jackkuo commited on
Commit
335eef9
·
verified ·
1 Parent(s): 989d013

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +5 -0
  2. 1NFLT4oBgHgl3EQfpi-7/content/tmp_files/2301.12136v1.pdf.txt +1225 -0
  3. 1NFLT4oBgHgl3EQfpi-7/content/tmp_files/load_file.txt +0 -0
  4. 2NAyT4oBgHgl3EQf1fm1/content/tmp_files/2301.00737v1.pdf.txt +968 -0
  5. 2NAyT4oBgHgl3EQf1fm1/content/tmp_files/load_file.txt +0 -0
  6. 2dAzT4oBgHgl3EQf8_7Q/content/tmp_files/2301.01914v1.pdf.txt +720 -0
  7. 2dAzT4oBgHgl3EQf8_7Q/content/tmp_files/load_file.txt +342 -0
  8. 5dE1T4oBgHgl3EQf6gWk/content/tmp_files/2301.03524v1.pdf.txt +1596 -0
  9. 5dE1T4oBgHgl3EQf6gWk/content/tmp_files/load_file.txt +0 -0
  10. 5dFKT4oBgHgl3EQf-S4-/content/tmp_files/2301.11957v1.pdf.txt +435 -0
  11. 5dFKT4oBgHgl3EQf-S4-/content/tmp_files/load_file.txt +277 -0
  12. 6dAyT4oBgHgl3EQfcvcQ/vector_store/index.faiss +3 -0
  13. 7dE4T4oBgHgl3EQfCQuc/content/tmp_files/2301.04859v1.pdf.txt +682 -0
  14. 7dE4T4oBgHgl3EQfCQuc/content/tmp_files/load_file.txt +427 -0
  15. 7tAyT4oBgHgl3EQf2_kh/content/tmp_files/2301.00759v1.pdf.txt +1607 -0
  16. 7tAyT4oBgHgl3EQf2_kh/content/tmp_files/load_file.txt +0 -0
  17. BtAzT4oBgHgl3EQfGPuX/content/tmp_files/2301.01025v1.pdf.txt +2287 -0
  18. BtAzT4oBgHgl3EQfGPuX/content/tmp_files/load_file.txt +0 -0
  19. BtE5T4oBgHgl3EQfTQ-D/content/2301.05535v1.pdf +3 -0
  20. CtE3T4oBgHgl3EQfUgpf/content/tmp_files/2301.04451v1.pdf.txt +1249 -0
  21. CtE3T4oBgHgl3EQfUgpf/content/tmp_files/load_file.txt +0 -0
  22. E9AyT4oBgHgl3EQf4_pw/content/tmp_files/2301.00796v1.pdf.txt +779 -0
  23. E9AyT4oBgHgl3EQf4_pw/content/tmp_files/load_file.txt +426 -0
  24. ENA0T4oBgHgl3EQfA_81/content/tmp_files/2301.01969v1.pdf.txt +1530 -0
  25. ENA0T4oBgHgl3EQfA_81/content/tmp_files/load_file.txt +0 -0
  26. IdE0T4oBgHgl3EQfiAEY/content/tmp_files/2301.02438v1.pdf.txt +971 -0
  27. IdE0T4oBgHgl3EQfiAEY/content/tmp_files/load_file.txt +0 -0
  28. ONAyT4oBgHgl3EQfgvjr/content/tmp_files/2301.00366v1.pdf.txt +799 -0
  29. ONAyT4oBgHgl3EQfgvjr/content/tmp_files/load_file.txt +464 -0
  30. OdFOT4oBgHgl3EQf3TT6/content/tmp_files/2301.12946v1.pdf.txt +0 -0
  31. OdFOT4oBgHgl3EQf3TT6/content/tmp_files/load_file.txt +0 -0
  32. OtFKT4oBgHgl3EQffy6V/vector_store/index.faiss +3 -0
  33. PNE2T4oBgHgl3EQfVQfK/content/tmp_files/2301.03822v1.pdf.txt +964 -0
  34. PNE2T4oBgHgl3EQfVQfK/content/tmp_files/load_file.txt +415 -0
  35. SdE3T4oBgHgl3EQfZwoa/content/tmp_files/2301.04499v1.pdf.txt +1599 -0
  36. SdE3T4oBgHgl3EQfZwoa/content/tmp_files/load_file.txt +0 -0
  37. VNAyT4oBgHgl3EQfhfi9/content/tmp_files/2301.00379v1.pdf.txt +1294 -0
  38. VNAyT4oBgHgl3EQfhfi9/content/tmp_files/load_file.txt +0 -0
  39. VdAzT4oBgHgl3EQfYPwk/content/tmp_files/2301.01330v1.pdf.txt +314 -0
  40. VdAzT4oBgHgl3EQfYPwk/content/tmp_files/load_file.txt +352 -0
  41. W9E4T4oBgHgl3EQfNQwq/content/tmp_files/2301.04954v1.pdf.txt +822 -0
  42. W9E4T4oBgHgl3EQfNQwq/content/tmp_files/load_file.txt +422 -0
  43. XtE5T4oBgHgl3EQfdA-T/content/tmp_files/2301.05608v1.pdf.txt +1650 -0
  44. XtE5T4oBgHgl3EQfdA-T/content/tmp_files/load_file.txt +0 -0
  45. ZtFPT4oBgHgl3EQfuzVj/content/tmp_files/2301.13157v1.pdf.txt +0 -0
  46. ZtFPT4oBgHgl3EQfuzVj/content/tmp_files/load_file.txt +0 -0
  47. _NE1T4oBgHgl3EQfUwPr/vector_store/index.pkl +3 -0
  48. a9FQT4oBgHgl3EQfgTbF/content/tmp_files/2301.13343v1.pdf.txt +1366 -0
  49. a9FQT4oBgHgl3EQfgTbF/content/tmp_files/load_file.txt +0 -0
  50. bNFJT4oBgHgl3EQf8y1j/content/tmp_files/2301.11685v1.pdf.txt +2105 -0
.gitattributes CHANGED
@@ -160,3 +160,8 @@ OtFKT4oBgHgl3EQffy6V/content/2301.11831v1.pdf filter=lfs diff=lfs merge=lfs -tex
160
  QNE0T4oBgHgl3EQfkQEN/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
161
  LNAyT4oBgHgl3EQfgPhD/content/2301.00354v1.pdf filter=lfs diff=lfs merge=lfs -text
162
  4tFAT4oBgHgl3EQfFByL/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
160
  QNE0T4oBgHgl3EQfkQEN/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
161
  LNAyT4oBgHgl3EQfgPhD/content/2301.00354v1.pdf filter=lfs diff=lfs merge=lfs -text
162
  4tFAT4oBgHgl3EQfFByL/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
163
+ oNFST4oBgHgl3EQfMTgQ/content/2301.13743v1.pdf filter=lfs diff=lfs merge=lfs -text
164
+ d9E4T4oBgHgl3EQfpw0m/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
165
+ BtE5T4oBgHgl3EQfTQ-D/content/2301.05535v1.pdf filter=lfs diff=lfs merge=lfs -text
166
+ 6dAyT4oBgHgl3EQfcvcQ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
167
+ OtFKT4oBgHgl3EQffy6V/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1NFLT4oBgHgl3EQfpi-7/content/tmp_files/2301.12136v1.pdf.txt ADDED
@@ -0,0 +1,1225 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MNRAS 000, 1–8 (0000)
2
+ Preprint 31 January 2023
3
+ Compiled using MNRAS LATEX style file v3.0
4
+ 𝑅𝑝 Attractors Static Neutron Star Phenomenology
5
+ Vasilis K. Oikonomou1,2
6
+ 1 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
7
+ 2 Institut für Theoretische Physik, Goethe Universität Frankfurt, Max-von-Laue-Str.1, 60438 Frankfurt am Main, Germany
8
+ 31 January 2023
9
+ ABSTRACT
10
+ In this work we study the neutron star phenomenology of 𝑅𝑝 attractor theories in the Einstein frame. The Einstein frame 𝑅𝑝
11
+ attractor theories have the attractor property that they originate from a large class of Jordan frame scalar theories with arbitrary
12
+ non-minimal coupling. These theories in the Einstein frame provide a viable class of inflationary models, and in this work we
13
+ investigate their implications on static neutron stars. We numerically solve the Tolman-Oppenheimer-Volkoff equations in the
14
+ Einstein frame, for three distinct equations of state, and we provide the mass-radius diagrams for several cases of interest of the
15
+ 𝑅𝑝 attractor theories. We confront the results with several timely constraints on the radii of specific mass neutron stars, and as
16
+ we show, only a few cases corresponding to specific equations of state pass the stringent tests on neutron stars phenomenology.
17
+ Key words: stars: neutron; Physical Data and Processes, cosmology: theory
18
+ INTRODUCTION
19
+ The direct gravitational wave observation GW170817 LIGO &
20
+ Virgo Collaboration, et al. (2017, 2020) initiated what is nowadays
21
+ known as gravitational wave astronomy. Neutron stars (NS) Haensel,
22
+ Potekhin & Yakovlev (2007); Friedman & Stergioulas (2013); Baym,
23
+ et al. (2018); Lattimer & Prakash (2004); Olmo, Rubiera-Garcia &
24
+ Wojnar (2020) are at the core of astrophysical gravitational wave
25
+ observations, and numerous scientific areas are jointly studying NS
26
+ from their perspective, for example nuclear theory Lattimer (2012);
27
+ Steiner & Gandolfi (2012); Horowitz, et al. (2005); Watanabe, Iida
28
+ & Sato (2000); Shen, et al. (1998); Xu, et al. (2009); Hebeler, et
29
+ al. (2013); Mendoza-Temis, et al. (2014); Ho, et al. (2015); Kanakis-
30
+ Pegios, Koliogiannis & Moustakidis (2020); Tsaloukidis et al. (2022),
31
+ high energy physics Buschmann, et al. (2021); Safdi, Sun & Chen
32
+ (2019); Hook, et al. (2018); Edwards, et al. (2020); Nurmi, Schi-
33
+ appacasse & Yanagida (2021), modified gravity Astashenok, et al.
34
+ (2020, 2021); Capozziello, et al. (2016); Astashenok, Capozziello &
35
+ Odintsov (2015, 2014, 2013); Arapoˇglu, Deliduman & Eksi (2011);
36
+ Panotopoulos et al.
37
+ (2021); Lobato et al.
38
+ (2020); Numajiri et
39
+ al. (2022) and astrophysics Altiparmak, Ecker & Rezzolla (2022);
40
+ Bauswein, et al. (2020b); Vretinaris, Stergioulas & Bauswein (2020);
41
+ Bauswein, et al. (2020a, 2017); Most, et al. (2018); Rezzolla, Most &
42
+ Weih (2018); Nathanail, Most & Rezzolla (2021); Köppel, Bovard &
43
+ Rezzolla (2019); Raaijmakers et al. (2021); Most, et al. (2021); Ecker
44
+ & Rezzolla (2022); Jiang, et al. (2022). The perspective of modified
45
+ gravity implications on NS has been for a long time in the mainstream
46
+ of NS works, see for example Astashenok, Capozziello & Odintsov
47
+ (2015, 2014) and also Refs. Pani & Berti (2003); Staykov, et al.
48
+ (2014); Horbatsch, et al. (2015); Silva, et al. (2015); Doneva, et al.
49
+ (2013); Xu, Gao & Shao (2020); Salgado, Sudarsky & Nucamendi
50
+ (1998); Shibata, et al. (2014); Arapoğlu, Ekşi & Yükselci (2019);
51
+ Ramazanoğlu & Pretorius (2016); Motahar, et al. (2019); Chew, et
52
+ al. (2019); Blázquez-Salcedo, Scen Khoo & Kunz (2020); Motahar,
53
+ et al. (2017); Odintsov & Oikonomou (2021, 2022a); Oikonomou
54
+ (2021); Pretel et al. (2022); Pretel & Duarte (2022); Cuzinatto et
55
+ al. (2016) for scalar-tensor descriptions of NS phenomenology. The
56
+ main effect of modified gravity descriptions of NS is the significant
57
+ elevation of the maximum NS masses, with modified gravity bring-
58
+ ing this maximum mass near or inside the mass-gap region with
59
+ 𝑀 ≥ 2.5 𝑀⊙. Regarding non-minimally coupled scalar field theo-
60
+ ries, there exists a vast class of viable inflationary potentials which
61
+ have the remarkable property of being attractors Kallosh, Linde
62
+ & Roest (2014a); Kallosh & Linde (2013); Ferrara, et al. (2013);
63
+ Kallosh, Linde & Roest (2013); Linde (2015); Cecotti & Kallosh
64
+ (2014); Carrasco, Kallosh & Linde (2015); Carrasco, et al. (2015);
65
+ Kallosh, Linde & Roest (2015); Roest & Scalisi (2015); Kallosh,
66
+ Linde & Roest (2014b); Ellis, Nanopoulos & Olive (2013); Cai,
67
+ Gong & Pi (2014); Yi & Gong (2016); Akrami, et al. (2018); Qum-
68
+ mer, Jawad & Younas (2020); Fei, Yi & Yang (2020); Kanfon, Mavoa
69
+ & Houndjo (2020); Antoniadis, et al. (2020); García-García, et al.
70
+ (2019); Cedeño, et al. (2019); Karamitsos (2019); Canko, Gialamas
71
+ & Kodaxis (2020); Miranda, et al. (2019); Karam, Pappas & Tam-
72
+ vakis (2019); Nozari & Rashidi (2018); García-García, et al. (2018);
73
+ Rashidi & Nozari (2018); Gao, Gong & Fei (2018); Dimopoulos,
74
+ Wood & Owen (2018); Miranda, Fabris & Piattella (2017); Karam,
75
+ Pappas & Tamvakis (2017); Nozari & Rashidi (2017); Gao & Gong
76
+ (2018); Geng, Lee & Wu (2017); Odintsov & Oikonomou (2020,
77
+ 2016, 2017); Järv, et al. (2020). The attractor terminology is justi-
78
+ fied due to the fact that distinct non-minimally coupled scalar-tensor
79
+ inflationary theories, lead to the same Einstein frame inflationary
80
+ phenomenology, which is compatible with the latest Planck data
81
+ Planck Collaboration (2020). The question always when studying
82
+ these attractor models is whether these models can be distinguished
83
+ in some way, phenomenologically. From an inflationary point of
84
+ view, and regarding the large wavelength Cosmic Microwave Back-
85
+ ground modes, a discrimination between these models is impossible.
86
+ However, this discrimination is possible if NS are studied. Indeed,
87
+ the phenomenologically indistinguishable attractor models can be
88
+ discriminated in NS and vice versa, with the latter feature being phe-
89
+ © 0000 The Authors
90
+ arXiv:2301.12136v1 [gr-qc] 28 Jan 2023
91
+
92
+ 2
93
+ Oikonomou
94
+ nomenal. That is, if some models are indistinguishable with respect
95
+ to their NS phenomenology, they can be distinguished if their infla-
96
+ tionary properties are studied. To address these issues in a concrete
97
+ way, in this work we shall study 𝑅𝑝 attractor theories. The inflation-
98
+ ary phenomenology of these theories is studied in the recent literature
99
+ Odintsov & Oikonomou (2022b) see also Motohashi (2015); Renzi,
100
+ Shokri & Melchiorri
101
+ (2009) for subcases of the original 𝑅𝑝 at-
102
+ tractors theories. For a spherically symmetric metric we derive and
103
+ solve numerically the Einstein frame Tolman-Oppenheimer-Volkoff
104
+ (TOV) equations, using an LSODA based double shooting python 3
105
+ numerical integration Stergioulas (2019). We derive the Jordan frame
106
+ 𝑀 −𝑅 graphs for the 𝑅𝑝 attractors, for three different piecewise poly-
107
+ tropic Read, et al. (2009a,b) equations of state (EoS), WFF1 Wiringa,
108
+ Fiks & Fabrocini (1988), the SLy Douchin & Haensel (2001), and
109
+ the APR EoS Akmal, Pandharipande & Ravenhall (1998), using the
110
+ Arnowitt-Deser-Misner (ADM) definition of Jordan frame masses
111
+ of NS Arnowitt, Deser & Misner (1960). The NSs temperature is
112
+ significantly lower than the Fermi energy of the constituent particles
113
+ of NSs, thus NS matter can be in principle described by a single-
114
+ parameter EoS that may describe perfectly cold matter at densities
115
+ higher than the nuclear density. However, a serious problem emerges,
116
+ having to do with the uncertainty in the EoS, which is larger, and
117
+ the pressure as a function of the baryonic mass density cannot be
118
+ accurately defined and is uncertain to one order of magnitude at least
119
+ above the nuclear density. Moreover, the exact nature of the phase of
120
+ matter at the NSs core is highly uncertain. Hence, a parameterized-
121
+ type EoS at high densities is an optimal choice for an EoS, thus
122
+ rendering the piecewise polytropic EoS a suitable choice. In order
123
+ to construct the piecewise polytropic EoS, astrophysical constraints
124
+ are taken into account, both observational and theoretical, like the
125
+ causality constraints, see Read, et al. (2009a,b), to also confirm the
126
+ causality fulfilment for all the piecewise polytropic EoS we shall use
127
+ in this paper. For the construction of the piecewise polytropic EoS
128
+ one uses a low-density part with 𝜌 < 𝜌0, which is basically chosen to
129
+ be a tabulated and well-known EoS for the crust, and furthermore, the
130
+ piecewise polytropic EoS also has a large density part with 𝜌 ≫ 𝜌0.
131
+ We finally confront the resulting NS phenomenologies with several
132
+ recent constraints on the radii of specific mass NS Altiparmak, Ecker
133
+ & Rezzolla (2022); Raaijmakers et al. (2021); Bauswein, et al. (2017)
134
+ and as we show, only a few scenarios and EoS are compatible with
135
+ the constraints on NS radii. Obviously, the gravitational wave astron-
136
+ omy era has changed the way of thinking on theoretical astrophysics,
137
+ since several models of scalar-tensor gravity which in the recent past
138
+ could be considered as viable, nowadays may no longer be valid.
139
+ 1 INFLATIONARY PHENOMENOLOGY OF 𝑅𝑃
140
+ ATTRACTORS
141
+ The full analysis of the generalized 𝑅𝑝 attractors is given in Ref.
142
+ Odintsov & Oikonomou (2022b), so we refer the reader for details.
143
+ Here we shall briefly discuss the inflationary phenomenological prop-
144
+ erties of 𝑅𝑝 attractors in order to stress their importance among other
145
+ cosmological attractors Kallosh, Linde & Roest (2014a); Kallosh &
146
+ Linde (2013); Ferrara, et al. (2013); Kallosh, Linde & Roest (2013);
147
+ Linde (2015); Cecotti & Kallosh (2014); Carrasco, Kallosh & Linde
148
+ (2015); Carrasco, et al. (2015); Kallosh, Linde & Roest (2015); Roest
149
+ & Scalisi (2015); Kallosh, Linde & Roest (2014b); Ellis, Nanopou-
150
+ los & Olive (2013); Cai, Gong & Pi (2014); Yi & Gong (2016);
151
+ Akrami, et al. (2018); Qummer, Jawad & Younas (2020); Fei, Yi
152
+ & Yang (2020); Kanfon, Mavoa & Houndjo (2020); Antoniadis,
153
+ et al. (2020); García-García, et al. (2019); Cedeño, et al. (2019);
154
+ Karamitsos (2019); Canko, Gialamas & Kodaxis (2020); Miranda,
155
+ et al. (2019); Karam, Pappas & Tamvakis (2019); Nozari & Rashidi
156
+ (2018); García-García, et al. (2018); Rashidi & Nozari (2018); Gao,
157
+ Gong & Fei (2018); Dimopoulos, Wood & Owen (2018); Miranda,
158
+ Fabris & Piattella (2017); Karam, Pappas & Tamvakis (2017); Nozari
159
+ & Rashidi (2017); Gao & Gong (2018); Geng, Lee & Wu (2017);
160
+ Odintsov & Oikonomou (2020, 2016, 2017); Järv, et al. (2020). The
161
+ 𝑅𝑝 attractors constitute a class of their own among other attrac-
162
+ tors, and all the 𝑅𝑝 attractors in the Einstein frame correspond to
163
+ generalizations of the following Einstein frame potential,
164
+ 𝑉(𝜑) = 𝑉0 𝑀4
165
+ 𝑝𝑒−2
166
+ √︃
167
+ 2
168
+ 3 𝜅 𝜑
169
+
170
+ 𝑒
171
+ √︃
172
+ 2
173
+ 3 𝜅 𝜑 − 1
174
+
175
+ 𝑝
176
+ 𝑝−1
177
+ ,
178
+ (1)
179
+ where 𝑀𝑝 =
180
+ 1
181
+
182
+ 8𝜋𝐺 is the reduced Planck mass and 𝐺 is Newton’s
183
+ gravitational constant. The inflationary properties of the above theory
184
+ have been addressed in the recent literature, see for example Moto-
185
+ hashi (2015); Renzi, Shokri & Melchiorri (2009). The scalar-tensor
186
+ theory with the potential (1) corresponds to the Jordan frame 𝐹(𝑅)
187
+ gravity,
188
+ 𝐹(𝑅) = 𝑅 + 𝛽𝑅𝑝 ,
189
+ (2)
190
+ with 𝛽 is a free parameter with its physical dimensions in natural
191
+ units being [𝛽] = [𝑚]2−2𝑝. The 𝑅𝑝 attractors have the following
192
+ scalar potential in the Einstein frame,
193
+ 𝑉(𝜑) = 𝑉0 𝑀4
194
+ 𝑝𝑒−2
195
+ √︃
196
+ 2
197
+ 3𝛼 𝜅 𝜑
198
+
199
+ 𝑒
200
+ √︃
201
+ 2
202
+ 3𝛼 𝜅 𝜑 − 1
203
+
204
+ 𝑝
205
+ 𝑝−1
206
+ ,
207
+ (3)
208
+ where 𝑀𝑝 is the reduced Planck mass, and for 𝛼 = 1 we obtain
209
+ the scalar theory with scalar potential (3). Now the question is why
210
+ these models are classified as attractor models, what justifies the
211
+ terminology attractors? It is the class of scalar-tensor Jordan frame
212
+ theories which correspond to the Einstein frame potential (3) that
213
+ justify the use of the terminology attractors. Basically, the potential
214
+ (3) can be the Einstein frame potential for a large class of Jordan
215
+ frame scalar-tensor theories, as we now evince. The 𝜙-Jordan frame
216
+ action is,
217
+ S𝐽 =
218
+
219
+ 𝑑4𝑥
220
+ � Ω(𝜙)
221
+ 2𝜅2 𝑅 − 𝜔(𝜙)
222
+ 2
223
+ 𝑔𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙 − 𝑉𝐽 (𝜙)
224
+
225
+ ,
226
+ (4)
227
+ with the scalar field describing a non-canonical scalar field in
228
+ the Jordan frame, and the coupling function has the general form
229
+ Ω(𝜙) = 1+𝜉 𝑓 (𝜙) with 𝜉 and 𝑓 (𝜙) being the arbitrary dimensionless
230
+ coupling and an arbitrary dimensionless function respectively. The
231
+ 𝑅𝑝 attractors have the following 𝜙-Jordan frame scalar potential,
232
+ 𝑉𝐽 (𝜙) = 𝑉0 (Ω(𝜙) − 1)
233
+ 𝑝
234
+ 𝑝−1 ,
235
+ (5)
236
+ and more importantly, the kinetic term function 𝜔(𝜙) has the follow-
237
+ ing form,
238
+ 𝜔(𝜙) = 1
239
+ 4𝜉
240
+ � 𝑑Ω(𝜙)
241
+ 𝑑𝜙
242
+ �2
243
+ Ω(𝜙)
244
+ .
245
+ (6)
246
+ Hence the large class of the 𝑅𝑝-attractors correspond to the Jordan
247
+ frame theories which are described by Eqs. (5) and (6). Notice that
248
+ the Jordan frame functions 𝑓 (𝜙) are arbitrary and we shall not need
249
+ to specify these. By performing the conformal transformation of the
250
+ Jordan frame metric 𝑔𝜇𝜈,
251
+ ˜𝑔𝜇𝜈 = Ω(𝜙)𝑔𝜇𝜈 ,
252
+ (7)
253
+ MNRAS 000, 1–8 (0000)
254
+
255
+ 𝑅𝑝 Attractors Static Neutron Star Phenomenology
256
+ 3
257
+ Figure 1. The constraints CSI, CSII and CSIII. This figure is inspired and
258
+ based after editing on Credit: ESO/L.Calçada: https://www.eso.org/
259
+ public/images/eso0831a/.
260
+ we get the Einstein frame action,
261
+ S𝐸 =
262
+ √︁
263
+ − ˜𝑔
264
+
265
+ ˜𝑅
266
+ 2𝜅2 − ˜𝑔𝜇𝜈𝜕𝜇𝜑𝜕𝜈𝜑 − 𝑉(𝜑)
267
+
268
+ ,
269
+ (8)
270
+ with ˜𝑔𝜇𝜈 denoting the Einstein frame metric tensor, and the “tilde”
271
+ indicates Einstein frame quantities. Also the Einstein frame potential
272
+ 𝑉(𝜙) and the Jordan frame potential 𝑉𝐽 (𝜙) are related as follows,
273
+ 𝑉(𝜑) = Ω−2(𝜙)𝑉𝐽 (𝜙) .
274
+ (9)
275
+ Notice that the general relation which connects the Jordan frame
276
+ scalar field 𝜙 with the canonical Einstein frame scalar field 𝜑 is,
277
+ � 𝑑𝜑
278
+ 𝑑𝜙
279
+ �2
280
+ = 3
281
+ 2
282
+ � 𝑑Ω(𝜙)
283
+ 𝑑𝜙
284
+ �2
285
+ Ω(𝜙)
286
+ + 𝜔(𝜙)
287
+ Ω(𝜙) ,
288
+ (10)
289
+ hence for the 𝑅𝑝 attractors, in which case the kinetic term function
290
+ 𝜔(𝜙) is chosen to be that of Eq. (6), we finally have the important
291
+ relation of the non-minimal scalar coupling function to gravity,
292
+ Ω(𝜙) = 𝑒
293
+ √︃
294
+ 2
295
+ 3𝛼 𝜑 ,
296
+ (11)
297
+ with the parameter 𝛼 being defined to be,
298
+ 𝛼 = 1 + 1
299
+ 6𝜉 .
300
+ (12)
301
+ Notice that by substituting Eq. (11) in Eq. (9) we obtain the gen-
302
+ eralized 𝑅𝑝-attractor potential of Eq. (3). Furthermore, the impor-
303
+ tant case with 𝛼 = 1 is realized when 𝜉 → ∞, or similarly when
304
+ Ω(𝜙) ≪ 3
305
+ 2
306
+
307
+ 𝑑Ω(𝜙)
308
+ 𝑑𝜙
309
+ �2
310
+ 𝜔(𝜙)
311
+ . The 𝑅𝑝 attractors yield a viable inflationary
312
+ phenomenology, see Ref. Odintsov & Oikonomou (2022b), with the
313
+ spectral index of the primordial scalar perturbations as a function of
314
+ the canonical scalar field being,
315
+ 𝑛𝑠 =
316
+ � �
317
+ 3𝛼 + (3𝛼 − 2)𝑝2 + (8 − 6𝛼)𝑝 − 8
318
+
319
+ 𝑒2
320
+ √︃
321
+ 2
322
+ 3
323
+ √︃
324
+ 1
325
+ 𝛼 𝜅 𝜑
326
+ (13)
327
+ − 2(𝑝 − 1)(−3𝛼 + (3𝛼 − 2)𝑝 + 8)𝑒
328
+ √︃
329
+ 2
330
+ 3
331
+ √︃
332
+ 1
333
+ 𝛼 𝜅 𝜑 + (3𝛼 − 8)(𝑝 − 1)2�
334
+ × 3𝛼(𝑝 − 1)2
335
+
336
+ 𝑒
337
+ √︃
338
+ 2
339
+ 3
340
+ √︃
341
+ 1
342
+ 𝛼 𝜅 𝜑 − 1
343
+ �2
344
+ ,
345
+ and the tensor-to-scalar ratio is,
346
+ 𝑟 =
347
+ 16
348
+
349
+ (𝑝 − 2)𝑒
350
+ √︃
351
+ 2
352
+ 3
353
+ √︃
354
+ 1
355
+ 𝛼 𝜅 𝜑 − 2𝑝 + 2
356
+ �2
357
+ 3𝛼(𝑝 − 1)2
358
+
359
+ 𝑒
360
+ √︃
361
+ 2
362
+ 3
363
+ √︃
364
+ 1
365
+ 𝛼 𝜅 𝜑 − 1
366
+ �2
367
+ .
368
+ (14)
369
+ Also the free parameter 𝑉0 of the potential is constrained to have
370
+ values
371
+ 𝑉𝑠 ∼ 9.6 × 10−11 ,
372
+ (15)
373
+ a results which originates from the constraints of the Planck data on
374
+ the Einstein frame amplitude Δ2𝑠 of the scalar perturbations,
375
+ Δ2
376
+ 𝑠 =
377
+ 1
378
+ 24𝜋2
379
+ 𝑉(𝜑 𝑓 )
380
+ 𝑀4𝑝
381
+ 1
382
+ 𝜖(𝜑 𝑓 ) .
383
+ (16)
384
+ For the purposes of this paper, we shall consider several limiting
385
+ cases for the values of the parameter 𝛼, mainly the cases 𝛼 ≠ 1,
386
+ and the case 𝛼 = 1, which corresponds to the strong 𝜉 coupling
387
+ theory. Also in order to have a viable inflationary phenomenology,
388
+ the parameter 𝑝 which is the exponent in the 𝑅𝑝 attractors potential,
389
+ has to take values in the range 1.91 ≤ 𝑝 ≤ 1.99. It proves that this is
390
+ irrelevant for NS studies, so we shall assume that 𝑝 = 1.91 without
391
+ loss of generality. In the next section we shall specify the values of
392
+ the various functions involved in the TOV equations of NS.
393
+ 2 NEUTRON STARS WITH 𝑅𝑃 ATTRACTORS
394
+ For the purpose of studying NS in Einstein frame, we shall use the
395
+ Geometrized physical units system 𝐺 = 𝑐 = 1, and we shall adopt
396
+ the notation of Ref. Pani & Berti (2003).
397
+ The Jordan frame scalar-tensor theory has the following form,
398
+ S =
399
+
400
+ 𝑑4𝑥
401
+ √−𝑔
402
+ 16𝜋
403
+
404
+ Ω(𝜙)𝑅 − 1
405
+ 2𝑔𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙 −𝑈(𝜙)
406
+
407
+ + 𝑆𝑚(𝜓𝑚, 𝑔𝜇𝜈) ,
408
+ (17)
409
+ and by performing the following conformal transformation,
410
+ ˜𝑔𝜇𝜈 = 𝐴−2𝑔𝜇𝜈 , 𝐴(𝜙) = Ω−1/2(𝜙) ,
411
+ (18)
412
+ we obtain the Einstein frame action,
413
+ S =
414
+
415
+ 𝑑4𝑥
416
+ √︁
417
+ − ˜𝑔
418
+
419
+ ˜𝑅
420
+ 16𝜋 −1
421
+ 2 ˜𝑔𝜇𝜈𝜕𝜇𝜑𝜕𝜈𝜑−𝑉(𝜑)
422
+ 16𝜋
423
+
424
+ +𝑆𝑚(𝜓𝑚, 𝐴2(𝜑)𝑔𝜇𝜈) ,
425
+ (19)
426
+ with 𝜑 denoting the Einstein frame canonical scalar field as in the
427
+ previous section, and
428
+ 𝑉(𝜑) = 𝑈(𝜙)
429
+ Ω2
430
+ .
431
+ (20)
432
+ For the 𝑅𝑝 attractors with general 𝛼, the important function 𝐴(𝜑)
433
+ has the following form,
434
+ 𝐴(𝜑) = 𝑒− 1
435
+ 2
436
+ √︃
437
+ 2
438
+ 3𝛼 𝜑 ,
439
+ (21)
440
+ therefore, the function 𝛼(𝜙) which is defined as follows,
441
+ 𝛼(𝜑) = 𝑑 ln 𝐴(𝜑)
442
+ 𝑑𝜑
443
+ ,
444
+ (22)
445
+ takes the form,
446
+ 𝑎(𝜑) = −1
447
+ 2
448
+ √︂
449
+ 2
450
+ 3𝛼 .
451
+ (23)
452
+ MNRAS 000, 1–8 (0000)
453
+
454
+ CS I
455
+ -0.99
456
+ CS II
457
+ R1.4Mo
458
+ -0.81
459
+ CS III
460
+ -0.04
461
+ -0.034
462
+ Oikonomou
463
+ Table 1. CSI vs the 𝑅𝑝 Attractors for the SLy, APR and WFF1 EoSs for
464
+ NS Masses 𝑀 ∼ 2𝑀⊙
465
+ 𝑅𝑝 Attractor Model
466
+ APR
467
+ SLy
468
+ WFF1
469
+ 𝛼 = 1
470
+ 𝑀 = 2.00 𝑀⊙
471
+ 𝑀 = 2.01 𝑀⊙
472
+ 𝑀 = 0.31 𝑀⊙
473
+ 𝛼 = 1
474
+ 𝑅 = 11.10km
475
+ 𝑅 = 11.17km
476
+ 𝑅 = 11.06km
477
+ 𝛼 = 0.1
478
+ 𝑀 = 2.02 𝑀⊙
479
+ 𝑀 = 2.00 𝑀⊙
480
+ 𝑀 = 2.00 𝑀⊙
481
+ 𝛼 = 0.1
482
+ 𝑅 = 11.52km
483
+ 𝑅 = 11.818km
484
+ 𝑅 = 11.012km
485
+ 𝛼 = 8
486
+ 𝑀 = 2.00 𝑀⊙
487
+ 𝑀 = 2.09 𝑀⊙
488
+ 𝑀 = 0.32 𝑀⊙
489
+ 𝛼 = 8
490
+ 𝑅 = 11.08km
491
+ 𝑅 = 10.983km
492
+ 𝑅 = 11.114km
493
+ Table 2. CSI vs the 𝑅𝑝 Attractors for the SLy, APR and WFF1 EoSs for
494
+ NS Masses 𝑀 ∼ 1.4𝑀⊙
495
+ 𝑅𝑝 Attractors Model
496
+ APR
497
+ SLy
498
+ WFF1
499
+ 𝛼 = 1
500
+ 𝑀 = 0.58 𝑀⊙
501
+ 𝑀 = 1.41 𝑀⊙
502
+ 𝑀 = 0.25 𝑀⊙
503
+ 𝛼 = 1
504
+ 𝑅 = 11.48km
505
+ 𝑅 = 11.74km
506
+ 𝑅 = 11.89km
507
+ 𝛼 = 0.1
508
+ 𝑀 = 1.39 𝑀⊙
509
+ 𝑀 = 1.39 𝑀⊙
510
+ 𝑀 = 0.07 𝑀⊙
511
+ 𝛼 = 0.1
512
+ 𝑅 = 11.55km
513
+ 𝑅 = 12.04km
514
+ 𝑅 = 11.79km
515
+ 𝛼 = 8
516
+ 𝑀 = 0.64 𝑀⊙
517
+ 𝑀 = 1.42 𝑀⊙
518
+ 𝑀 = 0.28 𝑀⊙
519
+ 𝛼 = 8
520
+ 𝑅 = 11.45km
521
+ 𝑅 = 11.73km
522
+ 𝑅 = 11.46km
523
+ Finally, the Einstein frame scalar potential is given in Eq. (3), which
524
+ we also quote it here for reading convenience,
525
+ 𝑉(𝜑) = 𝑉0 𝑒−2
526
+ √︃
527
+ 2
528
+ 3𝛼 𝜑
529
+
530
+ 𝑒
531
+ √︃
532
+ 2
533
+ 3𝛼 𝜑 − 1
534
+
535
+ 𝑝
536
+ 𝑝−1
537
+ ,
538
+ (24)
539
+ and in Geometrized units, the constraint on 𝑉0 given in Eq. (15)
540
+ becomes,
541
+ 𝑉0 ≃ 7.62 × 10−12 .
542
+ (25)
543
+ For the study of NS physics, we shall consider the following spheri-
544
+ cally symmetric metric,
545
+ 𝑑𝑠2 = −𝑒𝜈(𝑟)𝑑𝑡2 +
546
+ 𝑑𝑟2
547
+ 1 − 2𝑚(𝑟)
548
+ 𝑟
549
+ + 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2) ,
550
+ (26)
551
+ which describes a static NS, where the function 𝑚(𝑟) describes the
552
+ total gravitational mass of the NS and 𝑟 stands for the circumferential
553
+ radius. In the following, we shall calculate numerically the functions
554
+ 𝜈(𝑟) and
555
+ 1
556
+ 1− 2𝑚(𝑟)
557
+ 𝑟
558
+ following a simple procedure, in which the central
559
+ value of 𝜈(𝑟) and of the scalar field will be arbitrary and will be
560
+ optimally calculated numerically by using a double shooting method.
561
+ The double shooting aims to find the optimal values of the central
562
+ values of 𝜈(𝑟) and of the scalar field, which guarantee that the metric
563
+ at numerical infinity becomes identical to the Schwarzschild metric.
564
+ This procedure is different compared to standard General Relativity
565
+ (GR) NS, because in GR, the metric at the surface of the star abruptly
566
+ becomes the Schwarzschild metric. This is not true in the scalar-
567
+ tensor theories, because the scalar potential and the non-minimally
568
+ coupling function 𝐴(𝜑) have non-trivial effects on the NS beyond the
569
+ Figure 2. The 𝑀 − 𝑅 graphs for the 𝑅𝑝 attractor model for the WFF1, APR
570
+ and SLy EoSs, for 𝛼 = 1
571
+ surface of the star (scalarization). The Einstein frame TOV equations
572
+ take the following form,
573
+ 𝑑𝑚
574
+ 𝑑𝑟 = 4𝜋𝑟2𝐴4(𝜑)𝜀 + 𝑟
575
+ 2 (𝑟 − 2𝑚(𝑟))𝜔2 + 4𝜋𝑟2𝑉(𝜑) ,
576
+ (27)
577
+ 𝑑𝜈
578
+ 𝑑𝑟 = 𝑟𝜔2+
579
+ 2
580
+ 𝑟(𝑟 − 2𝑚(𝑟))
581
+
582
+ 4𝜋𝐴4(𝜑)𝑟3𝑃−4𝜋𝑉(𝜑)𝑟3�
583
+ +
584
+ 2𝑚(𝑟)
585
+ 𝑟(𝑟 − 2𝑚(𝑟)) ,
586
+ (28)
587
+ 𝑑𝜔
588
+ 𝑑𝑟 = 4𝜋𝑟 𝐴4(𝜑)
589
+ 𝑟 − 2𝑚(𝑟)
590
+
591
+ 𝛼(𝜑)(𝜖 − 3𝑃) + 𝑟𝜔(𝜖 − 𝑃)
592
+
593
+ − 2𝜔(𝑟 − 𝑚(𝑟))
594
+ 𝑟(𝑟 − 2𝑚(𝑟))
595
+ (29)
596
+ +
597
+ 8𝜋𝜔𝑟2𝑉(𝜑) + 𝑟 𝑑𝑉 (𝜑)
598
+ 𝑑𝜑
599
+ 𝑟 − 2𝑚(𝑟)
600
+ ,
601
+ 𝑑𝑃
602
+ 𝑑𝑟 = −(𝜖 + 𝑃)
603
+ � 1
604
+ 2
605
+ 𝑑𝜈
606
+ 𝑑𝑟 + 𝛼(𝜑)𝜔
607
+
608
+ ,
609
+ (30)
610
+ 𝜔 = 𝑑𝜑
611
+ 𝑑𝑟 ,
612
+ (31)
613
+ with 𝛼(𝜑) being defined in Eq. (22). Also note that the energy density
614
+ 𝜖 and the pressure 𝑃 of the matter fluid are Jordan frame quantities.
615
+ We shall solve the TOV equations for both the interior and the exterior
616
+ of the NS, with the following set of initial conditions being used,
617
+ 𝑃(0) = 𝑃𝑐 , 𝑚(0) = 0 , 𝜈(0) , = −𝜈𝑐 , 𝜑(0) = 𝜑𝑐 , 𝜔(0) = 0 .
618
+ (32)
619
+ Both 𝜈𝑐 and 𝜑𝑐 will be determined using a double shooting method,
620
+ and the numerical analysis shall be performed for three distinct piece-
621
+ wise polytropic EoS, with the central part being described by the
622
+ SLy, WFF1 or the APR EoS. For the calculation of the ADM mass
623
+ in the Jordan frame we shall use the following definition Odintsov &
624
+ Oikonomou (2021, 2022a); Oikonomou (2021),
625
+ 𝑀 = 𝐴(𝜑(𝑟𝐸))
626
+
627
+ 𝑀𝐸 −
628
+ 𝑟2
629
+ 𝐸
630
+ 2 𝛼(𝜑(𝑟𝐸)) 𝑑𝜑
631
+ 𝑑𝑟
632
+
633
+ 2 + 𝛼(𝜑(𝑟𝐸))𝑟𝐸
634
+ 𝑑𝜑
635
+ 𝑑𝑟
636
+ � �
637
+ 1 − 2𝑀𝐸
638
+ 𝑟𝐸
639
+ ��
640
+ .
641
+ (33)
642
+ where 𝑟𝐸 denotes the Einstein frame circumferential radius of the
643
+ NS, and also we define 𝑑𝜑
644
+ 𝑑𝑟 = 𝑑𝜑
645
+ 𝑑𝑟
646
+ ���𝑟=𝑟𝐸
647
+ . Finally, the circumferential
648
+ MNRAS 000, 1–8 (0000)
649
+
650
+ MM -R Diagramm
651
+ 25
652
+ WFF1 EoS a=1
653
+ APR EoS a=1
654
+ 2D
655
+ SLy EoSa=1
656
+ 15
657
+ LD
658
+ 0.5
659
+ 0.D
660
+ 9
661
+ 1f
662
+ 11
663
+ 12
664
+ 13
665
+ R (krm)𝑅𝑝 Attractors Static Neutron Star Phenomenology
666
+ 5
667
+ Figure 3. The 𝑀 − 𝑅 graphs for the 𝑅𝑝 attractor model for the WFF1, APR
668
+ and SLy EoSs, for 𝛼 = 8.
669
+ radii of the NS in the Jordan and Einstein frames are related as
670
+ 𝑅 = 𝐴(𝜑(𝑅𝑠)) 𝑅𝑠. We shall measure the Jordan frame mass in solar
671
+ masses 𝑀⊙ and the Jordan frame radius in kilometers.
672
+ 2.1 Results of the Numerical Analysis
673
+ Let us now present the results of our numerical analysis on the NS
674
+ phenomenology of the 𝑅𝑝 attractors. We considered three character-
675
+ istic cases of attractors, corresponding to three values of 𝛼, namely
676
+ 𝛼 = 1, 𝛼 = 0.1 and 𝛼 = 8. All these values of 𝛼 produce a vi-
677
+ able inflationary phenomenology as was shown in Ref. Odintsov &
678
+ Oikonomou (2022b). Here we shall present the 𝑀 − 𝑅 graphs for the
679
+ 𝑅𝑝 attractors for the three values of 𝛼. Accordingly the results will
680
+ be confronted with three distinct constraints on NS radii for specific
681
+ mass NS. Specifically we shall use the following constraints, devel-
682
+ oped in Refs. Altiparmak, Ecker & Rezzolla (2022), Raaijmakers et
683
+ al. (2021) and Bauswein, et al. (2017) to which we shall refer to as
684
+ CSI, CSII and CSIII respectively. The CSI indicates that the radius of
685
+ an 1.4𝑀⊙ mass NS should be 𝑅1.4𝑀⊙ = 12.42+0.52
686
+ −0.99 and furthermore,
687
+ the radius of an 2𝑀⊙ mass NS should be 𝑅2𝑀⊙ = 12.11+1.11
688
+ −1.23 km. Ac-
689
+ cordingly, CSII indicates that the radius of an 1.4𝑀⊙ mass NS should
690
+ be 𝑅1.4𝑀⊙ = 12.33+0.76
691
+ −0.81 km. Lastly, CSIII indicates that the radius of
692
+ an 1.6𝑀⊙ mass NS should be larger than 𝑅1.6𝑀⊙ = 12.42+0.52
693
+ −0.99 km
694
+ and the radius of a NS with maximum mass should be larger than
695
+ 𝑅𝑀𝑚𝑎𝑥 > 10.68+0.15
696
+ −0.04 km. The constraints CSI, CSII and CSIII are
697
+ pictorially represented in Fig. 11. Using a double shooting LSODA
698
+ python 3 numerical integration method Stergioulas (2019), and also
699
+ by setting the numerical infinity at 𝑟 ∼ 67.943 km, at this point we
700
+ shall present our results, which can be seen in the 𝑀 − 𝑅 plots and
701
+ the tables appearing in this work. Note that the numerical infinity
702
+ plays an important role for the double shooting method, in order for
703
+ the scalar field effects to be switched off at the numerical infinity.
704
+ To start with, in Figs. 2, 4 and 3 we present the 𝑀 − 𝑅 graphs of
705
+ the 𝑅𝑝 attractors for 𝛼 = 1, 𝛼 = 0.1 and 𝛼 = 8 NS respectively, for
706
+ 1 This media was originally created by the European Southern Observatory
707
+ (ESO). I edited the figure for demonstrative purposes. Their website states:
708
+ ”Unless specifically noted, the images, videos, and music distributed on the
709
+ public ESO website, along with the texts of press releases, announcements,
710
+ pictures of the week, blog posts and captions, are licensed under a Creative
711
+ Commons Attribution 4.0 International License, and may on a non-exclusive
712
+ basis be reproduced without fee provided the credit is clear and visible.”
713
+ Figure 4. The 𝑀 − 𝑅 graphs for the 𝑅𝑝 attractor model for the WFF1, APR
714
+ and SLy EoSs, for 𝛼 = 0.1.
715
+ Figure 5. The 𝑀 − 𝑅 graphs of the 𝑅𝑝 attractors for 𝛼 = 1 (red curve),
716
+ 𝛼 = 0.1 (green curve), 𝛼 = 8 (blue curve) and the GR (magenta curve) for
717
+ the WFF1 EoS.
718
+ the WFF1 EoS (red curve), the APR EoS (green curve) and the SLy
719
+ EoS (blue curve). In all the cases, the maximum masses of the NS
720
+ are larger compared to the GR case. Also it is notable that the 𝛼 = 1
721
+ case is quite similar to the 𝛼 = 8 case, however strong differences are
722
+ observed for the 𝛼 = 0.1 case. Also in Figs. 5, 6 and 7 we present
723
+ for each EoS the 𝑀 − 𝑅 graphs of the 𝑅𝑝 attractors for 𝛼 = 1 (red
724
+ curves), 𝛼 = 0.1 (green curves), 𝛼 = 8 (blue curves) and the GR
725
+ (magenta curves) for the WFF1 EoS (upper left plot) the SLy EoS
726
+ (upper right) and the APR EoS (bottom plot). Now let us present the
727
+ confrontation of the 𝑅𝑝 attractor NS with the constraints CSI, CSII
728
+ and CSIII.
729
+ The results of our analysis regarding the confrontation of the 𝑅𝑝
730
+ inflationary attractors models with the observational constraints on
731
+ NS, namely CSI, CSII, AND CSIII are presented in Tables 1-5.
732
+ For the case with 𝛼 = 1, the SLy EoS is compatible with all the
733
+ constraints, with regard to the APR, it is not compatible with CSII, the
734
+ first constraint of CSI, but it is compatible with the second constraint
735
+ of CSII and the CSIII constraints. Also the WFF1 case is incompatible
736
+ with all the constraints. For the case with 𝛼 = 0.1, the SLy EoS is
737
+ compatible with all the constraints, and interestingly enough, for this
738
+ case the APR is also compatible with all the constraints. However,
739
+ in this case the WFF1 EoS satisfies the second constraint of CSI and
740
+ also satisfies all the constraints of CSIII. Finally, for the case with
741
+ 𝛼 = 1, the SLy EoS is compatible with all the constraints, with regard
742
+ MNRAS 000, 1–8 (0000)
743
+
744
+ MM -R Diagramm
745
+ 25
746
+ WFF1 EoS a=8
747
+ APR EoS a=8
748
+ 2D
749
+ SLy EoS a=8
750
+ 15
751
+ LD
752
+ 0.5
753
+ 0.D
754
+ 9
755
+ 1f
756
+ 11
757
+ 12
758
+ 13
759
+ R (krm)MM -R Diagramm
760
+ 25
761
+ *- WFF1 EoS a=0.1
762
+ *- APR EoS a=0.1
763
+ 2D
764
+ SLy EoS a=0.1
765
+ 15
766
+ LD
767
+ 0.5
768
+ 0.0
769
+ 9
770
+ 1f
771
+ 11
772
+ 12
773
+ 13
774
+ R (krm)MM -R Diagramm
775
+ 25
776
+ *-WFF1EoSa=1
777
+ WFF1 EoS a=0.1
778
+ 2D
779
+ WFF1 EoSa=8
780
+ *- WFF1EoS GR
781
+ 15
782
+ LD
783
+ 0.5
784
+ 0.D
785
+ 9
786
+ 1f
787
+ 11
788
+ 12
789
+ 13
790
+ R (krm)6
791
+ Oikonomou
792
+ Figure 6. The 𝑀 − 𝑅 graphs of the 𝑅𝑝 attractors for 𝛼 = 1 (red curve),
793
+ 𝛼 = 0.1 (green curve), 𝛼 = 8 (blue curve) and the GR (magenta curve) for
794
+ the SLy EoS .
795
+ Table 3. CSIII vs the 𝑅𝑝 Attractors for the SLy, APR and WFF1 EoSs for
796
+ NS Masses 𝑀 ∼ 1.6𝑀⊙
797
+ 𝑅𝑝 Attractors Model
798
+ APR
799
+ SLy
800
+ WFF1
801
+ 𝛼 = 1
802
+ 𝑀 = 1.60 𝑀⊙
803
+ 𝑀 = 1.60 𝑀⊙
804
+ 𝑀 = 1.61 𝑀⊙
805
+ 𝛼 = 1
806
+ 𝑅 = 11.30km
807
+ 𝑅 = 11.63km
808
+ 𝑅 = 10.41km
809
+ 𝛼 = 0.1
810
+ 𝑀 = 1.61 𝑀⊙
811
+ 𝑀 = 1.60 𝑀⊙
812
+ 𝑀 = 1.59 𝑀⊙
813
+ 𝛼 = 0.1
814
+ 𝑅 = 11.61km
815
+ 𝑅 = 12.05km
816
+ 𝑅 = 11.05km
817
+ 𝛼 = 8
818
+ 𝑀 = 1.61 𝑀⊙
819
+ 𝑀 = 1.60 𝑀⊙
820
+ 𝑀 = 1.58 𝑀⊙
821
+ 𝛼 = 8
822
+ 𝑅 = 11.28km
823
+ 𝑅 = 12.05km
824
+ 𝑅 = 10.40km
825
+ to the APR, it is not compatible with CSII, and the first constraint of
826
+ CSI, but it is compatible with the second constraint of CSII and the
827
+ CSIII constraints.
828
+ Also the WFF1 case is incompatible with all the constraints, save
829
+ the first constraint of CSIII. Hence, the viable NS phenomenologies
830
+ that pass all the tests imposed by the constraints CSI, CSII and CSIII,
831
+ are provided by all the SLy cases for all the values of the parameter
832
+ 𝛼, and also by the APR EoS, only when 𝛼 = 0.1. Thus apparently,
833
+ obtaining a viable NS phenomenology nowadays is not as easy it was
834
+ before the GW170817 event. Also regarding the 𝑅𝑝 attractors, these
835
+ can be discriminated in NS, for different values of 𝛼, especially for
836
+ 0.1 < 𝛼 < 1. However, as 𝛼 grows larger than unity, it seems that
837
+ 𝑅𝑝 attractors provide an almost identical NS phenomenology. This
838
+ is a notable feature for the class of 𝑅𝑝 attractors. Before closing,
839
+ we need to discuss an important issue, having to do with the NS
840
+ phenomenology of inflationary potentials, with regard to the tidal
841
+ deformability of NSs, the radial perturbations of static NSs and finally
842
+ the overall stability of NSs, by also taking into account the constraints
843
+ imposed by the GW170817 event. This issue however extends further
844
+ from the aims and scopes of this article, since a whole article could
845
+ be devoted to these issues, see for example Refs. Brown (2022) and
846
+ Yang et al. (2022), in which these issues are addressed in the context
847
+ of scalar-tensor gravity Brown (2022) and in unimodular gravity
848
+ Yang et al. (2022).
849
+ Figure 7. The 𝑀 − 𝑅 graphs of the 𝑅𝑝 attractors for 𝛼 = 1 (red curve),
850
+ 𝛼 = 0.1 (green curve), 𝛼 = 8 (blue curve) and the GR (magenta curve) for
851
+ the APR EoS.
852
+ CONCLUDING REMARKS
853
+ In this article we studied the NS phenomenology of the 𝑅𝑝 infla-
854
+ tionary attractor scalar-tensor models in the Einstein frame. The 𝑅𝑝
855
+ attractors constitute a class of models in the Einstein frame, which
856
+ originate from a large number of different models in the Jordan frame
857
+ These distinct Jordan frame models result to the same phenomenol-
858
+ ogy in the Einstein frame and this feature justifies the terminology
859
+ inflationary attractors. Our aim was to investigate whether these at-
860
+ tractor models can be distinguished when NSs are considered. As
861
+ we showed the NS phenomenology corresponding to different values
862
+ of the parameter 𝛼 which characterizes the attractors, is in general
863
+ different for 𝛼 < 1, however the models for 𝛼 > 1 show many
864
+ similarities and generate almost identical 𝑀 − 𝑅 diagrams. We also
865
+ confronted the NS phenomenology of the 𝑅𝑝 attractors to several
866
+ NS constraints, which we named CSI, CSII and CSIII. The con-
867
+ straint CSI was developed in Ref. Altiparmak, Ecker & Rezzolla
868
+ (2022) and indicates that the radius of an 1.4𝑀⊙ mass NS has to
869
+ be 𝑅1.4𝑀⊙ = 12.42+0.52
870
+ −0.99 while the radius of an 2𝑀⊙ mass NS has
871
+ to be 𝑅2𝑀⊙ = 12.11+1.11
872
+ −1.23 km. The constraint CSII was developed
873
+ in Ref. Raaijmakers et al. (2021) and indicates that the radius of
874
+ an 1.4𝑀⊙ mass NS has to be 𝑅1.4𝑀⊙ = 12.33+0.76
875
+ −0.81 km and the
876
+ constraint CSIII was developed in Ref. Bauswein, et al. (2017) and
877
+ indicates that the radius of an 1.6𝑀⊙ mass NS has to be larger than
878
+ 𝑅1.6𝑀⊙ = 12.42+0.52
879
+ −0.99 km while the radius of the maximum mass NS
880
+ has to be larger than 𝑅𝑀𝑚𝑎𝑥 > 10.68+0.15
881
+ −0.04 km. Our analysis indicated
882
+ that for 𝑅𝑝 attractors, for the case with 𝛼 = 1, only the SLy EoS is
883
+ compatible with all the constraints, while the APR is not compatible
884
+ with CSII, the first constraint of CSI, but it is compatible with the
885
+ second constraint of CSII and the CSIII constraints. Also the WFF1
886
+ case is incompatible with all the constraints.
887
+ For the case with 𝛼 = 0.1, which is the most interesting case phe-
888
+ nomenologically, the SLy EoS is compatible with all the constraints,
889
+ and for this case the APR is also compatible with all the constraints.
890
+ However, in this case the WFF1 EoS satisfies the second constraint
891
+ of CSI and also satisfies all the constraints of CSIII. Finally, for
892
+ the case with 𝛼 = 1, only the SLy EoS is compatible with all the
893
+ constraints while the APR is not compatible with CSII, and the first
894
+ constraint of CSI, but it is compatible with the second constraint of
895
+ CSII and the CSIII constraints. Finally, the WFF1 case is incompat-
896
+ ible with all the constraints, save the first constraint of CSIII. Our
897
+ results indicate two main research lines, firstly that NS phenomenol-
898
+ MNRAS 000, 1–8 (0000)
899
+
900
+ MM -R Diagramm
901
+ 25
902
+ SLy EoS a=1
903
+ SLy EoS a=0.1
904
+ 2D
905
+ SLy EoS a=8
906
+ SLy EoS GR
907
+ 15
908
+ LD
909
+ 0.5
910
+ 0.D
911
+ 9
912
+ 11
913
+ 12
914
+ 13
915
+ R (kri)MM -R Diagramm
916
+ 25
917
+ APR EoS a=1
918
+ APR EoS a=0.1
919
+ 2D
920
+ APR EoS a=8
921
+ APR EoS GR
922
+ 15
923
+ LD
924
+ 0.5
925
+ 0.D
926
+ 9
927
+ 11
928
+ 12
929
+ 13
930
+ R (kri)𝑅𝑝 Attractors Static Neutron Star Phenomenology
931
+ 7
932
+ Table 4. CSII vs the 𝑅𝑝 Attractors for the SLy, APR and WFF1 EoSs for
933
+ NS Masses 𝑀 ∼ 1.4𝑀⊙
934
+ 𝑅𝑝 Attractors Model
935
+ APR
936
+ SLy
937
+ WFF1
938
+ 𝛼 = 1
939
+ 𝑀 = 0.52 𝑀⊙
940
+ 𝑀 = 1.41 𝑀⊙
941
+ 𝑀 = 0.25 𝑀⊙
942
+ 𝛼 = 1
943
+ 𝑅 = 11.56km
944
+ 𝑅 = 11.74km
945
+ 𝑅 = 11.89km
946
+ 𝛼 = 0.1
947
+ 𝑀 = 1.39 𝑀⊙
948
+ 𝑀 = 1.39 𝑀⊙
949
+ 𝑀 = 0.07 𝑀⊙
950
+ 𝛼 = 0.1
951
+ 𝑅 = 11.55km
952
+ 𝑅 = 12.04km
953
+ 𝑅 = 11.79km
954
+ 𝛼 = 8
955
+ 𝑀 = 0.53 𝑀⊙
956
+ 𝑀 = 1.42 𝑀⊙
957
+ 𝑀 = 0.25 𝑀⊙
958
+ 𝛼 = 8
959
+ 𝑅 = 11.60km
960
+ 𝑅 = 11.738km
961
+ 𝑅 = 11.944km
962
+ Table 5. CSIII vs the 𝑅𝑝 Attractors for the SLy, APR and WFF1 EoSs for
963
+ Maximum NS Masses
964
+ 𝑅𝑝 Attractors Model
965
+ APR
966
+ SLy
967
+ WFF1
968
+ 𝛼 = 1
969
+ 𝑀 = 2.41 𝑀⊙
970
+ 𝑀 = 2.24 𝑀⊙
971
+ 𝑀 = 2.33 𝑀⊙
972
+ 𝛼 = 1
973
+ 𝑅 = 9.91km
974
+ 𝑅 = 9.99km
975
+ 𝑅 = 9.30km
976
+ 𝛼 = 0.1
977
+ 𝑀 = 2.41 𝑀⊙
978
+ 𝑀 = 2.27 𝑀⊙
979
+ 𝑀 = 2.32 𝑀⊙
980
+ 𝛼 = 0.1
981
+ 𝑅 = 10.40km
982
+ 𝑅 = 10.09km
983
+ 𝑅 = 11.06km
984
+ 𝛼 = 8
985
+ 𝑀 = 2.41 𝑀⊙
986
+ 𝑀 = 2.27 𝑀⊙
987
+ 𝑀 = 2.34 𝑀⊙
988
+ 𝛼 = 8
989
+ 𝑅 = 9.91km
990
+ 𝑅 = 10.72km
991
+ 𝑅 = 9.28km
992
+ ogy for scalar-tensor theories is not easily rendered viable, since a
993
+ large number of astrophysical and cosmological constraints have to
994
+ be satisfied in order for the viability of the model to be guaranteed.
995
+ Thus a simple parameter assigning is not the correct way to study
996
+ NS nowadays, both cosmology and astrophysics constrain in a rigid
997
+ way NSs. Secondly, several inflationary attractors which are indistin-
998
+ guishable at the cosmological level, may be discriminated to some
999
+ extent when their NS phenomenology is considered. This research
1000
+ line is not the general rule though, so work is in progress toward
1001
+ comparing a large sample of cosmological attractors with respect to
1002
+ their NS phenomenology. Finally, let us note that the scalar-tensor
1003
+ inflationary framework we used in this work cannot be considered
1004
+ more advantageous compared to other modified gravity theories, it is
1005
+ one of the many possible modified gravity descriptions of the nature
1006
+ of NSs.
1007
+ ACKNOWLEDGMENTS
1008
+ This work was supported by MINECO (Spain), project PID2019-
1009
+ 104397GB-I00 (S.D.O). This work by S.D.O was also partially
1010
+ supported by the program Unidad de Excelencia Maria de Maeztu
1011
+ CEX2020-001058-M, Spain.
1012
+ Data availability. No new data were generated or analysed in
1013
+ support of this research.
1014
+ REFERENCES
1015
+ Abbott, R., et al. 2017, PhRvL, 119, 161101
1016
+ Abbott, R., et al. 2020, ApJL, 896, L44
1017
+ Aghanim N., et al., 2020, A&A, 641, A6
1018
+ Akrami Y., Kallosh R., Linde A., Vardanyan V., 2018, JCAP, 06, 041
1019
+ Akrami Y., et al., 2020, A&A, 641, A10
1020
+ Akmal A., Pandharipande V.R., Ravenhall D.G., 1998, PhRvC, 58, 1804
1021
+ Altiparmak S., Ecker C. and Rezzolla L., [arXiv:2203.14974 [astro-ph.HE]].
1022
+ Antoniadis I., Karam A., Lykkas A., Pappas T., Tamvakis K., 2020, PoS
1023
+ CORFU2019, 073
1024
+ Arapoˇglu A.S., Deliduman C., Eksi K. Y., 2011, JCAP, 2011, 020
1025
+ Arapoğlu A.S., Ekşi K.Y., Yükselci A.E., 2019, PhRvD, 99, 064055
1026
+ Arnowitt R., Deser S., Misner C.W., 1960, PhRv, 118, 1100
1027
+ Astashenok A. V., Capozziello S., Odintsov S. D., 2013, JCAP, 2013, 040
1028
+ Astashenok A. V., Capozziello S., Odintsov S. D., 2014, PhRvD, 89, 103509
1029
+ Astashenok A.V., Capozziello S., Odintsov S.D., 2015, JCAP, 01, 001
1030
+ Astashenok A.V., Odintsov S.D., 2020, MNRAS, 498, 3616
1031
+ Astashenok A.V., Capozziello S., Odintsov S.D., Oikonomou V.K., 2020,
1032
+ PhLB, 811, 135910
1033
+ Astashenok A. V., Capozziello S., Odintsov S. D. and Oikonomou V. K.,
1034
+ 2021, PhLB, 816, 136222, [arXiv:2103.04144 [gr-qc]].
1035
+ Bakopoulos A., Kanti P., Pappas N., 2020, PhRvD, 101, 044026
1036
+ Bauswein A., et al., 2020, PhRvL, 125, 141103
1037
+ Bauswein A., Guo G., Lien J.H., Lin Y.H., Wu M.R., 2020, arXiv:2012.11908
1038
+ [astro-ph.HE]
1039
+ Bauswein A., Just O., Janka H.T., Stergioulas N., 2017, ApJL, 850, L34
1040
+ Baym G., Hatsuda T., Kojo T., Powell P.D.„ Song Y., Takatsuka T., 2018,
1041
+ Rept. Prog. Phys., 81, 056902
1042
+ Biswas B., Nandi R., Char P., Bose S., Stergioulas N., 2020, arXiv:2010.02090
1043
+ [astro-ph.HE]
1044
+ Blázquez-Salcedo J.L., Khoo F.S., Kunz J., 2020, EPL, 130, 50002
1045
+ Brown S. M., [arXiv:2210.14025 [gr-qc]].
1046
+ Buschmann M., Co R.T., Dessert C., Safdi B.R., 2021, PhRvL, 126, 021102
1047
+ Cai Y.F., Gong J.O., Pi S., 2014, PhLB, 738, 20
1048
+ Caldwell R.R., Kamionkowski M., Weinberg N.N., 2003, PhRvL, 91, 071301
1049
+ Canko D.D., Gialamas I.D., Kodaxis G.P., 2020, EPhC, 80, 458
1050
+ Capozziello S., De Laurentis M., Farinelli R., Odintsov S.D., 2016, PhRvD,
1051
+ 93, 023501
1052
+ Capozziello S., de Laurentis M., 2011, PhR, 509, 167
1053
+ Carrasco J.J.M., Kallosh R., Linde A., 2015, JHEP, 10, 147
1054
+ Carrasco J.J.M., Kallosh R., Linde A., Roest D., 2015, PhRvD, 92, 041301
1055
+ Cecotti S., Kallosh R., 2014, JHEP, 05, 114
1056
+ Cedeño F.X.L., Montiel A., Hidalgo J.C., Germán G., 2019, JCAP 08, 02
1057
+ Chew X.Y., Dzhunushaliev V., Folomeev V., Kleihaus B., Kunz J., PhRvD,
1058
+ 100, 044019
1059
+ Cuzinatto R. R., de Melo C. A. M., Medeiros L. G. and Pompeia P. J., Phys.
1060
+ Rev. D 93 (2016) no.12, 124034 , [arXiv:1603.01563 [gr-qc]].
1061
+ Dimopoulos K., Wood L.D., Owen C., 2018, PhRvD, 97, 063525
1062
+ Doneva D.D., Yazadjiev S.S., Stergioulas N., Kokkotas K.D., 2013, PhRvD,
1063
+ 88, 084060
1064
+ Douchin F., Haensel P., 2001, A&A, 380, 151
1065
+ Ecker C., Rezzolla L., [arXiv:2209.08101 [astro-ph.HE]].
1066
+ Edwards
1067
+ T.D.P.,
1068
+ Kavanagh
1069
+ B.J.,
1070
+ Visinelli
1071
+ L.
1072
+ Weniger
1073
+ C.,
1074
+ 2020,
1075
+ arXiv:2011.05378 [hep-ph]
1076
+ Ellis J., Nanopoulos D.V., Olive K.A., 2013, JCAP, 10, 009
1077
+ Faraoni V., Capozziello S., 2010, Fundam. Theor. Phys., 170
1078
+ Fei Q., Yi Z., Yang Y., 2020, Universe, 6, 213
1079
+ Ferrara S., Kallosh R., Linde A., Porrati M., 2013, PhRvD, 88, 085038
1080
+ Friedman, J.L., Stergioulas, N., 2013, Rotating Relativistic Stars, Cambridge
1081
+ University Press
1082
+ Gao Q., Gong Y., Fei Q., 2018, JCAP, 05, 005
1083
+ Gao Q., Gong Y., 2018, EPJP, 133, 491
1084
+ García-García C., Ruíz-Lapuente P., Alonso D., Zumalacárregui M., 2019,
1085
+ JCAP, 07, 025
1086
+ García-García C., Linder E.V., Ruíz-Lapuente P., Zumalacárregui M., 2018,
1087
+ JCAP, 08, 022
1088
+ Geng C.Q., Lee C.C., Wu Y.P., 2017, EuPhJC, 77, 162
1089
+ Haensel P., Potekhin A.Y., Yakovlev D.G., 2007, Astrophys. Space Sci. Libr.
1090
+ 326, 1
1091
+ Hebeler K., Lattimer J.M., Pethick C.J., Schwenk A., 2013, ApJ, 773, 2013
1092
+ MNRAS 000, 1–8 (0000)
1093
+
1094
+ 8
1095
+ Oikonomou
1096
+ Hook A., Kahn Y., Safdi B.R., Sun Z., 2018, PhRvL, 121, 241102
1097
+ Horbatsch M., et al., 2015, CQGra, 32, 204001
1098
+ Horowitz C.J., Perez-Garcia M.A., Berry D.K., Piekarewicz J., 2005, PhRvC,
1099
+ 72, 035801
1100
+ Ho W.C.G.„ Elshamouty K.G.„ Heinke C.O., Potekhin A.Y., 2015, PhRvC,
1101
+ 91, 015806
1102
+ Hwang J.C., Noh H., 2005, PhRvD, 71, 063536
1103
+ Järv L., Karam A., Kozak A., Lykkas A., Racioppi A., Saal M., 2020, PhRvD,
1104
+ 102, 044029
1105
+ Jiang J. L., Ecker C., Rezzolla L., [arXiv:2211.00018 [gr-qc]].
1106
+ Kaiser D.I., 1995, PhRvD, 52, 4295
1107
+ Kallosh R., Linde A., 2013, JCAP, 07, 02
1108
+ Kallosh R., Linde A., Roest D., 2013, JHEP, 11, 198
1109
+ Kallosh R., Linde A., Roest D., 2014, JHEP, 08, 052
1110
+ Kallosh R., Linde A. and Roest D., JHEP 09, 062, [arXiv:1407.4471 [hep-th]].
1111
+ R. Kallosh, A. Linde and D. Roest, Phys. Rev. Lett. 112 (2014) no.1, 011303
1112
+ doi:10.1103/PhysRevLett.112.011303 [arXiv:1310.3950 [hep-th]].
1113
+ Kanakis-Pegios
1114
+ A.,
1115
+ Koliogiannis
1116
+ P.S.,
1117
+ Moustakidis
1118
+ C.C.,
1119
+ 2020,
1120
+ arXiv:2012.09580 [astro-ph.HE]
1121
+ Kanfon A.D., Mavoa F., Houndjo S.M.J., 2020, Astrophys. Space Sci., 365,
1122
+ 97
1123
+ Kanti P., Gannouji R., Dadhich N., 2015, PhRvD, 92, 041302
1124
+ Karam A., Pappas T., Tamvakis K., 2019, JCAP, 02, 006
1125
+ Karam A., Pappas T., Tamvakis K., 2017, PhRvD, 96, 064036
1126
+ Karamitsos S., 2019, JCAP, 09, 022
1127
+ Khadkikar S., Raduta A.R., Oertel M., Sedrakian A., 2021, arXiv:2102.00988
1128
+ [astro-ph.HE].
1129
+ Kleihaus B., Kunz J., Kanti P., arXiv:1910.02121 [gr-qc]
1130
+ Komar A., 1959, PhRvD, 113, 934
1131
+ Köppel S., Bovard L. and Rezzolla L., Astrophys. J. Lett. 872, no.1, L16
1132
+ doi:10.3847/2041-8213/ab0210 [arXiv:1901.09977 [gr-qc]].
1133
+ Lattimer J.M., Prakash M., 2004, Science, 304, 536
1134
+ Lattimer J.M., 2012, Ann. Rev. Nucl. Part. Sci., 62, 485
1135
+ Laurentis M., Paolella M., Capozziello S., 2015, PhRvD, 91, 083531
1136
+ Linde A., 2015, JCAP, 05, 003
1137
+ Lobato R., Louren O.ço, Moraes P. H. R. S., Lenzi C. H., de Avellar
1138
+ M., de Paula W., Dutra M. and Malheiro M., JCAP 12 (2020), 039,
1139
+ [arXiv:2009.04696 [astro-ph.HE]].
1140
+ Mendoza-Temis J.J., Wu M.R., Martínez-Pinedo G., Langanke K., Bauswein
1141
+ A., Janka H.T., 2014, PhRvC, 92, 055805
1142
+ Miranda T., Escamilla-Rivera C., Piattella O.F., Fabris J.C., 2019, JCAP, 05,
1143
+ 028
1144
+ Miranda T., Fabris J.C., Piattella O.F., 2017, JCAP, 09, 041
1145
+ Motahar Z.A., Blázquez-Salcedo J.L., Doneva D.D., Kunz J., Yazadjiev S.S.,
1146
+ 2019, PhRvD, 99, 104006
1147
+ Motahar Z.A., Blázquez-Salcedo J.L., Kleihaus B., Kunz J., 2017, PhRvD,
1148
+ 96, 064046
1149
+ Most E. R., Weih L. R., Rezzolla L and Schaffner-Bielich J., PhRvLet. 120
1150
+ 261103, [arXiv:1803.00549 [gr-qc]].
1151
+ Most E. R., Papenfort L. J., Tootle S. and Rezzolla L., Astrophys. J. 912, 80,
1152
+ [arXiv:2012.03896 [astro-ph.HE]].
1153
+ Motohashi H., Phys. Rev. D 91 (2015), 064016, [arXiv:1411.2972 [astro-
1154
+ ph.CO]].
1155
+ Nathanail A., Most E. R. and Rezzolla L., Astrophys. J. Lett. 908, no.2, L28,
1156
+ [arXiv:2101.01735 [astro-ph.HE]].
1157
+ Nojiri S., Odintsov S.D., Oikonomou V.K., 2017, PhR, 692, 1
1158
+ Nojiri S., Odintsov S.D., 2006, Int. J. Geom. Meth. Mod. Phys., 4, 115
1159
+ Nojiri S., Odintsov S. D., 2011, PhR, 505, 59
1160
+ Nozari K., Rashidi N., 2018, ApJ, 863, 133
1161
+ Nozari K., Rashidi N., 2017, PhRvD, 95, 123518
1162
+ Numajiri K., Katsuragawa T., Nojiri S., Phys. Lett. B 826 (2022), 136929
1163
+ doi:10.1016/j.physletb.2022.136929 [arXiv:2111.02660 [gr-qc]].
1164
+ S. Nurmi, E. D. Schiappacasse and T. T. Yanagida, [arXiv:2102.05680 [hep-
1165
+ ph]].
1166
+ Olmo G. J., 2011, IJMPD, 20, 413
1167
+ Odintsov S.D., Oikonomou V.K., 2020, PhLB, 807, 135576
1168
+ Odintsov S.D., Oikonomou V.K., 2016, PhRvD, 94, 124026
1169
+ Odintsov S.D., Oikonomou V.K., 2017, CQGra, 34, 105009
1170
+ Odintsov S. D. and Oikonomou V. K., Phys. Dark Univ. 32, 100805,
1171
+ [arXiv:2103.07725 [gr-qc]].
1172
+ Odintsov S. D. and Oikonomou V. K., Annals Phys. 440, 168839,
1173
+ [arXiv:2104.01982 [gr-qc]].
1174
+ S.D. Odintsov, V.K. Oikonomou, submitted for publication.
1175
+ Oikonomou V. K., Class. Quant. Grav. 38, 175005 doi:10.1088/1361-
1176
+ 6382/ac161c [arXiv:2107.12430 [gr-qc]].
1177
+ Olmo G. J., Rubiera-Garcia D., Wojnar A., 2020, Phys. Rept., 876, 1
1178
+ Pani P., Berti E., 2014, PhRvD, 90, 024025
1179
+ Panotopoulos G. , Tangphati T. , Banerjee A. and Jasim M. K. , Phys.Lett.B,
1180
+ 817, 136330 [arXiv:2104.00590 [gr-qc]].
1181
+ Pretel J. M. Z., Arbañil J. D. V., Duarte S. B., Jorás S. E. and Reis R. R. R. ,
1182
+ [arXiv:2206.03878 [gr-qc]].
1183
+ Pretel J. M. Z. and Duarte S. B., [arXiv:2202.04467 [gr-qc]].
1184
+ Qummer S., Jawad A., Younas M., 2020, IJMPD, 29, 2050117
1185
+ Raaijmakers G., Greif S. K., Hebeler K., Hinderer T., Nissanke S., Schwenk
1186
+ A., Riley T. E., Watts A. L., Lattimer J. M. and Ho W. C. G., Astrophys.
1187
+ J. Lett. 918, L29, [arXiv:2105.06981]
1188
+ Ramazanoğlu F.M., Pretorius F., 2016, PhRvD, 93, 064005
1189
+ Rashidi N., Nozari K., 2018, IJMPD, 27, 1850076
1190
+ Rezzolla L., Most E. R. and Weih L. R., Astrophys. J. Lett. 852 (2018) no.2,
1191
+ L25, [arXiv:1711.00314 [astro-ph.HE]].
1192
+ Read J.S., Lackey B.D., Owen B.J., Friedman J.L., 2009, PhRvD, 79, 124032
1193
+ Read J.S., Markakis C., Shibata M., Uryu K., Creighton J.D.E., Friedman
1194
+ J.L., 2009, PhRvD, 79, 124033
1195
+ Renzi F., Shokri M. and Melchiorri A., Phys. Dark Univ. 27 (2020), 100450
1196
+ doi:10.1016/j.dark.2019.100450 [arXiv:1909.08014 [astro-ph.CO]].
1197
+ Roest D., Scalisi M., 2015, PhRvD, 92, 043525
1198
+ Salgado M., Sudarsky D., Nucamendi U., 1998, PhRvD, 58, 124003
1199
+ Safdi B. R., Sun Z., Chen A. Y., 2019, PhRvD, 99, 123021
1200
+ Sedrakian D.M., Hayrapetyan M.V., Shahabasyan M.K., 2006, Astrophysics,
1201
+ 49, 194
1202
+ Sedrakian A., 2019, PhRvD, 99, 043011
1203
+ Sedrakian A., 2016, PhRvD, 93, 065044
1204
+ Shen H., Toki H., Oyamatsu K., Sumiyoshi K., 1998, NuPhA, 637, 435
1205
+ Shibata M., Taniguchi K., Okawa H., Buonanno A., 2014, PhRvD, 89, 084005
1206
+ Shibata M., Kawaguchi K., 2013, PhRvD, 87, 104031
1207
+ Silva H.O., Macedo C.F.B., Berti E., Crispino L.C.B., 2015, CQGra, 32,
1208
+ 145008
1209
+ Staykov K.V.„ Doneva D.D., Yazadjiev S.S., Kokkotas K.D., 2014, JCAP, 10,
1210
+ 006
1211
+ Steiner A.W., Gandolfi S., 2012, PhRvL, 108, 081102
1212
+ Stergioulas Nikolaos , https://github.com/niksterg
1213
+ Tsaloukidis L., Koliogiannis P. S.,Kanakis-Pegios A., Moustakidis C.C. ,
1214
+ [arXiv:2210.15644 [astro-ph.HE]].
1215
+ Vretinaris S., Stergioulas N., Bauswein A., 2020, PhRvD, 101, 084309
1216
+ Watanabe G., Iida K., Sato K., 2000, NuPhA, 676, 455 [erratum: 2003,
1217
+ NuPhA, 726, 357]
1218
+ Wiringa R.B., Fiks V., Fabrocini A., 1988, PhRvC, 38, 1010
1219
+ Xu J., Chen L.W., Li B.A., Ma H.R., 2009, ApJ, 697, 1549
1220
+ Xu R., Gao Y., Shao L., 2020, PhRvD, 102, 064057
1221
+ Yang R. X., Xie F., Liu D.J., [arXiv:2211.00278 [gr-qc]].
1222
+ Yi Z., Gong Y., arXiv:1608.05922 [gr-qc]
1223
+ Yi Z., Gong Y., 2019, Universe, 5, 200
1224
+ MNRAS 000, 1–8 (0000)
1225
+
1NFLT4oBgHgl3EQfpi-7/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
2NAyT4oBgHgl3EQf1fm1/content/tmp_files/2301.00737v1.pdf.txt ADDED
@@ -0,0 +1,968 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ Rotational Abstractions for Verification of Quantum
3
+ Fourier Transform Circuits
4
+ 1st Arun Govindankutty Department of Electrical and Computer Engineering
5
+ North Dakota State University
6
+ Fargo, USA
7
8
+ 2nd Sudarshan K. Srinivasan Department of Electrical and Computer Engineering
9
+ North Dakota State University
10
+ Fargo, USA
11
12
+ 3rd Nimish Mathure Department of Electrical and Computer Engineering
13
+ North Dakota State University
14
+ Fargo, USA
15
16
+ Abstract—With the race to build large-scale quantum com-
17
+ puters and efforts to exploit quantum algorithms for efficient
18
+ problem solving in science and engineering disciplines, the
19
+ requirement to have efficient and scalable verification methods
20
+ are of vital importance. We propose a novel formal verification
21
+ method that is targeted at Quantum Fourier Transform (QFT)
22
+ circuits. QFT is a fundamental quantum algorithm that forms the
23
+ basis of many quantum computing applications. The verification
24
+ method employs abstractions of quantum gates used in QFT that
25
+ leads to a reduction of the verification problem from Hilbert
26
+ space to the quantifier free logic of bit-vectors. Very efficient
27
+ decision procedures are available to reason about bit-vectors.
28
+ Therefore, our method is able to scale up to the verification of
29
+ QFT circuits with 10,000 qubits and 50 million quantum gates,
30
+ providing a meteoric advance in the size of QFT circuits thus
31
+ far verified using formal verification methods.
32
+ Index
33
+ Terms—Formal
34
+ verification,
35
+ Quantum
36
+ algorithms,
37
+ Quantum computing, Quantum Fourier transform, Quantum
38
+ circuit verification.
39
+ 1
40
+ I. INTRODUCTION
41
+ The race to build large scale Quantum computers with
42
+ 1,000 qubits and beyond is in full steam [1] [2]. The IBM
43
+ Condor quantum computer with 1,000 qubits is expected to
44
+ be released in 2023 [3]. After Condor, IBM plans to use
45
+ chip-to-chip couplers to build even larger quantum computing
46
+ systems [4], with a goal of building a system with 1 million
47
+ qubits [5]. Google’s road map is to built a quantum computer
48
+ with 1 million qubits as well in the near future [6]. There
49
+ are numerous other quantum computers being developed by
50
+ corporations such as Xanadu, Rigetti, IonQ, and D-Wave, to
51
+ name a few. The development of cryogenic control circuits
52
+ needed for quantum computing is also accelerated as demon-
53
+ strated by Intel (Horse Ridge chip) [7], which realizes quantum
54
+ computing and communication applications [8].
55
+ 1This paper is a preprint of a paper submitted to IET Quantum Computing.
56
+ If accepted, the copy of record will be available at the IET Digital Library.
57
+ The Quantum Algorithm Zoo website tracks algorithms
58
+ in this domain and currently lists 430 citations of various
59
+ Quantum algorithms [9].
60
+ The 80/20 design rule is well know in computing, i.e.,
61
+ 20% of the design cycle time is spend in the actual design,
62
+ while 80% is spent in validation and verification. Without
63
+ verification technologies that can scale, the useful deployment
64
+ of these large-scale quantum systems will be significantly
65
+ hampered. It is imperative therefore to develop verification
66
+ methods for quantum circuits, which is the focus of this
67
+ work. Formal verification has become a standard in the
68
+ semiconductor industry with its ability to provide correctness
69
+ guarantees and flag hard-to-find corner case bugs. There are
70
+ various formal verification methods proposed for quantum
71
+ circuits [10].
72
+ However, for example, the largest Quantum Fourier Trans-
73
+ form (QFT) circuit verified as reported in literature has only
74
+ 31 qubits [11]. Scalable verification methods are thus the need
75
+ of the hour.
76
+ Contributions: One of the approaches to achieve scalability
77
+ in formal verification is to develop domain-specific methods.
78
+ In this work, we target one of the fundamental quantum
79
+ algorithms, the Quantum Fourier Transform (QFT). In com-
80
+ puting and engineering, transformations play a vital role in
81
+ problem solving and analysis. Quantum computing uses QFT
82
+ to tackle various problems. QFT is an integral part of numer-
83
+ ous quantum algorithms including Shor’s factoring algorithm,
84
+ quantum phase estimation algorithm, and computing discrete
85
+ logarithm to name a few [12] [13]. The real-world applications
86
+ where QFT is employed include portfolio optimization in
87
+ computational finance [14], Monte Carlo pricing of financial
88
+ derivatives [15], quantum meteorology for building interferom-
89
+ eters [16], materials examination and analysis [17], analysis of
90
+ image data [18] in medical applications, and risk analysis [19]
91
+ among others.
92
+ We have developed a formal verification method that can be
93
+ arXiv:2301.00737v1 [quant-ph] 2 Jan 2023
94
+
95
+ 2
96
+ used to efficiently verify Quantum Fourier Transform (QFT)
97
+ circuits for up to 10,000 qubits and 50 million gates. Our
98
+ specific contributions are as follows:
99
+ 1) Abstractions of the Hadamard (H) gate and the control
100
+ rotation gate (Rn) that exploits the rotational impact of
101
+ these gates on the incoming qubit.
102
+ 2) A correctness framework that exploits these abstractions
103
+ and allows the verification problem to be reduced from
104
+ Hilbert space (complex vector space) to the quantifier
105
+ free logic of bit-vectors (QF BV).
106
+ 3) Theorems with proofs to show that the abstractions are
107
+ sound, i.e., if the abstract QFT circuit is verified to be
108
+ correct, then the correctness of the QFT circuit under
109
+ verification is guaranteed
110
+ While we have developed our approach with QFT as the
111
+ target, the key ideas used in the abstractions can be applied
112
+ to a much larger class of quantum circuits, which is what we
113
+ plan to do for future work.
114
+ The rest of the paper is organized as follows. Section II
115
+ covers background on quantum circuits and QFT circuits.
116
+ Section III overviews the related work on formal methods
117
+ for verification of quantum circuits. Section IV describes
118
+ the key contributions of the proposed work, including the
119
+ gate abstractions and the correctness framework. Section V
120
+ addresses the correctness of the abstractions and the overall
121
+ approach. Experimental results are provided and discussed
122
+ in Section VI. Conclusions and future work are outlined in
123
+ section VII.
124
+ II. BACKGROUND
125
+ In this section, we review background on qubits, quantum
126
+ gates, and QFT circuits. A detailed description of these topics
127
+ can be found in [12]. Information in the quantum computing
128
+ domain is represented by qubits. A qubit is the basic unit
129
+ of information analogous to a bit in classical computing. In
130
+ general, qubits are represented by a linear combination of
131
+ ortho-normal (orthogonal and normalized) vectors |0⟩ and |1⟩.
132
+ The vectors are linearly independent i.e., we cannot express
133
+ one as the linear combination of the other. The independent
134
+ vectors are shown below.
135
+ |0⟩ =
136
+ �1
137
+ 0
138
+
139
+ , and |1⟩ =
140
+ �0
141
+ 1
142
+
143
+ The above ortho-normal vectors can be used to represent any
144
+ vectors in the vector space by using vector addition and scaling
145
+ (linear combination), and thus they are called the basis vectors.
146
+ A standard representation of a qubit |q⟩ is shown below where,
147
+ α and β are complex numbers such that α2 + β2 = 1.
148
+ |q⟩ = α|0⟩ + β|1⟩
149
+ Quantum gates are unitary operators that act on qubits and
150
+ produce a required output. A quantum algorithm is a step by
151
+ step process that utilizes quantum mechanical properties to
152
+ solve a particular problem. Quantum algorithms are run on
153
+ computation models for quantum computing and this work is
154
+ based on the quantum circuit model, which is the most widely
155
+ used method [20].
156
+ QFT is analogous to the Discrete Fourier Transform (DFT)
157
+ in the classical domain and efficiently performs the quantum
158
+ mechanical model’s Fourier transform. The QFT operates on
159
+ the input qubit states (ortho-normal basis vectors |0⟩, ....., |N−
160
+ 1⟩) and transforms them to the corresponding output states.
161
+ The transformation is shown below [12].
162
+ |j⟩ →
163
+ 1
164
+
165
+ N
166
+ N−1
167
+
168
+ k=0
169
+ e2πijk/N|k⟩
170
+ In the above, |j⟩, N, i, and k represents the input qubit,
171
+ the number of QFT points, imaginary number (√−1), and the
172
+ iteration variable, respectively. Here N = 2n, where n is the
173
+ number of qubits in the QFT.
174
+ In the transformed domain, this resultant state (transformed
175
+ |j⟩) can be represented as a sum of individual components
176
+ whose frequencies are integer multiples of
177
+
178
+ N . The same
179
+ equation can be re-organized to obtain the equivalent trans-
180
+ formation happening in each qubit independently, which we
181
+ exploit in this work.
182
+ Implementation of QFT as a circuit can be achieved by a
183
+ series of cascaded Hadamard (H) gates and controlled rotation
184
+ (Rn) gates. The H gates and Rn gates are defined below.
185
+ H =
186
+ 1
187
+
188
+ 2
189
+ �1
190
+ 1
191
+ 1
192
+ eπi
193
+
194
+ =
195
+ 1
196
+
197
+ 2
198
+ �1
199
+ 1
200
+ 1
201
+ −1
202
+
203
+ Rn =
204
+ �1
205
+ 0
206
+ 0
207
+ e2πi/2n
208
+
209
+ The H gate introduces equal superposition of the input basis
210
+ vectors for the qubit. The Rn gates are responsible for the
211
+ frequency harmonics. QFT circuits are constructed by first
212
+ applying the H gate to all qubits. Qubit 1 of a QFT circuit
213
+ with m qubits should have gates R2, ..., Rm acting on it, with
214
+ control inputs qubit 2, ..., qubit m taken before the H gate is
215
+ applied to the control qubits, respectively. Qubit 2 should have
216
+ gates R2, ..., Rm−1 acting on it with control inputs qubit 3, ...,
217
+ qubit m taken before the H gate is applied, respectively, and
218
+ so on. Figure 1(a) shows the transformations happening while
219
+ QFT is performed on a 3 qubit system.
220
+ III. RELATED WORK
221
+ Formal verification of quantum algorithms and circuits has
222
+ been an active area of research. In this section, we overview
223
+ these related works and how they contrast with our approach.
224
+ The main takeaway is that the approaches have not demon-
225
+ strated the efficiency and scalability that we have been able to
226
+ achieve. In this sense, our approach is a meteoric advance in
227
+ the size of quantum circuits thus far verified.
228
+ Yamashita and Markov [22] have proposed an equivalence
229
+ checking approach for quantum circuits. In equivalence check-
230
+ ing, the circuit to be verified is compared with a reference
231
+
232
+ 3
233
+ Fig. 1. (a) 3-qubit QFT circuit [21]. (b) Abstract Hadamard gate. (c) Abstract rotation gate. (d) 3-qubit QFT abstract circuit representation.
234
+ circuit. There are two prominent contrasts with our approach.
235
+ The first contrast is related to equivalence checking in general,
236
+ where a golden (already verified, trusted) circuit is required as
237
+ the reference circuit. For example, to verify a QFT circuit with
238
+ 10,000 qubits and 50 million gates, a trusted QFT circuit of
239
+ the same size is required. Therefore, to enable equivalence
240
+ checking, methods that can verify functional correctness of
241
+ a given circuit is mandatory. This is the gap that we address.
242
+ Equivalence checking is useful in synthesis optimizations. Our
243
+ approach is property based and does not require a reference
244
+ circuit of the same size for verification. If a QFT circuit
245
+ with 10,000 qubits and 50 million gates satisfies our proposed
246
+ correctness property, it is guaranteed to be correct. The second
247
+ contrast is that if they are not able to reduce the problem to
248
+ a boolean space, then a hybrid approach is used [23], where
249
+ the verification problem is solved in the Hilbert space. We use
250
+ rotational abstractions to reduce the problem fully to a Boolean
251
+ space, solvers for which are orders of magnitude more efficient
252
+ and scalable. We also exploit the fact that our approach is
253
+ domain-specific to QFT circuit verification to enable this. The
254
+ largest circuits they verified have 5,000 gates and requires
255
+ about 59 seconds. In contrast, we are able to verify circuits
256
+ with 8,000 gates in 0.04 seconds, 5 million gates in about 60
257
+ seconds, and 50 million gates in 2,380 seconds.
258
+ Amy [11] use complex path-sums to model quantum gates
259
+ for verification. They perform reductions on the resulting
260
+ circuit, which are implemented using rewrite rules. The re-
261
+ ductions are performed using the Haskell theorem prover.
262
+ The rewrite rules are guaranteed to reduce the circuit to
263
+ a normal form, which is then used to check correctness.
264
+ They verify a 16-qubit and a 31-qubit QFT, which required
265
+ 1.250 seconds and 16.020 seconds for circuits without errors,
266
+ respectively. In contrast, our approach required 0.02 seconds
267
+ and 0.03 seconds for 16-qubit and 32-qubit QFT circuits,
268
+ respectively. They employ a dyadic arithmetic technique, the
269
+ current implementation of which causes an integer overflow
270
+ for QFT circuits larger than 31 qubits. Therefore, with this
271
+ current implementation, they are unable to handle QFT circuits
272
+ larger than 31 qubits. We are able to handle upto 10,000 qubits.
273
+ Liu et al. [24] formalize quantum hoare logic in the Is-
274
+ abelle/HOL theorem prover and use it to prove the correctness
275
+ of Grover’s search algorithm for infinite size input. They report
276
+ that the proof required 5 person months of effort. They do not
277
+ describe how this proof can be used to verify a given quantum
278
+ circuit that implements Grover’s algorithm. In contrast, our
279
+ approach is fully automated for verification of any QFT circuit.
280
+ They have not addressed QFT verification.
281
+ Feng et al. [25] have developed a model checking algorithm
282
+ that can check the Quantum CTL (QCTL) properties on
283
+ quantum Markov chains. The method is used to check the
284
+ correctness of the BB84 protocol when n=1, the corresponding
285
+ circuit for which has 8 qubits and 24 quantum gates. They have
286
+ not addressed QFT verification either.
287
+ IV. ROTATIONAL ABSTRACTIONS
288
+ There are three key ideas in developing the abstractions for
289
+ the Hadamard (H) gate and the controlled rotation (Rn) gate.
290
+ The first key idea is with regard to the basis vectors. If
291
+ a QFT circuit works correctly when the input qubits are the
292
+ basis vectors |0⟩ or |1⟩, then the circuit is guaranteed to work
293
+ correctly for any qubit inputs [26]. Therefore, for verification
294
+ purposes, we only consider the cases where the input qubits
295
+ are |0⟩ or |1⟩.
296
+ The second key idea is with regard to quantum gates and
297
+ is as follows. If the input qubits are limited to basis vectors,
298
+ then both the H gate and the Rn gate can be modelled as gates
299
+ causing rotation on the basis vectors. The H gate has only one
300
+ input. We call this the control input qc as shown in Figure 1(b),
301
+
302
+ H
303
+ R2
304
+ R3
305
+ H
306
+ R2
307
+ H
308
+ HA
309
+ HA
310
+ R2A
311
+ ReA
312
+ HA
313
+ R2A
314
+ R.A
315
+ HA4
316
+ because if the input is |1⟩, then the H gate function can be
317
+ represented as a rotation on |1⟩. If this control input is |0⟩, then
318
+ no rotation is performed. The Rn gate has two inputs (control
319
+ and data) and one output, we call the control input qc, the data
320
+ input qd, and the output qo (as shown in Figure 1(c)). If qc is
321
+ |1⟩, then Rn performs a rotation on qd. Otherwise, if qc is |0⟩,
322
+ then no rotation is performed.
323
+ The third key idea is with regard to the amount of rotation
324
+ performed by the quantum gates on data input qubits and the
325
+ resulting output qubit states, and is as follows. The H gate
326
+ induces a π (2π/2) rotation on |1⟩ and does not rotate |0⟩.
327
+ The Rn gate induces a 2π/2n (π/2n−1 ) rotation on |1⟩ and
328
+ does not rotate |0⟩. For examle, R4 induces a rotation of π/8.
329
+ Thus, the rotation performed by the gates on |1⟩ are negative
330
+ powers of 2 with reference to 2π .
331
+ The QFT circuit structure is such that the control inputs to
332
+ the quantum gates are always initial qubit states and are used
333
+ only to make the decision, whether to rotate or not.
334
+ Thus, we can abstract the basis vector input values |0⟩ and
335
+ |1⟩ using Boolean values 0 and 1.
336
+ The qubits once transformed by these rotations are input
337
+ to the next quantum gate and finally the output state of the
338
+ circuit.
339
+ If the 2πi term is factored out of the exponent, the final
340
+ output state of each qubit (after transformation) can be ab-
341
+ stractly represented using fractional bit-vectors that essentially
342
+ capture the amount of rotation on |1⟩. The fractional bit-vector
343
+ ⟨.b1b2b3⟩ corresponds to rotation value 2π ∗ (b1 ∗ 2−1 + b2 ∗
344
+ 2−2+b3∗2−3). For example, the bit-vector ⟨.101⟩ corresponds
345
+ to rotation value of 2π(1/2+0+1/8). Abstractions of the H gate
346
+ and the Rn gate can be obtained by defining their rotational
347
+ impact on the fractional bit-vectors, and an abstracted QFT
348
+ circuit can be obtained by using these abstracted gates. In a
349
+ QFT circuit with m qubits, the smallest amount of rotation
350
+ will be 2π/2m. Therefore, the fractional bit-vectors used to
351
+ represent qubits in the abstracted QFT circuit will have to
352
+ have m bits.
353
+ The abstract H gate is defined below and has one input qubit
354
+ qc, which is Boolean type. Output qubit qo is a bit-vector of
355
+ size equal to m, the number of qubits.
356
+ Definition 1. (Abstract Hadamard Gate) If
357
+ qc=1, then
358
+ qo
359
+ ← ⟨.100...0⟩m,
360
+ else
361
+ qo ← ⟨.000...0⟩m.
362
+ The abstract Rn gate is defined below and has two qubit
363
+ inputs qc and qd. The control input qc is type Boolean, the
364
+ data input qd and the output qubit qo are both fractional bit-
365
+ vectors of size m, the number of qubits.
366
+ Definition 2.
367
+ (Abstract Rn Gate) If
368
+ qc=1,
369
+ then qo ←
370
+ qd +m ⟨.00..01m−n0...0⟩m, else
371
+ qo ← qd.
372
+ In the above, +m represents fixed-point modulo addition
373
+ w.r.t m. The abstracted QFT circuit is obtained by replacing
374
+ the H gates and Rn gates of the original circuit with the
375
+ abstracted gates. Input qubits are declared as type Boolean
376
+ and all other qubits are declared as type bit-vector of size m.
377
+ The abstracted QFT circuit with 3 qubits is shown in Figure
378
+ 1(d). When the abstract H gate is applied, the qubits at the
379
+ output of the H gates of the QFT circuit in Figure 1(d) will
380
+ have the following values:
381
+ q1
382
+ 1 ← ⟨.b100⟩
383
+ q1
384
+ 2 ← ⟨.b200⟩
385
+ q1
386
+ 3 ← ⟨.b300⟩
387
+ The QFT correctness property is given next. Let QFT-
388
+ Absi(b1, b2, ..., bm) denote the output state of the ith qubit
389
+ of an abstracted version of a QFT circuit, where m is the
390
+ number of qubits and b1, b2, ..., bm are Boolean variables.
391
+ Property 1.
392
+ (QFT Correctness Property) A QFT circuit is
393
+ functionally correct if, for all 1 ≤ i ≤ m, i is an integer,
394
+ QFT-Absi(b1, b2, ..., bm) = ⟨.bibi+1...bm0...0⟩m.
395
+ Based on the correctness property above, for the QFT
396
+ circuit from Figure 1(a) to be correct, the state of qubits at
397
+ the output should be as follows:
398
+ q3
399
+ 1 = ⟨.b1b2b3⟩
400
+ q3
401
+ 2 = ⟨.b2b30⟩
402
+ q3
403
+ 3 = ⟨.b300⟩
404
+ The abstracted gates, abstracted QFT circuit, and Property
405
+ 1 are expressible in the Quantifier Free logic of Bit Vectors
406
+ (QF BV). A number of SMT solvers exist that can very
407
+ efficiently check properties in this logic. Therefore, verification
408
+ of a given QFT circuit can be performed by encoding the
409
+ abstracted circuit and correctness property in this logic (using
410
+ the SMT LIB language). An SMT solver will check the
411
+ property automatically and indicate if the property is satisfied
412
+ or not. If the property is satisfied, then the QFT circuit is
413
+ guaranteed to be correct (as will be established in the next
414
+ section). If the property is not satisfied, the tool will generate
415
+ a counter example, which can be used to trace the error(s) in
416
+ the circuit.
417
+ V. ABSTRACTION CORRECTNESS
418
+ Fig. 2. QFT circuit showing error scenarios.
419
+ In this section, we provide a proof of correctness of our ver-
420
+ ification approach. The overall approach is that we enumerate
421
+ through all possible classes of errors in QFT circuits and show
422
+ how the verification approach will flag each error class. The
423
+ error classes are depicted in Figure 2. We call bit-vector values
424
+ as data values as well.
425
+
426
+ H
427
+ R3
428
+ R3
429
+ R2
430
+ R2
431
+ H5
432
+ TABLE I
433
+ VERIFICATION RESULTS
434
+ QFT Benchmark
435
+ Correct Circuit
436
+ Incorrect Gate Error
437
+ Incorrect Control Error
438
+ No Error
439
+ Error Depth
440
+ Error Depth
441
+ Gate-2
442
+ Gate-n
443
+ Gate-2
444
+ Gate-n
445
+ Verification Stats.
446
+ Verification Stats.
447
+ Verification Stats.
448
+ Verification Stats.
449
+ Verification Stats.
450
+ Qubits(n)
451
+ Gates
452
+ M(MB)
453
+ T(s)
454
+ M(MB)
455
+ T(s)
456
+ M(MB)
457
+ T(s)
458
+ M(MB)
459
+ T(s)
460
+ M(MB)
461
+ T(s)
462
+ 16
463
+ 136
464
+ 19.0
465
+ 0.02
466
+ 27.2
467
+ 0.04
468
+ 27.3
469
+ 0.02
470
+ 19.0
471
+ 0.01
472
+ 27.2
473
+ 0.02
474
+ 32
475
+ 528
476
+ 19.0
477
+ 0.03
478
+ 27.2
479
+ 0.02
480
+ 27.5
481
+ 0.02
482
+ 19.0
483
+ 0.02
484
+ 19.0
485
+ 0.01
486
+ 64
487
+ 2,080
488
+ 19.0
489
+ 0.03
490
+ 27.3
491
+ 0.03
492
+ 27.6
493
+ 0.02
494
+ 19.1
495
+ 0.02
496
+ 19.1
497
+ 0.03
498
+ 128
499
+ 8,256
500
+ 19.3
501
+ 0.04
502
+ 27.4
503
+ 0.07
504
+ 27.9
505
+ 0.04
506
+ 19.3
507
+ 0.03
508
+ 19.3
509
+ 0.02
510
+ 256
511
+ 32,896
512
+ 20.1
513
+ 0.19
514
+ 27.7
515
+ 0.06
516
+ 28.6
517
+ 0.06
518
+ 20.0
519
+ 0.08
520
+ 20.0
521
+ 0.08
522
+ 512
523
+ 131,328
524
+ 22.1
525
+ 0.26
526
+ 28.3
527
+ 0.29
528
+ 29.8
529
+ 0.2
530
+ 22.2
531
+ 0.29
532
+ 22.2
533
+ 0.2
534
+ 1,024
535
+ 524,800
536
+ 29.1
537
+ 1.37
538
+ 29.5
539
+ 0.77
540
+ 32.2
541
+ 0.92
542
+ 29.5
543
+ 1.46
544
+ 29.5
545
+ 1.29
546
+ 2,048
547
+ 2,098,176
548
+ 56.1
549
+ 9.85
550
+ 56.9
551
+ 5.52
552
+ 73.7
553
+ 5.87
554
+ 56.9
555
+ 9.66
556
+ 56.9
557
+ 9.47
558
+ 4,096
559
+ 8,390,656
560
+ 169.3
561
+ 95.75
562
+ 169.6
563
+ 51.78
564
+ 203.3
565
+ 53.57
566
+ 169.6
567
+ 73.65
568
+ 169.6
569
+ 79.68
570
+ 8,192
571
+ 33,558,528
572
+ 592.1
573
+ 1,109.0
574
+ 593.6
575
+ 640.53
576
+ 596.2
577
+ 643.9
578
+ 593.6
579
+ 641.03
580
+ 593.6
581
+ 639.57
582
+ 10,000
583
+ 50,005,000
584
+ 888.7
585
+ 2,379.88
586
+ 890.7
587
+ 1,523.99
588
+ 894.5
589
+ 1,568.79
590
+ 890.6
591
+ 1,571.29
592
+ 890.6
593
+ 1,524.65
594
+ Lemma 1. If a QFT circuit has an error, where an incorrect
595
+ input is fed to an H gate, verification of the abstracted version
596
+ of the QFT circuit will either generate a type error or will not
597
+ satisfy Property 1.
598
+ If the input to the abstract H gate is a bit-vector input, this
599
+ will be flagged as a type error as the H gate expects a Boolean
600
+ input. If Boolean input qubit bj is expected whereas bk is fed
601
+ for qubit qj, then the LHS of Property 1 for qj will be ⟨.bk...⟩
602
+ and RHS will be ⟨.bj...⟩. Therefore, Property 1 will not be
603
+ satisfied.
604
+ Lemma 2. If a QFT circuit has an error, where an incorrect
605
+ input is fed to an Rn gate, verification of the abstracted version
606
+ of the QFT circuit will either generate a type error or will not
607
+ satisfy Property 1.
608
+ If a control value is fed to the data input of an Rn gate
609
+ or if a data value is fed to the control input of an Rn gate,
610
+ a type error will be generated. If bj is expected whereas bk
611
+ is fed for the control input of an Rn gate acting on qubit qj,
612
+ then the LHS of Property 1 for qj will be ⟨....bk...⟩ and RHS
613
+ will be ⟨....bj...⟩. Therefore, Property 1 will not be satisfied.
614
+ If an incorrect data value is fed to an Rn gate, this will result
615
+ in a missing Rn gate on a qubit and this case is dealt with
616
+ subsequently.
617
+ The error above is shown in Figure 2. R3 gate with input q2
618
+ 1
619
+ should have b3 as its control input. Instead b2 is erroneously
620
+ fed as the control input.
621
+ Lemma 3. If a QFT circuit has an error, where an H gate
622
+ is missing on a qubit or there is more than one H gate acting
623
+ on a qubit, verification of the abstracted version of the QFT
624
+ circuit will generate a type error.
625
+ In the abstracted version of a QFT circuit, the input of an
626
+ H gate is a control value and the output is a data value. Thus,
627
+ if there is more than one H gate acting on a qubit, the H gates
628
+ after the first one will receive data inputs and this will result
629
+ in a type error. If there are no H gates acting on a qubit, the
630
+ subsequent Rn gates will not get a data value at its data input
631
+ and this will again result in a type error.
632
+ An example of a missing H gate error is shown in Figure
633
+ 2. The H gate on q2 is missing.
634
+ Lemma 4. If a QFT circuit has an error where an incorrect
635
+ set of Rn gates are acting on a qubit, i.e., required Rn gates are
636
+ missing or additional Rn gates are present or both, verification
637
+ of the abstract version of the QFT circuit will not satisfy
638
+ Property 1.
639
+ Qubit 1 of a QFT circuit with m qubits should have gates
640
+ R2, ..., Rm acting on it. Qubit 2 should have gates R2, ...,
641
+ Rm−1 acting on it and so on. Thus, there is only one Rn gate
642
+ of a certain n value required to act on each qubit. If a required
643
+ Rn gate is missing, then its rotational impact on the fractional
644
+ bit-vector value abstracting the qubit will not be observed in
645
+ Property 1. If a qubit has additional erroneous Rn gates acting
646
+ on it, then the required rotation of the qubit will be incorrect
647
+ and this will be reflected on the final fractional bit-vector value
648
+ of the qubit. In both the above cases, Property 1 will not be
649
+ satisfied. Note that an Rn gate can be replaced with two Rn−1
650
+ gates, with the same control inputs. For example, R2 can be
651
+ substituted with two R3 gates. If the total rotational impact of
652
+ a sequence of Rn gates is what is expected, even though it
653
+ does not conform with the Rn gate sequence described above,
654
+ Property 1 will be satisfied because the fractional bit-vector
655
+ abstraction accurately captures the rotations.
656
+ An example of an incorrect Rn gate is shown in Figure 2,
657
+ where the gate on q1
658
+ 1 should be R2 instead of R3.
659
+ Lemma 5. If a QFT circuit has a combination of errors from
660
+ the error classes described in Lemmas 1-4, verification of the
661
+ abstracted version of the QFT circuit will generate a type error
662
+ or will not satisfy Property 1.
663
+ As can be seen from Lemmas 1-4, the effect that flags each
664
+ error class is disjoint, i.e., there is no overlap in these effects
665
+ for type errors or Property 1. Thus a combination of errors
666
+ will also be flagged as a type error or will not satisfy Property
667
+ 1.
668
+ Theorem 1.
669
+ (QFT-Rotational Abstraction Correctness) If a
670
+ QFT circuit has an error, verification of the abstracted version
671
+ of the QFT circuit will generate a type error or will not satisfy
672
+ Property 1.
673
+ A QFT circuit has only two types of gates, the H gate and
674
+ the Rn gate. Based on this, there are only four classes of
675
+
676
+ 6
677
+ errors possible: Incorrect input to a H gate, incorrect input to
678
+ an Rn gate, missing or additional H gates in the circuit, and
679
+ incorrect set of Rn gates acting on a qubit. The fifth case of an
680
+ erroneous QFT circuit is any combination of the above. From
681
+ Lemmas 1-5, we see that in all the above cases, verification of
682
+ the abstracted version of the QFT circuit will generate a type
683
+ error or will not satisfy Property 1.
684
+ VI. RESULTS AND DISCUSSIONS
685
+ Table I gives the verification results. The verification bench-
686
+ marks were generated by varying the number of qubits in
687
+ the QFT circuit from 16 qubits to 10,000 qubits. The table
688
+ gives the number of quantum gates in each of the QFT
689
+ benchmark circuits as well (column 2: Gates). The verification
690
+ experiments were conducted on an Intel(R) Core(TM) i9 -
691
+ 12900K CPU @ 3.2 GHz with 32 GB RAM and Ubuntu 64-
692
+ bit operating system. The z3 version 4.8.12 SMT solver [27]
693
+ was used to check Property 1 for all benchmarks.
694
+ In the table, ”T(s)” indicates verification time in seconds,
695
+ which is the z3 run time. ”M(MB)” gives the z3 run time
696
+ memory consumption in megabytes. ”Correct Circuit” gives
697
+ the verification statistics for the QFT circuits without errors.
698
+ For these circuits Property 1 is proved to be satisfied. Property
699
+ 1 allows for each qubit output to be verified independently.
700
+ Therefore, the verification of all the qubit output in the circuit
701
+ were done in parallel and the memory and time reported
702
+ correspond to the worst case.
703
+ ”Incorrect Gate Error” are circuits with gates errors and is
704
+ described as follows. The Gate-2 error here indicates that the
705
+ R3 gate is incorrectly acting on qubit 1 instead of R2. The
706
+ Gate-n error here indicates that the Rn−1 gate is incorrectly
707
+ acting on qubit 1 instead of Rn. ”Incorrect Control Error”
708
+ are circuits with incorrect control input to an Rn gate. The
709
+ Gate-2 error here indicates that the R2 gate in qubit 1 is
710
+ incorrectly controlled by qubit 3 instead of qubit 2. The Gate-
711
+ n error here indicates that the Rn gate in qubit 1 is incorrectly
712
+ controlled by qubit n-1 instead of qubit n. For the circuits with
713
+ errors, verification of Property 1 generates a counterexample.
714
+ The time and memory reported corresponds to the verification
715
+ of the first qubit output that caused a counterexample to be
716
+ generated.
717
+ Figures 3 and 4 plot the verification time and memory from
718
+ Table I versus the number of quantum gates, respectively. In
719
+ these graphs, both the x-axis and y-axis use a log scale. As
720
+ can be seen from these graphs, with increase in the number
721
+ of gates, both memory and verification time increase linearly
722
+ for both correct circuits and circuits with errors. The most
723
+ complex circuit with 10,000 qubits and 50 million gates is
724
+ verified in only about 37 minutes. This demonstrates the high
725
+ efficiency and scalability of our approach. The time taken to
726
+ verify circuits with errors is less than that of correct circuits.
727
+ However, there is not an order-of-magnitude reduction that is
728
+ often observed in formal verification.
729
+ Figure 5 shows both verification time and memory as the
730
+ position of the gate error is moved from qubit 1 to qubit
731
+ 10,000 on the QFT circuit with 10,000 qubits. The x-scale
732
+ increases linearly, whereas the y-scale is logarithmic. The
733
+ graph indicates the variation of time and memory with the
734
+ vertical location of errors. We see that as the error moves
735
+ from qubit 1 to qubit 10,000, both time and memory reduce
736
+ exponentially.
737
+ Fig. 3.
738
+ Execution time requirement capture for QFT verification versus
739
+ quantum gate count. Correct circuit, control input error and value error at
740
+ qubit positions 2 and 10000 captured for elucidation.
741
+ Fig. 4. Execution memory requirement capture for QFT verification versus
742
+ quantum gate count. Correct circuit, control input error and value error at
743
+ qubit positions 2 and 10000 captured for elucidation.
744
+ VII. CONCLUSIONS AND FUTURE WORK
745
+ Our proposed approach for verification of Quantum Fourier
746
+ Transform (QFT) circuits achieves a meteoric advance in the
747
+ efficiency and scalability of quantum circuits thus far verified.
748
+ We have been able to verify a QFT circuit with 10,000
749
+ qubits and over 50 million gates in only about 37 minutes.
750
+ We exploit the fact that our approach is domain specific
751
+ to QFT verification. This is a common theme to achieve
752
+ scalability in formal verification. For example, there are a
753
+ large number of formal verification techniques dedicated to
754
+ the verification of multipliers. We also exploit the idea that
755
+ the rotations performed by the gates are negative powers of 2
756
+
757
+ Execution time capture
758
+ 103
759
+ Correct Circuit
760
+ Incorrect Control Error at gate 2
761
+ 101.
762
+ Incorrect Control Erro at gate n
763
+ 10-1
764
+ 102
765
+ 103
766
+ 104
767
+ 105
768
+ 106
769
+ 107
770
+ Correct Circuit
771
+ 102
772
+ Incorrect Gate Error at gate 2
773
+ Incorrect Gate Error at gate n
774
+ 100
775
+ 102
776
+ 103
777
+ 104
778
+ 105
779
+ 106
780
+ 107
781
+ Number of quantum gates in QFT circuitExecution memory capture
782
+ 103
783
+ Correct Circuit
784
+ Incorrect Control Error at gate 2
785
+ Incorrect Control Erro at gate n
786
+ 102
787
+ 102
788
+ 103
789
+ 104
790
+ 105
791
+ 106
792
+ 107
793
+ 103
794
+ Correct Circuit
795
+ Incorrect Gate Error at gate 2
796
+ Incorrect Gate Error at gate n
797
+ 102
798
+ 102
799
+ 103
800
+ 104
801
+ 105
802
+ 106
803
+ 107
804
+ Number of quantum gates in QFT circuit7
805
+ Fig. 5.
806
+ Resource utilization (time and memory) capture versus qubit count
807
+ for erroneous QFT circuit.
808
+ and can therefore be encoded as fractional bit-vectors, thus
809
+ reducing the verification obligations from Hilbert space to
810
+ Boolean space. For future work, our goal is to extend these
811
+ ideas to other quantum algorithms to advance efficiency and
812
+ scalability of formal verification so as to cope with the size
813
+ and complexity of quantum hardware roadmaps of the near
814
+ future.
815
+ REFERENCES
816
+ [1] D. Gottesman and I. L. Chuang, “Demonstrating the viability of
817
+ universal quantum computation using teleportation and single-qubit
818
+ operations,” Nature, vol. 402, pp. 390–393, 11 1999.
819
+ [2] F. A. et.al., “Quantum supremacy using a programmable superconduct-
820
+ ing processor,” Nature, vol. 574, pp. 505–510, 10 2019.
821
+ [3] G. Jay, F. Ismael, and W. Karl. (2021, 2) Ibm’s roadmap for
822
+ building an open quantum software ecosystem. [Online]. Available:
823
+ https://research.ibm.com/blog/quantum-development-roadmap
824
+ [4] K.
825
+ Krewell
826
+ and
827
+ T.
828
+ Research.
829
+ (2022,
830
+ 6)
831
+ The
832
+ next
833
+ generation
834
+ of
835
+ ibm
836
+ quantum
837
+ computers.
838
+ [On-
839
+ line]. Available: https://www.forbes.com/sites/tiriasresearch/2022/06/22/
840
+ the-next-generation-of-ibm-quantum-computers/?sh=5083d463266f
841
+ [5] J. Gambetta. (2022, 5) Expanding the ibm quantum roadmap to
842
+ anticipate the future of quantum-centric supercomputing. [Online].
843
+ Available: https://research.ibm.com/blog/ibm-quantum-roadmap-2025
844
+ [6] J.
845
+ Porter.
846
+ (2021,
847
+ 5)
848
+ Google
849
+ wants
850
+ to
851
+ build
852
+ a
853
+ useful
854
+ quantum
855
+ computer
856
+ by
857
+ 2029.
858
+ [Online].
859
+ Available:
860
+ https://www.theverge.com/2021/5/19/22443453/
861
+ google-quantum-computer-2029-decade-commercial-useful-qubits-quantum-transistor
862
+ [7] J.-S. Park, S. Subramanian, L. Lampert, T. Mladenov, I. Klotchkov,
863
+ D. J. Kurian, E. Juarez-Hernandez, B. Perez-Esparza, S. R. Kale, K. T.
864
+ Asma Beevi, S. Premaratne, T. Watson, S. Suzuki, M. Rahman, J. B.
865
+ Timbadiya, S. Soni, and S. Pellerano, “13.1 a fully integrated cryo-
866
+ cmos soc for qubit control in quantum computers capable of state
867
+ manipulation, readout and high-speed gate pulsing of spin qubits in
868
+ intel 22nm ffl finfet technology,” in 2021 IEEE International Solid- State
869
+ Circuits Conference (ISSCC), vol. 64, 2021, pp. 208–210.
870
+ [8] G. Arun and V. Mishra, “A review on quantum computing and communi-
871
+ cation,” in 2014 2nd International Conference on Emerging Technology
872
+ Trends in Electronics, Communication and Networking, 2014, pp. 1–5.
873
+ [9] S. Jordan. (2021, 2) Quantum algorithm zoo. [Online]. Available:
874
+ https://quantumalgorithmzoo.org
875
+ [10] M. Lewis, S. Soudjani, and P. Zuliani, “Formal verification of quantum
876
+ programs: Theory, tools and challenges,” CoRR, vol. abs/2110.01320,
877
+ 2021. [Online]. Available: https://arxiv.org/abs/2110.01320
878
+ [11] M. Amy, “Towards large-scale functional verification of universal quan-
879
+ tum circuits,” Electronic Proceedings in Theoretical Computer Science,
880
+ vol. 287, pp. 1–21, 1 2019.
881
+ [12] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
882
+ Information: 10th Anniversary Edition, 10th ed.
883
+ USA: Cambridge
884
+ University Press, 2011.
885
+ [13] E. Sakk, Quantum Fourier Operators and Their Application.
886
+ Inte-
887
+ chOpen, 7 2021.
888
+ [14] P. Rebentrost and S. Lloyd, “Quantum computational finance: quantum
889
+ algorithm for portfolio optimization,” 11 2018.
890
+ [15] P. Rebentrost, B. Gupt, and T. R. Bromley, “Quantum computational
891
+ finance: Monte carlo pricing of financial derivatives,” Physical Review
892
+ A, vol. 98, p. 022321, 8 2018.
893
+ [16] Z.-E. Su, Y. Li, P. P. Rohde, H.-L. Huang, X.-L. Wang, L. Li, N.-L.
894
+ Liu, J. P. Dowling, C.-Y. Lu, and J.-W. Pan, “Multiphoton interference
895
+ in quantum fourier transform circuits and applications to quantum
896
+ metrology,” Physical Review Letters, vol. 119, p. 080502, 8 2017.
897
+ [17] H. Grimm-Strele and M. Kabel, “Fft based homogenization with mixed
898
+ uniform boundary conditions,” International Journal for Numerical
899
+ Methods in Engineering, vol. 122, pp. 7241–7265, 12 2021.
900
+ [18] A. Geng, A. Moghiseh, C. Redenbach, and K. Schladitz, “Improved frqi
901
+ on superconducting processors and its restrictions in the nisq era,” 10
902
+ 2021.
903
+ [19] S. Woerner and D. J. Egger, “Quantum risk analysis,” npj Quantum
904
+ Information, vol. 5, p. 15, 12 2019.
905
+ [20] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus,
906
+ P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates
907
+ for quantum computation,” Phys. Rev. A, vol. 52, pp. 3457–3467, Nov
908
+ 1995. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.
909
+ 52.3457
910
+ [21] R.
911
+ Muradian.
912
+ (2011,
913
+ 3)
914
+ Quantum
915
+ fourier
916
+ transform
917
+ circuit.
918
+ [Online].
919
+ Available:
920
+ https://demonstrations.wolfram.com/
921
+ QuantumFourierTransformCircuit
922
+ [22] S. Yamashita and I. L. Markov, “Fast equivalence-checking for quantum
923
+ circuits,” 2009. [Online]. Available: https://arxiv.org/abs/0909.4119
924
+ [23] G.
925
+ F.
926
+ Viamontes,
927
+ I.
928
+ L.
929
+ Markov,
930
+ and
931
+ J.
932
+ P.
933
+ Hayes,
934
+ “Checking
935
+ equivalence of quantum circuits and states,” 2007. [Online]. Available:
936
+ https://arxiv.org/abs/0705.0017
937
+ [24] J. Liu, B. Zhan, S. Wang, S. Ying, T. Liu, Y. Li, M. Ying, and N. Zhan,
938
+ “Formal verification of quantum algorithms using quantum hoare logic,”
939
+ in Computer Aided Verification, I. Dillig and S. Tasiran, Eds.
940
+ Cham:
941
+ Springer International Publishing, 2019, pp. 187–207.
942
+ [25] Y. Feng, N. Yu, and M. Ying, “Model checking quantum markov
943
+ chains,” Journal of Computer and System Sciences, vol. 79, no. 7, pp.
944
+ 1181–1198, 2013. [Online]. Available: https://www.sciencedirect.com/
945
+ science/article/pii/S0022000013000780
946
+ [26] F. X. Lin, “Shor’s algorithm and the quantum fourier transform,” McGill
947
+ University, 2014.
948
+ [27] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in
949
+ Proceedings of the Theory and Practice of Software, 14th International
950
+ Conference on Tools and Algorithms for the Construction and Analysis
951
+ of Systems, ser. TACAS’08/ETAPS’08.
952
+ Berlin, Heidelberg: Springer-
953
+ Verlag, 2008, p. 337–340.
954
+
955
+ Resource capture for erroneous QFT circuit
956
+ 103
957
+ 102
958
+ 101
959
+ Time
960
+ 100
961
+ Memory
962
+ 0
963
+ 2000
964
+ 4000
965
+ 6000
966
+ 8000
967
+ 10000
968
+ Qubit line where error is located
2NAyT4oBgHgl3EQf1fm1/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
2dAzT4oBgHgl3EQf8_7Q/content/tmp_files/2301.01914v1.pdf.txt ADDED
@@ -0,0 +1,720 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ Accuracy and Fidelity Comparison of Luna and
3
+ DALL-E 2 Diffusion-Based Image Generation
4
+ Systems
5
+ Michael Cahyadi
6
+ School of Computer Science
7
+ Bina Nusantara University
8
+ Jakarta, Indonesia
9
10
+ Muhammad Rafi
11
+ School of Computer Science
12
+ Bina Nusantara University
13
+ Jakarta, Indonesia
14
15
+
16
+
17
+
18
+
19
+
20
+ William Shan
21
+ School of Computer Science
22
+ Bina Nusantara University
23
+ Jakarta, Indonesia
24
25
+
26
+
27
+ Abstract — We qualitatively examine the accuracy and
28
+ fideltiy between two diffusion-based image generation systems,
29
+ namely DALL-E 2 and Luna, which have massive differences in
30
+ training datasets, algorithmic approaches, prompt resolvement,
31
+ and output upscaling. In our research we conclude that DALL-
32
+ E 2 significantly edges Luna in both alignment and fidelity
33
+ comparisons
34
+ I.
35
+ INTRODUCTION
36
+ Image generation systems is one of the many avenues
37
+ artificial intelligence research projects have been pursuing
38
+ ways to improve generative methods. Image generation
39
+ systems have immense potential to compliment and extend
40
+ human creativity[1], but on the other hand there are issues
41
+ with the field such as potential abuse to spread misinformation
42
+ and harrassment[2], bias against certain cultural groups[3],
43
+ and harmful associations against marginalized societies [4].
44
+ The field of image generation using artificial intelligence
45
+ technologies has made great advancements in the last few
46
+ years, with recent models capable of generating images with
47
+ near human-like characteristics. Variations of Generative
48
+ Adversarial Networks (GAN)[5] were among the first models
49
+ to generate high-quality images, but recently there has been
50
+ more focus by researchers and the public[6] on diffusion-
51
+ based models trained using massive datasets.
52
+ The open nature of research information regarding
53
+ diffusion-based image generation models have also led to an
54
+ increase of image generation systems made by individuals,
55
+ which may not have sufficient guardrails against abuse[7].
56
+ Image generation systems also use CLIP latents to
57
+ associate certain human concepts and understand them in
58
+ creative contexts[8]. With artificial intelligence systems
59
+ continuing to get better in non-analytical areas such as artistic
60
+ creativity that mimic closely human cognitive architectures,
61
+ researchers might soon get closer into the realm of General
62
+ Artificial Intelligence (GAI)[9].
63
+ As artificial intelligence becomes a more pervaise tool in
64
+ day-to-day workflows, there needs to be an evaluation
65
+ regarding the quality of outputs generated by image
66
+ generation systems. Accurately judging the alignment and
67
+ perceived fidelity of generated outputs from these image
68
+ generation systems can help researchers and developers build
69
+ better systems that are aware of the pitfalls of current systems
70
+ in the market.
71
+ While there exists many diffusion-based image generation
72
+ systems, both open and closed sourced, we decided to search
73
+ for two systems who adopt resolvement approaches that lead
74
+ in their industry in terms of accuracy and widescale
75
+ implementation in the image generation technology
76
+ community. Latent diffusion models and CLIP-guided[10]
77
+ diffusion models represent the forefront methodologies for
78
+ image-generation technologies with alignment and fidelity
79
+ results surpassing previous GAN-based systems.
80
+ This paper also ultimately aims to examine the difference
81
+ in accuracy between images generated by diffusion-based
82
+ systems that are made by a large company using a large
83
+ training data set and a system created by an individual with
84
+ more limited training resources and less guardrails towards
85
+ abuse. To that effect, we consider the following two image
86
+ generation models for comparing our results:
87
+ 1.
88
+ DALL-E 2[8] is an image generation system created
89
+ by OpenAI which can generate high-resolution images that
90
+ combine various concepts and art styles. The project was built
91
+ in PyTorch using ViT-H/16 text encounters with the training
92
+ data of 650M images scraped from the internet and aligned by
93
+ CLIP[10].
94
+ 2.
95
+ Luna is an image generation system built by Arfy
96
+ Slowly, a Senior Software Engineer at Google Research. The
97
+ project was built in Tensorflow and published on GitHub as
98
+ an open-source project. The system uses a latent diffusion
99
+ model[11] to condition the model on text prompts, however
100
+ the training dataset used is unknown.
101
+
102
+ II.
103
+ RELATED WORKS
104
+ There have been many papers that try to compare the
105
+ performance of two image generation systems, whether
106
+ quantitatively or qualitatively. The metrics that are used to
107
+ verify the accuracy of image generation systems mostly rely
108
+ on image fidelity and its benchmark against real-world
109
+ equivalents.
110
+ While quantitative methods have been laid out to gauge
111
+ the accuracy of image generation systems such as the Fréchet
112
+ Inception Distance by Heusel et al.[12], the metric is used to
113
+ compare GAN performance at image generation using real-
114
+ life samples, which differs from our attempts to gauge the
115
+ Henry Lucky
116
+ School of Computer Science
117
+ Bina Nusantara University
118
+ Jakarta, Indonesia
119
120
+ Jurike Moniaga
121
+ School of Computer Science
122
+ Bina Nusantara University
123
+ Jakarta, Indonesia
124
125
+
126
+ accuracy of image generation systems at prompt resolving
127
+ novel concepts that have little to no real-life examples.
128
+ Existing evaluations of diffusion-based image generation
129
+ models are mostly based on the accuracy of the image
130
+ generated in specific fields such as in artificially generated
131
+ faces[13]. But no paper has qualitatively evaluated the
132
+ inherent accuracy between the prompt given to the model to
133
+ the generated image.
134
+ Qualititative methods of performance analysis are usually
135
+ done by human surveyors such as in research by Saharia et
136
+ al.[14]. This is due to the subjective nature of art[15], unlike
137
+ measurable things such as image fidelity, that cannot be
138
+ measured with common metric calculations.
139
+ In Saharia et al., the method used in evaluating image
140
+ accuracy consists of 2 questions given to human raters
141
+ inquriing about the fidelity and alignment (the accuracy
142
+ between human interpretation of a given concept and the
143
+ output given by an artificial intelligence[16]) of the system’s
144
+ output.
145
+ III.
146
+ METHODOLOGY
147
+ A. Prompt Creation
148
+ The prompts list below are modified prompts from
149
+ Google’s Drawbench Benchmark[14], whic covers a variety
150
+ of concepts, art styles, and common pitfalls of image
151
+ generation systems to generate images that can be a point of
152
+ evaluation for the alignment and fidelity of the image
153
+ generation systems. We have also listed the reasoning towards
154
+ why we choose each prompt.
155
+ The prompts detailed above have been screened by
156
+ running them through a Google image search and seeing how
157
+ easily images for these concepts could be retrieved; from this
158
+ process, we eliminated two prompts and modified another.
159
+ Number
160
+ Contents
161
+ Prompt
162
+ Explanation
163
+ 1
164
+ A
165
+ photorealistic
166
+ image of a machine
167
+ resembling
168
+ a
169
+ human being and
170
+ able to replicate
171
+ certain
172
+ human
173
+ movements
174
+ and
175
+ functions
176
+ automatically.
177
+ Prompt is used to evaluate
178
+ the ability of the image
179
+ generation system to build
180
+ photorealistic images that
181
+ don’t cross the uncanny
182
+ valley[17].
183
+ 2
184
+
185
+ A half-robot and
186
+ man
187
+ entity
188
+ with
189
+ chainsaws for their
190
+ head and hands in
191
+ the
192
+ style
193
+ of
194
+ Japanese anime.
195
+
196
+ Prompt is used to evaluate
197
+ the
198
+ bias
199
+ in
200
+ machine
201
+ learning algorithms that are
202
+ trained with data from
203
+ westernized-culture[18].
204
+ 3
205
+ Rbefraigerator.
206
+ The prompt is used as a
207
+ way to determine the image
208
+ generation system’s ability
209
+ to
210
+ navigate
211
+ word
212
+ misspellings[19].
213
+ 4
214
+ A car on top of a
215
+ spoon.
216
+ The prompt is used to
217
+ examine the ability of
218
+ image generation systems
219
+ to generate images novel in
220
+ concept[19].
221
+ Number
222
+ Contents
223
+ Prompt
224
+ Explanation
225
+ 5
226
+ Two bicycles and
227
+ one
228
+ car
229
+ on
230
+ an
231
+ empty grass field.
232
+ The prompt is used to
233
+ examine the ability of
234
+ image generation systems
235
+ to generate images with
236
+ accurate
237
+ positional
238
+ information[19].
239
+ 6
240
+ In late afternoon in
241
+ January in Jakarta,
242
+ a man stands in the
243
+ shadow of a tree.
244
+ The prompt is used to
245
+ examine the ability of
246
+ image generation systems
247
+ to
248
+ accurately
249
+ create
250
+ shadows that correspond
251
+ with
252
+ differing
253
+ lighting
254
+ conditions[19]
255
+ 7
256
+ A Sumatran tiger
257
+ under the sea.
258
+ The prompt is used to
259
+ examine the ability of the
260
+ image generation system to
261
+ generate images that have
262
+ conflicting concepts[19].
263
+ 8
264
+ Art
265
+ nouveau
266
+ stained
267
+ glass
268
+ window
269
+ art
270
+ depicting
271
+ Woody
272
+ from Toy Story.
273
+ The prompt is used to
274
+ examine the ability of the
275
+ image generation system to
276
+ generate images with pop
277
+ culture
278
+ products
279
+ in
280
+ a
281
+ medium
282
+ not
283
+ usually
284
+ associated
285
+ with
286
+ the
287
+ product[20].
288
+
289
+ B. Image Generation
290
+ Below each set of 4 images per-prompt on each model, we
291
+ will outline general observations from the researchers as with
292
+ the cited reasons of why each model behave in such a way.
293
+ The image results are compiled for further analysis in the
294
+ paper in methodologies outlined in later subsections.
295
+ The researchers will generate every 32 images from each
296
+ system, noting that DALL-E 2 generates four images per run.
297
+ For DALL-E 2, access was provided to the system during
298
+ September 2022 after a request for beta-testing research was
299
+ approved by the company. DALL-E 2 was accessed from the
300
+ OpenAI Beta website, with 8 credits dispensed every month
301
+ for non-commercial research use only. DALL-E 2 outputs 4
302
+ photos in one-prompt execution. DALL-E 2 outputs
303
+ 1024x1024 pixel images and Luna outputs 512x512 pixel
304
+ images.
305
+ For Luna, we use the provided Colab notebook by Google
306
+ to run the system. Considerations we’re made to run Luna
307
+ using on-premises hardware, however due to Tensorflow’s
308
+ requirement of NVIDIA CUDA cores we decided to opt for
309
+ cloud solutions instead due to faster compute times and as a
310
+ better benchmark against DALL-E 2 which is a cloud-based
311
+ system hosted in Microsoft Azure. Luna outputs 4 photos in
312
+ one-prompt execution.
313
+ C. Analysis
314
+ As laid out in the related works section, due to art being
315
+ inherently subjective in nature[15], normal metrics cannot be
316
+
317
+ applied when analyzing the inherent accuracy of prompt
318
+ creations from image generation systems.
319
+ The methodologies to evaluate these images are based on
320
+ Drawbench by Saharia et al. [14] who used human raters to
321
+ judge prompt accuracy of Imagen, Google’s in-house
322
+ proprietary image generation system, against existing
323
+ competitors such as OpenAI DALL-E 2[8] and GLIDE[21].
324
+ For the benchmark analysis, we conduct an independent
325
+ human evaluation run for each category. For each prompt, the
326
+ rater is shown two sets of images with one from DALL-E 2,
327
+ and second from Luna. Each set contains eight non-cherry-
328
+ picked generations from the corresponding model. The human
329
+ rater will be asked two questions.
330
+ 1. Which set of images better represents the text
331
+ caption: [Text Caption]? Question subjectively evaluates
332
+ image-text alignment.
333
+ 2. Which set of images is of higher quality? Question
334
+ subjectively evaluates image fidelity.
335
+ For each question, the rater is asked to select from two
336
+ choices:
337
+ 1. I prefer set A.
338
+ 2. I prefer set B.
339
+ The paper aggregates the scores from different raters and then
340
+ score it in a percentage value which will be presented in the
341
+ form of a candle graph. The authors did not perform any post
342
+ filtering of the data to identify unreliable raters, both for
343
+ expedience of the analysis process and because the task was
344
+ straightforward to explain and execute.
345
+
346
+ IV.
347
+ RESULTS
348
+ After carefully compiling the results of the survey from
349
+ human raters over a span of two weeks. We analyze the
350
+ results according to generally acceptable benchmarks for
351
+ alignment and fidelity scores.
352
+
353
+
354
+
355
+
356
+
357
+
358
+
359
+
360
+
361
+
362
+
363
+ Fig. 1. Alignment and Fidelity comparison between DALL-E 2 and Luna
364
+ using methodologies outlined in Saharia et al. plotted into a candle graph: User
365
+ preference rates for prompt alignment and image fidelity.
366
+
367
+ Results show that when the output images are given to
368
+ human raters and evaluated using methods outlined in Saharia
369
+ et al, the results show that DALL-E 2 on average received a
370
+ higher image-text alignment (62.1%) and image fidelity
371
+ (83.4%) rating than Luna.
372
+ FID scores can be a more objective measurement of
373
+ fidelity of machine-generated images, but previous research
374
+ has shown that FID scores are not reflective of perceptual
375
+ quality[22].
376
+
377
+
378
+
379
+
380
+
381
+ Fig. 2. MS-COCO 256 × 256 FID-30K for DALL-E 2[8] and Luna (which
382
+ is based on stable diffusion, marked as LDM-KL[11]). Lower score is better.
383
+ While quantitative measurements are outside the scope of
384
+ this paper, FID scores cited from research papers of the
385
+ respective models show that DALL-E 2 outperforms other
386
+ methods on MS-COCO 256 x 256 with zero-shot FID-30K
387
+ with a score of 10.39, significantly outperforming systems
388
+ based on Latent Diffusion Models (LDM-KL) such as Luna.
389
+ The results line up with human raters’ indication of individual
390
+ samples fidelity ratings.
391
+
392
+ Fig. 3. Selected image samples from the resolvement process of Prompt
393
+ 4 by Luna (left) and DALL-E 2 (right). Images we’re picked from a set of 4
394
+ each generated per system.
395
+ It’s observed that both prompt systems have difficulties in
396
+ prompt resolvement of novel concepts, such as a car on a
397
+ spoon. While Luna seems to struggle with the concept,
398
+ DALL-E 2 interpret it as a request for a toy car, and not a real
399
+ car.
400
+
401
+ Fig. 4. Selected image samples from the resolvement process of Prompt
402
+ 5 by Luna (left) and DALL-E 2 (right). Images we’re picked from a set of 4
403
+ each generated per system.
404
+ It's also observed that Luna has difficulty assigning the
405
+ correct number of items in an image given a prompt that
406
+ contains numerical amounting values. While the issue is also
407
+ present in DALL-E 2, prior research has proven that the
408
+ system can atleast count to four objects[19].
409
+ 100%
410
+ 50%
411
+ 0%
412
+ DALLE-2
413
+ Luna
414
+ Alignment
415
+ Fidelity
416
+ NParams
417
+ Model FID-30K
418
+ DALL-E 2
419
+ 10.39 650M
420
+ Luna (LDM-KL) 12.63 n/a
421
+
422
+ Researchers behind DALL-E 2 has also disclosed issues
423
+ regarding compositionality[8], which is the ability to
424
+ comprehend the merging of multiple object properties such as
425
+ shape and positioning within the image. Which is why the
426
+ placement of the objects inside of the picture generated might
427
+ look too symetrical.
428
+
429
+ Fig. 5. Selected image samples from the resolvement process of Prompt
430
+ 3 by Luna (left) and DALL-E 2 (right). Images we’re picked from a set of 4
431
+ each generated per system.
432
+ Resolvement of misspelled prompts[19] has also proved a
433
+ challenge for LDM-based systems such as Luna with DALL-
434
+ E 2 accurately representing the misspelled prompt as a
435
+ “refrigerator” and Luna failing to generate a comprehensible
436
+ image. This is theorized to be the result of significantly better
437
+ prompt alignment within DALL-E 2’s generation system that
438
+ enables it to edge out Luna in this prompt.
439
+ Resolvement of misspelled prompts[19] has also proved a
440
+ challenge for LDM-based systems such as Luna with DALL-
441
+ E 2 accurately representing the misspelled prompt as a
442
+ “refrigerator” and Luna failing to generate a comprehensible
443
+ image. This is theorized to be the result of significantly better
444
+ prompt alignment within DALL-E 2’s generation system that
445
+ enables it to edge out Luna in this prompt.
446
+
447
+ Fig. 6. Selected image samples from the resolvement process of Prompt
448
+ 2 by Luna (left) and DALL-E 2 (right). Images we’re picked from a set of 4
449
+ each generated per system.
450
+ Resolvement of prompts with non-westernized artstyles
451
+ both failed to generate anything resembling the inputted
452
+ prompt. Machine learning systems have consistently hit
453
+ difficulties in detecting and generating styles that are
454
+ uncommon outside of western culture such as the artstyle of
455
+ Japanese anime[23] This is possibly the result of bias within
456
+ large compiled datasets that’s mainly trained on webscrapes
457
+ of mostly western-aligned content[24]. This challenge will
458
+ also present itself more in bigger datasets, which will
459
+ complicate efforts to effectively scale computer vision and
460
+ generative datasets without significant alignment.
461
+ The possibility of training differences affecting the
462
+ performance of image generation systems are also observed to
463
+ be correlated. Comparing FID-30K scores and observing the
464
+ interception distance of FID-2K scores between the two
465
+ systems have yielded interesting technical observations. The
466
+ figures show that Luna experiences a distinct lowered amount
467
+ of TPU (Tensor Processing Units) training days compared to
468
+ DALL-E 2, which can negatively impact the alignment quality
469
+ and perceived fidelity of the image as less itterations are
470
+ performed within a specific timeframe. Luna as an
471
+ individually built system also possibly suffered from time
472
+ limitations during training.
473
+
474
+
475
+
476
+
477
+
478
+
479
+
480
+
481
+
482
+
483
+
484
+
485
+
486
+ Fig. 6.
487
+ Comparison of TPU training time needed to achieve a 20 basis
488
+ point FID-2K rating between regular U-Nets (Luna or LDM-KL) vs efficient
489
+ U-Nets (DALLE-2).
490
+
491
+ The differences mainly come down to complexity, which
492
+ might have caused worse FID-2K scores due the amount of
493
+ time used to train LDM-KL based systems compared to
494
+ OpenAI’s approach with DALL-E 2[25]. Time differences
495
+ may be attributed to the difference in libraries used, as Luna
496
+ uses Tensorflow and DALL-E 2 uses PyTorch, the latter of
497
+ which has been shown to be more performant than the former
498
+ resulting in faster compute times[26].
499
+
500
+ V.
501
+ CONCLUSIONS
502
+ The round of experimentation showcases the effectiveness
503
+ of frozen large pretrained language models as text encoders
504
+ for the text-to-image generation, but differences exist between
505
+ the capabilities of large models such as DALL-E 2 and smaller
506
+ scale models such as Luna.
507
+ Dramatically increasing the size of these language models
508
+ have significantly more impact than scaling the U-Net size on
509
+ overall performance on alignment and fidelity. This
510
+ encourages future research directions on exploring even
511
+ bigger language models as text encoders, both by companies
512
+ and individuals.
513
+ But increasing datasets has also several kinks other than
514
+ purely technical complications as there are ethical challenges
515
+ relating to large datasets used for the image generation
516
+ systems, particularly regarding subject data awareness and
517
+ consent[27], [28] and some datasents even reflect stereotypes,
518
+ offensive viewpoints, and derogatory associations of various
519
+ marginalized identity groups[24].
520
+ While Luna was edged out in both alignment and fidelity
521
+ measurements both in qualitative benchmarks through human
522
+ raters and quantitative benchmarks through zero-shot FID-2K
523
+ and FID-30K scores, it has reached a remarkable level of
524
+ accuracy for a system that is built by an individual and trained
525
+ using a limited dataset.
526
+ We also find considerable performance penalties incurred
527
+ by Luna’s use of Tensorflow compared to DALL-E 2’s use of
528
+ FID-2K
529
+ Training Days
530
+ DALLE-2 equiv.
531
+ Luna equiv.
532
+
533
+ DcoeceBrrees
534
+ RERD
535
+ Fceeecfor
536
+ TRBBEER
537
+ DBB40
538
+ 30
539
+ 20
540
+ 0
541
+ 1
542
+ 2
543
+ 3
544
+ 4
545
+ 5
546
+ 6
547
+ 7PyTorch which resulted in a slower comparative TPU training
548
+ days compared to the latter, which affects training accuracy.
549
+ We ultimately conclude that while differences exist
550
+ between large systems made by corporations and smaller
551
+ individual made systems, the advent of diffusion-based image
552
+ generation systems have lowered the barrier to enter the image
553
+ generation field significantly. The advancement in research of
554
+ generative AI technologies need to be paired with safeguards
555
+ and acknowledgement of ethical concerns, working towards a
556
+ safer implementation of systems.
557
+
558
+ ACKNOWLEDGMENT
559
+ We give thanks to Arfy Slowy from the Google Brain
560
+ Research Team in Singapore and Imre Bard from the OpenAI
561
+ Alignment Research team for helping early discussions, and
562
+ providing
563
+ many
564
+ helpful comments and suggestions
565
+ throughout the project. We thank you the team at Kaggle and
566
+ OpenAI for the free tiers given for testing and exploratory
567
+ research purposes. Special thanks to Agneta Viola for
568
+ reviewing grammatical and linguistical errors. We thank
569
+ Herendra Kurniawan for their consistent and critical help with
570
+ TPU resource allocation and Kaggle notebook initialization.
571
+
572
+ REFERENCES
573
+ [1]
574
+ R. T. Hughes, L. Zhu, and T. Bednarz, “Generative
575
+ Adversarial Networks–Enabled Human–Artificial
576
+ Intelligence Collaborative Applications for Creative
577
+ and Design Industries: A Systematic Review of
578
+ Current Approaches and Trends,” Front Artif Intell,
579
+ vol. 4, p. 604234, 2021.
580
+ [2]
581
+ M. A. Franks and A. E. Waldman, “Sex, lies, and
582
+ videotape: Deep fakes and free speech delusions,”
583
+ Md. L. Rev., vol. 78, p. 892, 2018.
584
+ [3]
585
+ R. Srinivasan and K. Uchino, “Biases in generative
586
+ art: A causal look from the lens of art history,” in
587
+ Proceedings of the 2021 ACM Conference on
588
+ Fairness, Accountability, and Transparency, 2021,
589
+ pp. 41–51.
590
+ [4]
591
+ V. U. Prabhu and A. Birhane, “Large image
592
+ datasets: A pyrrhic win for computer vision?,” arXiv
593
+ preprint arXiv:2006.16923, 2020.
594
+ [5]
595
+ I. Goodfellow et al., “Generative adversarial
596
+ networks,” Commun ACM, vol. 63, no. 11, pp. 139–
597
+ 144, 2020.
598
+ [6]
599
+ P. Dayma, Boris, Cuenca, “DALL.E mini- Generate
600
+ IMages from Any Text Prompt,” Weights & Biases,
601
+ 2022. https://wandb.ai/dalle-mini/dalle-
602
+ mini/reports/DALL-E-mini-Generate-images-from-
603
+ any-text-prompt--VmlldzoyMDE4NDAy
604
+ [7]
605
+ S. Hirofumi, K. Fukuchi, Y. Akimoto, and J.
606
+ Sakuma, “Did You Use My GAN to Generate Fake?
607
+ Post-hoc Attribution of GAN Generated Images via
608
+ Latent Recovery,” in 2022 International Joint
609
+ Conference on Neural Networks (IJCNN), 2022, pp.
610
+ 1–8.
611
+ [8]
612
+ A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M.
613
+ Chen, “Hierarchical text-conditional image
614
+ generation with clip latents,” arXiv preprint
615
+ arXiv:2204.06125, 2022.
616
+ [9]
617
+ A. Lieto, M. Bhatt, A. Oltramari, and D. Vernon,
618
+ “The role of cognitive architectures in general
619
+ artificial intelligence,” Cognitive Systems Research,
620
+ vol. 48. Elsevier, pp. 1–3, 2018.
621
+ [10]
622
+ A. Radford et al., “Learning transferable visual
623
+ models from natural language supervision,” in
624
+ International Conference on Machine Learning,
625
+ 2021, pp. 8748–8763.
626
+ [11]
627
+ R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and
628
+ B. Ommer, “High-resolution image synthesis with
629
+ latent diffusion models,” in Proceedings of the
630
+ IEEE/CVF Conference on Computer Vision and
631
+ Pattern Recognition, 2022, pp. 10684–10695.
632
+ [12]
633
+ M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler,
634
+ and S. Hochreiter, “Gans trained by a two time-scale
635
+ update rule converge to a local nash equilibrium,”
636
+ Adv Neural Inf Process Syst, vol. 30, 2017.
637
+ [13]
638
+ A. Borji, “Generated Faces in the Wild: Quantitative
639
+ Comparison of Stable Diffusion, Midjourney and
640
+ DALL-E 2,” arXiv preprint arXiv:2210.00586,
641
+ 2022.
642
+ [14]
643
+ C. Saharia et al., “Photorealistic Text-to-Image
644
+ Diffusion Models with Deep Language
645
+ Understanding,” arXiv preprint arXiv:2205.11487,
646
+ 2022.
647
+ [15]
648
+ E. Gemtou, “Subjectivity in art history and art
649
+ criticism,” Rupkatha Journal on Interdisciplinary
650
+ Studies in Humanities, vol. 2, no. 1, pp. 2–13, 2010.
651
+ [16]
652
+ E. Yudkowsky, “The AI alignment problem: why it
653
+ is hard, and where to start,” Symbolic Systems
654
+ Distinguished Speaker, 2016.
655
+ [17]
656
+ J. Kätsyri, B. de Gelder, and T. Takala, “Virtual
657
+ faces evoke only a weak uncanny valley effect: an
658
+ empirical investigation with controlled virtual face
659
+ images,” Perception, vol. 48, no. 10, pp. 968–991,
660
+ 2019.
661
+ [18]
662
+ S. Fabbrizzi, S. Papadopoulos, E. Ntoutsi, and I.
663
+ Kompatsiaris, “A survey on bias in visual datasets,”
664
+ Computer Vision and Image Understanding, vol.
665
+ 223, p. 103552, 2022.
666
+ [19]
667
+ G. Marcus, E. Davis, and S. Aaronson, “A very
668
+ preliminary analysis of DALL-E 2,” arXiv preprint
669
+ arXiv:2204.13807, 2022.
670
+ [20]
671
+ Swimmer963, “What DALL-E 2 can and cannot
672
+ do,” LessWrong, 2022.
673
+ https://www.lesswrong.com/posts/uKp6tBFStnsvrot
674
+ 5t/what-dall-e-2-can-and-cannot-do
675
+ [21]
676
+ A. Nichol et al., “Glide: Towards photorealistic
677
+ image generation and editing with text-guided
678
+ diffusion models,” arXiv preprint
679
+ arXiv:2112.10741, 2021.
680
+ [22]
681
+ A. Borji, “Pros and Cons of GAN Evaluation
682
+ Measures,” Computer Vision and Image
683
+ Understanding, vol. 179, pp. 41–65, 2019.
684
+ [23]
685
+ H. Li et al., “A Challenging Benchmark of Anime
686
+ Style Recognition,” in Proceedings of the
687
+ IEEE/CVF Conference on Computer Vision and
688
+ Pattern Recognition (CVPR), 2022, pp. 4721–4730.
689
+ [24]
690
+ V. U. Prabhu and A. Birhane, “Large image
691
+ datasets: A pyrrhic win for computer vision?,” arXiv
692
+ preprint, 2020, Accessed: Dec. 01, 2022. [Online].
693
+ Available:
694
+
695
+ https://engineering.missouri.edu/2014/01/team-
696
+ takes-top-rankings-in-computer-vision-olympics/
697
+ [25]
698
+ Z. Huang, “Analysis of Text-to-Image AI
699
+ Generators,” Kenyon College Digital Archive, 2022.
700
+ [26]
701
+ A. Jain, A. A. Awan, Q. Anthony, H. Subramoni,
702
+ and D. K. D. K. Panda, “Performance
703
+ Characterization of DNN Training Using
704
+ Tensorflow and PyTorch on Modern Clusters,” in
705
+ 2019 IEEE International Conference on Cluster
706
+ Computing (CLUSTER), 2019, pp. 1–11.
707
+ [27]
708
+ C. Dulhanty, “Issues in Computer Vision Data
709
+ Collection: Bias, Consent, and Label Taxonomy,”
710
+ 2020. Accessed: Dec. 01, 2022. [Online]. Available:
711
+ https://uwspace.uwaterloo.ca/handle/10012/16414
712
+ [28]
713
+ A. Paullada, I. D. Raji, E. M. Bender, E. Denton,
714
+ and A. Hanna, “Data and its (dis)contents: A survey
715
+ of dataset development and use in machine learning
716
+ research,” Patterns, vol. 2, no. 11, p. 100336, Nov.
717
+ 2021, doi: 10.1016/J.PATTER.2021.100336.
