.03
1083
+ -1.0
1084
+ -0.83
1085
+ -0.5
1086
+ -0.8
1087
+ -1.2
1088
+ -0.6
1089
+ 1.0
1090
+ x
1091
+ 1X
1092
+ 1X
1093
+ x9
1094
+ FIG. 5.
1095
+ Electronic structure of InSb/CdTe/α-Sn tri-layer interfaces: Density of states as a function of distance from the
1096
+ interface for (a) 6, (c) 10 and (e) 16 CdTe barrier layers. The atomic layers are numbered based on distance from the interface,
1097
+ which is located at zero. Interface structures are illustrated on top. (b), (d), (f) Local density of states for selected layers,
1098
+ indicated by dashed lines in the same colors in panels (a), (c), and (e), respectively.
1099
+ FIG. 6. Valence and conduction band edge positions for InSb
1100
+ and CdTe in the bilayer and tri-layer interfaces. The Fermi
1101
+ level is at the semi-metal point of the α-Sn.
1102
+ 0.054 eV with 6 layers of CdTe, 0.04 eV with 10 layers,
1103
+ and 0.037 eV with 16 layers. This may be attributed to
1104
+ the quantum size effect, which causes a slight narrowing
1105
+ of the InSb gap because of the increase in the overall
1106
+ size of the system. Based on the element-projected band
1107
+ structures provided in the SI, the band edge positions
1108
+ of the CdTe are dominated by the interface with the α-
1109
+ Sn, rather than the interface with the InSb. The CdTe
1110
+ CBM remains at 0.18 eV above the Fermi level, as in
1111
+ the bilayer CdTe/α-Sn interface (see also Figure 4f), re-
1112
+ gardless of the number of layers. As the band gap of the
1113
+ CdTe narrows with increasing thickness, the CdTe VBM
1114
+ shifts from 1.24 eV below the Fermi level with 6 layers
1115
+ to 1.105 eV with 10 layers, and 1.05 eV with 16 layers,
1116
+ approaching the bilayer VBM position of 1.03 eV below
1117
+ the Fermi level with 42 layers. Although the band gap of
1118
+ the CdTe is significantly reduced due to MIGS, a type I
1119
+ band alignment with the InSb is maintained, similar to
1120
+ the bilayer InSb/CdTe interface (Figure 4g,i), as shown
1121
+ in Fig. 5 panels (a), (c), and (e).
1122
+ Figure 7 show the LDOS in the second layer of InSb
1123
+ from the interface as a function of the number of CdTe
1124
+ layers. Without CdTe and with two layers of CdTe, there
1125
+ is no band gap in the InSb close to the interface, owing
1126
+ to the significant density of MIGS. With 6 layers of CdTe
1127
+ the gap of the InSb close to the interface is still consid-
1128
+ erably narrower than its bulk value. The band gap in
1129
+ the second layer of InSb from the interface approaches
1130
+ its bulk value with 10 layers of CdTe and finally reaches
1131
+ it with 16 layers of CdTe. This suggests that 16 CdTe
1132
+ layers provide an effective barrier to electronically insu-
1133
+ late the InSb from the α-Sn. It is reasonable to assume
1134
+ that a barrier of this thickness or higher would all but
1135
+ eliminate transport through the interface into the InSb.
1136
+ Therefore, we estimate that the relevant barrier thickness
1137
+ regime to modulate the coupling at an interface with a
1138
+
1139
+ ::*:18::+::+1:++:+::+::+:: (0
1140
+ a)
1141
+ C)
1142
+ 8
1143
+ 8
1144
+
1145
+ :i:
1146
+ :::
1147
+ 1100
1148
+ 0.2
1149
+ 0.2
1150
+ 0.2
1151
+ (arb. units)
1152
+ 10-1
1153
+ (eV)
1154
+ 0.0
1155
+ 0.0
1156
+ 0.0
1157
+ 10-2
1158
+ log(DOS) (
1159
+ -3
1160
+ -0.2
1161
+ -0.2
1162
+ -0.2
1163
+ -0.4
1164
+ -0.4
1165
+ -0.4
1166
+ 10-4
1167
+ -12-9
1168
+ -12 -8 -40 4 8 121620
1169
+ -12
1170
+ -9
1171
+ -6-30
1172
+ 3
1173
+ 6
1174
+ 9
1175
+ -6-3036
1176
+ 91215
1177
+ Layers
1178
+ Layers
1179
+ Layers
1180
+ b)
1181
+ d)
1182
+ f)
1183
+ 5
1184
+ 5
1185
+ 5
1186
+ -12
1187
+ -12
1188
+ -12
1189
+ Sn
1190
+ -6
1191
+ -6
1192
+ -6
1193
+ 4 1
1194
+ 4
1195
+ 4
1196
+ 0
1197
+ 0
1198
+ 0
1199
+ In
1200
+ (t-OL)
1201
+ 2
1202
+ 31
1203
+ 2
1204
+ 2
1205
+ 3
1206
+ 3
1207
+ 3
1208
+ 5
1209
+ Sb
1210
+ DOS
1211
+ 6
1212
+ 9
1213
+ 8
1214
+ 2 1
1215
+ 21
1216
+ 2
1217
+ 15
1218
+ Cd
1219
+ 11
1220
+ 1
1221
+ Te
1222
+ 0 -
1223
+ 0
1224
+ 0
1225
+ -0.15-0.10-0.05 0.00
1226
+ 0.05
1227
+ 0.100.15
1228
+ -0.15-0.10-0.05 0.00 0.05
1229
+ 0.10
1230
+ 0.15
1231
+ -0.15-0.10-0.05 0.00 0.05
1232
+ 0.100.15
1233
+ E- EF (eV)
1234
+ E- EF (eV)
1235
+ E- EF (eV)0.5
1236
+ 0.0
1237
+ (eV)
1238
+ InSb
1239
+ CdTe
1240
+ -0.5
1241
+ -1.0
1242
+ CdTe/α-Sn -
1243
+ InSb/α-Sn
1244
+ InSb/(CdTe)6/α-Sn
1245
+ InSb/(CdTe)10/α-Sn
1246
+ InSb/(CdTe)16/α-Sn
1247
+ InSb/CdTe
1248
+ Interface10
1249
+ FIG. 7. Density of states in the second InSb layer from the
1250
+ interface (layer -2 in Figure 5) as a function of the number of
1251
+ CdTe barrier layers.
1252
+ superconductor and tune the proximity effect would be
1253
+ in the range of 6-10 layers, where MIGS still exist. We
1254
+ note, however, that the interface with β-Sn may have
1255
+ somewhat different characteristics in terms of the band
1256
+ alignment and the penetration depth of MIGS.
1257
+ IV.
1258
+ CONCLUSION
1259
+ In summary, we have used DFT with a Hubbard
1260
+ U correction machine-learned by Bayesian optimization
1261
+ to study CdTe as a prospective tunnel barrier at the
1262
+ InSb/α-Sn interface. The results of PBE+U(BO) were
1263
+ validated by comparing the band structures of slab mod-
1264
+ els of α-Sn(001) and CdTe(111) with ARPES experi-
1265
+ ments (the PBE+U(BO) band structure of InSb(110)
1266
+ had been compared to ARPES experiments previously
1267
+ [63]). Excellent agreement with experiment is obtained
1268
+ for both materials. In particular, for the low-mean-free-
1269
+ path ARPES of CdTe, the z-unfolding scheme success-
1270
+ fully reproduces the contributions of different kz values
1271
+ and modelling the 2 × 2 surface reconstruction success-
1272
+ fully reproduces the contributions of surface states.
1273
+ We then proceeded to use PBE+U(BO) to calculate
1274
+ the electronic structure of bilayer InSb/α-Sn, CdTe/α-
1275
+ Sn, and InSb/CdTe, as well as tri-layer InSb/CdTe/α-Sn
1276
+ interfaces with varying thickness of CdTe. Simulations
1277
+ of these very large interface models were possible thanks
1278
+ to the balance between accuracy and computational cost
1279
+ provided by PBE+U(BO). We find that the most stable
1280
+ configuration of the InSb/CdTe interface is with In-Te
1281
+ and Sb-Cd bonding. MIGS penetrate from the α-Sn into
1282
+ the InSn and CdTe. Similarly, states from the band edges
1283
+ of InSb penetrate into the larger gap of the CdTe. No
1284
+ interface states are found in any of the interfaces studied
1285
+ here, in contrast to the EuS/InAs interface, for example,
1286
+ in which a quantum well interface state emerges [110].
1287
+ For all interfaces comprising α-Sn, the semi-metal
1288
+ point is pinned at the Fermi level. For the tri-layer inter-
1289
+ face, the band alignment between the InSb and the α-Sn
1290
+ remains the same as in the bilayer interface regardless of
1291
+ the thickness of the CdTe barrier, with the Fermi level
1292
+ closer to the conduction band edge of the InSb. The band
1293
+ edge positions of the CdTe are dominated by the inter-
1294
+ face with the α-Sn rather than the interface with InSb,
1295
+ with the conduction band edge being closer to the Fermi
1296
+ level. A type-I band alignment is maintained between
1297
+ CdTe and InSb with the gap of the former straddling
1298
+ the latter. The CBM of the CdTe is pinned whereas the
1299
+ VBM shifts upwards towards the Fermi level as the gap
1300
+ narrows with the increase in thickness.
1301
+ We find that 16 layers of CdTe (about 3.5 nm) serve as
1302
+ an effective barrier, preventing the penetration of MIGS
1303
+ from the α-Sn into the InSb. However, in the context of
1304
+ Majorana experiments, it is possible that a barrier thick
1305
+ enough to completely insulate the semiconductor from
1306
+ the superconductor would also all but eliminate trans-
1307
+ port.
1308
+ Therefore, we estimate that the relevant regime
1309
+ for tuning the coupling at the interface would be in the
1310
+ thickness range where some MIGS are still present, while
1311
+ thicker CdTe layers could be used to passivate exposed
1312
+ InSb surfaces. We note, however, that the interface with
1313
+ the superconducting β-Sn, which is not lattice matched
1314
+ to InSb and CdTe, may have different characteristics than
1315
+ the interface with α-Sn. In practice, careful experimen-
1316
+ tation with varying barrier thickness would be needed to
1317
+ determine the optimal configuration for MZM devices.
1318
+ We have thus demonstrated that DFT simulations
1319
+ can provide useful insight into the electronic properties
1320
+ of semiconductor/tunnel barrier/metal interfaces. This
1321
+ includes the interface bonding configuration, the band
1322
+ alignment, and the presence of MIGS (and, possibly, of
1323
+ interface states). Such simulations may be conducted for
1324
+ additional interfaces to explore other prospective mate-
1325
+ rial combinations. This may inform the choice of inter-
1326
+ face systems and the design of future Majorana experi-
1327
+ ments. More broadly, similar DFT simulations of inter-
1328
+ faces may be performed to evaluate prospective tunnel
1329
+ barriers e.g., for semiconductor devices.
1330
+ V.
1331
+ ACKNOWLEDGEMENTS
1332
+ We thank Guang Bian from the University of Mis-
1333
+ souri, Li Fu from Northwestern Polytechnical University,
1334
+ China, and Tai C. Chiang from the University of Illinois
1335
+ at Urbana-Champaign for sharing their ARPES data for
1336
+ CdTe. Work at the University of Pittsburgh was sup-
1337
+ ported by the Department of Energy through grant DE-
1338
+ SC-0019274. Work at CMU and UCSB was funded by
1339
+ the National Science Foundation (NSF) through grant
1340
+ OISE-1743717. Work in Grenoble is supported by the
1341
+ ANR-NSF PIRE:HYBRID, Transatlantic Research Part-
1342
+ nership and IRP-CNRS HYNATOQ. This research used
1343
+ computing resources of the University of Pittsburgh Cen-
1344
+ ter for Research Computing, which is supported by NIH
1345
+ award number S10OD028483 and of the National Energy
1346
+
1347
+ 10
1348
+ 0
1349
+ CdTe
1350
+ Density of States (10-4)
1351
+ 2
1352
+ CdTe
1353
+ 8
1354
+ 6 CdTe
1355
+ 10 CdTe
1356
+ 6
1357
+ 16 CdTe
1358
+ 4
1359
+ 2
1360
+ 0
1361
+ -0.1
1362
+ 0.0
1363
+ 0.1
1364
+ 0.2
1365
+ E- Er (eV)11
1366
+ Research Scientific Computing Center (NERSC), a U.S.
1367
+ Department of Energy Office of Science User Facility op-
1368
+ erated under Contract No. DE-AC02-05CH11231.
1369
+ [1] D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham,
1370
+ J. Danon, M. Leijnse, T. S. Jespersen, J. A. Folk, C. M.
1371
+ Marcus, K. Flensberg, and J. Alicea, Milestones toward
1372
+ majorana-based quantum computing, Phys. Rev. X 6,
1373
+ 031016 (2016).
1374
+ [2] S. D. Sarma, M. Freedman, and C. Nayak, Majorana
1375
+ zero modes and topological quantum computation, npj
1376
+ Quantum Information 1, 15001 (2015).
1377
+ [3] Y. Oreg, G. Refael, and F. von Oppen, Helical liquids
1378
+ and majorana bound states in quantum wires, Phys.
1379
+ Rev. Lett. 105, 177002 (2010).
1380
+ [4] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Ma-
1381
+ jorana fermions and a topological phase transition in
1382
+ semiconductor-superconductor heterostructures, Phys.
1383
+ Rev. Lett. 105, 077001 (2010).
1384
+ [5] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard,
1385
+ E. P. A. M. Bakkers, and L. P. Kouwenhoven, Signa-
1386
+ tures of majorana fermions in hybrid superconductor-
1387
+ semiconductor nanowire devices, Science 336, 1003
1388
+ (2012).
1389
+ [6] M. Leijnse and K. Flensberg, Introduction to topological
1390
+ superconductivity and majorana fermions, Semiconduc-
1391
+ tor Science and Technology 27, 124003 (2012).
1392
+ [7] J.-B. Fu, B. Li, X.-F. Zhang, G.-Z. Yu, G.-Y. Huang,
1393
+ and M.-T. Deng, Experimental review on majorana
1394
+ zero-modes in hybrid nanowires, Science China Physics,
1395
+ Mechanics & Astronomy 64, 107001 (2021).
1396
+ [8] P. Yu, J. Chen, M. Gomanko, G. Badawy, E. P. A. M.
1397
+ Bakkers, K. Zuo, V. Mourik, and S. M. Frolov, Non-
1398
+ majorana states yield nearly quantized conductance in
1399
+ proximatized nanowires, Nature Physics 17, 482 (2021).
1400
+ [9] G. Kells, D. Meidan, and P. W. Brouwer, Near-zero-
1401
+ energy end states in topologically trivial spin-orbit cou-
1402
+ pled superconducting nanowires with a smooth confine-
1403
+ ment, Phys. Rev. B 86, 100503 (2012).
1404
+ [10] S. M. Frolov, M. J. Manfra, and J. D. Sau, Topological
1405
+ superconductivity in hybrid devices, Nature Physics 16,
1406
+ 718 (2020).
1407
+ [11] S. A. Khan, C. Lampadaris, A. Cui, L. Stampfer,
1408
+ Y. Liu, S. J. Pauka, M. E. Cachaza, E. M. Fiordal-
1409
+ iso, J.-H. Kang, S. Korneychuk, T. Mutas, J. E. Sestoft,
1410
+ F. Krizek, R. Tanta, M. C. Cassidy, T. S. Jespersen, and
1411
+ P. Krogstrup, Highly transparent gatable superconduct-
1412
+ ing shadow junctions, ACS Nano 14, 14605 (2020).
1413
+ [12] M. Pendharkar, B. Zhang, H. Wu, A. Zarassi, P. Zhang,
1414
+ C. P. Dempsey, J. S. Lee, S. D. Harrington, G. Badawy,
1415
+ S. Gazibegovic, R. L. M. O. het Veld, M. Rossi, J. Jung,
1416
+ A.-H. Chen, M. A. Verheijen, M. Hocevar, E. P. A. M.
1417
+ Bakkers, C. J. Palmstrøm, and S. M. Frolov, Parity-
1418
+ preserving and magnetic field-resilient superconductiv-
1419
+ ity in InSb nanowires with Sn shells, Science 372, 508
1420
+ (2021).
1421
+ [13] P. Krogstrup, N. L. B. Ziino, W. Chang, S. M. Al-
1422
+ brecht, M. H. Madsen, E. Johnson, J. Nyg˚ard, C. M.
1423
+ Marcus, and T. S. Jespersen, Epitaxy of semiconductor–
1424
+ superconductor nanowires, Nature Materials 14, 400
1425
+ (2015).
1426
+ [14] R. L. M. Op het Veld, D. Xu, V. Schaller, M. A. Ver-
1427
+ heijen, S. M. E. Peters, J. Jung, C. Tong, Q. Wang,
1428
+ M. W. A. de Moor, B. Hesselmann, K. Vermeulen,
1429
+ J. D. S. Bommer, J. Sue Lee, A. Sarikov, M. Pend-
1430
+ harkar, A. Marzegalli, S. Koelling, L. P. Kouwenhoven,
1431
+ L. Miglio, C. J. Palmstrøm, H. Zhang, and E. P. A. M.
1432
+ Bakkers, In-plane selective area InSb-Al nanowire quan-
1433
+ tum networks, Communications Physics 3, 59 (2020).
1434
+ [15] D. J. Carrad, M. Bjergfelt, T. Kanne, M. Aagesen,
1435
+ F. Krizek, E. M. Fiordaliso, E. Johnson, J. Nyg˚ard,
1436
+ and T. S. Jespersen, Shadow epitaxy for in situ growth
1437
+ of generic semiconductor/superconductor hybrids, Ad-
1438
+ vanced Materials 32, 1908411 (2020).
1439
+ [16] T. Kanne, M. Marnauza, D. Olsteins, D. J. Carrad, J. E.
1440
+ Sestoft, J. de Bruijckere, L. Zeng, E. Johnson, E. Ols-
1441
+ son, K. Grove-Rasmussen, and J. Nyg˚ard, Epitaxial pb
1442
+ on inas nanowires for quantum devices, Nature Nan-
1443
+ otechnology 16, 776 (2021).
1444
+ [17] F. Harper, A. Pushp, and R. Roy, Majorana braiding in
1445
+ realistic nanowire y-junctions and tuning forks, Phys.
1446
+ Rev. Research 1, 033207 (2019).
1447
+ [18] M. J. A. Jardine, J. P. T. Stenger, Y. Jiang, E. J.
1448
+ de Jong, W. Wang, A. C. B. Jayich, and S. M. Frolov,
1449
+ Integrating micromagnets and hybrid nanowires for
1450
+ topological quantum computing, SciPost Phys. 11, 90
1451
+ (2021).
1452
+ [19] C. Reeg, D. Loss, and J. Klinovaja, Metallization of a
1453
+ rashba wire by a superconducting layer in the strong-
1454
+ proximity regime, Phys. Rev. B 97, 165425 (2018).
1455
+ [20] A. E. Antipov, A. Bargerbos, G. W. Winkler, B. Bauer,
1456
+ E. Rossi, and R. M. Lutchyn, Effects of gate-induced
1457
+ electric fields on semiconductor majorana nanowires,
1458
+ Phys. Rev. X 8, 031041 (2018).
1459
+ [21] O. Vail, A. Chang, S. Harrington, P. Folkes, P. Tay-
1460
+ lor, B. Nichols, C. Palmstrøm, and G. de Coster, Gated
1461
+ magnetotransport in α-Sn thin films on CdTe, Journal
1462
+ of Electronic Materials 50, 6329 (2021).
1463
+ [22] C. Reeg, D. Loss, and J. Klinovaja, Finite-size effects in
1464
+ a nanowire strongly coupled to a thin superconducting
1465
+ shell, Phys. Rev. B 96, 125426 (2017).
1466
+ [23] G. Badawy, S. Gazibegovic, F. Borsoi, S. Heedt, C.-A.
1467
+ Wang, S. Koelling, M. A. Verheijen, L. P. Kouwenhoven,
1468
+ and E. P. A. M. Bakkers, High mobility stemless InSb
1469
+ nanowires, Nano Letters, Nano Letters 19, 3575 (2019).
1470
+ [24] W. S. Cole, S. Das Sarma, and T. D. Stanescu, Effects
1471
+ of large induced superconducting gap on semiconductor
1472
+ majorana nanowires, Phys. Rev. B 92, 174511 (2015).
1473
+ [25] G.
1474
+ Badawy,
1475
+ B.
1476
+ Zhang,
1477
+ T.
1478
+ Rauch,
1479
+ J.
1480
+ Momand,
1481
+ S. Koelling, J. Jung, S. Gazibegovic, O. Moutanabbir,
1482
+ B. J. Kooi, S. Botti, M. A. Verheijen, S. M. Frolov, and
1483
+ E. P. A. M. Bakkers, Electronic structure and epitaxy
1484
+ of CdTe shells on InSb nanowires, Advanced Science 9,
1485
+ 2105722 (2022).
1486
+ [26] A. Suarez Negreira, W. G. Vandenberghe, and M. V.
1487
+ Fischetti, Ab initio study of the electronic properties
1488
+ and thermodynamic stability of supported and func-
1489
+ tionalized two-dimensional Sn films, Phys. Rev. B 91,
1490
+
1491
+ 12
1492
+ 245103 (2015).
1493
+ [27] V. A. Rogalev, T. c. v. Rauch, M. R. Scholz, F. Reis,
1494
+ L. Dudy, A. Fleszar, M.-A. Husanu, V. N. Strocov,
1495
+ J. Henk, I. Mertig, J. Sch¨afer, and R. Claessen, Dou-
1496
+ ble band inversion in α-Sn: Appearance of topological
1497
+ surface states and the role of orbital composition, Phys.
1498
+ Rev. B 95, 161117 (2017).
1499
+ [28] K. H. M. Chen, K. Y. Lin, S. W. Lien, S. W. Huang,
1500
+ C. K. Cheng, H. Y. Lin, C.-H. Hsu, T.-R. Chang, C.-
1501
+ M. Cheng, M. Hong, and J. Kwo, Thickness-dependent
1502
+ topological phase transition and rashba-like preformed
1503
+ topological surface states of α-Sn(001) thin films on
1504
+ InSb(001), Phys. Rev. B 105, 075109 (2022).
1505
+ [29] Z. Shi, X. Wang, C. Xu, P. Wang, Y. Liu, and T.-C.
1506
+ Chiang, First-principles study of the topological sur-
1507
+ face states ofα-Sn(111), Physics Letters A 384, 126782
1508
+ (2020).
1509
+ [30] C.-Z. Xu, Y.-H. Chan, Y. Chen, P. Chen, X. Wang,
1510
+ C. Dejoie, M.-H. Wong, J. A. Hlevyack, H. Ryu, H.-Y.
1511
+ Kee, N. Tamura, M.-Y. Chou, Z. Hussain, S.-K. Mo, and
1512
+ T.-C. Chiang, Elemental topological dirac semimetal:
1513
+ α-Sn on InSb(111), Phys. Rev. Lett. 118, 146402 (2017).
1514
+ [31] H. Huang and F. Liu, Tensile strained gray tin: Dirac
1515
+ semimetal for observing negative magnetoresistance
1516
+ with shubnikov–de haas oscillations, Phys. Rev. B 95,
1517
+ 201101 (2017).
1518
+ [32] O. Vail, P. Taylor, P. Folkes, B. Nichols, B. Haidet,
1519
+ K. Mukherjee, and G. de Coster, Growth and magne-
1520
+ totransport in thin-film α-Sn on CdTe, physica status
1521
+ solidi (b) 257, 1800513 (2020).
1522
+ [33] G. J. de Coster, P. A. Folkes, P. J. Taylor, and O. A.
1523
+ Vail, Effects of orientation and strain on the topological
1524
+ characteristics of CdTe/α-Sn quantum wells, Phys. Rev.
1525
+ B 98, 115153 (2018).
1526
+ [34] I. Madarevic, U. Thupakula, G. Lippertz, N. Claessens,
1527
+ P.-C. Lin, H. Bana, S. Gonzalez, G. Di Santo, L. Petac-
1528
+ cia, M. N. Nair, L. M. Pereira, C. Van Haesendonck,
1529
+ and M. J. Van Bael, Structural and electronic proper-
1530
+ ties of the pure and stable elemental 3d topological dirac
1531
+ semimetal α-Sn, APL Materials 8, 031114 (2020).
1532
+ [35] A. Barfuss, L. Dudy, M. R. Scholz, H. Roth, P. H¨opfner,
1533
+ C. Blumenstein, G. Landolt, J. H. Dil, N. C. Plumb,
1534
+ M. Radovic, A. Bostwick, E. Rotenberg, A. Fleszar,
1535
+ G. Bihlmayer,
1536
+ D. Wortmann,
1537
+ G. Li,
1538
+ W. Hanke,
1539
+ R. Claessen, and J. Sch¨afer, Elemental topological in-
1540
+ sulator with tunable fermi level:
1541
+ Strained α-sn on
1542
+ InSb(001), Phys. Rev. Lett. 111, 157205 (2013).
1543
+ [36] M. R. Scholz, V. A. Rogalev, L. Dudy, F. Reis, F. Adler,
1544
+ J. Aulbach, L. J. Collins-McIntyre, L. B. Duffy, H. F.
1545
+ Yang, Y. L. Chen, T. Hesjedal, Z. K. Liu, M. Hoesch,
1546
+ S. Muff, J. H. Dil, J. Sch¨afer, and R. Claessen, Topolog-
1547
+ ical surface state of α−Sn on InSb(001) as studied by
1548
+ photoemission, Phys. Rev. B 97, 075101 (2018).
1549
+ [37] Y. Ohtsubo, P. Le F`evre, F. m. c. Bertran, and A. Taleb-
1550
+ Ibrahimi, Dirac cone with helical spin polarization in
1551
+ ultrathin α-Sn(001) films, Phys. Rev. Lett. 111, 216401
1552
+ (2013).
1553
+ [38] L. Fu and C. L. Kane, Topological insulators with in-
1554
+ version symmetry, Phys. Rev. B 76, 045302 (2007).
1555
+ [39] S. A. Khan, S. Mart´ı-S´anchez, D. Olsteins, C. Lam-
1556
+ padaris, D. J. Carrad, Y. Liu, J. Qui˜nones, M. C.
1557
+ Spadaro, T. S. Jespersen, P. Krogstrup, and J. Arbiol,
1558
+ Epitaxially driven phase selectivity of sn in hybrid quan-
1559
+ tum nanowires, arXiv , 2212.13314 (2022).
1560
+ [40] R. F. C. Farrow, D. S. Robertson, G. M. Williams, A. G.
1561
+ Cullis, G. R. Jones, I. M. Young, and P. N. J. Dennis,
1562
+ The growth of metastable, heteroepitaxial films of α-Sn
1563
+ by metal beam epitaxy, Journal of Crystal Growth 54,
1564
+ 507 (1981).
1565
+ [41] H. Song, J. Yao, Y. Ding, Y. Gu, Y. Deng, M.-H. Lu,
1566
+ H. Lu, and Y.-F. Chen, Thermal stability enhancement
1567
+ in epitaxial alpha tin films by strain engineering, Ad-
1568
+ vanced Engineering Materials 21, 1900410 (2019).
1569
+ [42] A. Davydov, A. Sanna, C. Pellegrini, J. K. Dewhurst,
1570
+ S. Sharma, and E. K. U. Gross, Ab initio theory
1571
+ of plasmonic superconductivity within the eliashberg
1572
+ and density-functional formalisms, Phys. Rev. B 102,
1573
+ 214508 (2020).
1574
+ [43] A. Sanna, C. Pellegrini, and E. K. U. Gross, Combin-
1575
+ ing eliashberg theory with density functional theory for
1576
+ the accurate prediction of superconducting transition
1577
+ temperatures and gap functions, Phys. Rev. Lett. 125,
1578
+ 057001 (2020).
1579
+ [44] G. W. Winkler, A. E. Antipov, B. van Heck, A. A.
1580
+ Soluyanov, L. I. Glazman, M. Wimmer, and R. M.
1581
+ Lutchyn, Unified numerical approach to topological
1582
+ semiconductor-superconductor heterostructures, Phys.
1583
+ Rev. B 99, 245408 (2019).
1584
+ [45] S. Schuwalow, N. B. M. Schr¨oter, J. Gukelberger,
1585
+ C. Thomas, V. Strocov, J. Gamble, A. Chikina, M. Ca-
1586
+ puto, J. Krieger, G. C. Gardner, M. Troyer, G. Aeppli,
1587
+ M. J. Manfra, and P. Krogstrup, Band structure ex-
1588
+ traction at hybrid narrow-gap semiconductor-metal in-
1589
+ terfaces, Advanced Science 8, 2003087 (2021).
1590
+ [46] P. Borlido, T. Aull, A. W. Huran, F. Tran, M. A. L.
1591
+ Marques, and S. Botti, Large-scale benchmark of
1592
+ exchange-correlation functionals for the determination
1593
+ of electronic band gaps of solids, Journal of Chemical
1594
+ Theory and Computation 15, 5069 (2019).
1595
+ [47] J. W. Bennett, B. G. Hudson, I. K. Metz, D. Liang,
1596
+ S. Spurgeon, Q. Cui, and S. E. Mason, A systematic de-
1597
+ termination of hubbard u using the gbrv ultrasoft pseu-
1598
+ dopotential set, Computational Materials Science 170,
1599
+ 109137 (2019).
1600
+ [48] X. Huang, S. K. Ramadugu, and S. E. Mason, Surface-
1601
+ specific DFT + U approach applied to α-Fe2O3(0001),
1602
+ The Journal of Physical Chemistry C 120, 4919 (2016).
1603
+ [49] R. Peverati and D. G. Truhlar, Performance of the m11-
1604
+ l density functional for bandgaps and lattice constants
1605
+ of unary and binary semiconductors, The Journal of
1606
+ Chemical Physics 136, 134704 (2012).
1607
+ [50] J. P. Perdew, E. R. McMullen, and A. Zunger, Density-
1608
+ functional theory of the correlation energy in atoms and
1609
+ ions: A simple analytic model and a challenge, Phys.
1610
+ Rev. A 23, 2785 (1981).
1611
+ [51] P. Mori-S´anchez, A. J. Cohen, and W. Yang, Many-
1612
+ electron self-interaction error in approximate density
1613
+ functionals, The Journal of Chemical Physics 125,
1614
+ 201102 (2006).
1615
+ [52] P. Mori-S´anchez, A. J. Cohen, and W. Yang, Local-
1616
+ ization and delocalization errors in density functional
1617
+ theory and implications for band-gap prediction, Phys.
1618
+ Rev. Lett. 100, 146401 (2008).
1619
+ [53] G.-X.
1620
+ Zhang,
1621
+ A.
1622
+ M.
1623
+ Reilly,
1624
+ A.
1625
+ Tkatchenko,
1626
+ and
1627
+ M. Scheffler, Performance of various density-functional
1628
+ approximations for cohesive properties of 64 bulk solids,
1629
+ New Journal of Physics 20, 063020 (2018).
1630
+
1631
+ 13
1632
+ [54] A. J. Garza and G. E. Scuseria, Predicting band gaps
1633
+ with hybrid density functionals, The Journal of Physical
1634
+ Chemistry Letters 7, 4165 (2016).
1635
+ [55] M. Yu, S. Yang, C. Wu, and N. Marom, Machine
1636
+ learning the hubbard u parameter in dft+u using
1637
+ bayesian optimization, npj Computational Materials 6,
1638
+ 180 (2020).
1639
+ [56] S. Yang, D. Dardzinski, A. Hwang, D. I. Pikulin, G. W.
1640
+ Winkler, and N. Marom, First-principles feasibility as-
1641
+ sessment of a topological insulator at the inas/gasb in-
1642
+ terface, Phys. Rev. Materials 5, 084204 (2021).
1643
+ [57] M. Rohlfing, P. Kr¨uger, and J. Pollmann, Role of semi-
1644
+ core d electrons in quasiparticle band-structure calcula-
1645
+ tions, Phys. Rev. B 57, 6485 (1998).
1646
+ [58] S. K¨ufner, J. Furthm¨uller, L. Matthes, M. Fitzner, and
1647
+ F. Bechstedt, Structural and electronic properties of α-
1648
+ tin nanocrystals from first principles, Phys. Rev. B 87,
1649
+ 235307 (2013).
1650
+ [59] D. Dardzinski, M. Yu, S. Moayedpour, and N. Marom,
1651
+ Best practices for first-principles simulations of epitax-
1652
+ ial inorganic interfaces, Journal of Physics: Condensed
1653
+ Matter (2022).
1654
+ [60] C.-Z. Xu, Y.-H. Chan, P. Chen, X. Wang, D. Fl¨ototto,
1655
+ J. A. Hlevyack, G. Bian, S.-K. Mo, M.-Y. Chou, and
1656
+ T.-C. Chiang, Gapped electronic structure of epitaxial
1657
+ stanene on InSb(111), Phys. Rev. B 97, 035122 (2018).
1658
+ [61] S. K¨ufner, M. Fitzner, and F. Bechstedt, Topological α-
1659
+ Sn surface states versus film thickness and strain, Phys.
1660
+ Rev. B 90, 125312 (2014).
1661
+ [62] V. A. Rogalev, F. Reis, F. Adler, M. Bauernfeind, J. Er-
1662
+ hardt, A. Kowalewski, M. R. Scholz, L. Dudy, L. B.
1663
+ Duffy, T. Hesjedal, M. Hoesch, G. Bihlmayer, J. Sch¨afer,
1664
+ and R. Claessen, Tailoring the topological surface state
1665
+ in ultrathin α-Sn(111) films, Phys. Rev. B 100, 245144
1666
+ (2019).
1667
+ [63] S.
1668
+ Yang,
1669
+ N.
1670
+ B.
1671
+ M.
1672
+ Schr¨oter,
1673
+ V.
1674
+ N.
1675
+ Strocov,
1676
+ S. Schuwalow, M. Rajpalk, K. Ohtani, P. Krogstrup,
1677
+ G. W. Winkler, J. Gukelberger, D. Gresch, G. Aep-
1678
+ pli, R. M. Lutchyn, and N. Marom, Electronic struc-
1679
+ ture of InAs and InSb surfaces: Density functional the-
1680
+ ory and angle-resolved photoemission spectroscopy, Ad-
1681
+ vanced Quantum Technologies 5, 2100033 (2022).
1682
+ [64] V. Popescu and A. Zunger, Extracting E versus ⃗k effec-
1683
+ tive band structure from supercell calculations on alloys
1684
+ and impurities, Phys. Rev. B 85, 085201 (2012).
1685
+ [65] W. Ku, T. Berlijn, and C.-C. Lee, Unfolding first-
1686
+ principles band structures, Phys. Rev. Lett. 104, 216401
1687
+ (2010).
1688
+ [66] U. Herath, P. Tavadze, X. He, E. Bousquet, S. Singh,
1689
+ F. Mu˜A±oz, and A. H. Romero, Pyprocar: A python li-
1690
+ brary for electronic structure pre/post-processing, Com-
1691
+ puter Physics Communications 251, 107080 (2020).
1692
+ [67] V. Wang, N. Xu, J.-C. Liu, G. Tang, and W.-T.
1693
+ Geng, Vaspkit:
1694
+ A user-friendly interface facilitating
1695
+ high-throughput computing and analysis using vasp
1696
+ code, Computer Physics Communications 267, 108033
1697
+ (2021).
1698
+ [68] P. V. C. Medeiros, S. Stafstr¨om, and J. Bj¨ork, Effects
1699
+ of extrinsic and intrinsic perturbations on the electronic
1700
+ structure of graphene: Retaining an effective primitive
1701
+ cell band structure by band unfolding, Phys. Rev. B 89,
1702
+ 041407 (2014).
1703
+ [69] H. Iwasawa, High-resolution angle-resolved photoemis-
1704
+ sion spectroscopy and microscopy, Electronic Structure
1705
+ 2, 043001 (2020).
1706
+ [70] M. P. Seah and W. A. Dench, Quantitative electron
1707
+ spectroscopy of surfaces: A standard data base for elec-
1708
+ tron inelastic mean free paths in solids, Surface and In-
1709
+ terface Analysis 1, 2 (1979).
1710
+ [71] H. Zhang, T. Pincelli, C. Jozwiak, T. Kondo, R. Ern-
1711
+ storfer, T. Sato, and S. Zhou, Angle-resolved photoemis-
1712
+ sion spectroscopy, Nature Reviews Methods Primers 2,
1713
+ 54 (2022).
1714
+ [72] H. Kumigashira, H.-D. Kim, T. Ito, A. Ashihara,
1715
+ T. Takahashi, T. Suzuki, M. Nishimura, O. Sakai,
1716
+ Y. Kaneta, and H. Harima, High-resolution angle-
1717
+ resolved photoemission study of lasb, Phys. Rev. B 58,
1718
+ 7675 (1998).
1719
+ [73] P. J. Feibelman and D. E. Eastman, Photoemission
1720
+ spectroscopy—correspondence between quantum theory
1721
+ and experimental phenomenology, Phys. Rev. B 10,
1722
+ 4932 (1974).
1723
+ [74] V. Strocov, Intrinsic accuracy in 3-dimensional pho-
1724
+ toemission band mapping, Journal of Electron Spec-
1725
+ troscopy and Related Phenomena 130, 65 (2003).
1726
+ [75] V. N. Strocov, M. Shi, M. Kobayashi, C. Monney,
1727
+ X. Wang,
1728
+ J. Krempasky,
1729
+ T. Schmitt,
1730
+ L. Patthey,
1731
+ H. Berger, and P. Blaha, Three-dimensional electron
1732
+ realm in vse2 by soft-x-ray photoelectron spectroscopy:
1733
+ Origin of charge-density waves, Phys. Rev. Lett. 109,
1734
+ 086401 (2012).
1735
+ [76] V. N. Strocov, H. I. Starnberg, and P. O. Nilsson,
1736
+ Excited-state bands of cu determined by vleed band
1737
+ fitting and their implications for photoemission, Phys.
1738
+ Rev. B 56, 1717 (1997).
1739
+ [77] V. N. Strocov, L. L. Lev, F. Alarab, P. Constantinou,
1740
+ T. Schmitt, T. J. Z. Stock, L. Nicola¨ı, J. Oˇcen´aˇsek, and
1741
+ J. Min´ar, Are high-energy photoemission final states
1742
+ free-electron-like?, arXiv , 2301.00033 (2023).
1743
+ [78] V. N. Strocov, E. E. Krasovskii, W. Schattke, N. Bar-
1744
+ rett, H. Berger, D. Schrupp, and R. Claessen, Three-
1745
+ dimensional band structure of layered tite2: Photoemis-
1746
+ sion final-state effects, Phys. Rev. B 74, 195125 (2006).
1747
+ [79] E. E. Krasovskii, V. N. Strocov, N. Barrett, H. Berger,
1748
+ W. Schattke, and R. Claessen, Band mapping in the
1749
+ one-step photoemission theory: Multi-bloch-wave struc-
1750
+ ture of final states and interference effects, Phys. Rev.
1751
+ B 75, 045432 (2007).
1752
+ [80] G. Kresse and J. Hafner, Ab initio molecular dynamics
1753
+ for liquid metals, Phys. Rev. B 47, 558 (1993).
1754
+ [81] P. E. Bl¨ochl, Projector augmented-wave method, Phys.
1755
+ Rev. B 50, 17953 (1994).
1756
+ [82] G. Kresse and D. Joubert, From ultrasoft pseudopoten-
1757
+ tials to the projector augmented-wave method, Phys.
1758
+ Rev. B 59, 1758 (1999).
1759
+ [83] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized
1760
+ gradient approximation made simple, Phys. Rev. Lett.
1761
+ 77, 3865 (1996).
1762
+ [84] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J.
1763
+ Humphreys, and A. P. Sutton, Electron-energy-loss
1764
+ spectra and the structural stability of nickel oxide: An
1765
+ lsda+u study, Phys. Rev. B 57, 1505 (1998).
1766
+ [85] J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid
1767
+ functionals based on a screened coulomb potential, The
1768
+ Journal of Chemical Physics 118, 8207 (2003).
1769
+
1770
+ 14
1771
+ [86] Y. Wu, G. Chen, Y. Zhu, W.-J. Yin, Y. Yan, M. Al-
1772
+ Jassim, and S. J. Pennycook, LDA+U/GGA+U calcu-
1773
+ lations of structural and electronic properties of CdTe:
1774
+ Dependence on the effective u parameter, Computa-
1775
+ tional Materials Science 98, 18 (2015).
1776
+ [87] G.
1777
+ Fonthal,
1778
+ L.
1779
+ Tirado-Mej´ıa,
1780
+ J.
1781
+ Mar´ın-Hurtado,
1782
+ H. Ariza-Calder´on, and J. Menddoza-Alvarez, Temper-
1783
+ ature dependence of the band gap energy of crystalline
1784
+ CdTe, Journal of Physics and Chemistry of Solids 61,
1785
+ 579 (2000).
1786
+ [88] Y. Hinuma, A. Gr¨uneis, G. Kresse, and F. Oba, Band
1787
+ alignment of semiconductors from density-functional
1788
+ theory and many-body perturbation theory, Phys. Rev.
1789
+ B 90, 155405 (2014).
1790
+ [89] J. Neugebauer and M. Scheffler, Adsorbate-substrate
1791
+ and adsorbate-adsorbate interactions of na and k ad-
1792
+ layers on al(111), Phys. Rev. B 46, 16067 (1992).
1793
+ [90] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan,
1794
+ Band parameters for III-V compound semiconductors
1795
+ and their alloys, Journal of Applied Physics 89, 5815
1796
+ (2001).
1797
+ [91] X. Huang, E. Lindgren, and J. R. Chelikowsky, Surface
1798
+ passivation method for semiconductor nanostructures,
1799
+ Phys. Rev. B 71, 165328 (2005).
1800
+ [92] S. Yang, C. Wu, and N. Marom, Topological properties
1801
+ of snse/eus and snte/cate interfaces, Phys. Rev. Mate-
1802
+ rials 4, 034203 (2020).
1803
+ [93] J. Ren, L. Fu, G. Bian, M. Wong, T. Wang, G. Zha,
1804
+ W. Jie, T. Miller, M. Z. Hasan, and T.-C. Chiang, Spec-
1805
+ troscopic studies of CdTe bulk and surface electronic
1806
+ structure, Phys. Rev. B 91, 235303 (2015).
1807
+ [94] L. Kronik and S. K¨ummel, Gas-phase valence-electron
1808
+ photoemission spectroscopy using density functional
1809
+ theory, in First Principles Approaches to Spectro-
1810
+ scopic Properties of Complex Materials, edited by
1811
+ C. Di Valentin, S. Botti, and M. Cococcioni (Springer
1812
+ Berlin Heidelberg, Berlin, Heidelberg, 2014) pp. 137–
1813
+ 191.
1814
+ [95] A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E.
1815
+ Scuseria, Influence of the exchange screening parameter
1816
+ on the performance of screened hybrid functionals, The
1817
+ Journal of Chemical Physics 125, 224106 (2006).
1818
+ [96] C. K. Egan, Q. Z. Jiang, and A. W. Brinkman, Morphol-
1819
+ ogy and reconstructions of polar CdTe(111)a,b surfaces
1820
+ by scanning tunneling microscopy, Journal of Vacuum
1821
+ Science & Technology A 29, 011021 (2011).
1822
+ [97] J. Tersoff, Calculation of Schottky barrier heights from
1823
+ semiconductor band structures, Surface Science 168,
1824
+ 275 (1986).
1825
+ [98] W. M¨onch, Empirical tight-binding calculation of the
1826
+ branch-point energy of the continuum of interface-
1827
+ induced gap states, Journal of Applied Physics 80, 5076
1828
+ (1996).
1829
+ [99] W. M¨onch, Role of virtual gap states and defects in
1830
+ metal-semiconductor contacts, Phys. Rev. Lett. 58,
1831
+ 1260 (1987).
1832
+ [100] W. M¨onch, Barrier heights of real schottky contacts ex-
1833
+ plained by metal-induced gap states and lateral inhomo-
1834
+ geneities, Journal of Vacuum Science & Technology B:
1835
+ Microelectronics and Nanometer Structures Processing,
1836
+ Measurement, and Phenomena 17, 1867 (1999).
1837
+ [101] W. Monch, On the physics of metal-semiconductor in-
1838
+ terfaces, Reports on Progress in Physics 53, 221 (1990).
1839
+ [102] J. Robertson, Band offsets, schottky barrier heights, and
1840
+ their effects on electronic devices, Journal of Vacuum
1841
+ Science & Technology A 31, 050821 (2013).
1842
+ [103] M. Tang, D. W. Niles, I. Hern´andez-Calder´on, and
1843
+ H. H¨ochst, Angle-resolved photoemission study of the α-
1844
+ Sn/CdTe(100) interface, Phys. Rev. B 36, 3336 (1987).
1845
+ [104] S. Takatani and Y. W. Chung, Thin-film quantization
1846
+ studies of grey tin epitaxially grown on CdTe(111),
1847
+ Phys. Rev. B 31, 2290 (1985).
1848
+ [105] H. H¨ochst, D. W. Niles, and I. Hern´andez-Calder´on,
1849
+ Interface and growth studies of α-Sn/CdTe(110) su-
1850
+ perlattices, Journal of Vacuum Science & Technology
1851
+ B: Microelectronics Processing and Phenomena 6, 1219
1852
+ (1988).
1853
+ [106] W. R. L. Lambrecht and B. Segall, Interface-bond-
1854
+ polarity model for semiconductor heterojunction band
1855
+ offsets, Phys. Rev. B 41, 2832 (1990).
1856
+ [107] A. Continenza and A. J. Freeman, Band lineup and elec-
1857
+ tric fields in (α-sn)m/(cdte)n [001] and [110] superlat-
1858
+ tices, Phys. Rev. B 45, 5953 (1992).
1859
+ [108] M. Cardona and N. E. Christensen, Acoustic deforma-
1860
+ tion potentials and heterostructure band offsets in semi-
1861
+ conductors, Phys. Rev. B 35, 6182 (1987).
1862
+ [109] X. Wang, C. Campbell, Y.-H. Zhang, and R. J. Ne-
1863
+ manich, Band alignment at the CdTe/InSb (001) het-
1864
+ erointerface, Journal of Vacuum Science & Technology
1865
+ A 36, 031101 (2018).
1866
+ [110] M. Yu, S. Moayedpour, S. Yang, D. Dardzinski, C. Wu,
1867
+ V. S. Pribiag, and N. Marom, Dependence of the elec-
1868
+ tronic structure of the eus/inas interface on the bonding
1869
+ configuration, Phys. Rev. Mater. 5, 064606 (2021).
1870
+
BtE1T4oBgHgl3EQfDgPC/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
CtE1T4oBgHgl3EQfpwVv/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e72ed39744a5ff25861eee0773f1283471b04a97acfcfb746343bc7c9be77836
3
+ size 7340077
CtFAT4oBgHgl3EQftB7D/content/tmp_files/2301.08662v1.pdf.txt ADDED
@@ -0,0 +1,1047 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.08662v1 [math.PR] 20 Jan 2023
2
+ On the construction and identification of Boltzmann
3
+ processes
4
+ S. Albeverio∗, B. R¨udiger†and P. Sundar ‡
5
+ January 23, 2023
6
+ Abstract
7
+ Given the existence of a solution {f(t, x, v)}t≥0 of the Boltzmann equation
8
+ for hard spheres, we introduce a stochastic differential equation driven by
9
+ a Poisson random measure that depends on f(t, x, v). The marginal distri-
10
+ butions of its solution solves a linearized Boltzmann equation in the weak
11
+ form. Further, if the distributions admit a probability density, we establish,
12
+ under suitable conditions, that the density at each t coincides with f(t, x, v).
13
+ The stochastic process is therefore called the Boltzmann process.
14
+ AMS Subject Classification: 35Q20; 60H20; 60H30
15
+ Keywords:
16
+ Boltzmann equation; Poisson random measures; stochastic
17
+ differential equations; relative entropy
18
+ 1
19
+ Introduction
20
+ The Boltzmann equation describes the time evolution of the density of molecules
21
+ in dilute (or rarified) gas for a given initial distribution.
22
+ Each molecule (or
23
+ particle) moves in a straight line without any external forces acting on it until it
24
+ collides with another particle and gets deflected. The Boltzmann equation forms
25
+ the basis for the kinetic theory of gases [6].
26
+ ∗Institute of Applied Mathematics and HCM, BiBoS, IZKS, University of Bonn, Germany.
27
28
+ †Bergische Universit¨at Wuppertal Fakult¨at 4 -Fachgruppe Mathematik-Informatik, Gauss
29
+ str. 20, 42097 Wuppertal, Germany. Email: [email protected]
30
+ ‡Department of Mathematics, Louisiana State University, Baton Rouge, La 70803, USA.
31
32
+ 1
33
+
34
+ The Boltzmann equation has the general form
35
+ ∂f
36
+ ∂t (t, x, z) + z · ∇xf(t, x, z) = Q(f, f)(t, x, z),
37
+ (1.1)
38
+ where f is a probability density function that depends on time t ≥ 0, the space
39
+ (location) variable x ∈ R3, and velocity, z ∈ R3. The function Q is a certain
40
+ quadratic form in f, called collision operator (or integral).
41
+ Set Ξ := (0, π] × [0, 2π). Then Q can be written in the general form
42
+ Q(f, f)(t, x, z) =
43
+
44
+ R3×Ξ
45
+ {f(t, x, z⋆)f(t, x, v⋆) − f(t, x, z)f(t, x, v)}B(z, dv, dθ)dφ.
46
+ (1.2)
47
+ The dynamics of collisions are encoded in B(z, dv, dθ).
48
+ Each v ∈ R3 in (1.2)
49
+ denotes the velocity of an incoming particle which may hit, at the fixed loca-
50
+ tion x ∈ R3, particles whose velocity is z. Let z⋆ ∈ R3 and v⋆ ∈ R3 denote
51
+ the resulting outgoing (post-collision) velocities corresponding to the incoming
52
+ (pre-collision) velocities z and v respectively. The angle θ ∈ (0, π] denotes the az-
53
+ imuthal or colatitude angle of the deflected velocity, v⋆, and φ ∈ [0, 2π) measures
54
+ the longitude of v∗.
55
+ In the Boltzmann equation, the collisions are assumed to be elastic and hence,
56
+ conservation of momentum and kinetic energy hold, i.e. considering particles of
57
+ mass m = 1, the following equalities hold:
58
+
59
+ z⋆ + v⋆ = z + v
60
+ |z⋆|2 + |v⋆|2 = |z|2 + |v|2
61
+ (1.3)
62
+ In fact,
63
+
64
+ z⋆ = z + (n, v − z)n
65
+ v⋆ = v − (n, v − z)n
66
+ (1.4)
67
+ where
68
+ n = z⋆ − z
69
+ |z⋆ − z|
70
+ (1.5)
71
+ where (·, ·) denotes the scalar product, and | · |, the Euclidean norm in R3.
72
+ Remark 1.1. The Jacobian of the transformation (1.4) is 1 in magnitude, and
73
+ (z⋆)⋆ = z since the collision dynamics are reversible.
74
+ The outgoing velocity z∗ is then uniquely determined in terms of the colatitude
75
+ angle θ ∈ (0, π] measured from the center, and longitude angle φ ∈ [0, 2π) of
76
+ the deflection vector n in a sphere with north-pole z and south-pole v centered
77
+ 2
78
+
79
+ at z+v
80
+ 2
81
+ (and with radius determined by the conserved kinetic energy) which are
82
+ used in equation (1.1) and (1.2) (see e.g. the article by H. Tanaka [19] for futher
83
+ details). It follows
84
+ (v − z, n) = |v − z| cos(π
85
+ 2 − θ
86
+ 2) = |v − z| sin(θ
87
+ 2),
88
+ (1.6)
89
+ where θ is the angle between v − z and v⋆ − z⋆, and π
90
+ 2 − θ
91
+ 2 is the angle between
92
+ n and v − z. In polar coordinates we obtain
93
+ (v − z, n)dn = |v − z| sin(θ
94
+ 2) cos(θ
95
+ 2)dθdφ
96
+ (1.7)
97
+ The collision measure B(z, dv, dθ) is a σ-additive positive measure defined on the
98
+ Borel σ-field B(R3) × B((0, π]), for each z, and measurable in z for each fixed set
99
+ in the above Borel σ-field. The form of B depends on the version of Boltzmann
100
+ equation one has in mind.
101
+ There are several models of the Boltzmann equation (see e.g. [20]) In general,
102
+ one sets
103
+ B(z, dv, dθ) = σ(|v − z|)dvQ(dθ)
104
+ (1.8)
105
+ where σ, known as velocity cross-section, is a positive function on R+, and Q is
106
+ a σ-finite measure on B((0, π]). If Q is a finite measure, it is called the cut-off case.
107
+ To write (1.1), (1.2) in its weak form (in the functional analytic sense), we need
108
+ a result of Tanaka [18]:
109
+ Proposition 1.1. Let ψ(u, v, y, z) ∈ C0(R12), as a function of u, v, y, z ∈ R3. For
110
+ each θ ∈ (0, π] fixed
111
+
112
+ R6×[0,2π)
113
+ ψ(u, v, u⋆, v⋆)dφdudv =
114
+
115
+ R6×[0,2π)
116
+ ψ(u⋆, v⋆, u, v)dφdudv
117
+ (1.9)
118
+ Consider the Boltzmann equation (1.1) with collision operator (1.2). Multiply
119
+ (1.1) by a function ψ (of (x, z) ∈ R6) belonging to C2
120
+ 0(R6), and integrate with
121
+ respect to x and z, using integration by parts, we arrive at the weak formulation
122
+ of the Boltzmann equation:
123
+
124
+ R6 ψ(x, z)∂f
125
+ ∂t (t, x, z)dxdz −
126
+
127
+ R6 f(t, x, z)(z, ∇xψ(x, z))dxdz
128
+ =
129
+
130
+ R6 f(t, x, z)Lfψ(x, z)dxdz
131
+ (1.10)
132
+ 3
133
+
134
+ for all t ∈ R+ with
135
+ Lfψ(x, z) =
136
+
137
+ R3×(0,π]×[0,2π)
138
+ {ψ(x, z⋆) − ψ(x, z)}f(t, x, v)B(z, dv, dθ)dφ,
139
+ where B is as in (1.8).
140
+ In its weak form, the Boltzmann equation cannot be treated as the Kolmogorov
141
+ equation that corresponds to a Markov process with jumps. In fact, to over-
142
+ come this obstacle we proposed and studied the Boltzmann-Enskog equation [2]
143
+ which corresponds to the dynamics of moderately dense gases. For hard and soft
144
+ potentials, solvability and uniqueness of the Boltzmann-Enskog equation were
145
+ carried out in subsequent works [11] and [12]. Indeed, there is a vast literature
146
+ on various aspects of the Boltzmann equation and we refer the reader to [7], [9],
147
+ [10], [15] [18, 19], [20], and the references therein. Standing on the shoulders of
148
+ these giants, our aim is to build a stochastic analytic treatment of the (spatially
149
+ non-homogeneous) Boltzmann equation in the non-cutoff case for hard spheres
150
+ with σ(|z−v|)= |z−v|. An ingenious suggestion given to us by Professor Presutti
151
+ provided the impetus to this work, and made the problem tractable.
152
+ Definition 1.1. A collection of densities {f(t, x, z}t∈[0,T], with x, z ∈ R3, is
153
+ a strong (resp.
154
+ weak) solution of the Boltzmann equation in [0, T] if for any
155
+ t ∈ [0, T] it solves (1.1) (resp. (1.10)).
156
+ We denote by D := D([0, T], R3) the space of all right continuous functions with
157
+ left limits on [0, T] taking values in R3, and equipped with the topology induced
158
+ by the Skorohod metric.
159
+ Definition 1.2. A stochastic process (Xs, Zs)s∈[0,T] with values on D × D, and
160
+ having time t marginals with density denoted by f(t, x, z) which solve (1.10) for
161
+ all t ∈ [0, T], is called a ”Boltzmann process”.
162
+ We remark that the infinitesimal generator of a Boltzmann process is given by
163
+ (z, ∇x) + Lf. Costantini and Marra [8] analyzed hydrodynamical limits of a pro-
164
+ cess given by a the drift term involving (z, ∇x) and Lf in addition to a martingale.