718
+
719
+
720
+
2dAzT4oBgHgl3EQf8_7Q/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,342 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf,len=341
2
+ page_content='Accuracy and Fidelity Comparison of Luna and DALL-E 2 Diffusion-Based Image Generation Systems Michael Cahyadi School of Computer Science Bina Nusantara University Jakarta, Indonesia michael.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
3
+ page_content='cahyadi001@binus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
4
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
5
+ page_content='id Muhammad Rafi School of Computer Science Bina Nusantara University Jakarta, Indonesia muhammad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
6
+ page_content='rafi007@binus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
7
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
8
+ page_content='id William Shan School of Computer Science Bina Nusantara University Jakarta, Indonesia william.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
9
+ page_content='sitanggang@binus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
10
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
11
+ page_content='id Abstract — We qualitatively examine the accuracy and fideltiy between two diffusion-based image generation systems, namely DALL-E 2 and Luna, which have massive differences in training datasets, algorithmic approaches, prompt resolvement, and output upscaling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
12
+ page_content=' In our research we conclude that DALL- E 2 significantly edges Luna in both alignment and fidelity comparisons I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
13
+ page_content=' INTRODUCTION Image generation systems is one of the many avenues artificial intelligence research projects have been pursuing ways to improve generative methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
14
+ page_content=' Image generation systems have immense potential to compliment and extend human creativity[1], but on the other hand there are issues with the field such as potential abuse to spread misinformation and harrassment[2], bias against certain cultural groups[3], and harmful associations against marginalized societies [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
15
+ page_content=' The field of image generation using artificial intelligence technologies has made great advancements in the last few years, with recent models capable of generating images with near human-like characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
16
+ page_content=' Variations of Generative Adversarial Networks (GAN)[5] were among the first models to generate high-quality images, but recently there has been more focus by researchers and the public[6] on diffusion- based models trained using massive datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
17
+ page_content=' The open nature of research information regarding diffusion-based image generation models have also led to an increase of image generation systems made by individuals, which may not have sufficient guardrails against abuse[7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
18
+ page_content=' Image generation systems also use CLIP latents to associate certain human concepts and understand them in creative contexts[8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
19
+ page_content=' With artificial intelligence systems continuing to get better in non-analytical areas such as artistic creativity that mimic closely human cognitive architectures, researchers might soon get closer into the realm of General Artificial Intelligence (GAI)[9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
20
+ page_content=' As artificial intelligence becomes a more pervaise tool in day-to-day workflows, there needs to be an evaluation regarding the quality of outputs generated by image generation systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
21
+ page_content=' Accurately judging the alignment and perceived fidelity of generated outputs from these image generation systems can help researchers and developers build better systems that are aware of the pitfalls of current systems in the market.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
22
+ page_content=' While there exists many diffusion-based image generation systems, both open and closed sourced, we decided to search for two systems who adopt resolvement approaches that lead in their industry in terms of accuracy and widescale implementation in the image generation technology community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
23
+ page_content=' Latent diffusion models and CLIP-guided[10] diffusion models represent the forefront methodologies for image-generation technologies with alignment and fidelity results surpassing previous GAN-based systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
24
+ page_content=' This paper also ultimately aims to examine the difference in accuracy between images generated by diffusion-based systems that are made by a large company using a large training data set and a system created by an individual with more limited training resources and less guardrails towards abuse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
25
+ page_content=' To that effect, we consider the following two image generation models for comparing our results: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
26
+ page_content=' DALL-E 2[8] is an image generation system created by OpenAI which can generate high-resolution images that combine various concepts and art styles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
27
+ page_content=' The project was built in PyTorch using ViT-H/16 text encounters with the training data of 650M images scraped from the internet and aligned by CLIP[10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
28
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
29
+ page_content=' Luna is an image generation system built by Arfy Slowly, a Senior Software Engineer at Google Research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
30
+ page_content=' The project was built in Tensorflow and published on GitHub as an open-source project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
31
+ page_content=' The system uses a latent diffusion model[11] to condition the model on text prompts, however the training dataset used is unknown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
32
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
33
+ page_content=' RELATED WORKS There have been many papers that try to compare the performance of two image generation systems, whether quantitatively or qualitatively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
34
+ page_content=' The metrics that are used to verify the accuracy of image generation systems mostly rely on image fidelity and its benchmark against real-world equivalents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
35
+ page_content=' While quantitative methods have been laid out to gauge the accuracy of image generation systems such as the Fréchet Inception Distance by Heusel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
36
+ page_content=' [12], the metric is used to compare GAN performance at image generation using real- life samples, which differs from our attempts to gauge the Henry Lucky School of Computer Science Bina Nusantara University Jakarta, Indonesia henry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
37
+ page_content='lucky@binus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
38
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
39
+ page_content='id Jurike Moniaga School of Computer Science Bina Nusantara University Jakarta, Indonesia jurike@binus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
40
+ page_content='edu accuracy of image generation systems at prompt resolving novel concepts that have little to no real-life examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
41
+ page_content=' Existing evaluations of diffusion-based image generation models are mostly based on the accuracy of the image generated in specific fields such as in artificially generated faces[13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
42
+ page_content=' But no paper has qualitatively evaluated the inherent accuracy between the prompt given to the model to the generated image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
43
+ page_content=' Qualititative methods of performance analysis are usually done by human surveyors such as in research by Saharia et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
44
+ page_content='[14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
45
+ page_content=' This is due to the subjective nature of art[15], unlike measurable things such as image fidelity, that cannot be measured with common metric calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
46
+ page_content=' In Saharia et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
47
+ page_content=', the method used in evaluating image accuracy consists of 2 questions given to human raters inquriing about the fidelity and alignment (the accuracy between human interpretation of a given concept and the output given by an artificial intelligence[16]) of the system’s output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
48
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
49
+ page_content=' METHODOLOGY A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
50
+ page_content=' Prompt Creation The prompts list below are modified prompts from Google’s Drawbench Benchmark[14], whic covers a variety of concepts, art styles, and common pitfalls of image generation systems to generate images that can be a point of evaluation for the alignment and fidelity of the image generation systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
51
+ page_content=' We have also listed the reasoning towards why we choose each prompt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
52
+ page_content=' The prompts detailed above have been screened by running them through a Google image search and seeing how easily images for these concepts could be retrieved;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
53
+ page_content=' from this process, we eliminated two prompts and modified another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
54
+ page_content=' Number Contents Prompt Explanation 1 A photorealistic image of a machine resembling a human being and able to replicate certain human movements and functions automatically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
55
+ page_content=' Prompt is used to evaluate the ability of the image generation system to build photorealistic images that don’t cross the uncanny valley[17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
56
+ page_content=' 2 A half-robot and man entity with chainsaws for their head and hands in the style of Japanese anime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
57
+ page_content=' Prompt is used to evaluate the bias in machine learning algorithms that are trained with data from westernized-culture[18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
58
+ page_content=' 3 Rbefraigerator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
59
+ page_content=' The prompt is used as a way to determine the image generation system’s ability to navigate word misspellings[19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
60
+ page_content=' 4 A car on top of a spoon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
61
+ page_content=' The prompt is used to examine the ability of image generation systems to generate images novel in concept[19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
62
+ page_content=' Number Contents Prompt Explanation 5 Two bicycles and one car on an empty grass field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
63
+ page_content=' The prompt is used to examine the ability of image generation systems to generate images with accurate positional information[19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
64
+ page_content=' 6 In late afternoon in January in Jakarta, a man stands in the shadow of a tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
65
+ page_content=' The prompt is used to examine the ability of image generation systems to accurately create shadows that correspond with differing lighting conditions[19] 7 A Sumatran tiger under the sea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
66
+ page_content=' The prompt is used to examine the ability of the image generation system to generate images that have conflicting concepts[19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
67
+ page_content=' 8 Art nouveau stained glass window art depicting Woody from Toy Story.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
68
+ page_content=' The prompt is used to examine the ability of the image generation system to generate images with pop culture products in a medium not usually associated with the product[20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
69
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
70
+ page_content=' Image Generation Below each set of 4 images per-prompt on each model, we will outline general observations from the researchers as with the cited reasons of why each model behave in such a way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
71
+ page_content=' The image results are compiled for further analysis in the paper in methodologies outlined in later subsections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
72
+ page_content=' The researchers will generate every 32 images from each system, noting that DALL-E 2 generates four images per run.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
73
+ page_content=' For DALL-E 2, access was provided to the system during September 2022 after a request for beta-testing research was approved by the company.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
74
+ page_content=' DALL-E 2 was accessed from the OpenAI Beta website, with 8 credits dispensed every month for non-commercial research use only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
75
+ page_content=' DALL-E 2 outputs 4 photos in one-prompt execution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
76
+ page_content=' DALL-E 2 outputs 1024x1024 pixel images and Luna outputs 512x512 pixel images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
77
+ page_content=' For Luna, we use the provided Colab notebook by Google to run the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
78
+ page_content=' Considerations we’re made to run Luna using on-premises hardware, however due to Tensorflow’s requirement of NVIDIA CUDA cores we decided to opt for cloud solutions instead due to faster compute times and as a better benchmark against DALL-E 2 which is a cloud-based system hosted in Microsoft Azure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
79
+ page_content=' Luna outputs 4 photos in one-prompt execution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
80
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
81
+ page_content=' Analysis As laid out in the related works section, due to art being inherently subjective in nature[15], normal metrics cannot be applied when analyzing the inherent accuracy of prompt creations from image generation systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
82
+ page_content=' The methodologies to evaluate these images are based on Drawbench by Saharia et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
83
+ page_content=' [14] who used human raters to judge prompt accuracy of Imagen, Google’s in-house proprietary image generation system, against existing competitors such as OpenAI DALL-E 2[8] and GLIDE[21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
84
+ page_content=' For the benchmark analysis, we conduct an independent human evaluation run for each category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
85
+ page_content=' For each prompt, the rater is shown two sets of images with one from DALL-E 2, and second from Luna.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
86
+ page_content=' Each set contains eight non-cherry- picked generations from the corresponding model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
87
+ page_content=' The human rater will be asked two questions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
88
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
89
+ page_content=' Which set of images better represents the text caption: [Text Caption]?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
90
+ page_content=' Question subjectively evaluates image-text alignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
91
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
92
+ page_content=' Which set of images is of higher quality?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
93
+ page_content=' Question subjectively evaluates image fidelity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
94
+ page_content=' For each question, the rater is asked to select from two choices: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
95
+ page_content=' I prefer set A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
96
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
97
+ page_content=' I prefer set B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
98
+ page_content=' The paper aggregates the scores from different raters and then score it in a percentage value which will be presented in the form of a candle graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
99
+ page_content=' The authors did not perform any post filtering of the data to identify unreliable raters, both for expedience of the analysis process and because the task was straightforward to explain and execute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
100
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
101
+ page_content=' RESULTS After carefully compiling the results of the survey from human raters over a span of two weeks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
102
+ page_content=' We analyze the results according to generally acceptable benchmarks for alignment and fidelity scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
103
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
104
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
105
+ page_content=' Alignment and Fidelity comparison between DALL-E 2 and Luna using methodologies outlined in Saharia et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
106
+ page_content=' plotted into a candle graph: User preference rates for prompt alignment and image fidelity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
107
+ page_content=' Results show that when the output images are given to human raters and evaluated using methods outlined in Saharia et al, the results show that DALL-E 2 on average received a higher image-text alignment (62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
108
+ page_content='1%) and image fidelity (83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
109
+ page_content='4%) rating than Luna.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
110
+ page_content=' FID scores can be a more objective measurement of fidelity of machine-generated images, but previous research has shown that FID scores are not reflective of perceptual quality[22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
111
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
112
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
113
+ page_content=' MS-COCO 256 × 256 FID-30K for DALL-E 2[8] and Luna (which is based on stable diffusion, marked as LDM-KL[11]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
114
+ page_content=' Lower score is better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
115
+ page_content=' While quantitative measurements are outside the scope of this paper, FID scores cited from research papers of the respective models show that DALL-E 2 outperforms other methods on MS-COCO 256 x 256 with zero-shot FID-30K with a score of 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
116
+ page_content='39, significantly outperforming systems based on Latent Diffusion Models (LDM-KL) such as Luna.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
117
+ page_content=' The results line up with human raters’ indication of individual samples fidelity ratings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
118
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
119
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
120
+ page_content=' Selected image samples from the resolvement process of Prompt 4 by Luna (left) and DALL-E 2 (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
121
+ page_content=' Images we’re picked from a set of 4 each generated per system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
122
+ page_content=' It’s observed that both prompt systems have difficulties in prompt resolvement of novel concepts, such as a car on a spoon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
123
+ page_content=' While Luna seems to struggle with the concept, DALL-E 2 interpret it as a request for a toy car, and not a real car.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
124
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
125
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
126
+ page_content=' Selected image samples from the resolvement process of Prompt 5 by Luna (left) and DALL-E 2 (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
127
+ page_content=' Images we’re picked from a set of 4 each generated per system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
128
+ page_content=" It's also observed that Luna has difficulty assigning the correct number of items in an image given a prompt that contains numerical amounting values." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
129
+ page_content=' While the issue is also present in DALL-E 2, prior research has proven that the system can atleast count to four objects[19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
130
+ page_content=' 100% 50% 0% DALLE-2 Luna Alignment Fidelity NParams Model FID-30K DALL-E 2 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
131
+ page_content='39 650M Luna (LDM-KL) 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
132
+ page_content='63 n/a Researchers behind DALL-E 2 has also disclosed issues regarding compositionality[8], which is the ability to comprehend the merging of multiple object properties such as shape and positioning within the image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
133
+ page_content=' Which is why the placement of the objects inside of the picture generated might look too symetrical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
134
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
135
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
136
+ page_content=' Selected image samples from the resolvement process of Prompt 3 by Luna (left) and DALL-E 2 (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
137
+ page_content=' Images we’re picked from a set of 4 each generated per system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
138
+ page_content=' Resolvement of misspelled prompts[19] has also proved a challenge for LDM-based systems such as Luna with DALL- E 2 accurately representing the misspelled prompt as a “refrigerator” and Luna failing to generate a comprehensible image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
139
+ page_content=' This is theorized to be the result of significantly better prompt alignment within DALL-E 2’s generation system that enables it to edge out Luna in this prompt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
140
+ page_content=' Resolvement of misspelled prompts[19] has also proved a challenge for LDM-based systems such as Luna with DALL- E 2 accurately representing the misspelled prompt as a “refrigerator” and Luna failing to generate a comprehensible image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
141
+ page_content=' This is theorized to be the result of significantly better prompt alignment within DALL-E 2’s generation system that enables it to edge out Luna in this prompt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
142
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
143
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
144
+ page_content=' Selected image samples from the resolvement process of Prompt 2 by Luna (left) and DALL-E 2 (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
145
+ page_content=' Images we’re picked from a set of 4 each generated per system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
146
+ page_content=' Resolvement of prompts with non-westernized artstyles both failed to generate anything resembling the inputted prompt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
147
+ page_content=' Machine learning systems have consistently hit difficulties in detecting and generating styles that are uncommon outside of western culture such as the artstyle of Japanese anime[23] This is possibly the result of bias within large compiled datasets that’s mainly trained on webscrapes of mostly western-aligned content[24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
148
+ page_content=' This challenge will also present itself more in bigger datasets, which will complicate efforts to effectively scale computer vision and generative datasets without significant alignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
149
+ page_content=' The possibility of training differences affecting the performance of image generation systems are also observed to be correlated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
150
+ page_content=' Comparing FID-30K scores and observing the interception distance of FID-2K scores between the two systems have yielded interesting technical observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
151
+ page_content=' The figures show that Luna experiences a distinct lowered amount of TPU (Tensor Processing Units) training days compared to DALL-E 2, which can negatively impact the alignment quality and perceived fidelity of the image as less itterations are performed within a specific timeframe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
152
+ page_content=' Luna as an individually built system also possibly suffered from time limitations during training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
153
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
154
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
155
+ page_content=' Comparison of TPU training time needed to achieve a 20 basis point FID-2K rating between regular U-Nets (Luna or LDM-KL) vs efficient U-Nets (DALLE-2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
156
+ page_content=' The differences mainly come down to complexity, which might have caused worse FID-2K scores due the amount of time used to train LDM-KL based systems compared to OpenAI’s approach with DALL-E 2[25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
157
+ page_content=' Time differences may be attributed to the difference in libraries used, as Luna uses Tensorflow and DALL-E 2 uses PyTorch, the latter of which has been shown to be more performant than the former resulting in faster compute times[26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
158
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
159
+ page_content=' CONCLUSIONS The round of experimentation showcases the effectiveness of frozen large pretrained language models as text encoders for the text-to-image generation, but differences exist between the capabilities of large models such as DALL-E 2 and smaller scale models such as Luna.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
160
+ page_content=' Dramatically increasing the size of these language models have significantly more impact than scaling the U-Net size on overall performance on alignment and fidelity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
161
+ page_content=' This encourages future research directions on exploring even bigger language models as text encoders, both by companies and individuals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
162
+ page_content=' But increasing datasets has also several kinks other than purely technical complications as there are ethical challenges relating to large datasets used for the image generation systems, particularly regarding subject data awareness and consent[27], [28] and some datasents even reflect stereotypes, offensive viewpoints, and derogatory associations of various marginalized identity groups[24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
163
+ page_content=' While Luna was edged out in both alignment and fidelity measurements both in qualitative benchmarks through human raters and quantitative benchmarks through zero-shot FID-2K and FID-30K scores, it has reached a remarkable level of accuracy for a system that is built by an individual and trained using a limited dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
164
+ page_content=' We also find considerable performance penalties incurred by Luna’s use of Tensorflow compared to DALL-E 2’s use of FID-2K Training Days DALLE-2 equiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
165
+ page_content=' Luna equiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
166
+ page_content=' DcoeceBrrees RERD Fceeecfor TRBBEER DBB40 30 20 0 1 2 3 4 5 6 7PyTorch which resulted in a slower comparative TPU training days compared to the latter, which affects training accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
167
+ page_content=' We ultimately conclude that while differences exist between large systems made by corporations and smaller individual made systems, the advent of diffusion-based image generation systems have lowered the barrier to enter the image generation field significantly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
168
+ page_content=' The advancement in research of generative AI technologies need to be paired with safeguards and acknowledgement of ethical concerns, working towards a safer implementation of systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
169
+ page_content=' ACKNOWLEDGMENT We give thanks to Arfy Slowy from the Google Brain Research Team in Singapore and Imre Bard from the OpenAI Alignment Research team for helping early discussions, and providing many helpful comments and suggestions throughout the project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
170
+ page_content=' We thank you the team at Kaggle and OpenAI for the free tiers given for testing and exploratory research purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
171
+ page_content=' Special thanks to Agneta Viola for reviewing grammatical and linguistical errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
172
+ page_content=' We thank Herendra Kurniawan for their consistent and critical help with TPU resource allocation and Kaggle notebook initialization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
173
+ page_content=' REFERENCES [1] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
174
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
175
+ page_content=' Hughes, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
176
+ page_content=' Zhu, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
177
+ page_content=' Bednarz, “Generative Adversarial Networks–Enabled Human–Artificial Intelligence Collaborative Applications for Creative and Design Industries: A Systematic Review of Current Approaches and Trends,” Front Artif Intell, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
178
+ page_content=' 4, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
179
+ page_content=' 604234, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
180
+ page_content=' [2] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
181
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
182
+ page_content=' Franks and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
183
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
184
+ page_content=' Waldman, “Sex, lies, and videotape: Deep fakes and free speech delusions,” Md.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
185
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
186
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
187
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
188
+ page_content=' 78, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
189
+ page_content=' 892, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
190
+ page_content=' [3] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
191
+ page_content=' Srinivasan and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
192
+ page_content=' Uchino, “Biases in generative art: A causal look from the lens of art history,” in Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
193
+ page_content=' 41–51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
194
+ page_content=' [4] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
195
+ page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
196
+ page_content=' Prabhu and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
197
+ page_content=' Birhane, “Large image datasets: A pyrrhic win for computer vision?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
198
+ page_content=',” arXiv preprint arXiv:2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
199
+ page_content='16923, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
200
+ page_content=' [5] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
201
+ page_content=' Goodfellow et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
202
+ page_content=', “Generative adversarial networks,” Commun ACM, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
203
+ page_content=' 63, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
204
+ page_content=' 11, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
205
+ page_content=' 139– 144, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
206
+ page_content=' [6] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
207
+ page_content=' Dayma, Boris, Cuenca, “DALL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
208
+ page_content='E mini- Generate IMages from Any Text Prompt,” Weights & Biases, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
209
+ page_content=' https://wandb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
210
+ page_content='ai/dalle-mini/dalle- mini/reports/DALL-E-mini-Generate-images-from- any-text-prompt--VmlldzoyMDE4NDAy [7] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
211
+ page_content=' Hirofumi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
212
+ page_content=' Fukuchi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
213
+ page_content=' Akimoto, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
214
+ page_content=' Sakuma, “Did You Use My GAN to Generate Fake?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
215
+ page_content=' Post-hoc Attribution of GAN Generated Images via Latent Recovery,” in 2022 International Joint Conference on Neural Networks (IJCNN), 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
216
+ page_content=' 1–8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
217
+ page_content=' [8] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
218
+ page_content=' Ramesh, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
219
+ page_content=' Dhariwal, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
220
+ page_content=' Nichol, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
221
+ page_content=' Chu, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
222
+ page_content=' Chen, “Hierarchical text-conditional image generation with clip latents,” arXiv preprint arXiv:2204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
223
+ page_content='06125, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
224
+ page_content=' [9] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
225
+ page_content=' Lieto, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
226
+ page_content=' Bhatt, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
227
+ page_content=' Oltramari, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
228
+ page_content=' Vernon, “The role of cognitive architectures in general artificial intelligence,” Cognitive Systems Research, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
229
+ page_content=' 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
230
+ page_content=' Elsevier, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
231
+ page_content=' 1–3, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
232
+ page_content=' [10] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
233
+ page_content=' Radford et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
234
+ page_content=', “Learning transferable visual models from natural language supervision,” in International Conference on Machine Learning, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
235
+ page_content=' 8748–8763.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
236
+ page_content=' [11] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
237
+ page_content=' Rombach, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
238
+ page_content=' Blattmann, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
239
+ page_content=' Lorenz, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
240
+ page_content=' Esser, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
241
+ page_content=' Ommer, “High-resolution image synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
242
+ page_content=' 10684–10695.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
243
+ page_content=' [12] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
244
+ page_content=' Heusel, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
245
+ page_content=' Ramsauer, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
246
+ page_content=' Unterthiner, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
247
+ page_content=' Nessler, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
248
+ page_content=' Hochreiter, “Gans trained by a two time-scale update rule converge to a local nash equilibrium,” Adv Neural Inf Process Syst, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
249
+ page_content=' 30, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
250
+ page_content=' [13] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
251
+ page_content=' Borji, “Generated Faces in the Wild: Quantitative Comparison of Stable Diffusion, Midjourney and DALL-E 2,” arXiv preprint arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
252
+ page_content='00586, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
253
+ page_content=' [14] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
254
+ page_content=' Saharia et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
255
+ page_content=', “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding,” arXiv preprint arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
256
+ page_content='11487, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
257
+ page_content=' [15] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
258
+ page_content=' Gemtou, “Subjectivity in art history and art criticism,” Rupkatha Journal on Interdisciplinary Studies in Humanities, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
259
+ page_content=' 2, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
260
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
261
+ page_content=' 2–13, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
262
+ page_content=' [16] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
263
+ page_content=' Yudkowsky, “The AI alignment problem: why it is hard, and where to start,” Symbolic Systems Distinguished Speaker, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
264
+ page_content=' [17] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
265
+ page_content=' Kätsyri, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
266
+ page_content=' de Gelder, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
267
+ page_content=' Takala, “Virtual faces evoke only a weak uncanny valley effect: an empirical investigation with controlled virtual face images,” Perception, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
268
+ page_content=' 48, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
269
+ page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
270
+ page_content=' 968–991, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
271
+ page_content=' [18] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
272
+ page_content=' Fabbrizzi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
273
+ page_content=' Papadopoulos, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
274
+ page_content=' Ntoutsi, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
275
+ page_content=' Kompatsiaris, “A survey on bias in visual datasets,” Computer Vision and Image Understanding, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
276
+ page_content=' 223, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
277
+ page_content=' 103552, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
278
+ page_content=' [19] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
279
+ page_content=' Marcus, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
280
+ page_content=' Davis, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
281
+ page_content=' Aaronson, “A very preliminary analysis of DALL-E 2,” arXiv preprint arXiv:2204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
282
+ page_content='13807, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
283
+ page_content=' [20] Swimmer963, “What DALL-E 2 can and cannot do,” LessWrong, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
284
+ page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
285
+ page_content='lesswrong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
286
+ page_content='com/posts/uKp6tBFStnsvrot 5t/what-dall-e-2-can-and-cannot-do [21] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
287
+ page_content=' Nichol et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
288
+ page_content=', “Glide: Towards photorealistic image generation and editing with text-guided diffusion models,” arXiv preprint arXiv:2112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
289
+ page_content='10741, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
290
+ page_content=' [22] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
291
+ page_content=' Borji, “Pros and Cons of GAN Evaluation Measures,” Computer Vision and Image Understanding, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
292
+ page_content=' 179, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
293
+ page_content=' 41–65, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
294
+ page_content=' [23] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
295
+ page_content=' Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
296
+ page_content=', “A Challenging Benchmark of Anime Style Recognition,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
297
+ page_content=' 4721–4730.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
298
+ page_content=' [24] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
299
+ page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
300
+ page_content=' Prabhu and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
301
+ page_content=' Birhane, “Large image datasets: A pyrrhic win for computer vision?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
302
+ page_content=',” arXiv preprint, 2020, Accessed: Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
303
+ page_content=' 01, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
304
+ page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
305
+ page_content=' Available: https://engineering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
306
+ page_content='missouri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
307
+ page_content='edu/2014/01/team- takes-top-rankings-in-computer-vision-olympics/ [25] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
308
+ page_content=' Huang, “Analysis of Text-to-Image AI Generators,” Kenyon College Digital Archive, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
309
+ page_content=' [26] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
310
+ page_content=' Jain, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
311
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
312
+ page_content=' Awan, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
313
+ page_content=' Anthony, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
314
+ page_content=' Subramoni, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
315
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
316
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
317
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
318
+ page_content=' Panda, “Performance Characterization of DNN Training Using Tensorflow and PyTorch on Modern Clusters,” in 2019 IEEE International Conference on Cluster Computing (CLUSTER), 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
319
+ page_content=' 1–11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
320
+ page_content=' [27] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
321
+ page_content=' Dulhanty, “Issues in Computer Vision Data Collection: Bias, Consent, and Label Taxonomy,” 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
322
+ page_content=' Accessed: Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
323
+ page_content=' 01, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
324
+ page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
325
+ page_content=' Available: https://uwspace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
326
+ page_content='uwaterloo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
327
+ page_content='ca/handle/10012/16414 [28] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
328
+ page_content=' Paullada, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
329
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
330
+ page_content=' Raji, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
331
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
332
+ page_content=' Bender, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
333
+ page_content=' Denton, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
334
+ page_content=' Hanna, “Data and its (dis)contents: A survey of dataset development and use in machine learning research,” Patterns, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
335
+ page_content=' 2, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
336
+ page_content=' 11, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
337
+ page_content=' 100336, Nov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
338
+ page_content=' 2021, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
339
+ page_content='1016/J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
340
+ page_content='PATTER.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
341
+ page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
342
+ page_content='100336.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf'}
5dE1T4oBgHgl3EQf6gWk/content/tmp_files/2301.03524v1.pdf.txt ADDED
@@ -0,0 +1,1596 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Physics-separating artificial neural networks for predicting
2
+ sputtering and thin film deposition of AlN in Ar/N2 discharges
3
+ on experimental timescales
4
+ Tobias Gergs,1, ∗ Thomas Mussenbrock,1, † and Jan Trieschmann2, 3, ‡
5
+ 1Chair of Applied Electrodynamics and Plasma Technology,
6
+ Department of Electrical Engineering and Information Science,
7
+ Ruhr University Bochum, 44780 Bochum, Germany
8
+ 2Theoretical Electrical Engineering, Department of Electrical and Information Engineering,
9
+ Kiel University, Kaiserstraße 2, 24143 Kiel, Germany
10
+ 3Kiel Nano, Surface and Interface Science KiNSIS,
11
+ Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
12
+ (Dated: January 10, 2023)
13
+ Abstract
14
+ Understanding and modeling plasma-surface interactions frame a multi-scale as well as multi-
15
+ physics problem. Scale-bridging machine learning surface surrogate models have been demonstrated
16
+ to perceive the fundamental atomic fidelity for the physical vapor deposition of pure metals. How-
17
+ ever, the immense computational cost of the data-generating simulations render a practical appli-
18
+ cation with predictions on relevant timescales impracticable. This issue is resolved in this work
19
+ for the sputter deposition of AlN in Ar/N2 discharges by developing a scheme that populates
20
+ the parameter spaces effectively. Hybrid reactive molecular dynamics / time-stamped force-bias
21
+ Monte Carlo simulations of randomized plasma-surface interactions / diffusion processes are used
22
+ to setup a physics-separating artificial neural network. The application of this generic machine
23
+ learning model to a specific experimental reference case study enables the systematic analysis of
24
+ the particle flux emission as well as underlying system state (e.g., composition, mass density, stress,
25
+ point defect structure) evolution within process times of up to 45 minutes.
26
27
28
29
+ 1
30
+ arXiv:2301.03524v1 [cond-mat.mtrl-sci] 9 Jan 2023
31
+
32
+ I.
33
+ INTRODUCTION
34
+ In most technological applications of plasmas (e.g., thin film sputter deposition, catalysis)
35
+ surfaces and, hence, plasma-surface interactions (e.g., growth, sputtering, surface chemical
36
+ reactions) are involved [1–4]. Analyzing, understanding, and modeling the last is considered
37
+ to be essential for a knowledge-driven process design. However, the physics of these two
38
+ states of matter (i.e., plasma, solid-state) demand for descriptions on length as well as time
39
+ scales that differ in orders of magnitudes (see Figure 1) [5–8].
40
+ Common scale bridging solutions include event dependent coefficients, lookup-tables, and
41
+ analytic formulas (e.g., Berg-model [9, 10], Sigmund–Thompson theory [11–13]). However,
42
+ they altogether lack a fundamental atomic fidelity.
43
+ An issue that has been addressed by applying machine learning (ML) models.
44
+ They
45
+ have been shown to be capable of describing physical processes relevant to plasma science
46
+ with high accuracy while mitigating statistical noise, generalizing successfully [5, 14–21].
47
+ In particular, a series of ML plasma-surface interaction (PSI) surrogate models have been
48
+ proposed for the sputter deposition of Ti1−xAlx thin films. First, a multi-layer-perceptron
49
+ (MLP) was trained to predict the Ar+ ion bombardment induced sputtering of a Ti0.5Al0.5
50
+ composite target [5]. Second, a more advanced artificial neural network (ANN) combining a
51
+ dedicated mapper network with the decoder of a β-variational autoencoder (β-VAE [22–26])
52
+ was established for Ti1−xAlx composite targets [20]. Therein, the stoichiometry has been
53
+ introduced as a basic surface state descriptor. Both studies are based on transport of ions
54
+ in matter (TRIM) simulation data. Further, a physics-separating artificial neural network
55
+ Figure 1. Schematic of the physical time and length scales for thin film sputter depositions.
56
+ 2
57
+
58
+ Heavy particle
59
+ dynamics
60
+ mm
61
+ Electron
62
+ dynamics
63
+ Nanostructured thin
64
+ film deposition
65
+ Surface processes(PSNN) was proposed to describe the PSIs at the substrate as well as target in a generalized
66
+ manner for Al and Ar as material system and working gas, respectively. The PSNN consists
67
+ of two conditional variational autoencoders (CVAEs [21, 26, 27]). One describes the PSIs
68
+ (e.g., sputtering, ion bombardment induced damage formation). The other one describes
69
+ the conversion of the defect structure (i.e., ring statistical connectivity profile [28–30]) to the
70
+ surface state (i.e., stoichiometry, mass density, biaxial stress, tensile stress). It was demon-
71
+ strated that both (i.e., defect structure, surface state) are sufficient for a complete system
72
+ description that may evolve in time. However, being based on molecular dynamics (MD)
73
+ simulations for data generation, the latter was limited to the impingement of two consecutive
74
+ particle doses (in total: 2.42 × 1015 particles/cm2) due to the immense computational cost.
75
+ Hence, the input parameter space (i.e., particle flux composition, ion energy, surface state)
76
+ was found to be sampled insufficiently to setup a long-term evolution ML PSI surrogate
77
+ model for the sputter deposition of metal thin films.
78
+ In this work, the concept of a ML surface surrogate model is advanced by – among other
79
+ aspects – proposing a randomized data generating scheme which enables PSNNs to predict
80
+ the reactive sputter deposition of AlN thin films in Ar/N2 discharges for up to hours. The
81
+ considered process is relevant for the preparation of hard coatings, protective wear (e.g.,
82
+ transition metal aluminium nitride, transition metal aluminium oxynitride), and energy
83
+ harvesting (scavenging) [31–35]. This manuscript is structured as follows: The considered
84
+ scenario is presented in Section II. In Section III, applied methods and parameters are
85
+ described. The results are presented and discussed in Section IV. Finally, conclusions are
86
+ drawn in Section V.
87
+ II.
88
+ SETUP
89
+ The general scenario of an Ar/N2 plasma discharge interacting with AlN surfaces is con-
90
+ sidered. While the gas discharge and sputtered particle transport dynamics are considered
91
+ predetermined, the focus is on the substrate side AlN thin film deposition. The target side
92
+ sputtering of AlN is not of main concern, but is included up to the maximum considered ion
93
+ energy (i.e., 300 eV). The key aspect for robust and reliable data-driven ML model develop-
94
+ ment is to efficiently populate the parameter space relevant for representing the dynamics
95
+ of PSI and diffusion. This is achieved by random sampling of a given number of initial
96
+ 3
97
+
98
+ Figure 2. Illustration of the PSI setup. The atom configuration is rendered with the Open Visu-
99
+ alization Tool (OVITO) [36]. Al and N atoms are colored gray and light blue, respectively.
100
+ AlN bulk systems, which are subsequently subject to a series of diffusion process and PSI
101
+ simulations (e.g., ion bombardment). The corresponding evolution is recorded and used for
102
+ ML. A brief description of the procedure is as follows:
103
+ System state
104
+ A bulk wurtzite AlN supercell is considered with a point defect structure
105
+ that includes up to 5 % Ar, 10 % Al, and 10 % N interstitials as well as 20 % Al and 20
106
+ % N vacancies. The defect structure is assumed to define the system sufficiently [21, 37].
107
+ Complementing properties are determined after the atom configuration is relaxed.
108
+ The
109
+ system is characterized by the mass density ρ, lattice constant a, heat of formation ∆Hf,
110
+ bulk modulus B0, its derivative B′
111
+ 0, and 12 point defect populations ρvAl, ρAlN, ρAli, ρvN,
112
+ ρNAl, ρ(N-N)Al, ρNi, ρ(N-N)N, ρ(N-N)i, ρArAl, ρArN, ρAri. The Kr¨oger-Vink notation is used for
113
+ the defect types (subscripts) [38]. The defect populations define the total number of atoms
114
+ in the system:
115
+ ntot = (1 + ρvAl + ρvN − ρAli − ρNi − ρAri − 2ρ(N-N)i − ρ(N-N)N − ρ(N-N)Al)−1nideal
116
+ tot
117
+ (1)
118
+ nideal
119
+ tot
120
+ refers to the total number of atoms in the ideal AlN supercell (8 atoms per unit cell).
121
+ The point defect structure defines the Al, N, and Ar concentrations cAl, cN, and cAr, which
122
+ 4
123
+
124
+ Fout
125
+ Tinare denoted as the composition:
126
+ cAl = 0.5nideal
127
+ tot
128
+ ntot
129
+ − ρvAl + ρAli + ρAlN − ρNAl − ρ(N-N)Al − ρArAl
130
+ (2a)
131
+ cN = 0.5nideal
132
+ tot
133
+ ntot
134
+ − ρvN + ρNi + 2ρ(N-N)i + ρ(N-N)N + 2ρ(N-N)Al − ρAlN − ρArN
135
+ (2b)
136
+ cAr = ρAri + ρArAl + ρArN
137
+ (2c)
138
+ The first terms on the right hand side of Eqs. (2a) and (2b) refer to the ideal configuration,
139
+ as 0.5nideal
140
+ tot
141
+ is the number of Al or N atoms when point defects are absent. The mass density
142
+ is determined by the lattice constants, the total number of atoms ntot, and the composition:
143
+ ρ = mAlcAl + mNcN + mArcAr
144
+
145
+ 3nuca2c
146
+ ntot
147
+ (3)
148
+ mAl, mN, and mAr are the masses of Al, N, and Ar atoms, respectively. nuc is the number
149
+ of unit cells (detailed later) and the lattice constant c = 1.6a is kept constant (anisotropic
150
+ deformations are suppresesed).
151
+ Plasma-Surface Interaction and Diffusion
152
+ For each initialized system, seven diffusion
153
+ and PSI simulations are performed alternately (detailed later).
154
+ First, the effect of bulk
155
+ diffusion processes on the system state is studied. For this a temperature T is imposed.
156
+ Second, an AlN surface is obtained by cleaving the bulk system either in [100] or [002]
157
+ direction. Third, the effect of individual particles s (i.e., Al, N, N2, Ar) bombarding the
158
+ AlN surface with specified kinetic energies Ekin is investigated. The contribution from the
159
+ plasma onto the surface is characterized by the particle fluxes Γin
160
+ s , the kinetic energy of the
161
+ particles Ekin, and the species s. The emitted fluxes are denoted by Γout
162
+ s .
163
+ The first and the last are used to setup two individual machine learning regression models
164
+ (i.e., PSI-CVAE, Diffusion-CVAE) that eventually are used to form a PSNN.
165
+ III.
166
+ METHODS
167
+ First, the data generating hybrid reactive molecular dynamics (RMD) / time-stamped
168
+ force-bias Monte Carlo (tfMC) simulations are described.
169
+ Second, the data processing,
170
+ training workflow and included metric are introduced. Third, the structure and information
171
+ flow of the PSNN is outlined. Fourth, physics-constraints and their implementation are
172
+ introduced. Fifth, the hyperparameter (HP) optimization is descried. Sixth, the production
173
+ run is presented.
174
+ 5
175
+
176
+ Figure 3.
177
+ Schematic of the workflow and information flow for the data generating hybrid
178
+ RMD/tfMC simulations.
179
+ A.
180
+ Hybrid reactive molecular dynamics / time-stamped force-bias Monte Carlo
181
+ RMD, tfMC, and hybrid RMD/tfMC simulations are performed with the open-source
182
+ Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [39–43]. The in-
183
+ teractions of AlN complexes are described by the third-generation charge-optimized many-
184
+ body (COMB3) potential that is tapered with the Ziegler-Biersack-Littmark (ZBL) potential
185
+ (COMB3/ZBL potential) to account for high-energy collisions by including screened nuclear
186
+ repulsions [44–46]. The COMB3 formalism is outlined in [44]. The COMB3 AlN parame-
187
+ terization and combination with the ZBL potential is described in [46]. Its predecessor was
188
+ setup for nanostructures as well as heterogeneous interfaces and revisited to describe plasma-
189
+ surface interactions more accurately (e.g., ion bombardment induced damage production)
190
+ [46, 47]. The atomic charges are equilibrated by applying the charge transfer equilibration
191
+ (QTE+) method to account for meaningful charge exchange during PSIs (e.g., ion bombard-
192
+ ment, sputtering) [48]. In the following, charge equilibration refers to the application of the
193
+ QTE+ method with a timestep of 10−2 fs. The exponents of the 1s Slater type orbitals used
194
+ for the overlap integral computations are 0.668 ˚A−1 and 1.239 ˚A−1 for Al and N, respectively
195
+ [48].
196
+ a.
197
+ System state initialization
198
+ It has been argued and demonstrated that the defect
199
+ structure is sufficient to describe a system [21, 37]. Hence, the initial atom configuration
200
+ is constructed by specifying the point defect structure.
201
+ The Ar and Al (N) interstitial
202
+ population ρAri and ρAli are sampled from a normal distribution N(0, σ) with the standard
203
+ 6
204
+
205
+ System state Ss,
206
+ System state Ss
207
+ Bulk cleavage
208
+ PSI
209
+ PSI:
210
+ Diffusion:
211
+ Diffusion
212
+ Molecular dynamics
213
+ Monte Carlo
214
+ data
215
+ data
216
+ Bulk reinforcement
217
+ System state Ss.
218
+ System state S.
219
+ flux Fout
220
+ temperature Tdeviations 3σ = 5 % and 3σ = 10 %, respectively. The N interstitial populations account
221
+ for single as well as split interstitials (N-N) [49]. They are distinguished from each other
222
+ at the end of the surface state initialization. The Al and N vacancy population ρvAl and
223
+ ρvN are sampled from a normal distribution N(0, σ) with a standard deviation 3σ = 20 %.
224
+ Initially, no anti-sites (i.e., NAl, (N-N)Al, AlN, ArAl, ArN) are defined.
225
+ The surface orientation (i.e., AlN(002), AlN(100)) is determined by a coin flip. In either
226
+ case, a bulk supercell consisting of 8 × 5 × 7 orthorhombic unit cells is constructed with
227
+ the lattice constants a=3.136 ˚A and c = 1.6a. The total number of atoms in the ideal AlN
228
+ supercell (8 atoms per unit cell) is nideal
229
+ tot
230
+ = 2240. The targeted total number of atoms ntot
231
+ is calculated as a function of the point defect population following Eq. (1). The absolute
232
+ number of point defects is obtained by multiplying the total number of atoms with the
233
+ individual point defect population.
234
+ First, Al and N vacancies are created by removing the required number of Al and N
235
+ atoms from the system. Second, interstitials are taken care of by randomly inserting new
236
+ atoms (i.e., Al, N, Ar) into the simulation domain. The Ar atoms’ coordinate in surface
237
+ normal direction is constrained to fall in between 5 ˚A above and below the lower and upper
238
+ boundary of the simulation domain, respectively. If the new atoms overlap with each other
239
+ or old atoms, they are deleted. This second step is repeated until the correct number of Al,
240
+ N and Ar atoms are generated.
241
+ The atom configuration is then relaxed. Minor discontinuities of the COMB3 interaction
242
+ potential hinder the successful application of a single conjugate gradient descent algorithm.
243
+ This issue is addressed by performing multiple energy minimizations (relaxations) as de-
244
+ picted in Figure 4.
245
+ The alternation between charge equilibration (i.e., applying QTE+)
246
+ and relaxation is meant to increase the computational efficiency. It is easier to relax an
247
+ expanding than shrinking atom configuration. Hence, the system is compressed when the
248
+ instantaneous pressure falls below -1 MPa.
249
+ The resultant point defect structure is determined by comparing the position of each
250
+ atom mapped into the unit cell with the Al as well as the N atom sites of the ideal AlN(002)
251
+ or AlN(100) structures (periodic images are taken into account). The distance tolerance is
252
+ defined by the halved Al-N bond length 1.9/2 ˚A. Nitrogen split interstitials (N-N)i, (N-N)N
253
+ or anti-sites (N-N)Al are identified by searching for interatomic distances between N atoms
254
+ that fall below 1.5 ˚A (the N-N bond length equals 1.3 ˚A [49]). The number of Al and N
255
+ 7
256
+
257
+ Figure 4. Workflow of the bulk relaxation. Relaxation: Application of the conjugate gradient
258
+ descent algorithm implemented in LAMMPS. The tolerance for the residual force on any atom
259
+ is 1 eV/˚A. Charge equilibration: Performing one time step while the QTE+ method is applied.
260
+ ∆U, ∆V and p refer to the change of the potential energy, volume, and instantaneous pressure
261
+ value, respectively. Compression: Application of the strain −10−6 along each direction. Volume
262
+ relaxation: In addition to the atom site relaxation, the simulation box dimensions are adjusted
263
+ isotropically to remove the residual stress from the system.
264
+ vacancies are computed at last to fulfill the particle balances:
265
+ nvAl = 0.5nideal
266
+ tot
267
+ − ntot,Al + nAli + nAlN − nNAl − n(N−N)Al − nArAl
268
+ (4a)
269
+ nvN = 0.5nideal
270
+ tot
271
+ − ntot,N + nNi + n(N−N)N + 2n(N−N)i + nNAl + 2n(N−N)Al − nAlN − nArN (4b)
272
+ The symbol n describes the absolute number of point defects, while the indexes denote
273
+ the particular point defect type. When the provided distance tolerance results in negative
274
+ 8
275
+
276
+ (start)
277
+ interstitial relaxation
278
+ charge equilibration
279
+ relaxation
280
+ AU < 0.1 eV
281
+ no
282
+ yes
283
+ charge equilibration
284
+ OU
285
+ end
286
+ △U > 0.1 eV
287
+ yes
288
+ compression
289
+ -1 MPa
290
+ no
291
+ yes
292
+ charge equilibration
293
+ volume relaxation
294
+ charge equilibration
295
+ relaxationnumbers for vacancies, Frenkel pairs (i.e., vacancies plus interstitials) are added to even
296
+ out this diagnostic artifact. However, this procedure is applied rarely and is only meant to
297
+ guarantee physically meaningful results (i.e., non-negative numbers of vacancies).
298
+ At last, the minimum of the potential energy and corresponding lattice constant is ob-
299
+ tained by fitting the third-order Birch-Murnaghan equation of state (EOS) to the p-V/ntot
300
+ and U/ntot-V/ntot-curve of the just relaxed structure [50, 51]. The system dimensions are
301
+ scaled isotropically to evaluate ten strains distributed equidistantly in between −10−2 and
302
+ 10−2. The system is compressed before it is expanded. The atom sites are relaxed for each
303
+ probed atom configuration.
304
+ b.
305
+ Diffusion
306
+ The tfMC method is applied for the simulation of the diffusion processes
307
+ [39–41]. The maximal displacement length of the lightest atom (i.e., N) is ∆ = 0.19˚A, that
308
+ is approximately 10 % of the typical nearest neighbor distance for AlN. The temperature is
309
+ sampled from a uniform distribution in between 300 and 1000 K. Simultaneously, the QTE+
310
+ method is applied with a time step of 10−2 fs, tolerance of 1 V, and damping constant of
311
+ 0.45 [48]. The simulation is run for 104 steps. The resultant atom configuration is relaxed
312
+ and evaluated as detailed previously (the interstitial relaxation is skipped).
313
+ c.
314
+ Plasma-surface interaction
315
+ The surface is established by cleaving the bulk system
316
+ either in [100] or [002] direction and elongating the simulation domain in surface normal
317
+ direction by additional 35 ˚A. This value is defined to be the sum of 11 ˚A and 24 ˚A, that
318
+ are attributed to the COMB3 cutoff radii and serve as a buffer for recognizing reflected or
319
+ sputtered particles, respectively. The atom sites are adjusted by alternating between charge
320
+ equilibration (i.e., QTE+) for fixed atom configuraiton and relaxation (i.e., performing a
321
+ conjugate gradient descent minimization until the residual force perceived by each atom
322
+ falls below 1 eV/˚A) for a fixed charge distribution until the potential energy is changed by
323
+ less than 0.1 eV per iteration. The surface slab is displaced randomly in both surface parallel
324
+ directions to include different impingement sites (the impinging particles are centered above
325
+ the surface slab).
326
+ Following this procedure, the system can be subdivided into four regions as depicted
327
+ in Figure 5: i) Excluded atoms whose surface normal coordinate falls below a threshold
328
+ zth = hz − 15 ˚A − (hz − 15 ˚A)Ekin/Ekin,max. zth is decreased linearly for increasing kinetic
329
+ energies of impinging particles Ekin, ranging from 0 eV to 300 eV (Ekin,max = 300 eV). hz is
330
+ the surface slab height. Excluded atoms are not allowed to interact with any other atom,
331
+ 9
332
+
333
+ Figure 5. Illustration of the PSI setup. The atom configuration is rendered with OVITO [36]. Al
334
+ and N atoms are colored gray and light blue, respectively. The regions containing i) excluded, ii)
335
+ immobile, iii) temperature-controlled, and iv) all remaining atoms are colored transparent gray,
336
+ light blue, red, and not at all respectively.
337
+ effectively reducing the surface slab thickness to reduce the computational cost. These atoms
338
+ are also excluded from the charge equilibration. The interactions of reflected or sputtered
339
+ particles with other atoms are excluded too, when their surface normal coordinate exceeds
340
+ hz + 12 ˚A. However, they are kept in the simulation domain to evaluate them later. The
341
+ members of this group are updated dynamically (i.e., every 2000 steps). ii) Immobile atoms
342
+ whose surface normal coordinate falls below a threshold zth + 5 ˚A. These are not evolved in
343
+ time to anchor the surface slab in the simulation domain. iii) Mobile atoms whose distance
344
+ to the left or right periodic boundary in the surface parallel directions falls below 5 ˚A are
345
+ coupled to a Langevin thermostat with a damping constant of 100 fs to gradually remove
346
+ their kinetic energy, targeting 0 K. Ar atoms are always excluded. iv) All remaining atoms.
347
+ 10
348
+
349
+ 4
350
+ i)
351
+ 24 A
352
+ 12 A
353
+ 5A
354
+ 5A
355
+ iv)
356
+ 15 A
357
+ iii)
358
+ iii)
359
+ 5 A
360
+ i)
361
+ ZthAn impinging particle is created 11 ˚A above the surface and centered laterally. Its species
362
+ (i.e., Al, N, N2, Ar) is determined randomly, whereas projectiles are assumed to be charge
363
+ neutral prior interaction. The likelihood for each candidate is distributed equally among
364
+ them.
365
+ Its kinetic energy ranging from 0 eV to 300 eV is found by squaring a sample
366
+ from a uniform distribution U(0
367
+
368
+ eV,
369
+
370
+ 300 eV). The atoms are assumed to hit the surface
371
+ perpendicularly (the surface parallel components of its velocity vector equals zero). The time
372
+ step equals 0.25 fs and is eventually lowered to secure that the maximum displacement and
373
+ change in kinetic energy of any atom does not exceed 0.1 ˚A and 0.01 eV, respectively. The
374
+ simulation is run for 1 ps repeatedly until the temperature of the mobile atoms falls below 100
375
+ K. Impinging atoms that bypass the lower simulation domain boundary due to channeling
376
+ are reinserted at a random position in surface normal direction (lateral coordinates are
377
+ maintained) within the surface slab (overlapping with another atom by less than 0.5 ˚A leads
378
+ to a repetition).
379
+ To again transfer from a surface to a bulk configuration, the atom sites are relaxed
380
+ as outlined previously.
381
+ The random shifts in surface parallel directions outlined in the
382
+ beginning of this section are reversed. The change of the surface normal coordinate of the
383
+ uppermost temperature controlled atom ∆zup is used as a reference to invert the particle
384
+ impingement induced thermal expansion of the mobile surface slab. The surface normal
385
+ coordinates z of all mobile atoms are updated by z → z − ∆zup(z − zth − 5 ˚A)/(zup − zth −
386
+ 5 ˚A) (assuming a linear expansion). All atoms that exceed the original surface slab height
387
+ prior to the particle impingement are removed from the system. This includes reflected
388
+ particles, sputtered particles, and in general atoms atop the surface (e.g., adatoms). The
389
+ last are assumed to contribute to the film growth of following layers, but do not effect the
390
+ subsurface region. Hence, they are neglected when making a prediction for the bulk system
391
+ by reestablishing a periodic boundary in surface normal direction. This procedure has been
392
+ validated by comparing lattice constants and stresses obtained with density functional theory
393
+ based molecular dynamics thermal spike simulations to experimentally measured reference
394
+ values for metal aluminium nitrides [37, 52, 53]. The resultant atom configuration is relaxed
395
+ and further evaluated as detailed previously (the interstitial relaxation is omitted).
396
+ 11
397
+
398
+ B.
399
+ Data preparation, training and metrics
400
+ a.
401
+ Data set splitting
402
+ The data sets consisting of 6496 diffusion processes and 4470 PSIs
403
+ are shuffled and split for the HP optimization to train, validate and test the ML model with
404
+ 80 %, 10 %, and 10 % of the available data, respectively. The size of the training, validation
405
+ and test set are referred to by ntrain
406
+ data , nval
407
+ data, and ntest
408
+ data, respectively.
409
+ b.
410
+ Data normalization
411
+ Min-max normalization is utilized, whereas the minimum and
412
+ maximum values are taken from the training set to avoid data leakage.
413
+ c.
414
+ Data augmentation
415
+ The normalized data is augmented to virtually extend the train-
416
+ ing database and, therewith, setup a more robust ML model [54–56]. In this work, a gener-
417
+ alized version of the constrained mixup augmentation is utilized. Input and output samples
418
+ are determined by ˆxij = λxi + (1 − λ)xj and ˆyij = λyi + (1 − λ)yj, respectively [57]. Hence,
419
+ a hypothesis of linear superposition is provided to the network. Its validity is reflected by
420
+ the probability distribution function (i.e., Beta(α)) of the λ value. α approaching zero, one,
421
+ or infinity resembles a coinflip, uniform distribution, or 0.5, respectively. In this work, sam-
422
+ ples i and j are only mixed up when the length of the vector pointing from one to another
423
+ falls below rc, that is
424
+ ��nx
425
+ k=1(xi − xj)2 < rc. nx is the number of input parameters. rc
426
+ is considered a HP. The augmented data set size equals the original training data set size
427
+ (ntrain
428
+ data,aug = ntrain
429
+ data ). The training data is augmented anew once per epoch.
430
+ d.
431
+ Training procedure and metrics
432
+ Backpropagation of the mean absolute errors
433
+ (MAEs) is used to update the internal degrees of freedom of the ANNs (e.g., weights)
434
+ once per batch.
435
+ The stochastic gradient descent algorithm adaptive moment estimation
436
+ (Adam) is applied [58]. The applied batch size nbatch is defined to match the set up and
437
+ the ideal batch size nbatch,ideal included as HP as close as possible, but required to fulfill
438
+ |nbatch − ntrain
439
+ data,aug%nbatch| ≤ nbatch,ideal. Hence, all data samples contribute almost equally to
440
+ the learning progress.
441
+ The learning rate rl is initialized with rl-0 and kept constant for a simulated annealing
442
+ phase, that is outlined later. Afterwards, it is divided by ten whenever the validation MAE
443
+ falls below its previous minimum value over the course of nl-patience epochs. Early stopping
444
+ stops the training when there is no further reduction of the validation MAE after 2.5nl-patience
445
+ epochs.
446
+ 12
447
+
448
+ Figure 6. Schematic of the CVAE structure. Input variables enter from the left and predictions
449
+ are extracted on the right of the graph. The coordinates zls of the latent space are indicated by
450
+ the center white box. The figure is taken from [21].
451
+ e.
452
+ Hyperparameter study
453
+ 10-fold Monte Carlo cross validation (MCCV) is utilized to
454
+ determine a more accurate final validation MAE. Training, validation, and test data sets are
455
+ randomly selected according to the given split. In 10-fold MCCV, an ensemble of 10 ANNs
456
+ is trained with 10 different random splits. It used in the selection of the best HPs using an
457
+ evolution strategy (described later). The coefficient of determination R2 is introduced as an
458
+ additional, secondary metric. The test set is meant to provide an unbiased measure for the
459
+ ML model’s performance. The last is determined even more thoroughly by applying a 100-
460
+ fold MCCV for the eventually selected set of HPs to compute the final training, validation
461
+ and test errors.
462
+ f.
463
+ Production run
464
+ The test set is not required for the production run.
465
+ Thus, it is
466
+ combined with the training set, that is 90 % of the data. An ensemble of ten ML models is
467
+ set up and trained to reduce the bias introduced to the model by splitting the data into the
468
+ two subsets [59].
469
+ C.
470
+ Physics-separating artificial neural network methodology
471
+ a.
472
+ Conditional variational autoencoders
473
+ The proposed PSNN combines two regression
474
+ ML models (i.e., PSI-CVAE, Diffusion-CVAE), that are implemented as conditional vari-
475
+ ational autoencoders (CVAEs) [21, 26, 27].
476
+ Their network architecture and information
477
+ 13
478
+
479
+ Input
480
+ Input
481
+ Mis (ylac)
482
+ Decoder
483
+ Output y
484
+ Encoder
485
+ S
486
+ is (ylc)
487
+ 2
488
+ Latent
489
+ Train
490
+ space
491
+ Input y
492
+ phase?
493
+ True
494
+ False
495
+ N(0, I)
496
+ N(0, I)flow are shown schematically in Figure 6. CVAEs resemble β-variational autoencoders (β-
497
+ VAEs [22–26]), whose encoder and decoder are conditioned on the regression input variables.
498
+ These are set up symmetrically. The number of hidden layer nhl and nodes per layer nnpl
499
+ are considered as HPs. The activation functions for any hidden and output layer are set as
500
+ rectified linear unit (ReLU) and linear, respectively. The encoder projects information of the
501
+ regression output variables yi to an nls dimensional latent space representation. Similarity
502
+ to a standard normal distribution in latent space is enforced by introducing an additional
503
+ Kullback-Leibler (KL) divergence. [22, 23]. The HP β is used to scale the KL loss. It is
504
+ additionally scaled with a simulated annealing factor that is increased logarithmically from
505
+ 10−3 to 1 per batch over the course of nSA (also a HP) epochs. The decoder is conditioned
506
+ on the regression input and the latent space (a standard normal distribution after successful
507
+ training) tries to reconstruct the regression output. The decoder resembles the regression
508
+ model to be utilized for prediction (after training is completed). CVAEs are described in
509
+ detail in [26, 27]. The outputs of the CVAEs are passed through physics-constraint enforcing
510
+ custom layers.
511
+ b.
512
+ Physics-constraints
513
+ The physics-constraints enforced by the last output layer sim-
514
+ plify the regression problem to be solved by the individual CVAEs and are described in the
515
+ following. First, the suppression of extrapolation is outlined. Second, the particle conversa-
516
+ tion for prediction on bulk diffusion processes are introduced. Note that predicted quantities
517
+ are denoted by primes (e.g., y′).
518
+ 1. Extrapolation Suppression Constrained predictions were utilized in previous works
519
+ to secure physically plausible predictions (e.g., an Ar concentration in the range of 0 % to
520
+ 100 %) [21]. This procedure is developed further and generalized in this work. In general ML
521
+ models are well suited for interpolation but often fail to extrapolate beyond known input
522
+ data.
523
+ Hence, predictions below (beyond) the minimal (maximal) training reference ymin
524
+ (ymax) are suppressed by folding them back three times to facilitate a more stable system
525
+ state evolution and guarantee positive quantities when required (e.g., mass density, sputter
526
+ yield):
527
+ y′ → 2ymin − y′
528
+ if y′ ≤ ymin
529
+ (5a)
530
+ y′ → 2ymax − y′
531
+ if y′≥ ymax
532
+ (5b)
533
+ 2. Particle conservation (diffusion) The absolute number of Ar, Al, and N atoms must be
534
+ 14
535
+
536
+ conserved during bulk diffusion processes, which are modeled by the Diffusion-CVAE. This
537
+ also demands a balance of the individual point defect populations. Using three corresponding
538
+ constraints (e.g., based on Eqs. (2c)-(2a)) to determine them reduces the number of the ML
539
+ model’s output descriptors, but may eventually contradict the extrapolation suppression
540
+ constraint introduced in the preceding paragraph. For example, the conservation of Ar atoms
541
+ prior and post diffusion (prediction) could be realized by determining the Ar population
542
+ occupying Al lattice sites ρ′
543
+ ArAl = ntot/n′
544
+ tot(ρAri +ρArAl +ρArN)−ρ′
545
+ Ari −ρ′
546
+ ArN and using Eq. (1).
547
+ However, some predictions may require n′
548
+ ArAl to be negative (i.e., nAri + nArAl + nArN <
549
+ n′
550
+ Ari + n′
551
+ ArN), even though the number of Ar atoms occupying Al lattice sites cannot be
552
+ negative.
553
+ Enforcing the constraint outlined in the preceding paragraph may resolve the
554
+ issue, but being evaluated sequentially again may lead to a violation of particle conversation
555
+ during diffusion processes.
556
+ Thus, a more careful point defect balancing is required and
557
+ introduced in the following.
558
+ All Ar point defect population predictions (i.e., ρ′
559
+ Ari + ρ′
560
+ ArAl + ρ′
561
+ ArN) are multiplied with a
562
+ correction factor fAr:
563
+ fAr = ntot
564
+ n′
565
+ tot
566
+ ρAri + ρArAl + ρArN
567
+ ρ′
568
+ Ari + ρ′
569
+ ArAl + ρ′
570
+ ArN + 10−7
571
+ (6)
572
+ The deviation of predicted Al and N atoms prior/post diffusion is defined by ∆nAl and ∆nN,
573
+ respectively:
574
+ ∆nAl =ntot(ρAli + ρAlN − ρvAl − ρNAl − ρ(N-N)Al − ρArAl)
575
+ − n′
576
+ tot(ρ′
577
+ Ali + ρ′
578
+ AlN − ρ′
579
+ vAl − ρ′
580
+ NAl − ρ′
581
+ (N-N)Al − fArρ′
582
+ ArAl)
583
+ (7a)
584
+ ∆nN =ntot(ρNi + 2ρ(N-N)i + ρ(N-N)N − ρvN + ρNAl + 2ρ(N-N)Al − ρAlN − ρArN)
585
+ − n′
586
+ tot(ρ′
587
+ Ni + 2ρ′
588
+ (N-N)i + ρ′
589
+ (N-N)N − ρ′
590
+ vN + ρ′
591
+ NAl + 2ρ′
592
+ (N-N)Al − ρ′
593
+ AlN − fArρ′
594
+ ArN)
595
+ (7b)
596
+ with ntot as a function of the point defect population following Eq. (1). All defect populations
597
+ 15
598
+
599
+ but anti-sites are compensated for the particle balancing using these deviations:
600
+ ρ′
601
+ vAl → n′
602
+ totρ′
603
+ vAl − ∆nAl
604
+ ntot
605
+ if ∆nAl< 0
606
+ (8a)
607
+ ρ′
608
+ Ali → n′
609
+ totρ′
610
+ Ali + ∆nAl
611
+ ntot
612
+ if ∆nAl> 0
613
+ (8b)
614
+ ρ′
615
+ vN → n′
616
+ totρ′
617
+ vN − ∆nN
618
+ ntot
619
+ if ∆nN < 0
620
+ (8c)
621
+ ρ′
622
+ (N-N)N →
623
+ n′
624
+ totρ′
625
+ (N-N)N +
626
+ ρ′
627
+ (N-N)N
628
+ ρ′
629
+ Ni+ρ′
630
+ (N-N)N ∆nN
631
+ ntot
632
+ if ∆nN > 0
633
+ (8d)
634
+ ρ′
635
+ Ni →
636
+ n′
637
+ totρ′
638
+ Ni +
639
+ ρ′
640
+ Ni
641
+ ρ′
642
+ Ni+ρ′
643
+ (N-N)N ∆nN
644
+ ntot
645
+ if ∆nN > 0
646
+ (8e)
647
+ All point defect populations, which have not been altered up this point, are scaled with the
648
+ quotient n′
649
+ tot/ntot to account for the changed total number of atoms, ensuring consistent
650
+ predictions.
651
+ c.
652
+ Physics-separating artificial neural network
653
+ Each CVAE (i.e., PSI-CVAE, Diffusion-
654
+ CVAE) describes one physical process, separating one from another. The (trained) decoders
655
+ are combined to form a PSNN that allows for an evolution in time by passing the surface
656
+ state Ss from one surrogate model to another. The information flow of the PSNN is depicted
657
+ in Figure 7. It resembles closely the information flow inherent to the physical simulations
658
+ (Fig. 3. The input to the PSI-Decoder is a single particle sampled from the particle flux of
659
+ the plasma, characterized by the particles’ kinetic energy Ekin, species s, and surface state Ss.
660
+ It predicts the updated surface state S′
661
+ s and emitted flux for each species Γout ′
662
+ s
663
+ . The former is
664
+ fed together with the temperature T to the Diffusion-Decoder, which predicts a new surface
665
+ state S′′
666
+ s . It is passed on to the PSI-Decoder, establishing an recurrent link within the PSNN.
667
+ Note that the direct correspondence of the physical simulations and the separated PSI-
668
+ Decoder and Diffusion-Decoder structure allows for an efficient parameter space exploration,
669
+ as outlined in Section III A. However, relying on single PSIs, the predictions after training
670
+ may be subject to vastly different plasma conditions and are not limited to the specific flux
671
+ ratios or ion energy distributions used for setting up the data set.
672
+ 16
673
+
674
+ Figure 7. Schematic of the PSNN structure and information flow. Plasma dynamics can be imposed
675
+ by hand, simulation or experiment.
676
+ D.
677
+ Hyperparameter study
678
+ The HP of each CVAE (i.e., PSI-CVAE, Diffusion-CVAE) are optimized by applying
679
+ an individual anisotropic self-adaptive evolution strategy with intermediate recombination
680
+ (µ/µI, λ)-σSA-ESs. µ, λ, and σ refer to the number of parents, populations size, and step
681
+ sizes (mutation strengths), respectively.
682
+ Generalized and topic-wise related descriptions
683
+ of this method can be found in [21, 60–62]. The HPs considered in this work and their
684
+ initialization ranges are listed in Table I.
685
+ The evolution strategies are inialized as (7/7I, 70)-σSA-ESs.
686
+ The population sizes λ
687
+ are reduced by one per generation over the course of 63 generations and, afterwards, kept
688
+ constant. The numbers of parents are determined by µ = λ/7 (integer values are enforced)
689
+ [63]. The ESs are conducted for 200 generations and, hence, end as (1, 7)-σSA-ESs.
690
+ E.
691
+ Production run: Reference experiment
692
+ First, the experimental scenario considered for production as well as validation is outlined.
693
+ Second, the fluxes onto the AlN surfaces required for the ML simulation are calculated and
694
+ used to introduce an estimated process time.
695
+ a.
696
+ Reference experiment
697
+ Ries et al.
698
+ used a large-area multi-frequency capacitively
699
+ coupled plasma (MFCCP) to sputter deposit AlN with Ar and N2 as working gases (Ar/N2
700
+ gas inlet ratio equal 8/1) [64]. The electrical asymmetry effect was taken advantage of to
701
+ 17
702
+
703
+ System state Ss:
704
+ System state S"
705
+ Plasma dynamics
706
+ PSI-Decoder
707
+ Diffusion-Decoder
708
+ System state $
709
+ flux Fouti
710
+ temperature TTable I. The HPs to be optimized, their initialization range, and final values for the PSI-CVAE as
711
+ well as Diffusion-CVAE.
712
+ HP
713
+ Init. range PSI-CVAE Diffusion-CVAE
714
+ rc
715
+ [0.0,1.0]
716
+ 0.50
717
+ 0.44
718
+ α
719
+ [10−5,1.0]
720
+ 0.47 ·10−2
721
+ 0.17
722
+ rl-0
723
+ [10−3,10−2] 9.14 ·10−3
724
+ 1.08 ·10−3
725
+ nl-patience
726
+ [4,7]
727
+ 9
728
+ 7
729
+ λL2
730
+ [0,10−4]
731
+ 2.23 ·10−7
732
+ 1.22 ·10−7
733
+ nhl
734
+ [1,5]
735
+ 1
736
+ 3
737
+ nnpl
738
+ [8,128]
739
+ 107
740
+ 155
741
+ nls
742
+ [1,6]
743
+ 1
744
+ 5
745
+ β
746
+ [10−1,10]
747
+ 56.69
748
+ 0.14
749
+ nSA
750
+ [1,102]
751
+ 102
752
+ 102
753
+ nbatch,ideal
754
+ [16,64]
755
+ 37
756
+ 53
757
+ decouple the ion flux from the ion energy. The former was kept approximately constant and
758
+ the latter was controlled by applying voltage waveform tailoring (i.e., adjusting the relative
759
+ phase shift between the two excitation frequencies).
760
+ Four cases with mean ion energies
761
+ Eion of 47 eV, 53 eV, 57 eV, and 81 eV were considered. The predominant AlN surface
762
+ orientation was found to vary as function of the mean ion energy: AlN(002) for Eion =47
763
+ eV and Eion =53 eV as well as AlN(100) for Eion =57 eV and Eion =81 eV [64].
764
+ In this work, the species most relevant for PSI (i.e., Al, N+, N+
765
+ 2 , Ar+) are sampled from
766
+ the experimentally determined fluxes impinging onto the substrate (cf. next subsection). The
767
+ kinetic energy Ekin of ions and Al neutrals are sampled from measured ion energy distribution
768
+ functions (IEDFs) (depicted in Figure 11 of [64]) and from Monte Carlo transport simulations
769
+ (Al in pure Ar, but assumed invariant), respectively [64–66]. A threshold for the IEDFs
770
+ is imposed to avoid sampling from noise. Monte Carlo accept-reject sampling (rejection
771
+ sampling) is used to determine the individual particle energies.
772
+ The evolution and response of both monocrystalline systems (i.e., AlN(002), AlN(100))
773
+ predicted by the PSNN is to be studied as a function of the mentioned four ion energy
774
+ 18
775
+
776
+ distribution functions (IEDFs). Each case starts with ideal, defect free AlN and is run until
777
+ a steady-state is reached, that is approximately 45 minutes (experimental process time).
778
+ All cases are re-run 100 times to evaluate their statistics accurately. The final results are
779
+ averaged over the last minute. Intrinsic stresses are determined as a function of the predicted
780
+ lattice constants by utilizing the third-order Birch-Murnaghan EOS of the ideal, defect free
781
+ AlN reference system as proposed and validated in [37]. The final stresses and compositions
782
+ predicted by the PSNN are compared to experimentally measured reference values [64].
783
+ Spurious Fe and O concentrations observed in the experiment are substituted with Al and
784
+ N concentrations to define a comparable reference for the simulation.
785
+ b.
786
+ Flux and process time estimations
787
+ The process time tp for npi particle impingements
788
+ may be estimated by the sum over all reciprocal impingement rates, tp = �npi
789
+ i=1 1/(ΓiA′
790
+ RMD).
791
+ Γin
792
+ i
793
+ and A′
794
+ RMD denote the experimental particle flux onto the AlN surface and predicted
795
+ RMD AlN surface area, respectively.
796
+ A′
797
+ RMD is computed as a function of the predicted
798
+ lattice constant a′ and imposed surface orientation.
799
+ The ion flux onto the target and substrate is assumed to be approximately equal for
800
+ the given geometry and approximated by Γin
801
+ ion = hnevB, with assumed edge-to-center ration
802
+ h = 0.61, electron density ne = 5·1015 m−3, and Bohm velocity vB = 3.21·103 m/s (for Ar+
803
+ ions and a given electron temperature of kBTe = 3 eV) [7, 67].
804
+ The flux of Al neutrals onto the substrate is calculated from Γin
805
+ Al = ctYAr+(352 eV) Γin
806
+ ion =
807
+ 3.47·1018 m−2s−1 with the collisional transport coefficient ct = 0.6 obtained from Monte Carlo
808
+ transport simulations (Al in pure Ar, but assumed invariant) as well as an Ar sputtering
809
+ yield YAr+(352 eV) = 0.579 (clean Al target) [64, 65]. The Al flux from the target is obtained
810
+ by multiplying the ion flux Γin
811
+ ion with the Ar+ sputtering yield YAr+.
812
+ The considered ion fluxes (i.e., Γin
813
+ N+, Γin
814
+ N+
815
+ 2 , Γin
816
+ Ar+) are determined by assuming that the
817
+ composition of the ion fluxes onto the substrate Γin
818
+ ion resemble the volumetric composition.
819
+ The total gas density is given by ng,tot = p/(kBTg) with the Boltzmann constant kb, and gas
820
+ temperature Tg = 650 K [67]. The species specific gas densities are calculated as relative
821
+ fractions assuming ng,N/ng,N2 = 1/9 and (ng,N + ng,N2)/ng,Ar = 1/8 [64]. Hence, the working
822
+ gas approximately consists of 1.16 % N, 10.47 % N2, and 88.37 % Ar. The ion (Bohm) flux
823
+ onto the substrate is split up accordingly: ΓAl+ = 3.11·1014 m−2s−1, ΓN+ = 1.14·1017 m−2s−1,
824
+ ΓN+
825
+ 2 = 1.03 · 1018 m−2s−1, and ΓAr+ = 8.65 · 1018 m−2s−1. The contribution due to Al+ is
826
+ neglected due to their rare occurrence.
827
+ 19
828
+
829
+ IV.
830
+ RESULTS
831
+ A.
832
+ Hyperparameter study
833
+ Following the outlined evolution strategy with MCCV, an optimum set of HPs is de-
834
+ termined and listed in Table I. As apparent, data augmentation by means of constrained
835
+ mixup augmentation is beneficial for the Diffusion-CVAE (α = 0.17). This means that the
836
+ hypothesis of linear superposition is accepted to some extend for the diffusion processes but
837
+ declined for the PSIs (α = 0.47·10−2). Kernel regularization is found to be disadvantageous
838
+ for either ML model (λL2 ≈ 10−7). The network structure of the Diffusion-CVAE (i.e., 3
839
+ hidden layer with 155 nodes per layer) allows for higher order of complexity than the PSI-
840
+ CVAE’s one (i.e., 1 hidden layer with 107 nodes per layer). It is also interesting to note that
841
+ the optimum number of simulated annealing epochs is 100 for both ML models, which is
842
+ the imposed upper boundary for this HP for the evolution strategies. Hence, the simulated
843
+ annealing step is assumed to be of great use for the training procedure.
844
+ In addition to the MAE, the performance of the PSI-CVAE and Diffusion-CVAE with
845
+ their final set of HPs listed in Table I can be assessed by the coefficient of determination
846
+ R2. It is calculated on the training, validation, and test set to equal 0.87, 0.86, and 0.87 for
847
+ the PSI-CVAE as well as 0.94, 0.93, and 0.93 for the Diffusion-CVAE, respectively. These
848
+ values ≳ 0.9 signify an accurate model approach (R2 = 1 signifies fully explained variance
849
+ in the data). The negligible difference between the three subsets indicates that the ML
850
+ models learned successfully to generalize on the training data. This finding is analyzed more
851
+ thoroughly in the following by comparing the unnormalized mean absolute errors (MAEs) of
852
+ each system property (e.g., mass density). It is important to note though that the reference
853
+ data does not resemble any kind of ground truth but contains statistical fluctuations (e.g.,
854
+ a single ion hitting the surface on a different surface sites is likely to inflict different kinds
855
+ of defect structures) which intrinsically provide limits for the MAEs.
856
+ The MAE of all considered defect populations are shown in Figure 8. The PSI-CVAE and
857
+ Diffusion-CVAE is found to predict the defect structure accurately with errors that are of
858
+ the order/below 0.1 %. The error of the PSI-CVAE’s predictions on the training, validation,
859
+ and test set are barely distinguishable from each other, resembling excellent generalization.
860
+ The Diffusion-CVAE is found to perform best on the training set, showing minor signs of
861
+ 20
862
+
863
+ Figure 8. MAE of the unnormalized predictions on the point defect populations and data sets.
864
+ Point defect types are listed on the x-axis.
865
+ Table II. MAE of the unnormalized predictions on all data sets for the PSI-PSNN.
866
+ Property
867
+ Train. set Val. set Test set
868
+ a (˚A)
869
+ 0.002
870
+ 0.002
871
+ 0.002
872
+ ∆Ef (eV)
873
+ 0.005
874
+ 0.005
875
+ 0.005
876
+ B (GPa)
877
+ 3.029
878
+ 3.067
879
+ 3.055
880
+ B′ (GPa)
881
+ 0.913
882
+ 0.922
883
+ 0.931
884
+ Γout
885
+ Al /Γin
886
+ s (.)
887
+ 0.015
888
+ 0.016
889
+ 0.015
890
+ Γout
891
+ N /Γin
892
+ s (.)
893
+ 0.089
894
+ 0.089
895
+ 0.087
896
+ Γout
897
+ Ar /Γin
898
+ s (.)
899
+ 0.218
900
+ 0.219
901
+ 0.219
902
+ Γout
903
+ N2 /Γin
904
+ s (.)
905
+ 0.139
906
+ 0.139
907
+ 0.140
908
+ overfitting. However, the difference between the validation and test set is negligible.
909
+ The high accuracy prediction of the PSI-CVAE and the Diffusion-CVAE on the lattice
910
+ constant a, the formation energy ∆Ef, the bulk modulus B, and its derivative B′ are pre-
911
+ sented in Table II and Table III, respectively. The almost interchangeable performance on
912
+ the training, validation, and test set shows again that the models successfully learned to
913
+ 21
914
+
915
+ Training set
916
+ Validation set
917
+ Test set
918
+ X
919
+ 0.125
920
+ PSI-CVAE
921
+ Diffusion-CVAE
922
+ 0.100
923
+ 0.075
924
+ 0.050
925
+ MA
926
+ X
927
+ 0.025
928
+ X
929
+ 0.000Table III. MAE of the unnormalized predictions on all data sets for the Diffusion-PSNN.
930
+ Property Train. set Val. set Test set
931
+ a (˚A)
932
+ 0.001
933
+ 0.001
934
+ 0.001
935
+ ∆Ef (eV)
936
+ 0.007
937
+ 0.008
938
+ 0.008
939
+ B (GPa)
940
+ 2.905
941
+ 3.094
942
+ 3.124
943
+ B′ (GPa)
944
+ 0.918
945
+ 0.963
946
+ 0.973
947
+ generalize on the provided data. However, the MAEs of the emitted Al, N, Ar and N2 flux
948
+ per incident flux, as listed in Table II, are relatively large when compared to typical sputter
949
+ yields as well as reflection ratios in the considered regime of kinetic energies (i.e., Ekin in
950
+ [0 eV, 300 eV]). It is argued that these larger errors do not signify bad performance, but
951
+ are rather a consequence of the data assembly for the PSIs. One PSI data sample contains
952
+ the information on a single PSI, which leads to the emission of, for example, none, one, or
953
+ maybe two particles. This will be perceived as noise to the ML model, which consequently
954
+ learns to predict the mean number of emitted particles per PSI for a given surface state.
955
+ This inherently leads to relatively large MAEs but ultimately is exactly what the PSI-CVAE
956
+ is meant to learn.
957
+ B.
958
+ Production run
959
+ The production run resembles the reference experiment of AlN thin-film deposition for
960
+ four discharge conditions as previously discussed. In the following, they are investigated for
961
+ two surface orientations (100) and (002). Initially the emitted particle fluxes are discussed:
962
+ Particles are emitted from the surface due to reflection of the incident particle or sputtering
963
+ of surface atoms. It is observed that most fluxes reach a steady-state after a few seconds.
964
+ Minor changes on the minute time-scale are observed only for three cases (i.e., Eion =47 eV:
965
+ (002), Eion =53 eV: (002), Eion =57 eV: (100)) due to a change of the Al sticking probability
966
+ of approximately 0.5 %. This transient variation is a side-effect of slowly evolving system
967
+ states, described in detail later. All Al sticking coefficients are in between 98-99 %.
968
+ The emitted per incident particle fluxes averaged over the last, 45th minute are shown
969
+ 22
970
+
971
+ Figure 9. The emission of all film forming species per incident fluxes are presented for all considered
972
+ IEDFs as well as surface orientations. Circle and error bars represent mean values and root-mean-
973
+ squared deviations, respectively.
974
+ in Figure 9 for all film forming flux combinations (i.e., the emission of Ar is omitted). No
975
+ significant difference between the two surface orientations is recognizable, which is attributed
976
+ to the considered ion energy regime of 30 to 100 eV. Higher ion energies are expected to
977
+ present surface orientation dependent sputtering yields.
978
+ The impingement of N+ and Ar+ ions leads to an almost similar removal of Al atoms,
979
+ whereas Ar+ ions achieve a slightly increased Al sputtering yield (i.e., Γout
980
+ Al /Γin
981
+ N+ < Γout
982
+ Al /Γin
983
+ Ar+).
984
+ This is attributed to elastic collisions of bombarding N+ ions with N surface atoms, distribut-
985
+ ing the momentum more rapidly and evenly among them than Al atom. The displacement
986
+ of N atoms in the subsurface regions leads to the temporary formation of (N-N)N close to
987
+ the surface, where they eventually leave as N2. Higher ion energies lead to deeper collision
988
+ cascades spawned with higher momenta. The proportionality with the mean ion energy
989
+ indicates that for neither IEDF a relevant proportion of N+ ions directly form temporary
990
+ (N-N)N at the surface (and desorb as N2).
991
+ Bombarding N+
992
+ 2 ions are split apart when they hit the surface and, thus, inhibit a reduced
993
+ individual momentum compared to the initially shared one. This favors an even stronger
994
+ distribution of the momenta in the surface slab and, thus, lessens the likelihood of sputtering
995
+ 23
996
+
997
+ 0.3
998
+ Fout: (002)
999
+ (002)
1000
+ Tout.
1001
+ out.
1002
+ (002)
1003
+ Al
1004
+ N
1005
+ N2
1006
+ 47 eV
1007
+ 0.2
1008
+ 53 eV
1009
+ 0.1
1010
+ 57 eV
1011
+ 81 eV
1012
+ 0.0
1013
+ 0.3
1014
+ Tout.
1015
+ out.
1016
+ :(100)
1017
+ (100)
1018
+ (100)
1019
+ Al
1020
+ N2
1021
+ 47 eV
1022
+ 0.2
1023
+ 53 eV
1024
+ 0.1
1025
+ 57 eV
1026
+ 81 ev
1027
+ 0.0Figure 10. Transient evolution of the most relevant point defect populations for all considered
1028
+ IEDFs as well as surface orientations. Error bars and the height of transparent region resemble
1029
+ the mean plus / minus the RMSD.
1030
+ Al atoms in the considered ion energy regime. Moreover, for smaller ion energies a shallower
1031
+ subsurface region is affected, which enables incident N+
1032
+ 2 ions to directly form temporary
1033
+ (N-N)N at the surface before leaving as N2. This is reflected by the decreased flux ratio
1034
+ Γout
1035
+ N2 /Γin
1036
+ N+
1037
+ 2 for increased ion energies.
1038
+ The transient evolutions of the most relevant point defect populations are shown in Fig-
1039
+ 24
1040
+
1041
+ 2.4
1042
+ Eion
1043
+ pvn: (002)
1044
+ P(N-N)n: (002)
1045
+ 47eV
1046
+ .8
1047
+ 53 eV
1048
+ 1.2
1049
+ 57eV
1050
+ 81eV
1051
+ 0.0
1052
+ 2.4
1053
+ Eion
1054
+ pvA1: (002)
1055
+ PAl: (002)
1056
+ (%)
1057
+ 1.8
1058
+ 47 eV
1059
+ 53 eV
1060
+ 1.2
1061
+ 5 57 eV
1062
+ 0.6
1063
+ 81 eV
1064
+ 0.0
1065
+ 2.4
1066
+ Eion
1067
+ Pvn: (100)
1068
+ P(N-N)N: (100)
1069
+ 47 eV
1070
+ 1.8
1071
+ 53 eV
1072
+ 1.2
1073
+ 57eV
1074
+ 0.6
1075
+ 81 eV
1076
+ 0.0
1077
+ 2.4
1078
+ Eion
1079
+ pvAl: (100)
1080
+ pAl:: (100)
1081
+ (%)
1082
+ 1.8
1083
+ 47eV
1084
+ 53 eV
1085
+ fect
1086
+ 1.2
1087
+ 57 eV
1088
+ 0.6
1089
+ _81eV
1090
+ 0.0
1091
+ 0
1092
+ 10
1093
+ 20
1094
+ 30
1095
+ 40
1096
+ 0
1097
+ 10
1098
+ 20
1099
+ 30
1100
+ 40
1101
+ t (min)
1102
+ t (min)ure 10 for all considered IEDFs and surface orientations. The deposition onto AlN(002) with
1103
+ Eion =47 eV takes up to 30 minutes to reach a steady-state. The ongoing ion bombardment
1104
+ spawns collision cascades in the subsurface region, which once they have worn off may leave
1105
+ vacancies and interstitials behind. Sputtering events or the desorption of N2 remove atoms
1106
+ from the surface and, thus, facilitate the accumulation of vacancies. The Al and N vacancy
1107
+ populations are approximately equal. The Al interstitial population is greater than the N
1108
+ split interstitial population, and both exceed the corresponding vacancy populations. This
1109
+ is due forward sputtering (peening) of surface atoms as well as incorporation of energetic
1110
+ particles (i.e., N+, N2, small proportion of Al), which eventually either reside as interstitials
1111
+ or recombine with vacancies. IEDFs with slightly higher mean ion energies (i.e., 53 eV, 57
1112
+ eV) converge to a similar point defect structure with marginally increased N split and Al
1113
+ interstitial populations, but require significantly less time for equilibration. These require
1114
+ a few minutes and seconds for Eion =53 eV and Eion =57 eV, respectively. Therefore it is
1115
+ assumed that for Eion =47 eV scarcely sampled ions with relatively high kinetic energies
1116
+ push the systems to their final state. The likelihood for encountering such ions is naturally
1117
+ increased when increasing the mean ion energy.
1118
+ This effect is enhanced by a change of
1119
+ the IEDF shapes (i.e., narrow unimodal → narrow bimodal → broad unimodal). A more
1120
+ significantly increased mean ion energy of 81 eV leads to the evolution to a different sys-
1121
+ tem state with less Al and N vacancies (ρvAl ≈ ρvN) and more interstitials (ρAli > ρ(N-N)N).
1122
+ The evolution of the vacancy populations inhibits intermediate maxima after a few seconds.
1123
+ Subsequently, vacancies are removed due to recombination as described before and reach a
1124
+ steady-state after 10 seconds. The evolution of the point defect structures are depicted in
1125
+ Figure 10 for up to 45 minutes (and are available in the appendix for up to 100 seconds).
1126
+ The deposition onto AlN(100) leads to similar system dynamics for Eion =47 eV and
1127
+ Eion =53 eV. The Al and N vacancy populations are approximately equal too. But a greater
1128
+ number of N split and smaller number of Al interstitials are observed. Scarce Al atoms
1129
+ hitting the surface with relative high kinetic energies of up to 30 eV provide an insufficient
1130
+ momentum when penetrating the AlN(100) surfaces to be persistently incorporated, i.e.
1131
+ they end up atop the surface. Increasing the mean ion energy to 57 eV leads to a system
1132
+ evolution that requires up to 10 minutes to reach a steady-state that differs significantly
1133
+ from the previous one. The equilibration on the minute-time scale is again attributed to the
1134
+ contribution of only a small proportion of the incident ions with sufficient kinetic energies,
1135
+ 25
1136
+
1137
+ Figure 11. Transient evolution of the mass density for all considered IEDFs as well as surface
1138
+ orientations. Error bars and the height of transparent region resemble the mean plus / minus the
1139
+ root-mean-squared deviations.
1140
+ which are pushing the systems to their final state (cf. Eion =53 eV: (002)). The (N-N)N
1141
+ populations remain unchanged. The Al and N vacancy populations are doubled. Hence,
1142
+ the probability for the recombination of surface near Al vacancies and incident Al atoms is
1143
+ increased too. The final Al interstitial population are therefore even more than doubled. The
1144
+ point defect structure is characterized predominantly by Al and N Frenkel pairs (vacancies
1145
+ plus interstitials). The evolution to this new system state is caused by a change of the
1146
+ IEDF shapes.
1147
+ The IEDF with Eion =53 eV (narrow bimodal IEDF) and Eion =57 eV
1148
+ (broad unimodal IEDF) reaches up to 60 eV and 75 eV, respectively. The cases with the
1149
+ highest mean ion energies of 83 eV converge to a similar system state with slightly increased
1150
+ interstitial populations, but it takes only a few seconds.
1151
+ The evolution of the mass densities are presented in Figure 11. The equilibration time of
1152
+ the individual cases shows a consistent behavior. However, it is interesting to note that all
1153
+ cases converge to a similar mass density for the surface orientation (002). The accumulation
1154
+ of interstitials is balanced out by a corresponding volumetric expansion. In case of AlN(100),
1155
+ two final point defect structures were discussed in the preceding paragraph.
1156
+ These two
1157
+ system states are reflected by two distinctly separate mass densities. Higher ion energies
1158
+ 26
1159
+
1160
+ 3.175
1161
+ (002)
1162
+ Eion
1163
+ 47
1164
+ eV
1165
+ 3.150
1166
+ 53 eV
1167
+ 3.125
1168
+ 57 eV
1169
+ 3.100
1170
+ 81 eV
1171
+ 3.075
1172
+ 3.175
1173
+ Eion
1174
+ (100)
1175
+ 47
1176
+ eV
1177
+ 3.150
1178
+ 53 eV
1179
+ 3.125
1180
+ 57
1181
+ eV
1182
+ 3.100
1183
+ 81
1184
+ eV
1185
+ 3.075
1186
+ 0
1187
+ 10
1188
+ 20
1189
+ 30
1190
+ 40
1191
+ t (min)Figure 12. The final composition (i.e., Al and Ar concentration cAl and cAr, respectively) for all
1192
+ considered IEDFs as well as surface orientations averaged over the last minute are compared to
1193
+ experimental reference values [64]. Circles and error bars represent mean values and root-mean-
1194
+ squared deviations.
1195
+ lead to a great number of Al as well as N Frenkel pairs, which do not alter the mass of the
1196
+ atomic system but cause stress and correspondingly a volumetric relaxation. Hence, smaller
1197
+ mass densities are observed.
1198
+ The composition of the deposited AlN(002) and AlN(100) thin films averaged over the
1199
+ last minute are shown in Figure 12 in comparison to experimental reference values [64]. A
1200
+ good agreement with the experiment is achieved when predicting stoichiometric AlN thin
1201
+ films even though the Ar concentration of 2.5 ± 0.1 % for Eion = 47 eV and Eion = 53 eV is
1202
+ not reproduced.
1203
+ The stresses predicted by the PSNN and measured in the experiment are presented in
1204
+ Figure 13 (a). An increasingly compressive stress is observed for greater mean ion energies in
1205
+ either case due to the enhanced ion bombardment induced point defect formation. Vacancies
1206
+ and interstitials cause tensile and compressive stresses, respectively. The interplay of all
1207
+ point defects define the film stresses in the ML simulation. However, the contributions due
1208
+ to Al interstitials dominate the stress formation due to their larger size and high formation
1209
+ energies [68]. This finding is illustrated by a similar dependence of the stresses and the
1210
+ negated Al interstitial populations (multiplied by -1) on the mean ion energy Eion, as shown
1211
+ in Figures 13. The preferential surface orientation was found to change from (002) to (100)
1212
+ in the experiment when increasing the mean ion energies from 47-53 eV to 57-81 eV [64].
1213
+ 27
1214
+
1215
+ 45
1216
+ CAl
1217
+ 30
1218
+ c
1219
+ Experiment
1220
+ CAr
1221
+ 15
1222
+ Simulation: (002)
1223
+ Simulation: (100)
1224
+ 48
1225
+ 56
1226
+ 64
1227
+ 72
1228
+ 80
1229
+ Eion (eV)Figure 13. The (a) final stress and (b) negated Al interstitial population for all considered IEDFs
1230
+ as well as surface orientations averaged over the last minute are compared to experimental reference
1231
+ values [64]. Circles and error bars represent mean values and root-mean-squared deviations.
1232
+ By comparison with the ML prediction for the (002) surface orientation, it can be inferred
1233
+ that the predicted stresses for the two IEDFs with smaller mean ion energies (i.e., 47 eV, 53
1234
+ eV) are overestimated. However, from comparison with the prediction for the (100) surface
1235
+ orientation, the two IEDFs with greater mean ion energies (i.e., 57 eV, 81 eV) are in excellent
1236
+ agreement with the experiment. The change of the predominant surface orientation (i.e.,
1237
+ (002)→(100)) observed in the experiment may be attributed to the reduced compressive
1238
+ stresses predicted to reach up to -12 GPa for (002), compared to -8 GPa for (100).
1239
+ 28
1240
+
1241
+ 0
1242
+ a)
1243
+ Experiment
1244
+ Simulation: (002)
1245
+ -3
1246
+ (GPa)
1247
+ Simulation: (100)
1248
+ stress α
1249
+ -12
1250
+ 48
1251
+ 56
1252
+ 64
1253
+ 72
1254
+ 80
1255
+ Eion (eV)
1256
+ 0.0
1257
+ (b)
1258
+ Simulation: (002)
1259
+ Simulation: (100)
1260
+ -0.6
1261
+ .1.2
1262
+ -pAli
1263
+ -1.8
1264
+ 2.4
1265
+ 48
1266
+ 56
1267
+ 64
1268
+ 72
1269
+ 80
1270
+ Eion (eV)V.
1271
+ CONCLUSION
1272
+ This work is meant to further advance the development of data-driven plasma-surface
1273
+ interaction models with atomic fidelity [21]. Reactive processes (i.e., sputtering and depo-
1274
+ sition of AlN in an Ar/N2 discharges) are taken into account. A data-generating scheme
1275
+ is proposed that overcomes the burden of computationally too demanding simulations (i.e.,
1276
+ hybrid RMD/tfMC) and, hence, undersampled parameter spaces. The latter are effectively
1277
+ populated by evolving randomly sampled system states Ss by means of random PSIs (i.e.,
1278
+ species s, kinetic energy Ekin) and diffusion processes (i.e., temperature T). The effect of a
1279
+ single PSI on the deposited film is estimated by cleaving and reinforcing the corresponding
1280
+ bulk structure in surface normal direction [37]. A PSNN is used to separate the PSIs from
1281
+ the diffusion processes, which allows for a more efficient data-generation and enforcement of
1282
+ physics-constraints (e.g., particle conservation during bulk diffusion).
1283
+ The trained PSNN model is applied to an experimental reference sputter deposition of
1284
+ AlN by taking the corresponding particle fluxes and IEDFs with mean ion energies in the
1285
+ range of 47-81 eV into account [64]. Ar+ ions are found to remove more Al than N atoms
1286
+ from the surface.
1287
+ The inverse is observed for N+ ions, which spawn collision cascades
1288
+ that distribute their momenta more rapidly with the N surface atoms. This facilitates the
1289
+ temporary formation of (N-N)N at the very surface that eventually leave as N2. N+
1290
+ 2 ions
1291
+ are split up when they hit the surface and, thus, spawn two collision cascades with reduced
1292
+ individual momenta compared to the initially shared one.
1293
+ A diminishing amount of Al
1294
+ atoms is sputtered and a shallower subsurface region is effected. The latter allows for the
1295
+ direct formation of (N-N)N at the surface and subsequent emission as N2. Atomic nitrogen is
1296
+ rarely sputtered by either ion species. Higher mean ion energies decrease the outgoing flux
1297
+ of N2 due N+
1298
+ 2 ion bombardment but increase the formation of persistent, deeper (N-N)N.
1299
+ The predicted film depositions take either a few seconds or up to 30 minutes to reach their
1300
+ respective steady-state. Long equilibration times are observed when rare ions whose kinetic
1301
+ energy originates from the high energy tail of the IEDF push the systems to their final states.
1302
+ The latter is found to be dependent on the imposed surface orientation. In particular, a
1303
+ greater Al interstitials population is predicted for AlN(002) than for AlN(100). This point
1304
+ defect type predominantly determines the compressive stress evolution in the deposited AlN
1305
+ thin films.
1306
+ The stresses predicted by the PSNN are quantitatively and qualitatively in
1307
+ 29
1308
+
1309
+ good agreement with the experimental reference values in spite of neglecting for instance
1310
+ thermal stresses or point defect annihilation at grain boundaries. The ML model predicts
1311
+ stoichiometric AlN that is observed in the experiment too.
1312
+ In summary, 200 million plasma-surface interactions and diffusion processes were pre-
1313
+ dicted with high physical fidelity (hybrid RMD/tfMC). This enabled the evolution of 800
1314
+ AlN systems (100 × four IEDFs × two surface orientations) in time for up to 45 minutes.
1315
+ It took about 34 hours to perform all machine learning predictions with a single GPU.
1316
+ Hence, predictions can be readily extended to cover up the total experimental deposition
1317
+ time of up to hours when required. In contrast, conducting the same case study with hybrid
1318
+ RMD/tfMC simulations is unattainable as it would take more than approximately 8 million
1319
+ CPU years.
1320
+ ACKNOWLEDGEMENT
1321
+ Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
1322
+ – Project-ID 138690629 – TRR 87 and – Project-ID 434434223 – SFB 1461. The authors
1323
+ thank Dr.-Ing. S. Ries from Ruhr University Bochum, S. Karimi Aghda, M. Sc. from RWTH
1324
+ Aachen University, and L. Vialetto, Ph.D. from Kiel University for fruitful discussions.
1325
+ DATA AVAILABILITY
1326
+ The data that support the findings of this study are available from the corresponding
1327
+ author upon reasonable request.
1328
+ ORCID
1329
+ T. Gergs: https://orcid.org/0000-0001-5041-2941
1330
+ T. Mussenbrock: https://orcid.org/0000-0001-6445-4990
1331
+ J. Trieschmann: https://orcid.org/0000-0001-9136-8019
1332
+ 30
1333
+
1334
+ APPENDIX
1335
+ Figure 14.
1336
+ Schematic of the CVAE network structure.
1337
+ The shape of the data is provided in
1338
+ parenthesis. Machine learning operations are indicated by colored arrows. The inputs and outputs
1339
+ for the PSI-CVAE are given by x = {Ekin, s, Ss} and y = {Γout
1340
+ s
1341
+ , Ss}, respectively. The inputs
1342
+ and outputs for the Diffusion-CVAE are given by x = {T, Ss} and y = {Ss}, respectively.
1343
+ 31
1344
+
1345
+ Concat
1346
+ Dense
1347
+ Calc
1348
+ EnforceConstraints
1349
+ 2
1350
+ μls,r
1351
+ Train
1352
+ phase?
1353
+ True
1354
+ False
1355
+ Ols,r
1356
+ N(0, 1)
1357
+ N(0,1)
1358
+ m
1359
+ m
1360
+ nhl = 2
1361
+ nhl = 2
1362
+ (nis)
1363
+ (SIu)Figure 15. Transient evolution of the most relevant point defect populations for all considered
1364
+ IEDFs as well as surface orientations. Error bars and the height of transparent region resemble
1365
+ the mean plus / minus the root-mean-squared deviations.
1366
+ 32
1367
+
1368
+ 2.4
1369
+ Eion
1370
+ pvn: (002)
1371
+ P(N-N)n: (002)
1372
+ 47eV
1373
+ 1.8
1374
+ 53 eV
1375
+ 1.2
1376
+ 57 eV
1377
+ 81eV
1378
+ 0.0
1379
+ 2.4
1380
+ Eion
1381
+ pvA1: (002)
1382
+ PAl: (002)
1383
+ (%)
1384
+ 1.8
1385
+ 47 eV
1386
+ 53 eV
1387
+ 1.2
1388
+ 57eV
1389
+ 0.6
1390
+ 81 eV
1391
+ 0.0
1392
+ 2.4
1393
+ Eion
1394
+ Pvn: (100)
1395
+ P(N-N)N: (100)
1396
+ 47 eV
1397
+ 53 eV
1398
+ 1.2
1399
+ 57eV
1400
+ 0.6
1401
+ 81 eV
1402
+ 0.0
1403
+ 2.4
1404
+ Eion
1405
+ pvAr: (100)
1406
+ PAl;: (100)
1407
+ 1.8
1408
+ 47 eV
1409
+ 53 eV
1410
+ fect
1411
+ 1.2
1412
+ 557 eV
1413
+ 0.6
1414
+ 81eV
1415
+ 0.0
1416
+ 0
1417
+ 25
1418
+ 50
1419
+ 75
1420
+ 100
1421
+ 0
1422
+ 25
1423
+ 50
1424
+ 75
1425
+ 100
1426
+ t (s)
1427
+ (s) [1] P. J. Kelly and R. D. Arnell, Vacuum 56, 159 (2000).
1428
+ [2] J. T. Gudmundsson, Plasma Sources Science and Technology 29, 113001 (2020), publisher:
1429
+ IOP Publishing.
1430
+ [3] A. Baptista, F. Silva, J. Porteiro, J. M´ıguez, and G. Pinto, Coatings 8, 402 (2018), number:
1431
+ 11 Publisher: Multidisciplinary Digital Publishing Institute.
1432
+ [4] S. M. Rossnagel, J. J. Cuomo, and W. D. Westwood, Handbook of plasma processing tech-
1433
+ nology: fundamentals, etching, deposition, and surface interactions (Noyes Publications, Park
1434
+ Ridge, USA, 1990).
1435
+ [5] F. Kr¨uger, T. Gergs, and J. Trieschmann, Plasma Sources Sci. Technol. 28, 035002 (2019).
1436
+ [6] G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Oxford Uni-
1437
+ versity Press, New York, USA, 1994).
1438
+ [7] M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Pro-
1439
+ cessing, 2nd ed. (Wiley, Hoboken, USA, 2005).
1440
+ [8] W. D. J. Callister and D. G. Rethwisch, Materials Science and Engineering: An Introduction,
1441
+ 9th ed. (Wiley, Hoboken, USA, 2013).
1442
+ [9] S. Berg and T. Nyberg, Thin Solid Films 476, 215 (2005).
1443
+ [10] D. Depla, S. Mahieu, R. Hull, R. M. Osgood, J. Parisi,
1444
+ and H. Warlimont, eds., Reactive
1445
+ Sputter Deposition, Springer Series in Materials Science, Vol. 109 (Springer, Berlin, Germany,
1446
+ 2008).
1447
+ [11] M. W. Thompson, Philos. Mag. 18, 377 (1968).
1448
+ [12] P. Sigmund, Phys. Rev. 187, 768 (1969).
1449
+ [13] P. Sigmund, Phys. Rev. 184, 383 (1969).
1450
+ [14] R. Preuss, R. Arredondo,
1451
+ and U. von Toussaint, Entropy 21, 1175 (2019), number: 12
1452
+ Publisher: Multidisciplinary Digital Publishing Institute.
1453
+ [15] Z. W. Ulissi, A. J. Medford, T. Bligaard, and J. K. Nørskov, Nat. Commun. 8, 14621 (2017).
1454
+ [16] A. Diaw, K. Barros, J. Haack, C. Junghans, B. Keenan, Y. W. Li, D. Livescu, N. Lubbers,
1455
+ M. McKerns, R. S. Pavel, D. Rosenberger, I. Sagert, and T. C. Germann, Phys. Rev. E 102,
1456
+ 023310 (2020).
1457
+ [17] H. Kino, K. Ikuse, H.-C. Dam, and S. Hamaguchi, Phys. Plasmas 28, 013504 (2021).
1458
+ 33
1459
+
1460
+ [18] I. Adamovich, S. Agarwal, E. Ahedo, L. L. Alves, S. Baalrud, N. Babaeva, A. Bogaerts,
1461
+ A. Bourdon, P. J. Bruggeman, C. Canal, E. H. Choi, S. Coulombe, Z. Donk´o, D. B. Graves,
1462
+ S. Hamaguchi, D. Hegemann, M. Hori, H.-H. Kim, G. M. W. Kroesen, M. J. Kushner, A. Lar-
1463
+ icchiuta, X. Li, T. E. Magin, S. M. Thagard, V. Miller, A. B. Murphy, G. S. Oehrlein, N. Puac,
1464
+ R. M. Sankaran, S. Samukawa, M. Shiratani, M. ˇSimek, N. Tarasenko, K. Terashima, E. T.
1465
+ Jr, J. Trieschmann, S. Tsikata, M. M. Turner, I. J. v. d. Walt, M. C. M. v. d. Sanden, and
1466
+ T. v. Woedtke, Journal of Physics D: Applied Physics 55, 373001 (2022), publisher: IOP
1467
+ Publishing.
1468
+ [19] R. Anirudh, R. Archibald, M. S. Asif, M. M. Becker, S. Benkadda, P.-T. Bremer, R. H. S. Bud´e,
1469
+ C. S. Chang, L. Chen, R. M. Churchill, J. Citrin, J. A. Gaffney, A. Gainaru, W. Gekelman,
1470
+ T. Gibbs, S. Hamaguchi, C. Hill, K. Humbird, S. Jalas, S. Kawaguchi, G.-H. Kim, M. Kirchen,
1471
+ S. Klasky, J. L. Kline, K. Krushelnick, B. Kustowski, G. Lapenta, W. Li, T. Ma, N. J. Mason,
1472
+ A. Mesbah, C. Michoski, T. Munson, I. Murakami, H. N. Najm, K. E. J. Olofsson, S. Park,
1473
+ J. L. Peterson, M. Probst, D. Pugmire, B. Sammuli, K. Sawlani, A. Scheinker, D. P. Schissel,
1474
+ R. J. Shalloo, J. Shinagawa, J. Seong, B. K. Spears, J. Tennyson, J. Thiagarajan, C. M. Tico¸s,
1475
+ J. Trieschmann, J. van Dijk, B. Van Essen, P. Ventzek, H. Wang, J. T. L. Wang, Z. Wang,
1476
+ K. Wende, X. Xu, H. Yamada, T. Yokoyama, and X. Zhang, “2022 Review of Data-Driven
1477
+ Plasma Science,” (2022), arXiv:2205.15832 [physics].
1478
+ [20] T. Gergs, B. Borislavov,
1479
+ and J. Trieschmann, Journal of Vacuum Science & Technology B
1480
+ 40, 012802 (2022), publisher: American Vacuum Society.
1481
+ [21] T. Gergs, T. Mussenbrock, and J. Trieschmann, “Physics-separating artificial neural networks
1482
+ for predicting initial stages of Al sputtering and thin film deposition in Ar plasma discharges,”
1483
+ (2022), arXiv:2211.04796 [cond-mat].
1484
+ [22] D. P. Kingma and M. Welling, in Proceedings of the International Conference on Learning
1485
+ Representations (Scottsdale, USA, 2013).
1486
+ [23] D. J. Rezende, S. Mohamed, and D. Wierstra, in Proceedings of the 31st International Con-
1487
+ ference on Machine Learning, Vol. 32 (PMLR, Beijing, CN, 2014) pp. 1278–1286.
1488
+ [24] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed,
1489
+ and
1490
+ A. Lerchner, in Proceedings of the 5th International Conference on Learning Representations
1491
+ (Toulon, FR, 2016).
1492
+ 34
1493
+
1494
+ [25] C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins, and A. Lerchner, in
1495
+ Proceedings of the 31st Conference on Neural Information Processing Systems (Long Beach,
1496
+ USA, 2017).
1497
+ [26] C. Doersch, arXiv:1606.05908 [cs, stat] (2021).
1498
+ [27] K. Sohn, H. Lee, and X. Yan, in Proceedings of the 29th Conference on Neural Information
1499
+ Processing Systems, Vol. 28 (Montr´eal, CA, 2015).
1500
+ [28] D. Drabold et al., Physical Review B 71, 054206 (2005).
1501
+ [29] M. Cobb, D. Drabold, and R. Cappelletti, Physical Review B 54, 12162 (1996).
1502
+ [30] X. Zhang and D. Drabold, Physical Review B 62, 15695 (2000).
1503
+ [31] J. S. K.-L. Gibson, S. Rezaei, H. Rueß, M. Hans, D. Music, S. Wulfinghoff, J. M. Schneider,
1504
+ S. Reese, and S. Korte-Kerzel, Materials Research Letters 6, 142 (2018), publisher: Taylor &
1505
+ Francis eprint: https://doi.org/10.1080/21663831.2017.1414081.
1506
+ [32] A. Iqbal and F. Mohd-Yasin, Sensors (Basel, Switzerland) 18, 1797 (2018).
1507
+ [33] R. Elfrink, T. M. Kamel, M. Goedbloed, S. Matova, D. Hohlfeld, Y. v. Andel,
1508
+ and R. v.
1509
+ Schaijk, Journal of Micromechanics and Microengineering 19, 094005 (2009), publisher: IOP
1510
+ Publishing.
1511
+ [34] A. K. Batra, A. Alomari, A. K. Chilvery, A. Bandyopadhyay,
1512
+ and K. Grover, Advanced
1513
+ Science, Engineering and Medicine 8, 1 (2016).
1514
+ [35] S. P. Beeby, M. J. Tudor, and N. M. White, Measurement Science and Technology 17, R175
1515
+ (2006), publisher: IOP Publishing.
1516
+ [36] A. Stukowski, Modelling and Simulation in Materials Science and Engineering 18, 015012
1517
+ (2009), publisher: IOP Publishing.
1518
+ [37] S. Karimi Aghda, D. Music, Y. Unutulmazsoy, H. H. Sua, S. Mr´az, M. Hans, D. Primetzhofer,
1519
+ A. Anders, and J. M. Schneider, Acta Materialia 214, 117003 (2021).
1520
+ [38] F. Kr¨oger and H. Vink (Academic Press, 1956) pp. 307–435.
1521
+ [39] K. M. Bal and E. C. Neyts, The Journal of Chemical Physics 141, 204104 (2014), publisher:
1522
+ American Institute of Physics.
1523
+ [40] M. J. Mees, G. Pourtois, E. C. Neyts, B. J. Thijsse, and A. Stesmans, Physical Review B 85,
1524
+ 134301 (2012), publisher: American Physical Society.
1525
+ [41] E. C. Neyts and A. Bogaerts, in Theoretical Chemistry in Belgium: A Topical Collection from
1526
+ Theoretical Chemistry Accounts, Highlights in Theoretical Chemistry, edited by B. Cham-
1527
+ 35
1528
+
1529
+ pagne, M. S. Deleuze, F. De Proft, and T. Leyssens (Springer, Berlin, Heidelberg, 2014) pp.
1530
+ 277–288.
1531
+ [42] S. Plimpton, Journal of Computational Physics 117, 1 (1995).
1532
+ [43] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S. Crozier,
1533
+ P. J. in ’t Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan, M. J. Stevens,
1534
+ J. Tranchida, C. Trott, and S. J. Plimpton, Computer Physics Communications 271, 108171
1535
+ (2022).
1536
+ [44] T. Liang, T.-R. Shan, Y.-T. Cheng, B. D. Devine, M. Noordhoek, Y. Li, Z. Lu, S. R. Phillpot,
1537
+ and S. B. Sinnott, Materials Science and Engineering: R: Reports 74, 255 (2013).
1538
+ [45] J. F. Ziegler and J. P. Biersack, in Treatise on Heavy-Ion Science: Volume 6: Astrophysics,
1539
+ Chemistry, and Condensed Matter, edited by D. A. Bromley (Springer US, Boston, MA, 1985)
1540
+ pp. 93–129.
1541
+ [46] T. Gergs, T. Mussenbrock, and J. Trieschmann, “Charge-optimized many-body interaction
1542
+ potential for AlN revisited to explore plasma-surface interactions,” (2022), arXiv:2208.11605
1543
+ [cond-mat, physics:physics].
1544
+ [47] K. Choudhary, T. Liang, K. Mathew, B. Revard, A. Chernatynskiy, S. R. Phillpot, R. G.
1545
+ Hennig, and S. B. Sinnott, Computational Materials Science 113, 80 (2016).
1546
+ [48] T. Gergs, F. Schmidt, T. Mussenbrock, and J. Trieschmann, Journal of Chemical Theory and
1547
+ Computation 17, 6691 (2021), publisher: American Chemical Society.
1548
+ [49] A. Sz´all´as, K. Sz´asz, X. T. Trinh, N. T. Son, E. Janz´en,
1549
+ and A. Gali, Journal of Applied
1550
+ Physics 116, 113702 (2014), publisher: American Institute of Physics.
1551
+ [50] F. Birch, Physical Review 71, 809 (1947), publisher: American Physical Society.
1552
+ [51] F. D. Murnaghan, Proceedings of the National Academy of Sciences 30, 244 (1944), publisher:
1553
+ Proceedings of the National Academy of Sciences.
1554
+ [52] D. Music, L. Banko, H. Ruess, M. Engels, A. Hecimovic, D. Grochla, D. Rogalla, T. Br¨ogel-
1555
+ mann, A. Ludwig, A. von Keudell, K. Bobzin, and J. M. Schneider, Journal of Applied Physics
1556
+ 121, 215108 (2017), publisher: American Institute of Physics.
1557
+ [53] D. M. Holzapfel, D. Music, S. Mr´az, S. Karimi Aghda, M. Etter, P. Ondraˇcka, M. Hans,
1558
+ D. Bogdanovski, S. Evertz, L. Patterer, P. Schmidt, A. Sch¨okel, A. O. Eriksson, M. Arndt,
1559
+ D. Primetzhofer, and J. M. Schneider, Acta Materialia 237, 118160 (2022).
1560
+ 36
1561
+
1562
+ [54] F. Oviedo, Z. Ren, S. Sun, C. Settens, Z. Liu, N. T. P. Hartono, S. Ramasamy, B. L. DeCost,
1563
+ S. I. P. Tian, G. Romano, A. Gilad Kusne, and T. Buonassisi, npj Computational Materials
1564
+ 5, 1 (2019), number: 1 Publisher: Nature Publishing Group.
1565
+ [55] D.-C. Li and I.-H. Wen, Neurocomputing 143, 222 (2014).
1566
+ [56] T. A. Choudhury, N. Hosseinzadeh, and C. C. Berndt, Surface and Coatings Technology 205,
1567
+ 4886 (2011).
1568
+ [57] H. Zhang, M. Cisse, Y. N. Dauphin,
1569
+ and D. Lopez-Paz, “mixup: Beyond Empirical Risk
1570
+ Minimization,” (2018), arXiv:1710.09412 [cs, stat].
1571
+ [58] D. P. Kingma and J. Ba, in Proceedings of the 3rd International Conference on Learning
1572
+ Representations (San Diego, USA, 2015).
1573
+ [59] D. E. P. Vanpoucke, O. S. J. van Knippenberg, K. Hermans, K. V. Bernaerts,
1574
+ and
1575
+ S. Mehrkanoon, Journal of Applied Physics 128, 054901 (2020), publisher: American Institute
1576
+ of Physics.
1577
+ [60] T. B¨ack and F. Hoffmeister, Statistics and Computing 4, 51 (1994).
1578
+ [61] H.-P. Schwefel, Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrate-
1579
+ gie, Interdisciplinary Systems Research,, Vol. 26 (Birkh¨auser,, Basel, 1977).
1580
+ [62] G. Rozenberg, T. B¨ack, and J. N. Kok, eds., Handbook of Natural Computing (Springer Berlin
1581
+ Heidelberg, Berlin, Heidelberg, 2012).
1582
+ [63] H.-P. Schwefel, in Preprints of the 31st Annual Meeting of the International Society for General
1583
+ System Research, Vol. 2 (Budapest, Hungary, 1987) pp. 1025–1033.
1584
+ [64] S. Ries, L. Banko, M. Hans, D. Primetzhofer, J. M. Schneider, A. Ludwig, P. Awakowicz,
1585
+ and J. Schulze, Plasma Sources Science and Technology 28, 114001 (2019), publisher: IOP
1586
+ Publishing.
1587
+ [65] J. Trieschmann and T. Mussenbrock, J. Appl. Phys. 118, 033302 (2015).
1588
+ [66] J. Trieschmann, S. Ries, N. Bibinov, P. Awakowicz, S. Mr´az, J. M. Schneider, and T. Mussen-
1589
+ brock, Plasma Sources Science and Technology 27, 054003 (2018).
1590
+ [67] S. Bienholz, Kapazitiv gekoppelte Mehrfrequenzplasmen zur Abscheidung keramischer und fer-
1591
+ romagnetischer Schichten, Ph.D. thesis, Ruhr University Bochum, Bochum, North Rhine-
1592
+ Westphalia, Germany (2014).
1593
+ [68] C. Stampfl and C. G. Van de Walle, Physical Review B 65, 155212 (2002), publisher: American
1594
+ Physical Society.
1595
+ 37
1596
+
5dE1T4oBgHgl3EQf6gWk/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
5dFKT4oBgHgl3EQf-S4-/content/tmp_files/2301.11957v1.pdf.txt ADDED
@@ -0,0 +1,435 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.11957v1 [math.OC] 27 Jan 2023
2
+ A continuity result for the adjusted normal cone operator
3
+ Marco Castellania, Massimiliano Giulia
4
+ aDepartment of Information Engineering, Computer Science and Mathematics, University of L’Aquila, Via
5
+ Vetoio, L’Aquila, Italy
6
+ Abstract
7
+ The concept of adjusted sublevel set for a quasiconvex function was introduced in [5] and the local
8
+ existence of a norm-to-weak∗ upper semicontinuous base-valued submap of the normal operator
9
+ associated to the adjusted sublevel set was proved. When the space is finite dimensional, a globally
10
+ defined upper semicontinuous base-valued submap is obtained taking the intersection of the unit
11
+ sphere, which is compact, with the normal operator, which is closed. Unfortunately, this technique
12
+ does not work in the infinite dimensional case.
13
+ We propose a partition of unity technique to
14
+ overcome this problem in Banach spaces. Application is given to a quasiconvex quasioptimization
15
+ problem through the use of a new existence result for generalized quasivariational inequalities which
16
+ is based on the Schauder fixed point theorem.
17
+ Keywords:
18
+ Cone upper semicontinuity, Normal operator, Quasivariational inequality,
19
+ Quasioptimization
20
+ 1. Introduction
21
+ The notion of upper semicontinuity seems to be unappropriate for cone-valued maps and hence
22
+ modified definitions were been introduced and studied [5, 8, 12]. The normal cone operator to the
23
+ adjusted sublevel sets of a quasiconvex function f defined on a Banach space was introduced in [5]
24
+ and it was proved to be both quasimonotone and cone upper semicontinuous. In particular, the
25
+ authors showed that the normal cone operator admits a locally defined base-valued submap being
26
+ norm-to-weak∗ upper semicontinuous. In [4], when the space is Euclidian, the authors obtained a
27
+ globally defined upper semicontinuous base-valued submap taking the convex hull of the normalized
28
+ Email addresses: [email protected] (Marco Castellani), [email protected]
29
+ (Massimiliano Giuli)
30
+ Preprint submitted to Journal of LATEX Templates
31
+ January 31, 2023
32
+
33
+ normal operator which is the intersection of the unit sphere, which is compact, with the normal
34
+ operator, which is closed. Since the unit sphere is not compact in the infinite dimensional case, this
35
+ approach is unsuccessful in a Banach space X.
36
+ The first aim of this paper is to overcome this problem by using a partition of unity tech-
37
+ nique.
38
+ Theorem 3 states the existence of a norm-to-weak∗ upper semicontinuous submap A :
39
+ X \ arg min f ⇒ X∗ such that each A(x) is a nonempty weak∗ compact convex set not containing
40
+ the origin which generates the normal cone to the adjusted sublevel set at x. Subsequently, we
41
+ establish an existence result (Theorem 5) for a generalized quasivariational inequality which im-
42
+ proves the famous Tan’s result [14]. Finally, combining both results, we present an application to
43
+ quasioptimization problems.
44
+ In the last part of this introduction, we present some preliminary notions and results. Let X be
45
+ a real Banach space with norm ∥ · ∥, X∗ its topological dual with norm ∥ · ∥∗, and ⟨·, ·⟩ the duality
46
+ pairing between X∗ and X. From now on, unless otherwise indicated, the spaces X and X∗ will be
47
+ equipped by the strong (norm) topology s and the weak∗ topology w∗, respectively. The closed unit
48
+ balls in X and X∗ are denoted by B and B∗, respectively. Given a nonempty set A ⊆ X and x ∈ X,
49
+ dist(x, A) = inf{∥y−x∥ : y ∈ A} is the distance of x from A and B(A, r) = {x ∈ X : dist(x, A) ≤ r}
50
+ is the neighbourhood of A with radius r ≥ 0.
51
+ A subset K of X∗ is a cone if for each x∗ ∈ K and scalar t > 0, the product tx∗ ∈ K (note
52
+ that some authors define cone with the scalar t ranging over all non-negative scalars). Clearly the
53
+ empty set is a cone.
54
+ Let K ⊆ X∗ be a cone. A convex subset A of K is called a base if K = {tx∗ : t ≥ 0, x∗ ∈ A}
55
+ and 0 ̸∈ w∗- cl A, where w∗- cl denotes the closure with respect to the weak∗ topology. Clearly the
56
+ empty set is a base of the empty cone. Vice versa, if K admits a nonempty base then K is a convex
57
+ cone such that {0} ⊊ K. In particular, if the base is compact then K is closed.
58
+ The domain and the graph of a set-valued map Φ : X ⇒ X∗ are denoted by dom Φ and gph Φ,
59
+ respectively. The map Φ is norm-to-weak∗ upper semicontinuous at x ∈ X if for every open set Ω
60
+ such that Φ(x) ⊆ Ω, there exists a neighbourhood Ux of x such that Φ(x′) ⊆ Ω, for all x′ ∈ Ux.
61
+ The map Φ is norm-to-weak∗ closed at x ∈ dom f if for each x∗ ∈ Φ(x) and for each net {(xα, x∗
62
+ α)}
63
+ with x∗
64
+ α ∈ Φ(xα) which converges to (x, x∗) in the s × w∗ topology, we have that x∗ ∈ Φ(x). The
65
+ map is norm-to-weak∗ closed if its graph is closed with respect to the topology s × w∗. The Closed
66
+ Graph Theorem states that a closed-valued map Φ with values in a compact set is norm-to-weak∗
67
+ 2
68
+
69
+ upper semicontinuous if and only if it is norm-to-weak∗ closed.
70
+ When we are dealing with a cone-valued map Φ, the concept of norm-to-weak∗ upper semicon-
71
+ tinuity is not appropriate to picture the behaviour of Φ and it is convenient to slightly alter the
72
+ definition. The cone-valued map Φ is called
73
+ • norm-to-weak∗ cone upper semicontinuous at x ∈ X if for every open cone Ω such that
74
+ Φ(x) ⊆ Ω ∪ {0}, there exists a neighbourhood Ux of x such that Φ(x′) ⊆ Ω ∪ {0}, for all
75
+ x′ ∈ Ux;
76
+ • norm-to-weak∗ base upper semicontinuous at x ∈ X if there exist a neighbourhood Ux of x
77
+ and a set-valued map A : Ux ⇒ X∗ such that A(x′) is a base of Φ(x′) for each x′ ∈ Ux and A
78
+ is norm-to-weak∗ upper semicontinuous at x.
79
+ Some remarks are needed. If Φ is norm-to-weak∗ base upper semicontinuous at x ∈ X then there
80
+ exists a neighbourhood Ux of x such that Φ(x′) ̸= {0} for each x′ ∈ Ux. Instead, if Φ is norm-to-
81
+ weak∗ cone upper semicontinuous at x ̸∈ dom Φ then there exists a neighbourhood Ux of x such
82
+ that Φ(x′) ⊆ {0} for each x′ ∈ Ux. Therefore, if Φ is norm-to-weak∗ cone upper semicontinuous
83
+ and Φ(x) admits a base for each x ∈ X then dom Φ is closed. Moreover the norm-to-weak∗ base
84
+ upper semicontinuity of Φ at x implies the norm-to-weak∗ cone upper semicontinuity at the same
85
+ point. The reverse implication holds if Φ(x) admits a base and Φ(x′) ̸= {0} for all x′ in a suitable
86
+ neighbourhood of x [5].
87
+ The norm-to-weak∗ cone upper semicontinuity of a map implies its norm-to-weak∗ closedness if
88
+ the map admits a compact base at every point [7, Proposition 2.3]. The same proof works for local
89
+ closedness.
90
+ Theorem 1. Let Φ : X ⇒ X∗ be a cone-valued map which is norm-to-weak∗ cone upper semicon-
91
+ tinuous at x ∈ dom Φ. If Φ(x) has a compact base then Φ is norm-to-weak∗ closed at x.
92
+ 2. The result
93
+ Let f : X → R∪{+∞} be an extended-valued function. Define for any λ ∈ R∪{+∞} the sublevel
94
+ and the strict sublevel set of f at level λ by Sλ = {x ∈ X : f(x) ≤ λ} and S<
95
+ λ = {x ∈ X : f(x) < λ},
96
+ respectively. Clearly S∞ = X and S<
97
+ ∞ = dom f. The function f is quasiconvex if Sλ is convex for
98
+ all λ ∈ R. Now, we recall the notion of adjusted level set introduced in [5].
99
+ 3
100
+
101
+ Definition 2.1. Let f : X → R ∪ {+∞} and x ∈ X. The adjusted sublevel set of f at x is
102
+ Sa
103
+ f (x) =
104
+
105
+
106
+
107
+ Sf(x)
108
+ if x ∈ arg min f
109
+ Sf(x) ∩ B(S<
110
+ f(x), ρx)
111
+ if x /∈ arg min f
112
+ where ρx = dist(x, S<
113
+ f(x)).
114
+ Note that S<
115
+ f(x) ⊆ Sa
116
+ f (x) ⊆ Sf(x) for all x ∈ X; moreover the convexity of the adjusted sublevel
117
+ sets characterizes the quasiconvexity of the function.
118
+ Theorem 2 (Proposition 2.4 in [5]). The extended-valued function f is quasiconvex if and only if
119
+ Sa
120
+ f (x) is convex, for every x ∈ X.
121
+ To any function f we associate the set-valued map N a : X ⇒ X∗ defined by
122
+ N a(x) = {x∗ ∈ X∗ : ⟨x∗, y − x⟩ ≤ 0, ∀y ∈ Sa
123
+ f (x)}
124
+ In [5, Proposition 3.5] the authors showed that N a is norm-to-weak∗ base upper semicontinuous
125
+ under regularity assumptions on f. Combining Theorem 1 and Proposition 3.5 in [5], the following
126
+ result can be easily deduced.
127
+ Corollary 2.1. Let f be quasiconvex and lower semicontinuous at x ∈ dom f \ arg min f. If there
128
+ exists λ < f(x) such that int Sλ ̸= ∅ then N a is closed at x.
129
+ Such a result has been proved in [4] and, with weaker assumptions but in a finite dimensional
130
+ case, in [1]. Taking advantage of Corollary 2.1, the authors deduce [4, Proposition 4.4] the upper
131
+ semicontinuity of the normalized map N a ∩ S : Rn \ arg min f ⇒ B, being the unit sphere S in
132
+ Rn compact. Moreover, the assumptions in [4, Proposition 4.4] guarantee that the convex hull of
133
+ N a ∩ S is an upper semicontinuous base-valued submap of N a. Our aim is to extend their result to
134
+ the infinite dimensional case. Since the sphere is not weak∗ compact in the dual of a Banach space,
135
+ the previous technique does not work.
136
+ Theorem 3. Let f : X → R ∪ {+∞} be proper, quasiconvex and lower semicontinuous. Assume
137
+ that for each x ∈ X \ arg min f there exists λ < f(x) such that int Sλ ̸= ∅. Then there exists a
138
+ norm-to-weak∗ upper semicontinuous set-valued map A : X \ arg min f ⇒ B∗ such that A(x) is a
139
+ compact base of N a(x), for all x.
140
+ 4
141
+
142
+ Proof. For the first step of the proof, we argue as in [5, Lemma 3.6]. Let z ∈ X \ arg min f
143
+ be fixed.
144
+ Choose z0 ∈ X and λ ∈ R such that λ < f(z) and z0 ∈ int S<
145
+ λ .
146
+ Since f is lower
147
+ semicontinuous, there exists ε > 0 such that
148
+ z0 + 2εB ⊆ S<
149
+ λ ⊆ S<
150
+ f(x),
151
+ ∀x ∈ z + εB
152
+ Thus, for every x ∈ z + εB and for every
153
+ x∗ ∈ N <(x) = {x∗ ∈ X∗ : ⟨x∗, y − x⟩ ≤ 0, ∀y ∈ S<
154
+ f(x)}
155
+ we obtain the following:
156
+ ⟨x∗, z0 + 2εu − x⟩ ≤ 0,
157
+ ∀u ∈ B
158
+ It follows that
159
+ 2ε∥x∗∥∗ = 2ε sup
160
+ u∈B
161
+ ⟨x∗, u⟩
162
+
163
+ ⟨x∗, x − z0⟩
164
+ =
165
+ ⟨x∗, z − z0⟩ + ⟨x∗, x − z⟩
166
+
167
+ ⟨x∗, z − z0⟩ + ε∥x∗∥∗
168
+ Thus,
169
+ ⟨x∗, z − z0⟩ ≥ ε∥x∗∥∗,
170
+ ∀x ∈ z + εB, x∗ ∈ N <(x)
171
+ Set Hz = {x∗ ∈ X∗ : ⟨x∗, z − z0⟩ = ε}. Obviously, for every x ∈ z + εB we have N <(x) ∩ Hz ⊆ B∗
172
+ and, since N a(x) ⊆ N <(x), the set N a(x) ∩ Hz ⊆ B∗ is a compact base for the cone N a(x). Now,
173
+ following the proof of [5, Proposition 3.5], we get the norm-to-weak∗ upper semicontinuity of the
174
+ set-valued map Az : z + εB ⇒ X∗ defined by Fz(x) = N a(x) ∩ Hz, for all x ∈ z + εB.
175
+ The last step of the proof consists in finding the selection A as convex combination of the local
176
+ maps Az through a partition of unity technique.
177
+ Since X \ arg min f is paracompact, there exists a locally finite open covering U = {Ui : i ∈ I}
178
+ where every Ui ∈ U is a subset of some ball z + εB: let us denote by Ai the map Az corresponding
179
+ to the ball z + εB. Moreover, there is a partition of unity {λi : i ∈ I} subordinate to U such that
180
+ each λi : X \ arg min f → [0, 1] is continuous, the finite sum �
181
+ i∈I λi(y) = 1 for any y and λi(y) = 0
182
+ for each y ̸∈ Ui. For every x ∈ X \ arg min f, let I(x) = {i ∈ I : λi(x) > 0}, which is nonempty and
183
+ finite, and define the map A : X \ arg min f ⇒ X∗ as follows
184
+ A(x) =
185
+
186
+ i∈I(x)
187
+ λi(x)Ai(x)
188
+ 5
189
+
190
+ Clearly A(x) is a compact base of N a(x), for all x. Moreover, since the values of A are all contained
191
+ in the compact ball B∗, the norm-to-weak∗ upper semicontinuity of A is equivalent to prove that
192
+ the graph of A is closed with respect to the s × w∗ topology. Assume that the net {xα} converges
193
+ to x. Since all the λi are continuous, it is not restrictive to assume that I(x) ⊆ I(xα) for all α and
194
+ we get:
195
+ A(xα) =
196
+
197
+ i∈I(x)
198
+ λi(xα)Ai(xα) +
199
+
200
+ i∈I(xα)\I(x)
201
+ λi(xα)Ai(xα)
202
+ Moreover, from the continuity of the functions λi, we deduce
203
+ lim
204
+ α
205
+
206
+ i∈I(xα)\I(x)
207
+ λi(xα) = 1 − lim
208
+ α
209
+
210
+ i∈I(x)
211
+ λi(xα) = 0
212
+ (1)
213
+ Now, let {x∗
214
+ α} be a net which weakly∗ converges to x∗ and such that x∗
215
+ α ∈ A(xα) for any α. Then,
216
+ there exist x∗
217
+ i,α ∈ Ai(xα) for every i ∈ I(xα) such that
218
+ x∗
219
+ α =
220
+
221
+ i∈I(x)
222
+ λi(xα)x∗
223
+ i,α +
224
+
225
+ i∈I(xα)\I(x)
226
+ λi(xα)x∗
227
+ i,α
228
+ (2)
229
+ The second addend of (2) weakly∗ converges to zero since, thanks to (1), it converges to zero in
230
+ norm
231
+ ������
232
+
233
+ i∈I(xα)\I(x)
234
+ λi(xα)x∗
235
+ i,α
236
+ ������
237
+
238
+
239
+
240
+ i∈I(xα)\I(x)
241
+ λi(xα)∥x∗
242
+ i,α∥∗ ≤
243
+
244
+ i∈I(xα)\I(x)
245
+ λi(xα)
246
+ On the other hand, without loss of generality, we may assume that {x∗
247
+ i,α} weakly∗ converges to
248
+ some x∗
249
+ i , for every i ∈ I(x). Since Ai has closed graph, we obtain x∗
250
+ i ∈ Ai(x) and x∗ ∈ A(x) follows
251
+ from (2) taking the weak∗ limit.
252
+
253
+ 3. An application
254
+ In this section, our aim is to consider a special optimization problem, called quasioptimization
255
+ problem, and to provide an existence result for this problem through the study of an associated
256
+ generalized quasivariational inequality where Theorem 3 plays a key role. We start establishing a
257
+ new existence result for a generalized quasivariational inequality without requiring any assumption
258
+ of monotonicity.
259
+ Let C be a nonempty subset of X and T : C ⇒ X∗ and K : C ⇒ C be two set-valued maps;
260
+ the generalized quasivariational inequality GQV I(T, K) consists in finding
261
+ x ∈ K(x) such that ∃x∗ ∈ T (x) with ⟨x∗, y − x⟩ ≥ 0,
262
+ ∀y ∈ K(x)
263
+ 6
264
+
265
+ One of the most classic existence results for GQV I(T, K) in the infinite dimensional setting is due
266
+ to Tan and it was originally stated for locally convex topological vector spaces. We recall that the
267
+ set-valued map K : C ⇒ C is said to be lower semicontinuous if for every open set Ω the lower
268
+ inverse image {x ∈ C : K(x) ∩ Ω ̸= ∅} is open in C. Moreover K is called compact if K(C) is
269
+ contained in a compact subset of C.
270
+ Theorem 4 (Theorem 1 in [14]). Let C be compact and convex and K be closed and lower semi-
271
+ continuous with nonempty convex values. Assume that T is norm-to-norm upper semicontinuous
272
+ with nonempty norm compact convex values, then GQV I(T, K) has a solution.
273
+ The existence of solutions for GQV I(T, K) can be obtained with a weaker continuity assumption
274
+ on T than in Theorem 4 if the space X is normed. To this purpose, we need to recall the notion
275
+ of inside point of a convex set that appeared in 1956 in a paper by Michael [13]. The convex set
276
+ S ⊆ C is a face of C if x1, x2 ∈ C, t ∈ (0, 1) and tx1 + (1 − t)x2 ∈ S imply x1, x2 ∈ S. Let FC be
277
+ the (possibly empty) collection of all proper closed faces of cl C, which is the closure of C
278
+ Definition 3.1. A point x ∈ C is an inside point if it is not in any proper closed face of cl C.
279
+ Denote by
280
+ I(C) = C \
281
+
282
+ S∈FC
283
+ S
284
+ the set of the inside points of C.
285
+ A comparison with other notions of relative interior is given in [9, 10]. Thanks to this concept
286
+ of interior point, we can define the following family of convex sets
287
+ D(X) = {C ⊆ X : C is convex and I(cl C) ⊆ C}
288
+ It was proved [13] that D(X) contains all the convex sets which are either closed, or with nonempty
289
+ interior, or finite dimensional. In particular, when X is finite dimensional the class D(X) coincides
290
+ with the family of all convex sets. Now we are in position to state and prove our existence result.
291
+ Let us denote by fix K the set of the fixed points of K.
292
+ Theorem 5. Let C be convex and K be a compact and lower semicontinuous set-valued map with
293
+ nonempty values in D(X), and fix K closed. Assume that T is norm-to-weak∗ upper semicontinuous
294
+ with nonempty weak∗ compact convex values, then GQV I(T, K) has a solution.
295
+ 7
296
+
297
+ Proof. Notice that K admits a continuous selection thanks to [10, Theorem 3.2]. Hence the
298
+ Schauder fixed point theorem as formulated in [11, Proposition 6.3.2] guarantees fix K ̸= ∅.
299
+ Let us consider the set-valued map F : fix K ⇒ X defined as
300
+ F(x) =
301
+
302
+ x∗∈T (x)
303
+ {y ∈ X : ⟨x∗, y − x⟩ < 0} =
304
+
305
+ y ∈ X :
306
+ max
307
+ x∗∈T (x)⟨x∗, y − x⟩ < 0
308
+
309
+ Clearly, F has convex values. To prove that F has open graph in fix K × X, it is sufficient to show
310
+ that the function m : fix K × X → R defined as
311
+ m(x, y) =
312
+ max
313
+ x∗∈T (x)⟨x∗, y − x⟩
314
+ is upper semicontinuous.
315
+ First, fix K is compact since closed subset of the compact set which
316
+ contains K(C). From [2, Lemma 17.8], the subset T (fix K) is weak∗ compact; hence, it is norm
317
+ bounded. Thanks to [2, Corollary 6.40] the duality pairing ⟨·, ·⟩ restricted to T (fix K)× X is jointly
318
+ continuous, where X has its norm topology and X∗ has its weak∗ topology; hence, [2, Lemma 17.30]
319
+ guarantees the upper semicontinuity of m.
320
+ By contradiction, assume that F(x) ∩ K(x) ̸= ∅ for all x ∈ fix K. Fix (x0, y0) ∈ gph K and
321
+ define the map K0 : C ⇒ C as
322
+ K0(x) =
323
+
324
+
325
+
326
+ K(x)
327
+ if x ̸= x0
328
+ {y0}
329
+ if x = x0
330
+ K0 is compact and lower semicontinuous, and K0(x) ∈ D(X) for every x ∈ C. From [10, Theorem
331
+ 3.2] the map K0 admits a continuous selection, hence K is locally selectionable (see Definition
332
+ 1.10.1 in [3]). From [3, Proposition 1.10.4] we deduce that also F ∩ K is locally selectionable and
333
+ [3, Proposition 1.10.2] guarantees that F ∩ K has a continuous selection f : fix K → C. Therefore,
334
+ the set-valued map Υ : C ⇒ C defined as
335
+ Υ(x) =
336
+
337
+
338
+
339
+ K(x)
340
+ if x /∈ fix K
341
+ {f(x)}
342
+ if x ∈ fix K
343
+ is lower semicontinuous [10, Lemma 2.3] with values in the class D(X). Hence [10, Theorem 3.2]
344
+ guarantees that f can be extended to a continuous selection ϕ for Υ. The Schauder fixed point
345
+ theorem guarantees that ϕ has a fixed point, that is, there exists x ∈ C such that x = ϕ(x) ∈ Υ(x).
346
+ Clearly x ∈ fix K and this implies x = f(x) ∈ F(x) which is absurd.
347
+ Therefore, there exists
348
+ 8
349
+
350
+ x ∈ fix K such that F(x) ∩ K(x) = ∅, that is,
351
+ min
352
+ y∈K(x) max
353
+ x∗∈T (x)⟨x∗, y − x⟩ ≥ 0
354
+ Invoking the Sion’s minimax theorem we deduce that
355
+ max
356
+ x∗∈T (x) min
357
+ y∈K(x)⟨x∗, y − x⟩ ≥ 0
358
+ which means that x solves the generalized quasivariational inequality.
359
+
360
+ Remark 3.1. Let us compare our result with Theorem 4 due to Tan. The first difference is about
361
+ the setting: Tan’s result works in a locally convex topological vector space instead Theorem 5 is
362
+ stated in a Banach space. Nevertheless, the other assumptions of Theorem 5 are rather weaker
363
+ than the ones in Theorem 4. Maybe, the most significant improvement consists in requiring the
364
+ norm-to-weak∗ upper semicontinuity of T instead of the stronger norm-to-norm upper semiconti-
365
+ nuity. Moreover, the values of T are assumed weakly∗ compact instead of norm compact. Also the
366
+ assumptions on K are weaker. In Theorem 4 the map K is closed, which implies the closedness of
367
+ K(x), for all x. Conversely, in Theorem 5 we require only the closedness of fix K, that is necessary
368
+ for the closedness of K, and K(x) may not be closed but belonging to the class D(X) only. Lastly,
369
+ we do not assume the compactness of C, not even its closedness, but only the fact that K(C) is
370
+ contained in a compact set.
371
+ Taking advantage of Theorem 5 and the good properties of the normal operator Na, our last
372
+ aim is to obtain an existence result for a quasioptimization problem through the study of a suitable
373
+ associated generalized quasivariational inequality.
374
+ A quasioptimization problem is an optimization problem in which the constraint set is subject
375
+ to modifications depending on the considered point. Given C ⊆ X nonempty, K : C ⇒ C and
376
+ f : C → R, a quasioptimization problem consists in finding
377
+ x ∈ K(x) such that f(x) ≤ f(y),
378
+ ∀y ∈ K(x)
379
+ Clearly, if K(x) = C for all x ∈ C, quasioptimization problem reduces to a classical optimization
380
+ problem.
381
+ Theorem 6. Let C be convex and K be a compact and lower semicontinuous set-valued map with
382
+ nonempty values in D(X), and fix K closed. Assume that f is continuous and quasiconvex, then
383
+ the quasioptimization problem has a solution.
384
+ 9
385
+
386
+ Proof. Let T : C ⇒ X∗ be defined as
387
+ T (x) =
388
+
389
+
390
+
391
+ B∗
392
+ if x ∈ arg min f
393
+ A(x)
394
+ if x /∈ arg min f
395
+ where A is the norm-to-weak∗ upper semicontinuous set-valued map obtained in Theorem 3. Since
396
+ arg min f is closed and A(x) ⊆ B∗, then T is norm-to-weak∗ upper semicontinuous. In this way,
397
+ thanks to Theorem 5, it follows that GQV I(T, K) has a solution x ∈ C. Clearly, if x ∈ arg min f,
398
+ then f(x) ≤ f(y) for all y ∈ K(x). Instead, if x /∈ arg min f, then it results that
399
+ x∗ ∈ T (x) = A(x) ⊆ N a(x) \ {0}
400
+ Hence, x is a solution to the generalized variational inequality associated to the operator N a \ {0}
401
+ and the feasible set K(x). Thanks to [6, Proposition 3.2], the thesis follows.
402
+
403
+ Theorem 6 extends Proposition 4.5 in [4] which is stated in a finite dimensional space and
404
+ requires also the compactness of C and the closedness of K.
405
+ References
406
+ [1] S. Al-Homidan, N. Hadjisavvas, L. Shaalan, Transformation of quasiconvex functions to elim-
407
+ inate local minima, J. Optim. Theory Appl. 177 (2018) 93–105.
408
+ [2] C.D. Aliprantis, K.C. Border, Infinite dimensional analysis. A hitchhikers guide, Springer-
409
+ Verlag, third ed., Berlin, 2006.
410
+ [3] J.P. Aubin, A. Cellina, Differential inclusions. Set-valued maps and viability theory, Springer-
411
+ Verlag, Berlin, 1984.
412
+ [4] D. Aussel, J. Cotrina, Quasimonotone quasivariational inequalities: existence results and ap-
413
+ plications, J. Optim. Theory Appl. 158 (2013) 637–652.
414
+ [5] D. Aussel, N. Hadjisavvas, Adjusted sublevel sets, normal operator, and quasi-convex program-
415
+ ming, SIAM J. Optim. 16 (2005) 358–367.
416
+ [6] D. Aussel, J.J. Ye, Quasiconvex programming with locally starshaped constraint region and
417
+ applications to quasiconvex MPEC, Optimization 55 (2006) 433–457.
418
+ 10
419
+
420
+ [7] M. Bianchi, N. Hadjisavvas, R. Pini, Continuity and maximal quasimonotonicity of normal
421
+ cone operators, Stud. Univ. Babeş-Bolyai Math. 67 (2022) 31–45.
422
+ [8] J. Borde, J.-P Crouzeix, Continuity properties of the normal cone to the level sets of a quasi-
423
+ convex function, J. Optim. Theory Appl. 66 (1990) 415–429.
424
+ [9] M. Castellani, M. Giuli, An existence result for quasiequilibrium problems in separable Banach
425
+ spaces, J. Math. Anal. Appl. 425 (2015) 85–95.
426
+ [10] M. Castellani, M. Giuli, Existence of quasiequilibria in metric vector spaces, J. Math. Anal.
427
+ Appl. 484 (2020) 123751.
428
+ [11] A. Granas, J. Dugundji, Fixed point theory, Springer-Verlag, New York, 2003.
429
+ [12] D.T. Luc, J.-P. Penot, Convergence of asymptotic directions, Trans. Amer. Math. Soc. 353
430
+ (2001) 4095–4121.
431
+ [13] E. Michael, Continuous selections. I, Ann. of Math. 63 (1956) 361–382.
432
+ [14] N.X. Tan, Quasi-variational inequalities in topological linear locally convex Hausdorff spaces,
433
+ Math. Nachr. 122 (1985) 231–245.
434
+ 11
435
+
5dFKT4oBgHgl3EQf-S4-/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,277 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf,len=276
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
3
+ page_content='11957v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
4
+ page_content='OC] 27 Jan 2023 A continuity result for the adjusted normal cone operator Marco Castellania, Massimiliano Giulia aDepartment of Information Engineering, Computer Science and Mathematics, University of L’Aquila, Via Vetoio, L’Aquila, Italy Abstract The concept of adjusted sublevel set for a quasiconvex function was introduced in [5] and the local existence of a norm-to-weak∗ upper semicontinuous base-valued submap of the normal operator associated to the adjusted sublevel set was proved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
5
+ page_content=' When the space is finite dimensional, a globally defined upper semicontinuous base-valued submap is obtained taking the intersection of the unit sphere, which is compact, with the normal operator, which is closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
6
+ page_content=' Unfortunately, this technique does not work in the infinite dimensional case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
7
+ page_content=' We propose a partition of unity technique to overcome this problem in Banach spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
8
+ page_content=' Application is given to a quasiconvex quasioptimization problem through the use of a new existence result for generalized quasivariational inequalities which is based on the Schauder fixed point theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
9
+ page_content=' Keywords: Cone upper semicontinuity, Normal operator, Quasivariational inequality, Quasioptimization 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
10
+ page_content=' Introduction The notion of upper semicontinuity seems to be unappropriate for cone-valued maps and hence modified definitions were been introduced and studied [5, 8, 12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
11
+ page_content=' The normal cone operator to the adjusted sublevel sets of a quasiconvex function f defined on a Banach space was introduced in [5] and it was proved to be both quasimonotone and cone upper semicontinuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
12
+ page_content=' In particular, the authors showed that the normal cone operator admits a locally defined base-valued submap being norm-to-weak∗ upper semicontinuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
13
+ page_content=' In [4], when the space is Euclidian, the authors obtained a globally defined upper semicontinuous base-valued submap taking the convex hull of the normalized Email addresses: marco.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
14
+ page_content='castellani@univaq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
15
+ page_content='it (Marco Castellani), massimiliano.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
16
+ page_content='giuli@univaq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
17
+ page_content='it (Massimiliano Giuli) Preprint submitted to Journal of LATEX Templates January 31, 2023 normal operator which is the intersection of the unit sphere, which is compact, with the normal operator, which is closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
18
+ page_content=' Since the unit sphere is not compact in the infinite dimensional case, this approach is unsuccessful in a Banach space X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
19
+ page_content=' The first aim of this paper is to overcome this problem by using a partition of unity tech- nique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
20
+ page_content=' Theorem 3 states the existence of a norm-to-weak∗ upper semicontinuous submap A : X \\ arg min f ⇒ X∗ such that each A(x) is a nonempty weak∗ compact convex set not containing the origin which generates the normal cone to the adjusted sublevel set at x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
21
+ page_content=' Subsequently, we establish an existence result (Theorem 5) for a generalized quasivariational inequality which im- proves the famous Tan’s result [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
22
+ page_content=' Finally, combining both results, we present an application to quasioptimization problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
23
+ page_content=' In the last part of this introduction, we present some preliminary notions and results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
24
+ page_content=' Let X be a real Banach space with norm ∥ · ∥, X∗ its topological dual with norm ∥ · ∥∗, and ⟨·, ·⟩ the duality pairing between X∗ and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
25
+ page_content=' From now on, unless otherwise indicated, the spaces X and X∗ will be equipped by the strong (norm) topology s and the weak∗ topology w∗, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
26
+ page_content=' The closed unit balls in X and X∗ are denoted by B and B∗, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
27
+ page_content=' Given a nonempty set A ⊆ X and x ∈ X, dist(x, A) = inf{∥y−x∥ : y ∈ A} is the distance of x from A and B(A, r) = {x ∈ X : dist(x, A) ≤ r} is the neighbourhood of A with radius r ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
28
+ page_content=' A subset K of X∗ is a cone if for each x∗ ∈ K and scalar t > 0, the product tx∗ ∈ K (note that some authors define cone with the scalar t ranging over all non-negative scalars).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
29
+ page_content=' Clearly the empty set is a cone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
30
+ page_content=' Let K ⊆ X∗ be a cone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
31
+ page_content=' A convex subset A of K is called a base if K = {tx∗ : t ≥ 0, x∗ ∈ A} and 0 ̸∈ w∗- cl A, where w∗- cl denotes the closure with respect to the weak∗ topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
32
+ page_content=' Clearly the empty set is a base of the empty cone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
33
+ page_content=' Vice versa, if K admits a nonempty base then K is a convex cone such that {0} ⊊ K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
34
+ page_content=' In particular, if the base is compact then K is closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
35
+ page_content=' The domain and the graph of a set-valued map Φ : X ⇒ X∗ are denoted by dom Φ and gph Φ, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
36
+ page_content=' The map Φ is norm-to-weak∗ upper semicontinuous at x ∈ X if for every open set Ω such that Φ(x) ⊆ Ω, there exists a neighbourhood Ux of x such that Φ(x′) ⊆ Ω, for all x′ ∈ Ux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
37
+ page_content=' The map Φ is norm-to-weak∗ closed at x ∈ dom f if for each x∗ ∈ Φ(x) and for each net {(xα, x∗ α)} with x∗ α ∈ Φ(xα) which converges to (x, x∗) in the s × w∗ topology, we have that x∗ ∈ Φ(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
38
+ page_content=' The map is norm-to-weak∗ closed if its graph is closed with respect to the topology s × w∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
39
+ page_content=' The Closed Graph Theorem states that a closed-valued map Φ with values in a compact set is norm-to-weak∗ 2 upper semicontinuous if and only if it is norm-to-weak∗ closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
40
+ page_content=' When we are dealing with a cone-valued map Φ, the concept of norm-to-weak∗ upper semicon- tinuity is not appropriate to picture the behaviour of Φ and it is convenient to slightly alter the definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
41
+ page_content=' The cone-valued map Φ is called norm-to-weak∗ cone upper semicontinuous at x ∈ X if for every open cone Ω such that Φ(x) ⊆ Ω ∪ {0}, there exists a neighbourhood Ux of x such that Φ(x′) ⊆ Ω ∪ {0}, for all x′ ∈ Ux;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
42
+ page_content=' norm-to-weak∗ base upper semicontinuous at x ∈ X if there exist a neighbourhood Ux of x and a set-valued map A : Ux ⇒ X∗ such that A(x′) is a base of Φ(x′) for each x′ ∈ Ux and A is norm-to-weak∗ upper semicontinuous at x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
43
+ page_content=' Some remarks are needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
44
+ page_content=' If Φ is norm-to-weak∗ base upper semicontinuous at x ∈ X then there exists a neighbourhood Ux of x such that Φ(x′) ̸= {0} for each x′ ∈ Ux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
45
+ page_content=' Instead, if Φ is norm-to- weak∗ cone upper semicontinuous at x ̸∈ dom Φ then there exists a neighbourhood Ux of x such that Φ(x′) ⊆ {0} for each x′ ∈ Ux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
46
+ page_content=' Therefore, if Φ is norm-to-weak∗ cone upper semicontinuous and Φ(x) admits a base for each x ∈ X then dom Φ is closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
47
+ page_content=' Moreover the norm-to-weak∗ base upper semicontinuity of Φ at x implies the norm-to-weak∗ cone upper semicontinuity at the same point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
48
+ page_content=' The reverse implication holds if Φ(x) admits a base and Φ(x′) ̸= {0} for all x′ in a suitable neighbourhood of x [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
49
+ page_content=' The norm-to-weak∗ cone upper semicontinuity of a map implies its norm-to-weak∗ closedness if the map admits a compact base at every point [7, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
50
+ page_content='3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
51
+ page_content=' The same proof works for local closedness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
52
+ page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
53
+ page_content=' Let Φ : X ⇒ X∗ be a cone-valued map which is norm-to-weak∗ cone upper semicon- tinuous at x ∈ dom Φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
54
+ page_content=' If Φ(x) has a compact base then Φ is norm-to-weak∗ closed at x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
55
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
56
+ page_content=' The result Let f : X → R∪{+∞} be an extended-valued function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
57
+ page_content=' Define for any λ ∈ R∪{+∞} the sublevel and the strict sublevel set of f at level λ by Sλ = {x ∈ X : f(x) ≤ λ} and S< λ = {x ∈ X : f(x) < λ}, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
58
+ page_content=' Clearly S∞ = X and S< ∞ = dom f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
59
+ page_content=' The function f is quasiconvex if Sλ is convex for all λ ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
60
+ page_content=' Now, we recall the notion of adjusted level set introduced in [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
61
+ page_content=' 3 Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
62
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
63
+ page_content=' Let f : X → R ∪ {+∞} and x ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
64
+ page_content=' The adjusted sublevel set of f at x is Sa f (x) = \uf8f1 \uf8f2 \uf8f3 Sf(x) if x ∈ arg min f Sf(x) ∩ B(S< f(x), ρx) if x /∈ arg min f where ρx = dist(x, S< f(x)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
65
+ page_content=' Note that S< f(x) ⊆ Sa f (x) ⊆ Sf(x) for all x ∈ X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
66
+ page_content=' moreover the convexity of the adjusted sublevel sets characterizes the quasiconvexity of the function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
67
+ page_content=' Theorem 2 (Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
68
+ page_content='4 in [5]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
69
+ page_content=' The extended-valued function f is quasiconvex if and only if Sa f (x) is convex, for every x ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
70
+ page_content=' To any function f we associate the set-valued map N a : X ⇒ X∗ defined by N a(x) = {x∗ ∈ X∗ : ⟨x∗, y − x⟩ ≤ 0, ∀y ∈ Sa f (x)} In [5, Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
71
+ page_content='5] the authors showed that N a is norm-to-weak∗ base upper semicontinuous under regularity assumptions on f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
72
+ page_content=' Combining Theorem 1 and Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
73
+ page_content='5 in [5], the following result can be easily deduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
74
+ page_content=' Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
75
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
76
+ page_content=' Let f be quasiconvex and lower semicontinuous at x ∈ dom f \\ arg min f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
77
+ page_content=' If there exists λ < f(x) such that int Sλ ̸= ∅ then N a is closed at x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
78
+ page_content=' Such a result has been proved in [4] and, with weaker assumptions but in a finite dimensional case, in [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
79
+ page_content=' Taking advantage of Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
80
+ page_content='1, the authors deduce [4, Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
81
+ page_content='4] the upper semicontinuity of the normalized map N a ∩ S : Rn \\ arg min f ⇒ B, being the unit sphere S in Rn compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
82
+ page_content=' Moreover, the assumptions in [4, Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
83
+ page_content='4] guarantee that the convex hull of N a ∩ S is an upper semicontinuous base-valued submap of N a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
84
+ page_content=' Our aim is to extend their result to the infinite dimensional case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
85
+ page_content=' Since the sphere is not weak∗ compact in the dual of a Banach space, the previous technique does not work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
86
+ page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
87
+ page_content=' Let f : X → R ∪ {+∞} be proper, quasiconvex and lower semicontinuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
88
+ page_content=' Assume that for each x ∈ X \\ arg min f there exists λ < f(x) such that int Sλ ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
89
+ page_content=' Then there exists a norm-to-weak∗ upper semicontinuous set-valued map A : X \\ arg min f ⇒ B∗ such that A(x) is a compact base of N a(x), for all x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
90
+ page_content=' 4 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
91
+ page_content=' For the first step of the proof, we argue as in [5, Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
92
+ page_content='6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
93
+ page_content=' Let z ∈ X \\ arg min f be fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
94
+ page_content=' Choose z0 ∈ X and λ ∈ R such that λ < f(z) and z0 ∈ int S< λ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
95
+ page_content=' Since f is lower semicontinuous, there exists ε > 0 such that z0 + 2εB ⊆ S< λ ⊆ S< f(x), ∀x ∈ z + εB Thus, for every x ∈ z + εB and for every x∗ ∈ N <(x) = {x∗ ∈ X∗ : ⟨x∗, y − x⟩ ≤ 0, ∀y ∈ S< f(x)} we obtain the following: ⟨x∗, z0 + 2εu − x⟩ ≤ 0, ∀u ∈ B It follows that 2ε∥x∗∥∗ = 2ε sup u∈B ⟨x∗, u⟩ ≤ ⟨x∗, x − z0⟩ = ⟨x∗, z − z0⟩ + ⟨x∗, x − z⟩ ≤ ⟨x∗, z − z0⟩ + ε∥x∗∥∗ Thus, ⟨x∗, z − z0⟩ ≥ ε∥x∗∥∗, ∀x ∈ z + εB, x∗ ∈ N <(x) Set Hz = {x∗ ∈ X∗ : ⟨x∗, z − z0⟩ = ε}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
96
+ page_content=' Obviously, for every x ∈ z + εB we have N <(x) ∩ Hz ⊆ B∗ and, since N a(x) ⊆ N <(x), the set N a(x) ∩ Hz ⊆ B∗ is a compact base for the cone N a(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
97
+ page_content=' Now, following the proof of [5, Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
98
+ page_content='5], we get the norm-to-weak∗ upper semicontinuity of the set-valued map Az : z + εB ⇒ X∗ defined by Fz(x) = N a(x) ∩ Hz, for all x ∈ z + εB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
99
+ page_content=' The last step of the proof consists in finding the selection A as convex combination of the local maps Az through a partition of unity technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
100
+ page_content=' Since X \\ arg min f is paracompact, there exists a locally finite open covering U = {Ui : i ∈ I} where every Ui ∈ U is a subset of some ball z + εB: let us denote by Ai the map Az corresponding to the ball z + εB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
101
+ page_content=' Moreover, there is a partition of unity {λi : i ∈ I} subordinate to U such that each λi : X \\ arg min f → [0, 1] is continuous, the finite sum � i∈I λi(y) = 1 for any y and λi(y) = 0 for each y ̸∈ Ui.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
102
+ page_content=' For every x ∈ X \\ arg min f, let I(x) = {i ∈ I : λi(x) > 0}, which is nonempty and finite, and define the map A : X \\ arg min f ⇒ X∗ as follows A(x) = � i∈I(x) λi(x)Ai(x) 5 Clearly A(x) is a compact base of N a(x), for all x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
103
+ page_content=' Moreover, since the values of A are all contained in the compact ball B∗, the norm-to-weak∗ upper semicontinuity of A is equivalent to prove that the graph of A is closed with respect to the s × w∗ topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
104
+ page_content=' Assume that the net {xα} converges to x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
105
+ page_content=' Since all the λi are continuous, it is not restrictive to assume that I(x) ⊆ I(xα) for all α and we get: A(xα) = � i∈I(x) λi(xα)Ai(xα) + � i∈I(xα)\\I(x) λi(xα)Ai(xα) Moreover, from the continuity of the functions λi, we deduce lim α � i∈I(xα)\\I(x) λi(xα) = 1 − lim α � i∈I(x) λi(xα) = 0 (1) Now, let {x∗ α} be a net which weakly∗ converges to x∗ and such that x∗ α ∈ A(xα) for any α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
106
+ page_content=' Then, there exist x∗ i,α ∈ Ai(xα) for every i ∈ I(xα) such that x∗ α = � i∈I(x) λi(xα)x∗ i,α + � i∈I(xα)\\I(x) λi(xα)x∗ i,α (2) The second addend of (2) weakly∗ converges to zero since, thanks to (1), it converges to zero in norm ������ � i∈I(xα)\\I(x) λi(xα)x∗ i,α ������ ∗ ≤ � i∈I(xα)\\I(x) λi(xα)∥x∗ i,α∥∗ ≤ � i∈I(xα)\\I(x) λi(xα) On the other hand, without loss of generality, we may assume that {x∗ i,α} weakly∗ converges to some x∗ i , for every i ∈ I(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
107
+ page_content=' Since Ai has closed graph, we obtain x∗ i ∈ Ai(x) and x∗ ∈ A(x) follows from (2) taking the weak∗ limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
108
+ page_content=' ✷ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
109
+ page_content=' An application In this section, our aim is to consider a special optimization problem, called quasioptimization problem, and to provide an existence result for this problem through the study of an associated generalized quasivariational inequality where Theorem 3 plays a key role.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
110
+ page_content=' We start establishing a new existence result for a generalized quasivariational inequality without requiring any assumption of monotonicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
111
+ page_content=' Let C be a nonempty subset of X and T : C ⇒ X∗ and K : C ⇒ C be two set-valued maps;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
112
+ page_content=' the generalized quasivariational inequality GQV I(T, K) consists in finding x ∈ K(x) such that ∃x∗ ∈ T (x) with ⟨x∗, y − x⟩ ≥ 0, ∀y ∈ K(x) 6 One of the most classic existence results for GQV I(T, K) in the infinite dimensional setting is due to Tan and it was originally stated for locally convex topological vector spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
113
+ page_content=' We recall that the set-valued map K : C ⇒ C is said to be lower semicontinuous if for every open set Ω the lower inverse image {x ∈ C : K(x) ∩ Ω ̸= ∅} is open in C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
114
+ page_content=' Moreover K is called compact if K(C) is contained in a compact subset of C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
115
+ page_content=' Theorem 4 (Theorem 1 in [14]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
116
+ page_content=' Let C be compact and convex and K be closed and lower semi- continuous with nonempty convex values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
117
+ page_content=' Assume that T is norm-to-norm upper semicontinuous with nonempty norm compact convex values, then GQV I(T, K) has a solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
118
+ page_content=' The existence of solutions for GQV I(T, K) can be obtained with a weaker continuity assumption on T than in Theorem 4 if the space X is normed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
119
+ page_content=' To this purpose, we need to recall the notion of inside point of a convex set that appeared in 1956 in a paper by Michael [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
120
+ page_content=' The convex set S ⊆ C is a face of C if x1, x2 ∈ C, t ∈ (0, 1) and tx1 + (1 − t)x2 ∈ S imply x1, x2 ∈ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
121
+ page_content=' Let FC be the (possibly empty) collection of all proper closed faces of cl C, which is the closure of C Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
122
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
123
+ page_content=' A point x ∈ C is an inside point if it is not in any proper closed face of cl C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
124
+ page_content=' Denote by I(C) = C \\ � S∈FC S the set of the inside points of C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
125
+ page_content=' A comparison with other notions of relative interior is given in [9, 10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
126
+ page_content=' Thanks to this concept of interior point, we can define the following family of convex sets D(X) = {C ⊆ X : C is convex and I(cl C) ⊆ C} It was proved [13] that D(X) contains all the convex sets which are either closed, or with nonempty interior, or finite dimensional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
127
+ page_content=' In particular, when X is finite dimensional the class D(X) coincides with the family of all convex sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
128
+ page_content=' Now we are in position to state and prove our existence result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
129
+ page_content=' Let us denote by fix K the set of the fixed points of K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
130
+ page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
131
+ page_content=' Let C be convex and K be a compact and lower semicontinuous set-valued map with nonempty values in D(X), and fix K closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
132
+ page_content=' Assume that T is norm-to-weak∗ upper semicontinuous with nonempty weak∗ compact convex values, then GQV I(T, K) has a solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
133
+ page_content=' 7 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
134
+ page_content=' Notice that K admits a continuous selection thanks to [10, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
135
+ page_content='2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
136
+ page_content=' Hence the Schauder fixed point theorem as formulated in [11, Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
137
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
138
+ page_content='2] guarantees fix K ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
139
+ page_content=' Let us consider the set-valued map F : fix K ⇒ X defined as F(x) = � x∗∈T (x) {y ∈ X : ⟨x∗, y − x⟩ < 0} = � y ∈ X : max x∗∈T (x)⟨x∗, y − x⟩ < 0 � Clearly, F has convex values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
140
+ page_content=' To prove that F has open graph in fix K × X, it is sufficient to show that the function m : fix K × X → R defined as m(x, y) = max x∗∈T (x)⟨x∗, y − x⟩ is upper semicontinuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
141
+ page_content=' First, fix K is compact since closed subset of the compact set which contains K(C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
142
+ page_content=' From [2, Lemma 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
143
+ page_content='8], the subset T (fix K) is weak∗ compact;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
144
+ page_content=' hence, it is norm bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
145
+ page_content=' Thanks to [2, Corollary 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
146
+ page_content='40] the duality pairing ⟨·, ·⟩ restricted to T (fix K)× X is jointly continuous, where X has its norm topology and X∗ has its weak∗ topology;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
147
+ page_content=' hence, [2, Lemma 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
148
+ page_content='30] guarantees the upper semicontinuity of m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
149
+ page_content=' By contradiction, assume that F(x) ∩ K(x) ̸= ∅ for all x ∈ fix K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
150
+ page_content=' Fix (x0, y0) ∈ gph K and define the map K0 : C ⇒ C as K0(x) = \uf8f1 \uf8f2 \uf8f3 K(x) if x ̸= x0 {y0} if x = x0 K0 is compact and lower semicontinuous, and K0(x) ∈ D(X) for every x ∈ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
151
+ page_content=' From [10, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
152
+ page_content='2] the map K0 admits a continuous selection, hence K is locally selectionable (see Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
153
+ page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
154
+ page_content='1 in [3]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
155
+ page_content=' From [3, Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
156
+ page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
157
+ page_content='4] we deduce that also F ∩ K is locally selectionable and [3, Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
158
+ page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
159
+ page_content='2] guarantees that F ∩ K has a continuous selection f : fix K → C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
160
+ page_content=' Therefore, the set-valued map Υ : C ⇒ C defined as Υ(x) = \uf8f1 \uf8f2 \uf8f3 K(x) if x /∈ fix K {f(x)} if x ∈ fix K is lower semicontinuous [10, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
161
+ page_content='3] with values in the class D(X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
162
+ page_content=' Hence [10, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
163
+ page_content='2] guarantees that f can be extended to a continuous selection ϕ for Υ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
164
+ page_content=' The Schauder fixed point theorem guarantees that ϕ has a fixed point, that is, there exists x ∈ C such that x = ϕ(x) ∈ Υ(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
165
+ page_content=' Clearly x ∈ fix K and this implies x = f(x) ∈ F(x) which is absurd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
166
+ page_content=' Therefore, there exists 8 x ∈ fix K such that F(x) ∩ K(x) = ∅, that is, min y∈K(x) max x∗∈T (x)⟨x∗, y − x⟩ ≥ 0 Invoking the Sion’s minimax theorem we deduce that max x∗∈T (x) min y∈K(x)⟨x∗, y − x⟩ ≥ 0 which means that x solves the generalized quasivariational inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
167
+ page_content=' ✷ Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
168
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
169
+ page_content=' Let us compare our result with Theorem 4 due to Tan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
170
+ page_content=' The first difference is about the setting: Tan’s result works in a locally convex topological vector space instead Theorem 5 is stated in a Banach space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
171
+ page_content=' Nevertheless, the other assumptions of Theorem 5 are rather weaker than the ones in Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
172
+ page_content=' Maybe, the most significant improvement consists in requiring the norm-to-weak∗ upper semicontinuity of T instead of the stronger norm-to-norm upper semiconti- nuity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
173
+ page_content=' Moreover, the values of T are assumed weakly∗ compact instead of norm compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
174
+ page_content=' Also the assumptions on K are weaker.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
175
+ page_content=' In Theorem 4 the map K is closed, which implies the closedness of K(x), for all x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
176
+ page_content=' Conversely, in Theorem 5 we require only the closedness of fix K, that is necessary for the closedness of K, and K(x) may not be closed but belonging to the class D(X) only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
177
+ page_content=' Lastly, we do not assume the compactness of C, not even its closedness, but only the fact that K(C) is contained in a compact set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
178
+ page_content=' Taking advantage of Theorem 5 and the good properties of the normal operator Na, our last aim is to obtain an existence result for a quasioptimization problem through the study of a suitable associated generalized quasivariational inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
179
+ page_content=' A quasioptimization problem is an optimization problem in which the constraint set is subject to modifications depending on the considered point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
180
+ page_content=' Given C ⊆ X nonempty, K : C ⇒ C and f : C → R, a quasioptimization problem consists in finding x ∈ K(x) such that f(x) ≤ f(y), ∀y ∈ K(x) Clearly, if K(x) = C for all x ∈ C, quasioptimization problem reduces to a classical optimization problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
181
+ page_content=' Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
182
+ page_content=' Let C be convex and K be a compact and lower semicontinuous set-valued map with nonempty values in D(X), and fix K closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
183
+ page_content=' Assume that f is continuous and quasiconvex, then the quasioptimization problem has a solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
184
+ page_content=' 9 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
185
+ page_content=' Let T : C ⇒ X∗ be defined as T (x) = \uf8f1 \uf8f2 \uf8f3 B∗ if x ∈ arg min f A(x) if x /∈ arg min f where A is the norm-to-weak∗ upper semicontinuous set-valued map obtained in Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
186
+ page_content=' Since arg min f is closed and A(x) ⊆ B∗, then T is norm-to-weak∗ upper semicontinuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
187
+ page_content=' In this way, thanks to Theorem 5, it follows that GQV I(T, K) has a solution x ∈ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
188
+ page_content=' Clearly, if x ∈ arg min f, then f(x) ≤ f(y) for all y ∈ K(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
189
+ page_content=' Instead, if x /∈ arg min f, then it results that x∗ ∈ T (x) = A(x) ⊆ N a(x) \\ {0} Hence, x is a solution to the generalized variational inequality associated to the operator N a \\ {0} and the feasible set K(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
190
+ page_content=' Thanks to [6, Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
191
+ page_content='2], the thesis follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
192
+ page_content=' ✷ Theorem 6 extends Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
193
+ page_content='5 in [4] which is stated in a finite dimensional space and requires also the compactness of C and the closedness of K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
194
+ page_content=' References [1] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
195
+ page_content=' Al-Homidan, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
196
+ page_content=' Hadjisavvas, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
197
+ page_content=' Shaalan, Transformation of quasiconvex functions to elim- inate local minima, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
198
+ page_content=' Optim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
199
+ page_content=' Theory Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
200
+ page_content=' 177 (2018) 93–105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
201
+ page_content=' [2] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
202
+ page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
203
+ page_content=' Aliprantis, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
204
+ page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
205
+ page_content=' Border, Infinite dimensional analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
206
+ page_content=' A hitchhikers guide, Springer- Verlag, third ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
207
+ page_content=', Berlin, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
208
+ page_content=' [3] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
209
+ page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
210
+ page_content=' Aubin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
211
+ page_content=' Cellina, Differential inclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
212
+ page_content=' Set-valued maps and viability theory, Springer- Verlag, Berlin, 1984.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
213
+ page_content=' [4] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
214
+ page_content=' Aussel, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
215
+ page_content=' Cotrina, Quasimonotone quasivariational inequalities: existence results and ap- plications, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
216
+ page_content=' Optim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
217
+ page_content=' Theory Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
218
+ page_content=' 158 (2013) 637–652.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
219
+ page_content=' [5] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
220
+ page_content=' Aussel, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
221
+ page_content=' Hadjisavvas, Adjusted sublevel sets, normal operator, and quasi-convex program- ming, SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
222
+ page_content=' Optim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
223
+ page_content=' 16 (2005) 358–367.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
224
+ page_content=' [6] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
225
+ page_content=' Aussel, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
226
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
227
+ page_content=' Ye, Quasiconvex programming with locally starshaped constraint region and applications to quasiconvex MPEC, Optimization 55 (2006) 433–457.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
228
+ page_content=' 10 [7] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
229
+ page_content=' Bianchi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
230
+ page_content=' Hadjisavvas, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
231
+ page_content=' Pini, Continuity and maximal quasimonotonicity of normal cone operators, Stud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
232
+ page_content=' Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
233
+ page_content=' Babeş-Bolyai Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
234
+ page_content=' 67 (2022) 31–45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
235
+ page_content=' [8] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
236
+ page_content=' Borde, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
237
+ page_content='-P Crouzeix, Continuity properties of the normal cone to the level sets of a quasi- convex function, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
238
+ page_content=' Optim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
239
+ page_content=' Theory Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
240
+ page_content=' 66 (1990) 415–429.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
241
+ page_content=' [9] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
242
+ page_content=' Castellani, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
243
+ page_content=' Giuli, An existence result for quasiequilibrium problems in separable Banach spaces, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
244
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
245
+ page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
246
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
247
+ page_content=' 425 (2015) 85–95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
248
+ page_content=' [10] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
249
+ page_content=' Castellani, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
250
+ page_content=' Giuli, Existence of quasiequilibria in metric vector spaces, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
251
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
252
+ page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
253
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
254
+ page_content=' 484 (2020) 123751.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
255
+ page_content=' [11] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
256
+ page_content=' Granas, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
257
+ page_content=' Dugundji, Fixed point theory, Springer-Verlag, New York, 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
258
+ page_content=' [12] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
259
+ page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
260
+ page_content=' Luc, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
261
+ page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
262
+ page_content=' Penot, Convergence of asymptotic directions, Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
263
+ page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
264
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
265
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
266
+ page_content=' 353 (2001) 4095–4121.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
267
+ page_content=' [13] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
268
+ page_content=' Michael, Continuous selections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
269
+ page_content=' I, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
270
+ page_content=' of Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
271
+ page_content=' 63 (1956) 361–382.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
272
+ page_content=' [14] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
273
+ page_content='X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
274
+ page_content=' Tan, Quasi-variational inequalities in topological linear locally convex Hausdorff spaces, Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
275
+ page_content=' Nachr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
276
+ page_content=' 122 (1985) 231–245.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
277
+ page_content=' 11' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf'}
6dAyT4oBgHgl3EQfcvcQ/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e47e7684350aa436ce17b4e603f2ec86996bdf04752e15ab4765fe709490e03b
3
+ size 1769517
7dE4T4oBgHgl3EQfCQuc/content/tmp_files/2301.04859v1.pdf.txt ADDED
@@ -0,0 +1,682 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ JONES-WENZL IDEMPOTENTS IN THE TWISTED
2
+ I-BUNDLE OF THE M¨OBIUS BAND
3
+ DIONNE IBARRA
4
+ Abstract. The Jones-Wenzl idempotent plays a vital role in quan-
5
+ tum invariants of 3-manifolds and the colored Jones polynomial;
6
+ it also serves as a useful tool for simplifying computations and
7
+ proving theorems in knot theory. The relative Kauffman bracket
8
+ skein module (RKBSM) for surface I-bundles and manifolds with
9
+ marked boundaries have a well understood algebraic structure due
10
+ to the work of J. H. Przytycki and T. T. Q. Lˆe.