165
+ We use the following notation R0
166
+ + := {t ∈ R : t ≥ 0}. In this article we assume
167
+ the following hypothesis.
168
+ Hypotheses A:
169
+ A1. The measure Q on [0, π) is finite outside any neighbourhood of 0, and for
170
+ all ǫ > 0, it satisfies
171
+ � ǫ
172
+ 0
173
+ θQ(dθ) < ∞.
174
+ 4
175
+
176
+ A2. The function σ : R0
177
+ + → R0
178
+ + (entering (1.8)) is given by σ(z) := czγ, with
179
+ c > 0, γ ∈ (−1, 1] fixed.
180
+ There are many useful consequences of A1. Let us set
181
+ α(z, v, θ, φ) := (n, (v − z))n
182
+ (1.11)
183
+ Define ˆα(z, v, θ, φ) := α(z, v, θ, φ)σ(|z − v|).
184
+ Condition A1 implies that there
185
+ exists a constant C such that the following estimates hold.
186
+
187
+ Ξ
188
+ |ˆα(z, v, θ, φ)|Q(dθ)dφ ≤ C|z − v|1+γ,
189
+ (1.12)
190
+ and hence
191
+
192
+ Ξ
193
+ |ˆα(z, v, θ, φ)|Q(dθ)dφ ≤ C(|z|1+γ + |v|1+γ).
194
+ (1.13)
195
+ Moreover, the following parameter transformation was introduced for each z ̸= v
196
+ in [18] (see also [9], Section 3, or [10]).
197
+ α(z, v, θ, φ) = 1 − cos(θ)
198
+ 2
199
+ (v − z) + sin(θ)
200
+ 2
201
+ Γ(v − z, φ)
202
+ = sin2(θ
203
+ 2)(v − z) + sin(θ)
204
+ 2
205
+ Γ(v − z, φ)
206
+ (1.14)
207
+ for all φ ∈ [0, 2π), where
208
+ Γ(v − z, φ) = I(v − z) cos(φ) + J(v − z) sin(φ)
209
+ and
210
+ v−z
211
+ |v−z|, I(v−z)
212
+ |v−z| , J(v−z)
213
+ |v−z| form an orthogonal basis. It follows in particular that
214
+ � 2π
215
+ 0
216
+ Γ(v − z, φ)dφ = 0.
217
+ (1.15)
218
+ In order to study solutions to the Boltzmann equation it is feasible to study
219
+ continuity properties of (u − v, n)n in u, v for fixed θ, φ. However, it was already
220
+ pointed out by Tanaka that (u, v) �−→ (u−v, n)n cannot be smooth. To overcome
221
+ this problem Tanaka introduced in Lemma 3.1 of [18] another transformation of
222
+ parameters, which describes a rotation around the longitude angle, is bijective and
223
+ has Jacobian 1. As a consequence of this transformation φ0 he proved following
224
+ Lemma 1.1 (see also Lemma 2.6 in [16]).
225
+ Lemma 1.1. [18][10] There exists a measurable function φ0 : R12 → (0, 2π] such
226
+ that
227
+ |Γ(v − z, φ) − Γ(v′ − z′, φ + φ0(z, v, z′, v′))| ≤ 3|z − v − (z′ − v′)|
228
+ (1.16)
229
+ 5
230
+
231
+ and hence
232
+ |α(z, v, θ, φ) − α(z′, v′, θ, φ + φ0(z, v, z′, v′))| ≤ 2θ(|z − z′| + |v − v′|)
233
+ (1.17)
234
+ and
235
+ |α(z, v, θ, φ)| ≤ 2θ(|z| + |v|)
236
+ (1.18)
237
+ Moreover by his transformation [18] (see also [10]), Section 3) and using (1.14)
238
+ Tanaka proved the following inequality:
239
+ � π
240
+ 0
241
+ ���
242
+ � 2π
243
+ 0
244
+ α(z, v, θ, φ) − α(z′, v′, θ, φ)dφ
245
+ ��� Q(dθ)
246
+ ≤ C(|z − z′| + |v − v′|).
247
+ (1.19)
248
+ where by an abuse of notation we use the same symbol C > 0 in (1.13) and (1.19),
249
+ even though the constants are different.
250
+ Let {f(t, x, z)}t∈R0
251
+ + be a collection of densities on (R3 × R3, B(R3 × R3)). Let
252
+ us introduce the operator Qt(f, f)(·) defined through the right side of equation
253
+ (1.10)
254
+ Qt(f, f)(ψ) :=
255
+
256
+ R6 f(t, x, z)Lfψ(x, z)dxdz
257
+ (1.20)
258
+ It is easy to verify that
259
+ Qt(f, f)(ψ) = 0
260
+ for
261
+ ψ(x, z) = a + (b, z) + c|z|2
262
+ (1.21)
263
+ ∀ a, c ∈ R , b ∈ R3. (For a rigorous proof see Chapter II.7 [5] or [7], [4].)
264
+ The integral form of equation (1.10) corresponds to
265
+
266
+ R6 ψ(x, z)f(t, x, z)dxdz =
267
+
268
+ R6 ψ(x, z)f(0, x, z)dxdz
269
+ +
270
+ � t
271
+ 0
272
+
273
+ R6 f(t, x, z){(z, ∇xψ(x, z)) + Lfψ(x, z)}dxdzds,
274
+ (1.22)
275
+ It is worthwhile to note that if a second collection of densities {g(t, x, z)}t∈R0
276
+ + on
277
+ (R3 × R3, B(R3 × R3)) is given, then
278
+ QS
279
+ t (f, g)(ψ) = 0
280
+ for
281
+ ψ(x, z) = a + (b, z) + c|z|2
282
+ (1.23)
283
+ ∀ a, c ∈ R , b ∈ R3 with the operator QS
284
+ t defined through
285
+ QS
286
+ t (f, g)(·) := Qt(f, g)(·) + Qt(g, f)(·)
287
+ (1.24)
288
+ 6
289
+
290
+ with
291
+ Qt(f, g)(ψ) :=
292
+
293
+ R6 g(t, x, z)Lf ψ(x, z)dxdz.
294
+ (1.25)
295
+ The following Povzner type inequality is essentially contained in [15, Lemma 3.6].
296
+ (See also [7], Theorem 6.2.1 and Appendix B of Chapter 6 for p ≥ 2 and references
297
+ there.)
298
+ Lemma 1.2. For all θ ∈ (0, π], p ≥ 2 and γ ∈ (0, 1],
299
+ � 2π
300
+ 0
301
+
302
+ ⟨z + α(z, v, θ, φ)⟩2p + ⟨v − α(z, v, θ, φ)⟩2p − ⟨z⟩2p − ⟨v⟩2p�
303
+
304
+ ≤ −sin2(θ)
305
+ 2
306
+
307
+ ⟨v⟩2p + ⟨z⟩2p�
308
+ + Cp sin2(θ)
309
+ ⌊ p+1
310
+ 2 ⌋
311
+
312
+ k=1
313
+
314
+ ⟨v⟩2k⟨z⟩2p−2k + ⟨v⟩2p−2k⟨z⟩2k�
315
+ ,
316
+ where ⟨v⟩ := (1 + |v|2)
317
+ 1
318
+ 2 , ⌊x⌋ ∈ Z is defined by ⌊x⌋ ≤ x < ⌊x⌋ + 1 and Cp > 0 is
319
+ some constant.
320
+ Using conservation laws and Lemma 1.2, it can be proven that if {f(t, x, u)}t∈[0,T]
321
+ is a weak solution of the Boltzmann equation in [0, T], with initial finite second
322
+ moment, i.e.
323
+
324
+ R6 |z|2f(0, x, z)dxdz < ∞, then for all p ≥ 1
325
+
326
+ R6 |z|pf(t, x, z)dxdz < ∞
327
+ ∀t ∈ [0, T].
328
+ (1.26)
329
+ For a proof we refer the reader to [15, Theorem 3.6].
330
+ Let {µt(dx, dz)}t∈R0
331
+ + be a collection of probabilities on (R3 × R3, B(R3 × R3)).
332
+ Let us define the operator
333
+ Qt(f, µ)(ψ) :=
334
+
335
+ R6 Lfψ(x, z)µt(dx, dz).
336
+ (1.27)
337
+ acting on all ψ for which the integral on the right side is finite.
338
+ Lemma 1.3.
339
+ Qt(f, µ)(|z|2)
340
+ =
341
+
342
+ R9×Ξ
343
+ (|v|2 − |z|2)σ(|z − v|) sin2(θ
344
+ 2)Q(dθ)dφf(t, x, v)dvµt(dx, dz)
345
+ (1.28)
346
+ Proof.
347
+ Qt(f, µ)(|z|2) =
348
+
349
+ R6 Lf|z|2µt(dx, dz)
350
+ (1.29)
351
+ =
352
+
353
+ R9×Ξ
354
+ (|z⋆|2 − |z|2)σ(|z − v|)Q(dθ)dφf(t, x, v)dvµt(dx, dz).
355
+ 7
356
+
357
+ Moreover,
358
+ Qt(f, µ)(|z|2) =
359
+
360
+ R9×Ξ
361
+ (|z⋆|2 + |v⋆|2 − |z|2 − |v|2)σ(|z − v|)Q(dθ)dφf(t, x, v)dvµt(dx, dz)
362
+
363
+
364
+ R9×Ξ
365
+ (|v⋆|2 − |v|2)σ(|z − v|)Q(dθ)dφf(t, x, v)dvµt(dx, dz)
366
+ = −
367
+
368
+ R9×Ξ
369
+ (|v⋆|2 − |v|2)σ(|z − v|)Q(dθ)dφf(t, x, v)dvµt(dx, dz).
370
+ (1.30)
371
+ where in the last equality we used that the kinetic energy is conserved during the
372
+ elastic collision, see (1.3).
373
+ Combining equation (1.29) and (1.30), we obtain
374
+ Qt(f, µ)(|z|2) =
375
+ 1
376
+ 2
377
+
378
+ R9×Ξ
379
+ (|z⋆|2 − |z|2 − (|v⋆|2 − |v|2)σ(|z − v|)Q(dθ)dφf(t, x, v)dvµt(dx, dz)
380
+ = 1
381
+ 2
382
+
383
+ R9×Ξ
384
+ (|z|2 + 2(z, α) + |α|2 − |z|2) − (|v|2 − 2(v, α) + |α|2 − |v|2)
385
+ × σ(|z − v|)Q(dθ)dφf(t, x, v)dvµt(dx, dz)
386
+ =
387
+
388
+ R9×Ξ
389
+ (z + v, α)σ(|z − v|)Q(dθ)dφf(t, x, v)dvµt(dx, dz),
390
+ (1.31)
391
+ Using the parametrization (1.14) for α = α(z, v, θ, φ) and (1.15) we obtain
392
+ Qt(f, µ)(|z|2) =
393
+ +
394
+
395
+ R9×Ξ
396
+ (z + v, v − z) sin2(θ
397
+ 2)σ(|z − v|)Q(dθ)dφf(t, x, v)dvµt(dx, dz)
398
+ = −
399
+
400
+ R9×Ξ
401
+ (|z|2 − |v|2) sin2(θ
402
+ 2)σ(|z − v|)Q(dθ)dφf(t, x, v)dvµt(dx, dz)
403
+ 2
404
+ The Boltzmann process
405
+ We use the following notation throughout the paper. U0 = D × [0, π) × (0, 2π].
406
+ Let {f(t, x, v)}t∈R0
407
+ + be a collection of densities on (R3 × R3, B(R3 × R3)). Then
408
+ m(t, v) denotes the marginal density of velocity v at time t, i.e.
409
+ m(t, v) :=
410
+
411
+ R3 f(t, x, v)dx so that f(t, x|v)m(t, v) := f(t, x, v), upon disintagration of mea-
412
+ sures.
413
+ 8
414
+
415
+ Hypotheses B: We assume that t → f(t, x, v) is differentiable for each x, v
416
+ ∈ R3 fixed, and satisfies
417
+ B0. |∂f
418
+ ∂t | is bounded on any compact subset of R0
419
+ + × R6.
420
+ B1.
421
+ ∂f
422
+ ∂t (t, ·) ∈ L1(R6),
423
+ ∀t ∈ R0
424
+ +,
425
+ B2. supx∈R3
426
+
427
+ R3 |u|1+γf(s, x, u)du ∈ C([0, T])
428
+ ∀ T > 0.
429
+ B3. supx∈R3
430
+
431
+ R3 |u|1+γ ∂
432
+ ∂tf(t, x, u)du ∈ L1([0, T])
433
+ ∀ T > 0.
434
+ Theorem 2.1. Let {f(t, x, v)}t∈R0
435
+ + be a collection of densities which satisfies
436
+ hypothesis B. Suppose hypothesis A hold.
437
+ Let X0 and Z0 be R3- valued ran-
438
+ dom variables. Suppose that for any fixed T > 0 there exists a stochastic basis
439
+ (Ω, F, (Ft)t∈[0,T], P), an adapted process (Xt, Zt)t∈[0,T] with values on D × D,
440
+ which has time marginals with density f(t, x, u), and such that it satisfies a.s.
441
+ the following stochastic equation for t ∈ [0, T]:
442
+
443
+
444
+
445
+
446
+
447
+
448
+
449
+
450
+
451
+ Xt = X0 +
452
+ � t
453
+ 0
454
+ Zsds
455
+ Zt = Z0 +
456
+ � t
457
+ 0
458
+
459
+ U0×R0
460
+ +
461
+ α(Zs, vs, θ, φ)1[0, σ(|Zs−vs|)f(s,Xs|vs)](r)dN,
462
+ (2.1)
463
+ where in the above equation, dN := N(dv, dθ, dφ, dr, ds) is a Poisson random
464
+ measure with compensator m(s, v)dvQ(dθ)dφdsdr. Then (Xt, Zt)t∈[0,T] is a Boltz-
465
+ mann process.
466
+ Proof. From (1.13) it follows for each T > 0
467
+ � T
468
+ 0
469
+ E[
470
+
471
+ U0×R0
472
+ +
473
+ |α(Zs, vs, θ, φ)|1[0, σ(|Zs−vs|)f(s,Xs|vs)](r)m(s, v)dvQ(dθ)dφdr]ds
474
+ =
475
+ � T
476
+ 0
477
+ E[
478
+
479
+ U0
480
+ |ˆα(Zs, vs, θ, φ)|f(s, Xs, v)dvQ(dθ)dφ]ds
481
+ ≤ C
482
+ � T
483
+ 0
484
+
485
+ R9(|z|1+γ + |v|1+γ)f(s, x, z)f(s, x, v)dxdzdvds,
486
+ ≤ 2C
487
+ � T
488
+ 0
489
+ sup
490
+ x∈R3
491
+
492
+ R6
493
+
494
+ |z|1+γf(s, x, z)dz
495
+
496
+ f(s, x, v)dvdxds < ∞.
497
+ for some constant C > 0. In the above estimates we have used that the function
498
+ f(t) is the probability density of the process (Xt, Zt), as well the assumption A2
499
+ and B2. It follows that we can apply the Itˆo formula to (Xs, Zs)s∈R+ [17]. In
500
+ 9
501
+
502
+ fact let t, ∆t > 0, ψ ∈ C2
503
+ 0(R3 × R3), then
504
+ ψ(Xt+∆t, Zt+∆t)
505
+ = ψ(Xt, Zt) +
506
+ � t+∆t
507
+ t
508
+ (Zs, ∇xψ(Xs, Zs))ds
509
+ +
510
+ � t+∆t
511
+ t
512
+
513
+ U0×R+
514
+ 0
515
+ {ψ(Xs, Zs + α(Zs, vs, θ, φ)1[0, σ(|Zs−vs|)f(s,Xs|vs)](r)) − ψ(Xs, Zs)}dN
516
+ It follows
517
+ E[ψ(Xt+∆t, Zt+∆t) − ψ(Xt, Zt)] =
518
+ E
519
+ �� t+∆t
520
+ t
521
+ (Zs, ∇xψ(Xs, Zs))ds
522
+
523
+ +
524
+ E
525
+
526
+
527
+ � t+∆t
528
+ t
529
+
530
+ U0
531
+ {ψ(Xs, Zs+ α(Zs, vs, θ, φ))−ψ(Xs, Zs)}σ(|Zs−vs|)f(s, Xs,vs)dvQ(dθ)dφds
532
+
533
+
534
+ Upon dividing by ∆t on both sides, we obtain
535
+ lim
536
+ ∆t↓0
537
+ 1
538
+ ∆t
539
+
540
+ R6 ψ(x, u){f(t + ∆t, x, u) − f(t, x, u)}dxdu
541
+ = lim
542
+ ∆t↓0
543
+ 1
544
+ ∆t
545
+ � t+∆t
546
+ t
547
+
548
+ R6(u, ∇xψ(x, u))f(s, x, u)dxduds +
549
+ lim
550
+ ∆t↓0
551
+ 1
552
+ ∆t
553
+ � t+∆t
554
+ t
555
+
556
+ R6×R3×[0,π)×(0,2π]
557
+ {ψ(x, u + α(u, v, θ, φ)) − ψ(x, u)}
558
+ × σ(|u − v|)f(s, x, v)f(s, x, u)dvQ(dθ)dφdxduds
559
+ (2.2)
560
+ Letting ∆t → 0 in every term of (2.2) we obtain (1.10). Indeed, for e.g., the
561
+ second term on the right side of (2.2) and prove the continuity of the function
562
+ g(s) :=
563
+
564
+ R6×R3×[0,π)×(0,2π]{ψ(x, u + α(u, v, θ, φ)) − ψ(x, u)}
565
+ ×σ(|u − v|)f(s, x, v)f(s, x, u)dvQ(dθ)dφdxdu
566
+ Since
567
+ {ψ(x, u + α(u, v, θ, φ)) − ψ(x, u)} ≃ ∇uψ(x, z)α(u, v, θ, φ)
568
+ with (x.z) ∈ K compact set, and
569
+ |α(u, v, θ, φ)|σ(|u − v|) ≤ |u − v|1+γ| sin(θ
570
+ 2)|,
571
+ by denoting with F a compact set in R3 which includes all projections x of
572
+ (x.z) ∈ K, it follows that
573
+ |g(s) − g(s0)| ≤ C
574
+
575
+ F ×R6 |f(s, x, u)f(s, x, v) − f(s0, x, u)f(s0, x, v)|
576
+ ×(|u|γ+1 + |v|γ+1)dxdudv,
577
+ (2.3)
578
+ 10
579
+
580
+ with
581
+ C := ∥∇uψ∥∞2π
582
+ � π
583
+ 0
584
+ θQ(dθ)
585
+ We split the integral on the right side of (2.3) into two terms, one with |u|γ+1
586
+ (resp. |u|γ+1), and get
587
+
588
+ F ×R6 |f(s, x, u)f(s, x, v) − f(s0, x, u)f(s0, x, v)||u|γ+1dxdudv
589
+ =
590
+
591
+ F ×R6 |f(s, x, u)f(s, x, v) − f(s, x, u)f(s0, x, v)||u|γ+1dxdudv
592
+ +
593
+
594
+ F ×R6 |f(s, x, u)f(s0, x, v) − f(s0, x, u)f(s0, x, v)||u|γ+1dxdudv
595
+ = J1(s) + J2(s)
596
+ (2.4)
597
+ where J1(s) (resp. J2(s)) is the first (resp. second) term on the right side of
598
+ (2.4).
599
+ J1(s) =
600
+
601
+ F ×R6 |u|γ+1f(s, x, u)|
602
+ � s
603
+ s0
604
+ ∂f
605
+ ∂r (r, x, v)dr|dxdudv
606
+
607
+
608
+ supx∈R3
609
+
610
+ R3 |u|γ+1f(s, x, u)du
611
+ � � s
612
+ s0
613
+
614
+ R6 |∂f
615
+ ∂r (r, x, v)|dxdvdr
616
+ By B1 and B2 lims→s0 J1(s) = 0.
617
+ Let us consider J2(s).
618
+ J2(s) =
619
+
620
+ F ×R6 |u|γ+1f(s0, x, v)|
621
+ � s
622
+ s0
623
+ ∂f
624
+ ∂r (r, x, u)dr|dxdudv
625
+
626
+ � s
627
+ s0
628
+
629
+ F ×R3
630
+ ��
631
+ R3 |u|γ+1|∂f
632
+ ∂r (r, x, u)|du
633
+
634
+ f(s0, x, v)dxdvdr
635
+ Since supx∈R3
636
+
637
+ R3 |u|γ+1|∂f
638
+ ∂r (r, x, u)|du is integrable in [s0, s] by B3, we obtain
639
+ lims→s0 J2(s) = 0.
640
+ Likewise, and without any changes in the arguments it follows
641
+ lim
642
+ s→s0 C
643
+
644
+ F ×R6 |f(s, x, u)f(s, x, v) − f(s0, x, u)f(s0, x, v)||v|γ+1dxdudv = 0
645
+ Hence lims→s0 g(s) = g(s0), so that g is a continuous function and
646
+ lim
647
+ ∆t↓0
648
+ 1
649
+ ∆t
650
+ � t+∆t
651
+ t
652
+ g(s)ds = g(t).
653
+ Note that in the above arguments we have taken s > s0 for simplicity. One may
654
+ also take s0 > s.
655
+ Theorem 2.1 motivates the following Definition.
656
+ Definition 2.1. Let {f(t, x, v)}t∈R0
657
+ + be a collection of densities satisfying Hy-
658
+ pothesis B. Suppose that for any fixed T > 0, there exists a stochastic basis
659
+ (Ω, F, (Ft)t∈[0,T], P) and an adapted process (Xt, Zt)t∈[0,T] with values on D × D
660
+ such that
661
+ 11
662
+
663
+ i) (Xt, Zt)t∈[0,T] has time marginals with density f(t, x, u), for t ∈ [0, T],
664
+ ii) (Xt, Zt)t∈[0,T] is a solution of the McKean -Vlasov SDE (2.1).
665
+ Then we say that “the McKean -Vlasov equation (2.1) with density functions
666
+ {f(t, x, v)}t∈R0
667
+ + is associated to the the Boltzmann equation (1.1)”.
668
+ If the above property holds for T ∈ [0, S] with S > 0, then the McKean -Vlasov
669
+ SDE (2.1) with density functions {f(t, x, v)}t∈[0,S] is associated to the Boltzmann
670
+ equation (1.1) up to time S.
671
+ Remark 2.1. Let us assume hypothesis A. From Theorem 2.1 it follows that
672
+ any stochastic process (Xt, Zt)t∈[0,T] solving a McKean -Vlasov equation (2.1)
673
+ associated to the Boltzmann equation (1.10) is (according to Definition 1.2) a
674
+ Boltzmann process.
675
+ The Boltzmann equation (1.10) is hence the Kolmogorov
676
+ equation associated to the McKean -Vlasov equation (2.1).
677
+ 3
678
+ Existence of the Boltzmann process
679
+ In Theorem 2.1 we proved that any process (Xt, Zt)t∈[0,T] solving the McKean
680
+ -Vlasov equation (2.1) associated to (1.10) in [0, T] is a Boltzmann process. In
681
+ this section we analyze the following: given a strong solution {f(t, x, z)}t∈[0,T] of
682
+ the Boltzmann equation (1.1), we find sufficient conditions for the existence of
683
+ a solution of the McKean -Vlasov equation (2.1) with density {f(t, x, z)}t∈[0,T].
684
+ The solution process (Xt, Zt)t∈[0,T] is then a Boltzmann process.
685
+ We present an overview on the construction of Boltzmann processes. We briefly
686
+ outline the construction of the process (Xt, Zt)t∈[0,T] under suitable conditions
687
+ before stating the main result on Boltzmann processes. The proofs of the ensuing
688
+ results on the existence of a solution to a certain linearized stochastic system will
689
+ appear in a separate paper [1].
690
+ 3.1
691
+ Construction of a solution of a SDE defined through a col-
692
+ lection of densities solving (1.1)
693
+ In this paragraph, we assume that {f(t, x, z)}t∈[0,T] is a collection of densities
694
+ which solves the Boltzmann equation (1.1) and satisfies the following conditions:
695
+ B4. sups∈[0,T],x∈R3
696
+
697
+ R3 f(s, x, v)dv ≤ CT < ∞.
698
+ 12
699
+
700
+ B5. There exists for every K > 0 a constant CK
701
+ T > 0 such that
702
+ sup
703
+ s∈[0,T],|x|≤K
704
+
705
+ R3 max(1, |v|1+γ)|∇xf(s, x, v)|dv ≤ CK
706
+ T < ∞.
707
+ B6. sups∈[0,T],x∈R3
708
+
709
+ R3 |v|γ+2f(s, x, v)dv ≤ cT < ∞.
710
+ On any fixed filtered probability space (Ω, F, (Ft)t∈[0,T], P) satisfying the usual
711
+ conditions, let ST := S1
712
+ T (Rd) denote the linear space of all adapted c`adl`ag pro-
713
+ cesses (Xt)t∈[0,T] with values on Rd equipped with norm
714
+ ∥X∥S1
715
+ T := E[ sup
716
+ s∈[0,T]
717
+ |Xs|].
718
+ (3.1)
719
+ Under hypotheses B4 - B6, and adopting the notation f(s, x, v) = f(s, x | v)m(s, v)
720
+ upon disintegration of measures, we first prove the existence of a weak solution
721
+ to the stochastic system
722
+ Xt = X0 +
723
+ � t
724
+ 0
725
+ Zsds,
726
+ ∀t ∈ [0, T]
727
+ (3.2)
728
+ Zt = Z0 +
729
+ � t
730
+ 0
731
+
732
+ U0×R+
733
+ 0
734
+ α(Zs, vs, θ, φ)1[0, σ(|Zs−vs|)f(s,Xs|vs)](r)dN
735
+ ∀t ∈ [0, T]
736
+ (3.3)
737
+ for t ∈ [0, T] where dN := N(dv, dθ, dφ, dr, ds) with its compensator given by
738
+ m(s, v)dvQ(dθ)dφdsdr with values in S1
739
+ T := S1
740
+ T (R3 × R3).
741
+ Here we do not assume that (3.3) is of McKean -Vlasov type.
742
+ First, we recall the definition of weak solutions in the context of stochastic analysis
743
+ [14].
744
+ Definition 3.1. A ”weak solution” of equation ((3.3), (3.2)) in the time inter-
745
+ val [0, T] is a triplet ((Ω, F, (Ft)t∈[0,T], P), N(dv, dθ, dφ, dr, ds), (Xt, Zt)t∈[0,T])
746
+ for which the following properties hold:
747
+ • (Ω, F, (Ft)t∈[0,T], P) is a stochastic basis;
748
+ • N(dv, dθ, dφ, dr, ds) is an adapted Poisson random measure with compen-
749
+ sator m(s, v)dvQ(dθ)dφdsdr;
750
+ • (X·, Z·) := (Xt, Zt)t∈[0,T]) is an adapted c`adl`ag stochastic process with val-
751
+ ued in Rd × Rd which satisfies ((3.3), (3.2)) P -a.s.
752
+ The existence of solutions to the stochastic system (3.3),(3.2) is stated in the
753
+ following theorem, proven in [1].
754
+ 13
755
+
756
+ Theorem 3.1. Let γ = 1 and Hypothesis A be satisfied.
757
+ Let T > 0 and
758
+ {f(t, x, v)}t∈[0,T] be a collection of densities which satisfy f(t, x, u) ∈ C([0, T] ×
759
+ R6) and Hypotheses B. Let the initial distribution of (X0, Z0) admit finite second
760
+ moment. There exists a weak solution
761
+ ((Ω, F, (Ft)t∈[0,T], P), N(dv, dθ, dφ, dr, ds), (Xt, Zt)t∈[0,T])
762
+ of (3.2), (3.3) such that (X·, Z·) ∈ S1
763
+ T . Moreover,
764
+ sup
765
+ t∈[0,T]
766
+ E[|Xt|2] + sup
767
+ t∈[0,T]
768
+ E[|Zt|2] < ∞
769
+ (3.4)
770
+ We remark that the estimate (3.4) is proven by symmetry arguments similar to
771
+ those appearing in the proof of Lemma 1.2. The form of the stochastic system
772
+ (3.2), (3.3) with the process taking values in R6 at each t ∈ [0, T], one obtains
773
+ that the solution lies in D × D.
774
+ 3.2
775
+ Construction of Boltzmann processes with densities satisfy-
776
+ ing (1.1)
777
+ We recall the concept of relative entropy which plays a key role in the proof of
778
+ the following theorem. Recall that for any two probability measures µ, ν on a
779
+ common measurable space (X, X), the relative entropy of ν with respect to µ,
780
+ denoted R(ν || µ), is defined by
781
+ R(ν || µ) =
782
+
783
+ X
784
+
785
+ log dν
786
+
787
+
788
+
789
+ if ν is absolutely continuous with respect to µ. Otherwise, we set R(ν || µ) = ∞.
790
+ The following Lemma is well known.
791
+ Lemma 3.2. Let µ, ν be two probability measures on a measurable space (X, X).
792
+ Then R(ν || µ) ≥ 0 and R(ν || µ) = 0 if and only if µ = ν.
793
+ We assume that {f(t, x, z)}t∈[0,T] is a collection of densities which solves the
794
+ Boltzmann equation (1.1) and satisfies hypotheses B as well as the following
795
+ condition:
796
+ C1. The densities f(t, x, z) and g(t, x, z) are in C1,2([0, T] × R6) and are strictly
797
+ positive-valued functions with g log g, g log f ∈ L1(R6) for each t ∈ [0, T] and
798
+ lim|x|→∞ g(t, x, z) = 0 and g(0, x, z) = f(0, x, z) a.s.
799
+ Theorem 3.3. Let (Xt, Zt)t∈[0,T] be a stochastic process that solves the stochastic
800
+ system (3.2), (3.3). Suppose that (Xt, Zt)t∈[0,T] has time marginals with density
801
+ g(t, x, z), for each t ∈ [0, T]. Suppose that {f(t, x, z)}t∈[0,T] and {g(t, x, z)}t∈[0,T]
802
+ satisfy hypotheses B0 − B6 and C1. Then g(t, x, z) = f(t, x, z)
803
+ a.e. for all
804
+ t ∈ [0, T].
805
+ 14
806
+
807
+ Proof. We will write R(g || f) for the relative entropy of the measure with prob-
808
+ ability density g with respect to the measure with probability density f. The
809
+ theorem is proved by establishing the following equality.
810
+ Rt(g|f) :=
811
+
812
+ R6 log
813
+ � g(t.x.z)
814
+ f(t, x, z)
815
+
816
+ g(t, x, z)dxdz = 0
817
+ ∀t ∈ [0, T]
818
+ (3.5)
819
+ We first apply the Itˆo formula [13] to log(g(t, Xt, Zt)), where (Xt, Zt)t∈[0,T] solves
820
+ (3.3), (3.2) and take expectation to obtain
821
+
822
+ R6 log (g(t, x, z))g(t, x, z)dxdz −
823
+
824
+ R6 log (g(0, x, z))g(0, x, z)dxdz
825
+ =
826
+ � t
827
+ 0
828
+
829
+ R6×R3×Ξ
830
+ {log (g(s, x, z⋆)) − log (g(s, x, z))}
831
+ × σ(|z − v|)f(s, x, v)g(s, x, z)Q(dθ)dφdvdxdzds.
832
+ (3.6)
833
+ Indeed, in arriving at (3.6), we have used the following two calculations:
834
+ (i)
835
+ � t
836
+ 0
837
+
838
+ R6
839
+
840
+ ∂s log (g(s, x, z))g(s, x, z)dxdzds =
841
+ � t
842
+ 0
843
+
844
+ R6
845
+
846
+ ∂sg(s, x, z)dxdzds
847
+ =
848
+
849
+ R6(g(t, x, z) − g(0, x, z))dxdz = 0
850
+ since g is a probability density.
851
+ (ii)
852
+
853
+ R6 z · ∇x log (g(s, x, z))g(s, x, z)dxdzds =
854
+
855
+ R6 z · ∇xg(s, x, z)dxdzds = 0
856
+ where the last equality is obtained by integrating and using the condition that
857
+ lim
858
+ |x|→∞g(t, x, z) = 0. Likewise, one obtains upon taking expectation and recall-
859
+ ing that {f(t, x, z)}t∈[0,T] is a collection of densities which solves the Boltzmann
860
+ equation (1.1),
861
+
862
+ R6 log (f(t, x, z))g(t, x, z)dxdz −
863
+
864
+ R6 log (f(0, x, z))g(0, x, z)dxdz
865
+ =
866
+ � t
867
+ 0
868
+
869
+ R6
870
+ Q(f, f)(s, x, z)
871
+ f(s, x, z)
872
+ g(s, x, z)dxdzds
873
+ +
874
+ � t
875
+ 0
876
+
877
+ R6×R3×Ξ
878
+ {log (f(s, x, z⋆)) − log (f(s, x, z))}
879
+ × σ(|z − v|)f(s, x, v)g(s, x, z)Q(dθ)dφdvdxdzds
880
+ =
881
+ � t
882
+ 0
883
+
884
+ R9×Ξ
885
+ {g(s, x, z⋆)
886
+ f(s, x, z⋆) − g(s, x, z)
887
+ f(s, x, z)}
888
+ × σ(|z − v|)f(s, x, v)f(s, x, z)Q(dθ)dφdvdxdzds ,
889
+ +
890
+ � t
891
+ 0
892
+
893
+ R6×R3×Ξ
894
+ {log (f(s, x, z⋆)) − log (f(s, x, z))}
895
+ × σ(|z − v|)f(s, x, v)g(s, x, z)Q(dθ)dφdvdxdzds.
896
+ (3.7)
897
+ 15
898
+
899
+ It is worthwhile to note that the last equality in the above display results upon
900
+ rewriting
901
+ � t
902
+ 0
903
+
904
+ R6
905
+ Q(f, f)(s, x, z)
906
+ f(s, x, z)
907
+ g(s, x, z)dxdzds
908
+ =
909
+ � t
910
+ 0
911
+
912
+ R9×Ξ
913
+ {f(s, x, z⋆)f(s, x, v⋆) − f(s, x, z)f(s, x, v)}
914
+ × σ(|z − v|) g(s, x, z)
915
+ f(s, x, z)Q(dθ)dφdvdxdzds
916
+ =
917
+ � t
918
+ 0
919
+
920
+ R9×Ξ
921
+ {g(s, x, z⋆)
922
+ f(s, x, z⋆) − g(s, x, z)
923
+ f(s, x, z)}
924
+ × σ(|z − v|)f(s, x, v)f(s, x, z)Q(dθ)dφdvdxdzds ,
925
+ by using Proposition 1.1.
926
+ Combining equations (3.6) with (3.7) we obtain that
927
+ Rt(g|f) =
928
+
929
+ R6 log (g(t, x, z))g(t, x, z)dxdz −
930
+
931
+ R6 log (f(t, x, z))g(t, x, z)dxdz
932
+ =
933
+ � t
934
+ 0
935
+
936
+ R9×Ξ
937
+ � g(s, x, z)
938
+ f(s, x, z){1 + log
939
+ �g(s, x, z⋆)/f(s, x, z⋆)
940
+ g(s, x, z)/f(s, x, z)
941
+
942
+ } − g(s, x, z⋆)
943
+ f(s, x, z⋆)
944
+
945
+ × σ(|z − v|)f(s, x, v)f(s, x, z)Q(dθ)dφdvdxdzds
946
+ (3.8)
947
+ Transforming (3.8) in the equivalent equation below, and recalling that for x ≥ 0
948
+ we have 1 + log (x) − x ≤ 0, we easily see that
949
+ Rt(g|f) =
950
+ � t
951
+ 0
952
+
953
+ R9×Ξ
954
+
955
+ 1 + log
956
+ �g(s, x, z⋆)/f(s, x, z⋆)
957
+ g(s, x, z)/f(s, x, z)
958
+
959
+ − g(s, x, z⋆)/f(s, x, z⋆)
960
+ g(s, x, z)/f(s, x, z)
961
+
962
+ × g(s, x, z)
963
+ f(s, x, z)σ(|z − v|)f(s, x, v)f(s, x, z)Q(dθ)dφdvdxdzds
964
+ ≤ 0.
965
+ However, by Lemma 3.2, Rt(g|f) ≥ 0, and hence, Rt(g|f) = 0.
966
+ From Theorem 3.3 it follows that (Xt, Zt)t∈[0,T] in Theorem 3.3 solves the McKean-
967
+ Vlasov equation associated to the Boltzmann equation (1.1) and is a Boltzmann
968
+ process with densities {f(t, x, z)}t∈[0,T] up to time T.
969
+ Based on Theorem 3.1, the main result of this work is given below:
970
+ Theorem 3.4. Let Hypotheses A be satisfied and γ = 1. Assume that {f(t, x, u)}t∈[0,T]
971
+ is a collection of densities which solves the Boltzmann equation (1.1), and satis-
972
+ fies the hypotheses B0 − B6. Let the random vector (X0, Z0) have finite second
973
+ 16
974
+
975
+ moment. Suppose that the weak solution of the stochastic system (3.3), (3.2) has
976
+ its distribution that admits a probability density at each time t ∈ [0, T] given by
977
+ g(t, x, u). If condition C1 is satisfied by {f(t, x, u)}t∈[0,T] and {g(t, x, u)}t∈[0,T],
978
+ then the McKean-Vlasov equation (2.1) (that involves {f(t, x, u)}t∈[0,T]) has a
979
+ weak solution in [0, T] with values in D × D, and its Kolmogorov equation solves
980
+ equation (1.1).
981
+ Proof. The result follows from Theorem 3.1 and Theorem 3.3.
982
+ Acknowledgments: The authors are very thankful to Professor Errico Presutti
983
+ for suggesting that a given solution of the Boltzmann equation be used in order to
984
+ construct a Boltzmann process. The second author considers herself blessed for
985
+ having had the opportunity to write her Doctoral Thesis under the supervision
986
+ of Errico Presutti.
987
+ References
988
+ [1] S. Albeverio, B. R¨udiger, P. Sundar, Boltzmann processes and their construc-
989
+ tion. In preparation (2023).
990
+ [2] S. Albeverio, B. R¨udiger, P. Sundar, The Enskog Process, J. Stat. Phys.
991
+ 167(1), 90-122 (2017).
992
+ [3] Boltzmann, L.: Vorlesungen ¨uber Gastheorie. (1896) J. A. Barth, Leipzig,
993
+ Part I; Part II. (1898) transl. by S. B. Brush, Lectures on Gas Theory. Univ.
994
+ Calif. Press, Berkeley (1964).
995
+ [4] Bressan, A. : Notes on the Boltzmann equation. Lecture Notes for a Summer
996
+ Course given at S.I.S.S. A. 2005.
997
+ [5] Cercignani, C.: Theory and application of the Boltzmann Equation and its
998
+ Applications. Scottish Academic Press Edinburgh and london (1975).
999
+ [6] Cercignani C.: The Boltzmann Equation and its Applications. Springer Ver-
1000
+ lag, New York (1988).
1001
+ [7] Cercignani, C., Illner R., Pulvirenti M.: The Mathematical Theory of Dilute
1002
+ Gases. Applied Mathematical Sciences Vol. 106, Springer Verlag (1994).
1003
+ [8] Costantini, C., Marra, R.: Hydrodynamic limits for the Boltzmann process,
1004
+ J. Stat. Phys. (1-2), 67, 229–249 (1992).
1005
+ [9] Fournier N., Finiteness of entropy for the homogenous Boltzmann equation
1006
+ with measure initial condition, The Annals of Applied Probabilty Vol. 25. No
1007
+ 2. 860 -897 (2015).
1008
+ 17
1009
+
1010
+ [10] Fournier N., Mouhot C., On the Well -Posedness of the Spatially Homoge-
1011
+ nous Boltzmann Equation with a moderate Angular Singularity. Commun.
1012
+ Math. Phys. 289, 803 -824 (2009).
1013
+ [11] Friesen, M., R¨udiger, B., Sundar, P., The Enskog process for hard and soft
1014
+ potentials, Nonlinear Differential Equations and Applications, 26, Art. no. 20
1015
+ (42 pages) (2019).
1016
+ [12] Friesen, M., R¨udiger, B., Sundar, P., On uniqueness and stability for the
1017
+ Boltzmann–Enskog equation, Nonlinear Differential Equations and Applica-
1018
+ tions, 29, Art. no. 25 (25 pages) (2022).
1019
+ [13] Ikeda, N., Watanabe, S., Stochastic Differential Equations and Diffusion Pro-
1020
+ cesses (second edition), North-Holland Publishing Co., Amsterdam, Oxford,
1021
+ New York (1989).
1022
+ [14] Karatzas I., Shreve S.E.: Brownian motion and stochastic calculus (second
1023
+ edition). Graduate Texts in Mathematics 113. Springer Verlag, Berlin, New
1024
+ York (1991)
1025
+ [15] Lu, X., , Mouhot C.: On measure solutions of the Boltzmann equation, part
1026
+ I: moment production and stability estimates. J. Diff. Equ. 252 (4), 3305 -3363
1027
+ (2012)
1028
+ [16] Mandrekar V. , R¨udiger B.: Stochastic Integration in Banach spaces, Theory
1029
+ and Applications. Probability Theory and Stochastic Modelling, Springer,
1030
+ Berlin (2015).
1031
+ [17] R¨udiger, B., Ziglio, G.: Itˆo formula for stochastic integrals w.r.t. compen-
1032
+ sated Poisson random measures on separable Banach spaces. Stochastics 78
1033
+ (6), 377–410 (2006).
1034
+ [18] Tanaka,
1035
+ H.:
1036
+ Probabilistic treatment
1037
+ of the Boltzmann
1038
+ equation of
1039
+ Maxwellian molecules. Z. Wahr. verw. Gebiete 46, 67-105 (1978).
1040
+ [19] Tanaka, H.: Stochastic differential equations corresponding to the spatially
1041
+ homogeneous Boltzmann equation of Maxwellian and non cut-off type. J. Fac.
1042
+ Sci. Univ Tokyo, Sect. A, Math. 34, 351-369 (1987).
1043
+ [20] Villani, C.: A review of mathematical topics in collision kinetic theory. Hand-
1044
+ book of mathematical fluid dynamics, Vol. I. pages 71 -305. North -Holland,
1045
+ Amsterdam 2002.
1046
+ 18
1047
+
CtFAT4oBgHgl3EQftB7D/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
ENFKT4oBgHgl3EQfZy4X/content/2301.11804v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:768ed36b3e25168d4e33ae67eeb75aa2b93447e720f9327238112a2eab0b098b
3
+ size 496312
ENFKT4oBgHgl3EQfZy4X/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a57a59b28583f9002a227e61ca4290db248e5134a07b924eea9899d70c5e9318
3
+ size 4259885
ENFKT4oBgHgl3EQfZy4X/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80c44dd976077952167313ffd97436bf9ccb56b9e0a9fa9075b1d258439e68b4
3
+ size 125235
FdAyT4oBgHgl3EQfSvci/content/tmp_files/2301.00090v1.pdf.txt ADDED
@@ -0,0 +1,2719 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Four-body Semileptonic Charm Decays D → P1P2ℓ+νℓ Based on
2
+ SU(3) Flavor Analysis
3
+ Ru-Min Wang1,†,
4
+ Yi Qiao1,
5
+ Yi-Jie Zhang1,
6
+ Xiao-Dong Cheng2,§,
7
+ Yuan-Guo Xu1,♯
8
+ 1College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
9
+ 2College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
10
11
12
13
+ Motivated by the significant experimental progress in probing semileptonic decays D
14
+
15
+ P1P2ℓ+νℓ (ℓ = µ, e), we analyze the branching ratios of the D → P1P2ℓ+νℓ decays with the non-
16
+ resonant, the light scalar meson resonant and the vector meson resonant contributions in this work.
17
+ We obtain the hadronic amplitude relations between different decay modes by the SU(3) flavor
18
+ analysis, and then predict relevant branching ratios of the D → P1P2ℓ+νℓ decays by the present ex-
19
+ perimental data with 2σ errors. Most of our predicted branching ratios are consistent with present
20
+ experimental data within 2σ error bars, and others are consistent with the data within 3σ error
21
+ bars. We find that the branching ratios of the non-resonant decays D0 → π−K
22
+ 0ℓ+νℓ, π0K−ℓ+νℓ,
23
+ D+ → π+K−ℓ+νℓ, π0K
24
+ 0ℓ+νℓ, π+π−ℓ+νℓ, π0π0ℓ+νℓ, and D+
25
+ s
26
+ → K+K−ℓ+νℓ, K0K
27
+ 0ℓ+νℓ are on
28
+ the order of O(10−3 − 10−4).
29
+ The vector meson resonant contributions are dominant in the
30
+ D0 → π−K
31
+ 0ℓ+νℓ, π0K−ℓ+νℓ, π0π−ℓ+νℓ, D+ → π+K−ℓ+νℓ, π0K
32
+ 0ℓ+νℓ, π+π−ℓ+νℓ, and D+
33
+ s
34
+
35
+ K+K−ℓ+νℓ, K0K
36
+ 0ℓ+νℓ, K+π−ℓ+νℓ, K0π0ℓ+νℓ decays. The non-resonant, the vector meson reso-
37
+ nant and the scalar resonant contributions are all important in the D0 → ηπ−ℓ+νℓ decays. The
38
+ D0 → K−K0ℓ+νℓ, η′π−ℓ+νℓ and D+ → K
39
+ 0K0ℓ+νℓ, π0π0ℓ+νℓ, ηπ0ℓ+νℓ, η′π0ℓ+νℓ decays only receive
40
+ both the non-resonant and the scalar resonant contributions, and both contributions are important
41
+ in their branching ratios. According to our predictions, many decay modes could be observed in
42
+ the experiments like BESIII, LHCb and BelleII, and some decay modes might be measured in these
43
+ experiments in near future.
44
+ arXiv:2301.00090v1 [hep-ph] 31 Dec 2022
45
+
46
+ 2
47
+ I.
48
+ INTRODUCTION
49
+ Semileptonic heavy meson decays dominated by tree-level exchange of W-bosons in the SM are very important
50
+ processes in testing the stand model and in searching for the new physics beyond the stand model, for example, the
51
+ extraction of the Cabbibo-Kobayashi-Maskawa (CKM) matrix elements. Four-body semileptonic exclusive decays
52
+ D → P1P2ℓ+νℓ are generated by the c → s/dℓ+νℓ transitions, and they can receive contributions from the non-
53
+ resonant, the light scalar meson resonant and the vector meson resonant contributions, etc. Therefore, these decays
54
+ are also a good laboratory for probing the internal structure of light hadrons [1–3]. Some non-resonant D → P1P2ℓ+νℓ
55
+ decays, the light scalar meson resonant decays D → S(S → P1P2)ℓ+νℓ and the vector meson resonant decays D →
56
+ S(S → P1P2)ℓ+νℓ have been observed by BESIII, BABAR, CLEO and MARKIII, etc [4–11]. Present experimental
57
+ measurements give us an opportunity to additionally test theoretical approaches.
58
+ Experimental backgrounds of the semileptonic decays are cleaner than ones of the hadronic decays, and theoretical
59
+ description of the semileptonic exclusive decays are relatively simple. Since leptons do not participate in the strong
60
+ interaction, the weak and strong dynamics can be separated in these processes.
61
+ All the strong dynamics in the
62
+ initial and final hadrons is included in the hadronic transition form factors, which are important for testing the
63
+ theoretical calculations of the involved strong interaction. The form factors can be calculated, for examples, by the
64
+ chiral perturbation theory [12], the unitarized chiral perturbation theory [13, 14], the light-cone sum rules [15–17] and
65
+ the QCD factorization [18]. Nevertheless, due to our poor understanding of hadronic interactions, the evaluations
66
+ of the form factors are difficult and often plugged with large uncertainties. One needs to find ways to minimize the
67
+ uncertainties to extract useful information.
68
+ In the lack of reliable calculations, symmetries provide very important information for particle physics. SU(3)
69
+ flavor symmetry is a symmetry in QCD for strong interaction. From the perspective of the SU(3) flavor symmetry,
70
+ the leptonic part of the D → P1P2ℓ+νℓ decay is SU(3) flavor singlet, which makes no difference between different
71
+ decay modes with certain lepton (e or µ). The different hadronic parts (the hadronic amplitudes or the hadronic form
72
+ factors) of the D → P1P2ℓ+νℓ decays could be related by the SU(3) flavor symmetry without the detailed dynamics.
73
+ Nevertheless, the size of the hadronic amplitudes or the form factors can not be determined by itself in the SU(3)
74
+ flavor symmetry approach. However, if experimental data are enough, one may use the data to extract the hadronic
75
+ amplitudes or the form factors, which can be viewed as predictions based on symmetry, has a smaller dependency
76
+ on estimated form factors. Although the SU(3) flavor symmetry is only an approximate symmetry because up, down
77
+ and strange quarks have different masses, it still provides some very useful information about the decays. The SU(3)
78
+ flavor symmetry has been widely used to study hadron decays, for instance, b-hadron decays [19–32], c-hadron decays
79
+ [31–46] and light hadron decays [31, 47–52].
80
+ Although the SU(3) flavor symmetry works well in heavy hadron decays, the calculations of SU(3) flavor breaking
81
+ effects would play a key role in the precise theoretical predictions of the observables and a precise test of the the
82
+ unitarity of the CKM matrix. If up and down quark masses are neglected, a non-zero strange quark mass breaks
83
+ the SU(3) flavor symmetry down to the isospin symmetry. When up and down quark mass difference is kept, isospin
84
+ symmetry is also broken. Applications of the SU(3) flavor breaking approach on hadron decays can be found in Refs.
85
+
86
+ 3
87
+ [53–60]. The SU(3) flavor breaking effects due to the fact of ms ≫ mu,d will be considered in our analysis of the
88
+ non-resonant D → P1P2ℓ+νℓ decays.
89
+ Four body semileptonic decay D → P1P2ℓ+νℓ have been studied, for instance, in Refs. [13, 61–66]. In this work, we
90
+ will study the D → P1P2ℓ+νℓ decays with the SU(3) flavor symmetry/breaking. In three cases of the non-resonant
91
+ decays, the light scalar meson resonant decays and the vector meson resonant decays, we will firstly construct the
92
+ hadronic amplitude relations between different decay modes, use the available data to extract the hadronic amplitudes,
93
+ then predict the not-yet-measured modes for further tests in experiments, and finally analyze the contributions with
94
+ the non-resonance, the light scalar meson resonances and the vector meson resonances in the branching ratios.
95
+ This paper is organized as follows. In Sec. II, the expressions of the branching ratios are given. In Sec. III, we will
96
+ give our numerical results of the D → P1P2ℓ+ν decays with the non-resonant, the light scalar meson resonant and
97
+ the vector meson resonant contributions. Our conclusions are given in Sec. IV.
98
+ II.
99
+ Theoretical frame
100
+ A.
101
+ Decay branching ratios
102
+ The effective Hamiltonian for c → qiℓ+νℓ transition can be written as
103
+ Heff(c → qiℓ+νℓ) = GF
104
+
105
+ 2 Vcqi ¯qiγµ(1 − γ5)c ¯νℓγµ(1 − γ5)ℓ,
106
+ (1)
107
+ where GF is the Fermi constant, Vcqi is the CKM matrix element, and qi = d, s for i = 2, 3. The decay amplitude of
108
+ the D(p) → P1(k1)P2(k2)ℓ+(q1)νℓ(q2) decay can be divided into leptonic and hadronic parts
109
+ A(D → P1P2ℓ+νℓ) = ⟨P1(k1)P2(k2)ℓ+(q1)νℓ(q2)|Heff(c → qiℓ+νℓ)|D(p)⟩
110
+ (2)
111
+ = GF
112
+
113
+ 2 VcqiLµHµ,
114
+ (3)
115
+ where Lµ = ¯νℓγµ(1 − γ5)ℓ is leptonic charged current, and Hµ = ⟨P1(k1)P2(k2)|¯s/ ¯dγµ(1 − γ5)c|D(p)⟩ is hadronic
116
+ matrix element. The leptonic part Lµ is calculable using the perturbation theory, while the hadronic part Hµ are
117
+ encoded into the transition form factors. Following Refs. [18, 67], the D → P1P2 form factors are given as
118
+ ⟨P1(k1)P2(k2)|¯s/ ¯dγµc|D(p)⟩ = iF⊥
119
+ 1
120
+
121
+ k2 qµ
122
+ ⊥,
123
+ (4)
124
+ −⟨P1(k1)P2(k2)|¯s/ ¯dγµγ5c|D(p)⟩ = Ft
125
+
126
+
127
+ q2 + F0
128
+ 2
129
+
130
+ q2
131
+
132
+ λ
133
+
134
+ 0 + F∥
135
+ 1
136
+
137
+ k2
138
+ ¯kµ
139
+ ∥ ,
140
+ (5)
141
+ with
142
+
143
+ 0 = kµ − k · q
144
+ q2 qµ,
145
+ (6)
146
+ ¯kµ
147
+ ∥ = ¯kµ − 4(k · q)(q · ¯k)
148
+ λ
149
+ kµ + 4k2(q · ¯k)
150
+ λ
151
+ qµ,
152
+ (7)
153
+
154
+ ⊥ = 2ϵµαβγ qαkβ¯kγ
155
+
156
+ λ
157
+ ,
158
+ (8)
159
+
160
+ 4
161
+ where k ≡ k1+k2, q ≡ q1+q2, ¯k ≡ k1−k2, ¯q ≡ q2−q1, and λ = λ(m2
162
+ D, q2, k2) with λ(a, b, c) = a2+b2+c2−2ab−2bc−2ac.
163
+ In terms of the form factors, the differential branching ratio of the non-resonant D → P1P2ℓ+νℓ decays can be
164
+ written as [18]
165
+ dB(D → P1P2ℓ+ν)N
166
+ dq2 dk2
167
+ = 1
168
+ 2τD|N|2βℓ(3 − βℓ)|FA|2,
169
+ (9)
170
+ with
171
+ |N|2 = G2
172
+ F |Vcq|2 βℓq2�
173
+ λ(m2
174
+ D, q2, k2)
175
+ 3 · 210π5m3
176
+ D
177
+ with
178
+ βℓ = 1 − m2
179
+
180
+ q2 ,
181
+ |FA|2 = |F0|2 + 2
182
+ 3(|F∥|2 + |F⊥|2) +
183
+ 3m2
184
+
185
+ q2(3 − βℓ)|Ft|2,
186
+ (10)
187
+ where τM(mM) is lifetime(mass) of M particle. In this work, we ignore the small contributions of |Ft|2 term, which
188
+ is proportional to m2
189
+ ℓ. The corresponding limits of integration are given by (mP1 + mP2)2 ≤ k2 ≤ (mDq − mℓ)2
190
+ and m2
191
+ ℓ ≤ q2 ≤ (mDq −
192
+
193
+ k2)2. The calculations of the form factors F0, F∥, F⊥ and Ft are quite complicated, and
194
+ their specific expressions in the QCD factorization limit can be found in Ref. [18]. Nevertheless, we will not use
195
+ the specific expressions in this work, and we will relate the different hadronic decay amplitudes or the different form
196
+ factors between different decay modes by the SU(3) flavor symmetry/breaking, which are discussed in later Sec. II C.
197
+ Except for the non-resonant D → P1P2ℓ+νℓ decays, the resonant D → R(R → P1P2)ℓ+νℓ decays with the
198
+ scalar(R = S) resonance and the vector(R = V ) resonance are also studied in this work. In the case of the de-
199
+ cay widths of the resonances are very narrow, the resonant decay branching ratios respect a simple factorization
200
+ relation
201
+ B(D → Rℓ+νℓ, R → P1P2) = B(D → Rℓ+νℓ) × B(R → P1P2),
202
+ (11)
203
+ and this result is also a good approximation for wider resonances. Above Eq. (11) will be used in our analysis for the
204
+ scalar resonant D → S(S → P1P2)ℓ+νℓ decays and the vector resonant D → V (V → P1P2)ℓ+νℓ decays in Sec. III B
205
+ and III C, respectively. Relevant B(D → Rℓ+νℓ) and B(R → P1P2) are also obtained by the SU(3) flavor symmetry
206
+ in our later analysis.
207
+ B.