11
+ It has been
12
+ well documented that the RKBSM of the I-bundle of the annulus
13
+ and the twisted I-bundle of the M¨obius band have a distinct alge-
14
+ braic structures even though the manifolds are homeomorphic. In
15
+ this paper we will give various results on Jones-Wenzl idempotents
16
+ in the twisted I-bundle of the M¨obius band when it is partially
17
+ closed through the crosscap of the M¨obius band. In doing so we
18
+ will uncover properties that differ from properties of Jones-Wenzl
19
+ idempotents in Ann × I.
20
+ Contents
21
+ 1.
22
+ Introduction
23
+ 1
24
+ 1.1.
25
+ Acknowledgements
26
+ 2
27
+ 2.
28
+ Introduction to Jones-Wenzl idempotents
29
+ 2
30
+ 3.
31
+ Crossingless connection in the M¨obius band
32
+ 9
33
+ 4.
34
+ Jones-Wenzl idempotents in the M¨obius band
35
+ 10
36
+ References
37
+ 15
38
+ 1. Introduction
39
+ The Jones-Wenzl idempotent, discovered by V. F. R. Jones in [Jon],
40
+ is an idempotent element in the Temperley-Lieb algebra. Originally,
41
+ it was described as a certain symmetrizer using the Artin braid group
42
+ Date: January 13, 2023.
43
+ 2020 Mathematics Subject Classification. Primary: 57K10. Secondary: 57K31.
44
+ Key words and phrases. Jones-Wenzl idempotents, M¨obius band, twisted I-
45
+ bundles, Kauffman bracket skein module, relative Kauffman bracket skein module.
46
+ 1
47
+ arXiv:2301.04859v1 [math.GT] 12 Jan 2023
48
+
49
+ 2
50
+ DIONNE IBARRA
51
+ and the projection to the Temperley-Lieb algebra. In the late 1980’s,
52
+ H. Wenzl in [Wen] discovered a recursive formula to the Jones-Wenzl
53
+ idempotent.
54
+ This formula is now widely used as the definition, see
55
+ [Lic2].
56
+ The Jones-Wenzl idempotent has played a significant role in defining
57
+ quanum invariants of knots and 3-manifolds. For example, W. B. R.
58
+ Lickorish’s Kauffman bracket skein theoretic approach to the Witten-
59
+ Reshetikhin-Turaev 3-manifold invariants in [Lic1] uses a linear combi-
60
+ nation of the trace (closure) of the idempotent elements along a framed
61
+ knot or link. Similarly, the colored Jones polynomial quantum knot in-
62
+ variant is defined by taking the trace of the nth Jones-Wenzl idempotent
63
+ along a 0-framed knot in S3, see [Le, PBIMW]. These idempotent ele-
64
+ ments are also used to decorate the edges of a tetrahedra to obtain the
65
+ quantum 6j-symbols that are used in the definition of the Turaev-Viro
66
+ quantum 3-manifold invariants, see [TV].
67
+ The Jones-Wenzl idempotent has been a vital tool for simplifying
68
+ computations and proving theorems in knot theory. An example of this
69
+ is seen in X. Cai’s proof of a closed formula for the Gram determinant
70
+ of type A in [Cai] and a closed formula for its generalization in [BIMP].
71
+ In fact, this paper was conceived by needing properties of the Jones-
72
+ Wenzl idempotents when it is closed in the twisted I-bundle of the
73
+ M¨obius band in hopes to take a similar approach to [Cai] and [BIMP]
74
+ to prove a closed formula for the Gram determinant of type Mb.
75
+ In Section 2 we introduce the original definition of Jones-Wenzl idem-
76
+ potents and also the RKBSM of the twisted I-bundle of the M¨obius
77
+ band, then in Section 3 we give an illustration of the two different
78
+ models of the M¨obius band as well as the antipodal properties of the
79
+ crosscap. In Section 4 we prove many corollaries to the trace of Jones-
80
+ Wenzl idempotents intersecting or surrounding the crosscap, then we
81
+ end with a formula for when n − 1 curves from fn are closed around
82
+ the crosscap and the last arc is closed through the crosscap.
83
+ 1.1. Acknowledgements. This work was supported by the Australian
84
+ Research Council grant DP210103136.
85
+ 2. Introduction to Jones-Wenzl idempotents
86
+ The first formal definition of the Temperley-Lieb algebra, denoted
87
+ by TLn, was given by R. J. Baxter in [Bax] while describing the work
88
+ of physicists N. Temperley and E. Lieb in [TL]. Jones independently
89
+ introduced TLn in [Jon] while working on von Neumann algebras.
90
+
91
+ JONES-WENZL IDEMPOTENTS AND THE M¨OBIUS BAND
92
+ 3
93
+ Definition 2.1. Let R be a commutative ring with unity and d ∈ R.
94
+ Let n ∈ N be fixed, then the nth Temperley-Lieb algebra, TLn,
95
+ is defined to be the unital associative algebra over R with generators
96
+ e1, . . . , en−1, identity element 1n, and relations
97
+ (1) eiejei = ei for |i − j| = 1,
98
+ (2) eiej = ejei for |i − j| > 1,
99
+ (3) e2
100
+ i = dei.
101
+ L. H. Kauffman in [Kau], motivated by utilizing the Kauffman bracket,
102
+ considered the Temperley-Lieb algebra over R = Z[A±1], where A is an
103
+ indeterminate and d = −A2 − A−2. He then constructed a graphical
104
+ interpretation using tangles.
105
+ We will consider an n-tangle to be a rectangular shaped disk with
106
+ n marked boundary points on the left (input points) and n marked
107
+ boundary points on the right (output points). Kauffman’s graphical
108
+ interpretation of the Temperley-Lieb algebra is obtained from the basis
109
+ of crossingless tangles where the identity element corresponds to an n-
110
+ tangle with n parallel arcs in which each ith input point is connected
111
+ to the ith output point, and each ei corresponds to an n-tangle that
112
+ has one input and one output cap on the ith and i + 1th position as
113
+ illustrated in Figure 1.
114
+ For simplicity we will label an arc by n to
115
+ denote n parallel arcs as shown in Figure 1a.
116
+ n
117
+ (a) Identity element.
118
+ n − i − 1
119
+ i − 1
120
+ (b) ei.
121
+ Figure 1. The graphical interpretation of TLn.
122
+ Definition 2.2. The n-tangle algebra is an R-module with basis
123
+ elements consisting of n-tangles where multiplication of two n-tangles
124
+ is defined by identifying the right side of the first n-tangle to the left
125
+ side of the second n-tangle while respecting the boundary points and
126
+ by letting any resulting trivial curve be denoted by d, see Figure 2 for
127
+ an illustrative example. Kauffman’s diagrammatic interpretation of the
128
+ Temperley-Lieb algebra, also known as the diagrammatic algebra,
129
+ is a subalgebra of the n-tangle algebra. It is generated by tangles with
130
+ no crossings where homotopically trivial curves are denoted by d ∈ R.
131
+
132
+ 4
133
+ DIONNE IBARRA
134
+ e3e3 =
135
+ = d
136
+ = de3.
137
+ Figure 2. An illustration of multiplication.
138
+ Theorem 2.3. [Kau] The diagrammatic algebra is isomorphic to TLn
139
+ and can be thought of as a diagrammatic interpretation of it.
140
+ We will give Jones’ constructive definition of the Jones-Wenzl idem-
141
+ potent by using the relative Kauffman bracket skein module (RKBSM)
142
+ and the Artin braid group before introducing Wenzl’s recursive formula.
143
+ In doing so, we will first introduce the RKBSM and emphasize that the
144
+ RKBSM of the twisted I-bundle of the M¨obius band and the RKBSM
145
+ of Ann × I are different modules even though the two manifolds are
146
+ homeomorphic. This will give us motivation to study the Jones-Wenzl
147
+ idempotent in the twisted I-bundle of the M¨obius band. Furthermore,
148
+ the corollaries and proposition in the last section will show that there
149
+ are distinct differences when simple closed curves intersect the crosscap.
150
+ Definition 2.4. Let M be an oriented 3-manifold and {xi}2n
151
+ i=1 be the
152
+ set of 2n framed points on ∂M. Let I = [−1, 1], and let Lfr(2n) be the
153
+ set of all relative framed links (which consists of all framed links in M
154
+ and all framed arcs, I×I, where I×∂I is connected to framed points on
155
+ the boundary of M) up to ambient isotopy while keeping the boundary
156
+ fixed in such a way that L ∩ ∂M = {xi}2n
157
+ 1 . Let R be a commutative
158
+ ring with unity, A ∈ R be invertible, and let Ssub
159
+ 2,∞(2n) be the submodule
160
+ of RLfr(2n) that is generated by the Kauffman bracket skein relations:
161
+ (i) L+ − AL0 − A−1L∞, and
162
+ (ii) L ⊔ ⃝
163
+
164
+ ⃝ + (A2 + A−2)L,
165
+ where ⃝
166
+
167
+ ⃝ denotes the framed unknot and the skein triple (L+, L0, L∞)
168
+ denotes three framed links in M that are identical except in a small
169
+ 3-ball in M where the difference is shown in Figure 3.
170
+ Then, the relative Kauffman bracket skein module (RKBSM)
171
+ of M is the quotient:
172
+ S2,∞(M, {xi}2n
173
+ 1 ; R, A) = RLfr(2n)/Ssub
174
+ 2,∞(2n).
175
+ Theorem 2.5. [Prz] Let F be a surface with ∂F ̸= ∅. If F is orientable
176
+ then let M = F × I , otherwise let M = F ˆ×I. Let all {xi}2n
177
+ 1 be marked
178
+
179
+ JONES-WENZL IDEMPOTENTS AND THE M¨OBIUS BAND
180
+ 5
181
+ (a) L+.
182
+ (b) L0.
183
+ (c) L∞.
184
+ Figure 3. The skein triple.
185
+ points that lie on ∂F × {0}. Then S2,∞(M, {xi}2n
186
+ 1 ; R, A) is a free R-
187
+ module whose basis is composed of relative links in F without trivial
188
+ components. When n = 0, the empty link is also a generator.
189
+ J. H. Przytycki’s corollary to Theorem 2.5 explicitly details the dif-
190
+ ferences between the RKBSM of Ann × I and the RKBSM of Mbˆ×I
191
+ even though both manifolds are homeomorphic to the solid torus.
192
+ Corollary 2.6. [Prz]
193
+ (1) S2,∞(Ann×I, {xi}2n
194
+ 1 ; R, A) where {xi}2n
195
+ 1 are located in the outer
196
+ boundary component of the annulus is a free R[x]-module with
197
+ Dn =
198
+ �2n
199
+ n
200
+
201
+ basis elements, where x denotes the homotopically
202
+ nontrivial curve in the annulus and d = −A2 − A−2 denotes
203
+ the homotopically trivial curve in the annulus. The basis is the
204
+ set of all crossingless connections in the annulus with no trivial
205
+ components or boundary parallel curves.
206
+ (2) S2,∞(Mbˆ×I, {xi}2n
207
+ 1 ; R, A) is a free R-module. The standard ba-
208
+ sis contains an infinite number of elements of the form bzi, bxzi
209
+ for i ≥ 0, where x denotes the simple closed curve that intersects
210
+ the M¨obius band once, z denotes the boundary parallel curve of
211
+ the M¨obius band, and b is an element in the set of crossingless
212
+ connections in the M¨obius band with no trivial components or
213
+ boundary parallel curves for which the arcs do not intersect the
214
+ crosscap.
215
+ The rest of the elements in the standard basis are
216
+ from a finite number of crossingless connections consisting of
217
+ a collection of n − k arcs for 0 ≤ k < n that non-trivially in-
218
+ tersects the crosscap. Among the finite collection there are
219
+ �2n
220
+ k
221
+
222
+ crossingless connections that intersect the crosscap n−k times.
223
+ Definition 2.7. The Artin braid group is defined by the following
224
+ group presentation:
225
+ Bn =< σ1, . . . , σn−1; σiσj = σjσi for |i−j| > 1, σi±1σiσi±1 = σiσi±1σi > .
226
+ The Artin braid group can be interpreted using n-tangles where el-
227
+ ements of Bn are positive braids. More precisely, an element in Bn
228
+
229
+ 6
230
+ DIONNE IBARRA
231
+ can be represented as an n-tangle with positive crossings such that the
232
+ boundary of each arc is attached to one input and one output point
233
+ and when read from left to right each generator σi corresponds to the
234
+ positive crossing of the ith and i + 1th arcs. That is, the ith generator
235
+ element σi is a positive transposition of the ith and i + 1th arcs.
236
+ Furthermore, there exists an epimorphism p : Bn → Sn from the
237
+ Artin braid group to the permutation group that uniquely interprets a
238
+ braid word. Let p be defined by sending generators of Bn, σi, to the
239
+ transpositions in Sn; si = (i, i+1) for 1 ≤ i ≤ n−1. For a permutation
240
+ π ∈ Sn, let bπ denote the unique minimal positive braid word such that
241
+ p(bπ) = π.
242
+ Definition 2.8. Let Z[A±1] denote the ring of Laurent polynomials
243
+ in the variable A and Q(A) denote the field of rational functions in
244
+ the variable A; whose elements are functions of the form P/Q where
245
+ P, Q ∈ Z[A±1]. We define an unnormalized A-symmetrizer, Fn ∈
246
+ Z[A±1]Bn, by the following
247
+ Fn =
248
+
249
+ π∈Sn
250
+ (A3)|π|bπ,
251
+ and the normalized symmetrizer, also known as the A-symmetrizer
252
+ and denoted by fn ∈ Q(A)Bn, by the formula
253
+ fn =
254
+ 1
255
+ [n]A4!Fn,
256
+ where |π| denotes the minimal length of the permutation π written as
257
+ elementary transposition generators, [n]A4 = 1+A4+A8+· · ·+A4(n−1) =
258
+ A4n−1
259
+ A4−1 and [n]A4! =
260
+ n�
261
+ i=1
262
+ [i]A4.
263
+ Fn evaluated in S2,∞(D2×I, {xi}2n
264
+ 1 ; R, A) is an element in the Temperley-
265
+ Lieb algebra and the normalization is chosen so that fn is an idempotent
266
+ element in TLn. The most recognized name for this A-symmetrizer is
267
+ the Jones-Wenzl idempotent. We will denote this element as a
268
+ square with n strands entering and n strands exiting, as shown in Fig-
269
+ ure 4 and fn will denote the Jones-Wenzl idempotent.
270
+ Wenzl’s recursive formula uses the Chebyshev polynomial of the sec-
271
+ ond kind.
272
+ Definition 2.9. The nth Chebyshev polynomial of the first kind
273
+ is defined recursively by the initial conditions T0(d) = 2, T1(d) = d and
274
+ Equation 2.1.
275
+ (2.1)
276
+ Tn(d) = dTn−1(d) − Tn−2(d).
277
+
278
+ JONES-WENZL IDEMPOTENTS AND THE M¨OBIUS BAND
279
+ 7
280
+ n
281
+ Figure 4. The Jones-Wenzl idempotent.
282
+ The nth Chebyshev polynomial of the second kind is defined
283
+ recursively by the initial conditions S0(d) = 1, S1(d) = d and the same
284
+ recursive relation as the first kind, Sn(d) = dSn−1(d) − Sn−2(d).
285
+ When we substitute d = −A2 − A−2, the Chebyshev polynomial of
286
+ the first kind has the following closed formula
287
+ Tn(d) = (−1)n(A2n + A−2n),
288
+ and the Chebyshev polynomial of the second kind has the following
289
+ closed formula,denoted by ∆n,
290
+ ∆n = (−1)nA2n+2 − A−2n−2
291
+ A2 − A−2
292
+ = (−1)nA−2n[n + 1]A4.
293
+ Theorem 2.10. [Wen] A recursion formula for the nth Jones-Wenzl
294
+ idempotent, fn, is described in Equation 2.2:
295
+ (2.2)
296
+ fn =
297
+ n − 1
298
+ − ∆n−2
299
+ ∆n−1
300
+ n − 1
301
+ n − 1
302
+ n − 2
303
+ .
304
+ The following lemma can be obtained from Wenzl’s recursive formula
305
+ as discussed in [Lic2] or from the constructive definition of the Jones-
306
+ Wenzl idempotent as detailed in [PBIMW].
307
+ Lemma 2.11. [Lic2]
308
+ (a) (fn − 1) is an element of the algebra generated by {ei}n−1
309
+ i=1 .
310
+ (b) eifn = fnei = 0 for 1 ≤ i ≤ n − 1.
311
+ (c) fnfn = fn.
312
+ A direct application of the next corollary will be given in Section 4.
313
+
314
+ 8
315
+ DIONNE IBARRA
316
+ Corollary 2.12. [Lic2] Let tr 1(fn) be obtained from fn by closing the
317
+ top string in fn (see Figure 5). Then
318
+ tr 1(fn) =
319
+ ∆n
320
+ ∆n−1
321
+ fn−1.
322
+ n − 1
323
+ =
324
+ ∆n
325
+ ∆n−1
326
+ n − 1
327
+ Figure 5. Illustration of tr 1(fn).
328
+ When defining the colored Jones polynomial, many authors tend to
329
+ use the term “decorating a knot by the Chebyshev polynomial” when
330
+ describing taking the trace of fn along a framed knot. This is because
331
+ the trace of fn along the standard annulus S1×I where S1 is the trivial
332
+ knot is equal to the Chebyshev polynomial of the second kind as stated
333
+ in the next corollary.
334
+ Corollary 2.13. [Lic2] Let Sn(z) denote the nth Chebyshev polynomial
335
+ of the second kind and z denote the homotopically non-trivial curve in
336
+ the annulus. Then
337
+ tr Ann(fn) = Sn(z).
338
+ Lemma 2.14. [Lic2]
339
+ b
340
+ a
341
+ = ς
342
+ b
343
+ ,
344
+ where ς =
345
+ (−1)a(A2(b+1)(a+1)−A−2(b+1)(a+1))
346
+ A2(b+1)−A−2(b+1)
347
+ .
348
+ The following result is a well known corollary to Lemma 2.14, we will
349
+ see similar corollaries in Section 4 for elements in the twisted I-bundle
350
+ of the M¨obius band.
351
+ Corollary 2.15. [Lic2]
352
+ (2.3)
353
+ m
354
+ k
355
+ = (−A2(k+1) − A−2(k+1))m∆k = ((−1)kTk+1)m∆k,
356
+ where d = −A2 − A−2 and Tn(d) = (−1)n(A2n + A−2n) is the nth
357
+ Chebyshev polynomial of the first kind.
358
+
359
+ JONES-WENZL IDEMPOTENTS AND THE M¨OBIUS BAND
360
+ 9
361
+ 3. Crossingless connection in the M¨obius band
362
+ Throughout this paper we will use the crosscap model of the M¨obius
363
+ band where the boundary will be given in a rectangular form when
364
+ marked points are included, as shown in Figure 6b, otherwise it will
365
+ be displayed as a smooth circle as shown in Figure 7b.
366
+ The three
367
+ homotopically distinct arcs fixed on the boundary of the M¨obius band
368
+ are given in Figure 6. In order to relate the arcs from the first and
369
+ second model, a convention was chosen on the two distinct arcs fixed
370
+ on the boundary that do not intersect the crosscap.
371
+ (a) Formed from [0, 1] × [0, 1] by
372
+ identifying {0} × [0, 1] with {1} ×
373
+ [0, 1] as shown by the arrows.
374
+ (b) Consists of a crosscap and
375
+ highlights the boundary of the
376
+ M¨obius band.
377
+ Figure 6. Two models of the M¨obius band with 3 ho-
378
+ motopically distinct arcs fixed on the boundary.
379
+ d
380
+ z
381
+ x
382
+ (a) First model.
383
+ d
384
+ z
385
+ x
386
+ (b) Second model.
387
+ Figure 7. Two models of the M¨obius band with 3 ho-
388
+ motopically distinct simple closed curves in M¨obius band
389
+ denoted by d, x, and z, respectively.
390
+ Figure 7 pictorially describes the three homotopically distinct simple
391
+ closed curves in the M¨obius band. If a simple closed curve intersects
392
+ the crosscap more than once then the number of intersection points can
393
+ be reduced by two at a time. The following example will illustrate the
394
+ process of removing two intersection points from the crosscap. Similar
395
+
396
+ 10
397
+ DIONNE IBARRA
398
+ moves can be applied to arcs attached to the boundary that intersect
399
+ the crosscap more than once.
400
+ Example 3.1. We will illustrate, in the first model then the second
401
+ model, the removal of two intersection points of the crosscap from a
402
+ simple closed curve. In the two examples, the curve will be multicolored
403
+ in order to show which portion of the curve passes through the crosscap.
404
+ Suppose we have a simple closed curve that is homotopically trivial
405
+ and intersects the crosscap twice then, as shown in Equation 3.1, we
406
+ may use a sequence of isotopy moves to remove the two intersection
407
+ points.
408
+ (3.1)
409
+
410
+
411
+ .
412
+ In Equation 3.2, we will illustrate the removal of the same intersec-
413
+ tion points presented in the second model.
414
+ (3.2)
415
+
416
+ .
417
+ Now, suppose we have a homotopically non-trivial curve that inter-
418
+ sects the crosscap twice, for example the curve illustrated in Equation
419
+ 3.3. Then, we may remove the two intersection points by using one
420
+ isotopy move as given below.
421
+ (3.3)
422
+
423
+ .
424
+ Equation 3.4 gives an illustration of this move in the second model.
425
+ (3.4)
426
+
427
+ .
428
+ 4. Jones-Wenzl idempotents in the M¨obius band
429
+ In this section we will introduce various properties associated to the
430
+ Jones-Wenzl idempotents in the twisted I-bundle of the M¨obius band.
431
+
432
+ JONES-WENZL IDEMPOTENTS AND THE M¨OBIUS BAND
433
+ 11
434
+ n
435
+ Figure 8. Illustration of the unique element in Mbn
436
+ with n arcs intersecting the crosscap, denoted by 1Mbn.
437
+ Lemma 4.1. Let (Mbn)k denote the set of elements of Mbn that in-
438
+ tersect the crosscap k times, and let 1Mbn denote the unique element in
439
+ Mbn that intersect the crosscap n times, then
440
+ 1Mbnei = en−i1Mbn ∈ (Mbn)n−2.
441
+ Proof. This is a direct result from the antipodal property of the cross-
442
+ cap that is explained in Section 3 and illustrated in Equations 4.1 and
443
+ 4.2.
444
+ (4.1)
445
+ 1Mbnei =
446
+ n − i − 1
447
+ i − 1
448
+ n − i − 1
449
+ i − 1
450
+ =
451
+ n − i − 1
452
+ i − 1
453
+ n − i − 1
454
+ i − 1
455
+ ∈ (Mbn)n−2.
456
+ (4.2)
457
+ en−i1Mbn =
458
+ n − i − 1
459
+ i − 1
460
+ n − i − 1
461
+ i − 1
462
+ =
463
+ n − i − 1
464
+ i − 1
465
+ n − i − 1
466
+ i − 1
467
+ ∈ (Mbn)n−2.
468
+
469
+ Corollary 4.2. Sliding fn through the crosscap is achieved by the fol-
470
+ lowing equations.
471
+ n
472
+ n
473
+ =
474
+ n
475
+ n
476
+ (4.3)
477
+ =
478
+ n
479
+ n .
480
+ (4.4)
481
+
482
+ 12
483
+ DIONNE IBARRA
484
+ Proof. By Lemma 2.11(a) and Lemma 4.1, all of the ei’s coming from
485
+ the left fn from left hand side of Equation 4.3 can be pulled through
486
+ the crosscap. Furthermore, for each ei this action results in a turn
487
+ back on the second fn. Therefore, we obtain our desired result after
488
+ applying Lemma 2.11(b). Equation 4.4 is obtained similarly.
489
+
490
+ We will now present the three direct corollaries to Lemma 2.14 that
491
+ are obtained from closing fb through the crosscap.
492
+ Corollary 4.3.
493
+ n
494
+ = x
495
+ ∆1
496
+ (−1)nTn+1(d)∆n,
497
+ where Tk(d) = (−1)k(A2k + A−2k) is the kth Chebyshev polynomial of
498
+ the first kind.
499
+ Proof. Let a = n and b = 1 in Lemma 2.14. Then by closing fb through
500
+ the crosscap we have
501
+ n
502
+ = (−1)n(A4(n+1) − A−4(n+1))
503
+ A4 − A−4
504
+ .
505
+ After simplification we have our desired result, where x denotes the
506
+ simple closed curve that intersects the crosscap once.
507
+
508
+ Corollary 4.4.
509
+ n
510
+ m
511
+ = (−1)n(A2(n+1)(m+1) − A−2(n+1)(m+1))
512
+ A2(n+1) − A−2(n+1)
513
+ m
514
+ .
515
+ Proof. This is obtained from directly applying Lemma 2.14 where a =
516
+ n, b = m, and fb is closed through the crosscap.
517
+
518
+
519
+ JONES-WENZL IDEMPOTENTS AND THE M¨OBIUS BAND
520
+ 13
521
+ Corollary 4.5.
522
+ m
523
+ n
524
+ = ((−1)nTn+1(d))m
525
+ n
526
+ .
527
+ Proof. We may remove one of the m meridional curves by applying
528
+ Lemma 2.14 where a = 1 and b = n and closing fb through the crosscap.
529
+ After simplification we have
530
+ m
531
+ n
532
+ = ((−1)nTn+1(d))
533
+ m − 1
534
+ n
535
+ .
536
+ We obtain our desired result after repeating this argument m − 1 more
537
+ times.
538
+
539
+ The following corollary is obtained from Corollary 2.13 by gluing a
540
+ crosscap to the inner boundary of the annulus.
541
+ Corollary 4.6. Let z denote the homotopically non-trivial curve in the
542
+ M¨obius band that does not intersect the crosscap, then
543
+ n
544
+ = Sn(z).
545
+ Corollary 4.7.
546
+ m
547
+ n
548
+ =
549
+ ∆m+n
550
+ ∆n
551
+ n
552
+ .
553
+ Proof. Apply Corollary 2.12 m times when closing n strands from fn+m
554
+ through the crosscap then closing the rest away from the crosscap.
555
+
556
+ Let tr Mb1(fn) be obtained from closing one arc from fn through the
557
+ crosscap and closing the rest of the arcs in such a way that it surrounds
558
+ the crosscap, as shown in Figure 9. Then Lemma 2.12 can no longer
559
+
560
+ 14
561
+ DIONNE IBARRA
562
+ be directly applied. Instead we start with applying Wenzl’s recursion
563
+ formula, Theorem 2.2, to obtain a recursive formula for tr Mb1(fn).
564
+ n − 1
565
+ Figure 9. Illustration of tr Mb1(fn).
566
+ Lemma 4.8.
567
+ tr Mb1(fn) = xSn−1(z) − ∆n−2
568
+ ∆n−1
569
+ tr Mb1(fn−1).
570
+ Proof. By applying Wenzl’s formula to the x-curve we have the follow-
571
+ ing recursive formula.
572
+ n − 1
573
+ =
574
+ n − 1
575
+ − ∆n−2
576
+ ∆n−1
577
+ n − 1
578
+ .
579
+ By Corollary 4.6 and Lemma 2.11(c),
580
+ n − 1
581
+ =
582
+ xSn−1(z) − ∆n−2
583
+ ∆n−1
584
+ n − 2
585
+ .
586
+
587
+ Proposition 4.9.
588
+ tr Mb1(fn) =
589
+ x
590
+ ∆n−1
591
+ n−1
592
+
593
+ k=0
594
+ (−1)n−1+kSk(z)∆k.
595
+
596
+ JONES-WENZL IDEMPOTENTS AND THE M¨OBIUS BAND
597
+ 15
598
+ Proof. The base case is trivial,
599
+ tr Mb1(f1) =
600
+ = x.
601
+ Suppose tr Mb1(fn−1) =
602
+ x
603
+ ∆n−2
604
+ �n−2
605
+ k=0(−1)n−2+kSk(z)∆k. Then by Lemma
606
+ 4.8,
607
+ tr Mb1(fn)
608
+ =
609
+ xSn−1(z) − ∆n−2
610
+ ∆n−1
611
+ tr Mb1(fn−1)
612
+ =
613
+ xSn−1(z) −
614
+ x
615
+ ∆n−1
616
+ n−2
617
+
618
+ k=0
619
+ (−1)n−2+kSk(z)∆k
620
+ =
621
+ x
622
+ ∆n−1
623
+ Sn−1(z)∆n−1 +
624
+ x
625
+ ∆n−1
626
+ n−2
627
+
628
+ k=0
629
+ (−1)n−1+kSk(z)∆k.
630
+
631
+ References
632
+ [BIMP]
633
+ R. P. Bakshi, D. Ibarra, S. Mukherjee, J. H. Przytycki, A generalization
634
+ of the Gram determinant of type A, Topology Appl. 295 (2021), Paper
635
+ No. 107663, 15 pp. e-print: arXiv:1905.07834 [math.GT].
636
+ [Bax]
637
+ R. J. Baxter, Exactly solved models in statistical mechanics. Academic
638
+ Press, Inc., London (1982).
639
+ [Cai]
640
+ X. Cai, A Gram determinant of Lickorish’s bilinear form. Math. Proc.
641
+ Cambridge Philos. Soc. 151 (2011), no. 1, 83–94. arXiv:1006.1297v3
642
+ [math.GT].
643
+ [Jon]
644
+ V. F. R. Jones, Index for subfactors. Invent. Math. 72, 1983, 1-25.
645
+ [Kau]
646
+ L. H. Kauffman, An invariant of regular isotopy. Trans. Amer. Math.
647
+ Soc. 318 (1990), no. 2, 417–471.
648
+ [Le]
649
+ T. T. Q. Lˆe, The colored Jones polynomial and the A-polynomial of
650
+ knots. Adv. Math. 207 (2006), no. 2, 782–804. arXiv:math/0407521
651
+ [math.GT].
652
+ [Lic1]
653
+ W. B. R. Lickorish, Invariants for 3-manifolds from the combinatorics
654
+ of the Jones polynomial, Pacific Journ. Math.,149(2), 1991, 337-347.
655
+ [Lic2]
656
+ W. B. R. Lickorish, An introduction to knot theory. Graduate Texts in
657
+ Mathematics, 175. Springer-Verlag, New York, 1997.
658
+ [Prz]
659
+ J. H. Przytycki, Fundamentals of Kauffman bracket skein modules. Kobe
660
+ Math. J., 16(1), 1999, 45-66. arXiv:math/9809113 [math.GT].
661
+ [PBIMW]
662
+ J. H. Przytycki, R. P. Bakshi, D. Ibarra, G. Montoya-Vega, D. E. Weeks,
663
+ Lectures on Knot Theory: An Exploration of Contemporary Topics,
664
+ Springer Universitext (to appear).
665
+ [TL]
666
+ H. Temperley and E. Lieb, Relations Between the ‘Percolation’ and
667
+ ‘Colouring’ Problem and Other Graph-Theoretic Problems Associated
668
+
669
+ 16
670
+ DIONNE IBARRA
671
+ with Regular Plane Lattices: Some Exact Results for the ‘Percolation’
672
+ Problem, Proceeds of the Royal Society of London 322 (1971), 251 - 280.
673
+ [TV]
674
+ V. G. Turaev, O. Ya. Viro, State sum invariants of 3-manifolds and
675
+ quantum 6j-symbols. Topology 31 (1992), no. 4, 865–902.
676
+ [Wen]
677
+ H. Wenzl, On sequences of projections, C.R. Math. Rep. Acad. Sci., IX,
678
+ 1987, 5-9.
679
+ School of Mathematics, 9 Rainforest Walk, Floor 4, Monash Uni-
680
+ versity, VIC 3800, Australia
681
+ Email address: [email protected]
682
+
7dE4T4oBgHgl3EQfCQuc/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,427 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf,len=426
2
+ page_content='JONES-WENZL IDEMPOTENTS IN THE TWISTED I-BUNDLE OF THE M¨OBIUS BAND DIONNE IBARRA Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
3
+ page_content=' The Jones-Wenzl idempotent plays a vital role in quan- tum invariants of 3-manifolds and the colored Jones polynomial;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
4
+ page_content=' it also serves as a useful tool for simplifying computations and proving theorems in knot theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
5
+ page_content=' The relative Kauffman bracket skein module (RKBSM) for surface I-bundles and manifolds with marked boundaries have a well understood algebraic structure due to the work of J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
6
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
7
+ page_content=' Przytycki and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
8
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
9
+ page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
10
+ page_content=' Lˆe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
11
+ page_content=' It has been well documented that the RKBSM of the I-bundle of the annulus and the twisted I-bundle of the M¨obius band have a distinct alge- braic structures even though the manifolds are homeomorphic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
12
+ page_content=' In this paper we will give various results on Jones-Wenzl idempotents in the twisted I-bundle of the M¨obius band when it is partially closed through the crosscap of the M¨obius band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
13
+ page_content=' In doing so we will uncover properties that differ from properties of Jones-Wenzl idempotents in Ann × I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
14
+ page_content=' Contents 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
15
+ page_content=' Introduction 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
16
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
17
+ page_content=' Acknowledgements 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
18
+ page_content=' Introduction to Jones-Wenzl idempotents 2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
19
+ page_content=' Crossingless connection in the M¨obius band 9 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
20
+ page_content=' Jones-Wenzl idempotents in the M¨obius band 10 References 15 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
21
+ page_content=' Introduction The Jones-Wenzl idempotent, discovered by V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
22
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
23
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
24
+ page_content=' Jones in [Jon], is an idempotent element in the Temperley-Lieb algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
25
+ page_content=' Originally, it was described as a certain symmetrizer using the Artin braid group Date: January 13, 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
26
+ page_content=' 2020 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
27
+ page_content=' Primary: 57K10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
28
+ page_content=' Secondary: 57K31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
29
+ page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
30
+ page_content=' Jones-Wenzl idempotents, M¨obius band, twisted I- bundles, Kauffman bracket skein module, relative Kauffman bracket skein module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
31
+ page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
32
+ page_content='04859v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
33
+ page_content='GT] 12 Jan 2023 2 DIONNE IBARRA and the projection to the Temperley-Lieb algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
34
+ page_content=' In the late 1980’s, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
35
+ page_content=' Wenzl in [Wen] discovered a recursive formula to the Jones-Wenzl idempotent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
36
+ page_content=' This formula is now widely used as the definition, see [Lic2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
37
+ page_content=' The Jones-Wenzl idempotent has played a significant role in defining quanum invariants of knots and 3-manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
38
+ page_content=' For example, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
39
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
40
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
41
+ page_content=' Lickorish’s Kauffman bracket skein theoretic approach to the Witten- Reshetikhin-Turaev 3-manifold invariants in [Lic1] uses a linear combi- nation of the trace (closure) of the idempotent elements along a framed knot or link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
42
+ page_content=' Similarly, the colored Jones polynomial quantum knot in- variant is defined by taking the trace of the nth Jones-Wenzl idempotent along a 0-framed knot in S3, see [Le, PBIMW].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
43
+ page_content=' These idempotent ele- ments are also used to decorate the edges of a tetrahedra to obtain the quantum 6j-symbols that are used in the definition of the Turaev-Viro quantum 3-manifold invariants, see [TV].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
44
+ page_content=' The Jones-Wenzl idempotent has been a vital tool for simplifying computations and proving theorems in knot theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
45
+ page_content=' An example of this is seen in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
46
+ page_content=' Cai’s proof of a closed formula for the Gram determinant of type A in [Cai] and a closed formula for its generalization in [BIMP].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
47
+ page_content=' In fact, this paper was conceived by needing properties of the Jones- Wenzl idempotents when it is closed in the twisted I-bundle of the M¨obius band in hopes to take a similar approach to [Cai] and [BIMP] to prove a closed formula for the Gram determinant of type Mb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
48
+ page_content=' In Section 2 we introduce the original definition of Jones-Wenzl idem- potents and also the RKBSM of the twisted I-bundle of the M¨obius band, then in Section 3 we give an illustration of the two different models of the M¨obius band as well as the antipodal properties of the crosscap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
49
+ page_content=' In Section 4 we prove many corollaries to the trace of Jones- Wenzl idempotents intersecting or surrounding the crosscap, then we end with a formula for when n − 1 curves from fn are closed around the crosscap and the last arc is closed through the crosscap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
50
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
51
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
52
+ page_content=' Acknowledgements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
53
+ page_content=' This work was supported by the Australian Research Council grant DP210103136.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
54
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
55
+ page_content=' Introduction to Jones-Wenzl idempotents The first formal definition of the Temperley-Lieb algebra, denoted by TLn, was given by R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
56
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
57
+ page_content=' Baxter in [Bax] while describing the work of physicists N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
58
+ page_content=' Temperley and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
59
+ page_content=' Lieb in [TL].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
60
+ page_content=' Jones independently introduced TLn in [Jon] while working on von Neumann algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
61
+ page_content=' JONES-WENZL IDEMPOTENTS AND THE M¨OBIUS BAND 3 Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
62
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
63
+ page_content=' Let R be a commutative ring with unity and d ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
64
+ page_content=' Let n ∈ N be fixed, then the nth Temperley-Lieb algebra, TLn, is defined to be the unital associative algebra over R with generators e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
65
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
66
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
67
+ page_content=' , en−1, identity element 1n, and relations (1) eiejei = ei for |i − j| = 1, (2) eiej = ejei for |i − j| > 1, (3) e2 i = dei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
68
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
69
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
70
+ page_content=' Kauffman in [Kau], motivated by utilizing the Kauffman bracket, considered the Temperley-Lieb algebra over R = Z[A±1], where A is an indeterminate and d = −A2 − A−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
71
+ page_content=' He then constructed a graphical interpretation using tangles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
72
+ page_content=' We will consider an n-tangle to be a rectangular shaped disk with n marked boundary points on the left (input points) and n marked boundary points on the right (output points).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
73
+ page_content=' Kauffman’s graphical interpretation of the Temperley-Lieb algebra is obtained from the basis of crossingless tangles where the identity element corresponds to an n- tangle with n parallel arcs in which each ith input point is connected to the ith output point, and each ei corresponds to an n-tangle that has one input and one output cap on the ith and i + 1th position as illustrated in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
74
+ page_content=' For simplicity we will label an arc by n to denote n parallel arcs as shown in Figure 1a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
75
+ page_content=' n (a) Identity element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
76
+ page_content=' n − i − 1 i − 1 (b) ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
77
+ page_content=' Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
78
+ page_content=' The graphical interpretation of TLn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
79
+ page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
80
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
81
+ page_content=' The n-tangle algebra is an R-module with basis elements consisting of n-tangles where multiplication of two n-tangles is defined by identifying the right side of the first n-tangle to the left side of the second n-tangle while respecting the boundary points and by letting any resulting trivial curve be denoted by d, see Figure 2 for an illustrative example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
82
+ page_content=' Kauffman’s diagrammatic interpretation of the Temperley-Lieb algebra, also known as the diagrammatic algebra, is a subalgebra of the n-tangle algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
83
+ page_content=' It is generated by tangles with no crossings where homotopically trivial curves are denoted by d ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
84
+ page_content=' 4 DIONNE IBARRA e3e3 = = d = de3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
85
+ page_content=' Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
86
+ page_content=' An illustration of multiplication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
87
+ page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
88
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
89
+ page_content=' [Kau] The diagrammatic algebra is isomorphic to TLn and can be thought of as a diagrammatic interpretation of it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
90
+ page_content=' We will give Jones’ constructive definition of the Jones-Wenzl idem- potent by using the relative Kauffman bracket skein module (RKBSM) and the Artin braid group before introducing Wenzl’s recursive formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
91
+ page_content=' In doing so, we will first introduce the RKBSM and emphasize that the RKBSM of the twisted I-bundle of the M¨obius band and the RKBSM of Ann × I are different modules even though the two manifolds are homeomorphic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
92
+ page_content=' This will give us motivation to study the Jones-Wenzl idempotent in the twisted I-bundle of the M¨obius band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
93
+ page_content=' Furthermore, the corollaries and proposition in the last section will show that there are distinct differences when simple closed curves intersect the crosscap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
94
+ page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
95
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
96
+ page_content=' Let M be an oriented 3-manifold and {xi}2n i=1 be the set of 2n framed points on ∂M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
97
+ page_content=' Let I = [−1, 1], and let Lfr(2n) be the set of all relative framed links (which consists of all framed links in M and all framed arcs, I×I, where I×∂I is connected to framed points on the boundary of M) up to ambient isotopy while keeping the boundary fixed in such a way that L ∩ ∂M = {xi}2n 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
98
+ page_content=' Let R be a commutative ring with unity, A ∈ R be invertible, and let Ssub 2,∞(2n) be the submodule of RLfr(2n) that is generated by the Kauffman bracket skein relations: (i) L+ − AL0 − A−1L∞, and (ii) L ⊔ ⃝ ⃝ ⃝ + (A2 + A−2)L, where ⃝ ⃝ ⃝ denotes the framed unknot and the skein triple (L+, L0, L∞) denotes three framed links in M that are identical except in a small 3-ball in M where the difference is shown in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
99
+ page_content=' Then, the relative Kauffman bracket skein module (RKBSM) of M is the quotient: S2,∞(M, {xi}2n 1 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
100
+ page_content=' R, A) = RLfr(2n)/Ssub 2,∞(2n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
101
+ page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
102
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
103
+ page_content=' [Prz] Let F be a surface with ∂F ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
104
+ page_content=' If F is orientable then let M = F × I , otherwise let M = F ˆ×I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
105
+ page_content=' Let all {xi}2n 1 be marked JONES-WENZL IDEMPOTENTS AND THE M¨OBIUS BAND 5 (a) L+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
106
+ page_content=' (b) L0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
107
+ page_content=' (c) L∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
108
+ page_content=' Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
109
+ page_content=' The skein triple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
110
+ page_content=' points that lie on ∂F × {0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
111
+ page_content=' Then S2,∞(M, {xi}2n 1 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
112
+ page_content=' R, A) is a free R- module whose basis is composed of relative links in F without trivial components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
113
+ page_content=' When n = 0, the empty link is also a generator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
114
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
115
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
116
+ page_content=' Przytycki’s corollary to Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
117
+ page_content='5 explicitly details the dif- ferences between the RKBSM of Ann × I and the RKBSM of Mbˆ×I even though both manifolds are homeomorphic to the solid torus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
118
+ page_content=' Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
119
+ page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
120
+ page_content=' [Prz] (1) S2,∞(Ann×I, {xi}2n 1 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
121
+ page_content=' R, A) where {xi}2n 1 are located in the outer boundary component of the annulus is a free R[x]-module with Dn = �2n n � basis elements, where x denotes the homotopically nontrivial curve in the annulus and d = −A2 − A−2 denotes the homotopically trivial curve in the annulus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
122
+ page_content=' The basis is the set of all crossingless connections in the annulus with no trivial components or boundary parallel curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
123
+ page_content=' (2) S2,∞(Mbˆ×I, {xi}2n 1 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
124
+ page_content=' R, A) is a free R-module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
125
+ page_content=' The standard ba- sis contains an infinite number of elements of the form bzi, bxzi for i ≥ 0, where x denotes the simple closed curve that intersects the M¨obius band once, z denotes the boundary parallel curve of the M¨obius band, and b is an element in the set of crossingless connections in the M¨obius band with no trivial components or boundary parallel curves for which the arcs do not intersect the crosscap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
126
+ page_content=' The rest of the elements in the standard basis are from a finite number of crossingless connections consisting of a collection of n − k arcs for 0 ≤ k < n that non-trivially in- tersects the crosscap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
127
+ page_content=' Among the finite collection there are �2n k � crossingless connections that intersect the crosscap n−k times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
128
+ page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
129
+ page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
130
+ page_content=' The Artin braid group is defined by the following group presentation: Bn =< σ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
131
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
132
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
133
+ page_content=' , σn−1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
134
+ page_content=' σiσj = σjσi for |i−j| > 1, σi±1σiσi±1 = σiσi±1σi > .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
135
+ page_content=' The Artin braid group can be interpreted using n-tangles where el- ements of Bn are positive braids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
136
+ page_content=' More precisely, an element in Bn 6 DIONNE IBARRA can be represented as an n-tangle with positive crossings such that the boundary of each arc is attached to one input and one output point and when read from left to right each generator σi corresponds to the positive crossing of the ith and i + 1th arcs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
137
+ page_content=' That is, the ith generator element σi is a positive transposition of the ith and i + 1th arcs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
138
+ page_content=' Furthermore, there exists an epimorphism p : Bn → Sn from the Artin braid group to the permutation group that uniquely interprets a braid word.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
139
+ page_content=' Let p be defined by sending generators of Bn, σi, to the transpositions in Sn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
140
+ page_content=' si = (i, i+1) for 1 ≤ i ≤ n−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
141
+ page_content=' For a permutation π ∈ Sn, let bπ denote the unique minimal positive braid word such that p(bπ) = π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
142
+ page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
143
+ page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
144
+ page_content=' Let Z[A±1] denote the ring of Laurent polynomials in the variable A and Q(A) denote the field of rational functions in the variable A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
145
+ page_content=' whose elements are functions of the form P/Q where P, Q ∈ Z[A±1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
146
+ page_content=' We define an unnormalized A-symmetrizer, Fn ∈ Z[A±1]Bn, by the following Fn = � π∈Sn (A3)|π|bπ, and the normalized symmetrizer, also known as the A-symmetrizer and denoted by fn ∈ Q(A)Bn, by the formula fn = 1 [n]A4!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
147
+ page_content='Fn, where |π| denotes the minimal length of the permutation π written as elementary transposition generators, [n]A4 = 1+A4+A8+· · ·+A4(n−1) = A4n−1 A4−1 and [n]A4!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
148
+ page_content=' = n� i=1 [i]A4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
149
+ page_content=' Fn evaluated in S2,∞(D2×I, {xi}2n 1 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
150
+ page_content=' R, A) is an element in the Temperley- Lieb algebra and the normalization is chosen so that fn is an idempotent element in TLn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
151
+ page_content=' The most recognized name for this A-symmetrizer is the Jones-Wenzl idempotent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
152
+ page_content=' We will denote this element as a square with n strands entering and n strands exiting, as shown in Fig- ure 4 and fn will denote the Jones-Wenzl idempotent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
153
+ page_content=' Wenzl’s recursive formula uses the Chebyshev polynomial of the sec- ond kind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
154
+ page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
155
+ page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
156
+ page_content=' The nth Chebyshev polynomial of the first kind is defined recursively by the initial conditions T0(d) = 2, T1(d) = d and Equation 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
157
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
158
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
159
+ page_content='1) Tn(d) = dTn−1(d) − Tn−2(d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
160
+ page_content=' JONES-WENZL IDEMPOTENTS AND THE M¨OBIUS BAND 7 n Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
161
+ page_content=' The Jones-Wenzl idempotent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
162
+ page_content=' The nth Chebyshev polynomial of the second kind is defined recursively by the initial conditions S0(d) = 1, S1(d) = d and the same recursive relation as the first kind, Sn(d) = dSn−1(d) − Sn−2(d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
163
+ page_content=' When we substitute d = −A2 − A−2, the Chebyshev polynomial of the first kind has the following closed formula Tn(d) = (−1)n(A2n + A−2n), and the Chebyshev polynomial of the second kind has the following closed formula,denoted by ∆n, ∆n = (−1)nA2n+2 − A−2n−2 A2 − A−2 = (−1)nA−2n[n + 1]A4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
164
+ page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
165
+ page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
166
+ page_content=' [Wen] A recursion formula for the nth Jones-Wenzl idempotent, fn, is described in Equation 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
167
+ page_content='2: (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
168
+ page_content='2) fn = n − 1 − ∆n−2 ∆n−1 n − 1 n − 1 n − 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
169
+ page_content=' The following lemma can be obtained from Wenzl’s recursive formula as discussed in [Lic2] or from the constructive definition of the Jones- Wenzl idempotent as detailed in [PBIMW].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
170
+ page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
171
+ page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
172
+ page_content=' [Lic2] (a) (fn − 1) is an element of the algebra generated by {ei}n−1 i=1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
173
+ page_content=' (b) eifn = fnei = 0 for 1 ≤ i ≤ n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
174
+ page_content=' (c) fnfn = fn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
175
+ page_content=' A direct application of the next corollary will be given in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
176
+ page_content=' 8 DIONNE IBARRA Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
177
+ page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
178
+ page_content=' [Lic2] Let tr 1(fn) be obtained from fn by closing the top string in fn (see Figure 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
179
+ page_content=' Then tr 1(fn) = ∆n ∆n−1 fn−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
180
+ page_content=' n − 1 = ∆n ∆n−1 n − 1 Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
181
+ page_content=' Illustration of tr 1(fn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
182
+ page_content=' When defining the colored Jones polynomial, many authors tend to use the term “decorating a knot by the Chebyshev polynomial” when describing taking the trace of fn along a framed knot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
183
+ page_content=' This is because the trace of fn along the standard annulus S1×I where S1 is the trivial knot is equal to the Chebyshev polynomial of the second kind as stated in the next corollary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
184
+ page_content=' Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
185
+ page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
186
+ page_content=' [Lic2] Let Sn(z) denote the nth Chebyshev polynomial of the second kind and z denote the homotopically non-trivial curve in the annulus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
187
+ page_content=' Then tr Ann(fn) = Sn(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
188
+ page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
189
+ page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
190
+ page_content=' [Lic2] b a = ς b , where ς = (−1)a(A2(b+1)(a+1)−A−2(b+1)(a+1)) A2(b+1)−A−2(b+1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
191
+ page_content=' The following result is a well known corollary to Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
192
+ page_content='14, we will see similar corollaries in Section 4 for elements in the twisted I-bundle of the M¨obius band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
193
+ page_content=' Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
194
+ page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
195
+ page_content=' [Lic2] (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
196
+ page_content='3) m k = (−A2(k+1) − A−2(k+1))m∆k = ((−1)kTk+1)m∆k, where d = −A2 − A−2 and Tn(d) = (−1)n(A2n + A−2n) is the nth Chebyshev polynomial of the first kind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
197
+ page_content=' JONES-WENZL IDEMPOTENTS AND THE M¨OBIUS BAND 9 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
198
+ page_content=' Crossingless connection in the M¨obius band Throughout this paper we will use the crosscap model of the M¨obius band where the boundary will be given in a rectangular form when marked points are included, as shown in Figure 6b, otherwise it will be displayed as a smooth circle as shown in Figure 7b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
199
+ page_content=' The three homotopically distinct arcs fixed on the boundary of the M¨obius band are given in Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
200
+ page_content=' In order to relate the arcs from the first and second model, a convention was chosen on the two distinct arcs fixed on the boundary that do not intersect the crosscap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
201
+ page_content=' (a) Formed from [0, 1] × [0, 1] by identifying {0} × [0, 1] with {1} × [0, 1] as shown by the arrows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
202
+ page_content=' (b) Consists of a crosscap and highlights the boundary of the M¨obius band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
203
+ page_content=' Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
204
+ page_content=' Two models of the M¨obius band with 3 ho- motopically distinct arcs fixed on the boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
205
+ page_content=' d z x (a) First model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
206
+ page_content=' d z x (b) Second model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
207
+ page_content=' Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
208
+ page_content=' Two models of the M¨obius band with 3 ho- motopically distinct simple closed curves in M¨obius band denoted by d, x, and z, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
209
+ page_content=' Figure 7 pictorially describes the three homotopically distinct simple closed curves in the M¨obius band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
210
+ page_content=' If a simple closed curve intersects the crosscap more than once then the number of intersection points can be reduced by two at a time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
211
+ page_content=' The following example will illustrate the process of removing two intersection points from the crosscap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
212
+ page_content=' Similar 10 DIONNE IBARRA moves can be applied to arcs attached to the boundary that intersect the crosscap more than once.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
213
+ page_content=' Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
214
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
215
+ page_content=' We will illustrate, in the first model then the second model, the removal of two intersection points of the crosscap from a simple closed curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
216
+ page_content=' In the two examples, the curve will be multicolored in order to show which portion of the curve passes through the crosscap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
217
+ page_content=' Suppose we have a simple closed curve that is homotopically trivial and intersects the crosscap twice then, as shown in Equation 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
218
+ page_content='1, we may use a sequence of isotopy moves to remove the two intersection points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
219
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
220
+ page_content='1) ∼ ∼ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
221
+ page_content=' In Equation 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
222
+ page_content='2, we will illustrate the removal of the same intersec- tion points presented in the second model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
223
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
224
+ page_content='2) ∼ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
225
+ page_content=' Now, suppose we have a homotopically non-trivial curve that inter- sects the crosscap twice, for example the curve illustrated in Equation 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
226
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
227
+ page_content=' Then, we may remove the two intersection points by using one isotopy move as given below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
228
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
229
+ page_content='3) ∼ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
230
+ page_content=' Equation 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
231
+ page_content='4 gives an illustration of this move in the second model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
232
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
233
+ page_content='4) ∼ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
234
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
235
+ page_content=' Jones-Wenzl idempotents in the M¨obius band In this section we will introduce various properties associated to the Jones-Wenzl idempotents in the twisted I-bundle of the M¨obius band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
236
+ page_content=' JONES-WENZL IDEMPOTENTS AND THE M¨OBIUS BAND 11 n Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
237
+ page_content=' Illustration of the unique element in Mbn with n arcs intersecting the crosscap, denoted by 1Mbn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
238
+ page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
239
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
240
+ page_content=' Let (Mbn)k denote the set of elements of Mbn that in- tersect the crosscap k times, and let 1Mbn denote the unique element in Mbn that intersect the crosscap n times, then 1Mbnei = en−i1Mbn ∈ (Mbn)n−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
241
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
242
+ page_content=' This is a direct result from the antipodal property of the cross- cap that is explained in Section 3 and illustrated in Equations 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
243
+ page_content='1 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
244
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
245
+ page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
246
+ page_content='1) 1Mbnei = n − i − 1 i − 1 n − i − 1 i − 1 = n − i − 1 i − 1 n − i − 1 i − 1 ∈ (Mbn)n−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
247
+ page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
248
+ page_content='2) en−i1Mbn = n − i − 1 i − 1 n − i − 1 i − 1 = n − i − 1 i − 1 n − i − 1 i − 1 ∈ (Mbn)n−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
249
+ page_content=' □ Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
250
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
251
+ page_content=' Sliding fn through the crosscap is achieved by the fol- lowing equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
252
+ page_content=' n n = n n (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
253
+ page_content='3) = n n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
254
+ page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
255
+ page_content='4) 12 DIONNE IBARRA Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
256
+ page_content=' By Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
257
+ page_content='11(a) and Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
258
+ page_content='1, all of the ei’s coming from the left fn from left hand side of Equation 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
259
+ page_content='3 can be pulled through the crosscap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
260
+ page_content=' Furthermore, for each ei this action results in a turn back on the second fn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
261
+ page_content=' Therefore, we obtain our desired result after applying Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
262
+ page_content='11(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
263
+ page_content=' Equation 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
264
+ page_content='4 is obtained similarly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
265
+ page_content=' □ We will now present the three direct corollaries to Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
266
+ page_content='14 that are obtained from closing fb through the crosscap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
267
+ page_content=' Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
268
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
269
+ page_content=' n = x ∆1 (−1)nTn+1(d)∆n, where Tk(d) = (−1)k(A2k + A−2k) is the kth Chebyshev polynomial of the first kind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
270
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
271
+ page_content=' Let a = n and b = 1 in Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
272
+ page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
273
+ page_content=' Then by closing fb through the crosscap we have n = (−1)n(A4(n+1) − A−4(n+1)) A4 − A−4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
274
+ page_content=' After simplification we have our desired result, where x denotes the simple closed curve that intersects the crosscap once.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
275
+ page_content=' □ Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
276
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
277
+ page_content=' n m = (−1)n(A2(n+1)(m+1) − A−2(n+1)(m+1)) A2(n+1) − A−2(n+1) m .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
278
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
279
+ page_content=' This is obtained from directly applying Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
280
+ page_content='14 where a = n, b = m, and fb is closed through the crosscap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
281
+ page_content=' □ JONES-WENZL IDEMPOTENTS AND THE M¨OBIUS BAND 13 Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
282
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
283
+ page_content=' m n = ((−1)nTn+1(d))m n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
284
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
285
+ page_content=' We may remove one of the m meridional curves by applying Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
286
+ page_content='14 where a = 1 and b = n and closing fb through the crosscap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
287
+ page_content=' After simplification we have m n = ((−1)nTn+1(d)) m − 1 n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
288
+ page_content=' We obtain our desired result after repeating this argument m − 1 more times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
289
+ page_content=' □ The following corollary is obtained from Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
290
+ page_content='13 by gluing a crosscap to the inner boundary of the annulus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
291
+ page_content=' Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
292
+ page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
293
+ page_content=' Let z denote the homotopically non-trivial curve in the M¨obius band that does not intersect the crosscap, then n = Sn(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
294
+ page_content=' Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
295
+ page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
296
+ page_content=' m n = ∆m+n ∆n n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
297
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
298
+ page_content=' Apply Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
299
+ page_content='12 m times when closing n strands from fn+m through the crosscap then closing the rest away from the crosscap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
300
+ page_content=' □ Let tr Mb1(fn) be obtained from closing one arc from fn through the crosscap and closing the rest of the arcs in such a way that it surrounds the crosscap, as shown in Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
301
+ page_content=' Then Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
302
+ page_content='12 can no longer 14 DIONNE IBARRA be directly applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
303
+ page_content=' Instead we start with applying Wenzl’s recursion formula, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
304
+ page_content='2, to obtain a recursive formula for tr Mb1(fn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
305
+ page_content=' n − 1 Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
306
+ page_content=' Illustration of tr Mb1(fn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
307
+ page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
308
+ page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
309
+ page_content=' tr Mb1(fn) = xSn−1(z) − ∆n−2 ∆n−1 tr Mb1(fn−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
310
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
311
+ page_content=' By applying Wenzl’s formula to the x-curve we have the follow- ing recursive formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
312
+ page_content=' n − 1 = n − 1 − ∆n−2 ∆n−1 n − 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
313
+ page_content=' By Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
314
+ page_content='6 and Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
315
+ page_content='11(c), n − 1 = xSn−1(z) − ∆n−2 ∆n−1 n − 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
316
+ page_content=' □ Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
317
+ page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
318
+ page_content=' tr Mb1(fn) = x ∆n−1 n−1 � k=0 (−1)n−1+kSk(z)∆k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
319
+ page_content=' JONES-WENZL IDEMPOTENTS AND THE M¨OBIUS BAND 15 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
320
+ page_content=' The base case is trivial, tr Mb1(f1) = = x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
321
+ page_content=' Suppose tr Mb1(fn−1) = x ∆n−2 �n−2 k=0(−1)n−2+kSk(z)∆k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
322
+ page_content=' Then by Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
323
+ page_content='8, tr Mb1(fn) = xSn−1(z) − ∆n−2 ∆n−1 tr Mb1(fn−1) = xSn−1(z) − x ∆n−1 n−2 � k=0 (−1)n−2+kSk(z)∆k = x ∆n−1 Sn−1(z)∆n−1 + x ∆n−1 n−2 � k=0 (−1)n−1+kSk(z)∆k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
324
+ page_content=' □ References [BIMP] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
325
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
326
+ page_content=' Bakshi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
327
+ page_content=' Ibarra, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
328
+ page_content=' Mukherjee, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
329
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
330
+ page_content=' Przytycki, A generalization of the Gram determinant of type A, Topology Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
331
+ page_content=' 295 (2021), Paper No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
332
+ page_content=' 107663, 15 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
333
+ page_content=' e-print: arXiv:1905.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
334
+ page_content='07834 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
335
+ page_content='GT].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
336
+ page_content=' [Bax] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
337
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
338
+ page_content=' Baxter, Exactly solved models in statistical mechanics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
339
+ page_content=' Academic Press, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
340
+ page_content=', London (1982).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
341
+ page_content=' [Cai] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
342
+ page_content=' Cai, A Gram determinant of Lickorish’s bilinear form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
343
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
344
+ page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
345
+ page_content=' Cambridge Philos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
346
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
347
+ page_content=' 151 (2011), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
348
+ page_content=' 1, 83–94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
349
+ page_content=' arXiv:1006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
350
+ page_content='1297v3 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
351
+ page_content='GT].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
352
+ page_content=' [Jon] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
353
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
354
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
355
+ page_content=' Jones, Index for subfactors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
356
+ page_content=' Invent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
357
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
358
+ page_content=' 72, 1983, 1-25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
359
+ page_content=' [Kau] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
360
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
361
+ page_content=' Kauffman, An invariant of regular isotopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
362
+ page_content=' Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
363
+ page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
364
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
365
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
366
+ page_content=' 318 (1990), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
367
+ page_content=' 2, 417–471.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
368
+ page_content=' [Le] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
369
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
370
+ page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
371
+ page_content=' Lˆe, The colored Jones polynomial and the A-polynomial of knots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
372
+ page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
373
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
374
+ page_content=' 207 (2006), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
375
+ page_content=' 2, 782–804.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
376
+ page_content=' arXiv:math/0407521 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
377
+ page_content='GT].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
378
+ page_content=' [Lic1] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
379
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
380
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
381
+ page_content=' Lickorish, Invariants for 3-manifolds from the combinatorics of the Jones polynomial, Pacific Journ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
382
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
383
+ page_content=',149(2), 1991, 337-347.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
384
+ page_content=' [Lic2] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
385
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
386
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
387
+ page_content=' Lickorish, An introduction to knot theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
388
+ page_content=' Graduate Texts in Mathematics, 175.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
389
+ page_content=' Springer-Verlag, New York, 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
390
+ page_content=' [Prz] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
391
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
392
+ page_content=' Przytycki, Fundamentals of Kauffman bracket skein modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
393
+ page_content=' Kobe Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
394
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
395
+ page_content=', 16(1), 1999, 45-66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
396
+ page_content=' arXiv:math/9809113 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
397
+ page_content='GT].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
398
+ page_content=' [PBIMW] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
399
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
400
+ page_content=' Przytycki, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
401
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
402
+ page_content=' Bakshi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
403
+ page_content=' Ibarra, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
404
+ page_content=' Montoya-Vega, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
405
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
406
+ page_content=' Weeks, Lectures on Knot Theory: An Exploration of Contemporary Topics, Springer Universitext (to appear).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
407
+ page_content=' [TL] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
408
+ page_content=' Temperley and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
409
+ page_content=' Lieb, Relations Between the ‘Percolation’ and ‘Colouring’ Problem and Other Graph-Theoretic Problems Associated 16 DIONNE IBARRA with Regular Plane Lattices: Some Exact Results for the ‘Percolation’ Problem, Proceeds of the Royal Society of London 322 (1971), 251 - 280.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
410
+ page_content=' [TV] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
411
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
412
+ page_content=' Turaev, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
413
+ page_content=' Ya.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
414
+ page_content=' Viro, State sum invariants of 3-manifolds and quantum 6j-symbols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
415
+ page_content=' Topology 31 (1992), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
416
+ page_content=' 4, 865–902.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
417
+ page_content=' [Wen] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
418
+ page_content=' Wenzl, On sequences of projections, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
419
+ page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
420
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
421
+ page_content=' Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
422
+ page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
423
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
424
+ page_content=', IX, 1987, 5-9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
425
+ page_content=' School of Mathematics, 9 Rainforest Walk, Floor 4, Monash Uni- versity, VIC 3800, Australia Email address: dionne.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
426
+ page_content='ibarra@monash.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
427
+ page_content='edu' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf'}
7tAyT4oBgHgl3EQf2_kh/content/tmp_files/2301.00759v1.pdf.txt ADDED
@@ -0,0 +1,1607 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Avalanche scaling in large neural
2
+ populations with distributed
3
+ coupling to multiple dynamical
4
+ latent variables
5
+ Mia Morrell1, Ilya Nemenman2, Audrey J. Sederberg3*
6
+ *For correspondence:
7
8
+ 1Department of Physics, New York University; 2Department of Physics, Department of
9
+ Biology, Initiative in Theory and Modeling of Living Systems, Emory University;
10
+ 3Department of Neuroscience, University of Minnesota Medical School
11
+ Abstract
12
+ Observations of power laws in neural activity data have raised the intriguing notion
13
+ that brains may operate in a critical state. One example of this critical state is “avalanche
14
+ criticality,” which has been observed in a range of systems, including cultured neurons, zebrafish,
15
+ and human EEG. More recently, power laws have also been observed in neural populations in the
16
+ mouse under a coarse-graining procedure, and they were explained as a consequence of the
17
+ neural activity being coupled to multiple latent dynamical variables. An intriguing possibility is
18
+ that avalanche criticality emerges due to a similar mechanism. Here, we determine the
19
+ conditions under which dynamical latent variables give rise to avalanche criticality. We find that a
20
+ single, quasi-static latent variable can generate critical avalanches, but that multiple latent
21
+ variables lead to critical behavior in a broader parameter range. We identify two regimes of
22
+ avalanches, both of which are critical, but differ in the amount of information carried about the
23
+ latent variable. Our results suggest that avalanche criticality arises in neural systems in which
24
+ there is an emergent dynamical variable or shared inputs creating an effective latent dynamical
25
+ variable, and when this variable can be inferred from the population activity.
26
+ Introduction
27
+ The neural criticality hypothesis – the idea that neural systems operate close to a phase transition,
28
+ perhaps for optimal information processing – is at the same time ambitious and banal. Measure-
29
+ ments from biological systems are limited in the range of spatial and temporal scales that can be
30
+ sampled, not only because of limits of recording techniques but also due to fundamentally non-
31
+ stationary behavior of most, if not all, biological systems. These limitations make proving that an
32
+ observation indicates critical behavior difficult. At the same time, the idea that brain networks are
33
+ critical echoes the anthropic principle: tuned another way, a network becomes quiescent or epilep-
34
+ tic, and in either case seems unlikely to support perception, thought, or flexible behavior. Further
35
+ muddying the water, researchers have reported multiple kinds of criticality in neural networks, in-
36
+ cluding through analysis of avalanches (Beggs and Plenz, 2003; Plenz et al., 2021; O’Byrne and Jerbi,
37
+ 2022; Girardi-Schappo, 2021) and of coarse-grained activity (Meshulam et al., 2019), as well as of
38
+ correlations (Dahmen et al., 2019). How these flavors of critical behavior relate to each other or to
39
+ any functional network mechanism is not known.
40
+ The phenomenon that we will refer to as “avalanche criticality” appears to be remarkably widespread.
41
+ 1 of 18
42
+ arXiv:2301.00759v1 [q-bio.NC] 2 Jan 2023
43
+
44
+ It was first observed in cultured neurons in a dish (Beggs and Plenz, 2003) and later studied in ze-
45
+ brafish (Ponce-Alvarez et al., 2018), turtles (Shew et al., 2015), rodents (Ma et al., 2019), monkeys
46
+ (Petermann et al., 2009), and even humans (Poil et al., 2008). The standard analysis, described
47
+ thoroughly later, requires extracting power-law exponents from a fit to a distribution of avalanche
48
+ size and duration and assessing the relationship between exponents. There is debate over whether
49
+ these observations reflect true power laws, but within the resolution achievable from experiments,
50
+ neural avalanches exhibit power laws with exponent relationships predicted from theory devel-
51
+ oped in physical systems (Perković et al., 1995).
52
+ Avalanche criticality is not the only form of criticality observed in neural systems. Zipf’s law (fre-
53
+ quency of the network state being inversely proportional to its rank) appears in systems as diverse
54
+ as fly motion estimation and salamander retina (Mora and Bialek, 2010; Schwab et al., 2014; Aitchi-
55
+ son et al., 2016). More recently, Meshulam et al. (2019) measured various statistics of population
56
+ activity in a mouse hippocampus, including the eigenvalue spectrum of the covariance matrix and
57
+ the variance of activity. These were found to scale as populations were “coarse-grained” through
58
+ a procedure in which neural activities were iteratively combined based on similarity. Neither the
59
+ Zipf’s law nor the coarse-grained criticality can be explained by simple mechanistic models.
60
+ Even though these three forms of criticality are observed through different analyses, it is pos-
61
+ sible that they may originate from similar mechanisms. While avalanche power laws may result
62
+ from critical dynamics, they can also appear due to quasi-static latent variables, which can pro-
63
+ duce power laws, but not the relationships expected between the critical exponents (Priesemann
64
+ and Shriki, 2018). We have previously shown that a dynamical latent variable (DLV) model, based
65
+ on the coupling of neural populations to multiple dynamical latent variables, can reproduce scaling
66
+ under coarse-graining analysis within experimental uncertainty (Morrell et al., 2021). The Zipf’s law
67
+ has been explained by a similar mechanism (Schwab et al., 2014; Aitchison et al., 2016). However,
68
+ it is not known under what conditions, if any, the DLV model generates avalanche criticality.
69
+ In this paper, we systematically investigate avalanche statistics in the DLV model. We show that
70
+ a system coupled to multiple dynamical latent variables can generate avalanche criticality, and we
71
+ examine the requirements for the number and timescale of variables for this criticality to occur.
72
+ We find that avalanche criticality is observed over a wide range of parameters, some of which may
73
+ be optimal for information representation. Our results suggest that latent dynamical structure in
74
+ large-scale neural recordings may be responsible for the observation of signatures of criticality
75
+ across many systems.
76
+ Results
77
+ Critical exponents values and crackling noise
78
+ We begin by defining the metrics used to quantify avalanche statistics and briefly summarize ex-
79
+ perimental observations, which have been reviewed in detail elsewhere (Plenz et al., 2021; O’Byrne
80
+ and Jerbi, 2022; Girardi-Schappo, 2021). Activity is recorded across a set of neurons and binned
81
+ in time. Avalanches are then defined as contiguous time bins in which at least one neuron in the
82
+ population is active. The duration of an avalanche is the number of contiguous time bins and the
83
+ size is the summed activity during the avalanche. The distributions of avalanche size and duration
84
+ are fit to power laws (푃(푆) ∼ 푆−휏 for size 푆, and 푃(퐷) ∼ 퐷−훼 for duration 퐷) using standard methods
85
+ (Clauset et al., 2009).
86
+ Power laws can be indicative of criticality, but they can also result from non-critical mechanisms
87
+ (Touboul and Destexhe, 2017; Priesemann and Shriki, 2018). A more stringent test of criticality is
88
+ the “crackling” relationship (Perković et al., 1995; Touboul and Destexhe, 2017), which involves
89
+ fitting a third power-law relationship, ̄푆(퐷) ∼ 퐷훾fit, and comparing 훾fit to the predicted exponent
90
+ 훾pred, derived from the size and duration exponents, 휏 and 훼:
91
+ 훾fit
92
+ ?= 훾pred ≡ 훼 − 1
93
+ 휏 − 1 .
94
+ (1)
95
+ 2 of 18
96
+
97
+ Figure 1. Dynamical Latent Variable model produces avalanche criticality. A: Model structure. Latent
98
+ dynamical variables ℎ휇(푡) are broadly coupled to neurons 푠푖(푡) in the recorded population. B: Raster plot of a
99
+ sample of activity binned at 3-ms resolution across 128 neurons with five latent variables, each with
100
+ correlation timescale 휏퐹 = 15 s. C: Projection of activity into a simulated field of view for illustration. D-F:
101
+ Avalanche analysis in a network (parameters 푁퐹 = 5, 휏퐹 = 104, 휂 = 4 and 휖 = 12), showing size distribution (D),
102
+ duration distribution (E), and size with duration scaling (F). Lower cutoffs used in fitting are shown with
103
+ vertical lines and their values are indicated in the figures. There are 푁obs = 42725 avalanches of size 푆 ≥ 푆min in
104
+ this simulated dataset. Estimated values of the critical exponents are shown in the titles of the panels.
105
+ Previous work demonstrating approximate power laws in size and duration distributions through
106
+ the mechanism of a slowly changing latent variable did not generate crackling (Touboul and Des-
107
+ texhe, 2017; Priesemann and Shriki, 2018).
108
+ Measuring power-laws in empirical data is challenging: it generally requires setting a lower cut-
109
+ off in the size and duration, and the power-law behavior only has limited range due to the finite
110
+ size and duration of the recording itself. Nonetheless, there is some consensus (Shew et al., 2015;
111
+ Fontenele et al., 2019; Ma et al., 2019) that even if 휏 and 훼 vary over a wide range (1.5 to about 3)
112
+ across recordings, the values of 훾fit and 훾pred stay in a relatively narrow range, from about 1.1 to 1.3.
113
+ Avalanche scaling in the Dynamical Latent Variable (DLV) model
114
+ We studied a population of neurons that are coupled to dynamical latent variables but not coupled
115
+ to each other (Fig. 1A). We refer to this model as the Dynamical Latent Variable (DLV) model. The
116
+ latent variables determine the inputs to the simulated population of neurons. We are agnostic as
117
+ to the origin of these inputs: they may be externally driven from other brain areas, or they may
118
+ arise from recurrent dynamics locally. We have previously shown that the DLV model with at least
119
+ about five latent variables can produce power laws under the coarse-graining analysis (Morrell
120
+ et al., 2021). In this paper, we examine avalanche criticality in the same model.
121
+ Specifically, we model the neurons as binary units (푠푖) that are randomly (퐽푖휇 ∼ 푁(0, 1)) coupled
122
+ to dynamical variables ℎ휇(푡). The probability of any pattern {푠푖}, given the current state of the latent
123
+ 3 of 18
124
+
125
+ B
126
+ h2(t)
127
+ 100
128
+ 1..
129
+ neurons
130
+ ")
131
+ 50
132
+ hm(t)
133
+ S;(t)
134
+ ....
135
+ time (s)
136
+ 100
137
+ 10°
138
+ 103
139
+ Probability Density
140
+ Probability Density
141
+ Average Size
142
+ 10
143
+ 102
144
+ 10
145
+ 107
146
+ 10
147
+ 101
148
+ 100
149
+ 100
150
+ 102
151
+ 104
152
+ 106
153
+ 100
154
+ 102
155
+ 104
156
+ 100
157
+ 101
158
+ 102
159
+ 103
160
+ Avalanche Size S
161
+ Avalanche Duration D
162
+ Duration Dvariables, is
163
+ 푃({푠푖}|ℎ휇(푡)) =
164
+ 1
165
+ 푍(ℎ휇(푡)) exp
166
+ (
167
+ −휂
168
+ 푁퐹
169
+
170
+ 휇=1
171
+ 푠푖퐽푖휇ℎ휇(푡) − 휖푠푖
172
+ )
173
+ ,
174
+ (2)
175
+ where the parameter 휂 controls the scaling of the variables and 휖 controls the overall activity level.
176
+ We modeled each latent variable as an Ornstein-Uhlenbeck process with the time scale 휏퐹 (see
177
+ Methods). Thus our model has four parameters: 휂 (input scaling), 휖 (activity threshold), 휏퐹 (dynami-
178
+ cal timescale), and 푁퐹 (number of neurons).
179
+ Distributions of avalanche size and avalanche duration within this model followed approximate
180
+ power laws (Fig. 1C; see Methods). In the example shown (푁퐹 = 5, 휏퐹 = 104, 휂 = 4 and 휖 = 12), we
181
+ found exponents 휏 = 1.89 ± 0.02 (size) and 훼 = 2.11 ± 0.02 (duration). Further, the average size of
182
+ avalanches with fixed duration scaled as 푆 ∼ 퐷훾, with the fitted 훾fit = 1.24 ± 0.02, in agreement with
183
+ the predicted value 훾pred = 1.24±0.02. Thus, our model could generate avalanche scaling, at least for
184
+ some parameter choices. In the following sections, we examine how avalanche scaling depends
185
+ on model parameters (푁퐹 , 휏퐹 , 휂 and 휖; see Table 2). We first focus on two sets of simulations: one
186
+ set with 푁퐹 = 1 latent variable, which does not generate scaling under coarse-graining (Morrell
187
+ et al., 2021), and one set with 푁퐹 = 5 latent variables, which can generate such scaling for some
188
+ values of parameters 휏퐹 , 휂, and 휖 (Morrell et al., 2021).
189
+ Avalanche scaling depends on the number of latent variables
190
+ We analyzed avalanches from one- and five-variable simulations, each with fixed latent dynamical
191
+ timescale (휏퐹 = 5 × 103 time steps; see Table 2 for parameters). In the following sections, time is
192
+ measured in simulation time steps, see Methods for converting time steps to seconds. We used es-
193
+ tablished methods for measuring empirical power laws (Clauset et al., 2009). The minimum cutoffs
194
+ for size (푆min) and duration (퐷min) are indicated by vertical lines in Fig. 2. For the population coupled
195
+ to a single latent variable, the avalanche size distribution was not well fit by a power law (Fig. 2A).
196
+ With a sufficiently high minimum cut-off (퐷min), the duration distribution was approximately power-
197
+ law (Fig. 2B).
198
+ We next assessed whether the simulation produced crackling. If so, the value 훾fit obtained by
199
+ fitting ̄푆(퐷) ∼ 퐷훾fit would be similar to 훾pred = 훼−1
200
+ 휏−1 . In many cases, such as the one-variable example
201
+ shown in Fig. 2C, the full range of avalanche durations were not fit by a single power law. There-
202
+ fore, we determined the largest range over which a power law was a good fit to the simulated
203
+ observations. In this case, slightly over two decades of apparent scaling were observed starting
204
+ from avalanches with minimum duration slightly less than 100 time steps (Fig. 2C), with a best-fit
205
+ value of 훾푓푖푡 ∈ [1.69, 1.74]. As we did not find a power-law in the size distribution, calculating 훾pred is
206
+ meaningless. If we do it anyway, we obtain 훾푝푟푒푑 = 0.83 ± 0.03 (yellow line in Fig. 2C), which clearly
207
+ deviates from the fitted value of 훾. Thus, for the single dynamical latent variable model (휏퐹 = 5000),
208
+ power-law fits are poor, and there is no crackling.
209
+ The five-variable model produces a different picture. We now find avalanches for which size and
210
+ duration distributions are much better fit by power-law models starting from very low minimum
211
+ cutoffs (Fig. 2D-E, Fig. 2-Supp. Fig. 2). Average size scaled with duration, again over more than
212
+ two decades, with 훾fit = 1.27 ± 0.03, which was in close agreement with 훾pred = 1.25 ± 0.02 (Fig. 2F).
213
+ Holding other parameters constant, we thus found that scaling relationships and crackling arise in
214
+ the multi-variable model but not the single-variable model.
215
+ Avalanche scaling depends on the time scale of latent variables
216
+ Based on simulations in the previous section, we surmised that the five-variable simulation gen-
217
+ erated scaling more readily due to creating an “effective” latent variable that had slower dynam-
218
+ ics than any individual latent variable. We reasoned that at any moment in time, the latent vari-
219
+ able state ℎ휇(푡) is a vector in the latent space. Because coupling to the latent variables is random
220
+ throughout the population, only the length (∼
221
+
222
+ 푁퐹 ) and not the direction of this vector matters,
223
+ 4 of 18
224
+
225
+ Figure 2. Multiple latent variables generate avalanche scaling at shorter timescales than a single latent
226
+ variable. Parameters used for simulations for this figure are found in Table 2. A-C: Scaling analysis for one
227
+ variable models where the dynamic timescale is equal to 5 × 103 time steps. A: Distribution of avalanche sizes.
228
+ MLE value of exponent for best-fit power law is 휏 = 1.98 (0.02 SE), with lower cutoff indicated by the vertical
229
+ line. B: Distribution of avalanche duration. MLE value of 훼 is 1.81 (0.02 SE). C: Average size plotted against
230
+ avalanche duration (blue points), with power-law fit (black line) and predicted relationship (yellow line) from
231
+ MLE values for exponents in A and B. Gray bar on the horizontal axis indicates range over which a power law
232
+ with 훾 = 1.72 fits the data (see Methods). D-F: Analysis of avalanches from a simulation of a population coupled
233
+ to five independent latent variables where the dynamic timescale is equal to 5 × 103 time steps. G: Exponents
234
+ 휏 for avalanche size distributions across timescales for one-variable (blue) and five-variable (red) simulations.
235
+ Each circle is a simulation with independently drawn coupling parameters. Simulations had to show scaling
236
+ over at least two decades to be included in panels (G-J). H: Exponents 훼 for avalanche duration distributions
237
+ for simulations in G. I: Fitted values of 훾 for simulations in G. J: Difference between fitted and predicted 훾
238
+ values. Five-variable simulations produce crackling over a wider range of timescales than single-variable
239
+ simulations. Figure 2–Figure supplement 1. Methods, power law distribution fits, one variable example.
240
+ Figure 2–Figure supplement 2. Methods, power law distribution fits, five variable example.
241
+ Figure 2–Figure supplement 3. Methods, gamma fit and range, one variable example.
242
+ Figure 2–Figure supplement 4. Methods, gamma fit and range, five variables example.
243
+ 5 of 18
244
+
245
+ 5
246
+ average size
247
+ 4
248
+ 2
249
+ 2
250
+ 601)
251
+
252
+ 4
253
+ pdf
254
+ 4
255
+ ¥2
256
+ ¥6
257
+ -6
258
+ S
259
+ D
260
+ min
261
+ 8
262
+ 8
263
+ avalanche size
264
+ avalanche duration
265
+ duration
266
+ 5
267
+ (10g10)
268
+ average size
269
+ 4
270
+ 2
271
+ ¥3
272
+ 4
273
+ pdf
274
+ 4
275
+ 2
276
+ ¥6
277
+ OZIs
278
+ 6
279
+ D
280
+ min
281
+ 8
282
+ 8
283
+ 0
284
+ avalanche size
285
+ avalanche duration
286
+ duration
287
+ 2.2
288
+ 1.8
289
+ CDAD
290
+ D
291
+
292
+
293
+ 2.4
294
+ D OD)
295
+ 0
296
+ 2
297
+ 1.6
298
+ 0.5
299
+ CD
300
+ CRDD
301
+ 2.2
302
+ KED
303
+ CTXD
304
+ (
305
+ .8
306
+ 1.4
307
+ 00
308
+ 0
309
+ BXD
310
+ ED
311
+ 1.8
312
+ 1.6
313
+ .2
314
+ 0.5
315
+ 10000
316
+ 00
317
+ 1000
318
+ 1000
319
+ 10000
320
+ 10000
321
+ 10000
322
+ 30000
323
+ 30000
324
+ 30000
325
+ 100000
326
+ 100000
327
+ 100000
328
+ 100000
329
+ dynamical timescale
330
+ dynamical timescale
331
+ dynamical timescale
332
+ dynamical timescale
333
+ TEand the timescale of changes in this length would be much slower than 휏퐹 , the timescale of each
334
+ of the components ℎ휇(푡). We therefore speculated that increasing the timescale of dynamics of the
335
+ latent variables should eventually lead to scaling and crackling in the single-variable model as well
336
+ as the five-variable one. To examine the dependence of avalanche scaling on this timescale, we
337
+ simulated one-variable and five-variable networks at fixed 휂 and 휖 coupled to latent variables with
338
+ the correlation time of their Ornstein-Uhlenbeck dynamics of 휏퐹 ∈ [103, 105] time steps, spanning
339
+ from a factor of 10 faster to a factor of 10 slower than the original 휏퐹 in Fig. 1. Simulations were
340
+ replicated five times at each combination of parameters by drawing new latent variable coupling
341
+ values (퐽푖휇), as well as new latent variable dynamics and instances of neural firing. For simulations
342
+ that passed the criteria to be fitted by power laws, we plot the fitted values of 휏 , 훼, 훾fit and 훾fit − 훾pred
343
+ (Fig. 2G-J). Missing points are those for which distributions did not pass the power law fit criteria.
344
+ In the single-variable model, best-fit exponents changed abruptly for latent variable timescale
345
+ around 휏퐹 = 104 (Fig. 2G, H), while in the five-variable model, exponents tended to increase grad-
346
+ ually (Fig. 2G, H, red). The discontinuity in the single-variable case reflected a change in the lower
347
+ cutoff values in the power-law fits: size and duration distributions generated with faster latent
348
+ dynamics could be fit reasonably well to a power law by using a high value of the lower cutoff
349
+ (Fig. 2-Supp. Fig. 3). For time scales greater than ∼ 104, the minimum cutoffs dropped, and the
350
+ single-variable model generated power-law distributed avalanches and crackling (Fig. 2J), similar
351
+ to the five-variable model. In summary, in the DLV model, introducing multiple variables gener-
352
+ ated scaling at faster timescales. However, by slowing the timescale of the latent dynamics, the
353
+ DLV model generated signatures of critical avalanche scaling for both multi- and single-variable
354
+ simulations.
355
+ Avalanche criticality, input scaling, and firing threshold
356
+ In the previous section, we found that a very slow single DLV model generated scaling. Thus, from
357
+ now on, we simplify the model in order to characterize avalanche statistics across values of input
358
+ scaling 휂 and firing threshold 휖. Specifically, we modeled a population of 푁 = 128 neurons coupled
359
+ to a single quasi-static latent variable. We simulated 103 segments of 104 steps each and drew a
360
+ new value of the latent variable (ℎ ∼ 푁(0, 1)) for each segment. Ten replicates of the simulation
361
+ were generated at each of the combinations of 휂 and 휖 (see Methods).
362
+ Almost independent of 휂 and 휖, we found quality power law fits and crackling. Fig. 3 shows
363
+ the average (across 푛 = 10 network realizations) of the exponents extracted from size (휏, Fig. 3A)
364
+ and duration (훼, Fig. 3C) distributions. At small firing threshold (휖 = 2), we do not observe scaling
365
+ because the system is always active, and all avalanches merge into one. At large firing threshold 휖
366
+ and low input scaling 휂, we do not observe scaling because activity is so sparse that all avalanches
367
+ are small. At intermediate values of the parameters, the simulations generated plausible scaling
368
+ relationships in size and duration. The difference between 훾fit and 훾pred was typically less than 0.1
369
+ (Fig. 4D-F) which was consistent with previously reported differences between fit and predicted
370
+ exponents (Ma et al., 2019). Thus, there appears to be no need for fine-tuning to generate apparent
371
+ scaling in this model, at least in the limit of (near) infinite observation time. Wherever 휂 and 휖
372
+ generate avalanches, there are approximate power-law distributions and crackling.
373
+ To determine where avalanches occur, we derive the avalanche rate across values of the latent
374
+ variable ℎ. In the quasi-static model, the probability of an avalanche initiation is the probability of a
375
+ transition from the quiet to an active state. Because all neurons are conditionally independent, this
376
+ is 푃ava = 푃silence(1 − 푃silence). Then the expected number of avalanches ̂푁ava is obtained by integrating
377
+ 푃ava over ℎ at each value of 휂 and 휖:
378
+ ̂푁ava = ∫ 푃ava(휖, 휂, ℎ; 퐽푖, 푁)푝(ℎ)푑ℎ = ∫
379
+
380
+
381
+ (
382
+ 1
383
+ 1 + 푒휂퐽푖ℎ+휖
384
+ ) (
385
+ 1 −
386
+
387
+
388
+ (
389
+ 1
390
+ 1 + 푒휂퐽푖ℎ+휖
391
+ ))
392
+ 푝(ℎ)푑ℎ,
393
+ (3)
394
+ where 푝(ℎ) is the standard normal distribution. This probability tracks the observed number of
395
+ avalanches across simulations, Fig. 4A.
396
+ 6 of 18
397
+
398
+ Figure 3. Exponents across network simulations. Each parameter combination 휂, 휖 was simulated for ten
399
+ replicates, each time drawing randomly the couplings 퐽푖, the latent variable values, and the neural activities.
400
+ A: Average across replicates for the size exponent 휏. B: Scatter plot of 훼 vs. 휏 for each network replicate for
401
+ parameter combinations indicated in A. Linear relationships between 휏 and 훼, corresponding to the minimum
402
+ and maximum values of 훾fit from panel E, are shown to guide the eye. C: Same as A, for duration exponent 훼.
403
+ D: Predicted exponent, 훾pred, derived from A and C. E: Value of 훾fit from fit to ̄푆퐷 ∼ 퐷훾. F: Difference between
404
+ 훾pred and 훾fit.
405
+ 7 of 18
406
+
407
+ Average Exponents: Size
408
+ .8
409
+
410
+ 0
411
+ 2.6
412
+ las
413
+
414
+ 2.4
415
+ 2.8
416
+
417
+ 8
418
+ 2.2
419
+ *
420
+ (duration exponent)
421
+ 2.6
422
+ 2
423
+ 4
424
+ 6
425
+ 10
426
+
427
+
428
+ n (gain)
429
+
430
+
431
+ 2
432
+
433
+ Average Exponents: Duration
434
+ 2.8
435
+ 2
436
+ 2.6
437
+
438
+ (sel
439
+ 2.4
440
+ 8
441
+ 24680
442
+ 2.5
443
+ 3
444
+ n (gain)
445
+ (sizeexponent)
446
+ Crackling Exponents
447
+ Predicted
448
+ Difference
449
+ 2
450
+ 0.2
451
+ 2
452
+ 1.3
453
+ 0.
454
+ as
455
+ Dias
456
+ .2
457
+ 8
458
+ 1.
459
+ -0.1
460
+ 0.2
461
+ 10
462
+ 810
463
+ 4
464
+ aairTo gain an intuition for the conditions under which avalanches occur, we show two slices of
465
+ the avalanche probability, at fixed 휂 (Fig. 4B) and at fixed 휖 (Fig. 4C). Black regions indicate where
466
+ avalanches are likely to occur. If, for a given value of 휖 and 휂, there is no overlap between high
467
+ avalanche probability regions and the distribution of ℎ, then there will be no avalanches. For large
468
+ 휖, avalanches occur because neurons with large coupling to the latent variable (휂|퐽푖| >> 1, recall
469
+ 퐽푖 ∼ 푁(0, 1)) are occasionally activated by a value of the latent variable ℎ that is sufficient to exceed
470
+ 휖 (Fig. 4B). Thus, the scaling parameter 휂 controls the value of ℎ for which avalanches occur most
471
+ frequently (Fig. 4C). As 휖 decreases, avalanches occur for smaller and smaller ℎ until avalanches
472
+ primarily occur when ℎ = 0.
473
+ To calculate the probability of avalanches, we must integrate over all values of ℎ, but we can
474
+ gain a qualitative understanding of which avalanche regime the system is in by examining the
475
+ probability of avalanches at ℎ = 0. At ℎ = 0, the avalanche probability (see Methods) is
476
+ 푃ava(휖, 휂, ℎ = 0; 퐽푖, 푁) =
477
+ (
478
+ 1
479
+ 1 + 푒휖
480
+ )푁 (
481
+ 1 −
482
+ (
483
+ 1
484
+ 1 + 푒휖
485
+ )푁)
486
+ ,
487
+ (4)
488
+ which is maximized at 휖0 = − log(21∕푁 − 1), independent of 퐽푖 and 휂. The dependence on 푁 re-
489
+ flects that a larger threshold is required for larger networks: large networks (푁 → ∞) are unlikely
490
+ to achieve complete network silence, therefore preventing avalanches from occurring. Similarly,
491
+ small networks (푁 ∼ 1) are unlikely to fire consecutively and thus are unlikely to avalanche.
492
+ We plot 푃ava(휖, 휂; 퐽푖, 푁, ℎ = 0) as a function of 휖 in Fig. 4B. The peak at 휖0 divides the space into
493
+ two regions. For 휖 < 휖0, a power-law is only observed in the large-size avalanches, which are rare
494
+ (Fig. 4E, green). By contrast, when 휖 > 휖0, minimum size cutoffs are low (Fig. 4F, orange). Both
495
+ regions, 휖 < 휖0 and 휖 > 휖0, exhibit crackling noise scaling. If observation times are not sufficiently
496
+ long (estimated in Fig. 4-Supp. Fig. 1), then scaling will not be observed in the 휖 < 휖0 region, whose
497
+ scaling relations consist of rare events. Insufficient observation times may explain experiments
498
+ and simulations where avalanche scaling was not found.
499
+ Inferring the latent variable
500
+ Our analysis of 푃ava(휖, 휂, ℎ) at ℎ = 0 suggested that there are two types of avalanche regimes: one
501
+ with high activity and high minimum cutoffs in the power law fit (Type 1), and the other with lower
502
+ activity and size cutoffs (Type 2). Further, when 푃ava drops to zero, avalanches disappear because
503
+ the activity is too high or too low. We now examine how information about the value of the latent
504
+ variables represented in the network activity relates to the activity type. To delineate these types,
505
+ we calculated numerically 휖∗(휂), the value of 휖 for which the probability of avalanches is maximized,
506
+ and the contours of 푃ava (Fig. 5A). Curves for 휖∗(휂) and 휖0 and 푃ava = 10−3 are shown in Fig. 5A and B.
507
+ We expect that the more cells fire, the more information they would convey, until the firing
508
+ rate saturates, and inferring the value of the latent variable becomes impossible. Fig. 5B supports
509
+ the prediction: generally, information is higher in regions with more activity (lower 휖, higher 휂), but
510
+ only up to a limit: as 휖 → 0, information decreases. This decrease begins approximately where
511
+ the probability of avalanches drops to nearly zero (dashed black lines, Fig. 5B-E) because all of
512
+ the activity merges into a few very large avalanches. In other words, the Type-1 avalanche region
513
+ coincides with the highest information about the latent variable.
514
+ The critical brain hypothesis suggests that the brain operates in a critical state, and its func-
515
+ tional role may be in optimizing information processing (Beggs, 2008; Chialvo, 2010). Under this
516
+ hypothesis, we would expect the information conveyed by the network to be maximized in the
517
+ regions we observe avalanche criticality. However, we see that critical regions do not always have
518
+ optimal information transmission. In Fig. 5, the region that displays crackling noise is that where
519
+ avalanches exist (푃ava > 0.001), which corresponds to any 휂 value and 휖 ≳ 3. This avalanche re-
520
+ gion encompasses both networks with high information transmission and networks with low in-
521
+ formation transmission. In summary, observing avalanche criticality in a system does not imply a
522
+ high-information processing network state. However, the scaling can be seen at smaller cutoffs,
523
+ 8 of 18
524
+
525
+ Figure 4. Avalanches in the DLV model with a single quasistatic variable. A: Number of avalanches in
526
+ simulations as a function of the calculated probability of avalanches at fixed 휂 across values of 휖 and latent
527
+ variable ℎ. Line indicates equality. B: Analytically calculated probability of avalanches with 휂 = 2 across values
528
+ of 휖 and ℎ. The latent variable ℎ is normally distributed with mean 0 and variance 1. Where the distribution of
529
+ ℎ overlaps with regions of high probability (black), avalanches occur. C: Analytically calculated probability of
530
+ avalanches at 휖 = 8 across values of 휂 and ℎ. Increasing 휂 narrows the range of ℎ that generates avalanches. D:
531
+ Analytically calculated probability of avalanches at ℎ = 0 for a populations of 128 neurons (black line) and for a
532
+ varying 휖. Size distributions corresponding to simulations marked by the green and orange crosses are in E, F.
533
+ E: Example of size distribution with 휖 < 휖0 (orange marker in D). Size cutoff is close to 100. F: Example of size
534
+ distribution with 휖 > 휖0 (green marker in D). Size cutoff is < 10.
535
+ Figure 4–Figure supplement 1. Estimated simulation time to observe avalanche criticality.
536
+ and hence with shorter recordings, in the high-information state. This parallels the discussion by
537
+ Schwab et al. (2014), who noticed that the Zipf’s law always emerges in neural populations driven
538
+ by quasi-stationary latent fields, but it emerges at smaller system sizes when the information about
539
+ the latent variable is high.
540
+ Discussion
541
+ Here we studied systems with distributed, random coupling to Dynamical Latent Variables (DLV)
542
+ and we found that avalanche criticality is nearly always observed, with no fine-tuning required.
543
+ Avalanche criticality was surprisingly robust to changes in input gain and firing rate threshold. Loss
544
+ of avalanche criticality could occur if the latent process was not well-sampled, either because the
545
+ simulation was not long enough or the dynamics of the latent variables were too fast. Finally, while
546
+ information about the latent variables in the network activity was higher where avalanches were
547
+ generated compared to when they were not, there was a range of information values across the
548
+ critical avalanche regime. Thus, avalanche criticality alone was not a predictor of optimal informa-
549
+ tion transmission.
550
+ Explaining experimental exponents
551
+ A wide range of critical exponents have been found in ex vivo and in vivo recordings from various
552
+ systems. For instance, the seminal work on avalanche statistics in cultured neuronal networks
553
+ by Beggs and Plenz (2003) found size and duration exponents of 1.5 and 2.0 respectively, along
554
+ with 훾 = 2, when time was discretized with a time bin equal to the average inter-event interval in
555
+ the system. These values are predicted by a theoretical model of a critical branching process. By
556
+ contrast, a survey of many in vivo and ex vivo recordings found power-law size distributions with
557
+ exponents ranging from 1 to 3 depending on the system (Fontenele et al., 2019). Separately, Ma
558
+ 9 of 18
559
+
560
+ A
561
+ B
562
+ c
563
+ n= 2
564
+ E=8
565
+ 0.25
566
+ 10
567
+ 0.25
568
+ Avalanche count (Na)
569
+ 2
570
+ 2
571
+ 8
572
+ 1.5
573
+ (seIc
574
+ a
575
+ 6
576
+ 1
577
+ 8
578
+ m
579
+ 4
580
+ 0.5
581
+ 2
582
+ 0
583
+ 14
584
+ 0
585
+ 2
586
+ -5
587
+ 0
588
+ 5
589
+ -5
590
+ 0
591
+ 5
592
+ 7
593
+ P
594
+ (1-P
595
+ h
596
+ h
597
+ D
598
+ silence
599
+ silence
600
+ E
601
+ F
602
+ T = 2.24 (0.01 SE)
603
+ T = 2.00 (0.01 SE)
604
+ 0.25
605
+ 0
606
+ 0.2
607
+ -2
608
+ -2
609
+ 0.15
610
+ -4
611
+ -4
612
+ 0.1
613
+ -6
614
+ -6
615
+ P°0.05
616
+ 0
617
+ -8
618
+ -8
619
+ 10
620
+ 15
621
+ 0
622
+ E (bias)
623
+ avalanche size
624
+ avalanche sizeFigure 5. Information in the neural activity about the latent variable is higher in the low-휖 avalanche region,
625
+ compared to high-휖 avalanche or high-rate avalanche-free activity. A: Probability of avalanche per time step
626
+ across values of 휂 and 휖. Solid magenta curve follows 휖∗(휂), the value of 휖 maximizing the probability of
627
+ avalanches at fixed 휂. Dashed magenta line indicates 휖0, calculated analytically, which matches 휖∗ at 휂 = 0. B:
628
+ Information about latent variable, calculated from maximum likelihood estimate of ℎ using population
629
+ activity. MLE approximation is invalid in the dark-blue region bounded by gray curve. Magenta line marks the
630
+ maximum values of 푃ava, reproduced from A. Dashed black curve indicates 푃ava = 0.001. The highest
631
+ information region falls between 휖∗(휂) and the contour for 푃ava = 0.001. C - E: Slices of B, showing 퐼MLE(휖) for
632
+ 휂 = {2, 5, 9}. Magenta and dashed black lines again indicate 휖∗ and 푃ava = 0.001, respectively, as in B. Black
633
+ dashed line marks the approximate boundary between the high-activity/no avalanche and the high-cutoff
634
+ avalanche, and magenta line marks boundary between high-cutoff and low-cutoff avalanche regions.
635
+ 10 of 18
636
+
637
+ 0
638
+ 0.25
639
+ B
640
+ 0
641
+ 2.5
642
+ 2
643
+ 2
644
+ cells (MLE)
645
+ 0.2
646
+ 2
647
+ 0.001
648
+ Probability of Avalanche
649
+
650
+ 4
651
+ 4
652
+ 0.02
653
+ 0.15
654
+ 1.5
655
+ (bias)
656
+ 6
657
+ (bias)
658
+ 9
659
+ 128
660
+ 8
661
+ 8
662
+ 0.1
663
+ for N
664
+ 0.08
665
+ 1
666
+ 0
667
+ 10
668
+ 0.04
669
+ 10
670
+ D
671
+ =0.001
672
+ ava
673
+ 0.05
674
+ 12
675
+ 12
676
+ 0
677
+ e(n)
678
+ 14
679
+ 0
680
+ 14
681
+ 0
682
+ 0
683
+ 2
684
+ 4
685
+ 6
686
+ 8
687
+ 10
688
+ 2
689
+ 4
690
+ 6
691
+ 8
692
+ 10
693
+ n (input scaling)
694
+ n (input scaling)
695
+ c
696
+ D
697
+ n=2
698
+ n=5
699
+ E
700
+ n=9
701
+ 2
702
+ 2.5
703
+ 128
704
+ 128
705
+ 128
706
+ 2
707
+ 1.5
708
+ =
709
+ z
710
+ z
711
+ h*),
712
+ h*),
713
+ 1
714
+ 0.5
715
+ ≤ 0.5
716
+ 0
717
+ 0
718
+ 0
719
+ 0
720
+ 5
721
+ 10
722
+ 0
723
+ 5
724
+ 10
725
+ 0
726
+ 5
727
+ 10
728
+ E(
729
+ (bias)
730
+ E (bias)
731
+ E (bias)et al. (2019) reported recordings in freely moving rats with size exponents ranging from 1.5 to 2.7.
732
+ In all of the these recordings, when the crackling relationship held, the reported value of 훾 was
733
+ near 1.2 (Fontenele et al., 2019; Ma et al., 2019).
734
+ Our DLV model, across the parameters we tested that produced exponents consistent with the
735
+ scaling relationship, generated 휏 values that ranged from 1.9 to about 2.5. Across those simulations,
736
+ we found values 훾 within a narrow band from 1.1 to 1.3 (see Fig. 2I, J and Fig. 3H). While the exponent
737
+ values our model produces are inconsistent with a critical branching process (훾 = 2), they match
738
+ very closely the ranges of exponents reported by Fontenele et al. (2019).
739
+ One possible resolution to the discrepancy in exponents derives from how the system is sub-
740
+ sampled in space or coarse-grained in time, both of which systematically change exponents 휏 and
741
+ 훼 (Beggs and Plenz, 2003; Shew et al., 2015). Were we to change the time bin, our modeling results
742
+ would exhibit different exponent values. However, neither manipulations of the latent variable
743
+ timescale (휏퐹 or 푁퐹 ), nor of the overall activity level (휂, 휖) produced exponents close to 1.5 and 2.0,
744
+ despite maintaining the crackling relationship across many different choices of parameters.
745
+ A second possibility is that different experiments study similar, but distinct biological phenom-
746
+ ena. In other words, the underlying biology can differ between networks that were cultured in vitro
747
+ and those that were not, whether they are in vivo or ex vivo (i.e., brain slices). This could happen
748
+ if cultured networks develop connections between neurons such that they truly do produce dy-
749
+ namics that approximate a critical branching process, while brain networks that develop in a living
750
+ brain have different structure and resulting dynamics and can be better understood as a system
751
+ coupled to latent dynamical variables. This is especially true in sensory systems, where coupling
752
+ to (latent) external stimuli in a way that the neural activity can be used to infer the stimuli is the
753
+ reason for the networks’ existence (Schwab et al., 2014).
754
+ Relationship to past modeling work
755
+ Our model is not the first to produce approximate power-law size and duration distributions for
756
+ avalanches from a latent variable process (Touboul and Destexhe, 2017; Priesemann and Shriki,
757
+ 2018). In particular, Priesemann and Shriki (2018) derived the conditions under which an inhomo-
758
+ geneous Poisson process could produce such approximate scaling. The basic idea is to generate a
759
+ weighted sum of exponentially distributed event sizes, each of which are generated from a homo-
760
+ geneous Poisson process. How each process is weighted in this sum determines the approximate
761
+ power-law exponent, allowing one to tune the system to obtain the critical values of 1.5 and 2. In-
762
+ terestingly, this model did not generate non-trivial scaling of size with duration (푆 ∼ 퐷훾). Instead,
763
+ they found 훾 = 1, not the predicted 훾 = 2. Our results differ significantly, in that 훾 was typically
764
+ between 1.1 and 1.3 and it was nearly always close to the prediction from 훼 and 휏. We speculate
765
+ that this is due to nonlinearity in the mapping from latent variable to spiking activity, as doubling
766
+ the latent field ℎ does not double the population activity, but doubling the rate of a homogeneous
767
+ Poisson process does double the expected spike count. As biological networks are likely to have
768
+ such nonlinearities in their responses to common inputs, this scenario may be more applicable to
769
+ certain kinds of recordings.
770
+ Summary
771
+ Latent variables – whether they are emergent from network dynamics (Clark et al., 2022; Seder-
772
+ berg and Nemenman, 2020) or derived from shared inputs – are ubiquitous in large-scale neural
773
+ population recordings. This fact is reflected most directly in the relatively low-dimensional struc-
774
+ ture in large-scale population recordings (Stringer et al., 2019; Pandarinath et al., 2018; Nieh et al.,
775
+ 2021). We previously used a model based on this observation to examine signatures of neural crit-
776
+ icality under a coarse-graining analysis and found that coarse-grained criticality is generated by
777
+ systems driven by many latent variables (Morrell et al., 2021). Here we showed that the same
778
+ model also generates avalanche criticality, and that when information about the latent variables
779
+ can be inferred from the network, avalanche criticality is also observed. Crucially, finding signa-
780
+ 11 of 18
781
+
782
+ tures of avalanche criticality required long observation times, such that the latent variable was
783
+ well-sampled. Previous studies showed that Zipf’s law appears generically in systems coupled to a
784
+ latent variable that changes slowly relative to the sampling time, and that the Zipf’s behavior is eas-
785
+ ier to observe in the higher information regime (Schwab et al., 2014; Aitchison et al., 2016). How-
786
+ ever, this also suggests that observation of either scaling at modest data set sizes indeed points
787
+ to some fine-tuning — namely to the increase of the information in the individual neurons (and,
788
+ since neurons in these models are conditionally independent, also in the entire network) about
789
+ the value of the latent variables. In other words, one would expect a sensory part of the brain, if
790
+ adapted to the statistics of the external stimuli, to exhibit all of these critical signatures at relatively
791
+ modest data set sizes. In monocular deprivation experiments, when the activity in the visual cor-
792
+ tex is transiently not adapted to its inputs, scaling disappears, at least for recordings of a typical
793
+ duration, and is restored as the system adapts to the new stimulus (Ma et al., 2019). We speculate
794
+ that the observed recovery of criticality by Ma et al. (2019) could be driven by neurons adapting
795
+ to the reduced stimuli state, for instance, by adjusting 휂 (input scaling) and 휖 (firing rate threshold).
796
+ Taken together, these results suggest that critical behavior in neural systems – whether based on
797
+ the Zipf’s law, avalanches, or coarse-graining analysis – is expected whenever neural recordings ex-
798
+ hibit some latent structure in population dynamics and this latent structure can be inferred from
799
+ observations of the population activity.
800
+ Methods and Materials
801
+ Simulation of Dynamic Latent Variable (DLV) model
802
+ We study a model from Morrell et al. (2021), incorporating only latent variables (no place variables),
803
+ and assuming that every cell is coupled to every latent variable with some randomly drawn coupling
804
+ strength.
805
+ The probability of observing a certain population state {푠푖} given latent variables {ℎ휇(푡)} at time
806
+ 푡 is
807
+ 푃({푠푖}|{ℎ휇}) =
808
+ 1
809
+ 푍({ℎ휇})푒퐻({푠푖},{ℎ휇}),
810
+ (5)
811
+ where 푍 is the normalization, and 퐻 is the “energy”:
812
+ 퐻 =
813
+ 푁,푁f
814
+
815
+ 푖,푚=1
816
+ 휂ℎ휇(푡)퐽푖휇푠푖 + 휖푠푖.
817
+ (6)
818
+ The latent variables {ℎ휇(푡)} are Ornstein-Uhlenbeck processes with zero mean, unit variance, and
819
+ time constant 휏푚. Couplings 퐽푖휇 are drawn from the standard normal distribution.
820
+ The parameters 휂, 휖, and 휏푚 are constants, and we simulate 푁 = 1024 cells. For the infinite time
821
+ constant simulation, we reset ℎ푛 ∼  (0, 1) (for each of 푛 = 1..푁푛) and simulate for 10000 time steps,
822
+ then repeat for 1000 draws of ℎ푛.
823
+ Time step units
824
+ Most results were presented using arbitrary time units: all times (i.e., 휏퐹 and avalanche duration 퐷)
825
+ are measured in units of an unspecified time step. Specifying a time bin converts the probability
826
+ Table 1. Simulation parameters for Fig. 1.
827
+ Parameter
828
+ Description
829
+ Value
830
+
831
+ bias towards silence
832
+ 휖 = 12
833
+
834
+ variance multiplier
835
+ 휂 = 4.0
836
+ 푁F
837
+ number of latent fields
838
+ 푁F = 5
839
+ 휏퐹
840
+ latent field time constant
841
+ 휏 = 104
842
+
843
+ number of cells
844
+ 푁 = 1024
845
+ 12 of 18
846
+
847
+ of firing into actual firing rates, in spikes per second, and this choice determines which part of the
848
+ 휂-휖 phase space is most relevant to a given experiment.
849
+ The time step is the temporal resolution at which activity is discretized, which varies from sev-
850
+ eral to hundreds of milliseconds across different experimental studies (Beggs and Plenz, 2003;
851
+ Fontenele et al., 2019; Ma et al., 2019). In physical units and assuming a bin size of 3 ms to 10 ms,
852
+ our choice of 휂 and 휖 in Fig. 2 would yield physiologically realistic firing rate ranges (Hengen et al.,
853
+ 2016), with high-firing neurons reaching averages rates of 20 − 50 spikes/second and median firing-
854
+ rate neurons around 1 − 2 spikes/second. The timescales of latent variables examined range from
855
+ about 3 seconds to 3000 seconds, assuming 3-ms bins. Simulations were carried out for the same
856
+ number of time steps (2 × 106), which would be approximately 1 to 2 “hours,” which is a reasonable
857
+ duration for in vivo neural recordings. Note that at large values of 휏퐹 , the latent variable space is
858
+ not well sampled during this time period.
859
+ Analysis of avalanche statistics
860
+ Setting the threshold for observing avalanches
861
+ In our model, we count avalanches as periods of continuous activity (in any subset of neurons)
862
+ that is book-ended by time bins with no activity in the entire simulated neural network. For real
863
+ neural populations of modest size, this method fails because there are no periods of quiescence.
864
+ The typical solution is to set a threshold, and to only count avalanches when the population activity
865
+ exceeds that threshold, with the hope that results are relatively robust to that choice. In our model,
866
+ this operation is equivalent to changing 휖, which shifts the probability of firing up or down by a
867
+ constant amount across all cells independent of inputs. Our results in Fig. 3 show that 훼 and 휏
868
+ decrease as the threshold for detection is increased (equivalent to large |휖|), but that the scaling
869
+ relationship is maintained. The model predicts that 훾pred − 훾fit would initially increase slightly with
870
+ the detection threshold before decreasing back to near zero.
871
+ Following the algorithm laid out in Clauset et al. (2009), we fit power laws to the size and dura-
872
+ tion distributions from simulations generating avalanches. We use least-squares fitting to estimate
873
+ 훾fit, the scaling exponent for size with duration, assessing the consistency of the fit across decades.
874
+ Reading power laws from data
875
+ We want, from each simulation, a quantification of the quality of scaling (how many decades, min-
876
+ imally) and an estimate of the scaling exponents (휏 for the size distribution, 훼 for the duration
877
+ distribution). Following the steps outlined by Clauset et al. (2009), we use the maximum-likelihood
878
+ estimator to determine the scaling exponent. This is the solution to the transcendental equation
879
+ 휁′(̂훼, 푥min)
880
+ 휁′(̂훼, 푥min) = −1
881
+
882
+
883
+
884
+ 푖=1
885
+ ln 푥푖
886
+ (7)
887
+ where 휁(훼, 푥min) is the Hurwitz zeta function. For values of 푥min < 6, a numerical look-up table based
888
+ on the built-in Hurwitz zeta function in the symbolic math toolbox was used (MATLAB2019b). For
889
+ Table 2. Simulation parameters for Fig. 2.
890
+ Parameter
891
+ Description
892
+ Value
893
+
894
+ bias towards silence
895
+ 휖 = 8 (for 푁퐹 = 1) or
896
+ 휖 = 12 (for 푁퐹 = 5)
897
+
898
+ variance multiplier
899
+ 휂 = 4.0
900
+ 푁F
901
+ number of latent fields
902
+ 푁F = 1 or 5
903
+ 휏퐹
904
+ latent field time constant
905
+ 휏 ∈  [log 103, log 105]
906
+
907
+ number of cells
908
+ 푁 = 1024
909
+ 13 of 18
910
+
911
+ 푥min > 6 we use an approximation (Clauset et al. (2009)),
912
+ ̂훼 = 1 + 푛
913
+ (
914
+
915
+
916
+ ln
917
+ 푥푖
918
+ 푥min − 1
919
+ 2
920
+ )−1
921
+ .
922
+ (8)
923
+ To determine 푥min, we computed the maximum absolute difference between the empirical cu-
924
+ mulative density (푆(푥)) function and model’s cumulative density function 푃(푥) (the Kolmogorov-
925
+ Smirnov (KS) statistic; 퐷 = max푥≥푥min|푆(푥)−푃(푥)|). The KS statistic was computed between for power-
926
+ law models with scaling parameter ̂훼 and cutoffs 푥min. The value of 푥min that minimizes the KS statis-
927
+ tic was chosen. Occasionally the KS statistic had two local minima (as in Figure 2-Supplemental
928
+ Figure 1), indicating two different power-laws. In these cases, the minimum size and duration cut-
929
+ offs were the smallest values that were within 10% of the absolute minimum of the KS statistic.
930
+ Note that the statistic is computed for each model only on the power-law portion of the CDF (i.e.
931
+ 푥푖 ≥ 푥min). We do not attempt to determine an upper cut-off value.
932
+ To assess the quality of the power-law fit, Clauset et al. (2009) compared the empirical observa-
933
+ tions to surrogate data generated from a semi-parametric power-law model. The semi-parametric
934
+ model sets the value of the CDF equal to the empirical CDF values up to 푥 = 푥min and then according
935
+ to the power-law model for 푥 > 푥min. If the KS statistic for the real data (relative to its fitted model)
936
+ is within the distribution of the KS statistics for surrogate datasets relative to their respective fitted
937
+ models, the power-law model was considered a reasonable fit.
938
+ Strict application of this methodology could give misleading results. Much of this is due to the
939
+ loss of statistical power when the minimum cutoff is so high that the number of observations drops.
940
+ For instance, in the simulations shown in Fig. 2, the one-variable duration distribution passed the
941
+ Clauset et al. (2009) criterion, with a minimum KS statistic of 0.03 when the duration cutoff was
942
+ 18 time steps. However, for the five-variable simulation in Fig. 2, a power-law would be narrowly
943
+ rejected for both size and duration, despite having much smaller KS statistics: for 휏, the KS statistic
944
+ was 0.0087 (simulation range: 0.0008 to 0.0082; number of avalanches observed: 58, 787) and for 훼 it
945
+ was 0.0084 (simulation range: 0.0011 to 0.0075). Below we discuss this problem in more detail.
946
+ Determining range over which avalanche size scales with duration
947
+ For fitting 훾, our aim was to find the longest sampled range over which we have apparent power-
948
+ law scaling of size with duration. Because our sampled duration values have linear spacing, error
949
+ estimates are skewed if a naive goodness of fit criterion is used. We devised the following algorithm.
950
+ First, the simulation must have at least one avalanche of size 500. We fit 푆 = 푐퐷훾 over one decade
951
+ at a time. We chose as the lower duration cutoff the value of minimum duration for which the
952
+ largest number of subsequent (longer-duration) fits produced consistent fit parameters (Figure
953
+ 2-Supp. Fig. 3 and 4, top row). Next, with the minimum duration set, we gradually increased the
954
+ maximum duration cut-off, and we determined whether there was a significant bias in the residual
955
+ over the first decade of the fit. We selected the highest duration cutoff for which there was no bias.
956
+ Finally, over this range, we re-fit the power law relationship and extracted confidence intervals.
957
+ Our analysis focused on finding the apparent power-law relationship that held over the largest
958
+ log-scale range. A common feature across simulation parameters (휏퐹 , 푁퐹 ) was the existence of
959
+ Table 3. Simulation parameters for Fig. 3 and 4.
960
+ Parameter
961
+ Description
962
+ Value
963
+
964
+ bias towards silence
965
+ 휖 ∈ {2, 4, ...14}
966
+
967
+ variance multiplier
968
+ 휂 ∈ {1, 2, ...10}
969
+ 푁F
970
+ number of latent fields
971
+ 푁F = 1
972
+ 휏퐹
973
+ latent field time constant
974
+ quasistatic
975
+
976
+ number of cells
977
+ 푁 = 128
978
+ 14 of 18
979
+
980
+ two distinct power-law regimes. This is apparent in Fig. 2I, which shows that when 푁퐹 = 1 at small
981
+ 휏퐹 , the best-fit 훾 (that showing the largest range with power-law-consistent scaling) is much larger
982
+ (> 1.7), and then above 휏퐹 ∼ 3000, the best-fit 훾 drops to around 1.3.
983
+ Statistical power of power-law tests
984
+ In several cases, we found examples of power-law fits that passed the rejection criteria commonly
985
+ used to determine avalanche scaling relationships because of limited number of observations. A
986
+ key example is that of the single latent variable simulation shown in Fig. 2B, where we could not
987
+ reject a power law for the duration distribution. Conversely, strict application of the surrogate cri-
988
+ teria would reject a power law for distributions that were quantitatively much closer to a power-law
989
+ (i. e., lower KS statistic), but for which we had many more observations and thus a much stronger
990
+ surrogate test (Fig. 2). This points to the difficulty of applying a single criterion to determining a
991
+ power-law fit. In this work, we adhere to the criteria set forth in Clauset et al. (2009), with a mod-
992
+ ification to control for the unreasonably high statistical power of simulated data. Specifically, the
993
+ number of avalanches used for fitting and for surrogate analysis was capped at 500, 000, drawn
994
+ randomly from the entire pool of avalanches.
995
+ Additionally, we found examples in which a short simulation was rejected, but increasing the
996
+ simulation time by a factor of five yielded excellent power-law fits. We speculate that this arises
997
+ due to insufficient sampling of the latent space. These observations raise an important biological
998
+ point. Simulations provide the luxury of assuming the network is unchanging for as long as the
999
+ simulator cares to keep drawing samples. In a biological network, this is not the case. Over the
1000
+ course of hours, the effective latent degrees of freedom could change drastically (e. g., due to
1001
+ circadian effects (Aton et al., 2009), changes in behavioral state (Fu et al., 2014), plasticity (Hooks
1002
+ and Chen, 2020), etc.), and the network itself (synaptic scaling, firing thresholds, etc.) could be
1003
+ plastic (Hengen et al., 2016). All of these factors can be modeled in our framework by determining
1004
+ appropriate cutoffs (in duration of recording, in time step sizes, for activity distributions) based on
1005
+ specific experimental timescales.
1006
+ Calculation of avalanche regimes
1007
+ In the quasistatic model, we derive the dependence of the avalanche rate on 휂, 휖 and number of
1008
+ neurons 푁, finding that there are two distinct regimes in which avalanches occur. Each time bin is
1009
+ independent, conditioned on the value of ℎ. For an avalanche to occur, the probability of silence
1010
+ in the population (i.e., all 푠푖 = 0) must not be too close to 0 (or there are no breaks in activity) or too
1011
+ close to 1 (or there is no activity). At fixed ℎ, the probability of silence is
1012
+ 푃silence(휖, 휂; 퐽푖, 푁, ℎ) =
1013
+
1014
+
1015
+ 1
1016
+ 1 + exp(−휂퐽푖ℎ + 휖).
1017
+ (9)
1018
+ An avalanche occurs when a silent time bin is followed by an active bin, which has probability
1019
+ 푃ava(휖, 휂; 퐽푖, 푁, ℎ) = 푃silence(1 − 푃silence).
1020
+ Information calculation
1021
+ Maximum-likelihood decoding
1022
+ For large populations coupled to a single latent variable, we estimate the information between pop-
1023
+ ulation spiking activity and the latent variable as the information between the maximum-likelihood
1024
+ estimator ℎ∗ of the latent variable ℎ and the latent variable itself. This approximation fails at ex-
1025
+ tremes of network activity levels (low or high).
1026
+ Specifically, we approximate the log-likelihood of ℎ∗ given ℎtrue near ℎ∗ by log 퐿(ℎ−ℎ∗) ≈ log 퐿푚푎푥−
1027
+ 1
1028
+ 2
1029
+ (ℎ−ℎ∗)2
1030
+ 휎2
1031
+ ℎ∗
1032
+ , so we assume that ℎ∗ is normally distributed about ℎtrue with variance 휎2(ℎtrue). The variance
1033
+ is then derived from the curvature of the log-likelihood at the maximum. The information between
1034
+ 15 of 18
1035
+
1036
+ two Gaussian variables, here 푃(ℎ∗|ℎ) = 푁(ℎ, 휎2
1037
+ ℎ∗) and 푝(ℎ) = 푁(0, 1), is
1038
+ 퐼(ℎ; ̄푠푖,푇 ) ≈ 1
1039
+ 2
1040
+
1041
+ log
1042
+
1043
+ 휎2
1044
+ ℎtrue
1045
+
1046
+ ℎtrue
1047
+ ,
1048
+ (10)
1049
+ where the average is taken over ℎtrue ∼ 푁(0, 1).
1050
+ Given a set of 푇 observations of the neurons {푠푖}, the likelihood is
1051
+ 푃({푠푖}푡|ℎ) =
1052
+ 푁,푇
1053
+
1054
+ 푖,푡
1055
+ 푃(푠푖|ℎ) =
1056
+ 푁,푇
1057
+
1058
+ 푖,푡
1059
+ 푒−휂푠푖퐽푖ℎ−휖푠푖
1060
+ 1 + 푒−(휂퐽푖ℎ+휖) .
1061
+ (11)
1062
+ Maximizing the log likelihood gives the following condition:
1063
+ 0 = 휕(log 푃)
1064
+ 휕ℎ
1065
+ ||ℎ∗ = 휕
1066
+ 휕ℎ
1067
+ (
1068
+
1069
+ 푖,푡
1070
+ ((−휂푠푖퐽푖ℎ − 휖푠푖) − log(1 + 푒−(휂퐽푖ℎ+휖))
1071
+ )
1072
+ ||ℎ∗
1073
+ (12)
1074
+ =
1075
+
1076
+
1077
+ −휂 ̄푠푖퐽푖푇 +
1078
+ 푇 퐽푖휂
1079
+ 1 + 푒휂퐽푖ℎ∗+휖 ,
1080
+ (13)
1081
+ where ̄푠푖 = 1
1082
+
1083
+
1084
+ 푡 푠푖푡 is the average over observations 푡. The uncertainty in ℎ∗ is 휎ℎ, which was calcu-
1085
+ lated from the second derivative of the log likelihood:
1086
+ 1
1087
+ 휎2
1088
+ ℎ∗
1089
+ = −휕2(log 푃)
1090
+ 휕ℎ2
1091
+ (14)
1092
+ = − 휕
1093
+ 휕ℎ
1094
+ (
1095
+
1096
+
1097
+ −휂 ̄푠푖퐽푖푇 +
1098
+ 푇 퐽푖휂
1099
+ 1 + 푒휂퐽푖ℎ+휖
1100
+ )
1101
+ ||ℎ∗
1102
+ (15)
1103
+ =
1104
+
1105
+
1106
+ 푇 (휂퐽푖)2푒휂퐽푖ℎ∗+휖
1107
+ (1 + 푒휂퐽푖ℎ∗+휖)2
1108
+ (16)
1109
+ =
1110
+
1111
+
1112
+ 푇 (휂퐽푖)2
1113
+ 4 cosh2( 휂퐽푖ℎ∗+휖
1114
+ 2
1115
+ )
1116
+ .
1117
+ (17)
1118
+ This expression depends on the observations ̄푠푖 only through the maximum-likelihood estimate ℎ∗.
1119
+ When ℎ∗ → ℎtrue, then the variance is
1120
+ 1
1121
+ 휎2
1122
+ ℎ∗
1123
+ =
1124
+
1125
+
1126
+ 푇 (휂퐽푖)2
1127
+ 4 cosh2( 휂퐽푖ℎtrue+휖
1128
+ 2
1129
+ )
1130
+
1131
+
1132
+ 휎2
1133
+ ℎtrue
1134
+ .
1135
+ (18)
1136
+ To generate Figure 5, we evaluated Eqn. 10 using Eqn. 18.
1137
+ Acknowledgments
1138
+ IN was supported in part by the Simons Foundation Investigator program, the Simons-Emory Con-
1139
+ sortium on Motor Control, NSF grant BCS/1822677 and NIH grant 2R01NS084844. AS was sup-
1140
+ ported in part by NIH grant 1RF1MH130413-01 and by startup funds from the University of Min-
1141
+ nesota Medical School.
1142
+ References
1143
+ Aitchison L, Corradi N, Latham PE. Zipf’s Law Arises Naturally When There Are Underlying, Unobserved Vari-
1144
+ ables. PLOS Computational Biology. 2016 12; 12(12):1–32. https://doi.org/10.1371/journal.pcbi.1005110, doi:
1145
+ 10.1371/journal.pcbi.1005110.
1146
+ Aton SJ, Seibt J, Dumoulin M, Jha SK, Steinmetz N, Coleman T, Naidoo N, Frank MG. Mechanisms of Sleep-
1147
+ Dependent Consolidation of Cortical Plasticity. Neuron. 2009; 61(3):454–466. https://www.sciencedirect.com/
1148
+ science/article/pii/S0896627309000403, doi: https://doi.org/10.1016/j.neuron.2009.01.007.
1149
+ Beggs JM.
1150
+ The criticality hypothesis: how local cortical networks might optimize information processing.
1151
+ Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2008;
1152
+ 366(1864):329–343.
1153
+ 16 of 18
1154
+
1155
+ Beggs JM, Plenz D. Neuronal Avalanches in Neocortical Circuits. Journal of Neuroscience. 2003; 23(35):11167–
1156
+ 11177. https://www.jneurosci.org/content/23/35/11167, doi: 10.1523/JNEUROSCI.23-35-11167.2003.
1157
+ Perković O, Dahmen K, Sethna JP. Avalanches, Barkhausen Noise, and Plain Old Criticality. Phys Rev Lett. 1995
1158
+ Dec; 75:4528–4531. https://link.aps.org/doi/10.1103/PhysRevLett.75.4528, doi: 10.1103/PhysRevLett.75.4528.
1159
+ Chialvo DR. Emergent complex neural dynamics. Nature physics. 2010; 6(10):744–750.
1160
+ Clark DG, Abbott LF, Litwin-Kumar A, Dimension of Activity in Random Neural Networks. arXiv; 2022. https:
1161
+ //arxiv.org/abs/2207.12373, doi: 10.48550/ARXIV.2207.12373.
1162
+ Clauset A, Shalizi CR, Newman ME. Power-law distributions in empirical data. SIAM review. 2009; 51(4):661–
1163
+ 703.
1164
+ Dahmen D, Grün S, Diesmann M, Helias M. Second type of criticality in the brain uncovers rich multiple-neuron
1165
+ dynamics. Proceedings of the National Academy of Sciences. 2019; 116(26):13051–13060. https://www.pnas.
1166
+ org/doi/abs/10.1073/pnas.1818972116, doi: 10.1073/pnas.1818972116.
1167
+ Fontenele AJ, de Vasconcelos NAP, Feliciano T, Aguiar LAA, Soares-Cunha C, Coimbra B, Dalla Porta L, Ribeiro
1168
+ S, Rodrigues AJa, Sousa N, Carelli PV, Copelli M. Criticality between Cortical States. Phys Rev Lett. 2019 May;
1169
+ 122:208101. https://link.aps.org/doi/10.1103/PhysRevLett.122.208101, doi: 10.1103/PhysRevLett.122.208101.
1170
+ Fu Y, Tucciarone J, Espinosa JS, Sheng N, Darcy D, Nicoll R, Huang ZJ, Stryker M. A Cortical Circuit for Gain
1171
+ Control by Behavioral State. Cell. 2014; 156(6):1139–1152. https://www.sciencedirect.com/science/article/pii/
1172
+ S0092867414001445, doi: https://doi.org/10.1016/j.cell.2014.01.050.
1173
+ Girardi-Schappo M. Brain criticality beyond avalanches: open problems and how to approach them. Journal of
1174
+ Physics: Complexity. 2021 sep; 2(3):031003. https://dx.doi.org/10.1088/2632-072X/ac2071, doi: 10.1088/2632-
1175
+ 072X/ac2071.
1176
+ Hengen K, Torrado Pacheco A, McGregor J, Van Hooser S, Turrigiano G. Neuronal Firing Rate Homeostasis
1177
+ Is Inhibited by Sleep and Promoted by Wake. Cell. 2016; 165(1):180–191. https://www.sciencedirect.com/
1178
+ science/article/pii/S0092867416300605, doi: https://doi.org/10.1016/j.cell.2016.01.046.
1179
+ Hooks BM, Chen C.
1180
+ Circuitry Underlying Experience-Dependent Plasticity in the Mouse Visual System.
1181
+ Neuron. 2020; 106(1):21–36.
1182
+ https://www.sciencedirect.com/science/article/pii/S089662732030057X, doi:
1183
+ https://doi.org/10.1016/j.neuron.2020.01.031.
1184
+ Ma Z, Turrigiano GG, Wessel R, Hengen K. Cortical circuit dynamics are homeostatically tuned to criticality in
1185
+ vivo. Neuron. 2019; 104:655–664.
1186
+ Meshulam L, Gauthier JL, Brody CD, Tank DW, Bialek W. Coarse Graining, Fixed Points, and Scaling in a Large
1187
+ Population of Neurons. Phys Rev Lett. 2019 Oct; 123:178103. https://link.aps.org/doi/10.1103/PhysRevLett.
1188
+ 123.178103, doi: 10.1103/PhysRevLett.123.178103.
1189
+ Mora T, Bialek W. Are Biological Systems Poised at Criticality? Journal of Statistical Physics - J STATIST PHYS.
1190
+ 2010 12; 144. doi: 10.1007/s10955-011-0229-4.
1191
+ Morrell MC, Sederberg AJ, Nemenman I. Latent Dynamical Variables Produce Signatures of Spatiotemporal
1192
+ Criticality in Large Biological Systems. Phys Rev Lett. 2021 Mar; 126:118302. https://link.aps.org/doi/10.1103/
1193
+ PhysRevLett.126.118302, doi: 10.1103/PhysRevLett.126.118302.
1194
+ Nieh EH, Schottdorf M, Freeman NW, Low RJ, Lewallen S, Koay SA, Pinto L, Gauthier JL, Brody CD, Tank DW.
1195
+ Geometry of abstract learned knowledge in the hippocampus. Nature. 2021 Jul; 595(7865):80–84. https:
1196
+ //doi.org/10.1038/s41586-021-03652-7, doi: 10.1038/s41586-021-03652-7.
1197
+ O’Byrne J, Jerbi K. How critical is brain criticality? Trends in Neurosciences. 2022; 45(11):820–837. https://www.
1198
+ sciencedirect.com/science/article/pii/S0166223622001643, doi: https://doi.org/10.1016/j.tins.2022.08.007.
1199
+ Pandarinath C, O’Shea DJ, Collins J, Jozefowicz R, Stavisky SD, Kao JC, Trautmann EM, Kaufman MT, Ryu SI,
1200
+ Hochberg LR, Henderson JM, Shenoy KV, Abbott LF, Sussillo D. Inferring single-trial neural population dy-
1201
+ namics using sequential auto-encoders. Nature Methods. 2018 Oct; 15(10):805–815. https://doi.org/10.
1202
+ 1038/s41592-018-0109-9, doi: 10.1038/s41592-018-0109-9.
1203
+ Petermann T, Thiagarajan TC, Lebedev MA, Nicolelis MAL, Chialvo DR, Plenz D.
1204
+ Spontaneous cortical
1205
+ activity in awake monkeys composed of neuronal avalanches.
1206
+ Proceedings of the National Academy
1207
+ of Sciences. 2009; 106(37):15921–15926.
1208
+ https://www.pnas.org/doi/abs/10.1073/pnas.0904089106, doi:
1209
+ 10.1073/pnas.0904089106.
1210
+ 17 of 18
1211
+
1212
+ Plenz
1213
+ D,
1214
+ Ribeiro
1215
+ TL,
1216
+ Miller
1217
+ SR,
1218
+ Kells
1219
+ PA,
1220
+ Vakili
1221
+ A,
1222
+ Capek
1223
+ EL.
1224
+ Self-Organized
1225
+ Criticality
1226
+ in
1227
+ the
1228
+ Brain.
1229
+ Frontiers in Physics. 2021; 9.
1230
+ https://www.frontiersin.org/articles/10.3389/fphy.2021.639389, doi:
1231
+ 10.3389/fphy.2021.639389.
1232
+ Poil SS, Ooyen A, Linkenkaer-Hansen K.
1233
+ Avalanche dynamics of human brain oscillations: Relation to crit-
1234
+ ical branching processes and temporal correlations.
1235
+ Human brain mapping. 2008 07; 29:770–7.
1236
+ doi:
1237
+ 10.1002/hbm.20590.
1238
+ Ponce-Alvarez A, Jouary A, Privat M, Deco G, Sumbre G. Whole-Brain Neuronal Activity Displays Crackling
1239
+ Noise Dynamics.
1240
+ Neuron. 2018; 100(6):1446–1459.e6. https://www.sciencedirect.com/science/article/pii/
1241
+ S089662731830953X, doi: https://doi.org/10.1016/j.neuron.2018.10.045.
1242
+ Priesemann V, Shriki O.
1243
+ Can a time varying external drive give rise to apparent criticality in neural sys-
1244
+ tems? PLOS Computational Biology. 2018 05; 14(5):1–29. https://doi.org/10.1371/journal.pcbi.1006081, doi:
1245
+ 10.1371/journal.pcbi.1006081.
1246
+ Schwab DJ, Nemenman I, Mehta P. Zipf’s Law and Criticality in Multivariate Data without Fine-Tuning. Phys
1247
+ Rev Lett. 2014 Aug; 113:068102. https://link.aps.org/doi/10.1103/PhysRevLett.113.068102, doi: 10.1103/Phys-
1248
+ RevLett.113.068102.
1249
+ Sederberg A, Nemenman I. Randomly connected networks generate emergent selectivity and predict decoding
1250
+ properties of large populations of neurons. PLOS Computational Biology. 2020 05; 16(5):1–19. https://doi.
1251
+ org/10.1371/journal.pcbi.1007875, doi: 10.1371/journal.pcbi.1007875.
1252
+ Shew WL, Clawson WP, Pobst J, Karimipanah Y, Wright NC, Wessel R. Adaptation to sensory input tunes vi-
1253
+ sual cortex to criticality. Nature Physics. 2015 Aug; 11(8):659–663. https://doi.org/10.1038/nphys3370, doi:
1254
+ 10.1038/nphys3370.
1255
+ Stringer C, Pachitariu M, Steinmetz N, Reddy CB, Carandini M, Harris KD. Spontaneous behaviors drive multidi-
1256
+ mensional, brainwide activity. Science. 2019; 364(6437):eaav7893. https://www.science.org/doi/abs/10.1126/
1257
+ science.aav7893, doi: 10.1126/science.aav7893.
1258
+ Touboul J, Destexhe A. Power-law statistics and universal scaling in the absence of criticality. Phys Rev E. 2017
1259
+ Jan; 95:012413. https://link.aps.org/doi/10.1103/PhysRevE.95.012413, doi: 10.1103/PhysRevE.95.012413.
1260
+ 18 of 18
1261
+
1262
+
1263
+ Figure 2–Figure supplement 1. Illustration of algorithm for determining 휏 and 훼, using one vari-
1264
+ able example in Fig. 2. A-B: Probability density function for avalanche size (A) and duration (B) on
1265
+ a log-log scale, with the best power law fit (red). C-D: In blue: Maximum likelihood exponent of a
1266
+ power-law model as a function of the minimum (lower cutoff) size (C) and duration (D). In red: KS
1267
+ statistics (see Methods) for each fit. “Best fit” is the power law with the minimum KS statistic. E-F:
1268
+ Surrogate data procedure. To generate each surrogate, samples were drawn from a power law
1269
+ with size / duration cutoff indicated (E, 푆푚푖푛 = 3; F, 퐷푚푖푛 = 18) and the KS statistic was computed.
1270
+ Histograms illustrate KS statistic across surrogates (blue), while values derived from data are in
1271
+ red. Because the red line does not fall within the blue histogram, the hypothesis that the data is
1272
+ fitted well by a power law fit was rejected in E. At the same time, since the red line falls within the
1273
+ blue histogram in F, the hypothesis was accepted.
1274
+
1275
+ B
1276
+ A
1277
+ -10
1278
+ 8
1279
+ 15
1280
+ 10
1281
+ 0
1282
+ 2
1283
+ og1
1284
+ size
1285
+ 0.07
1286
+ 0.07
1287
+ 0.06
1288
+ 0.06
1289
+ KS
1290
+ KS
1291
+ 0.05
1292
+ 0.05
1293
+ statistic
1294
+ statistic
1295
+ 0.04
1296
+ 0.04
1297
+ 王王
1298
+ 0.03
1299
+ 0.03
1300
+ 0.02
1301
+ 0.02
1302
+ 0.5
1303
+ 1.5
1304
+ 2
1305
+ 0.5
1306
+ 1.5
1307
+ 2
1308
+ log10
1309
+ log
1310
+ E
1311
+ min
1312
+ 250
1313
+ counts (2000 surrogates)
1314
+ 300
1315
+ 200
1316
+ 150
1317
+ 00
1318
+ 50
1319
+ 50
1320
+ 3
1321
+ 2.5
1322
+ 1.5
1323
+ 1.8
1324
+ -1.6
1325
+ 1.4
1326
+ og
1327
+ KS statistic
1328
+ log1
1329
+ KS statisticFigure 2–Figure supplement 2. Illustration of algorithm for determining 휏 and 훼, using example
1330
+ in Fig. 2, five latent variables. Notation the same as in Fig. 2-Fig. Supplement 3.
1331
+
1332
+ B
1333
+ 2
1334
+ 6
1335
+ 8
1336
+ 10
1337
+ 0.04
1338
+ 0.05
1339
+ 0.04
1340
+ 0.03
1341
+ KS
1342
+ 0.03
1343
+ statistic
1344
+ stat
1345
+ 0.02
1346
+ tist
1347
+ 0.02
1348
+ 0.01
1349
+ 0.01
1350
+ 0.5
1351
+ 1.5
1352
+ 0.5
1353
+ 1.5
1354
+ log10
1355
+ log
1356
+ E
1357
+ min
1358
+ counts (2000 surrogates)
1359
+ 300
1360
+ counts (2000 surrogates)
1361
+ 250
1362
+ 250
1363
+ 200
1364
+ 200
1365
+ 150
1366
+ 100
1367
+ 100
1368
+ 50
1369
+ 50
1370
+ 3
1371
+ -2.8-2.6-2.4-2.2
1372
+ 2.8
1373
+ -2.6
1374
+ -2.4-2.2
1375
+ 2
1376
+ log1
1377
+ KSstatistic
1378
+ log10
1379
+ KS statisticFigure 2–Figure supplement 3. Illustration of algorithm for fitting the exponent 훾 and determining
1380
+ the range, over which power law scaling of average size with duration is observed, using example in
1381
+ Fig. 2(A-D). A-C: Determining the lower bound, the minimum duration 퐷푚푖푛. A: The relation log 푆 =
1382
+ 푏 + 훾 log 퐷 was fit using linear least-squares, restricted to (overlapping) 1-decade ranges (blue, red:
1383
+ example decades). B: Confidence intervals for fit parameters (훾, 푏 for fits starting at each value
1384
+ of 퐷푚푖푛. C: Best value of 퐷min was selected based on how many subsequent start points yielded
1385
+ consistent slope/intercept values. D-F: Determining the upper bound, maximum duration 퐷푚푎푥. D:
1386
+ Keeping 퐷푚푖푛 fixed based of value obtained in C, we test values of 퐷푚푎푥 up to the maximum duration
1387
+ event, and fit over the range [퐷min, 퐷max]. E: Average residual over the fit range [퐷min, 퐷min + 1],
1388
+ calculated for each fit and plotted against the value of 퐷max used for that fit. The largest value of
1389
+ 퐷max without evidence of bias in the residual was then selected. F: Final fit and range.
1390
+
1391
+ alldurations
1392
+ fit to dec. 1
1393
+ Estimate of value and power-law range
1394
+ ex.decade 1
1395
+ fit to dec. 2
1396
+ ex. decade 2
1397
+ fit parameters for single-decade fits
1398
+ fit range starting from each d.
1399
+ min
1400
+ 8
1401
+ 1.8
1402
+ 0.5
1403
+ scale)
1404
+ 1.7
1405
+ t (b, 95% CI)
1406
+ 10
1407
+ 6
1408
+ average size (log s
1409
+ % 1.6
1410
+ 8
1411
+ 4
1412
+ 0.5
1413
+ 9
1414
+ intercept
1415
+ 2
1416
+ 0
1417
+ 1.3
1418
+ number
1419
+ 2
1420
+ -2
1421
+ 1.2
1422
+ -1.5
1423
+ 0
1424
+ 0
1425
+ 1
1426
+ 2
1427
+ 3
1428
+ 4
1429
+ 0
1430
+ 1
1431
+ 2
1432
+ 3
1433
+ 0
1434
+ 2
1435
+ 3
1436
+ duration (log scale)
1437
+ d
1438
+ (lower bound on fitted decade)
1439
+ d.
1440
+ min
1441
+ min
1442
+ all durations
1443
+ fit to (i)
1444
+ (i) dmax = 3.95
1445
+ fit to (i)
1446
+ all end points
1447
+ (i) dmax = 2.8
1448
+ all
1449
+ final fit
1450
+ within 95% CI
1451
+ final fit range
1452
+ Part 2: select upper cutoff (d,
1453
+ )forS~D
1454
+ SE)
1455
+ residuals for fits ending at d.
1456
+ max
1457
+ = 1.72, range: 2.15
1458
+ 8
1459
+ 0.01
1460
+ max
1461
+ +/- 1
1462
+ 8
1463
+ scale)
1464
+ scale)
1465
+ 6
1466
+ 0.005
1467
+ 2.8]
1468
+ average size (log
1469
+ 6o) azis
1470
+ 4
1471
+ 4
1472
+ 2
1473
+ 80. -0.005
1474
+ average s
1475
+ 2
1476
+ 0
1477
+ -0.01
1478
+ 0
1479
+ error
1480
+ -2
1481
+ -0.015
1482
+ -2
1483
+ 0
1484
+ 1
1485
+ 2
1486
+ 4
1487
+ 3
1488
+ 3.5
1489
+ 4
1490
+ 0
1491
+ 1
1492
+ 2
1493
+ 3
1494
+ 4
1495
+ duration (log scale)
1496
+ d.
1497
+ duration (log scale)
1498
+ maxFigure 2–Figure supplement 4. Illustration of algorithm for fitting the exponent 훾 and determining
1499
+ the range over which power-law scaling of average size with duration is observed, using example
1500
+ in Fig. 2 E-H. See Fig. 2-Fig. Supplement 3 for caption. In this example, a lower value of 퐷min was
1501
+ selected. Panel E, which was flat for Fig. 2-Fig. Supplement 3, now shows how extending the range
1502
+ to high values of 퐷max can generate systematic errors at the low range of the fit, even while having
1503
+ a high overall goodness of fit metric.
1504
+ Figure 4–Figure supplement 1. Estimate of how long it takes to observe avalanche criticality at
1505
+ each combination of 휂 and 휖. We took a parameter combination with a low rate of avalanches but
1506
+ good apparent scaling (휂 = 4 and 휖 = −14) and assumed that this is a reasonable estimate of the
1507
+ minimum number of observations (approximately 106 avalanches) required to observe scaling. To
1508
+ translate to observation length (in hours), we divided the number of avalanches observed in each
1509
+ full-length simulation by this minimum count and converted to a time using a time bin of 10 ms.
1510
+ Simulations were for a recorded population of 128 neurons. For this size of population, 휖0 = 5.2.
1511
+
1512
+ Reguired Sim Time (est.)
1513
+ 300h
1514
+ 6
1515
+ 0
1516
+ 30 h
1517
+ -10
1518
+ 14
1519
+ 3
1520
+ 4
1521
+ 6
1522
+ 8
1523
+ 10
1524
+ n (gain)all durations
1525
+ fit to dec. 1
1526
+ Estimate of value and power-law range
1527
+ ex. decade 1
1528
+ fit to dec. 2
1529
+ ex. decade 2
1530
+ Part 1: select lower cutoff (d,
1531
+ fit parameters for single-decade fits
1532
+ fit range starting from each d.
1533
+ min
1534
+ 6
1535
+ 1.6
1536
+ 0.5
1537
+ intercept (b, 95% ClI)
1538
+ %S6
1539
+ 10
1540
+ 0.5
1541
+ 5
1542
+ number of
1543
+ 1
1544
+ 1.2
1545
+ 0
1546
+ 0
1547
+ 1
1548
+ 2
1549
+ 3
1550
+ 4
1551
+ 0
1552
+ 2
1553
+ 3
1554
+ 0
1555
+ 1
1556
+ 3
1557
+ 2
1558
+ duration (log scale)
1559
+ d
1560
+ (lower bound on fitted decade)
1561
+ d.
1562
+ min
1563
+ min
1564
+ all durations
1565
+ fit to (i)
1566
+ fit to (i)
1567
+ all end points
1568
+ selectedd
1569
+ dmin
1570
+ max
1571
+ all
1572
+ final fit
1573
+ within 95% CI
1574
+ final fit range
1575
+ Part 2: select upper cutoff (d,
1576
+ )forS~D
1577
+ SE)
1578
+ residuals for fits ending at d.
1579
+ = 1.26, range: 2.15
1580
+ 6
1581
+ 6
1582
+ ( +/- 1
1583
+ 0.1
1584
+ 50.08
1585
+ 0.06
1586
+ uo
1587
+ 0.02
1588
+ ave error
1589
+ 1
1590
+ 0
1591
+ 0
1592
+ 0
1593
+ 2
1594
+ 1
1595
+ 4
1596
+ 2
1597
+ 3
1598
+ 4
1599
+ 0
1600
+ 1
1601
+ 2
1602
+ 3
1603
+ 4
1604
+ duration (log scale)
1605
+ d
1606
+ duration (log scale)
1607
+ max
7tAyT4oBgHgl3EQf2_kh/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
BtAzT4oBgHgl3EQfGPuX/content/tmp_files/2301.01025v1.pdf.txt ADDED
@@ -0,0 +1,2287 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Draft version January 4, 2023
2
+ Typeset using LATEX default style in AASTeX63
3
+ Gaussian Process Modeling Blazar Multiwavelength Variability: Indirectly Resolving Jet Structure
4
+ Haiyun Zhang (张海云),1 Dahai Yan (闫大海),1 and Li Zhang (张力)1
5
+ 1Department of Astronomy, Key Laboratory of Astroparticle Physics of Yunnan Province, Yunnan University, Kunming 650091, China
6
+ ABSTRACT
7
+ Blazar jet structure can be indirectly resolved by analyzing the multiwavelength variability. In this
8
+ work, we analyze the long-term variability of blazars in radio, optical and X-ray energies with the
9
+ Gaussian process (GP) method. The multiwavelength variability can be successfully characterized by
10
+ the damped-random walk (DRW) model. The nonthermal optical characteristic timescales of 38 blazars
11
+ are statistically consistent with the γ-ray characteristic timescales of 22 blazars. For three individuals
12
+ (3C 273, PKS 1510-089, and BL Lac), the nonthermal optical, X-ray, and γ-ray characteristic timescales
13
+ are also consistent within the measured 95% errors, but the radio timescale of 3C 273 is too large to be
14
+ constrained by the decade-long light curve. The synchrotron and inverse-Compton emissions have the
15
+ same power spectral density, suggesting that the long-term jet variability is irrelevant to the emission
16
+ mechanism. In the plot of the rest-frame timescale versus black hole mass, the optical-γ-ray timescales
17
+ of the jet variability occupy almost the same space with the timescales of accretion disk emission from
18
+ normal quasars, which may imply that the long-term variabilities of the jet and accretion disk are
19
+ driven by the same physical process. It is suggested that the nonthermal optical-X-ray and γ-ray
20
+ emissions are produced in the same region, while the radio core which can be resolved by very-long-
21
+ baseline interferometry locates at a far more distant region from the black hole. Our study suggests
22
+ a new methodology for comparing thermal and nonthermal emissions, which is achieved by using the
23
+ standard GP method.
24
+ Keywords: Blazars (164), Jets (870), Light curves (918), Time series analysis (1916)
25
+ 1. INTRODUCTION
26
+ Flat spectrum radio quasars (FSRQs) and BL Lac objects (BL Lacs) are classed into a special class of active
27
+ galactic nuclei (AGNs) called blazars, whose jets nearly point to the Earth. Blazars are highly variable over the entire
28
+ electromagnetic bands. One popular scenario is that the accretion onto a supermassive black hole is the central engine,
29
+ driving relativistic jet. But the detailed process is still unclear. Thanks to the high variability of blazars, one can
30
+ investigate the physical process close to the central engine (e.g., Rieger 2019), such as the location of the emitting
31
+ region and the jet-disk connection (e.g., Ackermann et al. 2016; Meyer et al. 2019; Zhang et al. 2022).
32
+ Using advanced interferometric instruments, blazar radio jet can be directly resovled on ∼parsec-scale (see Hovatta
33
+ & Lindfors 2019, for a recent review). This provides a calibrator for multi-band variability analysis. There have been
34
+ lots of works attempting to investigate the underlying physical process of blazar jet with multi-band variability (e.g.,
35
+ Chatterjee et al. 2012; Nakagawa & Mori 2013; Xiong et al. 2017; Goyal et al. 2018, 2022). Max-Moerbeck et al. (2014)
36
+ investigated the time-domain relationship between radio and γ-ray emission of blazars, and found the correlations
37
+ only exist in a minority of the sources over a 4 yr period. They found radio variations lagging the γ-ray variations,
38
+ suggesting that the γ-ray emission originates upstream of the radio emission. This result is further verified by Liodakis
39
+ et al. (2018) who concluded that the radio variation is usually substantially delayed to the other wavelengths for
40
+ blazars. Bhatta (2021) analyzed the correlation between optical (V -band) and γ-ray variabilities for blazars and found
41
+ that the optical variability is highly correlated with the γ-ray variability except for 3C 273, however, no significant
42
+ Corresponding author: Dahai Yan
43
44
+ Corresponding author: Li Zhang
45
46
+ arXiv:2301.01025v1 [astro-ph.HE] 3 Jan 2023
47
+
48
+ 2
49
+ lagging is found. The multi-band variability analysis can be considered as an indirect approach for resolving blazar
50
+ jet.
51
+ The GP method becomes popular in modern time-domain astronomy (e.g., Ryan et al. 2019; Burke et al. 2021; Yang
52
+ et al. 2021; Griffiths et al. 2021; Covino et al. 2022; Rueda et al. 2022; Stone et al. 2022; Zhang et al. 2022). The GP
53
+ method enables us to effectively extract information from astronomical variability. For example, Zhang et al. (2022)
54
+ used a GP method to characterize the γ-ray variability of AGNs with stochastic process. It is found that the DRW
55
+ model can successfully fit the γ-ray variability, which is similar with the optical variability of AGN accretion disk
56
+ (Kelly et al. 2009; Li & Wang 2018; Burke et al. 2021). Moreover, Zhang et al. (2022) suggested a connection between
57
+ the jet and the accretion disk by comparing the rest-frame γ-ray timescales of blazars with the optical accretion disk
58
+ timescales of quasars.
59
+ In this work, we analyze the multi-band variability of blazars with the GP method, which is independent of the
60
+ temporal correlation analysis. We hope to extract additional information from the variability. Using the data from
61
+ Fermi-Large Area Telescope (Fermi-LAT), we carried out systematic research of γ-ray variability of AGNs recently
62
+ (Zhang et al. 2022). So far, the Small and Moderate Aperture Research Telescope System (SMARTS) monitoring
63
+ program1 (Bonning et al. 2012) and the Steward Observatory (SO) spectropolarimetric monitoring project2 (Smith
64
+ et al. 2009) can provide almost ten years’ (from 2008 to 2018) optical data of Fermi blazars. RXTE AGN Timing
65
+ & Spectral Database3 (Rivers et al. 2013) provides long-term X-ray data, and the Owens Valley Radio Observatory
66
+ (OVRO) 40 m program (Richards et al. 2011) provides radio light curves (LCs) from 2008 to 20204. Using these public
67
+ data, we analyze the radio, optical and X-ray variability of three individual blazars, as well as optical variability for a
68
+ sample including 38 Fermi blazars. The format of this paper is as follows. In Section 2, we describe the data as well
69
+ as the GP method. The modeling results of the three individual sources and 38 blazars are shown in Section 3. We
70
+ give discussions and physical interpretations of the results in Section 4. In Section 5, we conclude the paper with a
71
+ brief summary.
72
+ 2. DATA AND GAUSSIAN PROCESS METHOD
73
+ 2.1. Data and Sources
74
+ We use photometric data of blazars from the SMARTS and SO monitoring projects. The SMARTS program gives
75
+ photometric data at five wavelength bands (B, V, R, J, K), which were taken from the 1.3 m telescope at the Cerro
76
+ Tololo Inter-American Observatory. SO is a long-term optical program to support the Fermi Telescope, utilizing both
77
+ the 2.3 m Bok Telescope on Kitt Peak and the 1.54 m Kuiper Telescope on Mt.Bigelow in Arizona. The campaign
78
+ of the SO program spanned almost a decade from 2008 November to 2018 July. The X-ray data can be gained from
79
+ RXTE observation which provided us with 16 yr (1996-2012) data in 2-10 keV. OVRO 40 m program gives radio data
80
+ of blazars from 2008 to 2020, which is a large-scale, fast-cadence 15 GHz radio monitoring program. We select sources
81
+ having long-term continuous observations and a good sampling. For the source with a large gap in the LC, we only
82
+ use the data covering a longer period before or after the gap for analysis. Finally, We have 38 blazars in the optical
83
+ band, including 23 FSRQs and 15 BL Lacs. Three blazars (3C 273, BL Lac, and PKS 1510-089) have long-term RXTE
84
+ X-ray data. They are also in the sample of selected optical sources. Unfortunately, among the three sources, only 3C
85
+ 273 has the OVRO LC. Table 1 gives the general information of these targets.
86
+ 2.2. Gaussian Process Method
87
+ GPs are a class of statistical models, which are widely applied for modeling stochastic processes. For the one who is
88
+ interested in the stochastic behavior of astronomical variability, GP provides a flexible method to model the LC with
89
+ stochastic processes. The application of GPs for astronomical time-series is discussed in a recent review (Aigrain &
90
+ Foreman-Mackey 2022). Considering a data set of yn at coordinates xn, the GP model consists of a mean function
91
+ µθ(x) parameterized by θ and a kernel function (covariance function) kα(xn, xm) parameterized by parameters α
92
+ (Foreman-Mackey et al. 2017). For time-series data, the GP is one-dimensional, and the coordinates are time, xn=tn.
93
+ After obtaining the likelihood function with the above information, one can use Bayesian inference to estimate the
94
+ posterior distribution over the parameter space.
95
+ 1 http://www.astro.yale.edu/smarts/glast/home.php
96
+ 2 http://james.as.arizona.edu/∼psmith/Fermi/datause.html
97
+ 3 https://cass.ucsd.edu/∼rxteagn/
98
+ 4 http://astro.caltech.edu/ovroblazars/
99
+
100
+ 3
101
+ Table 1. Information of 38 blazars.
102
+ Object
103
+ z
104
+ Type
105
+ logMBH/M⊙
106
+ Ref.