208
+ Meson multiplets
209
+ Before giving the hadronic amplitudes based on the SU(3) flavor analysis, we will collect the representations for the
210
+ multiplets of the SU(3) flavor group first in this subsection.
211
+ Charmed mesons containing one heavy c quark are flavor SU(3) anti-triplets
212
+ Di =
213
+
214
+ D0(c¯u), D+(c ¯d), D+
215
+ s (c¯s)
216
+
217
+ .
218
+ (12)
219
+ Light pseudoscalar meson (P) and vector meson (V ) octets and singlets under the SU(3) flavor symmetry of light
220
+ u, d, s quarks are [68]
221
+ P =
222
+
223
+
224
+
225
+
226
+
227
+ π0
228
+
229
+ 2 + η8
230
+
231
+ 6 + η1
232
+
233
+ 3
234
+ π+
235
+ K+
236
+ π−
237
+ − π0
238
+
239
+ 2 + η8
240
+
241
+ 6 + η1
242
+
243
+ 3
244
+ K0
245
+ K−
246
+ K
247
+ 0
248
+ − 2η8
249
+
250
+ 6 + η1
251
+
252
+ 3
253
+
254
+
255
+
256
+
257
+ � ,
258
+ (13)
259
+
260
+ 5
261
+ V
262
+ =
263
+
264
+
265
+
266
+
267
+
268
+ ρ0
269
+
270
+ 2 +
271
+ ω
272
+
273
+ 2
274
+ ρ+
275
+ K∗+
276
+ ρ−
277
+ − ρ0
278
+
279
+ 2 +
280
+ ω
281
+
282
+ 2
283
+ K∗0
284
+ K∗−
285
+ K
286
+ ∗0
287
+ φ
288
+
289
+
290
+
291
+
292
+ � ,
293
+ (14)
294
+ where the η and η′ are mixtures of η1 = u¯u+d ¯d+s¯s
295
+
296
+ 3
297
+ and η8 = u¯u+d ¯d−2s¯s
298
+
299
+ 6
300
+ with the mixing angle θP
301
+
302
+ � η
303
+ η′
304
+
305
+ � =
306
+
307
+ � cosθP −sinθP
308
+ sinθP
309
+ cosθP
310
+
311
+
312
+
313
+ � η8
314
+ η1
315
+
316
+ � .
317
+ (15)
318
+ And θP = [−20◦, −10◦] from Particle Data Group (PDG) [11] will be used in our numerical analysis.
319
+ The structures of the light scalar mesons are not fully understood yet. Many suggestions are discussed, such as
320
+ ordinary two quark state, four quark state, meson-meson bound state, molecular state, glueball state or hybrid state,
321
+ for examples, in Refs. [69–77]. In this work, we will consider the two quark and the four quark scenarios for the scalar
322
+ mesons below or near 1 GeV . In the two quark picture, the light scalar mesons can be written as [78]
323
+ S =
324
+
325
+
326
+
327
+
328
+
329
+ a0
330
+ 0
331
+
332
+ 2 +
333
+ σ
334
+
335
+ 2
336
+ a+
337
+ 0
338
+ K+
339
+ 0
340
+ a−
341
+ 0
342
+ − a0
343
+ 0
344
+
345
+ 2 +
346
+ σ
347
+
348
+ 2
349
+ K0
350
+ 0
351
+ K−
352
+ 0
353
+ K
354
+ 0
355
+ 0
356
+ f0
357
+
358
+
359
+
360
+
361
+ � .
362
+ (16)
363
+ The two isoscalars f0(980) and f0(500) are obtained by the mixing of σ = u¯u+d ¯d
364
+
365
+ 2
366
+ and f0 = s¯s,
367
+
368
+ � f0(980)
369
+ f0(500)
370
+
371
+ � =
372
+
373
+ � cosθS
374
+ sinθS
375
+ −sinθS cosθS
376
+
377
+
378
+
379
+ � f0
380
+ σ
381
+
382
+ � ,
383
+ (17)
384
+ where the three possible ranges of the mixing angle θS [69, 79], 25◦ < θS < 40◦, 140◦ < θS < 165◦ and −30◦ < θS <
385
+ 30◦ will be analyzed in our numerical results. In the four quark picture, the light scalar mesons are given as [11, 80]
386
+ σ = u¯ud ¯d,
387
+ f0 = (u¯u + d ¯d)s¯s/
388
+
389
+ 2,
390
+ a0
391
+ 0 = (u¯u − d ¯d)s¯s/
392
+
393
+ 2,
394
+ a+
395
+ 0 = u ¯ds¯s,
396
+ a−
397
+ 0 = d¯us¯s,
398
+ K+
399
+ 0 = u¯sd ¯d,
400
+ K0
401
+ 0 = d¯su¯u,
402
+ K
403
+ 0
404
+ 0 = s ¯du¯u,
405
+ K+
406
+ 0 = s¯ud ¯d,
407
+ (18)
408
+ and the two isoscalars are expressed as
409
+
410
+ � f0(980)
411
+ f0(500)
412
+
413
+ � =
414
+
415
+ � cosφS
416
+ sinφS
417
+ −sinφS cosφS
418
+
419
+
420
+
421
+ � f0
422
+ σ
423
+
424
+ � ,
425
+ (19)
426
+ where the constrained mixing angle φS = (174.6+3.4
427
+ −3.2)◦ [70].
428
+ C.
429
+ Non-resonant hadronic amplitudes
430
+ Since the hadronic amplitudes of the semileptonic D → V/Sℓ+νℓ decays based on the SU(3) flavor symme-
431
+ try/breaking have been discussed in previous Ref. [81], we will focus on the hadronic amplitudes of the non-resonant
432
+ D → P1P2ℓ+νℓ decays in this subsection.
433
+
434
+ 6
435
+ In terms of the SU(3) flavor symmetry, the quark current ¯qiγµ(1−γ5)c can be expressed as a SU(3) flavor anti-triplet
436
+ (¯3), and the effective Hamiltonian in Eq. (1) is transformed as [41]
437
+ Heff(c → qiℓ+νℓ) = GF
438
+
439
+ 2 H(¯3) ¯νℓγµ(1 − γ5)ℓ,
440
+ (20)
441
+ with H(¯3) = (0, Vcd, Vcs). The decay amplitude of the non-resonant D → P1P2ℓ+νℓ decay can be written as
442
+ A(D → P1P2ℓ+νℓ)N = GF
443
+
444
+ 2 H(D → P1P2)N ¯νℓγµ(1 − γ5)ℓ,
445
+ (21)
446
+ and the hadronic amplitude H(D → P1P2)N can be parameterized as
447
+ H(D → P1P2)N = c10DiP i
448
+ jP j
449
+ kH(¯3)k + c20DiP i
450
+ jH(¯3)jP k
451
+ k + c30DiH(¯3)iP j
452
+ kP k
453
+ j + c40DiH(¯3)iP k
454
+ k P j
455
+ j ,
456
+ (22)
457
+ where ci0(i = 1, 2, 3, 4) are the nonperturbative coefficients under the SU(3) flavor symmetry. Feynman diagrams for
458
+ the non-resonant D → P1P2ℓ+νℓ decays are displayed in Fig. 1.
459
+ SU(3) flavor breaking effects come from different masses of u, d and s quarks, and they will become useful once we
460
+ have measurements of several D → P1P2ℓ+νℓ decays that are precise enough to see deviations from the SU(3) flavor
461
+ νℓ
462
+ ℓ+
463
+ c
464
+ H(3)k
465
+ qk
466
+ ¯qj
467
+ qj
468
+ ¯qi
469
+ ¯qi
470
+ ( a )
471
+ νℓ
472
+ ℓ+
473
+ c
474
+ H(3)j
475
+ qj
476
+ ¯qi
477
+ ¯qi
478
+ ¯qk
479
+ qk
480
+ ( b )
481
+ νℓ
482
+ ℓ+
483
+ c
484
+ H(3)i
485
+ ¯qi
486
+ ¯qk
487
+ qk
488
+ qj
489
+ ¯qj
490
+ ( c )
491
+ νℓ
492
+ ℓ+
493
+ c
494
+ H(3)i
495
+ ¯qi
496
+ ¯qk
497
+ qk
498
+ ¯qj
499
+ qj
500
+ ( d )
501
+ FIG. 1: Diagrams of the non-resonant D → P1P2ℓ+νℓ decays.
502
+
503
+ 7
504
+ symmetry. The diagonalized mass matrix can be expressed as [59, 60]
505
+
506
+
507
+
508
+
509
+
510
+ mu
511
+ 0
512
+ 0
513
+ 0
514
+ md
515
+ 0
516
+ 0
517
+ 0
518
+ ms
519
+
520
+
521
+
522
+
523
+ � = 1
524
+ 3(mu + md + ms)I + 1
525
+ 2(mu − md)X + 1
526
+ 6(mu + md − 2ms)W,
527
+ (23)
528
+ with
529
+ X =
530
+
531
+
532
+
533
+
534
+
535
+ 1
536
+ 0
537
+ 0
538
+ 0 −1 0
539
+ 0
540
+ 0
541
+ 0
542
+
543
+
544
+
545
+
546
+ � ,
547
+ W =
548
+
549
+
550
+
551
+
552
+
553
+ 1 0
554
+ 0
555
+ 0 1
556
+ 0
557
+ 0 0 −2
558
+
559
+
560
+
561
+
562
+ � .
563
+ (24)
564
+ Compared with s quark mass, the u and d quark masses are much smaller which can be ignored. The SU(3) flavor
565
+ breaking effects due to a non-zero s quark mass dominate the SU(3) breaking effects. When u and d quark mass
566
+ difference is ignored, the residual SU(3) flavor symmetry becomes the isospin symmetry and the term proportional to
567
+ X can be dropped. The identity I part contributes to the D → P1P2ℓ+νℓ decay amplitudes in a similar way as that
568
+ given in Eq. (21) which can be absorbed into the coefficients ci0. Only W part will contribute to the SU(3) breaking
569
+ effects. The SU(3) breaking contributions to the hadronic amplitudes due to the fact of ms ≫ mu,d are
570
+ ∆H(D → P1P2)N = c11DiW i
571
+ aP a
572
+ j P j
573
+ kH(¯3)k + c12DiP i
574
+ jW j
575
+ aP a
576
+ k H(¯3)k + c13DiP i
577
+ jP j
578
+ kW k
579
+ a H(¯3)a
580
+ + c21DiW i
581
+ aP a
582
+ j H(¯3)jP k
583
+ k + c22DiP i
584
+ jW j
585
+ aH(¯3)aP k
586
+ k
587
+ + c31DiW i
588
+ aH(¯3)aP j
589
+ kP k
590
+ j + c32DiH(¯3)iP j
591
+ kW k
592
+ a P a
593
+ j
594
+ + c41DiW i
595
+ aH(¯3)aP k
596
+ k P j
597
+ j ,
598
+ (25)
599
+ where cij (i, j = 1, 2, 3, 4) are the nonperturbative SU(3) flavor breaking coefficients.
600
+ Full hadronic amplitudes of the different non-resonant D → P1P2ℓ+ν decays and their relations under the SU(3)
601
+ flavor symmetry/breaking are given in later Sec. III A.
602
+ III.
603
+ Numerical results of the D → P1P2ℓ+ν decays
604
+ The branching ratios with the non-resonant contributions, the light scalar meson resonant contributions and the
605
+ vector meson resonant contributions will be analyzed in this section. If not special specified, the theoretical input
606
+ parameters, such as the lifetimes and the masses, and the experimental data within the 2σ error bars from PDG [11]
607
+ will be used in our numerical analysis.
608
+ A.
609
+ Non-resonant D → P1P2ℓ+ν decays
610
+ The hadronic amplitudes of the non-resonant D → P1P2ℓ+νℓ decays including both the SU(3) flavor symmetry and
611
+ the SU(3) flavor breaking terms are summarized in the second column of Tab. I, in which we can see the relations
612
+ of different hadronic amplitudes. The following relations are hold in both the SU(3) flavor symmetry and the SU(3)
613
+
614
+ 8
615
+ flavor breaking due to a strange quark mass.
616
+ H(D0 → π−K
617
+ 0ℓ+νℓ)N = H(D+ → π+K−ℓ+νℓ)N =
618
+
619
+ 2H(D0 → π0K−ℓ+νℓ)N = −
620
+
621
+ 2H(D+ → π0K
622
+ 0ℓ+νℓ)N,
623
+ H(D0 → η8K−ℓ+νℓ)N = H(D+ → η8K
624
+ 0ℓ+νℓ)N,
625
+ H(D0 → η1K−ℓ+νℓ)N = H(D+ → η1K
626
+ 0ℓ+νℓ)N,
627
+ H(D+
628
+ s → K+K−ℓ+νℓ)N = H(D+
629
+ s → K0K
630
+ 0ℓ+νℓ)N,
631
+ H(D0 → K−K0ℓ+νℓ)N = H(D+ → K
632
+ 0K0ℓ+νℓ)N − H(D+ → K+K−ℓ+νℓ)N,
633
+ H(D+
634
+ s → K+π−ℓ+νℓ)N = −
635
+
636
+ 2H(D+
637
+ s → K0π0ℓ+νℓ)N.
638
+ (26)
639
+ If assuming the SU(3) flavor breaking effects are small and can be ignored, more amplitude relations will be obtained.
640
+ Moreover, as shown in Fig. 1, the SU(3) flavor symmetry contributions of Fig. 1 (b-d) are suppressed by the Okubo-
641
+ Zweig-Iizuka (OZI) rule [82–84]. If ignoring both the OZI suppressed SU(3) flavor symmetry contributions and the
642
+ SU(3) flavor breaking contributions, almost all hadronic amplitudes of the non-resonant D → P1P2ℓ+νℓ decays can
643
+ be related by the coefficient c10.
644
+ Since the leptonic charged current ¯νℓγµ(1 − γ5)ℓ is the SU(3) flavor singlet, and it is completely generic between
645
+ different decay modes with certain ℓ = e or µ. The same relations as the hadronic amplitudes listed in Tab. I are
646
+ valid in the decay amplitudes of the D → P1P2ℓ+νℓ decays and the form factors of the D → P1P2 transitions. For the
647
+ non-resonant D → P1P2ℓ+νℓ decays, only B(D+ → π+K−µ+νµ)N has been measured, and B(D+ → π+K−e+νe)N
648
+ has been upper limited. Because the non-resonant D → P1P2ℓ+νℓ decays have not been measured enough to reveal
649
+ the OZI suppressed SU(3) flavor symmetry contributions and the SU(3) symmetry breaking effects, we ignore both
650
+ of them in our analysis, and then almost all hadronic amplitudes, form factors or decay amplitudes can be related
651
+ by the SU(3) flavor symmetry coefficient c10. The simple relations associated by the coefficient c10 for FA given in
652
+ Eq. (10) will be used to obtain our numerical results. Noted that, for consistency, only the SU(3) flavor symmetry
653
+ contributions will be considered in the light scalar meson resonant D → S(S → P1P2)ℓ+νℓ decays and the vector
654
+ meson resonant D → V (V → P1P2)ℓ+νℓ decays in later Sec. III B and Sec. III C, respectively.
655
+ The experimental data of B(D+ → π+K−µ+νµ)N within 2σ errors and the upper limit of B(D+ → ��+K−e+νe)N at
656
+ 90% confidence level from PDG [11] are listed in the second column of Tab. II, which will be used to determine c10 in
657
+ the non-resonant D+ → π+K−ℓ+νℓ decays, and then many other branching ratios of the non-resonant D → P1P2ℓ+νℓ
658
+ decays can be predicted by using the constrained c10 from the data of B(D+ → π+K−ℓ+νℓ)N listed in the second
659
+ column of Tab. II. Our predictions are listed in the third column of Tab. II for the c → sℓ+νℓ transitions and in the
660
+ second column of Tab. III for the c → dℓ+νℓ transitions.
661
+ From Tabs.
662
+ II-III, one can see that many branching ratios of the non-resonant D → P1P2ℓ+νℓ decays, such
663
+ as B(D0 → π−K
664
+ 0ℓ+νℓ)N, B(D0 → π0K−ℓ+νℓ)N, B(D+ → π+K−ℓ+νℓ)N, B(D+ → π0K
665
+ 0ℓ+νℓ)N, B(D+
666
+ s
667
+
668
+ K+K−ℓ+νℓ)N, B(D+
669
+ s
670
+ → K0K
671
+ 0ℓ+νℓ)N, B(D+ → π+π−ℓ+νℓ)N and B(D+ → π0π0ℓ+νℓ)N, are on the orders of
672
+ O(10−3 −10−4), which could be measured by the BESIII, LHCb and BelleII experiments. Nevertheless, other decays,
673
+ for examples, the non-resonant D → ηPℓ+νℓ decays, are strongly suppressed by the narrow phase spaces, the mixing
674
+ angle θP or the CKM matrix element Vcd, their branching ratios are on the orders of O(10−5 − 10−7), and many of
675
+ them might be observed by the BESIII and BelleII experiments in the near future.
676
+
677
+ 9
678
+ TABLE I: The hadronic amplitudes for the D → P1P2ℓ+νℓ decays.
679
+ C1 ≡ c10 + c11 + c12 − 2c13, C2 ≡ c20 + c21 − 2c22,
680
+ C3 ≡ c30 − 2c31, C4 ≡ c40 − 2c41, and [C
681
+ ′,′′]R denotes the contributions come from the decays with R resonances.
682
+ Decay modes
683
+ Non-resonant hadronic amplitudes
684
+ Scalar resonant ones
685
+ Vector resonant ones
686
+ c → sℓ+νℓ:
687
+ D0 → π−K
688
+ 0ℓ+νℓ
689
+ C1
690
+
691
+ C′
692
+ 1
693
+
694
+ K−
695
+ 0
696
+
697
+ C′′
698
+ 1
699
+
700
+ K∗−
701
+ D0 → π0K−ℓ+νℓ
702
+ 1
703
+
704
+ 2 C1
705
+ � 1
706
+
707
+ 2 C′
708
+ 1
709
+
710
+ K−
711
+ 0
712
+ � 1
713
+
714
+ 2 C′′
715
+ 1
716
+
717
+ K∗−
718
+ D0 → η8K−ℓ+νℓ
719
+ − 1
720
+
721
+ 6 C1 +
722
+
723
+ 6c12
724
+ · · ·
725
+ · · ·
726
+ D0 → η1K−ℓ+νℓ
727
+ 2
728
+
729
+ 3
730
+
731
+ C1 + 3
732
+ 2 C2
733
+
734
+
735
+
736
+ 3c12
737
+ · · ·
738
+ · · ·
739
+ D+ → π+K−ℓ+νℓ
740
+ C1
741
+
742
+ C′
743
+ 1
744
+
745
+ K0
746
+ 0
747
+
748
+ C′′
749
+ 1
750
+
751
+ K∗0
752
+ D+ → π0K
753
+ 0ℓ+νℓ
754
+ − 1
755
+
756
+ 2 C1
757
+ � 1
758
+
759
+ 2 C′
760
+ 1
761
+
762
+ K0
763
+ 0
764
+ � 1
765
+
766
+ 2 C′′
767
+ 1
768
+
769
+ K∗0
770
+ D+ → η8K
771
+ 0ℓ+νℓ
772
+ − 1
773
+
774
+ 6 C1 +
775
+
776
+ 6c12
777
+ · · ·
778
+ · · ·
779
+ D+ → η1K
780
+ 0ℓ+νℓ
781
+ 2
782
+
783
+ 3
784
+
785
+ C1 + 3
786
+ 2 C2
787
+
788
+
789
+
790
+ 3c12
791
+ · · ·
792
+ · · ·
793
+ D+
794
+ s → K+K−ℓ+νℓ
795
+ C1 + 2C3 −3c11
796
+
797
+ cos2θS C′
798
+ 1
799
+
800
+ f0(980)
801
+
802
+ C′′
803
+ 1
804
+
805
+ φ
806
+ D+
807
+ s → K0K
808
+ 0ℓ+νℓ
809
+ C1 + 2C3 −3c11
810
+
811
+ cos2θS C′
812
+ 1
813
+
814
+ f0(980)
815
+
816
+ C′′
817
+ 1
818
+
819
+ φ
820
+ D+
821
+ s → π0π0ℓ+νℓ
822
+
823
+ 2C3 +
824
+
825
+ 2c32
826
+
827
+ sinθScosθSC′
828
+ 1
829
+
830
+ f0(980)
831
+
832
+ −sinθScosθSC′
833
+ 1
834
+
835
+ f0(500)
836
+ · · ·
837
+ D+
838
+ s → π+π−ℓ+νℓ
839
+ 2C3
840
+ �√
841
+ 2sinθScosθSC′
842
+ 1
843
+
844
+ f0(980)
845
+
846
+
847
+
848
+ 2sinθScosθSC′
849
+ 1
850
+
851
+ f0(500)
852
+ · · ·
853
+ D+
854
+ s → η8η8ℓ+νℓ
855
+ 2
856
+
857
+ 2
858
+ 3
859
+
860
+ C1 + 3
861
+ 2 C3
862
+
863
+
864
+
865
+ 2�
866
+ 2c11 + 2c12 + c32
867
+
868
+ · · ·
869
+ · · ·
870
+ D+
871
+ s → η1η1ℓ+νℓ
872
+
873
+ 2
874
+ 3 (C1 + 3C2 + 3C3 + 9C4) −
875
+
876
+ 2(c11 + c12 + 3c21)
877
+ · · ·
878
+ · · ·
879
+ D+
880
+ s → η8η1ℓ+νℓ
881
+ − 2
882
+
883
+ 2
884
+ 3
885
+
886
+ C1 + 3
887
+ 2 C2
888
+
889
+ +2
890
+
891
+ 2(c11 + c12 + 3
892
+ 2 c21 + c32)
893
+ · · ·
894
+ · · ·
895
+ c → dℓ+νℓ:
896
+ D0 → K−K0ℓ+νℓ
897
+ C1 −3(c12 − c13)
898
+
899
+ C′
900
+ 1
901
+
902
+ a0(980)
903
+ · · ·
904
+ D0 → π0π−ℓ+νℓ
905
+ · · ·
906
+ · · ·
907
+ � 1
908
+
909
+ 2 C′′
910
+ 1
911
+
912
+ ρ−
913
+ D0 → η8π−ℓ+νℓ
914
+ � 2
915
+ 3 C1 +
916
+
917
+ 6c13
918
+ �� 2
919
+ 3 C′
920
+ 1
921
+
922
+ a0(980)
923
+ � 1
924
+
925
+ 6 C′′
926
+ 1
927
+
928
+ ρ−
929
+ D0 → η1π−ℓ+νℓ
930
+ 2
931
+
932
+ 3
933
+
934
+ C1 + 3
935
+ 2 C2
936
+
937
+ +
938
+
939
+ 3(2c13 + 3c22)
940
+ � 2
941
+
942
+ 3 C′
943
+ 1
944
+
945
+ a0(980)
946
+ � 1
947
+
948
+ 3 C′′
949
+ 1
950
+
951
+ ρ−
952
+ D+ → K
953
+ 0K0ℓ+νℓ
954
+ C1 + 2C3 −3(c12 − c13 − 2c31)
955
+
956
+ 1
957
+ 2 C′
958
+ 1
959
+
960
+ a0(980)0
961
+
962
+ 1
963
+
964
+ 2 sinθScosθSC′
965
+ 1
966
+
967
+ f0(980)
968
+ · · ·
969
+ D+ → K+K−ℓ+νℓ
970
+ 2C3 +6c31
971
+
972
+ − 1
973
+ 2 C′
974
+ 1
975
+
976
+ a0(980)0
977
+
978
+ 1
979
+
980
+ 2 sinθScosθSC′
981
+ 1
982
+
983
+ f0(980)
984
+ · · ·
985
+ D+ → π+π−ℓ+νℓ
986
+ C1 + 2C3 +3c13 + 6c31
987
+
988
+ sin2θSC′
989
+ 1
990
+
991
+ f0(980)
992
+
993
+ cos2θSC′
994
+ 1
995
+
996
+ f0(500)
997
+ � 1
998
+ 2 C′′
999
+ 1
1000
+
1001
+ ρ0,ω
1002
+ D+ → π0π0ℓ+νℓ
1003
+ 1
1004
+
1005
+ 2 (C1 + 2C3) + 1
1006
+
1007
+ 2 (3c13 + 6c31 + 2c32)
1008
+
1009
+ 1
1010
+
1011
+ 2 sin2θSC′
1012
+ 1
1013
+
1014
+ f0(980)
1015
+
1016
+ 1
1017
+
1018
+ 2 cos2θSC′
1019
+ 1
1020
+
1021
+ f0(500)
1022
+ · · ·
1023
+ D+ → η8π0ℓ+νℓ
1024
+ − 1
1025
+
1026
+ 3
1027
+
1028
+ C1 + C2
1029
+
1030
+
1031
+
1032
+ 3�
1033
+ c13 + c22
1034
+
1035
+
1036
+
1037
+ 1
1038
+
1039
+ 6 C′
1040
+ 1
1041
+
1042
+ a0(980)
1043
+ · · ·
1044
+ D+ → η1π0ℓ+νℓ
1045
+
1046
+ � 2
1047
+ 3
1048
+
1049
+ C1 + C2
1050
+
1051
+ − 1
1052
+
1053
+ 6
1054
+
1055
+ 6c13 + 9c22
1056
+
1057
+
1058
+
1059
+ 1
1060
+
1061
+ 3 C′
1062
+ 1
1063
+
1064
+ a0(980)
1065
+ · · ·
1066
+ D+ → η8η8ℓ+νℓ
1067
+
1068
+ 2
1069
+ 6
1070
+
1071
+ C1 + 6C3
1072
+
1073
+ + 1
1074
+
1075
+ 2 (c13 + 6c31 − 2c32)
1076
+ · · ·
1077
+ · · ·
1078
+ D+ → η1η1ℓ+νℓ
1079
+
1080
+ 2
1081
+ 3 (C1 + 3C2 + 3C3 + 9C4) +
1082
+
1083
+ 2(c13 + 3c22 + 3c31 + 9c41)
1084
+ · · ·
1085
+ · · ·
1086
+ D+ → η8η1ℓ+νℓ
1087
+
1088
+ 2
1089
+ 3
1090
+
1091
+ C1 + 3
1092
+ 2 C2
1093
+
1094
+ +
1095
+
1096
+ 2�
1097
+ c13 + 3
1098
+ 2 c22 + 2c32
1099
+
1100
+ · · ·
1101
+ · · ·
1102
+ D+
1103
+ s → K+π−ℓ+νℓ
1104
+ C1 −3c11 + 3c13
1105
+
1106
+ C′
1107
+ 1
1108
+
1109
+ K0
1110
+ 0
1111
+
1112
+ C′′
1113
+ 1
1114
+
1115
+ K∗0
1116
+ D+
1117
+ s → K0π0ℓ+νℓ
1118
+ − 1
1119
+
1120
+ 2 C1 − 1
1121
+
1122
+ 2 (−3c11 + 3c13)
1123
+
1124
+
1125
+ 1
1126
+
1127
+ 2 C′
1128
+ 1
1129
+
1130
+ K0
1131
+ 0
1132
+ � 1
1133
+
1134
+ 2 C′′
1135
+ 1
1136
+
1137
+ K∗0
1138
+ D+
1139
+ s → η8K0ℓ+νℓ
1140
+ − 1
1141
+
1142
+ 6 C1 + 1
1143
+
1144
+ 6
1145
+
1146
+ 3c11 + 6c12 − 3c13
1147
+
1148
+ · · ·
1149
+ · · ·
1150
+ D+
1151
+ s → η1K0ℓ+νℓ
1152
+ 2
1153
+
1154
+ 3
1155
+
1156
+ C1 + 3
1157
+ 2 C2
1158
+
1159
+
1160
+
1161
+ 3�
1162
+ 2c11 + c12 − 2c13 + 3c21 − 3c22
1163
+
1164
+ · · ·
1165
+ · · ·
1166
+
1167
+ 10
1168
+ TABLE II: The experimental data and the SU(3) flavor symmetry predictions of the non-resonant branching ratios and the
1169
+ total branching ratios of the D → P1P2ℓ+νℓ decays with the c → sℓ+νℓ transitions within the 2σ errors. The experimental
1170
+ data are taken from PDG [11], ‘N’ denotes the non-resonant contributions, and ‘T’ denotes the total contributions including
1171
+ the non-resonance, the light scalar meson resonances as well as the vector meson resonances. The same below.