107
+ (1)
108
+ (2)
109
+ (3)
110
+ (4)
111
+ (5)
112
+ 1ES 1959+650
113
+ 0.048
114
+ BLL
115
+ 8.2 ± 0.17
116
+ 1
117
+ 1ES 2344+514
118
+ 0.044
119
+ BLL
120
+ 8.7 ± 0.18
121
+ 2
122
+ 3C 66A
123
+ 0.37
124
+ BLL
125
+ 8.570.03
126
+ 0.6
127
+ 3,4
128
+ 3C 454.3
129
+ 0.859
130
+ FSRQ
131
+ 9.1 ± 0.5
132
+ 6
133
+ PKS 0235+164
134
+ 0.94
135
+ BLL
136
+ 9.0
137
+ 7
138
+ 4C +38.41
139
+ 1.81396
140
+ FSRQ
141
+ 9.5 ± 0.5
142
+ 7
143
+ CTA 102
144
+ 1.032
145
+ FSRQ
146
+ 8.7
147
+ 7
148
+ Mkn 421
149
+ 0.03002
150
+ BLL
151
+ 8.3 ± 0.2
152
+ 6
153
+ Mkn 501
154
+ 0.03298
155
+ BLL
156
+ 9.2 ± 0.2
157
+ 6
158
+ OJ 287
159
+ 0.3056
160
+ BLL
161
+ 8.8 ± 0.5
162
+ 6
163
+ 4C +21.35
164
+ 0.43383
165
+ FSRQ
166
+ 8.9 ± 0.15
167
+ 8
168
+ PKS 2155-304
169
+ 0.1167
170
+ BLL
171
+ 8.9
172
+ 9
173
+ S5 0716+714
174
+ 0.31
175
+ BLL
176
+ 8.7
177
+ 10
178
+ W Com
179
+ 1.25813
180
+ BLL
181
+ 8.5
182
+ 14
183
+ 4C +01.02
184
+ 2.099
185
+ FSRQ
186
+ 9.5
187
+ 16
188
+ PKS 0208-512
189
+ 1.003
190
+ FSRQ
191
+ 9.2
192
+ 7
193
+ PKS 0235-618
194
+ 0.46657
195
+ FSRQ
196
+ 9.0
197
+ 14
198
+ PKS 0402-362
199
+ 1.42284
200
+ FSRQ
201
+ 9.0
202
+ 14
203
+ PKS 0426-380
204
+ 1.105
205
+ BLL
206
+ 8.6
207
+ 7
208
+ PKS 0458-02
209
+ 2.286
210
+ FSRQ
211
+ 8.7
212
+ 11
213
+ PKS 0502+049
214
+ 0.954
215
+ FSRQ
216
+ 8.9 ± 0.5
217
+ 12
218
+ PKS 0528+134
219
+ 2.06
220
+ FSRQ
221
+ 9.0
222
+ 13
223
+ PMN J0531-4827
224
+ 0.8116
225
+ BLL
226
+ · · ·
227
+ · · ·
228
+ PMN J0850-1213
229
+ 0.566
230
+ FSRQ
231
+ 8.7
232
+ 14
233
+ PKS 1144-379
234
+ 1.048
235
+ BLL
236
+ 8.5
237
+ 7
238
+ PKS 1244-255
239
+ 0.633
240
+ FSRQ
241
+ 8.3
242
+ 14
243
+ PKS B1406-076
244
+ 1.494
245
+ FSRQ
246
+ 9.4
247
+ 17
248
+ PKS 1730-130
249
+ 0.902
250
+ FSRQ
251
+ 8.7
252
+ 14
253
+ PKS 1954-388
254
+ 0.63
255
+ FSRQ
256
+ 8.0 ± 0.5
257
+ 5
258
+ PKS 2142-75
259
+ 1.139
260
+ FSRQ
261
+ 9.7
262
+ 15
263
+ PKS 2233-148
264
+ 0.33
265
+ BLL
266
+ 8.7
267
+ 14
268
+ PKS 2326-502
269
+ 0.518
270
+ FSRQ
271
+ 9.3
272
+ 14
273
+ PMN J2345-1555
274
+ 0.621
275
+ FSRQ
276
+ 8.2 ± 0.17
277
+ 8
278
+ Ton 599
279
+ 0.72474
280
+ FSRQ
281
+ 8.5 ± 0.5
282
+ 5
283
+ PKS 2052-47
284
+ 1.489
285
+ FSRQ
286
+ 8.9
287
+ 14
288
+ 3C 273
289
+ 0.15834
290
+ FSRQ
291
+ 8.9 ± 0.5
292
+ 5
293
+ BL Lac
294
+ 0.0686
295
+ BLL
296
+ 8.5 ± 0.2
297
+ 6
298
+ PKS 1510-089
299
+ 0.36
300
+ FSRQ
301
+ 7.8+0.05
302
+ −0.04
303
+ 18
304
+ Note—(1) source name, (2) redshift, (3) source type, (4) black hole mass
305
+ (in solar mass) collected from the references in the last column.
306
+ X-ray
307
+ variability analysis is performed for the last three sources. References: (1)
308
+ Falomo et al. (2003), (2) Woo et al. (2005), (3) Kaur et al. (2017), (4) Gupta
309
+ et al. (2012), (5) Liu et al. (2006), (6) Wang et al. (2004), (7) Sbarrato et al.
310
+ (2012), (8) Shaw et al. (2012), (9) Ghisellini et al. (2010), (10) Kaur et al.
311
+ (2018), (11) Fan & Cao (2004), (12) Oshlack et al. (2002), (13) Palma et al.
312
+ (2011), (14) Paliya et al. (2017), (15) Dutka et al. (2013), (16) Schutte et al.
313
+ (2022), (17) Xue et al. (2016), (18) Rakshit (2020).
314
+
315
+ 4
316
+ In practical application, the key point is choosing the kernel function. The DRW process (called Ornstein-Uhlenbeck
317
+ process in physics) is widely used to describe the variability of AGNs (e.g., Burke et al. 2021), and it is defined by an
318
+ exponential covariance function (e.g., Kelly et al. 2009; Zu et al. 2013),
319
+ k(tnm) = 2σ2
320
+ DRW · exp(−tnm/τDRW) ,
321
+ (1)
322
+ where tnm = |tn − tm| is the time lag between measurements m and n. The amplitude term (σDRW) represents the
323
+ amplitude of the random disturbance, and the damping (characteristic) timescale (τDRW) represents the timescale that
324
+ the system returns to the stability after experiencing a disturbance. Sometimes, an excess white noise term (σ2
325
+ nδnm
326
+ where σn is the excess white noise amplitude and δnm is the Kronecker δ function) is needed in the situation that there
327
+ is a white noise in the LC in addition to the quoted measurement errors (Foreman-Mackey 2018; Burke et al. 2021).
328
+ A more complex kernel is the stochastically driven damped simple harmonic oscillator (SHO), which is described by
329
+ a second-order differential equation (Foreman-Mackey et al. 2017). The SHO kernel has been used to model the AGN
330
+ accretion disk (Yu et al. 2022) and jet (Zhang et al. 2022) variability.
331
+ Celerite software package is a GP tool for a stationary process (Foreman-Mackey et al. 2017). It uses the semi-
332
+ separated structure of a special covariance matrix to directly analyze and compute the GP likelihood for large data
333
+ sets. Yang et al. (2021) and Zhang et al. (2021, 2022) have tested the efficiency of this method for the study of AGN
334
+ jet variability, and suggested that celerite has a strong potentiality for studying AGN variability (also see Burke et al.
335
+ 2021). Here, we use the DRW model implemented in celerite package to model the multi-band variability of blazars.
336
+ The Markov Chain Monte Carlo (MCMC) sampler emcee5 is adopted to perform posterior analysis. We assume
337
+ log-uniform priors on each of the parameters. The MCMC sampler is run for 50,000 iterations with 32 parallel walkers.
338
+ The first 20,000 steps are taken as burn-in. After modeling the LCs, we should estimate the fitting quality for assessing
339
+ whether the fitting results are reliable, e.g., whether the standardized residuals follow a Gaussian white-noise sequence.
340
+ The power spectral density (PSD) can be constructed by using the fitting results. The DRW PSD is in the form of
341
+ S(ω) =
342
+
343
+ 8
344
+ π σ2
345
+ DRWτDRW
346
+ 1
347
+ 1 + (ωτDRW)2 .
348
+ (2)
349
+ It is a broken power-law form with slope 0 below the broken frequency (fb) and slope -2 above the broken frequency.
350
+ The conversion between the timescale τDRW and fb is τDRW = 1/(2πfb).
351
+ The LC with large cadence or insufficient length leads to a large bias on the characteristic timescale derived from
352
+ modeling.
353
+ If the timescale is larger than the mean cadence of LC and less than 1/10 of the length of LC, the
354
+ measurement of the damping timescale from the LC is reliable (Burke et al. 2021).
355
+ 3. RESULTS
356
+ 3.1. Results of 3C 273, PKS 1510-089 and BL Lac
357
+ We first analyze the multi-band variability of the three individual sources, 3C 273, PKS 1510-089, and BL Lac. We
358
+ present the celerite fitting results of the LC for each source in the following. The measured timescales given in the
359
+ main text are with errors in 95% confidence intervals.
360
+ For 3C 273, the optical data in both B and V bands are available. We show the modeling results in Figure 1, in
361
+ which the left panel is for B-band LC and the right is for V -band LC. The DRW model can agree well with both
362
+ LCs. Looking at the distribution of standardized residuals and the auto-correlation function (ACF) of standardized
363
+ residuals (see details in Zhang et al. 2022), we believe the characteristic of each LC has been captured successfully.
364
+ Through MCMC sampling, we get the posterior probability density distributions of two parameters (σDRW and τDRW)
365
+ and show them in Figure 2. The values are listed in Table 2. The results are different between the two bands. The
366
+ parameters can be constrained by the B-band data but with large uncertainties, e.g., τDRW = 59+41
367
+ −28 days. Comparing
368
+ the timescale with the cadence and the length of the LC, we believe that the B-band timescale is reliable. A broken
369
+ frequency corresponding to the characteristic timescale is shown in the B-band PSD (Figure 3). While the V -band
370
+ timescale is ≈ 3200 days, very close to the length of the LC. This means that the V -band timescale is unreliable, which
371
+ is also confirmed by the single power-law PSD (Figure 3). We show the modeling results of X-ray LC, the posterior
372
+ probability density distribution of parameters, and the PSD in the right panel in Figure 4, Figure 5 and Figure 6
373
+ 5 https://github.com/dfm/emcee
374
+
375
+ 5
376
+ 12.8
377
+ 12.9
378
+ 13.0
379
+ 13.1
380
+ 13.2
381
+ 13.3
382
+ Magnitude
383
+ optical B-band
384
+ 0
385
+ 500
386
+ 1000
387
+ 1500
388
+ 2000
389
+ 2500
390
+ 3000
391
+ time-2454677.5 (JD)
392
+ 7.5
393
+ 5.0
394
+ 2.5
395
+ 0.0
396
+ 2.5
397
+ 5.0
398
+ Standardized Residuals
399
+ 5.0
400
+ 2.5
401
+ 0.0
402
+ 2.5
403
+ 5.0
404
+ 7.5
405
+ Standardized Residuals
406
+ 0.0
407
+ 0.2
408
+ 0.4
409
+ 0.6
410
+ 0.8
411
+ Normalized Counts [a.u]
412
+ 0
413
+ 10
414
+ 20
415
+ 30
416
+ 40
417
+ 50
418
+ Time Lag
419
+ 0.5
420
+ 0.0
421
+ 0.5
422
+ 1.0
423
+ ACF of Residuals
424
+ optical V-band
425
+ 0
426
+ 500
427
+ 1000
428
+ 1500
429
+ 2000
430
+ 2500
431
+ 3000
432
+ time-2454795.0 (JD)
433
+ Standardized Residuals
434
+ 5
435
+ 0
436
+ 5
437
+ Standardized Residuals
438
+ 0.0
439
+ 0.2
440
+ 0.4
441
+ 0.6
442
+ Normalized Counts [a.u]
443
+ 0
444
+ 10
445
+ 20
446
+ 30
447
+ 40
448
+ 50
449
+ Time Lag
450
+ 0.00
451
+ 0.25
452
+ 0.50
453
+ 0.75
454
+ 1.00
455
+ ACF of Residuals
456
+ 3C 273
457
+ Figure 1. DRW fitting results of 3C 273 in B-band (left panel) and V -band (right panel). For each column, the top panel
458
+ presents the observed LC (black points) and the modeled LC (orange/blue line). We show the standardized residuals (black
459
+ points) in the middle panel. In the bottom panel, there are two parts. The probability density of standardized residuals (black
460
+ ladder diagram) as well as the best-fit normal distribution (orange/blue solid line) are shown in the left part. The ACF of
461
+ residuals with the 95% confidence limits of the white noise (the gray region) are shown in the right part.
462
+ ln
463
+ DRW =
464
+ 2.50+0.15
465
+ 0.12
466
+ 2.4
467
+ 1.6
468
+ 0.8
469
+ 0.0
470
+ ln
471
+ DRW
472
+ 4.5
473
+ 6.0
474
+ 7.5
475
+ 9.0
476
+ ln
477
+ DRW(day)
478
+ 4.5
479
+ 6.0
480
+ 7.5
481
+ 9.0
482
+ ln
483
+ DRW(day)
484
+ ln
485
+ DRW(day) = 4.08+0.31
486
+ 0.26
487
+ 3C 273
488
+ ln
489
+ DRW =
490
+ 1.93+0.64
491
+ 0.46
492
+ 3.0
493
+ 2.4
494
+ 1.8
495
+ 1.2
496
+ 0.6
497
+ ln
498
+ DRW
499
+ 6
500
+ 7
501
+ 8
502
+ 9
503
+ 10
504
+ ln
505
+ DRW(day)
506
+ 6
507
+ 7
508
+ 8
509
+ 9
510
+ 10
511
+ ln
512
+ DRW(day)
513
+ ln
514
+ DRW(day) = 8.06+1.29
515
+ 0.93
516
+ 3C 273
517
+ Figure 2. Posterior probability densities of model parameters for 3C 273 in B-band (left) and V -band (right). The vertical
518
+ dotted lines mark the median value and 68% confidence intervals of the distribution of the parameter.
519
+ respectively. The values of the parameters can be found in Table 3. It is shown that the DRW model can describe the
520
+ X-ray variability of 3C 273. The parameters are well constrained. The X-ray PSD presents a broken frequency that
521
+ corresponds to a timescale of τDRW = 28+7
522
+ −6 days. We give the radio results together with the X-ray results. The radio
523
+ PSD (the left panel of Figure 6) of 3C 273 is a single power law. The radio timescale is too large to be reliable.
524
+
525
+ 6
526
+ 10
527
+ 3
528
+ 10
529
+ 2
530
+ 10
531
+ 1
532
+ Frequency (day
533
+ 1)
534
+ 10
535
+ 5
536
+ 10
537
+ 4
538
+ 10
539
+ 3
540
+ 10
541
+ 2
542
+ 10
543
+ 1
544
+ 100
545
+ 101
546
+ Power(Magnitude2 day)
547
+ 3C 273
548
+ PSD obtained from B-band
549
+ PSD obtained from V-band
550
+ y = v
551
+ 2
552
+ Figure 3. B-band and V -band PSDs of 3C 273 constructed from the modeling results with DRW model. The orange line is
553
+ B-band PSD, and the blue line is V -band PSD. The corresponding color region denotes the 1σ confidence interval. The dashed
554
+ black line is a reference line with a slope of -2.
555
+ 16
556
+ 18
557
+ 20
558
+ 22
559
+ 24
560
+ 26
561
+ 28
562
+ 30
563
+ 32
564
+ Jy
565
+ radio
566
+ 0
567
+ 500
568
+ 1000
569
+ 1500
570
+ 2000
571
+ 2500
572
+ 3000
573
+ 3500
574
+ time-2454677.5 (JD)
575
+ 6
576
+ 4
577
+ 2
578
+ 0
579
+ 2
580
+ 4
581
+ Standardized Residuals
582
+ 5
583
+ 0
584
+ 5
585
+ Standardized Residuals
586
+ 0.0
587
+ 0.1
588
+ 0.2
589
+ 0.3
590
+ 0.4
591
+ Normalized Counts [a.u]
592
+ 0
593
+ 10
594
+ 20
595
+ 30
596
+ 40
597
+ 50
598
+ Time Lag
599
+ 0.00
600
+ 0.25
601
+ 0.50
602
+ 0.75
603
+ 1.00
604
+ ACF of Residuals
605
+ 5
606
+ 10
607
+ 15
608
+ 20
609
+ 25
610
+ 30
611
+ flux (×10
612
+ 11 erg cm
613
+ 2 s
614
+ 1)
615
+ X-ray
616
+ 0
617
+ 1000
618
+ 2000
619
+ 3000
620
+ 4000
621
+ 5000
622
+ time-2454795.0 (JD)
623
+ Standardized Residuals
624
+ 2.5
625
+ 0.0
626
+ 2.5
627
+ 5.0
628
+ 7.5
629
+ Standardized Residuals
630
+ 0.0
631
+ 0.2
632
+ 0.4
633
+ Normalized Counts [a.u]
634
+ 0
635
+ 10
636
+ 20
637
+ 30
638
+ 40
639
+ 50
640
+ Time Lag
641
+ 0.00
642
+ 0.25
643
+ 0.50
644
+ 0.75
645
+ 1.00
646
+ ACF of Residuals
647
+ 3C 273
648
+ Figure 4. DRW fitting results of 3C 273 for radio (left panel) and X-ray (right panel) data. The symbols and lines are the
649
+ same as those in Figure 1.
650
+ For PKS 1510-089, the V and B-band LCs can be described by the DRW model (Figure 7 and Figure 8). The
651
+ V -band τDRW of 39+18
652
+ −14 days is larger than the B-band τDRW of 11 ± 3 days (Table 4). As expected, we get a smaller
653
+ value of fb in V -band PSD (Figure 9). The X-ray LC of PKS 1510-089 also can be fitted well by the DRW model
654
+ (Figure 10). The parameters are well constrained (Table 3), and the PSD is in the form of typical DRW PSD. A
655
+ trusted timescale τDRW = 26 ± 3 days is obtained.
656
+ For BL Lac, only the V -band and X-ray data are available. For the X-ray data, there are two large gaps in the first
657
+ 2800 days of LC, we then take the following 2500 days of LC for analysis. When modeling the two LCs of BL Lac,
658
+ we get poor fitting (ACF of residuals deviating from the white noise) with the two-parameter DRW model. An excess
659
+ white noise term is then added to the DRW model, and we model the LCs with the three-parameter DRW model
660
+ again. The modeling of LC, the posterior distribution of parameters, and the broken power-law PSDs are shown in
661
+ Figure 11, Figure 12, and Figure 13, respectively. Optical results are shown in the left panels and the X-ray results
662
+
663
+ 7
664
+ ln
665
+ DRW = 1.54+0.42
666
+ 0.41
667
+ 0.4
668
+ 0.8
669
+ 1.2
670
+ 1.6
671
+ 2.0
672
+ ln
673
+ DRW
674
+ 7
675
+ 8
676
+ 9
677
+ 10
678
+ ln
679
+ DRW(day)
680
+ 7
681
+ 8
682
+ 9
683
+ 10
684
+ ln
685
+ DRW(day)
686
+ ln
687
+ DRW(day) = 8.95+0.84
688
+ 0.83
689
+ 3C 273
690
+ ln
691
+ DRW = 0.91+0.06
692
+ 0.05
693
+ 0.75
694
+ 0.90
695
+ 1.05
696
+ 1.20
697
+ ln
698
+ DRW
699
+ 3.00
700
+ 3.25
701
+ 3.50
702
+ 3.75
703
+ 4.00
704
+ ln
705
+ DRW(day)
706
+ 3.00
707
+ 3.25
708
+ 3.50
709
+ 3.75
710
+ 4.00
711
+ ln
712
+ DRW(day)
713
+ ln
714
+ DRW(day) = 3.34+0.12
715
+ 0.11
716
+ 3C 273
717
+ Figure 5. Posterior probability densities of model parameters for 3C 273 in radio (left) and X-ray (right) energies. The vertical
718
+ dotted lines mark the median value and 68% confidence intervals of the distribution of the parameter.
719
+ 10
720
+ 3
721
+ 10
722
+ 2
723
+ 10
724
+ 1
725
+ Frequency (day
726
+ 1)
727
+ 10
728
+ 3
729
+ 10
730
+ 2
731
+ 10
732
+ 1
733
+ 100
734
+ 101
735
+ 102
736
+ 103
737
+ Power(flux2 day)
738
+ 3C 273
739
+ PSD obtained from radio band
740
+ y = v
741
+ 2
742
+ 10
743
+ 3
744
+ 10
745
+ 2
746
+ 10
747
+ 1
748
+ Frequency (day
749
+ 1)
750
+ 10
751
+ 3
752
+ 10
753
+ 2
754
+ 10
755
+ 1
756
+ 100
757
+ 101
758
+ 102
759
+ 103
760
+ Power(flux2 day)
761
+ 3C 273
762
+ PSD obtained from X-ray
763
+ y = v
764
+ 2
765
+ Figure 6. Radio and X-ray PSDs constructed from modeling LCs of 3C 273 with DRW model. The symbols and lines are the
766
+ same as those in Figure 3.
767
+ are shown in the right panels. One can see that the three-parameter DRW can fit the LCs well. Note that the highest
768
+ flux point in the LC is poorly fitted. After removing the highest flux point, the modeling results are unchanged. We
769
+ obtain the X-ray timescale of τDRW = 63+49
770
+ −30 days and V -band τDRW of 47+26
771
+ −19 days (Table 4).
772
+ We applied the SHO model to the optical and X-ray data of BL Lac. The fitting is not improved significantly, and
773
+ the parameters cannot be constrained. This suggests that the SHO model is not a good choice. The DRW including
774
+ an additional white noise can describe the variability behavior. The value of σ2
775
+ n (0.01 for the V -band LC; 0.04 for
776
+ the X-ray LC) is larger than the squared of the mean size of the light curve uncertainties (σy2) where σy2=0.0001 for
777
+ V -band and 0.0036 for X-ray data. We have σ2
778
+ DRW >σ2
779
+ n+σy2 for both the V -band and X-ray data, which ensures that
780
+ the fitted DRW amplitude is reasonable (Burke et al. 2021). It is possible that the quoted measurement errors are
781
+ underestimated, and the excess white noise can account for excess measurement noise.
782
+ The γ-ray variability of the three sources has been analyzed in our previous work (Zhang et al. 2022) with the same
783
+ method. We give the multi-band timescales with the errors in 95% confidence intervals of the three sources in Table 4.
784
+ For 3C 273, the B-band, X-ray, and γ-ray timescales are consistent within the errors. The V -band and radio PSDs
785
+
786
+ 8
787
+ 14
788
+ 15
789
+ 16
790
+ 17
791
+ 18
792
+ Magnitude
793
+ optical B-band
794
+ 0
795
+ 500
796
+ 1000
797
+ 1500
798
+ 2000
799
+ 2500
800
+ 3000
801
+ time-2454677.5 (JD)
802
+ 5
803
+ 0
804
+ 5
805
+ Standardized Residuals
806
+ 5
807
+ 0
808
+ 5
809
+ Standardized Residuals
810
+ 0.0
811
+ 0.2
812
+ 0.4
813
+ 0.6
814
+ 0.8
815
+ Normalized Counts [a.u]
816
+ 0
817
+ 10
818
+ 20
819
+ 30
820
+ 40
821
+ 50
822
+ Time Lag
823
+ 0.00
824
+ 0.25
825
+ 0.50
826
+ 0.75
827
+ 1.00
828
+ ACF of Residuals
829
+ optical V-band
830
+ 0
831
+ 500
832
+ 1000
833
+ 1500
834
+ 2000
835
+ 2500
836
+ 3000
837
+ time-2454795.0 (JD)
838
+ Standardized Residuals
839
+ 5.0
840
+ 2.5
841
+ 0.0
842
+ 2.5
843
+ 5.0
844
+ 7.5
845
+ Standardized Residuals
846
+ 0.0
847
+ 0.2
848
+ 0.4
849
+ 0.6
850
+ Normalized Counts [a.u]
851
+ 0
852
+ 10
853
+ 20
854
+ 30
855
+ 40
856
+ 50
857
+ Time Lag
858
+ 0.0
859
+ 0.5
860
+ 1.0
861
+ ACF of Residuals
862
+ PKS 1510-089
863
+ Figure 7. DRW fitting results of B-band (left panel) and V -band (right panel) LCs for PKS 1510-089. The symbols and lines
864
+ are the same as those in Figure 1.
865
+ ln
866
+ DRW =
867
+ 1.26+0.06
868
+ 0.05
869
+ 1.35
870
+ 1.20
871
+ 1.05
872
+ 0.90
873
+ ln
874
+ DRW
875
+ 2.1
876
+ 2.4
877
+ 2.7
878
+ 3.0
879
+ ln
880
+ DRW(day)
881
+ 2.1
882
+ 2.4
883
+ 2.7
884
+ 3.0
885
+ ln
886
+ DRW(day)
887
+ ln
888
+ DRW(day) = 2.40+0.13
889
+ 0.12
890
+ PKS 1510-089
891
+ ln
892
+ DRW =
893
+ 1.16+0.10
894
+ 0.09
895
+ 1.25
896
+ 1.00
897
+ 0.75
898
+ 0.50
899
+ 0.25
900
+ ln
901
+ DRW
902
+ 3.0
903
+ 3.6
904
+ 4.2
905
+ 4.8
906
+ 5.4
907
+ ln
908
+ DRW(day)
909
+ 3.0
910
+ 3.6
911
+ 4.2
912
+ 4.8
913
+ 5.4
914
+ ln
915
+ DRW(day)
916
+ ln
917
+ DRW(day) = 3.67+0.22
918
+ 0.19
919
+ PKS 1510-089
920
+ Figure 8. Posterior probability densities of model parameters of B-band (left) and V -band (right) LCs for PKS 1510-089. The
921
+ symbols and lines are the same as those in Figure 2.
922
+ are single power-law, having no corresponding characteristic timescales. For PKS 1510-089, the V -band, X-ray and
923
+ γ-ray timescales are consistent within the errors but the B-band one has a smaller value. For BL Lac, the V -band,
924
+ X-ray and γ-ray timescales are also consistent within the errors.
925
+ 3.2. Optical Results of 38 Blazars
926
+ The DRW model can successfully fit the long-term optical LCs of the 38 blazars. Based on the criteria of selecting
927
+ reliable measurements of the damping timescale, we get reliable optical timescales for the 38 blazars.
928
+ The basic
929
+ information of the 38 blazars and the modeling results are given in Table 1 and Table 2, respectively. Except for
930
+
931
+ 9
932
+ Table 2. Modeling results of optical data for 38 blazars.
933
+ Object
934
+ Data sources
935
+ Waveband
936
+ Parameter of DRW
937
+ Damping timescale
938
+ Cadence
939
+ Length
940
+ ln σDRW
941
+ ln τDRW
942
+ (days)
943
+ (days)
944
+ (days)
945
+ (1)
946
+ (2)
947
+ (3)
948
+ (4)
949
+ (5)
950
+ (6)
951
+ (7)
952
+ (8)
953
+ 1ES 1959+650
954
+ SO
955
+ V
956
+ −1.36+0.25
957
+ −0.17
958
+ 5.13+0.53
959
+ −0.39
960
+ 169+90
961
+ −66
962
+ 23.5
963
+ 3548.2
964
+ 1ES 2344+514
965
+ SO
966
+ V
967
+ −3.14+0.20
968
+ −0.16
969
+ 4.92+0.58
970
+ −0.46
971
+ 137+79
972
+ −63
973
+ 17.35
974
+ 3539.1
975
+ 3C 66A
976
+ SO
977
+ V
978
+ −1.15+0.28
979
+ −0.17
980
+ 5.35+0.57
981
+ −0.36
982
+ 210+120
983
+ −75
984
+ 9.04
985
+ 3217.9
986
+ 3C 454.3
987
+ SO
988
+ V
989
+ −0.81+0.10
990
+ −0.09
991
+ 3.82+0.21
992
+ −0.18
993
+ 46+10
994
+ −8
995
+ 5.97
996
+ 3563.3
997
+ PKS 0235+164
998
+ SO
999
+ V
1000
+ −0.41+0.13
1001
+ −0.11
1002
+ 3.93+0.28
1003
+ −0.24
1004
+ 51+14
1005
+ −12
1006
+ 14.0
1007
+ 3417.9
1008
+ 4C +38.41
1009
+ SO
1010
+ V
1011
+ −0.98+0.09
1012
+ −0.08
1013
+ 3.51+0.19
1014
+ −0.17
1015
+ 33+6
1016
+ −6
1017
+ 9.7
1018
+ 3561.2
1019
+ CTA 102
1020
+ SO
1021
+ V
1022
+ −0.10+0.15
1023
+ −0.12
1024
+ 4.26+0.32
1025
+ −0.26
1026
+ 71+23
1027
+ −18
1028
+ 10.13
1029
+ 3182.2
1030
+ Mkn 421
1031
+ SO
1032
+ V
1033
+ −1.19+0.19
1034
+ −0.14
1035
+ 4.97+0.39
1036
+ −0.29
1037
+ 144+56
1038
+ −42
1039
+ 5.95
1040
+ 3562.7
1041
+ Mkn 501
1042
+ SO
1043
+ V
1044
+ −3.13+0.10
1045
+ −0.09
1046
+ 3.92+0.24
1047
+ −0.21
1048
+ 50+12
1049
+ −11
1050
+ 7.31
1051
+ 3561.0
1052
+ OJ 287
1053
+ SO
1054
+ B
1055
+ −1.01+0.11
1056
+ −0.09
1057
+ 3.57+0.23
1058
+ −0.19
1059
+ 36+8
1060
+ −7
1061
+ 5.32
1062
+ 3079.7
1063
+ 4C +21.35
1064
+ SO
1065
+ V
1066
+ −1.46+0.18
1067
+ −0.13
1068
+ 4.79+0.37
1069
+ −0.28
1070
+ 120+45
1071
+ −34
1072
+ 7.70
1073
+ 3357.9
1074
+ PKS 2155-304
1075
+ SO
1076
+ V
1077
+ −1.28+0.15
1078
+ −0.12
1079
+ 4.42+0.32
1080
+ −0.26
1081
+ 83+27
1082
+ −22
1083
+ 11.03
1084
+ 3561.2
1085
+ S5 0716+714
1086
+ SO
1087
+ V
1088
+ −0.96+0.11
1089
+ −0.09
1090
+ 2.99+0.24
1091
+ −0.21
1092
+ 20+5
1093
+ −4
1094
+ 14.98
1095
+ 3414.9
1096
+ W Com
1097
+ SO
1098
+ V
1099
+ −1.13+0.18
1100
+ −0.13
1101
+ 4.74+0.37
1102
+ −0.29
1103
+ 114+42
1104
+ −33
1105
+ 9.94
1106
+ 3538.7
1107
+ 4C +01.02
1108
+ S
1109
+ B
1110
+ −1.53+0.18
1111
+ −0.13
1112
+ 3.27+0.40
1113
+ −0.32
1114
+ 26+11
1115
+ −8
1116
+ 10.35
1117
+ 1408.2
1118
+ PKS 0208-512
1119
+ S
1120
+ V
1121
+ −0.56+0.15
1122
+ −0.12
1123
+ 4.35+0.30
1124
+ −0.24
1125
+ 77+23
1126
+ −19
1127
+ 5.22
1128
+ 3301.9
1129
+ PKS 0235-618
1130
+ S
1131
+ R
1132
+ −0.97+0.12
1133
+ −0.10
1134
+ 2.73+0.29
1135
+ −0.25
1136
+ 15+4
1137
+ −4
1138
+ 6.76
1139
+ 966.6
1140
+ PKS 0402-362
1141
+ S
1142
+ V
1143
+ −1.18+0.20
1144
+ −0.15
1145
+ 3.91+0.42
1146
+ −0.32
1147
+ 50+21
1148
+ −16
1149
+ 8.39
1150
+ 1459.0
1151
+ PKS 0426-380
1152
+ S
1153
+ R
1154
+ −0.34+0.31
1155
+ −0.19
1156
+ 4.85+0.64
1157
+ −0.39
1158
+ 128+82
1159
+ −50
1160
+ 2.63
1161
+ 1509.0
1162
+ PKS 0458-02
1163
+ S
1164
+ R
1165
+ −1.35+0.17
1166
+ −0.13
1167
+ 3.20+0.38
1168
+ −0.31
1169
+ 25+9
1170
+ −8
1171
+ 10.53
1172
+ 1148.1
1173
+ PKS 0502+049
1174
+ S
1175
+ B
1176
+ −0.56+0.16
1177
+ −0.13
1178
+ 2.80+0.36
1179
+ −0.28
1180
+ 16+6
1181
+ −5
1182
+ 5.87
1183
+ 769
1184
+ PKS 0528+134
1185
+ S
1186
+ V
1187
+ −1.38+0.20
1188
+ −0.15
1189
+ 3.38+0.48
1190
+ −0.38
1191
+ 29+14
1192
+ −11
1193
+ 6.60
1194
+ 956.6
1195
+ PMN J0531-4827
1196
+ S
1197
+ V
1198
+ 0.02+0.23
1199
+ −0.17
1200
+ 4.03+0.49
1201
+ −0.37
1202
+ 56+28
1203
+ −21
1204
+ 9.27
1205
+ 1808.1
1206
+ PMN J0850-1213
1207
+ S
1208
+ R
1209
+ −0.79+0.14
1210
+ −0.11
1211
+ 3.39+0.31
1212
+ −0.27
1213
+ 30+9
1214
+ −8
1215
+ 11.86
1216
+ 1696.6
1217
+ PKS 1144-379
1218
+ S
1219
+ B
1220
+ −0.62+0.30
1221
+ −0.19
1222
+ 4.72+0.62
1223
+ −0.41
1224
+ 112+70
1225
+ −46
1226
+ 8.99
1227
+ 1590.7
1228
+ PKS 1244-255
1229
+ S
1230
+ R
1231
+ −0.99+0.12
1232
+ −0.10
1233
+ 2.85+0.28
1234
+ −0.25
1235
+ 17+5
1236
+ −4
1237
+ 7.90
1238
+ 1515.9
1239
+ PKS B1406-076
1240
+ S
1241
+ R
1242
+ −1.19+0.10
1243
+ −0.09
1244
+ 3.24+0.22
1245
+ −0.20
1246
+ 26+6
1247
+ −5
1248
+ 130.9
1249
+ 3365.9
1250
+ PKS 1730-130
1251
+ S
1252
+ V
1253
+ −1.59+0.14
1254
+ −0.11
1255
+ 2.91+0.30
1256
+ −0.25
1257
+ 18+6
1258
+ −5
1259
+ 4.48
1260
+ 1008.2
1261
+ PKS 1954-388
1262
+ S
1263
+ R
1264
+ −1.19+0.16
1265
+ −0.13
1266
+ 3.57+0.39
1267
+ −0.34
1268
+ 36+14
1269
+ −12
1270
+ 20.12
1271
+ 1851.0
1272
+ PKS 2142-75
1273
+ S
1274
+ V
1275
+ −2.03+0.11
1276
+ −0.10
1277
+ 3.04+0.26
1278
+ −0.22
1279
+ 21+5
1280
+ −5
1281
+ 11.24
1282
+ 1843.1
1283
+ PKS 2233-148
1284
+ S
1285
+ R
1286
+ −0.30+0.17
1287
+ −0.13
1288
+ 3.37+0.36
1289
+ −0.28
1290
+ 29+10
1291
+ −8
1292
+ 6.34
1293
+ 1110.2
1294
+ PKS 2326-502
1295
+ S
1296
+ B
1297
+ −0.38+0.22
1298
+ −0.16
1299
+ 3.11+0.46
1300
+ −0.34
1301
+ 22+10
1302
+ −8
1303
+ 4.29
1304
+ 720.1
1305
+ PMN J2345-1555
1306
+ S
1307
+ R
1308
+ −0.48+0.18
1309
+ −0.14
1310
+ 3.44+0.39
1311
+ −0.30
1312
+ 31+12
1313
+ −9
1314
+ 6.59
1315
+ 1424.1
1316
+ Ton 599
1317
+ SO
1318
+ V
1319
+ −0.39+0.20
1320
+ −0.15
1321
+ 3.78+0.42
1322
+ −0.32
1323
+ 44+18
1324
+ −14
1325
+ 6.85
1326
+ 1143.9
1327
+ PKS 2052-47
1328
+ S
1329
+ V
1330
+ −0.91+0.22
1331
+ −0.16
1332
+ 4.41+0.54
1333
+ −0.40
1334
+ 82+44
1335
+ −33
1336
+ 10.25
1337
+ 2121.2
1338
+ 3C 273
1339
+ SO
1340
+ B
1341
+ −2.50+0.15
1342
+ −0.12
1343
+ 4.08+0.31
1344
+ −0.26
1345
+ 59+18
1346
+ −15
1347
+ 8.9
1348
+ 3179.12
1349
+ SO
1350
+ V
1351
+ −1.93+0.64
1352
+ −0.46
1353
+ 8.06+1.29
1354
+ −0.93
1355
+ · · ·
1356
+ 4.9
1357
+ 3423.6
1358
+ PKS 1510-089
1359
+ SO
1360
+ V
1361
+ −1.16+0.10
1362
+ −0.09
1363
+ 3.67+0.22
1364
+ −0.19
1365
+ 39+9
1366
+ −7
1367
+ 8.91
1368
+ 3476.7
1369
+ SO
1370
+ B
1371
+ −1.26+0.06
1372
+ −0.05
1373
+ 2.40+0.13
1374
+ −0.12
1375
+ 11+1
1376
+ −1
1377
+ 4.92
1378
+ 3315.9
1379
+ BL Lac
1380
+ SO
1381
+ V
1382
+ −0.91+0.10
1383
+ −0.08
1384
+ 3.86+0.25
1385
+ −0.22
1386
+ 47+12
1387
+ −10
1388
+ 4.78
1389
+ 3569.2
1390
+ Note— (1) source name, (2) data source, S is for SMARTS and SO is for Steward Observatory blazar data archive,
1391
+ (3) wavebands of optical data, including B, V, R-band here, (4)(5) posterior parameters of modeling LC with DRW
1392
+ model, (6) damping timescale in the observed frame. The uncertainties of model parameters and damping timescales
1393
+ represent 1σ confidence intervals, (7) the mean cadence of the LC, and (8) the length of LC.
1394
+
1395
+ 10
1396
+ 10
1397
+ 3
1398
+ 10
1399
+ 2
1400
+ 10
1401
+ 1
1402
+ Frequency (day
1403
+ 1)
1404
+ 10
1405
+ 3
1406
+ 10
1407
+ 2
1408
+ 10
1409
+ 1
1410
+ 100
1411
+ 101
1412
+ 102
1413
+ Power(Magnitude2 day)
1414
+ PKS 1510-089
1415
+ PSD obtained from B-band
1416
+ PSD obtained from V-band
1417
+ y = v
1418
+ 2
1419
+ Figure 9. B and V -band PSDs of PKS 1510-089 constructed from the modeling results with the DRW model. The symbols
1420
+ and lines are the same as those in Figure 3.
1421
+ 0.25
1422
+ 0.50
1423
+ 0.75
1424
+ 1.00
1425
+ 1.25
1426
+ 1.50
1427
+ 1.75
1428
+ 2.00
1429
+ Flux (×10
1430
+ 11 ph cm
1431
+ 2 s
1432
+ 1)
1433
+ X-ray
1434
+ 0
1435
+ 1000
1436
+ 2000
1437
+ 3000
1438
+ 4000
1439
+ 5000
1440
+ time-50115.1 (MJD)
1441
+ 4
1442
+ 2
1443
+ 0
1444
+ 2
1445
+ 4
1446
+ Standardized Residuals
1447
+ 4
1448
+ 2
1449
+ 0
1450
+ 2
1451
+ 4
1452
+ Standardized Residuals
1453
+ 0.0
1454
+ 0.1
1455
+ 0.2
1456
+ 0.3
1457
+ 0.4
1458
+ Normalized Counts [a.u]
1459
+ 0
1460
+ 10
1461
+ 20
1462
+ 30
1463
+ 40
1464
+ 50
1465
+ Time Lag
1466
+ 0.00
1467
+ 0.25
1468
+ 0.50
1469
+ 0.75
1470
+ 1.00
1471
+ ACF of Residuals
1472
+ PKS 1510-089
1473
+ ln
1474
+ DRW =
1475
+ 1.87+0.05
1476
+ 0.05
1477
+ 1.95
1478
+ 1.80
1479
+ 1.65
1480
+ ln
1481
+ DRW
1482
+ 3.00
1483
+ 3.25
1484
+ 3.50
1485
+ 3.75
1486
+ ln
1487
+ DRW(day)
1488
+ 3.00
1489
+ 3.25
1490
+ 3.50
1491
+ 3.75
1492
+ ln
1493
+ DRW(day)
1494
+ ln
1495
+ DRW(day) = 3.25+0.12
1496
+ 0.12
1497
+ PKS 1510-089
1498
+ 10
1499
+ 3
1500
+ 10
1501
+ 2
1502
+ 10
1503
+ 1
1504
+ Frequency (day
1505
+ 1)
1506
+ 10
1507
+ 5
1508
+ 10
1509
+ 4
1510
+ 10
1511
+ 3
1512
+ 10
1513
+ 2
1514
+ 10
1515
+ 1
1516
+ 100
1517
+ 101
1518
+ Power(flux2 day)
1519
+ PKS 1510-089
1520
+ PSD obtained from X-ray
1521
+ y = v
1522
+ 2
1523
+ Figure 10. Modeling results of the X-ray LC (left), the posterior probability density distribution of parameters (middle), and
1524
+ the X-ray PSD (right) for PKS 1510-089.
1525
+ Table 3. Modeling results of X-ray data for the 3 blazars.
1526
+ Object
1527
+ Parameter of DRW
1528
+ Damping timescale
1529
+ Cadence
1530
+ Length
1531
+ ln σDRW
1532
+ ln τDRW
1533
+ ln σn
1534
+ (days)
1535
+ (days)
1536
+ (days)
1537
+ (1)
1538
+ (2)
1539
+ (3)
1540
+ (4)
1541
+ (5)
1542
+ (6)
1543
+ (7)
1544
+ 3C 273
1545
+ 0.91+0.06
1546
+ −0.05
1547
+ 3.34+0.12
1548
+ −0.11
1549
+ · · ·
1550
+ 28+3
1551
+ −3
1552
+ 2.97
1553
+ 5811.5
1554
+ PKS 1510-089
1555
+ −1.87+0.05
1556
+ −0.05
1557
+ 3.25 ± 0.12
1558
+ · · ·
1559
+ 26+3
1560
+ −3
1561
+ 4.16
1562
+ 5495.3
1563
+ BL Lac
1564
+ −1.18+0.14
1565
+ −0.11
1566
+ 4.15+0.33
1567
+ −0.26
1568
+ −1.64+0.03
1569
+ −0.04
1570
+ 63+21
1571
+ −16
1572
+ 2.19
1573
+ 2493.1
1574
+ Note— (1) source name, (2)(3)(4) posterior parameters of modeling LC with DRW model, and (5) damping timescale in
1575
+ the observed frame. The uncertainties of model parameters and damping timescales represent 1σ confidence intervals,
1576
+ (6) the mean cadence of the LC, and (7) the length of LC.
1577
+
1578
+ 11
1579
+ 13.5
1580
+ 14.0
1581
+ 14.5
1582
+ 15.0
1583
+ 15.5
1584
+ 16.0
1585
+ Magnitude
1586
+ optical V-band
1587
+ 0
1588
+ 500
1589
+ 1000
1590
+ 1500
1591
+ 2000
1592
+ 2500
1593
+ 3000
1594
+ 3500
1595
+ time-2454677.5 (JD)
1596
+ 5
1597
+ 0
1598
+ 5
1599
+ 10
1600
+ 15
1601
+ Standardized Residuals
1602
+ 5
1603
+ 0
1604
+ 5
1605
+ Standardized Residuals
1606
+ 0.0
1607
+ 0.2
1608
+ 0.4
1609
+ Normalized Counts [a.u]
1610
+ 0
1611
+ 10
1612
+ 20
1613
+ 30
1614
+ 40
1615
+ 50
1616
+ Time Lag
1617
+ 0.00
1618
+ 0.25
1619
+ 0.50
1620
+ 0.75
1621
+ 1.00
1622
+ ACF of Residuals
1623
+ 1
1624
+ 2
1625
+ 3
1626
+ 4
1627
+ 5
1628
+ flux (×10
1629
+ 11 erg cm
1630
+ 2 s
1631
+ 1)
1632
+ X-ray
1633
+ 0
1634
+ 500
1635
+ 1000
1636
+ 1500
1637
+ 2000
1638
+ time-2454795.0 (JD)
1639
+ Standardized Residuals
1640
+ 5
1641
+ 0
1642
+ 5
1643
+ 10
1644
+ Standardized Residuals
1645
+ 0.0
1646
+ 0.2
1647
+ 0.4
1648
+ Normalized Counts [a.u]
1649
+ 0
1650
+ 10
1651
+ 20
1652
+ 30
1653
+ 40
1654
+ 50
1655
+ Time Lag
1656
+ 0.00
1657
+ 0.25
1658
+ 0.50
1659
+ 0.75
1660
+ 1.00
1661
+ ACF of Residuals
1662
+ BL Lac
1663
+ Figure 11. DRW fitting results of V -band (left panel) and X-ray data (right panel) for BL Lac. The symbols and lines are the
1664
+ same as those in Figure 1.
1665
+ ln
1666
+ DRW =
1667
+ 0.91+0.10
1668
+ 0.08
1669
+ 3.2
1670
+ 4.0
1671
+ 4.8
1672
+ 5.6
1673
+ ln
1674
+ DRW(day)
1675
+ ln
1676
+ DRW(day) = 3.86+0.25
1677
+ 0.22
1678
+ 1.2
1679
+ 0.9
1680
+ 0.6
1681
+ 0.3
1682
+ 0.0
1683
+ ln
1684
+ DRW
1685
+ 2.6
1686
+ 2.4
1687
+ 2.2
1688
+ 2.0
1689
+ ln
1690
+ n
1691
+ 3.2
1692
+ 4.0
1693
+ 4.8
1694
+ 5.6
1695
+ ln
1696
+ DRW(day)
1697
+ 2.6
1698
+ 2.4
1699
+ 2.2
1700
+ 2.0
1701
+ ln
1702
+ n
1703
+ ln
1704
+ n =
1705
+ 2.32+0.08
1706
+ 0.09
1707
+ BL Lac
1708
+ ln
1709
+ DRW =
1710
+ 1.18+0.14
1711
+ 0.11
1712
+ 4.5
1713
+ 6.0
1714
+ 7.5
1715
+ 9.0
1716
+ ln
1717
+ DRW(day)
1718
+ ln
1719
+ DRW(day) = 4.15+0.33
1720
+ 0.26
1721
+ 0.8
1722
+ 0.0
1723
+ 0.8
1724
+ ln
1725
+ DRW
1726
+ 1.76
1727
+ 1.68
1728
+ 1.60
1729
+ 1.52
1730
+ ln
1731
+ n
1732
+ 4.5
1733
+ 6.0
1734
+ 7.5
1735
+ 9.0
1736
+ ln
1737
+ DRW(day)
1738
+ 1.76
1739
+ 1.68
1740
+ 1.60
1741
+ 1.52
1742
+ ln
1743
+ n
1744
+ ln
1745
+ n =
1746
+ 1.64+0.03
1747
+ 0.04
1748
+ BL Lac
1749
+ Figure 12. V -band (left) and X-ray (right) posterior probability densities of model parameters for BL Lac. The symbols and
1750
+ lines are the same as those in Figure 2.
1751
+ 3C 273 and PKS 1510-089 which are analyzed in Section 3.1, the timescales for different optical bands are consistent
1752
+ for the other 36 sources. This indicates that the optical emission of the 36 blazars has the same origin, i.e., the jet
1753
+ emission. In Table 2, we only list one optical band result for these sources. The timescale is between 10 days and 200
1754
+ days.
1755
+ Some notes should be given on PKS 2052-47 and Ton 599. The fitting to the LC of PKS 2052-47 needs an additional
1756
+ white noise, and the relation σ2
1757
+ DRW(0.16) > σ2
1758
+ n(0.026) + σy2(0.0016) still holds. Ton 599 has big gaps and few data in
1759
+ the first half of its V -band LC, and we select the second half of the LC to analyze.
1760
+
1761
+ 12
1762
+ 10
1763
+ 3
1764
+ 10
1765
+ 2
1766
+ 10
1767
+ 1
1768
+ Frequency (day
1769
+ 1)
1770
+ 10
1771
+ 2
1772
+ 10
1773
+ 1
1774
+ 100
1775
+ 101
1776
+ 102
1777
+ 103
1778
+ Power(Magnitude2 day)
1779
+ BL Lac
1780
+ PSD obtained from V-band
1781
+ y = v
1782
+ 2
1783
+ 10
1784
+ 3
1785
+ 10
1786
+ 2
1787
+ 10
1788
+ 1
1789
+ Frequency (day
1790
+ 1)
1791
+ 10
1792
+ 4
1793
+ 10
1794
+ 3
1795
+ 10
1796
+ 2
1797
+ 10
1798
+ 1
1799
+ 100
1800
+ 101
1801
+ 102
1802
+ Power(flux2 day)
1803
+ BL Lac
1804
+ PSD obtained from X-ray
1805
+ y = v
1806
+ 2
1807
+ Figure 13. V -band (left) and X-ray (right) PSDs for BL Lac. The symbols and lines are the same as those in Figure 3.
1808
+ Table 4. Damping timescale of 3C 273, PKS 1510-089 and BL Lac.
1809
+ Object
1810
+ B-band timescale
1811
+ V -band timescale
1812
+ X-ray timescale
1813
+ γ-ray timescale
1814
+ (days)
1815
+ (days)
1816
+ (days)
1817
+ (days)
1818
+ (1)
1819
+ (2)
1820
+ (3)
1821
+ (4)
1822
+ (5)
1823
+ 3C 273
1824
+ 59+41
1825
+ −28
1826
+ unreliable
1827
+ 28+7
1828
+ −6
1829
+ 31+12
1830
+ −10
1831
+ PKS 1510-089
1832
+ 11+3
1833
+ −3
1834
+ 39+18
1835
+ −14
1836
+ 26+7
1837
+ −6
1838
+ 40+14
1839
+ −12
1840
+ BL Lac
1841
+ no data
1842
+ 47+26
1843
+ −19
1844
+ 63+49
1845
+ −30
1846
+ 69+36
1847
+ −25
1848
+ Note— (1) source name, (2)(3)(4)(5) multi-band damping timescales in the observed frame. The uncertainties
1849
+ of the damping timescales represent 95% confidence intervals of the distribution of the parameter.
1850
+ 3.3. Origin of the optical emission from 3C 273 and PKS 1510-089
1851
+ The optical emission of 3C 273 and PKS 1510-089 is complicated. Blue bump can be seen in their multi-band spectral
1852
+ energy distributions (SEDs; e.g., Abdo et al. 2010; Nalewajko et al. 2012; Castignani et al. 2017). SED modeling results
1853
+ showed that the accretion disk has a significant contribution to the optical emissions of 3C 273 and PKS 1510-089
1854
+ (e.g., Nalewajko et al. 2012; Yan et al. 2012; Castignani et al. 2017). In addition, Zhang et al. (2019) found that a
1855
+ long-term variation trend in the optical continuum LC of 3C 273 does not appear in the emission-line variation. This
1856
+ suggests that the long-term variation trend is not contributed by the accretion disk, and it could originate from the
1857
+ jet. Li et al. (2020) quantitatively decoupled the optical emissions from the jet and accretion disk in 3C 273 and found
1858
+ that the jet emission accounts for 10%-40% of the total optical emission. Pandey et al. (2022) studied the correlation
1859
+ between V -band flux and polarization degree (PD) variations using SO observation during 2008-2018. They found a
1860
+ significant positive correlation only in two of the ten observing cycles. Note that the PD is quite small, and it changes
1861
+ from 0.04% to 1.58% during 2008-2018. The V -band single power-law PSD we obtained here is different from the
1862
+ typical PSD of the accretion disk (Suberlak et al. 2021; Burke et al. 2021) and jet variability (Zhang et al. 2022). The
1863
+ complicated mixture of the jet and accretion disk emissions at the V -band may result in the single power-law PSD.
1864
+ The mixed emission also results in the weak correlation between V -band and Fermi γ-ray variabilities reported by
1865
+ Bhatta (2021). We find no significant correlation between B-band variability and γ-ray variability for 3C 273 and PKS
1866
+ 1510-089. Looking at the location of the blue bump in SED (Roy et al. 2021), we suggest that the B-band emission
1867
+ of 3C 273 is dominated by the accretion disk photons.
1868
+ For PKS 1510-089, the V and B-band timescales are clearly different, indicating different origins for the two bands’
1869
+ emissions. The V -band polarization of PSK 1510-089 is averagely greater than that of 3C 273, varying from 0.2%
1870
+ to 25.82% (Pandey et al. 2022). Among the ten observing cycles during 2008-2018, a significant positive correlation
1871
+
1872
+ 13
1873
+ Table 5. Mean timescales (redshift-corrected) of blazars
1874
+ in γ-ray and optical energies.
1875
+ Waveband
1876
+ logMBH/M⊙
1877
+ Mean timescale
1878
+ (1)
1879
+ (2)
1880
+ (3)
1881
+ γ-ray
1882
+ 8 − 9
1883
+ 58+21
1884
+ −16
1885
+ 9 − 10
1886
+ 32+10
1887
+ −8
1888
+ 8 − 10
1889
+ 53+18
1890
+ −14
1891
+ optical
1892
+ 8 − 9
1893
+ 51+23
1894
+ −11
1895
+ 9 − 10
1896
+ 19+6
1897
+ −5
1898
+ 8 − 10
1899
+ 42+18
1900
+ −13
1901
+ Note— (1) waveband, (2) the range of black hole
1902
+ mass in solar mass, (3) the mean damping timescale
1903
+ (redshift-corrected) with unit day.
1904
+ The uncertainties
1905
+ of timescales represent 1σ confidence intervals.
1906
+ between V -band flux and PD variations is found in 5 cycles. Moreover, Castignani et al. (2017) found a good correlation
1907
+ between the long-term SO V -band and γ-ray LCs. These results suggest that the V -band emission is dominated by
1908
+ jet contribution. Also looking at the location of the blue bump in SED (Nalewajko et al. 2012), the B-band emission
1909
+ with a smaller timescale of 11 days is suggested as the accretion disk contribution.
1910
+ 3.4. Comparing Optical and γ-ray results
1911
+ Long-term Fermi γ-ray LCs of 22 blazars have been analyzed by Zhang et al. (2022) with the same GP method. The
1912
+ optical timescale in this work is generally consistent with the γ-ray timescale (Figure 14). We examine the consistency
1913
+ of the timescales in the two energy-bands by using a statistical significance test (T-test). We get t-statistic=1.1 and
1914
+ p-value=0.28 (>0.05), which means that in statistic there is little difference between the two groups of timescales. The
1915
+ optical amplitude term σDRW is less than one, and the γ-ray σDRW can be greater than 10. This means that γ-ray
1916
+ variability can be more energetic than optical variability.
1917
+ We separated the sources into two groups with MBH < 109M⊙ and MBH > 109M⊙. The mean timescales (redshift-
1918
+ corrected) in different ranges of black hole mass are listed in Table 5. It is found that the mean timescale of the sources
1919
+ in the mass range of 109-1010M⊙ is smaller in both γ-ray and optical energies. However, we have a few sources with
1920
+ the mass of 109-1010M⊙, therefore this result may be tentative.
1921
+ In Figure 15, we plot the relationship between the damping timescale in the rest frame (τ rest
1922
+ damping) and the black hole
1923
+ mass of blazars along with the results of normal quasars from Burke et al. (2021). The timescales should be modified
1924
+ into the rest frame with the following formula:
1925
+ τ rest
1926
+ damping = τDRW δD
1927
+ 1 + z
1928
+ .
1929
+ (3)
1930
+ An average Doppler factor of δD=10 is used here and the redshift z for each source is given in table 1. We show the
1931
+ optical, X-ray, and γ-ray results in the plot. It is found that the nonthermal optical τ rest
1932
+ damping of blazars and the thermal
1933
+ optical timescale of normal quasars occupy the same space in the plot of τ rest
1934
+ damping − MBH.
1935
+ The X-ray results for the three individual blazars are also in the same area as the optical results. The B-band
1936
+ timescale of 3C 273 is a typical value of accretion disk timescale.
1937
+ The B-band timescale of PKS 1510-089 is an
1938
+ outlier value among the accretion disk timescales. This value significantly deviates from the relation between damping
1939
+ timescale and black hole mass reported by Burke et al. (2021).
1940
+ 4. DISCUSSION
1941
+
1942
+ 14
1943
+ 1.5
1944
+ 1.0
1945
+ 0.5
1946
+ 0.0
1947
+ 0.5
1948
+ 1.0
1949
+ log(
1950
+ DRW)
1951
+ 0.75
1952
+ 1.00
1953
+ 1.25
1954
+ 1.50
1955
+ 1.75
1956
+ 2.00
1957
+ 2.25
1958
+ 2.50
1959
+ log(
1960
+ damping/days)
1961
+ Optical data
1962
+ Gamma-ray data
1963
+ 0.0
1964
+ 0.5
1965
+ 1.0
1966
+ 1.5
1967
+ 2.0
1968
+ Normolized Counts [a,u]
1969
+ 0
1970
+ 2
1971
+ 4
1972
+ Normolized Counts [a,u]
1973
+ Figure 14. Plot of the redshift-corrected timescale τDRW versus the amplitude σDRW. The red and blue points represent the
1974
+ optical and γ-ray results, respectively. The side panels show the normalized histograms of the distributions of redshift-corrected
1975
+ τDRW (right) and σDRW (top) for blazars.
1976
+ 104
1977
+ 105
1978
+ 106
1979
+ 107
1980
+ 108
1981
+ 109
1982
+ 1010
1983
+ MBH (M
1984
+ )
1985
+ 100
1986
+ 101
1987
+ 102
1988
+ 103
1989
+ rest
1990
+ damping(days)
1991
+ optical normal quasars
1992
+ gamma-ray blazars
1993
+ optical blazars
1994
+ x-ray blazars
1995
+ B-band PKS 1510-089
1996
+ Figure 15.
1997
+ Plot of the rest-frame timescale versus black hole mass.
1998
+ The gray data, lines, and area represent the optical
1999
+ accretion disk results for normal quasars taken from Burke et al. (2021). Red data are γ-ray results for blazars taken from
2000
+ Zhang et al. (2022), and the purple and blue data respectively represent the optical and X-ray results for blazars obtained in
2001
+ this work.
2002
+
2003
+ 15
2004
+ It is difficult to directly resolve the inner jet structure of the blazar6. Especially, the location of the high-energy
2005
+ emission region is still a hot open question (e.g., Madejski & Sikora 2016; B¨ottcher 2019). Multi-band variability
2006
+ analysis provides an indirect approach to resolve the emission regions. The cross-correlation method is frequently used
2007
+ in multi-band variability analysis (e.g., Liodakis et al. 2018; Bhatta 2021).
2008
+ GP method has been wildly used to characterize the AGN accretion disk variability (Kelly et al. 2009; Zhang et al.
2009
+ 2018; Lu et al. 2019; Burke et al. 2021). In blazar science, it becomes popular in recent several years (e.g., Goyal et al.
2010
+ 2018; Ryan et al. 2019; Covino et al. 2020; Tarnopolski et al. 2020; Yang et al. 2021; Zhang et al. 2022). In this work,
2011
+ we use the GP method to study the multi-band variability of the blazar. This provides results independent of the
2012
+ cross-correlation method.
2013
+ The γ-ray variability of the blazar has been studied by Zhang et al. (2022) with the GP method. Here we focus on
2014
+ the X-ray and optical variability of the blazar. Multi-band emission from the blazar is dominated by the nonthermal
2015
+ jet contribution. Two special blazars are 3C 273 and PKS 1510-089. An optical-ultraviolet bump appears in their
2016
+ SED, which is associated with their thermal accretion disk emission (e.g., Nalewajko et al. 2012; Yan et al. 2012;
2017
+ Castignani et al. 2017).
2018
+ We fit the long-term optical LCs from the database of SO and SMARTS with the DRW model. Finally, 38 blazars
2019
+ with a reliable characteristic timescale are selected. Except for 3C 273 and PKS 1510-089, the timescales in different
2020
+ optical colors agree with each other for the remaining 36 blazars. This indicates that the emissions in different optical
2021
+ colors of the 36 blazars have the same origin, i.e., the jet emission.
2022
+ Ruan et al. (2012) modeled the optical LCs covering from 2002 December through 2008 March of 51 blazars using
2023
+ the DRW model. They found that the observed damping timescale peaks at ∼80 days, and the intrinsic timescale
2024
+ τ rest
2025
+ damping peaks at ∼800 days7. The distribution of the optical timescale obtained in this work is flat (Figure 14), and
2026
+ the average optical τ rest
2027
+ damping is ∼400 days, which is smaller than the result of Ruan et al. (2012). All blazars in our
2028
+ sample are Fermi-detected γ-ray sources. While the sample studied by Ruan et al. (2012) would be dominated by the
2029
+ blazars of non-Fermi detection. Therefore, the results indicate that the optical timescale of the blazar of non-Fermi
2030
+ detection may be longer than that of the blazar of Fermi detection. Xiong et al. (2015) found that the two population
2031
+ blazars indeed have different physical properties, for example, the blazar of non-Fermi detection has a smaller Doppler
2032
+ factor (Paliya et al. 2017).
2033
+ In the reverberation mapping studies of 3C 273 and PSK 1510-089, a nonechoed long-term trend is found in the
2034
+ optical continuum LC (Zhang et al. 2019; Li et al. 2020; Rakshit 2020). This reveals the mixed origin of their optical
2035
+ emission. New clues on the origin of the optical emission can be found in our results. The V and B-band timescales of
2036
+ PSK 1510-089 are different. Its long-term V -band variability is correlated with the γ-ray variability (Castignani et al.
2037
+ 2017), suggesting that the V -band emission is dominated by jet contribution. The long-term polarization variation
2038
+ (Pandey et al. 2022) also supports that the nonthermal component is dominated at V -band. The V -band emission of
2039
+ 3C 273 seems to be more complicated. The jet contribution to V -band emission may be strongly time-dependent and
2040
+ may vary in a large range. This complicated mixture of jet and accretion disk emission results in a single power-law
2041
+ PSD. For the two sources, no significant correlation is found between B-band and γ-ray variabilities in our analysis.
2042
+ The B-band emission is naturally considered as the accretion disk contribution. For 3C 273, the B-band timescale of
2043
+ ≈ 60 days is a typical value for the accretion disk emission of normal quasars. While the B-band timescale of ≈ 11
2044
+ days of PKS 1510-089 is significantly smaller, and it deviates from the τ rest
2045
+ damping − MBH relation of Burke et al. (2021)
2046
+ (Figure 15). This short timescale may imply special properties of its accretion disk.
2047
+ The nonthermal optical, X-ray and γ-ray variabilities all have the typical DRW PSD. Namely, the PSD of synchrotron
2048
+ emission is the same as that of inverse-Compton (IC) emission, consistent with the simulations with a time-dependent
2049
+ one-zone leptonic blazar emission model (Thiersen et al. 2022). In other words, the long-term jet variability is irrelevant
2050
+ to the underlying emission mechanism.
2051
+ Burke et al. (2021) suggested that the DRW damping timescale measured from the accretion disk variability of
2052
+ normal quasars could be associated with the thermal instability timescale expected in the AGN standard accretion
2053
+ disk theory. Zhang et al. (2022) measured the γ-ray DRW damping timescale of AGNs from the Fermi-LAT data, and
2054
+ found that the γ-ray timescales of 23 AGNs occupy almost the same space with the optical variability timescales of
2055
+ normal quasars in the plot of τ rest
2056
+ damping − MBH. In this work, we add the nonthermal optical timescale of blazars in this
2057
+ 6 The inner parsec jet of the blazar J19242914 has been resolved by the Event Horizon Telescope (Issaoun et al. 2022).
2058
+ 7 They also used δD = 10 for the Doppler effect correction.
2059
+
2060
+ 16
2061
+ plot. The nonthermal optical timescale of blazars also locates at the same region with the thermal optical timescale
2062
+ of normal quasars in the plot (Figure 15). This implies that the jet variability is relevant to the accretion disk. The
2063
+ thermal instability in accretion disk may not only cause the accretion disk variability but also the jet multi-band
2064
+ variability.
2065
+ Statistically, the nonthermal optical τ rest
2066
+ damping of 38 blazars are consistent with the γ-ray τ rest
2067
+ damping of 22 blazars.
2068
+ Individually (3C 273, PKS 1510-089, and BL Lac), the damping timescales of the jet variability in optical, X-ray,
2069
+ and γ-ray energies are consistent within the measured errors. Our results indicate that multi-band jet emissions are
2070
+ produced in the same region. However, we still cannot know the distance from the emission region to the central black
2071
+ hole. The radio observation is helpful to constrain this distance (Max-Moerbeck et al. 2014). We modeled the OVRO
2072
+ radio LCs covering over ∼ten years, and we obtain a single power-law PSD. In this work, we only show the radio result
2073
+ for 3C 273 as an example. We also modeled the 30-yr radio LCs of 3C 279 and 3C 454.3 obtained from Aalto University
2074
+ Mets¨ahovi Radio Observatory, and we still get an unconstrained timescale. The results indicate the radio timescale is
2075
+ very large and may be larger than 10 years. Through the very long baseline interferometry (VLBI) observation, one
2076
+ can determine the distance from the radio core to the central black hole. Comparing the optical/X-ray/γ-ray timescale
2077
+ and the radio timescale, we can infer that the optical/X-ray/γ-ray emission region is far upstream from the radio core.
2078
+ 5. SUMMARY
2079
+ We analyze the blazar’s radio, optical, and X-ray variabilities using the GP tool celerite. The DRW model can
2080
+ successfully fit the jet multi-band variabilities. The multi-band characteristic timescale is used to probe the structure
2081
+ of the emission region in the blazar jet. Our main results are as follows.
2082
+ (i) The synchrotron and IC emissions have the same PSD, i.e., the typical DRW PSD. This indicates that the jet’s
2083
+ long-term variability is irrelevant to the underlying emission processes. In the plot of τ rest
2084
+ damping−MBH, the jet timescales
2085
+ locate at almost the same space as the accretion disk timescales of normal quasars, implying that the jet and accretion
2086
+ disk variability is driven by the same physical process (Zhang et al. 2022).
2087
+ (ii) The nonthermal optical, X-ray, and γ-ray variability has a consistent characteristic timescale. The radio char-
2088
+ acteristic timescale is very long which cannot be constrained by decades-long LC. The results indicate that the non-
2089
+ thermal optical-X-ray-γ-ray emission is produced in the same region, which is upstream and far from the radio core.
2090
+ This supports the basic hypothesis of the standard Synchrotron-Self-Compton jet model.
2091
+ The GP method provides a flexible approach to understand the variability pattern of AGN in the framework of
2092
+ stochastic process. Adopting the standard GP tool (Foreman-Mackey et al. 2017), we build the link between accretion
2093
+ disk (thermal emission) and the jet (nonthermal emission), i.e., Figure 15. This is a new methodology for comparing
2094
+ thermal and nonthermal emissions, additional to the comparison between the thermal and nonthermal luminosities
2095
+ (e.g, Ghisellini et al. 2011; Sbarrato et al. 2012; Ghisellini et al. 2014).
2096
+ ACKNOWLEDGMENTS
2097
+ We thank the referees’ valuable report. This work is partially supported by the National Key R & D Program of
2098
+ China under grant No. 2018YFA0404204. H. Y. Zhang acknowledges the financial support from the Scientific Research
2099
+ Fund project of Yunnan Education Department (2022Y053) and the Graduate Research innovation project of Yunnan
2100
+ University (2021Y034). The work of D. H. Yan is also supported by the CAS Youth Innovation Promotion Association
2101
+ and Basic research Program of Yunnan Province (202001AW070013).
2102
+ Data from the Steward Observatory spectropolarimetric monitoring project were used. This program is supported
2103
+ by Fermi Guest Investigator grants NNX08AW56G, NNX09AU10G, NNX12AO93G, and NNX15AU81G. This re-
2104
+ search has made use of up-to-date SMARTS optical/nearinfrared light curves.
2105
+ This research has made use of
2106
+ data from the OVRO 40-m monitoring program, which is supported by private funding from the California In-
2107
+ situte of Technology and the Max Planck Institute for Radio Astronomy, and by NASA grants NNX08AW31G,
2108
+ NNX11A043G, and NNX14AQ89G and NSF grants AST-0808050 and AST- 1109911.
2109
+ This work also has made
2110
+ use of {lightcurves} {spectral files} provided by the University of California, San Diego Center for Astrophysics and
2111
+ Space Sciences, X-ray Group (R.E. Rothschild, A.G. Markowitz, E.S. Rivers, and B.A. McKim).
2112
+ Facility: SMARTS.
2113
+
2114
+ 17
2115
+ Software: corner.py (Foreman-Mackey 2016), celerite (Foreman-Mackey et al. 2017), emcee (Foreman-Mackey et al.
2116
+ 2013), NumPy (Harris et al. 2020), Matplotlib (Hunter 2007), Astropy (Astropy Collaboration et al. 2013, 2018), SciPy
2117
+ (Virtanen et al. 2020).
2118
+ REFERENCES
2119
+ Abdo, A. A., Ackermann, M., Agudo, I., et al. 2010, ApJ,
2120
+ 716, 30, doi: 10.1088/0004-637X/716/1/30
2121
+ Ackermann, M., Anantua, R., Asano, K., et al. 2016, ApJL,
2122
+ 824, L20, doi: 10.3847/2041-8205/824/2/L20
2123
+ Aigrain, S., & Foreman-Mackey, D. 2022, arXiv e-prints,
2124
+ arXiv:2209.08940. https://arxiv.org/abs/2209.08940
2125
+ Astropy Collaboration, Robitaille, T. P., Tollerud, E. J.,
2126
+ et al. 2013, A&A, 558, A33,
2127
+ doi: 10.1051/0004-6361/201322068
2128
+ Astropy Collaboration, Price-Whelan, A. M., Sip˝ocz, B. M.,
2129
+ et al. 2018, AJ, 156, 123, doi: 10.3847/1538-3881/aabc4f
2130
+ Bhatta, G. 2021, ApJ, 923, 7,
2131
+ doi: 10.3847/1538-4357/ac2819
2132
+ Bonning, E., Urry, C. M., Bailyn, C., et al. 2012, ApJ, 756,
2133
+ 13, doi: 10.1088/0004-637X/756/1/13
2134
+ B¨ottcher, M. 2019, Galaxies, 7, 20,
2135
+ doi: 10.3390/galaxies7010020
2136
+ Burke, C. J., Shen, Y., Blaes, O., et al. 2021, Science, 373,
2137
+ 789, doi: 10.1126/science.abg9933
2138
+ Castignani, G., Pian, E., Belloni, T. M., et al. 2017, A&A,
2139
+ 601, A30, doi: 10.1051/0004-6361/201629775
2140
+ Chatterjee, R., Bailyn, C. D., Bonning, E. W., et al. 2012,
2141
+ ApJ, 749, 191, doi: 10.1088/0004-637X/749/2/191
2142
+ Covino, S., Landoni, M., Sandrinelli, A., & Treves, A. 2020,
2143
+ ApJ, 895, 122, doi: 10.3847/1538-4357/ab8bd4
2144
+ Covino, S., Tobar, F., & Treves, A. 2022, MNRAS, 513,
2145
+ 2841, doi: 10.1093/mnras/stac596
2146
+ Dutka, M. S., Ojha, R., Pottschmidt, K., et al. 2013, ApJ,
2147
+ 779, 174, doi: 10.1088/0004-637X/779/2/174
2148
+ Falomo, R., Kotilainen, J. K., Carangelo, N., & Treves, A.
2149
+ 2003, ApJ, 595, 624, doi: 10.1086/377432
2150
+ Fan, Z.-H., & Cao, X. 2004, ApJ, 602, 103,
2151
+ doi: 10.1086/380902
2152
+ Foreman-Mackey, D. 2016, The Journal of Open Source
2153
+ Software, 1, 24, doi: 10.21105/joss.00024
2154
+ —. 2018, Dfm/Celerite-Grad: Celerite-Grad V0.0.1, v0.0.1,
2155
+ Zenodo, Zenodo, doi: 10.5281/zenodo.1160614
2156
+ Foreman-Mackey, D., Agol, E., Ambikasaran, S., & Angus,
2157
+ R. 2017, AJ, 154, 220, doi: 10.3847/1538-3881/aa9332
2158
+ Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman,
2159
+ J. 2013, PASP, 125, 306, doi: 10.1086/670067
2160
+ Ghisellini, G., Tavecchio, F., Foschini, L., & Ghirlanda, G.
2161
+ 2011, MNRAS, 414, 2674,
2162
+ doi: 10.1111/j.1365-2966.2011.18578.x
2163
+ Ghisellini, G., Tavecchio, F., Foschini, L., et al. 2010,
2164
+ MNRAS, 402, 497, doi: 10.1111/j.1365-2966.2009.15898.x
2165
+ Ghisellini, G., Tavecchio, F., Maraschi, L., Celotti, A., &
2166
+ Sbarrato, T. 2014, Nature, 515, 376,
2167
+ doi: 10.1038/nature13856
2168
+ Goyal, A., Stawarz, �L., Zola, S., et al. 2018, ApJ, 863, 175,
2169
+ doi: 10.3847/1538-4357/aad2de
2170
+ Goyal, A., Soida, M., Stawarz, �L., et al. 2022, ApJ, 927,
2171
+ 214, doi: 10.3847/1538-4357/ac4d95
2172
+ Griffiths, R.-R., Jiang, J., Buisson, D. J. K., et al. 2021,
2173
+ ApJ, 914, 144, doi: 10.3847/1538-4357/abfa9f
2174
+ Gupta, S. P., Pandey, U. S., Singh, K., et al. 2012, NewA,
2175
+ 17, 8, doi: 10.1016/j.newast.2011.05.005
2176
+ Harris, C. R., Millman, K. J., van der Walt, S. J., et al.
2177
+ 2020, Nature, 585, 357362,
2178
+ doi: 10.1038/s41586-020-2649-2
2179
+ Hovatta, T., & Lindfors, E. 2019, NewAR, 87, 101541,
2180
+ doi: 10.1016/j.newar.2020.101541
2181
+ Hunter, J. D. 2007, Computing in Science and Engineering,
2182
+ 9, 90, doi: 10.1109/MCSE.2007.55
2183
+ Issaoun, S., Wielgus, M., Jorstad, S., et al. 2022, ApJ, 934,
2184
+ 145, doi: 10.3847/1538-4357/ac7a40
2185
+ Kaur, N., Baliyan, K. S., Chandra, S., Sameer, & Ganesh,
2186
+ S. 2018, AJ, 156, 36, doi: 10.3847/1538-3881/aac5e4
2187
+ Kaur, N., Sameer, Baliyan, K. S., & Ganesh, S. 2017,
2188
+ MNRAS, 469, 2305, doi: 10.1093/mnras/stx965
2189
+ Kelly, B. C., Bechtold, J., & Siemiginowska, A. 2009, ApJ,
2190
+ 698, 895, doi: 10.1088/0004-637X/698/1/895
2191
+ Li, Y.-R., & Wang, J.-M. 2018, MNRAS, 476, L55,
2192
+ doi: 10.1093/mnrasl/sly028
2193
+ Li, Y.-R., Zhang, Z.-X., Jin, C., et al. 2020, ApJ, 897, 18,
2194
+ doi: 10.3847/1538-4357/ab95a3
2195
+ Liodakis, I., Romani, R. W., Filippenko, A. V., et al. 2018,
2196
+ MNRAS, 480, 5517, doi: 10.1093/mnras/sty2264
2197
+ Liu, Y., Jiang, D. R., & Gu, M. F. 2006, ApJ, 637, 669,
2198
+ doi: 10.1086/498639
2199
+ Lu, K.-X., Huang, Y.-K., Zhang, Z.-X., et al. 2019, ApJ,
2200
+ 877, 23, doi: 10.3847/1538-4357/ab16e8
2201
+ Madejski, G. G., & Sikora, M. 2016, ARA&A, 54, 725,
2202
+ doi: 10.1146/annurev-astro-081913-040044
2203
+ Max-Moerbeck, W., Hovatta, T., Richards, J. L., et al.
2204
+ 2014, MNRAS, 445, 428, doi: 10.1093/mnras/stu1749
2205
+ Meyer, M., Scargle, J. D., & Blandford, R. D. 2019, ApJ,
2206
+ 877, 39, doi: 10.3847/1538-4357/ab1651
2207
+
2208
+ 18
2209
+ Nakagawa, K., & Mori, M. 2013, ApJ, 773, 177,
2210
+ doi: 10.1088/0004-637X/773/2/177
2211
+ Nalewajko, K., Sikora, M., Madejski, G. M., et al. 2012,
2212
+ ApJ, 760, 69, doi: 10.1088/0004-637X/760/1/69
2213
+ Oshlack, A. Y. K. N., Webster, R. L., & Whiting, M. T.
2214
+ 2002, ApJ, 576, 81, doi: 10.1086/341729
2215
+ Paliya, V. S., Marcotulli, L., Ajello, M., et al. 2017, ApJ,
2216
+ 851, 33, doi: 10.3847/1538-4357/aa98e1
2217
+ Palma, N. I., B¨ottcher, M., de la Calle, I., et al. 2011, ApJ,
2218
+ 735, 60, doi: 10.1088/0004-637X/735/1/60
2219
+ Pandey, A., Rajput, B., & Stalin, C. S. 2022, MNRAS, 510,
2220
+ 1809, doi: 10.1093/mnras/stab3338
2221
+ Rakshit, S. 2020, A&A, 642, A59,
2222
+ doi: 10.1051/0004-6361/202038324
2223
+ Richards, J. L., Max-Moerbeck, W., Pavlidou, V., et al.
2224
+ 2011, ApJS, 194, 29, doi: 10.1088/0067-0049/194/2/29
2225
+ Rieger, F. 2019, Galaxies, 7, 28,
2226
+ doi: 10.3390/galaxies7010028
2227
+ Rivers, E., Markowitz, A., & Rothschild, R. 2013, ApJ, 772,
2228
+ 114, doi: 10.1088/0004-637X/772/2/114
2229
+ Roy, A., Patel, S. R., Sarkar, A., Chatterjee, A., & Chitnis,
2230
+ V. R. 2021, MNRAS, 504, 1103,
2231
+ doi: 10.1093/mnras/stab975
2232
+ Ruan, J. J., Anderson, S. F., MacLeod, C. L., et al. 2012,
2233
+ ApJ, 760, 51, doi: 10.1088/0004-637X/760/1/51
2234
+ Rueda, H., Glicenstein, J.-F., & Brun, F. 2022, ApJ, 934, 6,
2235
+ doi: 10.3847/1538-4357/ac771c
2236
+ Ryan, J. L., Siemiginowska, A., Sobolewska, M. A., &
2237
+ Grindlay, J. 2019, ApJ, 885, 12,
2238
+ doi: 10.3847/1538-4357/ab426a
2239
+ Sbarrato, T., Ghisellini, G., Maraschi, L., & Colpi, M. 2012,
2240
+ MNRAS, 421, 1764,
2241
+ doi: 10.1111/j.1365-2966.2012.20442.x
2242
+ Schutte, H. M., Britto, R. J., B¨ottcher, M., et al. 2022,
2243
+ ApJ, 925, 139, doi: 10.3847/1538-4357/ac3cb5
2244
+ Shaw, M. S., Romani, R. W., Cotter, G., et al. 2012, ApJ,
2245
+ 748, 49, doi: 10.1088/0004-637X/748/1/49
2246
+ Smith, P. S., Montiel, E., Rightley, S., et al. 2009, arXiv
2247
+ e-prints, arXiv:0912.3621.
2248
+ https://arxiv.org/abs/0912.3621
2249
+ Stone, Z., Shen, Y., Burke, C. J., et al. 2022, MNRAS, 514,
2250
+ 164, doi: 10.1093/mnras/stac1259
2251
+ Suberlak, K. L., Ivezi´c, ˇZ., & MacLeod, C. 2021, ApJ, 907,
2252
+ 96, doi: 10.3847/1538-4357/abc698
2253
+ Tarnopolski, M., ˙Zywucka, N., Marchenko, V., &
2254
+ Pascual-Granado, J. 2020, ApJS, 250, 1,
2255
+ doi: 10.3847/1538-4365/aba2c7
2256
+ Thiersen, H., Zacharias, M., & B¨ottcher, M. 2022, ApJ,
2257
+ 925, 177, doi: 10.3847/1538-4357/ac4013
2258
+ Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020,
2259
+ Nature Methods, 17, 261, doi: 10.1038/s41592-019-0686-2
2260
+ Wang, J.-M., Luo, B., & Ho, L. C. 2004, ApJL, 615, L9,
2261
+ doi: 10.1086/426060
2262
+ Woo, J.-H., Urry, C. M., van der Marel, R. P., Lira, P., &
2263
+ Maza, J. 2005, ApJ, 631, 762, doi: 10.1086/432681
2264
+ Xiong, D., Bai, J., Zhang, H., et al. 2017, ApJS, 229, 21,
2265
+ doi: 10.3847/1538-4365/aa64d2
2266
+ Xiong, D., Zhang, X., Bai, J., & Zhang, H. 2015, MNRAS,
2267
+ 450, 3568, doi: 10.1093/mnras/stv812
2268
+ Xue, R., Luo, D., Du, L. M., et al. 2016, MNRAS, 463,
2269
+ 3038, doi: 10.1093/mnras/stw2038
2270
+ Yan, D., Zeng, H., & Zhang, L. 2012, PASJ, 64, 80,
2271
+ doi: 10.1093/pasj/64.4.80
2272
+ Yang, S., Yan, D., Zhang, P., Dai, B., & Zhang, L. 2021,
2273
+ ApJ, 907, 105, doi: 10.3847/1538-4357/abcbff
2274
+ Yu, W., Richards, G. T., Vogeley, M. S., Moreno, J., &
2275
+ Graham, M. J. 2022, ApJ, 936, 132,
2276
+ doi: 10.3847/1538-4357/ac8351
2277
+ Zhang, H., Yan, D., & Zhang, L. 2022, ApJ, 930, 157,
2278
+ doi: 10.3847/1538-4357/ac679e
2279
+ Zhang, H., Yan, D., Zhang, P., Yang, S., & Zhang, L. 2021,
2280
+ ApJ, 919, 58, doi: 10.3847/1538-4357/ac0cf0
2281
+ Zhang, H., Yang, Q., & Wu, X.-B. 2018, ApJ, 853, 116,
2282
+ doi: 10.3847/1538-4357/aaa3e5
2283
+ Zhang, Z.-X., Du, P., Smith, P. S., et al. 2019, ApJ, 876,
2284
+ 49, doi: 10.3847/1538-4357/ab1099
2285
+ Zu, Y., Kochanek, C. S., Koz�lowski, S., & Udalski, A. 2013,
2286
+ ApJ, 765, 106, doi: 10.1088/0004-637X/765/2/106
2287
+
BtAzT4oBgHgl3EQfGPuX/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
BtE5T4oBgHgl3EQfTQ-D/content/2301.05535v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33ec6024e77cac7e74eb96bf7e9a3b6fb3bbe48fb54e3e417264082d6081ca3f
3
+ size 1255094
CtE3T4oBgHgl3EQfUgpf/content/tmp_files/2301.04451v1.pdf.txt ADDED
@@ -0,0 +1,1249 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Springer Nature 2021 LATEX template
2
+ Heterogeneous Tri-stream Clustering Network
3
+ Xiaozhi Deng1, Dong Huang1,2* and Chang-Dong Wang3
4
+ 1*College of Mathematics and Informatics, South China
5
+ Agricultural University, Guangzhou, China.
6
+ 2Key Laboratory of Smart Agricultural Technology in Tropical
7
+ South China, Ministry of Agriculture and Rural Affairs, China.
8
+ 3School of Computer Science and Engineering, Sun Yat-sen
9
+ University, Guangzhou, China.
10
+ *Corresponding author(s). E-mail(s): [email protected];
11
+ Contributing authors: [email protected];
12
13
+ Abstract
14
+ Contrastive deep clustering has recently gained significant attention
15
+ with its ability of joint contrastive learning and clustering via deep
16
+ neural networks. Despite the rapid progress, previous works mostly
17
+ require both positive and negative sample pairs for contrastive cluster-
18
+ ing, which rely on a relative large batch-size. Moreover, they typically
19
+ adopt a two-stream architecture with two augmented views, which over-
20
+ look the possibility and potential benefits of multi-stream architectures
21
+ (especially with heterogeneous or hybrid networks). In light of this,
22
+ this paper presents a new end-to-end deep clustering approach termed
23
+ Heterogeneous Tri-stream Clustering Network (HTCN). The tri-stream
24
+ architecture in HTCN consists of three main components, including two
25
+ weight-sharing online networks and a target network, where the param-
26
+ eters of the target network are the exponential moving average of that
27
+ of the online networks. Notably, the two online networks are trained by
28
+ simultaneously (i) predicting the instance representations of the target
29
+ network and (ii) enforcing the consistency between the cluster repre-
30
+ sentations of the target network and that of the two online networks.
31
+ Experimental results on four challenging image datasets demonstrate the
32
+ superiority of HTCN over the state-of-the-art deep clustering approaches.
33
+ The code is available at https://github.com/dengxiaozhi/HTCN.
34
+ Keywords: Data clustering, Image clustering, Deep clustering, Deep neural
35
+ network, Contrastive learning
36
+ 1
37
+ arXiv:2301.04451v1 [cs.LG] 11 Jan 2023
38
+
39
+ Springer Nature 2021 LATEX template
40
+ 2
41
+ Heterogeneous Tri-stream Clustering Network
42
+ 1 Introduction
43
+ Data clustering is the process of grouping data samples into multiple clus-
44
+ ters in an unsupervised manner, which is a fundamental task in a variety
45
+ of applications [1–3]. The traditional clustering algorithms typically focus
46
+ on some low-level information and lack the representation learning ability,
47
+ which may lead to sub-optimal performance when dealing with some complex
48
+ high-dimensional data like images.
49
+ In recent years, the deep learning has gained tremendous progress [4–6],
50
+ which has also been exploited for tackling the clustering task, giving rise to the
51
+ rapid development of the deep clustering algorithms [7–11]. For example, Xie
52
+ et al. [7] presented a deep clustering method called Deep Embedded Clustering
53
+ (DEC), which simultaneously learns representations and cluster assignments
54
+ with an objective loss based on Kullback-Leibler (KL) divergence. Guo et al.
55
+ [8] extended DEC by incorporating the reconstruction loss (via autoencoder)
56
+ to preserve local structures. Ji et al. [10] sought to learn invariant information
57
+ of data by maximizing the mutual information between paired samples. More
58
+ recently, the contrastive learning has emerged as a promising technique for
59
+ exploiting sample-wise (or augmentation-wise) contrastiveness to improve the
60
+ deep clustering performance. Van Gansbeke et al. [12] presented the Semantic
61
+ Clustering by Adopting Nearest neighbors (SCAN) method, which first adopts
62
+ contrastive learning to learn discriminant features and then performs semantic
63
+ clustering with the K-nearest neighbors exploited. Dang et al. [13] matched
64
+ local-level and global-level nearest neighbors to further improve clustering per-
65
+ formance. Li et al. [14] presented the Contrastive Clustering (CC) method to
66
+ perform feature learning and clustering with simultaneous instance-level and
67
+ cluster-level contrastive learning.
68
+ Despite significant success, these contrastive deep clustering methods [12–
69
+ 14] are mostly faced with two limitations. On the one hand, they typically
70
+ requires both positive sample pairs and negative sample pairs during their
71
+ contrastive learning process, which rely on a relatively large batch-size (for
72
+ sufficient negative pairs) and may bring in a heavier computational burden.
73
+ On the other hand, these prior works generally adopt a two-stream architec-
74
+ ture (with two weight-sharing augmented views), which neglect the possibility
75
+ of going beyond the two-stream architecture to utilize three or even more
76
+ streams of networks (with heterogeneous or hybrid structures). Recently Grill
77
+ et al. [15] presented the Bootstrap Your Own Latent (BYOL) method, which
78
+ adopts an asymmetric two-stream architecture (with an online network and a
79
+ target network) and conducts the contrastive learning without negative pairs,
80
+ where the online network is trained by predicting the feature representations
81
+ of the target network. Though the requirement for negative sample pairs is
82
+ remedied, BYOL still complies with the two-stream architecture and also lacks
83
+ the ability of directly learning the clustering structure. It remains a challeng-
84
+ ing problem how to incorporate contrastive learning into multiple streams of
85
+ heterogeneous networks while alleviating the dependence on negative sample
86
+ pairs for strengthened deep clustering performance.
87
+
88
+ Springer Nature 2021 LATEX template
89
+ Heterogeneous Tri-stream Clustering Network
90
+ 3
91
+ In light of this, this paper presents a novel deep clustering approach
92
+ termed Heterogeneous Tri-stream Clustering Network (HTCN), which lever-
93
+ ages three streams of heterogeneous networks for simultaneous cluster-level
94
+ and instance-level contrastive learning without requiring negative sample pairs
95
+ (as illustrated in Fig. 1). Inspired by BYOL [15], we design a novel tri-stream
96
+ architecture with three augmented views, corresponding to two online net-
97
+ works and a target network, respectively. Note that the online network and
98
+ the target network are heterogeneous, which differ from each other in the net-
99
+ work structure and the updating mechanism. The two online networks share
100
+ the same parameters, while the parameters of the target network are the
101
+ exponential moving average of that of the online networks. Here, the exponen-
102
+ tial moving average is a type of moving average that places a greater weight
103
+ and significance on the most recent data samples [15]. Each online network
104
+ is associated with an instance predictor and a cluster predictor, which pro-
105
+ duce the instance-level representations and the cluster-level representations,
106
+ respectively. Different from the online networks, the target network utilizes a
107
+ cluster predictor to generate the cluster-level representations while producing
108
+ the instance-level representations by the projector directly. The incorporation
109
+ of an instance predictor in the online networks is meant to prevent the potential
110
+ collapse where the networks produce the same feature representations for most
111
+ samples. Then we train the two online networks by (i) predicting the target
112
+ network’s representation of the same image via the mean squared error (MSE)
113
+ loss (for the instance-level contrastive learning) and (ii) enforcing the consis-
114
+ tency between the predicted cluster distributions of the two online networks
115
+ and that of the target network via the information noise contrastive estimation
116
+ (InfoNCE) [16] loss (for the cluster-level contrastive learning). Experiments
117
+ conducted on four image datasets demonstrate the superiority of our approach
118
+ over the state-of-the-art deep clustering approaches.
119
+ For clarity, the contributions of this work are summarized below.
120
+ • A heterogeneous tri-stream architecture is designed, where two online net-
121
+ works and a target network are jointly leveraged for instance-level and
122
+ cluster-level contrastive learning.
123
+ • A novel deep clustering approach termed HTCN is proposed, which utilizes
124
+ three augmented views for contrastive learning without requiring negative
125
+ sample pairs.
126
+ • Experimental results on four image datasets confirm the advantegeous clus-
127
+ tering performance of our HTCN approach over the state-of-the-art deep
128
+ clustering approaches.
129
+ The rest of the paper is organized as follows. The related works on deep
130
+ clustering and self-supervised learning are reviewed in Section 2. The proposed
131
+ HTCN framework is described in Section 3. The experiments are reported in
132
+ Section 4. Finally, Section 5 concludes the paper.
133
+
134
+ Springer Nature 2021 LATEX template
135
+ 4
136
+ Heterogeneous Tri-stream Clustering Network
137
+ 2 Related Work
138
+ In this section, we will introduce the related works on deep clustering and
139
+ self-supervised learning.
140
+ 2.1 Deep Clustering
141
+ Traditional clustering methods such as K-means [17] and spectral cluster-
142
+ ing (SC) [18] have achieved promising results in handling low-dimensional
143
+ data, but they may result in sub-optimal performance when faced with high-
144
+ dimensional data (e.g., images and videos) due to the lack of the representation
145
+ learning ability. To address this, the deep learning based clustering methods,
146
+ referred to as the deep clustering methods, have recently achieved significant
147
+ success, which leverage the power of feature learning of deep neural networks
148
+ for the clustering task [7–10, 12–14, 19–27].
149
+ Previous deep clustering methods can be divided into two main categories,
150
+ namely, the one-stage methods and the two-stage methods. The goal of the
151
+ one-stage approach is to perform feature representation learning and clustering
152
+ assignment simultaneously. Xie et al. [7] proposed a Deep Embedding Cluster-
153
+ ing (DEC) method, which jointly optimizes feature learning and clustering with
154
+ a KL-divergence loss. Caron et al. [21] iteratively clustered the learned features
155
+ with K-means and regarded the cluster assignments as supervisory signals to
156
+ optimize the network. Li et al.[14] presented a Contrastive Clustering (CC)
157
+ method that performs contrastive learning at instance-level and cluster-level
158
+ for deep clustering. Besides the one-stage methods, some researchers have also
159
+ made considerable efforts to the two-stage clustering methods. Van Gansbeke
160
+ et al.[12] proposed a two-stage clustering method called Semantic Clustering
161
+ by Adopting Nearest neighbors (SCAN), which first learns the semantic fea-
162
+ tures via contrastive learning and then utilizes the features for clustering in
163
+ the next stage. To extend SCAN, Dang et al. [13] designed a Nearest Neighbor
164
+ Matching (NNM) method, which selects both local and global nearest neigh-
165
+ bors to optimize the network, where the neighbors are forced to be close to
166
+ each other.
167
+ 2.2 Self-supervised Learning
168
+ Self-supervised learning has recently emerged as a powerful technique with the
169
+ ability to learn representation from raw data without human supervision, in
170
+ which the contrastive learning methods [28–31] have been a representative and
171
+ promising category.
172
+ The goal of contrastive learning is to minimize the distance between posi-
173
+ tive sample pairs while maximizing the distance between negative sample pairs
174
+ in a self-supervised manner, where positive pairs and negative pairs are defined
175
+ through data augmentations. In particular, some researchers maintained a
176
+ memory bank [28, 29] that contains large amounts of representations of nega-
177
+ tive samples to achieve high performance. However, these methods that utilize
178
+ memory banks to store and update representations may be computationally
179
+
180
+ Springer Nature 2021 LATEX template
181
+ Heterogeneous Tri-stream Clustering Network
182
+ 5
183
+ expensive. To address the problems with memory banks, He et al. [30] pro-
184
+ posed a Momentum Contrast (MoCo) method that trains an encoder by the
185
+ momentum update mechanism maintaining a long queue of negative examples.
186
+ Following the MoCo method, Chen et al. [31] proposed a Simple framework
187
+ for Contrastive LeaRning (SimCLR) method which carefully designs the strat-
188
+ egy of data augmentation and a non-linear transformation head. In addition,
189
+ the clustering based methods [32, 33] adopt a clustering approach to group
190
+ similar features together, which address the issue that every sample is consid-
191
+ ered as a discrete class in previous works. More recently, some self-supervised
192
+ learning methods that only rely on positive pairs and directly predict the out-
193
+ put of one augmented view from another augmented view [15, 34, 35] have
194
+ been developed, among which a representative method is the BYOL method
195
+ [15]. The BYOL method [15] adopts an asymmetric two-stream architecture,
196
+ which, however, lacks the ability to learn the clustering structure directly and
197
+ also overlooks the opportunities and potential benefits of going beyond the
198
+ two-stream architecture to three or more streams of networks (even with het-
199
+ erogeneous or hybrid structures) to further enhance the contrastive learning
200
+ and clustering performance.
201
+ 3 Proposed Framework
202
+ 3.1 Framework Overview
203
+ This paper presents a heterogeneous tri-stream network architecture termed
204
+ HTCN for contrastive deep clustering (as illustrated in Fig. 1), which goes
205
+ beyond the traditional two-stream architecture to explore the constrastive net-
206
+ work in a multi-stream manner. Also, HTCN doesn’t require negative sample
207
+ pairs, which makes it more resilient to different batch-size. Specifically, HTCN
208
+ consists of three main components, including two online networks and a target
209
+ network. The online networks and the target network are respectively parame-
210
+ terized by different sets of weights, where the parameters of the target network
211
+ are an exponential moving average of that of the online networks.
212
+ Given a batch of N images, we perform three types of augmentations on
213
+ each image, denoted as xi with i ∈ [1, N], to generate 3 · N augmented (or
214
+ distorted) images, denoted as {xa
215
+ 1, . . . , xa
216
+ N, xb
217
+ 1, . . . , xb
218
+ N, xc
219
+ 1, . . . , xc
220
+ N}. The back-
221
+ bones (i.e., fθ and fξ) and projectors (i.e., gθ and gξ) are adopted to extract
222
+ features from the distorted images via za
223
+ i = gθ(fθ(xa
224
+ i )), zb
225
+ i = gξ(fξ(xb
226
+ i)) and
227
+ zc
228
+ i = gθ(fθ(xc
229
+ i)). Then the instance predictors transform za
230
+ i and zc
231
+ i to ya
232
+ i
233
+ and yc
234
+ i , respectively, while the cluster predictors transform za
235
+ i , zb
236
+ i and zc
237
+ i to
238
+ ˜qa
239
+ i , ˜qb
240
+ i and ˜qc
241
+ i , respectively. Note that, similar to the asymmetric architecture
242
+ of BYOL, the target network is not associated with an instance predictor,
243
+ and the representations generated by its projector are used to guide the
244
+ instance-level learning of the two online networks. The row space of the feature
245
+ matrix learned by the projector or the instance predictor is expressed as the
246
+ instance-level representations, while the column space of the feature matrix
247
+ learned by the cluster predictor is expressed as the cluster-level representations.
248
+
249
+ Springer Nature 2021 LATEX template
250
+ 6
251
+ Heterogeneous Tri-stream Clustering Network
252
+ 𝑓!
253
+ 𝑓"
254
+ 𝑔!
255
+ 𝑔"
256
+ ℎ"
257
+ ℎ!
258
+ 𝑝!
259
+ 𝑥#
260
+ 𝑥$
261
+ 𝑧#
262
+ 𝑧$
263
+ 𝑦#
264
+ 𝑞#
265
+ 𝑞$
266
+ 𝑥
267
+ 𝑞$
268
+ 𝑞#
269
+ Minimize InfoNCE Loss
270
+ Distorted images
271
+ Backbone
272
+ Cluster predictor
273
+ Projector
274
+ Online network
275
+ Target network
276
+ Instance predictor
277
+ 𝑦#
278
+ 𝑧$
279
+ Minimize MSE Loss
280
+ 𝑦%
281
+ 𝑧$
282
+ Input images
283
+ 𝑞$
284
+ 𝑞%
285
+ Minimize InfoNCE Loss
286
+ Cluster predictor
287
+ Distorted images
288
+ Backbone
289
+ Projector
290
+ 𝑇#
291
+ 𝑇$
292
+ 𝑇%
293
+ 𝑓!
294
+ 𝑔!
295
+ ℎ!
296
+ 𝑝!
297
+ 𝑥%
298
+ 𝑧%
299
+ 𝑦%
300
+ 𝑞%
301
+ Cluster predictor
302
+ Distorted images
303
+ Backbone
304
+ Projector
305
+ Instance predictor
306
+ sg
307
+ Online network
308
+ Target network
309
+ Fig. 1 Illustration of the proposed HTCN framework. The tri-stream network consists of
310
+ two weight-sharing online networks and a target network, where the parameters of the target
311
+ network is an exponential moving average of that of the online networks. Instance predictors
312
+ and cluster predictors are incorporated in the three networks, after which the MSE loss
313
+ and the InfoNCE loss are ultilized for instance-level contrastive learning and cluster-level
314
+ contrastive learning, respectively. The network architecture can be trained in an end-to-end
315
+ manner, where the final clustering is obtained via the cluster predictor of the target network.
316
+ The instance-level representations are utilized to enforce the instance-level
317
+ contrastive learning with an MSE loss optimized, while the cluster-level repre-
318
+ sentations are utilized to enforce the cluster-level contrastive learning with an
319
+ InfoNCE loss optimized. Finally, the instance-level and cluster-level contrastive
320
+ losses are simultaneously utilized to optimize the tri-stream network.
321
+ 3.2 Instance-level Contrastiveness
322
+ Our HTCN approach simultaneously performs feature learning and clustering
323
+ without requiring negative sample pairs. In instance-level contrastive learn-
324
+ ing, we aim to train the two online networks by predicting the instance
325
+ representations of target network. Specifically, let ya
326
+ i and zb
327
+ i be the instance
328
+ representations of xi in the first online network and the target network,
329
+ respectively. The instance-level contrastive loss between them is defined as
330
+ La,b,i = ∥ya
331
+ i − zb
332
+ i ∥2
333
+ 2 = 2 − 2 ·
334
+ ⟨ya
335
+ i , zb
336
+ i ⟩
337
+ ∥ya
338
+ i ∥2 · ∥zb
339
+ i ∥2
340
+ ,
341
+ (1)
342
+
343
+ Springer Nature 2021 LATEX template
344
+ Heterogeneous Tri-stream Clustering Network
345
+ 7
346
+ where ya
347
+ i and zb
348
+ i are the normalized representations. Thus the loss between the
349
+ first and second views can be expressed as
350
+ La,b = 1
351
+ N
352
+ N
353
+
354
+ i=1
355
+ La,b,i
356
+ (2)
357
+ Similar to BYOL [15], the exchange of the online and target views is performed
358
+ during each training step. Also, we utilize another online network to predict
359
+ the representations produced by the target network, whose loss is defined as
360
+ Lb,c,i = ∥yc
361
+ i − zb
362
+ i ∥2
363
+ 2 =2 − 2 ·
364
+ ⟨yc
365
+ i , zb
366
+ i ⟩
367
+ ∥yc
368
+ i ∥2 · ∥zb
369
+ i ∥2
370
+ , i ∈ [1, N],
371
+ (3)
372
+ Lb,c = 1
373
+ N
374
+ N
375
+
376
+ i=1
377
+ Lb,c,i,
378
+ (4)
379
+ Therefore, the instance-level contrastive loss among the three streams of
380
+ networks is defined as
381
+ Linstance = La,b + Lb,c.
382
+ (5)
383
+ 3.3 Cluster-level Contrastiveness
384
+ The cluster predictor maps the representations produced by the projector to
385
+ M-dimensional probability vectors, where M is the number of clusters. These
386
+ probability vectors, whose i-th element denotes how likely the image belongs to
387
+ the i-th cluster, can be interpreted as the soft label. Let qa, qb, qc ∈ RN×M be
388
+ the feature matrices produced by the cluster predictors of the three networks,
389
+ respectively. Each column of the feature matrix denotes an N-dimensional clus-
390
+ ter representation, denoted as qk
391
+ i , while the each row denotes a M-dimensional
392
+ probability vector, denoted as ˜qk
393
+ i (for k ∈ {a, b, c}).
394
+ For a cluster representation qa
395
+ i , we regard qa
396
+ i and qb
397
+ i as a positive cluster
398
+ pair, and the other 2·M −2 pairs (in the first and second views) as the negative
399
+ cluster pairs. The pair-wise similarity is defined as
400
+ s(qa
401
+ i , qb
402
+ j) = ⟨qa
403
+ i , qb
404
+ j⟩
405
+ ∥qa
406
+ i ∥∥qb
407
+ j∥,
408
+ i, j ∈ [1, M]
409
+ (6)
410
+ Then the InfoNCE loss for qa
411
+ i is computed by
412
+ ℓa
413
+ i = − log
414
+ exp(s(qa
415
+ i , qb
416
+ j)/τ)
417
+ �M
418
+ j=1[exp(s(qa
419
+ i , qa
420
+ j )/τ) + exp(s(qa
421
+ i , qb
422
+ j)/τ)]
423
+ ,
424
+ (7)
425
+ where τ is the temperature parameter. After traversing all cluster representa-
426
+ tions, the cluster-level contrastive loss between the first and second augmented
427
+
428
+ Springer Nature 2021 LATEX template
429
+ 8
430
+ Heterogeneous Tri-stream Clustering Network
431
+ views can be obtained as
432
+ ˆLa,b =
433
+ 1
434
+ 2M
435
+ M
436
+
437
+ i=1
438
+ (ℓa
439
+ i + ℓb
440
+ i) − H(Q),
441
+ (8)
442
+ where H(Q) is the entropy of the cluster-assignment probability, which helps
443
+ to avoid a degenerate solution that most images fall into the same cluster and
444
+ is computed as
445
+ H(Q) = −
446
+ M
447
+
448
+ i=1
449
+ [P(qa
450
+ i ) log P(qa
451
+ i ) + P(qb
452
+ i ) log P(qb
453
+ i )],
454
+ (9)
455
+ P(qk
456
+ i ) =
457
+ N
458
+
459
+ j=1
460
+ qk
461
+ ji
462
+ ∥q∥1
463
+ ,
464
+ k ∈ {a, b}
465
+ (10)
466
+ For each batch of images, a view pair is formed between each online network
467
+ and the target network, leading to a total of two view pairs for the cluster-
468
+ level contrastive learning. Therefore, the cluster-level contrastive loss can be
469
+ defined as
470
+ Lcluster = ˆLa,b + ˆLb,c.
471
+ (11)
472
+ 3.4 Overall Loss Function
473
+ The tri-stream network of HTCN is trained by simultaneously considering the
474
+ instance-level contrastiveness and the cluster-level contrastiveness. The overall
475
+ loss function is defined as
476
+ L = Linstance + Lcluster.
477
+ (12)
478
+ At each training step, we optimize the overall loss function w.r.t. the online
479
+ networks’ parameters θ only, but not the target network’s parameters ξ. The
480
+ parameters of the target is updated as an exponential moving average of that
481
+ of the online networks. That is
482
+ θ ← optimizer(θ, ∇θL, η),
483
+ (13)
484
+ ξ ← αξ + (1 − α)θ.
485
+ (14)
486
+ where η is the learning rate and α is the momentum coefficient. After the
487
+ training, we only keep the target network to perform clustering, which can be
488
+ obtained in the cluster predictor.
489
+
490
+ Springer Nature 2021 LATEX template
491
+ Heterogeneous Tri-stream Clustering Network
492
+ 9
493
+ Table 1 Description of the benchmark image datasets.
494
+ Dataset
495
+ #Images
496
+ #Classes
497
+ CIFAR-100
498
+ 60,000
499
+ 20
500
+ ImageNet-10
501
+ 13,000
502
+ 10
503
+ ImageNet-Dogs
504
+ 19,500
505
+ 15
506
+ Tiny-ImageNet
507
+ 100,000
508
+ 200
509
+ (a) CIFAR-100
510
+ (b) ImageNet-10
511
+ (c) ImageNet-Dogs
512
+ (d) Tiny-ImageNet
513
+ Fig. 2 Some examples of the four image datasets.
514
+ 3.5 Implementation Details
515
+ In HTCN, we use the ResNet34 [36] as the backbone. The projectors and the
516
+ instance predictors have the same network structure, each of which is a multi-
517
+ layer perceptron (MLP) with 256-dimensional output units. Each of the cluster
518
+ predictors is a two-layer MLP, whose output dimension is equal to the desired
519
+ number of clusters.
520
+ Three augmented (or distorted) views are generated by applying a family of
521
+ transformations to each input image. Five types of augmentations are utilized,
522
+ including ResizedCrop, HorizontalFlip, ColorJitter, Grayscale and Gaussian-
523
+ Blur [14]. As each transformation has a probability of being adopted, the
524
+ distortions of the three streams can thus be randomly decided. During opti-
525
+ mization, we use the Adam optimizer and train the model for 1000 epochs.
526
+ The learning rate is set to 0.0003.The batch size is set to 128.
527
+ 4 Experiments
528
+ 4.1 Datasets and Evaluation Metrics
529
+ The experiments are conducted on four widely-used image datasets, namely,
530
+ CIFAR-100 [37], ImageNet-10 [38], ImageNet-Dogs [38], and Tiny-ImageNet
531
+ [39]. The statistics of these benchmark datasets are given in Table 1, and some
532
+ sample images of these datasets are illustrated in Fig. 2.
533
+ To compare the clustering results of different clustering methods, three
534
+ evaluation metrics are adopted, including normalized mutual information
535
+
536
+ Springer Nature 2021 LATEX template
537
+ 10
538
+ Heterogeneous Tri-stream Clustering Network
539
+ Table 2 The NMI(%) scores by different clustering methods (The best score in each
540
+ column is in bold).
541
+ Dataset
542
+ CIFAR-100
543
+ ImageNet-10
544
+ ImageNet-Dogs
545
+ Tiny-ImageNet
546
+ K-means [17]
547
+ 8.4
548
+ 11.9
549
+ 5.5
550
+ 6.5
551
+ SC [18]
552
+ 9.0
553
+ 15.1
554
+ 3.8
555
+ 6.3
556
+ AC [43]
557
+ 9.8
558
+ 13.8
559
+ 3.7
560
+ 6.9
561
+ NMF [44]
562
+ 7.9
563
+ 13.2
564
+ 4.4
565
+ 7.2
566
+ AE [45]
567
+ 10.0
568
+ 21.0
569
+ 10.4
570
+ 13.1
571
+ DAE [46]
572
+ 11.1
573
+ 20.6
574
+ 10.4
575
+ 12.7
576
+ DCGAN [47]
577
+ 12.0
578
+ 22.5
579
+ 12.1
580
+ 13.5
581
+ DeCNN [48]
582
+ 9.2
583
+ 18.6
584
+ 9.8
585
+ 11.1
586
+ VAE [49]
587
+ 10.8
588
+ 19.3
589
+ 10.7
590
+ 11.3
591
+ JULE [22]
592
+ 10.3
593
+ 17.5
594
+ 5.4
595
+ 10.2
596
+ DEC [7]
597
+ 13.6
598
+ 28.2
599
+ 12.2
600
+ 11.5
601
+ DAC [38]
602
+ 18.5
603
+ 39.4
604
+ 21.9
605
+ 19.0
606
+ DCCM [50]
607
+ 28.5
608
+ 60.8
609
+ 32.1
610
+ 22.4
611
+ GATC [51]
612
+ 28.5
613
+ 59.4
614
+ 28.1
615
+ -
616
+ PICA [19]
617
+ 31.0
618
+ 80.2
619
+ 35.2
620
+ 27.7
621
+ DRC [26]
622
+ 35.6
623
+ 83.0
624
+ 38.4
625
+ 32.1
626
+ CC [14]
627
+ 43.1
628
+ 85.9
629
+ 44.5
630
+ 34.0
631
+ HTCN
632
+ 46.5
633
+ 87.5
634
+ 49.4
635
+ 35.6
636
+ (NMI) [40], clustering accuracy (ACC) [41], and adjusted rand index (ARI)
637
+ [42].
638
+ 4.2 Comparison with State-of-the-Art
639
+ In this section, we compare the proposed method against four non-deep
640
+ clustering methods, namely, K-means [17], Spectral Clustering (SC) [18],
641
+ Agglomerative Clustering (AC) [43], and Nonnegative Matrix Factorization
642
+ (NMF) [44], and thirteen deep clustering methods, namely, Auto-Encoder
643
+ (AE) [45], Denoising Auto-Encoder (DAE) [46], Deep Convolutional Genera-
644
+ tive Adversarial Networks (DCGAN) [47], DeConvolutional Neural Networks
645
+ (DeCNN) [48], Aariational Auto-Encoder (VAE) [49], Joint Unsupervised
646
+ LEarning (JULE) [22], Deep Embedded Clustering (DEC) [7], Deep Adap-
647
+ tive Clustering (DAC) [38], Deep Comprehensive Correlation Mining (DCCM)
648
+ [50], Gaussian ATtention Network for image Clustering (GATC) [51], PartI-
649
+ tion Confidence mAximization (PICA) [19], Deep Robust Clustering (DRC)
650
+ [26] and Contrastive Clustering (CC) [14].
651
+ As shown in Table 2, 3 and 4, our HTCN method achieves the best scores
652
+ on all the four benchmark datasets w.r.t. NMI, ACC, and ARI. Notably, on
653
+ the ImageNet-Dogs dataset, our HTCN method obtains NMI(%),ACC(%) and
654
+ ARI(%) scores of 49.4, 49.3, and 35.2, respectively, which significantly outper-
655
+ forms the second best method (i.e., CC) that obtains NMI(%),ACC(%) and
656
+ ARI(%) scores of 44.5, 42.9, and 27.4. The experimental results in Table 2,
657
+
658
+ Springer Nature 2021 LATEX template
659
+ Heterogeneous Tri-stream Clustering Network
660
+ 11
661
+ Table 3 The ACC(%) scores by different clustering methods (The best score in each
662
+ column is in bold).
663
+ Dataset
664
+ CIFAR-100
665
+ ImageNet-10
666
+ ImageNet-Dogs
667
+ Tiny-ImageNet
668
+ K-means [17]
669
+ 13.0
670
+ 24.1
671
+ 10.5
672
+ 2.5
673
+ SC [18]
674
+ 13.6
675
+ 27.4
676
+ 11.1
677
+ 2.2
678
+ AC [43]
679
+ 13.8
680
+ 24.2
681
+ 13.9
682
+ 2.7
683
+ NMF [44]
684
+ 11.8
685
+ 23.0
686
+ 11.8
687
+ 2.9
688
+ AE [45]
689
+ 16.5
690
+ 31.7
691
+ 18.5
692
+ 4.1
693
+ DAE [46]
694
+ 15.1
695
+ 30.4
696
+ 19.0
697
+ 3.9
698
+ DCGAN [47]
699
+ 15.3
700
+ 34.6
701
+ 17.4
702
+ 4.1
703
+ DeCNN [48]
704
+ 13.3
705
+ 31.3
706
+ 17.5
707
+ 3.5
708
+ VAE [49]
709
+ 15.2
710
+ 33.4
711
+ 17.9
712
+ 3.6
713
+ JULE [22]
714
+ 13.7
715
+ 30.0
716
+ 13.8
717
+ 3.3
718
+ DEC [7]
719
+ 18.5
720
+ 38.1
721
+ 19.5
722
+ 3.7
723
+ DAC [38]
724
+ 23.8
725
+ 52.7
726
+ 27.5
727
+ 6.6
728
+ DCCM [50]
729
+ 32.7
730
+ 71.0
731
+ 38.3
732
+ 10.8
733
+ GATC [51]
734
+ 32.7
735
+ 73.9
736
+ 32.2
737
+ -
738
+ PICA [19]
739
+ 33.7
740
+ 87.0
741
+ 35.2
742
+ 9.8
743
+ DRC [26]
744
+ 36.7
745
+ 88.4
746
+ 38.9
747
+ 13.9
748
+ CC [14]
749
+ 42.9
750
+ 89.3
751
+ 42.9
752
+ 14.0
753
+ HTCN
754
+ 47.2
755
+ 90.5
756
+ 49.3
757
+ 16.0
758
+ Table 4 The ARI(%) scores by different clustering methods (The best score in each
759
+ column is in bold).
760
+ Dataset
761
+ CIFAR-100
762
+ ImageNet-10
763
+ ImageNet-Dogs
764
+ Tiny-ImageNet
765
+ K-means [17]
766
+ 2.8
767
+ 5.7
768
+ 2.0
769
+ 0.5
770
+ SC [18]
771
+ 2.2
772
+ 7.6
773
+ 1.3
774
+ 0.4
775
+ AC [43]
776
+ 3.4
777
+ 6.7
778
+ 2.1
779
+ 0.5
780
+ NMF [44]
781
+ 2.6
782
+ 6.5
783
+ 1.6
784
+ 0.5
785
+ AE [45]
786
+ 4.8
787
+ 15.2
788
+ 7.3
789
+ 0.7
790
+ DAE [46]
791
+ 4.6
792
+ 13.8
793
+ 7.8
794
+ 0.7
795
+ DCGAN [47]
796
+ 4.5
797
+ 15.7
798
+ 7.8
799
+ 0.7
800
+ DeCNN [48]
801
+ 3.8
802
+ 14.2
803
+ 7.3
804
+ 0.6
805
+ VAE [49]
806
+ 4.0
807
+ 16.8
808
+ 7.9
809
+ 0.6
810
+ JULE [22]
811
+ 3.3
812
+ 13.8
813
+ 2.8
814
+ 0.6
815
+ DEC [7]
816
+ 5.0
817
+ 20.3
818
+ 7.9
819
+ 0.7
820
+ DAC [38]
821
+ 8.8
822
+ 30.2
823
+ 11.1
824
+ 1.7
825
+ DCCM [50]
826
+ 17.3
827
+ 55.5
828
+ 18.2
829
+ 3.8
830
+ GATC [51]
831
+ 17.3
832
+ 55.2
833
+ 16.3
834
+ -
835
+ PICA [19]
836
+ 17.1
837
+ 76.1
838
+ 20.1
839
+ 4.0
840
+ DRC [26]
841
+ 20.8
842
+ 79.8
843
+ 23.3
844
+ 5.6
845
+ CC [14]
846
+ 26.6
847
+ 82.2
848
+ 27.4
849
+ 7.1
850
+ HTCN
851
+ 30.5
852
+ 83.9
853
+ 35.2
854
+ 7.6
855
+
856
+ Springer Nature 2021 LATEX template
857
+ 12
858
+ Heterogeneous Tri-stream Clustering Network
859
+ Table 5 The clustering performance of HTCN using different combinations of network
860
+ architectures.
861
+ Architecture
862
+ NMI
863
+ ACC
864
+ ARI
865
+ Tri-stream architecture
866
+ 46.5
867
+ 47.2
868
+ 30.5
869
+ Dual-stream (Online+Target)
870
+ 42.2
871
+ 42.5
872
+ 26.8
873
+ Dual-stream (Online+Online)
874
+ 39.9
875
+ 40.2
876
+ 24.4
877
+ Table 6 The clustering performance of HTCN using different loss functions.
878
+ Loss function
879
+ NMI
880
+ ACC
881
+ ARI
882
+ With instance and cluster losses
883
+ 46.5
884
+ 47.2
885
+ 30.5
886
+ With only instance loss
887
+ 43.3
888
+ 35.6
889
+ 14.6
890
+ With only cluster loss
891
+ 38.4
892
+ 36.4
893
+ 22.7
894
+ 3 and 4 confirm the advantageous clustering performance of HTCN over the
895
+ baseline methods.
896
+ 4.3 Influence of the Tri-stream Architecture
897
+ In the proposed framework, we present a tri-stream architecture which consists
898
+ of two online networks and a target network. In this section, we test the influ-
899
+ ence of the three streams of networks. As shown in Table 5, using an online
900
+ network and a target network leads to better clustering results than using
901
+ two online networks, while using three streams of networks outperforms both
902
+ variants of using two streams, which shows the benefits of the heterogeneous
903
+ tri-stream architecture.
904
+ 4.4 Influence of Two Types of Contrastive losses
905
+ In the section, we test the influence of the two types of contrastive losses,
906
+ i.e., the instance-level contrastive loss and the cluster-level contrastive loss. As
907
+ shown in Table 6, training with both types of losses can lead to better clustering
908
+ performance than training with only one of them, which confirm the joint
909
+ contribution of the instance-level and cluster-level losses in the self-supervised
910
+ training.
911
+ 4.5 Influence of the Asymmetric Settings
912
+ Two symmetry-breaking mechanisms are enforced between the online and tar-
913
+ get networks [15]. First, an instance predictor is incorporated in each online
914
+ network, which does not exist in the target network. Second, the so-called
915
+ stop-gradient is incorporated in the target network, which indicates that this
916
+ network is not updated using backpropagation. We test the influence of the
917
+
918
+ Springer Nature 2021 LATEX template
919
+ Heterogeneous Tri-stream Clustering Network
920
+ 13
921
+ Table 7 The NMI(%), ACC(%), and ARI(%) by HTCN removing different asymmetric
922
+ settings.
923
+ Asymmetric settings
924
+ NMI
925
+ ACC
926
+ ARI
927
+ HTCN
928
+ 46.5
929
+ 47.2
930
+ 30.5
931
+ No predictor
932
+ 40.9
933
+ 41.2
934
+ 25.0
935
+ No stop-gradient
936
+ 39.2
937
+ 39.3
938
+ 23.7
939
+ 0
940
+ 200
941
+ 400
942
+ 600
943
+ 800
944
+ 1000
945
+ Epochs
946
+ 0
947
+ 10
948
+ 20
949
+ 30
950
+ 40
951
+ 50
952
+ 55
953
+ NMI
954
+ (a) CIFAR-100
955
+ 0
956
+ 200
957
+ 400
958
+ 600
959
+ 800
960
+ 1000
961
+ Epochs
962
+ 0
963
+ 20
964
+ 40
965
+ 60
966
+ 80
967
+ 100
968
+ NMI
969
+ (b) ImageNet-10
970
+ 0
971
+ 200
972
+ 400
973
+ 600
974
+ 800
975
+ 1000
976
+ Epochs
977
+ 0
978
+ 10
979
+ 20
980
+ 30
981
+ 40
982
+ 50
983
+ 55
984
+ NMI
985
+ (c) ImageNet-dogs
986
+ 0
987
+ 200
988
+ 400
989
+ 600
990
+ 800
991
+ 1000
992
+ Epochs
993
+ 0
994
+ 5
995
+ 10
996
+ 15
997
+ 20
998
+ 25
999
+ 30
1000
+ 35
1001
+ 40
1002
+ NMI
1003
+ (d) Tiny-ImageNet
1004
+ Fig. 3 Illustration of the convergence of HTCN (w.r.t. its NMI performance) on the four
1005
+ benchmark datasets.
1006
+ asymmetric settings by removing one of the instance predictor and the stop-
1007
+ gradient. As shown in Table 7, training with both asymmetric settings leads
1008
+ to better performance than training with only one of them.
1009
+ 4.6 Convergence Analysis
1010
+ In this section, we test the convergence of the proposed HTCN method as
1011
+ the number of epochs increases. As shown in Fig. 3, the clustering scores
1012
+ (w.r.t. NMI) of the proposed HTCN method rapidly increase during the first
1013
+ 200 epochs on the benchmark datasets. When going beyond 200 epochs, the
1014
+ increase of epochs still benefits the clustering performance consistently. In this
1015
+ paper, the number of epochs is set to 1000 on all benchmark datasets.
1016
+ 5 Conclusion and Future Work
1017
+ The paper develops a new deep clustering approach termed HTCN, which
1018
+ breaks through the conventional two-stream contrastive architecture to explore
1019
+ the rich possibilities in heterogeneous multi-stream contrastive learning and
1020
+ clustering. In HTCN, the two weight-sharing online networks are trained by
1021
+ predicting the instance representations of the target network and enforcing
1022
+ the consistency between the cluster representations of the target and online
1023
+ networks. Thus the tri-stream network architecture can be optimized in an
1024
+ end-to-end manner via simultaneous instance-level and cluster-level contrastive
1025
+ learning. Experimental results on four challenging image datasets have shown
1026
+ the superior performance of our HTCN approach over the state-of-the-art deep
1027
+
1028
+ Springer Nature 2021 LATEX template
1029
+ 14
1030
+ Heterogeneous Tri-stream Clustering Network
1031
+ clustering approaches. In this paper, we mainly focus on the deep clustering
1032
+ task for images. In the future work, a possible direction is to extend the pro-
1033
+ posed framework to the deep clustering tasks for more complex data types,
1034
+ such as time series data and document data.
1035
+ Declarations
1036
+ • Funding.
1037
+ This
1038
+ work
1039
+ was
1040
+ supported
1041
+ by
1042
+ the
1043
+ NSFC
1044
+ (61976097
1045
+ &
1046
+ 61876193) and the Natural Science Foundation of Guangdong Province
1047
+ (2021A1515012203).
1048
+ • Conflict of interest. The authors declare that they have no conflict of
1049
+ interest.
1050
+ • Ethical approval. This article does not contain any studies with human
1051
+ participants or animals performed by any of the authors.
1052
+ • Consent to participate. Informed consent to participate was obtained
1053
+ from all individual participants included in the study.
1054
+ • Consent for publication. Informed consent for publication was obtained
1055
+ from all individual participants included in the study.
1056
+ • Availability of data and materials. All datasets used in this paper are
1057
+ publicly-available datasets.
1058
+ • Code
1059
+ availability.
1060
+ The
1061
+ code
1062
+ is
1063
+ available
1064
+ at
1065
+ https://github.com/
1066
+ dengxiaozhi/HTCN.
1067
+ • Authors’ contributions. XD: Conceptualization, Methodology, Writing–
1068
+ Original Draft. DH: Conceptualization, Writing–Review & Editing. CDW:
1069
+ Optimization, Writing–Review & Editing.
1070
+ References
1071
+ [1] Frey, B.J., Dueck, D.: Clustering by passing messages between data points.
1072
+ Science 315, 972–976 (2007)
1073
+ [2] Huang, D., Wang, C.-D., Lai, J.-H.: Locally weighted ensemble clustering.
1074
+ IEEE Transactions on Cybernetics 48(5), 1460–1473 (2018)
1075
+ [3] Huang, D., Wang, C.-D., Wu, J.-S., Lai, J.-H., Kwoh, C.-K.: Ultra-
1076
+ scalable spectral clustering and ensemble clustering. IEEE Transactions
1077
+ on Knowledge and Data Engineering 32(6), 1212–1226 (2020)
1078
+ [4] Yu, J., Tan, M., Zhang, H., Rui, Y., Tao, D.: Hierarchical deep click
1079
+ feature prediction for fine-grained image recognition. IEEE Transactions
1080
+ on Pattern Analysis and Machine Intelligence 44(2), 563–578 (2019)
1081
+ [5] Zhang, J., Yu, J., Tao, D.: Local deep-feature alignment for unsuper-
1082
+ vised dimension reduction. IEEE Transactions on Image Processing 27(5),
1083
+ 2420–2432 (2018)
1084
+
1085
+ Springer Nature 2021 LATEX template
1086
+ Heterogeneous Tri-stream Clustering Network
1087
+ 15
1088
+ [6] Zhang, J., Yang, J., Yu, J., Fan, J.: Semisupervised image classification by
1089
+ mutual learning of multiple self-supervised models. International Journal
1090
+ of Intelligent Systems 37(5), 3117–3141 (2022)
1091
+ [7] Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clus-
1092
+ tering analysis. In: Proc. of International Conference on Machine Learning
1093
+ (ICML), pp. 478–487 (2016)
1094
+ [8] Guo, X., Gao, L., Liu, X., Yin, J.: Improved deep embedded cluster-
1095
+ ing with local structure preservation. In: Proc. of International Joint
1096
+ Conference on Artificial Intelligence (IJCAI), pp. 1753–1759 (2017)
1097
+ [9] Wang, Q., Wang, L., Zeng, X., Zhao, L.: An improved deep clustering
1098
+ model for underwater acoustical targets. Neural Processing Letters 48(3),
1099
+ 1633–1644 (2018)
1100
+ [10] Ji, X., Henriques, J.F., Vedaldi, A.: Invariant information clustering
1101
+ for unsupervised image classification and segmentation. In: Proc. of
1102
+ IEEE/CVF International Conference on Computer Vision (ICCV), pp.
1103
+ 9865–9874 (2019)
1104
+ [11] Chen, D.-H., Huang, D., Cheng, H., Wang, C.-D.: D-trace: Deep triply-
1105
+ aligned clustering. In: Proceedings of International Conference on Artifi-
1106
+ cial Neural Networks (ICANN), pp. 526–537 (2022)
1107
+ [12] van Gansbeke, W., Vandenhende, S., Georgoulis, S., Proesmans, M.,
1108
+ Van Gool, L.: SCAN: Learning to classify images without labels. In:
1109
+ Proc. of European Conference on Computer Vision (ECCV), pp. 268–285
1110
+ (2020)
1111
+ [13] Dang, Z., Deng, C., Yang, X., Wei, K., Huang, H.: Nearest neighbor
1112
+ matching for deep clustering. In: Proc. of IEEE/CVF Conference on
1113
+ Computer Vision and Pattern Recognition (CVPR), pp. 13693–13702
1114
+ (2021)
1115
+ [14] Li, Y., Hu, P., Liu, Z., Peng, D., Zhou, J.T., Peng, X.: Contrastive
1116
+ clustering. In: Proc. of AAAI Conference on Artificial Intelligence (2021)
1117
+ [15] Grill, J.-B., Strub, F., Altch´e, F., Tallec, C., Richemond, P., Buchatskaya,
1118
+ E., Doersch, C., Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., et al.:
1119
+ Bootstrap your own latent: A new approach to self-supervised learning.
1120
+ In: Advances in Neural Information Processing Systems (NeurIPS), pp.
1121
+ 21271–21284 (2020)
1122
+ [16] Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive
1123
+ predictive coding. arXiv preprint arXiv:1807.03748 (2018)
1124
+
1125
+ Springer Nature 2021 LATEX template
1126
+ 16
1127
+ Heterogeneous Tri-stream Clustering Network
1128
+ [17] MacQueen, J., et al.: Some methods for classification and analysis of mul-
1129
+ tivariate observations. In: Proc. of Berkeley Symposium on Mathematical
1130
+ Statistics and Probability, vol. 1, pp. 281–297 (1967)
1131
+ [18] Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. Advances in
1132
+ Neural Information Processing Systems (NeurIPS) 17 (2004)
1133
+ [19] Huang, J., Gong, S., Zhu, X.: Deep semantic clustering by partition con-
1134
+ fidence maximisation. In: Proc. of IEEE/CVF Conference on Computer
1135
+ Vision and Pattern Recognition (CVPR), pp. 8849–8858 (2020)
1136
+ [20] Guo, X., Liu, X., Zhu, E., Zhu, X., Li, M., Xu, X., Yin, J.: Adaptive
1137
+ self-paced deep clustering with data augmentation. IEEE Transactions on
1138
+ Knowledge and Data Engineering 32(9), 1680–1693 (2019)
1139
+ [21] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for
1140
+ unsupervised learning of visual features. In: Proc. of European Conference
1141
+ on Computer Vision (ECCV), pp. 132–149 (2018)
1142
+ [22] Yang, J., Parikh, D., Batra, D.: Joint unsupervised learning of deep repre-
1143
+ sentations and image clusters. In: Proc. of IEEE Conference on Computer
1144
+ Vision and Pattern Recognition (CVPR), pp. 5147–5156 (2016)
1145
+ [23] Zhu, Q., Wang, Z.: An image clustering auto-encoder based on predefined
1146
+ evenly-distributed class centroids and mmd distance. Neural Processing
1147
+ Letters 51(2), 1973–1988 (2020)
1148
+ [24] Park, S., Han, S., Kim, S., Kim, D., Park, S., Hong, S., Cha, M.: Improv-
1149
+ ing unsupervised image clustering with robust learning. In: Proc. of
1150
+ IEEE/CVF Conference on Computer Vision and Pattern Recognition
1151
+ (CVPR), pp. 12278–12287 (2021)
1152
+ [25] Han, S., Park, S., Park, S., Kim, S., Cha, M.: Mitigating embedding
1153
+ and class assignment mismatch in unsupervised image classification. In:
1154
+ Proc. of European Conference on Computer Vision (ECCV), pp. 768–784
1155
+ (2020). Springer
1156
+ [26] Zhong, H., Chen, C., Jin, Z., Hua, X.-S.: Deep robust clustering by
1157
+ contrastive learning. arXiv preprint arXiv:2008.03030 (2020)
1158
+ [27] Zhu, X., Do, K.D., Guo, J., Xu, J., Dietze, S.: Exploring implicit and
1159
+ explicit geometrical structure of data for deep embedded clustering.
1160
+ Neural Processing Letters 53(1), 1–16 (2021)
1161
+ [28] Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via
1162
+ non-parametric instance discrimination. In: Proc. of IEEE Conference
1163
+ on Computer Vision and Pattern Recognition (CVPR), pp. 3733–3742
1164
+
1165
+ Springer Nature 2021 LATEX template
1166
+ Heterogeneous Tri-stream Clustering Network
1167
+ 17
1168
+ (2018)
1169
+ [29] Misra, I., van der Maaten, L.: Self-supervised learning of pretext-invariant
1170
+ representations. In: Proc. of IEEE/CVF Conference on Computer Vision
1171
+ and Pattern Recognition (CVPR), pp. 6707–6717 (2020)
1172
+ [30] He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast
1173
+ for unsupervised visual representation learning. In: Proc. of IEEE/CVF
1174
+ Conference on Computer Vision and Pattern Recognition (CVPR), pp.
1175
+ 9729–9738 (2020)
1176
+ [31] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for
1177
+ contrastive learning of visual representations. In: Proc. of International
1178
+ Conference on Machine Learning (ICML), pp. 1597–1607 (2020)
1179
+ [32] Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.:
1180
+ Unsupervised learning of visual features by contrasting cluster assign-
1181
+ ments. Advances in Neural Information Processing Systems (NeurIPS)
1182
+ 33, 9912–9924 (2020)
1183
+ [33] Li, J., Zhou, P., Xiong, C., Hoi, S.C.: Prototypical contrastive learning of
1184
+ unsupervised representations. arXiv preprint arXiv:2005.04966 (2020)
1185
+ [34] Chen, X., He, K.: Exploring simple siamese representation learning.
1186
+ In: Proc. of IEEE/CVF Conference on Computer Vision and Pattern
1187
+ Recognition (CVPR), pp. 15750–15758 (2021)
1188
+ [35] Li, G., Togo, R., Ogawa, T., Haseyama, M.: Tribyol: Triplet BYOL for
1189
+ self-supervised representation learning. In: Proc. of IEEE International
1190
+ Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
1191
+ 3458–3462 (2022). IEEE
1192
+ [36] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recog-
1193
+ nition. In: Proc. of IEEE Conference on Computer Vision and Pattern
1194
+ Recognition (CVPR), pp. 770–778 (2016)
1195
+ [37] Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features
1196
+ from tiny images (2009)
1197
+ [38] Chang, J., Wang, L., Meng, G., Xiang, S., Pan, C.: Deep adaptive image
1198
+ clustering. In: Proc. of IEEE International Conference on Computer
1199
+ Vision (ICCV), pp. 5879–5887 (2017)
1200
+ [39] Le, Y., Yang, X.: Tiny imagenet visual recognition challenge. CS 231N
1201
+ 7(7), 3 (2015)
1202
+ [40] Huang, D., Wang, C.-D., Peng, H., Lai, J.-H., Kwoh, C.-K.: Enhanced
1203
+
1204
+ Springer Nature 2021 LATEX template
1205
+ 18
1206
+ Heterogeneous Tri-stream Clustering Network
1207
+ ensemble clustering via fast propagation of cluster-wise similarities. IEEE
1208
+ Transactions on Systems, Man, and Cybernetics: Systems 51(1), 508–520
1209
+ (2021)
1210
+ [41] Huang, D., Wang, C.-D., Lai, J.-H., Kwoh, C.-K.: Toward multidiversified
1211
+ ensemble clustering of high-dimensional data: From subspaces to metrics
1212
+ and beyond. IEEE Transactions on Cybernetics, in press 52(11), 12231–
1213
+ 12244 (2022)
1214
+ [42] Liang, Y., Huang, D., Wang, C.-D., Yu, P.S.: Multi-view graph learning
1215
+ by joint modeling of consistency and inconsistency. IEEE Transactions on
1216
+ Neural Networks and Learning Systems, in press (2022)
1217
+ [43] Gowda, K.C., Krishna, G.: Agglomerative clustering using the concept
1218
+ of mutual nearest neighbourhood. Pattern Recognition 10(2), 105–112
1219
+ (1978)
1220
+ [44] Cai, D., He, X., Wang, X., Bao, H., Han, J.: Locality preserving nonneg-
1221
+ ative matrix factorization. In: Proc. of International Joint Conference on
1222
+ Artificial Intelligence (IJCAI) (2009)
1223
+ [45] Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise
1224
+ training of deep networks. Advances in Neural Information Processing
1225
+ Systems (NeurIPS) 19 (2006)
1226
+ [46] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A., Bot-
1227
+ tou, L.: Stacked denoising autoencoders: Learning useful representations
1228
+ in a deep network with a local denoising criterion. Journal of Machine
1229
+ Learning Research 11(12) (2010)
1230
+ [47] Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning
1231
+ with deep convolutional generative adversarial networks. arXiv preprint
1232
+ arXiv:1511.06434 (2015)
1233
+ [48] Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: Deconvolutional
1234
+ networks. In: Proc. of IEEE Conference on Computer Vision and Pattern
1235
+ Recognition (CVPR), pp. 2528–2535 (2010)
1236
+ [49] Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv
1237
+ preprint arXiv:1312.6114 (2013)
1238
+ [50] Wu, J., Long, K., Wang, F., Qian, C., Li, C., Lin, Z., Zha, H.: Deep
1239
+ comprehensive correlation mining for image clustering. In: Proc. of
1240
+ IEEE/CVF International Conference on Computer Vision (ICCV), pp.
1241
+ 8150–8159 (2019)
1242
+ [51] Niu, C., Zhang, J., Wang, G., Liang, J.: GATCluster: Self-supervised
1243
+
1244
+ Springer Nature 2021 LATEX template
1245
+ Heterogeneous Tri-stream Clustering Network
1246
+ 19
1247
+ gaussian-attention network for image clustering. In: Proc. of European
1248
+ Conference on Computer Vision (ECCV), pp. 735–751 (2020)
1249
+
CtE3T4oBgHgl3EQfUgpf/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
E9AyT4oBgHgl3EQf4_pw/content/tmp_files/2301.00796v1.pdf.txt ADDED
@@ -0,0 +1,779 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Direct lattice calculation of inclusive hadronic decay rates
2
+ of the 𝝉 lepton
3
+ A. Evangelista,𝑎,∗ R. Frezzotti,𝑎 G. Gagliardi,𝑏 V. Lubicz,𝑐 F. Sanfilippo,𝑏 S. Simula𝑏
4
+ and N. Tantalo𝑎
5
+ 𝑎Dipartimento di Fisica and INFN, Università di Roma “Tor Vergata", Via della Ricerca Scientifica 1,
6
+ I-00133 Rome, Italy
7
+ 𝑏Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, Via della Vasca Navale 84, I-00146 Rome,
8
+ Italy
9
+ 𝑐Dipartimento di Matematica e Fisica, Università di Roma Tre and INFN, Sezione di Roma Tre, Via della
10
+ Vasca Navale 84, I-00146 Rome, Italy
11
+ E-mail: [email protected]
12
+ The inclusive hadronic decay–rates of the 𝜏 lepton are particularly interesting from the phe-
13
+ nomenological point of view since they give access to the CKM matrix elements 𝑉𝑢𝑑 and 𝑉𝑢𝑠. In
14
+ this talk, we discuss how a recent method for the extraction of smeared spectral densities from Eu-
15
+ clidean lattice correlators can be used to obtain a direct lattice determination of inclusive hadronic
16
+ 𝜏 decay rates. We also present preliminary numerical results obtained by applying this method
17
+ to correlators measured on two gauge ensembles produced by the ETMC with 𝑁 𝑓 = 2 + 1 + 1
18
+ dynamical flavours at physical pion masses, lattice spacing 𝑎 ≃ 0.08 fm and volumes 𝐿 ≃ 5.1 fm
19
+ and 𝐿 ≃ 7.6 fm.
20
+ The 39th International Symposium on Lattice Field Theory (Lattice2022),
21
+ 8-13 August, 2022
22
+ Bonn, Germany
23
+ ∗Speaker
24
+ © Copyright owned by the author(s) under the terms of the Creative Commons
25
+ Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
26
+ https://pos.sissa.it/
27
+ arXiv:2301.00796v1 [hep-lat] 2 Jan 2023
28
+
29
+ Direct lattice calculation of inclusive hadronic decay rates of the 𝜏 lepton
30
+ A. Evangelista
31
+ 𝜏
32
+ 𝜈𝜏
33
+ 𝑓
34
+ ¯𝑔
35
+ 𝑝𝜏
36
+ 𝑝𝜈
37
+ 𝑋 𝑓 𝑔
38
+ Figure 1: The 𝜏 → 𝜈𝜏𝑋 𝑓 𝑔 Feynman diagram (with no gluons). The hadronic final state 𝑋 𝑓 𝑔, with flavour
39
+ quantum numbers 𝑓 and 𝑔, has fixed 4-momentum 𝑝𝑋 = 𝑝𝜏 − 𝑝𝜈.
40
+ 1.
41
+ Introduction
42
+ Inclusive hadronic 𝜏 decays are particularly interesting from the phenomenological viewpoint since
43
+ they give access to the CKM matrix elements 𝑉𝑢𝑑 and 𝑉𝑢𝑠. The determinations of 𝑉𝑢𝑠 from leptonic
44
+ and semileptonic kaon decays [1] are in fairly good agreement with the one of Ref. [2] but, for many
45
+ years, a puzzling tension with other determinations obtained from inclusive hadronic 𝜏 decays has
46
+ been observed and debated [1, 3]. On the lattice, hadronic 𝜏 decays have been studied by using
47
+ dispersion relations and by combining non-perturbative lattice inputs with perturbative and/or OPE
48
+ calculations (see for example [4]).
49
+ Here we present a method to perform a fully non-perturbative direct lattice calculation of the
50
+ 𝜏 ↦→ 𝑋𝜈𝜏 decay rate. In our method, the decay rate is extracted from the two-point Euclidean
51
+ correlators of the hadronic weak currents that mediate the decay. This is done by using the algorithm
52
+ of Ref. [5] that allows to extract smeared spectral densities from Euclidean lattice correlators and,
53
+ building on Refs. [6, 7], by using as smearing kernels smoothed versions of the step-functions that
54
+ define the physical phase-space integration domain.
55
+ We also present preliminary numerical results obtained by applying this method to the relevant cor-
56
+ relators measured on two gauge ensembles produced by the Extended Twisted–Mass Collaboration
57
+ (ETMC) with 𝑁 𝑓 = 2 + 1 + 1 dynamical flavours with physical pion mass. The two ensembles,
58
+ corresponding to the cB211.072.64 (B64 in short) and cB211.072.96 (B96 in short) entries in
59
+ TABLE V of Ref. [8], have the same lattice spacing, 𝑎 = 0.07957(13) fm, and differ only for the
60
+ physical volumes that are 𝐿 = 5.09 fm and 𝐿 = 7.64 fm respectively.
61
+ 2.
62
+ Reconstruction of the inclusive rate using the HLT method
63
+ By relying on the Fermi effective theory for the weak interactions and by neglecting long–distance
64
+ QED radiative corrections, the ratio 𝑅 𝑓 𝑔 of the inclusive hadronic decay rate Γ[𝜏 ↦→ 𝑋 𝑓 𝑔𝜈𝜏] with
65
+ the leptonic decay rate Γ[𝜏 ↦→ 𝑒 ¯𝜈𝑒𝜈𝜏] can be expressed as
66
+ 𝑅 𝑓 𝑔 = 12𝜋 𝑆𝐸𝑊
67
+ ��𝑉𝑓 𝑔
68
+ ��2 ∫ 1
69
+ 𝑟 𝑓 𝑔
70
+ d𝜔 𝜔
71
+
72
+ 1 − 𝜔2�2 �
73
+ 𝜌𝐿
74
+ 𝑓 𝑔(𝜔) + 𝜌𝑇
75
+ 𝑓 𝑔(𝜔)
76
+
77
+ 1 + 2𝜔2��
78
+ .
79
+ (1)
80
+ In the previous formula, 𝑓 and 𝑔 label the flavour quantum numbers of the final hadronic states
81
+ 𝑋 𝑓 𝑔 having four–momentum 𝑝𝑋, 𝑟 𝑓 𝑔 = 𝑚 𝑓 𝑔/𝑚𝜏 is the ratio of the mass of the lightest hadronic
82
+ state and the 𝜏-mass, 𝑆𝐸𝑊 = 1.0201(3) is the short–distance electroweak correction [9]. The
83
+ 2
84
+
85
+ Direct lattice calculation of inclusive hadronic decay rates of the 𝜏 lepton
86
+ A. Evangelista
87
+ longitudinal and transverse form factors 𝜌𝐿
88
+ 𝑓 𝑔(𝜔) and 𝜌𝑇
89
+ 𝑓 𝑔(𝜔) parametrize the hadronic spectral
90
+ density
91
+ H 𝜇𝜈
92
+ 𝑓 𝑔(𝑝𝑋) = (2𝜋)4 ⟨0| 𝐻𝜇
93
+ 𝑓 𝑔(0) 𝛿(4) (P − 𝑝𝑋) 𝐻𝜈†
94
+ 𝑓 𝑔(0) |0⟩
95
+ = 𝑝𝜇
96
+ 𝑋 𝑝𝜈
97
+ 𝑋 𝜌𝐿
98
+ 𝑓 𝑔(𝜔) +
99
+
100
+ 𝑝𝜇
101
+ 𝑋 𝑝𝜈
102
+ 𝑋 − 𝑔𝜇𝜈𝑝2
103
+ 𝑋
104
+
105
+ 𝜌𝑇
106
+ 𝑓 𝑔(𝜔) ,
107
+ 𝜔2 = 𝑝2
108
+ 𝑋
109
+ 𝑚2𝜏
110
+ ,
111
+ (2)
112
+ where P = (H, �P) is the QCD four–momentum operator and 𝐻𝜇
113
+ 𝑓 𝑔 = 𝑉 𝜇
114
+ 𝑓 𝑔 − 𝐴𝜇
115
+ 𝑓 𝑔 is the hadronic weak
116
+ current that mediates the decay.
117
+ In the following, we concentrate on the 𝑢𝑑-flavour channel and omit the 𝑓 𝑔 flavour indexes in
118
+ intermediate expressions. Moreover, we study separately the longitudinal (𝐿) and transverse (𝑇)
119
+ contributions to 𝑅𝑢𝑑 and also the contributions coming from the vector (𝑉 𝜇) and axial-vector (𝐴𝜇)
120
+ currents. To this end we introduce the indexes
121
+ 𝐼 = {𝐿,𝑇} ,
122
+ 𝐽 = {𝑉, 𝐴} ,
123
+ (3)
124
+ and the different components of the spectral density H 𝜇𝜈(𝑝𝑋) according to
125
+ H 𝐿
126
+ 𝐽 (𝜔) ≡ H00
127
+ 𝐽 (𝜔) ,
128
+ H𝑇
129
+ 𝐽 (𝜔) ≡ 1
130
+ 3
131
+ 3
132
+ ∑︁
133
+ 𝑖=1
134
+ H𝑖𝑖
135
+ 𝐽 (𝜔) ,
136
+ H 𝐼 (𝜔) ≡ H 𝐼
137
+ 𝑉 (𝜔) + H 𝐼
138
+ 𝐴(𝜔) ,
139
+ (4)
140
+ with
141
+ H 𝜇𝜈
142
+ 𝐽 (𝑝𝑋) ≡ (2𝜋)4 ⟨0| 𝐽𝜇(0) 𝛿(4) (P − 𝑝𝑋) 𝐽𝜈†(0) |0⟩ .
143
+ (5)
144
+ By working in the reference frame where the final hadronic state is at rest,
145
+ 𝑝𝑋 = (𝑚𝜏𝜔, �0) ,
146
+ (6)
147
+ we have
148
+ 𝑅𝐼
149
+ 𝐽 (𝜎) = 12𝜋 𝑆𝐸𝑊 |𝑉𝑢𝑑|2
150
+ ∫ ∞
151
+ 𝑟𝑢𝑑
152
+ d𝜔 H 𝐼
153
+ 𝐽 (𝜔) 𝐾𝐼
154
+ 𝜎(𝜔) ,
155
+ 𝑅𝑢𝑑 = lim
156
+ 𝜎→0 𝑅𝑢𝑑(𝜎) = lim
157
+ 𝜎→0
158
+
159
+ 𝑅𝐿
160
+ 𝑉 (𝜎) + 𝑅𝐿
161
+ 𝐴(𝜎) + 𝑅𝑇
162
+ 𝑉 (𝜎) + 𝑅𝑇
163
+ 𝐴(𝜎)
164
+
165
+ ,
166
+ (7)
167
+ where, in analogy to Refs. [6, 7], we have introduced the longitudinal (𝐾 𝐿
168
+ 𝜎) and transverse (𝐾𝑇
169
+ 𝜎)
170
+ smearing kernels
171
+ 𝐾 𝐿
172
+ 𝜎(𝜔) = (1 − 𝜔2)2
173
+ 𝜔
174
+ Θ𝜎(1 − 𝜔) ,
175
+ 𝐾𝑇
176
+ 𝜎(𝜔) = (1 − 𝜔2)2(1 + 2𝜔2)
177
+ 𝜔
178
+ Θ𝜎(1 − 𝜔) .
179
+ (8)
180
+ The function Θ𝜎(𝑥) appearing in the previous formula can be any 𝐶∞ smoothed version of the
181
+ step-function 𝜃(𝑥) such that lim𝜎↦→0 Θ𝜎(𝑥) = 𝜃(𝑥). In the following, we will consider the three
182
+ different choices given by
183
+ Θ(1)
184
+ 𝜎 (𝑥) =
185
+ 1
186
+ 1 + 𝑒−𝑥/𝜎 ,
187
+ Θ(2)
188
+ 𝜎 (𝑥) =
189
+ 1
190
+ 1 + 𝑒− sinh(𝑥/𝜎) ,
191
+ Θ(3)
192
+ 𝜎 (𝑥) = 1 + Erf (𝑥/𝜎)
193
+ 2
194
+ .
195
+ (9)
196
+ 3
197
+
198
+ Direct lattice calculation of inclusive hadronic decay rates of the 𝜏 lepton
199
+ A. Evangelista
200
+ Under the assumption that the spectral densities H 𝐼 (𝜔) are regular at the end-point of the phase-
201
+ space, i.e. 𝜔 = 1, an analytical calculation shows that the corrections to the 𝜎 ↦→ 0 limit are even
202
+ functions of 𝜎, starting at O�𝜎4�, i.e.
203
+ ∫ ∞
204
+ 𝑟𝑢𝑑
205
+ d𝜔 H 𝐼 (𝜔)
206
+
207
+ 𝐾𝐼
208
+ 𝜎(𝜔) − 𝐾𝐼
209
+ 0 (𝜔)
210
+
211
+ = O(𝜎4) ,
212
+ (10)
213
+ This assumption is of course not valid on a finite volume where the spectral densities are not regular.
214
+ Indeed, because of the quantization of the spectrum, the finite–volume spectral densities H 𝐼 (𝜔)
215
+ are sums of Dirac 𝛿-functions localized in correspondence of the eigenvalues of the finite–volume
216
+ Hamiltonian. However, precisely for this reason and as emphasized in Ref. [5], the 𝜎 → 0 limit in
217
+ Eq. (7) has to be taken after performing the necessary 𝐿 → ∞ extrapolation of the lattice data. A
218
+ detailed numerical investigation of the dependence upon the volume of our results is postponed to a
219
+ future publication. Here, see below, we simply check that the results obtained on the two ensembles
220
+ with volumes 𝐿 ≃ 5.1 fm and 𝐿 ≃ 7.6 fm are compatible within the statistical uncertainties and
221
+ then attempt a 𝜎 → 0 extrapolation by relying on Eq. (10).
222
+ The representation of 𝑅𝑢𝑑 given in Eq. (7) allows for a straightforward application of the method
223
+ developed in Ref. [5] along the lines of Ref. [7]. The starting point is the relation between the
224
+ hadronic spectral density H 𝜇𝜈
225
+ 𝐽 (𝑝𝑋) and the Euclidean two-point correlator 𝐶𝜇𝜈
226
+ 𝐽
227
+ at vanishing three-
228
+ momentum (our lattice input), i.e.
229
+ 𝐶𝜇𝜈
230
+ 𝐽 (𝑡) ≡
231
+
232
+ d3𝑥 T ⟨0| 𝐽𝜇(𝑎𝑡, �𝑥)𝐽𝜈†(0) |0⟩ = 𝑚𝜏
233
+ 2𝜋
234
+ ∫ ∞
235
+ 𝑟𝑢𝑑
236
+ 𝑑𝜔 H 𝜇𝜈
237
+ 𝐽 (𝑝𝑋) 𝑒−𝑎𝑚𝜏 𝜔𝑡,
238
+ 𝑝𝑋 = (𝑚𝜏𝜔, �0),
239
+ (11)
240
+ where 𝑡 is the Euclidean time in units of the lattice spacing 𝑎.1 The main idea is then to express the
241
+ smeared-kernels 𝐾 𝐿
242
+ 𝜎(𝜔) and 𝐾𝑇
243
+ 𝜎(𝜔) in terms of the basis function {𝑒−𝑎𝑚𝜏 𝜔𝑡}𝑡=1,...,∞, i.e.
244
+ 𝐾𝐼
245
+ 𝜎(𝜔) =
246
+
247
+ ∑︁
248
+ 𝑡=1
249
+ 𝑔𝐼 (𝑡, 𝜎)𝑒−𝑎𝑚𝜏 𝜔𝑡 .
250
+ (12)
251
+ In this way, once the coefficients 𝑔𝐼 (𝑡, 𝜎) are known, the longitudinal (𝑅𝐿
252
+ 𝐽 ) and transverse (𝑅𝑇
253
+ 𝐽 )
254
+ contributions to 𝑅𝑢𝑑 can be computed from the knowledge of
255
+ 𝐶𝐿
256
+ 𝐽 (𝑡) = − 2𝜋
257
+ 𝑚𝜏
258
+ 𝐶00
259
+ 𝐽 (𝑡) ,
260
+ 𝐶𝑇
261
+ 𝐽 (𝑡) = 2𝜋
262
+ 3𝑚𝜏
263
+ 3
264
+ ∑︁
265
+ 𝑖=1
266
+ 𝐶𝑖𝑖
267
+ 𝐽 (𝑡) ,
268
+ (13)
269
+ by using
270
+
271
+ ∑︁
272
+ 𝑡=1
273
+ 𝑔𝐼 (𝑡, 𝜎)𝐶𝐼
274
+ 𝐽 (𝑡) =
275
+ ∫ ∞
276
+ 𝑟𝑢𝑑
277
+ d𝜔 H 𝐼
278
+ 𝐽 (𝜔) 𝐾𝐼
279
+ 𝜎(𝜔) ,
280
+ (14)
281
+ and inserting the result in Eqs. (7). However, as discussed thoroughly in Refs. [5], the problem
282
+ of finding the coefficients 𝑔𝐼 (𝑡, 𝜎) presents a certain number of technical difficulties. First of all,
283
+ 1On a lattice having a finite temporal extent 𝑇, Eq. (11) must be modified replacing in the r.h.s. 𝑒−𝑎𝑚𝜏 𝜔𝑡 with
284
+ 𝑒−𝑎𝑚𝜏 𝜔𝑡 + 𝑒−𝑎𝑚𝜏 𝜔(𝑇 −𝑡).
285
+ 4
286
+
287
+ Direct lattice calculation of inclusive hadronic decay rates of the 𝜏 lepton
288
+ A. Evangelista
289
+ the sums appearing on the r.h.s. of Eqs. (12) need necessarily to be truncated at a finite value
290
+ 𝑡 = 𝑡𝑚𝑎𝑥, hence the goal is to find a finite set of coefficients 𝑔𝐼 (𝑡, 𝜎), with 𝑡 ∈ {1, . . . , 𝑡𝑚𝑎𝑥},
291
+ such that both the statistical (due to the fluctuation of 𝐶𝐼
292
+ 𝐽 (𝑡)) and the systematic errors (due to the
293
+ inexact reconstruction of the kernels) in the resulting determination of 𝑅𝐼
294
+ 𝐽 are under control. If
295
+ we were only concerned with systematic errors, the best coefficients 𝑔𝐼 (𝑡, 𝜎) could be obtained by
296
+ minimizing the quadratic form
297
+ 𝐴𝐼
298
+ 𝛼[𝒈] =
299
+ ∫ ∞
300
+ 𝐸0
301
+ d𝜔 𝑒𝑎𝑚𝜏 𝜔𝛼�� 𝑓 (𝜔; 𝒈) − 𝐾𝐼
302
+ 𝜎(𝜔)
303
+ ��2 ,
304
+ (15)
305
+ with
306
+ 𝑓 (𝜔; 𝒈) ≡
307
+ 𝑡max
308
+ ∑︁
309
+ 𝑡=1
310
+ 𝑔(𝑡, 𝜎)𝑒−𝑎𝑚𝜏 𝜔𝑡 .
311
+ (16)
312
+ Indeed, for any 𝛼 < 2 and 0 < 𝐸0 < 𝑟𝑢𝑑, the functional in Eq. (15) corresponds to a weighted
313
+ 𝐿2-norm in the functional space defined in the interval [𝐸0, ∞]. However, for small values of
314
+ 𝜎, the coefficients 𝑔𝐼 (𝑡, 𝜎) resulting from the minimization of 𝐴𝐼
315
+ 𝛼[𝒈] turn out to be very large
316
+ in magnitude and oscillating in sign, strongly amplifying the statistical errors of 𝐶𝐼
317
+ 𝐽 (𝑡) when the
318
+ 𝑡max-truncated version of the sum in Eq. (14) is evaluated (see Ref. [5] for more details on this
319
+ point).
320
+ The method of Ref. [5], provides a regularization mechanism to this problem, enabling to find an
321
+ optimal balance between statistical and systematic errors. This is achieved by minimizing a linear
322
+ combination
323
+ 𝑊 𝐼 𝐽
324
+ 𝛼 [𝒈] ≡ 𝐴𝐼
325
+ 𝛼[𝒈]
326
+ 𝐴𝐼𝛼[0] + 𝜆𝐵𝐼 𝐽 [𝒈] ,
327
+ (17)
328
+ of the norm-functional 𝐴𝐼
329
+ 𝛼[𝒈] and of the error-functional
330
+ 𝐵𝐼 𝐽 [𝒈] =
331
+ 1
332
+ (𝐶𝐼
333
+ 𝐽 (0))2
334
+ 𝑡𝑚𝑎𝑥
335
+ ∑︁
336
+ 𝑡1,𝑡2=1
337
+ 𝑔(𝑡1, 𝜎) 𝑔(𝑡2, 𝜎) CovI
338
+ J(𝑡1, 𝑡2) ,
339
+ (18)
340
+ where CovI
341
+ J(𝑡1, 𝑡2) is the covariance matrix of the lattice correlator 𝐶𝐽
342
+ 𝐼 (𝑡), and 𝜆 is the so-called
343
+ trade-off parameter [5]. For any fixed value of the algorithmic parameters 𝒑 ≡ {𝛼, 𝐸0, 𝜆, 𝑡𝑚𝑎𝑥}, the
344
+ minimization
345
+ 𝜕𝑊 𝐼 𝐽
346
+ 𝛼 [𝒈]
347
+ 𝜕𝑔(𝑡, 𝜎)
348
+ ����
349
+ 𝒈=𝒈𝐼 𝐽
350
+ 𝒑
351
+ = 0 ,
352
+ (19)
353
+ defines the coefficients 𝒈𝐼 𝐽
354
+ 𝒑 . The systematic error associated to the inexact reconstruction of the
355
+ smeared kernel,
356
+ 𝐾𝐼 𝐽
357
+ 𝒑 (𝜔) ≡ 𝑓 (𝜔; 𝒈𝐼 𝐽
358
+ 𝒑 ) =
359
+ 𝑡max
360
+ ∑︁
361
+ 𝑡=1
362
+ 𝑔𝐼 𝐽
363
+ 𝒑 (𝑡, 𝜎)𝑒−𝑎𝑚𝜏 𝜔𝑡 ,
364
+ (20)
365
+ 5
366
+
367
+ Direct lattice calculation of inclusive hadronic decay rates of the 𝜏 lepton
368
+ A. Evangelista
369
+ 0.005
370
+ 0.006
371
+ 0.007
372
+ 0.008
373
+ 0.009
374
+ 0.010
375
+ dT(gTV
376
+ p )
377
+ 1.2
378
+ 1.4
379
+ 1.6
380
+ 1.8
381
+ 2.0
382
+ 2.2
383
+ RT
384
+ V( ) |Vud|2
385
+ ensemble=B64
386
+ = 0
387
+ = 1
388
+ = 2
389
+ 0.005
390
+ 0.006
391
+ 0.007
392
+ 0.008
393
+ 0.009
394
+ 0.010
395
+ dT(gTV
396
+ p )
397
+ 1.2
398
+ 1.4
399
+ 1.6
400
+ 1.8
401
+ 2.0
402
+ 2.2
403
+ RT
404
+ V( ) |Vud|2
405
+ ensemble=B96
406
+ = 0
407
+ = 1
408
+ = 2
409
+ 0
410
+ 2
411
+ 4
412
+ 6
413
+ 8
414
+ 10
415
+ 0.0
416
+ 0.2
417
+ 0.4
418
+ 0.6
419
+ 0.8
420
+ 1.0
421
+ KT(
422
+ )
423
+ KT(
424
+ )
425
+ = 0
426
+ = 1
427
+ = 2
428
+ 0
429
+ 2
430
+ 4
431
+ 6
432
+ 8
433
+ 10
434
+ 0.04
435
+ 0.02
436
+ 0.00
437
+ 0.02
438
+ 0.04
439
+ (KT(
440
+ )
441
+ KT, V
442
+ *
443
+ (
444
+ ))
445
+ = 0
446
+ = 1
447
+ = 2
448
+ reg=TM
449
+ = 0.0500
450
+ Figure 2: Top: the contribution 𝑅𝑇
451
+ 𝑉 /|𝑉𝑢𝑑|2 obtained using 𝛼 = 0 (green), 𝛼 = 1 (yellow) and 𝛼 = 2−
452
+ (blue), is plotted against 𝑑𝑇 (𝒈𝑇 𝑉
453
+ 𝒑
454
+ ) for 𝜎 = 0.05. For 𝛼 = 2−, the rightmost (leftmost) vertical dashed line
455
+ indicates the point satisfying Eq. (23) with 𝑟 = 104 (103), while the horizontal blue band corresponds to our
456
+ final determination obtained combining in quadrature the statistical and the systematic errors. The results
457
+ are shown in the TM lattice regularization for both the B64 (top-left figure) and the B96 (top-right figure)
458
+ ensembles at 𝜎 = 0.05. Bottom: the reconstructed smearing kernels 𝐾𝑇 𝑉
459
+
460
+ (𝜔), obtained using the coefficients
461
+ 𝒈𝑇 𝑉
462
+
463
+ of Eq. (23) are compared, for 𝛼 = 0, 1, 2−, with the target one 𝐾𝑇
464
+ 𝜎(𝜔) for 𝜎 = 0.05 (bottom-left figure).