1172
+ Branching ratios
1173
+ Exp. data with N
1174
+ Ones with N
1175
+ Exp. data with T
1176
+ Ones with T
1177
+ B(D0 → π−K
1178
+ 0e+νe)(×10−2)
1179
+ · · ·
1180
+ 0.076 ± 0.041
1181
+ 1.44 ± 0.08
1182
+ 1.57 ± 0.14
1183
+ B(D0 → π0K−e+νe)(×10−2)
1184
+ · · ·
1185
+ 0.039 ± 0.021
1186
+ 1.6+2.6
1187
+ −1.0
1188
+ 0.80 ± 0.07
1189
+ B(D0 → ηK−e+νe)(×10−6)
1190
+ · · ·
1191
+ 3.51 ± 3.51
1192
+ · · ·
1193
+ 3.51 ± 3.51
1194
+ B(D0 → η′K−e+νe)(×10−6)
1195
+ · · ·
1196
+ 4.03 ± 2.17
1197
+ · · ·
1198
+ 4.03 ± 2.17
1199
+ B(D+ → π+K−e+νe)(×10−2)
1200
+ < 0.7
1201
+ 0.20 ± 0.10
1202
+ 4.02 ± 0.36
1203
+ 4.06 ± 0.30
1204
+ B(D+ → π0K
1205
+ 0e+νe)(×10−2)
1206
+ · · ·
1207
+ 0.100 ± 0.052
1208
+ · · ·
1209
+ 2.01 ± 0.15
1210
+ B(D+ → ηK
1211
+ 0e+νe)(×10−5)
1212
+ · · ·
1213
+ 0.89 ± 0.89
1214
+ · · ·
1215
+ 0.89 ± 0.89
1216
+ B(D+ → η′K
1217
+ 0e+νe)(×10−5)
1218
+ · · ·
1219
+ 1.03 ± 0.55
1220
+ · · ·
1221
+ 1.03 ± 0.55
1222
+ B(D+
1223
+ s → K+K−e+νe)(×10−2)
1224
+ · · ·
1225
+ 0.034 ± 0.018
1226
+ · · ·
1227
+ 1.27 ± 0.13
1228
+ B(D+
1229
+ s → K0K
1230
+ 0e+νe)(×10−3)
1231
+ · · ·
1232
+ 0.33 ± 0.18
1233
+ · · ·
1234
+ 8.58 ± 0.95
1235
+ B(D+
1236
+ s → π+π−e+νe)(×10−3)
1237
+ · · ·
1238
+ · · ·
1239
+ · · ·
1240
+ 1.47 ± 0.79
1241
+ B(D+
1242
+ s → π0π0e+νe)(×10−4)
1243
+ · · ·
1244
+ · · ·
1245
+ · · ·
1246
+ 8.58 ± 3.50
1247
+ B(D+
1248
+ s → ηηe+νe)(×10−4)
1249
+ · · ·
1250
+ 0.56 ± 0.49
1251
+ · · ·
1252
+ 0.56 ± 0.49
1253
+ B(D+
1254
+ s → ηη′e+νe)(×10−6)
1255
+ · · ·
1256
+ 5.38 ± 3.19
1257
+ · · ·
1258
+ 5.38 ± 3.19
1259
+ B(D0 → π−K
1260
+ 0µ+νµ)(×10−2)
1261
+ · · ·
1262
+ 0.073 ± 0.039
1263
+ · · ·
1264
+ 1.47 ± 0.13
1265
+ B(D0 → π0K−µ+νµ)(×10−2)
1266
+ · · ·
1267
+ 0.038 ± 0.020
1268
+ · · ·
1269
+ 0.75 ± 0.07
1270
+ B(D0 → ηK−µ+νµ)(×10−6)
1271
+ · · ·
1272
+ 3.18 ± 3.18
1273
+ · · ·
1274
+ 3.18 ± 3.18
1275
+ B(D0 → η′K−µ+νµ)(×10−6)
1276
+ · · ·
1277
+ 2.76 ± 1.49
1278
+ · · ·
1279
+ 2.76 ± 1.49
1280
+ B(D+ → π+K−µ+νµ)(×10−2)
1281
+ 0.19 ± 0.10
1282
+ 0.19 ± 0.10
1283
+ 3.65 ± 0.68
1284
+ 3.80 ± 0.27
1285
+ B(D+ → π0K
1286
+ 0µ+νµ)(×10−2)
1287
+ · · ·
1288
+ 0.095 ± 0.050
1289
+ · · ·
1290
+ 1.89 ± 0.13
1291
+ B(D+ → ηK
1292
+ 0µ+νµ)(×10−5)
1293
+ · · ·
1294
+ 0.81 ± 0.81
1295
+ · · ·
1296
+ 0.81 ± 0.81
1297
+ B(D+ → η′K
1298
+ 0µ+νµ)(×10−5)
1299
+ · · ·
1300
+ 0.71 ± 0.38
1301
+ · · ·
1302
+ 0.71 ± 0.38
1303
+ B(D+
1304
+ s → K+K−µ+νµ)(×10−2)
1305
+ · · ·
1306
+ 0.032 ± 0.017
1307
+ · · ·
1308
+ 1.19 ± 0.12
1309
+ B(D+
1310
+ s → K0K
1311
+ 0µ+νµ)(×10−3)
1312
+ · · ·
1313
+ 0.30 ± 0.16
1314
+ · · ·
1315
+ 8.02 ± 0.88
1316
+ B(D+
1317
+ s → π+π−µ+νµ)(×10−3)
1318
+ · · ·
1319
+ · · ·
1320
+ · · ·
1321
+ 1.25 ± 0.69
1322
+ B(D+
1323
+ s → π0π0µ+νµ)(×10−4)
1324
+ · · ·
1325
+ · · ·
1326
+ · · ·
1327
+ 7.34 ± 3.09
1328
+ B(D+
1329
+ s → ηηµ+νµ)(×10−4)
1330
+ · · ·
1331
+ 0.51 ± 0.45
1332
+ · · ·
1333
+ 0.51 ± 0.45
1334
+ B(D+
1335
+ s → ηη′µ+νµ)(×10−6)
1336
+ · · ·
1337
+ 3.98 ± 2.36
1338
+ · · ·
1339
+ 3.98 ± 2.36
1340
+
1341
+ 11
1342
+ TABLE III: The experimental data and the SU(3) flavor symmetry predictions of the non-resonant branching ratios and the
1343
+ total branching ratios of the D → P1P2ℓ+νℓ decays with the c → dℓ+νℓ transitions within the 2σ errors.
1344
+ Branching ratios
1345
+ Ones with N
1346
+ Exp. data with T
1347
+ Ones with T
1348
+ B(D0 → K−K0e+νe)(×10−5)
1349
+ 0.83 ± 0.45
1350
+ · · ·
1351
+ 1.25 ± 0.64
1352
+ B(D0 → π0π−e+νe)(×10−3)
1353
+ 0
1354
+ 1.45 ± 0.14
1355
+ 1.85 ± 0.11
1356
+ B(D0 → ηπ−e+νe)(×10−5)
1357
+ 4.34 ± 2.68
1358
+ · · ·
1359
+ 16.38 ± 5.10
1360
+ B(D0 → η′π−e+νe)(×10−5)
1361
+ 0.39 ± 0.26
1362
+ · · ·
1363
+ 0.57 ± 0.35
1364
+ B(D+ → K
1365
+ 0K0e+νe)(×10−5)
1366
+ 2.11 ± 1.13
1367
+ · · ·
1368
+ 3.31 ± 1.69
1369
+ B(D+ → K+K−e+νe)(×10−5)
1370
+ · · ·
1371
+ · · ·
1372
+ 1.31 ± 0.63
1373
+ B(D+ → π+π−e+νe)(×10−3)
1374
+ 0.26 ± 0.14
1375
+ 2.45 ± 0.20
1376
+ 3.08 ± 0.51
1377
+ B(D+ → π0π0e+νe)(×10−4)
1378
+ 1.33 ± 0.71
1379
+ · · ·
1380
+ 2.88 ± 1.75
1381
+ B(D+ → ηπ0e+νe)(×10−5)
1382
+ 5.68 ± 3.50
1383
+ · · ·
1384
+ 9.68 ± 4.49
1385
+ B(D+ → η′π0e+νe)(×10−6)
1386
+ 5.21 ± 3.46
1387
+ · · ·
1388
+ 8.28 ± 5.00
1389
+ B(D+ → ηηe+νe)(×10−6)
1390
+ 3.16 ± 2.26
1391
+ · · ·
1392
+ 3.16 ± 2.26
1393
+ B(D+ → ηη′e+νe)(×10−8)
1394
+ 3.96 ± 2.37
1395
+ · · ·
1396
+ 3.96 ± 2.37
1397
+ B(D+
1398
+ s → K+π−e+νe)(×10−3)
1399
+ 0.075 ± 0.041
1400
+ · · ·
1401
+ 1.66 ± 0.17
1402
+ B(D+
1403
+ s → K0π0e+νe)(×10−4)
1404
+ 0.38 ± 0.21
1405
+ · · ·
1406
+ 8.24 ± 0.85
1407
+ B(D+
1408
+ s → ηK0e+νe)(×10−5)
1409
+ 1.70 ± 1.06
1410
+ · · ·
1411
+ 1.70 ± 1.06
1412
+ B(D+
1413
+ s → η′K0e+νe)(×10−7)
1414
+ 5.21 ± 3.47
1415
+ · · ·
1416
+ 5.21 ± 3.47
1417
+ B(D0 → K−K0µ+νµ)(×10−5)
1418
+ 0.76 ± 0.43
1419
+ · · ·
1420
+ 1.11 ± 0.57
1421
+ B(D0 → π0π−µ+νµ)(×10−3)
1422
+ 0
1423
+ · · ·
1424
+ 1.76 ± 0.10
1425
+ B(D0 → ηπ−µ+νµ)(×10−5)
1426
+ 4.13 ± 2.55
1427
+ · · ·
1428
+ 15.04 ± 4.76
1429
+ B(D0 → η′π−µ+νµ)(×10−5)
1430
+ 0.34 ± 0.23
1431
+ · · ·
1432
+ 0.50 ± 0.31
1433
+ B(D+ → K
1434
+ 0K0µ+νµ)(×10−5)
1435
+ 1.93 ± 1.04
1436
+ · · ·
1437
+ 2.94 ± 1.50
1438
+ B(D+ → K+K−µ+νµ)(×10−5)
1439
+ · · ·
1440
+ · · ·
1441
+ 1.09 ± 0.53
1442
+ B(D+ → π+π−µ+νµ)(×10−3)
1443
+ 0.25 ± 0.14
1444
+ · · ·
1445
+ 2.92 ± 0.48
1446
+ B(D+ → π0π0µ+νµ)(×10−4)
1447
+ 1.29 ± 0.69
1448
+ · · ·
1449
+ 2.68 ± 1.65
1450
+ B(D+ → ηπ0µ+νµ)(×10−5)
1451
+ 5.40 ± 3.33
1452
+ · · ·
1453
+ 8.71 ± 4.16
1454
+ B(D+ → η′π0µ+νµ)(×10−6)
1455
+ 4.67 ± 3.10
1456
+ · · ·
1457
+ 7.23 ± 4.37
1458
+ B(D+ → ηηµ+νµ)(×10−6)
1459
+ 2.83 ± 2.02
1460
+ · · ·
1461
+ 2.83 ± 2.02
1462
+ B(D+ → ηη′µ+νµ)(×10−8)
1463
+ 2.43 ± 1.46
1464
+ · · ·
1465
+ 2.43 ± 1.46
1466
+ B(D+
1467
+ s → K+π−µ+νµ)(×10−3)
1468
+ 0.072 ± 0.039
1469
+ · · ·
1470
+ 1.58 ± 0.16
1471
+ B(D+
1472
+ s → K0π0µ+νµ)(×10−4)
1473
+ 0.36 ± 0.20
1474
+ · · ·
1475
+ 7.81 ± 0.80
1476
+ B(D+
1477
+ s → ηK0µ+νµ)(×10−5)
1478
+ 1.57 ± 0.98
1479
+ · · ·
1480
+ 1.57 ± 0.98
1481
+ B(D+
1482
+ s → η′K0µ+νµ)(×10−7)
1483
+ 4.08 ± 2.72
1484
+ · · ·
1485
+ 4.08 ± 2.72
1486
+
1487
+ 12
1488
+ B.
1489
+ D → S(S → P1P2)ℓ+νℓ decays
1490
+ We will analyze the D → P1P2ℓ+νℓ decays with the light scalar resonances in this subsection. As given in Eq.
1491
+ (11), their branching ratios can be obtained by using B(D → Sℓ+νℓ) and B(S → P1P2). The detail analysis of
1492
+ B(D → Sℓ+νℓ) by the SU(3) flavor symmetry can be found in Ref. [81].
1493
+ 1.
1494
+ Branching ratios of the S → P1P2 decays
1495
+ As for the S → P1P2 decays, the partial decay widths can be written as [85]
1496
+ Γ(S → P1P2) =
1497
+ pc
1498
+ 8πm2
1499
+ S
1500
+ g2
1501
+ S→P1P2,
1502
+ (27)
1503
+ where the center of mass momentum pc ≡
1504
+
1505
+ λ(m2
1506
+ S,m2
1507
+ P1,m2
1508
+ P2)
1509
+ 2mS
1510
+ , and gS→P1P2 is the strong coupling constant. With the
1511
+ SU(3) flavor symmetry, the strong coupling constant can be parameterized as
1512
+ g2q
1513
+ S→P1P2 = g2Si
1514
+ jP k
1515
+ i P j
1516
+ k
1517
+ (28)
1518
+ for the two quark scalar states, and
1519
+ g4q
1520
+ S→P1P2 = g4Sim
1521
+ jn P j
1522
+ i P n
1523
+ m + g′
1524
+ 4Sim
1525
+ jmP n
1526
+ i P j
1527
+ n
1528
+ (29)
1529
+ for the four quark scalar states, where g2, g4 and g′
1530
+ 4 are the nonperturbative parameters. The strong coupling constants
1531
+ of these decays are listed in the second and third columns of Tab. IV for the two quark scalar states and the four
1532
+ quark scalar states, respectively.
1533
+ Since the width determination is very model dependent, there are not accurate values about the decay widths
1534
+ of a0(980), f0(980) and f0(500) mesons in Ref. [11]. Therefore, it is difficult to obtain accurate B(S → P1P2) in
1535
+ terms of Γ(S → P1P2)/ΓS, where ΓS is the decay width of scalar meson. We assume the light scalar mesons decay
1536
+ dominantly into pairs of pseudoscalar mesons and all other decay channels are negligible, and then one can obtain
1537
+ B(S → P1P2) without the decay width values of the light scalar mesons, for an example, B(f0(500) → π+π−) ≈
1538
+ Γ(f0(500)→π+π−)
1539
+ Γ(f0(500)→π+π−)+Γ(f0(500)→π0π0).
1540
+ In the two quark picture, the parameter g2 is canceled in the branching ratios. Therefore, B(K0 → πK, a0(980) →
1541
+ KK, f0(500) → ππ) only depend on the masses of relevant mesons, B(a0(980) → η′π, η′π) depend on the meson masses
1542
+ and the mixing angle θP , and B(f0(980) → ππ, KK) depend on the meson masses and the mixing angle θS. The
1543
+ numerical results of B(S → P1P2) in the two quark picture are listed in the second column of Tab. V. One can see that
1544
+ the branching ratios of the K0, a0(980), f0(500) decays are accurately predicted, nevertheless, B(f0(980) → ππ, KK)
1545
+ are predicted with large error due to the indeterminate mixing angle θS. The three possible ranges for the mixing
1546
+ angle θS, 25◦ < θS < 40◦, 140◦ < θS < 165◦ and −30◦ < θS < 30◦ [69, 79], have been considered, and the predictions
1547
+ of B(f0(980) → ππ, KK) are quite dependent on the mixing angle θS.
1548
+ In the third column of Tab.
1549
+ V, we also give the predictions with two quark picture of B(S → P1P2) further
1550
+ constrained from the relevant experimental data of B(D → Sℓ+νℓ, S → P1P2) listed in later Tabs. VI-VII. The
1551
+
1552
+ 13
1553
+ TABLE IV: The strong coupling constants of the S → P1P2 decays by the SU(3) flavor symmetry.
1554
+ strong couplings
1555
+ ones for two quark state
1556
+ ones for four quark state
1557
+ gK−
1558
+ 0 →π0K−
1559
+ 1
1560
+
1561
+ 2 g2
1562
+ − 1
1563
+
1564
+ 2g4
1565
+ gK−
1566
+ 0 →π−K0
1567
+ g2
1568
+ g4
1569
+ gK0
1570
+ 0→π+K−
1571
+ g2
1572
+ g4
1573
+ gK0
1574
+ 0→π0K0
1575
+ − 1
1576
+
1577
+ 2 g2
1578
+ 1
1579
+
1580
+ 2g4
1581
+ ga0(980)−→ηπ−
1582
+ 2 g2
1583
+ � 1
1584
+
1585
+ 6cosθP −
1586
+ 1
1587
+
1588
+ 3sinθP
1589
+
1590
+ 2 g′
1591
+ 4
1592
+ � 1
1593
+
1594
+ 6cosθP −
1595
+ 1
1596
+
1597
+ 3sinθP
1598
+
1599
+ ga0(980)−→η′π−
1600
+ 2 g2
1601
+ � 1
1602
+
1603
+ 6sinθP +
1604
+ 1
1605
+
1606
+ 3cosθP
1607
+
1608
+ 2 g′
1609
+ 4
1610
+ � 1
1611
+
1612
+ 6sinθP +
1613
+ 1
1614
+
1615
+ 3cosθP
1616
+
1617
+ ga0(980)−→K0K−
1618
+ g2
1619
+ g4
1620
+ ga0(980)0→ηπ0
1621
+ g2
1622
+ � 1
1623
+
1624
+ 3cosθP −
1625
+ � 2
1626
+ 3sinθP
1627
+
1628
+ g′
1629
+ 4
1630
+ � 1
1631
+
1632
+ 6cosθP −
1633
+ 1
1634
+
1635
+ 3sinθP
1636
+
1637
+ ga0(980)0→η′π0
1638
+ g2
1639
+ � 1
1640
+
1641
+ 3sinθP +
1642
+ � 2
1643
+ 3cosθP
1644
+
1645
+ g′
1646
+ 4
1647
+ � 1
1648
+
1649
+ 6sinθP +
1650
+ 1
1651
+
1652
+ 3cosθP
1653
+
1654
+ ga0(980)0→K+K−
1655
+ 1
1656
+
1657
+ 2 g2
1658
+ 1
1659
+
1660
+ 2 g4
1661
+ ga0(980)0→K0K0
1662
+ − 1
1663
+
1664
+ 2 g2
1665
+ − 1
1666
+
1667
+ 2 g4
1668
+ gf0(980)→π+π−
1669
+
1670
+ 2 g2 sinθS
1671
+
1672
+ 2 g′
1673
+ 4 cosφS + g4sinφS
1674
+ gf0(980)→π0π0
1675
+ g2 sinθS
1676
+ g′
1677
+ 4 cosφS −
1678
+ 1
1679
+
1680
+ 2g4sinφS
1681
+ gf0(980)→K+K−
1682
+ g2 cosθS
1683
+ 1
1684
+ ��
1685
+ 2g4cosφS
1686
+ gf0(980)→K0K0
1687
+ g2 cosθS
1688
+ 1
1689
+
1690
+ 2g4cosφS
1691
+ gf0(500)→π+π−
1692
+
1693
+ 2 g2 cosθS
1694
+
1695
+
1696
+ 2 g′
1697
+ 4 sinφS + g4cosφS
1698
+ gf0(500)→π0π0
1699
+ g2 cosθS
1700
+ −g′
1701
+ 4 sinφS −
1702
+ 1
1703
+
1704
+ 2g4cosφS
1705
+ predictions of B(f0(980) → P1P2) are quite accurate when θS is further constrained from [25◦, 40◦] to [25◦, 36◦],
1706
+ from [140◦, 165◦] to [144◦, 151◦] and from |φS| ≤ 30◦ to 22◦ ≤ |φS| ≤ 30◦ by the relevant experimental data of
1707
+ B(D → Sℓ+νℓ, S → P1P2) with 2σ errors.
1708
+ Since θS in the two quark picture has been further constrained by
1709
+ B(D → Sℓ+νℓ, S → P1P2), the predictions of B(f(980) → ππ, KK) are more accurate as listed in the third column
1710
+ of Tab. V. Other B(S → P1P2) are not further constrained from the data of B(D → Sℓ+νℓ, S → P1P2), so we do not
1711
+ list them in the third column of Tab. V.
1712
+ In the four quark picture, the two nonperturbative parameters g4 and g′
1713
+ 4 in the a0(980), f0(980), f0(500) decays,
1714
+ and |g′
1715
+ 4/g4| = 0.61 ± 0.13 are obtained by the data Γ(a0(980) → K ¯K)/Γ(a0(980) → ηπ) = 0.177 ± 0.048 from PDG
1716
+ [11]. In this work, we treat g4 and g′
1717
+ 4 as real number, then two possible cases (g′
1718
+ 4/g4 > 0 and g′
1719
+ 4/g4 < 0) are analyzed.
1720
+ The numerical results with the four quark picture are listed in the last column of Tab. V. As for B(f0(980) → ππ) and
1721
+ B(f0(500) → ππ), very large errors come from the mixing angles φS, and they are obviously different in the g′
1722
+ 4/g4 > 0
1723
+ and g′
1724
+ 4/g4 < 0 cases. In general, there is a relative strong phase between g′
1725
+ 4 and g4, therefore, the common relevant
1726
+ branching ratios are between ones in the g′
1727
+ 4/g4 > 0 case and ones in the g′
1728
+ 4/g4 < 0 case. In addition, B(K0 → P1P2)
1729
+ are same in both the two quark and four quark pictures.
1730
+
1731
+ 14
1732
+ 2.
1733
+ Branching ratios of the D → S(S → P1P2)ℓ+νℓ decays
1734
+ Then B(D → Sℓ+νℓ, S → P1P2) can be obtained in terms of B(S → P1P2) listed in Tab. V and the expressions
1735
+ of B(D → Sℓ+νℓ) given in Ref. [81]. Using the experimental data of B(D+
1736
+ s → f0(980)e+νe) = (2.3 ± 0.8) × 10−3
1737
+ [11] as well as B(D → Sℓ+νℓ, S → P1P2) listed in the second columns of Tabs. VI-VII. The numerical results of
1738
+ B(D → Sℓ+νℓ, S → P1P2) with 2σ errors for the two quark and four quark pictures are given in Tab. VI and Tab.
1739
+ VII for the c → sℓ+νℓ and c → dℓ+νℓ transitions, respectively. Our comments on the results are as follows.
1740
+ • The
1741
+ experimental
1742
+ lower
1743
+ limits
1744
+ of
1745
+ B(D0
1746
+
1747
+ a0(980)−e+νe,
1748
+ a0(980)−
1749
+
1750
+ ηπ−)
1751
+ and
1752
+ B(D+
1753
+
1754
+ f0(500)e+νe, f0(500) → π+π−) have not been used to constrain the predictions of B(D → Sℓ+νℓ, S → P1P2),
1755
+ since the two lower limits of the SU(3) flavor symmetry predictions are slightly lower than their experimental
1756
+ data in both the two quark and four quark pictures. For B(D0 → a0(980)−e+νe, a0(980)− → ηπ−), one can see
1757
+ that the prediction in the two quark picture agrees with experimental data within 2σ error bars, nevertheless, the
1758
+ prediction in the four quark picture is smaller, which only agrees with experimental data within 3σ error bars.
1759
+ As for B(D+ → f0(500)e+νe, f0(500) → π+π−), the prediction in the two quark picture is much smaller than
1760
+ its experimental lower limit with 2σ error, nevertheless, the prediction with g′
1761
+ 4
1762
+ g4 > 0 ( g′
1763
+ 4
1764
+ g4 < 0 ) in the four quark
1765
+ picture agrees with its data within 2σ (3σ) error bars. Therefore, in the later analysis of total contributions to
1766
+ B(D → P1P2ℓ+νℓ), the predictions of B(D → Sℓ+νℓ, S → P1P2) with g′
1767
+ 4
1768
+ g4 > 0 in the four quark picture will be
1769
+ used.
1770
+ • In the two quark picture, though the mixing angle θS only appears in the D → P1P2ℓ+νℓ decays with f0(980)
1771
+ and f0(500) resonances, all other predictions of the branching ratios are slightly affected by the experimental
1772
+ constraints. So we list all predictions in the three possible ranges of the mixing angle θS in the 3rd-5th columns
1773
+ of Tabs.
1774
+ VI-VII. One can see the all predictions included the decays with f0(980) and f0(500) resonances
1775
+ are similar in the three possible ranges of the mixing angle θS. As mentioned before, θS is constrained from
1776
+ [25◦, 40◦] to [25◦, 36◦], from [140◦, 165◦] to [144◦, 151◦] and from |φS| ≤ 30◦ to 22◦ ≤ |φS| ≤ 30◦ by the relevant
1777
+ experimental data with 2σ errors.
1778
+ • A lot of the branching ratio predictions are quite different between the two quark picture and the four quark
1779
+ picture. Present datum of B(D+ → f0(500)e+νe, f0(500) → π+π−) favors the four quark picture of scalar
1780
+ mesons. B(D → Sℓ+νℓ, S → P1P2) with the c → sℓ+νℓ transitions are predicted on the order of O(10−3 −10−4).
1781
+ Due to the CKM matrix element Vcd suppressed, B(D → Sℓ+νℓ, S → P1P2) with the c → dℓ+νℓ transitions are
1782
+ predicted on the order of O(10−4 − 10−6).
1783
+ • Some branching ratios of the D → S(S → P1P2)ℓ+νℓ decays have been obtained in Refs. [13, 61]. B(D+ →
1784
+ Se+νe, S → π+π���) = (6.99 ± 2.46) × 10−4 [13], B(D+ → Sµ+νµ, S → π+π−) = (7.20 ± 2.52) × 10−4 [13],
1785
+ B(D0 → a0(980)−ℓ+νℓ, a0(980)− → ηπ−) = (1.36 ± 0.21) × 10−4 [61]. Our predictions in the four quark picture
1786
+ of B(D+ → Sℓ+νℓ, S → π+π−) are consistent with ones in Ref. [13], our predictions in the two quark picture
1787
+ of B(D0 → a0(980)−ℓ+νℓ, a0(980)− → ηπ−) are consistent with ones in Ref. [61], nevertheless, our predictions
1788
+ in the four quark picture are smaller than ones in Ref. [61].
1789
+
1790
+ 15
1791
+ TABLE V: Branching ratios of the S → P1P2 decays within 2σ errors. The results are obtained by the SU(3) flavor symmetry
1792
+ relations and Γ(a0(980) → K ¯K)/Γ(a0(980) → ηπ) = 0.177 ± 0.048 [11].
1793
+ †denotes the results with
1794
+ g′
1795
+ 4
1796
+ g4 > 0, and ♯denotes ones
1797
+ with
1798
+ g′
1799
+ 4
1800
+ g4 < 0.
1801
+ Branching ratios
1802
+ ones with 2q state in S1 case
1803
+ ones with 2q state in S2 case
1804
+ ones with 4q state
1805
+ B(K−
1806
+ 0 → π0K−)
1807
+ 0.34 ± 0.00
1808
+ 0.34 ± 0.00
1809
+ B(K−
1810
+ 0 → π−K
1811
+ 0)
1812
+ 0.66 ± 0.00
1813
+ 0.66 ± 0.00
1814
+ B(K
1815
+ 0
1816
+ 0 → π+K−)
1817
+ 0.67 ± 0.00
1818
+ 0.67 ± 0.00
1819
+ B(K
1820
+ 0
1821
+ 0 → π0K
1822
+ 0)
1823
+ 0.33 ± 0.00
1824
+ 0.33 ± 0.00
1825
+ B(a0(980)− → ηπ−)
1826
+ 0.64 ± 0.04
1827
+ 0.86 ± 0.03
1828
+ B(a0(980)− → η′π−)
1829
+ 0.03 ± 0.01
1830
+ 0.04 ± 0.01
1831
+ B(a0(980)− → K0K−)
1832
+ 0.33 ± 0.03
1833
+ 0.10 ± 0.02
1834
+ B(a0(980)0 → ηπ0)
1835
+ 0.60 ± 0.04
1836
+ 0.67 ± 0.06
1837
+ B(a0(980)0 → η′π0)
1838
+ 0.04 ± 0.01
1839
+ 0.05 ± 0.02
1840
+ B(a0(980)0 → K+K−)
1841
+ 0.19 ± 0.02
1842
+ 0.15 ± 0.03
1843
+ B(a0(980)0 → K0 ¯K0)
1844
+ 0.17 ± 0.01
1845
+ 0.13 ± 0.03
1846
+ 0.45 ± 0.09θS=[25◦,40◦]
1847
+ 0.43 ± 0.07θS=[25◦,35◦]
1848
+ 0.42 ± 0.16†
1849
+ B(f0(980) → π+π−)
1850
+ 0.36 ± 0.17θS=[140◦,165◦]
1851
+ 0.41 ± 0.09θS=[144◦,158◦]
1852
+ 0.59 ± 0.13♯
1853
+ 0.22 ± 0.22θS=[−30◦,30◦]
1854
+ 0.38 ± 0.06[22◦≤|θS|≤30◦]
1855
+ 0.22 ± 0.04θS=[25◦,40◦]
1856
+ 0.21 ± 0.03θS=[25◦,35◦]
1857
+ 0.34 ± 0.11†
1858
+ B(f0(980) → π0π0)
1859
+ 0.18 ± 0.09θS=[140◦,165◦]
1860
+ 0.21 ± 0.04θS=[144◦,158◦]
1861
+ 0.20 ± 0.10♯
1862
+ 0.11 ± 0.11θS=[−30◦,30◦]
1863
+ 0.19 ± 0.03[22◦≤|θS|≤30◦]
1864
+ 0.17 ± 0.07θS=[25◦,40◦]
1865
+ 0.19 ± 0.05θS=[25◦,35◦]
1866
+ B(f0(980) → K+K−)
1867
+ 0.24 ± 0.14θS=[140◦,165◦]
1868
+ 0.20 ± 0.07θS=[144◦,158◦]
1869
+ 0.12 ± 0.04
1870
+ 0.35 ± 0.17θS=[−30◦,30◦]
1871
+ 0.22 ± 0.04[22◦≤|θS|≤30◦]
1872
+ 0.16 ± 0.06θS=[25◦,40◦]
1873
+ 0.17 ± 0.05θS=[25◦,35◦]
1874
+ B(f0(980) → K0 ¯K0)
1875
+ 0.22 ± 0.12θS=[140◦,165◦]
1876
+ 0.18 ± 0.06θS=[144◦,158◦]
1877
+ 0.11 ± 0.04
1878
+ 0.32 ± 0.16θS=[−30◦,30◦]
1879
+ 0.20 ± 0.04[22◦≤|θS|≤30◦]
1880
+ B(f0(500) → π+π−)
1881
+ 0.66 ± 0.00
1882
+ 0.73 ± 0.09†
1883
+ 0.57 ± 0.12♯
1884
+ B(f0(500) → π0π0)
1885
+ 0.34 ± 0.00
1886
+ 0.27 ± 0.09†
1887
+ 0.43 ± 0.12♯
1888
+
1889
+ 16
1890
+ TABLE VI: The experimental data and the SU(3) flavor symmetry predictions of the D → S(S → P1P2)ℓ+νℓ decays with the c → sℓ+νℓ transitions within 2σ errors.
1891
+ †denotes the results with
1892
+ g′
1893
+ 4
1894
+ g4 > 0, and ♯ denotes ones with
1895
+ g′
1896
+ 4
1897
+ g4 < 0.
1898
+ Branching ratios
1899
+ Exp. Data
1900
+ Ones in the 2-quark picture with
1901
+ Ones in the 4-quark picture
1902
+ θS = [25◦, 35◦]
1903
+ θS = [144◦, 158◦]
1904
+ 22◦ ≤ |θS| ≤ 30◦
1905
+ B(D0 → K−
1906
+ 0 e+νe, K−
1907
+ 0 → π−K
1908
+ 0)(×10−4)
1909
+ · · ·
1910
+ 19.99 ± 7.34
1911
+ 19.86 ± 7.26
1912
+ 19.74 ± 6.97
1913
+ 8.37 ± 3.01
1914
+ B(D0 → K−
1915
+ 0 e+νe, K−
1916
+ 0 → π0K−)(×10−4)
1917
+ · · ·
1918
+ 10.18 ± 3.77
1919
+ 10.12 ± 3.73
1920
+ 10.05 ± 3.57
1921
+ 4.19 ± 1.50
1922
+ B(D+ → K
1923
+ 0
1924
+ 0e+νe, K
1925
+ 0
1926
+ 0 → π+K−)(×10−3)
1927
+ · · ·
1928
+ 5.17 ± 1.92
1929
+ 5.19 ± 1.85
1930
+ 5.12 ± 1.86
1931
+ 2.24 ± 0.83
1932
+ B(D+ → K
1933
+ 0
1934
+ 0e+νe, K
1935
+ 0
1936
+ 0 → π0K
1937
+ 0)(×10−3)
1938
+ · · ·
1939
+ 2.57 ± 0.96
1940
+ 2.59 ± 0.92
1941
+ 2.55 ± 0.92
1942
+ 1.12 ± 0.42
1943
+ B(D+
1944
+ s → f0(980)e+νe, f0(980) → π+π−)(×10−3)
1945
+ 1.30 ± 0.63 [86]
1946
+ 1.19 ± 0.18
1947
+ 1.17 ± 0.17
1948
+ 1.18 ± 0.17
1949
+ 1.22 ± 0.55†,
1950
+ 1.44 ± 0.49♯
1951
+ B(D+
1952
+ s → f0(980)e+νe, f0(980) → π0π0)(×10−4)
1953
+ 7.9 ± 2.9 [4]
1954
+ 5.95 ± 0.92
1955
+ 5.89 ± 0.85
1956
+ 5.90 ± 0.86
1957
+ 7.91 ± 2.85†,
1958
+ 7.13 ± 2.10♯
1959
+ B(D+
1960
+ s → f0(980)e+νe, f0(980) → K+K−)(×10−4)
1961
+ · · ·
1962
+ 5.11 ± 2.34
1963
+ 5.53 ± 2.78
1964
+ 6.28 ± 2.07
1965
+ 3.33 ± 1.53†,
1966
+ 3.07 ± 1.34♯
1967
+ B(D+
1968
+ s → f0(980)e+νe, f0(980) → K0K
1969
+ 0)(×10−4)
1970
+ · · ·
1971
+ 4.62 ± 2.12
1972
+ 5.01 ± 2.52
1973
+ 5.68 ± 1.87
1974
+ 3.01 ± 1.39†,
1975
+ 2.78 ± 1.22♯
1976
+ B(D+
1977
+ s → f0(500)e+νe, f0(500) → π+π−)(×10−4)
1978
+ · · ·
1979
+ 9.91 ± 2.83
1980
+ 9.67 ± 3.07
1981
+ 9.44 ± 3.30
1982
+ 2.49 ± 2.49†,
1983
+ 0.90 ± 0.90♯
1984
+ B(D+
1985
+ s → f0(500)e+νe, f0(500) → π0π0)(×10−5)
1986
+ < 64 [4]
1987
+ 49.77 ± 14.23
1988
+ 48.57 ± 15.43
1989
+ 47.44 ± 16.56
1990
+ 6.66 ± 6.66†,
1991
+ 0.78 ± 0.78♯
1992
+ B(D0 → K−
1993
+ 0 µ+νµ, K−
1994
+ 0 → π−K0)(×10−4)
1995
+ · · ·
1996
+ 17.27 ± 6.48
1997
+ 17.16 ± 6.41
1998
+ 17.04 ± 6.14
1999
+ 7.19 ± 2.63
2000
+ B(D0 → K−
2001
+ 0 µ+νµ, K−
2002
+ 0 → π0K−)(×10−4)
2003
+ · · ·
2004
+ 8.63 ± 3.24
2005
+ 8.58 ± 3.20
2006
+ 8.52 ± 3.07
2007
+ 3.59 ± 1.32
2008
+ B(D+ → K
2009
+ 0
2010
+ 0µ+νµ, K
2011
+ 0
2012
+ 0 → π+K−)(×10−3)
2013
+ · · ·
2014
+ 4.43 ± 1.68
2015
+ 4.46 ± 1.62
2016
+ 4.40 ± 1.62
2017
+ 1.92 ± 0.73
2018
+ B(D+ → K
2019
+ 0
2020
+ 0µ+νµ, K
2021
+ 0
2022
+ 0 → π0K0)(×10−3)
2023
+ · · ·
2024
+ 2.22 ± 0.84
2025
+ 2.23 ± 0.81
2026
+ 2.20 ± 0.81
2027
+ 0.96 ± 0.36
2028
+ B(D+
2029
+ s → f0(980)µ+νµ, f0(980) → π+π−)(×10−3)
2030
+ · · ·
2031
+ 1.01 ± 0.16
2032
+ 1.00 ± 0.15
2033
+ 1.00 ± 0.16
2034
+ 1.02 ± 0.46†,
2035
+ 1.23 ± 0.42♯
2036
+ B(D+
2037
+ s → f0(980)µ+νµ, f0(980) → π0π0)(×10−4)
2038
+ · · ·
2039
+ 5.05 ± 0.83
2040
+ 4.99 ± 0.77
2041
+ 5.00 ± 0.78
2042
+ 6.72 ± 2.48†,
2043
+ 6.04 ± 1.82♯
2044
+ B(D+
2045
+ s → f0(980)µ+νµ, f0(980) → K+K−)(×10−4)
2046
+ · · ·
2047
+ 4.31 ± 1.94
2048
+ 4.70 ± 2.34
2049
+ 5.34 ± 1.75
2050
+ 2.79 ± 1.28†,
2051
+ 2.59 ± 1.14♯
2052
+ B(D+
2053
+ s → f0(980)µ+νµ, f0(980) → K0K
2054
+ 0)(×10−4)
2055
+ · · ·
2056
+ 3.90 ± 1.76
2057
+ 4.25 ± 2.12
2058
+ 4.83 ± 1.58
2059
+ 2.52 ± 1.16†,
2060
+ 2.34 ± 1.03♯
2061
+ B(D+
2062
+ s → f0(500)µ+νµ, f0(500) → π+π−)(×10−4)
2063
+ · · ·
2064
+ 8.88 ± 2.62
2065
+ 8.70 ± 2.86
2066
+ 8.49 ± 3.05
2067
+ 2.30 ± 2.30†,
2068
+ 0.83 ± 0.83♯
2069
+ B(D+
2070
+ s → f0(500)µ+νµ, f0(500) → π0π0)(×10−5)
2071
+ · · ·
2072
+ 44.67 ± 13.23
2073
+ 43.85 ± 14.53
2074
+ 42.77 ± 15.49
2075
+ 6.16 ± 6.16†,
2076
+ 7.23 ± 7.23♯
2077
+
2078
+ 17
2079
+ TABLE VII: The experimental data and the SU(3) flavor symmetry predictions of the D → S(S → P1P2)ℓ+νℓ decays with the c → dℓ+νℓ transitions within 2σ errors.
2080
+ † denotes the results with
2081
+ g′
2082
+ 4
2083
+ g4 > 0, ♯ denotes ones with
2084
+ g′
2085
+ 4
2086
+ g4 < 0, and a denotes the experimental lower limits have not used to constrain the predictions.
2087
+ Branching ratios
2088
+ Exp. Data
2089
+ Ones in the 2-quark picture with
2090
+ Ones in the 4-quark picture
2091
+ θS = [25◦, 35◦]
2092
+ θS = [144◦, 158◦]
2093
+ 22◦ ≤ |θS| ≤ 30◦
2094
+ B(D0 → a0(980)−e+νe, a0(980)− → ηπ−)(×10−5)
2095
+ 13.3+6.8
2096
+ −6.0a
2097
+ 5.99 ± 2.69
2098
+ 5.86 ± 2.48
2099
+ 6.05 ± 2.57
2100
+ 3.81 ± 0.98
2101
+ B(D0 → a0(980)−e+νe, a0(980)− → η′π−)(×10−6)
2102
+ · · ·
2103
+ 2.88 ± 1.71
2104
+ 2.97 ± 1.77
2105
+ 2.97 ± 1.73
2106
+ 1.88 ± 0.98
2107
+ B(D0 → a0(980)−e+νe, a0(980)− → K0K−)(×10−6)
2108
+ · · ·
2109
+ 29.99 ± 13.81
2110
+ 30.73 ± 13.81
2111
+ 30.57 ± 13.70
2112
+ 4.22 ± 1.93
2113
+ B(D+ → a0(980)0e+νe, a0(980)0 → ηπ0)(×10−5)
2114
+ 17+16
2115
+ −14
2116
+ 7.35 ± 3.28
2117
+ 7.25 ± 3.13
2118
+ 7.32 ± 3.17
2119
+ 4.00 ± 1.00
2120
+ B(D+ → a0(980)0e+νe, a0(980)0 → η′π0)(×10−6)
2121
+ · · ·
2122
+ 5.53 ± 3.26
2123
+ 5.69 ± 3.32
2124
+ 5.65 ± 3.20
2125
+ 3.08 ± 1.56
2126
+ B(D+ → a0(980)0e+νe, a0(980)0 → K+K−)(×10−5)
2127
+ · · ·
2128
+ 2.28 ± 1.06
2129
+ 2.30 ± 1.00
2130
+ 2.29 ± 0.99
2131
+ 0.88 ± 0.36
2132
+ B(D+ → a0(980)0e+νe, a0(980)0 → K0K
2133
+ 0)(×10−5)
2134
+ · · ·
2135
+ 1.99 ± 0.92
2136
+ 2.01 ± 0.88
2137
+ 2.00 ± 0.86
2138
+ 0.77 ± 0.31
2139
+ B(D+ → f0(980)e+νe, f0(980) → π+π−)(×10−5)
2140
+ < 2.8 [5]
2141
+ 1.15 ± 0.50
2142
+ 1.10 ± 0.58
2143
+ 0.96 ± 0.43
2144
+ 1.65 ± 1.15†,
2145
+ 2.14 ± 0.65♯
2146
+ B(D+ → f0(980)e+νe, f0(980) → π0π0)(×10−6)
2147
+ · · ·
2148
+ 5.75 ± 2.53
2149
+ 5.51 ± 2.92
2150
+ 4.80 ± 2.18
2151
+ 10.53 ± 3.67†,
2152
+ 10.10 ± 5.37♯
2153
+ B(D+ → f0(980)e+νe, f0(980) → K+K−)(×10−6)
2154
+ · · ·
2155
+ 5.07 ± 0.88
2156
+ 5.06 ± 0.85
2157
+ 5.01 ± 0.80
2158
+ 4.35 ± 2.78†,
2159
+ 4.60 ± 2.76♯
2160
+ B(D+ → f0(980)e+νe, f0(980) → K0K
2161
+ 0)(×10−6)
2162
+ · · ·
2163
+ 5.07 ± 0.88
2164
+ 5.06 ± 0.85
2165
+ 5.01 ± 0.80
2166
+ 4.35 ± 2.78†,
2167
+ 4.60 ± 2.76♯
2168
+ B(D+ → f0(500)e+νe, f0(500) → π+π−)(×10−4)
2169
+ 6.3 ± 1.0a
2170
+ 1.44 ± 0.64
2171
+ 1.72 ± 0.92
2172
+ 1.79 ± 0.85
2173
+ 3.64 ± 2.57†,
2174
+ 2.95 ± 1.87♯
2175
+ B(D+ → f0(500)e+νe, f0(500) → π0π0)(×10−4)
2176
+ · · ·
2177
+ 0.72 ± 0.32
2178
+ 0.87 ± 0.46
2179
+ 0.91 ± 0.43
2180
+ 1.45 ± 1.02†,
2181
+ 2.08 ± 1.57♯
2182
+ B(D+
2183
+ s → K0
2184
+ 0e+νe, K0
2185
+ 0 → π−K+)(×10−5)
2186
+ · · ·
2187
+ 22.34 ± 8.09
2188
+ 22.13 ± 7.97
2189
+ 22.34 ± 7.64
2190
+ 9.54 ± 3.38
2191
+ B(D+
2192
+ s → K0
2193
+ 0e+νe, K0
2194
+ 0 → π0K0)(×10−5)
2195
+ · · ·
2196
+ 11.17 ± 4.04
2197
+ 11.07 ± 3.99
2198
+ 11.17 ± 3.82
2199
+ 4.77 ± 1.69
2200
+ B(D0 → a0(980)−µ+νµ, a0(980)− → ηπ−)(×10−5)
2201
+ · · ·
2202
+ 4.95 ± 2.27
2203
+ 4.84 ± 2.10
2204
+ 5.00 ± 2.18
2205
+ 3.14 ± 0.84
2206
+ B(D0 → a0(980)−µ+νµ, a0(980)− → η′π−)(×10−6)
2207
+ · · ·
2208
+ 2.39 ± 1.44
2209
+ 2.46 ± 1.48
2210
+ 2.45 ± 1.45
2211
+ 1.56 ± 0.82
2212
+ B(D0 → a0(980)−µ+νµ, a0(980)− → K0K−)(×10−6)
2213
+ · · ·
2214
+ 24.78 ± 11.68
2215
+ 25.37 ± 11.62
2216
+ 25.20 ± 11.53
2217
+ 3.51 ± 1.62
2218
+ B(D+ → a0(980)0µ+νµ, a0(980)0 → ηπ0)(×10−5)
2219
+ · · ·
2220
+ 6.09 ± 2.78
2221
+ 6.00 ± 2.65
2222
+ 6.06 ± 2.69
2223
+ 3.30 ± 0.86
2224
+ B(D+ → a0(980)0µ+νµ, a0(980)0 → η′π0)(×10−6)
2225
+ · · ·
2226
+ 4.58 ± 2.74
2227
+ 4.72 ± 2.79
2228
+ 4.67 ± 2.69
2229
+ 2.55 ± 1.31
2230
+ B(D+ → a0(980)0µ+νµ, a0(980)0 → K+K−)(×10−5)
2231
+ · · ·
2232
+ 1.89 ± 0.89
2233
+ 1.91 ± 0.85
2234
+ 1.89 ± 0.83
2235
+ 0.73 ± 0.30
2236
+ B(D+ → a0(980)0µ+νµ, a0(980)0 → K0K
2237
+ 0)(×10−5)
2238
+ · · ·
2239
+ 1.65 ± 0.78
2240
+ 1.66 ± 0.74
2241
+ 1.65 ± 0.73
2242
+ 0.64 ± 0.27
2243
+ B(D+ → f0(980)µ+νµ, f0(980) → π+π−)(×10−5)
2244
+ · · ·
2245
+ 0.94 ± 0.43
2246
+ 0.91 ± 0.48
2247
+ 0.79 ± 0.36
2248
+ 1.37 ± 0.96†,
2249
+ 1.76 ± 0.55♯
2250
+ B(D+ → f0(980)µ+νµ, f0(980) → π0π0)(×10−6)
2251
+ · · ·
2252
+ 4.74 ± 2.14
2253
+ 4.58 ± 2.43
2254
+ 3.97 ± 1.82
2255
+ 8.67 ± 3.13†,
2256
+ 8.32 ± 4.47♯
2257
+ B(D+ → f0(980)µ+νµ, f0(980) → K+K−)(×10−6)
2258
+ · · ·
2259
+ 4.21 ± 0.73
2260
+ 4.19 ± 0.71
2261
+ 4.15 ± 0.67
2262
+ 3.55 ± 2.29†,
2263
+ 3.76 ± 2.26♯
2264
+ B(D+ → f0(980)µ+νµ, f0(980) → K0K
2265
+ 0)(×10−6)
2266
+ · · ·
2267
+ 4.21 ± 0.73
2268
+ 4.19 ± 0.71
2269
+ 4.15 ± 0.67
2270
+ 3.55 ± 2.29†,
2271
+ 3.76 ± 2.26♯
2272
+ B(D+ → f0(500)µ+νµ, f0(980) → π+π−)(×10−4)
2273
+ · · ·
2274
+ 1.28 ± 0.59
2275
+ 1.54 ± 0.84
2276
+ 1.61 ± 0.79
2277
+ 3.30 ± 2.39†,
2278
+ 2.68 ± 1.74♯
2279
+ B(D+ → f0(500)µ+νµ, f0(980) → π0π0)(×10−4)
2280
+ · · ·
2281
+ 0.64 ± 0.30
2282
+ 0.78 ± 0.43
2283
+ 0.81 ± 0.40
2284
+ 1.32 ± 0.95†,
2285
+ 1.89 ± 1.46♯
2286
+ B(D+
2287
+ s → K0
2288
+ 0µ+νµ, K0
2289
+ 0 → π−K+)(×10−5)
2290
+ · · ·
2291
+ 19.61 ± 7.20
2292
+ 19.43 ± 7.10
2293
+ 19.60 ± 6.80
2294
+ 8.38 ± 3.01
2295
+ B(D+
2296
+ s → K0
2297
+ 0µ+νµ, K0
2298
+ 0 → π0K0)(×10−5)
2299
+ · · ·
2300
+ 9.80 ± 3.60
2301
+ 9.71 ± 3.55
2302
+ 9.80 ± 3.40
2303
+ 4.19 ± 1.50
2304
+
2305
+ 18
2306
+ C.
2307
+ D → V (V → P1P2)ℓ+νℓ decays
2308
+ We will analyze the D → P1P2ℓ+νℓ decays with the vector resonances in this subsection. Since the light vector
2309
+ mesons are understood well, the calculations of B(D → V ℓ+νℓ, V → P1P2) are much easier than ones of B(D →
2310
+ Sℓ+νℓ, S → P1P2). From Eq. (11), their branching ratios of D → V (V → P1P2)ℓ+νℓ can be obtained by using
2311
+ B(D → V ℓ+νℓ) and B(V → P1P2). The D → V ℓ+νℓ decays have been studied by the SU(3) flavor symmetry in Ref.
2312
+ [81]. Many B(D → V ℓ+νℓ) have been accurately measured and have been listed in the second column of Tab. V in
2313
+ Ref. [81]. The expressions of B(D → V ℓ+νℓ) within the C3 case in Ref. [81] will be taken for our analysis.
2314
+ Following Ref. [85], B(V → P1P2) can be written as
2315
+ B(V → P1P2) = τV p′3
2316
+ c
2317
+ 6πm2
2318
+ V
2319
+ g2
2320
+ V →P1P2,
2321
+ (30)
2322
+ where p′
2323
+ c ≡
2324
+
2325
+ λ(m2
2326
+ V ,m2
2327
+ P1,m2
2328
+ P2)
2329
+ 2mV
2330
+ and gV →P1P2 are the strong coupling constants. Similar to g2q
2331
+ S→P1P2 in Eq. (28), gV →P1P2
2332
+ can be parameterized by the SU(3) flavor symmetry
2333
+ gV →P1P2 = gV V i
2334
+ j P k
2335
+ i P j
2336
+ k,
2337
+ (31)
2338
+ where gV is the corresponding nonperturbative parameter.
2339
+ At present, many involved B(V → P1P2) have been well measured [11]
2340
+ B(K∗+ → πK) = (99.902 ± 0.018)%,
2341
+ B(K∗0 → πK) = (99.754 ± 0.042)%,
2342
+ B(ρ+ → π0π+) = 100%,
2343
+ B(ρ0 → π+π−) = 100%,
2344
+ B(φ → K+K−) = (49.1 ± 1.0)%,
2345
+ B(ω → π+π−) = (1.53+0.22
2346
+ −0.26)%.
2347
+ (32)
2348
+ Using the following relations from Eq. (31)
2349
+
2350
+ 2gK∗−→π0K− = gK∗−→π−K0,
2351
+
2352
+ 2gK∗0→π0K0 = gK∗0→π−K+,
2353
+ gρ−→π0π− =
2354
+
2355
+ 3gρ−→η8π− =
2356
+
2357
+ 3/2gρ−→η1π−,
2358
+ gφ→K+K− = gφ→K0K
2359
+ 0,
2360
+ (33)
2361
+ following B(V → P1P2) can be obtained
2362
+ B(K∗0 → π0K0) = (33.02 ± 0.02)%,
2363
+ B(K∗0 → π−K+) = (66.74 ± 0.04)%,
2364
+ B(K∗+ → π0K+) = (33.62 ± 0.01)%,
2365
+ B(K∗+ → π−K0) = (66.28 ± 0.01)%,
2366
+ B(ρ+ → ηπ+) = (4.38 ± 0.66)%,
2367
+ B(φ → K0K0) = (32.42 ± 1.04)%.
2368
+ (34)
2369
+ For D → V (V → P1P2)ℓ+νℓ decays, the branching ratios of D+ → K
2370
+ ∗0(K
2371
+ ∗0 → π+K−)e+νe and D+ → K
2372
+ ∗0(K
2373
+ ∗0 →
2374
+ π+K−)µ+νµ have been measured, and the experimental data with 2σ errors are listed in the second column of Tab.
2375
+ VIII. Using the experimental data of B(D+ → K
2376
+ ∗0ℓ+νℓ, K
2377
+ ∗0 → π+K−), B(V → P1P2) and B(D → V ℓ+νℓ), we
2378
+ obtain the predictions of B(D → V ℓ+νℓ, V → P1P2) by the SU(3) flavor symmetry, which are given in the third
2379
+ column of Tab. VIII. We can see that B(D → V ℓ+νℓ, V → P1P2) with the c → sℓ+νℓ transitions are predicted on
2380
+ the order of O(10−2 − 10−3), and B(D → V ℓ+νℓ, V → P1P2) with the c → dℓ+νℓ transitions are predicted on the
2381
+
2382
+ 19
2383
+ TABLE VIII: The experimental data and the SU(3) flavor symmetry predictions of D → V (V → P1P2)ℓ+νℓ decays within 2σ
2384
+ errors.
2385
+ Branching ratios
2386
+ Exp. Data
2387
+ Our predictions
2388
+ Previous ones
2389
+ c → se+νe:
2390
+ B(D0 → K∗−e+νe, K∗− → π−K
2391
+ 0)(×10−2)
2392
+ . . .
2393
+ 1.42 ± 0.07
2394
+ . . .
2395
+ B(D0 → K∗−e+νe, K∗− → π0K−)(×10−3)
2396
+ . . .
2397
+ 7.18 ± 0.37
2398
+ 7.17 [62]
2399
+ B(D+ → K
2400
+ ∗0e+νe, K
2401
+ ∗0 → π+K−)(×10−2)
2402
+ 3.77 ± 0.34
2403
+ 3.64 ± 0.11
2404
+ 3.51 [62]
2405
+ B(D+ → K
2406
+ ∗0e+νe, K
2407
+ ∗0 → π0K
2408
+ 0)(×10−2)
2409
+ . . .
2410
+ 1.80 ± 0.06
2411
+ . . .
2412
+ B(D+
2413
+ s → φe+νe, φ → K+K−)(×10−2)
2414
+ . . .
2415
+ 1.20 ± 0.10
2416
+ . . .
2417
+ B(D+
2418
+ s → φe+νe, φ → K0K
2419
+ 0)(×10−3)
2420
+ . . .
2421
+ 7.94 ± 0.65
2422
+ . . .
2423
+ c → sµ+νµ:
2424
+ B(D0 → K∗−µ+νµ, K∗− → π−K
2425
+ 0)(×10−2)
2426
+ . . .
2427
+ 1.33 ± 0.07
2428
+ . . .
2429
+ B(D0 → K∗−µ+νµ, K∗− → π0K−)(×10−3)
2430
+ . . .
2431
+ 6.76 ± 0.35
2432
+ 7.17 [62]
2433
+ B(D+ → K
2434
+ ∗0µ+νµ, K
2435
+ ∗0 → π+K−)(×10−2)
2436
+ 3.52 ± 0.20
2437
+ 3.43 ± 0.11
2438
+ 3.51 [62]
2439
+ B(D+ → K
2440
+ ∗0µ+νµ, K
2441
+ ∗0 → π0K
2442
+ 0)(×10−2)
2443
+ . . .