465
+ In the bottom-right figure we show 𝜔 · (𝐾𝑇
466
+ 𝜎(𝜔) − 𝐾𝑇 𝑉
467
+
468
+ (𝜔)).
469
+ can be quantified through the quantity
470
+ 𝑑𝐼 (𝒈) =
471
+
472
+
473
+ 𝐴𝐼
474
+ 0 [𝒈]
475
+ 𝐴𝐼
476
+ 0 [0] .
477
+ (21)
478
+ In the following, we will quote our best estimate for the four contributions 𝑅𝐿,𝑇
479
+ 𝑉 ,𝐴(𝜎), see Eq. (7),
480
+ performing the so-called stability analysis (see Ref. [10] and also the Supplementary Material of
481
+ Ref. [11]), which amounts to select the algorithmic parameters 𝒑 in such a way that the corresponding
482
+ 𝑑𝐼 (𝒈𝐼 𝐽
483
+ 𝒑 ) is sufficiently small and the results stable, within statistical errors, under variations of 𝒑
484
+ (the so-called statistically dominated regime).2
485
+ 3.
486
+ Numerical results
487
+ In this section, we present our preliminary results for 𝑅𝑢𝑑. These have been obtained by using
488
+ the Euclidean lattice correlators 𝐶𝐽
489
+ 𝐼 (𝑡) produced by the ETMC on the two ensembles B64 and
490
+ B96. We have considered two different discretized versions of the local weak current, peculiar to
491
+ our twisted-mass LQCD setup, that in the following will be indicated as twisted-mass (TM) and
492
+ Osterwalder-Seiler (OS) [12]. The results obtained using the two discretizations only differ by O(𝑎2)
493
+ cut-off effects, enabling us to approach the continuum limit in two different ways. Furthermore, we
494
+ 2More numerical details on this point will be given in a forthcoming publication.
495
+ 6
496
+
497
+ Direct lattice calculation of inclusive hadronic decay rates of the 𝜏 lepton
498
+ A. Evangelista
499
+ 0.00
500
+ 0.02
501
+ 0.04
502
+ 0.06
503
+ 0.08
504
+ 0.10
505
+ 0
506
+ 1
507
+ 2
508
+ 3
509
+ 4
510
+ Rud( ) |Vud|2
511
+ RL
512
+ A( ) |Vud|2
513
+ RT
514
+ A( ) |Vud|2
515
+ RL
516
+ V( ) |Vud|2
517
+ RT
518
+ V( ) |Vud|2
519
+ ens=B64 reg=TM
520
+ (1)
521
+ (2)
522
+ (3)
523
+ 0.00
524
+ 0.02
525
+ 0.04
526
+ 0.06
527
+ 0.08
528
+ 0.10
529
+ 0
530
+ 1
531
+ 2
532
+ 3
533
+ 4
534
+ Rud( ) |Vud|2
535
+ RL
536
+ A( ) |Vud|2
537
+ RT
538
+ A( ) |Vud|2
539
+ RL
540
+ V( ) |Vud|2
541
+ RT
542
+ V( ) |Vud|2
543
+ ens=B96 reg=TM
544
+ (1)
545
+ (2)
546
+ (3)
547
+ Figure 3: The decay rate 𝑅𝑢𝑑(𝜎)/|𝑉𝑢𝑑|2 as a function of 𝜎 in the range [0.0044, 0.1]. The results have
548
+ been obtained in the TM regularization and are shown for both the volumes (B64 top, B96 bottom) and for
549
+ the three choices of Θ(𝜔) in Eqs. (9). In the case Θ(1)
550
+ 𝜎 (𝜔) we also show, separately, the four contributions
551
+ 𝑅𝐿,𝑇
552
+ 𝑉 ,𝐴(𝜎)/|𝑉𝑢𝑑|2.
553
+ considered three different values,
554
+ 𝛼 = {0, 1, 2−} ,
555
+ (22)
556
+ for the parameter 𝛼 appearing in Eq. (15), where 𝛼 = 2− in practice means 𝛼 = 1.99. We set the
557
+ parameter 𝐸0 in Eq. (15) to 𝐸0 = 0.05 ≃ 0.6 𝑚 𝜋/𝑚𝜏 and use 𝑡𝑚𝑎𝑥 = 64, 96 respectively for the
558
+ ensembles B64 and B96.
559
+ In Figure 2 we show our determination of 𝑅𝑇
560
+ 𝑉 (𝜎)/|𝑉𝑢𝑑|2 in the TM regularization and at 𝜎 = 0.05,
561
+ obtained employing the three values of 𝛼 and the smeared kernel Θ(1)
562
+ 𝜎 , see Eqs. (9). The results are
563
+ shown as a function of the parameter 𝑑𝑇 (𝒈𝑇 𝑉
564
+ 𝒑
565
+ ) defined in Eq. (21) and provide an illustrative example
566
+ of our stability analysis. For large values of 𝑑𝑇 (𝒈𝑇 𝑉
567
+ 𝒑
568
+ ) the results corresponding to different values
569
+ of 𝛼 are substantially different because in this regime the reconstruction of the smearing kernel
570
+ is very bad. At very small values of 𝑑𝑇 (𝒈𝑇 𝑉
571
+ 𝒑
572
+ ), where the quality of the reconstruction becomes
573
+ excellent, the results corresponding to the different values of 𝛼 become compatible because the
574
+ statistical errors are quite large. We observe that the results corresponding to 𝛼 = 1, 2− stabilize at
575
+ much larger values of 𝑑𝑇 (𝒈𝑇 𝑉
576
+ 𝒑
577
+ ) than the 𝛼 = 0 ones. This behaviour, already observed in Ref. [11]
578
+ where the same 𝐿2-norms have been used, can be explained by noticing that for 𝛼 > 0 the presence
579
+ 7
580
+
581
+ Direct lattice calculation of inclusive hadronic decay rates of the 𝜏 lepton
582
+ A. Evangelista
583
+ 0.000
584
+ 0.025
585
+ 0.050
586
+ 0.075
587
+ 0.100
588
+ 0.125
589
+ 0.150
590
+ 0.175
591
+ 0.200
592
+ 5
593
+ 10
594
+ 15
595
+ 20
596
+ 25
597
+ Rud( ) |Vud|2
598
+ 2 dof = 0.065
599
+ Rud(
600
+ = 0) |Vud|2 = 3.675 ± 0.072
601
+ ens=B64 reg=TM
602
+ 0.00
603
+ 0.02
604
+ 0.04
605
+ 0.06
606
+ 0.08
607
+ 0.10
608
+ 3.50
609
+ 3.75
610
+ 4.00
611
+ 4.25
612
+ 4.50
613
+ (1)
614
+ (2)
615
+ (3)
616
+ 0.000
617
+ 0.025
618
+ 0.050
619
+ 0.075
620
+ 0.100
621
+ 0.125
622
+ 0.150
623
+ 0.175
624
+ 0.200
625
+ 5
626
+ 10
627
+ 15
628
+ 20
629
+ 25
630
+ Rud( ) |Vud|2
631
+ 2 dof = 0.058
632
+ Rud(
633
+ = 0) |Vud|2 = 3.562 ± 0.057
634
+ ens=B96 reg=TM
635
+ 0.00
636
+ 0.02
637
+ 0.04
638
+ 0.06
639
+ 0.08
640
+ 0.10
641
+ 3.50
642
+ 3.75
643
+ 4.00
644
+ 4.25
645
+ 4.50
646
+ (1)
647
+ (2)
648
+ (3)
649
+ Figure 4: Combined 𝜎 → 0 extrapolations of our results for 𝑅𝑢𝑑(𝜎)/|𝑉𝑢𝑑|2 obtained in the TM regulariza-
650
+ tion for both volumes. The datasets corresponding to the three choices of Θ(𝜔) appearing in Eqs. (9) have
651
+ different colours. Assuming negligible finite-volume effects, these are expected to have the same 𝜎 → 0
652
+ limit and to differ at finite 𝜎 with leading corrections of 𝑂(𝜎4). The data have been fitted using the ansatz of
653
+ Eq. (25). The green point is the result of the extrapolation while the solid curves are the fitted curves 𝑅𝑘 (𝜎)
654
+ for 𝑘 = 1 (red), 𝑘 = 2 (blue) and 𝑘 = 3 (yellow).
655
+ of the exponential 𝑒𝑎𝑚𝜏 𝜔𝛼 in Eq. (15) improves the quality of the reconstruction in the large-𝜔
656
+ region. Indeed, the errors in the reconstruction of the smearing kernels (e.g. 𝐾𝑇
657
+ 𝜎(𝜔)) for large
658
+ values of 𝜔 get amplified in the corresponding smeared quantities (e.g. 𝑅𝑇
659
+ 𝐽 (𝜎)) because, in general,
660
+ spectral densities grow asymptotically with the energy (e.g. H𝑇
661
+ 𝐽 (𝜔) ∝ 𝜔2).
662
+ For 𝛼 = 1, 2−, we found that the results obtained at the point 𝒈𝐼 𝐽
663
+
664
+ such that the condition
665
+ 𝐴𝐼
666
+ 𝛼[𝒈𝐼 𝐽
667
+ ∗ ]
668
+ 𝐴𝐼𝛼[0]
669
+ = 𝑟𝐵𝐼 𝐽 [𝒈𝐼 𝐽
670
+ ∗ ] ,
671
+ 𝑟 = 104 ,
672
+ (23)
673
+ holds true, are in the statistically dominated regime. In what follows, the central values of the
674
+ four contributions to 𝑅𝑢𝑑/|𝑉𝑢𝑑|2 in Eq. (7) are estimated by using the 𝛼 = 2− results (that are
675
+ remarkably stable) and the coefficients 𝒈𝐼 𝐽
676
+ ∗ . Residual systematic errors are instead evaluated by
677
+ re-performing the analysis using 𝑟 = 103 (see the vertical lines in Figure 2). Any variation of the
678
+ result corresponding to the choice 𝑟 = 103 w.r.t. the result corresponding to 𝑟 = 104 that goes
679
+ beyond a mere statistical fluctuation is added in quadrature to the statistical error.
680
+ In Figure 3 we show our preliminary results for 𝑅𝑢𝑑(𝜎)/|𝑉𝑢𝑑|2 obtained in the TM regularization
681
+ 8
682
+
683
+ Direct lattice calculation of inclusive hadronic decay rates of the 𝜏 lepton
684
+ A. Evangelista
685
+ 𝐿
686
+ TM (𝑎 = 0.08 fm)
687
+ OS (𝑎 = 0.08 fm)
688
+ HFLAV+HT (𝑎 = 0)
689
+ 5.1 fm
690
+ 3.675(72)
691
+ 3.550(60)
692
+ 7.6 fm
693
+ 3.562(57)
694
+ 3.676(236)
695
+
696
+ 3.6615(78)
697
+ Table 1: Preliminary results for 𝑅𝑢𝑑/|𝑉𝑢𝑑|2 obtained in this work at fixed lattice spacing 𝑎 ≃ 0.08 fm in
698
+ both the TM and OS lattice regularizations on the volumes 𝐿 ≃ 5.1 fm (ensemble B64) and 𝐿 ≃ 7.6 fm
699
+ (ensemble B96). For comparison, we also show the result obtained by taking 𝑅𝑢𝑑 form Ref. [13] (HFLAV)
700
+ and 𝑉𝑢𝑑 from Ref. [14] (HT).
701
+ by using the three different smearing kernels of Eq. (9) and 23 values of 𝜎 in the range
702
+ 𝜎 ∈ [0.0044, 0.2] .
703
+ (24)
704
+ We observe a remarkably flat behaviour for 𝜎 < 0.05 3. Moreover, the results corresponding to the
705
+ two volumes 𝐿 = 5.1 fm and 𝐿 = 7.6 fm are compatible at all values of 𝜎 within less than 1.5 standard
706
+ deviations. This implies that finite-volume effects are negligible within the quoted errors, even at
707
+ the smallest value of 𝜎 that we have considered. In the light of these observations, we attempted a
708
+ combined 𝜎 → 0 extrapolation of our results by relying on the infinite-volume asymptotic formula
709
+ of Eq. (10). On each ensemble and for each regularization, the results corresponding to the three
710
+ smearing kernels Θ(𝑘)
711
+ 𝜎 (𝑘 = 1, 2, 3) have been fitted by using the following ansatz
712
+ 𝑅𝑘(𝜎) = 𝑅 + 𝑐1,𝑘 · 𝜎4 + 𝑐2,𝑘 · 𝜎6 ,
713
+ (25)
714
+ where 𝑐1,𝑘 and 𝑐2,𝑘 are free fit parameters which depend on the smearing kernel while 𝑅 ≡
715
+ 𝑅𝑢𝑑/|𝑉𝑢𝑑|2 is the common 𝜎 = 0 extrapolation. The quality of the fits is excellent on both volumes
716
+ and for both regularizations. In the case of the TM regularization, the results of these extrapolations
717
+ are shown in Figure. 4, again for the two volumes.
718
+ In Table. 1, we report our final determination, for the two considered volumes and for both the
719
+ TM and OS regularization. For comparison, we also reported in the table the result for 𝑅𝑢𝑑/|𝑉𝑢𝑑|2
720
+ obtained by taking 𝑅𝑢𝑑 form Ref. [13] (HFLAV) and 𝑉𝑢𝑑 from Ref. [14] (HT). Although our OS
721
+ results on the B96 ensemble are still affected by a quite large uncertainty, the spread between the TM
722
+ and OS results on the B64 ensemble, where the accuracy is less than 2%, gives a first encouraging
723
+ indication about the size of the cut-off effects. We are currently performing a more detailed analysis
724
+ of all systematic effects and plan to extend the analysis to all the physical point ETMC ensembles
725
+ in order to carry out a reliable continuum limit extrapolation.
726
+ 4.
727
+ Conclusion and Outlooks
728
+ We illustrated a method that allows to compute on the lattice the inclusive hadronic decay rates of
729
+ the 𝜏 lepton without the need of perturbative and/or OPE inputs. We also presented preliminary
730
+ 3According to our experience, see e.g. Refs. [7, 10, 11], the numerical reconstruction of smearing kernels corre-
731
+ sponding to 𝜃-functions in the 𝜎 → 0 limit is much easier than in the case of kernels corresponding to Dirac 𝛿-functions.
732
+ 9
733
+
734
+ Direct lattice calculation of inclusive hadronic decay rates of the 𝜏 lepton
735
+ A. Evangelista
736
+ results for the inclusive decay rate in the 𝑢𝑑-flavour channel. These have been obtained by applying
737
+ this method on two 𝑁 𝑓 = 2 + 1 + 1 QCD gauge ensembles produced by the ETMC with physical
738
+ pion masses, at fixed cutoff 𝑎 = 0.07957(13) fm and with volumes 𝐿 = 5.09 fm and 𝐿 = 7.64 fm.
739
+ In our method, as originally proposed in Refs. [6, 7], the step-functions that define the physical
740
+ phase-space integration domain are smoothed and used as smearing kernels in the algorithm of
741
+ Ref. [5]. Controlling the limit in which the smearing radius goes to zero is a crucial step of the
742
+ method, to be performed after the necessary infinite-volume extrapolations. Our numerical results
743
+ provide a rather solid evidence that this limit can be taken with controlled theoretical and numerical
744
+ errors.
745
+ We postpone to future work a more detailed illustration of the theoretical analysis of the vanishing
746
+ smearing width limit and a thorough investigation of all systematic uncertainties, including the
747
+ required continuum extrapolations.
748
+ We also plan to extend our computation to the more phe-
749
+ nomenologically relevant 𝑢𝑠-flavour channel.
750
+ References
751
+ [1] Flavour Lattice Averaging Group (FLAG) collaboration, FLAG Review 2021, Eur. Phys. J. C 82
752
+ (2022) 869 [2111.09849].
753
+ [2] R.J. Hudspith, R. Lewis, K. Maltman and J. Zanotti, A resolution of the inclusive flavor-breaking 𝜏
754
+ |𝑉𝑢𝑠| puzzle, Phys. Lett. B 781 (2018) 206 [1702.01767].
755
+ [3] K. Maltman et al., Current Status of inclusive hadronic 𝜏 determinations of |V𝑢𝑠|, SciPost Phys. Proc.
756
+ 1 (2019) 006.
757
+ [4] RBC, UKQCD collaboration, Novel |Vus| Determination Using Inclusive Strange 𝜏 Decay and Lattice
758
+ Hadronic Vacuum Polarization Functions, Phys. Rev. Lett. 121 (2018) [1803.07228].
759
+ [5] M. Hansen, A. Lupo and N. Tantalo, Extraction of spectral densities from lattice correlators, Phys.
760
+ Rev. D 99 (2019) 094508 [1903.06476].
761
+ [6] P. Gambino and S. Hashimoto, Inclusive Semileptonic Decays from Lattice QCD, Phys. Rev. Lett. 125
762
+ (2020) 032001 [2005.13730].
763
+ [7] P. Gambino, S. Hashimoto, S. Mächler, M. Panero, F. Sanfilippo, S. Simula et al., Lattice QCD study
764
+ of inclusive semileptonic decays of heavy mesons, JHEP 07 (2022) [2203.11762].
765
+ [8] C. Alexandrou et al., Lattice calculation of the short and intermediate time-distance hadronic vacuum
766
+ polarization contributions to the muon magnetic moment using twisted-mass fermions, 2206.15084.
767
+ [9] J. Erler, Electroweak radiative corrections to semileptonic tau decays, Rev. Mex. Fis. 50 (2004) 200
768
+ [hep-ph/0211345].
769
+ [10] J. Bulava, M.T. Hansen, M.W. Hansen, A. Patella and N. Tantalo, Inclusive rates from smeared
770
+ spectral densities in the two-dimensional O(3) non-linear 𝜎-model, 2111.12774.
771
+ [11] C. Alexandrou et al., Probing the R-ratio on the lattice, 2212.08467.
772
+ [12] R. Frezzotti and G.C. Rossi, Chirally improving Wilson fermions. II. Four-quark operators, JHEP 10
773
+ (2004) 070 [hep-lat/0407002].
774
+ [13] HFLAV collaboration, Averages of 𝑏-hadron, 𝑐-hadron, and 𝜏-lepton properties as of 2021,
775
+ 2206.07501.
776
+ [14] J.C. Hardy and I.S. Towner, Superallowed 0+ → 0+ nuclear 𝛽 decays: 2020 critical survey, with
777
+ implications for V𝑢𝑑 and CKM unitarity, Phys. Rev. C 102 (2020) 045501.
778
+ 10
779
+
E9AyT4oBgHgl3EQf4_pw/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,426 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf,len=425
2
+ page_content='Direct lattice calculation of inclusive hadronic decay rates of the 𝝉 lepton A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
3
+ page_content=' Evangelista,𝑎,∗ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
4
+ page_content=' Frezzotti,𝑎 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
5
+ page_content=' Gagliardi,𝑏 V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
6
+ page_content=' Lubicz,𝑐 F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
7
+ page_content=' Sanfilippo,𝑏 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
8
+ page_content=' Simula𝑏 and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
9
+ page_content=' Tantalo𝑎 𝑎Dipartimento di Fisica and INFN, Università di Roma “Tor Vergata", Via della Ricerca Scientifica 1, I-00133 Rome, Italy 𝑏Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, Via della Vasca Navale 84, I-00146 Rome, Italy 𝑐Dipartimento di Matematica e Fisica, Università di Roma Tre and INFN, Sezione di Roma Tre, Via della Vasca Navale 84, I-00146 Rome, Italy E-mail: antonio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
10
+ page_content='evangelista@roma2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
11
+ page_content='infn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
12
+ page_content='it The inclusive hadronic decay–rates of the 𝜏 lepton are particularly interesting from the phe- nomenological point of view since they give access to the CKM matrix elements 𝑉𝑢𝑑 and 𝑉𝑢𝑠.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
13
+ page_content=' In this talk, we discuss how a recent method for the extraction of smeared spectral densities from Eu- clidean lattice correlators can be used to obtain a direct lattice determination of inclusive hadronic 𝜏 decay rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
14
+ page_content=' We also present preliminary numerical results obtained by applying this method to correlators measured on two gauge ensembles produced by the ETMC with 𝑁 𝑓 = 2 + 1 + 1 dynamical flavours at physical pion masses, lattice spacing 𝑎 ≃ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
15
+ page_content='08 fm and volumes 𝐿 ≃ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
16
+ page_content='1 fm and 𝐿 ≃ 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
17
+ page_content='6 fm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
18
+ page_content=' The 39th International Symposium on Lattice Field Theory (Lattice2022), 8-13 August, 2022 Bonn, Germany ∗Speaker © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
19
+ page_content='0 International License (CC BY-NC-ND 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
20
+ page_content='0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
21
+ page_content=' https://pos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
22
+ page_content='sissa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
23
+ page_content='it/ arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
24
+ page_content='00796v1 [hep-lat] 2 Jan 2023 Direct lattice calculation of inclusive hadronic decay rates of the 𝜏 lepton A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
25
+ page_content=' Evangelista 𝜏 𝜈𝜏 𝑓 ¯𝑔 𝑝𝜏 𝑝𝜈 𝑋 𝑓 𝑔 Figure 1: The 𝜏 → 𝜈𝜏𝑋 𝑓 𝑔 Feynman diagram (with no gluons).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
26
+ page_content=' The hadronic final state 𝑋 𝑓 𝑔, with flavour quantum numbers 𝑓 and 𝑔, has fixed 4-momentum 𝑝𝑋 = 𝑝𝜏 − 𝑝𝜈.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
27
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
28
+ page_content=' Introduction Inclusive hadronic 𝜏 decays are particularly interesting from the phenomenological viewpoint since they give access to the CKM matrix elements 𝑉𝑢𝑑 and 𝑉𝑢𝑠.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
29
+ page_content=' The determinations of 𝑉𝑢𝑠 from leptonic and semileptonic kaon decays [1] are in fairly good agreement with the one of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
30
+ page_content=' [2] but, for many years, a puzzling tension with other determinations obtained from inclusive hadronic 𝜏 decays has been observed and debated [1, 3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
31
+ page_content=' On the lattice, hadronic 𝜏 decays have been studied by using dispersion relations and by combining non-perturbative lattice inputs with perturbative and/or OPE calculations (see for example [4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
32
+ page_content=' Here we present a method to perform a fully non-perturbative direct lattice calculation of the 𝜏 ↦→ 𝑋𝜈𝜏 decay rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
33
+ page_content=' In our method, the decay rate is extracted from the two-point Euclidean correlators of the hadronic weak currents that mediate the decay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
34
+ page_content=' This is done by using the algorithm of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
35
+ page_content=' [5] that allows to extract smeared spectral densities from Euclidean lattice correlators and, building on Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
36
+ page_content=' [6, 7], by using as smearing kernels smoothed versions of the step-functions that define the physical phase-space integration domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
37
+ page_content=' We also present preliminary numerical results obtained by applying this method to the relevant cor- relators measured on two gauge ensembles produced by the Extended Twisted–Mass Collaboration (ETMC) with 𝑁 𝑓 = 2 + 1 + 1 dynamical flavours with physical pion mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
38
+ page_content=' The two ensembles, corresponding to the cB211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
39
+ page_content='072.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
40
+ page_content='64 (B64 in short) and cB211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
41
+ page_content='072.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
42
+ page_content='96 (B96 in short) entries in TABLE V of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
43
+ page_content=' [8], have the same lattice spacing, 𝑎 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
44
+ page_content='07957(13) fm, and differ only for the physical volumes that are 𝐿 = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
45
+ page_content='09 fm and 𝐿 = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
46
+ page_content='64 fm respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
47
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
48
+ page_content=' Reconstruction of the inclusive rate using the HLT method By relying on the Fermi effective theory for the weak interactions and by neglecting long–distance QED radiative corrections, the ratio 𝑅 𝑓 𝑔 of the inclusive hadronic decay rate Γ[𝜏 ↦→ 𝑋 𝑓 𝑔𝜈𝜏] with the leptonic decay rate Γ[𝜏 ↦→ 𝑒 ¯𝜈𝑒𝜈𝜏] can be expressed as 𝑅 𝑓 𝑔 = 12𝜋 𝑆𝐸𝑊 ��𝑉𝑓 𝑔 ��2 ∫ 1 𝑟 𝑓 𝑔 d𝜔 𝜔 � 1 − 𝜔2�2 � 𝜌𝐿 𝑓 𝑔(𝜔) + 𝜌𝑇 𝑓 𝑔(𝜔) � 1 + 2𝜔2�� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
49
+ page_content=' (1) In the previous formula, 𝑓 and 𝑔 label the flavour quantum numbers of the final hadronic states 𝑋 𝑓 𝑔 having four–momentum 𝑝𝑋, 𝑟 𝑓 𝑔 = 𝑚 𝑓 𝑔/𝑚𝜏 is the ratio of the mass of the lightest hadronic state and the 𝜏-mass, 𝑆𝐸𝑊 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
50
+ page_content='0201(3) is the short–distance electroweak correction [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
51
+ page_content=' The 2 Direct lattice calculation of inclusive hadronic decay rates of the 𝜏 lepton A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
52
+ page_content=' Evangelista longitudinal and transverse form factors 𝜌𝐿 𝑓 𝑔(𝜔) and 𝜌𝑇 𝑓 𝑔(𝜔) parametrize the hadronic spectral density H 𝜇𝜈 𝑓 𝑔(𝑝𝑋) = (2𝜋)4 ⟨0| 𝐻𝜇 𝑓 𝑔(0) 𝛿(4) (P − 𝑝𝑋) 𝐻𝜈† 𝑓 𝑔(0) |0⟩ = 𝑝𝜇 𝑋 𝑝𝜈 𝑋 𝜌𝐿 𝑓 𝑔(𝜔) + � 𝑝𝜇 𝑋 𝑝𝜈 𝑋 − 𝑔𝜇𝜈𝑝2 𝑋 � 𝜌𝑇 𝑓 𝑔(𝜔) , 𝜔2 = 𝑝2 𝑋 𝑚2𝜏 , (2) where P = (H, �P) is the QCD four–momentum operator and 𝐻𝜇 𝑓 𝑔 = 𝑉 𝜇 𝑓 𝑔 − 𝐴𝜇 𝑓 𝑔 is the hadronic weak current that mediates the decay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
53
+ page_content=' In the following, we concentrate on the 𝑢𝑑-flavour channel and omit the 𝑓 𝑔 flavour indexes in intermediate expressions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
54
+ page_content=' Moreover, we study separately the longitudinal (𝐿) and transverse (𝑇) contributions to 𝑅𝑢𝑑 and also the contributions coming from the vector (𝑉 𝜇) and axial-vector (𝐴𝜇) currents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
55
+ page_content=' To this end we introduce the indexes 𝐼 = {𝐿,𝑇} , 𝐽 = {𝑉, 𝐴} , (3) and the different components of the spectral density H 𝜇𝜈(𝑝𝑋) according to H 𝐿 𝐽 (𝜔) ≡ H00 𝐽 (𝜔) , H𝑇 𝐽 (𝜔) ≡ 1 3 3 ∑︁ 𝑖=1 H𝑖𝑖 𝐽 (𝜔) , H 𝐼 (𝜔) ≡ H 𝐼 𝑉 (𝜔) + H 𝐼 𝐴(𝜔) , (4) with H 𝜇𝜈 𝐽 (𝑝𝑋) ≡ (2𝜋)4 ⟨0| 𝐽𝜇(0) 𝛿(4) (P − 𝑝𝑋) 𝐽𝜈†(0) |0⟩ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
56
+ page_content=' (5) By working in the reference frame where the final hadronic state is at rest, 𝑝𝑋 = (𝑚𝜏𝜔, �0) , (6) we have 𝑅𝐼 𝐽 (𝜎) = 12𝜋 𝑆𝐸𝑊 |𝑉𝑢𝑑|2 ∫ ∞ 𝑟𝑢𝑑 d𝜔 H 𝐼 𝐽 (𝜔) 𝐾𝐼 𝜎(𝜔) , 𝑅𝑢𝑑 = lim 𝜎→0 𝑅𝑢𝑑(𝜎) = lim 𝜎→0 � 𝑅𝐿 𝑉 (𝜎) + 𝑅𝐿 𝐴(𝜎) + 𝑅𝑇 𝑉 (𝜎) + 𝑅𝑇 𝐴(𝜎) � , (7) where, in analogy to Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
57
+ page_content=' [6, 7], we have introduced the longitudinal (𝐾 𝐿 𝜎) and transverse (𝐾𝑇 𝜎) smearing kernels 𝐾 𝐿 𝜎(𝜔) = (1 − 𝜔2)2 𝜔 Θ𝜎(1 − 𝜔) , 𝐾𝑇 𝜎(𝜔) = (1 − 𝜔2)2(1 + 2𝜔2) 𝜔 Θ𝜎(1 − 𝜔) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
58
+ page_content=' (8) The function Θ𝜎(𝑥) appearing in the previous formula can be any 𝐶∞ smoothed version of the step-function 𝜃(𝑥) such that lim𝜎↦→0 Θ𝜎(𝑥) = 𝜃(𝑥).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
59
+ page_content=' In the following, we will consider the three different choices given by Θ(1) 𝜎 (𝑥) = 1 1 + 𝑒−𝑥/𝜎 , Θ(2) 𝜎 (𝑥) = 1 1 + 𝑒− sinh(𝑥/𝜎) , Θ(3) 𝜎 (𝑥) = 1 + Erf (𝑥/𝜎) 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
60
+ page_content=' (9) 3 Direct lattice calculation of inclusive hadronic decay rates of the 𝜏 lepton A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
61
+ page_content=' Evangelista Under the assumption that the spectral densities H 𝐼 (𝜔) are regular at the end-point of the phase- space, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
62
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
63
+ page_content=' 𝜔 = 1, an analytical calculation shows that the corrections to the 𝜎 ↦→ 0 limit are even functions of 𝜎, starting at O�𝜎4�, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
64
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
65
+ page_content=' ∫ ∞ 𝑟𝑢𝑑 d𝜔 H 𝐼 (𝜔) � 𝐾𝐼 𝜎(𝜔) − 𝐾𝐼 0 (𝜔) � = O(𝜎4) , (10) This assumption is of course not valid on a finite volume where the spectral densities are not regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
66
+ page_content=' Indeed, because of the quantization of the spectrum, the finite–volume spectral densities H 𝐼 (𝜔) are sums of Dirac 𝛿-functions localized in correspondence of the eigenvalues of the finite–volume Hamiltonian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
67
+ page_content=' However, precisely for this reason and as emphasized in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
68
+ page_content=' [5], the 𝜎 → 0 limit in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
69
+ page_content=' (7) has to be taken after performing the necessary 𝐿 → ∞ extrapolation of the lattice data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
70
+ page_content=' A detailed numerical investigation of the dependence upon the volume of our results is postponed to a future publication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
71
+ page_content=' Here, see below, we simply check that the results obtained on the two ensembles with volumes 𝐿 ≃ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
72
+ page_content='1 fm and 𝐿 ≃ 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
73
+ page_content='6 fm are compatible within the statistical uncertainties and then attempt a 𝜎 → 0 extrapolation by relying on Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
74
+ page_content=' (10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
75
+ page_content=' The representation of 𝑅𝑢𝑑 given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
76
+ page_content=' (7) allows for a straightforward application of the method developed in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
77
+ page_content=' [5] along the lines of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
78
+ page_content=' [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
79
+ page_content=' The starting point is the relation between the hadronic spectral density H 𝜇𝜈 𝐽 (𝑝𝑋) and the Euclidean two-point correlator 𝐶𝜇𝜈 𝐽 at vanishing three- momentum (our lattice input), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
80
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
81
+ page_content=' 𝐶𝜇𝜈 𝐽 (𝑡) ≡ ∫ d3𝑥 T ⟨0| 𝐽𝜇(𝑎𝑡, �𝑥)𝐽𝜈†(0) |0⟩ = 𝑚𝜏 2𝜋 ∫ ∞ 𝑟𝑢𝑑 𝑑𝜔 H 𝜇𝜈 𝐽 (𝑝𝑋) 𝑒−𝑎𝑚𝜏 𝜔𝑡, 𝑝𝑋 = (𝑚𝜏𝜔, �0), (11) where 𝑡 is the Euclidean time in units of the lattice spacing 𝑎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
82
+ page_content='1 The main idea is then to express the smeared-kernels 𝐾 𝐿 𝜎(𝜔) and 𝐾𝑇 𝜎(𝜔) in terms of the basis function {𝑒−𝑎𝑚𝜏 𝜔𝑡}𝑡=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
83
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
84
+ page_content=',∞, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
85
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
86
+ page_content=' 𝐾𝐼 𝜎(𝜔) = ∞ ∑︁ 𝑡=1 𝑔𝐼 (𝑡, 𝜎)𝑒−𝑎𝑚𝜏 𝜔𝑡 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
87
+ page_content=' (12) In this way, once the coefficients 𝑔𝐼 (𝑡, 𝜎) are known, the longitudinal (𝑅𝐿 𝐽 ) and transverse (𝑅𝑇 𝐽 ) contributions to 𝑅𝑢𝑑 can be computed from the knowledge of 𝐶𝐿 𝐽 (𝑡) = − 2𝜋 𝑚𝜏 𝐶00 𝐽 (𝑡) , 𝐶𝑇 𝐽 (𝑡) = 2𝜋 3𝑚𝜏 3 ∑︁ 𝑖=1 𝐶𝑖𝑖 𝐽 (𝑡) , (13) by using ∞ ∑︁ 𝑡=1 𝑔𝐼 (𝑡, 𝜎)𝐶𝐼 𝐽 (𝑡) = ∫ ∞ 𝑟𝑢𝑑 d𝜔 H 𝐼 𝐽 (𝜔) 𝐾𝐼 𝜎(𝜔) , (14) and inserting the result in Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
88
+ page_content=' (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
89
+ page_content=' However, as discussed thoroughly in Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
90
+ page_content=' [5], the problem of finding the coefficients 𝑔𝐼 (𝑡, 𝜎) presents a certain number of technical difficulties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
91
+ page_content=' First of all, 1On a lattice having a finite temporal extent 𝑇, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
92
+ page_content=' (11) must be modified replacing in the r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
93
+ page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
94
+ page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
95
+ page_content=' 𝑒−𝑎𝑚𝜏 𝜔𝑡 with 𝑒−𝑎𝑚𝜏 𝜔𝑡 + 𝑒−𝑎𝑚𝜏 𝜔(𝑇 −𝑡).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
96
+ page_content=' 4 Direct lattice calculation of inclusive hadronic decay rates of the 𝜏 lepton A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
97
+ page_content=' Evangelista the sums appearing on the r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
98
+ page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
99
+ page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
100
+ page_content=' of Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
101
+ page_content=' (12) need necessarily to be truncated at a finite value 𝑡 = 𝑡𝑚𝑎𝑥, hence the goal is to find a finite set of coefficients 𝑔𝐼 (𝑡, 𝜎), with 𝑡 ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
102
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
103
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
104
+ page_content=' , 𝑡𝑚𝑎𝑥}, such that both the statistical (due to the fluctuation of 𝐶𝐼 𝐽 (𝑡)) and the systematic errors (due to the inexact reconstruction of the kernels) in the resulting determination of 𝑅𝐼 𝐽 are under control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
105
+ page_content=' If we were only concerned with systematic errors, the best coefficients 𝑔𝐼 (𝑡, 𝜎) could be obtained by minimizing the quadratic form 𝐴𝐼 𝛼[𝒈] = ∫ ∞ 𝐸0 d𝜔 𝑒𝑎𝑚𝜏 𝜔𝛼�� 𝑓 (𝜔;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
106
+ page_content=' 𝒈) − 𝐾𝐼 𝜎(𝜔) ��2 , (15) with 𝑓 (𝜔;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
107
+ page_content=' 𝒈) ≡ 𝑡max ∑︁ 𝑡=1 𝑔(𝑡, 𝜎)𝑒−𝑎𝑚𝜏 𝜔𝑡 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
108
+ page_content=' (16) Indeed, for any 𝛼 < 2 and 0 < 𝐸0 < 𝑟𝑢𝑑, the functional in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
109
+ page_content=' (15) corresponds to a weighted 𝐿2-norm in the functional space defined in the interval [𝐸0, ∞].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
110
+ page_content=' However, for small values of 𝜎, the coefficients 𝑔𝐼 (𝑡, 𝜎) resulting from the minimization of 𝐴𝐼 𝛼[𝒈] turn out to be very large in magnitude and oscillating in sign, strongly amplifying the statistical errors of 𝐶𝐼 𝐽 (𝑡) when the 𝑡max-truncated version of the sum in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
111
+ page_content=' (14) is evaluated (see Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
112
+ page_content=' [5] for more details on this point).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
113
+ page_content=' The method of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
114
+ page_content=' [5], provides a regularization mechanism to this problem, enabling to find an optimal balance between statistical and systematic errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
115
+ page_content=' This is achieved by minimizing a linear combination 𝑊 𝐼 𝐽 𝛼 [𝒈] ≡ 𝐴𝐼 𝛼[𝒈] 𝐴𝐼𝛼[0] + 𝜆𝐵𝐼 𝐽 [𝒈] , (17) of the norm-functional 𝐴𝐼 𝛼[𝒈] and of the error-functional 𝐵𝐼 𝐽 [𝒈] = 1 (𝐶𝐼 𝐽 (0))2 𝑡𝑚𝑎𝑥 ∑︁ 𝑡1,𝑡2=1 𝑔(𝑡1, 𝜎) 𝑔(𝑡2, 𝜎) CovI J(𝑡1, 𝑡2) , (18) where CovI J(𝑡1, 𝑡2) is the covariance matrix of the lattice correlator 𝐶𝐽 𝐼 (𝑡), and 𝜆 is the so-called trade-off parameter [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
116
+ page_content=' For any fixed value of the algorithmic parameters 𝒑 ≡ {𝛼, 𝐸0, 𝜆, 𝑡𝑚𝑎𝑥}, the minimization 𝜕𝑊 𝐼 𝐽 𝛼 [𝒈] 𝜕𝑔(𝑡, 𝜎) ���� 𝒈=𝒈𝐼 𝐽 𝒑 = 0 , (19) defines the coefficients 𝒈𝐼 𝐽 𝒑 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
117
+ page_content=' The systematic error associated to the inexact reconstruction of the smeared kernel, 𝐾𝐼 𝐽 𝒑 (𝜔) ≡ 𝑓 (𝜔;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
118
+ page_content=' 𝒈𝐼 𝐽 𝒑 ) = 𝑡max ∑︁ 𝑡=1 𝑔𝐼 𝐽 𝒑 (𝑡, 𝜎)𝑒−𝑎𝑚𝜏 𝜔𝑡 , (20) 5 Direct lattice calculation of inclusive hadronic decay rates of the 𝜏 lepton A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
119
+ page_content=' Evangelista 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
120
+ page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
121
+ page_content='006 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
122
+ page_content='007 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
123
+ page_content='008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
124
+ page_content='009 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
125
+ page_content='010 dT(gTV p ) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
126
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
127
+ page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
128
+ page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
129
+ page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
130
+ page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
131
+ page_content='2 RT V( ) |Vud|2 ensemble=B64 = 0 = 1 = 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
132
+ page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
133
+ page_content='006 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
134
+ page_content='007 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
135
+ page_content='008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
136
+ page_content='009 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
137
+ page_content='010 dT(gTV p ) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
138
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
139
+ page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
140
+ page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
141
+ page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
142
+ page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
143
+ page_content='2 RT V( ) |Vud|2 ensemble=B96 = 0 = 1 = 2 0 2 4 6 8 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
144
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
145
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
146
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
147
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
148
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
149
+ page_content='0 KT( ) KT( ) = 0 = 1 = 2 0 2 4 6 8 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
150
+ page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
151
+ page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
152
+ page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
153
+ page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
154
+ page_content='04 (KT( ) KT, V ( )) = 0 = 1 = 2 reg=TM = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
155
+ page_content='0500 Figure 2: Top: the contribution 𝑅𝑇 𝑉 /|𝑉𝑢𝑑|2 obtained using 𝛼 = 0 (green), 𝛼 = 1 (yellow) and 𝛼 = 2− (blue), is plotted against 𝑑𝑇 (𝒈𝑇 𝑉 𝒑 ) for 𝜎 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
156
+ page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
157
+ page_content=' For 𝛼 = 2−, the rightmost (leftmost) vertical dashed line indicates the point satisfying Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
158
+ page_content=' (23) with 𝑟 = 104 (103), while the horizontal blue band corresponds to our final determination obtained combining in quadrature the statistical and the systematic errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
159
+ page_content=' The results are shown in the TM lattice regularization for both the B64 (top-left figure) and the B96 (top-right figure) ensembles at 𝜎 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
160
+ page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
161
+ page_content=' Bottom: the reconstructed smearing kernels 𝐾𝑇 𝑉 ∗ (𝜔), obtained using the coefficients 𝒈𝑇 𝑉 ∗ of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
162
+ page_content=' (23) are compared, for 𝛼 = 0, 1, 2−, with the target one 𝐾𝑇 𝜎(𝜔) for 𝜎 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
163
+ page_content='05 (bottom-left figure).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
164
+ page_content=' In the bottom-right figure we show 𝜔 · (𝐾𝑇 𝜎(𝜔) − 𝐾𝑇 𝑉 ∗ (𝜔)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
165
+ page_content=' can be quantified through the quantity 𝑑𝐼 (𝒈) = � � 𝐴𝐼 0 [𝒈] 𝐴𝐼 0 [0] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
166
+ page_content=' (21) In the following, we will quote our best estimate for the four contributions 𝑅𝐿,𝑇 𝑉 ,𝐴(𝜎), see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
167
+ page_content=' (7), performing the so-called stability analysis (see Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
168
+ page_content=' [10] and also the Supplementary Material of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
169
+ page_content=' [11]), which amounts to select the algorithmic parameters 𝒑 in such a way that the corresponding 𝑑𝐼 (𝒈𝐼 𝐽 𝒑 ) is sufficiently small and the results stable, within statistical errors, under variations of 𝒑 (the so-called statistically dominated regime).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
170
+ page_content='2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
171
+ page_content=' Numerical results In this section, we present our preliminary results for 𝑅𝑢𝑑.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
172
+ page_content=' These have been obtained by using the Euclidean lattice correlators 𝐶𝐽 𝐼 (𝑡) produced by the ETMC on the two ensembles B64 and B96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
173
+ page_content=' We have considered two different discretized versions of the local weak current, peculiar to our twisted-mass LQCD setup, that in the following will be indicated as twisted-mass (TM) and Osterwalder-Seiler (OS) [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
174
+ page_content=' The results obtained using the two discretizations only differ by O(𝑎2) cut-off effects, enabling us to approach the continuum limit in two different ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
175
+ page_content=' Furthermore, we 2More numerical details on this point will be given in a forthcoming publication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
176
+ page_content=' 6 Direct lattice calculation of inclusive hadronic decay rates of the 𝜏 lepton A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
177
+ page_content=' Evangelista 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
178
+ page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
179
+ page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
180
+ page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
181
+ page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
182
+ page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
183
+ page_content='10 0 1 2 3 4 Rud( ) |Vud|2 RL A( ) |Vud|2 RT A( ) |Vud|2 RL V( ) |Vud|2 RT V( ) |Vud|2 ens=B64 reg=TM (1) (2) (3) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
184
+ page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
185
+ page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
186
+ page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
187
+ page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
188
+ page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
189
+ page_content='10 0 1 2 3 4 Rud( ) |Vud|2 RL A( ) |Vud|2 RT A( ) |Vud|2 RL V( ) |Vud|2 RT V( ) |Vud|2 ens=B96 reg=TM (1) (2) (3) Figure 3: The decay rate 𝑅𝑢𝑑(𝜎)/|𝑉𝑢𝑑|2 as a function of 𝜎 in the range [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
190
+ page_content='0044, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
191
+ page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
192
+ page_content=' The results have been obtained in the TM regularization and are shown for both the volumes (B64 top, B96 bottom) and for the three choices of Θ(𝜔) in Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
193
+ page_content=' (9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
194
+ page_content=' In the case Θ(1) 𝜎 (𝜔) we also show, separately, the four contributions 𝑅𝐿,𝑇 𝑉 ,𝐴(𝜎)/|𝑉𝑢𝑑|2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
195
+ page_content=' considered three different values, 𝛼 = {0, 1, 2−} , (22) for the parameter 𝛼 appearing in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
196
+ page_content=' (15), where 𝛼 = 2− in practice means 𝛼 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
197
+ page_content='99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
198
+ page_content=' We set the parameter 𝐸0 in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
199
+ page_content=' (15) to 𝐸0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
200
+ page_content='05 ≃ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
201
+ page_content='6 𝑚 𝜋/𝑚𝜏 and use 𝑡𝑚𝑎𝑥 = 64, 96 respectively for the ensembles B64 and B96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
202
+ page_content=' In Figure 2 we show our determination of 𝑅𝑇 𝑉 (𝜎)/|𝑉𝑢𝑑|2 in the TM regularization and at 𝜎 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
203
+ page_content='05, obtained employing the three values of 𝛼 and the smeared kernel Θ(1) 𝜎 , see Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
204
+ page_content=' (9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
205
+ page_content=' The results are shown as a function of the parameter 𝑑𝑇 (𝒈𝑇 𝑉 𝒑 ) defined in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
206
+ page_content=' (21) and provide an illustrative example of our stability analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
207
+ page_content=' For large values of 𝑑𝑇 (𝒈𝑇 𝑉 𝒑 ) the results corresponding to different values of 𝛼 are substantially different because in this regime the reconstruction of the smearing kernel is very bad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
208
+ page_content=' At very small values of 𝑑𝑇 (𝒈𝑇 𝑉 𝒑 ), where the quality of the reconstruction becomes excellent, the results corresponding to the different values of 𝛼 become compatible because the statistical errors are quite large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
209
+ page_content=' We observe that the results corresponding to 𝛼 = 1, 2− stabilize at much larger values of 𝑑𝑇 (𝒈𝑇 𝑉 𝒑 ) than the 𝛼 = 0 ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
210
+ page_content=' This behaviour, already observed in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
211
+ page_content=' [11] where the same 𝐿2-norms have been used, can be explained by noticing that for 𝛼 > 0 the presence 7 Direct lattice calculation of inclusive hadronic decay rates of the 𝜏 lepton A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
212
+ page_content=' Evangelista 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
213
+ page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
214
+ page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
215
+ page_content='050 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
216
+ page_content='075 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
217
+ page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
218
+ page_content='125 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
219
+ page_content='150 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
220
+ page_content='175 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
221
+ page_content='200 5 10 15 20 25 Rud( ) |Vud|2 2 dof = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
222
+ page_content='065 Rud( = 0) |Vud|2 = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
223
+ page_content='675 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
224
+ page_content='072 ens=B64 reg=TM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
225
+ page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
226
+ page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
227
+ page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
228
+ page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
229
+ page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
230
+ page_content='10 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
231
+ page_content='50 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
232
+ page_content='75 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
233
+ page_content='00 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
234
+ page_content='25 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
235
+ page_content='50 (1) (2) (3) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
236
+ page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
237
+ page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
238
+ page_content='050 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
239
+ page_content='075 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
240
+ page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
241
+ page_content='125 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
242
+ page_content='150 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
243
+ page_content='175 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
244
+ page_content='200 5 10 15 20 25 Rud( ) |Vud|2 2 dof = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
245
+ page_content='058 Rud( = 0) |Vud|2 = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
246
+ page_content='562 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
247
+ page_content='057 ens=B96 reg=TM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
248
+ page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
249
+ page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
250
+ page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
251
+ page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
252
+ page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
253
+ page_content='10 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
254
+ page_content='50 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
255
+ page_content='75 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
256
+ page_content='00 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
257
+ page_content='25 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
258
+ page_content='50 (1) (2) (3) Figure 4: Combined 𝜎 → 0 extrapolations of our results for 𝑅𝑢𝑑(𝜎)/|𝑉𝑢𝑑|2 obtained in the TM regulariza- tion for both volumes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
259
+ page_content=' The datasets corresponding to the three choices of Θ(𝜔) appearing in Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
260
+ page_content=' (9) have different colours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
261
+ page_content=' Assuming negligible finite-volume effects, these are expected to have the same 𝜎 → 0 limit and to differ at finite 𝜎 with leading corrections of 𝑂(𝜎4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
262
+ page_content=' The data have been fitted using the ansatz of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
263
+ page_content=' (25).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
264
+ page_content=' The green point is the result of the extrapolation while the solid curves are the fitted curves 𝑅𝑘 (𝜎) for 𝑘 = 1 (red), 𝑘 = 2 (blue) and 𝑘 = 3 (yellow).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
265
+ page_content=' of the exponential 𝑒𝑎𝑚𝜏 𝜔𝛼 in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
266
+ page_content=' (15) improves the quality of the reconstruction in the large-𝜔 region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
267
+ page_content=' Indeed, the errors in the reconstruction of the smearing kernels (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
268
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
269
+ page_content=' 𝐾𝑇 𝜎(𝜔)) for large values of 𝜔 get amplified in the corresponding smeared quantities (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
270
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
271
+ page_content=' 𝑅𝑇 𝐽 (𝜎)) because, in general, spectral densities grow asymptotically with the energy (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
272
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
273
+ page_content=' H𝑇 𝐽 (𝜔) ∝ 𝜔2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
274
+ page_content=' For 𝛼 = 1, 2−, we found that the results obtained at the point 𝒈𝐼 𝐽 ∗ such that the condition 𝐴𝐼 𝛼[𝒈𝐼 𝐽 ∗ ] 𝐴𝐼𝛼[0] = 𝑟𝐵𝐼 𝐽 [𝒈𝐼 𝐽 ∗ ] , 𝑟 = 104 , (23) holds true, are in the statistically dominated regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
275
+ page_content=' In what follows, the central values of the four contributions to 𝑅𝑢𝑑/|𝑉𝑢𝑑|2 in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
276
+ page_content=' (7) are estimated by using the 𝛼 = 2− results (that are remarkably stable) and the coefficients 𝒈𝐼 𝐽 ∗ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
277
+ page_content=' Residual systematic errors are instead evaluated by re-performing the analysis using 𝑟 = 103 (see the vertical lines in Figure 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
278
+ page_content=' Any variation of the result corresponding to the choice 𝑟 = 103 w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
279
+ page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
280
+ page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
281
+ page_content=' the result corresponding to 𝑟 = 104 that goes beyond a mere statistical fluctuation is added in quadrature to the statistical error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
282
+ page_content=' In Figure 3 we show our preliminary results for 𝑅𝑢𝑑(𝜎)/|𝑉𝑢𝑑|2 obtained in the TM regularization 8 Direct lattice calculation of inclusive hadronic decay rates of the 𝜏 lepton A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
283
+ page_content=' Evangelista 𝐿 TM (𝑎 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
284
+ page_content='08 fm) OS (𝑎 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
285
+ page_content='08 fm) HFLAV+HT (𝑎 = 0) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
286
+ page_content='1 fm 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
287
+ page_content='675(72) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
288
+ page_content='550(60) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
289
+ page_content='6 fm 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
290
+ page_content='562(57) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
291
+ page_content='676(236) ∞ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
292
+ page_content='6615(78) Table 1: Preliminary results for 𝑅𝑢𝑑/|𝑉𝑢𝑑|2 obtained in this work at fixed lattice spacing 𝑎 ≃ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
293
+ page_content='08 fm in both the TM and OS lattice regularizations on the volumes 𝐿 ≃ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
294
+ page_content='1 fm (ensemble B64) and 𝐿 ≃ 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
295
+ page_content='6 fm (ensemble B96).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
296
+ page_content=' For comparison, we also show the result obtained by taking 𝑅𝑢𝑑 form Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
297
+ page_content=' [13] (HFLAV) and 𝑉𝑢𝑑 from Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
298
+ page_content=' [14] (HT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
299
+ page_content=' by using the three different smearing kernels of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
300
+ page_content=' (9) and 23 values of 𝜎 in the range 𝜎 ∈ [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
301
+ page_content='0044, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
302
+ page_content='2] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
303
+ page_content=' (24) We observe a remarkably flat behaviour for 𝜎 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
304
+ page_content='05 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
305
+ page_content=' Moreover, the results corresponding to the two volumes 𝐿 = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
306
+ page_content='1 fm and 𝐿 = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
307
+ page_content='6 fm are compatible at all values of 𝜎 within less than 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
308
+ page_content='5 standard deviations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
309
+ page_content=' This implies that finite-volume effects are negligible within the quoted errors, even at the smallest value of 𝜎 that we have considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
310
+ page_content=' In the light of these observations, we attempted a combined 𝜎 → 0 extrapolation of our results by relying on the infinite-volume asymptotic formula of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
311
+ page_content=' (10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
312
+ page_content=' On each ensemble and for each regularization, the results corresponding to the three smearing kernels Θ(𝑘) 𝜎 (𝑘 = 1, 2, 3) have been fitted by using the following ansatz 𝑅𝑘(𝜎) = 𝑅 + 𝑐1,𝑘 · 𝜎4 + 𝑐2,𝑘 · 𝜎6 , (25) where 𝑐1,𝑘 and 𝑐2,𝑘 are free fit parameters which depend on the smearing kernel while 𝑅 ≡ 𝑅𝑢𝑑/|𝑉𝑢𝑑|2 is the common 𝜎 = 0 extrapolation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
313
+ page_content=' The quality of the fits is excellent on both volumes and for both regularizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
314
+ page_content=' In the case of the TM regularization, the results of these extrapolations are shown in Figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
315
+ page_content=' 4, again for the two volumes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
316
+ page_content=' In Table.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
317
+ page_content=' 1, we report our final determination, for the two considered volumes and for both the TM and OS regularization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
318
+ page_content=' For comparison, we also reported in the table the result for 𝑅𝑢𝑑/|𝑉𝑢𝑑|2 obtained by taking 𝑅𝑢𝑑 form Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
319
+ page_content=' [13] (HFLAV) and 𝑉𝑢𝑑 from Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
320
+ page_content=' [14] (HT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
321
+ page_content=' Although our OS results on the B96 ensemble are still affected by a quite large uncertainty, the spread between the TM and OS results on the B64 ensemble, where the accuracy is less than 2%, gives a first encouraging indication about the size of the cut-off effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
322
+ page_content=' We are currently performing a more detailed analysis of all systematic effects and plan to extend the analysis to all the physical point ETMC ensembles in order to carry out a reliable continuum limit extrapolation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
323
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
324
+ page_content=' Conclusion and Outlooks We illustrated a method that allows to compute on the lattice the inclusive hadronic decay rates of the 𝜏 lepton without the need of perturbative and/or OPE inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
325
+ page_content=' We also presented preliminary 3According to our experience, see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
326
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
327
+ page_content=' Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
328
+ page_content=' [7, 10, 11], the numerical reconstruction of smearing kernels corre- sponding to 𝜃-functions in the 𝜎 → 0 limit is much easier than in the case of kernels corresponding to Dirac 𝛿-functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
329
+ page_content=' 9 Direct lattice calculation of inclusive hadronic decay rates of the 𝜏 lepton A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
330
+ page_content=' Evangelista results for the inclusive decay rate in the 𝑢𝑑-flavour channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
331
+ page_content=' These have been obtained by applying this method on two 𝑁 𝑓 = 2 + 1 + 1 QCD gauge ensembles produced by the ETMC with physical pion masses, at fixed cutoff 𝑎 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
332
+ page_content='07957(13) fm and with volumes 𝐿 = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
333
+ page_content='09 fm and 𝐿 = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
334
+ page_content='64 fm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
335
+ page_content=' In our method, as originally proposed in Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
336
+ page_content=' [6, 7], the step-functions that define the physical phase-space integration domain are smoothed and used as smearing kernels in the algorithm of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
337
+ page_content=' [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
338
+ page_content=' Controlling the limit in which the smearing radius goes to zero is a crucial step of the method, to be performed after the necessary infinite-volume extrapolations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
339
+ page_content=' Our numerical results provide a rather solid evidence that this limit can be taken with controlled theoretical and numerical errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
340
+ page_content=' We postpone to future work a more detailed illustration of the theoretical analysis of the vanishing smearing width limit and a thorough investigation of all systematic uncertainties, including the required continuum extrapolations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
341
+ page_content=' We also plan to extend our computation to the more phe- nomenologically relevant 𝑢𝑠-flavour channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
342
+ page_content=' References [1] Flavour Lattice Averaging Group (FLAG) collaboration, FLAG Review 2021, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
343
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
344
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
345
+ page_content=' C 82 (2022) 869 [2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
346
+ page_content='09849].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
347
+ page_content=' [2] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
348
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
349
+ page_content=' Hudspith, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
350
+ page_content=' Lewis, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
351
+ page_content=' Maltman and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
352
+ page_content=' Zanotti, A resolution of the inclusive flavor-breaking 𝜏 |𝑉𝑢𝑠| puzzle, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
353
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
354
+ page_content=' B 781 (2018) 206 [1702.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
355
+ page_content='01767].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
356
+ page_content=' [3] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
357
+ page_content=' Maltman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
358
+ page_content=', Current Status of inclusive hadronic 𝜏 determinations of |V𝑢𝑠|, SciPost Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
359
+ page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
360
+ page_content=' 1 (2019) 006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
361
+ page_content=' [4] RBC, UKQCD collaboration, Novel |Vus| Determination Using Inclusive Strange 𝜏 Decay and Lattice Hadronic Vacuum Polarization Functions, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
362
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
363
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
364
+ page_content=' 121 (2018) [1803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
365
+ page_content='07228].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
366
+ page_content=' [5] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
367
+ page_content=' Hansen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
368
+ page_content=' Lupo and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
369
+ page_content=' Tantalo, Extraction of spectral densities from lattice correlators, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
370
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
371
+ page_content=' D 99 (2019) 094508 [1903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
372
+ page_content='06476].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
373
+ page_content=' [6] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
374
+ page_content=' Gambino and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
375
+ page_content=' Hashimoto, Inclusive Semileptonic Decays from Lattice QCD, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
376
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
377
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
378
+ page_content=' 125 (2020) 032001 [2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
379
+ page_content='13730].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
380
+ page_content=' [7] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
381
+ page_content=' Gambino, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
382
+ page_content=' Hashimoto, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
383
+ page_content=' Mächler, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
384
+ page_content=' Panero, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
385
+ page_content=' Sanfilippo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
386
+ page_content=' Simula et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
387
+ page_content=', Lattice QCD study of inclusive semileptonic decays of heavy mesons, JHEP 07 (2022) [2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
388
+ page_content='11762].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
389
+ page_content=' [8] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
390
+ page_content=' Alexandrou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
391
+ page_content=', Lattice calculation of the short and intermediate time-distance hadronic vacuum polarization contributions to the muon magnetic moment using twisted-mass fermions, 2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
392
+ page_content='15084.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
393
+ page_content=' [9] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
394
+ page_content=' Erler, Electroweak radiative corrections to semileptonic tau decays, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
395
+ page_content=' Mex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
396
+ page_content=' Fis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
397
+ page_content=' 50 (2004) 200 [hep-ph/0211345].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
398
+ page_content=' [10] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
399
+ page_content=' Bulava, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
400
+ page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
401
+ page_content=' Hansen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
402
+ page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
403
+ page_content=' Hansen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
404
+ page_content=' Patella and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
405
+ page_content=' Tantalo, Inclusive rates from smeared spectral densities in the two-dimensional O(3) non-linear 𝜎-model, 2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
406
+ page_content='12774.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
407
+ page_content=' [11] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
408
+ page_content=' Alexandrou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
409
+ page_content=', Probing the R-ratio on the lattice, 2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
410
+ page_content='08467.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
411
+ page_content=' [12] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
412
+ page_content=' Frezzotti and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
413
+ page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
414
+ page_content=' Rossi, Chirally improving Wilson fermions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
415
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
416
+ page_content=' Four-quark operators, JHEP 10 (2004) 070 [hep-lat/0407002].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
417
+ page_content=' [13] HFLAV collaboration, Averages of 𝑏-hadron, 𝑐-hadron, and 𝜏-lepton properties as of 2021, 2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
418
+ page_content='07501.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
419
+ page_content=' [14] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
420
+ page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
421
+ page_content=' Hardy and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
422
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
423
+ page_content=' Towner, Superallowed 0+ → 0+ nuclear 𝛽 decays: 2020 critical survey, with implications for V𝑢𝑑 and CKM unitarity, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
424
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
425
+ page_content=' C 102 (2020) 045501.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
426
+ page_content=' 10' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf'}
ENA0T4oBgHgl3EQfA_81/content/tmp_files/2301.01969v1.pdf.txt ADDED
@@ -0,0 +1,1530 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Prepared for submission to JINST
2
+ Imaging of muon track in CsI(Tl) crystal with
3
+ single photon sensitive camera
4
+ Zhimin Wang,a,b,c,1 Min Li,a,b Diru Wu,a,b Jinchang Liu,a,c Yongpeng Zhang,a,c
5
+ Xiangcheng Meng,a Caimei Liu,a,b Changgen Yanga,b
6
+ aInstitute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
7
+ bUniversity of Chinese Academy of Sciences, Beijing 100049, China
8
+ cState Key Laboratory of Particle Detection and Electronics, Beijing 100049, China
9
+ E-mail: [email protected]
10
+ Abstract: As a novel approach on visual photon imaging by a single photon sensitive
11
+ camera and PMTs, this work is trying to measure and identify muon tracks from the 2-D
12
+ images of CsI(Tl) crystal (scintillator detectors). It is possible that muon tracks can be
13
+ seen directly with a good signal-to-noise ratio neither with further amplification nor external
14
+ light, which provides an evolution method for particle measurement in the photon-starved
15
+ regime of scintillation detectors. The setup of the crystal and camera testing system and
16
+ the identification algorithm of muon track will be discussed in detail including the system
17
+ calibration, identification model, signal-to-noise ratio, muon track confirmation, and an
18
+ expectation on further improvements and applications.
19
+ Keywords: photon detectors, scintillator detector, imaging, single photon, camera, muon
20
+ track
21
+ ArXiv ePrint: 1234.56789
22
+ 1Corresponding author.
23
+ arXiv:2301.01969v1 [physics.ins-det] 5 Jan 2023
24
+
25
+ Contents
26
+ 1
27
+ Introduction
28
+ 1
29
+ 2
30
+ CsI(Tl) crystal with camera
31
+ 2
32
+ 2.1
33
+ Setup
34
+ 2
35
+ 2.2
36
+ Calibration
37
+ 3
38
+ 3
39
+ Muon track
40
+ 5
41
+ 3.1
42
+ Signal vs. Noise
43
+ 5
44
+ 3.2
45
+ Image track survey
46
+ 8
47
+ 3.3
48
+ Muon identification
49
+ 10
50
+ 4
51
+ Discussion
52
+ 12
53
+ 4.1
54
+ Muon tracks or not?
55
+ 12
56
+ 4.2
57
+ Possible system optimization
58
+ 13
59
+ 4.3
60
+ Further applications
61
+ 13
62
+ 5
63
+ Summary
64
+ 14
65
+ 1
66
+ Introduction
67
+ Vertex and track reconstruction are critical for most particle physics experiments, such as
68
+ studies on neutrino, dark matter, and others. There is a long list of related technologies
69
+ including but not limited to emulsion film[1–3], cloud chamber[4], bubble chamber[5], spark
70
+ chamber[6], multi-wire proportional chamber[7], TPC[8], Si strip[9] and Si pixel[10] etc. In
71
+ the case of photon-based detection, in particular, PMT or SiPM is the commonly used sensor
72
+ for timing, intensity, and crude spatial reconstruction, such as JUNO[11, 12], Darkside[13],
73
+ JUNO-TAO[14], SNO+[15, 16], and DUNE[17] etc., where computer algorithms are further
74
+ used to have a better reconstruction on the vertex or track[18–20].
75
+ Recently, many efforts are focusing on photon imaging-related projects following the
76
+ new development of sensors, where the critical challenges are the need for high spatial
77
+ resolution over large volumes[21] and better effective signal-to-noise ratio under the photon-
78
+ starved regime.
79
+ For many years classical emulsion film radiography is being replaced by digital detec-
80
+ tor imaging, especially in medical applications due to faster and more reliable diagnostics
81
+ and computed tomography and tomosynthesis capabilities[22]. The single photon count-
82
+ ing X-ray CCD camera spectrometer is used in laser-plasma interaction experiments as a
83
+ simple tool to study the K-shell X-ray generation. A CCD detector enables the spectrum
84
+ of the impinging X-ray radiation to be obtained without further dispersive devices[23].
85
+ – 1 –
86
+
87
+ Among the imaging systems used for thermal neutron imaging worldwide, the most preva-
88
+ lent configuration is CCD camera based[24].
89
+ Single-photon light detection and ranging
90
+ (lidar) offers single-photon sensitivity and picosecond timing resolution, which is desirable
91
+ for high-precision three-dimensional (3D) imaging over long distances[25]. Single image 3D
92
+ photography enables viewers to view a still image from novel viewpoints[26]. Some good
93
+ sensors are developed too, such as SPC3[27], a single photon counting camera based on a
94
+ 2-D imaging array. A small, high resolution, high signal-to-noise GEM-based TPC with a
95
+ 2-D CCD readout designed to provide a benchmark for background discrimination and di-
96
+ rectional sensitivity that could be used for future optimization studies for directional dark
97
+ matter experiments [28, 29]. A skipper CCD was also developed for very low noise and
98
+ directly measured a muon track through ionization inside the sensor[30].
99
+ But, generally, it is not suitable to directly image of vertex or track in case of a starved-
100
+ photon regime and uniform angular distribution of the photons[21, 31]. Photography by
101
+ CCD or other technologies, in particular single photon imaging, provides another new pos-
102
+ sibility, such as our previous study for particle imaging by event[32].
103
+ In this article, we will try to have a further detailed check on the imaging of muon track
104
+ in CsI(Tl) crystal with a single photon sensitive camera and PMTs. Sec.2 will introduce
105
+ the system setup and calibration. Sec.3 will discuss the expected features of muon tracks,
106
+ measurements, and track surveys.
107
+ Sec.4 will provide further discussions on the results,
108
+ possible improvements of the system, and further expectations. And a short summary is in
109
+ Sec.5.
110
+ 2
111
+ CsI(Tl) crystal with camera
112
+ 2.1
113
+ Setup
114
+ An imaging system, as in [32], is set up with a single photon sensitive camera of ORCA-
115
+ Quest qCMOS C15550-20UP, which is a new product of Hamamatsu Photonics [33]. The
116
+ detailed layout of the system is shown in Fig. 1. The output of the camera will save in tif
117
+ format with 16 bits of each of the 4096(H)×2304(V) pixels and the volume of each photo is
118
+ around 16 MB. The CsI(Tl) crystal (7.5×7.5×15 cm3) is located in front of the camera and
119
+ the two 3-inch PMTs, where the distance between them can be adjusted. An alpha source
120
+ of 241Am is used and put on the top surface of the crystal. The two 3-inch PMTs are used
121
+ to calibrate and monitor the signal intensity of the crystal, the coincidence of which is used
122
+ as a trigger of the CAEN DT5751 (1 GS/s with 1 V p-p dynamic range, [34]) for waveform
123
+ data taking. The threshold of each 3-inch PMT is set to around 1 p.e. (photon-electron).
124
+ The maximum rate of the data-taking system is limited by the DT5751, which is generally
125
+ lower than 100 Hz with data saving of four channels and 10000 samples of each channel.
126
+ Here the window length of the waveform recording is set to 6 µs (6000 samples/waveform),
127
+ and the maximum data-taking rate is around 70-80 Hz.
128
+ In order to increase the acceptance of the emitted photons from the crystal, a lens with
129
+ a much short focal length and small number aperture (1/2”, C type, 6-∞ mm, f/1.4) is used.
130
+ The images of the crystal with different distances are shown in Fig. 2, which are taken with
131
+ illumination before the dark box is closed. The field of view with the used lens is in a circle
132
+ – 2 –
133
+
134
+ Figure 1: Layout of the imaging measurement system.
135
+ and much smaller than the full size of the camera sensor. The circle shape and its outside
136
+ of the field of view will be considered in the following measurement and analysis. Please
137
+ note that there is a clear distortion around the edge of the field of view (crystal region)
138
+ when the object distance is too small as in Fig. 2b.
139
+ (a) 15 cm
140
+ (b) 4 cm
141
+ Figure 2: Crystal photos when the dark box is open with natural illumination and different
142
+ object distances.
143
+ 2.2
144
+ Calibration
145
+ Fig. 3a shows the measured charge spectra with the alpha source located when the object
146
+ distance is around 15 cm: the two 3-inch PMTs and the sum of them. A long tail can be
147
+ found at the right of the spectrum, which is known as cosmic muons. A 400 p.e. cut to the
148
+ sum spectrum is used to select the events of muons. A factor of particle identification (PID)
149
+ is calculated by each waveform of each PMT, and it is defined by the ratio of the charge in
150
+ the first 300 ns to the whole window, as shown in Fig. 3b. A 2-D cut on the PID is used to
151
+ identify the events from the alpha source, the red dash line (PID_pmt_0+PID_pmt_1)
152
+ as shown in Fig. 3c.
153
+ The selected spectra are shown in Fig. 3d, where the blue curve
154
+ is selected as the alpha-like events by (PID_pmt_0+PID_pmt_1>0.5), the Magenta
155
+ – 3 –
156
+
157
+ couple
158
+ Source
159
+ Camera
160
+ Lens
161
+ Power
162
+ USB cable
163
+ Crystal
164
+ Dark Boxcurve is selected for the muon events candidates by (PID_pmt_0+PID_pmt_1<0.5 and
165
+ charge_pmt_0+charge_pmt_1>400 p.e.), and the green curve is assumed as the gamma-
166
+ like events by (PID_pmt_0+PID_pmt_1<0.5).
167
+ (a) Charge spectra of eac PMT and sum
168
+ (b) PID of each event of each PMT
169
+ (c) 2-D distribution of PID of the two PMTs
170
+ (d) Selected events by PID and charge
171
+ Figure 3: Measured charge spectra by the 3-inch PMTs, and the PID distrbution of the
172
+ waveform.
173
+ Taking into account the dead time of the data-taking system, the actual event rate of
174
+ each measurement is re-normalized according to the selected muon rate, where the reference
175
+ muon rate of the crystal is from the measurement and selection of without source with object
176
+ distance of 15 cm.
177
+ It is around 3 Hz for selected muons, 2.6 Hz for gamma-like events,
178
+ and 2.2 Hz for alpha-like events of the measurement without source and object distance of
179
+ 15 cm. The data-taking rate and the re-normalized rate are listed in Table 1 for different
180
+ configurations. The rate of alpha-like events is around 100 Hz and increases from 93 Hz to
181
+ 188 Hz following the shortening of the object distance from 15 cm to 4 cm. The contribution
182
+ from the alpha source is much higher than that from the background of around 2.2 Hz.
183
+ Following the classification of the events, the mean charge of each kind of event is
184
+ calculated too. The mean charge of the alpha-like events is 130 p.e. of 15 cm, 150 p.e. of
185
+ 10 cm, and 159 p.e. of 4 cm, respectively. The signal intensity is not following the solid angle
186
+ simply, for the 4 cm, in particular, which is because the distance to the 3-inch PMTs is
187
+ rather small than the object distance of the camera to the crystal according to the layout
188
+ of the system. The mean intensity of the muon events is around 2100 p.e., which suffers
189
+ from statistic uncertainty and solid angle issues too.
190
+ The images of the crystal with the alpha source are taken by the camera with di���erent
191
+ exposure times and different object distances. The region of the source is selected and shown
192
+ in Fig. 4, where the selected image dimension of the sensor is around 0.23 mm ×0.28 mm
193
+ – 4 –
194
+
195
+ Count
196
+ Sum single_S
197
+ sPMT single 0
198
+ 102
199
+ sPMT single1
200
+ 10
201
+ 10
202
+ 102
203
+ 103
204
+ Charge/peCount
205
+ 700
206
+ h1D_pidpmto
207
+ 600
208
+ h1D pid pmt1
209
+ 500
210
+ 400
211
+ 300
212
+ 200
213
+ 100
214
+ 0.2
215
+ 0.4
216
+ 0.6
217
+ 0.8
218
+ PIDPMT_
219
+ 16
220
+ 14
221
+ 0.8
222
+ 12
223
+ 0.6
224
+ 10
225
+ 8
226
+ 0.4
227
+ 6
228
+ 4
229
+ 0.2
230
+ 0.2
231
+ 0.4
232
+ 0.6
233
+ 0.8
234
+ C
235
+ 0
236
+ PMT 0Count
237
+ 10
238
+ Sum singleS
239
+ Sum_single_S_high
240
+ Sum_single_S_low
241
+ Sumsingle_S_low_gamma
242
+ 102
243
+ SumsingleSlowmuon
244
+ 10
245
+ 10
246
+ 102
247
+ 103
248
+ Charge/peTable 1: Event rate and charge intensity of crystal with two 3-inch PMTs. The distance
249
+ is between the camera and the crystal front surface.
250
+ The events are measured by the
251
+ coincidence by the two 3-inch PMTs, and the charge is from the sum of the two PMTs
252
+ of each event. The alpha-like events are selected by the sum of PID, and the separation
253
+ between muon and gamma-like is by a charge cut after the PID cut.
254
+ Type
255
+ DAQ Rate
256
+ Normalized
257
+ Rate (Hz)
258
+ Mean Charge (p.e.)
259
+ (Distance)
260
+ (Hz)
261
+ Rate (Hz)
262
+ Muon
263
+ Gamma-like
264
+ Alpha-like
265
+ Muon
266
+ Gamma-like
267
+ Alpha-like
268
+ w/o source 15 cm
269
+ ∼8
270
+ 7.8
271
+ 3.0
272
+ 2.6
273
+ 2.2
274
+ 2099.0
275
+ 181.3
276
+ 124.5
277
+ w/ source 15 cm
278
+ ∼80
279
+ 93.1
280
+ 3.0
281
+ 6.2
282
+ 83.9
283
+ 2108.9
284
+ 184.0
285
+ 130.2
286
+ w/ source 10 cm
287
+ ∼70
288
+ 160.1
289
+ 3.0
290
+ 18.2
291
+ 138.9
292
+ 2057.4
293
+ 204.0
294
+ 150.4
295
+ w/ source 4 cm
296
+ ∼70
297
+ 188.9
298
+ 3.0
299
+ 21.3
300
+ 164.6
301
+ 2062.8
302
+ 207.1
303
+ 159.5
304
+ with 50 pixel (V) ×60 pixels (H) and 4.6 µm × 4.6 µm per pixel. The regime of the alpha
305
+ source can be identified as around 3 mm scale of an object distance of 15 cm, 2 mm scale
306
+ of 10 cm, and 1 mm scale of 4 cm, and the light intensity gradually dims when shortening
307
+ the exposure time. It is almost identified to event level with 0.05 s exposure time but on a
308
+ higher noise background, where only a few alphas occur during the time. The dimension of
309
+ the image of the source is enlarging when the object distance reduces as expected.
310
+ The intensity of the source region is integrated and converted into p.e. as shown in
311
+ Fig. 5, where the noise (baseline is around 200 ADC) of the camera is subtracted according
312
+ to a parallel region of the source with equal area [32].
313
+ The conversion factor is around
314
+ 7.8 ADC/p.e. The diameter of the source region is 21 pixels for an object distance of 15 cm,
315
+ 22 pixels for 10 cm, and 33 pixels for 4 cm. The fitted intensity per second by a linear curve
316
+ is around 314 p.e. of an object distance of 15 cm, 862 p.e. of 10 cm, and 2255 p.e. of 4 cm,
317
+ respectively.
318
+ Considering the rate of the alpha source measured under different object
319
+ distances as in Tab. 1, the ratio of measured charge intensity of the camera and the PMTs
320
+ is around 3% of an object distance of 15 cm, 4% of 10 cm, and 8% of 4 cm, respectively.
321
+ The expected typical charge intensity of alpha-like event viewed by the camera is around
322
+ 3.9 p.e. of an object distance of 15 cm, 6.0 p.e. of 10 cm, and 12.8 p.e. of 4 cm, respectively.
323
+ The expected typical charge intensity of each muon viewed by the camera is around 60 p.e. of
324
+ an object distance of 15 cm, 85 p.e. of 10 cm, and 177 p.e. of 4 cm, respectively.
325
+ 3
326
+ Muon track
327
+ 3.1
328
+ Signal vs. Noise
329
+ As stated in [32], the noise of the camera is still much higher than the traditional used
330
+ PMT or SiPM, which is much worse when we are trying to use many pixels for imaging
331
+ measurement. It can be expected that it will help to identify the target by a smaller area
332
+ and stronger intensity of the same object, as seen in the left plateau of the curves in Fig. 5,
333
+ where the difference of the plateau level (noise) is mainly from the dimension of the imaging
334
+ area. The minimum of the plateau is from the object distance of 15 cm configuration, which
335
+ is proportional to the ratio squared of the focal length to object distance, even the final
336
+ – 5 –
337
+
338
+ Figure 4: 2-D images of alpha source with object distances of 15 cm (50 pixel (V) ×60 pixels
339
+ (H), left), 10 cm (50 pixel (V) ×60 pixels (H), middle) and 4 cm (50 pixel (V) ×60 pixels (H),
340
+ right) versus exposure time of 60 s, 1 s, 100 ms, 50 ms and 20 ms. The pixel size is 4.6 µm
341
+ × 4.6 µm. The z-axis is in the unit of ADC which is the camera output per pixel directly
342
+ relative to the light intensity. The baseline of each pixel is around 200 ADC, and the gain
343
+ factor is around 7.8 ADC/p.e.
344
+ signal-to-noise (SN) ratio is also proportional to the square of the reciprocal of focal length
345
+ except for the effective aperture.
346
+ A calculation is further executed to compare the effect of the imaging shape under the
347
+ same noise level. Here a pure statistic model is used to check the mean of each pixel and
348
+ total sum with an assumption of 0.3 p.e. noise level per pixel (sigma of Gaussian) in a circle
349
+ (diameter) or line (in length and in width of one pixel) shape. The uncertainty of the mean
350
+ of each pixel is inversely proportional to the square root of total pixel numbers as shown in
351
+ Fig. 6a, where more pixels will have smaller fluctuation comparing circles to lines. While
352
+ the total sum of all pixels is proportional to the square root of pixel numbers shown in
353
+ Fig. 6b, where the required sum in lines is much smaller than that of in circles to identify
354
+ a signal. If we aim to identify a signal by a three-times signal-to-noise ratio with similar
355
+ – 6 –
356
+
357
+ 15cm
358
+ 10cm
359
+ 183
360
+ 1695
361
+ -
362
+ 1515
363
+ 1825
364
+ 4cm
365
+ 1400
366
+ 169
367
+ 1510
368
+ 60s
369
+ 1820
370
+ 60s
371
+ 1200
372
+ 1685
373
+ 1815
374
+ 168
375
+ 1810
376
+ 1000
377
+ 1675
378
+ 1805
379
+ 800
380
+ 1670
381
+ 0081
382
+ 1665
383
+ 1795
384
+ 600
385
+ 1660
386
+ 1790
387
+ 400
388
+ 1655
389
+ 1785
390
+ 1968
391
+ 1780
392
+ 1830
393
+ 4cm
394
+ 212
395
+ 1695
396
+ 15cm
397
+ 1515
398
+ 10cm
399
+ 1825
400
+ 211
401
+ 1690
402
+ 1s
403
+ 1510
404
+ 1820
405
+ 1s
406
+ 1685
407
+ 210
408
+ 1505
409
+ 1815
410
+ 1680
411
+ 1500
412
+ 1810
413
+ 209
414
+ 1675
415
+ 1495
416
+ 208
417
+ 1670
418
+ 1490E
419
+ 1800
420
+ 207
421
+ 1665
422
+ 1485E
423
+ 1795
424
+ 206
425
+ 1660
426
+ 1480
427
+ 1790
428
+ 1655
429
+ 1475
430
+ 1785
431
+ 205
432
+ 160
433
+ 1790
434
+ 15cm
435
+ 1520
436
+ 10cm
437
+ -
438
+ 1695
439
+ :
440
+ 4cm
441
+ 1515
442
+ 211
443
+ 1690
444
+ 100ms
445
+ 100ms
446
+ 100ms
447
+ 1685
448
+ 1505
449
+ 1815
450
+ 1810月
451
+ 209
452
+ 1680
453
+ 1500
454
+ 1675
455
+ 208
456
+ 1670
457
+ 1490
458
+ 1800E
459
+ 1665E
460
+ 1485
461
+ 1795
462
+ :
463
+ 206
464
+ 1660
465
+ 1480
466
+ 1790
467
+ 1785
468
+ 205
469
+ 1655
470
+ 1475
471
+ 190
472
+ 204
473
+ 1520
474
+ -
475
+ 212
476
+ 10cm
477
+ -4cm
478
+ 1695
479
+ 15cm
480
+ 1515
481
+ 211
482
+ 1510
483
+ 50ms
484
+ 1820
485
+ 50ms
486
+ 50ms
487
+ 210
488
+ 1685
489
+ :
490
+ 1505
491
+ -
492
+ 1815
493
+ 1500
494
+ 1810
495
+ 209
496
+ 1680
497
+ 1675
498
+ -
499
+ 1495
500
+ :
501
+ 1805
502
+ 208
503
+ 1670
504
+ 1490
505
+ 1800
506
+ 207
507
+ 1665E
508
+ 1485
509
+ 1795
510
+ 206
511
+ 1660
512
+ 1480
513
+ 1790
514
+ 1655
515
+ 1475
516
+ 1785
517
+ 205
518
+ 1R50E
519
+ 1470元
520
+ -
521
+ AEA
522
+ AA7A
523
+ 178
524
+ 70
525
+ 04
526
+ 1700
527
+ 1520
528
+ 1830
529
+ 212
530
+ 15cm
531
+ -
532
+ 1695
533
+ 1515
534
+ 10cm
535
+
536
+ 1825
537
+ 211
538
+ 1690
539
+ 20ms
540
+ 1510
541
+ 20ms
542
+ 1820
543
+ 20ms
544
+ 210
545
+ 1685
546
+ 1505
547
+ 1815
548
+ 1680
549
+ 1500
550
+ 1810
551
+ 209
552
+ 1675
553
+ 1805
554
+ 208
555
+ 1670E
556
+ 1490
557
+ 1800E
558
+ 207
559
+ 1665
560
+ 1485
561
+ -
562
+ 1795
563
+ 206
564
+ 1660
565
+
566
+ 1480
567
+ 1790
568
+ 1655E
569
+ 1475
570
+ 1785
571
+ -
572
+ :
573
+ 1479020
574
+ 165010
575
+ 2030
576
+ 2040
577
+ 2020
578
+ 2030
579
+ 2040
580
+ 2050
581
+ 2060
582
+ 2060
583
+ 2070
584
+ 179640
585
+ 2050
586
+ 2060
587
+ 2070
588
+ 2080
589
+ Hpixel
590
+ Hpie
591
+ 2090
592
+ 2100Figure 5: Measured intensity of alpha source by camera versus exposure time under dif-
593
+ ferent object distances.
594
+ total intensity, the signal in a line is much more effective than that in a circle.
595
+ (a) Uncertainty of the mean of each pixel: in
596
+ p.e.
597
+ (b) Sum of noise vs. dimension: in p.e.
598
+ Figure 6: Pure noise versus image dimension in circles or lines.
599
+ Following this strategy, an alpha-like event in a circle is difficult to be identified directly
600
+ according to their aimed imaging area and captured light intensity if we only can locate
601
+ a range of an image by one camera as in [32]. While, in another hand, a muon track is
602
+ a good candidate to check if we assume its image follows a straight line with tiny width.
603
+ With the configurations of the crystal system (20000 photons/MeV, 2 MeV/cm, focal length
604
+ 6 mm, sensor quantum efficiency 30%, a 4 cm track, around 8 p.e./cm and 330 pixels/cm at
605
+ an object distance of 4 cm), we can anticipate the averaged intensity of each pixel along the
606
+ muon track imaging versus object distance and effective numerical aperture (ap), as shown
607
+ in Fig. 7a. A smaller object distance and effective numerical aperture mean more light is
608
+ collected with the same focal length and lens diameter. The expected signal-to-noise ratio
609
+ with the assumption of 0.3 p.e. noise, and 4 cm track length can be further checked as shown
610
+ in Fig. 7b, and it is around three times SN when the object distance is 4 cm.
611
+ – 7 –
612
+
613
+ Average inpeperpixel
614
+ average_circle_pixel
615
+ 10
616
+ average_line_pixel
617
+ 10-2
618
+ 10-3
619
+ 10
620
+ 0
621
+ 100
622
+ 200
623
+ 300
624
+ 400
625
+ 500
626
+ DimensioninpixelTotalsuminpe
627
+ 102
628
+ 10
629
+ sum_pe circle
630
+ sum pe line
631
+ 0
632
+ 100
633
+ 200
634
+ 300
635
+ 400
636
+ 500
637
+ DimensioninpixelIntensity
638
+ 105
639
+ 1 2inch 6mm 4cm
640
+ 104
641
+ 1 2inch 6mm 10cm
642
+ 1 2inch 6mm 15cm
643
+ 103
644
+ 102
645
+ 10
646
+ 10-3
647
+ 10-2
648
+ 10-1
649
+ 10
650
+ Exposuretime/s(a) Averaged intensity of muon track in pixel
651
+ (b) S/N expectation following the model
652
+ Figure 7:
653
+ Intensity and signal-to-noise ratio of a muon track:
654
+ 20000 photons/MeV,
655
+ 2 MeV/cm, focal length 6 mm, sensor quantum efficiency 30%, a 4 cm track, around
656
+ 8 p.e./cm and 330 pixels/cm at object distance of 4 cm.
657
+ The measured total intensity of a track will increase following the track length as shown
658
+ in Fig. 8a, where a length of 10 mm track means around 330 pixels with 6 mm focal length
659
+ and 4 cm object distance. The signal-to-noise ratio also will improve following the track
660
+ length increasing as in Fig. 8b. The effect of the noise level in each pixel is further evaluated
661
+ in Fig. 8c. It will reach around three times the signal-to-noise level with 0.3 p.e. noise level,
662
+ 4 cm track length, 6 mm focal length, 1.4 aperture, and 4 cm object distance. A smaller
663
+ noise per pixel and smaller aperture will help improve the signal-to-noise ratio as well as
664
+ larger optical lens dimensions.
665
+ 3.2
666
+ Image track survey
667
+ The images of the crystal system with the alpha source and 1 s exposure time are taken.
668
+ Fig. 9 shows an example of the image, where the location of the alpha source can be identified
669
+ clearly, and it will be used as an online anchor for light intensity and location.
670
+ While
671
+ according to the calculation in Sec. 3.1, the object distance of 4 cm configuration is run
672
+ continuously for 30 s to check out possible muon racks with better signal-to-noise ratio.
673
+ With the images (object distance of 4 cm as an example), a survey was done to each
674
+ assumed line in aimed pixel range (from vertical line 1700 to vertical line 1600, the minimum
675
+ track length is around 100 pixels) following the strategy, where the averaged intensity of each
676
+ pixel is calculated among each assumed lines as shown in Fig. 10a and Fig. 10c. In Fig. 10a, a
677
+ green dotted line is also plotted, which is a used cut of five times of noise uncertainty which
678
+ is relative to the pixel number in a model (0.3*7.8 ADC/sqrt(pixel number)). Some tracks
679
+ can be identified as tagged in red and shown in Fig. 10c. The sum of each assumed track
680
+ is also plotted in Fig. 10b and Fig. 10d including the selected possible track candidates. An
681
+ offset of the pixel average is related to the baseline of each pixel which is further corrected
682
+ during the sum calculation. The five-times cut selects the possible tracks efficiently from
683
+ noise, which is better for long track and higher than the calculated three-times to avoid
684
+ more noise as seen.
685
+ The identified candidate of tracks by the survey can be found in Fig. 11, while it seems
686
+ too many than the expectation which is around three muon per second hitting the crystal.
687
+ – 8 –
688
+
689
+ Average inpeperpixel
690
+ 0.
691
+ 0.09
692
+ — ap_1.0
693
+ 0.08
694
+ 0.07
695
+ ap_1.4
696
+ 0.06
697
+ 0.05
698
+ 0.04
699
+ 0.03
700
+ 0.02
701
+ 0.01
702
+ 0
703
+ 20
704
+ 40
705
+ 60
706
+ 80
707
+ 100
708
+ 120
709
+ 140
710
+ 160
711
+ 180
712
+ Objectdistanceinmm3
713
+ 12
714
+ 10
715
+ sn_ap_1.0
716
+ 8
717
+ sn_ap _1.4
718
+ 6
719
+ 0
720
+ 20
721
+ 40
722
+ 60
723
+ 80
724
+ 100
725
+ 120
726
+ 140
727
+ 160
728
+ 180
729
+ Objectdistanceinmm(a) Total intensity versus track length
730
+ (b) S/N versus track length
731
+ (c) S/N versus noise level per pixel
732
+ Figure 8: Total intensity and signal-to-noise ratio versus track length, and signal-to-
733
+ noise ratio versus noise level per pixel and effective numerical aperture with a 4 cm track:
734
+ 20000 photons/MeV, 2 MeV/cm, focal length 6 mm, sensor quantum efficiency 30%, around
735
+ 8 p.e./cm and 330 pixels/cm at an object distance of 4 cm.
736
+ (a) Object distance of 15 cm
737
+ (b) Object distance of 10 cm
738
+ (c) Object distance of 4 cm
739
+ Figure 9: Full image of the crystal with alpha source under 1 s exposure time.
740
+ – 9 –
741
+
742
+ Total light intensity in pe
743
+ 180
744
+ 160
745
+ sum line ap1.0
746
+ 140
747
+ sum line ap1.4
748
+ 120
749
+ 100
750
+ 80
751
+ 60
752
+ 40
753
+ 20
754
+ 0
755
+ 20
756
+ 40
757
+ 60
758
+ 80
759
+ 100
760
+ Tracklengthinmm3
761
+ 10
762
+ -SNap1.0
763
+ SN ap1.4
764
+ 20
765
+ 40
766
+ 60
767
+ 80
768
+ 100
769
+ Track length inmm3
770
+ 20
771
+ 18
772
+ 16
773
+ - SN ap1.0
774
+ 14
775
+ SN_ap1.4
776
+ 12
777
+ 10
778
+ 8
779
+ 0.1
780
+ 0.2
781
+ 0.3
782
+ 0.4
783
+ 0.5
784
+ 0.6
785
+ 0.7
786
+ 0.8
787
+ 0.9
788
+ Noiselevelperpixelinpepixel
789
+ 212
790
+ 2200
791
+ >
792
+ 2000
793
+ 211
794
+ 1800
795
+ 210
796
+ 1600
797
+ 1400
798
+ 209
799
+ 1200
800
+ 208
801
+ 1000
802
+ 207
803
+ 800
804
+ 600
805
+ 206
806
+ 400
807
+ 205
808
+ 200
809
+ 3500
810
+ 204
811
+ 500
812
+ 1000
813
+ 1500
814
+ 2000
815
+ 2500
816
+ 3000
817
+ 4000
818
+ H pixelpixel
819
+ 212
820
+ 2200
821
+ >
822
+ 2000
823
+ 211
824
+ 1800
825
+ 210
826
+ 1600
827
+ 1400
828
+ 209
829
+ 1200
830
+ 208
831
+ 1000
832
+ 207
833
+ 800
834
+ 600
835
+ 206
836
+ 400
837
+ 205
838
+ 200
839
+ 204
840
+ 500
841
+ 1000
842
+ 1500
843
+ 2000
844
+ 2500
845
+ 3000
846
+ 3500
847
+ 4000
848
+ H pixelpixel
849
+ 212
850
+ 2200
851
+ >
852
+ 2000
853
+ 211
854
+ 1800
855
+ 210
856
+ 1600
857
+ 1400
858
+ 209
859
+ 1200
860
+ 208
861
+ 1000
862
+ 207
863
+ 800
864
+ 600
865
+ 206
866
+ 400
867
+ 205
868
+ 200
869
+ 204
870
+ 500
871
+ 1000
872
+ 1500
873
+ 2000
874
+ 2500
875
+ 3000
876
+ 3500
877
+ 4000
878
+ H pixel(a) Averaged intensity of each pixel 2-D
879
+ (b) Intensity sum 2-D
880
+ (c) Averaged intensity of each pixel 1-D
881
+ (d) Intensity sum 1-D
882
+ Figure 10: Averaged intensity of each pixel and the sum of the assumed tracks.
883
+ The direction of the candidate tracks and locations also exceed the range of the view field
884
+ of the lens in Fig. 2. It still needs further checking on the quality of the identification even
885
+ if a five-times cut is used.
886
+ Figure 11: Selected tracks under 1 s exposure time.
887
+ 3.3
888
+ Muon identification
889
+ The identified track candidates need to be further checked as muon track candidates. Check-
890
+ ing the uniform trend along the tracking candidate is a good way to avoid the noise effect.
891
+ It is extended to another 2000 pixels along the track in maximum (Fig. 12a) to check the
892
+ summed intensity (Fig. 12b) and its averaged intensity per pixel versus the track’s length
893
+ – 10 –
894
+
895
+ h2Dtracklengthintensity
896
+ 2.8
897
+ 1200
898
+ 2.6
899
+ 1000
900
+ 2.4
901
+ 2.2
902
+ 800
903
+ 2
904
+ 600
905
+ 1.8
906
+ 1.6
907
+ 400
908
+ 1.4
909
+ 200
910
+ 1.2
911
+ 500
912
+ 1500
913
+ 3000
914
+ 0
915
+ 1000
916
+ 2000
917
+ 2500
918
+ tracklengthinpixelh2Dtrack_sumlength
919
+ track intensityinADC
920
+ 800
921
+ 4000
922
+ 700
923
+ 3500
924
+ 600
925
+ 3000
926
+ 500
927
+ 2500
928
+ 400
929
+ 2000
930
+ 300
931
+ 1500
932
+ 200
933
+ 1000
934
+ 100
935
+ 500
936
+ 500
937
+ 1000
938
+ 1500
939
+ 2000
940
+ 2500
941
+ 3000
942
+ tracklengthinpixelh1Dtrackpixel_average
943
+ Count
944
+ h1D_track_pixel_average
945
+ 105
946
+ h1D_track_pixel_average_select
947
+ 104
948
+ 103
949
+ 102
950
+ 10
951
+ 0.5
952
+ 1.5
953
+ 2.5
954
+ 3
955
+ 3.5
956
+ Pixel average ADCh1Dtracksum
957
+ Count
958
+ 104
959
+ h1Dtrack_sum
960
+ h1Dtracksumselect
961
+ 103
962
+ 102
963
+ 10
964
+ 400
965
+ 200
966
+ 0
967
+ 200
968
+ 400
969
+ 600
970
+ 800
971
+ 1000
972
+ tracksuminADCh2Dtrack
973
+ /pixel
974
+ 230
975
+ 2200
976
+ >
977
+ 2000
978
+ 225
979
+ 1800
980
+ 1600
981
+ 220
982
+ 1400
983
+ 1200
984
+ 215
985
+ 1000
986
+ 800
987
+ 210
988
+ 600
989
+ 400
990
+ 205
991
+ 200
992
+ 00
993
+ 200
994
+ 500
995
+ 1000
996
+ 1500
997
+ 2000
998
+ 2500
999
+ 3000
1000
+ 3500
1001
+ 4000
1002
+ H pixel(Fig. 12c). As shown in Fig. 12b, most of the candidates are excluded after the extension,
1003
+ and the sum of a few candidates keeps increasing versus the length of a true track candidate
1004
+ as expected in Fig. 8a. As shown in Fig. 12c, most of the candidates are excluded too, and
1005
+ the average of a few candidates keeps increasing or stable versus the length which is over
1006
+ the cut.
1007
+ (a) Extended tracks
1008
+ (b) Extended sum
1009
+ (c) Extended average
1010
+ Figure 12: Track candidate checking by extension.
1011
+ The tracks after further checking are drawn in the 3-D plots as shown in Fig. 13 and
1012
+ Fig. 14. Fig. 13 shows a candidate with a short length, the direction (Fig. 13a), and intensity
1013
+ (Fig. 13b) distribution is reasonable.
1014
+ Fig. 14 shows a candidate with a long length, the
1015
+ direction (Fig. 14a) and intensity (Fig. 14b) distribution is reasonable too. They are good
1016
+ candidates for muon tracks.
1017
+ (a) Extended track 1-D
1018
+ (b) Extended track in 3-D
1019
+ Figure 13: Track candidates one in 3-D
1020
+ (a) Extended track: 1-D
1021
+ (b) extended track: 3-D
1022
+ Figure 14: Track candidates two in 3-D
1023
+ – 11 –
1024
+
1025
+ h2D trackext only
1026
+ pixel
1027
+ 230
1028
+ 2200
1029
+ >
1030
+ 2000
1031
+ 225
1032
+ 1800
1033
+ 1600
1034
+ 220
1035
+ 1400
1036
+ 1200
1037
+ 215
1038
+ 1000
1039
+ 800
1040
+ 210
1041
+ 600
1042
+ 400
1043
+ 205
1044
+ 200
1045
+ 200
1046
+ 0
1047
+ 500
1048
+ 1000
1049
+ 1500
1050
+ 2000
1051
+ 2500
1052
+ 3000
1053
+ 3500
1054
+ 4000
1055
+ Hpixelh2D_track_sumlength
1056
+ track intensity in ADC
1057
+ 1000
1058
+ 4000
1059
+ 900
1060
+ 3500
1061
+ 800
1062
+ 700
1063
+ 3000
1064
+ 600
1065
+ 2500
1066
+ 500
1067
+ 2000
1068
+ 400
1069
+ 1500
1070
+ 300
1071
+ 1000
1072
+ 200
1073
+ 100
1074
+ 500
1075
+ 500
1076
+ 1000
1077
+ 1500
1078
+ 2000
1079
+ 2500
1080
+ 3000
1081
+ -
1082
+ track length in pixelh2D_tracklength_intensity
1083
+ track intensity in ADC
1084
+ :
1085
+ 2.8
1086
+ 1200
1087
+ 2.6
1088
+ 1000
1089
+ 2.4
1090
+ 2.2
1091
+ 800
1092
+ 600
1093
+ 1.8
1094
+ 1.6
1095
+ 400
1096
+ 1.4
1097
+ 200
1098
+ 1.2
1099
+ 500
1100
+ 1000
1101
+ 1500
1102
+ 2000
1103
+ 2500
1104
+ 3000
1105
+ track length in pixelpixelV:pixelH(trackNum==50)
1106
+ 2000
1107
+ 1900
1108
+ 1800
1109
+ 1700
1110
+ 1600
1111
+ 1500
1112
+ 1400
1113
+ 1300
1114
+ 1200
1115
+ 1100
1116
+ 100600
1117
+ 1500
1118
+ 2000
1119
+ 2500
1120
+ 3000
1121
+ 3500
1122
+ 4000pixe/Value:pixe/V:pixelH{trackNum==50
1123
+ 214
1124
+ 212
1125
+ 210
1126
+ 208
1127
+ 206
1128
+ 204
1129
+ 202
1130
+ 200
1131
+ 198
1132
+ 196
1133
+ 4000
1134
+ 3500
1135
+ 1650
1136
+ 1640
1137
+ 3000
1138
+ 1630
1139
+ 1620
1140
+ 2500
1141
+ 1610
1142
+ 1600
1143
+ 2000
1144
+ 1590
1145
+ 15801500pixelV:pixelH (trackNum==2)
1146
+ 2000
1147
+ 1800
1148
+ 1600
1149
+ 1400
1150
+ 1200
1151
+ 1000
1152
+ 800
1153
+ E
1154
+ 600
1155
+ 400E
1156
+ -
1157
+ 2500
1158
+ 2600
1159
+ 2700
1160
+ 2800
1161
+ 3000
1162
+ 3100
1163
+ 3200
1164
+ 3300
1165
+ 3400
1166
+ 3500pixelValue:pixelV:pixelH(trackNum==2)
1167
+ 214
1168
+ 212
1169
+ 210
1170
+ 208
1171
+ 206
1172
+ 204
1173
+ 202
1174
+ 200
1175
+ 198
1176
+ 196
1177
+ 2890
1178
+ 2900
1179
+ 2870
1180
+ 2880
1181
+ 2850
1182
+ 2860
1183
+ 02830
1184
+ 28404
1185
+ Discussion
1186
+ 4.1
1187
+ Muon tracks or not?
1188
+ The angle distribution of the selected muon track candidates is further plotted as in Fig. 15
1189
+ after the track extension check as shown in Fig. 15b, where the theta angle is defined in
1190
+ the range [-90,+90]◦ to distinguish left and right relative to the camera. There are still too
1191
+ many abnormal tracks around 0 or |90|◦ as seen in Fig. 15a and Fig. 15c, which are related to
1192
+ some kind of systematic readout noise of the camera. After excluding the abnormal tracks
1193
+ around 0 or |90|◦, the theta distribution of the track candidates is basically consistent with
1194
+ expectation and a peak around 40◦ (cos(θ)∼0.7) as a hint (Fig. 15c and Fig. 15d). But the
1195
+ statistics are still not enough to have a good check by the muon angle distribution, even the
1196
+ selected muon candidates are much more than the expectation during the 30 s data-taking
1197
+ period (around 3 Hz × 30 s).
1198
+ (a) All selected tracks
1199
+ (b) Total intensity in ADC vs. track length
1200
+ (c) Theta in degree
1201
+ (d) Cos(theta)
1202
+ Figure 15: Distribution of selected tracks
1203
+ According to [35, 36], the quenching factor of the alpha of 241Am in CsI(Tl) is taken
1204
+ as 0.5 with an energy of 5.4 MeV, then the light intensity viewed by the camera is around
1205
+ 1.4 p.e./MeV at an object distance of 15 cm, 2.2 p.e./MeV of 10 cm, and 4.7 p.e./MeV of 4 cm
1206
+ following the measurement in Sec. 2.2, respectively. Assuming the energy deposit of muon
1207
+ is around 2 MeV per cm, it means 2.8 p.e./400µm at an object distance of 15 cm (around
1208
+ 80 pixels, 0.035 p.e./pixel) on camera, 4.4 p.e./625µm at an object distance of 10 cm (around
1209
+ 105 pixels, 0.042 p.e./pixel) on camera, and 9.4 p.e./1300µm at an object distance of 4 cm
1210
+ (around 260 pixels, 0.036 p.e./pixel) on camera. With the data in Fig.15b, the intensity per
1211
+ pixel of the selected muon track candidates is from 0.1 to 1 ADC or 0.01 to 0.1 p.e., which
1212
+ – 12 –
1213
+
1214
+ pixel
1215
+ 230
1216
+ 2200
1217
+ 2000
1218
+ 225
1219
+ 1800
1220
+ 1600
1221
+ 220
1222
+ 1400
1223
+ 1200
1224
+ 215
1225
+ 1000
1226
+ 800
1227
+ 210
1228
+ 600
1229
+ 400
1230
+ 205
1231
+ 200
1232
+ 200
1233
+ 0
1234
+ 500
1235
+ 1000
1236
+ 1500
1237
+ 2000
1238
+ 2500
1239
+ 3000
1240
+ 3500
1241
+ 4000
1242
+ H pixelSum
1243
+ 1200
1244
+ 1000
1245
+ 800
1246
+ 600
1247
+ 400
1248
+ 200
1249
+ 500
1250
+ 1000
1251
+ 1500
1252
+ 2000
1253
+ 2500
1254
+ 3000
1255
+ Track length in pixelCount
1256
+ 10°
1257
+ 102
1258
+ 10
1259
+ 80
1260
+ 60
1261
+ 40
1262
+ -20
1263
+ 20
1264
+ 40
1265
+ 60
1266
+ 80
1267
+ Theta/degreeCount
1268
+ 103
1269
+ 102
1270
+ 10
1271
+ 0
1272
+ 0.1
1273
+ 0.2
1274
+ 0.3
1275
+ 0.4
1276
+ 0.5
1277
+ 0.6
1278
+ 0.7
1279
+ 0.8
1280
+ 0.9
1281
+ Cos(theta)is wide than the expectation from the measurement in Sec. 2.2 and could be related the
1282
+ variation of muon location.
1283
+ 4.2
1284
+ Possible system optimization
1285
+ Taking more data to accumulate the muon tracks is an effective solution for more precise
1286
+ angle checking to find out more features of the noise, but the data volume will increase
1287
+ too. Following the issues of muon track identification, shorter exposure time is one of the
1288
+ effective methods to reduce the camera noise as known, while the data volume will increase
1289
+ too for similar statistics.
1290
+ To realize a good muon tagging and reconstruction method by visual photons directly,
1291
+ except to find a camera with a further lower noise level as the skipper CCD[30], it is
1292
+ possible to further improve the system by updating crystals with higher light yield, and
1293
+ better apertures, and to reduce the distortion of the image by the lens.
1294
+ Improving the track identification algorithms including distortion identification is also
1295
+ a valuable solution for track identification and better data compression. The coincidence
1296
+ with more than one camera is also another effective way to reduce the noise and improve
1297
+ the measurement as suggested in [32].
1298
+ 4.3
1299
+ Further applications
1300
+ With the novel method to measure the muon track or realize a similar topology of a particle
1301
+ measurement in a scintillation detector, it can be used in a huge LS detector to measure the
1302
+ track of muons precisely as shown in Fig. 16, including to identify possible showers along
1303
+ the tracks as in JUNO, which is valuable to further study relevant background and suppress
1304
+ their contribution to neutrino measurement.
1305
+ Figure 16: Simulated 1 GeV Muon in liquid scintilator
1306
+ – 13 –
1307
+
1308
+ 4000
1309
+ 2000
1310
+ 0
1311
+ 1000
1312
+ y/m500
1313
+ 0
1314
+ 1000
1315
+ 500
1316
+ x/mm
1317
+ -500
1318
+ 0
1319
+ -500
1320
+ -1000-1000With further improved sensitivity of the system, it is possible to be used to tag the
1321
+ topology of different particles to do particle identification as simulated in Fig. 17, where
1322
+ electron, positron, gamma, alpha, proton, pion of 1 GeV in liquid scintillator can be further
1323
+ identified through their topology for further direction or physics study.
1324
+ (a) 1 GeV Gamma
1325
+ (b) 1 GeV proton
1326
+ (c) 1 GeV π0
1327
+ (d) 1 GeV π+
1328
+ Figure 17: Simulated 1 GeV particle in liquid scintillator.
1329
+ 5
1330
+ Summary
1331
+ With the crystal system viewed by the single photon sensitive camera and PMTs, system
1332
+ calibration was further discussed. The muon track imaging was tested further, and the
1333
+ data were analyzed according to the understanding of the characteristic expectation. Some
1334
+ possible tracks are identified with the averaged signal intensity cuts. But there still are a few
1335
+ critical items that need to be finalized. Some improvements are proposed and suggested.
1336
+ The realization of muon track direct measurement is valuable for future experiments and
1337
+ applications.
1338
+ Acknowledgments
1339
+ This work was supported by the National Natural Science Foundation of China (NSFC)
1340
+ No. 11875282 and 11475205, the State Key Laboratory of Particle Detection and Electronics,
1341
+ SKLPDE-ZZ-202208.
1342
+ – 14 –
1343
+
1344
+ N
1345
+ 4000
1346
+ 2000
1347
+ 0
1348
+ 1000
1349
+ y/m200
1350
+ 0
1351
+ 1000
1352
+ 500
1353
+ -500
1354
+ 0
1355
+ x/mm
1356
+ -1000-1000
1357
+ 500/mm
1358
+ 1000
1359
+ N
1360
+ 500
1361
+ 0
1362
+ 1000
1363
+ y/mm
1364
+ 0
1365
+ 1000
1366
+ -1000
1367
+ 500
1368
+ x/mm
1369
+ 0
1370
+ -2000-1000
1371
+ -5006000
1372
+ mm
1373
+ N
1374
+ 4000
1375
+ 2000
1376
+ 0
1377
+ 1500
1378
+ yx900
1379
+ him
1380
+ 500
1381
+ 1000
1382
+ 0
1383
+ 500
1384
+ x/mm
1385
+ -500
1386
+ 0
1387
+ -1000-1000
1388
+ 5004000
1389
+ N3000
1390
+ 2000
1391
+ 1000
1392
+ 0
1393
+ 1000
1394
+ 2000
1395
+ -2000
1396
+ 1000
1397
+ x/mm
1398
+ -3000
1399
+ 0
1400
+ -4000-2000
1401
+ -1000References
1402
+ [1] J. Knuesel. The photographic emulsion technology of the OPERA experiment on its way to
1403
+ find the oscillation. Nuclear Physics B-proceedings Supplements - NUCL PHYS B-PROC
1404
+ SUPPL, 215:66–68, 06 2011. doi: 10.1016/j.nuclphysbps.2011.03.136.
1405
+ [2] Kunihiro Morishima. Latest developments in nuclear emulsion technology. Physics Procedia,
1406
+ 80:19–24, 2015. ISSN 1875-3892. doi: https://doi.org/10.1016/j.phpro.2015.11.082. URL
1407
+ https://www.sciencedirect.com/science/article/pii/S1875389215015990. 26th
1408
+ International Conference on Nuclear Tracks in Solids (ICNTS26) Kobe, Japan 15th – 19th
1409
+ September 2014.
1410
+ [3] Mamatkulov Kahramon, Iva Ambrožová, D. Artemenkov, V. Bradnova, Dmitry Kamanin,
1411
+ R. Kattabekov, L. Majling, A. Marey, Ondrej Ploc, V. Rusakova, R. Stanoeva, Karel Turek,
1412
+ Andrei Zaitsev, P. Zarubin, and I. Zarubina. Recent applications of nuclear track emulsion.
1413
+ EPJ Web of Conferences, 117:10010, 01 2016. doi: 10.1051/epjconf/201611710010.
1414
+ [4] Malcolm Longair. C.t.r. wilson and the cloud chamber. Astroparticle Physics, 53:55–60,
1415
+ 2014. ISSN 0927-6505. doi: https://doi.org/10.1016/j.astropartphys.2013.01.010. URL
1416
+ https://www.sciencedirect.com/science/article/pii/S0927650513000200. Centenary
1417
+ of cosmic ray discovery.
1418
+ [5] M. Bressler, P. Campion, V.S. Cushman, A. Morrese, J.M. Wagner, S. Zerbo, R. Neilson,
1419
+ M. Crisler, and C.E. Dahl. A buffer-free concept bubble chamber for PICO dark matter
1420
+ searches. Journal of Instrumentation, 14(08):P08019–P08019, aug 2019. doi:
1421
+ 10.1088/1748-0221/14/08/p08019. URL
1422
+ https://doi.org/10.1088/1748-0221/14/08/p08019.
1423
+ [6] J.G. Rutherglen. 1 - spark chambers. In O.R. FRISCH, editor, Progress in Nuclear Physics,
1424
+ pages 1–26. Pergamon, 1964. ISBN 978-0-08-010063-0. doi:
1425
+ https://doi.org/10.1016/B978-0-08-010063-0.50003-4. URL
1426
+ https://www.sciencedirect.com/science/article/pii/B9780080100630500034.
1427
+ [7] G.C. Ball. Multiwire proportional chamber focal plane detector systems with digital readout.
1428
+ Nuclear Instruments and Methods, 162(1):263–275, 1979. ISSN 0029-554X. doi:
1429
+ https://doi.org/10.1016/0029-554X(79)90716-X. URL
1430
+ https://www.sciencedirect.com/science/article/pii/0029554X7990716X.
1431
+ [8] H J Hilke. Time projection chambers. Reports on Progress in Physics, 73(11):116201, oct
1432
+ 2010. doi: 10.1088/0034-4885/73/11/116201. URL
1433
+ https://doi.org/10.1088/0034-4885/73/11/116201.
1434
+ [9] M. Caccia, L. Evensen, T.E. Hansen, R. Horisberger, L. Hubbeling, A. Peisert, T. Tuuva,
1435
+ P. Weilhammer, and A. Zalewska. A si strip detector with integrated coupling capacitors.
1436
+ Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
1437
+ Spectrometers, Detectors and Associated Equipment, 260(1):124–131, 1987. ISSN 0168-9002.
1438
+ doi: https://doi.org/10.1016/0168-9002(87)90393-7. URL
1439
+ https://www.sciencedirect.com/science/article/pii/0168900287903937.
1440
+ [10] Maria Giuseppina, Maurizio Boscardin, Gian-Franco Dalla Betta, Pasquale Delogu, Maria
1441
+ Fantacci, Paolo Gregori, Stefania Linsalata, M. Novelli, Claudio Piemonte, M. Quattrocchi,
1442
+ V. Rosso, A. Stefanini, Nicola Zorzi, and Sergio Zucca. Characterization of si pixel detectors
1443
+ of different thickness. Nuclear Instruments and Methods in Physics Research A, 518:418–420,
1444
+ 02 2004. doi: 10.1016/j.nima.2003.11.045.
1445
+ – 15 –
1446
+
1447
+ [11] JUNO Collaboration. Juno physics and detector. Progress in Particle and Nuclear Physics,
1448
+ 123:103927, 2022. ISSN 0146-6410. doi: https://doi.org/10.1016/j.ppnp.2021.103927. URL
1449
+ https://www.sciencedirect.com/science/article/pii/S0146641021000880.
1450
+ [12] JUNO collaboration. Mass testing and characterization of 20-inch pmts for JUNO. e-print,
1451
+ 2022. doi: https://doi.org/10.48550/arXiv.2205.08629.
1452
+ [13] C.E. Aalseth et al. Design and construction of a new detector to measure ultra-low
1453
+ radioactive-isotope contamination of argon. Journal of Instrumentation, 15(02):
1454
+ P02024–P02024, feb 2020. doi: 10.1088/1748-0221/15/02/p02024. URL
1455
+ https://doi.org/10.1088/1748-0221/15/02/p02024.
1456
+ [14] JUNO collaboration. TAO conceptual design report: A precision measurement of the reactor
1457
+ antineutrino spectrum with sub-percent energy resolution. e-print, 2020.
1458
+ [15] Jack Dunger and Steven D. Biller. Multi-site event discrimination in large liquid scintillation
1459
+ detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
1460
+ Spectrometers, Detectors and Associated Equipment, 943:162420, 2019. ISSN 0168-9002. doi:
1461
+ https://doi.org/10.1016/j.nima.2019.162420. URL
1462
+ https://www.sciencedirect.com/science/article/pii/S0168900219309908.
1463
+ [16] V. Albanese, R. Alves, et al. The SNO+ experiment. Journal of Instrumentation, 16(08):
1464
+ P08059, aug 2021. doi: 10.1088/1748-0221/16/08/p08059. URL
1465
+ https://doi.org/10.1088/1748-0221/16/08/p08059.
1466
+ [17] Babak Abi et al. Deep Underground Neutrino Experiment (DUNE), Far Detector Technical
1467
+ Design Report, Volume I Introduction to DUNE. JINST, 15(08):T08008, 2020. doi:
1468
+ 10.1088/1748-0221/15/08/T08008.
1469
+ [18] M. Weifels. Energy Reconstruction and Resolution of the JUNO Detector. Master thesis,
1470
+ RWTH Aachen University, 2015.
1471
+ https://www.rwth-aachen.de/global/show_document.asp?id=apzlcg.
1472
+ [19] Q. Liu et al. A vertex reconstruction algorithm in the central detector of JUNO. JINST, 13
1473
+ (9):T09005, 2018. doi: 10.1088/1748-0221/13/09/T09005.
1474
+ [20] Z. Qian et al. Vertex and energy reconstruction in JUNO with machine learning methods.
1475
+ Nucl. Instrum. Meth. A, 1010:165527, 2021. doi: 10.1016/j.nima.2021.165527.
1476
+ [21] J.B.R. Battat et al. Readout technologies for directional wimp dark matter detection.
1477
+ Physics Reports, 662:1–46, 2016. ISSN 0370-1573. doi:
1478
+ https://doi.org/10.1016/j.physrep.2016.10.001. URL
1479
+ https://www.sciencedirect.com/science/article/pii/S0370157316303155. Readout
1480
+ technologies for directional WIMP Dark Matter detection.
1481
+ [22] David Schumacher, Uwe Zscherpel, and Uwe Ewert. Photon counting and energy
1482
+ discriminating x-ray detectors - benefits and applications. In 19th World Conference on
1483
+ Non-Destructive Testing, 2016. URL
1484
+ https://www.ndt.net/article/wcndt2016/papers/tu2b5.pdf.
1485
+ [23] Nandan Jha et al. Single photon counting x-ray CCD camera spectrometer. In Conference:
1486
+ NLS-22 (National Laser symposium-22), 01 2014. doi: 10.13140/2.1.3554.6248.
1487
+ [24] Ilan Mor, Nissan Eldad, Moshe Cohen, and Reuven Hacham-Zada. Development of a ccd
1488
+ based thermal neutron imaging detector for the israeli research reactor irr-1 at soreq nrc.
1489
+ Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
1490
+ – 16 –
1491
+
1492
+ Spectrometers, Detectors and Associated Equipment, 1012:165632, 2021. ISSN 0168-9002.
1493
+ doi: https://doi.org/10.1016/j.nima.2021.165632. URL
1494
+ https://www.sciencedirect.com/science/article/pii/S0168900221006173.
1495
+ [25] Zheng-Ping Li et al. Single-photon computational 3d imaging at 45&#x2009;&#x2009;km.
1496
+ Photon. Res., 8(9):1532–1540, Sep 2020. doi: 10.1364/PRJ.390091. URL
1497
+ http://opg.optica.org/prj/abstract.cfm?URI=prj-8-9-1532.
1498
+ [26] Varun Jampani et al. SLIDE: Single image 3D photography with soft layering and
1499
+ depth-aware inpainting. e-print, 2021. doi: https://doi.org/10.48550/arXiv.2109.01068.
1500
+ [27] Micro Photon Devices S.r.l. Spc: Single photon counting camera, 2018. URL http:
1501
+ //www.micro-photon-devices.com/MPD/media/UserManuals/SPC3_usermanual.pdf.
1502
+ [28] N.S. Phan, R.J. Lauer, E.R. Lee, D. Loomba, J.A.J. Matthews, and E.H. Miller. Gem-based
1503
+ tpc with ccd imaging for directional dark matter detection. Astroparticle Physics, 84:82–96,
1504
+ 2016. ISSN 0927-6505. doi: https://doi.org/10.1016/j.astropartphys.2016.08.006. URL
1505
+ https://www.sciencedirect.com/science/article/pii/S0927650516301190.
1506
+ [29] Alexander Deisting et al. Commissioning of a high pressure time projection chamber with
1507
+ optical readout. Instruments, 5(2), 2021. ISSN 2410-390X. URL
1508
+ https://www.mdpi.com/2410-390X/5/2/22.
1509
+ [30] Ana Martina Botti et al. Sub-gev dark matter and neutrino searches with skipper-ccds:
1510
+ status and prospects. PoS, ICRC2021, 1 2021. doi: 10.22323/1.395.0505. URL
1511
+ https://www.osti.gov/biblio/1839558.
1512
+ [31] J. Dalmasson et al. Distributed imaging for liquid scintillation detectors. Phys. Rev. D, 97:
1513
+ 052006, Mar 2018. doi: 10.1103/PhysRevD.97.052006. URL
1514
+ https://link.aps.org/doi/10.1103/PhysRevD.97.052006.
1515
+ [32] Zhimin Wang, Min Li, Diru Wu, Jinchang Liu, Xiangcheng Meng, Caimei Liu, and
1516
+ Changgen Yang. Imaging of CsI(Tl) crystal event and double-slit Young’s interference by a
1517
+ single photon sensitive camera. e-print, 6 2022.
1518
+ [33] Hamamatsu Photonics. ORCA-Quest qCMOS camera C15550-20UP, 2021.
1519
+ https://www.hamamatsu.com/jp/en/product/cameras/qcmos-cameras/C15550-20UP.html.
1520
+ [34] C.A.E.N. DT5751 2/4 Channel 10 bit 2/1 GS/s Digitizer, 2015.
1521
+ https://www.caen.it/products/dt5751/.
1522
+ [35] Frank Asaro, F. L. Reynolds, and I. Perlman. The complex alpha-spectra of am241 and
1523
+ cm242. Phys. Rev., 87:277–285, Jul 1952. doi: 10.1103/PhysRev.87.277. URL
1524
+ https://link.aps.org/doi/10.1103/PhysRev.87.277.
1525
+ [36] V.I. Tretyak. Semi-empirical calculation of quenching factors for ions in scintillators.
1526
+ Astroparticle Physics, 33(1):40–53, 2010. ISSN 0927-6505. doi:
1527
+ https://doi.org/10.1016/j.astropartphys.2009.11.002. URL
1528
+ https://www.sciencedirect.com/science/article/pii/S0927650509001650.
1529
+ – 17 –
1530
+
ENA0T4oBgHgl3EQfA_81/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
IdE0T4oBgHgl3EQfiAEY/content/tmp_files/2301.02438v1.pdf.txt ADDED
@@ -0,0 +1,971 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Experimental demonstration of position-controllable topological interface states
2
+ in high-frequency topological integrated circuits
3
+ Tetsuya Iizuka,∗ Haochen Yuan,† Yoshio Mita,† Akio Higo,‡ Shun Yasunaga,† and Motohiko Ezawa§
4
+ (Dated: January 9, 2023)
5
+ Topological integrated circuits are integrated circuit realizations of topological systems. We perform an ex-
6
+ perimental demonstration by taking instances of the Su-Schrieffer-Heeger model and the Kitaev topological
7
+ superconductor model. They are found to realize high frequency resonances around 17GHz. We explicitly
8
+ observe the spatial profile of a topological edge state. In particular, the topological interface state between a
9
+ topological segment and a trivial segment is the Majorana-like state in the Kitaev model. We construct a switch-
10
+ able structure in the integrated circuit, which enables us to control the position of a Majorana-like interface state
11
+ arbitrarily along a chain. Our results will open topological electronics with high frequency integrated circuits.
12
+ Topological insulators and superconductors are fascinat-
13
+ ing new states of matter[1, 2].
14
+ The Su-Schrieffer-Heeger
15
+ (SSH) model[3] and the Kitaev topological superconduc-
16
+ tor model[4] are simplest one-dimensional (1D) systems re-
17
+ alizing topological insulators and superconductors, respec-
18
+ tively.
19
+ Especially, topological superconductors host Ma-
20
+ jorana edge states[5–8], which are the key elements of a
21
+ topological quantum computer[9, 10].
22
+ The area of topo-
23
+ logical physics is expanded nowadays to photonic[11–16],
24
+ acoustic[17–21], mechanical[22–29] and electronic-circuit
25
+ systems[30–37].
26
+ They are called artificial topological sys-
27
+ tems.
28
+ There are several merits which are difficult to be
29
+ achieved in inorganic crystals: 1) It is possible to make a fine
30
+ tuning of the system, which is crucial for observing topologi-
31
+ cal edge states. 2) It is possible to construct a few site systems.
32
+ 3) It is possible to directly measure the site dependent infor-
33
+ mation.
34
+ It is relatively easy to materialize the SSH model because it
35
+ involves only real hoppings. On the other hand, this is not the
36
+ case with respect to the Kitaev model because it is a p-wave
37
+ topological superconductor, although the Majorana edge state
38
+ itself can be generated in a s-wave superconductor with the
39
+ aid of a topological insulator nanowire[38, 39].
40
+ Electronic circuits present an ideal platform to realize var-
41
+ ious topological phases[30–37, 40–46].
42
+ The emergence of
43
+ topological edge states are observed by means of impedance
44
+ resonance. However, experimental demonstrations have so far
45
+ been restricted to printed circuit boards with discrete com-
46
+ ponents. Indeed, to the best of our knowledge, there is no
47
+ integrated-circuit realization working at high resonant fre-
48
+ quency, although a simulation of the SSH model was done
49
+ recently[47]. The integrated circuit realization is an important
50
+ step toward industrial applications of topological electronics.
51
+ In order to generate Majorana-like states, it is necessary to
52
+ simulate electron and hole bands in electronic circuits. Al-
53
+ though there is a proposal with the use of chains of capacitors
54
+ ∗ Systems Design Lab., School of Engineering, The University of Tokyo.
55
+ [email protected] (corresponding author)
56
+ † Department of Electrical Engineering and Information Systems, The Uni-
57
+ versity of Tokyo.
58
+ ‡ Systems Design Lab., School of Engineering, The University of Tokyo.
59
+ § Department of Applied Physics, The University of Tokyo. [email protected]
60
+ tokyo.ac.jp (corresponding author)
61
+ and inductors[44, 45], there is so far no experimental demon-
62
+ stration of this theoretical proposal.
63
+ Most of previous experiments were carried out based on
64
+ patterned structures, where it is impossible to control the topo-
65
+ logical and trivial phases once the sample is manufactured.
66
+ Actually, it is very hard to introduce switch structures in in-
67
+ organic materials, photonic crystals and acoustic systems. On
68
+ the other hand, transistors act as switches in electronic cir-
69
+ cuits and hence, there is a possibility to construct a switchable
70
+ topological system based on electronic circuits.
71
+ In this paper, we perform for the first time an experimen-
72
+ tal demonstration of topological integrated circuits, which are
73
+ integrated circuit realizations of topological systems, by tak-
74
+ ing instances of the SSH model and the Kitaev model. An
75
+ integrated circuit implementation enables us to realize very
76
+ high resonant frequency as large as 17GHz. We explicitly ob-
77
+ serve the spatial profile of a topological edge state and deter-
78
+ mine its penetration length. The system may contain several
79
+ topological and trivial segments simultaneously along a chain.
80
+ In particular, we observe the signal of a Majorana-like state
81
+ emerging at the interface of a topological segment and a triv-
82
+ ial segment. It is topologically protected since it necessarily
83
+ emerges between the topological and trivial segments. These
84
+ two topologically different segments are interchangeable sim-
85
+ ply by exchanging inductors and capacitors.
86
+ SSH chain
87
+ The SSH chain is the basic model of a topological insula-
88
+ tor. It was implemented in a printed circuit board with dis-
89
+ crete components[31] a few years ago. The electronic circuit
90
+ is illustrated in Fig.1a. Capacitances are alternating along the
91
+ chain, and each node is grounded via an inductor.
92
+ We have implemented the SSH model in two 32-unit cell
93
+ chains on chips in an integrated circuit as shown in Fig.1b.
94
+ Both capacitors and inductors are implemented by metallic
95
+ wires. An inductor is materialized by a swirling structure of
96
+ wire as shown in Fig.1c, while a capacitor is materialized by
97
+ a comb-teeth structure as shown in Fig.1d. The comb-teeth
98
+ structure is prepared in order to increase the capacitance with
99
+ small occupation area. The explicit values of the capacitance
100
+ and the inductance are shown in Table.1, which is very tiny
101
+ compared with printed circuit boards with discrete compo-
102
+ nents. The small capacitance and inductance lead to a high
103
+ resonant frequency ωresonant = 1/
104
+
105
+ LC.
106
+ The impedance as a function of the input frequency is
107
+ arXiv:2301.02438v1 [cond-mat.mes-hall] 6 Jan 2023
108
+
109
+ 2
110
+ FIG. 1. SSH chain. a, An illustration of an electronic-circuit representing the SSH chain. b, A picture of a 32-unit cell integrated circuit for
111
+ the SSH chain. c, A zoom-in view of its unit cell layout. d, A picture of the comb teeth capacitor. Frequency dependence of the impedance
112
+ measured from the left edge of the 17.2 GHz chain for e, all-topological and f, all-trivial setups. g, The spatial profile of the impedance values
113
+ for all-topological mode measured from the left edge at the resonant frequency of 13.1 GHz. In e and f, solid and dashed lines show the
114
+ measured and simulated results of the SSH chain, respectively.
115
+ shown in Fig.1e and f.
116
+ The impedance is evaluated with
117
+ the two-point impedance between two nodes. The solid and
118
+ dashed lines show measurement and simulation results, re-
119
+ spectively. A peak emerges at the characteristic frequency for
120
+ a topological phase as shown in Fig.1e. The measured res-
121
+ onant frequency is 10.7GHz. On the other hand, there is no
122
+ peak for a trivial phase as shown in Fig.1f.
123
+ The node-dependent impedance is shown in Fig.1g. The
124
+ impedance decays exponentially. The penetration length of
125
+ the topological edge state is estimated as 0.414, which is in
126
+ good agreement with the theoretical value 1/ log(C2/C1) =
127
+ 0.449. See Supplementary Information IV for details.
128
+ We have also carried out measurements on the SSH chain
129
+ with 8.8 GHz. See Supplementary Information I for details.
130
+ Kitaev chain
131
+ The Kitaev chain model is the basic model of a topologi-
132
+ cal superconductor. Our main result is its implementation in
133
+ an integrated electronic circuit. To realize a Cooper pair it
134
+ is necessary to prepare an electron band and a hole band to-
135
+ gether with cross terms between these two bands, as shown in
136
+ TABLE I. Parameters used for the SSH chain (left table) and the
137
+ Kitaev chain (right table).
138
+ 8.8 GHz 17.2 GHz
139
+ C1
140
+ 42 fF
141
+ 22 fF
142
+ C2
143
+ 414 fF
144
+ 204 fF
145
+ L
146
+ 721 pH
147
+ 378 pH
148
+ 8.8 GHz 17.2 GHz
149
+ C
150
+ 440 fF
151
+ 220 fF
152
+ L
153
+ 747 pH
154
+ 384 pH
155
+ Cx
156
+ 396 fF
157
+ 204 fF
158
+ Lx 830 pH
159
+ 427 pH
160
+ C0
161
+ 880 fF
162
+ 440 fF
163
+ L0 374 pH
164
+ 192 pH
165
+ Methods.
166
+ We first illustrate an electronic circuit for the Kitaev
167
+ chain [44, 45] in Fig. 2a, b and c. The capacitor channel (in-
168
+ dicated in red) corresponds to the electron band, while the
169
+ inductor channel (in blue) corresponds to the hole band. The
170
+ two main channels are crosslinked through Cx and Lx. Each
171
+ node is connected to the ground via an inductor L0 or a ca-
172
+ pacitor C0 to realize a topological state or a trivial state, re-
173
+ spectively, as shown in Figs. 2a and b. The topological phase
174
+
175
+ 400μm
176
+ c
177
+ Unit cell
178
+ Unit cell
179
+ C2
180
+ C1
181
+ forProbing Test
182
+ H&}
183
+ ContactPads
184
+ 区HH区
185
+ HH区
186
+ 240μm
187
+ 000
188
+ GNDLine
189
+ b
190
+ Unit cell
191
+ d
192
+ 480μm
193
+ 3300μm
194
+ e
195
+ f
196
+ Topological phase
197
+ Trivial phase
198
+ g
199
+ 1000
200
+ 1000
201
+ Two-Point Impedance [Q]
202
+ Two-Point Impedance [2]
203
+ a
204
+ 100
205
+ 10.7GHz
206
+ Two-Point Impedance
207
+ 100
208
+ 100
209
+ Node
210
+ 10
211
+ Node0
212
+ 10
213
+ 10
214
+ Node
215
+ Node.2
216
+ 1
217
+ 0.1
218
+ 0.1
219
+ 0.1
220
+ Node
221
+ Penetrationlength=0.414
222
+ Node6
223
+ 0.01
224
+ Node7
225
+ 0.01
226
+ 1
227
+ 2
228
+ 3456
229
+ 10
230
+ 20
231
+ 1
232
+ 2
233
+ 3456
234
+ 10
235
+ 20
236
+ 0
237
+ 1
238
+ 2
239
+ 3
240
+ 4
241
+ 5
242
+ 6
243
+ Frequency [GHz]
244
+ Frequency [GHz]
245
+ Node Number3
246
+ FIG. 2. Kitaev chain. a, b and c, The electronic-circuit representation of the Kitaev chain. a, All-topological configuration where the
247
+ topological edge state emerges at both the left and right edges of the chain. b, All-trivial configuration that does not have a topological edge
248
+ state. c, The implemented state-configurable Kitaev chain circuit. d, By using two SPDT switches with inverters in the unit cell, the connection
249
+ of L0 and C0 can be swapped to change its topological/trivial state. The SPDT switch is realized by two CMOS transmission gate switches. e,
250
+ A picture of an 16-unit cell integrated circuit for the SSH chain. f, A picture of a unit cell. g, A zoom of SPDT switches in Fig.2f. Each SPDT
251
+ switch is composed of an inverter and two transmission gates with n-type and p-type MOS FETs as in Fig.2d. h and i, Frequency dependence
252
+ of the impedance measured from the right edge of the electronic circuit with the characteristic frequency ωresonant =17.2 GHz Kitaev chain
253
+ for all-topological and all-trivial setups, respectively. Solid and dashed lines show the measured and simulated results of the Kitaev chain,
254
+ respectively. j, The spatial profile of the impedance values for all-topological mode measured from both left and right edges at the resonant
255
+ frequency of 13.1 GHz.
256
+ is realized by the configuration shown in Fig. 2a, while the
257
+ trivial phase is realized by the configuration shown in Fig. 2b.
258
+ A single Kitaev chain may accommodate several segments
259
+ which are either topological or trivial. A Majorana-like state
260
+ emerges at an interface between the two phases. We introduce
261
+ two single-pole double-throw (SPDT) switches in each unit
262
+ cell as illustrated in Fig. 2c. The electric circuit for the SPDT
263
+ switch is shown in Fig. 2d. The switching is done by swapping
264
+ the connection of L0 and C0, by way of which the position of
265
+ a Kitaev interface state is controlled. In the integrated circuits,
266
+ the SPDT switch is simply implemented with an inverter and
267
+ two CMOS transmission gates, composed of n-type and p-
268
+ type metal oxide semiconductor (MOS) field-effect transistors
269
+ (FETs) as shown in Fig. 2f and g.
270
+ The Kitaev chain circuit shown in Fig. 2c is implemented
271
+ onto the chip using 180 nm CMOS technology as shown in
272
+
273
+ a
274
+ Topological phase
275
+ b
276
+ Trivial phase
277
+ Unit cell
278
+ g
279
+ Switches
280
+ 220μm
281
+ GNDLine
282
+ Transmission
283
+ SPDTSwitch
284
+ Gate
285
+ forProbingTest
286
+ C
287
+ ContactPads
288
+ Transmission
289
+ Gate
290
+ 000
291
+ 000
292
+ 000
293
+ 400μm
294
+ Inverter
295
+ 000
296
+ 000
297
+ Switches
298
+ C
299
+ d
300
+ SPDT switch
301
+ Probingpoints
302
+ SPDTSwitch
303
+ IN
304
+ 000
305
+
306
+ OUT1
307
+ OUT2
308
+ Co
309
+ SPDT
310
+ switch
311
+ GNDLine
312
+ 000
313
+ SW
314
+ OUT1
315
+ OUT2
316
+ e
317
+ Unit cell
318
+ Unit cell
319
+ 400μm
320
+ 3800μm
321
+ h
322
+ Topological phase
323
+ Trivial phase
324
+ J
325
+ 100
326
+ 100
327
+ Two-Point Impedance [Q]
328
+ Two-Point Impedance [Ω]
329
+ Two-Point Impedance [Ω]
330
+ 100
331
+ 13.1GHZ
332
+ D..
333
+ From-leftedge
334
+ Node 16
335
+ Penetration length=0.660
336
+ 10
337
+ 10
338
+ 10
339
+ Node16
340
+ Node 15
341
+ Fromirightedge
342
+ Penetration length=0.666
343
+ Node.15
344
+ Node 14
345
+ Node.
346
+ 1
347
+ lode
348
+ 0.1
349
+ 0.1
350
+ 0.1
351
+ Nodel
352
+ Node 12
353
+ 0.01
354
+ 0.01
355
+ 0.01
356
+ 2
357
+ 3
358
+ 456
359
+ 10
360
+ 20
361
+ 2
362
+ 3
363
+ 456
364
+ 10
365
+ 20
366
+ 0
367
+ 2
368
+ 4
369
+ 6
370
+ 8
371
+ 10
372
+ 12
373
+ 14
374
+ 16
375
+ Frequency [GHz]
376
+ Freguency[GHz]
377
+ Node Number4
378
+ 0
379
+ 5
380
+ 10
381
+ 15
382
+ 20
383
+ 25
384
+ 30
385
+ 35
386
+ 40
387
+ 45
388
+ 0
389
+ 2
390
+ 4
391
+ 6
392
+ 8
393
+ 10
394
+ 12
395
+ 14
396
+ 16
397
+ Impedance [Ω]
398
+ Node Number
399
+ 3 trivial
400
+ 3 trivial
401
+ 2 trivial
402
+ 4 topological
403
+ 4 topological
404
+ 8.8GHz chain
405
+ 17.2GHz chain
406
+ From node 4
407
+ From node 7
408
+ From node 10 From node 13
409
+ From node 4
410
+ From node 7
411
+ From node 10 From node 13
412
+ 0
413
+ 5
414
+ 10
415
+ 15
416
+ 20
417
+ 25
418
+ 30
419
+ 35
420
+ 40
421
+ 45
422
+ 0
423
+ 2
424
+ 4
425
+ 6
426
+ 8
427
+ 10
428
+ 12
429
+ 14
430
+ 16
431
+ Impedance [Ω]
432
+ Node Number
433
+ 4 trivial
434
+ 3 trivial
435
+ 1 trivial
436
+ 4 topological
437
+ 4 topological
438
+ 8.8GHz chain
439
+ 17.2GHz chain
440
+ From node 5
441
+ From node 8
442
+ From node 10
443
+ From node 13
444
+ From node 5
445
+ From node 8
446
+ From node 10
447
+ From node 13
448
+ 0
449
+ 5
450
+ 10
451
+ 15
452
+ 20
453
+ 25
454
+ 30
455
+ 35
456
+ 40
457
+ 45
458
+ 0
459
+ 2
460
+ 4
461
+ 6
462
+ 8
463
+ 10
464
+ 12
465
+ 14
466
+ 16
467
+ Impedance [Ω]
468
+ Node Number
469
+ 4 trivial
470
+ 4 trivial
471
+ 8 topological
472
+ 8.8GHz chain
473
+ 17.2GHz chain
474
+ From node 5
475
+ From node 12
476
+ From node 5
477
+ From node 12
478
+ a
479
+ b
480
+ c
481
+ FIG. 3. Topological interface states. Measurement results of the
482
+ topological edge state locations depending on different Kitaev chain
483
+ configurations.
484
+ "n trivial (topological)" indicates that the trivial
485
+ (topological) segment contains n unit cells. Blue (red) data points
486
+ are for 8.8 GHz (17.2 GHz) chain. a, The topological edge states
487
+ emerge at 4th, 7th, 10th and 11th nodes. b, The locations of the edge
488
+ states move to the 5th, 8th, 10th and 11th nodes. c, When two topo-
489
+ logical segments combine to one segment, the edge states emerge
490
+ only at 5th and 12th nodes.
491
+ Fig. 2e. On a 5 mm×5 mm chip, two 16-unit cell Kitaev chain
492
+ circuits were integrated for two different target resonant fre-
493
+ quencies, 8.8 GHz and 17.2 GHz. We show a zoom-in view of
494
+ the unit cell layout in Fig. 2f, which shows that it includes 3
495
+ inductors L, Lx and L0, 3 capacitors C, Cx and C0, 2 SPDT
496
+ switches, and a contact pad at each node for direct probing
497
+ measurement with GSG (Ground, Signal, Ground) probes. A
498
+ photo of the SPDT switches is shown in Fig. 2g. Two trans-
499
+ mission gates and an inverter are integrated for each SPDT
500
+ switch. The values for the capacitors and inductors are sum-
501
+ marized in TABLE I.
502
+ Fig. 2h, i and j summarizes the impedance measurement re-
503
+ sults of the Kitaev chain designed for 17.2 GHz resonant fre-
504
+ quency. Figs. 2h and i shows the frequency dependence of the
505
+ impedance measured from the right edge of the chain for topo-
506
+ logical and trivial setups, respectively. The solid and dashed
507
+ lines show measurement and simulation results, respectively.
508
+ We have also carried out a measurement for the Kitaev
509
+ chain with 8.8 GHz. See Supplementary Information II for
510
+ details.
511
+ As we can see from the impedance peak of the rightmost
512
+ edge in Fig. 2h, the measured resonant frequency is shifted
513
+ down from the calculated value of 17.2 GHz to 13.1 GHz.
514
+ This is mainly caused by the parasitic inductance of the metal
515
+ wires in the unit cell to connect the circuit elements. With-
516
+ out considering the wires, the simulated resonant frequency is
517
+ 16.4 GHz, which is much closer to the theoretical value. For
518
+ both topological and trivial setups, the measurement results
519
+ agree well with the simulation especially around the resonant
520
+ frequency.
521
+ Fig. 2j summarizes the two-point impedance values at the
522
+ measured resonant frequency 13.1 GHz.
523
+ The blue and red
524
+ lines show the impedance measured from the left and the right
525
+ edges, respectively. The leftmost (0-th) and rightmost (16-
526
+ th) node impedance correspond to Z11 value of the 2 × 2
527
+ impedance matrix.
528
+ In the topological setup, the impedance peaks are observed
529
+ at both the edges. The penetration length of the topological
530
+ edge state is 0.660 unit cell for the left edge and 0.666 unit
531
+ cell for the right edge, which show a good agreement with the
532
+ theoretical value 0.610 unit cell. See Supplementary Informa-
533
+ tion V for details.
534
+ We have so far observed the topological edge states. There
535
+ is also a topological interface state between topological and
536
+ trivial phases.
537
+ It is possible to switch the topological and
538
+ trivial phases for each segment. Fig. 3 summarizes the 2-
539
+ point impedance at the resonant frequency with 3 different
540
+ switch configurations for the Kitaev chains with 8.8 GHz and
541
+ 17.2 GHz designs, where one point is fixed at the topologi-
542
+ cal/trivial interface and the other point is moved from 1 to
543
+ 16. In Fig. 3a we divided the chain into 4 segments as shown
544
+ Fig. 3a. The impedance peak that corresponds to the topo-
545
+ logical interface state emerges at the edges of the topological
546
+ segments. When we move the left topological segment to the
547
+ right by one unit, the location of the edge states moves ac-
548
+ cordingly as shown in Fig. 3b. Then if the two separated topo-
549
+ logical segments are combined into one segment as shown in
550
+ Fig. 3c, we observe only two impedance peaks at the left and
551
+ right edges of the single topological segments. This clearly
552
+ demonstrates the movement of the topological interface state
553
+ that emerges on the electronic-circuit realization of the Kitaev
554
+ chain implemented onto the integrated circuit. We also ob-
555
+ serve the same behavior for two chains with different resonant
556
+ frequencies, which proves that the topological interface state
557
+ emerges independent of the designed resonant frequency.
558
+ Conclusion
559
+ We have materialized the SSH model and the Kitaev model
560
+ in integrated circuits. These models have topological and triv-
561
+ ial phases. It is possible to create several segments which
562
+ are either topological or trivial in a single chain. Topological
563
+ edge states emerge at both the edges of a topological segment,
564
+ which are observable by mean of the impedance resonance.
565
+ We have demonstrated that the segment size can be as small
566
+ as one unit cell because the penetration length can be made
567
+ smaller than one unit cell: See Fig.3b. Furthermore, we have
568
+ equipped our integrated circuit with a switchable structure,
569
+ which enables us to control the position of a topological in-
570
+ terface state arbitrarily along a chain. Such a possibility is a
571
+ great merit of topological electric circuits over other artificial
572
+
573
+ 5
574
+ FIG. 4. Setup. a, A microphotograph of the chip that integrates the SSH model and the Kitaev chain, where A (B) shows the circuits for the
575
+ 32-stage SSH model with 17.2GHz (8.8GHz), while C (D) shows the circuits for the 16-stage Kitaev model with 8.8GHz(17.2GHz). b, A
576
+ photo of the measurement setup. c, A block diagram of the measurement setup.
577
+ topological systems, where an integrated topological pattern
578
+ is printed once and for all.
579
+ We have observed that the resonant frequency is lower than
580
+ the theoretical value estimated from ωresonant = 1/
581
+
582
+ LC. This
583
+ is due to the parasitic inductance present in the wires. Details
584
+ are shown in Supplementary Information III.
585
+ The integrated circuit has small inductance and capaci-
586
+ tance, which leads to high frequency operation. The size of
587
+ the unit cell is 200µm and hence, largely integrated circuits
588
+ are possible. Furthermore, mass production is possible in in-
589
+ tegrated circuits, which will benefit for future industrial appli-
590
+ cations of topological electronics.
591
+ Methods
592
+ Measurements. A block diagram and a photo of the mea-
593
+ surement setup are shown in Fig.4. We observed the topolog-
594
+ ical edge state based on two-point impedance measurement.
595
+ We observe two-point impedance with a vector network
596
+ analyzer (VNA), Keysight N5222B. The chip measurement
597
+ is done on the probe station, Formfactor Summit11000. A
598
+ 2×2 Z-matrix is derived from the 2×2 S-parameter measured
599
+ by the VNA. The chain configuration (the state of the SPDT
600
+ switches) is controlled by the serial-parallel interface (SPI) in-
601
+ tegrated on the same chip, whose configuration data are writ-
602
+ ten from an external PC.
603
+ Simulation is done with a circuit simulator, Cadence Spec-
604
+ tre. The S-parameters of the passive components such as ca-
605
+ pacitors and inductors are extracted for circuit simulation with
606
+ Cadence EMX, which is a planar 3D electromagnetic simula-
607
+ tor based on the Fast Multipole Method (FMM) designed for
608
+ high-frequency integrated circuits.
609
+ SSH model.
610
+ The SSH is defined by the following 1D
611
+ Hamiltonian,
612
+ H =
613
+ N
614
+
615
+ x=1
616
+ tA
617
+
618
+ c†
619
+ 2x−1c2x + c†
620
+ 2xc2x−1
621
+
622
+ +tB
623
+
624
+ c†
625
+ 2xc2x+1 + c†
626
+ 2x+1c2x
627
+
628
+ .
629
+ (1)
630
+ It is realized by an LC circuit as shown in Fig.1a. When we ap-
631
+ ply an AC source with frequency ω, with Kirchhoff’s current
632
+ law, the sum of currents from all adjacent nodes m flowing
633
+ into node n leads to the following formula,
634
+ In(ω) =
635
+
636
+ m
637
+ Jnm(ω)Vm(ω),
638
+ (2)
639
+ where Jnm(ω) is the circuit Laplacian. By Fourier transform-
640
+ ing from the node x to the momentum k, it is summarized
641
+ as
642
+
643
+ IA (k)
644
+ IB (k)
645
+
646
+ = JAB(ω)
647
+
648
+ VA (k)
649
+ VB (k)
650
+
651
+ ,
652
+ (3)
653
+ where
654
+ JAB(ω) = iω
655
+
656
+ 1
657
+ ω2L − (C1 + C2)
658
+ C1 + C2e−ik
659
+ C1 + C2eik
660
+ 1
661
+ ω2L − (C1 + C2)
662
+
663
+ (4)
664
+ is the circuit Laplacian. The condition for the impedance reso-
665
+ nance is determined by the condition where the diagonal term
666
+ is zero at the resonant frequency and the resonant frequency
667
+ is determined as
668
+ ωresonant = 1/
669
+
670
+ L (C1 + C2)
671
+ (5)
672
+ for the topological phase.
673
+ On the other hand, there is no
674
+ impedance resonance for the trivial phase.
675
+ 1D p-wave Kitaev topological superconductor model.
676
+ The original Kitaev p-wave superconductor model is defined
677
+ on the 1D lattice as
678
+ H = −µ
679
+
680
+ x
681
+ c†
682
+ xcx − t
683
+ 2
684
+
685
+ x
686
+
687
+ c†
688
+ xcx+1 + c†
689
+ x+1cx
690
+
691
+ −1
692
+ 2
693
+
694
+ x
695
+
696
+ ∆eiφcxcx+1 + ∆e−iφc†
697
+ x+1c†
698
+ x
699
+
700
+ ,
701
+ (6)
702
+ where µ is the chemical potential, t > 0 is the nearest-
703
+ neighbor hopping strength and ∆ > 0 is the p-wave pairing
704
+ amplitude of the superconductor.
705
+ By introducing the Nambu representation Ψ†
706
+ k =
707
+
708
+ c†
709
+ k, c−k
710
+
711
+ and Ψk =
712
+
713
+ ck, c†
714
+ −k
715
+ �T
716
+ one can write the Hamiltonian in the
717
+
718
+ a
719
+ b
720
+ c
721
+ 5mm
722
+ NetworkAnalyzer
723
+ Vecto Network Analyzer
724
+ Screen
725
+ (KeysightN5222B)
726
+ Port1
727
+ Port2
728
+ ABCD
729
+ Network Analyzer
730
+ Chip
731
+ (Behindthe Microscope)
732
+ UnderTest
733
+ 5mm
734
+ A
735
+ GPLLLLLL
736
+ Microscopic View
737
+ oftheChip
738
+ Powersupplyand
739
+ Serial-Parallel Interface
740
+ Chipon the Probe Station
741
+ (Tocontrolswitches)
742
+ SPI control signals6
743
+ Bogoliubov-de Gennes form
744
+ H = 1
745
+ 2
746
+
747
+ k
748
+ Ψ†
749
+ kH(k)Ψk,
750
+ (7)
751
+ with a 2×2 form Hamiltonian
752
+ H(k) = 1
753
+ 2
754
+
755
+ −t cos k − µ
756
+ i∆0 sin k
757
+ −i∆0 sin k
758
+ t cos k + µ
759
+
760
+ .
761
+ (8)
762
+ The zero-energy state of the Bogoliubov-de Gennes Hamilto-
763
+ nian is a Majorana state, and hence, there appear Majorana
764
+ edge states in the topological phase of the Kitaev model.
765
+ Here, t, µ, σi and ∆i represent the hopping amplitude, the
766
+ chemical potential, the spin degree of freedom, and the su-
767
+ perconducting gap parameter, respectively. It is well known
768
+ that the system is topological for |µ| < |2t| and trivial for
769
+ |µ| > |2t| irrespective of ∆i provided ∆i ̸= 0.
770
+ We then realize this p-wave Kitaev model by way of an
771
+ electronic circuit. As shown in Fig.2a, this circuit chain con-
772
+ tains two main lines, one connected by a series of capacitors C
773
+ implementing the electrons band, while another connected by
774
+ a series of inductors L implementing the holes band, respec-
775
+ tively. Pairing interaction between the two bands is simulated
776
+ by bridging capacitors Cx and inductors Lx. Each electron
777
+ node and each hole node is connected to the ground via a ca-
778
+ pacitor C0 and inductors L0, respectively. The hopping am-
779
+ plitudes t realized in the electrons band and holes band are op-
780
+ posite since the capacitors C contained in the electrons band
781
+ contribute the terms iωC while the inductors L contained in
782
+ the holes band contribute the terms 1/(iωL).
783
+ The circuit Laplacian is given by
784
+ Jab(ω) =
785
+
786
+ f1 g1
787
+ g2 f2
788
+
789
+ ,
790
+ (9)
791
+ where
792
+ f1 = −2C cos k + 2C −
793
+
794
+ ω2L0
795
+ �−1
796
+ f2 = 2
797
+
798
+ ω2L
799
+ �−1 cos k − 2
800
+
801
+ ω2L
802
+ �−1 + C0
803
+ g1 = −Cxeik +
804
+
805
+ ω2Lx
806
+ �−1 e−ik
807
+ g2 =
808
+
809
+ ω2Lx
810
+ �−1 eik − Cxe−ik,
811
+ (10)
812
+ for topological phase and
813
+ f1 = −2C cos k + 2C + C0
814
+ f2 = 2
815
+
816
+ ω2L
817
+ �−1 cos k − 2
818
+
819
+ ω2L
820
+ �−1 −
821
+
822
+ ω2L0
823
+ �−1
824
+ g1 = −Cxeik +
825
+
826
+ ω2Lx
827
+ �−1 e−ik
828
+ g2 =
829
+
830
+ ω2Lx
831
+ �−1 eik − Cxe−ik,
832
+ (11)
833
+ for trivial phase.
834
+ The essence to realize the 1D model in circuit form is
835
+ to make the circuit Laplacian equal to the system Hamilto-
836
+ nian.
837
+ Clearly, to make it possible, particle-hole symmetry
838
+ (PHS) must be respected, which requires these three pairs
839
+ of LC resonators shares the same resonant frequency, that is,
840
+ ωresonant ≡ 1/
841
+
842
+ LC = 1/√L0C0 = 1/√LxCx. Once PHS
843
+ is respected, the relationship between circuit components and
844
+ Hamiltonian parameters could be induced and expressed as
845
+ follows:
846
+
847
+
848
+
849
+ t = −C,
850
+ µ = −2C + C0,
851
+ ∆0 = −Cx.
852
+ (12)
853
+ To make the 1D circuit chain topological, we set µ to 0 to
854
+ meet the topological mode requirements of |µ| < |2t|. This
855
+ topological property is satisfied by the emergence of grounded
856
+ capacitors C0 and inductors L0, since the system will be pre-
857
+ cisely located at the critical point between the topological and
858
+ trivial states. Therefore, by exchanging the connections of
859
+ C0 and L0, we could perform transitions between these two
860
+ states.
861
+ Impedance resonance. The emergence of a topological
862
+ edge states is observed via impedance resonance. The topo-
863
+ logical edge state is a zero-energy eigenstate of the Hamilto-
864
+ nian. It corresponds to the zero admittance, and hence, the
865
+ emergence is observable by the divergence in the impedance.
866
+ The two-point impedance between the a and b nodes is
867
+ given by[32]
868
+ Zab ≡ Va/Ib = Gab,
869
+ (13)
870
+ where G is the Green function defined by the inverse of the
871
+ Laplacian J, G ≡ J−1.
872
+
873
+ 7
874
+ [1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
875
+ [2] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
876
+ [3] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42,
877
+ 1698 (1979).
878
+ [4] A. Kitaev, Phys. Usp. 44 (suppl.), 131 (2001).
879
+ [5] J. Alicea, Y. Oreg, G. Refael, F. von Oppen and M.P.A. Fisher,
880
+ Nat. Phys. 7, 412 (2011).
881
+ [6] C. W.J. Beenakker, Annu. Rev. Condens. Matter Phys. 4, 113
882
+ (2013).
883
+ [7] S.R. Elliott and M. Franz, Rev. Mod. Phys. 87, 137 (2015).
884
+ [8] M. Sato and Y. Ando, Rep. Prog. Phys. 80, 076501 (2017).
885
+ [9] A.Yu.Kitaev, Annals of Physics, 303, 2 (2003).
886
+ [10] C. Nayak, S. H. Simon, A. Stern, M. Freedman and S. Das
887
+ Sarma Rev. Mod. Phys. 80, 1083 (2008)
888
+ [11] A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A.
889
+ H. MacDonald, G. Shvets, Nature Materials 12, 233 (2013).
890
+ [12] M. Hafezi, E. Demler, M. Lukin, J. Taylor, Nature Physics 7,
891
+ 907 (2011).
892
+ [13] M. Hafezi, S. Mittal, J. Fan, A. Migdall, J. Taylor, Nature Pho-
893
+ tonics 7, 1001 (2013).
894
+ [14] L.H. Wu and X. Hu, Phys. Rev. Lett. 114, 223901 (2015).
895
+ [15] L. Lu. J. D. Joannopoulos and M. Soljacic, Nature Photonics 8,
896
+ 821 (2014).
897
+ [16] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu,
898
+ M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg and L.
899
+ Carusotto, Rev. Mod. Phys. 91, 015006 (2019).
900
+ [17] E. Prodan and C. Prodan, Phys. Rev. Lett. 103, 248101 (2009).
901
+ [18] Z. Yang, F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong and B. Zhang,
902
+ Phys. Rev. Lett. 114, 114301 (2015).
903
+ [19] P. Wang, L. Lu and K. Bertoldi, Phys. Rev. Lett. 115, 104302
904
+ (2015).
905
+ [20] M. Xiao, G. Ma, Z. Yang, P. Sheng, Z. Q. Zhang and C. T. Chan,
906
+ Nat. Phys. 11, 240 (2015).
907
+ [21] C. He, X. Ni, H. Ge, X.-C. Sun,Y.-B. Chen1 M.-H. Lu, X.-P.
908
+ Liu, L. Feng and Y.-F. Chen, Nature Physics 12, 1124 (2016).
909
+ [22] C. L. Kane and T. C. Lubensky, Nature Phys. 10, 39 (2014).
910
+ [23] B. Gin-ge Chen, N. Upadhyaya and V. Vitelli, PNAS 111,
911
+ 13004 (2014).
912
+ [24] L. M. Nash, D. Kleckner, A. Read, V. Vitelli, A. M. Turner and
913
+ W. T. M. Irvine, PNAS 112, 14495 (2015).
914
+ [25] J. Paulose, A. S. Meeussen and V. Vitelli, PNAS 112, 7639
915
+ (2015).
916
+ [26] R. Susstrunk, S. D. Huber, Science 349, 47 (2015).
917
+ [27] R. Susstrunk and S. D. Huber, Proc. Natl. Acad. Sci. USA 113,
918
+ E4767 (2016).
919
+ [28] S. D. Huber, Nature Physics 12, 621 (2016).
920
+ [29] A. S. Meeussen, J. Paulose and V. Vitelli, Phys. Rev. X 6,
921
+ 041029 (2016).
922
+ [30] S. Imhof, C. Berger, F. Bayer, J. Brehm, L. Molenkamp, T.
923
+ Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert, R.
924
+ Thomale, Nat. Phys. 14, 925 (2018).
925
+ [31] C. H. Lee , S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W.
926
+ Molenkamp, T. Kiessling and R. Thomale, Communications
927
+ Physics, 1, 39 (2018).
928
+ [32] T. Helbig, T. Hofmann, C. H. Lee, R. Thomale, S. Imhof, L. W.
929
+ Molenkamp and T. Kiessling, Phys. Rev. B 99, 161114 (2019).
930
+ [33] Y. Lu, N. Jia, L. Su, C. Owens, G. Juzeliunas, D. I. Schuster
931
+ and J. Simon, Phys. Rev. B 99, 020302 (2019).
932
+ [34] K. Luo, R. Yu and H. Weng, Research (2018), ID 6793752.
933
+ [35] E. Zhao, Ann. Phys. 399, 289 (2018).
934
+ [36] Y. Li, Y. Sun, W. Zhu, Z. Guo, J. Jiang, T. Kariyado, H. Chen
935
+ and X. Hu, Nat. Com. 9, 4598 (2018)
936
+ [37] M. Ezawa, Phys. Rev. B 98, 201402(R) (2018).
937
+ [38] V. Mourik, et.al., Science 336, 1003 (2012)
938
+ [39] M. Aghaee, et.al., arXiv:2207.02472
939
+ [40] M. Ezawa, Phys. Rev. B 99, 201411(R) (2019).
940
+ [41] M. Ezawa, Phys. Rev. B 99, 121411(R) (2019).
941
+ [42] M. Serra-Garcia, R. Susstrunk and S. D. Huber, Phys. Rev. B
942
+ 99, 020304 (2019).
943
+ [43] T. Hofmann, T. Helbig, C. H. Lee, M. Greiter, R. Thomale,
944
+ Phys. Rev. Lett. 122, 247702 (2019).
945
+ [44] M. Ezawa, Phys. Rev. B 100, 045407 (2019).
946
+ [45] M. Ezawa, Phys. Rev. B 102, 075424 (2020).
947
+ [46] C. H. Lee, T. Hofmann, T. Helbig, Y. Liu, X. Zhang, M. Greiter
948
+ and R. Thomale, Nature Communications 11, 4385 (2020).
949
+ [47] Y. Liu, W. Cao, W. Chen, H. Wang, L Yang and X. Zhang, Sci.
950
+ Rep.12, 13410 (2022)
951
+ Acknowledgments
952
+ This work is supported by CREST, JST (Grants No. JPMJCR20T2).
953
+ The authors would like to thank Z. Yang, S. Li and X. Chen for their
954
+ measurement support. The on-chip passive components are designed
955
+ based on RF cell library developed by Umeda laboratory, Tokyo Uni-
956
+ versity of Science. The LSI chip in this study was designed and fab-
957
+ ricated through the activities of VDEC, The University of Tokyo, in
958
+ collaboration with Cadence Design Systems, Rohm Corporation and
959
+ Toppan Printing Corporation.
960
+ Author contributions
961
+ M.E., Y.M. and T.I. planned the study.
962
+ T.I. and H.Y. designed
963
+ the topological circuits and performed the experiments. T.I., M.E.
964
+ and H.Y. collected and analyzed the data. M.E. and T.I. wrote the
965
+ manuscript with input from H.Y., Y.M., A.H. and S.Y. All the au-
966
+ thors discussed the project and the results.
967
+ Additional information
968
+ Supplementary information is available.
969
+ Competing financial interests
970
+ The authors declare no competing financial interests.