2444
+ 1.70 ± 0.05
2445
+ . . .
2446
+ B(D+
2447
+ s → φµ+νµ, φ → K+K−)(×10−2)
2448
+ . . .
2449
+ 1.13 ± 0.09
2450
+ . . .
2451
+ B(D+
2452
+ s → φµ+νµ, φ → K0K
2453
+ 0)(×10−3)
2454
+ . . .
2455
+ 7.46 ± 0.62
2456
+ . . .
2457
+ c → de+νe:
2458
+ B(D0 → ρ−e+νe, ρ− → π0π−)(×10−3)
2459
+ . . .
2460
+ 1.85 ± 0.11
2461
+ 1.63 [62]
2462
+ B(D0 → ρ−e+νe, ρ− → ηπ−)(×10−5)
2463
+ . . .
2464
+ 8.23 ± 1.59
2465
+ . . .
2466
+ B(D+ → ρ0e+νe, ρ0 → π+π−)(×10−3)
2467
+ . . .
2468
+ 2.40 ± 0.12
2469
+ 1.57 ± 0.07 [13],
2470
+ 2.10 [62]
2471
+ B(D+ → ωe+νe, ω → π+π−)(×10−5)
2472
+ . . .
2473
+ 3.55 ± 0.82
2474
+ . . .
2475
+ B(D+
2476
+ s → K∗0e+νe, K∗0 → π−K+)(×10−3)
2477
+ . . .
2478
+ 1.49 ± 0.10
2479
+ . . .
2480
+ B(D+
2481
+ s → K∗0e+νe, K∗0 → π0K0)(×10−4)
2482
+ . . .
2483
+ 7.39 ± 0.51
2484
+ . . .
2485
+ c → dµ+νµ:
2486
+ B(D0 → ρ−µ+νµ, ρ− → π0π−)(×10−3)
2487
+ . . .
2488
+ 1.76 ± 0.10
2489
+ . . .
2490
+ B(D0 → ρ−µ+νµ, ρ− → ηπ−)(×10−5)
2491
+ . . .
2492
+ 7.83 ± 1.51
2493
+ . . .
2494
+ B(D+ → ρ0µ+νµ, ρ0 → π+π−)(×10−3)
2495
+ . . .
2496
+ 2.29 ± 0.11
2497
+ 1.57 ± 0.07 [13]
2498
+ B(D+ → ωµ+νµ, ω → π+π−)(×10−5)
2499
+ . . .
2500
+ 3.38 ± 0.78
2501
+ . . .
2502
+ B(D+
2503
+ s → K∗0µ+νµ, K∗0 → π−K+)(×10−3)
2504
+ . . .
2505
+ 1.42 ± 0.10
2506
+ . . .
2507
+ B(D+
2508
+ s → K∗0µ+νµ, K∗0 → π0K0)(×10−4)
2509
+ . . .
2510
+ 7.03 ± 0.48
2511
+ . . .
2512
+
2513
+ 20
2514
+ order of O(10−3 − 10−5). The predictions of B(D → V ℓ+νℓ, V → P1P2) are about one order larger than ones of the
2515
+ corresponding B(D → Sℓ+νℓ, S → P1P2).
2516
+ Previous predictions are also listed in the last column of Tab. VIII. Our predictions of B(D0 → K∗−ℓ+νℓ, K∗− →
2517
+ π0K−) and B(D+ → K
2518
+ ∗0ℓ+νℓ, K
2519
+ ∗0 → π+K−) are in good agreement with ones in Ref. [62]. And our predictions of
2520
+ B(D+ → ρ0ℓ+νℓ, ρ0 → π+π−) are slight larger than ones obtained by the light-front quark model and the light-cone
2521
+ sum rules in Ref. [13].
2522
+ D.
2523
+ Total branching ratios
2524
+ As analyzed in above, some four-body semileptonic decays of D mesons receive the contributions of the non-resonant
2525
+ states, the scalar resonant states and the vector resonant states, nevertheless, some decay modes only receive one or two
2526
+ kinds of them. For clearly showing the resonant contributions, we also list the scalar and vector resonant amplitudes in
2527
+ the third and last columns of Tab. I, respectively. The resonant amplitudes are obtained by multiplying the hadronic
2528
+ helicity amplitudes H(D → Rℓ+νℓ) given in Ref. [81] and the strong coupling constants gR→P1P2 obtained in this
2529
+ work. Noted that the resonant amplitudes listed in the last two columns of Tab. I only for clearly see the kinds of the
2530
+ resonant contributions, and we do not using them to obtain the numerical total branching ratios B(D → P1P2ℓ+νℓ)T .
2531
+ We have some comments for the contributions in Tab. I. For D(s) → ηKℓ+νℓ, η′Kℓ+νℓ, ηηℓ+νℓ, ηη′ℓ+νℓ decays,
2532
+ since the both final state mesons are quite heavy, they only receive the non-resonant contributions.
2533
+ The decays
2534
+ D+
2535
+ s → π0π0ℓ+νℓ, D+
2536
+ s → π+π−ℓ+νℓ, D0 → K−K0ℓ+νℓ, D+ → K
2537
+ 0K0ℓ+νℓ, D+ → K+K−ℓ+νℓ, D+ → π0π0ℓ+νℓ and
2538
+ D+ → η(′)π0ℓ+νℓ receive both the non-resonant contributions and the scalar resonant contributions, moreover, the
2539
+ non-resonant contributions in the D+
2540
+ s → π0π0ℓ+νℓ, D+
2541
+ s → π+π−ℓ+νℓ and D+ → K+K−ℓ+νℓ decays are suppressed
2542
+ by the OZI rule, and the main contributions of these decay branching ratios come from the scalar resonant states. All
2543
+ other decay modes except the D0 → π0π−ℓ+νℓ decays receive all three kinds of the contributions, and their branching
2544
+ ratios are dominant by the vector resonant states. Due to the quantum number constraint, the D0 → π0π−ℓ+νℓ
2545
+ decays only receive the contributions of the vector resonant states.
2546
+ In the last columns of Tabs. II-III, total branching ratio predictions of the D → P1P2ℓ+ν decays including the
2547
+ possible non-resonant, scalar resonant and vector resonant contributions are listed. The present six experimental data
2548
+ with 2σ errors are also listed in the forth column of Tab. II and in third column of Tab. III for convenient comparison.
2549
+ One can see that, for B(D0 → π−K
2550
+ −e+νe), B(D0 → π0K−e+νe), B(D+ → π+K−e+νe), B(D+ → π+K−µ+νµ) and
2551
+ B(D+ → π+π−e+νe), our SU(3) flavor symmetry predictions are consistent with present data within 2σ error bars.
2552
+ Our prediction of B(D0 → π0π−e+νe) is slightly larger than its experimental datum, nevertheless, the prediction will
2553
+ be very close to the datum within 3σ error bars.
2554
+ For some Cabibbo suppressed decays due to c → dℓ+νℓ transitions, such as the D0 → K−K0ℓ+νℓ, D0 → η′π−ℓ+νℓ,
2555
+ D+ → K
2556
+ 0K0ℓ+νℓ, D+ → π0π0ℓ+νℓ, D+ → ηπ0ℓ+νℓ and D+ → η′π0ℓ+νℓ decays, they only receive both the non-
2557
+ resonant contributions and the scalar resonant contributions, and we can see that both the non-resonant and the
2558
+ scalar resonant contributions are important. The non-resonant contributions in the D+ → K+K−ℓ+νℓ decays are
2559
+ suppressed by the OZI rule, and the scalar resonant contributions in the D+ → K+K−ℓ+νℓ decays are dominant.
2560
+
2561
+ 21
2562
+ IV.
2563
+ Summary
2564
+ Semileptonic decays of heavy mesons are quite interesting because of not only relatively simple theoretical description
2565
+ but also the clean experimental signals. Some semileptonic decays D → P1P2ℓ+νℓ have been measured by BESIII,
2566
+ CLEO and BABAR, etc. Using the present data of B(D → P1P2ℓ+νℓ) and the SU(3) flavor symmetry, we have
2567
+ presented a theoretical analysis of the D → P1P2ℓ+νℓ decays with the non-resonant, the light scalar meson resonant
2568
+ and the vector meson resonant contributions.
2569
+ • Non-resonant D → P1P2ℓ+νℓ decays: The amplitude relations included the SU(3) flavor breaking effects have
2570
+ been obtained. Almost all amplitudes can be related after ignoring the OZI suppressed and the SU(3) flavor
2571
+ breaking contributions. Via the experimental data of the non-resonant branching ratios B(D+ → π+K−ℓ+νℓ)N,
2572
+ we have predicted other non-resonant branching ratios. We have found that the branching ratios of the non-
2573
+ resonant decays D0 → π−K
2574
+ 0ℓ+νℓ, π0K−ℓ+ν���, D+ → π+K−ℓ+νℓ, π0K
2575
+ 0ℓ+νℓ, π+π−ℓ+νℓ, π0π0ℓ+νℓ, and D+
2576
+ s →
2577
+ K+K−ℓ+νℓ, K0K
2578
+ 0ℓ+νℓ are on the order of O(10−3 − 10−4), which might be measured by the BESIII, LHCb
2579
+ and BelleII experiment, and some other decays might be measured at these experiments in near future.
2580
+ • Decays with the light scalar meson resonances: Using the SU(3) flavor symmetry and the present
2581
+ experimental data of B(D → Sℓ+νℓ), B(D → Sℓ+νℓ, S → P1P2) as well as B(S → P1P2), the not-
2582
+ measured B(D → Sℓ+νℓ, S → P1P2) have been obtained by the SU(3) flavor symmetry. We have found that
2583
+ B(D → Sℓ+νℓ, S → P1P2) with the c → sℓ+νℓ transitions are predicted on the order of O(10−3 − 10−4), and
2584
+ B(D → Sℓ+νℓ, S → P1P2) with the c → dℓ+νℓ transitions are predicted on the order of O(10−4−10−6). The two
2585
+ quark picture and the four quark picture for the scalar mesons have been analyzed in the D → S(S → P1P2)ℓ+νℓ
2586
+ decays. Present experimental data might favorite the four quark picture for the scalar mesons.
2587
+ • Decays with the vector meson resonances:
2588
+ Using the experimental data of B(D+ → K
2589
+ ∗0e+νe, K
2590
+ ∗0 →
2591
+ π+K−), B(D+ → K
2592
+ ∗0µ+νµ, K
2593
+ ∗0 → π+K−), many B(D → V ℓ+νℓ) and many B(V → P1P2), the not-measured
2594
+ B(D → V ℓ+νℓ, V → P1P2) have been predicted by the SU(3) flavor symmetry. We have found that B(D →
2595
+ V ℓ+νℓ, V → P1P2) with the c → sℓ+νℓ transitions are predicted on the order of O(10−2 − 10−3), and B(D →
2596
+ V ℓ+νℓ, V → P1P2) with the c → dℓ+νℓ transitions are predicted on the order of O(10−3 − 10−5).
2597
+ • Total branching ratios: Total branching ratio predictions including the possible non-resonant, light scalar
2598
+ meson resonant and vector meson resonant contributions have been obtained.
2599
+ The six total branching ra-
2600
+ tios have been measured, and we did not use them to further constrain the predictions.
2601
+ Our five predic-
2602
+ tions are consistent with present data within 2σ errors, and the prediction of B(D0 → π0π−e+νe) will be
2603
+ very close to the datum within 3σ error bars. We have found that the vector meson resonant contributions
2604
+ are dominant in the D0 → π−K
2605
+ 0ℓ+νℓ, π0K−ℓ+νℓ, π0π−ℓ+νℓ, D+ → π+K−ℓ+νℓ, π0K
2606
+ 0ℓ+νℓ, π+π−ℓ+νℓ, and
2607
+ D+
2608
+ s → K+K−ℓ+νℓ, K0K
2609
+ 0ℓ+νℓ, K+π−ℓ+νℓ, K0π0ℓ+νℓ decays. All three kinds of contributions are important
2610
+ in D0 → ηπ−ℓ+νℓ decays.
2611
+ Both the non-resonant and the scalar resonant contributions are important in
2612
+ D0 → K−K0ℓ+νℓ, η′π−ℓ+νℓ and D+ → K
2613
+ 0K0ℓ+νℓ, π0π0ℓ+νℓ, ηπ0ℓ+νℓ, η′π0ℓ+νℓ decays.
2614
+
2615
+ 22
2616
+ Although SU(3) flavor symmetry is approximate, it can still provide very useful information about these decays.
2617
+ According to our rough predictions, many decay modes could be observed at BESIII, LHCb and BelleII, and some
2618
+ decay modes might be measured in near future experiments. Therefore, the SU(3) flavor symmetry will be further
2619
+ tested by these semileptonic decays in future experiments.
2620
+ ACKNOWLEDGEMENTS
2621
+ The work was supported by the National Natural Science Foundation of China (12175088).
2622
+ References
2623
+ [1] W. Wang and C. D. L¨u, Phys. Rev. D 82 (2010), 034016 [arXiv:0910.0613 [hep-ph]].
2624
+ [2] N. N. Achasov and A. V. Kiselev, Phys. Rev. D 86 (2012), 114010 [arXiv:1206.5500 [hep-ph]].
2625
+ [3] E. Oset et al. Int. J. Mod. Phys. E 25 (2016), 1630001 [arXiv:1601.03972 [hep-ph]].
2626
+ [4] M. Ablikim et al. [BESIII], [arXiv:2110.13994 [hep-ex]].
2627
+ [5] M. Ablikim et al. [BESIII], Phys. Rev. Lett. 122 (2019) no.6, 062001 [arXiv:1809.06496 [hep-ex]].
2628
+ [6] M. Ablikim et al. [BESIII], Phys. Rev. Lett. 121 (2018) no.8, 081802 [arXiv:1803.02166 [hep-ex]].
2629
+ [7] M. Ablikim et al. [BESIII], Phys. Rev. D 103 (2021) no.9, 092004 [arXiv:2103.11855 [hep-ex]].
2630
+ [8] K. M. Ecklund et al. [CLEO], Phys. Rev. D 80 (2009), 052009 [arXiv:0907.3201 [hep-ex]].
2631
+ [9] P. del Amo Sanchez et al. [BaBar], Phys. Rev. D 83 (2011), 072001 [arXiv:1012.1810 [hep-ex]].
2632
+ [10] Z. Bai et al. [MARK-III], Phys. Rev. Lett. 66 (1991), 1011-1014.
2633
+ [11] R. L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022).
2634
+ [12] X. W. Kang, B. Kubis, C. Hanhart and U. G. Meißner, Phys. Rev. D 89 (2014), 053015 [arXiv:1312.1193 [hep-ph]].
2635
+ [13] Y. J. Shi, W. Wang and S. Zhao, Eur. Phys. J. C 77 (2017) no.7, 452 [arXiv:1701.07571 [hep-ph]].
2636
+ [14] Y. J. Shi, C. Y. Seng, F. K. Guo, B. Kubis, U. G. Meißner and W. Wang, JHEP 04 (2021), 086 [arXiv:2011.00921 [hep-ph]].
2637
+ [15] S. Cheng, A. Khodjamirian and J. Virto, JHEP 05 (2017), 157 [arXiv:1701.01633 [hep-ph]].
2638
+ [16] T. Sekihara and E. Oset, Phys. Rev. D 92 (2015) no.5, 054038 [arXiv:1507.02026 [hep-ph]].
2639
+ [17] C. Hambrock and A. Khodjamirian, Nucl. Phys. B 905 (2016), 373-390 [arXiv:1511.02509 [hep-ph]].
2640
+ [18] P. B¨oer, T. Feldmann and D. van Dyk, JHEP 02 (2017), 133 [arXiv:1608.07127 [hep-ph]].
2641
+ [19] X. G. He, Eur. Phys. J. C 9, 443 (1999) [hep-ph/9810397].
2642
+ [20] X. G. He, Y. K. Hsiao, J. Q. Shi, Y. L. Wu and Y. F. Zhou, Phys. Rev. D 64, 034002 (2001) [hep-ph/0011337].
2643
+ [21] H. K. Fu, X. G. He and Y. K. Hsiao, Phys. Rev. D 69, 074002 (2004) [hep-ph/0304242].
2644
+ [22] Y. K. Hsiao, C. F. Chang and X. G. He, Phys. Rev. D 93, no. 11, 114002 (2016) [arXiv:1512.09223 [hep-ph]].
2645
+ [23] X. G. He and G. N. Li, Phys. Lett. B 750, 82 (2015) [arXiv:1501.00646 [hep-ph]].
2646
+ [24] M. Gronau, O. F. Hernandez, D. London and J. L. Rosner, Phys. Rev. D 50, 4529 (1994) [hep-ph/9404283].
2647
+ [25] M. Gronau, O. F. Hernandez, D. London and J. L. Rosner, Phys. Rev. D 52, 6356 (1995) [hep-ph/9504326].
2648
+
2649
+ 23
2650
+ [26] S. H. Zhou, Q. A. Zhang, W. R. Lyu and C. D. L¨u, Eur. Phys. J. C 77, no. 2, 125 (2017) [arXiv:1608.02819 [hep-ph]].
2651
+ [27] H. Y. Cheng, C. W. Chiang and A. L. Kuo, Phys. Rev. D 91, no. 1, 014011 (2015) [arXiv:1409.5026 [hep-ph]].
2652
+ [28] M. He, X. G. He and G. N. Li, Phys. Rev. D 92, no. 3, 036010 (2015) [arXiv:1507.07990 [hep-ph]].
2653
+ [29] N. G. Deshpande and X. G. He, Phys. Rev. Lett. 75, 1703 (1995) [hep-ph/9412393].
2654
+ [30] S. Shivashankara, W. Wu and A. Datta, Phys. Rev. D 91, 115003 (2015) [arXiv:1502.07230 [hep-ph]].
2655
+ [31] R. M. Wang, Y. G. Xu, C. Hua and X. D. Cheng, Phys. Rev. D 103 (2021) no.1, 013007 [arXiv:2101.02421 [hep-ph]].
2656
+ [32] R. M. Wang, X. D. Cheng, Y. Y. Fan, J. L. Zhang and Y. G. Xu, J. Phys. G 48 (2021), 085001 [arXiv:2008.06624 [hep-ph]].
2657
+ [33] Y. Grossman and D. J. Robinson, JHEP 1304, 067 (2013) [arXiv:1211.3361 [hep-ph]].
2658
+ [34] D. Pirtskhalava and P. Uttayarat, Phys. Lett. B 712, 81 (2012) [arXiv:1112.5451 [hep-ph]].
2659
+ [35] M. J. Savage and R. P. Springer, Phys. Rev. D 42, 1527 (1990).
2660
+ [36] M. J. Savage, Phys. Lett. B 257, 414 (1991).
2661
+ [37] G. Altarelli, N. Cabibbo and L. Maiani, Phys. Lett. 57B, 277 (1975).
2662
+ [38] C. D. L¨u, W. Wang and F. S. Yu, Phys. Rev. D 93, no. 5, 056008 (2016) [arXiv:1601.04241 [hep-ph]].
2663
+ [39] C. Q. Geng, Y. K. Hsiao, Y. H. Lin and L. L. Liu, Phys. Lett. B 776, 265 (2018) [arXiv:1708.02460 [hep-ph]].
2664
+ [40] C. Q. Geng, Y. K. Hsiao, C. W. Liu and T. H. Tsai, Phys. Rev. D 97, no. 7, 073006 (2018) [arXiv:1801.03276 [hep-ph]].
2665
+ [41] C. Q. Geng, Y. K. Hsiao, C. W. Liu and T. H. Tsai, JHEP 1711, 147 (2017) [arXiv:1709.00808 [hep-ph]].
2666
+ [42] C. Q. Geng, C. W. Liu, T. H. Tsai and S. W. Yeh, arXiv:1901.05610 [hep-ph].
2667
+ [43] W. Wang, Z. P. Xing and J. Xu, Eur. Phys. J. C 77, no. 11, 800 (2017) [arXiv:1707.06570 [hep-ph]].
2668
+ [44] D. Wang, arXiv:1901.01776 [hep-ph].
2669
+ [45] D. Wang, P. F. Guo, W. H. Long and F. S. Yu, JHEP 1803, 066 (2018) [arXiv:1709.09873 [hep-ph]].
2670
+ [46] S. M¨uller, U. Nierste and S. Schacht, Phys. Rev. D 92, no. 1, 014004 (2015) [arXiv:1503.06759 [hep-ph]].
2671
+ [47] R. M. Wang, M. Z. Yang, H. B. Li and X. D. Cheng, Phys. Rev. D 100 (2019) no.7, 076008 [arXiv:1906.08413 [hep-ph]].
2672
+ [48] Y. G. Xu, X. D. Cheng, J. L. Zhang and R. M. Wang, J. Phys. G 47 (2020) no.8, 085005 [arXiv:2001.06907 [hep-ph]].
2673
+ [49] H. M. Chang, M. Gonz´alez-Alonso and J. Martin Camalich, Phys. Rev. Lett. 114 (2015), 161802 [arXiv:1412.8484 [hep-ph]].
2674
+ [50] P. Zenczykowski, Phys. Rev. D 73 (2006), 076005 [arXiv:hep-ph/0512122 [hep-ph]].
2675
+ [51] P. Zenczykowski, Nucl. Phys. B Proc. Suppl. 167 (2007), 54-57 [arXiv:hep-ph/0610191 [hep-ph]].
2676
+ [52] N. Cabibbo, Phys. Rev. Lett. 10 (1963), 531-533.
2677
+ [53] H. Y. Cheng and C. W. Chiang, Phys. Rev. D 86, 014014 (2012) [arXiv:1205.0580 [hep-ph]].
2678
+ [54] A. Dery, M. Ghosh, Y. Grossman and S. Schacht, JHEP 03 (2020), 165 [arXiv:2001.05397 [hep-ph]].
2679
+ [55] S. Sasaki and T. Yamazaki, Phys. Rev. D 79 (2009), 074508 [arXiv:0811.1406 [hep-ph]].
2680
+ [56] T. N. Pham, Phys. Rev. D 87 (2013) no.1, 016002 [arXiv:1210.3981 [hep-ph]].
2681
+ [57] C. Q. Geng, Y. K. Hsiao, C. W. Liu and T. H. Tsai, Eur. Phys. J. C 78 (2018) no.7, 593 [arXiv:1804.01666 [hep-ph]].
2682
+ [58] R. Flores-Mendieta, E. E. Jenkins and A. V. Manohar, Phys. Rev. D 58 (1998), 094028 [arXiv:hep-ph/9805416 [hep-ph]].
2683
+ [59] D. Xu, G. N. Li and X. G. He, Int. J. Mod. Phys. A 29 (2014), 1450011 [arXiv:1307.7186 [hep-ph]].
2684
+ [60] X. G. He, G. N. Li and D. Xu, Phys. Rev. D 91 (2015) no.1, 014029 [arXiv:1410.0476 [hep-ph]].
2685
+ [61] Y. J. Shi and U. G. Meißner, Eur. Phys. J. C 81 (2021) no.5, 412 [arXiv:2103.12977 [hep-ph]].
2686
+ [62] C. S. Kim, G. L. Castro and S. L. Tostado, Phys. Rev. D 95 (2017) no.7, 073003 [arXiv:1702.01704 [hep-ph]].
2687
+ [63] N. N. Achasov, A. V. Kiselev and G. N. Shestakov, Phys. Rev. D 104 (2021) no.1, 016034 [arXiv:2106.10670 [hep-ph]].
2688
+ [64] J. Wiss, eConf C070805 (2007), 34 [arXiv:0709.3247 [hep-ex]].
2689
+ [65] W. Wang, Phys. Lett. B 759 (2016), 501-506 [arXiv:1602.05288 [hep-ph]].
2690
+ [66] N. N. Achasov, A. V. Kiselev and G. N. Shestakov, Phys. Rev. D 102 (2020) no.1, 016022 [arXiv:2005.06455 [hep-ph]].
2691
+
2692
+ 24
2693
+ [67] S. Faller, T. Feldmann, A. Khodjamirian, T. Mannel and D. van Dyk, Phys. Rev. D 89 (2014) no.1, 014015 [arXiv:1310.6660
2694
+ [hep-ph]].
2695
+ [68] X. G. He, Y. J. Shi and W. Wang, Eur. Phys. J. C 80, no.5, 359 (2020) [arXiv:1811.03480 [hep-ph]].
2696
+ [69] H. Y. Cheng, C. K. Chua and K. C. Yang, Phys. Rev. D 73 (2006), 014017 [arXiv:hep-ph/0508104 [hep-ph]].
2697
+ [70] L. Maiani, F. Piccinini, A. D. Polosa and V. Riquer, Phys. Rev. Lett. 93 (2004), 212002 [arXiv:hep-ph/0407017 [hep-ph]].
2698
+ [71] L. Y. Dai, X. W. Kang and U. G. Meißner, Phys. Rev. D 98 (2018) no.7, 074033 [arXiv:1808.05057 [hep-ph]].
2699
+ [72] G. ’t Hooft, G. Isidori, L. Maiani, A. D. Polosa and V. Riquer, Phys. Lett. B 662 (2008), 424-430 [arXiv:0801.2288
2700
+ [hep-ph]].
2701
+ [73] J. R. Pelaez, Phys. Rev. Lett. 92 (2004), 102001 [arXiv:hep-ph/0309292 [hep-ph]].
2702
+ [74] Y. J. Sun, Z. H. Li and T. Huang, Phys. Rev. D 83 (2011), 025024 [arXiv:1011.3901 [hep-ph]].
2703
+ [75] J. A. Oller and E. Oset, Nucl. Phys. A 620 (1997), 438-456 [erratum: Nucl. Phys. A 652 (1999), 407-409] [arXiv:hep-
2704
+ ph/9702314 [hep-ph]].
2705
+ [76] V. Baru, J. Haidenbauer, C. Hanhart, Y. Kalashnikova and A. E. Kudryavtsev, Phys. Lett. B 586 (2004), 53-61 [arXiv:hep-
2706
+ ph/0308129 [hep-ph]].
2707
+ [77] N. N. Achasov, V. V. Gubin and V. I. Shevchenko, Phys. Rev. D 56 (1997), 203-211 doi:10.1103/PhysRevD.56.203
2708
+ [arXiv:hep-ph/9605245 [hep-ph]].
2709
+ [78] S. Momeni and M. Saghebfar, Eur. Phys. J. C 82 (2022) no.5, 473.
2710
+ [79] R. Aaij et al. [LHCb], Phys. Rev. D 87 (2013) no.5, 052001 [arXiv:1301.5347 [hep-ex]].
2711
+ [80] R. L. Jaffe, Phys. Rev. D 15 (1977), 267.
2712
+ [81] Ru-Min Wang, Yue-Xin Liu, Chong Hua, Xiao-Dong Cheng and Yuan-Guo Xu, Decayd D → Mℓνℓ with SU(3) flavor
2713
+ symmetry, in preparation.
2714
+ [82] S. Okubo, Phys. Lett. 5 (1963), 165-168.
2715
+ [83] H. J. Lipkin, Nucl. Phys. B 291 (1987), 720-730.
2716
+ [84] H. J. Lipkin and B. s. Zou, Phys. Rev. D 53 (1996), 6693-6696.
2717
+ [85] H. Y. Cheng and C. K. Chua, Phys. Rev. D 102 (2020) no.5, 053006 [arXiv:2007.02558 [hep-ph]].
2718
+ [86] J. Hietala, D. Cronin-Hennessy, T. Pedlar and I. Shipsey, Phys. Rev. D 92 (2015) no.1, 012009 [arXiv:1505.04205 [hep-ex]].
2719
+
FdAyT4oBgHgl3EQfSvci/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
FdAyT4oBgHgl3EQfrPl7/content/2301.00557v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6220332cd76d10d691b19619efa7c6e0199c41d3bcd5a4b90b4c66a84e8ec31
3
+ size 954337
FdAyT4oBgHgl3EQfrPl7/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:730ee9a8be078741ebe41081a990a2b68e1ca339977ffc6135af27a1d1d6b9b5
3
+ size 212156
GNE3T4oBgHgl3EQfWAqd/content/2301.04465v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80edffea0c608002321de836235ae68d2d298e10a8e1829d325537538ecc9d69
3
+ size 1953832