971
+
IdE0T4oBgHgl3EQfiAEY/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
ONAyT4oBgHgl3EQfgvjr/content/tmp_files/2301.00366v1.pdf.txt ADDED
@@ -0,0 +1,799 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Self-Supervised Object Segmentation with a Cut-and-Pasting GAN
2
+ Kunal Chaturvedi, Ali Braytee, Jun Li, Mukesh Prasad
3
+ aSchool of Computer Science, University of Technology Sydney, Ultimo, 2007, NSW, Australia
4
+ Abstract
5
+ This paper proposes a novel self-supervised based Cut-and-Paste GAN to perform foreground object seg-
6
+ mentation and generate realistic composite images without manual annotations. We accomplish this goal by
7
+ a simple yet effective self-supervised approach coupled with the U-Net based discriminator. The proposed
8
+ method extends the ability of the standard discriminators to learn not only the global data representations
9
+ via classification (real/fake) but also learn semantic and structural information through pseudo labels created
10
+ using the self-supervised task. The proposed method empowers the generator to create meaningful masks
11
+ by forcing it to learn informative per-pixel as well as global image feedback from the discriminator. Our
12
+ experiments demonstrate that our proposed method significantly outperforms the state-of-the-art methods on
13
+ the standard benchmark datasets.
14
+ Keywords: Generative adversarial networks, Self-supervised learning, Cut-and-Paste, Segmentation
15
+ 1. Introduction
16
+ Generative adversarial networks (GANs) [1] have
17
+ become a popular class of image synthesis meth-
18
+ ods due to their demonstrated ability to create high-
19
+ dimensional samples with desired data distribution.
20
+ The primary objective of GANs is to generate di-
21
+ verse, high-quality images while also ensuring the
22
+ stability of GAN training [2] [3]. GAN consists of
23
+ generator and discriminator networks trained in an
24
+ adversarial manner. The generator attempts to syn-
25
+ thesize the real data distribution to fool the discrim-
26
+ inator, whereas the discriminator’s goal is to distin-
27
+ guish between the generator’s real and fake data. In
28
+ image segmentation, several compositional genera-
29
+ tive models have been proposed [4, 5, 6, 7] , where
30
+ the generator creates a synthesized composite image
31
+ by copying the object from one image and pasting
32
+ it in another to fool the discriminator about think-
33
+ ing the synthesized composite image is real. But,
34
+ the generator may not perform any segmentation,
35
+ and the background may look realistic. Therefore,
36
+ Email address: Kunal.Chaturvedi, Ali.Braytee,
37
+ Jun.Li, [email protected] (Mukesh Prasad)
38
+ for effective training, the discriminator needs to pro-
39
+ vide the generator with informative learning signals
40
+ by learning relevant semantics and structures of the
41
+ data that may result in more effective generators.
42
+ However, the current state-of-the-art GANs employ
43
+ discriminators based on the classification network,
44
+ which learn only a single discriminative signal such
45
+ as the difference between real and fake images. In
46
+ such a non-stationary environment, the generator be-
47
+ comes prone to catastrophic forgetting and may lead
48
+ to training instability or mode collapse [8].
49
+ To address the aforementioned issues, additional
50
+ discriminatory signals are required to guide the train-
51
+ ing mechanism and assist the generator in producing
52
+ high-quality images. This can be accomplished by
53
+ increasing the capacity of the discriminator with aux-
54
+ iliary tasks and signals. These auxiliary tasks on the
55
+ labeled datasets resist the forgetting issues and im-
56
+ prove the training stability of GANs, but it suffers
57
+ with unlabeled datasets.
58
+ Recently, self-supervised
59
+ learning has been explored on numerous GANs
60
+ methods [8],[9],[10],[11]. The self-supervised tasks
61
+ provide the learning environment with additional
62
+ guidance to the standard training mechanism. Most
63
+ of the recent self-supervision methods based GANs
64
+ Preprint submitted to Nuclear Physics B
65
+ January 3, 2023
66
+ arXiv:2301.00366v1 [cs.CV] 1 Jan 2023
67
+
68
+ use auxiliary tasks based on transformation. For ex-
69
+ ample, SS-GAN developed by Chen et al. [8] uses
70
+ rotation prediction as an auxiliary task. In FX-GAN,
71
+ Huang et al.
72
+ [10] use the pretext task of predic-
73
+ tion on corrupted real images, and in LT-GAN [9],
74
+ the authors use distinguishing GAN-induced trans-
75
+ formation as a pretext task. However, the goals of
76
+ these transformation-based self-supervised tasks are
77
+ inconsistent with the GAN’s goal of mimicking the
78
+ real data distribution. Moreover, this problem ampli-
79
+ fies when the generator’s task is to construct segmen-
80
+ tation masks from the foreground images.
81
+ In order to maintain an enriched real data repre-
82
+ sentation and improve the quality of generated seg-
83
+ mentation masks, we propose a Self-Supervised Cut-
84
+ and-Paste GAN (SS-CPGAN) based on U-net archi-
85
+ tecture [12], which unifies cut-and-paste adversar-
86
+ ial training with a self-supervised task.
87
+ It allows
88
+ the discriminator to learn both local and global dif-
89
+ ferences between real and fake data.
90
+ In contrast
91
+ to the existing transformation based self-supervision
92
+ methods, our self-supervision learning method cre-
93
+ ates pseudo labels using unsupervised segmentation
94
+ methods. Then, it simultaneously forces the discrim-
95
+ inator to provide the generator with global feedback
96
+ (real or fake) and the per-pixel feedback of the syn-
97
+ thesized images with the help of pseudo labels.
98
+ To sum up, our main contributions are:
99
+ • We propose a novel Self-Supervised Cut-and-
100
+ Paste GAN (SS-CPGAN), that unifies cut-and-
101
+ paste adversarial training with a segmentation-
102
+ based self-supervised task. SS-CPGAN lever-
103
+ age unlabeled data to maximize segmentation
104
+ performance and generate highly realistic com-
105
+ posite images.
106
+ • The proposed self-supervised task in SS-
107
+ CPGAN improves the discriminator’s represen-
108
+ tation ability by enhancing structure learning
109
+ with global and local feedback. This enables the
110
+ generator with additional discriminatory sig-
111
+ nals to achieve superior results and stabilize the
112
+ training process.
113
+ • We perform a comprehensive analysis on the
114
+ benchmark datasets and compare our proposed
115
+ method with the baseline method.
116
+ 2. Related Works
117
+ 2.1. Unsupervised Object Segmentation via GANs
118
+ Unsupervised segmentation using GANs is an im-
119
+ portant topic in research. Several works [4, 5, 6, 7]
120
+ investigate the use of compositional generative mod-
121
+ els to obtain high quality segmentation masks. Copy-
122
+ pasting GAN [7] performs unsupervised object dis-
123
+ covery by extracting foreground objects and then
124
+ copying and pasting them onto the different back-
125
+ grounds.
126
+ Similarly, PerturbGAN [5] generates a
127
+ foreground mask along with a background and fore-
128
+ ground image in an adversarial manner. Recently,
129
+ Abdal et al.
130
+ (2021) [6] propose a method to use
131
+ an alpha network that includes two pretrained gen-
132
+ erators and a discriminator based on the StyleGAN
133
+ to generate high quality masks.
134
+ These methods
135
+ learn object segmentation without needing to use
136
+ annotations. However, they are prone to degener-
137
+ ate solutions or other trivial cases.
138
+ For example,
139
+ the generator may not perform any segmentation,
140
+ and the background looks realistic or the generator
141
+ may segment foreground masks consisting of all-
142
+ ones. To avoid such problems, special care needs
143
+ to be taken while training the compositional genera-
144
+ tive models. Copy-pasting GAN uses anti-shortcut,
145
+ border-zeroing, blur, and grounded fakes to prevent
146
+ trivial solutions [7].
147
+ PerturbGAN avoids such so-
148
+ lutions by randomly shifting object segments rel-
149
+ ative to the background [5].
150
+ However, Abdal et
151
+ al. (2021) [6] make several changes to the original
152
+ StyleGAN and use truncation trick along with regu-
153
+ larization to avoid degenerate solutions.
154
+ 2.2. Self-supervised learning
155
+ Self-supervised learning learns useful feature rep-
156
+ resentations from data with the help of pretext tasks.
157
+ Recently, many pretext tasks coupled with adversar-
158
+ ial training have been introduced [8]. The motiva-
159
+ tion for using self-supervised learning is to: (1) pre-
160
+ vent discriminator forgetting [13]; (2) improve train-
161
+ ing stability [14]; (3) and ensure high quality of im-
162
+ ages generated [15]. The self-supervision techniques
163
+ rely on pretext tasks on geometric transformations
164
+ (e.g., prediction on rotated images[8], corrupted im-
165
+ ages [10], GAN-induced transformations [9], or a
166
+ deshuffling task that predicts the shuffled orders [16])
167
+ 2
168
+
169
+ to increase the discriminator’s representation power.
170
+ Unlike the aforementioned methods, we incorporate
171
+ segmentation-based self-supervised learning coupled
172
+ with the Cut-and-Paste GAN to obtain high-quality
173
+ segmentation masks.
174
+ Most importantly, with our
175
+ self-supervised approach, no extra care is needed to
176
+ deal with the trivial solutions prevalent in composi-
177
+ tional generative models.
178
+ 3. Method
179
+ In this section, we first present the standard ter-
180
+ minology of adversarial training and the encoder-
181
+ decoder based discriminator.
182
+ We then introduce
183
+ our Self-Supervised Cut-and-Paste GAN built upon
184
+ the cut-and-paste adversarial training.
185
+ The uni-
186
+ fied framework with the segmentation-based self-
187
+ supervised task encourages the generator to empha-
188
+ size local and global structures while synthesizing
189
+ masks.
190
+ 3.1. Adversarial Training
191
+ As shown in Fig. 2, we build a generative model
192
+ in which the generator takes the foreground image
193
+ as the input and generates a composite image using
194
+ a combination of the predicted mask, source fore-
195
+ ground image and the background image to fool the
196
+ discriminator. Formally, we define the input fore-
197
+ ground source image as If ∈ Pdata and background
198
+ image as Ib ∈ Pdata where Pdata denotes the set of
199
+ input images. Now, we define a generator (G) that
200
+ is trained in an adversarial manner against the dis-
201
+ criminator (D).
202
+ During the training process, the
203
+ generator predicts a segmentation mask defined by
204
+ mg(If) = G(I f) where mg(I f) ∈ [0, 1]. Then, using
205
+ the predicted mask mg(If), foreground source image
206
+ If, and background image Ib, we define composite
207
+ image as follows
208
+ IC = mg(I f)I f + (1 − mg(I f))Ib
209
+ (1)
210
+ The discriminator’s objective is to classify the
211
+ composite image as real or fake. As a result, the stan-
212
+ dard objective of the discriminator and the generator
213
+ of the CPGAN is defined as follows
214
+ LD = max
215
+ D
216
+ E
217
+
218
+ log D(If) + log(1 − D(IC))
219
+
220
+ (2)
221
+ LG = min
222
+ G E �log D(IC)�
223
+ (3)
224
+ The discriminator works as a classification network
225
+ that is restricted to learn only through the discrim-
226
+ inative differences between the real and fake sam-
227
+ ples.
228
+ Thus, the discriminator fails to provide any
229
+ useful information to the generator. Therefore, we
230
+ use an encoder-decoder-based discriminator network
231
+ with self-supervised learning to mitigate this prob-
232
+ lem.
233
+ 3.2. Encoder-Decoder based Discriminator
234
+ In this work, we replace standard classification-
235
+ based discriminator with the U-net based discrimi-
236
+ nator [12]. The U-net is an encoder-decoder-based
237
+ architecture that consists of a network of convolu-
238
+ tional layers, skip connections for semantic segmen-
239
+ tation. It was initially proposed for biomedical im-
240
+ age segmentation, which achieved precise segmen-
241
+ tation results with few training images. Further, it
242
+ demonstrates good results in other applications, in-
243
+ cluding ArcGIS [17], remote sensing [18], and oth-
244
+ ers. Its architecture (see Figure 1) is symmetric and
245
+ consists of two paths, an Encoder that extracts spatial
246
+ features from the input image (downscaling process),
247
+ and a Decoder that constructs the segmentation map
248
+ from the extracted feature maps (upscaling process).
249
+ We use the encoder part of the U-net as the standard
250
+ classification-based discriminator that performs the
251
+ binary decision on real/fake composite images. And
252
+ the decoder part of the U-net architecture is utilized
253
+ by the self-supervised task to give per-pixel feedback
254
+ of the synthesized images with the help of pseudo la-
255
+ bels. This allows the discriminator to learn both rel-
256
+ evant local and global differences between real/fake
257
+ images.
258
+ 3.3. Self-Supervised
259
+ Cut-and-Paste
260
+ GAN
261
+ (SS-
262
+ CPGAN)
263
+ To improve the representation learning ability of
264
+ the CPGAN, the discriminator must be able to learn
265
+ semantic as well as structural information from the
266
+ synthesized images.
267
+ Therefore, we focus our ap-
268
+ proach on using self-supervised learning to build
269
+ comprehensive representations for the CPGAN. In
270
+ this work, we employ a segmentation based self-
271
+ supervised task, with the primary goal of enabling
272
+ 3
273
+
274
+ Figure 1: An overview of U-net architecture. The different ar-
275
+ rows denote the different operations used in the encode-decoder
276
+ based architecture.
277
+ the discriminator with enhanced learned features that
278
+ ultimately empower the generator to create consis-
279
+ tent and structurally coherent masks.
280
+ The pseudo
281
+ segmentation masks mUS(I f) ∈ [0, 1] are created
282
+ using graph-based unsupervised segmentation algo-
283
+ rithm [16]. These masks obtained by the GrabCut
284
+ technique acts as a good prior for the U-net based
285
+ discriminator (see, Figure 2). Here, the discriminator
286
+ performs two important tasks, i.e., 1) classification
287
+ of real/fake compositing images and 2) performing
288
+ per-pixel based classification on I f ∈ Pdata to gener-
289
+ ate segmentation masks. Given the self-supervised
290
+ pseudo labels, we train the discriminator for accu-
291
+ rate pixel-level prediction. The introduction of self-
292
+ supervisory signals empowers the discriminator by
293
+ enhancing its localization ability and forces the dis-
294
+ criminator it to learn useful semantic representations.
295
+ This mechanism enables the generator to achieve op-
296
+ timized results and makes the training process more
297
+ stabilized.
298
+ Formally, we define I f
299
+ ∈ Pdata as the source
300
+ image containing foreground object, and Pdata de-
301
+ notes the set of input images. Given a source fore-
302
+ ground image I f, we create pseudo label denoted by
303
+ mUS(I f) ∈ [0, 1], using an unsupervised segmenta-
304
+ tion algorithm. Then, we define mw(IC) ∈ [0, 1] as
305
+ the pixel-wise segmentation mask produced by the
306
+ decoder of the discriminator. Hereafter, we optimize
307
+ the overall discriminator loss function (Eq. 5) by
308
+ augmenting a new self-supervision based loss (Eq. 4)
309
+ Lsel f−supervised = L
310
+
311
+ mw(IC), 1 − mUS(If)
312
+
313
+ (4)
314
+ L′
315
+ D = LD + λLsel f−supervised
316
+ (5)
317
+ where L is the cross-entropy loss, and λ denotes the
318
+ loss weight for the self-supervision based loss. This
319
+ hyperparameter is updated based on the compari-
320
+ son between mUS(I f) and mw(IC), using intersection-
321
+ over-union (IoU). The details of the hyperparameter
322
+ chosen are explained in the implementation details
323
+ section. The framework of the self-supervised learn-
324
+ ing is shown in Figure 2.
325
+ 4. Experimentation
326
+ This section discusses the implementation details
327
+ of the proposed method and an extensive set of ex-
328
+ periments on various datasets.
329
+ 4.1. Datasets
330
+ We utilize five different datasets for the foreground
331
+ and background set to train our SS-CPGAN as de-
332
+ scribed below:
333
+ • Caltech-UCSD Birds (CUB) 200-2011 is a fre-
334
+ quently used benchmark for unsupervised im-
335
+ age segmentation. It consists of 11,788 images
336
+ from 200 birds species.
337
+ • Oxford 102 Flowers consists of 8,189 images
338
+ from 102 flower classes.
339
+ • FGVC Aircraft (Airplanes) contains 102 dif-
340
+ ferent aircraft model variants with 100 images
341
+ of each. This dataset was originally used for the
342
+ purpose of fine-grained visual categorization.
343
+ • MIT Places2 is a scene-centric dataset with
344
+ more than 10 million images consisting of over
345
+ 400 unique scene classes. However, in the ex-
346
+ periments, we use the classes: rainforest, for-
347
+ est, sky, and swamp as a background set for
348
+ the Caltech-UCSD Birds dataset, and the Ox-
349
+ ford 102 Flowers, we use the class: herb garden
350
+ as a background set.
351
+ 4
352
+
353
+ 64
354
+ 64
355
+ 128
356
+ t9
357
+ 64
358
+ Input
359
+ indno
360
+ Image
361
+ abe
362
+ 128
363
+ 128
364
+ 256
365
+ 128
366
+ 256
367
+ 256
368
+ 512
369
+ 256
370
+ Conv 3 X 3
371
+ Max pool2x 2
372
+ Up-conv 2 × 2
373
+ 512
374
+ 512
375
+ 1024512
376
+ Concatenation
377
+ 1024
378
+ Finalconv 1x 1Figure 2: The proposed Self-supervised cut-and-paste GAN (SS-CPGAN)
379
+ • Singapore Whole-sky IMaging CATegories
380
+ (SWIMCAT) contains 784 images of a total
381
+ of five categories: patterned clouds, clear sky,
382
+ thick dark clouds, veil clouds, and thick white
383
+ clouds.
384
+ We use the SWIMCAT dataset as a
385
+ background set for the FGCV dataset.
386
+ We chose background datasets similar to the back-
387
+ ground of the images from the foreground dataset.
388
+ For the foreground datasets, we use Caltech-UCSD
389
+ Birds (CUB) 200-2011 [19], Oxford 102 Flowers
390
+ [20], and FGCV Aircraft (Airplanes) [21]. During
391
+ the training, we do not utilize the masks available
392
+ with datasets, Caltech-UCSD Birds and Flowers-
393
+ 102.
394
+ For the background datasets, we use MIT
395
+ Places2 [22], and SWIMCAT [23].
396
+ 4.2. Implementation Details
397
+ Our implementation is based on the PyTorch
398
+ framework. For training our models, we deploy a
399
+ batch size of 16 and the Adam optimizer with an
400
+ initial learning rate of 2.10−4.
401
+ We use the unsu-
402
+ pervised segmentation algorithm based on the Grab-
403
+ Cut technique [24] for the self-supervision task.
404
+ Then, we set the weighting parameters for the self-
405
+ supervised term in the loss function according to
406
+ the Intersection-Over-Union (IoU) score between
407
+ the pseudo label (mask) and the predicted mask
408
+ by the discriminator.
409
+ Initially, when IoU < 0.2,
410
+ the hyperparameter value is set to 0.5 to boost the
411
+ model’s ability to learn useful representations from
412
+ the pseudo label. When the 0.2 < IoU < 0.8, we
413
+ refine the predicted mask using the hyperparameter
414
+ value λ of 0.1. To avoid the pseudo labels compro-
415
+ mising the predicted masks, we restrict the value λ to
416
+ 0 when the IoU > 0.8.
417
+ 4.3. Results
418
+ We utilized the Fr´echet Inception Distance (FID)
419
+ score and mean Intersection over Union (mIoU) met-
420
+ ric for quantitative evaluation of our methods.
421
+ In
422
+ this work, we use the FID score on the datasets
423
+ CUB2011, Oxford 102 Flowers, and FGCV Aircraft
424
+ (see Table 3) to compare the SS-CPGAN model with
425
+ the CPGAN model images spatially scaled to 64×64,
426
+ 128 × 128, and 256 × 256. And for the datasets with
427
+ available ground truth masks, including CUB2011,
428
+ 5
429
+
430
+ Self-
431
+ Supervised
432
+ Loss (Eq. 4)
433
+ SS-CPGAN
434
+ Encodel
435
+ Foreground
436
+ U-Net
437
+ Generator
438
+ Predicted Mask
439
+ Composite
440
+ Real/Fake
441
+ Background
442
+ U-Net
443
+ Discriminator
444
+ Itask
445
+ Unsupervised
446
+ Self-Supervised
447
+ Segmentation
448
+ using
449
+ GrabCut
450
+ Pseudo Label
451
+ Predicted Mask
452
+ byDiscriminator
453
+ Similarity
454
+ Update Loss
455
+ Check
456
+ WeightTable 1: FID comparison of the proposed method with the base-
457
+ line CPGAN model
458
+ FID ↓
459
+ Methods
460
+ Image size
461
+ Caltech
462
+ UCSD-
463
+ Bird 200
464
+ FGCV-
465
+ Aircraft
466
+ Oxford
467
+ 102
468
+ Flowers
469
+ CPGAN
470
+ 64 x 64
471
+ 27.724
472
+ 43.353
473
+ 81.724
474
+ 128 x 128
475
+ 23.125
476
+ 39.674
477
+ 44.825
478
+ 256 x 256
479
+ 22.846
480
+ 44.825
481
+ 51.218
482
+ SS-CPGAN 64 x 64
483
+ 23.751
484
+ 39.578
485
+ 63.343
486
+ 128 x 128
487
+ 16.893
488
+ 37.756
489
+ 54.982
490
+ 256 x 256
491
+ 13.422
492
+ 33.149
493
+ 49.181
494
+ Table 2: mIOU comparison of the proposed method with the
495
+ baseline CPGAN model
496
+ mIoU ↑
497
+ Methods
498
+ Image size
499
+ Caltech
500
+ UCSD-
501
+ Bird 200
502
+ Oxford
503
+ 102
504
+ Flowers
505
+ w/o Self-Supervision 64 x 64
506
+ 0.537
507
+ 0.632
508
+ 128 x 128
509
+ 0.492
510
+ 0.674
511
+ 256 x 256
512
+ 0.484
513
+ 0.779
514
+ Self-Supervision
515
+ 64 x 64
516
+ 0.571
517
+ 0.625
518
+ 128 x 128
519
+ 0.543
520
+ 0.719
521
+ 256 x 256
522
+ 0.518
523
+ 0.791
524
+ Oxford 102 Flowers, we use the mIoU metric as
525
+ shown in Table 2.
526
+ In Figure 2, we report the FID scores over the
527
+ training iterations. We show that our method sta-
528
+ bilizes GAN training across all the datasets by al-
529
+ lowing GAN training to converge faster and con-
530
+ sistently improve performance throughout the train-
531
+ ing. According to Table 3 and Figure 2, our method,
532
+ SS-CPGAN, utilizing self-supervision outperforms
533
+ the baseline method, CPGAN, on each dataset used.
534
+ Furthermore, as shown in Fig. 3, the generated masks
535
+ and composite images of our proposed SS-CPGAN
536
+ are of superior quality. The standard classification
537
+ based discriminator of CPGAN does not provide ef-
538
+ fective guidance to the generator. During the train-
539
+ ing, the standard discriminator is not encouraged to
540
+ learn a more robust data representation. The classi-
541
+ fication task learns only the representation based on
542
+ the discriminative differences between real/fake im-
543
+ ages and fails to give information on why the synthe-
544
+ sized image looks fake. Notedly, our self-supervision
545
+ based task assigned to the U-net based discrimina-
546
+ tor provides the generator with global feedback (real
547
+ or fake) as well as per-pixel feedback of the masks
548
+ with the help of pseudo labels. The self-supervisory
549
+ signals prevent the two scenarios for the generator
550
+ which the standard discriminator fails to do, i.e., cre-
551
+ ating constant masks of only all-zeros pixel values or
552
+ all-ones pixel values. The enhanced discriminator of
553
+ SS-CPGAN influences the generator to create high
554
+ quality masks that are devoid of any such anoma-
555
+ lies. As shown in Figure 3, the qualitative analysis of
556
+ the proposed SS-CPGAN shows that the generated
557
+ masks and composite images are of superior quality.
558
+ 4.4. Comparison with the state-of-the-art
559
+ We compare our self-supervision based Cut-and-
560
+ Paste GAN (SS-CPGAN) with state-of-the-art. As
561
+ shown in Table 3, we report and compare the
562
+ FID score on the Caltech UCSD-Bird 200 dataset.
563
+ Specifically, the FID scores of StackGANv2 [25],
564
+ OneGAN [26], LR-GAN [27], ELGAN [28], and
565
+ FineGAN [29] are listed.
566
+ The results in Table 3
567
+ show that our method delivers better performance
568
+ and outperforms the existing methods.
569
+ LR-GAN
570
+ [27] performed the worst, followed by the other
571
+ methods. The low performance of layer-wise GANs
572
+ [27] [28] is attributed to the fact that these methods
573
+ are prone to degenerate during the training phase,
574
+ with all the pixels being assigned as one compo-
575
+ nent. In Table 4, we compare the performance of our
576
+ method to the recent methods using the mIoU met-
577
+ ric on Caltech UCSD-Bird 200 and Oxford flowers-
578
+ 102 respectively. In comparison to PerturbGAN [5],
579
+ ContraCAM [30], ReDO [4], UISB [31] and IIC-
580
+ seg [32], our method outperforms by a large mar-
581
+ gin on Caltech UCSD-Bird 200 dataset. On the Ox-
582
+ ford flowers-102 dataset, we perform better than the
583
+ methods, ReDO [4], Kyriazi et. al [33] and Voynov
584
+ et. al. [34]. Here, ReDO and Kyriazi et. al (2021)
585
+ are unsupervised approaches whereas Voynov et. al
586
+ (2021) is a weakly supervised approach to create seg-
587
+ mentation maps. The ability to leverage pseudo la-
588
+ bels in the training of Cut-and-Paste GAN assists in
589
+ creating foreground masks of superior quality.
590
+ 6
591
+
592
+ Figure 3: Visualization results with the proposed SS-CPGAN on the datasets: Oxford 102 Flowers (left), FGVC Aircraft (center),
593
+ and Caltech-UCSD Birds (CUB) 200-2011 (right).
594
+ Table 3: FID comparison of our proposed method SS-CPGAN
595
+ with the state-of-art on Caltech UCSD-Bird 200 dataset
596
+ Method
597
+ FID
598
+ StackGANv2
599
+ 21.4
600
+ FineGAN
601
+ 23.0
602
+ OneGAN
603
+ 20.5
604
+ LR-GAN
605
+ 34.91
606
+ ELGAN
607
+ 15.7
608
+ SS-CPGAN
609
+ 13.42
610
+ Table 4: Quantitative comparison of the segmentation perfor-
611
+ mance of our method SS-CPGAN with the state-of-art
612
+ Dataset
613
+ Method
614
+ mIoU
615
+ Caltech UCSD-Bird 200
616
+ PerturbGAN
617
+ 0.380
618
+ ContraCAM
619
+ 0.460
620
+ ReDO
621
+ 0.426
622
+ UISB
623
+ 0.442
624
+ IIC-seg
625
+ 0.365
626
+ SS-CPGAN
627
+ 0.571
628
+ Oxford 102 flowers
629
+ ReDO
630
+ 0.764
631
+ Kyriazi et. al.
632
+ 0.541
633
+ Voynov et al.
634
+ 0.540
635
+ SS-CPGAN
636
+ 0.791
637
+ 5. Conclusion
638
+ In this work, we proposed a novel Self-Supervised
639
+ Cut-and-Paste GAN method to learn object seg-
640
+ mentation. Specifically, we unify the cut-and-paste
641
+ adversarial training with the proposed segmenta-
642
+ tion based self-supervision learning.
643
+ Unlike the
644
+ existing transformation based self-supervised meth-
645
+ ods, our method improves the discriminator’s rep-
646
+ resentation ability by enhancing structure learning
647
+ with global and local feedback from the synthesized
648
+ masks. Furthermore, SS-CPGAN overcomes the is-
649
+ sue of unwanted trivial solutions (generating con-
650
+ stant masks of only all-zeros or all-ones pixel values)
651
+ that plagues the generator. The experimental results
652
+ show that our approach generates superior quality
653
+ images and achieves promising results on the bench-
654
+ mark datasets.
655
+ References
656
+ [1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
657
+ D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Gen-
658
+ erative adversarial nets, Advances in neural information
659
+ processing systems 27 (2014).
660
+ [2] A. Brock, J. Donahue, K. Simonyan, Large scale gan
661
+ training for high fidelity natural image synthesis, arXiv
662
+ preprint arXiv:1809.11096 (2018).
663
+ [3] K. Chaturvedi, A. Braytee, D. K. Vishwakarma, M. Saqib,
664
+ D. Mery, M. Prasad, Automated threat objects detection
665
+ with synthetic data for real-time x-ray baggage inspec-
666
+ tion, in: 2021 International Joint Conference on Neural
667
+ Networks (IJCNN), IEEE, 2021, pp. 1–8.
668
+ 7
669
+
670
+ Background
671
+ Foreground
672
+ Pseudo Label
673
+ Predicted Mas
674
+ Composite[4] M. Chen, T. Arti`eres, L. Denoyer, Unsupervised object
675
+ segmentation by redrawing, Advances in neural informa-
676
+ tion processing systems 32 (2019).
677
+ [5] A. Bielski, P. Favaro, Emergence of object segmentation
678
+ in perturbed generative models, Advances in Neural In-
679
+ formation Processing Systems 32 (2019).
680
+ [6] R. Abdal, P. Zhu, N. J. Mitra, P. Wonka, Labels4free: Un-
681
+ supervised segmentation using stylegan, in: Proceedings
682
+ of the IEEE/CVF International Conference on Computer
683
+ Vision, 2021, pp. 13970–13979.
684
+ [7] R. Arandjelovi´c, A. Zisserman, Object discovery with
685
+ a copy-pasting gan, arXiv preprint arXiv:1905.11369
686
+ (2019).
687
+ [8] T. Chen, X. Zhai, M. Ritter, M. Lucic, N. Houlsby, Self-
688
+ supervised gans via auxiliary rotation loss, in: Proceed-
689
+ ings of the IEEE/CVF conference on computer vision and
690
+ pattern recognition, 2019, pp. 12154–12163.
691
+ [9] P. Patel, N. Kumari, M. Singh, B. Krishnamurthy, Lt-gan:
692
+ Self-supervised gan with latent transformation detection,
693
+ in: Proceedings of the IEEE/CVF Winter Conference on
694
+ Applications of Computer Vision, 2021, pp. 3189–3198.
695
+ [10] R. Huang, W. Xu, T.-Y. Lee, A. Cherian, Y. Wang,
696
+ T. Marks, Fx-gan: Self-supervised gan learning via fea-
697
+ ture exchange, in: Proceedings of the IEEE/CVF Winter
698
+ Conference on Applications of Computer Vision, 2020,
699
+ pp. 3194–3202.
700
+ [11] L. Hou, H. Shen, Q. Cao, X. Cheng, Self-supervised gans
701
+ with label augmentation, Advances in Neural Information
702
+ Processing Systems 34 (2021).
703
+ [12] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional
704
+ networks for biomedical image segmentation, in: Inter-
705
+ national Conference on Medical image computing and
706
+ computer-assisted intervention, Springer, 2015, pp. 234–
707
+ 241.
708
+ [13] H. Thanh-Tung, T. Tran, Catastrophic forgetting and
709
+ mode collapse in gans, in: 2020 International Joint Con-
710
+ ference on Neural Networks (IJCNN), IEEE, 2020, pp.
711
+ 1–10.
712
+ [14] Q. Mao, H.-Y. Lee, H.-Y. Tseng, S. Ma, M.-H. Yang,
713
+ Mode seeking generative adversarial networks for diverse
714
+ image synthesis, in: Proceedings of the IEEE/CVF con-
715
+ ference on computer vision and pattern recognition, 2019,
716
+ pp. 1429–1437.
717
+ [15] N.-T. Tran, V.-H. Tran, B.-N. Nguyen, L. Yang, N.-M. M.
718
+ Cheung, Self-supervised gan: Analysis and improvement
719
+ with multi-class minimax game, Advances in Neural In-
720
+ formation Processing Systems 32 (2019).
721
+ [16] G. Baykal, G. Unal, Deshufflegan: A self-supervised gan
722
+ to improve structure learning, in: 2020 IEEE International
723
+ Conference on Image Processing (ICIP), IEEE, 2020, pp.
724
+ 708–712.
725
+ [17] Y. Chen, Y. Wei, Q. Wang, F. Chen, C. Lu, S. Lei, Map-
726
+ ping post-earthquake landslide susceptibility: A u-net like
727
+ approach, Remote Sensing 12 (17) (2020) 2767.
728
+ [18] L.-A. Tran, M.-H. Le, Robust u-net-based road lane mark-
729
+ ings detection for autonomous driving, in: 2019 Inter-
730
+ national Conference on System Science and Engineering
731
+ (ICSSE), IEEE, 2019, pp. 62–66.
732
+ [19] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff,
733
+ S. Belongie, P. Perona, Caltech-ucsd birds 200 (2010).
734
+ [20] M.-E. Nilsback, A. Zisserman, Automated flower classi-
735
+ fication over a large number of classes, in: 2008 Sixth In-
736
+ dian Conference on Computer Vision, Graphics & Image
737
+ Processing, IEEE, 2008, pp. 722–729.
738
+ [21] S. Maji, E. Rahtu, J. Kannala, M. Blaschko, A. Vedaldi,
739
+ Fine-grained visual classification of aircraft,
740
+ arXiv
741
+ preprint arXiv:1306.5151 (2013).
742
+ [22] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, A. Torralba,
743
+ Places: A 10 million image database for scene recogni-
744
+ tion, IEEE transactions on pattern analysis and machine
745
+ intelligence 40 (6) (2017) 1452–1464.
746
+ [23] S. Dev, Y. H. Lee, S. Winkler, Categorization of cloud im-
747
+ age patches using an improved texton-based approach, in:
748
+ 2015 IEEE International Conference on Image Processing
749
+ (ICIP), IEEE, 2015, pp. 422–426.
750
+ [24] C. Rother, V. Kolmogorov, A. Blake, ” grabcut” interac-
751
+ tive foreground extraction using iterated graph cuts, ACM
752
+ transactions on graphics (TOG) 23 (3) (2004) 309–314.
753
+ [25] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang,
754
+ D. N. Metaxas, Stackgan++: Realistic image synthe-
755
+ sis with stacked generative adversarial networks, IEEE
756
+ transactions on pattern analysis and machine intelligence
757
+ 41 (8) (2018) 1947–1962.
758
+ [26] Y. Benny, L. Wolf, Onegan: Simultaneous unsupervised
759
+ learning of conditional image generation, foreground seg-
760
+ mentation, and fine-grained clustering, in: European Con-
761
+ ference on Computer Vision, Springer, 2020, pp. 514–
762
+ 530.
763
+ [27] J. Yang, A. Kannan, D. Batra, D. Parikh, Lr-gan: Lay-
764
+ ered recursive generative adversarial networks for image
765
+ generation, arXiv preprint arXiv:1703.01560 (2017).
766
+ [28] Y. Yang, H. Bilen, Q. Zou, W. Y. Cheung, X. Ji, Unsuper-
767
+ vised foreground-background segmentation with equiv-
768
+ ariant layered gans, arXiv preprint arXiv:2104.00483
769
+ (2021).
770
+ [29] K. K. Singh, U. Ojha, Y. J. Lee, Finegan: Unsupervised
771
+ hierarchical disentanglement for fine-grained object gen-
772
+ eration and discovery, in: Proceedings of the IEEE/CVF
773
+ Conference on Computer Vision and Pattern Recognition,
774
+ 2019, pp. 6490–6499.
775
+ [30] S. Mo, H. Kang, K. Sohn, C.-L. Li, J. Shin, Object-
776
+ aware contrastive learning for debiased scene representa-
777
+ tion, Advances in Neural Information Processing Systems
778
+ 34 (2021).
779
+ [31] W. Kim, A. Kanezaki, M. Tanaka, Unsupervised learn-
780
+ ing of image segmentation based on differentiable fea-
781
+ ture clustering, IEEE Transactions on Image Processing
782
+ 29 (2020) 8055–8068.
783
+ [32] X. Ji, J. F. Henriques, A. Vedaldi, Invariant information
784
+ clustering for unsupervised image classification and seg-
785
+ mentation, in: Proceedings of the IEEE/CVF Interna-
786
+ tional Conference on Computer Vision, 2019, pp. 9865–
787
+ 8
788
+
789
+ 9874.
790
+ [33] L. Melas-Kyriazi, C. Rupprecht, I. Laina, A. Vedaldi,
791
+ Finding an unsupervised image segmenter in each of your
792
+ deep generative models, arXiv preprint arXiv:2105.08127
793
+ (2021).
794
+ [34] A. Voynov, S. Morozov, A. Babenko, Object segmenta-
795
+ tion without labels with large-scale generative models, in:
796
+ International Conference on Machine Learning, PMLR,
797
+ 2021, pp. 10596–10606.
798
+ 9
799
+
ONAyT4oBgHgl3EQfgvjr/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,464 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf,len=463
2
+ page_content='Self-Supervised Object Segmentation with a Cut-and-Pasting GAN Kunal Chaturvedi, Ali Braytee, Jun Li, Mukesh Prasad aSchool of Computer Science, University of Technology Sydney, Ultimo, 2007, NSW, Australia Abstract This paper proposes a novel self-supervised based Cut-and-Paste GAN to perform foreground object seg- mentation and generate realistic composite images without manual annotations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
3
+ page_content=' We accomplish this goal by a simple yet effective self-supervised approach coupled with the U-Net based discriminator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
4
+ page_content=' The proposed method extends the ability of the standard discriminators to learn not only the global data representations via classification (real/fake) but also learn semantic and structural information through pseudo labels created using the self-supervised task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
5
+ page_content=' The proposed method empowers the generator to create meaningful masks by forcing it to learn informative per-pixel as well as global image feedback from the discriminator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
6
+ page_content=' Our experiments demonstrate that our proposed method significantly outperforms the state-of-the-art methods on the standard benchmark datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
7
+ page_content=' Keywords: Generative adversarial networks, Self-supervised learning, Cut-and-Paste, Segmentation 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
8
+ page_content=' Introduction Generative adversarial networks (GANs) [1] have become a popular class of image synthesis meth- ods due to their demonstrated ability to create high- dimensional samples with desired data distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
9
+ page_content=' The primary objective of GANs is to generate di- verse, high-quality images while also ensuring the stability of GAN training [2] [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
10
+ page_content=' GAN consists of generator and discriminator networks trained in an adversarial manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
11
+ page_content=' The generator attempts to syn- thesize the real data distribution to fool the discrim- inator, whereas the discriminator’s goal is to distin- guish between the generator’s real and fake data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
12
+ page_content=' In image segmentation, several compositional genera- tive models have been proposed [4, 5, 6, 7] , where the generator creates a synthesized composite image by copying the object from one image and pasting it in another to fool the discriminator about think- ing the synthesized composite image is real.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
13
+ page_content=' But, the generator may not perform any segmentation, and the background may look realistic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
14
+ page_content=' Therefore, Email address: Kunal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
15
+ page_content='Chaturvedi, Ali.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
16
+ page_content='Braytee, Jun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
17
+ page_content='Li, Mukesh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
18
+ page_content='Prasad@uts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
19
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
20
+ page_content='au (Mukesh Prasad) for effective training, the discriminator needs to pro- vide the generator with informative learning signals by learning relevant semantics and structures of the data that may result in more effective generators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
21
+ page_content=' However, the current state-of-the-art GANs employ discriminators based on the classification network, which learn only a single discriminative signal such as the difference between real and fake images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
22
+ page_content=' In such a non-stationary environment, the generator be- comes prone to catastrophic forgetting and may lead to training instability or mode collapse [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
23
+ page_content=' To address the aforementioned issues, additional discriminatory signals are required to guide the train- ing mechanism and assist the generator in producing high-quality images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
24
+ page_content=' This can be accomplished by increasing the capacity of the discriminator with aux- iliary tasks and signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
25
+ page_content=' These auxiliary tasks on the labeled datasets resist the forgetting issues and im- prove the training stability of GANs, but it suffers with unlabeled datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
26
+ page_content=' Recently, self-supervised learning has been explored on numerous GANs methods [8],[9],[10],[11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
27
+ page_content=' The self-supervised tasks provide the learning environment with additional guidance to the standard training mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
28
+ page_content=' Most of the recent self-supervision methods based GANs Preprint submitted to Nuclear Physics B January 3, 2023 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
29
+ page_content='00366v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
30
+ page_content='CV] 1 Jan 2023 use auxiliary tasks based on transformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
31
+ page_content=' For ex- ample, SS-GAN developed by Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
32
+ page_content=' [8] uses rotation prediction as an auxiliary task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
33
+ page_content=' In FX-GAN, Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
34
+ page_content=' [10] use the pretext task of predic- tion on corrupted real images, and in LT-GAN [9], the authors use distinguishing GAN-induced trans- formation as a pretext task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
35
+ page_content=' However, the goals of these transformation-based self-supervised tasks are inconsistent with the GAN’s goal of mimicking the real data distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
36
+ page_content=' Moreover, this problem ampli- fies when the generator’s task is to construct segmen- tation masks from the foreground images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
37
+ page_content=' In order to maintain an enriched real data repre- sentation and improve the quality of generated seg- mentation masks, we propose a Self-Supervised Cut- and-Paste GAN (SS-CPGAN) based on U-net archi- tecture [12], which unifies cut-and-paste adversar- ial training with a self-supervised task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
38
+ page_content=' It allows the discriminator to learn both local and global dif- ferences between real and fake data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
39
+ page_content=' In contrast to the existing transformation based self-supervision methods, our self-supervision learning method cre- ates pseudo labels using unsupervised segmentation methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
40
+ page_content=' Then, it simultaneously forces the discrim- inator to provide the generator with global feedback (real or fake) and the per-pixel feedback of the syn- thesized images with the help of pseudo labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
41
+ page_content=' To sum up, our main contributions are: We propose a novel Self-Supervised Cut-and- Paste GAN (SS-CPGAN), that unifies cut-and- paste adversarial training with a segmentation- based self-supervised task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
42
+ page_content=' SS-CPGAN lever- age unlabeled data to maximize segmentation performance and generate highly realistic com- posite images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
43
+ page_content=' The proposed self-supervised task in SS- CPGAN improves the discriminator’s represen- tation ability by enhancing structure learning with global and local feedback.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
44
+ page_content=' This enables the generator with additional discriminatory sig- nals to achieve superior results and stabilize the training process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
45
+ page_content=' We perform a comprehensive analysis on the benchmark datasets and compare our proposed method with the baseline method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
46
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
47
+ page_content=' Related Works 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
48
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
49
+ page_content=' Unsupervised Object Segmentation via GANs Unsupervised segmentation using GANs is an im- portant topic in research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
50
+ page_content=' Several works [4, 5, 6, 7] investigate the use of compositional generative mod- els to obtain high quality segmentation masks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
51
+ page_content=' Copy- pasting GAN [7] performs unsupervised object dis- covery by extracting foreground objects and then copying and pasting them onto the different back- grounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
52
+ page_content=' Similarly, PerturbGAN [5] generates a foreground mask along with a background and fore- ground image in an adversarial manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
53
+ page_content=' Recently, Abdal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
54
+ page_content=' (2021) [6] propose a method to use an alpha network that includes two pretrained gen- erators and a discriminator based on the StyleGAN to generate high quality masks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
55
+ page_content=' These methods learn object segmentation without needing to use annotations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
56
+ page_content=' However, they are prone to degener- ate solutions or other trivial cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
57
+ page_content=' For example, the generator may not perform any segmentation, and the background looks realistic or the generator may segment foreground masks consisting of all- ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
58
+ page_content=' To avoid such problems, special care needs to be taken while training the compositional genera- tive models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
59
+ page_content=' Copy-pasting GAN uses anti-shortcut, border-zeroing, blur, and grounded fakes to prevent trivial solutions [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
60
+ page_content=' PerturbGAN avoids such so- lutions by randomly shifting object segments rel- ative to the background [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
61
+ page_content=' However, Abdal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
62
+ page_content=' (2021) [6] make several changes to the original StyleGAN and use truncation trick along with regu- larization to avoid degenerate solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
63
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
64
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
65
+ page_content=' Self-supervised learning Self-supervised learning learns useful feature rep- resentations from data with the help of pretext tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
66
+ page_content=' Recently, many pretext tasks coupled with adversar- ial training have been introduced [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
67
+ page_content=' The motiva- tion for using self-supervised learning is to: (1) pre- vent discriminator forgetting [13];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
68
+ page_content=' (2) improve train- ing stability [14];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
69
+ page_content=' (3) and ensure high quality of im- ages generated [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
70
+ page_content=' The self-supervision techniques rely on pretext tasks on geometric transformations (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
71
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
72
+ page_content=', prediction on rotated images[8], corrupted im- ages [10], GAN-induced transformations [9], or a deshuffling task that predicts the shuffled orders [16]) 2 to increase the discriminator’s representation power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
73
+ page_content=' Unlike the aforementioned methods, we incorporate segmentation-based self-supervised learning coupled with the Cut-and-Paste GAN to obtain high-quality segmentation masks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
74
+ page_content=' Most importantly, with our self-supervised approach, no extra care is needed to deal with the trivial solutions prevalent in composi- tional generative models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
75
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
76
+ page_content=' Method In this section, we first present the standard ter- minology of adversarial training and the encoder- decoder based discriminator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
77
+ page_content=' We then introduce our Self-Supervised Cut-and-Paste GAN built upon the cut-and-paste adversarial training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
78
+ page_content=' The uni- fied framework with the segmentation-based self- supervised task encourages the generator to empha- size local and global structures while synthesizing masks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
79
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
80
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
81
+ page_content=' Adversarial Training As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
82
+ page_content=' 2, we build a generative model in which the generator takes the foreground image as the input and generates a composite image using a combination of the predicted mask, source fore- ground image and the background image to fool the discriminator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
83
+ page_content=' Formally, we define the input fore- ground source image as If ∈ Pdata and background image as Ib ∈ Pdata where Pdata denotes the set of input images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
84
+ page_content=' Now, we define a generator (G) that is trained in an adversarial manner against the dis- criminator (D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
85
+ page_content=' During the training process, the generator predicts a segmentation mask defined by mg(If) = G(I f) where mg(I f) ∈ [0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
86
+ page_content=' Then, using the predicted mask mg(If), foreground source image If, and background image Ib, we define composite image as follows IC = mg(I f)I f + (1 − mg(I f))Ib (1) The discriminator’s objective is to classify the composite image as real or fake.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
87
+ page_content=' As a result, the stan- dard objective of the discriminator and the generator of the CPGAN is defined as follows LD = max D E � log D(If) + log(1 − D(IC)) � (2) LG = min G E �log D(IC)� (3) The discriminator works as a classification network that is restricted to learn only through the discrim- inative differences between the real and fake sam- ples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
88
+ page_content=' Thus, the discriminator fails to provide any useful information to the generator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
89
+ page_content=' Therefore, we use an encoder-decoder-based discriminator network with self-supervised learning to mitigate this prob- lem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
90
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
91
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
92
+ page_content=' Encoder-Decoder based Discriminator In this work, we replace standard classification- based discriminator with the U-net based discrimi- nator [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
93
+ page_content=' The U-net is an encoder-decoder-based architecture that consists of a network of convolu- tional layers, skip connections for semantic segmen- tation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
94
+ page_content=' It was initially proposed for biomedical im- age segmentation, which achieved precise segmen- tation results with few training images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
95
+ page_content=' Further, it demonstrates good results in other applications, in- cluding ArcGIS [17], remote sensing [18], and oth- ers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
96
+ page_content=' Its architecture (see Figure 1) is symmetric and consists of two paths, an Encoder that extracts spatial features from the input image (downscaling process), and a Decoder that constructs the segmentation map from the extracted feature maps (upscaling process).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
97
+ page_content=' We use the encoder part of the U-net as the standard classification-based discriminator that performs the binary decision on real/fake composite images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
98
+ page_content=' And the decoder part of the U-net architecture is utilized by the self-supervised task to give per-pixel feedback of the synthesized images with the help of pseudo la- bels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
99
+ page_content=' This allows the discriminator to learn both rel- evant local and global differences between real/fake images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
100
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
101
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
102
+ page_content=' Self-Supervised Cut-and-Paste GAN (SS- CPGAN) To improve the representation learning ability of the CPGAN, the discriminator must be able to learn semantic as well as structural information from the synthesized images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
103
+ page_content=' Therefore, we focus our ap- proach on using self-supervised learning to build comprehensive representations for the CPGAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
104
+ page_content=' In this work, we employ a segmentation based self- supervised task, with the primary goal of enabling 3 Figure 1: An overview of U-net architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
105
+ page_content=' The different ar- rows denote the different operations used in the encode-decoder based architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
106
+ page_content=' the discriminator with enhanced learned features that ultimately empower the generator to create consis- tent and structurally coherent masks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
107
+ page_content=' The pseudo segmentation masks mUS(I f) ∈ [0, 1] are created using graph-based unsupervised segmentation algo- rithm [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
108
+ page_content=' These masks obtained by the GrabCut technique acts as a good prior for the U-net based discriminator (see, Figure 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
109
+ page_content=' Here, the discriminator performs two important tasks, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
110
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
111
+ page_content=', 1) classification of real/fake compositing images and 2) performing per-pixel based classification on I f ∈ Pdata to gener- ate segmentation masks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
112
+ page_content=' Given the self-supervised pseudo labels, we train the discriminator for accu- rate pixel-level prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
113
+ page_content=' The introduction of self- supervisory signals empowers the discriminator by enhancing its localization ability and forces the dis- criminator it to learn useful semantic representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
114
+ page_content=' This mechanism enables the generator to achieve op- timized results and makes the training process more stabilized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
115
+ page_content=' Formally, we define I f ∈ Pdata as the source image containing foreground object, and Pdata de- notes the set of input images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
116
+ page_content=' Given a source fore- ground image I f, we create pseudo label denoted by mUS(I f) ∈ [0, 1], using an unsupervised segmenta- tion algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
117
+ page_content=' Then, we define mw(IC) ∈ [0, 1] as the pixel-wise segmentation mask produced by the decoder of the discriminator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
118
+ page_content=' Hereafter, we optimize the overall discriminator loss function (Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
119
+ page_content=' 5) by augmenting a new self-supervision based loss (Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
120
+ page_content=' 4) Lsel f−supervised = L � mw(IC), 1 − mUS(If) � (4) L′ D = LD + λLsel f−supervised (5) where L is the cross-entropy loss, and λ denotes the loss weight for the self-supervision based loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
121
+ page_content=' This hyperparameter is updated based on the compari- son between mUS(I f) and mw(IC), using intersection- over-union (IoU).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
122
+ page_content=' The details of the hyperparameter chosen are explained in the implementation details section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
123
+ page_content=' The framework of the self-supervised learn- ing is shown in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
124
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
125
+ page_content=' Experimentation This section discusses the implementation details of the proposed method and an extensive set of ex- periments on various datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
126
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
127
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
128
+ page_content=' Datasets We utilize five different datasets for the foreground and background set to train our SS-CPGAN as de- scribed below: Caltech-UCSD Birds (CUB) 200-2011 is a fre- quently used benchmark for unsupervised im- age segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
129
+ page_content=' It consists of 11,788 images from 200 birds species.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
130
+ page_content=' Oxford 102 Flowers consists of 8,189 images from 102 flower classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
131
+ page_content=' FGVC Aircraft (Airplanes) contains 102 dif- ferent aircraft model variants with 100 images of each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
132
+ page_content=' This dataset was originally used for the purpose of fine-grained visual categorization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
133
+ page_content=' MIT Places2 is a scene-centric dataset with more than 10 million images consisting of over 400 unique scene classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
134
+ page_content=' However, in the ex- periments, we use the classes: rainforest, for- est, sky, and swamp as a background set for the Caltech-UCSD Birds dataset, and the Ox- ford 102 Flowers, we use the class: herb garden as a background set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
135
+ page_content=' 4 64 64 128 t9 64 Input indno Image abe 128 128 256 128 256 256 512 256 Conv 3 X 3 Max pool2x 2 Up-conv 2 × 2 512 512 1024512 Concatenation 1024 Finalconv 1x 1Figure 2: The proposed Self-supervised cut-and-paste GAN (SS-CPGAN) Singapore Whole-sky IMaging CATegories (SWIMCAT) contains 784 images of a total of five categories: patterned clouds, clear sky, thick dark clouds, veil clouds, and thick white clouds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
136
+ page_content=' We use the SWIMCAT dataset as a background set for the FGCV dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
137
+ page_content=' We chose background datasets similar to the back- ground of the images from the foreground dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
138
+ page_content=' For the foreground datasets, we use Caltech-UCSD Birds (CUB) 200-2011 [19], Oxford 102 Flowers [20], and FGCV Aircraft (Airplanes) [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
139
+ page_content=' During the training, we do not utilize the masks available with datasets, Caltech-UCSD Birds and Flowers- 102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
140
+ page_content=' For the background datasets, we use MIT Places2 [22], and SWIMCAT [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
141
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
142
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
143
+ page_content=' Implementation Details Our implementation is based on the PyTorch framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
144
+ page_content=' For training our models, we deploy a batch size of 16 and the Adam optimizer with an initial learning rate of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
145
+ page_content='10−4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
146
+ page_content=' We use the unsu- pervised segmentation algorithm based on the Grab- Cut technique [24] for the self-supervision task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
147
+ page_content=' Then, we set the weighting parameters for the self- supervised term in the loss function according to the Intersection-Over-Union (IoU) score between the pseudo label (mask) and the predicted mask by the discriminator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
148
+ page_content=' Initially, when IoU < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
149
+ page_content='2, the hyperparameter value is set to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
150
+ page_content='5 to boost the model’s ability to learn useful representations from the pseudo label.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
151
+ page_content=' When the 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
152
+ page_content='2 < IoU < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
153
+ page_content='8, we refine the predicted mask using the hyperparameter value λ of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
154
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
155
+ page_content=' To avoid the pseudo labels compro- mising the predicted masks, we restrict the value λ to 0 when the IoU > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
156
+ page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
157
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
158
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
159
+ page_content=' Results We utilized the Fr´echet Inception Distance (FID) score and mean Intersection over Union (mIoU) met- ric for quantitative evaluation of our methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
160
+ page_content=' In this work, we use the FID score on the datasets CUB2011, Oxford 102 Flowers, and FGCV Aircraft (see Table 3) to compare the SS-CPGAN model with the CPGAN model images spatially scaled to 64×64, 128 × 128, and 256 × 256.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
161
+ page_content=' And for the datasets with available ground truth masks, including CUB2011, 5 Self- Supervised Loss (Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
162
+ page_content=' 4) SS-CPGAN Encodel Foreground U-Net Generator Predicted Mask Composite Real/Fake Background U-Net Discriminator Itask Unsupervised Self-Supervised Segmentation using GrabCut Pseudo Label Predicted Mask byDiscriminator Similarity Update Loss Check WeightTable 1: FID comparison of the proposed method with the base- line CPGAN model FID ↓ Methods Image size Caltech UCSD- Bird 200 FGCV- Aircraft Oxford 102 Flowers CPGAN 64 x 64 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
163
+ page_content='724 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
164
+ page_content='353 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
165
+ page_content='724 128 x 128 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
166
+ page_content='125 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
167
+ page_content='674 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
168
+ page_content='825 256 x 256 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
169
+ page_content='846 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
170
+ page_content='825 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
171
+ page_content='218 SS-CPGAN 64 x 64 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
172
+ page_content='751 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
173
+ page_content='578 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
174
+ page_content='343 128 x 128 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
175
+ page_content='893 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
176
+ page_content='756 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
177
+ page_content='982 256 x 256 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
178
+ page_content='422 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
179
+ page_content='149 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
180
+ page_content='181 Table 2: mIOU comparison of the proposed method with the baseline CPGAN model mIoU ↑ Methods Image size Caltech UCSD- Bird 200 Oxford 102 Flowers w/o Self-Supervision 64 x 64 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
181
+ page_content='537 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
182
+ page_content='632 128 x 128 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
183
+ page_content='492 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
184
+ page_content='674 256 x 256 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
185
+ page_content='484 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
186
+ page_content='779 Self-Supervision 64 x 64 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
187
+ page_content='571 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
188
+ page_content='625 128 x 128 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
189
+ page_content='543 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
190
+ page_content='719 256 x 256 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
191
+ page_content='518 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
192
+ page_content='791 Oxford 102 Flowers, we use the mIoU metric as shown in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
193
+ page_content=' In Figure 2, we report the FID scores over the training iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
194
+ page_content=' We show that our method sta- bilizes GAN training across all the datasets by al- lowing GAN training to converge faster and con- sistently improve performance throughout the train- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
195
+ page_content=' According to Table 3 and Figure 2, our method, SS-CPGAN, utilizing self-supervision outperforms the baseline method, CPGAN, on each dataset used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
196
+ page_content=' Furthermore, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
197
+ page_content=' 3, the generated masks and composite images of our proposed SS-CPGAN are of superior quality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
198
+ page_content=' The standard classification based discriminator of CPGAN does not provide ef- fective guidance to the generator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
199
+ page_content=' During the train- ing, the standard discriminator is not encouraged to learn a more robust data representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
200
+ page_content=' The classi- fication task learns only the representation based on the discriminative differences between real/fake im- ages and fails to give information on why the synthe- sized image looks fake.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
201
+ page_content=' Notedly, our self-supervision based task assigned to the U-net based discrimina- tor provides the generator with global feedback (real or fake) as well as per-pixel feedback of the masks with the help of pseudo labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
202
+ page_content=' The self-supervisory signals prevent the two scenarios for the generator which the standard discriminator fails to do, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
203
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
204
+ page_content=', cre- ating constant masks of only all-zeros pixel values or all-ones pixel values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
205
+ page_content=' The enhanced discriminator of SS-CPGAN influences the generator to create high quality masks that are devoid of any such anoma- lies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
206
+ page_content=' As shown in Figure 3, the qualitative analysis of the proposed SS-CPGAN shows that the generated masks and composite images are of superior quality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
207
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
208
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
209
+ page_content=' Comparison with the state-of-the-art We compare our self-supervision based Cut-and- Paste GAN (SS-CPGAN) with state-of-the-art.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
210
+ page_content=' As shown in Table 3, we report and compare the FID score on the Caltech UCSD-Bird 200 dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
211
+ page_content=' Specifically, the FID scores of StackGANv2 [25], OneGAN [26], LR-GAN [27], ELGAN [28], and FineGAN [29] are listed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
212
+ page_content=' The results in Table 3 show that our method delivers better performance and outperforms the existing methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
213
+ page_content=' LR-GAN [27] performed the worst, followed by the other methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
214
+ page_content=' The low performance of layer-wise GANs [27] [28] is attributed to the fact that these methods are prone to degenerate during the training phase, with all the pixels being assigned as one compo- nent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
215
+ page_content=' In Table 4, we compare the performance of our method to the recent methods using the mIoU met- ric on Caltech UCSD-Bird 200 and Oxford flowers- 102 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
216
+ page_content=' In comparison to PerturbGAN [5], ContraCAM [30], ReDO [4], UISB [31] and IIC- seg [32], our method outperforms by a large mar- gin on Caltech UCSD-Bird 200 dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
217
+ page_content=' On the Ox- ford flowers-102 dataset, we perform better than the methods, ReDO [4], Kyriazi et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
218
+ page_content=' al [33] and Voynov et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
219
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
220
+ page_content=' [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
221
+ page_content=' Here, ReDO and Kyriazi et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
222
+ page_content=' al (2021) are unsupervised approaches whereas Voynov et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
223
+ page_content=' al (2021) is a weakly supervised approach to create seg- mentation maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
224
+ page_content=' The ability to leverage pseudo la- bels in the training of Cut-and-Paste GAN assists in creating foreground masks of superior quality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
225
+ page_content=' 6 Figure 3: Visualization results with the proposed SS-CPGAN on the datasets: Oxford 102 Flowers (left), FGVC Aircraft (center), and Caltech-UCSD Birds (CUB) 200-2011 (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
226
+ page_content=' Table 3: FID comparison of our proposed method SS-CPGAN with the state-of-art on Caltech UCSD-Bird 200 dataset Method FID StackGANv2 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
227
+ page_content='4 FineGAN 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
228
+ page_content='0 OneGAN 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
229
+ page_content='5 LR-GAN 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
230
+ page_content='91 ELGAN 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
231
+ page_content='7 SS-CPGAN 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
232
+ page_content='42 Table 4: Quantitative comparison of the segmentation perfor- mance of our method SS-CPGAN with the state-of-art Dataset Method mIoU Caltech UCSD-Bird 200 PerturbGAN 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
233
+ page_content='380 ContraCAM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
234
+ page_content='460 ReDO 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
235
+ page_content='426 UISB 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
236
+ page_content='442 IIC-seg 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
237
+ page_content='365 SS-CPGAN 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
238
+ page_content='571 Oxford 102 flowers ReDO 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
239
+ page_content='764 Kyriazi et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
240
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
241
+ page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
242
+ page_content='541 Voynov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
243
+ page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
244
+ page_content='540 SS-CPGAN 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
245
+ page_content='791 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
246
+ page_content=' Conclusion In this work, we proposed a novel Self-Supervised Cut-and-Paste GAN method to learn object seg- mentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
247
+ page_content=' Specifically, we unify the cut-and-paste adversarial training with the proposed segmenta- tion based self-supervision learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
248
+ page_content=' Unlike the existing transformation based self-supervised meth- ods, our method improves the discriminator’s rep- resentation ability by enhancing structure learning with global and local feedback from the synthesized masks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
249
+ page_content=' Furthermore, SS-CPGAN overcomes the is- sue of unwanted trivial solutions (generating con- stant masks of only all-zeros or all-ones pixel values) that plagues the generator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
250
+ page_content=' The experimental results show that our approach generates superior quality images and achieves promising results on the bench- mark datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
251
+ page_content=' References [1] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
252
+ page_content=' Goodfellow, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
253
+ page_content=' Pouget-Abadie, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
254
+ page_content=' Mirza, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
255
+ page_content=' Xu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
256
+ page_content=' Warde-Farley, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
257
+ page_content=' Ozair, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
258
+ page_content=' Courville, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
259
+ page_content=' Bengio, Gen- erative adversarial nets, Advances in neural information processing systems 27 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
260
+ page_content=' [2] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
261
+ page_content=' Brock, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
262
+ page_content=' Donahue, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
263
+ page_content=' Simonyan, Large scale gan training for high fidelity natural image synthesis, arXiv preprint arXiv:1809.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
264
+ page_content='11096 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
265
+ page_content=' [3] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
266
+ page_content=' Chaturvedi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
267
+ page_content=' Braytee, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
268
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
269
+ page_content=' Vishwakarma, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
270
+ page_content=' Saqib, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
271
+ page_content=' Mery, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
272
+ page_content=' Prasad, Automated threat objects detection with synthetic data for real-time x-ray baggage inspec- tion, in: 2021 International Joint Conference on Neural Networks (IJCNN), IEEE, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
273
+ page_content=' 1–8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
274
+ page_content=' 7 Background Foreground Pseudo Label Predicted Mas Composite[4] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
275
+ page_content=' Chen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
276
+ page_content=' Arti`eres, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
277
+ page_content=' Denoyer, Unsupervised object segmentation by redrawing, Advances in neural informa- tion processing systems 32 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
278
+ page_content=' [5] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
279
+ page_content=' Bielski, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
280
+ page_content=' Favaro, Emergence of object segmentation in perturbed generative models, Advances in Neural In- formation Processing Systems 32 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
281
+ page_content=' [6] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
282
+ page_content=' Abdal, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
283
+ page_content=' Zhu, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
284
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
285
+ page_content=' Mitra, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
286
+ page_content=' Wonka, Labels4free: Un- supervised segmentation using stylegan, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
287
+ page_content=' 13970–13979.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
288
+ page_content=' [7] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
289
+ page_content=' Arandjelovi´c, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
290
+ page_content=' Zisserman, Object discovery with a copy-pasting gan, arXiv preprint arXiv:1905.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
291
+ page_content='11369 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
292
+ page_content=' [8] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
293
+ page_content=' Chen, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
294
+ page_content=' Zhai, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
295
+ page_content=' Ritter, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
296
+ page_content=' Lucic, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
297
+ page_content=' Houlsby, Self- supervised gans via auxiliary rotation loss, in: Proceed- ings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
298
+ page_content=' 12154–12163.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
299
+ page_content=' [9] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
300
+ page_content=' Patel, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
301
+ page_content=' Kumari, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
302
+ page_content=' Singh, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
303
+ page_content=' Krishnamurthy, Lt-gan: Self-supervised gan with latent transformation detection, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
304
+ page_content=' 3189–3198.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
305
+ page_content=' [10] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
306
+ page_content=' Huang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
307
+ page_content=' Xu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
308
+ page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
309
+ page_content=' Lee, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
310
+ page_content=' Cherian, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
311
+ page_content=' Wang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
312
+ page_content=' Marks, Fx-gan: Self-supervised gan learning via fea- ture exchange, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
313
+ page_content=' 3194–3202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
314
+ page_content=' [11] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
315
+ page_content=' Hou, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
316
+ page_content=' Shen, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
317
+ page_content=' Cao, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
318
+ page_content=' Cheng, Self-supervised gans with label augmentation, Advances in Neural Information Processing Systems 34 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
319
+ page_content=' [12] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
320
+ page_content=' Ronneberger, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
321
+ page_content=' Fischer, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
322
+ page_content=' Brox, U-net: Convolutional networks for biomedical image segmentation, in: Inter- national Conference on Medical image computing and computer-assisted intervention, Springer, 2015, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
323
+ page_content=' 234– 241.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
324
+ page_content=' [13] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
325
+ page_content=' Thanh-Tung, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
326
+ page_content=' Tran, Catastrophic forgetting and mode collapse in gans, in: 2020 International Joint Con- ference on Neural Networks (IJCNN), IEEE, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
327
+ page_content=' 1–10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
328
+ page_content=' [14] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
329
+ page_content=' Mao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
330
+ page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
331
+ page_content=' Lee, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
332
+ page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
333
+ page_content=' Tseng, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
334
+ page_content=' Ma, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
335
+ page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
336
+ page_content=' Yang, Mode seeking generative adversarial networks for diverse image synthesis, in: Proceedings of the IEEE/CVF con- ference on computer vision and pattern recognition, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
337
+ page_content=' 1429–1437.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
338
+ page_content=' [15] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
339
+ page_content='-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
340
+ page_content=' Tran, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
341
+ page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
342
+ page_content=' Tran, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
343
+ page_content='-N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
344
+ page_content=' Nguyen, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
345
+ page_content=' Yang, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
346
+ page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
347
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
348
+ page_content=' Cheung, Self-supervised gan: Analysis and improvement with multi-class minimax game, Advances in Neural In- formation Processing Systems 32 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
349
+ page_content=' [16] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
350
+ page_content=' Baykal, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
351
+ page_content=' Unal, Deshufflegan: A self-supervised gan to improve structure learning, in: 2020 IEEE International Conference on Image Processing (ICIP), IEEE, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
352
+ page_content=' 708–712.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
353
+ page_content=' [17] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
354
+ page_content=' Chen, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
355
+ page_content=' Wei, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
356
+ page_content=' Wang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
357
+ page_content=' Chen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
358
+ page_content=' Lu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
359
+ page_content=' Lei, Map- ping post-earthquake landslide susceptibility: A u-net like approach, Remote Sensing 12 (17) (2020) 2767.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
360
+ page_content=' [18] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
361
+ page_content='-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
362
+ page_content=' Tran, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
363
+ page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
364
+ page_content=' Le, Robust u-net-based road lane mark- ings detection for autonomous driving, in: 2019 Inter- national Conference on System Science and Engineering (ICSSE), IEEE, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
365
+ page_content=' 62–66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
366
+ page_content=' [19] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
367
+ page_content=' Welinder, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
368
+ page_content=' Branson, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
369
+ page_content=' Mita, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
370
+ page_content=' Wah, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
371
+ page_content=' Schroff, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
372
+ page_content=' Belongie, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
373
+ page_content=' Perona, Caltech-ucsd birds 200 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
374
+ page_content=' [20] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
375
+ page_content='-E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
376
+ page_content=' Nilsback, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
377
+ page_content=' Zisserman, Automated flower classi- fication over a large number of classes, in: 2008 Sixth In- dian Conference on Computer Vision, Graphics & Image Processing, IEEE, 2008, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
378
+ page_content=' 722–729.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
379
+ page_content=' [21] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
380
+ page_content=' Maji, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
381
+ page_content=' Rahtu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
382
+ page_content=' Kannala, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
383
+ page_content=' Blaschko, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
384
+ page_content=' Vedaldi, Fine-grained visual classification of aircraft, arXiv preprint arXiv:1306.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
385
+ page_content='5151 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
386
+ page_content=' [22] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
387
+ page_content=' Zhou, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
388
+ page_content=' Lapedriza, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
389
+ page_content=' Khosla, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
390
+ page_content=' Oliva, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
391
+ page_content=' Torralba, Places: A 10 million image database for scene recogni- tion, IEEE transactions on pattern analysis and machine intelligence 40 (6) (2017) 1452–1464.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
392
+ page_content=' [23] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
393
+ page_content=' Dev, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
394
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
395
+ page_content=' Lee, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
396
+ page_content=' Winkler, Categorization of cloud im- age patches using an improved texton-based approach, in: 2015 IEEE International Conference on Image Processing (ICIP), IEEE, 2015, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
397
+ page_content=' 422–426.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
398
+ page_content=' [24] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
399
+ page_content=' Rother, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
400
+ page_content=' Kolmogorov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
401
+ page_content=' Blake, ” grabcut” interac- tive foreground extraction using iterated graph cuts, ACM transactions on graphics (TOG) 23 (3) (2004) 309–314.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
402
+ page_content=' [25] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
403
+ page_content=' Zhang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
404
+ page_content=' Xu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
405
+ page_content=' Li, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
406
+ page_content=' Zhang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
407
+ page_content=' Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
408
+ page_content=' Huang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
409
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
410
+ page_content=' Metaxas, Stackgan++: Realistic image synthe- sis with stacked generative adversarial networks, IEEE transactions on pattern analysis and machine intelligence 41 (8) (2018) 1947–1962.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
411
+ page_content=' [26] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
412
+ page_content=' Benny, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
413
+ page_content=' Wolf, Onegan: Simultaneous unsupervised learning of conditional image generation, foreground seg- mentation, and fine-grained clustering, in: European Con- ference on Computer Vision, Springer, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
414
+ page_content=' 514– 530.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
415
+ page_content=' [27] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
416
+ page_content=' Yang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
417
+ page_content=' Kannan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
418
+ page_content=' Batra, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
419
+ page_content=' Parikh, Lr-gan: Lay- ered recursive generative adversarial networks for image generation, arXiv preprint arXiv:1703.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
420
+ page_content='01560 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
421
+ page_content=' [28] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
422
+ page_content=' Yang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
423
+ page_content=' Bilen, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
424
+ page_content=' Zou, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
425
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
426
+ page_content=' Cheung, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
427
+ page_content=' Ji, Unsuper- vised foreground-background segmentation with equiv- ariant layered gans, arXiv preprint arXiv:2104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
428
+ page_content='00483 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
429
+ page_content=' [29] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
430
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
431
+ page_content=' Singh, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
432
+ page_content=' Ojha, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
433
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
434
+ page_content=' Lee, Finegan: Unsupervised hierarchical disentanglement for fine-grained object gen- eration and discovery, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
435
+ page_content=' 6490–6499.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
436
+ page_content=' [30] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
437
+ page_content=' Mo, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
438
+ page_content=' Kang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
439
+ page_content=' Sohn, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
440
+ page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
441
+ page_content=' Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
442
+ page_content=' Shin, Object- aware contrastive learning for debiased scene representa- tion, Advances in Neural Information Processing Systems 34 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
443
+ page_content=' [31] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
444
+ page_content=' Kim, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
445
+ page_content=' Kanezaki, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
446
+ page_content=' Tanaka, Unsupervised learn- ing of image segmentation based on differentiable fea- ture clustering, IEEE Transactions on Image Processing 29 (2020) 8055–8068.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
447
+ page_content=' [32] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
448
+ page_content=' Ji, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
449
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
450
+ page_content=' Henriques, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
451
+ page_content=' Vedaldi, Invariant information clustering for unsupervised image classification and seg- mentation, in: Proceedings of the IEEE/CVF Interna- tional Conference on Computer Vision, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
452
+ page_content=' 9865– 8 9874.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
453
+ page_content=' [33] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
454
+ page_content=' Melas-Kyriazi, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
455
+ page_content=' Rupprecht, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
456
+ page_content=' Laina, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
457
+ page_content=' Vedaldi, Finding an unsupervised image segmenter in each of your deep generative models, arXiv preprint arXiv:2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
458
+ page_content='08127 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
459
+ page_content=' [34] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
460
+ page_content=' Voynov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
461
+ page_content=' Morozov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
462
+ page_content=' Babenko, Object segmenta- tion without labels with large-scale generative models, in: International Conference on Machine Learning, PMLR, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
463
+ page_content=' 10596–10606.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
464
+ page_content=' 9' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf'}
OdFOT4oBgHgl3EQf3TT6/content/tmp_files/2301.12946v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
OdFOT4oBgHgl3EQf3TT6/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
OtFKT4oBgHgl3EQffy6V/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c43eb1ad68fc25c94317a2e28d236e3d4c1eb526ea4e7a63ab5a093fb1a1a721
3
+ size 1638445
PNE2T4oBgHgl3EQfVQfK/content/tmp_files/2301.03822v1.pdf.txt ADDED
@@ -0,0 +1,964 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03822v1 [cs.IT] 10 Jan 2023
2
+ 1
3
+ Transmission Design for Active RIS-Aided
4
+ Simultaneous Wireless Information and Power
5
+ Transfer
6
+ Hong Ren, Member, IEEE, Zhiwei Chen, Guosheng Hu, Zhangjie Peng,
7
+ Cunhua Pan, Member, IEEE, and Jiangzhou Wang, Fellow, IEEE
8
+ Abstract—Reconfigurable intelligent surface (RIS) is a revolu-
9
+ tionary technology to enhance both the spectral efficiency and
10
+ energy efficiency of wireless communication systems. However,
11
+ most of the existing contributions mainly focused on the study of
12
+ passive RIS, which suffers from the “double fading” effect. On
13
+ the other hand, active RIS, which is equipped with amplifiers, can
14
+ effectively address this issue. In this paper, we propose an active
15
+ RIS-aided simultaneous wireless information and power transfer
16
+ (SWIPT) system. Specifically, we maximize the weighted sum
17
+ rate of the information receivers, subject to the minimum power
18
+ received at all energy receivers, amplification power constraint
19
+ at the active RIS, and the maximum transmit power constraint
20
+ at the base station (BS). By adopting alternating optimization
21
+ framework, suboptimal solutions are obtained. Simulation results
22
+ show that the active RIS-aided SWIPT system has higher
23
+ performance gain with the same power budget.
24
+ Index Terms—Reconfigurable intelligent surface (RIS), active
25
+ RIS, wireless information and power transfer (SWIPT).
26
+ I. INTRODUCTION
27
+ Reconfigurable intelligent surface (RIS), composed of a
28
+ large number of reflecting elements, has received extensive
29
+ research attention in both academia and industry [1]–[4].
30
+ Specifically, RIS can dynamically adjust the electromagnetic
31
+ properties of the reflecting elements in a programmable way,
32
+ and then reconfigure the wireless propagation environment in
33
+ a desired way [5], [6].
34
+ However, most of the existing contributions mainly focused
35
+ on the passive RIS-aided communication systems, which suffer
36
+ from the “double fading” effect [7]. To address this issue,
37
+ active RIS has been proposed in [8], [9], which is equipped
38
+ This work was supported in part by the National Natural Science Foun-
39
+ dation of China (62201137), in part by the Natural Science Foundation
40
+ of Shanghai under Grant 22ZR1445600, in part by the National Natural
41
+ Science Foundation of China under Grant 61701307, in part by the open
42
+ research fund of National Mobile Communications Research Laboratory,
43
+ Southeast University under Grant 2018D14, and in part by the National
44
+ Natural Science Foundation of China (62101128) and Basic Research Project
45
+ of Jiangsu Provincial Department of Science and Technology (BK20210205).
46
+ (Corresponding authors: Zhangjie Peng and Zhiwei Chen.)
47
+ Hong Ren and Cunhua Pan are with the National Mobile Communications
48
+ Research Laboratory, Southeast University, Nanjing 210096, China. (e-mail:
49
50
+ Zhiwei Chen is with the College of Information, Mechanical and Electrical
51
+ Engineering, Shanghai Normal University, Shanghai 200234, China (e-mail:
52
53
+ Guosheng Hu is with the Shanghai Technical Institute of Electronics &
54
+ Information, Shanghai 201411, China (e-mail: [email protected]).
55
+ Zhangjie Peng is with the College of Information, Mechanical, and Electri-
56
+ cal Engineering, Shanghai Normal University, Shanghai 200234, China, also
57
+ with the National Mobile Communications Research Laboratory, Southeast
58
+ University, Nanjing 210096, China, and also with the Shanghai Engineering
59
+ Research Center of Intelligent Education and Bigdata, Shanghai Normal
60
+ University, Shanghai 200234, China (e-mail: [email protected]).
61
+ Jiangzhou Wang is with the School of Engineering, University of Kent,
62
+ CT2 7NT Canterbury, U.K. (e-mail: [email protected]).
63
+ with some amplifiers. Different from multiple input multiple
64
+ output (MIMO) relay with high power cost and additional
65
+ time/frequency resource, e.g., amplify and forward (AF) re-
66
+ lay, the active RIS basically inherits the hardware structure
67
+ of passive RIS, while equipping with a set of low-power
68
+ reflection-type amplifiers. As a result, active RIS can not only
69
+ tune the phase of the reflected signals, but also amplify the
70
+ power of the reflected signals. Recently, the authors of [7] have
71
+ rigorously demonstrated that the active RIS-aided single-input
72
+ single-output (SISO) system is superior to the passive RIS in
73
+ terms of the achievable date rate when both systems have the
74
+ same power budget. On the other hand, simultaneous wireless
75
+ information and power transfer (SWIPT) is envisioned as
76
+ a promising technology in future internet of things (IoT)
77
+ [10]–[12]. The authors of [10] investigated a passive RIS-
78
+ aided SWIPT system and showed that the passive RIS can
79
+ enhance the data rates at the information receivers (IRs), while
80
+ ensuring the minimum power requirements of the received
81
+ power at the energy receivers (ERs). In [11], the authors
82
+ studied an optimization problem of maximizing the minimum
83
+ rate of the IRs in the passive RIS-aided SWIPT system with
84
+ imperfect channel state information (CSI). And the authors
85
+ of [12] aimed to maximize the data rate by proposing a
86
+ joint time-switching and phase-shifting solution for passive
87
+ RIS-assisted SWIPT communications. However, the above
88
+ literatures [10]–[12] about passive RIS-aided SWIPT systems
89
+ suffer from the “double fading”, and for the SWIPT systems
90
+ with requirements for both energy reception and information
91
+ reception, there are no literature investigating whether the
92
+ active RIS with low-power amplifiers performs better than the
93
+ MIMO relay with complex hardware structure.
94
+ Against the above background, we consider an active RIS-
95
+ aided SWIPT downlink system, and aim to maximize the
96
+ downlink weighted sum rate (WSR). Different from the pas-
97
+ sive RIS [10]–[12], it is noted that the active RIS introduces
98
+ a new optimization variable due to its ability to amplify the
99
+ reflected signal, generates the non-ignorable thermal noise, and
100
+ adds an output signal power constraint of the active RIS, which
101
+ makes the optimization problem more challenging. To solve
102
+ the non-convex problem, our contributions of this work are
103
+ summarized as follows
104
+ 1) By considering the active RIS-aided SWIPT system, we
105
+ aim to maximize the downlink weighted sum rate (WSR) of
106
+ the IRs, by jointly optimizing the transmit beamforming at
107
+ the base station (BS) and the reflecting coefficients at the
108
+ active RIS, subject to the minimum power harvested at all
109
+ ERs, amplification power constraint at the active RIS, and the
110
+
111
+ 2
112
+ Active RIS
113
+
114
+ hr,l
115
+ BS
116
+ IRs
117
+ gd,k
118
+ hd,l
119
+ gr,k
120
+ ERs
121
+ Q
122
+ IR
123
+ r,r l
124
+ Fig. 1. System model.
125
+ maximum transmit power constraint at the BS.
126
+ 2) By adopting alternating optimization (AO) framework,
127
+ we transform the objective function by fractional programming
128
+ (FP) method, and utilize the first-order Taylor approximation
129
+ to linearize the non-convex constraint of the active RIS am-
130
+ plification power. Then, we effectively solve the subproblems
131
+ and obtain the suboptimal solutions.
132
+ 3) Simulation results show that the active RIS can achieve
133
+ higher downlink WSR than the passive RIS/AF relay in an
134
+ SWIPT system [10]–[13] with the same power budget. And
135
+ as the location of the RIS is closer to the locations of the
136
+ ERs, it can achieve higher downlink WSR. In addition, the
137
+ appropriate number of RIS reflecting elements is enough to
138
+ enable the SWIPT system to achieve good performance.
139
+ II. SYSTEM MODEL
140
+ As shown in Fig. 1, we consider an active RIS-aided mul-
141
+ tiuser multiple input single output (MISO) downlink system,
142
+ where an RIS with L reflecting elements is deployed to assist
143
+ SWIPT. The system is composed of a BS with N antennas,
144
+ KI single-antenna IRs, and KE single-antenna ERs.
145
+ The signal transmitted from the BS is expressed as
146
+ t =
147
+ KI
148
+
149
+ k=1
150
+ wksIR
151
+ k
152
+ + v,
153
+ (1)
154
+ where wk ∈ CN×1 is the beamforming vector for the k-th IR,
155
+ sIR
156
+ k
157
+ ∼ CN(0, 1), k ∈ {1, · · ·, KI} is the transmit information
158
+ symbol for the k-th IR, and v ∈ CN×1 ∼ CN(0, V) is the
159
+ energy signal vector, where V is the covariance matrix of the
160
+ energy signal vector.
161
+ The channels spanning from the BS to the active RIS, from
162
+ the BS to the k-th IR, from the BS to the i-th ER, from the RIS
163
+ to the k-th IR, and from the RIS to the i-th ER are denoted as
164
+ Q ∈ CL×N, gd,k ∈ CN×1, hd,i ∈ CN×1, gr,k ∈ CL×1, and
165
+ hr,i ∈ CL×1, respectively.
166
+ The reflected and amplified signal at the active RIS can be
167
+ modeled as follows
168
+ tr = Φ (Qt + nRIS) ,
169
+ (2)
170
+ where Φ = diag
171
+
172
+ a1ejφ1, · · · , alejφl, · · · , aLejφL�
173
+ denotes the
174
+ reflection matrix of the active RIS, φl and al are the phase
175
+ shift and the amplitude of the l-th element, respectively. The
176
+ thermal noise generated by the active RIS cannot be neglected,
177
+ and nRIS ∼ CN(0, δ2
178
+ rI) denotes the thermal noise of the active
179
+ RIS.
180
+ The received signal at the k-th IR can be written as
181
+ yIR,k = gH
182
+ d,kt + gH
183
+ r,ktr + nIR
184
+ = gH
185
+ k t + gH
186
+ r,kΦnRIS + nIR
187
+ = gH
188
+ k wksIR
189
+ k +
190
+ KI
191
+
192
+ i=1,i̸=k
193
+ gH
194
+ k wisIR
195
+ i
196
+ +gH
197
+ k v+ gH
198
+ r,kΦnRIS + nIR,
199
+ (3)
200
+ where gH
201
+ k ≜ gH
202
+ d,k +gH
203
+ r,kΦQ, and nIR ∼ CN(0, δ2
204
+ IR) is the ad-
205
+ ditive white Gaussian noise (AWGN). Unlike the passive RIS
206
+ model [10]–[12], the active RIS consisting of amplifiers has
207
+ the ability to amplify the power of the reflected signal. Thus,
208
+ the reflection matrix Φ has non-unity amplitude components.
209
+ Then, the signal-to-interference-plus-noise ratio (SINR) of
210
+ the k-th IR is expressed as
211
+ γk =
212
+ |gH
213
+ k wk|2
214
+ KI
215
+
216
+ i=1,i̸=k
217
+ |gH
218
+ k wi|2+gH
219
+ k Vgk + δ2r∥gH
220
+ r,kΦ∥2+δ2
221
+ IR
222
+ .
223
+ (4)
224
+ Thus, the rate at the k-th IR is expressed as
225
+ Rk = log2 (1 + γk) .
226
+ (5)
227
+ The received signal at the i-th ER can be written as
228
+ yER,i = hH
229
+ d,it + hH
230
+ r,itr + nER
231
+ = hH
232
+ i t + hH
233
+ r,iΦnRIS + nER
234
+ =
235
+ KI
236
+
237
+ k=1
238
+ hH
239
+ i wksIR
240
+ k
241
+ + hH
242
+ i v + hH
243
+ r,iΦnRIS + nER,
244
+ (6)
245
+ where hH
246
+ i ≜ hH
247
+ d,i + hH
248
+ r,iΦQ, and nER ∼ CN(0, δ2
249
+ ER) is the
250
+ AWGN at the i-th ER. Considering the fact that both the
251
+ data and energy signals transmitted by the BS are carried by
252
+ the beamforming, the harvested power at the i-th ER while
253
+ ignoring the AWGN power is given by
254
+ Ei = ηi
255
+ � KI
256
+
257
+ k=1
258
+ |hH
259
+ i wk|2+hH
260
+ i Vhi + δ2
261
+ r∥hH
262
+ r,iΦ∥2
263
+
264
+ ,
265
+ (7)
266
+ where ηi is the energy harvesting efficiency of the i-th ER.
267
+ III. PROBLEM FORMULATION
268
+ To satisfy the requirements of both IRs and ERs, we
269
+ consider an optimization problem of maximizing the WSR of
270
+ all IRs, while satisfying the harvested power requirements of
271
+ all ERs, subject to the power constraints at the BS and active
272
+ RIS. Thus, the optimization problem is formulated as
273
+ max
274
+ {wk},V,Φ
275
+ KI
276
+
277
+ k=1
278
+ αkRk
279
+ (8a)
280
+ s.t.
281
+ ∥ΦQt∥2+δ2
282
+ r∥Φ∥2⩽ P act
283
+ RIS,
284
+ (8b)
285
+ ∥t∥2⩽ P act
286
+ BS ,
287
+ (8c)
288
+ Ei ⩾ Pi, i ∈ {1, · · · , KE},
289
+ (8d)
290
+ where αk is the weighting factor of the k-th IR, P act
291
+ RIS is the
292
+ output signal power of the active RIS, P act
293
+ BS is the transmit
294
+ power limit at the BS and Pi is the minimum harvested power
295
+ threshold for the i-th ER.
296
+ Due to the fact that variables {{wk}, V, Φ} are coupled
297
+ together in the objective function of Problem (8), it is chal-
298
+ lenging to solve Problem (8). We then exploit the fractional
299
+ programming (FP) [14] method to decouple the objective
300
+ function of Problem (8), and adopt the Alternate Optimization
301
+ (AO) algorithm to obtain the solutions in the next subsection.
302
+ A. FP method
303
+ Firstly, we use the FP method to transform the ob-
304
+ jective function. By introducing auxiliary variables ˜γ
305
+ =
306
+ [˜γ1, · · · , ˜γKI]T ∈ CKI×1, the objective function of Problem
307
+ (8) is equivalent to
308
+
309
+ 3
310
+ fa(˜γ, wk, V, Φ) =
311
+ KI
312
+
313
+ k=1
314
+ αklog (1 + ˜γk) −
315
+ KI
316
+
317
+ k=1
318
+ αk˜γk
319
+ +
320
+ KI
321
+
322
+ k=1
323
+ αk(1 + ˜γk)|gH
324
+ k wk|2
325
+ KI
326
+
327
+ i=1
328
+ |gH
329
+ k wi|2+gH
330
+ k Vgk + δ2r∥gH
331
+ r,kΦ∥2+δ2
332
+ IR
333
+ .
334
+ (9)
335
+ We adopt the AO framework to obtain the optimal solutions.
336
+ For fixed variables {{wk}, V, Φ}, by setting ∂fa/∂˜γk to zero,
337
+ the optimal ˜γopt
338
+ k
339
+ is obtained as
340
+ ˜γopt
341
+ k
342
+ = γk, k ∈ {1, · · ·, KI}.
343
+ (10)
344
+ Then, we fix ˜γk and define a new function as
345
+ fb(˜γ, wk, V, Φ)
346
+ =
347
+ KI
348
+
349
+ k=1
350
+ αk(1 + ˜γk)|gH
351
+ k wk|2
352
+ KI
353
+
354
+ i=1
355
+ |gH
356
+ k wi|2+gH
357
+ k Vgk + δ2r∥gH
358
+ r,kΦ∥2+δ2
359
+ IR
360
+ .
361
+ (11)
362
+ By introducing auxiliary variables ρ = [ρ1, · · · , ρKI]T ∈
363
+ CKI×1 and adopting the quadratic transform [14], we further
364
+ recast fb as
365
+ fc(ρ, ˜γ, wk, V, Φ) = 2
366
+ KI
367
+
368
+ k=1
369
+
370
+ αk(1 + ˜γk)R{ρ∗
371
+ kgH
372
+ k wk}
373
+
374
+ KI
375
+
376
+ k=1
377
+ |ρk|2
378
+ � KI
379
+
380
+ i=1
381
+ |gH
382
+ k wi|2+gH
383
+ k Vgk + δ2
384
+ r∥gH
385
+ r,kΦ∥2+δ2
386
+ IR
387
+
388
+ .
389
+ (12)
390
+ Similarly, by setting ∂fc/∂ρk to zero, we obtain the optimal
391
+ ρopt
392
+ k
393
+ as
394
+ ρopt
395
+ k
396
+ =
397
+
398
+ αk(1 + ˜γk)gH
399
+ k wk
400
+ KI
401
+
402
+ i=1
403
+ |gH
404
+ k wi|2+gH
405
+ k Vgk + δ2r∥gH
406
+ r,kΦ∥2+δ2
407
+ IR
408
+ ,
409
+ k ∈ {1, · · · , KI}.
410
+ (13)
411
+ After obtaining the above optimal auxiliary variables, in the
412
+ next subsection, we then focus on optimizing {{wk}, V, Φ},
413
+ given {ρ, ˜γ}.
414
+ B. Optimizing wk and V
415
+ By defining W ≜ [wT
416
+ 1 , · · · , wT
417
+ KI]T, for fixed variables
418
+ {ρ, ˜γ, Φ}, Problem (8) is expressed as
419
+ max
420
+ W,V
421
+ R{bHW}−WHA1W−
422
+ KI
423
+
424
+ k=1
425
+ |ρk|2Tr{gkgH
426
+ kV} (14a)
427
+ s.t.
428
+ WHBW + Tr{QHΦHΦQV} ⩽ ˆP act
429
+ RIS,
430
+ (14b)
431
+ ∥W∥2+Tr{V} ⩽ P act
432
+ BS ,
433
+ (14c)
434
+ WHDiW+Tr{hihH
435
+ i V}⩾P
436
+
437
+ i , i∈{1,· · ·, KE}, (14d)
438
+ V ⪰ 0,
439
+ (14e)
440
+ where
441
+ b = [bT
442
+ 1 , bT
443
+ 2 , · · · , bT
444
+ KI]T, bH
445
+ k = 2
446
+
447
+ αk(1 + ˜γk)ρ∗
448
+ kgH
449
+ k ,
450
+ (15)
451
+ A1 = IKI ⊗
452
+ KI
453
+
454
+ i=1
455
+ |ρi|2gigH
456
+ i ,
457
+ (16)
458
+ B = IKI ⊗ QHΦHΦQ,
459
+ (17)
460
+ ˆP act
461
+ RIS = P act
462
+ RIS − δ2
463
+ r∥Φ∥2,
464
+ (18)
465
+ Di = IKI ⊗ hihH
466
+ i ,
467
+ (19)
468
+ P
469
+
470
+ i = Pi
471
+ ηi
472
+ − δ2
473
+ r∥hH
474
+ r,iΦ∥2.
475
+ (20)
476
+ However, it is noted that the constraint in (14d) is non-
477
+ convex, which makes Problem (14) still intractable. We then
478
+ approximate the constraint (14d) by its first-order Taylor
479
+ expansion as
480
+ WHDiW ⩾ 2R{WH(t)DiW} − WH(t)DiW(t),
481
+ (21)
482
+ where WH(t) is the beamforming matrix at the t-th iteration.
483
+ Then, Problem (14) is written as
484
+ max
485
+ W,V
486
+ R{bHW}−WHA1W−
487
+ KI
488
+
489
+ k=1
490
+ |ρk|2Tr{gkgH
491
+ k V} (22a)
492
+ s.t.
493
+ WHBW + Tr{QHΦHΦQV} ⩽ ˆP act
494
+ RIS,
495
+ (22b)
496
+ ∥W∥2+Tr{V} ⩽ P act
497
+ BS ,
498
+ (22c)
499
+ 2R{WH(t)DiW}+Tr{hihH
500
+ i V}⩾P
501
+ ′′
502
+ i,
503
+ i∈{1,· · ·, KE},
504
+ (22d)
505
+ V ⪰ 0,
506
+ (22e)
507
+ where P
508
+ ′′
509
+ i = P
510
+
511
+ i + WH(t)DiW(t). Problem (22) is a convex
512
+ problem which can be solved by CVX tools [15].
513
+ C. Optimizing the Reflection Matrix Φ of the Active RIS
514
+ Given {ρ, ˜γ, {wk}, V}, we consider to optimize Φ in this
515
+ subsection. First, by assuming rank(V) = rE, we can express
516
+ V as V =
517
+ rE
518
+
519
+ k=1
520
+ vkvH
521
+ k based on the eigenvalue decomposition
522
+ (EVD). Then, we define ˜Φ = [a1ejφ1, a2ejφ2, · · · , aLejφL]H.
523
+ By substituting the expressions of gk and hk into Problem (8)
524
+ and removing the constant terms, Problem (8) is rewritten as
525
+ max
526
+ ˜Φ
527
+ R{˜ΦHe} − ˜ΦHF˜Φ
528
+ (23a)
529
+ s.t.
530
+ ˜ΦHJ˜Φ ⩽ P act
531
+ RIS,
532
+ (23b)
533
+ ˜ΦHRi ˜Φ+2R{˜ΦHri}⩾ ˜Pi, i∈{1, · · · , KE}, (23c)
534
+ where
535
+ e = 2
536
+ KI
537
+
538
+ k=1
539
+
540
+ αk(1 + ˜γk)diag(ρ∗
541
+ kgH
542
+ r,k)Qwk
543
+
544
+ KI
545
+
546
+ k=1
547
+ |ρk|2�
548
+ diag(gH
549
+ r,k)Q
550
+ KI
551
+
552
+ i=1
553
+ wiwH
554
+ i gd,k
555
+ + diag(gH
556
+ r,k)QVgd,k
557
+
558
+ ,
559
+ (24)
560
+ F =
561
+ KI
562
+
563
+ k=1
564
+ |ρk|2�
565
+ diag(gH
566
+ r,k)Q
567
+ KI
568
+
569
+ i=1
570
+ wiwH
571
+ i QHdiag(gr,k)
572
+ + diag(gH
573
+ r,k)QVQHdiag(gr,k)
574
+ + δ2
575
+ rdiag(gH
576
+ r,k)diag(gr,k)
577
+
578
+ ,
579
+ (25)
580
+ J =
581
+ KI
582
+
583
+ k=1
584
+ diag(Qwk)diag(wH
585
+ k QH)
586
+ +
587
+ rE
588
+
589
+ k=1
590
+ diag(Qvk)diag(vH
591
+ k QH) + δ2
592
+ rIL,
593
+ (26)
594
+ Ri = diag(hH
595
+ r,i)Q
596
+ KI
597
+
598
+ k=1
599
+ wkwH
600
+ k QHdiag(hr,i)
601
+ + diag(hH
602
+ r,i)QVQHdiag(hr,i)
603
+ + δ2
604
+ rdiag(hH
605
+ r,i)diag(hr,i),
606
+ (27)
607
+
608
+ 4
609
+ Algorithm 1 AO framework of solving Problem (8)
610
+ 1: Initial iteration number t = 1, maximum number of
611
+ iterations tmax, feasible w(1),V(1),Φ(1), error tolerance ε
612
+ and calculate the value of
613
+ KI
614
+
615
+ k=1
616
+ αkR(1)
617
+ k ;
618
+ 2: Update ˜γ(t) by (10);
619
+ 3: Update ρ(t) by (13);
620
+ 4: Update W(t), V(t) by solving (22);
621
+ 5: Update Φ(t) by solving (34);
622
+ 6: If |
623
+ KI
624
+
625
+ k=1
626
+ αkR(t+1)
627
+ k
628
+
629
+ KI
630
+
631
+ k=1
632
+ αkR(t)
633
+ k |/
634
+ KI
635
+
636
+ k=1
637
+ αkR(t+1)
638
+ k
639
+ < ε or t ≥
640
+ tmax, terminate. Otherwise, set t ← t + 1 and go to step
641
+ 2.
642
+ ri = diag(hH
643
+ r,i)Q
644
+ KI
645
+
646
+ i=1
647
+ wiwH
648
+ i hd,i+diag(hH
649
+ r,i)QVhd,i,
650
+ (28)
651
+ ˜Pi = Pi
652
+ ηi
653
+ − WHD
654
+
655
+ iW − VHE
656
+
657
+ iV,
658
+ (29)
659
+ D
660
+
661
+ i = IKI ⊗ hd,ihH
662
+ d,i,
663
+ (30)
664
+ E
665
+
666
+ i = IKE ⊗ hd,ihH
667
+ d,i.
668
+ (31)
669
+ Problem (23) is still non-convex due to the non-convex
670
+ constraint (23c). Thus, we transform the non-convex constraint
671
+ (23c) by its first-order Taylor expansion, and constraint (23c)
672
+ is transformed as
673
+ ˜ΦHRi ˜Φ ⩾ 2R{˜ΦHRi ˜Φ(t)} − ˜ΦH(t)Ri ˜Φ(t),
674
+ (32)
675
+ where ˜Φ(t) is the phase shift vector at the t-th iteration. Thus,
676
+ the constraint in (23c) is rewritten as
677
+ 2R
678
+
679
+ ˜ΦH �
680
+ ri + Ri ˜Φ(t)
681
+ ��
682
+ ⩾ ˜
683
+ P
684
+
685
+ i , i ∈ {1, · · ·, KE},
686
+ (33)
687
+ where ˜
688
+ P
689
+
690
+ i = ˜Pi + ˜ΦH(t)Ri ˜Φ(t). Problem (8) is reformulated
691
+ asmax
692
+ ˜Φ
693
+ R{˜ΦHe} − ˜ΦHF˜Φ
694
+ (34a)
695
+ s.t.
696
+ ˜ΦHJ˜Φ ⩽ P act
697
+ RIS,
698
+ (34b)
699
+ 2R
700
+
701
+ ˜ΦH�
702
+ ri+Ri ˜Φ(t)
703
+ ��
704
+ ⩾ ˜
705
+ P
706
+
707
+ i , i∈{1, · · · , KE}, (34c)
708
+ which is a quadratically constrained quadratic program
709
+ (QCQP) problem and can be solved by CVX tools.
710
+ D. Algorithm Complexity
711
+ Finally, Problem (8) is solved by alternately solving Prob-
712
+ lem (22) and Problem (34) until convergence. We summarize
713
+ the proposed AO framework of solving Problem (8) in Al-
714
+ gorithm 1. It is noted that the main computation to solve
715
+ Problem (8) lies in alternately solving Problem (22) and
716
+ Problem (34). We use Ia, Ib and I to denote the numbers of
717
+ iterations for the convergence of Problem (22), Problem (34)
718
+ and Problem (8), respectively. Then, the overall computational
719
+ complexity of solving Problem (8) can be approximated by
720
+ O
721
+
722
+ I
723
+
724
+ IaK2
725
+ I N 2 + IbL2��
726
+ .
727
+ IV. SIMULATION RESULTS
728
+ In this section, we provide numerical results to evaluate
729
+ the performance of the active RIS-aided SWIPT system. We
730
+ assume that the BS and the active RIS are respectively located
731
+ at (0 m, 0 m), (10 m, 10 m) in a two-dimensional plane.
732
+ KI = 4 IRs are randomly distributed in a circle centered at
733
+ (30 m, 0 m) with a radius of 5 m, and KE = 4 ERs are
734
+ 10
735
+ 20
736
+ 30
737
+ 40
738
+ 50
739
+ Total power(W)
740
+ 10
741
+ 20
742
+ 30
743
+ 40
744
+ 50
745
+ 60
746
+ 70
747
+ Weighted sum rate(bps/Hz)
748
+ Active RIS
749
+ Passive RIS
750
+ No RIS
751
+ AF relay
752
+ Fig. 2. The WSR versus the total power when N = 4 and
753
+ L = 20.
754
+ randomly distributed in a circle centered at (20 m, 0 m) with
755
+ a radius of 5 m. The large-scale fading of the channels are
756
+ modeled as PL=−30−10αlog10d (dB), where α is the path
757
+ loss exponent and d is the link distance in meter. In this work,
758
+ we set α = 2.3 for Q, α = 2.3 for hr,i, α = 2.5 for gr,k,
759
+ α = 3.2 for gd,k, and α = 2.8 for hd,i. The small-scale fading
760
+ is assumed to be Rician distributed. For simplicity, the Rician
761
+ factor is assumed to be 5. The other parameters are set as
762
+ follows: noise power of δ2
763
+ r = δ2
764
+ IR = δ2
765
+ ER = −80 dBm, error
766
+ tolerance of ε = 10−3, minimum harvested power threshold
767
+ of Pi = 10−6 W.
768
+ In order to illustrate the impact of the active RIS, we
769
+ compare the active RIS-aided multiuser SWIPT system with
770
+ the following schemes:
771
+ • Passive RIS: It displays a passive RIS in the SWIPT sys-
772
+ tem, which means that only the phase shifts of the transmission
773
+ signals are adjusted and there is no power amplifier at the RIS.
774
+ • No RIS: No RIS is to assist the SWIPT system, which
775
+ means that the BS only transmits signals to IRs and ERs
776
+ through the direct links.
777
+ • AF relay: It displays an AF relay in the SWIPT system
778
+ at the same location as the RIS in the SWIPT system.
779
+ We adopt the power model in [7], [9]. Thus, the power
780
+ consumption models corresponding to the above schemes are
781
+ given by
782
+ Ptotal = P act
783
+ BS + P act
784
+ RIS + L(PC + PDC),
785
+ (35)
786
+ Ptotal = P pas
787
+ BS + LPC,
788
+ (36)
789
+ Ptotal = P no
790
+ BS,
791
+ (37)
792
+ Ptotal = P af
793
+ BS + Prelay + LPT,
794
+ (38)
795
+ where PC is the power consumption of the switch and control
796
+ circuit at each reflecting element, PDC is the direct current
797
+ biasing power used by each active reflecting element, PT is the
798
+ dissipated power at each antenna of the AF relay, and Prelay
799
+ is the transmit power limit at the AF relay. P act
800
+ BS , P pas
801
+ BS , P no
802
+ BS,
803
+ and P af
804
+ BS are the maximum transmit power of the BS in the
805
+ corresponding schemes.
806
+ Power consumption parameters of
807
+ hardware devices are set as follows: PC = −10 dBm, PDC =
808
+ −5 dBm, and PT = 10 dBm. We assume that all schemes
809
+ have the same total power Ptotal, and set P act
810
+ BS = P act
811
+ RIS, P af
812
+ BS =
813
+ Prelay.
814
+
815
+ 5
816
+ 0
817
+ 10
818
+ 20
819
+ 30
820
+ 40
821
+ The location of the RIS (m)
822
+ 10
823
+ 15
824
+ 20
825
+ 25
826
+ 30
827
+ 35
828
+ 40
829
+ 45
830
+ 50
831
+ 55
832
+ 60
833
+ Weighted sum rate(bps/Hz)
834
+ Active RIS
835
+ Passive RIS
836
+ No RIS
837
+ AF relay
838
+ Fig. 3. The WSR versus the location of the RIS when N = 4
839
+ and L = 20.
840
+ Fig. 2 investigates the impact of the total system power
841
+ on the WSR. As seen from Fig. 2, the WSRs of the scheme
842
+ “Active RIS”, the scheme “Passive RIS”, the scheme “No RIS”
843
+ and the scheme “AF relay” gradually increase with the transmit
844
+ power. However, within the same total power consumption, it
845
+ is observed that the scheme “Active RIS” achieves higher WSR
846
+ than the scheme “Passive RIS”, the scheme “No RIS” and the
847
+ scheme “AF relay”, which demonstrates that displaying an RIS
848
+ can enhance the WSR of SWIPT systems and active RIS can
849
+ achieve best performance in an SWIPT system.
850
+ Fig. 3 depicts the WSR versus the location of the RIS. We
851
+ assume that the location of the RIS changes in the horizontal
852
+ direction. Comparing “Active RIS” with “Passive RIS”, “No
853
+ RIS” and “AF relay”, it is observed that the WSR of the
854
+ “Active RIS” is always higher than the others. In addition,
855
+ we can find that the WSR increases as the RIS is close to the
856
+ location of the ERs, and the WSR decreases as the location
857
+ of the RIS is far away from the ERs, which is due to the
858
+ fact that the channel gain between the RIS and the ERs will
859
+ become greater as the RIS’s position approaches the ERs’
860
+ positions, and the ERs are easier to reach the thresholds of
861
+ energy reception. Thus, it leaves more space to jointly optimize
862
+ the beamforming at the BS and reflection matrix at the RIS
863
+ to further improve the WSR.
864
+ Fig. 4 depicts the WSR versus the number of RIS reflecting
865
+ elements. It is observed that the WSR of the scheme “Active
866
+ RIS” increases slowly as the number of RIS reflecting ele-
867
+ ments increases, when the number of RIS reflecting elements
868
+ is small. However, both the WSRs of the scheme “Active RIS”
869
+ and the scheme “Passive RIS” decrease as the number of RIS
870
+ reflecting elements L exceeds about 50, which illustrates that
871
+ the appropriate number of RIS reflecting elements is able to
872
+ make the system achieve the good performance, and large
873
+ number of RIS reflecting elements can cause performance loss,
874
+ when the total power consumption is fixed.
875
+ V. CONCLUSIONS
876
+ This work studied an active RIS-aided SWIPT system. We
877
+ focused on maximizing the WSR of the IRs, subject to the
878
+ power requirements of all ERs, transmit power limit at the BS
879
+ and the amplification power budget at the RIS. By adopting
880
+ the FP method and quadratic transform, we transformed the
881
+ original problem into a tractable form. Then, the beamforming
882
+ vector at the BS and the optimal reflection matrix at the
883
+ RIS were obtained via the AO framework. Under the same
884
+ 20
885
+ 30
886
+ 40
887
+ 50
888
+ 60
889
+ 70
890
+ The number of RIS reflecting elements
891
+ 15
892
+ 20
893
+ 25
894
+ 30
895
+ 35
896
+ 40
897
+ 45
898
+ 50
899
+ 55
900
+ 60
901
+ 65
902
+ Weighted sum rate(bps/Hz)
903
+ Active RIS
904
+ Passive RIS
905
+ No RIS
906
+ AF relay
907
+ Fig. 4. The WSR versus the number of RIS reflecting
908
+ elements L when N = 4.
909
+ power consumption, we compared the system gains for “Active
910
+ RIS”, “Passive RIS”, “No RIS” and “AF relay”. Simulation
911
+ results demonstrated that the active RIS-aided SWIPT system
912
+ can achieve better performance than the passive RIS/AF relay
913
+ aided SWIPT system.
914
+ REFERENCES
915
+ [1] Z. Peng, Z. Zhang, C. Pan, L. Li, and A. L. Swindlehurst, “Multiuser
916
+ full-duplex two-way communications via intelligent reflecting surface,”
917
+ IEEE Trans. Signal Process., vol. 69, pp. 837–851, 2021.
918
+ [2] C. Pan, G. Zhou, K. Zhi, S. Hong, T. Wu, Y. Pan, H. Ren, M. D. Renzo,
919
+ A. Lee Swindlehurst, R. Zhang, and A. Y. Zhang, “An overview of signal
920
+ processing techniques for RIS/IRS-aided wireless systems,” IEEE J. Sel.
921
+ Top. Signal Process., vol. 16, no. 5, pp. 883–917, Aug. 2022.
922
+ [3] E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M. Alouini, and
923
+ R. Zhang, “Wireless communications through reconfigurable intelligent
924
+ surfaces,” IEEE Access, vol. 7, pp. 116 753–116 773, 2019.
925
+ [4] C. Pan, H. Ren, K. Wang, W. Xu, M. Elkashlan, A. Nallanathan,
926
+ and L. Hanzo, “Multicell MIMO communications relying on intelligent
927
+ reflecting surfaces,” IEEE Trans. Wireless Commun., vol. 19, no. 8, pp.
928
+ 5218–5233, May 2020.
929
+ [5] G. Zhou, C. Pan, H. Ren, K. Wang, and A. Nallanathan, “A framework
930
+ of robust transmission design for IRS-aided MISO communications with
931
+ imperfect cascaded channels,” IEEE Trans. Signal Process., vol. 68, pp.
932
+ 5092–5106, 2020.
933
+ [6] Z. Peng, T. Li, C. Pan, H. Ren, W. Xu, and M. D. Renzo, “Analysis
934
+ and optimization for RIS-aided multi-pair communications relying on
935
+ statistical CSI,” IEEE Trans. Veh. Technol., vol. 70, no. 4, pp. 3897–
936
+ 3901, Mar. 2021.
937
+ [7] K. Zhi, C. Pan, H. Ren, K. K. Chai, and M. Elkashlan, “Active RIS
938
+ versus passive RIS: Which is superior with the same power budget?”
939
+ IEEE Commun. Lett., vol. 26, no. 5, pp. 1150–1154, Mar. 2022.
940
+ [8] Z. Zhang, L. Dai, X. Chen, C. Liu, F. Yang, R. Schober, and H. V.
941
+ Poor, “Active RIS vs. passive RIS: Which will prevail in 6G?” 2021.
942
+ [Online]. Available: https://arxiv.org/abs/2103.15154
943
+ [9] R. Long, Y.-C. Liang, Y. Pei, and E. G. Larsson, “Active reconfigurable
944
+ intelligent surface-aided wireless communications,” IEEE Trans. Wire-
945
+ less Commun., vol. 20, no. 8, pp. 4962–4975, Aug. 2021.
946
+ [10] C. Pan, H. Ren, K. Wang, M. Elkashlan, A. Nallanathan, J. Wang, and
947
+ L. Hanzo, “Intelligent reflecting surface aided MIMO broadcasting for
948
+ simultaneous wireless information and power transfer,” IEEE J. Sel.
949
+ Areas Commun., vol. 38, no. 8, pp. 1719–1734, Aug. 2020.
950
+ [11] Z. Yang and Y. Zhang, “Optimal SWIPT in RIS-aided MIMO networks,”
951
+ IEEE Access, vol. 9, pp. 112 552–112 560, 2021.
952
+ [12] W. Jaafar, L. Bariah, S. Muhaidat, and H. Yanikomeroglu, “Time-
953
+ switching and phase-shifting control for RIS-assisted SWIPT communi-
954
+ cations,” IEEE Wireless Commun. Lett., vol. 11, no. 8, pp. 1728–1732,
955
+ Aug. 2022.
956
+ [13] H. Niu, B. Zhang, D. Guo, and Y. Huang, “Joint robust design for secure
957
+ AF relay networks with SWIPT,” IEEE Access, vol. 5, pp. 9369–9377,
958
+ 2017.
959
+ [14] K. Shen and W. Yu, “Fractional programming for communication
960
+ systems—part i: Power control and beamforming,” IEEE Trans. Signal
961
+ Process., vol. 66, no. 10, pp. 2616–2630, 2018.
962
+ [15] M. Grant and S. Boyd, CVX: MATLAB software for disciplined convex
963
+ programming, Dec. 2018. [Online]. Available: https://cvxr.com/cvx.
964
+
PNE2T4oBgHgl3EQfVQfK/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,415 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf,len=414
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
3
+ page_content='03822v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
4
+ page_content='IT] 10 Jan 2023 1 Transmission Design for Active RIS-Aided Simultaneous Wireless Information and Power Transfer Hong Ren, Member, IEEE, Zhiwei Chen, Guosheng Hu, Zhangjie Peng, Cunhua Pan, Member, IEEE, and Jiangzhou Wang, Fellow, IEEE Abstract—Reconfigurable intelligent surface (RIS) is a revolu- tionary technology to enhance both the spectral efficiency and energy efficiency of wireless communication systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
5
+ page_content=' However, most of the existing contributions mainly focused on the study of passive RIS, which suffers from the “double fading” effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
6
+ page_content=' On the other hand, active RIS, which is equipped with amplifiers, can effectively address this issue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
7
+ page_content=' In this paper, we propose an active RIS-aided simultaneous wireless information and power transfer (SWIPT) system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
8
+ page_content=' Specifically, we maximize the weighted sum rate of the information receivers, subject to the minimum power received at all energy receivers, amplification power constraint at the active RIS, and the maximum transmit power constraint at the base station (BS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
9
+ page_content=' By adopting alternating optimization framework, suboptimal solutions are obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
10
+ page_content=' Simulation results show that the active RIS-aided SWIPT system has higher performance gain with the same power budget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
11
+ page_content=' Index Terms—Reconfigurable intelligent surface (RIS), active RIS, wireless information and power transfer (SWIPT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
12
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
13
+ page_content=' INTRODUCTION Reconfigurable intelligent surface (RIS), composed of a large number of reflecting elements, has received extensive research attention in both academia and industry [1]–[4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
14
+ page_content=' Specifically, RIS can dynamically adjust the electromagnetic properties of the reflecting elements in a programmable way, and then reconfigure the wireless propagation environment in a desired way [5], [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
15
+ page_content=' However, most of the existing contributions mainly focused on the passive RIS-aided communication systems, which suffer from the “double fading” effect [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
16
+ page_content=' To address this issue,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
17
+ page_content=' active RIS has been proposed in [8],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
18
+ page_content=' [9],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
19
+ page_content=' which is equipped This work was supported in part by the National Natural Science Foun- dation of China (62201137),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
20
+ page_content=' in part by the Natural Science Foundation of Shanghai under Grant 22ZR1445600,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
21
+ page_content=' in part by the National Natural Science Foundation of China under Grant 61701307,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
22
+ page_content=' in part by the open research fund of National Mobile Communications Research Laboratory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
23
+ page_content=' Southeast University under Grant 2018D14,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
24
+ page_content=' and in part by the National Natural Science Foundation of China (62101128) and Basic Research Project of Jiangsu Provincial Department of Science and Technology (BK20210205).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
25
+ page_content=' (Corresponding authors: Zhangjie Peng and Zhiwei Chen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
26
+ page_content=') Hong Ren and Cunhua Pan are with the National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
27
+ page_content=' (e-mail: hren@seu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
28
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
29
+ page_content='cn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
30
+ page_content=' cpan@seu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
31
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
32
+ page_content='cn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
33
+ page_content=' Zhiwei Chen is with the College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China (e-mail: 1000497437@smail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
34
+ page_content='shnu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
35
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
36
+ page_content='cn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
37
+ page_content=' Guosheng Hu is with the Shanghai Technical Institute of Electronics & Information, Shanghai 201411, China (e-mail: huguosheng@stiei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
38
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
39
+ page_content='cn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
40
+ page_content=' Zhangjie Peng is with the College of Information, Mechanical, and Electri- cal Engineering, Shanghai Normal University, Shanghai 200234, China, also with the National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China, and also with the Shanghai Engineering Research Center of Intelligent Education and Bigdata, Shanghai Normal University, Shanghai 200234, China (e-mail: pengzhangjie@shnu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
41
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
42
+ page_content='cn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
43
+ page_content=' Jiangzhou Wang is with the School of Engineering, University of Kent, CT2 7NT Canterbury, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
44
+ page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
45
+ page_content=' (e-mail: j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
46
+ page_content='z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
47
+ page_content='wang@kent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
48
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
49
+ page_content='uk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
50
+ page_content=' with some amplifiers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
51
+ page_content=' Different from multiple input multiple output (MIMO) relay with high power cost and additional time/frequency resource, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
52
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
53
+ page_content=', amplify and forward (AF) re- lay, the active RIS basically inherits the hardware structure of passive RIS, while equipping with a set of low-power reflection-type amplifiers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
54
+ page_content=' As a result, active RIS can not only tune the phase of the reflected signals, but also amplify the power of the reflected signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
55
+ page_content=' Recently, the authors of [7] have rigorously demonstrated that the active RIS-aided single-input single-output (SISO) system is superior to the passive RIS in terms of the achievable date rate when both systems have the same power budget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
56
+ page_content=' On the other hand, simultaneous wireless information and power transfer (SWIPT) is envisioned as a promising technology in future internet of things (IoT) [10]–[12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
57
+ page_content=' The authors of [10] investigated a passive RIS- aided SWIPT system and showed that the passive RIS can enhance the data rates at the information receivers (IRs), while ensuring the minimum power requirements of the received power at the energy receivers (ERs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
58
+ page_content=' In [11], the authors studied an optimization problem of maximizing the minimum rate of the IRs in the passive RIS-aided SWIPT system with imperfect channel state information (CSI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
59
+ page_content=' And the authors of [12] aimed to maximize the data rate by proposing a joint time-switching and phase-shifting solution for passive RIS-assisted SWIPT communications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
60
+ page_content=' However, the above literatures [10]–[12] about passive RIS-aided SWIPT systems suffer from the “double fading”, and for the SWIPT systems with requirements for both energy reception and information reception, there are no literature investigating whether the active RIS with low-power amplifiers performs better than the MIMO relay with complex hardware structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
61
+ page_content=' Against the above background, we consider an active RIS- aided SWIPT downlink system, and aim to maximize the downlink weighted sum rate (WSR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
62
+ page_content=' Different from the pas- sive RIS [10]–[12], it is noted that the active RIS introduces a new optimization variable due to its ability to amplify the reflected signal, generates the non-ignorable thermal noise, and adds an output signal power constraint of the active RIS, which makes the optimization problem more challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
63
+ page_content=' To solve the non-convex problem,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
64
+ page_content=' our contributions of this work are summarized as follows 1) By considering the active RIS-aided SWIPT system,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
65
+ page_content=' we aim to maximize the downlink weighted sum rate (WSR) of the IRs,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
66
+ page_content=' by jointly optimizing the transmit beamforming at the base station (BS) and the reflecting coefficients at the active RIS,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
67
+ page_content=' subject to the minimum power harvested at all ERs,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
68
+ page_content=' amplification power constraint at the active RIS,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
69
+ page_content=' and the 2 Active RIS � hr,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
70
+ page_content='l BS IRs gd,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
71
+ page_content='k hd,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
72
+ page_content='l gr,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
73
+ page_content='k ERs Q IR r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
74
+ page_content='r l Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
75
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
76
+ page_content=' System model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
77
+ page_content=' maximum transmit power constraint at the BS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
78
+ page_content=' 2) By adopting alternating optimization (AO) framework, we transform the objective function by fractional programming (FP) method, and utilize the first-order Taylor approximation to linearize the non-convex constraint of the active RIS am- plification power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
79
+ page_content=' Then, we effectively solve the subproblems and obtain the suboptimal solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
80
+ page_content=' 3) Simulation results show that the active RIS can achieve higher downlink WSR than the passive RIS/AF relay in an SWIPT system [10]–[13] with the same power budget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
81
+ page_content=' And as the location of the RIS is closer to the locations of the ERs, it can achieve higher downlink WSR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
82
+ page_content=' In addition, the appropriate number of RIS reflecting elements is enough to enable the SWIPT system to achieve good performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
83
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
84
+ page_content=' SYSTEM MODEL As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
85
+ page_content=' 1, we consider an active RIS-aided mul- tiuser multiple input single output (MISO) downlink system, where an RIS with L reflecting elements is deployed to assist SWIPT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
86
+ page_content=' The system is composed of a BS with N antennas, KI single-antenna IRs, and KE single-antenna ERs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
87
+ page_content=' The signal transmitted from the BS is expressed as t = KI � k=1 wksIR k + v, (1) where wk ∈ CN×1 is the beamforming vector for the k-th IR, sIR k ∼ CN(0, 1), k ∈ {1, · · ·, KI} is the transmit information symbol for the k-th IR, and v ∈ CN×1 ∼ CN(0, V) is the energy signal vector, where V is the covariance matrix of the energy signal vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
88
+ page_content=' The channels spanning from the BS to the active RIS, from the BS to the k-th IR, from the BS to the i-th ER, from the RIS to the k-th IR, and from the RIS to the i-th ER are denoted as Q ∈ CL×N, gd,k ∈ CN×1, hd,i ∈ CN×1, gr,k ∈ CL×1, and hr,i ∈ CL×1, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
89
+ page_content=' The reflected and amplified signal at the active RIS can be modeled as follows tr = Φ (Qt + nRIS) , (2) where Φ = diag � a1ejφ1, · · · , alejφl, · · · , aLejφL� denotes the reflection matrix of the active RIS, φl and al are the phase shift and the amplitude of the l-th element, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
90
+ page_content=' The thermal noise generated by the active RIS cannot be neglected, and nRIS ∼ CN(0, δ2 rI) denotes the thermal noise of the active RIS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
91
+ page_content=' The received signal at the k-th IR can be written as yIR,k = gH d,kt + gH r,ktr + nIR = gH k t + gH r,kΦnRIS + nIR = gH k wksIR k + KI � i=1,i̸=k gH k wisIR i +gH k v+ gH r,kΦnRIS + nIR, (3) where gH k ≜ gH d,k +gH r,kΦQ, and nIR ∼ CN(0, δ2 IR) is the ad- ditive white Gaussian noise (AWGN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
92
+ page_content=' Unlike the passive RIS model [10]–[12], the active RIS consisting of amplifiers has the ability to amplify the power of the reflected signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
93
+ page_content=' Thus, the reflection matrix Φ has non-unity amplitude components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
94
+ page_content=' Then, the signal-to-interference-plus-noise ratio (SINR) of the k-th IR is expressed as γk = |gH k wk|2 KI � i=1,i̸=k |gH k wi|2+gH k Vgk + δ2r∥gH r,kΦ∥2+δ2 IR .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
95
+ page_content=' (4) Thus, the rate at the k-th IR is expressed as Rk = log2 (1 + γk) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
96
+ page_content=' (5) The received signal at the i-th ER can be written as yER,i = hH d,it + hH r,itr + nER = hH i t + hH r,iΦnRIS + nER = KI � k=1 hH i wksIR k + hH i v + hH r,iΦnRIS + nER, (6) where hH i ≜ hH d,i + hH r,iΦQ, and nER ∼ CN(0, δ2 ER) is the AWGN at the i-th ER.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
97
+ page_content=' Considering the fact that both the data and energy signals transmitted by the BS are carried by the beamforming, the harvested power at the i-th ER while ignoring the AWGN power is given by Ei = ηi � KI � k=1 |hH i wk|2+hH i Vhi + δ2 r∥hH r,iΦ∥2 � , (7) where ηi is the energy harvesting efficiency of the i-th ER.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
98
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
99
+ page_content=' PROBLEM FORMULATION To satisfy the requirements of both IRs and ERs, we consider an optimization problem of maximizing the WSR of all IRs, while satisfying the harvested power requirements of all ERs, subject to the power constraints at the BS and active RIS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
100
+ page_content=' Thus, the optimization problem is formulated as max {wk},V,Φ KI � k=1 αkRk (8a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
101
+ page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
102
+ page_content=' ∥ΦQt∥2+δ2 r∥Φ∥2⩽ P act RIS, (8b) ∥t∥2⩽ P act BS , (8c) Ei ⩾ Pi, i ∈ {1, · · · , KE}, (8d) where αk is the weighting factor of the k-th IR, P act RIS is the output signal power of the active RIS, P act BS is the transmit power limit at the BS and Pi is the minimum harvested power threshold for the i-th ER.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
103
+ page_content=' Due to the fact that variables {{wk}, V, Φ} are coupled together in the objective function of Problem (8), it is chal- lenging to solve Problem (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
104
+ page_content=' We then exploit the fractional programming (FP) [14] method to decouple the objective function of Problem (8), and adopt the Alternate Optimization (AO) algorithm to obtain the solutions in the next subsection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
105
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
106
+ page_content=' FP method Firstly, we use the FP method to transform the ob- jective function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
107
+ page_content=' By introducing auxiliary variables ˜γ = [˜γ1, · · · , ˜γKI]T ∈ CKI×1, the objective function of Problem (8) is equivalent to 3 fa(˜γ, wk, V, Φ) = KI � k=1 αklog (1 + ˜γk) − KI � k=1 αk˜γk + KI � k=1 αk(1 + ˜γk)|gH k wk|2 KI � i=1 |gH k wi|2+gH k Vgk + δ2r∥gH r,kΦ∥2+δ2 IR .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
108
+ page_content=' (9) We adopt the AO framework to obtain the optimal solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
109
+ page_content=' For fixed variables {{wk}, V, Φ}, by setting ∂fa/∂˜γk to zero, the optimal ˜γopt k is obtained as ˜γopt k = γk, k ∈ {1, · · ·, KI}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
110
+ page_content=' (10) Then, we fix ˜γk and define a new function as fb(˜γ, wk, V, Φ) = KI � k=1 αk(1 + ˜γk)|gH k wk|2 KI � i=1 |gH k wi|2+gH k Vgk + δ2r∥gH r,kΦ∥2+δ2 IR .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
111
+ page_content=' (11) By introducing auxiliary variables ρ = [ρ1, · · · , ρKI]T ∈ CKI×1 and adopting the quadratic transform [14], we further recast fb as fc(ρ, ˜γ, wk, V, Φ) = 2 KI � k=1 � αk(1 + ˜γk)R{ρ∗ kgH k wk} − KI � k=1 |ρk|2 � KI � i=1 |gH k wi|2+gH k Vgk + δ2 r∥gH r,kΦ∥2+δ2 IR � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
112
+ page_content=' (12) Similarly, by setting ∂fc/∂ρk to zero, we obtain the optimal ρopt k as ρopt k = � αk(1 + ˜γk)gH k wk KI � i=1 |gH k wi|2+gH k Vgk + δ2r∥gH r,kΦ∥2+δ2 IR , k ∈ {1, · · · , KI}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
113
+ page_content=' (13) After obtaining the above optimal auxiliary variables, in the next subsection, we then focus on optimizing {{wk}, V, Φ}, given {ρ, ˜γ}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
114
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
115
+ page_content=' Optimizing wk and V By defining W ≜ [wT 1 , · · · , wT KI]T, for fixed variables {ρ, ˜γ, Φ}, Problem (8) is expressed as max W,V R{bHW}−WHA1W− KI � k=1 |ρk|2Tr{gkgH kV} (14a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
116
+ page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
117
+ page_content=' WHBW + Tr{QHΦHΦQV} ⩽ ˆP act RIS, (14b) ∥W∥2+Tr{V} ⩽ P act BS , (14c) WHDiW+Tr{hihH i V}⩾P ′ i , i∈{1,· · ·, KE}, (14d) V ⪰ 0, (14e) where b = [bT 1 , bT 2 , · · · , bT KI]T, bH k = 2 � αk(1 + ˜γk)ρ∗ kgH k , (15) A1 = IKI ⊗ KI � i=1 |ρi|2gigH i , (16) B = IKI ⊗ QHΦHΦQ, (17) ˆP act RIS = P act RIS − δ2 r∥Φ∥2, (18) Di = IKI ⊗ hihH i , (19) P ′ i = Pi ηi − δ2 r∥hH r,iΦ∥2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
118
+ page_content=' (20) However, it is noted that the constraint in (14d) is non- convex, which makes Problem (14) still intractable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
119
+ page_content=' We then approximate the constraint (14d) by its first-order Taylor expansion as WHDiW ⩾ 2R{WH(t)DiW} − WH(t)DiW(t), (21) where WH(t) is the beamforming matrix at the t-th iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
120
+ page_content=' Then, Problem (14) is written as max W,V R{bHW}−WHA1W− KI � k=1 |ρk|2Tr{gkgH k V} (22a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
121
+ page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
122
+ page_content=' WHBW + Tr{QHΦHΦQV} ⩽ ˆP act RIS, (22b) ∥W∥2+Tr{V} ⩽ P act BS , (22c) 2R{WH(t)DiW}+Tr{hihH i V}⩾P ′′ i, i∈{1,· · ·, KE}, (22d) V ⪰ 0, (22e) where P ′′ i = P ′ i + WH(t)DiW(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
123
+ page_content=' Problem (22) is a convex problem which can be solved by CVX tools [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
124
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
125
+ page_content=' Optimizing the Reflection Matrix Φ of the Active RIS Given {ρ, ˜γ, {wk}, V}, we consider to optimize Φ in this subsection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
126
+ page_content=' First, by assuming rank(V) = rE, we can express V as V = rE � k=1 vkvH k based on the eigenvalue decomposition (EVD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
127
+ page_content=' Then, we define ˜Φ = [a1ejφ1, a2ejφ2, · · · , aLejφL]H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
128
+ page_content=' By substituting the expressions of gk and hk into Problem (8) and removing the constant terms, Problem (8) is rewritten as max ˜Φ R{˜ΦHe} − ˜ΦHF˜Φ (23a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
129
+ page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
130
+ page_content=' ˜ΦHJ˜Φ ⩽ P act RIS,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
131
+ page_content=' (23b) ˜ΦHRi ˜Φ+2R{˜ΦHri}⩾ ˜Pi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
132
+ page_content=' i∈{1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
133
+ page_content=' · · · ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
134
+ page_content=' KE},' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
135
+ page_content=' (23c) where e = 2 KI � k=1 � αk(1 + ˜γk)diag(ρ∗ kgH r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
136
+ page_content='k)Qwk − KI � k=1 |ρk|2� diag(gH r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
137
+ page_content='k)Q KI � i=1 wiwH i gd,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
138
+ page_content='k + diag(gH r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
139
+ page_content='k)QVgd,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
140
+ page_content='k � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
141
+ page_content=' (24) F = KI � k=1 |ρk|2� diag(gH r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
142
+ page_content='k)Q KI � i=1 wiwH i QHdiag(gr,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
143
+ page_content='k) + diag(gH r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
144
+ page_content='k)QVQHdiag(gr,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
145
+ page_content='k) + δ2 rdiag(gH r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
146
+ page_content='k)diag(gr,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
147
+ page_content='k) � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
148
+ page_content=' (25) J = KI � k=1 diag(Qwk)diag(wH k QH) + rE � k=1 diag(Qvk)diag(vH k QH) + δ2 rIL,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
149
+ page_content=' (26) Ri = diag(hH r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
150
+ page_content='i)Q KI � k=1 wkwH k QHdiag(hr,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
151
+ page_content='i) + diag(hH r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
152
+ page_content='i)QVQHdiag(hr,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
153
+ page_content='i) + δ2 rdiag(hH r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
154
+ page_content='i)diag(hr,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
155
+ page_content='i),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
156
+ page_content=' (27) 4 Algorithm 1 AO framework of solving Problem (8) 1: Initial iteration number t = 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
157
+ page_content=' maximum number of iterations tmax,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
158
+ page_content=' feasible w(1),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
159
+ page_content='V(1),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
160
+ page_content='Φ(1),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
161
+ page_content=' error tolerance ε and calculate the value of KI � k=1 αkR(1) k ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
162
+ page_content=' 2: Update ˜γ(t) by (10);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
163
+ page_content=' 3: Update ρ(t) by (13);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
164
+ page_content=' 4: Update W(t), V(t) by solving (22);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
165
+ page_content=' 5: Update Φ(t) by solving (34);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
166
+ page_content=' 6: If | KI � k=1 αkR(t+1) k − KI � k=1 αkR(t) k |/ KI � k=1 αkR(t+1) k < ε or t ≥ tmax, terminate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
167
+ page_content=' Otherwise, set t ← t + 1 and go to step 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
168
+ page_content=' ri = diag(hH r,i)Q KI � i=1 wiwH i hd,i+diag(hH r,i)QVhd,i, (28) ˜Pi = Pi ηi − WHD ′ iW − VHE ′ iV, (29) D ′ i = IKI ⊗ hd,ihH d,i, (30) E ′ i = IKE ⊗ hd,ihH d,i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
169
+ page_content=' (31) Problem (23) is still non-convex due to the non-convex constraint (23c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
170
+ page_content=' Thus, we transform the non-convex constraint (23c) by its first-order Taylor expansion, and constraint (23c) is transformed as ˜ΦHRi ˜Φ ⩾ 2R{˜ΦHRi ˜Φ(t)} − ˜ΦH(t)Ri ˜Φ(t), (32) where ˜Φ(t) is the phase shift vector at the t-th iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
171
+ page_content=' Thus, the constraint in (23c) is rewritten as 2R � ˜ΦH � ri + Ri ˜Φ(t) �� ⩾ ˜ P ′ i , i ∈ {1, · · ·, KE}, (33) where ˜ P ′ i = ˜Pi + ˜ΦH(t)Ri ˜Φ(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
172
+ page_content=' Problem (8) is reformulated asmax ˜Φ R{˜ΦHe} − ˜ΦHF˜Φ (34a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
173
+ page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
174
+ page_content=' ˜ΦHJ˜Φ ⩽ P act RIS, (34b) 2R � ˜ΦH� ri+Ri ˜Φ(t) �� ⩾ ˜ P ′ i , i∈{1, · · · , KE}, (34c) which is a quadratically constrained quadratic program (QCQP) problem and can be solved by CVX tools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
175
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
176
+ page_content=' Algorithm Complexity Finally, Problem (8) is solved by alternately solving Prob- lem (22) and Problem (34) until convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
177
+ page_content=' We summarize the proposed AO framework of solving Problem (8) in Al- gorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
178
+ page_content=' It is noted that the main computation to solve Problem (8) lies in alternately solving Problem (22) and Problem (34).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
179
+ page_content=' We use Ia, Ib and I to denote the numbers of iterations for the convergence of Problem (22), Problem (34) and Problem (8), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
180
+ page_content=' Then, the overall computational complexity of solving Problem (8) can be approximated by O � I � IaK2 I N 2 + IbL2�� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
181
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
182
+ page_content=' SIMULATION RESULTS In this section, we provide numerical results to evaluate the performance of the active RIS-aided SWIPT system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
183
+ page_content=' We assume that the BS and the active RIS are respectively located at (0 m, 0 m), (10 m, 10 m) in a two-dimensional plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
184
+ page_content=' KI = 4 IRs are randomly distributed in a circle centered at (30 m, 0 m) with a radius of 5 m, and KE = 4 ERs are 10 20 30 40 50 Total power(W) 10 20 30 40 50 60 70 Weighted sum rate(bps/Hz) Active RIS Passive RIS No RIS AF relay Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
185
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
186
+ page_content=' The WSR versus the total power when N = 4 and L = 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
187
+ page_content=' randomly distributed in a circle centered at (20 m, 0 m) with a radius of 5 m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
188
+ page_content=' The large-scale fading of the channels are modeled as PL=−30−10αlog10d (dB), where α is the path loss exponent and d is the link distance in meter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
189
+ page_content=' In this work, we set α = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
190
+ page_content='3 for Q, α = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
191
+ page_content='3 for hr,i, α = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
192
+ page_content='5 for gr,k, α = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
193
+ page_content='2 for gd,k, and α = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
194
+ page_content='8 for hd,i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
195
+ page_content=' The small-scale fading is assumed to be Rician distributed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
196
+ page_content=' For simplicity, the Rician factor is assumed to be 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
197
+ page_content=' The other parameters are set as follows: noise power of δ2 r = δ2 IR = δ2 ER = −80 dBm, error tolerance of ε = 10−3, minimum harvested power threshold of Pi = 10−6 W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
198
+ page_content=' In order to illustrate the impact of the active RIS, we compare the active RIS-aided multiuser SWIPT system with the following schemes: Passive RIS: It displays a passive RIS in the SWIPT sys- tem, which means that only the phase shifts of the transmission signals are adjusted and there is no power amplifier at the RIS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
199
+ page_content=' No RIS: No RIS is to assist the SWIPT system, which means that the BS only transmits signals to IRs and ERs through the direct links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
200
+ page_content=' AF relay: It displays an AF relay in the SWIPT system at the same location as the RIS in the SWIPT system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
201
+ page_content=' We adopt the power model in [7], [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
202
+ page_content=' Thus,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
203
+ page_content=' the power consumption models corresponding to the above schemes are given by Ptotal = P act BS + P act RIS + L(PC + PDC),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
204
+ page_content=' (35) Ptotal = P pas BS + LPC,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
205
+ page_content=' (36) Ptotal = P no BS,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
206
+ page_content=' (37) Ptotal = P af BS + Prelay + LPT,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
207
+ page_content=' (38) where PC is the power consumption of the switch and control circuit at each reflecting element,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
208
+ page_content=' PDC is the direct current biasing power used by each active reflecting element,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
209
+ page_content=' PT is the dissipated power at each antenna of the AF relay,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
210
+ page_content=' and Prelay is the transmit power limit at the AF relay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
211
+ page_content=' P act BS , P pas BS , P no BS, and P af BS are the maximum transmit power of the BS in the corresponding schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
212
+ page_content=' Power consumption parameters of hardware devices are set as follows: PC = −10 dBm, PDC = −5 dBm, and PT = 10 dBm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
213
+ page_content=' We assume that all schemes have the same total power Ptotal, and set P act BS = P act RIS, P af BS = Prelay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
214
+ page_content=' 5 0 10 20 30 40 The location of the RIS (m) 10 15 20 25 30 35 40 45 50 55 60 Weighted sum rate(bps/Hz) Active RIS Passive RIS No RIS AF relay Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
215
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
216
+ page_content=' The WSR versus the location of the RIS when N = 4 and L = 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
217
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
218
+ page_content=' 2 investigates the impact of the total system power on the WSR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
219
+ page_content=' As seen from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
220
+ page_content=' 2, the WSRs of the scheme “Active RIS”, the scheme “Passive RIS”, the scheme “No RIS” and the scheme “AF relay” gradually increase with the transmit power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
221
+ page_content=' However, within the same total power consumption, it is observed that the scheme “Active RIS” achieves higher WSR than the scheme “Passive RIS”, the scheme “No RIS” and the scheme “AF relay”, which demonstrates that displaying an RIS can enhance the WSR of SWIPT systems and active RIS can achieve best performance in an SWIPT system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
222
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
223
+ page_content=' 3 depicts the WSR versus the location of the RIS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
224
+ page_content=' We assume that the location of the RIS changes in the horizontal direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
225
+ page_content=' Comparing “Active RIS” with “Passive RIS”, “No RIS” and “AF relay”, it is observed that the WSR of the “Active RIS” is always higher than the others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
226
+ page_content=' In addition, we can find that the WSR increases as the RIS is close to the location of the ERs, and the WSR decreases as the location of the RIS is far away from the ERs, which is due to the fact that the channel gain between the RIS and the ERs will become greater as the RIS’s position approaches the ERs’ positions, and the ERs are easier to reach the thresholds of energy reception.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
227
+ page_content=' Thus, it leaves more space to jointly optimize the beamforming at the BS and reflection matrix at the RIS to further improve the WSR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
228
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
229
+ page_content=' 4 depicts the WSR versus the number of RIS reflecting elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
230
+ page_content=' It is observed that the WSR of the scheme “Active RIS” increases slowly as the number of RIS reflecting ele- ments increases, when the number of RIS reflecting elements is small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
231
+ page_content=' However, both the WSRs of the scheme “Active RIS” and the scheme “Passive RIS” decrease as the number of RIS reflecting elements L exceeds about 50, which illustrates that the appropriate number of RIS reflecting elements is able to make the system achieve the good performance, and large number of RIS reflecting elements can cause performance loss, when the total power consumption is fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
232
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
233
+ page_content=' CONCLUSIONS This work studied an active RIS-aided SWIPT system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
234
+ page_content=' We focused on maximizing the WSR of the IRs, subject to the power requirements of all ERs, transmit power limit at the BS and the amplification power budget at the RIS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
235
+ page_content=' By adopting the FP method and quadratic transform, we transformed the original problem into a tractable form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
236
+ page_content=' Then, the beamforming vector at the BS and the optimal reflection matrix at the RIS were obtained via the AO framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
237
+ page_content=' Under the same 20 30 40 50 60 70 The number of RIS reflecting elements 15 20 25 30 35 40 45 50 55 60 65 Weighted sum rate(bps/Hz) Active RIS Passive RIS No RIS AF relay Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
238
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
239
+ page_content=' The WSR versus the number of RIS reflecting elements L when N = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
240
+ page_content=' power consumption, we compared the system gains for “Active RIS”, “Passive RIS”, “No RIS” and “AF relay”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
241
+ page_content=' Simulation results demonstrated that the active RIS-aided SWIPT system can achieve better performance than the passive RIS/AF relay aided SWIPT system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
242
+ page_content=' REFERENCES [1] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
243
+ page_content=' Peng, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
244
+ page_content=' Zhang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
245
+ page_content=' Pan, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
246
+ page_content=' Li, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
247
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
248
+ page_content=' Swindlehurst, “Multiuser full-duplex two-way communications via intelligent reflecting surface,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
249
+ page_content=' Signal Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
250
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
251
+ page_content=' 69, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
252
+ page_content=' 837–851, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
253
+ page_content=' [2] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
254
+ page_content=' Pan, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
255
+ page_content=' Zhou, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
256
+ page_content=' Zhi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
257
+ page_content=' Hong, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
258
+ page_content=' Wu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
259
+ page_content=' Pan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
260
+ page_content=' Ren, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
261
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
262
+ page_content=' Renzo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
263
+ page_content=' Lee Swindlehurst, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
264
+ page_content=' Zhang, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
265
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
266
+ page_content=' Zhang, “An overview of signal processing techniques for RIS/IRS-aided wireless systems,” IEEE J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
267
+ page_content=' Sel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
268
+ page_content=' Top.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
269
+ page_content=' Signal Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
270
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
271
+ page_content=' 16, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
272
+ page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
273
+ page_content=' 883–917, Aug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
274
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
275
+ page_content=' [3] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
276
+ page_content=' Basar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
277
+ page_content=' Di Renzo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
278
+ page_content=' De Rosny, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
279
+ page_content=' Debbah, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
280
+ page_content=' Alouini, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
281
+ page_content=' Zhang, “Wireless communications through reconfigurable intelligent surfaces,” IEEE Access, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
282
+ page_content=' 7, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
283
+ page_content=' 116 753–116 773, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
284
+ page_content=' [4] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
285
+ page_content=' Pan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
286
+ page_content=' Ren, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
287
+ page_content=' Wang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
288
+ page_content=' Xu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
289
+ page_content=' Elkashlan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
290
+ page_content=' Nallanathan, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
291
+ page_content=' Hanzo, “Multicell MIMO communications relying on intelligent reflecting surfaces,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
292
+ page_content=' Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
293
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
294
+ page_content=' 19, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
295
+ page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
296
+ page_content=' 5218–5233, May 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
297
+ page_content=' [5] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
298
+ page_content=' Zhou, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
299
+ page_content=' Pan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
300
+ page_content=' Ren, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
301
+ page_content=' Wang, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
302
+ page_content=' Nallanathan, “A framework of robust transmission design for IRS-aided MISO communications with imperfect cascaded channels,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
303
+ page_content=' Signal Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
304
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
305
+ page_content=' 68, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
306
+ page_content=' 5092–5106, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
307
+ page_content=' [6] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
308
+ page_content=' Peng, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
309
+ page_content=' Li, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
310
+ page_content=' Pan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
311
+ page_content=' Ren, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
312
+ page_content=' Xu, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
313
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
314
+ page_content=' Renzo, “Analysis and optimization for RIS-aided multi-pair communications relying on statistical CSI,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
315
+ page_content=' Veh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
316
+ page_content=' Technol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
317
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
318
+ page_content=' 70, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
319
+ page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
320
+ page_content=' 3897– 3901, Mar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
321
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
322
+ page_content=' [7] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
323
+ page_content=' Zhi, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
324
+ page_content=' Pan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
325
+ page_content=' Ren, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
326
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
327
+ page_content=' Chai, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
328
+ page_content=' Elkashlan, “Active RIS versus passive RIS: Which is superior with the same power budget?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
329
+ page_content=' IEEE Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
330
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
331
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
332
+ page_content=' 26, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
333
+ page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
334
+ page_content=' 1150–1154, Mar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
335
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
336
+ page_content=' [8] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
337
+ page_content=' Zhang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
338
+ page_content=' Dai, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
339
+ page_content=' Chen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
340
+ page_content=' Liu, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
341
+ page_content=' Yang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
342
+ page_content=' Schober, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
343
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
344
+ page_content=' Poor, “Active RIS vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
345
+ page_content=' passive RIS: Which will prevail in 6G?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
346
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
347
+ page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
348
+ page_content=' Available: https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
349
+ page_content='org/abs/2103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
350
+ page_content='15154 [9] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
351
+ page_content=' Long, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
352
+ page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
353
+ page_content=' Liang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
354
+ page_content=' Pei, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
355
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
356
+ page_content=' Larsson, “Active reconfigurable intelligent surface-aided wireless communications,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
357
+ page_content=' Wire- less Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
358
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
359
+ page_content=' 20, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
360
+ page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
361
+ page_content=' 4962–4975, Aug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
362
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
363
+ page_content=' [10] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
364
+ page_content=' Pan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
365
+ page_content=' Ren, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
366
+ page_content=' Wang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
367
+ page_content=' Elkashlan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
368
+ page_content=' Nallanathan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
369
+ page_content=' Wang, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
370
+ page_content=' Hanzo, “Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer,” IEEE J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
371
+ page_content=' Sel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
372
+ page_content=' Areas Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
373
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
374
+ page_content=' 38, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
375
+ page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
376
+ page_content=' 1719–1734, Aug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
377
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
378
+ page_content=' [11] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
379
+ page_content=' Yang and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
380
+ page_content=' Zhang, “Optimal SWIPT in RIS-aided MIMO networks,” IEEE Access, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
381
+ page_content=' 9, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
382
+ page_content=' 112 552–112 560, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
383
+ page_content=' [12] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
384
+ page_content=' Jaafar, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
385
+ page_content=' Bariah, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
386
+ page_content=' Muhaidat, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
387
+ page_content=' Yanikomeroglu, “Time- switching and phase-shifting control for RIS-assisted SWIPT communi- cations,” IEEE Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
388
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
389
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
390
+ page_content=' 11, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
391
+ page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
392
+ page_content=' 1728–1732, Aug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
393
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
394
+ page_content=' [13] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
395
+ page_content=' Niu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
396
+ page_content=' Zhang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
397
+ page_content=' Guo, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
398
+ page_content=' Huang, “Joint robust design for secure AF relay networks with SWIPT,” IEEE Access, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
399
+ page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
400
+ page_content=' 9369–9377, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
401
+ page_content=' [14] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
402
+ page_content=' Shen and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
403
+ page_content=' Yu, “Fractional programming for communication systems—part i: Power control and beamforming,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
404
+ page_content=' Signal Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
405
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
406
+ page_content=' 66, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
407
+ page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
408
+ page_content=' 2616–2630, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
409
+ page_content=' [15] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
410
+ page_content=' Grant and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
411
+ page_content=' Boyd, CVX: MATLAB software for disciplined convex programming, Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
412
+ page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
413
+ page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
414
+ page_content=' Available: https://cvxr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
415
+ page_content='com/cvx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf'}
SdE3T4oBgHgl3EQfZwoa/content/tmp_files/2301.04499v1.pdf.txt ADDED
@@ -0,0 +1,1599 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Precision measurement of an electron pump at 2 GHz
2
+ Stephen P. Giblin,1 Gento Yamahata,2 Akira Fujiwara,2 and Masaya Kataoka1
3
+ 1)National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW,
4
+ United Kingdom
5
+ 2)NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198,
6
+ Japan
7
+ (Dated: 12 January 2023)
8
+ A well-characterised sample of silicon tunable-barrier electron pump has been operated at a frequency of
9
+ 2 GHz using a custom drive waveform, generating a pump current of 320 pA. Precision measurements of the
10
+ current were made as a function of pump control parameters, using a blind protocol, over a 7-week campaign.
11
+ The combined standard uncertainty for each ∼ 10 hour measurement was ∼ 0.1 parts per million.
12
+ The
13
+ pump current exhibits a plateau along the exit gate voltage flat to approximately 0.1 parts per million, but
14
+ offset from ef by 0.2 parts per million. This offset may be a sign of errors in the current traceability chain,
15
+ indicating a limit to the accuracy of small current scaling using existing methods based on cryogenic current
16
+ comparators.
17
+ PACS numbers: 1234
18
+ I.
19
+ INTRODUCTION
20
+ Electron pumps are devices that aim to generate a ref-
21
+ erence DC electric current by moving electrons one at a
22
+ time in response to a periodic control signal at frequency
23
+ f. They potentially offer a simple and elegant traceabil-
24
+ ity route for small currents, direct to the SI definition of
25
+ the ampere1,2. A class of pumps fabricated from semicon-
26
+ ductor materials3 has demonstrated accurate and robust
27
+ current generation at roughly the part-per-million (ppm)
28
+ accuracy level, for currents IP up to 160 pA4. However,
29
+ important questions must be answered before electron
30
+ pumps can confidently be adopted as reference current
31
+ standards at the uncertainty levels of primary electrical
32
+ metrology. Most significantly, the robustness and device
33
+ independence of the current needs to be demonstrated at
34
+ at least the 0.1 ppm level, over a range of device designs
35
+ and operating parameters. To date, two studies have fo-
36
+ cused on the robustness of the current from GaAs pumps,
37
+ at current levels of ∼ 100 pA, at uncertainty levels for
38
+ each data point of ∼ 2 ppm5 and ∼ 0.5 ppm6.
39
+ However, blind measurement techniques which have
40
+ been implemented in other metrology areas to remove
41
+ bias7 have not yet been applied to the study of electron
42
+ pumps where the pump current is treated as an unknown
43
+ and compared to a known reference current. Address-
44
+ ing unconscious experimenter bias is particularly impor-
45
+ tant in experiments where the expectation of the result
46
+ is strongly constrained; in this case, we expect IP = ef,
47
+ and there is a possibility that in a non-blind measure-
48
+ ment, the experimenter may unconsciously favour pump
49
+ control parameters that yield this result.
50
+ Particularly
51
+ important in the electron pump context is the lack of
52
+ reproducibility in attempts to realise a capacitance stan-
53
+ dard based on pumping a known number of electrons onto
54
+ a cryogenic capacitor8,9. The authors of Ref. 9 were un-
55
+ able to reproduce the results of Ref. 8, and identified
56
+ components in the capacitance measurement uncertainty
57
+ which had previously been under-estimated.
58
+ Evaluating
59
+ the
60
+ robustness
61
+ of
62
+ the
63
+ pump
64
+ current
65
+ presents a challenge due to the time-scales involved: the
66
+ small currents require many hours of averaging to resolve
67
+ 0.1 ppm for a single data point, and the time-scale of the
68
+ whole measurement campaign challenges the stability of
69
+ the measurement system and the electron pump itself4.
70
+ To reduce the measurement time, or equivalently, to al-
71
+ low more data points to be measured within the timescale
72
+ of a measurement campaign, the pump current should
73
+ be increased as much as possible.
74
+ Custom gate drive
75
+ waveforms which slow down the electron capture pro-
76
+ cess have been used to operate GaAs pumps accurately
77
+ at much higher frequencies than were possible with sine
78
+ wave drive6,10,11. With these pumps the upper frequency
79
+ limit for accurate pumping was f ∼ 1 GHz even with the
80
+ custom waveforms. Silicon pumps, on the other hand,
81
+ have demonstrated accurate pumping at f = 1 GHz with
82
+ sine wave drive12,13, and the possibility of increasing the
83
+ frequency further while maintaining sub-ppm pumping
84
+ accuracy using custom waveforms has not yet been ex-
85
+ plored.
86
+ II.
87
+ EXPERIMENTAL METHOD AND BLIND
88
+ PROTOCOL
89
+ We investigate a single well-characterised sample of
90
+ silicon pump which has previously been the subject of
91
+ two precision measurement campaigns13,14. The pump
92
+ is a silicon nanowire-MOSFET, in which charge carri-
93
+ ers are induced by a positive voltage applied to a global
94
+ top gate14,15 which was set to 4 V for all the measure-
95
+ ments. Two finger gates, denoted the entrance gate and
96
+ exit gate, define the region of the nanowire where a sin-
97
+ gle electron can be trapped. Negative DC voltages VENT
98
+ and VEXIT applied to these gates define the pump operat-
99
+ ing point, and the periodic pump drive signal is added to
100
+ VENT using a room-temperature bias-tee. A 50 Giga sam-
101
+ ples/s arbitrary waveform generator (AWG, Tektronix
102
+ arXiv:2301.04499v1 [cond-mat.mes-hall] 11 Jan 2023
103
+
104
+ 2
105
+ FIG. 1. (a): Grey-scale derivative pump map using sine wave
106
+ drive at 2.062 GHz, PRF = 13.2 dBm. (b): Pump map using
107
+ a waveform from an AWG at repetition rate f = 2 GHz. One
108
+ cycle of the AWG waveform is shown in the inset. Note that this
109
+ waveform is subsequently amplified by an inverting amplifier to
110
+ yield the correct polarity of gate voltage, whereby the negative
111
+ voltage pulse on the entrance gate raises the entrance barrier
112
+ to pump an electron. (c): Log-scale plots of the pump current
113
+ along the horizontal dashed lines in plots (a) and (b).
114
+ 70001A) was used to generate a custom waveform for
115
+ the pump drive. Because the AWG output had a max-
116
+ imum peak-peak amplitude of VAC = 0.5 V, the output
117
+ was amplified by a wide-band inverting RF amplifier with
118
+ +15 dB gain before the bias-tee. The AWG is referenced
119
+ to a 10 MHz frequency reference derived from a hydrogen
120
+ maser.
121
+ Figure 1 shows characterisation data using both sine
122
+ wave drive and the custom AWG waveform at a repeti-
123
+ tion frequency of 2 GHz. It is clear from the log-scale
124
+ plots of figure 1 (c) that there is a substantial plateau
125
+ along the exit gate axis when using the AWG drive wave-
126
+ form, but not when using sine wave drive. The inset to
127
+ figure 1(b) shows the AWG waveform used for all the
128
+ measurements reported in this paper. Characterisation
129
+ data at other frequencies is inlcuded in supplementary
130
+ sections A and B.
131
+ The experimental apparatus and methods used for this
132
+ study are in many respects identical to that used in Ref.
133
+ 13. As in those experiments, the pump is cooled to a
134
+ temperature close to 4 K by suspending it above a liquid
135
+ helium surface. The pump current IP is measured us-
136
+ ing a noise-optimised ultrastable low-noise current ampli-
137
+ fier (ULCA)16, with a precision digital voltmeter (DVM)
138
+ recording the ULCA output. As in Ref. 13, the DVM was
139
+ calibrated roughly once every hour by switching its input
140
+ to a Josephson voltage standard (JVS). A single precision
141
+ measurement typically lasted between 8 and 10 hours and
142
+ included between 7 and 11 voltmeter calibrations. To re-
143
+ move offset drifts in the measurement system during pre-
144
+ cision measurements, the pump drive signal was toggled
145
+ on and off with a cycle time of 228 s. Roughly the first
146
+ 34 seconds of each data segment (300 out of 1000 data
147
+ points) following each on or off switch was rejected from
148
+ the analysis to remove transient effects.
149
+ More details
150
+ of the measurement protocol are given in supplementary
151
+ section C.
152
+ The pump current IP is calculated from the on-off
153
+ difference in the DVM voltages ∆V using the equation
154
+ IP = ∆V/ATR. Here, ATR is the trans-resistance gain
155
+ of the ULCA, nominally equal to 109 V/A. This gain is
156
+ calibrated against the quantum Hall resistance (QHR) in
157
+ 2 stages17 and via some intermediate transfer standards,
158
+ using a cryogenic current comparator (CCC) with rel-
159
+ ative uncertainty less than 0.1 ppm18. Detailed calibra-
160
+ tion results are reported in supplementary section E. The
161
+ measurement of the pump current was therefore traceable
162
+ to the SI unit ampere via the JVS, the QHR, and the re-
163
+ lationship I = V/R. For characterisation measurements
164
+ such as those reported in figures 1, 2a, and small filled
165
+ points in figures 2b and 2c, no offset subtraction was per-
166
+ formed: the pump drive signal was left on, and each data
167
+ point is a single 20 power line cycle DVM measurement.
168
+ A blind protocol was implemented so that the lead ex-
169
+ perimenter could not see the true value of IP while the
170
+ measurements and data analysis were in progress. This
171
+ is achieved by multiplying all the DVM readings by a
172
+ hidden scaling factor β = 1.00000387, at a low level in
173
+ the measurement software.
174
+ An exception occurs when
175
+ when the DVM is connected to the JVS for calibration,
176
+ in which case β = 1. While tuning the pump and per-
177
+ forming measurements, the experimenter does not know
178
+ the scaling factor and can only access the scaled pump
179
+ current IP,B = β∆V/ATR. Therefore, the tuning of the
180
+ pump operating parameters and the choice of parame-
181
+ ters for the precision measurements can only be made
182
+ with reference to the flatness of the current plateau, not
183
+ the deviation of the current from ef. The scaling factor
184
+ was programmed and password-protected by a member
185
+ of the team who was not otherwise involved in the exper-
186
+ iments. The experimenter knew that it was constrained
187
+ such that |1 − β| < 5 × 10−6 so that gross failures of the
188
+ pump or apparatus would be apparent during character-
189
+ ization measurements. The scaling factor was revealed
190
+ after the experiments were finished and data analysis,
191
+ including analysis of the ULCA calibrations, completed.
192
+ III.
193
+ PRECISION MEASUREMENT CAMPAIGN
194
+ The aim of the measurements was to study the pump
195
+ current as a function of control parameters VENT, VEXIT
196
+ and VAC. To this end, a total of 67 precision measure-
197
+ ments were made during a 7-week campaign, employing
198
+ the apparatus and blind protocol described in section II.
199
+ The measurements were divided into 17 ‘runs’. For most
200
+ of the runs, several measurements were made while vary-
201
+ ing one control parameter. Runs 11-13 consisted of sin-
202
+
203
+ (a) Sine 2.062 GHz
204
+ Sine 2.062 GHz
205
+ -0.8
206
+ VENT
207
+ AWG 2.000 GHz
208
+ 0
209
+ / V
210
+ lp/ef
211
+ (c)
212
+ -1.6
213
+ -2
214
+ Log I 1 - /
215
+ -1.6
216
+ -1.2
217
+ VEXIT / V
218
+ 4
219
+ -6
220
+ (b) AWG 2 GHz
221
+ -1.6
222
+ -1.4
223
+ -1.2
224
+ -0.6
225
+ VEXIT / V
226
+ VENT
227
+ 10
228
+ / V
229
+ plots a, b:
230
+ -1.2
231
+ d/p / dVExIT / nAV-1
232
+ -1.6
233
+ -1.4
234
+ -1.2
235
+ -1.0
236
+ 0
237
+ VEXIT / V3
238
+ FIG. 2. (a): Derivative pump map measured after precision run
239
+ 4 and before precision run 5.
240
+ (b) and (c): Line-scans of the
241
+ pump current measured along the gate voltage axes indicated
242
+ by solid colored lines in (a), and plotted on a logarithmic scale.
243
+ The vertical dashed lines indicate the fixed value of entrance
244
+ (exit) gate voltage used for the exit (entrance) gate scan. The
245
+ diagonal dashed lines are guides to the eye extrapolating the
246
+ exponential edges of the plateau.
247
+ Larger filled points are the
248
+ precision measurement data for runs 1-5, with the run number
249
+ indicated in the plot legend. Data points indicated with a star
250
+ (∗) failed the stationary-mean test.
251
+ gle measurements without varying a parameter. Further
252
+ detail of the measurement chronology is given in supple-
253
+ mentary section D. To monitor the stability of the pump,
254
+ a ‘fingerprint’ pump map was obtained before and after
255
+ each run, apart from a few occasions when it was pre-
256
+ vented by an experimental difficulty. For completeness,
257
+ all of these pump maps are shown in supplementary sec-
258
+ tion H. Additional line scans of current as a function of
259
+ one or more control parameters were also measured to
260
+ assess the optimal values of fixed control parameters for
261
+ the next precision run. Typically, these scans were used
262
+ to find the value of the control parameter that maximised
263
+ the plateau width. They used a single 20 PLC measure-
264
+ ment for each data point, with a relative uncertainty of
265
+ approximately 10 ppm per data point. A pass / fail sta-
266
+ tionary mean statistical test, described in supplementary
267
+ section G, was applied at the data analysis stage to each
268
+ precision measurement to evaluate whether the current
269
+ was stable during the measurement time.
270
+ IV.
271
+ RESULTS OF PRECISION MEASUREMENTS
272
+ A.
273
+ Precision results
274
+ After run 5, the pump became less stable, (supple-
275
+ mentary section H), making it difficult to establish the
276
+ flatness of plateaus along VENT and VEXIT axes. For this
277
+ reason, we concentrate here on the data from runs 1-5,
278
+ although the full precision data set is presented in sup-
279
+ plementary figure S9. In figure 2, we present the data
280
+ from the first 5 precision runs. Panel (a) shows a pump
281
+ map recorded between runs 4 and 5, and panels (b) and
282
+ (c) show line-scans on a log scale which highlight the de-
283
+ viation of the current from the ideal value on the 1ef
284
+ plateau. The fixed value of VENT (VEXIT) for the VEXIT
285
+ (VENT) line-scan was adjusted in order to maximise the
286
+ width of the plateau in the log-scale plot. The results of
287
+ precision runs 1-5 are plotted as solid points in figures 2
288
+ (b) and (c). Runs 1-4 were VEXIT scans, plotted in figure
289
+ 2 (c), and run 5 was a VENT scan, plotted in figure 2 (b).
290
+ The 18 data points along the VEXIT axis (figure 2 (c))
291
+ define a plateau in agreement with an extrapolation of
292
+ the standard-accuracy measurement. The precision data
293
+ point marked with a star (∗), failed the stationary-mean
294
+ test, presumably because it was close to the edge of the
295
+ plateau, and small fluctuations in offset charge, equiva-
296
+ lent to shifts in VEXIT, caused fluctuations in the pumped
297
+ current to be resolved on the time-scale of the precision
298
+ measurement.
299
+ The precision IP(VEXIT) data for runs 1-4 (apart from
300
+ the point that failed the stationary mean test) are re-
301
+ plotted on a linear y-axis in figure 3a as ∆IP = (IP −
302
+ ef)/ef. The mean of these 17 points is ∆IP = 0.22 ppm,
303
+ with a standard deviation σ of 0.14 ppm. The individ-
304
+ ual data points have a mean combined uncertainty ⟨U T ⟩
305
+ of 0.102 ppm, although the uncorrelated random uncer-
306
+ tainty, UA, for each data point is smaller, in the range
307
+ 0.08 − 0.09 ppm. The scatter of the points is therefore
308
+ slightly larger than what would be expected from the
309
+ type A uncertainty of each point (σ > ⟨U A⟩), although
310
+ not statistically incompatible with the assumption that
311
+ the data is sampling a stationary mean along the plateau.
312
+ We can therefore conclude that this data is consistent
313
+ with a plateau along the VEXIT axis, flat at the 0.1 ppm
314
+ level, but significantly offset from ef by 0.22 ppm. Fig-
315
+ ure 4 (b) shows the same data re-analysed with the first
316
+ 700 data points rejected from the beginning of each 1000-
317
+ point data segment instead of the standard 300. This was
318
+ to test for the presence of a time constant in the current,
319
+ as discussed in section V.
320
+ Only one precision run was performed along the VENT
321
+ axis before the interruption, illustrated by the heavy
322
+ filled points in figure 2 (b).
323
+ One data point, marked
324
+ with a ∗, failed the stationary-mean test. It is not clear
325
+ from this single run whether this data point indicates
326
+ real structure to the plateau at level of ∼ 5 ppm, or if it
327
+ is the result of a drift in the device state. The remain-
328
+ ing 4 data points mark a plateau region which, combined
329
+
330
+ (a)
331
+ -0.4-
332
+ 8
333
+ ^/
334
+ -0.8
335
+ ENT
336
+ EXIT
337
+ / nA V-1
338
+ -1.2
339
+ -1.6
340
+ -1.2
341
+ V
342
+ V
343
+ -0.8
344
+ EXIT
345
+ 1
346
+ (q)
347
+ 2
348
+ (c)
349
+ 3
350
+ 0
351
+ 5
352
+ /ef
353
+ 4
354
+ -2
355
+ 4
356
+ Log
357
+ -8
358
+ -1.0
359
+ -0.5
360
+ -1.6
361
+ -1.4
362
+ -1.2
363
+ V
364
+ ENT
365
+ EXIT4
366
+ FIG. 3.
367
+ Results of precision measurements for runs 1-4 as a
368
+ function of VEXIT, expressed as ∆IP = (IP − ef)/ef. The data
369
+ have been analysed with (a): 300 and (b): 700 data points
370
+ rejected from the start of each 1000-point data segment. Error
371
+ bars show the combined standard uncertainty UT The horizontal
372
+ dashed lines show the weighted means of each data set. Arrows
373
+ highlight run 1, measurement 4 and run 4, measurement 4. A
374
+ breakdown of the uncertainty for these measurements is given in
375
+ table I.
376
+ with the stability of the pump map from runs 1-5, gives
377
+ confidence that the fixed value of of VENT selected for
378
+ runs 1-4 is in the middle of an experimentally-determined
379
+ plateau. The mean of the 4 measurements from run 5 is
380
+ ∆IP = 0.15 ppm, with a standard deviation of 0.09 ppm.
381
+ This is consistent with the deviation measured in runs
382
+ 1-4 given the much smaller sample size.
383
+ B.
384
+ Uncertainty
385
+ In table I, the breakdown of the uncertainty is given
386
+ for two measurements indicated by arrows in figure 3a.
387
+ The uncertainties due to the two stages of the ULCA cal-
388
+ ibration are presented as separate components, with the
389
+ uncertainty due to the drift of the ULCA gains in between
390
+ calibrations included in these two terms. This was sig-
391
+ nificantly reduced by performing frequent ULCA calibra-
392
+ tions, with more detail given in supplementary sections
393
+ D and E. Run 1, measurement 4 is a typical represen-
394
+ tative measurement, and run 4, measurement 4 had the
395
+ lowest combined uncertainty of the campaign. As in pre-
396
+ vious measurement campaigns, the type A uncertainty
397
+ of the pump measurement is the largest single contribu-
398
+ tion, but the larger pump current achieved in this study
399
+ has reduced UA to below 0.1 ppm and the uncertainty in
400
+ the ULCA calibration is now a significant contribution.
401
+ Specifically, the uncertainty in the output stage gain RIV
402
+ (nominal value 1 MΩ) is limited by the 0.04 ppm uncer-
403
+ tainty in the 100 kΩ reference resistor traceable to the
404
+ TABLE I. Uncertainty breakdown for run 1, measurement 4,
405
+ and run 4, measurement 4. All entries in the table are dimen-
406
+ sionless relative uncertainties (k = 1) in parts per million.
407
+ Contribution
408
+ Meas. 1.4
409
+ Meas. 4.4
410
+ ULCA GI Cal.
411
+ 0.024
412
+ 0.024
413
+ ULCA RIV Cal.
414
+ 0.062
415
+ 0.043
416
+ ULCA Temp. corr.
417
+ 0.023
418
+ 0.023
419
+ DVM Cal.
420
+ 0.014
421
+ 0.016
422
+ Pump UA
423
+ 0.088
424
+ 0.061
425
+ Total UT
426
+ 0.111
427
+ 0.084
428
+ QHR via a chain of 3 intermediate measurements18,19.
429
+ C.
430
+ stability of the pump
431
+ The measurement campaign was divided into two parts
432
+ by an instrument issue which forced a period of 8 days’
433
+ down-time between runs 5 and 6. During this time, the
434
+ pump was thermally cycled to room temperature and
435
+ back to 4 K twice. From examination of the pump maps
436
+ in supplementary section H, it is clear that the pump
437
+ became less stable after this interruption, although even
438
+ before the interruption, small changes in the ‘nose’ (the
439
+ onset of pumped current as VEXIT is made less negative)
440
+ of the pump map are visible. This contrasts with the data
441
+ of Ref. 13 showing this sample of pump to be extremely
442
+ stable over multiple cool-downs in different laboratories,
443
+ when driven with a sine wave at ∼ 1 GHz. We conjecture
444
+ that at least some of the changes visible in the pump
445
+ maps during the present campaign may be due to changes
446
+ in the transmission of the cryogenic microwave line at
447
+ frequencies ≫ 1 GHz.
448
+ This could plausibly arise due
449
+ to changes in the temperature gradient along the line,
450
+ and would affect the high frequency components of the
451
+ AWG waveform, causing distortion of the waveform at
452
+ the pump entrance gate.
453
+ V.
454
+ DISCUSSION
455
+ The study was complicated by instability in the pump
456
+ map, which made it difficult in the later parts of the mea-
457
+ surement campaign to interpret the results as sampling a
458
+ stable state of the device. However, enough results were
459
+ obtained from runs 1-5 to establish that the pump cur-
460
+ rent is invariant in the exit gate voltage at the level of 1
461
+ part in 107. Averages over these data points presented
462
+ in the previous section give ∆IP ∼ 2×10−7, a significant
463
+ offset from the ideal current IP = ef. The flatness of
464
+ the plateau suggests that the offset is due to an error in
465
+ the measurement system which applies a constant offset
466
+ to all the measurements, rather than an error due to the
467
+ physics of the pump itself.
468
+ One possible cause of error is a time constant in the
469
+ pump current. This was discussed in Ref. 13, and could
470
+
471
+ 4.4
472
+ 1.4
473
+ (a)
474
+ 0.5
475
+ (udd) d/v
476
+ ---在----0.22 ppm
477
+ 0.0
478
+
479
+ -0.5
480
+ -1.40
481
+ -1.35
482
+ -1.30
483
+ Run number
484
+ 1
485
+ 3
486
+ 2
487
+ 4
488
+ (b)
489
+ 0.5
490
+ (wdd)
491
+ 0.13 ppm
492
+ △/p (
493
+ 0.0
494
+
495
+ -0.5
496
+ -1.40
497
+ -1.35
498
+ -1.30
499
+ VEXIT (V)5
500
+ plausibly arise from heating due to the relatively large
501
+ RF powers applied to the device gate.
502
+ Repeating the
503
+ data analysis of runs 1-4 with 700 data points rejected
504
+ from the start of each segment instead of 300 did indeed
505
+ yield an average pump current closer to ef, as shown
506
+ in figure 3b. However, the larger type A uncertainties
507
+ in this analysis make it difficult to draw a firm conclu-
508
+ sion regarding possible time constants.
509
+ Measurements
510
+ with much longer on-off cycle times could potentially
511
+ resolve this question, but require the 1/f noise corner
512
+ of the ULCA current measurement to be at frequencies
513
+ well below 1 mHz. ULCA units have demonstrated this
514
+ performance in bench tests16, but the cryogenic wiring
515
+ involved in a pump measurement introduces additional
516
+ sources of noise and drift. Another possible cause of er-
517
+ ror is a non-linearity in the gain of the ULCA. The ULCA
518
+ input stage gain GI is calibrated at a current of 6 nA, and
519
+ the pump current is 320 pA. Comparisons of the gains of
520
+ two ULCA units with different input stage designs, de-
521
+ tailed in supplementary section F, set an upper limit to
522
+ possible non-linearity of a few parts in 108, so this is
523
+ unlikely to cause errors of a part in 107.
524
+ Possibly the most important cause of error could arise
525
+ from the CCC calibration of the ULCA GI. This could
526
+ result from rectification of noise by the CCC’s SQUID
527
+ detector leading to different SQUID offsets for the two
528
+ polarities of current used in the ULCA calibration20.
529
+ One study on CCC performance in the low-flux regime21
530
+ concluded that noise pickup might lead to this type of
531
+ error at SQUID flux levels below 1 µΦ0, although this
532
+ number was based on a limited number of measurements
533
+ and is specific to a particular CCC design22, different
534
+ in detail to the CCC used to calibrate the ULCA in
535
+ our experiments. We calibrated the ULCA GI using a
536
+ CCC18 with a 10000 : 10 turns ratio, and a sensitiv-
537
+ ity of 6 µA turns/Φ0. The current in the large winding
538
+ was approximately ±5 nA, giving a full-signal ampere-
539
+ turns product of 100 µA turns, corresponding to a flux
540
+ of 16.7 Φ0.
541
+ A flux of 1 µΦ0 therefore corresponds to
542
+ 0.06 ppm of the full signal in the ULCA GI calibra-
543
+ tion, three times smaller than the observed discrepancy
544
+ in the electron pump current.
545
+ However, no investiga-
546
+ tions have yet been carried out on the performance of
547
+ our CCC in the low-flux regime, so the size of possible
548
+ noise-rectification errors is not known. Low flux ratio ac-
549
+ curacy tests such as those presented in Ref. 21 should
550
+ provide useful information on the scale of possible errors.
551
+ We note that if these errors are affecting the ULCA cali-
552
+ brations in our experiment, they are remarkably constant
553
+ in time, as shown by the ∼ 5 × 10−8 relative stability of
554
+ the ULCA input gain over the duration of the measure-
555
+ ment campaign illustrated in supplementary section E.
556
+ This indicates that if noise is affecting the SQUID, its
557
+ most likely source is the CCC bridge electronics, rather
558
+ than external sources.
559
+ The upper frequency limit for accurate pumping with
560
+ tunable-barrier pumps has previously been empirically
561
+ established at around 1 GHz4. We have shown that this
562
+ can be increased, albeit in a rather exceptional sample
563
+ of pump. In this study, the practical upper frequency
564
+ limit was determined by a combination of plateau round-
565
+ ing, and increased incidence of switching events which
566
+ shifted the pump operating point in the VENT − VEXIT
567
+ plane.
568
+ This hints at device-physics factors which may
569
+ limit the practical upper operation frequency, possibly
570
+ charge traps which are activated by high frequency com-
571
+ ponents present in the drive signal. Further investigation
572
+ of more samples of pump could shed fruitful light on this
573
+ question.
574
+ VI.
575
+ CONCLUSIONS
576
+ Precision measurements have been made of the cur-
577
+ rent from a silicon electron pump driven at a frequency
578
+ of 2 GHz using a custom drive waveform applied to the
579
+ entrance gate. The pump current is invariant in exit gate
580
+ voltage with a precision of 0.1 ppm (32 aA), but offset by
581
+ roughly 0.2 ppm from the expected current corresponding
582
+ to one electron for each pump cycle. The application of
583
+ a blind measurement protocol provides added confidence
584
+ that this result is not affected by experimenter bias. At
585
+ this accuracy level, the measurement of the pump cur-
586
+ rent challenges the state of the art in existing electrical
587
+ metrology methods, with scaling of small currents using
588
+ CCCs at low flux levels posing a particularly interesting
589
+ problem. The recent demonstration of current plateaus
590
+ due to the dual Josephson effect23 raises the possibility
591
+ of a metrological investigation of the dual Josephson ef-
592
+ fect in the near future, providing added motivation for a
593
+ better understanding of low current scaling.
594
+ ACKNOWLEDGMENTS
595
+ The authors would like to thank Colin Porter and Scott
596
+ Wilkins for making the NPL primary Josephson voltage
597
+ standard available, and for assistance with setting up the
598
+ voltmeter calibration. This research was supported by
599
+ the UK department for Business, Energy and Industrial
600
+ Strategy. A.F. and G.Y. are supported by JSPS KAK-
601
+ ENHI Grant Number JP18H05258.
602
+ 1N.-H. Kaneko, S. Nakamura, and Y. Okazaki, “A review of the
603
+ quantum current standard,” Measurement Science and Technol-
604
+ ogy 27, 032001 (2016).
605
+ 2H. Scherer and H. W. Schumacher, “Single-electron pumps and
606
+ quantum current metrology in the revised SI,” Annalen der
607
+ Physik , 1800371 (2019).
608
+ 3B. Kaestner and V. Kashcheyevs, “Non-adiabatic quantized
609
+ charge pumping with tunable-barrier quantum dots: a review
610
+ of current progress,” Reports on Progress in Physics 78, 103901
611
+ (2015).
612
+ 4S. Giblin, A. Fujiwara, G. Yamahata, M.-H. Bae, N. Kim,
613
+ A. Rossi, M. M¨ott¨onen, and M. Kataoka, “Evidence for univer-
614
+ sality of tunable-barrier electron pumps,” Metrologia 56, 044004
615
+ (2019).
616
+
617
+ 6
618
+ 5S. Giblin, M. Bae, N. Kim, Y.-H. Ahn, and M. Kataoka, “Robust
619
+ operation of a gallium arsenide tunable barrier electron pump,”
620
+ Metrologia 54, 299 (2017).
621
+ 6F. Stein, H. Scherer, T. Gerster, R. Behr, M. G¨otz, E. Pesel,
622
+ C. Leicht, N. Ubbelohde, T. Weimann, K. Pierz, et al., “Robust-
623
+ ness of single-electron pumps at sub-ppm current accuracy level,”
624
+ Metrologia 54, S1 (2017).
625
+ 7S. Schlamminger, R. L. Steiner, D. Haddad, D. B. Newell,
626
+ F. Seifert, L. S. Chao, R. Liu, E. R. Williams,
627
+ and J. Pratt,
628
+ “A summary of the Planck constant measurements using a watt
629
+ balance with a superconducting solenoid at NIST,” Metrologia
630
+ 52, L5 (2015).
631
+ 8M. W. Keller, A. L. Eichenberger, J. M. Martinis,
632
+ and N. M.
633
+ Zimmerman, “A capacitance standard based on counting elec-
634
+ trons,” Science 285, 1706 (1999).
635
+ 9H. Scherer, J. Schurr, and F. Ahlers, “Electron counting capac-
636
+ itance standard and quantum metrology triangle experiments at
637
+ PTB,” Metrologia 54, 322 (2017).
638
+ 10S. P. Giblin, M. Kataoka, J. D. Fletcher, P. See, T. Janssen,
639
+ J. P. Griffiths, G. A. C. Jones, I. Farrer,
640
+ and D. A. Ritchie,
641
+ “Towards a quantum representation of the ampere using single
642
+ electron pumps,” Nature Communications 3, 930 (2012).
643
+ 11F. Stein, D. Drung, L. Fricke, H. Scherer, F. Hohls, C. Leicht,
644
+ M. Goetz, C. Krause, R. Behr, E. Pesel, U. Siegner, F.-J. Ahlers,
645
+ and H. W. Schumacher, “validation of a quantized-current source
646
+ with 0.2 ppm uncertainty,” Applied Physics Letters 107, 103501
647
+ (2015).
648
+ 12R.
649
+ Zhao,
650
+ A.
651
+ Rossi,
652
+ S.
653
+ Giblin,
654
+ J.
655
+ Fletcher,
656
+ F.
657
+ Hudson,
658
+ M. M¨ott¨onen, M. Kataoka,
659
+ and A. Dzurak, “Thermal-error
660
+ regime in high-accuracy gigahertz single-electron pumping,”
661
+ Physical Review Applied 8, 044021 (2017).
662
+ 13S. P. Giblin, E. Mykk¨anen, A. Kemppinen, P. Immonen, A. Man-
663
+ ninen, M. Jenei, M. M¨ott¨onen, G. Yamahata, A. Fujiwara, and
664
+ M. Kataoka, “Realisation of a quantum current standard at liq-
665
+ uid helium temperature with sub-ppm reproducibility,” Metrolo-
666
+ gia 57, 025013 (2020).
667
+ 14G. Yamahata, S. P. Giblin, M. Kataoka, T. Karasawa, and A. Fu-
668
+ jiwara, “Gigahertz single-electron pumping in silicon with an ac-
669
+ curacy better than 9.2 parts in 107,” Applied Physics Letters
670
+ 109, 013101 (2016).
671
+ 15A. Fujiwara, K. Nishiguchi,
672
+ and Y. Ono, “Nanoampere charge
673
+ pump by single-electron ratchet using silicon nanowire metal-
674
+ oxide-semiconductor field-effect transistor,” Applied Physics Let-
675
+ ters 92, 042102 (2008).
676
+ 16C. Krause, D. Drung, M. G¨otz, and H. Scherer, “Noise-optimized
677
+ ultrastable low-noise current amplifier,” Review of Scientific In-
678
+ struments 90, 014706 (2019).
679
+ 17D. Drung, C. Krause, U. Becker, H. Scherer, and F. J. Ahlers,
680
+ “Ultrastable low-noise current amplifier: A novel device for mea-
681
+ suring small electric currents with high accuracy,” Review of Sci-
682
+ entific Instruments 86, 024703 (2015).
683
+ 18S. P. Giblin, D. Drung, M. G¨otz,
684
+ and H. Scherer, “Interlab-
685
+ oratory nanoamp current comparison with subpart-per-million
686
+ uncertainty,” IEEE Transactions on Instrumentation and Mea-
687
+ surement 68, 1996–2002 (2019).
688
+ 19S. P. Giblin, “Re-evaluation of uncertainty for calibration of 100
689
+ MΩ and 1 GΩ resistors at NPL,” Metrologia 56, 015014 (2019).
690
+ 20D. Drung, C. Krause, U. Becker, H. Scherer, and F. J. Ahlers,
691
+ “Ultrastable low-noise current amplifier,” in 29th Conference on
692
+ Precision Electromagnetic Measurements (CPEM 2014) (IEEE,
693
+ 2014) pp. 656–657.
694
+ 21D. Drung, M. G¨otz, E. Pesel,
695
+ and H. Scherer, “Improving the
696
+ traceable measurement and generation of small direct currents,”
697
+ IEEE Transactions on Instrumentation and Measurement 64,
698
+ 3021–3030 (2015).
699
+ 22M. G¨otz, E. Pesel, and D. Drung, “A compact 14-bit cryogenic
700
+ current comparator,” in 29th Conference on Precision Electro-
701
+ magnetic Measurements (CPEM 2014) (IEEE, 2014) pp. 684–
702
+ 685.
703
+ 23R. S. Shaikhaidarov, K. H. Kim, J. W. Dunstan, I. V. Antonov,
704
+ S. Linzen, M. Ziegler, D. S. Golubev, V. N. Antonov, E. V.
705
+ Il’ichev,
706
+ and O. V. Astafiev, “Quantized current steps due to
707
+ the ac coherent quantum phase-slip effect,” Nature 608, 45–49
708
+ (2022).
709
+ 24M. Kataoka, J. D. Fletcher, P. See, S. P. Giblin, T. J. B. M.
710
+ Janssen, J. P. Griffiths, G. A. C. Jones, I. Farrer,
711
+ and D. A.
712
+ Ritchie, “Tunable nonadiabatic excitation in a single-electron
713
+ quantum dot,” Physical Review Letters 106, 126801 (2011).
714
+
715
+ 7
716
+ FIG. S1. (a): Grey-scale derivative pump map using sine wave
717
+ drive at 1.05 GHz, PRF = 11.6 dBm. (b): Pump map using a
718
+ waveform from an AWG at repetition rate f = 1.04 GHz. One
719
+ cycle of the AWG waveform is shown in the inset. Note that this
720
+ waveform is subsequently amplified by an inverting amplifier to
721
+ yield the correct polarity of gate voltage, whereby the negative
722
+ voltage pulse on the entrance gate raises the entrance barrier
723
+ to pump an electron. (c): Log-scale plots of the pump current
724
+ along the horizontal dashed lines in plots (a) and (b).
725
+ VII.
726
+ SUPPLEMENTARY INFORMATION
727
+ A.
728
+ AWG waveform at 1 GHz
729
+ The silicon pump in this study has already exhibited
730
+ robust quantisation at 1.05 GHz with sine wave drive13,
731
+ as illustrated in the pump map and log plot of figure
732
+ S1 (a) and (c). As an initial part of the setup process,
733
+ we tested the pump operation using an AWG waveform
734
+ at a similar frequency of 1.04 GHz. This resulted in a
735
+ substantially wider plateau, seen by comparing the log
736
+ plots with sine wave and AWG drive in figure S1 (c). Note
737
+ that the AWG waveform leads to substantial distortion
738
+ of the pump map (figure S1 (b)), due to the electron
739
+ capture occurring at different rates dVENT/dt as VENT is
740
+ scanned. This data was an important motivator towards
741
+ the main study because it showed for the first time that
742
+ the type of waveform first used on GaAs pumps in Ref.
743
+ 10 could also yield a substantial improvement in plateau
744
+ flatness with Si pumps.
745
+ B.
746
+ Exploration of higher frequencies
747
+ During the setup of the experiments reported in the
748
+ main text, frequencies above 2 GHz were explored using
749
+ custom waveforms (figure S2). The data at 4 GHz shows
750
+ a feature which may be attributable to non-adiabatic
751
+ excitation24 resulting from the rapid deformation of the
752
+ FIG. S2. Exit gate scans of pump current using AWG waveforms.
753
+ The waveforms are illustrated as insets at the top of the plot on
754
+ a common time axis. Dashed horizontal lines indicate the cur-
755
+ rent ef at each frequency. Entrance gate voltages are −0.79 V,
756
+ −1.08 V, and −1.35 V at frequencies of 2 GHz, 2.574 GHz and
757
+ 4 GHz respectively. The AWG output amplitude was 0.47 V pp
758
+ for all measurements prior to amplification by a 15 dB wide-band
759
+ inverting amplifier. The arrow indicates a feature possibly due
760
+ to non-adiabatic excitation.
761
+ confining potential formed by the entrance and exit gates.
762
+ Although the 1ef plateau at 4 GHz looks superficially
763
+ flat on this expanded current scale, its slope could easily
764
+ be resolved by zooming the data and no precision mea-
765
+ surements were attempted. The plateau at 2.574 GHz
766
+ was sufficiently flat for metrological investigation, but
767
+ the stability of the pump map was degraded compared
768
+ to 2 GHz, with sudden shifts along the entrance and
769
+ exit gate axes becoming common on time-scales of a few
770
+ hours.
771
+ Switches in the pump state generally occurred
772
+ more frequently as f was increased, and we speculate that
773
+ high frequency components in the drive signal may acti-
774
+ vate charge traps in the device structure. Consequently,
775
+ all the precision measurements reported in the main text
776
+ used f = 2 GHz, with the waveform shown in the inset
777
+ of figure S2, and also the inset of figure 1 (b) of the main
778
+ text.
779
+ C.
780
+ Raw data
781
+ The measurement apparatus and procedure, with two
782
+ exceptions, are the same as described in Ref. 13 and its
783
+ supplementary information. The exceptions are firstly,
784
+ the use of a blind protocol as discussed in the main text,
785
+ and secondly, the use of a noise-optimised ULCA16 in-
786
+ stead of a standard ULCA17. All measurements are per-
787
+ formed as on-off cycles.
788
+ For pump measurements, the
789
+ ‘on’ and ‘off’ states correspond to the entrance gate drive
790
+ waveform from the arbitrary waveform generator (AWG)
791
+ being turned on and off respectively. For calibrations of
792
+ the digital voltmeter (DVM) used to read out the ULCA,
793
+
794
+ (a) Sine 1.05 GHz
795
+ Sine 1.05 GHz
796
+ -1.2-
797
+ AWG 1.04 GHz
798
+ VENT
799
+ 0
800
+ lp/ef
801
+ (c)
802
+ / V
803
+ -1.8
804
+ -2
805
+ 11-1
806
+ -1.6
807
+ -1.2
808
+ 4
809
+ Log 1
810
+ 6
811
+ (b) AWG 1.04 GHz
812
+ -1.6
813
+ -1.4
814
+ -1.2
815
+ -0.8
816
+ VEXIT / V
817
+ VENT
818
+ / V
819
+ 8
820
+ plots a, b:
821
+ -1.6
822
+ -1.2
823
+ -1.6
824
+ VEXIT / V2 GHz
825
+ 1000
826
+ 2.574 GHz
827
+ 4 GHz
828
+ lp / pA
829
+ 500
830
+ e1
831
+ 0
832
+ -1.6
833
+ -1.4
834
+ -1.2
835
+ -1.0
836
+ -0.8
837
+ VEXIT / V8
838
+ FIG. S3. Raw data, as viewed in a LabView program used to visualise the data during the measurement campaign. The top pair
839
+ of plots show the raw voltmeter data from one measurement - run 16, measurement 3. The plots are zoomed to highlight the ‘on’
840
+ (upper plot, yellow points) and ‘off’ (lower plot, blue points) pump data. The voltmeter calibration data are off the scale of these
841
+ plots. The lower pair of plots show the beginning of the measurement on an expanded y-axis, and a zoomed x-axis. The first 800
842
+ data points are voltmeter calibrations. The x-axis is simply the sequential data point number. This does not quite map linearly onto
843
+ time, because the cal cycles used a voltmeter auto zero with every data point, whereas an auto zero was performed after every 25th
844
+ data point for the measure cycles. All data points were integrated over 10 power line cycles. On both plots, vertical bars indicate
845
+ the y-scale in raw voltmeter units (ULCA input current).
846
+ the ‘on’ and ‘off’ states correspond to the Josephson volt-
847
+ age standard programmed to output 0.32 V and 0 V re-
848
+ spectively.
849
+ In figure S3 we illustrate some raw data, and explain
850
+ the nomenclature used to describe the data files. The
851
+ illustrated data is measurement 3 from run 16. The data
852
+ are the blind-scaled readings of the Agilent 3458A DVM,
853
+ connected to either the Josephson voltage standard for
854
+ the calibration cycles, or the ULCA for the measure cy-
855
+ cles. For the calibration cycles, the data are the com-
856
+ pletely raw readings from the voltmeter, and for the mea-
857
+ sure cycles the raw readings have been multiplied by the
858
+ blind scaling factor β = 1.00000387. The particular mea-
859
+ surement illustrated here consisted of 7 ‘sequences’. Each
860
+ sequence starts with 8 voltmeter calibration cycles. The
861
+ calibration cycles were done with the DVM auto zero
862
+ turned on, and 50 data points for each on or off segment.
863
+ After the calibration cycles, the voltmeter was connected
864
+ to the ULCA output, and a set of pump measurement
865
+ cycles were done with 1000 data points for each segment,
866
+ auto zero off, and an auto zero operation every 25 data
867
+ points (optimisation of the DVM auto zero interval in the
868
+ context of single-electron pump measurements was first
869
+ discussed in Ref. 6). For the illustrated measurement,
870
+ there were 8 measurement cycles in one sequence. Other
871
+ measurements in the campaign used from 7 to 11 cycles
872
+ per sequence. After the 7 cal-measure sequences, a final
873
+ set of 8 calibration cycles was performed, so that each
874
+ set of measure cycles had a calibration cycle before and
875
+ after, for evaluating the calibration factor to apply to the
876
+ measurement data as described in the supplementary in-
877
+ formation to Ref. 13. The data analysis evaluated the
878
+ pump current separately for each sequence, and the sta-
879
+ tistical properties of this data was used as a pass / fail
880
+ criteria for the measurement, as described in supplemen-
881
+ tary section G. The current reported for the measurement
882
+ was the weighted mean over the sequences.
883
+ Two points are worth remarking in the data.
884
+ The
885
+ first is that the hysteretic Josephson voltage standard
886
+ does not always yield the same step number (it was pro-
887
+ grammed to switch between nominal values of 320 mV
888
+ and 0 V). As discussed in the supplementary informa-
889
+ tion to Ref. 13, this is not an issue as long as the DVM
890
+ is linear over the narrow range of voltages sampled by
891
+ the different calibration steps. The second is the remark-
892
+ able stability of the ULCA offset. By eye, it does not
893
+ appear to drift by more than about 1 fA over the course
894
+ of the measurement. We will examine the stability of the
895
+ ULCA gain and offset in more detail in supplementary
896
+ section E.
897
+
898
+ measurement
899
+ 0.32048-
900
+ 20UV(20fA)
901
+ 0.3204-
902
+ 5000
903
+ 10000
904
+ 15000
905
+ 20000
906
+ 25000
907
+ 30000
908
+ 35000
909
+ 40000
910
+ 45000
911
+ 50000
912
+ 55000
913
+ 60000
914
+ 65000
915
+ 70000
916
+ 75000
917
+ 8000
918
+ 85000
919
+ 90000
920
+ 95000
921
+ 100000
922
+ 105000
923
+ 110000
924
+ 115000
925
+ 12000
926
+ Data point number
927
+ 20
928
+ (20 fA
929
+ I reading (M)
930
+ sequence
931
+ 2E-5
932
+ :
933
+ -2E-5
934
+ -4E-5-
935
+ 5000
936
+ 10000
937
+ 15000
938
+ 20000
939
+ 25000
940
+ 30000
941
+ 35000
942
+ 40000
943
+ 45000
944
+ 50000
945
+ 55000
946
+ 60000
947
+ 65000
948
+ 7000
949
+ 75000
950
+ 80000
951
+ 85000
952
+ 90000
953
+ 95000
954
+ 10000010500011000
955
+ 115000120000
956
+ cal cycle
957
+ 0.323
958
+ pump cycle
959
+ VM reading
960
+ 0.32
961
+ 2 mV (2 pA)
962
+ 0.318
963
+ 0.317-
964
+ 100 200 300 400 500
965
+ 1400 1500 1600 1700 1800
966
+ 700
967
+ 900
968
+ 10001100
969
+ 1200
970
+ 1300
971
+ Data point number
972
+ 0.003
973
+ M 0.002-
974
+ 2mV(2pA
975
+ -0.003-
976
+ 100 200 300 400 500 600 700 800
977
+ 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 40009
978
+ FIG. S4. Plot (a): filled circles, left axis: Calibration factor kDVM
979
+ of the DVM. line, right axis: laboratory temperature. Coloured
980
+ blocks at the bottom of the plot, and events labeled ‘E1’ and
981
+ ‘E2’ are explained in the supplementary text. Inset: Log-scale
982
+ histogram of the difference between adjacent measurements of
983
+ kDVM. The black square in the main plot shows a range of DVM
984
+ calibration data plotted on expanded axes in plot (b).
985
+ D.
986
+ Voltmeter calibrations and measurement time-line
987
+ In figure S4 we have combined several pieces of infor-
988
+ mation pertinent to the measurement campaign.
989
+ The
990
+ main graph of plot (a) shows, on the left axis, the cali-
991
+ bration factors, kDVM, of the DVM recorded during the
992
+ measurement campaign. We define the calibration factor
993
+ as kDVM∆VIND = ∆VREF, where ∆VIND is the change
994
+ in indicated voltage and ∆VREF is the change in applied
995
+ reference voltage evaluated from an on-off cal cycle. Each
996
+ plotted point is averaged from a set of 8 calibration cycles
997
+ directly against the Josephson array at a nominal volt-
998
+ age of 0.32 V. No data points have been omitted from
999
+ this plot, and some outlying data points with large er-
1000
+ ror bars are the result of failure of the frequency lock to
1001
+ the Josephson array control electronics. The pink line
1002
+ plotted on the right axis shows the laboratory tempera-
1003
+ ture, as measured by a sensor integrated into the ceiling.
1004
+ Periods when the experiment was not running are vis-
1005
+ ible as gaps in the voltmeter calibration data, and to
1006
+ clarify the experimental time-line, shaded blocks at the
1007
+ bottom of the plot indicate what was happening. Four
1008
+ types of activity are indicated: The experimental runs,
1009
+ numbered 1-17; the weekend calibrations of the ULCA
1010
+ input stage gain GI; The short calibrations of the ULCA
1011
+ output stage RIV, and finally a period of down-time indi-
1012
+ cated by a cross-hatched block when the experiment was
1013
+ stopped due to a fault in the AWG used to generate the
1014
+ pump drive signal.
1015
+ Two events marked E1 and E2 are indicated. E1 marks
1016
+ when an un-used instrument in the experimental rack
1017
+ (a sine wave generator) was switched off.
1018
+ The reduc-
1019
+ tion of heat produced in the rack caused a noticeable
1020
+ change in the calibration factor of the voltmeter, which
1021
+ was mounted directly above the sine wave generator. The
1022
+ fact that this is visible in the kDVM data illustrates the
1023
+ sensitivity of the direct calibrations of the DVM against
1024
+ the Josephson array. The event E1 also lowered the tem-
1025
+ perature of the ULCA, mounted higher up in the rack,
1026
+ reducing ATR by roughly 0.15 ppm. Event E2 marks a
1027
+ dramatic excursion of the laboratory temperature caused
1028
+ by planned maintenance of the air conditioning. This re-
1029
+ sulted in a larger uncertainty assigned to some of the
1030
+ measurements of run 15 because of rapid changes in the
1031
+ ULCA temperature. The transition from stable to fluc-
1032
+ tuating temperature roughly half-way through the mea-
1033
+ surement campaign was co-incident with a transfer of
1034
+ liquid helium into the experimental dewar. It may also
1035
+ be related to increased activity in adjacent laboratories
1036
+ as activities were re-started and staff returned following
1037
+ relaxation of covid-19 control measures.
1038
+ One important contribution to the uncertainty of the
1039
+ current measurement is the stability of the DVM on the
1040
+ 1-hour time taken for a cal-measure sequence. The in-
1041
+ set to figure S4 (a) shows a histogram of the difference
1042
+ in kDVM between adjacent calibrations during measure-
1043
+ ments, denoted ∆kDVM. Generally, the DVM is stable
1044
+ to better than 0.2 ppm on time-scales of an hour, but
1045
+ jumps in kDVM of up to 0.5 ppm sometimes occur. As in
1046
+ our previous study13, the uncertainty due to the drift in
1047
+ kDVM was evaluated using a rectangular distribution as
1048
+ ∆kDVM/2
1049
+
1050
+ 3, so a jump in kDVM of 0.2 ppm contributes
1051
+ 0.057 ppm to the combined uncertainty in the pump cur-
1052
+ rent. The 1-hour DVM calibration interval is therefore
1053
+ consistent with achieving a combined uncertainty in the
1054
+ pump measurement of 0.1 ppm. To visualise the short-
1055
+ term stability of the DVM in the time domain, plot (b)
1056
+ shows a portion of the main plot on an expanded time
1057
+ axis. Over this 3-day period, the voltmeter calibration
1058
+ did not drift by more than 0.3 ppm. The voltmeter cali-
1059
+ bration data are of general interest for electrical metrol-
1060
+ ogy, where voltmeters such as the 3458A are commonly
1061
+ used as transfer standards. From the general perspec-
1062
+ tive of evaluating the DVM performance in metrological
1063
+ applications, this data set shows the DVM comfortably
1064
+ exceeding its manufacturer’s 24-hour accuracy specifica-
1065
+ tion of 1.5 ppm on the 1 V range. Calibrations over longer
1066
+ time-scales (not shown) show that the 90-day specifica-
1067
+ tion of 4.6 ppm is also exceeded by typically a factor 5.
1068
+ E.
1069
+ ULCA calibrations
1070
+ The noise-optimised ULCA was calibrated using a
1071
+ cryogenic current comparator (CCC) bridge, as described
1072
+ in Ref. 18. For the calibrations, the ULCA was hand-
1073
+ carried to an adjacent laboratory. It was specifically car-
1074
+
1075
+ 100
1076
+ Counts
1077
+ 10
1078
+ (a)
1079
+ 0.999983
1080
+ E1
1081
+ 0.0 △kDVM0.5
1082
+ / ppm
1083
+ (00)
1084
+ 0.999982
1085
+ KDVM
1086
+ 20
1087
+ Lab Temp.
1088
+ 0.999981
1089
+ E2
1090
+ 0.999980
1091
+ 16,
1092
+ G
1093
+ 6,7G.
1094
+ G.
1095
+ 1-3
1096
+ G.
1097
+ 4.5
1098
+ 8-11
1099
+ 12-15
1100
+ 15
1101
+ 17
1102
+ 0.999979
1103
+ 15 Jan
1104
+ 29 Jan
1105
+ 12 Feb
1106
+ 26 Feb
1107
+ Date (2021)
1108
+ (b)
1109
+ 0.9999814
1110
+ KDVM
1111
+ HH
1112
+ 0.9999812
1113
+ 0.9999810
1114
+ 19 Feb
1115
+ 21 Feb
1116
+ Date10
1117
+ FIG. S5. (a): Deviations from nominal of (upper plot): ULCA
1118
+ input current gain and (lower plot): ULCA output stage gain,
1119
+ corrected to a standard temperature.
1120
+ The plot shows all the
1121
+ calibrations performed on this ULCA since its delivery to NPL.
1122
+ The time period covered by the measurement campaign is shown
1123
+ as a purple shaded box, and the fixed value adopted for the
1124
+ input stage gain during the measurement campaign is shown as
1125
+ a horizontal dashed line. (b): Deviation from nominal of the
1126
+ ULCA transresistance gain calculated from the data in plot (a),
1127
+ for use during the measurement campaign.
1128
+ The boxes above
1129
+ each data point show the run numbers covered by the 6 values
1130
+ of trans-resistance gain.
1131
+ ried by hand rather than on a trolley to minimise the
1132
+ possibility of mechanical shocks.
1133
+ As illustrated in the
1134
+ time-line of figure S4 (a), a total of 4 calibrations of the
1135
+ input stage gain GI (nominal value 1000), and 6 calibra-
1136
+ tions of the output gain RIV (nominal value 1 MΩ) were
1137
+ preformed during the measurement campaign. The over-
1138
+ all trans-resistance gain of the ULCA is ATR = GIRIV
1139
+ (nominal value 1 GΩ)17. The results of all calibrations
1140
+ of this ULCA unit since its delivery to NPL are shown in
1141
+ figure S5 (a). The historical behaviour of the input and
1142
+ output gains is different, and resulted in different statis-
1143
+ tical treatments. The input stage gain does not show any
1144
+ significant drift over the measurement campaign, and fur-
1145
+ thermore, the limited number of additional calibrations
1146
+ before and after the campaign did not give any evidence
1147
+ for long-term drift. Consequently it was assumed to be
1148
+ constant during the measurement campaign.
1149
+ Its value
1150
+ was taken to be the weighted mean of the four calibra-
1151
+ tions during the campaign, shown as a horizontal dashed
1152
+ FIG. S6. Averaged DVM readings with the pump (a): on, and
1153
+ (b): off. Each data point is averaged from one measurement, so
1154
+ is the mean of ∼ 60, 000 DVM readings. A scale bar indicates 1
1155
+ ppm of the 320 pA pump current.
1156
+ line in figure S5 (a). On the other hand, the output stage
1157
+ gain shows some drift over time.
1158
+ Values of RIV were
1159
+ chosen half way between ‘before’ and ‘after’ calibration
1160
+ values, with uncertainties which included a drift term de-
1161
+ rived from a rectangular distribution. In this way, five
1162
+ values of ATR were calculated to cover runs 4-17. Runs
1163
+ 1-3 were not preceded immediately by any ULCA calibra-
1164
+ tions, so the value of RIV was taken to be the first RIV
1165
+ calibration, in between runs 3 and 4, with an uncertainty
1166
+ derived from a rectangular distribution bounded by the
1167
+ highest and lowest RIV calibrations during the measure-
1168
+ ment campaign. In other words, we assumed that the
1169
+ drift behaviour of RIV for the few days covering runs 1-3
1170
+ was similar to the behaviour during the rest of the mea-
1171
+ surement runs. The 6 values of ATR with their combined
1172
+ standard uncertainties used to analyse the measurements
1173
+ are shown in figure S5 (b).
1174
+ The remarkable stability of the ULCA offset current
1175
+ is already visible in the raw data of figure S3 (a), and
1176
+ in figure S6 we go further and show the averaged values
1177
+ of the ‘ON’ and ‘OFF’ signals measured by the DVM.
1178
+ Each data point in this graph is the average of all the
1179
+ ON (plot (a)) or OFF (plot (b)) DVM readings after
1180
+ rejecting the first 300 readings in each segment.
1181
+ The
1182
+ offset current does not change by more than 2 fA over
1183
+ the 2-month period covered by the measurements. The
1184
+ drift in offset current may be partially attributable to
1185
+ changes in ULCA temperature, but there may also be
1186
+ contributions due to changes in leakage currents through
1187
+
1188
+ (a)
1189
+ 7.8-
1190
+ SG, / ppm
1191
+ 7.7
1192
+ -- 1
1193
+ 7.6
1194
+ 7.5
1195
+ 7.4
1196
+ 7.3
1197
+ 27.0
1198
+ TI
1199
+ 27.2
1200
+ -27.4
1201
+ 01/10/2019
1202
+ 01/10/2020
1203
+ Date
1204
+ (b)
1205
+ 8-11
1206
+ 12-15
1207
+ 1-3
1208
+ 4,5
1209
+ 6,7
1210
+ ppm
1211
+ -19.4
1212
+ 16,17
1213
+ T
1214
+ -19.5
1215
+ -19.6
1216
+ 15 Jan
1217
+ 29 Jan
1218
+ 12 Feb
1219
+ 26 Feb
1220
+ Date in 2021(a)
1221
+ 0.320433
1222
+ 0.320432
1223
+ 1 ppm = 0.32 fA
1224
+ 0.320431
1225
+ 15 Jan
1226
+ 29 Jan
1227
+ 12 Feb
1228
+ 26 Feb
1229
+ (b)
1230
+ -0.000003
1231
+ V
1232
+ ->
1233
+ 1 ppm = 0.32 fA
1234
+ 0.000004
1235
+ -0.000005
1236
+ 15 Jan
1237
+ 29 Jan
1238
+ 12 Feb
1239
+ 26 Feb11
1240
+ FIG. S7. (a): Difference in input current gains GI of two ULCA
1241
+ units for two series of measurements in self-test configuration, in
1242
+ which the test current was alternated between a ‘high’ current of
1243
+ 4.8 nA and a ‘Low’ current, either 320 pA or 640 pA. (b): Differ-
1244
+ ence in trans-resistance gains ATR, alternating the test current
1245
+ between 4.8 nA and 320 pA. The data plot legend refers to both
1246
+ panels (a) and (b).
1247
+ the electron pump control gates. The possible leakage
1248
+ current paths through the device gates were discussed in
1249
+ the supplementary information to Ref. 13.
1250
+ F.
1251
+ ULCA linearity
1252
+ The linearity of the ULCA gain is a key assumption in
1253
+ this experiment, because the calibration of GI is done at
1254
+ an input current of ∼ 5 nA and the pump current during
1255
+ the measurement is 320 pA. One previous investigation
1256
+ set an upper bound on the non-linearity of the overall
1257
+ UCLA transresistance gain ATR at around the 0.1 ppm
1258
+ level16. We attempted to reduce this upper bound, using
1259
+ two test methods previously demonstrated for the ULCA.
1260
+ First, we compared the input stage current gains of two
1261
+ ULCA units, as was first demonstrated in Ref. 17. This
1262
+ is called the ‘self-test’ configuration. A standard ULCA
1263
+ unit, not otherwise used in our experiment, was used as a
1264
+ source to generate a test current for comparing its input
1265
+ stage gain GI,source with the input stage gain of the noise-
1266
+ optimised experimental ULCA GI,measure. This self-test
1267
+ configuration is quite straightforward to implement, be-
1268
+ cause the readout DVM measures a small signal derived
1269
+ from the difference in the input gains of the two ULCAs,
1270
+ denoted αGI = GI,source − GI,measure. We alternated sets
1271
+ of forward-reverse cycles with test currents of ±4.8 nA,
1272
+ ±320 pA and ±640 pA to obtain the data of figure S7
1273
+ (a). The forward-reverse cycle time was 60 s, and the
1274
+ data points are averaged from 100 and 1000 cycles for the
1275
+ ±4.8 nA and ±320 pA currents respectively. The back-
1276
+ ground drift of αGI visible in the high current data is due
1277
+ to temperature variation of the ULCAs, but by evaluat-
1278
+ ing the difference between each low-current data points
1279
+ (orange triangles) and the mean of the two adjacent high
1280
+ current data points (green circles), we can extract the
1281
+ current dependence as a mean over 6 cycles of high-low-
1282
+ high current. We obtain the current dependence in αGI
1283
+ between 4.8 nA and 320 pA as 0.002 ± 0.029 ppm. An
1284
+ additional run examined the current dependence between
1285
+ 4.8 nA and 640 pA (blue diamonds). This data was not
1286
+ evaluated, but clearly the current dependence is around
1287
+ a part in 108 or less.
1288
+ For the second test, we measured the current depen-
1289
+ dence of the difference in the overall trans-resistance
1290
+ gains of the two ULCAs, again with the standard ULCA
1291
+ in ‘source’ mode, and the noise-optimised experimental
1292
+ ULCA in ‘measure’ mode. This test configuration is il-
1293
+ lustrated in figure 6 of Ref. 16. It is less straightforward
1294
+ to implement than the self-test configuration, because
1295
+ the voltage outputs of the source and measure ULCAs
1296
+ have opposite signs. We implemented a protocol equiv-
1297
+ alent to figure 7b of Ref. 16. A single DVM could be
1298
+ connected to either the source or measure ULCA us-
1299
+ ing an automated switch - the same switch that was
1300
+ used in the main experiment to connect the DVM ei-
1301
+ ther to the ULCA output or the JVS. One cycle con-
1302
+ sisted of four segments of data:
1303
+ the test current was
1304
+ applied with both polarities with the DVM connected
1305
+ to the source ULCA, recording a forward-reverse differ-
1306
+ ence voltage ∆Vsource and then the test current was ap-
1307
+ plied with both polarities with the DVM connected to the
1308
+ measure ULCA, recording a difference voltage ∆Vmeasure.
1309
+ Acquiring one cycle took 2 minutes. Assuming that the
1310
+ DVM calibration factor does not change on this time-
1311
+ scale, The ratio of ULCA transresistance gains is given by
1312
+ αATR = ATR,source/ATR,measure = ∆Vmeasure/∆Vsource.
1313
+ We are interested in whether the ratio of gains depends
1314
+ on current, so as in the tests of GI linearity, we alternated
1315
+ 1000 cycles at ±320 pA test current, with 100 cycles at
1316
+ ±4.8 nA test current to yield the averaged data points
1317
+ in figure S7 (b). Similarly to the data of figure S7 (a),
1318
+ we averaged the high-low-high differences, to obtain the
1319
+ current dependence of αATR as 0.006 ± 0.023 ppm.
1320
+ Of course, this data does not conclusively rule out non-
1321
+ linearity in the ULCA unit used for the measurements.
1322
+ It only gives information on the linearity of the differ-
1323
+ ence in the gains of the two ULCA units. It is a slightly
1324
+ stronger test than the one published in Ref. 16, how-
1325
+ ever. While that measurement used two nominally iden-
1326
+ tical noise-optimised ULCAs, our measurement used a
1327
+ standard ULCA in the ‘source’ role. The different values
1328
+ of resistors used in the current scaling networks make it
1329
+ less likely that both ULCA units would have the same
1330
+
1331
+ (a)
1332
+ 8.8×106
1333
+ αG, / ppm
1334
+ -8.9×10-6
1335
+ -9.0×10-6
1336
+ -9.1×106
1337
+ -9.2×10-6
1338
+ Measurement number
1339
+ (b)
1340
+ ± 4.8 nA
1341
+ -35.6
1342
+ ± 320 pA
1343
+ ± 640 pA
1344
+ -35.7
1345
+ -35.8
1346
+ -35.9
1347
+ Measurement number12
1348
+ current-dependence to the gain.
1349
+ G.
1350
+ Statistical tests and data set rejection
1351
+ As mentioned in the main text, the pump state, as doc-
1352
+ umented by the ‘pump maps’, changed during the mea-
1353
+ surement campaign, with some obvious dramatic changes
1354
+ occurring during some measurements, and more subtle
1355
+ changes during other measurements. Even if the pump
1356
+ map was stable, some of the measurements close to the
1357
+ edges of the current plateaus could be affected by small
1358
+ fluctuations in offset charge, leading to relatively large
1359
+ changes in pump current as the operating point drifted
1360
+ on and off the plateau.
1361
+ It could not generally be as-
1362
+ sumed that the pump current sampled by a measure-
1363
+ ment lasting more than 10 hours represented a station-
1364
+ ary mean. Each measurement was therefore subjected to
1365
+ a statistical test. Recall from supplementary section S3,
1366
+ that the pump current from each sequence was evaluated
1367
+ separately.
1368
+ This yielded m values of IP, denoted IP,m
1369
+ with uncertainties U(IP,m), where m is the number of se-
1370
+ quences in the measurement. If all the IP,m are sampling
1371
+ the same value of pump current, on average the stan-
1372
+ dard deviation of the IP,m, σ(IP,m) will be equal to the
1373
+ mean of the uncertainties, ⟨U(IP,m)⟩. We propose the ra-
1374
+ tio σ(IP,m)/⟨U(IP,m)⟩ = R as a statistical measure of the
1375
+ stationarity of the data, and in figure S8, we plot a his-
1376
+ togram of this quantity (grey bars, right axis) for the 64
1377
+ measurements performed during our campaign. We also
1378
+ plot (red bars, left axis) a histogram of the same quantity
1379
+ obtained from 1000 simulated measurements, in which
1380
+ the simulated raw data, both for the measurement and
1381
+ calibration cycles, was generated from a stationary mean
1382
+ multiplied by Gaussian white noise with the same stan-
1383
+ dard deviation as the real data. As expected, the most
1384
+ probable value of R for this simulated stationary data is
1385
+ 1, and the probability of obtaining a measurement with
1386
+ R > 2 from a set of 1000 measurements becomes neg-
1387
+ ligible. Since we only performed 64 measurements, we
1388
+ assigned a cutoff of R = 1.7, and rejected measurements
1389
+ with R > 1.7. Comparing the histogram of the measured
1390
+ data with the simulation, it is clear that a significant
1391
+ number of data sets have an R value which would be
1392
+ improbably high if the pump current was constant dur-
1393
+ ing the measurement. This is actually expected, for the
1394
+ reason that some of the precision measurements were se-
1395
+ lected with control parameter values close to the edges of
1396
+ the current plateau. For these measurements, small fluc-
1397
+ tuations in offset charge during the measurement (equiv-
1398
+ alent to a drift in the control parameters) would cause
1399
+ the pump current to drift away from ef.
1400
+ To see the accept / reject criteria in action, two exam-
1401
+ ple measurements from run 10 are plotted in figures S8
1402
+ (b) and (c), with the corresponding R values marked with
1403
+ red and green arrows on the x-axis of panel (a). The data
1404
+ of panel (b) clearly shows a decrease in the pump current,
1405
+ and it would be tempting to reject this data set based just
1406
+ FIG. S8. (a): Histograms of the quantity R, defined in the sup-
1407
+ plementary text as the ratio of the standard deviation of the m
1408
+ values of IP calculated for each measurement (m is sequence
1409
+ number) to the average uncertainty of IP,m. The grey bars re-
1410
+ ferred to the right axis are for the measured data, and the red
1411
+ cross-hatched bars referred to the left axis are for 1000 sim-
1412
+ ulated measurements assuming a stationary mean.
1413
+ A vertical
1414
+ dashed line shows the R = 1.7 rejection threshold derived from
1415
+ the probability of the simulated data having an R greater than
1416
+ this value. Panels (b) and (c) show IP,m for two example mea-
1417
+ surements from run 10, with (b): R > 1.7 and (c): R < 1.7.
1418
+ The R values for these data sets are indicated with red and green
1419
+ arrows respectively on panel (a).
1420
+ on this time-domain visualisation of IP,m. However, the
1421
+ definition of the R parameter makes this otherwise sub-
1422
+ jective process more quantitative. Altogether, 14 mea-
1423
+ surements during the entire measurement campaign had
1424
+ R > 1.7.
1425
+ H.
1426
+ full data set
1427
+ Due to instability of the pump after run 5, only the
1428
+ data from runs 1-5 are analysed in the main text. The
1429
+ increasing instability is visible in the pump maps of figure
1430
+ S10, and also in the increasing number of runs which
1431
+ failed the stationary mean test. In figure S9, we present
1432
+ all of the precision data on linear axes.
1433
+ Plots (a,b,c)
1434
+ show all of the measurements on expanded y-axes, and
1435
+ plots (d,e,f) show the sub-set of the measurements which
1436
+ passed the stationary-mean test. Figure S10 shows the
1437
+ full set of ‘fingerprint’ pump maps obtained before and
1438
+ after each precision measurement run. For data integrity
1439
+
1440
+ (a)
1441
+ 200
1442
+ 15
1443
+ Simulated data
1444
+ measured data
1445
+ Count (Simulated)
1446
+ 150.
1447
+ Count (Measured)
1448
+ REJECT
1449
+ 10
1450
+ 100
1451
+ 5
1452
+ 50.
1453
+ 0
1454
+ 0
1455
+ 0
1456
+ 2
1457
+ 4
1458
+ 5
1459
+ 6
1460
+ 7
1461
+ 8
1462
+ R
1463
+ (b)
1464
+ (c)
1465
+ Run 10, V.
1466
+ = -0.835 V
1467
+ Run 10, V
1468
+ = -0.775 V
1469
+ ENT
1470
+ ENT
1471
+ wdd
1472
+ REJECT
1473
+ 0
1474
+ ACCEPT
1475
+ p,m
1476
+ -2
1477
+ 12 hours
1478
+ 0
1479
+ 2
1480
+ 4
1481
+ 6
1482
+ 8
1483
+ 10
1484
+ 0
1485
+ 2
1486
+ 4
1487
+ 6
1488
+ 8
1489
+ 10
1490
+ seguence m
1491
+ seguence m13
1492
+ FIG. S9. a-c: Deviation of the pump current from its nominal value as a function of (a): Exit gate voltage, (b): Entrance gate
1493
+ voltage and (c): AWG output amplitude. All of the measurements from the 17 runs are shown in these plots. One data point in panel
1494
+ (a) is off the y-axis scale, and is indicated by an arrow. (d), (e) and (f): the sub-set of data in plots (a), (b) and (c) respectively,
1495
+ which passed the stationary mean test, on expanded axes. In each plot, vertical dotted lines indicate fixed values of the scanned
1496
+ parameter for runs in the other plots. Error bars indicate combined standard uncertainties UT.
1497
+ purposes, this figure also includes the 4-digit hexadecimal
1498
+ file identifier for the precision raw data.
1499
+
1500
+ (a)
1501
+ (d)
1502
+ 1.0
1503
+ 9,105,7,15
1504
+ 8
1505
+ 1
1506
+ 4
1507
+ 11
1508
+ 2
1509
+ 12
1510
+ 14
1511
+ 17
1512
+ 6
1513
+ 6
1514
+ run 6
1515
+ 0.5
1516
+ 3
1517
+ 8
1518
+ 16
1519
+ +27
1520
+ udd
1521
+ 0.0
1522
+ △/p
1523
+ 4
1524
+ 11
1525
+ -0.5
1526
+ 2
1527
+ 6
1528
+ 12
1529
+ 0.
1530
+ 3
1531
+ 8
1532
+ 16
1533
+ -2
1534
+ -1.0
1535
+ -1.40
1536
+ -1.35
1537
+ -1.30
1538
+ -1.25
1539
+ -1.40
1540
+ -1.35
1541
+ -1.30
1542
+ -1.25
1543
+ VeXIT / V
1544
+ VEXIT / V
1545
+ 5
1546
+ 13
1547
+ (b)
1548
+ (c)
1549
+ (e)
1550
+ (f)
1551
+ 6
1552
+ 7
1553
+ 14
1554
+ 1.0
1555
+ 16,17
1556
+ 1,2,3,4,6,8,11,12
1557
+ 1-16
1558
+ 9
1559
+ 15
1560
+ 4
1561
+ 0.5
1562
+ 10
1563
+ 17
1564
+ udd
1565
+ udd
1566
+ 2
1567
+ 0.0
1568
+ N/p
1569
+ 0
1570
+ △/p /
1571
+ 0.5
1572
+ -2
1573
+ 5
1574
+ 14
1575
+ 17
1576
+ 7
1577
+ 10
1578
+ 15
1579
+ -1.0
1580
+ 4
1581
+ 0.90 -0.85 -0.80 -0.75 -0.70
1582
+ 0.460.470.48
1583
+ 0.85-0.80-0.75-0.70
1584
+ 0.46
1585
+ 0.47
1586
+ 0.48
1587
+ VENT / V
1588
+ VAc / V
1589
+ VENT / V
1590
+ VAc / V14
1591
+ FIG. S10. Thumbnail pump maps measured before and after each precision scan. Each pump map is an inverted grey-scale derivitive
1592
+ plot of the current similar to the one shown in figures 1(b) and 2(a) of the main text. The axis limits are the same for each thumbnail:
1593
+ The x-axis is VEXIT, from −1.7 V to −0.8 V, and the y-axis is VENT, from −1.4 V to −0.4 V. Each horizontal row of the table represents
1594
+ a precision run. The middle cell contains some text data describing the run, including the 4-digit hexadecimal file number identifying
1595
+ the raw data set for the precision run. The left-most cell shows the pump map recorded before the run, and the right-most cell shows
1596
+ the pump map recorded after the run. Missing pump maps for runs 9,10 and 11 were due to software crashes. Red arrows highlight
1597
+ runs in which the pump map changed dramatically during the run.
1598
+
1599
+ 8 Days down-time due to AWG issue
SdE3T4oBgHgl3EQfZwoa/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
VNAyT4oBgHgl3EQfhfi9/content/tmp_files/2301.00379v1.pdf.txt ADDED
@@ -0,0 +1,1294 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ Review Article
3
+ A review of Implementation and Challenges of Unmanned Aerial Vehicles for Spraying
4
+ Applications and Crop Monitoring in Indonesia
5
+
6
+ Authors:
7
+ Muhamad Rausyan Fikri1,2, Taufiq Candra3, Kushendarsyah Saptaji4, Ajeng Nindi Noviarini5, Dilla Ayu Wardani3
8
+ 1.
9
+ Automation Technology and Mechanical Engineering, Faculty of Engineering and Science, Tampere
10
+ University, Tampere, 33720, Finland
11
+ 2.
12
+ Information Systems, Faculty of Engineering and Technology, Sampoerna University, Jakarta, 12780,
13
+ Indonesia
14
+ 3.
15
+ Industrial Engineering, Faculty of Engineering and Technology, Sampoerna University, Jakarta, 12780,
16
+ Indonesia
17
+ 4.
18
+ Mechanical Engineering, Faculty of Engineering and Technology, Sampoerna University, Jakarta, 12780,
19
+ Indonesia
20
+ 5.
21
+ Computer Science, Faculty of Engineering and Technology, Sampoerna University, Jakarta, 12780,
22
+ Indonesia
23
+
24
+ Abstract:
25
+ The rapid development of technology has brought unmanned aerial vehicles (UAVs) to become
26
+ widely known in the current era. The market of UAVs is also predicted to continue growing with
27
+ related technologies in the future. UAVs have been used in various sectors, including livestock,
28
+ forestry, and agriculture. In agricultural applications, UAVs are highly capable of increasing the
29
+ productivity of the farm and reducing farmers' workload. This paper discusses the application of
30
+ UAVs in agriculture, particularly in spraying and crop monitoring. This study examines the
31
+ urgency of UAV implementation in the agriculture sector. A short history of UAVs is provided in
32
+ this paper to portray the development of UAVs from time to time. The classification of UAVs is
33
+ also discussed to differentiate various types of UAVs. The application of UAVs in spraying and
34
+ crop monitoring is based on the previous studies that have been done by many scientific groups
35
+ and researchers who are working closely to propose solutions for agriculture-related issues.
36
+ Furthermore, the limitations of UAV applications are also identified. The challenges in
37
+ implementing agricultural UAVs in Indonesia are also presented.
38
+
39
+ Keywords:
40
+ Unmanned aerial vehicle, agricultural UAV, spraying, crop monitoring.
41
+
42
+
43
+
44
+ 1. Introduction
45
+ According to the United Nations (UN), the world population is projected to reach 9.7 billion people
46
+ in 2050 (UN, 2015). This vast population would potentially double the food demand in the future
47
+ (Hunter et al., 2017). Consequently, the ever-growing population that would emerge could cause
48
+ food shortages in the future. This issue has become a severe problem since the Food and
49
+ Agriculture Organization (FAO) announced similar speculation in which the current agricultural
50
+ production must be increased by 70 percent by 2050 to meet the increasing demand for high-
51
+ quality food (Mundial, 2021). Many people suffering from hunger become a signal of how severe
52
+ the food shortage is, and it was reported that more than 820 million people in 2018 were considered
53
+ undernutrition (WHO, 2019). Surprisingly, the earlier data mentioned shows the increasing
54
+ tendency towards people suffering from hunger since only around 690 million people were
55
+ considered suffering from hunger in 2015. This kind of data indeed contradicts the second
56
+ Sustainable Development Goals (SDGs) approved by the United Nations (UN) in 2015 with the
57
+ aims to eradicate hunger and ensure access to food for all people (UN, 2015). On the other hand,
58
+ the labor shortages in the agricultural sector due to the aging population and the decreasing number
59
+ of workers have exacerbated the situation. The lack of laborers in the agricultural field would
60
+ expand the cultivation area per worker and increase the workload of workers (Seo & Umeda,
61
+ 2021).
62
+ Alternative and innovative solutions to increase food production in dealing with those
63
+ issues are needed. One way to increase food production is to promote the internet of things (IoT),
64
+ robotics, and artificial intelligence (AI). By shifting the workforce to the technology's utilization,
65
+ it is expected to solve the labor shortages and improve farmers' skills. This transformation is
66
+ inseparable from revolutionary industries that constantly bring industrial innovations. Some
67
+ industrial innovations found in recent years, such as sensor technologies, big data, and artificial
68
+ intelligence (AI), have been considered as the beginning of the "Industry 5.0" era by the European
69
+ Commission (EC) (EC, 2021). The emergence of technologies characterized by advanced
70
+ digitalization is believed to play a significant role in increasing production flexibility and making
71
+ the value chain more robust so that technology could minimize the farmers' workload and improve
72
+ the speed and accuracy of the work.
73
+
74
+
75
+ Among the technologies mentioned earlier, unmanned aerial vehicles (UAVs) are one
76
+ viable way to increase food production. UAVs are less expensive and have contributed to many
77
+ areas in agriculture, including spraying, weed recognition, and crop monitoring (Mogili & Deepak,
78
+ 2018). UAVs' timely and reliable information about the production, yield and crop management
79
+ would become beneficial to ensure food safety and security for stakeholders such as farmers and
80
+ sales units (Martos et al., 2021). UAV technologies in agriculture could also enable the complete
81
+ monitoring of crop conditions from the beginning of the growing season until the end of harvest
82
+ (Silver et al., 2017).
83
+ Some leading technologies are possible by implementing UAVs in the agriculture sector.
84
+ Therefore, this paper focuses on reviewing UAVs applications for spraying and crop monitoring
85
+ in the agricultural field. Some research results on the use of UAVs in spraying and crop monitoring
86
+ are discussed thoroughly to highlight the use of UAVs and the characteristics of the farming sector.
87
+ Some limitations exist during UAVs implementation are also reviewed to reveal the gap of UAV
88
+ implementation in the agriculture field. The rest of this paper is organized as follows. Section 2
89
+ describes UAVs' history and the classification of UAVs. Section 3 describes the application of
90
+ UAVs focusing on spraying and crop monitoring. Section 4 provides some limitations in adopting
91
+ UAV technologies in the agriculture sector. In section 5, the challenge in implementing UAVs in
92
+ Indonesia is discussed. The last section provides the conclusion.
93
+
94
+ 2. Agriculture in Indonesia and Its Challenge
95
+ 2.1. Current Condition
96
+ Agriculture programs in Indonesia have been a big agenda at the national level, such as
97
+ National Agenda 21, National Development Programs, and Agricultural and Forestry
98
+ Revitalization Strategies, encouraging Indonesia to adopt sustainable agriculture. The Central
99
+ Planning Authority (BAPPENAS), the Ministry of Agriculture, and the Environment Ministry
100
+ have implemented these ideas. Most of these plans include components suitable for effective
101
+ environmental management of Indonesian agricultural exports.
102
+ The motivations for using these tactics have shifted over time, and they seem to be
103
+ responding to a variety of distinct trends. First and foremost, Indonesian national plans have
104
+ prioritized socio-economic objectives above ecologically sustainable ones. Nonetheless,
105
+ environmental concerns have become more critical, as evidenced by recent reforms and the
106
+
107
+
108
+ increasing frequency of ecological issues in strategic documents. Second, strategy papers also
109
+ show a change in direction as the combination of means changes, with less focus on laws and
110
+ regulations and more attention to the means for market creation and voluntary methods over time.
111
+ The tensions between diverse skills and conservation goals and local revenue-generating needs
112
+ have led to different patterns of success in different states across the country. Significant
113
+ advancements have been achieved in modernizing agro-environmental rules, made possible by
114
+ increased information and worldwide best practices. The extent to which environmental hazards
115
+ pose local or global dangers, the degree of environmental degradation of a particular product, and
116
+ the availability of legal, enforcement, budgetary, and regulatory capacities for sub-national
117
+ governments all influence the choice of the policy tool.
118
+ For practical reasons, Indonesian policymakers have used a range of mechanisms to
119
+ minimize agriculture's environmental footprint, including direct regulation, market creation or
120
+ market modification incentives, voluntary and beneficial solutions, and market modification
121
+ incentives. Policies are implemented via legislative and regulatory mechanisms, which are
122
+ probably targeted at plantation states and large farms. It is essential to note the existence of
123
+ obligatory ISPO standards (in the section on local regulatory instruments), since they have just
124
+ recently been adopted as a result of voluntary standards being adopted as mandatory. Additional
125
+ factors that impact policymakers' choices to implement a particular instrument include the
126
+ potential efficacy of the instrument in comparison to its costs and the capacity of the policymaker
127
+ to enforce the instrument in the face of likely political opposition. In this respect, implementing
128
+ regulatory and legislative tools seems to be the most effective method of monitoring prominent
129
+ investments, such as planting restrictions and the demand for environmental impact assessments.
130
+ According to the findings of the Indonesian research, foreign pressure had a role in the spread of
131
+ planting restrictions throughout the country. In addition, the implementation of regulatory
132
+ instruments may be most effective when their administrative and monitoring costs are already
133
+ integrated into a current administration, such as indirect product charges for import limitations,
134
+ which are already embedded into an existing administration.
135
+
136
+ 2.2. The Challenge in Indonesia’s Agriculture
137
+ One of the factors is the limited availability of agricultural land in Indonesia due to land
138
+ reform, which is widespread in big provinces. As the population rose, so did the need for housing.
139
+
140
+
141
+ As a result, developers exploit a large portion of agricultural land to construct real estate. The
142
+ growth in the number of people also increased demand for trade and tourism, contributing to
143
+ increased demand for land. Farmers could not be faulted for selling their farms in this scenario.
144
+ Farmers were driven to sell their lands due to a lack of knowledge and technology, high agricultural
145
+ costs, and rising necessities. Farmers in Indonesia with low levels of education have little choice
146
+ except to work outside the agricultural industry; therefore, those who do not own land are tenant
147
+ farmers. Food price increases should be a dream come true for farmers, as their revenue would
148
+ almost certainly rise. Unfortunately, because most farmers in Indonesia are tenant farmers, it has
149
+ become a boomerang for their wellbeing. The rise in food prices has little effect on the well-being
150
+ of Indonesian farmers. Their income remains minimal, and they must continue to purchase their
151
+ basic necessities at market prices. Those who own land have benefited from the growing price.
152
+ Furthermore, the general public's perception of farmers is that they do not do a good job. The
153
+ younger generation is interested in non-agricultural jobs, such as parenting a farmer's child.
154
+ Farmers' regeneration is hampered as a result, and many opt to sell their land to be established as
155
+ capital or to work in the non-agricultural sector.
156
+ As the world's population rises at an alarming rate, agriculture must expand to supply the
157
+ growing demand for food against all odds. The agriculture sector is the most vulnerable to the
158
+ impact of integrating fresh, modern innovations in eradicating environmental-related challenges
159
+ and enhancing the current productivity rate. Now, the question is, how could we possibly do this?
160
+ Marking a third wave of the “Green Revolution”, the concept of precision agriculture with
161
+ technological help such as Unmanned Aerial Vehicle (UAV) has become popular nowadays in the
162
+ vast area of agriculture due to its tremendous benefits. Farmers and managers can boost operational
163
+ efficiency, cut expenses, minimize waste, and improve the quality of crops with the aid of accurate
164
+ data. Overall, technology has been a key component behind agricultural development and other
165
+ discoveries brought into the industry.
166
+
167
+ 3. Unmanned Aerial Vehicle (UAV)
168
+ 3.1 UAVs History
169
+ An unmanned Aerial Vehicle (UAV) is an aircraft with no pilot on board; in other words,
170
+ it refers to auto-piloted aircraft (Ahmad et al., 2021). The unmanned type of aircraft can be
171
+ operated in two ways, either by a human operator or autonomously operated under the control of
172
+
173
+
174
+ an onboard computer (Pablo et al., 2020). According to the US Department of Defense (DOD),
175
+ UAV can be described as either a single air vehicle (with equipped surveillance sensors) or a UAV
176
+ system (UAS) that consists of three to six air vehicles, a ground control station, and support
177
+ equipment (Gertler, 2012). Furthermore, UAVs are often associated with remote sensing in
178
+ carrying out their task. This remote sensing is commonly known as UAV remote sensing, which
179
+ combines UAV and remote sensing technology that can quickly capture information about land,
180
+ environment, and resources for further data processing (Shi & Liu, 2011). In the US and other
181
+ developed countries, UAV remote sensing has been applied in many fields such as forestry,
182
+ environmental protection, land, and military (Xiang & Tian, 2011). UAV remote sensing are used
183
+ because it could be deployed quickly in repeated times. In addition, they are less costly, safer than
184
+ piloted aircraft, flexible in terms of flying height, and able to obtain very high-resolution imagery
185
+ (Yang et al., 2011).
186
+ The term unmanned aerial vehicles are also known as remotely piloted aircraft (RPA).
187
+ Even though the terms UAV and RPA are interchangeable, the term UAV is commonly used by
188
+ aviation organizations (Santos et al., 2019), while the term RPA is widely used in Europe
189
+ (Gallardo- Saavedra et al., 2018). Back then, in 1930, UAVs were also known as “Queen Bees”
190
+ (Vroegindeweij et al., 2014) and were initially used for military purposes (Muchiri & Kimathi,
191
+ 2016). In 1986, UAVs that work specifically in agricultural contexts were introduced by launching
192
+ UAVs for Montana’s forest fires monitoring and followed by the capture of enhanced image
193
+ resolution using UAVs in 1994 (Muchiri & Kimathi, 2016). Then, a more complex UAV model
194
+ was finally developed by Yamaha through “Yamaha RMAX,” with the primary function for pest
195
+ control and crop monitoring application (Mogili & Deepak, 2018). This UAV model is used for
196
+ pesticide spraying in rice fields of Asia. As opposed to ground-based sprayers, the pesticides
197
+ deposition of this UAV model is quite similar, but this UAV model is used explicitly for a high-
198
+ value crop environment (Giles & Billing, 2015).
199
+
200
+ 3.2 Classification of UAVs
201
+ Generally, there are three types of UAV platforms: fixed-wing, rotary-wing UAVs, and
202
+ non-wing UAVs (Figure 1). A fixed-wing UAV resembles an airplane and requires a runway or
203
+ Modelsurface (meadow or road) for take-off and landing (Pederi & Cheporniuk, 2015). This kind
204
+ of UAV uses thrust and aerodynamic lifting forces to fly. It has a larger size than a rotary-wing
205
+
206
+
207
+ model and is mainly used for aerial mapping, spraying, and photography over a wide range of time
208
+ (Li & Yang, 2012). This UAV type typically lacks hovering while offering high-speed flights for
209
+ longer durations (Ahmad et al., 2021). The gliding capabilities possessed by fixed-wing aircraft
210
+ could enable greater flight endurance, allowing them to operate over longer distances (up to 15-20
211
+ km) (Paneque-Gálvez et al., 2014).
212
+
213
+
214
+ D
215
+ Figure 1. Illustration of Basic UAVs (A) Fixed-Wing UAV (B) Rotary-Wing UAV (C) Combinational Concepts
216
+ (source: Ahmad et al., 2021), (D) Blimps (source: Tao et al., 2018)
217
+ On the other hand, rotary-wing UAVs is primarily categorized into the helicopter and
218
+ multi-rotor types. The helicopter type of rotary-wing UAV has a unique feature with a large
219
+ propeller atop the aircraft. It is widely used for spraying and aerial photography (see Figure 2)
220
+ (Swain et al., 2010). They can hover, vertical takeoff, and land with nimble maneuverability while
221
+ exhibiting low-speed flight for a shorter duration (Ahmad et al., 2021). In comparison, the multi-
222
+ rotor models are called according to the number of rotors (Kim et al., 2019). Quadcopter,
223
+ hexacopter, and octocopter are some multi-rotors UAVs that are widely known (Figure 3). These
224
+ UAVs are lifted and propelled according to the number of rotors (Mogili & Deepak, 2018).
225
+
226
+
227
+
228
+
229
+ Figure 2. Single Rotor/Helicopter UAV Type (source: Huang et al., 2009)
230
+
231
+ Figure 3. Multirotor UAVs, (A) Quadcopter (source: Spoorthi et al., 2017) (B) Hexacopter (source: Yallappa et al.,
232
+ 2017) (C) Octocopter (source: Wallace et al., 2016)
233
+ For example, the rotor movement of a quadcopter is responsible for generating the lift of a
234
+ quadcopter. In a quadcopter, each of two rotors moves in an opposite way of which two rotors turn
235
+ in the clockwise direction and the other two turn in the anticlockwise direction. The movement of
236
+ the quadcopter around the axis consists of yaw (clockwise and anticlockwise), pitch (backward
237
+ and forward), and roll angles (right and left). The quadcopter uses a control system to balance the
238
+
239
+ SR200
240
+ SR20B
241
+ c
242
+ thrust of each rotor in order to support the UAVs' lift and yaw, pitch, and roll angles (Mogili &
243
+ Deepak, 2018). This control system turned out to be practical to produce a stable flight of the
244
+ UAVs (Patel et al., 2013). Moreover, two quadcopter configuration types include the plus (+) and
245
+ cross (X) models, as shown in Figure 4. The cross model is more popular between the two models
246
+ due to its stability (Kedari et al., 2016).
247
+
248
+
249
+ Figure 4. Quadcopter Configuration Model (A) Plus configuration (B) Cross Configuration (source: Mogili &
250
+ Deepak, 2018)
251
+ Furthermore, these multirotor UAVs have extended their functionalities by equipping appropriate
252
+ sensors such as vision, infrared, multispectral, and hyperspectral cameras. The expansion of UAV
253
+ features brings great influences, especially in adding the capabilities of the UAVs. Those sensors
254
+ are used to obtain data such as vegetation, reflectance indexes, and leaf areas in order to provide
255
+ information about the current state of crops. With this information, farmers can make possible
256
+ remedies or policies (weed control, fertilization, irrigation) according to the condition of the crops
257
+ (Gonzalez-De-Santos, 2016).
258
+ Further, non-wing UAVs have been developed to cope with the long endurance of flying robots
259
+ and are lighter than air (LTA) such as Blimp. A blimp is identically has a larger size than fixed-
260
+ wing and rotary-wing and cushioned with a helium-filled envelope, making the robot safe to fly
261
+ indoors, causing no threat to humans and the surroundings even with collisions (Tao et al., 2018).
262
+ With the lifting force provided by air buoyancy, the blimp has flight endurance for more than 2
263
+ hours (Cho et al., 2017). Blimp is the one type of UAV lighter than the air UAVs (Krishna, 2021a;
264
+ Thusoo, 2021; Tsouros et al., 2019). It has a balloon-like body created from tough fabric and filled
265
+ with helium gas (Prisacariu et al., 2019). Blimp is notorious as the dirigible and was firstly
266
+
267
+ PitchForward
268
+ PitchForward
269
+ Roll Left
270
+ Roll Left
271
+ Roll Right
272
+ Roll Right
273
+ A
274
+ B
275
+ PitchBackward
276
+ PitchBackward
277
+ designed in 1852 by Henri Giffard (Krishna, 2021a). This type of UAV has high endurance and
278
+ can flow longer than other types of UAV, approximately 1-3 weeks travel (Krishna, 2021a). Due
279
+ to its characteristics, the blimp is advantageous in numerous aspects of life, including the military
280
+ and agriculture. It was purposeful as the cargo transit and the sentinels between the missile site
281
+ and the military camp (Krishna, 2021a). It is also used to monitor the long-distance aspect,
282
+ especially in urban traffic and buildings. In PA, it monitors crop production, identifies the plant’s
283
+ disease, erosion, and detects either flood or drought conditions (Krishna, 2021a). Unlike the other
284
+ UAV, the blimp is also considered a safe technology since it remains in the air and did not collide
285
+ even if it loses its power (Krishna, 2021a; Tsouros et al., 2019). Besides, the University of Leeds
286
+ research reveals that blimp is chosen as the cheapest UAV to conduct a terrain survey (Krishna,
287
+ 2021a). Thus, it could provide a detailed but further explanation of crops, surface minerals,
288
+ vegetation, and water quality.
289
+ 4. Application of Blimp in Agriculture
290
+ Compared to other UAVs, the blimp has a pivotal function, including load capacity, safety,
291
+ quality, and environmental safes, which make it useful for everyday life. Researchers stated that
292
+ blimp could carry up to 400 tons of load with 110-160 km speed travel (Krishna, 2021a). Besides
293
+ its ability to fly longer, blimps could land on every land’s surface. In the case of environmental
294
+ footprint, blimp could reduce carbon dioxide emission (Krishna, 2021a).
295
+ Nowadays, there are several features of blimps with specific purposes. Those five types
296
+ include tethered, untethered, remote-controlled blimp, Giga blimps, and hybrid blimps (Krishna,
297
+ 2021a). Tethered blimp (aerostats) ables for free flight and a steady anchored flight using solid
298
+ tethers (Mahmood & Ismail, 2020). A tethered blimp enables accurately obtaining a stereoscopic
299
+ image that might cover 35 m2 to 20,000 m3 (Krishna, 2021a). Meanwhile, the untethered is
300
+ commonly used in cargo transit, travel, and aerial surveillance. Thirdly, the remote-controlled
301
+ blimp uses the robotic that use the program flight plan to fly. There are two different types of
302
+ remote control blimps; small and large. The small blimp is commonly used for advertisement, and
303
+ the giant blimp (Giga blimp) is significant for military purposes. Lastly, the hybrid blimp, a new
304
+ modification of blimp that is prone to extreme conditions, can transport goods and civilian travel.
305
+ Unlike the other popular UAVs, multirotor and fixed-wing, the number of blimps applied
306
+ in PA is insignificant (Krishna, 2021b; Tsouros et al., 2019). However, considering its strength
307
+ characteristic and function, blimp could start considering the blimp as the priority to improve the
308
+
309
+
310
+ PA. (Mogili, Rao Deepak, 2021) stated that the integration of blimp with quadcopter aerial
311
+ automated pesticide sprayer (AAPS) is pivotal for pesticide spraying in lower altitudes by
312
+ following the GPS altitude. This technology is controlled with an android app to create an effective
313
+ cost-saving (Mogili, Rao Deepak, 2021). Besides, other researchers use the blimp with a Charge-
314
+ Couple Device to identify the Leaf Arena Index and biomass in soybean and paddy fields
315
+ (Chilonga & Kiswisch, 2016). The results showed that the technology is stable and provides high-
316
+ resolution images (Chilonga & Kiswisch, 2016). (Ponti et al., 2016) also stated that the blimp could
317
+ be practically used to monitor the bean crop dataset using the combination of 1/2.3 inch of CCD
318
+ sensor, 6.3 to 18.99 lens focal, and 10 Mega Pixel digital camera. The research found 29,556
319
+ examples of the positive dataset and 11404 negative datasets in Brazil (Ponti et al., 2016).
320
+ The blimp could be significantly used in monitoring agriculture (Mahmood &
321
+ Ismail, 2020). For instance, the research conducted by (Bajoria et al., 2017) proposed a tethered
322
+ aerostat system that could be used to mitigate the vertebrate mammal and bird hazard, which is
323
+ positively contributed to 18%-43% of crop loss in India. The proposed design has been proven to
324
+ carry about a 50 kg payload and 25 m/s ambient wind speed (Bajoria et al., 2017). Other research
325
+ revealed that tethered aerostat combined with the electro-optical, acoustic, and laser-based sensors
326
+ could scare the bird and other pests (Krishna, 2021a). To mitigate the occurrence of pests, the other
327
+ researchers also create a Hawk Kite and Helikite aerostat hybrid that is purposeful to scare some
328
+ of the bird’s species, including the pigeons, seagulls, parrots, rooks, blackbird, etc. (Perigrine Ltd.
329
+ 2018).
330
+ Besides, a tethered blimp (aerostat) could provide aerial images surrounding the
331
+ natural disaster zone. This image helps identify the cropped field due to the flood, large soil
332
+ erosion, drought, and crop loss due to the pest attack (Krishna, 2021a). It is also used to maintain
333
+ the field quality because the aerostat could lofty 24 hours surveillance above. Thus, it could help
334
+ the farmer control and watch the field without going directly to the farm. Besides the
335
+ aforementioned reasons, the aerostat could reduce the enormous cost of capturing the crop’s data.
336
+ The farmer could use the aerostat to pertain the crop data and send its digital data in a computer
337
+ program (Krishna, 2021a). Furthermore, the integration of aerostat with the sensor could help the
338
+ farmer obtain continuous data of Nutrients crop status. Thus, it could help the farmer evaluate the
339
+ number of nutrients placed for the crop (Krishna, 2021a).
340
+ 5. Agricultural Unmanned Aerial Vehicle
341
+
342
+
343
+ In recent years, the application of more advanced technology in agriculture has gained
344
+ more attention. Several technologies such as satellites, UAVs, Geographic Information System
345
+ (GIS), Global Positioning System (GPS), and many other applications of technologies have been
346
+ able to pave their way into the agricultural field. The process modernization and industrial
347
+ revolution that brought many innovations in technology applications have opened the gate of
348
+ precision agriculture (Ahmad et al., 2021). Precision agriculture is defined as the utilization of
349
+ technology in the agricultural production system in order to determine, analyze, and manage the
350
+ farming factors to increase crop productivity, ensure environmental sustainability, and improve
351
+ business profitability (Unal & Topakci, 2013). This precision agriculture is seemingly possible to
352
+ increase food production due to its effective functionalities under pressure conditions such as the
353
+ ongoing reduction of arable land, the increase in global population, and the high cost of farming
354
+ due to wastage in the use of water and chemicals (Abdullahi et al., 2015).
355
+ UAVs have gained popularity as a pivotal part of precision agriculture to ensure
356
+ agricultural sustainability (Rani et al., 2019). The use of UAV, which plays a key role in reducing
357
+ the data acquisition time and processing cost, is considered as the main reason for its popularity
358
+ (Berni et al., 2009). The rapid development of UAVs that extend its functions to aerial photography
359
+ and video and weather forecasting, with the support of spatial data collection to help stakeholders
360
+ create policies and decisions, has attracted many parties to UAVs (Sylvester, 2018).
361
+ Moreover, the market of UAVs that is estimated to reach up to US$200 billion by the end
362
+ of 2020 has successfully described the popularity of UAVs as well (Puri et al., 2017). The huge
363
+ estimation of the total market of UAVs has shown that the market value of UAVs has doubled
364
+ within three years. PwC’s Drone Powered Solutions team quantified that the total market value of
365
+ UAVs is about US$127.3 billion in 2017 (Silver et al., 2017). Although the estimation of the
366
+ market value of UAVs in 2020 and the total market value of UAVs in 2017 are not exclusively
367
+ focused on agriculture sectors, this number was sufficient to portray the UAV market development.
368
+ In addition, the affordable cost of UAVs is another factor that influences its popularity
369
+ nowadays. This low-cost factor motivates many small companies to switch to using UAVs with
370
+ its simple and easy-to-understand operating systems in serving some activities in the agriculture
371
+ sector, including area measurement and crop monitoring (Hatfield & Prueger, 2010).
372
+
373
+ 6. Applications of Unmanned Aerial Vehicles in Precision Agriculture
374
+
375
+
376
+ Currently, there are numerous applications of UAVs in precision agriculture. They are used
377
+ in many areas of crops. This section introduces two applications of agricultural UAVs i.e., spraying
378
+ and crop monitoring. The summary is shown in Table 1.
379
+
380
+ 6.1 Spraying
381
+ Prior to the implementation of UAVs for spraying, the farmers used spraying bags to spray
382
+ pesticides all over the farm (Spoorthi et al., 2017). Manual spraying is very dangerous for the
383
+ workers because the measure of pesticides per hectare of agricultural land correlates to the risk of
384
+ worker ailments. The heavy bag carried by the farmers could also make them get strained.
385
+ Fortunately, the use of UAVs can reduce the usage of pesticides, maximize efficiency, and improve
386
+ the well-being of the workers (Luck et al., 2010; Pyo, 2006).
387
+
388
+ Manual spraying is also considered ineffective for spraying the farmland because the
389
+ pesticides may not spread evenly in every area. The excessive use of chemicals or pesticides in
390
+ certain agricultural land is responsible for loss of soil fertility, soil degradation, and subsequent
391
+ degradation of water-related ecosystems. In addition, the chemicals or pesticides absorbed by the
392
+ crops and natural resources such as water and soil might cause pollution risk and severe health
393
+ impacts for the environment. Therefore, UAVs are required to minimize such dangers by helping
394
+ the spraying process specifically in the targeted area (Daponte et al., 2019).
395
+
396
+ In addition, to pave the way towards sustainable agriculture, the employment of UAVs in
397
+ the agriculture sector also offers other benefits in terms of their operation. The implementation of
398
+ UAVs can make the process relatively faster and cheaper than other methods (Rani et al., 2019).
399
+ The efficient usage of UAVs was also widely reported in the literature. The use of 3WWDZ-10A,
400
+ XAG is successfully effective in controlling Spodoptera frugiperda, an invasive sugarcane crop
401
+ pest, by spraying pesticides (Song et al., 2020). In addition, the use of UAV (DJI Phantom 3) is
402
+ found to be effective in spraying pesticides in the nominated areas using electronic traps (E-traps),
403
+ which can count the insect and transmit the data to the server (Psirofonia et al., 2017). Studies have
404
+ also found that UAVs might improve the accuracy of control over crops by equipping the UAVs
405
+ with precision control algorithms (Faiçal et al., 2016). In summary, it is proved that the UAV
406
+ application offers several advantages in reducing the workload of the farmers and providing
407
+ efficient and low-cost service in the agriculture field.
408
+
409
+
410
+
411
+ Some issues have been identified regarding the use of UAVs in crop areas overlapping and
412
+ outer edges, despite the advantages during UAVs implementation. These issues arise because some
413
+ crop fields are not fully covered properly during spraying, leading to reduced crop quality in
414
+ particular areas. To overcome this problem, the swarm of UAVs was introduced in a control loop
415
+ algorithm during UAV operation (Yao et al., 2016). Swarm control is considered a practical
416
+ technology since it could control multiple UAVs via one operator or program. In the swarm control
417
+ method, the operator can select an efficient shape based on the application so that the swarm can
418
+ be centralized, decentralized, and distributed according to the desired shape (Kim et al., 2019). In
419
+ addition, the spraying pesticides process on the crop is then organized by considering the feedback
420
+ from the Wireless Sensor Networks (WSNs) deployed in the field (Costa et al., 2012). The control
421
+ loop is responsible for the communication of each UAV in adjusting the UAVs’ route according
422
+ to the changes in wind speed and the number of messages exchanged in between (Faiçal et al.,
423
+ 2014). During this communication process, a short delay might exist in the control loop since the
424
+ UAVs need time to analyze the data from WSN to route further (Kale et al., 2015). An automatic
425
+ navigation spraying system of UAV was developed to direct the UAV in a particular area (Xue et
426
+ al., 2016).
427
+
428
+ Another way in using swarm control is through task allocation technology. This technology
429
+ is currently used in mapping agricultural lands (Barrientos et al., 2011). In order to use swarm
430
+ technology, a route is assigned to each UAV. A route is built by dividing each region or area
431
+ among several UAVs. A map of the area is obtained by capturing a single picture through a camera
432
+ sensor attached to a UAV (Ju & Son, 2018). This kind of technique requires K-mean algorithms
433
+ in order to reduce complexity and prevent collision among UAVs. The most significant aspect of
434
+ this swarm technique is the combination of algorithms that come in handy in maintaining the
435
+ consistent distances between UAVs. These consistent distances allow linear and nonlinear control
436
+ that resist strong external influences (Kim et al., 2019). The implementation of swarm techniques
437
+ and task allocation in agriculture can be seen in Figure 5. This application most likely improves
438
+ the accuracy of agricultural operations, reduces operator control efforts, reduces work time, and
439
+ induces battery and payload shortages.
440
+
441
+
442
+
443
+ Figure 5. (A) Swarm Control (source: Ju & Son, 2018) (B) Task allocation (source: Barrientos et al., 2017)
444
+ In the spraying using UAVs, the sprinkling system is mounted at the lower region of the
445
+ UAV, which has a nozzle under the pesticide tank in order to sprinkle the pesticide downstream in
446
+ the field. An appropriately selected nozzle is a significant part of pesticide application since it is a
447
+ significant factor in determining the amount of spray applied to an area, the coverage obtained on
448
+ the target surface, the amount of potential drift, and the uniformity of application (Ru et al., 2014).
449
+ Furthermore, the sprinkling system generally has two modules: the controller and the sprinkling
450
+ system. The sprinkling system consists of the spraying content, either pesticides or fertilizers.
451
+ Meanwhile, the controller is used to trigger the nozzle of the sprayer. The controller efficiency
452
+ could be increased by using a PWM controller in pesticide applications (Zhu et al., 2010; Huang
453
+ et al., 2009).
454
+ Another important component of the sprinkling system is a pressure pump used to put
455
+ pressure into the pesticide in the tank to flow through the nozzle (Tang et al., 2018). This pressure
456
+ pump works closely with the motor driver integrated circuit in completing their task in putting the
457
+ pressure to sprinkle the pesticide (Mogili & Deepak, 2018). The full spraying system can be seen
458
+ in Figure 6. The integration between UAV and the spraying system is expected to provide a
459
+ potential platform for pest management and vector control, an accurate site-specific application
460
+ for a large crop field. For this objective, a heavy lift of UAVs is required to cover many areas
461
+ (Sarghini & De Vivo, 2017).
462
+
463
+ RemoteSensingTaskusingcameramountedonUAV
464
+ (MultipleUAVs)
465
+ contro
466
+ UAV
467
+ ensing
468
+ Agriculturalfield
469
+ Teleoperationcontrolwith
470
+ device
471
+ Hapticdevice(NovintFalcon)
472
+ A
473
+ B
474
+
475
+ Figure 6. Spraying System Structure Diagram (source: Tang et al., 2018)
476
+
477
+
478
+
479
+ 6.2 Crop Monitoring
480
+ A crop monitoring is defined as predicting the yield or crop quality by analyzing the available crop
481
+ data (Kim et al., 2019). It is essential for optimizing crop production because it can assess crop
482
+ health and indicate bacterial or fungal infections. Furthermore, the crop scanning produced by
483
+ visible and near-infrared (NIR) light could reflect the different amounts of green light and NIR
484
+ light that are extremely essential in producing multispectral images that can track changes in crops
485
+ assess their health (Costa et al., 2012). The farmers can plan and apply remedies more precisely
486
+ according to the identified issues with such information. It makes the fast response to bacterial or
487
+ fungal infection, and infestation comes in handy and increases crop endurance into future issues.
488
+
489
+ The use of UAVs for crop monitoring is also highlighted due to their ability to monitor a
490
+ large farm. By utilizing the UAVs, a large area of farmland can be fully monitored. It reduces the
491
+ significant time and labor required for monitoring large farm areas manually (Kim et al., 2019).
492
+ Aasen et al. (2015) reported that the UAVs application offers low crop monitoring costs. This is
493
+ due to the use of lightweight sensors and the implementation of low-flying UAVs (see Figure 7).
494
+
495
+ Electronic speed control
496
+ Tank
497
+ Sprayboom
498
+ Nozzle1
499
+ Nozzle2
500
+ Waterpump
501
+
502
+ Figure 7. UAV Platform (source: Aasen et al., 2015)
503
+ A camera-equipped UAV can also observe the crop with different indices (Simelli &
504
+ Tsagaris, 2015). Turner et al. (2011) used multispectral cameras mounted in UAVs to analyze the
505
+ vegetation index of grapes obtained from vineyards. These vegetation index data are considered
506
+ very important to emphasize the significant indicators to increase productivity and improve the
507
+ shortcoming from farming activity. Furthermore, the application of UAVs in crop monitoring
508
+ could also be seen through UAVs' capability to fly up to hectares of a field in one single flight. For
509
+ this purpose, multispectral and thermal cameras are mounted at the UAVs' downside to recording
510
+ the vegetation canopy's reflection (Bendig et al., 2012; Colomina & Molina, 2014). These cameras
511
+ can take one capture per second and store it in the memory. The images are captured in the visible
512
+ five bands with five different wavelengths (i) blues wavelength 440-510 nm (ii) green wavelength
513
+ 520-590 nm, (iii) red wavelength 630-685 nm, (iv) red edge wavelength 690-730 nm, (v) near-
514
+ infrared wavelength 760-850 nm. Then, those images were sent to the ground station through
515
+ telemetry. The process of communication used the MAVLINK protocol. The data collected from
516
+ the multispectral camera was analyzed by the geographic indicator Normalized Difference
517
+ Vegetation Index (NDVI) (Reinecke & Prinsloo, 2017; Bhandari et al., 2012).
518
+ Moreover, the application of UAVs for crop monitoring has been implemented for
519
+ conducting several tasks including monitoring crop growth, chlorophyll, and phenology
520
+ measurement, and counting plants (Pino, 2019). These tasks are performed using SenseFly's e Bee
521
+ Ag that has NIR and NDVI sensors. These sensors can replace traditional farm scouting by
522
+ minimizing human error (Natu & Kulkarni, 2016). In addition, UAVs are involved in monitoring
523
+ crops in hilly areas that are considered to be difficult for traditional scouting (Rani et al., 2019).
524
+
525
+ OktoXL
526
+ UHD185
527
+ Gimbal
528
+ CP
529
+ ICS
530
+ SBC
531
+ Table 1. Applications of Agricultural UAVs
532
+ Task
533
+ UAV
534
+ Model
535
+ Indices
536
+ Crop
537
+ Flight
538
+ Altitude
539
+ (m)
540
+ Sensors
541
+ Task Period
542
+ Reference
543
+ Type
544
+ Model
545
+ Spraying
546
+ Fixed-wing
547
+ UAV
548
+ Normalized Difference Vegetation
549
+ Index (NDVI)
550
+ Maize Silage
551
+ 150
552
+ -
553
+ Canon s110 Throughout
554
+ the year
555
+ (Castaldi et
556
+ al., 2017)
557
+ Helicopter
558
+ Spray Work Rate
559
+ Vineyard
560
+ 3-4
561
+ Digital Camera
562
+ -
563
+ May
564
+ (Giles &
565
+ Billing,
566
+ 2015)
567
+ Route Precision, Spraying
568
+ Uniformity
569
+ Wheat
570
+ 5, 7, 9
571
+ Image Transmitter
572
+ -
573
+ Summer
574
+ (Xue et al.,
575
+ 2016)
576
+ Droplet size, Flow rate
577
+ Field
578
+ 6
579
+ Proprietary Radio
580
+ Receiver
581
+ -
582
+ Throughout
583
+ the year
584
+ (Huang et
585
+ al., 2009)
586
+ Leaf Area Index (LAI),
587
+ Normalized Difference Vegetation
588
+ Index (NDVI)
589
+ Maize Silage
590
+ 35
591
+ Multi-Spectral Camera
592
+ Agrosenso
593
+ Throughout
594
+ the year
595
+ (Castaldi et
596
+ al., 2017)
597
+ -
598
+ Field
599
+ 20
600
+ Wireless Sensor Networks
601
+ -
602
+ -
603
+ (Faiçal et al.,
604
+ 2017)
605
+ Quadcopter
606
+
607
+ Time of Communication between a
608
+ Sensor
609
+ Soy, Rice, Corn
610
+ Gapes,
611
+ Sugarcane
612
+ 5, 10, 20
613
+ RF Module
614
+ XBee-PRO
615
+ series 2
616
+ Summer
617
+ (Faiçal et al.,
618
+ 2014)
619
+ Droplet coverage rate, Density,
620
+ Droplet size
621
+ Cocktail,
622
+ Grapefruit,
623
+ Citrus
624
+ 3.5, 4, 4.5
625
+ Digital Plant Canopy
626
+ Imager
627
+ Camas CI-
628
+ 110
629
+ Spring-
630
+ Summer
631
+ (Pan et al.,
632
+ 2016)
633
+ Observed Deposition Rate, Field
634
+ Work Rate
635
+ Field
636
+ Few
637
+ meters
638
+ Multi-Spectral camera,
639
+ Hyper-Spectral camera,
640
+ Near-Infrared, Color-
641
+ Infrared
642
+ -
643
+ Throughout
644
+ the year
645
+ (Meivel et
646
+ al., 2016)
647
+ Droplet Coverage Rate, Density,
648
+ Droplet size
649
+ Citrus
650
+ 0.6, 1.2,
651
+ 1.8
652
+ Water-Sensitive Paper
653
+ Cards (WSPs)
654
+ -
655
+ One day
656
+ (Tang et al.,
657
+ 2018)
658
+ Hexacopter
659
+ Discharge and Pressure of Spray
660
+ Liquid, Spray Uniformity, Spray
661
+ Liquid Loss, Droplet Size and
662
+ Density.
663
+ Paddy and
664
+ groundnut
665
+ 1
666
+ HD FPV camera
667
+ -
668
+ Throughout
669
+ the year
670
+ (Yallappa et
671
+ al., 2017)
672
+
673
+
674
+
675
+ Table 1. Cont.
676
+ Task
677
+ UAV Model
678
+ Indices
679
+ Crop
680
+ Flight
681
+ Altitude
682
+ (m)
683
+ Sensors
684
+ Task Period
685
+ Reference
686
+ Type
687
+ Model
688
+ Crop
689
+ Monitoring
690
+ Fixed-wing
691
+ UAV
692
+ Normalized Difference Vegetation
693
+ Index (NDVI)
694
+ Arable crops (corn, cotton,
695
+ sunflower)
696
+ 120
697
+ Multi-
698
+ Spectral
699
+ Camera
700
+ Parrot
701
+ Sequoia Plus June-October (Bollas et al.,
702
+ 2021)
703
+ Normalized Difference Vegetation
704
+ Index (NDVI)
705
+ Rice
706
+ 20
707
+ Multi-
708
+ Spectral
709
+ Camera
710
+ Tetracam
711
+ ADC
712
+ camera
713
+ 95 days
714
+ (Swain et al.,
715
+ 2010)
716
+ Quadcopter
717
+ NDVI, Ontario Soil and Crop
718
+ Improvement Association
719
+ Soybean, Wheat, Barley,
720
+ Oat, Canola
721
+ 120
722
+ Digital
723
+ Camera
724
+ Aeryon
725
+ Photo3S
726
+ Spring-
727
+ Autmn
728
+ (Zhang et al.,
729
+ 2014)
730
+ Visible-Band Difference
731
+ Vegetation Index, Normalized
732
+ Green-Blue Difference Wheat
733
+ Index, Green-Red Ratio Index
734
+ Wheat
735
+ 100
736
+ Digital
737
+ Camera
738
+ SONY
739
+ ILCE-6000
740
+ September-
741
+ July
742
+ (Du &
743
+ Noguchi,
744
+ 2017)
745
+ Leaf Area Index (LAI), Total Dry
746
+ Weight (TDW), Plant Lenght (PL)
747
+ Three Rice Cultivars:
748
+ Nipponbae (Japonica),
749
+ IR64 (Indica), Basmati370
750
+ (Indica)
751
+ 30
752
+ RGB
753
+ Camera
754
+ Zenmuse
755
+ X4s
756
+ Summer
757
+ (Peprah et al.,
758
+ 2021)
759
+ Vegetation Index (VI), Leaf Area
760
+ Index (LAI)
761
+ Coffee
762
+ 30
763
+ Digital
764
+ RGB
765
+ Camera
766
+ Sony
767
+ EXMOR
768
+ 1/2.3"
769
+ Throughout
770
+ the year
771
+ (Barbosa et
772
+ al., 2021)
773
+ Soil-Adjusted Vegetation Index
774
+ (SAVI), Leaf Area Index (LAI),
775
+ Normalized Difference Vegetation
776
+ Index (NDVI)
777
+ Sunflower
778
+ 75
779
+ Digital
780
+ Camera
781
+ Tetracam
782
+ ADC Lite
783
+ four days
784
+ (Vega et al.,
785
+ 2015)
786
+ -
787
+ Field
788
+ -
789
+ RGB
790
+ Camera
791
+ -
792
+ -
793
+ (Doering et
794
+ a., 2014)
795
+ Hexacopter Normalized Difference Vegetation
796
+ Index (NDVI)
797
+ Vineyard
798
+ 150
799
+ ADC-Lite
800
+ Camera
801
+ Tetracam
802
+ ADC-lite
803
+ camera
804
+ One day
805
+ (Primicerio et
806
+ al., 2012)
807
+
808
+
809
+
810
+ Table 1. Cont.
811
+ Task
812
+ UAV
813
+ Model
814
+ Indices
815
+ Crop
816
+ Flight
817
+ Altitude
818
+ (m)
819
+ Sensors
820
+ Task
821
+ Period
822
+ Reference
823
+ Type
824
+ Model
825
+ Crop
826
+ Monitoring
827
+ Hexacopter
828
+ Normalized Green-Red Difference
829
+ Index (NGRDI)
830
+ Pea, Oat
831
+ 30
832
+ RGB Camera
833
+ Panasonic Lumix
834
+ DMC-GF1
835
+ April-
836
+ August
837
+ (Jannoura et al.,
838
+ 2015)
839
+ Blue Green Pigment Index 2
840
+ (BGI2), Reformed Difference
841
+ Vegetation Index (RDVI)
842
+ Barley
843
+ 30
844
+ Hyper-Spectral
845
+ Camera
846
+ Firefly ultra-high
847
+ definition 185
848
+ Summer
849
+ (Aasen et al.,
850
+ 2015)
851
+ Octocopter
852
+ NDVI, Soil Adjusted Vegetation
853
+ Index (SAVI), Optimized SAVI
854
+ (OSAVI) and Li
855
+ Barley
856
+ 50
857
+ RGB-Sensor
858
+ Panasonic Lumix
859
+ GXI
860
+ April-
861
+ July
862
+ (Bending et al.,
863
+ 2015)
864
+ Structure-from-Motion (SfM),
865
+ airborne laser scanning (ALS)
866
+ Eucalyptus
867
+ Pulchella
868
+ 30
869
+ RGB Camera
870
+ Canon55D
871
+ One day (Wallace et al.,
872
+ 2016
873
+ Normalized Difference Vegetation
874
+ Index (NDVI), thermal temperature
875
+ Sugarbeet
876
+ 55
877
+ Multiple Camera
878
+ Array (MCA)
879
+ Camera
880
+ Tetracam mini
881
+ MCA
882
+ One day
883
+ (Bendig et al.,
884
+ 2012)
885
+ -
886
+ Sunflower
887
+ 122
888
+ Multi-Spectral
889
+ Camera
890
+ ADC Snap
891
+ -
892
+ (Noriega &
893
+ Anderson,
894
+ 2016)
895
+
896
+
897
+
898
+
899
+
900
+
901
+
902
+ 7. Limitations in Adopting UAVs Technologies in Agriculture Sector
903
+ 7.1 Technical Decisions
904
+
905
+
906
+ Various types of UAVs have been produced in the commercial market by many manufacturers and companies, starting from hobby-type
907
+ products up to industrial model aircraft. Since there is no specific standard about the UAV development for agricultural purposes, it is
908
+ hard to find a UAV built specifically for the agricultural context (Huang et al., 2013). Moreover, suppose the available commercial
909
+ software packages, which support the photogrammetric data processing, are not standardized for agricultural purposes. In that case, the
910
+ desired UAV images may not be appropriately captured by the sensor. Therefore, it can prevent the users from taking the right actions
911
+ if unexpected situations such as a collision with another flying object occur (Abdullahi, 2015).
912
+ Another major problem associated with technical decisions is the battery usage and flight time limitations. The lithium-ion
913
+ batteries currently used in UAVs have an advantage over conventional batteries, especially in their larger capacity. However, the larger
914
+ capacity affects the weight of the batteries that become heavier in return (Saha et al., 2011). Unfortunately, this issue is challenging to
915
+ be solved within this day. Another problem related to battery usages is battery management. Even though it is known that the batteries
916
+ of UAVs need to have constant maintenance, most UAV operators often forget and do not carefully pay attention to this issue. As a
917
+ result, it caused periodic replacement that required additional cost (Lee et al., 2012). Lastly, the possible time for UAVs to fly, which is
918
+ around 20-30 minutes with a fresh battery, can still provide enough time for complete crop monitoring (Baha et al., 2012). Researchers
919
+ try to develop optimized hybrid batteries as solutions in dealing with this issue.
920
+ 7.2 Cost
921
+ The lack of awareness of the UAVs' cost, is one of the reasons for the slower adoption of this technology in the agriculture sector. For
922
+ a starter system, agricultural UAVs can range from US$1,000 that might go up to US$10,000 or US$20,000, depending upon the cameras
923
+ and the features (Stehr, 2015). This cost is not quite affordable and surely will be an impending stop to adopt UAVs technology for
924
+ smallholder farmers (Ahmad et al., 2021). The interested farmers who could not afford the cost of UAVs may need to contract as a
925
+ group to get UAV services to reduce the individual expenses.
926
+ Another possible solution to minimize the cost of UAVs by purchasing inexpensive airframes and low-cost cameras. However,
927
+ this solution could build up a short endurance of the UAV platform. Moreover, the low-cost UAVs are usually equipped with lightweight
928
+
929
+
930
+ engines that might limit the reachable altitude of the UAVs. The low cost of cameras also limited the sensor payload both in dimension
931
+ and weight, and reduced image quality (Abdullahi, 2015). In addition, the separate purchases of UAV components require highly skilled
932
+ engineers or technicians to integrate and assembly, which may increase the total expenses (Huang et al., 2013).
933
+
934
+ Apart from the cost of vehicles equipped with cameras and software for aerial imagery processing, the farmers need to consider
935
+ the expenditures for the operator's license. The presence of this operator implies extra time and cost that need to be spent since not
936
+ everyone is allowed to operate the UAVs. Nevertheless, all these costs will constantly decrease over the years (Bollas et al., 2021).
937
+ 7.3 Payload
938
+ Payload weight and size are critical factors for UAVs because they need to be carefully configured based on the specific
939
+ application of the UAV. When the UAV is ready to use, it needs to be configured by paying attention to payload design, mechanical
940
+ and electrical accommodation even though there is no specific engineering guideline to be followed (Huang et al., 2013).
941
+ 7.4 Operation
942
+ In the UAV operation, most UAV types do not have the capability of automated take-off and landing (Huang et al., 2013). Furthermore,
943
+ the frequency of flying UAVs should be carefully selected because there are insufficient regulations about flying UAVs. Even certain
944
+ regions restrict the usage of UAVs as a security precaution (Eisenbeiss, 2009). Another challenge is the UAVs' inability to take readings
945
+ during extreme weather conditions like rain or storm (Abdullahi et al., 2015). Therefore, highly skilled operators for remote control are
946
+ required. However, the demand for skilled users to operate the UAVs is a problem for small and medium producers to adopt UAV
947
+ technology. Training issues and lack of demonstrated financial returns in the short and medium term are considered the reason for this
948
+ issue (Abdullahi et al., 2015). Thus, autonomous flight according to georeferenced coordinates has then become a highly desirable
949
+ component for practical use of UAVs in agriculture (Huang et al., 2013).
950
+ The swarm-control techniques can be applied to efficiently control multiple UAVs in performing a wide range of tasks. Although
951
+ swarm-control can provide practical techniques to lower the battery cost and operate more efficiently with shorter flight times, there is
952
+ a need for user interface improvement so that people who are older or unfamiliar with UAVs can easily control the UAVs. The user
953
+
954
+
955
+ interface improvement is made by considering multimodal feedback, including visual, auditory, and haptic feedback. Therefore, an
956
+ improvement that mainly focused on human-centered user interface and feedback are two ways that seem to be effective to deal with
957
+ multiple UAVs (Hong et al., 2017).
958
+
959
+ 8. Challenges in Implementing UAVs in Indonesia
960
+ Kavianand et al. (2016) have reported that agricultural development in Indonesia is critical since it has primarily contributed to
961
+ Indonesia's GDP. Roughly about 14.4 percent of Indonesia's total GDP comes from the agriculture sector and has reduced the
962
+ unemployment rate by absorbing 38.6 percent of the workforce (David & Ardiansyah, 2017). Despite its considerable contribution to
963
+ Indonesia's GDP, the contribution of agriculture to Indonesia's GDP has been remarkably decreasing for the last five decades due to low
964
+ productivity. Some natural phenomena, such as extreme weather changes, have also influenced Indonesia's agriculture (Syuaib, 2016).
965
+
966
+ Many researchers have suggested implementing precision agriculture via UAVs to improve the productivity of the work in
967
+ agriculture. The application of UAVs offered many benefits that could grow the economic profit and provide a proper solution in
968
+ solving current issues in agriculture. However, as much as Indonesia depends upon agriculture, the application of UAVs in the
969
+ agriculture field is relatively far from adopting the latest technology into farms. Even though some developed countries have started to
970
+ use UAVs in their precision agriculture and proved that this technology is essential in reducing farmers' workload, Indonesia seems to
971
+ fall behind and keep using manual operating for farm activity.
972
+ One of the viable reasons for preventing the adoption of UAVs is the education level of farmers. The majority of farmers in
973
+ Indonesia do not complete their high school education in which 38 percent of local farmers have graduated from primary school (Haq
974
+ et al., 2016). Furthermore, only 6 percent of the local farmers can complete high school or university. These numbers significantly
975
+ describe the current state of Indonesia's farmers. The lack of education could cause a low understanding of the technology application.
976
+ Moreover, this low level of understanding can lead to the anxiety of relearning integrating agriculture and technology (Suryanegara et
977
+ al., 2019).
978
+
979
+
980
+ Despite the reasons mentioned above, researchers have tested the application of UAV in several agricultural sectors. For instance,
981
+ the UAV has been practically implemented or tested in Indonesia’s agriculture, including the sugar cane plantation in PTPN
982
+ (Perkebunan Nusantara Maospati East Java) and a paddy field near Menara Cigarette Factory, and the Teak Wood Forest in Madiun
983
+ (Rokhmana, 2015). Besides, the application of UAV has been significantly tested in one of the paddy fields in Parankasalak, Sukabumi,
984
+ West Java, to monitor the crop by mapping the paddy field through differentiating them based on their spectral characteristic
985
+ (Rokhmatuloh et al., 2019). However, the research found that the implementation of UAV poses several limitations and challenges that
986
+ become a prohibitive factor for broader use in Indonesia’s agriculture.
987
+ The application of UAV in PA requires a high investment cost to purchase the technology and the maintenance cost (Tsouros et
988
+ al., 2019). Furthermore, due to the limited space of agricultural land and the unstable market price for the crop yield, the implementation
989
+ of UAV might pose another operational cost to the farmers (Tsouros et al., 2019; Vera et al., 2021). Even though the market has
990
+ commercially offered an amateur and cheaper UAV, the product has several limitations related to stability, accuracy, and quality
991
+ (Norasma et al., 2019). The cheaper UAV has a low ability to reach a certain altitude due to its low power engine (Norasma et al.,
992
+ 2019). This notion is reinforced by (Rokhmana, 2015) who notes that amateur UAVs generally have an error in their camera lens. This
993
+ case happens because both the stability and accuracy of the non-metric lens are low. Besides, the UAV is relatively light, possesses
994
+ only 3 kg weight, which causes them to be easily disturbed by the wind and air turbulence when the weather is windy (> 40km/h) and
995
+ rainy days (Norasma et al., 2019; Rokhmana, 2015; Tsouros et al., 2019). This case requires huge attention because Indonesia is located
996
+ along the equatorial belt region to have periodic heavy rain.
997
+ Furthermore, the UAV requires data-intensive procedures and skilled personal for exploiting the acquainted imagery data.
998
+ (Tsouros et al., 2019). Hence, the farmers need to hire the expertise of UAV technology or do intensive training that may be costly.
999
+ This case requires intensive consideration because the average farmer in Indonesia is not in productive ages with low educational
1000
+ background (Haq et al., 2016). It reported that 88% of the average farmer in Bantarkawung is on the 15-60 years and the remaining
1001
+ farmer is on non-productive ages (Haq et al., 2016). Moreover, it discovered that only 6% of the majority graduated from high school
1002
+
1003
+
1004
+ and university; the remaining only attended primary school, and 38% were in junior high school (Haq et al., 2016). As a result, most
1005
+ farmers have a common understanding of technology, IoT and little comprehension of imagery data. Another viable reason for
1006
+ preventing people from using the UAV technology is its limited flight time. (Tsouros et al., 2019) revealed that most commercial UAVs
1007
+ only have 20 min to 1 hour flight time. Moreover, it only covers a small restricted area for each flight. Thus, the total cost expenses to
1008
+ purchase the UAV technology for PA might not be advantageous.
1009
+ 9. Conclusion
1010
+ The application of UAVs in current days has opened unlimited potential, especially in the agriculture sector. Two main UAVs
1011
+ applications in agriculture sectors, such as spraying, and crop monitoring have been discussed. The urgency of UAVs and the
1012
+ implementation of UAVs were necessary to be implemented in order to establish precision agriculture. Numerous issues and problems
1013
+ that might occur in the future have also been highlighted to build awareness about the issues by providing various data and sources. The
1014
+ application of UAVs in spraying and crop monitoring are the main parts of this paper since we were thoroughly investigating the
1015
+ application of UAVs that includes the benefits obtained, various application forms of UAVs from several types of research, and the flow
1016
+ of operating the UAVs. Moreover, the limitation found in the application of UAVs was also identified to reveal the gap of UAVs
1017
+ implementation in the agriculture field. Lastly, the challenges in implementing UAVs are also being discussed, especially in Indonesia.
1018
+
1019
+ REFERENCES
1020
+ Aasen, H., Burkart, A., Bolten, A., & Bareth, G. (2015). Generating 3D hyperspectral information with lightweight UAV snapshot
1021
+ cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS Journal of Photogrammetry and Remote
1022
+ Sensing, 108, 245-259.
1023
+ Abdullahi, H. S., Mahieddine, F., & Sheriff, R. E. (2015). Technology impact on agricultural productivity: A review of precision
1024
+ agriculture using unmanned aerial vehicles. In International conference on wireless and satellite systems (pp. 388-400). Springer,
1025
+ Cham.
1026
+ Ahmad, A., Ordoñez, J., Cartujo, P., & Martos, V. (2021). Remotely Piloted Aircraft (RPA) in Agriculture: A Pursuit of Sustainability.
1027
+ Agronomy, 11(1), 7.
1028
+
1029
+
1030
+ Bajoria, A., Mahto, N. K., Boppana, C. K., & Pant, R. S. (2017). Design of a tethered aerostat system for animal and bird hazard
1031
+ mitigation. Proceedings of the International Conference on Recent Advances in Aerospace Engineering, ICRAAE 2017, 1–6.
1032
+ https://doi.org/10.1109/ICRAAE.2017.8297244
1033
+ Barbosa, B. D. S., Araújo e Silva Ferraz, G., Mendes dos Santos, L., Santana, L. S., Bedin Marin, D., Rossi, G., & Conti, L. (2021).
1034
+ Application of RGB Images Obtained by UAV in Coffee Farming. Remote Sensing, 13(12), 2397.
1035
+ Barrientos, A., Colorado, J., Cerro, J. D., Martinez, A., Rossi, C., Sanz, D., & Valente, J. (2011). Aerial remote sensing in agriculture:
1036
+ A practical approach to area coverage and path planning for fleets of mini aerial robots. Journal of Field Robotics, 28(5), 667-689.
1037
+ Bendig, J., Bolten, A., & Bareth, G. (2012). Introducing a low-cost mini-UAV for thermal-and multispectral-imaging. Int. Arch.
1038
+ Photogramm. Remote Sens. Spat. Inf. Sci, 39, 345-349.
1039
+ Bendig, J., Yu, K., Aasen, H., Bolten, A., Bennertz, S., Broscheit, J., ... & Bareth, G. (2015). Combining UAV-based plant height from
1040
+ crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied
1041
+ Earth Observation and Geoinformation, 39, 79-87.
1042
+ Berni, J. A., Zarco-Tejada, P. J., Suárez, L., & Fereres, E. (2009). Thermal and narrowband multispectral remote sensing for vegetation
1043
+ monitoring from an unmanned aerial vehicle. IEEE Transactions on geoscience and Remote Sensing, 47(3), 722-738.
1044
+ Bollas, N., Kokinou, E., & Polychronos, V. (2021). Comparison of Sentinel-2 and UAV Multispectral Data for Use in Precision
1045
+ Agriculture: An Application from Northern Greece. Drones, 5(2), 35.
1046
+ Bhandari, A. K., Kumar, A., & Singh, G. K. (2012). Feature extraction using Normalized Difference Vegetation Index (NDVI): A case
1047
+ study of Jabalpur city. Procedia technology, 6, 612-621.
1048
+ Castaldi, F., Pelosi, F., Pascucci, S., & Casa, R. (2017). Assessing the potential of images from unmanned aerial vehicles (UAV) to
1049
+ support herbicide patch spraying in maize. Precision Agriculture, 18(1), 76-94.
1050
+ Chilonga, D., & Kiswisch, M. (2016). Low Altitude Remote Sensing and its Application in Precision Agriculture: A Case of Nzathu
1051
+ Farm in Traditional Authority Somba in Blantyre District, Malawi. 23–34.
1052
+ Cho, S., Mishra, V., Tao, Q., Vamell, P., King-Smith, M., Muni, A., Smallwood, W., & Zhang, F. (2017). Autopilot design for a class
1053
+ of
1054
+ miniature
1055
+ autonomous
1056
+ blimps.
1057
+ 2017 IEEE
1058
+ Conference
1059
+ on
1060
+ Control Technology
1061
+ and
1062
+ Applications
1063
+ (CCTA).
1064
+ https://doi.org/10.1109/ccta.2017.8062564
1065
+ Commission, E. Industry 5.0: Towards More Sustainable, Resilient and Human-Centric Industry, Available online: Industry 5.0:
1066
+ Towards more sustainable, resilient and human-centric industry | European Commission (europa.eu) (accessed on 7 September 2021).
1067
+ Colomina, I., & Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of
1068
+ photogrammetry and remote sensing, 92, 79-97.
1069
+ Costa, F. G., Ueyama, J., Braun, T., Pessin, G., Osório, F. S., & Vargas, P. A. (2012, July). The use of unmanned aerial vehicles and
1070
+ wireless sensor network in agricultural applications. In 2012 IEEE International Geoscience and Remote Sensing Symposium (pp.
1071
+ 5045-5048). IEEE.
1072
+
1073
+
1074
+ DeSA, U. N. (2015). World population prospects: The 2015 revision, key findings and advance tables. Working paper no. Hunter, M.
1075
+ C., Smith, R. G., Schipanski, M. E., Atwood, L. W., & Mortensen, D. A. (2017). Agriculture in 2050: recalibrating targets for
1076
+ sustainable intensification. Bioscience, 67(4), 386-391.
1077
+ David, W. (2017). Organic agriculture in Indonesia: challenges and opportunities. Organic Agriculture, 7(3), 329-338.
1078
+ Daponte, P., De Vito, L., Glielmo, L., Iannelli, L., Liuzza, D., Picariello, F., & Silano, G. (2019, May). A review on the use of drones
1079
+ for precision agriculture. In IOP Conference Series: Earth and Environmental Science (Vol. 275, No. 1, p. 012022). IOP Publishing.
1080
+ Doering, D., Benenmann, A., Lerm, R., de Freitas, E. P., Muller, I., Winter, J. M., & Pereira, C. E. (2014). Design and optimization of
1081
+ a heterogeneous platform for multiple uav use in precision agriculture applications. IFAC Proceedings Volumes, 47(3), 12272-12277.
1082
+ Du, M., & Noguchi, N. (2017). Monitoring of wheat growth status and mapping of wheat yield’s within-field spatial variations using
1083
+ color images acquired from UAV-camera system. Remote sensing, 9(3), 289.
1084
+ Eisenbeiss, H. (2009). UAV Photogrammetry. Doctor of sciences. University of Technology Dresden, Germany.
1085
+ Faiçal, B. S., Costa, F. G., Pessin, G., Ueyama, J., Freitas, H., Colombo, A., ... & Braun, T. (2014). The use of unmanned aerial vehicles
1086
+ and wireless sensor networks for spraying pesticides. Journal of Systems Architecture, 60(4), 393-404.
1087
+ Faiçal, B. S., Freitas, H., Gomes, P. H., Mano, L. Y., Pessin, G., de Carvalho, A. C., ... & Ueyama, J. (2017). An adaptive approach for
1088
+ UAV-based pesticide spraying in dynamic environments. Computers and Electronics in Agriculture, 138, 210-223.
1089
+ Faiçal, B. S., Pessin, G., Filho, G. P., Carvalho, A. C., Gomes, P. H., & Ueyama, J. (2016). Fine-tuning of UAV control rules for spraying
1090
+ pesticides on crop fields: An approach for dynamic environments. International Journal on Artificial Intelligence Tools, 25(01),
1091
+ 1660003.
1092
+ Gallardo-Saavedra, S., Hernández-Callejo, L., & Duque-Perez, O. (2018). Technological review of the instrumentation used in aerial
1093
+ thermographic inspection of photovoltaic plants. Renewable and Sustainable Energy Reviews, 93, 566-579.
1094
+ Gertler, J. (2012). US unmanned aerial systems. Library of Congress Washington DC Congressional Research Service.
1095
+ Giles, D., & Billing, R. (2015). Deployment and performance of a UAV for crop spraying. Chemical engineering transactions, 44, 307-
1096
+ 312.
1097
+ Gonzalez-de-Santos, P., Fernández, R., Sepúlveda, D., Navas, E., Emmi, L., & Armada, M. (2020). Field Robots for Intelligent Farms—
1098
+ Inhering Features from Industry. Agronomy, 10(11), 1638.
1099
+ Gonzalez-de-Santos, P., Ribeiro, A., Fernandez-Quintanilla, C., Lopez-Granados, F., Brandstoetter, M., Tomic, S., ... & Debilde, B.
1100
+ (2017). Fleets of robots for environmentally-safe pest control in agriculture. Precision Agriculture, 18(4), 574-614.
1101
+ Haq, M. S., Budisatria, I. G. S., & Maharani, D. (2016). Farmer profiling of jabres cattle at breeding center in bantarkawung, brebes,
1102
+ central java province, indonesia. Int. J. Agric. For. Plant., 4, 51-5.
1103
+ Hatfield, J. L., & Prueger, J. H. (2010). Value of using different vegetative indices to quantify agricultural crop characteristics at different
1104
+ growth stages under varying management practices. Remote Sensing, 2(2), 562-578.
1105
+ Herwitz, S. R., Johnson, L. F., Dunagan, S. E., Higgins, R. G., Sullivan, D. V., Zheng, J., ... & Brass, J. A. (2004). Imaging from an
1106
+ unmanned aerial vehicle: agricultural surveillance and decision support. Computers and electronics in agriculture, 44(1), 49-61.
1107
+
1108
+
1109
+ Hong, A., Lee, D. G., Bülthoff, H. H., & Son, H. I. (2017). Multimodal feedback for teleoperation of multiple mobile robots in an
1110
+ outdoor environment. Journal on Multimodal User Interfaces, 11(1), 67-80.
1111
+ Huang, Y., Hoffmann, W. C., Lan, Y., Wu, W., & Fritz, B. K. (2009). Development of a spray system for an unmanned aerial vehicle
1112
+ platform. Applied Engineering in Agriculture, 25(6), 803-809.
1113
+ Huang, Y., Thomson, S. J., Hoffmann, W. C., Lan, Y., & Fritz, B. K. (2013). Development and prospect of unmanned aerial vehicle
1114
+ technologies for agricultural production management. International Journal of Agricultural and Biological Engineering, 6(3), 1-10.
1115
+ Jannoura, R., Brinkmann, K., Uteau, D., Bruns, C., & Joergensen, R. G. (2015). Monitoring of crop biomass using true colour aerial
1116
+ photographs taken from a remote controlled hexacopter. Biosystems Engineering, 129, 341-351.
1117
+ Ju, C., & Son, H. I. (2018). Multiple UAV systems for agricultural applications: control, implementation, and evaluation. Electronics,
1118
+ 7(9), 162.
1119
+ Kale, S. D., Khandagale, S. V., Gaikwad, S. S., Narve, S. S., & Gangal, P. V. (2015). Agriculture drone for spraying fertilizer and
1120
+ pesticides. International Journal of Advanced Research in Computer Science and Software Engineering, 5(12), 804-807.
1121
+ Kavianand, G., Nivas, V. M., Kiruthika, R., & Lalitha, S. (2016, July). Smart drip irrigation system for sustainable agriculture. In 2016
1122
+ IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR) (pp. 19-22). IEEE.
1123
+ Kedari, S., Lohagaonkar, P., Nimbokar, M., Palve, G., & Yevale, P. (2016). Quadcopter-A Smarter Way of Pesticide Spraying. Imperial
1124
+ Journal of Interdisciplinary Research, 2(6).
1125
+ Kim, J., Kim, S., Ju, C., & Son, H. I. (2019). Unmanned aerial vehicles in agriculture: A review of perspective of platform, control, and
1126
+ applications. IEEE Access, 7, 105100-105115.
1127
+ Krishna, K. . (2021a). Aerial Robotics in. Apple Academic Press, Inc.
1128
+ Krishna, K. . (2021b). Practical Guide For The Finish Judge. 17.
1129
+ Lee, B., Park, P., Kim, C., Yang, S., & Ahn, S. (2012). Power managements of a hybrid electric propulsion system for UAVs. Journal
1130
+ of mechanical science and technology, 26(8), 2291-2299.
1131
+ Li, X., & Yang, L. (2012, August). Design and implementation of UAV intelligent aerial photography system. In 2012 4th International
1132
+ Conference on Intelligent Human-Machine Systems and Cybernetics (Vol. 2, pp. 200-203). IEEE.
1133
+ Luck, J. D., Pitla, S. K., Shearer, S. A., Mueller, T. G., Dillon, C. R., Fulton, J. P., & Higgins, S. F. (2010). Potential for pesticide and
1134
+ nutrient savings via map-based automatic boom section control of spray nozzles. Computers and Electronics in Agriculture, 70(1),
1135
+ 19-26.
1136
+ Mahmood, K., & Ismail, N. A. (2020). Application of multibody simulation tool for dynamical analysis of tethered aerostat. Journal of
1137
+ King Saud University - Engineering Sciences, xxxx. https://doi.org/10.1016/j.jksues.2020.09.005
1138
+ Martos, V., Ahmad, A., Cartujo, P., & Ordoñez, J. (2021). Ensuring Agricultural Sustainability through Remote Sensing in the Era of
1139
+ Agriculture 5.0. Applied Sciences, 11(13), 5911.
1140
+
1141
+
1142
+
1143
+ Meivel, S., Dinakaran, K., Gandhiraj, N., & Srinivasan, M. (2016). Remote sensing for UREA Spraying Agricultural (UAV) system. In
1144
+ 2016 3rd International Conference on Advanced Computing and Communication Systems (ICACCS) (Vol. 1, pp. 1-6). IEEE.
1145
+ Mogili, U. R., & Deepak, B. B. V. L. (2018). Review on application of drone systems in precision agriculture. Procedia computer
1146
+ science, 133, 502-509.
1147
+ Muchiri, N., & Kimathi, S. (2016). A review of applications and potential applications of UAV. In Proceedings of sustainable research
1148
+ and innovation conference (pp. 280-283).
1149
+ Mundial, C. D. S. A. (2020). Los efectos de la COVID-19 en la seguridad alimentaria y la nutrición: elaboración de respuestas eficaces
1150
+ en materia de políticas para abordar la pandemia del hambre y la malnutrición. Documento Temático, 1-22.
1151
+ Murugan, D., Garg, A., & Singh, D. (2017). Development of an adaptive approach for precision agriculture monitoring with drone and
1152
+ satellite data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(12), 5322-5328.
1153
+ Natu, A. S., & Kulkarni, S. C. (2016). Adoption and utilization of drones for advanced precision farming: A review. International
1154
+ journal on recent and innovation trends in computing and communication, 4(5), 563-565.
1155
+ Norasma, C. Y. N., Fadzilah, M. A., Roslin, N. A., Zanariah, Z. W. N., Tarmidi, Z., & Candra, F. S. (2019). Unmanned Aerial Vehicle
1156
+ Applications in Agriculture. IOP Conference Series: Materials Science and Engineering, 506(1). https://doi.org/10.1088/1757-
1157
+ 899X/506/1/012063
1158
+ Noriega, A., & Anderson, R. (2016). Linear-optimization-based path planning algorithm for an agricultural UAV. In AIAA Infotech@
1159
+ Aerospace (p. 1003).
1160
+ Pan, Z., Lie, D., Qiang, L., Shaolan, H., Shilai, Y., Yande, L., ... & Haiyang, P. (2016). Effects of citrus tree-shape and spraying height
1161
+ of small unmanned aerial vehicle on droplet distribution. International Journal of Agricultural and Biological Engineering, 9(4), 45-
1162
+ 52.
1163
+ Paneque-Gálvez, J., McCall, M. K., Napoletano, B. M., Wich, S. A., & Koh, L. P. (2014). Small drones for community-based forest
1164
+ monitoring: An assessment of their feasibility and potential in tropical areas. Forests, 5(6), 1481-1507.
1165
+ Patel, P. N., Patel, M. A., Faldu, R. M., & Dave, Y. R. (2013). Quadcopter for agricultural surveillance. Advance in Electronic and
1166
+ Electric Engineering, 3(4), 427-432.
1167
+ Pederi, Y. A., & Cheporniuk, H. S. (2015, October). Unmanned aerial vehicles and new technological methods of monitoring and crop
1168
+ protection in precision agriculture. In 2015 IEEE International Conference Actual Problems of Unmanned Aerial Vehicles
1169
+ Developments (APUAVD) (pp. 298-301). IEEE.
1170
+ Peprah, C. O., Yamashita, M., Yamaguchi, T., Sekino, R., Takano, K., & Katsura, K. (2021). Spatio-Temporal Estimation of Biomass
1171
+ Growth in Rice Using Canopy Surface Model from Unmanned Aerial Vehicle Images. Remote Sensing, 13(12), 2388.
1172
+ Perigrine Ltd. (2018). Light weight Helikites (36 inch) (pp. 1–3). https://www. peregrinehawkkites.com/lightweight-helikite-
1173
+ instructions/ (accessed on 30 July 2020).
1174
+ Pino, E. (2019). Los drones una herramienta para una agricultura eficiente: un futuro de alta tecnología. Idesia (Arica), 37(1), 75-84.
1175
+
1176
+
1177
+ Ponti, M., Chaves, A. A., Jorge, F. R., Costa, G. B. P., Colturato, A., & Branco, K. R. L. J. C. (2016). Precision Agriculture: Using Low-
1178
+ Cost
1179
+ Systems
1180
+ to
1181
+ Acquire
1182
+ Low-Altitude
1183
+ Images.
1184
+ IEEE
1185
+ Computer
1186
+ Graphics
1187
+ and
1188
+ Applications,
1189
+ 36(4),
1190
+ 14–20.
1191
+ https://doi.org/10.1109/MCG.2016.69
1192
+ Primicerio, J., Di Gennaro, S. F., Fiorillo, E., Genesio, L., Lugato, E., Matese, A., & Vaccari, F. P. (2012). A flexible unmanned aerial
1193
+ vehicle for precision agriculture. Precision Agriculture, 13(4), 517-523.
1194
+ Prisacariu, V., Air, R., Academy, F., & Cheval, S. (2019). Using UAV-LTA for Environmental Monitoring. March.
1195
+ https://doi.org/10.24193/AWC2019
1196
+ Psirofonia, P., Samaritakis, V., Eliopoulos, P., & Potamitis, I. (2017). Use of unmanned aerial vehicles for agricultural applications with
1197
+ emphasis on crop protection: three novel case-studies. International Journal of Agricultural Science and Technology, 5(1), 30-39.
1198
+ Puri, V., Nayyar, A., & Raja, L. (2017). Agriculture drones: A modern breakthrough in precision agriculture. Journal of Statistics and
1199
+ Management Systems, 20(4), 507-518.
1200
+ Pyo, S. R. (2006). Actual state of pesticide management and rate of complaints of prevalency subjective symptom in some farmer.
1201
+ Master Diss. Yonsei Univ. Seoul.
1202
+ Rani, A. L. K. A., Chaudhary, A. M. R. E. S. H., Sinha, N., Mohanty, M., & Chaudhary, R. (2019). Drone: the green technology for
1203
+ future agriculture. Harit Dhara, 2(1), 3-6.
1204
+ Reinecke, M., & Prinsloo, T. (2017). The influence of drone monitoring on crop health and harvest size. In 2017 1st International
1205
+ conference on next generation computing applications (NextComp) (pp. 5-10). IEEE.
1206
+ Rokhmana, C. A. (2015). The Potential of UAV-based Remote Sensing for Supporting Precision Agriculture in Indonesia. Procedia
1207
+ Environmental Sciences, 24, 245–253. https://doi.org/10.1016/j.proenv.2015.03.032
1208
+ Rokhmatuloh, Supriatna, Pin, T. G., Hernina, R., Ardhianto, R., Shidiq, I. P. A., & Wibowo, A. (2019). Paddy field mapping using UAV
1209
+ multi-spectral imagery. International Journal of GEOMATE, 17(61), 242–247. https://doi.org/10.21660/2019.61.icee408
1210
+ Ru, Y., Jin, L., Zhou, H., & Jia, Z. (2014). Performance experiment of rotary hydraulic atomizing nozzle for aerial spraying application.
1211
+ Transactions of the Chinese Society of Agricultural Engineering, 30(3), 50-55.
1212
+ Saha, B., Koshimoto, E., Quach, C. C., Hogge, E. F., Strom, T. H., Hill, B. L., ... & Goebel, K. (2011, March). Battery health management
1213
+ system for electric UAVs. In 2011 aerospace conference (pp. 1-9). IEEE.
1214
+ Saha, B., Quach, C. C., & Goebel, K. (2012, March). Optimizing battery life for electric UAVs using a Bayesian framework. In 2012
1215
+ ieee aerospace conference (pp. 1-7). IEEE.
1216
+ Santos, L. M. D., Barbosa, B. D. S., & Andrade, A. D. (2019). Use of remotely piloted aircraft in precision agriculture: a review. Dyna,
1217
+ 86(210), 284-291.
1218
+
1219
+ Seo, Y., & Umeda, S. (2021). Evaluating Farm Management Performance by the Choice of Pest-Control Sprayers in Rice Farming in
1220
+ Japan. Sustainability, 13(5), 2618.
1221
+ Shi, G., & Liu, Y. (2011). Maritime applications of UAV remote sensing system. China Maritime, 4, 29-32.
1222
+
1223
+
1224
+ Silver, B., Mazur, M., Wiśniewski, A., & Babicz, A. (2017). Welcome to the era of drone-powered solutions: a valuable source of new
1225
+ revenue streams for telecoms operators. PWC Communications Review.
1226
+ Simelli, I., & Tsagaris, A. (2015). The Use of Unmanned Aerial Systems (UAS) in Agriculture. In HAICTA (pp. 730-736).
1227
+ Song, X. P., Liang, Y. J., Zhang, X. Q., Qin, Z. Q., Wei, J. J., Li, Y. R., & Wu, J. M. (2020). Intrusion of fall armyworm (Spodoptera
1228
+ frugiperda) in sugarcane and its control by drone in China. Sugar Tech, 22(4), 734-737.
1229
+ Spoorthi, S., Shadaksharappa, B., Suraj, S., & Manasa, V. K. (2017). Freyr drone: Pesticide/fertilizers spraying drone-an agricultural
1230
+ approach. In 2017 2nd International Conference on Computing and Communications Technologies (ICCCT) (pp. 252-255). IEEE.
1231
+ Stehr, N. J. (2015). Drones: The newest technology for precision agriculture. Natural Sciences Education, 44(1), 89-91.
1232
+ Suryanegara, M., Arifin, A. S., Asvial, M., Ramli, K., Nashiruddin, M. I., & Hayati, N. (2018). What are the Indonesian concerns about
1233
+ the Internet of Things (IoT)? Portraying the profile of the prospective market. IEEE Access, 7, 2957-2968.
1234
+ Swain, K. C., Thomson, S. J., & Jayasuriya, H. P. (2010). Adoption of an unmanned helicopter for low-altitude remote sensing to
1235
+ estimate yield and total biomass of a rice crop. Transactions of the ASABE, 53(1), 21-27.
1236
+ Sylvester, G. (Ed.). (2018). E-agriculture in action: Drones for agriculture. Food and Agriculture Organization of the United Nations
1237
+ and International Telecommunication Union.
1238
+ Syuaib, M. F. (2016). Sustainable agriculture in Indonesia: Facts and challenges to keep growing in harmony with environment.
1239
+ Agricultural Engineering International: CIGR Journal, 18(2), 170-184.
1240
+ Tang, Y., Hou, C. J., Luo, S. M., Lin, J. T., Yang, Z., & Huang, W. F. (2018). Effects of operation height and tree shape on droplet
1241
+ deposition in citrus trees using an unmanned aerial vehicle. Computers and Electronics in Agriculture, 148, 1-7.
1242
+ Tao, Q., Cha, J., Hou, M., & Zhang, F. (2018). Parameter identification of Blimp Dynamics through Swinging Motion. 2018 15th
1243
+ International Conference on Control, Automation, Robotics and Vision (ICARCV). https://doi.org/10.1109/icarcv.2018.8581376
1244
+ Thusoo, R. (2021). Quadrotors in the Present Era: a Review. Information Technology in Industry, 9(1), 164–178.
1245
+ https://doi.org/10.17762/itii.v9i1.116
1246
+ Tsouros, D. C., Bibi, S., & Sarigiannidis, P. G. (2019). A review on UAV-based applications for precision agriculture. Information
1247
+ (Switzerland), 10(11). https://doi.org/10.3390/info10110349
1248
+ Turner, D., Lucieer, A., & Watson, C. (2011). Development of an Unmanned Aerial Vehicle (UAV) for hyper resolution vineyard
1249
+ mapping based on visible, multispectral, and thermal imagery. In Proceedings of 34th International symposium on remote sensing of
1250
+ environment (p. 4).
1251
+ Unal, I., & Topakci, M. (2014). A review on using drones for precision farming applications. In Proceedings of the 12th International
1252
+ Congress on Agricultural Mechanization and Energy, Cappadocia, Turkey (pp. 3-6).
1253
+ Vega, F. A., Ramirez, F. C., Saiz, M. P., & Rosua, F. O. (2015). Multi-temporal imaging using an unmanned aerial vehicle for monitoring
1254
+ a sunflower crop. Biosystems Engineering, 132, 19-27.
1255
+
1256
+
1257
+ Vera, J., Conejero, W., Mira-García, A. B., Conesa, M. R., & Ruiz-Sánchez, M. C. (2021). Towards irrigation automation based on
1258
+ dielectric
1259
+ soil
1260
+ sensors.
1261
+ Journal
1262
+ of
1263
+ Horticultural
1264
+ Science
1265
+ and
1266
+ Biotechnology,
1267
+ 00(00),
1268
+ 1–12.
1269
+ https://doi.org/10.1080/14620316.2021.1906761
1270
+ Vroegindeweij, B. A., van Wijk, S. W., & van Henten, E. (2014). Autonomous unmanned aerial vehicles for agricultural applications.
1271
+ Wallace, L., Lucieer, A., Malenovský, Z., Turner, D., & Vopěnka, P. (2016). Assessment of forest structure using two UAV techniques:
1272
+ A comparison of airborne laser scanning and structure from motion (SfM) point clouds. Forests, 7(3), 62.
1273
+ World Health Organization. (2019). The state of food security and nutrition in the world 2019: safeguarding against economic
1274
+ slowdowns and downturns (Vol. 2019). Food & Agriculture Org. UN. Available online: https://www.un.org/sustainabledevelopment.
1275
+ Xiang, H., & Tian, L. (2011). Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial
1276
+ vehicle (UAV). Biosystems engineering, 108(2), 174-190.
1277
+ Xue, X., Lan, Y., Sun, Z., Chang, C., & Hoffmann, W. C. (2016). Develop an unmanned aerial vehicle based automatic aerial spraying
1278
+ system. Computers and electronics in agriculture, 128, 58-66.
1279
+ Yallappa, D., Veerangouda, M., Maski, D., Palled, V., & Bheemanna, M. (2017). Development and evaluation of drone mounted sprayer
1280
+ for pesticide applications to crops. In 2017 IEEE Global Humanitarian Technology Conference (GHTC) (pp. 1-7). IEEE.
1281
+ Yang, R., Wu, Y., & Li, J. (2011). UAV aerial system characteristics and application prospects. Geology and Mineral Resources
1282
+ Mapping, 12(1), 8-9.
1283
+ Yao, L., Jiang, Y., Zhiyao, Z., Shuaishuai, Y., & Quan, Q. (2016, August). A pesticide spraying mission assignment performed by multi-
1284
+ quadcopters and its simulation platform establishment. In 2016 IEEE Chinese Guidance, Navigation and Control Conference
1285
+ (CGNCC) (pp. 1980-1985). IEEE.
1286
+ Zhang, C., Walters, D., & Kovacs, J. M. (2014). Applications of low altitude remote sensing in agriculture upon farmers' requests–a
1287
+ case study in northeastern Ontario, Canada. PloS one, 9(11), e112894.
1288
+ Zhu, H., Lan, Y., Wu, W., Hoffmann, W. C., Huang, Y., Xue, X., & Fritz, B. (2010) “Development of a PWM precision spraying
1289
+ controller for unmanned aerial vehicles.” Journal of Bionic Engineering, 7(3), pp.276-283.
1290
+
1291
+
1292
+
1293
+
1294
+
VNAyT4oBgHgl3EQfhfi9/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
VdAzT4oBgHgl3EQfYPwk/content/tmp_files/2301.01330v1.pdf.txt ADDED
@@ -0,0 +1,314 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01330v1 [math.GR] 3 Jan 2023
2
+ ON REPRESENTATIONS OF DIRECT PRODUCTS AND THE
3
+ BOUNDED GENERATION PROPERTY OF BRANCH GROUPS
4
+ STEFFEN KIONKE AND EDUARD SCHESLER
5
+ Abstract. We prove that the minimal representation dimension of a direct
6
+ product G of non-abelian groups G1, . . . , Gn is bounded below by n + 1 and
7
+ thereby answer a question of Ab´ert. If each Gi is moreover non-solvable, then
8
+ this lower bound can be improved to be 2n. By combining this with results of
9
+ Pyber, Segal, and Shusterman on the structure of boundedly generated groups
10
+ we show that branch groups cannot be boundedly generated.
11
+ Introduction
12
+ An infinite group G is called just-infinite if all of its proper quotients are finite.
13
+ Obvious examples of just-infinite groups are virtually simple groups. Other exam-
14
+ ples arise from irreducible lattices in higher rank semisimple Lie groups, such as
15
+ SLn(Z) for n ≥ 3, after dividing out their centers, see [12, Chapter IV]. Such groups
16
+ are in fact hereditarily just-infinite, which means that they are residually finite and
17
+ all of their finite index subgroups are just-infinite. Grigorchuk’s group [10] provided
18
+ the first example of a just-infinite group that is not virtually a finite direct power of
19
+ a simple or a hereditarily just infinite group. Grigorchuk’s group is a just-infinite
20
+ branch group, which means that its commensurability classes of subnormal sub-
21
+ groups form a lattice that is isomorphic to the lattice of open and closed subsets
22
+ of a Cantor set. By Wilson’s classification [18] just-infinite groups fall into three
23
+ classes. Every just-infinite group G is either a branch group or virtually a direct
24
+ power of a simple or a hereditarily just-infinite group.
25
+ Since its introduction by McCarthy [13] in the late 1960’s, the class of just-infinite
26
+ groups remained an active field of research. One reason might be that every finitely
27
+ generated infinite group admits a just-infinite quotient. Thus whenever there is
28
+ some finitely generated, infinite group G that admits a property P that is preserved
29
+ under homomorphic images, then there is also a finitely generated just-infinite group
30
+ with P. Following [3], we call a property P that is preserved under homomorphic
31
+ images an H-property. Well-known examples of H-properties include amenability,
32
+ property (T), bounded generation, being a torsion group, having subexponential
33
+ growth etc. In view of Wilson’s classification, it is natural to investigate which
34
+ of the three classes of just-infinite groups contain groups that satisfy a given H-
35
+ property P. For the H-property “being a torsion group” this question is settled. In
36
+ this case it is know that there are finitely generated simple groups [15], just-infinite
37
+ branch groups [10], and hereditarily just-infinite groups [9] that are torsion. On
38
+ the other hand, there are torsion-free, finitely generated, just-infinite groups that
39
+ are simple [4], branch [2], and hereditarily just-infinite (e.g. Z).
40
+ The purpose of this note is to study this question for the bounded generation
41
+ property. Recall that a group G is boundedly generated if it contains a finite subset
42
+ 2010 Mathematics Subject Classification. Primary 20E08; Secondary 20E26.
43
+ Key words and phrases. bounded generation, branch group, faithful representations of direct
44
+ products.
45
+ Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) -
46
+ 441848266.
47
+ 1
48
+
49
+ 2
50
+ S. KIONKE AND E. SCHESLER
51
+ {g1, . . . , gn} such that every g ∈ G can be written as g = gk1
52
+ 1 · · · gkn
53
+ n for appropriate
54
+ ki ∈ Z. Since infinite torsion groups are not boundedly generated, it follows that
55
+ each of the three classes of just-infinite groups contains a finitely generated group
56
+ that does not have the bounded generation property. On the other hand, it was
57
+ proven by Carter and Keller [7] that PSLn(Z) is boundedly generated for n ≥ 3,
58
+ which provides an interesting boundedly generated hereditarily just-infinite group.
59
+ The existence of boundedly generated, infinite, simple groups was established by
60
+ Muranov [14], whose construction seems to be the only one available at present. It
61
+ remains to study just-infinite branch groups. The question of existence of boundedly
62
+ generated just-infinite branch groups was raised by Bartholdi, Grigorchuk, and
63
+ ˇSuni´k [3, Question 12] and remained open to the best of our knowledge.
64
+ The
65
+ purpose of the paper is to show that the answer is negative for arbitrary branch
66
+ groups (even without the assumption of being just-infinite).
67
+ Theorem 1. There is no boundedly generated branch group.
68
+ As a consequence, it follows from Wilson’s classification of just-infinite groups
69
+ that every boundedly generated infinite group has a quotient that is virtually a
70
+ product of finitely many copies of a boundedly generated simple or hereditarily
71
+ just infinite group. The proof the Theorem 1 is a rather direct combination of
72
+ results of Pyber and Segal [16], Shusterman [17], and Ab´ert [1].
73
+ Ab´ert proved that weakly branch groups are not linear over any field (for branch
74
+ groups this result is due to Grigorchuk and Delzant). More precisely, he defined
75
+ for every field k the natural number matk(n) to be the minimal r such that every
76
+ graph on n vertices can be represented in the matrix algebra Mr,r(k) where the
77
+ graph’s edges encode non-commutation. Ab´ert showed that
78
+
79
+ ⌊n/2⌋ ≤ matk(n) ≤
80
+ 2(n−⌊log2(n)⌋+1) and asked for a linear lower bound [1, Question 4]. The following
81
+ result answers this question in the affirmative.
82
+ Theorem 2. Let k be a field and let r ≥ 1. Suppose that there are (r × r)-matrices
83
+ a1, . . . , an, b1, . . . , bn ∈ Mr,r(k) such that all pairwise commutators are trivial except
84
+ for [ai, bi] = aibi − biai for all i ∈ {1, . . . , n}. Then r ≥ n + 1.
85
+ The lower bound in Theorem 2 is sharp. Let λ ∈ k×. Consider the matrices
86
+ ai = I + E1,i+1, bi = I − λEi+1,i+1 ∈ Mn+1,n+1(k) for i = 1, . . . , n, where I is the
87
+ identity matrix and Ei,j denotes the elementary matrix whose (i, j)-entry is 1 and
88
+ all other entries are 0. Then ai, bi satisfy the assumptions of Theorem 2. If λ ̸= 1,
89
+ then ai, bi are invertible. If |k| > 2, this shows with [1, Prop. 5] that
90
+ �n
91
+ 2
92
+
93
+ + 1 ≤ matk(n) ≤ n + 1.
94
+ The non-linearity of weakly branch groups follows since these groups contain
95
+ infinite products of non-abelian groups. Let µk(G) denote the minimal dimension
96
+ of a faithful, finite dimensional representation of a group G over a field k (we write
97
+ µk(G) = ∞ if G is not linear over k). Theorem 2 directly implies a lower bound
98
+ µk(G1 × . . . × Gn) ≥ n + 1 for direct products of non-abelian groups. Similarly
99
+ Theorem 2 provides lower bounds for representations of products non-commutative
100
+ (Lie) algebras. If the factors Gi are assumed to be non-solvable, the lower bound
101
+ can be improved further.
102
+ Theorem 3. Let k be a field, let G1, . . . , Gn be groups and let G = G1 × · · · × Gn
103
+ denote their direct product.
104
+ (1) If the groups G1, . . . , Gn are non-abelian, then µk(G) ≥ n + 1.
105
+ (2) If the groups G1, . . . , Gn are non-solvable, then µk(G) ≥ 2n.
106
+ Both lower bounds in Theorem 3 are sharp. Let ai = I + E1,i+1, bi = I −
107
+ 2Ei+1,i+1 ∈ GLn+1(Q) be as above. Setting Gi = ⟨ai, bi⟩ we can therefore deduce
108
+
109
+ BRANCH GROUPS ARE NOT BOUNDEDLY GENERATED
110
+ 3
111
+ that µQ(G1 ×. . .×Gn) = n+1. Suppose that the groups Gi in Theorem 3 are non-
112
+ solvable subgroups of GL2(k) for some field k. Then each Gi can be embedded in a
113
+ 2×2-diagonal block in GL2n(k), which gives us an embedding of G = G1 ×· · ·×Gn
114
+ in GL2n(k). Together with Theorem 3 this implies µk(G) = 2n. In particular,
115
+ this applies to the case where each Gi is a non-abelian free group and thereby
116
+ recovers [6, Theorem 3] in the SLn-case.
117
+ 1. Branch groups are not boundedly generated
118
+ There are several characterizations of branch groups. The following one, which
119
+ is a slight reformulation of [3, Definition 1.1], does not involve a rooted tree which
120
+ makes it rather abstract. However it suits well for our purposes. A more geometric
121
+ definition can be found in [3, Definition 1.13].
122
+ Definition. A group G is called a branch group if it admits a decreasing sequence
123
+ of subgroups (Hi)i∈N0 with H0 = G and
124
+
125
+ i∈N0
126
+ Hi = 1, and a sequence of integers
127
+ (ki)i∈N0 with k0 = 1 such that for each i the following hold:
128
+ (1) Hi is a normal subgroup of finite index in G.
129
+ (2) Hi splits as a direct product Hi = H(1)
130
+ i
131
+ × . . . × H(ki)
132
+ i
133
+ , where the factors are
134
+ pairwise isomorphic.
135
+ (3) the quotient mi+1 := ki+1/ki is an integer with mi+1 ≥ 2, and the product
136
+ decomposition of Hi+1 refines the product decomposition of Hi in the sense
137
+ that each factor H(j)
138
+ i
139
+ of Hi contains the factors H(ℓ)
140
+ i+1 of Hi+1, where ℓ
141
+ satisfies (j − 1) · mi+1 + 1 ≤ ℓ ≤ j · mi+1.
142
+ (4) G acts transitively by conjugation on the set of factors H(j)
143
+ i
144
+ of Hi.
145
+ As indicated in the introduction, not every branch group is just-infinite. In fact
146
+ there is no need for finitely generated branch groups to admit a just-infinite quotient
147
+ that is a branch group. See [8, Theorem 2] for an example of finitely generated
148
+ branch group that maps homomorphically onto Z, which is of course just-infinite
149
+ and bounded generated. As a consequence, to prove that branch groups cannot be
150
+ boundedly generated, it is not sufficient to consider the just-infinite case, in which
151
+ the claim turns out to be a direct consequence of results of Ab´ert [1], Pyber and
152
+ Segal [16].
153
+ Proof of Theorem 1. Suppose there is a branch group G that is boundedly gener-
154
+ ated. Then [16, Corollary 1.6] tells us that G admits an epimorphism π: G → Q,
155
+ where Q is an infinite linear group. However, by [1, Corollary 7] branch groups are
156
+ not linear over any field. Thus Q is a proper quotient of G. As such Q is virtu-
157
+ ally abelian by [8, Proposition 6]. Since G, being a boundedly generated group,
158
+ is finitely generated, it follows that Q has a (non-trivial) free abelian finite index
159
+ subgroup Q0. We can therefore consider the finite index subgroup G0 := π−1(Q0)
160
+ of G, which by construction maps onto Z. Let us now fix an arbitrary number
161
+ n ∈ N. From the definition of a branch group it follows that G contains a finite
162
+ index subgroup of the form Hi = H(1)
163
+ i
164
+ × . . . × H(ki)
165
+ i
166
+ , where the factors are pairwise
167
+ isomorphic and ki ≥ n. Then Hi ∩ G0 is a finite index subgroup of Hi. In this
168
+ case it can be easily seen that there are pairwise isomorphic finite index subgroups
169
+ K(j)
170
+ i
171
+ ≤ H(j)
172
+ i
173
+ such that Ki := K(1)
174
+ i
175
+ × . . . × K(ki)
176
+ i
177
+ ≤ Hi ∩ G0. In particular we see
178
+ that Ki has finite index in G0, which implies that it maps onto Z. Thus some, and
179
+ hence every, factor K(j)
180
+ i
181
+ maps onto Z. We can therefore deduce that the torsion-free
182
+ part of the abelianization of Ki has rank at least ki ≥ n. As a consequence, this
183
+ holds for every finite index subgroup of Ki. In particular this tells us that there
184
+ is no finite index subgroup of Ki that can be generated with less then n elements.
185
+
186
+ 4
187
+ S. KIONKE AND E. SCHESLER
188
+ Since n ∈ N was arbitrary this contradicts a result of Shusterman [17, Theorem
189
+ 1.1], which tells us that for every boundedly generated group H there is a constant
190
+ C > 0 such that every finite index subgroup of H contains a finite index subgroup
191
+ that can be generated by at most C elements.
192
+
193
+ 2. Lower bounds for the minimal representation dimension of directs
194
+ products
195
+ Let us now prove the results concerning the minimal representation dimensions.
196
+ Proof of Theorem 2. For the proof we combine ideas from [1] and [5]. Extending
197
+ scalars, we may assume that k is an infinite field. Recall that I ∈ Mr,r(k) denotes
198
+ the identity matrix. We claim that I, a1, . . . , an, b1, . . . , bn are linearly independent.
199
+ This follows along the lines of [1, Proof of Thm. 3]. Suppose that cI + �
200
+ j λjaj +
201
+
202
+ j λ′
203
+ jbj = 0 for c, λ1, . . . , λn, λ′
204
+ 1, . . . , λ′
205
+ n ∈ k. Taking commutators with ai (resp.
206
+ bi) shows λi = 0 (resp. λ′
207
+ i = 0); since I ̸= 0 the last remaining coefficient c vanishes
208
+ as well.
209
+ Let V = kr and let C denote the linear span of {I, a1, . . . , an, b1, . . . , bn} in
210
+ Mr,r(k). Consider the linear map Ψ: C → V defined by Ψ(X) = Xv for some
211
+ v ∈ V . We will see that the image of Ψ has dimension at least n + 1 if v is chosen
212
+ appropriately. As the commutators zi = [ai, bi] are non-trivial, the kernel of each
213
+ zi is a proper subspace of V . However, V cannot be covered by a finite union of
214
+ proper subspaces (as k is infinite). Thus there is a vector v ∈ V such that ziv ̸= 0
215
+ for all i ∈ {1, . . . , n}. Let α: V → k be a linear form such that α(v) ̸= 0 and
216
+ α(ziv) ̸= 0 for all i ∈ {1, 2, . . ., n} (such a linear form α exists, as the dual space
217
+ V ∗ cannot be covered by finitely many proper subspaces). Now β : C × C → k
218
+ defined by β(x, y) = α([x, y](v)) is an alternating form on C. It is not difficult to
219
+ see that β is non-degenerate on the subspace ⟨a1, . . . , an, b1, . . . , bn⟩ ⊆ C (e.g. the
220
+ matrix representation has full rank). Let us observe that kI +ker(Ψ) is an isotropic
221
+ subspace, since for x, y ∈ kI + ker(Ψ) we have [x, y](v) = xyv − yxv = 0. As v ̸= 0
222
+ we have I ̸∈ ker(Ψ) and thus dimk ker(Ψ) + 1 ≤ n + 1. This allows us to conclude
223
+ that
224
+ r ≥ dimk(im(Ψ)) = 2n + 1 − dimk ker(Ψ) ≥ n + 1.
225
+
226
+ Proof of Theorem 3. The first assertion follows immediately from Theorem 2. As-
227
+ sume now that each Gi is non-solvable. If G is not linear, there is nothing to show.
228
+ Assume that (ρ, V ) is a finite dimensional faithful representation over k. By exten-
229
+ sion of scalars, we may assume that k is algebraically closed. Let V 1, . . . , V t denote
230
+ the composition factors of V considered as G-module.
231
+ Since k is algebraically
232
+ closed, the composition factor V j is isomorphic to a tensor product
233
+ V j = V j
234
+ 1 ⊗k V j
235
+ 2 ⊗k · · · ⊗k V j
236
+ n
237
+ where V j
238
+ i is an irreducible Gi-representation; see e.g. [11, Prop. 2.3.23]. The compo-
239
+ sition factors of V |Gi are the irreducible representations V 1
240
+ i , . . . , V t
241
+ i each one possi-
242
+ bly occurring several times. Suppose for a contradiction that V j
243
+ i is one-dimensional
244
+ for all j.
245
+ Then there is a basis of V such that ρ(Gi) is represented by upper
246
+ triangular matrices. This gives a contradiction, since Gi is not solvable.
247
+ For each j let Sj ⊆ {1, . . ., n} be the set of i such that dimk V j
248
+ i ≥ 2. By the
249
+ observation above, each i ≤ n belongs to at least one of the sets Sj. This implies
250
+ dimk V =
251
+ t
252
+
253
+ j=1
254
+ n
255
+
256
+ i=1
257
+ dimk V j
258
+ i ≥
259
+ t
260
+
261
+ j=1
262
+ 2|Sj| ≥
263
+ t
264
+
265
+ j=1
266
+ 2|Sj| ≥ 2n.
267
+
268
+
269
+ BRANCH GROUPS ARE NOT BOUNDEDLY GENERATED
270
+ 5
271
+ References
272
+ 1. Mikl´os Ab´ert, Representing graphs by the non-commuting relation, Publ. Math. Debrecen 69
273
+ (2006), no. 3, 261–269. MR 2273978
274
+ 2. Laurent Bartholdi and Rostislav I. Grigorchuk, On parabolic subgroups and Hecke algebras of
275
+ some fractal groups, Serdica Math. J. 28 (2002), no. 1, 47–90. MR 1899368
276
+ 3. Laurent Bartholdi, Rostislav I. Grigorchuk, and Zoran ˇSuni´k, Branch groups, Handbook of
277
+ algebra, Vol. 3, Handb. Algebr., vol. 3, Elsevier/North-Holland, Amsterdam, 2003, pp. 989–
278
+ 1112. MR 2035113
279
+ 4. Marc Burger and Shahar Mozes, Lattices in product of trees, Inst. Hautes ´Etudes Sci. Publ.
280
+ Math. (2000), no. 92, 151–194 (2001). MR 1839489
281
+ 5. Leandro Cagliero and Nadina Rojas, Faithful representations of minimal dimension of current
282
+ Heisenberg Lie algebras, Internat. J. Math. 20 (2009), no. 11, 1347–1362. MR 2584190
283
+ 6. Caterina Campagnolo and Holger Kammeyer, Products of free groups in lie groups, Journal
284
+ of Algebra 579 (2021), 237–255.
285
+ 7. David Carter and Gordon Keller, Bounded elementary generation of SLn(O), Amer. J. Math.
286
+ 105 (1983), no. 3, 673–687. MR 704220
287
+ 8. Thomas Delzant and Rostislav Grigorchuk, Homomorphic images of branch groups, and
288
+ Serre’s property (FA), Geometry and dynamics of groups and spaces, Progr. Math., vol.
289
+ 265, Birkh¨auser, Basel, 2008, pp. 353–375. MR 2402409
290
+ 9. Mikhail Ershov and Andrei Jaikin-Zapirain, Property (T) for noncommutative universal lat-
291
+ tices, Invent. Math. 179 (2010), no. 2, 303–347. MR 2570119
292
+ 10. R. I. Grigorˇcuk, On Burnside’s problem on periodic groups, Funktsional. Anal. i Prilozhen.
293
+ 14 (1980), no. 1, 53–54. MR 565099
294
+ 11. Emmanuel Kowalski, An introduction to the representation theory of groups, Graduate Studies
295
+ in Mathematics, vol. 155, American Mathematical Society, Providence, RI, 2014. MR 3236265
296
+ 12. G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik
297
+ und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-
298
+ Verlag, Berlin, 1991. MR 1090825
299
+ 13. Donald McCarthy, Infinite groups whose proper quotient groups are finite. I, Comm. Pure
300
+ Appl. Math. 21 (1968), 545–562. MR 237637
301
+ 14. Alexey Muranov, Diagrams with selection and method for constructing boundedly generated
302
+ and boundedly simple groups, Comm. Algebra 33 (2005), no. 4, 1217–1258. MR 2136699
303
+ 15. Alexander Yu. Ol’shanskii, Infinite groups with cyclic subgroups, Dokl. Akad. Nauk SSSR 245
304
+ (1979), no. 4, 785–787. MR 527709
305
+ 16. L´aszl´o Pyber and Dan Segal, Finitely generated groups with polynomial index growth, J. Reine
306
+ Angew. Math. 612 (2007), 173–211. MR 2364077
307
+ 17. Mark Shusterman, Ranks of subgroups in boundedly generated groups, Bull. Lond. Math. Soc.
308
+ 48 (2016), no. 3, 539–547. MR 3509913
309
+ 18. J. S. Wilson, Groups with every proper quotient finite, Proc. Cambridge Philos. Soc. 69 (1971),
310
+ 373–391. MR 274575
311
+ FernUniversit¨at in Hagen, Fakult¨at f¨ur Mathematik und Informatik, 58084 Hagen
312
+ Email address: [email protected]
313
+ Email address: [email protected]
314
+
VdAzT4oBgHgl3EQfYPwk/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,352 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf,len=351
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
3
+ page_content='01330v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
4
+ page_content='GR] 3 Jan 2023 ON REPRESENTATIONS OF DIRECT PRODUCTS AND THE BOUNDED GENERATION PROPERTY OF BRANCH GROUPS STEFFEN KIONKE AND EDUARD SCHESLER Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
5
+ page_content=' We prove that the minimal representation dimension of a direct product G of non-abelian groups G1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
6
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
7
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
8
+ page_content=' , Gn is bounded below by n + 1 and thereby answer a question of Ab´ert.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
9
+ page_content=' If each Gi is moreover non-solvable, then this lower bound can be improved to be 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
10
+ page_content=' By combining this with results of Pyber, Segal, and Shusterman on the structure of boundedly generated groups we show that branch groups cannot be boundedly generated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
11
+ page_content=' Introduction An infinite group G is called just-infinite if all of its proper quotients are finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
12
+ page_content=' Obvious examples of just-infinite groups are virtually simple groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
13
+ page_content=' Other exam- ples arise from irreducible lattices in higher rank semisimple Lie groups, such as SLn(Z) for n ≥ 3, after dividing out their centers, see [12, Chapter IV].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
14
+ page_content=' Such groups are in fact hereditarily just-infinite, which means that they are residually finite and all of their finite index subgroups are just-infinite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
15
+ page_content=' Grigorchuk’s group [10] provided the first example of a just-infinite group that is not virtually a finite direct power of a simple or a hereditarily just infinite group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
16
+ page_content=' Grigorchuk’s group is a just-infinite branch group, which means that its commensurability classes of subnormal sub- groups form a lattice that is isomorphic to the lattice of open and closed subsets of a Cantor set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
17
+ page_content=' By Wilson’s classification [18] just-infinite groups fall into three classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
18
+ page_content=' Every just-infinite group G is either a branch group or virtually a direct power of a simple or a hereditarily just-infinite group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
19
+ page_content=' Since its introduction by McCarthy [13] in the late 1960’s, the class of just-infinite groups remained an active field of research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
20
+ page_content=' One reason might be that every finitely generated infinite group admits a just-infinite quotient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
21
+ page_content=' Thus whenever there is some finitely generated, infinite group G that admits a property P that is preserved under homomorphic images, then there is also a finitely generated just-infinite group with P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
22
+ page_content=' Following [3], we call a property P that is preserved under homomorphic images an H-property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
23
+ page_content=' Well-known examples of H-properties include amenability, property (T), bounded generation, being a torsion group, having subexponential growth etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
24
+ page_content=' In view of Wilson’s classification, it is natural to investigate which of the three classes of just-infinite groups contain groups that satisfy a given H- property P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
25
+ page_content=' For the H-property “being a torsion group” this question is settled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
26
+ page_content=' In this case it is know that there are finitely generated simple groups [15], just-infinite branch groups [10], and hereditarily just-infinite groups [9] that are torsion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
27
+ page_content=' On the other hand, there are torsion-free, finitely generated, just-infinite groups that are simple [4], branch [2], and hereditarily just-infinite (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
28
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
29
+ page_content=' Z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
30
+ page_content=' The purpose of this note is to study this question for the bounded generation property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
31
+ page_content=' Recall that a group G is boundedly generated if it contains a finite subset 2010 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
32
+ page_content=' Primary 20E08;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
33
+ page_content=' Secondary 20E26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
34
+ page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
35
+ page_content=' bounded generation, branch group, faithful representations of direct products.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
36
+ page_content=' Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 441848266.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
37
+ page_content=' 1 2 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
38
+ page_content=' KIONKE AND E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
39
+ page_content=' SCHESLER {g1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
40
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
41
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
42
+ page_content=' , gn} such that every g ∈ G can be written as g = gk1 1 · · · gkn n for appropriate ki ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
43
+ page_content=' Since infinite torsion groups are not boundedly generated, it follows that each of the three classes of just-infinite groups contains a finitely generated group that does not have the bounded generation property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
44
+ page_content=' On the other hand, it was proven by Carter and Keller [7] that PSLn(Z) is boundedly generated for n ≥ 3, which provides an interesting boundedly generated hereditarily just-infinite group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
45
+ page_content=' The existence of boundedly generated, infinite, simple groups was established by Muranov [14], whose construction seems to be the only one available at present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
46
+ page_content=' It remains to study just-infinite branch groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
47
+ page_content=' The question of existence of boundedly generated just-infinite branch groups was raised by Bartholdi, Grigorchuk, and ˇSuni´k [3, Question 12] and remained open to the best of our knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
48
+ page_content=' The purpose of the paper is to show that the answer is negative for arbitrary branch groups (even without the assumption of being just-infinite).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
49
+ page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
50
+ page_content=' There is no boundedly generated branch group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
51
+ page_content=' As a consequence, it follows from Wilson’s classification of just-infinite groups that every boundedly generated infinite group has a quotient that is virtually a product of finitely many copies of a boundedly generated simple or hereditarily just infinite group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
52
+ page_content=' The proof the Theorem 1 is a rather direct combination of results of Pyber and Segal [16], Shusterman [17], and Ab´ert [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
53
+ page_content=' Ab´ert proved that weakly branch groups are not linear over any field (for branch groups this result is due to Grigorchuk and Delzant).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
54
+ page_content=' More precisely, he defined for every field k the natural number matk(n) to be the minimal r such that every graph on n vertices can be represented in the matrix algebra Mr,r(k) where the graph’s edges encode non-commutation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
55
+ page_content=' Ab´ert showed that � ⌊n/2⌋ ≤ matk(n) ≤ 2(n−⌊log2(n)⌋+1) and asked for a linear lower bound [1, Question 4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
56
+ page_content=' The following result answers this question in the affirmative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
57
+ page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
58
+ page_content=' Let k be a field and let r ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
59
+ page_content=' Suppose that there are (r × r)-matrices a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
60
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
61
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
62
+ page_content=' , an, b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
63
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
64
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
65
+ page_content=' , bn ∈ Mr,r(k) such that all pairwise commutators are trivial except for [ai, bi] = aibi − biai for all i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
66
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
67
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
68
+ page_content=' , n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
69
+ page_content=' Then r ≥ n + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
70
+ page_content=' The lower bound in Theorem 2 is sharp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
71
+ page_content=' Let λ ∈ k×.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
72
+ page_content=' Consider the matrices ai = I + E1,i+1, bi = I − λEi+1,i+1 ∈ Mn+1,n+1(k) for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
73
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
74
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
75
+ page_content=' , n, where I is the identity matrix and Ei,j denotes the elementary matrix whose (i, j)-entry is 1 and all other entries are 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
76
+ page_content=' Then ai, bi satisfy the assumptions of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
77
+ page_content=' If λ ̸= 1, then ai, bi are invertible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
78
+ page_content=' If |k| > 2, this shows with [1, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
79
+ page_content=' 5] that �n 2 � + 1 ≤ matk(n) ≤ n + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
80
+ page_content=' The non-linearity of weakly branch groups follows since these groups contain infinite products of non-abelian groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
81
+ page_content=' Let µk(G) denote the minimal dimension of a faithful, finite dimensional representation of a group G over a field k (we write µk(G) = ∞ if G is not linear over k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
82
+ page_content=' Theorem 2 directly implies a lower bound µk(G1 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
83
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
84
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
85
+ page_content=' × Gn) ≥ n + 1 for direct products of non-abelian groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
86
+ page_content=' Similarly Theorem 2 provides lower bounds for representations of products non-commutative (Lie) algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
87
+ page_content=' If the factors Gi are assumed to be non-solvable, the lower bound can be improved further.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
88
+ page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
89
+ page_content=' Let k be a field, let G1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
90
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
91
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
92
+ page_content=' , Gn be groups and let G = G1 × · · · × Gn denote their direct product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
93
+ page_content=' (1) If the groups G1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
94
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
95
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
96
+ page_content=' , Gn are non-abelian, then µk(G) ≥ n + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
97
+ page_content=' (2) If the groups G1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
98
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
99
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
100
+ page_content=' , Gn are non-solvable, then ��k(G) ≥ 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
101
+ page_content=' Both lower bounds in Theorem 3 are sharp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
102
+ page_content=' Let ai = I + E1,i+1, bi = I − 2Ei+1,i+1 ∈ GLn+1(Q) be as above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
103
+ page_content=' Setting Gi = ⟨ai, bi⟩ we can therefore deduce BRANCH GROUPS ARE NOT BOUNDEDLY GENERATED 3 that µQ(G1 ×.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
104
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
105
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
106
+ page_content='×Gn) = n+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
107
+ page_content=' Suppose that the groups Gi in Theorem 3 are non- solvable subgroups of GL2(k) for some field k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
108
+ page_content=' Then each Gi can be embedded in a 2×2-diagonal block in GL2n(k), which gives us an embedding of G = G1 ×· · ·×Gn in GL2n(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
109
+ page_content=' Together with Theorem 3 this implies µk(G) = 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
110
+ page_content=' In particular, this applies to the case where each Gi is a non-abelian free group and thereby recovers [6, Theorem 3] in the SLn-case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
111
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
112
+ page_content=' Branch groups are not boundedly generated There are several characterizations of branch groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
113
+ page_content=' The following one, which is a slight reformulation of [3, Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
114
+ page_content='1], does not involve a rooted tree which makes it rather abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
115
+ page_content=' However it suits well for our purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
116
+ page_content=' A more geometric definition can be found in [3, Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
117
+ page_content='13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
118
+ page_content=' Definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
119
+ page_content=' A group G is called a branch group if it admits a decreasing sequence of subgroups (Hi)i∈N0 with H0 = G and � i∈N0 Hi = 1, and a sequence of integers (ki)i∈N0 with k0 = 1 such that for each i the following hold: (1) Hi is a normal subgroup of finite index in G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
120
+ page_content=' (2) Hi splits as a direct product Hi = H(1) i × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
121
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
122
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
123
+ page_content=' × H(ki) i , where the factors are pairwise isomorphic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
124
+ page_content=' (3) the quotient mi+1 := ki+1/ki is an integer with mi+1 ≥ 2, and the product decomposition of Hi+1 refines the product decomposition of Hi in the sense that each factor H(j) i of Hi contains the factors H(ℓ) i+1 of Hi+1, where ℓ satisfies (j − 1) · mi+1 + 1 ≤ ℓ ≤ j · mi+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
125
+ page_content=' (4) G acts transitively by conjugation on the set of factors H(j) i of Hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
126
+ page_content=' As indicated in the introduction, not every branch group is just-infinite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
127
+ page_content=' In fact there is no need for finitely generated branch groups to admit a just-infinite quotient that is a branch group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
128
+ page_content=' See [8, Theorem 2] for an example of finitely generated branch group that maps homomorphically onto Z, which is of course just-infinite and bounded generated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
129
+ page_content=' As a consequence, to prove that branch groups cannot be boundedly generated, it is not sufficient to consider the just-infinite case, in which the claim turns out to be a direct consequence of results of Ab´ert [1], Pyber and Segal [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
130
+ page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
131
+ page_content=' Suppose there is a branch group G that is boundedly gener- ated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
132
+ page_content=' Then [16, Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
133
+ page_content='6] tells us that G admits an epimorphism π: G → Q, where Q is an infinite linear group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
134
+ page_content=' However, by [1, Corollary 7] branch groups are not linear over any field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
135
+ page_content=' Thus Q is a proper quotient of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
136
+ page_content=' As such Q is virtu- ally abelian by [8, Proposition 6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
137
+ page_content=' Since G, being a boundedly generated group, is finitely generated, it follows that Q has a (non-trivial) free abelian finite index subgroup Q0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
138
+ page_content=' We can therefore consider the finite index subgroup G0 := π−1(Q0) of G, which by construction maps onto Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
139
+ page_content=' Let us now fix an arbitrary number n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
140
+ page_content=' From the definition of a branch group it follows that G contains a finite index subgroup of the form Hi = H(1) i × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
141
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
142
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
143
+ page_content=' × H(ki) i , where the factors are pairwise isomorphic and ki ≥ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
144
+ page_content=' Then Hi ∩ G0 is a finite index subgroup of Hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
145
+ page_content=' In this case it can be easily seen that there are pairwise isomorphic finite index subgroups K(j) i ≤ H(j) i such that Ki := K(1) i × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
146
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
147
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
148
+ page_content=' × K(ki) i ≤ Hi ∩ G0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
149
+ page_content=' In particular we see that Ki has finite index in G0, which implies that it maps onto Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
150
+ page_content=' Thus some, and hence every, factor K(j) i maps onto Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
151
+ page_content=' We can therefore deduce that the torsion-free part of the abelianization of Ki has rank at least ki ≥ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
152
+ page_content=' As a consequence, this holds for every finite index subgroup of Ki.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
153
+ page_content=' In particular this tells us that there is no finite index subgroup of Ki that can be generated with less then n elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
154
+ page_content=' 4 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
155
+ page_content=' KIONKE AND E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
156
+ page_content=' SCHESLER Since n ∈ N was arbitrary this contradicts a result of Shusterman [17, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
157
+ page_content='1], which tells us that for every boundedly generated group H there is a constant C > 0 such that every finite index subgroup of H contains a finite index subgroup that can be generated by at most C elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
158
+ page_content=' □ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
159
+ page_content=' Lower bounds for the minimal representation dimension of directs products Let us now prove the results concerning the minimal representation dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
160
+ page_content=' Proof of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
161
+ page_content=' For the proof we combine ideas from [1] and [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
162
+ page_content=' Extending scalars, we may assume that k is an infinite field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
163
+ page_content=' Recall that I ∈ Mr,r(k) denotes the identity matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
164
+ page_content=' We claim that I, a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
165
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
166
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
167
+ page_content=' , an, b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
168
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
169
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
170
+ page_content=' , bn are linearly independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
171
+ page_content=' This follows along the lines of [1, Proof of Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
172
+ page_content=' 3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
173
+ page_content=' Suppose that cI + � j λjaj + � j λ′ jbj = 0 for c, λ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
174
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
175
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
176
+ page_content=' , λn, λ′ 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
177
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
178
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
179
+ page_content=' , λ′ n ∈ k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
180
+ page_content=' Taking commutators with ai (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
181
+ page_content=' bi) shows λi = 0 (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
182
+ page_content=' λ′ i = 0);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
183
+ page_content=' since I ̸= 0 the last remaining coefficient c vanishes as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
184
+ page_content=' Let V = kr and let C denote the linear span of {I, a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
185
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
186
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
187
+ page_content=' , an, b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
188
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
189
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
190
+ page_content=' , bn} in Mr,r(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
191
+ page_content=' Consider the linear map Ψ: C → V defined by Ψ(X) = Xv for some v ∈ V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
192
+ page_content=' We will see that the image of Ψ has dimension at least n + 1 if v is chosen appropriately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
193
+ page_content=' As the commutators zi = [ai, bi] are non-trivial, the kernel of each zi is a proper subspace of V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
194
+ page_content=' However, V cannot be covered by a finite union of proper subspaces (as k is infinite).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
195
+ page_content=' Thus there is a vector v ∈ V such that ziv ̸= 0 for all i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
196
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
197
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
198
+ page_content=' , n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
199
+ page_content=' Let α: V → k be a linear form such that α(v) ̸= 0 and α(ziv) ̸= 0 for all i ∈ {1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
200
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
201
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
202
+ page_content=', n} (such a linear form α exists, as the dual space V ∗ cannot be covered by finitely many proper subspaces).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
203
+ page_content=' Now β : C × C → k defined by β(x, y) = α([x, y](v)) is an alternating form on C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
204
+ page_content=' It is not difficult to see that β is non-degenerate on the subspace ⟨a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
205
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
206
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
207
+ page_content=' , an, b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
208
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
209
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
210
+ page_content=' , bn⟩ ⊆ C (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
211
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
212
+ page_content=' the matrix representation has full rank).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
213
+ page_content=' Let us observe that kI +ker(Ψ) is an isotropic subspace, since for x, y ∈ kI + ker(Ψ) we have [x, y](v) = xyv − yxv = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
214
+ page_content=' As v ̸= 0 we have I ̸∈ ker(Ψ) and thus dimk ker(Ψ) + 1 ≤ n + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
215
+ page_content=' This allows us to conclude that r ≥ dimk(im(Ψ)) = 2n + 1 − dimk ker(Ψ) ≥ n + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
216
+ page_content=' □ Proof of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
217
+ page_content=' The first assertion follows immediately from Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
218
+ page_content=' As- sume now that each Gi is non-solvable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
219
+ page_content=' If G is not linear, there is nothing to show.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
220
+ page_content=' Assume that (ρ, V ) is a finite dimensional faithful representation over k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
221
+ page_content=' By exten- sion of scalars, we may assume that k is algebraically closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
222
+ page_content=' Let V 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
223
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
224
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
225
+ page_content=' , V t denote the composition factors of V considered as G-module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
226
+ page_content=' Since k is algebraically closed, the composition factor V j is isomorphic to a tensor product V j = V j 1 ⊗k V j 2 ⊗k · · · ⊗k V j n where V j i is an irreducible Gi-representation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
227
+ page_content=' see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
228
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
229
+ page_content=' [11, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
230
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
231
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
232
+ page_content='23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
233
+ page_content=' The compo- sition factors of V |Gi are the irreducible representations V 1 i , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
234
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
235
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
236
+ page_content=' , V t i each one possi- bly occurring several times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
237
+ page_content=' Suppose for a contradiction that V j i is one-dimensional for all j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
238
+ page_content=' Then there is a basis of V such that ρ(Gi) is represented by upper triangular matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
239
+ page_content=' This gives a contradiction, since Gi is not solvable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
240
+ page_content=' For each j let Sj ⊆ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
241
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
242
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
243
+ page_content=', n} be the set of i such that dimk V j i ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
244
+ page_content=' By the observation above, each i ≤ n belongs to at least one of the sets Sj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
245
+ page_content=' This implies dimk V = t � j=1 n � i=1 dimk V j i ≥ t � j=1 2|Sj| ≥ t � j=1 2|Sj| ≥ 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
246
+ page_content=' □ BRANCH GROUPS ARE NOT BOUNDEDLY GENERATED 5 References 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
247
+ page_content=' Mikl´os Ab´ert, Representing graphs by the non-commuting relation, Publ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
248
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
249
+ page_content=' Debrecen 69 (2006), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
250
+ page_content=' 3, 261–269.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
251
+ page_content=' MR 2273978 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
252
+ page_content=' Laurent Bartholdi and Rostislav I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
253
+ page_content=' Grigorchuk, On parabolic subgroups and Hecke algebras of some fractal groups, Serdica Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
254
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
255
+ page_content=' 28 (2002), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
256
+ page_content=' 1, 47–90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
257
+ page_content=' MR 1899368 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
258
+ page_content=' Laurent Bartholdi, Rostislav I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
259
+ page_content=' Grigorchuk, and Zoran ˇSuni´k, Branch groups, Handbook of algebra, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
260
+ page_content=' 3, Handb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
261
+ page_content=' Algebr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
262
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
263
+ page_content=' 3, Elsevier/North-Holland, Amsterdam, 2003, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
264
+ page_content=' 989– 1112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
265
+ page_content=' MR 2035113 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
266
+ page_content=' Marc Burger and Shahar Mozes, Lattices in product of trees, Inst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
267
+ page_content=' Hautes ´Etudes Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
268
+ page_content=' Publ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
269
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
270
+ page_content=' (2000), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
271
+ page_content=' 92, 151–194 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
272
+ page_content=' MR 1839489 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
273
+ page_content=' Leandro Cagliero and Nadina Rojas, Faithful representations of minimal dimension of current Heisenberg Lie algebras, Internat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
274
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
275
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
276
+ page_content=' 20 (2009), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
277
+ page_content=' 11, 1347–1362.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
278
+ page_content=' MR 2584190 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
279
+ page_content=' Caterina Campagnolo and Holger Kammeyer, Products of free groups in lie groups, Journal of Algebra 579 (2021), 237–255.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
280
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
281
+ page_content=' David Carter and Gordon Keller, Bounded elementary generation of SLn(O), Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
282
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
283
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
284
+ page_content=' 105 (1983), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
285
+ page_content=' 3, 673–687.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
286
+ page_content=' MR 704220 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
287
+ page_content=' Thomas Delzant and Rostislav Grigorchuk, Homomorphic images of branch groups, and Serre’s property (FA), Geometry and dynamics of groups and spaces, Progr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
288
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
289
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
290
+ page_content=' 265, Birkh¨auser, Basel, 2008, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
291
+ page_content=' 353–375.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
292
+ page_content=' MR 2402409 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
293
+ page_content=' Mikhail Ershov and Andrei Jaikin-Zapirain, Property (T) for noncommutative universal lat- tices, Invent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
294
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
295
+ page_content=' 179 (2010), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
296
+ page_content=' 2, 303–347.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
297
+ page_content=' MR 2570119 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
298
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
299
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
300
+ page_content=' Grigorˇcuk, On Burnside’s problem on periodic groups, Funktsional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
301
+ page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
302
+ page_content=' i Prilozhen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
303
+ page_content=' 14 (1980), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
304
+ page_content=' 1, 53–54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
305
+ page_content=' MR 565099 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
306
+ page_content=' Emmanuel Kowalski, An introduction to the representation theory of groups, Graduate Studies in Mathematics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
307
+ page_content=' 155, American Mathematical Society, Providence, RI, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
308
+ page_content=' MR 3236265 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
309
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
310
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
311
+ page_content=' Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
312
+ page_content=' 17, Springer- Verlag, Berlin, 1991.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
313
+ page_content=' MR 1090825 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
314
+ page_content=' Donald McCarthy, Infinite groups whose proper quotient groups are finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
315
+ page_content=' I, Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
316
+ page_content=' Pure Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
317
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
318
+ page_content=' 21 (1968), 545–562.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
319
+ page_content=' MR 237637 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
320
+ page_content=' Alexey Muranov, Diagrams with selection and method for constructing boundedly generated and boundedly simple groups, Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
321
+ page_content=' Algebra 33 (2005), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
322
+ page_content=' 4, 1217–1258.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
323
+ page_content=' MR 2136699 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
324
+ page_content=' Alexander Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
325
+ page_content=' Ol’shanskii, Infinite groups with cyclic subgroups, Dokl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
326
+ page_content=' Akad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
327
+ page_content=' Nauk SSSR 245 (1979), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
328
+ page_content=' 4, 785–787.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
329
+ page_content=' MR 527709 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
330
+ page_content=' L´aszl´o Pyber and Dan Segal, Finitely generated groups with polynomial index growth, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
331
+ page_content=' Reine Angew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
332
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
333
+ page_content=' 612 (2007), 173–211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
334
+ page_content=' MR 2364077 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
335
+ page_content=' Mark Shusterman, Ranks of subgroups in boundedly generated groups, Bull.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
336
+ page_content=' Lond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
337
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
338
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
339
+ page_content=' 48 (2016), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
340
+ page_content=' 3, 539–547.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
341
+ page_content=' MR 3509913 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
342
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
343
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
344
+ page_content=' Wilson, Groups with every proper quotient finite, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
345
+ page_content=' Cambridge Philos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
346
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
347
+ page_content=' 69 (1971), 373–391.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
348
+ page_content=' MR 274575 FernUniversit¨at in Hagen, Fakult¨at f¨ur Mathematik und Informatik, 58084 Hagen Email address: steffen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
349
+ page_content='kionke@fernuni-hagen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
350
+ page_content='de Email address: eduard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
351
+ page_content='schesler@fernuni-hagen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
352
+ page_content='de' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf'}
W9E4T4oBgHgl3EQfNQwq/content/tmp_files/2301.04954v1.pdf.txt ADDED
@@ -0,0 +1,822 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ We are Going to the Space - Part 1:
2
+ Which device to deploy in a satellite?
3
+ Robert Bayer
4
+ IT University of Copenhagen
5
6
+ Julian Priest
7
+ IT University of Copenhagen
8
9
+ Pınar Tözün
10
+ IT University of Copenhagen
11
12
+ ABSTRACT
13
+ The shrinkage in sizes of components that make up satellites led to
14
+ wider and low cost availability of satellites. As a result, there has
15
+ been an advent of smaller organizations having the ability to deploy
16
+ satellites with a variety of data-intensive applications to run on
17
+ them. One popular application is image analysis to detect, for exam-
18
+ ple, land, ice, clouds, etc. However, the resource-constrained nature
19
+ of the devices deployed in satellites creates additional challenges
20
+ for this resource-intensive application.
21
+ In this paper, we investigate the performance of a variety of edge
22
+ devices for deep-learning-based image processing in space. Our
23
+ goal is to determine the devices that satisfy the latency and power
24
+ constraints of satellites while achieving reasonably accurate results.
25
+ Our results demonstrate that hardware accelerators (TPUs, GPUs)
26
+ are necessary to reach the latency requirements. On the other hand,
27
+ state-of-the-art edge devices with GPUs could have a high power
28
+ draw, making them unsuitable for deployment on a satellite.
29
+ 1
30
+ INTRODUCTION
31
+ In the last century, most innovation in real-world satellite appli-
32
+ cations were only available to the largest countries such as USA
33
+ and Russia. These innovations led to significant reductions in the
34
+ size of the components that make up a satellite and in the cost of
35
+ the manufacturing and deployment process of a satellite. This, in
36
+ turn, introduced a new CubeSat class of miniature satellites. Their
37
+ format is based on a 10cm cube, with the possibility of combining
38
+ multiple modules to create a larger satellite. This standardization
39
+ makes a batch deployment of satellites easier as the format affords
40
+ tight configuration. The reduction in costs that came as a result of
41
+ this new deployment method led to the advent of satellites owned
42
+ by small or private organizations.
43
+ However, the size of the CubeSat class satellites poses new com-
44
+ plex challenges such as the power and thermal constraints as well
45
+ as the physical dimensions of components. These CubeSats often
46
+ perform resource-intensive tasks, which clashes with the resource-
47
+ constrained nature of their format.
48
+ Image processing and analysis is one class of possible satellite
49
+ workloads. Satellites with this type of workload take large-scale
50
+ images, which they have to store and send back to a ground station.
51
+ The link between the satellite and a ground station is of limited
52
+ bandwidth and short-lived. The images must be highly compressed
53
+ to send all of them or filtered by quality and areas of interest. The
54
+ images already have a resolution of tens or hundreds of meters
55
+ per pixel, and lossy compression would lead to even more loss of
56
+ detail. Filtering preserves the details of the images, but is more
57
+ resource-intensive.
58
+ This paper is a step toward understanding the requirements
59
+ and limitations of deep-learning-based image filtering systems on
60
+ small satellites. More specifically, we characterize the requirements
61
+ and constraints of an image processing unit (IPU) deployed on a
62
+ satellite and outline possible use case scenarios of such a system,
63
+ each introducing a different degree of resource constraints and
64
+ intensity. We then further analyze the performance of multiple
65
+ edge devices on these different scenarios and their suitability for
66
+ possible deployment on one of the Danish Student CubeSat Project’s
67
+ (DISCO) [7] satellites.
68
+ These devices are based on different hardware architectures,
69
+ ranging from a microcontroller to a tensor processing unit (TPU).
70
+ While microcontrollers or more complex CPUs have extensive flight
71
+ history (have already been deployed in satellites before) and low
72
+ power footprint, they were not built with running deep learning
73
+ workloads in mind. On the other hand, GPUs have been utilized
74
+ more in the past decade in satellites, with one of the leading work-
75
+ loads being machine learning, based on the success of GPUs in
76
+ terrestrial use cases of machine learning. The latest of these archi-
77
+ tectures, TPU, has not been extensively researched for deployment
78
+ in satellites, even though TPUs were designed to perform fast neural
79
+ network inference, promising low latency with high efficiency.
80
+ The contributions of this study are as follows:
81
+ • We illustrate the differences between the terrestrial and space
82
+ edge IoT. The edge devices deployed in space have to perform
83
+ very resource-intensive workloads with high reliability and do
84
+ so in a highly resource-constrained environment.
85
+ • We characterize a set of requirements specific to IPU on a
86
+ CubeSat. We do this by outlining multiple use case scenarios
87
+ and showing how they affect the required latency and possible
88
+ power draw of such a system.
89
+ • We compare the performance of multiple edge devices based
90
+ on different architectures and show the need and the bene-
91
+ fit of using highly specialized hardware for machine learning
92
+ workloads on satellites.
93
+ 2
94
+ BACKGROUND
95
+ We first introduce DISCO project and survey related work that
96
+ specifically targets data processing in satellites.
97
+ 2.1
98
+ DISCO
99
+ The Danish Student Cubesat Program (DISCO) [7] offers Danish
100
+ university students the opportunity to design and operate a small
101
+ satellite and to gain space flight experience. DISCO is a collaboration
102
+ between four universities in Denmark, which will initially launch
103
+ three student Cubesats into Low Earth Orbit with the first launch
104
+ scheduled for 2023.
105
+ DISCO2 has been designed by students to carry an Earth imag-
106
+ ing payload, infrastructure to capture images in space, into a solar
107
+ synchronous polar orbit. The instrument is a collaboration with
108
+ arXiv:2301.04954v1 [cs.LG] 12 Jan 2023
109
+
110
+ Bayer, et al.
111
+ Image process-
112
+ ing Unit
113
+ Nominal
114
+ Power
115
+ Peak Power
116
+ Design Margin
117
+ Nominal Cycle
118
+ Peak Cycle
119
+ Power
120
+ Mass budget
121
+ Dimensions
122
+ Constraints
123
+ 2.00 W
124
+ 5.00 W
125
+ 5%
126
+ 20%
127
+ 20%
128
+ 1.48 W
129
+ 0.15 Kg
130
+ 10x70x80 mm
131
+ Table 1: List of constraints of the IPU on board of the DISCO2 satellite.
132
+ the Arctic Research Centre at Aarhus University and will support a
133
+ range of field research in Greenland. Initially focused on a long term
134
+ marine systems and cryosphere monitoring projects, the satellite
135
+ will supplement ground based observations with remote sensing
136
+ data, providing both good polar coverage and on demand availabil-
137
+ ity for the projects.
138
+ The payload will include one or more high resolution cameras
139
+ as well as a dedicated IPU, which will be capable of simple machine
140
+ learning applications for image classification. Students will be able
141
+ to carry out conventional on-satellite image processing in addi-
142
+ tion to running machine learning applications for classification,
143
+ discrimination, and feature identification.
144
+ 2.2
145
+ Related Work
146
+ The challenge of low bandwidth on small satellites creates the need
147
+ for data post-processing to filter the data on the satellite before
148
+ sending elsewhere. Neural-network-based filtering has been stud-
149
+ ied for this purpose in recent years. Specifically, several works have
150
+ tested the suitability of small system-on-chip (SoC) devices leverag-
151
+ ing the power of GPUs to accelerate machine learning workloads
152
+ [3, 13]. Moreover, some works have also explored the use of ASICs,
153
+ such as Intel’s Movidius Myriad vision processing units (VPUs)
154
+ [8, 9]. This VPU has even seen real-life deployment [8].
155
+ Evaluation of TPUs for deployment on satellites is limited, how-
156
+ ever. To the best of our knowledge, only one work has explored this
157
+ option [10], with no real-life deployments. DISCO project would
158
+ therefore be the first satellite to leverage TPU for onboard deep
159
+ learning applications, based on the findings of our study.
160
+ In this work, we aim to characterize the performance of the dif-
161
+ ferent flavors of off-the-shelf edge devices to check their suitability
162
+ for being deployed on a satellite in the context of DISCO project.
163
+ Data management and processing for internet-of-things and edge
164
+ computing has been important in the data management community
165
+ as well [4, 14, 16, 18]. We are complementing these works with a
166
+ very specific application focus, which is data-intensive applications
167
+ deployed on satellites.
168
+ 3
169
+ REQUIREMENTS
170
+ The requirements and constraints used in this study are based on
171
+ the DISCO2 Arctic imaging mission use case. The power and mass
172
+ constraints of the edge device to be deployed on the satellite are
173
+ based on the power and mass budgets developed in the DISCO2 en-
174
+ gineering design. The satellite design is a modular 3U Cubesat with
175
+ off-the-shelf modules for attitude control, power, communications,
176
+ and flight control. The power budget values are typical for a 3U
177
+ earth imaging Cubesat of this type. The resulting payload capacity
178
+ is 1U (10x10x10cm) and 1.3kg and this must include the cameras,
179
+ module enclosure, optics. and image processing unit (IPU). The full
180
+ list of constraints of the IPU is shown in Table 1.
181
+ The planned orbit of DISCO2 is a solar synchronous polar or-
182
+ bit at 550 km altitude. The camera sensor is based on an Alvium
183
+ 1800 C-2040 and the lens focal length is the maximum that could
184
+ be considered for the mission. Assuming a 50% overlap between
185
+ images, i.e., capturing the same land area, this provides a minimum
186
+ time of 4.42s between consecutive images (𝑇𝑖), which was derived
187
+ as follows:
188
+ 𝑇𝑖 = 𝐺𝑆𝐷 ∗𝑊𝑖 ∗ ∩𝑖
189
+ 𝑣
190
+ = 14.8495𝑚/𝑝𝑥 ∗ 4512𝑝𝑥 ∗ 0.5
191
+ 7585.16𝑚/𝑠
192
+ = 4.42𝑠
193
+ (1)
194
+ , where 𝐺𝑆𝐷 (ground sample distance) is the spatial resolution of
195
+ the image, 𝑊𝑖 is the width of image in pixels, ∩𝑖 is the overlap
196
+ between images and 𝑣 is the orbital velocity of the satellite.
197
+ Taking this latency value as a baseline, we now describe three
198
+ image processing scenarios with different levels of difficulty based
199
+ on this Arctic mission’s goals.
200
+ Scenario 1: Real-time imaging. Images are taken with a pe-
201
+ riod of 4.42s, as derived above. The inference has to be performed
202
+ and completed before the next image is captured. This would allow
203
+ for the results of an inference to be used in decision making for the
204
+ next image capture.
205
+ Scenario 2: Arctic region imaging. In this scenario, images
206
+ are taken only while the satellite is over the polar regions relaxing
207
+ the latency requirements. Images are buffered and inference is
208
+ performed in the remainder of the orbit, with the IPU available for
209
+ inference before the subsequent orbit. The capture-inference cycle
210
+ completes in 5739s.
211
+ Scenario 3: Greenland imaging. The images are taken only
212
+ while over Greenland further relaxing the latency requirements.
213
+ As the orbit is solar synchronous with a period of one day. This
214
+ results in subsequent bursts but only when the swathe passes over
215
+ Greenland. Images are again buffered and the capture-inference
216
+ cycle completes in 21600s.
217
+ 4
218
+ METHODOLOGY AND SETUP
219
+ Our goal is to characterize the performance of modern low-power
220
+ hardware for deployment as the IPU of the DISCO2 satellite. This
221
+ section presents our experimental methodology and setup to achieve
222
+ this goal.
223
+ 4.1
224
+ Devices under Test
225
+ As representative hardware for this study, we picked three devices,
226
+ each based on a different hardware architecture. These choices were
227
+ made based on their physical dimensions, weight, power draw, and
228
+ high performance considering the low power draw limits.
229
+ ARM Cortex-M Mirocontroller, based on the STM32H745
230
+ chip, has the potential of the lowest power draw, while the least
231
+ performant of the choices. As an additional advantage, this chip
232
+ has extensive flight history and, therefore, would be a safe choice
233
+ for deployment in space applications.
234
+
235
+ We are Going to the Space - Part 1:
236
+ Which device to deploy in a satellite?
237
+ In order to use this device as an on-board IPU, we can use Tensor-
238
+ Flow Lite for Microcontrollers [5], a framework designed to allow
239
+ neural network inference with only 16 KB of memory overhead
240
+ (core runtime) and without the need for an operating system. In
241
+ addition, the framework also provides support for the use of spe-
242
+ cialized neural network kernels, such as CMSIS-NN [12] kernels
243
+ designed specifically for Cortex-M processor cores. The X-CUBE-
244
+ AI [17] framework makes the deployment of the neural networks
245
+ with TensorFlow Lite for microcontrollers even more accessible. It
246
+ provides an intuitive GUI for the libraries or code samples based
247
+ on the provided and trained TensorFlow Lite [2] model.
248
+ Even though this device has support for floating point operations,
249
+ a quantized model was used, in order to achieve better latency
250
+ and, more importantly, lower memory footprint, which is a large
251
+ constraint of this device.
252
+ To simulate the exact performance and power characteristics of
253
+ a flight computer already available for a potential deployment in
254
+ DISCO project, OBC-P3, we used only the Cortex-M7 core of the
255
+ STM32H745 and scaled its clock from 480MHz down to 300MHz.
256
+ Parameters of the OBC-P3 system can be found in the Table 2.
257
+ Processor
258
+ 2x ARM Cortex-M7 @ 300 MHz
259
+ SRAM
260
+ 384 KB SRAM
261
+ FRAM
262
+ 32 KB
263
+ Flash
264
+ 2 MB
265
+ Storage
266
+ 64 GB eMMC
267
+ Dimensions
268
+ 94 x 94 x 13 mm
269
+ Weight
270
+ 120 g
271
+ Table 2: Specifications of the OBC-P3 system containing
272
+ the ARM Cortex-M7 MCUs. The dimensions and weight in-
273
+ cludes the enclosure with aluminium shielding.
274
+ NVIDIA Jetson Nano is a portable SoC composed of power-
275
+ efficient ARM CPU and NVIDIA GPU designed for embedded sys-
276
+ tems that require GPU-friendly computations, e.g., image process-
277
+ ing, video encoding/decoding, and machine learning tasks. It is
278
+ the only device in our experiments that supports TensorFlow Core.
279
+ Therefore, the deployment process to this device is equivalent to
280
+ that of servers or desktops. It is also the only evaluated device
281
+ supporting batch sizes larger than one.
282
+ The device can operate at a wattage between 5W - 10W. We
283
+ configured it to operate at 5W by disabling two of the four CPU
284
+ cores. While this setting leads to lower performance, it is necessary
285
+ in order to fit into the power budget outlined in Table 1. Parameters
286
+ of this device can be found in Table 3.
287
+ CPU
288
+ Quad-core ARM A57 @ 1.43 GHz
289
+ GPU
290
+ 128-core Maxwell
291
+ GFLOPS
292
+ 472
293
+ RAM
294
+ 4 GB 64-bit LPDDR4 25.6 GB/s
295
+ Storage
296
+ 64 GB SD card
297
+ Dimensions
298
+ 100 x 80 x 29 mm
299
+ Weight
300
+ 141 g
301
+ Table 3: Specifications of the NVIDIA Jetson Nano. The di-
302
+ mensions and weight are based on the developer kit version
303
+ of this device.
304
+ CoralAI Dev
305
+ Board Mini
306
+ Raspberry Pi 2B
307
+ CPU
308
+ Quad-core Arm
309
+ Cortex-A35 @ 1.5 GHz
310
+ Quad-core ARM
311
+ Cortex-A7 @ 900 MHz
312
+ RAM
313
+ 2 GB
314
+ 1 GB
315
+ Storage
316
+ 8 GB eMMC
317
+ 32 GB SD card
318
+ Dimensions
319
+ 64 x 48 x 14.6 mm
320
+ 85.6 x 56.5 x 17 mm
321
+ Weight
322
+ 25.5 g
323
+ 45 g
324
+ CoralAI TPU
325
+ TOPS
326
+ Interface
327
+ Dimensions
328
+ Weight
329
+ 4
330
+ USB2
331
+ 65 x 30 mm
332
+ 4.3 g
333
+ Table 4: Specifications of the CoralAI Dev Board Mini and
334
+ Raspberry Pi 2B, as well as the CoralAI TPU chip. Note
335
+ that the CoralAI Dev Board Mini’s physical dimensions and
336
+ weight include the on-board TPU.
337
+ CoralAI TPU is an ASIC, AI accelerator developed by Google
338
+ to accelerate machine learning workloads at the edge. TPU is not
339
+ a standalone device and must be deployed together with a Linux,
340
+ Windows, or macOS system. Even though this device is highly
341
+ specialized, model deployment is performed by compiling a Ten-
342
+ sorFlow Lite model containing a subset of supported layers [1].
343
+ This model must be quantized to an 8-bit integer, as this is only
344
+ supported data type by this device. This compiled model can then
345
+ be used with the TPU’s Python or C++ library. In our experiments,
346
+ we rely on the C++ library.
347
+ We evaluated this device in two formats:
348
+ (1) CoralAI Dev Board Mini, which couples this chip and an SoC
349
+ on a single board.
350
+ (2) CoralAI USB accelerator connected to a Raspberry Pi 2B.
351
+ Even though (1) has the TPU chip on the same board as the SoC,
352
+ the two communicate through the USB2 bus, as in the case of (2).
353
+ In addition, both of the devices run Linux. The parameters of the
354
+ different devices can be found in Table 4.
355
+ 4.2
356
+ Metrics
357
+ The metrics to evaluate the suitability of the devices as the on-
358
+ satellite IPUs are based on the requirements Section 3 outlined.
359
+ Latency is reported in seconds per inference of a sample, where
360
+ a sample is a whole image of size 4512 x 4512 pixels or 400 tiles of
361
+ size 224 x 224 pixels. We measure the latency of the neural network
362
+ inference once the data is already in the device’s memory.
363
+ Nominal power draw is the average power draw in mW mul-
364
+ tiplied by the duty cycle, which is the ratio between achieved and
365
+ required latency for each scenario (outlined in Section 3). We use
366
+ an external appliance for CoralAI TPU and the ARM Cortex-M7
367
+ and tegrastats for Jetson Nano to measure this metric.
368
+ Peak power draw is the maximum power draw over the pe-
369
+ riod of inference in mW. It is measured using the same tools as in
370
+ nominal power draw.
371
+ Power consumption is reported per inference of a sample. This
372
+ metric shows the power efficiency of the device and will guide
373
+ the choice of a more suitable device if multiple devices fulfill the
374
+ requirements of a particular scenario.
375
+
376
+ Bayer, et al.
377
+ Scaling factor
378
+ 0.25
379
+ 0.5
380
+ 1.0
381
+ Device
382
+ Latency (s)
383
+ Power consump-
384
+ tion (mWh)
385
+ Latency (s)
386
+ Power consump-
387
+ tion (mWh)
388
+ Latency (s)
389
+ Power consump-
390
+ tion (mWh)
391
+ ARM Cortex-M7
392
+ 118.80
393
+ 12.10
394
+ N/A
395
+ N/A
396
+ N/A
397
+ N/A
398
+ CoralAI Dev Board Mini
399
+ 3.778
400
+ 1.76
401
+ 3.991
402
+ 1.90
403
+ 4.533
404
+ 2.40
405
+ Raspberry Pi + CoralAI TPU
406
+ 3.106
407
+ 1.69
408
+ 3.331
409
+ 1.93
410
+ 3.825
411
+ 2.40
412
+ NVIDIA Jetson Nano
413
+ 13.900
414
+ 10.54
415
+ 14.109
416
+ 12.74
417
+ 18.581
418
+ 22.10
419
+ NVIDIA Jetson Nano, batch size 64
420
+ 3.529
421
+ 3.71
422
+ 5.382
423
+ 5.94
424
+ 10.171
425
+ 12.89
426
+ Table 5: Latency and power consumption results with different scaling factors of the model as measured on corresponding
427
+ devices. Batch size of 1 is used if not stated otherwise.
428
+ Accuracy of the deployed model is also measured to show the
429
+ effect quantization has on the model’s predictive performance.
430
+ 4.3
431
+ Workload
432
+ To simulate the imaging scenarios of interest (Section 3), we use an
433
+ image classification workload consisting of a 5-class classification
434
+ problem. For this workload, an off-the-shelf MobileNetV1 model
435
+ [11] pre-trained on the ImageNet dataset [6] was chosen for its
436
+ strong predictive power and availability in multiple scaling factors,
437
+ affecting the number of hidden layers in the model. The availability
438
+ of multiple scaling factors is an important factor as the memory of
439
+ some of the devices is highly limited and can therefore fit only the
440
+ smallest of the variants.
441
+ We further fine-tuned the model before deployment on the de-
442
+ vices using the Flowers dataset [15], containing 3670 color images
443
+ of size 224 x 224 pixels belonging to 5 different classes. While the
444
+ weights in the model do not affect the inference latency or power
445
+ required to perform the inference, the model was fine-tuned using
446
+ this dataset because it mimics one of the possible use cases closely
447
+ (in number of classes as well as size of the images) and allows us to
448
+ quantify the effects of the size and precision of the model.
449
+ Since the models running on the Cortex-M7 and CoralAI TPU
450
+ were quantized, rescaling of images was not needed before infer-
451
+ ence. For Jetson Nano, the pixel values must be rescaled to the range
452
+ of [0, 1), or, in other words, divided by 255. An additional layer was
453
+ prepended to the model for this process in order to take advantage
454
+ of the GPU parallelism on Jetson Nano.
455
+ As the size of the images would stress the memory available on
456
+ the evaluated devices, we employed a tiling method for inference.
457
+ Each image was divided into 400 patches of size 224 x 224.1 This
458
+ method results in a positive side effect, where each patch can be
459
+ filtered separately acting as a coarse-grained image segmentation.
460
+ This way only the tiles of interest are sent back to a ground station
461
+ saving us bandwidth.
462
+ The results are reported as an average of 10 inferences on the full
463
+ 4512 x 4512 pixel image. The inference on Cortex-M7 and CoralAI
464
+ TPU were performed with batch size of 1 and on Jetson Nano with
465
+ the batch size of 2𝑥, where x is from range of 0-6. All of the devices
466
+ were tested with the scaling factors 0.25, 0.5, and 1.0 of the model,
467
+ with the exception of the ARM Cortex-M7 microcontroller, which
468
+ could not fit the larger models in memory.
469
+ 1The image is not evenly divisible; therefore, the borders are disregarded.
470
+ 5
471
+ RESULTS
472
+ The results are split into three parts: (1) analysis of latency and
473
+ power draw results with respect to the three scenarios outlined in
474
+ Section 3, (2) impact of quantization on the accuracy of models with
475
+ various scaling factors, (3) impact of batch size on the performance
476
+ of NVIDIA Jetson Nano.
477
+ 5.1
478
+ Scenarios
479
+ Table 5 shows the latency achieved and power consumption of the
480
+ devices using the various scaling factors of the model. Furthermore,
481
+ Tables 6 and 7 show the nominal and peak power draw of different
482
+ configurations, respectively. The Sections 5.1.1-5.1.3 discuss the
483
+ suitability of each device for the different scenarios based on the
484
+ results on these tables. The reported latency, power consumption,
485
+ and the peak power draw are independent of the scenarios. Only
486
+ the nominal power draw depends on the use case scenarios, due to
487
+ the duty cycle (see Section 4.2).
488
+ 5.1.1
489
+ Scenario 1: Real-time imaging. Real-time imaging is the most
490
+ constrained scenario. Therefore, a high degree of specialization is
491
+ necessary to fulfill the requirements.
492
+ Latency. The pipeline has to achieve a 4.42s latency, which is
493
+ the spacing between images with 50% overlap. There are no passive
494
+ periods. Therefore the latency of the pipeline has to be lower than
495
+ that of the imaging for the pipeline not to get backed up. There are
496
+ multiple configurations that achieved the required latency (Table
497
+ 5). These are all the configurations utilizing a TPU and the smallest
498
+ model running on Jetson Nano with batch size of 64.
499
+ Power draw. Out of the configurations that satisfy the latency
500
+ requirements for this scenario, only of the TPU configurations fit
501
+ into the nominal power budget of the satellite (Table 6). Even though
502
+ the Jetson Nano with batch size 64 achieves a latency comparable
503
+ to the TPUs with a scaling factor of 0.25, the power consumption
504
+ per inference is more than twice as high.
505
+ Furthermore, the Raspberry Pi with external TPU module does
506
+ not fit into the power budget when using the largest model, due
507
+ to exceeding the 5W requirements for peak power draw (Table 7).
508
+ NVIDIA Jetson Nano using the largest model with batch size of 64
509
+ also exceeds this peak power requirement. Since the peak power
510
+ draw does not depend on neither the use case scenario nor the duty
511
+ cycle, this conclusion about peak power draw holds for the rest of
512
+ the scenarios as well.
513
+
514
+ We are Going to the Space - Part 1:
515
+ Which device to deploy in a satellite?
516
+ Scaling factor
517
+ 0.25
518
+ 0.5
519
+ 1.0
520
+ Device
521
+ Power draw (mW)
522
+ Power draw (mW)
523
+ Power draw (mW)
524
+ ARM Cortex-M7
525
+ Scenario 1
526
+ -
527
+ -
528
+ -
529
+ Scenario 2
530
+ -
531
+ -
532
+ -
533
+ Scenario 3
534
+ 161
535
+ -
536
+ -
537
+ CoralAI Dev Board Mini
538
+ Scenario 1
539
+ 1433
540
+ 1546
541
+ -
542
+ Scenario 2
543
+ 89
544
+ 95
545
+ 120
546
+ Scenario 3
547
+ 23
548
+ 25
549
+ 32
550
+ Raspberry Pi + CoralAI TPU
551
+ Scenario 1
552
+ 1376
553
+ 1571
554
+ 1954
555
+ Scenario 2
556
+ 85
557
+ 97
558
+ 120
559
+ Scenario 3
560
+ 23
561
+ 26
562
+ 32
563
+ NVIDIA Jetson Nano
564
+ Scenario 1
565
+ -
566
+ -
567
+ -
568
+ Scenario 2
569
+ 529
570
+ 639
571
+ 1109
572
+ Scenario 3
573
+ 141
574
+ 170
575
+ 295
576
+ NVIDIA Jetson Nano, batch size 64
577
+ Scenario 1
578
+ 3021
579
+ -
580
+ -
581
+ Scenario 2
582
+ 186
583
+ 298
584
+ 646
585
+ Scenario 3
586
+ 49
587
+ 79
588
+ 172
589
+ Table 6: Nominal power draw of devices with models of different sizes. The combinations of devices and model sizes, which do
590
+ not fulfil the latency requirements, are omitted as their active duty cycle is greater than 100%. The power draw is highlighted
591
+ in bold when exceeding the power budget.
592
+ Scaling factor
593
+ 0.25
594
+ 0.5
595
+ 1.0
596
+ Device
597
+ Power
598
+ draw (mW)
599
+ Power
600
+ draw (mW)
601
+ Power
602
+ draw (mW)
603
+ Arm Cortex-M7
604
+ 389
605
+ N/A
606
+ N/A
607
+ CoralAI Dev Board Mini
608
+ 2770
609
+ 2930
610
+ 4790
611
+ Raspberry Pi + CoralAI
612
+ TPU
613
+ 2595
614
+ 3405
615
+ 5050
616
+ NVIDIA Jetson Nano
617
+ 2871
618
+ 3546
619
+ 4717
620
+ NVIDIA
621
+ Jetson
622
+ Nano,
623
+ batch size 64
624
+ 4523
625
+ 4684
626
+ 5064
627
+ Table 7: Peak power draw of the devices during inference on
628
+ full-size image. Batch size of 1 is used if not stated otherwise.
629
+ The peak power is in bold when exceeding the power budget.
630
+ 5.1.2
631
+ Scenario 2: Arctic region imaging. By relaxing the constraints
632
+ and performing the workload equivalent to taking images of only
633
+ the areas above the arctic polar circle, we see more configurations
634
+ passing the requirements necessary to perform such a workload.
635
+ Latency. Since there would be passive imaging periods perform-
636
+ ing the workload for this scenario, the pipeline does not need to be
637
+ lower than the latency of imaging. It can instead buffer the images
638
+ and perform the inference at higher latency, given that the pipeline
639
+ can finish inference of one burst before the next burst of images
640
+ comes, which corresponds to a total latency of 5739 seconds or
641
+ 71.74 seconds per image. All the configurations except the ones
642
+ with ARM Cortex-M7 achieve this latency (Table 5).
643
+ Power draw. Because of the large margin between the required
644
+ and achieved latencies for all configurations passing the latency
645
+ requirements, the active duty cycle is relatively low. Therefore, the
646
+ corresponding nominal power draw is well below the required one
647
+ in all cases (Table 6).
648
+ 5.1.3
649
+ Scenario 3: Greenland imaging. The least constrained sce-
650
+ nario corresponds to taking images of only Greenland. The low
651
+ constraints mean that all of the devices pass the requirements under
652
+ certain model configurations.
653
+ Latency. The maximum total latency for a burst of images is
654
+ 21600 seconds, corresponding to 270 seconds per single image. This
655
+ requirement is easily passed by all of other configurations.
656
+ Power draw. Due to the low active duty cycle, each configura-
657
+ tion passes the nominal power draw requirement (Table 6). There is,
658
+ however, a large gap between the nominal power draw of TPU and
659
+ the rest of the devices. TPU performs the inference much more effi-
660
+ ciently, and its power draw scales more favourably with increasing
661
+ scaling factors in comparison to the other devices.
662
+ Scaling factor
663
+ Precision
664
+ 0.25
665
+ 0.5
666
+ 1.0
667
+ 32 bit float
668
+ 86.65%
669
+ 90.46%
670
+ 91.42%
671
+ 8 bit integer
672
+ 83.24%
673
+ 90.32%
674
+ 91.01%
675
+ Table 8: Accuracy of the full-precision and quantized Mo-
676
+ bilenetV1 as measured on the Flowers dataset.
677
+ 5.2
678
+ Effect of quantization and scaling factor
679
+ Table 8 shows the accuracy of the model with the various scaling
680
+ factors before and after quantization to an 8-bit integer. Models
681
+ with scaling factors 0.5 and 1.0 do not show a significant change in
682
+ predictive performance. We can, however, see a 3% drop in accuracy
683
+
684
+ Bayer, et al.
685
+ Figure 1: Latency and power consumption at varying model
686
+ scaling factors and batch sizes on the NVIDIA Jetson Nano.
687
+ in the model with the smallest scaling factor. However, this differ-
688
+ ence is acceptable in our case and is outweighed by the benefits of
689
+ lower memory footprint and latency, and higher overall efficiency.
690
+ 5.3
691
+ Batch size impact on NVIDIA Jetson Nano
692
+ NVIDIA Jetson Nano is the only device in our evaluation that
693
+ allows doing inference with a batch size higher than 1. Figure 1
694
+ shows the impact of increasing the batch size on latency and power
695
+ consumption of the inference. The most significant difference is
696
+ between batch sizes 1 and 8. The impact of increasing batch size then
697
+ tapers off. We can see that maximizing the batch size can lead to
698
+ 45.3-74.6% lower latency and 41.7-64.8% lower power consumption.
699
+ 6
700
+ DISCUSSION
701
+ TPU shows the most promising results as it is the only device to
702
+ fulfill the requirements for real-time imaging, which is the most
703
+ constrained scenario. This device is highly specialized for this pur-
704
+ pose, utilizing the systolic array architecture. This architecture is
705
+ purpose-built to perform fast multiply-accumulate operations in a
706
+ highly parallel fashion, which allows performing matrix multiplica-
707
+ tion without the need to load/store intermediate values.
708
+ On the other end of the spectrum was the ARM Cortex-M7 micro-
709
+ controller. Due to its lack of parallelism, this device could only fulfill
710
+ the requirements of the least constrained scenario. Furthermore, the
711
+ microcontroller has a very low amount of memory available even
712
+ after heavy optimizations, such as quantization of the model and a
713
+ stripped-down version of the TensorFlow Core. The low amount of
714
+ memory means that the device cannot hold the full-size image in
715
+ memory. Therefore, in-camera tiling is used, and the results of the
716
+ operations had to be buffered to storage before the device could
717
+ perform inference on the saved tiles.
718
+ NVIDIA Jetson Nano can fulfill the requirements of the real-
719
+ time imaging scenario. However, its nominal power draw exceeds
720
+ the power budget and therefore buffering, similar to the case of
721
+ microcontroller, is used to be able to work at latencies higher than
722
+ those of the imaging. Even though the Jetson Nano could match the
723
+ latency of the devices utilizing a TPU, when doing inference on large
724
+ batches of image tiles using the smallest model, it only could do so
725
+ at the cost of a higher power draw. Even with a batch size of 64, the
726
+ Jetson Nano performs inference with power consumption 112-437%
727
+ higher compared to the devices with TPU. The GPU architecture
728
+ can perform massively parallel operations, but can only perform
729
+ matrix multiplication by loading/storing intermediate results in
730
+ shared memory, which creates inefficiency.
731
+ 7
732
+ CONCLUSION
733
+ In this paper, we characterized the performance of three devices
734
+ that are possible candidates to be deployed on a satellite focusing
735
+ on different image analysis scenarios on the satellite. Our results
736
+ demonstrated that the low latency requirements combined with the
737
+ limited budget for power draw, size, and mass necessitate highly
738
+ specialized hardware architectures in this domain. The only device
739
+ that fulfilled these requirements for all scenarios was CoralAI TPU.
740
+ While NVIDIA Jetson Nano could match its performance thanks to
741
+ its GPU, it could only do so at the cost of significantly higher power
742
+ draw, which ultimately led to exceeding the power budget. ARM
743
+ Cortex-M7, in contrast, could only fulfill the requirements of the
744
+ least constrained scenario due to the low degree of parallelism and
745
+ limited memory it has. Even though it provided the lowest peak
746
+ power draw, the high latency of inference using this device led to
747
+ nominal power draw higher than any of the other devices.
748
+ REFERENCES
749
+ [1] 2022. Edge TPU Compiler. https://coral.ai/docs/edgetpu/compiler/
750
+ [2] 2022. TensorFlow Lite. https://www.tensorflow.org/lite/guide
751
+ [3] Adam D. Brown. 2018. Investigation of Deep Neural Network Image Processing
752
+ for CubeSat Size Satellites. MSc Thesis, Morehead State University (2018).
753
+ [4] Xenofon Chatziliadis, Eleni Tzirita Zacharatou, Steffen Zeuch, and Volker Markl.
754
+ 2021. Monitoring of Stream Processing Engines Beyond the Cloud: An Overview.
755
+ OJIOT 7, 1 (2021), 71–82.
756
+ [5] Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat Jeffries, Jian Li,
757
+ Nick Kreeger, Ian Nappier, Meghna Natraj, Tiezhen Wang, Pete Warden, and
758
+ Rocky Rhodes. 2021. TensorFlow Lite Micro: Embedded Machine Learning for
759
+ TinyML Systems. In MLSys. 800–811.
760
+ [6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
761
+ A large-scale hierarchical image database. In CVPR. 248–255.
762
+ [7] DISCO 2022. Danish student cubesat program. https://discosat.dk/
763
+ [8] M. Esposito, S. S. Conticello, M. Pastena, and B. Carnicero Domínguez. 2019.
764
+ In-orbit demonstration of artificial intelligence applied to hyperspectral and
765
+ thermal sensing from space. In CubeSats and SmallSats for Remote Sensing III,
766
+ Vol. 11131. 111310C.
767
+ [9] Gianluca Giuffrida, Lorenzo Diana, Francesco Gioia, Gionata Benelli, Gabriele
768
+ Meoni, Massimiliano Donati, and Luca Fanucci. 2020. CloudScout: A Deep Neural
769
+ Network for On-Board Cloud Detection on Hyperspectral Images. Remote Sensing
770
+ 12 (07 2020), 2205.
771
+ [10] Justin Goodwill, Gary Crum, James Mackinnon, Cody Brewer, Michael Monaghan,
772
+ Travis Wise, and Christopher Wilson. 2021. NASA SpaceCube Edge TPU SmallSat
773
+ Card for Autonomous Operations and Onboard Science-Data Analysis. In SSC.
774
+ [11] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
775
+ Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets:
776
+ Efficient Convolutional Neural Networks for Mobile Vision Applications. CoRR
777
+ abs/1704.04861 (2017).
778
+ [12] Liangzhen Lai, Naveen Suda, and Vikas Chandra. 2018. CMSIS-NN: Efficient
779
+ Neural Network Kernels for Arm Cortex-M CPUs. CoRR abs/1801.06601 (2018).
780
+ [13] Martina Lofqvist and José Cano. 2020. Accelerating Deep Learning Applications
781
+ in Space. (2020).
782
+ [14] Dan O’Keeffe, Theodoros Salonidis, and Peter Pietzuch. 2018. Frontier: Resilient
783
+ Edge Processing for the Internet of Things. PVLDB 11, 10 (2018), 1178–1191.
784
+ [15] The TensorFlow Team. 2019. Flowers. http://download.tensorflow.org/example_
785
+ images/flower_photos.tgz
786
+ [16] Benjamin Warnke, Johann Mantler, Sven Groppe, Yuri Cotrado Sehgelmeble, and
787
+ Stefan Fischer. 2022. A SPARQL Benchmark for Distributed Databases in IoT
788
+ Environments. In BiDEDE. 1–6.
789
+ [17] X-CUBE-AI 2022. AI expansion pack for STM32CubeMX. https://www.st.com/en/
790
+ embedded-software/x-cube-ai.html
791
+ [18] Steffen Zeuch, Ankit Chaudhary, Bonaventura Del Monte, Haralampos Gavri-
792
+ ilidis, Dimitrios Giouroukis, Philipp M. Grulich, Sebastian Bress, Jonas Traub,
793
+ and Volker Markl. 2020. The NebulaStream Platform for Data and Application
794
+ Management in the Internet of Things. In CIDR. 1–11.
795
+
796
+ SF=25
797
+ SF=50
798
+ SF=100
799
+ 25
800
+ 20
801
+ Power consumption
802
+ 20
803
+ 15
804
+ Latency (s)
805
+ (mWh)
806
+ 15
807
+ 10
808
+ X
809
+ 10
810
+ X
811
+ X
812
+ 5
813
+ X
814
+ 5
815
+ 0
816
+ 0
817
+ 2
818
+ 4 8 16 32 64
819
+ 2
820
+ 4816 32 64
821
+ Batch size
822
+ Batch size
W9E4T4oBgHgl3EQfNQwq/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,422 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf,len=421
2
+ page_content='We are Going to the Space - Part 1: Which device to deploy in a satellite?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
3
+ page_content=' Robert Bayer IT University of Copenhagen roba@itu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
4
+ page_content='dk Julian Priest IT University of Copenhagen jucp@itu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
5
+ page_content='dk Pınar Tözün IT University of Copenhagen pito@itu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
6
+ page_content='dk ABSTRACT The shrinkage in sizes of components that make up satellites led to wider and low cost availability of satellites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
7
+ page_content=' As a result, there has been an advent of smaller organizations having the ability to deploy satellites with a variety of data-intensive applications to run on them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
8
+ page_content=' One popular application is image analysis to detect, for exam- ple, land, ice, clouds, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
9
+ page_content=' However, the resource-constrained nature of the devices deployed in satellites creates additional challenges for this resource-intensive application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
10
+ page_content=' In this paper, we investigate the performance of a variety of edge devices for deep-learning-based image processing in space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
11
+ page_content=' Our goal is to determine the devices that satisfy the latency and power constraints of satellites while achieving reasonably accurate results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
12
+ page_content=' Our results demonstrate that hardware accelerators (TPUs, GPUs) are necessary to reach the latency requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
13
+ page_content=' On the other hand, state-of-the-art edge devices with GPUs could have a high power draw, making them unsuitable for deployment on a satellite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
14
+ page_content=' 1 INTRODUCTION In the last century, most innovation in real-world satellite appli- cations were only available to the largest countries such as USA and Russia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
15
+ page_content=' These innovations led to significant reductions in the size of the components that make up a satellite and in the cost of the manufacturing and deployment process of a satellite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
16
+ page_content=' This, in turn, introduced a new CubeSat class of miniature satellites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
17
+ page_content=' Their format is based on a 10cm cube, with the possibility of combining multiple modules to create a larger satellite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
18
+ page_content=' This standardization makes a batch deployment of satellites easier as the format affords tight configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
19
+ page_content=' The reduction in costs that came as a result of this new deployment method led to the advent of satellites owned by small or private organizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
20
+ page_content=' However, the size of the CubeSat class satellites poses new com- plex challenges such as the power and thermal constraints as well as the physical dimensions of components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
21
+ page_content=' These CubeSats often perform resource-intensive tasks, which clashes with the resource- constrained nature of their format.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
22
+ page_content=' Image processing and analysis is one class of possible satellite workloads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
23
+ page_content=' Satellites with this type of workload take large-scale images, which they have to store and send back to a ground station.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
24
+ page_content=' The link between the satellite and a ground station is of limited bandwidth and short-lived.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
25
+ page_content=' The images must be highly compressed to send all of them or filtered by quality and areas of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
26
+ page_content=' The images already have a resolution of tens or hundreds of meters per pixel, and lossy compression would lead to even more loss of detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
27
+ page_content=' Filtering preserves the details of the images, but is more resource-intensive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
28
+ page_content=' This paper is a step toward understanding the requirements and limitations of deep-learning-based image filtering systems on small satellites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
29
+ page_content=' More specifically, we characterize the requirements and constraints of an image processing unit (IPU) deployed on a satellite and outline possible use case scenarios of such a system, each introducing a different degree of resource constraints and intensity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
30
+ page_content=' We then further analyze the performance of multiple edge devices on these different scenarios and their suitability for possible deployment on one of the Danish Student CubeSat Project’s (DISCO) [7] satellites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
31
+ page_content=' These devices are based on different hardware architectures, ranging from a microcontroller to a tensor processing unit (TPU).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
32
+ page_content=' While microcontrollers or more complex CPUs have extensive flight history (have already been deployed in satellites before) and low power footprint, they were not built with running deep learning workloads in mind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
33
+ page_content=' On the other hand, GPUs have been utilized more in the past decade in satellites, with one of the leading work- loads being machine learning, based on the success of GPUs in terrestrial use cases of machine learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
34
+ page_content=' The latest of these archi- tectures, TPU, has not been extensively researched for deployment in satellites, even though TPUs were designed to perform fast neural network inference, promising low latency with high efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
35
+ page_content=' The contributions of this study are as follows: We illustrate the differences between the terrestrial and space edge IoT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
36
+ page_content=' The edge devices deployed in space have to perform very resource-intensive workloads with high reliability and do so in a highly resource-constrained environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
37
+ page_content=' We characterize a set of requirements specific to IPU on a CubeSat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
38
+ page_content=' We do this by outlining multiple use case scenarios and showing how they affect the required latency and possible power draw of such a system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
39
+ page_content=' We compare the performance of multiple edge devices based on different architectures and show the need and the bene- fit of using highly specialized hardware for machine learning workloads on satellites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
40
+ page_content=' 2 BACKGROUND We first introduce DISCO project and survey related work that specifically targets data processing in satellites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
41
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
42
+ page_content='1 DISCO The Danish Student Cubesat Program (DISCO) [7] offers Danish university students the opportunity to design and operate a small satellite and to gain space flight experience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
43
+ page_content=' DISCO is a collaboration between four universities in Denmark, which will initially launch three student Cubesats into Low Earth Orbit with the first launch scheduled for 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
44
+ page_content=' DISCO2 has been designed by students to carry an Earth imag- ing payload, infrastructure to capture images in space, into a solar synchronous polar orbit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
45
+ page_content=' The instrument is a collaboration with arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
46
+ page_content='04954v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
47
+ page_content='LG] 12 Jan 2023 Bayer, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
48
+ page_content=' Image process- ing Unit Nominal Power Peak Power Design Margin Nominal Cycle Peak Cycle Power Mass budget Dimensions Constraints 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
49
+ page_content='00 W 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
50
+ page_content='00 W 5% 20% 20% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
51
+ page_content='48 W 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
52
+ page_content='15 Kg 10x70x80 mm Table 1: List of constraints of the IPU on board of the DISCO2 satellite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
53
+ page_content=' the Arctic Research Centre at Aarhus University and will support a range of field research in Greenland.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
54
+ page_content=' Initially focused on a long term marine systems and cryosphere monitoring projects, the satellite will supplement ground based observations with remote sensing data, providing both good polar coverage and on demand availabil- ity for the projects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
55
+ page_content=' The payload will include one or more high resolution cameras as well as a dedicated IPU, which will be capable of simple machine learning applications for image classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
56
+ page_content=' Students will be able to carry out conventional on-satellite image processing in addi- tion to running machine learning applications for classification, discrimination, and feature identification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
57
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
58
+ page_content='2 Related Work The challenge of low bandwidth on small satellites creates the need for data post-processing to filter the data on the satellite before sending elsewhere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
59
+ page_content=' Neural-network-based filtering has been stud- ied for this purpose in recent years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
60
+ page_content=' Specifically, several works have tested the suitability of small system-on-chip (SoC) devices leverag- ing the power of GPUs to accelerate machine learning workloads [3, 13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
61
+ page_content=' Moreover, some works have also explored the use of ASICs, such as Intel’s Movidius Myriad vision processing units (VPUs) [8, 9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
62
+ page_content=' This VPU has even seen real-life deployment [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
63
+ page_content=' Evaluation of TPUs for deployment on satellites is limited, how- ever.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
64
+ page_content=' To the best of our knowledge, only one work has explored this option [10], with no real-life deployments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
65
+ page_content=' DISCO project would therefore be the first satellite to leverage TPU for onboard deep learning applications, based on the findings of our study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
66
+ page_content=' In this work, we aim to characterize the performance of the dif- ferent flavors of off-the-shelf edge devices to check their suitability for being deployed on a satellite in the context of DISCO project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
67
+ page_content=' Data management and processing for internet-of-things and edge computing has been important in the data management community as well [4, 14, 16, 18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
68
+ page_content=' We are complementing these works with a very specific application focus, which is data-intensive applications deployed on satellites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
69
+ page_content=' 3 REQUIREMENTS The requirements and constraints used in this study are based on the DISCO2 Arctic imaging mission use case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
70
+ page_content=' The power and mass constraints of the edge device to be deployed on the satellite are based on the power and mass budgets developed in the DISCO2 en- gineering design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
71
+ page_content=' The satellite design is a modular 3U Cubesat with off-the-shelf modules for attitude control, power, communications, and flight control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
72
+ page_content=' The power budget values are typical for a 3U earth imaging Cubesat of this type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
73
+ page_content=' The resulting payload capacity is 1U (10x10x10cm) and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
74
+ page_content='3kg and this must include the cameras, module enclosure, optics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
75
+ page_content=' and image processing unit (IPU).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
76
+ page_content=' The full list of constraints of the IPU is shown in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
77
+ page_content=' The planned orbit of DISCO2 is a solar synchronous polar or- bit at 550 km altitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
78
+ page_content=' The camera sensor is based on an Alvium 1800 C-2040 and the lens focal length is the maximum that could be considered for the mission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
79
+ page_content=' Assuming a 50% overlap between images, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
80
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
81
+ page_content=', capturing the same land area, this provides a minimum time of 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
82
+ page_content='42s between consecutive images (𝑇𝑖), which was derived as follows: 𝑇𝑖 = 𝐺𝑆𝐷 ∗𝑊𝑖 ∗ ∩𝑖 𝑣 = 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
83
+ page_content='8495𝑚/𝑝𝑥 ∗ 4512𝑝𝑥 ∗ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
84
+ page_content='5 7585.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
85
+ page_content='16𝑚/𝑠 = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
86
+ page_content='42𝑠 (1) , where 𝐺𝑆𝐷 (ground sample distance) is the spatial resolution of the image, 𝑊𝑖 is the width of image in pixels, ∩𝑖 is the overlap between images and 𝑣 is the orbital velocity of the satellite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
87
+ page_content=' Taking this latency value as a baseline, we now describe three image processing scenarios with different levels of difficulty based on this Arctic mission’s goals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
88
+ page_content=' Scenario 1: Real-time imaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
89
+ page_content=' Images are taken with a pe- riod of 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
90
+ page_content='42s, as derived above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
91
+ page_content=' The inference has to be performed and completed before the next image is captured.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
92
+ page_content=' This would allow for the results of an inference to be used in decision making for the next image capture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
93
+ page_content=' Scenario 2: Arctic region imaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
94
+ page_content=' In this scenario, images are taken only while the satellite is over the polar regions relaxing the latency requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
95
+ page_content=' Images are buffered and inference is performed in the remainder of the orbit, with the IPU available for inference before the subsequent orbit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
96
+ page_content=' The capture-inference cycle completes in 5739s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
97
+ page_content=' Scenario 3: Greenland imaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
98
+ page_content=' The images are taken only while over Greenland further relaxing the latency requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
99
+ page_content=' As the orbit is solar synchronous with a period of one day.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
100
+ page_content=' This results in subsequent bursts but only when the swathe passes over Greenland.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
101
+ page_content=' Images are again buffered and the capture-inference cycle completes in 21600s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
102
+ page_content=' 4 METHODOLOGY AND SETUP Our goal is to characterize the performance of modern low-power hardware for deployment as the IPU of the DISCO2 satellite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
103
+ page_content=' This section presents our experimental methodology and setup to achieve this goal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
104
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
105
+ page_content='1 Devices under Test As representative hardware for this study, we picked three devices, each based on a different hardware architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
106
+ page_content=' These choices were made based on their physical dimensions, weight, power draw, and high performance considering the low power draw limits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
107
+ page_content=' ARM Cortex-M Mirocontroller, based on the STM32H745 chip, has the potential of the lowest power draw, while the least performant of the choices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
108
+ page_content=' As an additional advantage, this chip has extensive flight history and, therefore, would be a safe choice for deployment in space applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
109
+ page_content=' We are Going to the Space - Part 1: Which device to deploy in a satellite?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
110
+ page_content=' In order to use this device as an on-board IPU, we can use Tensor- Flow Lite for Microcontrollers [5], a framework designed to allow neural network inference with only 16 KB of memory overhead (core runtime) and without the need for an operating system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
111
+ page_content=' In addition, the framework also provides support for the use of spe- cialized neural network kernels, such as CMSIS-NN [12] kernels designed specifically for Cortex-M processor cores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
112
+ page_content=' The X-CUBE- AI [17] framework makes the deployment of the neural networks with TensorFlow Lite for microcontrollers even more accessible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
113
+ page_content=' It provides an intuitive GUI for the libraries or code samples based on the provided and trained TensorFlow Lite [2] model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
114
+ page_content=' Even though this device has support for floating point operations, a quantized model was used, in order to achieve better latency and, more importantly, lower memory footprint, which is a large constraint of this device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
115
+ page_content=' To simulate the exact performance and power characteristics of a flight computer already available for a potential deployment in DISCO project, OBC-P3, we used only the Cortex-M7 core of the STM32H745 and scaled its clock from 480MHz down to 300MHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
116
+ page_content=' Parameters of the OBC-P3 system can be found in the Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
117
+ page_content=' Processor 2x ARM Cortex-M7 @ 300 MHz SRAM 384 KB SRAM FRAM 32 KB Flash 2 MB Storage 64 GB eMMC Dimensions 94 x 94 x 13 mm Weight 120 g Table 2: Specifications of the OBC-P3 system containing the ARM Cortex-M7 MCUs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
118
+ page_content=' The dimensions and weight in- cludes the enclosure with aluminium shielding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
119
+ page_content=' NVIDIA Jetson Nano is a portable SoC composed of power- efficient ARM CPU and NVIDIA GPU designed for embedded sys- tems that require GPU-friendly computations, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
120
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
121
+ page_content=', image process- ing, video encoding/decoding, and machine learning tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
122
+ page_content=' It is the only device in our experiments that supports TensorFlow Core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
123
+ page_content=' Therefore, the deployment process to this device is equivalent to that of servers or desktops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
124
+ page_content=' It is also the only evaluated device supporting batch sizes larger than one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
125
+ page_content=' The device can operate at a wattage between 5W - 10W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
126
+ page_content=' We configured it to operate at 5W by disabling two of the four CPU cores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
127
+ page_content=' While this setting leads to lower performance, it is necessary in order to fit into the power budget outlined in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
128
+ page_content=' Parameters of this device can be found in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
129
+ page_content=' CPU Quad-core ARM A57 @ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
130
+ page_content='43 GHz GPU 128-core Maxwell GFLOPS 472 RAM 4 GB 64-bit LPDDR4 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
131
+ page_content='6 GB/s Storage 64 GB SD card Dimensions 100 x 80 x 29 mm Weight 141 g Table 3: Specifications of the NVIDIA Jetson Nano.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
132
+ page_content=' The di- mensions and weight are based on the developer kit version of this device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
133
+ page_content=' CoralAI Dev Board Mini Raspberry Pi 2B CPU Quad-core Arm Cortex-A35 @ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
134
+ page_content='5 GHz Quad-core ARM Cortex-A7 @ 900 MHz RAM 2 GB 1 GB Storage 8 GB eMMC 32 GB SD card Dimensions 64 x 48 x 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
135
+ page_content='6 mm 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
136
+ page_content='6 x 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
137
+ page_content='5 x 17 mm Weight 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
138
+ page_content='5 g 45 g CoralAI TPU TOPS Interface Dimensions Weight 4 USB2 65 x 30 mm 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
139
+ page_content='3 g Table 4: Specifications of the CoralAI Dev Board Mini and Raspberry Pi 2B, as well as the CoralAI TPU chip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
140
+ page_content=' Note that the CoralAI Dev Board Mini’s physical dimensions and weight include the on-board TPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
141
+ page_content=' CoralAI TPU is an ASIC, AI accelerator developed by Google to accelerate machine learning workloads at the edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
142
+ page_content=' TPU is not a standalone device and must be deployed together with a Linux, Windows, or macOS system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
143
+ page_content=' Even though this device is highly specialized, model deployment is performed by compiling a Ten- sorFlow Lite model containing a subset of supported layers [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
144
+ page_content=' This model must be quantized to an 8-bit integer, as this is only supported data type by this device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
145
+ page_content=' This compiled model can then be used with the TPU’s Python or C++ library.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
146
+ page_content=' In our experiments, we rely on the C++ library.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
147
+ page_content=' We evaluated this device in two formats: (1) CoralAI Dev Board Mini, which couples this chip and an SoC on a single board.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
148
+ page_content=' (2) CoralAI USB accelerator connected to a Raspberry Pi 2B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
149
+ page_content=' Even though (1) has the TPU chip on the same board as the SoC, the two communicate through the USB2 bus, as in the case of (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
150
+ page_content=' In addition, both of the devices run Linux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
151
+ page_content=' The parameters of the different devices can be found in Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
152
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
153
+ page_content='2 Metrics The metrics to evaluate the suitability of the devices as the on- satellite IPUs are based on the requirements Section 3 outlined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
154
+ page_content=' Latency is reported in seconds per inference of a sample, where a sample is a whole image of size 4512 x 4512 pixels or 400 tiles of size 224 x 224 pixels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
155
+ page_content=' We measure the latency of the neural network inference once the data is already in the device’s memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
156
+ page_content=' Nominal power draw is the average power draw in mW mul- tiplied by the duty cycle, which is the ratio between achieved and required latency for each scenario (outlined in Section 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
157
+ page_content=' We use an external appliance for CoralAI TPU and the ARM Cortex-M7 and tegrastats for Jetson Nano to measure this metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
158
+ page_content=' Peak power draw is the maximum power draw over the pe- riod of inference in mW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
159
+ page_content=' It is measured using the same tools as in nominal power draw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
160
+ page_content=' Power consumption is reported per inference of a sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
161
+ page_content=' This metric shows the power efficiency of the device and will guide the choice of a more suitable device if multiple devices fulfill the requirements of a particular scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
162
+ page_content=' Bayer, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
163
+ page_content=' Scaling factor 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
164
+ page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
165
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
166
+ page_content='0 Device Latency (s) Power consump- tion (mWh) Latency (s) Power consump- tion (mWh) Latency (s) Power consump- tion (mWh) ARM Cortex-M7 118.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
167
+ page_content='80 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
168
+ page_content='10 N/A N/A N/A N/A CoralAI Dev Board Mini 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
169
+ page_content='778 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
170
+ page_content='76 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
171
+ page_content='991 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
172
+ page_content='90 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
173
+ page_content='533 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
174
+ page_content='40 Raspberry Pi + CoralAI TPU 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
175
+ page_content='106 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
176
+ page_content='69 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
177
+ page_content='331 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
178
+ page_content='93 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
179
+ page_content='825 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
180
+ page_content='40 NVIDIA Jetson Nano 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
181
+ page_content='900 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
182
+ page_content='54 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
183
+ page_content='109 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
184
+ page_content='74 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
185
+ page_content='581 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
186
+ page_content='10 NVIDIA Jetson Nano, batch size 64 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
187
+ page_content='529 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
188
+ page_content='71 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
189
+ page_content='382 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
190
+ page_content='94 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
191
+ page_content='171 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
192
+ page_content='89 Table 5: Latency and power consumption results with different scaling factors of the model as measured on corresponding devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
193
+ page_content=' Batch size of 1 is used if not stated otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
194
+ page_content=' Accuracy of the deployed model is also measured to show the effect quantization has on the model’s predictive performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
195
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
196
+ page_content='3 Workload To simulate the imaging scenarios of interest (Section 3), we use an image classification workload consisting of a 5-class classification problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
197
+ page_content=' For this workload, an off-the-shelf MobileNetV1 model [11] pre-trained on the ImageNet dataset [6] was chosen for its strong predictive power and availability in multiple scaling factors, affecting the number of hidden layers in the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
198
+ page_content=' The availability of multiple scaling factors is an important factor as the memory of some of the devices is highly limited and can therefore fit only the smallest of the variants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
199
+ page_content=' We further fine-tuned the model before deployment on the de- vices using the Flowers dataset [15], containing 3670 color images of size 224 x 224 pixels belonging to 5 different classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
200
+ page_content=' While the weights in the model do not affect the inference latency or power required to perform the inference, the model was fine-tuned using this dataset because it mimics one of the possible use cases closely (in number of classes as well as size of the images) and allows us to quantify the effects of the size and precision of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
201
+ page_content=' Since the models running on the Cortex-M7 and CoralAI TPU were quantized, rescaling of images was not needed before infer- ence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
202
+ page_content=' For Jetson Nano, the pixel values must be rescaled to the range of [0, 1), or, in other words, divided by 255.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
203
+ page_content=' An additional layer was prepended to the model for this process in order to take advantage of the GPU parallelism on Jetson Nano.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
204
+ page_content=' As the size of the images would stress the memory available on the evaluated devices, we employed a tiling method for inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
205
+ page_content=' Each image was divided into 400 patches of size 224 x 224.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
206
+ page_content='1 This method results in a positive side effect, where each patch can be filtered separately acting as a coarse-grained image segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
207
+ page_content=' This way only the tiles of interest are sent back to a ground station saving us bandwidth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
208
+ page_content=' The results are reported as an average of 10 inferences on the full 4512 x 4512 pixel image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
209
+ page_content=' The inference on Cortex-M7 and CoralAI TPU were performed with batch size of 1 and on Jetson Nano with the batch size of 2𝑥, where x is from range of 0-6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
210
+ page_content=' All of the devices were tested with the scaling factors 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
211
+ page_content='25, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
212
+ page_content='5, and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
213
+ page_content='0 of the model, with the exception of the ARM Cortex-M7 microcontroller, which could not fit the larger models in memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
214
+ page_content=' 1The image is not evenly divisible;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
215
+ page_content=' therefore, the borders are disregarded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
216
+ page_content=' 5 RESULTS The results are split into three parts: (1) analysis of latency and power draw results with respect to the three scenarios outlined in Section 3, (2) impact of quantization on the accuracy of models with various scaling factors, (3) impact of batch size on the performance of NVIDIA Jetson Nano.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
217
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
218
+ page_content='1 Scenarios Table 5 shows the latency achieved and power consumption of the devices using the various scaling factors of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
219
+ page_content=' Furthermore, Tables 6 and 7 show the nominal and peak power draw of different configurations, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
220
+ page_content=' The Sections 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
221
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
222
+ page_content='1-5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
223
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
224
+ page_content='3 discuss the suitability of each device for the different scenarios based on the results on these tables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
225
+ page_content=' The reported latency, power consumption, and the peak power draw are independent of the scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
226
+ page_content=' Only the nominal power draw depends on the use case scenarios, due to the duty cycle (see Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
227
+ page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
228
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
229
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
230
+ page_content='1 Scenario 1: Real-time imaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
231
+ page_content=' Real-time imaging is the most constrained scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
232
+ page_content=' Therefore, a high degree of specialization is necessary to fulfill the requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
233
+ page_content=' Latency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
234
+ page_content=' The pipeline has to achieve a 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
235
+ page_content='42s latency, which is the spacing between images with 50% overlap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
236
+ page_content=' There are no passive periods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
237
+ page_content=' Therefore the latency of the pipeline has to be lower than that of the imaging for the pipeline not to get backed up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
238
+ page_content=' There are multiple configurations that achieved the required latency (Table 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
239
+ page_content=' These are all the configurations utilizing a TPU and the smallest model running on Jetson Nano with batch size of 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
240
+ page_content=' Power draw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
241
+ page_content=' Out of the configurations that satisfy the latency requirements for this scenario, only of the TPU configurations fit into the nominal power budget of the satellite (Table 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
242
+ page_content=' Even though the Jetson Nano with batch size 64 achieves a latency comparable to the TPUs with a scaling factor of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
243
+ page_content='25, the power consumption per inference is more than twice as high.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
244
+ page_content=' Furthermore, the Raspberry Pi with external TPU module does not fit into the power budget when using the largest model, due to exceeding the 5W requirements for peak power draw (Table 7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
245
+ page_content=' NVIDIA Jetson Nano using the largest model with batch size of 64 also exceeds this peak power requirement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
246
+ page_content=' Since the peak power draw does not depend on neither the use case scenario nor the duty cycle, this conclusion about peak power draw holds for the rest of the scenarios as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
247
+ page_content=' We are Going to the Space - Part 1: Which device to deploy in a satellite?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
248
+ page_content=' Scaling factor 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
249
+ page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
250
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
251
+ page_content='0 Device Power draw (mW) Power draw (mW) Power draw (mW) ARM Cortex-M7 Scenario 1 Scenario 2 Scenario 3 161 CoralAI Dev Board Mini Scenario 1 1433 1546 Scenario 2 89 95 120 Scenario 3 23 25 32 Raspberry Pi + CoralAI TPU Scenario 1 1376 1571 1954 Scenario 2 85 97 120 Scenario 3 23 26 32 NVIDIA Jetson Nano Scenario 1 Scenario 2 529 639 1109 Scenario 3 141 170 295 NVIDIA Jetson Nano,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
252
+ page_content=' batch size 64 Scenario 1 3021 Scenario 2 186 298 646 Scenario 3 49 79 172 Table 6: Nominal power draw of devices with models of different sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
253
+ page_content=' The combinations of devices and model sizes, which do not fulfil the latency requirements, are omitted as their active duty cycle is greater than 100%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
254
+ page_content=' The power draw is highlighted in bold when exceeding the power budget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
255
+ page_content=' Scaling factor 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
256
+ page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
257
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
258
+ page_content='0 Device Power draw (mW) Power draw (mW) Power draw (mW) Arm Cortex-M7 389 N/A N/A CoralAI Dev Board Mini 2770 2930 4790 Raspberry Pi + CoralAI TPU 2595 3405 5050 NVIDIA Jetson Nano 2871 3546 4717 NVIDIA Jetson Nano, batch size 64 4523 4684 5064 Table 7: Peak power draw of the devices during inference on full-size image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
259
+ page_content=' Batch size of 1 is used if not stated otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
260
+ page_content=' The peak power is in bold when exceeding the power budget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
261
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
262
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
263
+ page_content='2 Scenario 2: Arctic region imaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
264
+ page_content=' By relaxing the constraints and performing the workload equivalent to taking images of only the areas above the arctic polar circle, we see more configurations passing the requirements necessary to perform such a workload.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
265
+ page_content=' Latency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
266
+ page_content=' Since there would be passive imaging periods perform- ing the workload for this scenario, the pipeline does not need to be lower than the latency of imaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
267
+ page_content=' It can instead buffer the images and perform the inference at higher latency, given that the pipeline can finish inference of one burst before the next burst of images comes, which corresponds to a total latency of 5739 seconds or 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
268
+ page_content='74 seconds per image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
269
+ page_content=' All the configurations except the ones with ARM Cortex-M7 achieve this latency (Table 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
270
+ page_content=' Power draw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
271
+ page_content=' Because of the large margin between the required and achieved latencies for all configurations passing the latency requirements, the active duty cycle is relatively low.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
272
+ page_content=' Therefore, the corresponding nominal power draw is well below the required one in all cases (Table 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
273
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
274
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
275
+ page_content='3 Scenario 3: Greenland imaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
276
+ page_content=' The least constrained sce- nario corresponds to taking images of only Greenland.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
277
+ page_content=' The low constraints mean that all of the devices pass the requirements under certain model configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
278
+ page_content=' Latency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
279
+ page_content=' The maximum total latency for a burst of images is 21600 seconds, corresponding to 270 seconds per single image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
280
+ page_content=' This requirement is easily passed by all of other configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
281
+ page_content=' Power draw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
282
+ page_content=' Due to the low active duty cycle, each configura- tion passes the nominal power draw requirement (Table 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
283
+ page_content=' There is, however, a large gap between the nominal power draw of TPU and the rest of the devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
284
+ page_content=' TPU performs the inference much more effi- ciently, and its power draw scales more favourably with increasing scaling factors in comparison to the other devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
285
+ page_content=' Scaling factor Precision 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
286
+ page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
287
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
288
+ page_content='0 32 bit float 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
289
+ page_content='65% 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
290
+ page_content='46% 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
291
+ page_content='42% 8 bit integer 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
292
+ page_content='24% 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
293
+ page_content='32% 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
294
+ page_content='01% Table 8: Accuracy of the full-precision and quantized Mo- bilenetV1 as measured on the Flowers dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
295
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
296
+ page_content='2 Effect of quantization and scaling factor Table 8 shows the accuracy of the model with the various scaling factors before and after quantization to an 8-bit integer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
297
+ page_content=' Models with scaling factors 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
298
+ page_content='5 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
299
+ page_content='0 do not show a significant change in predictive performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
300
+ page_content=' We can, however, see a 3% drop in accuracy Bayer, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
301
+ page_content=' Figure 1: Latency and power consumption at varying model scaling factors and batch sizes on the NVIDIA Jetson Nano.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
302
+ page_content=' in the model with the smallest scaling factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
303
+ page_content=' However, this differ- ence is acceptable in our case and is outweighed by the benefits of lower memory footprint and latency, and higher overall efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
304
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
305
+ page_content='3 Batch size impact on NVIDIA Jetson Nano NVIDIA Jetson Nano is the only device in our evaluation that allows doing inference with a batch size higher than 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
306
+ page_content=' Figure 1 shows the impact of increasing the batch size on latency and power consumption of the inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
307
+ page_content=' The most significant difference is between batch sizes 1 and 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
308
+ page_content=' The impact of increasing batch size then tapers off.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
309
+ page_content=' We can see that maximizing the batch size can lead to 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
310
+ page_content='3-74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
311
+ page_content='6% lower latency and 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
312
+ page_content='7-64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
313
+ page_content='8% lower power consumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
314
+ page_content=' 6 DISCUSSION TPU shows the most promising results as it is the only device to fulfill the requirements for real-time imaging, which is the most constrained scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
315
+ page_content=' This device is highly specialized for this pur- pose, utilizing the systolic array architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
316
+ page_content=' This architecture is purpose-built to perform fast multiply-accumulate operations in a highly parallel fashion, which allows performing matrix multiplica- tion without the need to load/store intermediate values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
317
+ page_content=' On the other end of the spectrum was the ARM Cortex-M7 micro- controller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
318
+ page_content=' Due to its lack of parallelism, this device could only fulfill the requirements of the least constrained scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
319
+ page_content=' Furthermore, the microcontroller has a very low amount of memory available even after heavy optimizations, such as quantization of the model and a stripped-down version of the TensorFlow Core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
320
+ page_content=' The low amount of memory means that the device cannot hold the full-size image in memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
321
+ page_content=' Therefore, in-camera tiling is used, and the results of the operations had to be buffered to storage before the device could perform inference on the saved tiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
322
+ page_content=' NVIDIA Jetson Nano can fulfill the requirements of the real- time imaging scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
323
+ page_content=' However, its nominal power draw exceeds the power budget and therefore buffering, similar to the case of microcontroller, is used to be able to work at latencies higher than those of the imaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
324
+ page_content=' Even though the Jetson Nano could match the latency of the devices utilizing a TPU, when doing inference on large batches of image tiles using the smallest model, it only could do so at the cost of a higher power draw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
325
+ page_content=' Even with a batch size of 64, the Jetson Nano performs inference with power consumption 112-437% higher compared to the devices with TPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
326
+ page_content=' The GPU architecture can perform massively parallel operations, but can only perform matrix multiplication by loading/storing intermediate results in shared memory, which creates inefficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
327
+ page_content=' 7 CONCLUSION In this paper, we characterized the performance of three devices that are possible candidates to be deployed on a satellite focusing on different image analysis scenarios on the satellite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
328
+ page_content=' Our results demonstrated that the low latency requirements combined with the limited budget for power draw, size, and mass necessitate highly specialized hardware architectures in this domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
329
+ page_content=' The only device that fulfilled these requirements for all scenarios was CoralAI TPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
330
+ page_content=' While NVIDIA Jetson Nano could match its performance thanks to its GPU, it could only do so at the cost of significantly higher power draw, which ultimately led to exceeding the power budget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
331
+ page_content=' ARM Cortex-M7, in contrast, could only fulfill the requirements of the least constrained scenario due to the low degree of parallelism and limited memory it has.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
332
+ page_content=' Even though it provided the lowest peak power draw, the high latency of inference using this device led to nominal power draw higher than any of the other devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
333
+ page_content=' REFERENCES [1] 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
334
+ page_content=' Edge TPU Compiler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
335
+ page_content=' https://coral.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
336
+ page_content='ai/docs/edgetpu/compiler/ [2] 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
337
+ page_content=' TensorFlow Lite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
338
+ page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
339
+ page_content='tensorflow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
340
+ page_content='org/lite/guide [3] Adam D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
341
+ page_content=' Brown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
342
+ page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
343
+ page_content=' Investigation of Deep Neural Network Image Processing for CubeSat Size Satellites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
344
+ page_content=' MSc Thesis, Morehead State University (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
345
+ page_content=' [4] Xenofon Chatziliadis, Eleni Tzirita Zacharatou, Steffen Zeuch, and Volker Markl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
346
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
347
+ page_content=' Monitoring of Stream Processing Engines Beyond the Cloud: An Overview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
348
+ page_content=' OJIOT 7, 1 (2021), 71–82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
349
+ page_content=' [5] Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat Jeffries, Jian Li, Nick Kreeger, Ian Nappier, Meghna Natraj, Tiezhen Wang, Pete Warden, and Rocky Rhodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
350
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
351
+ page_content=' TensorFlow Lite Micro: Embedded Machine Learning for TinyML Systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
352
+ page_content=' In MLSys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
353
+ page_content=' 800–811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
354
+ page_content=' [6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
355
+ page_content=' 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
356
+ page_content=' Imagenet: A large-scale hierarchical image database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
357
+ page_content=' In CVPR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
358
+ page_content=' 248–255.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
359
+ page_content=' [7] DISCO 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
360
+ page_content=' Danish student cubesat program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
361
+ page_content=' https://discosat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
362
+ page_content='dk/ [8] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
363
+ page_content=' Esposito, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
364
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
365
+ page_content=' Conticello, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
366
+ page_content=' Pastena, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
367
+ page_content=' Carnicero Domínguez.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
368
+ page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
369
+ page_content=' In-orbit demonstration of artificial intelligence applied to hyperspectral and thermal sensing from space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
370
+ page_content=' In CubeSats and SmallSats for Remote Sensing III, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
371
+ page_content=' 11131.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
372
+ page_content=' 111310C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
373
+ page_content=' [9] Gianluca Giuffrida, Lorenzo Diana, Francesco Gioia, Gionata Benelli, Gabriele Meoni, Massimiliano Donati, and Luca Fanucci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
374
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
375
+ page_content=' CloudScout: A Deep Neural Network for On-Board Cloud Detection on Hyperspectral Images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
376
+ page_content=' Remote Sensing 12 (07 2020), 2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
377
+ page_content=' [10] Justin Goodwill, Gary Crum, James Mackinnon, Cody Brewer, Michael Monaghan, Travis Wise, and Christopher Wilson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
378
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
379
+ page_content=' NASA SpaceCube Edge TPU SmallSat Card for Autonomous Operations and Onboard Science-Data Analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
380
+ page_content=' In SSC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
381
+ page_content=' [11] Andrew G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
382
+ page_content=' Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
383
+ page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
384
+ page_content=' MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
385
+ page_content=' CoRR abs/1704.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
386
+ page_content='04861 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
387
+ page_content=' [12] Liangzhen Lai, Naveen Suda, and Vikas Chandra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
388
+ page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
389
+ page_content=' CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
390
+ page_content=' CoRR abs/1801.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
391
+ page_content='06601 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
392
+ page_content=' [13] Martina Lofqvist and José Cano.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
393
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
394
+ page_content=' Accelerating Deep Learning Applications in Space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
395
+ page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
396
+ page_content=' [14] Dan O’Keeffe, Theodoros Salonidis, and Peter Pietzuch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
397
+ page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
398
+ page_content=' Frontier: Resilient Edge Processing for the Internet of Things.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
399
+ page_content=' PVLDB 11, 10 (2018), 1178–1191.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
400
+ page_content=' [15] The TensorFlow Team.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
401
+ page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
402
+ page_content=' Flowers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
403
+ page_content=' http://download.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
404
+ page_content='tensorflow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
405
+ page_content='org/example_ images/flower_photos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
406
+ page_content='tgz [16] Benjamin Warnke, Johann Mantler, Sven Groppe, Yuri Cotrado Sehgelmeble, and Stefan Fischer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
407
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
408
+ page_content=' A SPARQL Benchmark for Distributed Databases in IoT Environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
409
+ page_content=' In BiDEDE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
410
+ page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
411
+ page_content=' [17] X-CUBE-AI 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
412
+ page_content=' AI expansion pack for STM32CubeMX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
413
+ page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
414
+ page_content='st.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
415
+ page_content='com/en/ embedded-software/x-cube-ai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
416
+ page_content='html [18] Steffen Zeuch, Ankit Chaudhary, Bonaventura Del Monte, Haralampos Gavri- ilidis, Dimitrios Giouroukis, Philipp M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
417
+ page_content=' Grulich, Sebastian Bress, Jonas Traub, and Volker Markl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
418
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
419
+ page_content=' The NebulaStream Platform for Data and Application Management in the Internet of Things.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
420
+ page_content=' In CIDR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
421
+ page_content=' 1–11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
422
+ page_content=' SF=25 SF=50 SF=100 25 20 Power consumption 20 15 Latency (s) (mWh) 15 10 X 10 X X 5 X 5 0 0 2 4 8 16 32 64 2 4816 32 64 Batch size Batch size' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf'}
XtE5T4oBgHgl3EQfdA-T/content/tmp_files/2301.05608v1.pdf.txt ADDED
@@ -0,0 +1,1650 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Investigating the Combination of Planning-Based and
2
+ Data-Driven Methods for Goal Recognition
3
+ Nils Wilken
4
5
+ Institute for Enterprise Systems, University of Mannheim
6
+ 69118 Mannheim, Germany
7
+ Lea Cohausz
8
9
+ Data and Web Science Group, University of Mannheim
10
+ 69118 Mannheim, Germany
11
+ Johannes Schaum
12
13
+ Institute for Enterprise Systems, University of Mannheim
14
+ 69118 Mannheim, Germany
15
+ Stefan L¨udtke
16
+ stefan.l¨[email protected]
17
+ Institute for Enterprise Systems, University of Mannheim
18
+ 69118 Mannheim, Germany
19
+ Heiner Stuckenschmidt
20
21
+ Data and Web Science Group, University of Mannheim
22
+ 69118 Mannheim, Germany
23
+ Abstract
24
+ An important feature of pervasive, intelligent assistance systems is the ability to dy-
25
+ namically adapt to the current needs of their users. Hence, it is critical for such systems
26
+ to be able to recognize those goals and needs based on observations of the user’s actions
27
+ and state of the environment.
28
+ In this work, we investigate the application of two state-of-the-art, planning-based plan
29
+ recognition approaches in a real-world setting. So far, these approaches were only evaluated
30
+ in artificial settings in combination with agents that act perfectly rational. We show that
31
+ such approaches have difficulties when used to recognize the goals of human subjects,
32
+ because human behaviour is typically not perfectly rational. To overcome this issue, we
33
+ propose an extension to the existing approaches through a classification-based method
34
+ trained on observed behaviour data. We empirically show that the proposed extension
35
+ not only outperforms the purely planning-based- and purely data-driven goal recognition
36
+ methods but is also able to recognize the correct goal more reliably, especially when only
37
+ a small number of observations were seen. This substantially improves the usefulness of
38
+ hybrid goal recognition approaches for intelligent assistance systems, as recognizing a goal
39
+ early opens much more possibilities for supportive reactions of the system.
40
+ 1. Introduction
41
+ The ultimate goal of smart assistance technologies is to dynamically adapt the infrastructure
42
+ of a building to best meet the needs of their users by observing their behaviour and deducing
43
+ their current needs.
44
+ Identifying users’ goals and intentions based on their current and
45
+ past activities is an important task in this context.
46
+ While there is some work on goal
47
+ recognition in the context of smart assistance systems (Yordanova, Whitehouse, Paiement,
48
+ 1
49
+ arXiv:2301.05608v1 [cs.AI] 13 Jan 2023
50
+
51
+ Mirmehdi, Kirste, & Craddock, 2017; Yordanova, L¨udtke, Whitehouse, Kr¨uger, Paiement,
52
+ Mirmehdi, Craddock, & Kirste, 2019; Kr¨uger, Nyolt, Yordanova, Hein, & Kirste, 2014), so
53
+ far research has mostly focused on recognizing users’ current activities (Helaoui, Riboni,
54
+ & Stuckenschmidt, 2013; Rashidi, Cook, Holder, & Schmitter-Edgecombe, 2010; Hoque &
55
+ Stankovic, 2012; Yao, Nie, Sheng, Gu, Li, & Wang, 2016; Sztyler & Stuckenschmidt, 2017).
56
+ In this paper, we address the problem of identifying user goals as a basis for automatic
57
+ support. For this purpose, we look at the related problem of plan recognition, which is a
58
+ long-standing topic in the Artificial Intelligence community (Kautz & Allen, 1986; Charniak
59
+ & Goldman, 1993). We believe that plan recognition methods are particularly suited for
60
+ this task as they do not only identify the goal a user intends to achieve, but also aim to
61
+ recognize the most probable plan (i.e., ordered sequence of actions) for achieving this goal.
62
+ Knowing such a plan provides us with a better basis for supporting the user.
63
+ In this paper, we investigate the application of two state-of-the-art plan recognition ap-
64
+ proaches that are based on the principle of Plan Recognition As Planning (PRAP) (Ram´ırez
65
+ & Geffner, 2010). More explicitly, the contributions of this paper are:
66
+ • In Section 4, we reveal and analyze some major shortcomings of PRAP approaches
67
+ when applied to real-world scenarios. The main consequence of these shortcomings is
68
+ that some goals can only be identified relatively closely before they are reached, which
69
+ significantly reduces their potential benefits to an intelligent assistance system.
70
+ • As a possible solution to this problem, we propose a hybrid plan recognition method
71
+ in Section 5. The proposed method combines the principle of PRAP with a data-
72
+ driven probabilistic model that captures statistical relations between certain states of
73
+ the environment and goals that can be learned from past observations.
74
+ • Finally, we empirically evaluate the proposed hybrid method in sections 6 and 7 and
75
+ compare its performance to the performances of purely planning-based and purely
76
+ data-driven approaches. The evaluation shows that both approaches can be applied
77
+ to identify the goals of a user in real-world scenarios. Further, the results show that
78
+ using a hybrid goal recognition method leads to a much earlier identification of the
79
+ correct goal while only requiring very small amounts of training data.
80
+ 2. Problem Definition
81
+ Probabilistic goal recognition is the problem of inferring a probability distribution over a set
82
+ of intended goals of an observed agent, given a possibly incomplete sequence of observed
83
+ actions and a domain model that describes the domain in which the observed agent acts.
84
+ More formally, the aim of goal recognition approaches is to find a posterior probability
85
+ distribution P(G|O) over all goals g ∈ G, given a sequence of observed actions o.
86
+ This work considers the smart home domain as an example environment for goal recog-
87
+ nition. Figure 1 shows the layout of a smart flat and partial action sequences that sketch a
88
+ simple use case. This use case will be employed to analyze the shortcomings of the investi-
89
+ gated planning-based goal recognition approaches. It is important to note that this use case
90
+ is completely synthetic and does not correspond to a real-world experimental setup. The
91
+ flat has four rooms and a hallway that connects all rooms. In each room, different devices
92
+ 2
93
+
94
+ h1
95
+ h2
96
+ h3
97
+ h4
98
+ Be1
99
+ Be2
100
+ be3
101
+ be4
102
+ ba1
103
+ ba2
104
+ ba3
105
+ ba4
106
+ k1
107
+ k2
108
+ k3
109
+ k4
110
+ l1
111
+ l2
112
+ l3
113
+ l4
114
+ Livingroom
115
+ Bedroom
116
+ Bathroom
117
+ Kitchen
118
+ Shower
119
+ Toilet
120
+ Basin
121
+ Fridge
122
+ Oven
123
+ Bed
124
+ Closet
125
+ A
126
+ Washing
127
+ Machine
128
+ Laundry
129
+ Basket
130
+ T
131
+ T
132
+ T
133
+ T
134
+ A
135
+ A
136
+ A
137
+ A
138
+ A
139
+ Window
140
+ Window
141
+ Window
142
+ Window
143
+ Window
144
+ 20°C
145
+ good
146
+ 18°C
147
+ very good
148
+ 22°C
149
+ good
150
+ 19°C
151
+ bad
152
+ Outdoor
153
+ TA
154
+ 5°C
155
+ very good
156
+ Sensing functionality
157
+ Acting functionality
158
+ Sensing/Acting
159
+ functionality
160
+ Agent
161
+ Heater
162
+ Heater
163
+ Heater
164
+ Heater
165
+ Possible Goals:
166
+
167
+ A (Prepare Meal)
168
+
169
+ B (Watch TV)
170
+
171
+ C (Use toilet)
172
+
173
+ D (Use shower)
174
+ (a)
175
+ h1
176
+ h2
177
+ h3
178
+ h4
179
+ Be1
180
+ Be2
181
+ be3
182
+ be4
183
+ ba1
184
+ ba2
185
+ ba3
186
+ ba4
187
+ k1
188
+ k2
189
+ k3
190
+ k4
191
+ l1
192
+ l2
193
+ l3
194
+ l4
195
+ Livingroom
196
+ Bedroom
197
+ Bathroom
198
+ Kitchen
199
+ Shower
200
+ Toilet
201
+ Basin
202
+ Fridge
203
+ Oven
204
+ Bed
205
+ Closet
206
+ A
207
+ Washing
208
+ Machine
209
+ Laundry
210
+ Basket
211
+ T
212
+ T
213
+ T
214
+ T
215
+ A
216
+ A
217
+ A
218
+ A
219
+ A
220
+ Window
221
+ Window
222
+ Window
223
+ Window
224
+ Window
225
+ 20°C
226
+ good
227
+ 18°C
228
+ very good
229
+ 22°C
230
+ good
231
+ 19°C
232
+ bad
233
+ Outdoor
234
+ TA
235
+ 5°C
236
+ very good
237
+ Sensing functionality
238
+ Acting functionality
239
+ Sensing/Acting
240
+ functionality
241
+ Agent
242
+ Heater
243
+ Heater
244
+ Heater
245
+ Heater
246
+ Possible Goals:
247
+
248
+ A (Prepare Meal)
249
+
250
+ B (Watch TV)
251
+
252
+ C (Use toilet)
253
+
254
+ D (Use shower)
255
+ (b)
256
+ Figure 1: Illustration of an exemplary smart flat and a simple example use case (i.e., “Beer
257
+ Use Case”).
258
+ and furnishings are located. Some of these objects can possibly function as sensor, actuator,
259
+ or a mixture of both, which is indicated by the green and orange dots. Furthermore, it is
260
+ assumed that the current location of the agent can be sensed at all times and that the agent
261
+ can navigate the cells in the flat by moving in all possible directions, including diagonal
262
+ moves.
263
+ Example 1 (Beer Use Case) Figures 1a and 1b roughly sketch parts of a small use case
264
+ in this smart flat, which we will refer to as “Beer Use Case” (BUC) from here on. In
265
+ the BUC, a single agent is initially located in the cell “l3” in the livingroom, moves to the
266
+ fridge, takes out a beer, and moves back to the couch in the livingroom (Fig. 1a). When
267
+ the agent arrives at the couch in the livingroom, she sits down on the couch, opens the beer,
268
+ and drinks it while watching TV. After a while, the agent decides to get another beer from
269
+ the fridge. When the second beer is empty, the agent gets up from the couch, moves back to
270
+ the kitchen, and subsequently via the hallway to the bathroom to use the toilet (Fig. 1b).
271
+ 3. Background
272
+ In this work, we investigate the application of two state-of-the-art approaches to plan recog-
273
+ nition to a real-world goal recognition scenario. In contrast to probabilistic goal recognition,
274
+ probabilistic plan recognition not only describes the problem of inferring a probability dis-
275
+ tribution over a set of goals, but also the probability distribution over a set of possible plans
276
+ that an agent might follow to reach it’s intended goal. From a solution to a plan recognition
277
+ problem, the solution of the corresponding goal recognition problem can be derived by only
278
+ considering the goals of the recognized plans. Plan recognition is a long standing research
279
+ area in the Artificial Intelligence community. Recent plan recognition systems mostly rely
280
+ on the Plan Recognition As Planning (PRAP) (Ram´ırez & Geffner, 2009) principle and
281
+ hence, utilize symbolic planning systems to solve plan- and goal recognition problems.
282
+ 3.1 Symbolic Planning
283
+ Symbolic planning is based on a symbolic model of the planning domain that defines possible
284
+ actions, their preconditions and effects on the environment. Given a current state and goals
285
+ 3
286
+
287
+ in terms of partial state descriptions, planning methods aim to construct an optimal plan for
288
+ reaching the goals from the current state consisting of a (possibly partial) order of actions to
289
+ be executed. We adopt the formalization of a planning problem from (Ram´ırez & Geffner,
290
+ 2010).
291
+ Definition 1 (Planning Problem) A Planning Problem is a tuple P = ⟨F, s0, A, G⟩ where
292
+ F is a set of fluents (boolean statements about properties of the modeled environment),
293
+ s0 ⊆ F and G ⊆ F are the initial state and the goal description and A is a set of actions
294
+ with preconditions Pre(a) ⊆ F and lists of fluents Add(a) ⊆ F and Del(a) ⊆ F that de-
295
+ scribe the effects of an action a in terms of fluents that are added and deleted from the
296
+ current state. Actions have a non-negative cost c(a). A state is described by the subset of
297
+ fluents which are currently considered to be true. A goal state is a state s with s ⊇ G. An
298
+ action a is applicable in a state s if and only if Pre(a) ⊆ s. Applying an action a in a state
299
+ s leads to a new state s′ = (s ∪ Add(a) \ Del(a)). A solution for a planning problem (i.e., a
300
+ plan) is a sequence of applicable actions π = a1, · · · an that transforms the initial state into
301
+ a goal state. The cost of the plan is defined as c(π) = �
302
+ i
303
+ c(ai). A plan is optimal if the cost
304
+ of the plan is minimal.
305
+ This basic model has been extended in different directions. In this paper, we make use
306
+ of two extensions. One allows us to specify goals of form ¬f that claim that a certain
307
+ fluent f is absent in the goal state. The other enables the use of a conditional effect of
308
+ form p → q, where p and q are single fluents. This means that when an action x has such
309
+ a conditional effect, fluent q only becomes true after the execution of x when p was true
310
+ before the execution (Ram´ırez & Geffner, 2010).
311
+ 3.2 Plan Recognition As Planning: State-of-the-Art
312
+ As already mentioned, many recent plan- and goal recognition approaches rely onto the
313
+ principle of Plan Recognition as Planning (PRAP), which was first introduced by Ram´ırez
314
+ and Geffner (Ram´ırez & Geffner, 2009). All approaches that follow this principle have in
315
+ common that they utilize concepts from the area of classical planning to compute probability
316
+ distributions over a set of possible plans or goals, respectively.
317
+ Definition 2 (Probabilistic Plan Recognition Problem) A probabilistic plan recog-
318
+ nition problem is a tuple T = ⟨D, G, O, P(G)⟩ where D = ⟨F, s0, A, ∅⟩ is a planning domain,
319
+ G is a set of possible goals g ⊆ F, o = o1, · · · om, where oi ∈ A is a sequence of actions
320
+ that have been observed and P(G) is the prior probability distribution over G. A solution
321
+ to the probabilistic plan recognition problem is the conditional probability of the goals given
322
+ the observation sequence o (i.e., P(G = g|O = o)∀g ∈ G).
323
+ Estimating Goal Probabilities
324
+ Both plan recognition methods that are used in this
325
+ work are based on the idea of using Bayes Rule to compute the posterior probabilities of
326
+ the goals:
327
+ P(G|O) = αP(O|G)P(G)
328
+ (1)
329
+ It is assumed that the prior probabilities P(G = g) of goals g ∈ G are given in the problem
330
+ definition. Hence, the problem of probabilistic goal recognition boils down to the estimation
331
+ 4
332
+
333
+ of P(O|G). Both investigated approaches utilize symbolic planning systems to estimate this
334
+ probability.
335
+ The idea behind this is based on the assumption that agents act perfectly rational and
336
+ hence, use strictly optimal plans (i.e, plans that minimize costs) to achieve their goals.
337
+ Furthermore, it is assumed that the probability of a goal to be the agent’s actual goal can
338
+ be estimated by relating the costs of an optimal plan that includes a given observation
339
+ sequence o and an optimal plan that does not include o, while reaching a given goal g ∈ G.
340
+ This can be done because an optimal plan that does not have to fulfill the requirement of
341
+ including o is, according to the planning domain, a perfectly rational plan from the given
342
+ initial state to a given goal g. Hence, when the costs of an optimal plan that includes o
343
+ are higher, this means that the agent is taking a detour compared to a perfectly rational
344
+ plan. More precisely, Ram´ırez and Geffner (Ram´ırez & Geffner, 2010) propose to calculate
345
+ P(o|g) as follows:
346
+ P(o|g) = α′
347
+ exp{−β∆(g)}
348
+ 1 + exp{−β∆(g)}
349
+ (2)
350
+ Where α′ is a normalization factor and ∆(g) = c(o, g)−c(o, g) is the cost difference between
351
+ an optimal plan for g that satisfies o and an optimal plan for g that does not satisfy o. The
352
+ costs c(o, g) and c(o, g) can be computed out of the box using classical planning systems.
353
+ Translating a Plan Recognition Problem into Planning Problems
354
+ The two state-
355
+ of-the-art plan recognition methods used in this paper were proposed by Ram´ırez and
356
+ Geffner (Ram´ırez & Geffner, 2010) (referred to as “RG” from here on) and Vered et al.
357
+ (Vered, Kaminka, & Biham, 2016) (referred to as “GM” (Goal Mirroring) from here on).
358
+ They mainly differ in the way they transform the original planning problem, which is
359
+ necessary to ensure that the computed plans fulfill some necessary requirements.
360
+ To compute the probabilities P(O|G), the RG approach compiles a plan recognition
361
+ problem T = ⟨P, G, o, Prob⟩ into 2|G| planning problems. For each goal g ∈ G the two
362
+ planning problems Po(g) and Po(g) have to be compiled and solved. Classical planning
363
+ systems naturally cannot handle the requirement of satisfying a given sequence of observed
364
+ actions in a computed plan. To ensure that the computed solutions fulfill this requirement,
365
+ the original planning domain D has to be slightly modified.
366
+ Definition 3 (Transformation of the Planning Domain (RG)) For a given planning
367
+ domain D = ⟨F, s0, A⟩ and a given observation sequence o, the transformed domain is de-
368
+ fined as D′ = ⟨F ′, I, A′⟩ with F ′ = F ∪ {poi|oi ∈ (oi)n
369
+ 0}, where poi is a new fluent and the
370
+ actions o ∈ A′ that are in o have an additional effect poi when i = 0 and poi−1 → poi has to
371
+ hold otherwise.
372
+ For this transformation it is assumed that no action appears twice in o. When this is
373
+ the case, the corresponding actions are duplicated and renamed to ensure that the order
374
+ of observed actions is unmodified in the resulting plans. Now the costs c(o, g) and c(o, g)
375
+ can be calculated by solving the planning problems Po(g) = ⟨F ′, s′
376
+ 0, A′, g ∪ {pon}⟩ and
377
+ Po(g) = ⟨F ′, s′
378
+ 0, A′, g ∪ {¬pon}⟩.
379
+ Goal Mirroring
380
+ The main difference between RG and GM is the domain translation
381
+ procedure: While RG adapts the actions in a given planning domain, GM uses a different
382
+ initial state to generate plans that embed o each time a new observation is observed.
383
+ 5
384
+
385
+ Definition 4 (Transformation of Planning Problem (GM)) For a given planning do-
386
+ main D = ⟨F, s0, A⟩ and a given observation sequence o, the transformed domain is defined
387
+ as D′ = ⟨F ′, s′
388
+ 0, A′⟩ with F ′ = F, where s′
389
+ 0 = s0[[o]] and s[[o]] returns as a result the
390
+ planning state that is obtained when the action sequence o is applied to a planning state s.
391
+ When this transformation is completed, analogously to the RG approach, GM calculates
392
+ the costs c(o, g) and c(o, g). However, in contrast to RG, GM assumes for the calculation
393
+ that an optimal plan from s0 to a goal g can be obtained by concatenating o with a plan
394
+ for g that starts at the adjusted initial state s′
395
+ 0. From such a plan, again the costs c(o, g)
396
+ can be determined. Furthermore, GM does not generate plans that strictly do not embed o,
397
+ but instead computes an optimal plan from s0 to each goal and uses the costs of these plans
398
+ analogously to the costs of plans that do not embed o as RG does (i.e., c(o, g)). Apart from
399
+ this, GM uses the same heuristic as RG (i.e., Equation 1) to compute goal probabilities
400
+ P(G|O) from these costs.
401
+ One major benefit of GM compared to RG is that it is expected to be much more
402
+ time efficient in the case of online probabilistic goal recognition. This becomes increasingly
403
+ important with increasing complexity of the involved planning problems.
404
+ Definition 5 (Online Probabilistic Goal Recognition) We define online probabilistic
405
+ goal recognition as a special variant of the probabilistic goal recognition problem defined
406
+ earlier. In online goal recognition, we assume that the observation sequence o is revealed
407
+ incrementally. More explicitly, we introduce the notion of time t ∈ {0, . . . , T}, where T =
408
+ |o|. For every value of t, one probabilistic goal recognition problem R(t) can be induced
409
+ as R(t) = ⟨D, G, ot, Prob⟩ where D = ⟨F, s0, A, ∅⟩ and ot = {oi|0 ≤ i ≤ t, oi ∈ o}. A
410
+ solution to the online probabilistic goal recognition problem are the conditional probabilities
411
+ Pt(G = g|ot); ∀g ∈ G, t ∈ [0, T].
412
+ Hence, in the case of online probabilistic goal recognition, GM solves, due to the different
413
+ transformation procedure, only |G||O| + |G| planning problems instead of 2|G||O| planning
414
+ problems that RG solves.
415
+ 4. Case Study: Goal Recognition in the Beer Use Case
416
+ In this section we evaluate the performance of the RG and GM goal recognition approaches
417
+ when applied to the synthetic BUC example (see Section 2). Furthermore, we demonstrate
418
+ and discuss some major limitations of them.
419
+ 4.1 Experimental Setup
420
+ For the experiments, we modeled a planning domain DBUC in the Planning Domain Def-
421
+ inition Language (PDDL) (McDermott, Ghallab, Howe, Knoblock, Ram, Veloso, Weld, &
422
+ Wilkins, 1998). The goal set of the corresponding plan recognition problems (see Definition
423
+ 2) is defined as GBUC = {gprepare meal, gwatch TV , guse shower, guse toilet}. Further, following
424
+ the approach of Ram´ırez and Geffner (Ram´ırez & Geffner, 2010), we assume uniform prior
425
+ probabilities PBUC(G) for all goals in GBUC.
426
+ Based on this experimental setup, we conducted two experiments E1 and E2 with
427
+ both recognition approaches, which, however, differ in the observation sequences that are
428
+ 6
429
+
430
+ Table 1: Evaluation results for the RG and GM goal recognition approaches when applied
431
+ to E1 and E2 with the LAMA planner in anytime mode. The results for both approaches
432
+ are identical for both, E1 and E2. Each row describes the probabilities P(G|O) for all
433
+ goals G ∈ GBUC for different lengths of O (|O|).
434
+ g1 = gprepare meal, g2 = gwatch TV ,
435
+ g3 = guse shower, g4 = guse toilet.
436
+ (a) Results for E1
437
+ P(G|O)
438
+ |O|
439
+ g1
440
+ g2
441
+ g3
442
+ g4
443
+ 28 + 0
444
+ 0.25
445
+ 0.25
446
+ 0.25
447
+ 0.25
448
+ 28 + 1
449
+ 0.319
450
+ 0.043
451
+ 0.319
452
+ 0.319
453
+ 28 + 2
454
+ 0.331
455
+ 0.006
456
+ 0.331
457
+ 0.331
458
+ 28 + 3
459
+ 0.063
460
+ 0.001
461
+ 0.468
462
+ 0.468
463
+ 28 + 4
464
+ 0.009
465
+ 0.0
466
+ 0.495
467
+ 0.495
468
+ 28 + 5
469
+ 0.002
470
+ 0.0
471
+ 0.268
472
+ 0.73
473
+ 28 + 6
474
+ 0.001
475
+ 0.0
476
+ 0.119
477
+ 0.88
478
+ (b) Results for E2
479
+ P(G|O)
480
+ |O|
481
+ g1
482
+ g2
483
+ g3
484
+ g4
485
+ 0
486
+ 0.25
487
+ 0.25
488
+ 0.25
489
+ 0.25
490
+ 1
491
+ 0.316
492
+ 0.052
493
+ 0.316
494
+ 0.316
495
+ 2
496
+ 0.329
497
+ 0.012
498
+ 0.329
499
+ 0.329
500
+ 3
501
+ 0.106
502
+ 0.002
503
+ 0.446
504
+ 0.446
505
+ 4
506
+ 0.018
507
+ 0.0
508
+ 0.491
509
+ 0.491
510
+ 5
511
+ 0.003
512
+ 0.0
513
+ 0.349
514
+ 0.648
515
+ 6
516
+ 0.001
517
+ 0.0
518
+ 0.192
519
+ 0.806
520
+ used to compile the involved planning problems. For experiment E1, the actions in the
521
+ utilized observation sequence represent the entire BUC (see Example 1). For experiment
522
+ E2, to evaluate how much the goal probability estimates depend on information gained
523
+ from the observations of the agent getting and drinking beer, only the last six actions of the
524
+ observation sequence used in E1 are used (i.e., in E2 the observations of the agent getting
525
+ and drinking beer are not included in the observation sequences). The remaining setups are
526
+ similar for both experiments. To solve the planning problems compiled from these setups,
527
+ we used the LAMA (Richter, Helmert, & Westphal, 2008) planner, which is a satisficing
528
+ planner that can be used either in greedy or anytime mode. When used in greedy mode, the
529
+ planner stops immediately when a plan is found, whereas in anytime mode LAMA returns
530
+ the best plan found in a given time window. Here, we used LAMA in anytime mode.
531
+ 4.2 Results and Limitations
532
+ The results of the experiments are shown in Table 1. Each row reports the probabilities
533
+ P(G|O) for all g ∈ GBUC for different lengths of O. As the RG and GM approaches are
534
+ based on the same underlying principle and the BUC domain is small enough to be handled
535
+ efficiently by both approaches, the results for the experiments E1 and E2 are identical for
536
+ both of them. Hence, we only report one result table for each experiment. The results of
537
+ the experiments reveal two major limitations of the two planning-based approaches.
538
+ 1. In both experiments, the correct goal g4 is only recognized at |O| = 28 + 5 and
539
+ |O| = 5 respectively, i.e., shortly before the goal is actually reached. This timestep
540
+ corresponds to the observation where the agent has moved to the location ba3, which
541
+ is also where the toilet is located. This circumstance significantly reduces the possible
542
+ usefulness for an intelligent assistance system, as the goal is recognized too late to
543
+ provide support through adaptations of the environment.
544
+ 7
545
+
546
+ 2. The additional information that is included in the observation sequence used for E1,
547
+ has no impact on the estimated probabilities P(G|O). Instead, the estimates are only
548
+ based on information that are gained from the up to last six actions that are observed
549
+ afterwards. Intuitively, however, the additional information should have an impact
550
+ onto the estimate, because there exists a causal relation between drinking beer and the
551
+ probability that this agent pursues the goal to use a toilet afterwards. Thus, it should
552
+ be possible to recognize the correct goal much earlier in the observation sequence.
553
+ The main reason for these limitations of the two planning-based approaches is that the
554
+ additional actions that are contained in the observation sequence used for E1 are not strictly
555
+ necessary to fulfill the preconditions of any action that is required to reach one of the
556
+ possible goals in an optimal way, i.e., drinking beer is not a necessary requirement to visit
557
+ the bathroom. As a consequence, these observations have the same impact on the estimate
558
+ of P(G|O) for all possible goals, although they might contain valuable information about
559
+ the true probability of P(G|O).
560
+ 5. A Hybrid Goal Recognition Approach
561
+ As shown in the previous section, a significant shortcoming of PRAP based approaches is
562
+ that causal relations between goals and observations in the environment cannot be exploited
563
+ in general. This is due to the fact that the costs of plans are used as the only criterion to es-
564
+ timate the probabilities P(O|G). To solve this problem, we propose to combine these PRAP
565
+ approaches with a data-driven probabilistic causal model of agent goals and observations.
566
+ 5.1 A Statistical Causal Model of Observations
567
+ We propose to model the relationship between goals and observations via a probability
568
+ distribution P(F1, . . . , FN|G), where F1, . . . , FN are fluents of the planning state st. This
569
+ distribution models how goals (e.g., making a sandwich) affect the probability of specific
570
+ fluents in the planning states (e.g., whether the agent holds a cucumber). In contrast to
571
+ the PRAP models, the idea here is to learn the parameters of P(F1, . . . , Fn|g) from training
572
+ data. This way, the probabilistic model can capture the relations between fluents and goals
573
+ that cannot be captured by planning-based approaches: Specifically, the planning-based
574
+ models cannot capture statistical relations between fluents and goals that are not necessary
575
+ for an optimal plan. For example, in the BUC planning domain, drinking beer is not a
576
+ necessary precondition for visiting the bathroom. Still, drinking beer makes an eventual
577
+ bathroom visit more likely.
578
+ In general, we could use any probabilistic model, like Bayesian Networks, deep generative
579
+ models etc., to represent P(F1, . . . , FN|G). Here, we focus on a Naive Bayes model (NBM),
580
+ i.e., assuming P(F1, . . . , Fn|g) = �n
581
+ i=1 P(Fi|g). The model is visualized in Figure 2. On
582
+ the one hand, the strong independence assumptions between all fluents do not necessarily
583
+ hold in practice. On the other hand, a Naive Bayes model has few parameters (linear in
584
+ the number of variables). Thus, training is possible even when training data is scarce – as
585
+ is often the case for activity sequences of real human subjects.
586
+ Note that we made another simplifying assumption here: The distribution P(F1, . . . , FN|G)
587
+ only models the dependency of the current planning state on the goal g, but not the de-
588
+ 8
589
+
590
+ pendency of the action sequence o on g. More specifically, different observation sequences
591
+ that result in the same planning state could be associated with different goals, but we
592
+ deliberately neglected this information to make the learning problem tractable.
593
+ F_N
594
+
595
+ g
596
+ F_1
597
+ Figure 2: Bayesian network representation of the Naive Bayes Model.
598
+ 5.2 A Hybrid Goal Recognition Method
599
+ To overcome the shortcomings of the PRAP approaches discussed in Section 4.2, we propose
600
+ to combine it with the proposed probabilistic learned model of P(o|g).
601
+ For the combination of the goal probabilities, we use model stacking, which is a common
602
+ ensemble learning method. In model stacking, a so-called meta-model is used to generate
603
+ a combined estimate from the estimates of heterogeneous base models. In this work, we
604
+ studied two different, manually designed, meta-models to combine the estimate of one of
605
+ the PRAP approaches and the estimate of the NBM.
606
+ It is important to note that there are some major differences between the ways in which
607
+ the two utilized base models estimate the goal probabilities P(G|O). One of these differences
608
+ is that the PRAP models are based purely on manually specified knowledge (in the form
609
+ of the planning domain), whereas the NBM only relies on this manually defined domain
610
+ knowledge to establish its structure but learns its parameters from training data. Another
611
+ major difference between the models is the set of features which are used to estimate the
612
+ probability P(O|G) and hence, also the probability P(G|O). Although the predictions of
613
+ both models are based on an observed action sequence and an observed initial state of the
614
+ environment, they estimate the probability P(O|G) based on different features that can
615
+ be derived from these observations. The planning-based methods use two entire plans to
616
+ estimate the probability P(o|g). In contrast, the NBM model uses only the planning state
617
+ that results from applying the sequence o to the initial state to estimate P(o|g).
618
+ Weighted Sum of Predictions
619
+ As a first meta-model, we use a weighted sum (WS) of
620
+ the two base-model estimates from one of the planning-based approaches and the NBM.
621
+ More formally, this meta-model is defined as follows:
622
+ P(g|o) = wsPs(g|o) + wdPd(g|o)
623
+ (3)
624
+ Ps is the goal probability estimate of one of the symbolic PRAP approaches, ws is the
625
+ weight for the symbolic approach, Pd is the goal probability estimate of the data-driven
626
+ NBM, and wd is the weight of the data-driven NBM.
627
+ Tiebreaking of the PRAP approaches
628
+ The second meta-model, which we refer to
629
+ as tiebreaking (TB), only considers the estimate of the NBM when more than one goal is
630
+ 9
631
+
632
+ Table 2: Evaluation results for E1 for both meta-models. Each row describes the proba-
633
+ bilities P(O|G) for all goals G ∈ GBUC for different lengths of O (|O|). g1 = gprepare meal,
634
+ g2 = gwatch TV , g3 = guse shower, g4 = guse toilet.
635
+ (a) Results for the tiebreaking (TB) meta-model.
636
+ P(G|O)
637
+ |O|
638
+ g1
639
+ g2
640
+ g3
641
+ g4
642
+ 28 + 0
643
+ 0.131
644
+ 0.61
645
+ 0.13
646
+ 0.13
647
+ 28 + 1
648
+ 0.287
649
+ 0.176
650
+ 0.214
651
+ 0.323
652
+ 28 + 2
653
+ 0.293
654
+ 0.158
655
+ 0.22
656
+ 0.33
657
+ 28 + 3
658
+ 0.146
659
+ 0.14
660
+ 0.283
661
+ 0.431
662
+ 28 + 4
663
+ 0.005
664
+ 0.16
665
+ 0.361
666
+ 0.474
667
+ 28 + 5
668
+ 0.002
669
+ 0.0
670
+ 0.268
671
+ 0.73
672
+ 28 + 6
673
+ 0.0
674
+ 0.0
675
+ 0.12
676
+ 0.88
677
+ (b) Results for the weighted sum (WS) meta-
678
+ model.
679
+ P(G|O)
680
+ |O|
681
+ g1
682
+ g2
683
+ g3
684
+ g4
685
+ 28 + 0
686
+ 0.131
687
+ 0.61
688
+ 0.13
689
+ 0.13
690
+ 28 + 1
691
+ 0.287
692
+ 0.176
693
+ 0.214
694
+ 0.323
695
+ 28 + 2
696
+ 0.293
697
+ 0.158
698
+ 0.22
699
+ 0.329
700
+ 28 + 3
701
+ 0.146
702
+ 0.14
703
+ 0.283
704
+ 0.431
705
+ 28 + 4
706
+ 0.005
707
+ 0.16
708
+ 0.361
709
+ 0.474
710
+ 28 + 5
711
+ 0.037
712
+ 0.088
713
+ 0.165
714
+ 0.71
715
+ 28 + 6
716
+ 0.037
717
+ 0.088
718
+ 0.091
719
+ 0.785
720
+ assigned with the highest likelihood by the PRAP approach. The intuition behind this
721
+ meta-model is based on the observations from the results of experiments E1 and E2: Here,
722
+ the PRAP approaches never ranked wrong goals as most probable, but not only ranked
723
+ the true goal as most probable.
724
+ When this is the case, we combine the two estimated
725
+ probabilities of the NBM and the planning-based approaches again by taking the weighted
726
+ sum of them. More formally, the meta-model is defined as follows:
727
+ P(g|o) =
728
+
729
+ Ps(g|o),
730
+ if | arg maxg∈G Ps(g|o)| = 1
731
+ wsPs(g|o) + wdPd(g|o),
732
+ if | arg maxg∈G Ps(g|o)| > 1,
733
+ (4)
734
+ Hybrid Goal Recognition Performance for E1
735
+ To evaluate whether the proposed
736
+ hybrid method is able to leverage on the additional information contained in the observation
737
+ sequence used for E1, we applied the hybrid approach to E1.
738
+ For the experiments, we
739
+ assumed both weights ws and wd to be 0.5 and, due to the lack of training data for the
740
+ BUC use case, modeled the parameters of the data-driven model manually. The results
741
+ of the experiments are summarized in Table 2. The results show that goal g4 is ranked
742
+ as most probable once one additional observation is made for both meta-models. Before
743
+ this point, g2 is considered to be the most probable goal. Hence, the results show that a
744
+ hybrid goal recognition model is able to leverage on the information that is contained in
745
+ the observations that the agent drank beer. Consequently, it can recognize the true goal
746
+ much earlier than the PRAP approaches for this example. Also interesting to note is that
747
+ the results are identical for both meta-models until the fifth observation is observed. This
748
+ makes sense as the results in Table 1 show that the PRAP approaches are undecided for
749
+ the first four observation steps. Hence, both meta-models use the same weighted sum to
750
+ combine goal probability estimates. For the fifth and sixth observation steps, both meta-
751
+ models estimate the highest probability for the correct goal (i.e., g4). However, the TB
752
+ meta-model estimates slightly higher probabilities for this goal and hence, is slightly more
753
+ confident in g4 being the actual goal of the agent.
754
+ 10
755
+
756
+ 6. Evaluation Setup
757
+ This section describes the experimental setup of the empirical evaluation. The empirical
758
+ evaluation aims to achieve the following goals:
759
+ 1. Evaluate the performance of the planning-based methods, the NBM, and other well-
760
+ known data-driven techniques, when applied to goal recognition problems in a real-
761
+ world scenario, to determine which methods are best suited to be used in a hybrid
762
+ goal recognition method.
763
+ 2. Show that a hybrid probabilistic goal recognition method is able to achieve superior
764
+ performance, compared to purely planning-based and purely data-driven methods.
765
+ 3. Investigate how the performance of the hybrid method is affected by increasing the
766
+ number of possible goals.
767
+ We used real-world and artificial datasets for empirically evaluating the goal recognition
768
+ methods. In all experiments, the online goal recognition problem was considered (as defined
769
+ by Definition 5).
770
+ 6.1 Datasets
771
+ This section presents the real-world and artificial datasets that were used for evaluation.
772
+ Real-World Kitchen Dataset
773
+ As a real-world data set, we used the CMU-MMAC
774
+ Kitchen Dataset (De la Torre, Hodgins, Montano, Valcarcel, Forcada, & Macey, ) to which
775
+ we will refer to as “CMU” from here on. It contains data from different sources (e.g., video,
776
+ motion capture, etc.) that were recorded by observing different people while cooking one
777
+ out of five recipes. We will consider the different dishes the observed participants might
778
+ cook as possible goals. We first transformed the existing “raw” data into a suitable format
779
+ for our purpose. As a starting point of this transformation, we used the results of a semantic
780
+ annotation project (Yordanova, Kr¨uger, & Kirste, 2018). In this project, planning domains
781
+ in PDDL format and annotated observation sequences were created for three of the five
782
+ recipes (i.e., brownies, eggs, and sandwich). In addition, we created annotations for the
783
+ remaining two recipes (i.e., pizza and salad). Table 3 displays some summarizing statistics
784
+ of the observation sequence lengths per goal. Note that the CMU dataset only includes the
785
+ first five goals. Interesting to note is that the average- and median observation sequence
786
+ lengths substantially differ between the recipes. In addition, the standard deviations of the
787
+ sequence lengths are relatively high. This indicates that the different observed persons used
788
+ significantly different paths to reach one of the goals.
789
+ One limitation of the CMU Dataset is that although it is based on sensor recordings
790
+ of real human participants that were recorded while they were cooking different recipes,
791
+ the general setup that was used during the sensor recordings is still rather artificial and,
792
+ therefore, does not necessarily reflect all aspects of natural behaviour in a cooking scenario.
793
+ Nevertheless, we still think that it is able to provide a solid basis to judge whether the
794
+ investigated goal recognition approaches are able to handle recognition scenarios of real-
795
+ world complexity, which is the aim of this work.
796
+ 11
797
+
798
+ Table 3: Statistics of the observation sequence lengths per recipe in the CMU and artifi-
799
+ cially extended CMU datasets (g1=brownies, g2=eggs, g3=sandwich, g4=salad, g5=pizza,
800
+ g6=bread, g7=briocheBraid, g8=cheeseburger, g9=spaghetti, g10=spinachFetaPastry). The
801
+ original CMU dataset only contains the first five goals.
802
+ g1
803
+ g2
804
+ g3
805
+ g4
806
+ g5
807
+ g6
808
+ g7
809
+ g8
810
+ g9
811
+ g10
812
+ Average
813
+ 111.17
814
+ 87.08
815
+ 57.85
816
+ 110.56
817
+ 90.40
818
+ 69.73
819
+ 50.27
820
+ 122.96
821
+ 67.63
822
+ 108.12
823
+ Median
824
+ 108.0
825
+ 88.0
826
+ 58.0
827
+ 108.5
828
+ 89.5
829
+ 70.0
830
+ 50.0
831
+ 114.0
832
+ 65.5
833
+ 96.5
834
+ Std. Dev.
835
+ 15.43
836
+ 17.25
837
+ 9.02
838
+ 17.94
839
+ 15.35
840
+ 7.57
841
+ 7.61
842
+ 27.29
843
+ 9.43
844
+ 39.01
845
+ Extending the CMU Dataset with Artificially Generated Data
846
+ To evaluate the
847
+ scalability of the proposed hybrid approach to a higher number of goals, we extended the
848
+ data from the CMU dataset with five artificially generated goals.
849
+ In the remainder of
850
+ this work, we will refer to this extended dataset as “ACMU”. The added goals (bread,
851
+ brioche braid, cheeseburger, spaghetti, and spinach feta pastry) were manually defined
852
+ in the planning domain.
853
+ This domain, which was used in both experiments (just with
854
+ different sets of possible goals), contains 3411 different actions and 1627 different fluents.
855
+ To generate artificial observation sequences for these goals, which is required for training
856
+ the data-driven methods, we developed a procedure to sample such observation sequences
857
+ for a given planning problem. The intuition underlying our proposed hybrid approach is the
858
+ assumption that human behavior includes carrying out actions that are not strictly necessary
859
+ in order to reach the current goal (i.e., which are not rational according to the planning
860
+ domain). Thus, the sampling procedure should reflect this intuition. Consequently, it is
861
+ not sufficient to use optimal plans as generated by existing planning systems: These plans
862
+ generally only contain actions that are strictly necessary to reach a given goal. Additionally,
863
+ a planning system will always generate very similar plans when it is presented with the same
864
+ planning problem. As a solution, we propose a sampling algorithm that generates artificial
865
+ observations sequentially. At each step, the algorithm either returns the action used in an
866
+ optimal plan, or a randomly drawn action (where the probability of drawing a certain action
867
+ depends on the goal). More details on the sampling algorithm can be found in Appendix
868
+ A.
869
+ Table 3 presents some summarizing statistics for the artificially generated observation
870
+ sequences for g6 - g10. The average- and median lengths of the artificially generated obser-
871
+ vation sequences are comparable to the sequences that are based on real observed sensor
872
+ data. In addition, there is also a comparable amount of variation among these sequences,
873
+ which is important to reflect the properties of real-world observations.
874
+ Artificial Dataset
875
+ To further investigate the scalability of the proposed hybrid approach
876
+ and make the results better comparable to existing work, we used a well-known artificial
877
+ planning domain, which was commonly used as a benchmark in the existing literature
878
+ (Ram´ırez & Geffner, 2010),(Pereira, Oren, & Meneguzzi, 2020).
879
+ This domain models a
880
+ logistics problem, where different objects have to be delivered to several destinations. In
881
+ contrast to the CMU domain, this domain is much smaller and contains only 356 actions
882
+ and 84 fluents. We will refer to the resulting dataset as “LOG” from here on. As this
883
+ domain is purely synthetic, no real observation sequences existed.
884
+ Hence, we used the
885
+ 12
886
+
887
+ same sampling procedure that was used to extend the CMU dataset to generate artificial
888
+ observation sequences for this domain. Table 4 displays some summarizing statistics for
889
+ the resulting observation sequences. An important difference to the CMU datasets is that
890
+ the average observations sequence length is much smaller in the logistics dataset, which
891
+ is mainly caused by the synthetic nature of this domain. Nevertheless, although this is
892
+ the case, there is still a recognizable amount of variance among the sampled observation
893
+ sequences.
894
+ Table 4: Statistics of the observation sequence lengths per recipe in logistics dataset.
895
+ g1
896
+ g2
897
+ g3
898
+ g4
899
+ g5
900
+ g6
901
+ g7
902
+ g8
903
+ g9
904
+ g10
905
+ Average
906
+ 21.33
907
+ 22.47
908
+ 23.23
909
+ 23.43
910
+ 21.40
911
+ 22.80
912
+ 23.67
913
+ 22.27
914
+ 24.27
915
+ 22.37
916
+ Median
917
+ 21.0
918
+ 21.0
919
+ 23.0
920
+ 22.0
921
+ 21.0
922
+ 22.0
923
+ 23.0
924
+ 22.0
925
+ 23.5
926
+ 22.0
927
+ Std. Dev.
928
+ 2.31
929
+ 3.51
930
+ 2.64
931
+ 3.48
932
+ 2.93
933
+ 2.51
934
+ 2.27
935
+ 2.80
936
+ 2.32
937
+ 4.52
938
+ 6.2 Goal Recognition Methods
939
+ In the empirical experiments, we applied different symbolic, data-driven, and hybrid goal
940
+ recognition methods.
941
+ Symbolic Goal Recognition Methods
942
+ We used two state-of-the-art planning-based
943
+ methods: GM and RG, which were presented in Section 4. To solve the planning problems
944
+ that are generated by the two PRAP approaches, we used the MetricFF (Hoffmann, 2003)
945
+ planner. MetricFF is a satisficing planner that supports metric fluents.Following Ram´ırez
946
+ and Geffner (Ram´ırez & Geffner, 2010) and Vered et al. (Vered et al., 2016), we assumed
947
+ equal cost for all actions and used a value of β = 1. As the timeout for the MetricFF
948
+ planner, we used 340 seconds. After this timeout, the planner will be forced to stop and
949
+ the associated planning problem is considered not solvable.
950
+ Data-Driven Goal Recognition Methods
951
+ We evaluated four different data-driven
952
+ methods: The NBM presented earlier in Section 5 and three additional data-driven ap-
953
+ proaches, which were selected following a recent study by Borrajo et al. (Borrajo, Gopalakr-
954
+ ishnan, & Potluru, 2020). Specifically, we used K-Nearest-Neighbors (KNN) (Russell, 2016,
955
+ pp. 738-740), XGBoost (Chen & Guestrin, 2016), and a Long-Short-Term Memory (LSTM)
956
+ network (Hochreiter & Schmidhuber, 1997).
957
+ For experiments with the KNN and XGBoost approaches, we evaluated two different
958
+ data encodings. First, we used a binary encoding of the planning states, consisting of the
959
+ state of all planning fluents. Second, following the work of Borrajo et al. (Borrajo et al.,
960
+ 2020), we used a vector encoding of the observed action sequence.
961
+ We performed a grid search to determine the hyper-parameters for the KNN and XG-
962
+ Boost methods. For the planning fluent-based encoding, we used a leaf size of 30 and k = 8
963
+ for KNN and a learning rate of 0.24, minimum child weight of 5, α = 0.42, λ = 1.15, maxi-
964
+ mum depth of 5, and γ = 0.99 for XGBoost. In contrast, for the action vector encoding, we
965
+ used a leaf size of 40 and k = 3 for KNN and a learning rate of 0.31, minimum child weight
966
+ of 2, α = 3.26, λ = 1.03, maximum depth of 3, and γ = 0.96 for XGBoost.
967
+ 13
968
+
969
+ For the LSTM, we also evaluated two different data encodings: A one hot representation
970
+ of both the observed action sequence and the observed state sequence.
971
+ Here, we used
972
+ different vector encodings than for the other data-driven methods because LSTM models,
973
+ in contrast to the other considered methods, are explicitly designed to handle temporal data
974
+ sequences which are better captured by one hot data encodings (Borrajo et al., 2020). For
975
+ both setups, we used the ADAM optimizer with a learning rate of 0.01, a batch size of 32,
976
+ and 100 epochs.
977
+ Hybrid Goal Recognition Methods
978
+ We evaluated the two different meta-models de-
979
+ scribed in Subsection 5.2. For both meta-models, we computed the weight for the NBM
980
+ as wNBM(n, t) =
981
+ a
982
+ 1+e−b(t−((cn)+d)) , where n is the number of training examples used to train
983
+ the NBM, t is the number of observations used for goal recognition, and a, b, c, and d
984
+ are fitting parameters. As for the data-driven approaches, we performed a grid search to
985
+ determine the best performing values for a, b, c, and d. Accordingly, we set the parameters
986
+ to a = 0.5, b = −0.15, c = 4, d = 2.5 (CMU), and a = 0.5, b = −0.15, c = 5, d = 1 (ACMU)
987
+ respectively for the CMU datasets. For the LOG dataset, we used the following parameter
988
+ values: a = 0.2, b = −0.15, c = 0, and d = 0. The weight for the PRAP approaches is
989
+ calculated as wPRAP = 1 − wNBM(n) for all datasets.
990
+ 6.3 Experimental Design
991
+ To assess the goal recognition performance of the different methods, we used the mean goal
992
+ recognition accuracy. To calculate the accuracies, in contrast to most previous works, we
993
+ did not consider a goal to be recognized correctly if it is part of a set of goals that were
994
+ assigned with the highest likelihood. Instead, we only considered a goal to be recognized
995
+ correctly if it is the only goal that was assigned with the highest probability. We decided for
996
+ this evaluation method as it, in our opinion, better reflects the usefulness of the prediction
997
+ for practical application in an assistance system. If such a system is provided with more
998
+ than one most probable goal, it has to randomly decide for one goal.
999
+ Furthermore, as
1000
+ we consider online goal recognition problems in this evaluation, we calculated the mean
1001
+ accuracy for different fractions of total observations that were used for goal recognition.
1002
+ Here we used relative numbers because the lengths of the involved observation sequences
1003
+ substantially differ. Hence, the mean accuracy Acc for a relative number of observations
1004
+ λ ∈ [0, 1] is calculated as follows:
1005
+ Acc(λ, D) =
1006
+
1007
+ R∈D [R(⌊TRλ⌋) = ˜
1008
+ gR]
1009
+ |D|
1010
+ (5)
1011
+ Here, D is a set of online goal recognition problems R, ˜
1012
+ gR denotes the correct goal of goal
1013
+ recognition problem R, TR is the maximum value of t for online goal recognition problem
1014
+ R (i.e., length of observation sequence that is associated with R), and [R(t) = ˜
1015
+ gR] equals 1
1016
+ if the correct goal is recognized for R(t) and 0 otherwise.
1017
+ To evaluate the performance of the symbolic goal recognition methods, we calculated
1018
+ Acc(λ, D) for different values of λ and for different domains D. To investigate the per-
1019
+ formance of the data-driven approaches in relation to the number of available training
1020
+ examples (i.e., number n of complete observation sequences), we used a slightly adjusted
1021
+ cross-validation procedure: For a given value of n, we split a set of online goal recognition
1022
+ 14
1023
+
1024
+ 0
1025
+ 1
1026
+ 2
1027
+ 3
1028
+ 4
1029
+ 5
1030
+ 10
1031
+ 15
1032
+ 20
1033
+ 25
1034
+ 30
1035
+ 35
1036
+ 40
1037
+ 45
1038
+ 50
1039
+ 55
1040
+ 60
1041
+ 65
1042
+ 70
1043
+ 75
1044
+ 80
1045
+ 85
1046
+ 90
1047
+ 95
1048
+ 0.2
1049
+ 0.4
1050
+ 0.6
1051
+ 0.8
1052
+ 1
1053
+ λ (%)
1054
+ Θ(λ, CMU)
1055
+ GM
1056
+ RG
1057
+ Figure 3: Mean accuracy of the planning-based methods (RG and GM) on the CMU Dataset
1058
+ without artifical samples.
1059
+ problems D into k partitions, where k = |D|/n. Then, k models were trained, but in con-
1060
+ trast to the typical cross-validation procedure, only one of the partitions was used as the
1061
+ training set and the remaining partitions were used for validation. In cases where D cannot
1062
+ be splitted into k partitions of equal size n, we randomly sampled sequences from the other
1063
+ partitions to complete the partitions with a size smaller than n. To assess the performance
1064
+ of a data-driven method, we calculated Acc(λ, D) for all k models and, subsequently, took
1065
+ the average over these accuracies. For the evaluation of the hybrid methods, we calculated
1066
+ the combined estimates for all results obtained from the cross-validation procedure for the
1067
+ data-driven approaches and then also took the average of the accuracies of all k models.
1068
+ 7. Experimental Results
1069
+ In the following, we present and discuss the results of the experiments corresponding to
1070
+ each of the three evaluation goals defined in Section 6.
1071
+ 7.1 Symbolic and Data-Driven Goal Recognition
1072
+ Symbolic Goal Recognition Results
1073
+ We start by comparing the two planning-based
1074
+ goal recognition methods on the CMU dataset. Figure 3 shows the average goal recognition
1075
+ accuracy of the RG and GM approaches on this dataset.
1076
+ It can be seen that the GM
1077
+ approach outperformed the RG approach consistently, except for the case when only very
1078
+ small fractions of the observation sequences are used. Furthermore, the accuracy of the RG
1079
+ approach decreases when more than 20% of the observations are used. The main reason
1080
+ for this behavior is the fact that the involved planning problems became too complex to
1081
+ be solved optimally, or were not solvable at all in the given time limit. This fact is also
1082
+ the reason for the large difference between GM and RG which could not be observed for
1083
+ the (much simpler) BUC before: The higher complexity of the planning problem made
1084
+ the solutions that are found within the given time limit less optimal. Hence, the results
1085
+ show that the compilation process of the RG approach had a much higher impact onto
1086
+ the optimality of the solutions than the transformation procedure of the GM approach.
1087
+ Through a detailed analysis of the generated plans, we found that this is mainly caused by
1088
+ the fact that, in contrast to the GM approach, the RG approach changes the structure of
1089
+ the actions space of a planning problem in a way that most planning heuristics are not able
1090
+ to deal with.
1091
+ 15
1092
+
1093
+ 0 1 2 3 4 5 101520253035404550556065707580859095
1094
+ 0.2
1095
+ 0.4
1096
+ 0.6
1097
+ 0.8
1098
+ 1
1099
+ Acc(λ, CMU)
1100
+ n=1
1101
+ 0 1 2 3 4 5 101520253035404550556065707580859095
1102
+ 0.2
1103
+ 0.4
1104
+ 0.6
1105
+ 0.8
1106
+ 1
1107
+ n=3
1108
+ 0 1 2 3 4 5 101520253035404550556065707580859095
1109
+ 0.2
1110
+ 0.4
1111
+ 0.6
1112
+ 0.8
1113
+ 1
1114
+ Acc(λ, CMU)
1115
+ n=5
1116
+ 0 1 2 3 4 5 101520253035404550556065707580859095
1117
+ 0.2
1118
+ 0.4
1119
+ 0.6
1120
+ 0.8
1121
+ 1
1122
+ n=7
1123
+ 0 1 2 3 4 5 101520253035404550556065707580859095
1124
+ 0.2
1125
+ 0.4
1126
+ 0.6
1127
+ 0.8
1128
+ 1
1129
+ λ (%)
1130
+ Acc(λ, CMU)
1131
+ n=9
1132
+ 0 1 2 3 4 5 101520253035404550556065707580859095
1133
+ 0.2
1134
+ 0.4
1135
+ 0.6
1136
+ 0.8
1137
+ 1
1138
+ λ (%)
1139
+ n=11
1140
+ NBM
1141
+ XGBoost (actions)
1142
+ XGBoost (states)
1143
+ KNN (actions)
1144
+ KNN (states)
1145
+ Figure 4: Mean accuracy of the data-driven methods (NBM, KNN and XGBoost) on the
1146
+ CMU Dataset without additional samples for different sizes of the training set n.
1147
+ As the GM approach provided a much better overall performance, in all following ex-
1148
+ periments, we only considered the GM approach.
1149
+ Data-Driven Goal Recognition Results
1150
+ Next, we compare the different data-driven
1151
+ goal recognition methods.
1152
+ Figure 4 shows the average, cross-validated goal recognition
1153
+ accuracies of the NBM, KNN, and XGBoost for the CMU dataset. As the LSTM approach
1154
+ did not achieve accuracy values above 25% for any training set size, we did not include the
1155
+ results in Figure 4. For KNN and XGBoost, we compare performances of the fluent-based
1156
+ and action-based data encodings, as introduced in Section 6.2.
1157
+ The results show that all approaches performed much better, especially early in the
1158
+ observation sequence, when the planning state-based data encoding was used. This shows
1159
+ that, in case of the CMU domain, the symbolic planning states encode more useful informa-
1160
+ tion regarding the actual goal of an observed agent than the sequence of observed actions.
1161
+ Furthermore, the accuracies of all three methods did not depend strongly on the amount
1162
+ of available training data. Interesting to note is that even though the NBM is the model
1163
+ with the lowest computational complexity, it was still not outperformed by the (slightly)
1164
+ more complex KNN and XGBoost models. Hence, overall, the NBM is the most favor-
1165
+ able data-driven model for this scenario, especially in mobile computing scenarios, where
1166
+ computational efficiency is of high relevance.
1167
+ 16
1168
+
1169
+ 0 1 2 3 4 5 101520253035404550556065707580859095
1170
+ 0.2
1171
+ 0.4
1172
+ 0.6
1173
+ 0.8
1174
+ 1
1175
+ Acc(λ, CMU)
1176
+ n=1
1177
+ 0 1 2 3 4 5 101520253035404550556065707580859095
1178
+ 0.2
1179
+ 0.4
1180
+ 0.6
1181
+ 0.8
1182
+ 1
1183
+ n=3
1184
+ 0 1 2 3 4 5 101520253035404550556065707580859095
1185
+ 0.2
1186
+ 0.4
1187
+ 0.6
1188
+ 0.8
1189
+ 1
1190
+ Acc(λ, CMU)
1191
+ n=5
1192
+ 0 1 2 3 4 5 101520253035404550556065707580859095
1193
+ 0.2
1194
+ 0.4
1195
+ 0.6
1196
+ 0.8
1197
+ 1
1198
+ n=7
1199
+ 0 1 2 3 4 5 101520253035404550556065707580859095
1200
+ 0.2
1201
+ 0.4
1202
+ 0.6
1203
+ 0.8
1204
+ 1
1205
+ λ (%)
1206
+ Acc(λ, CMU)
1207
+ n=9
1208
+ 0 1 2 3 4 5 101520253035404550556065707580859095
1209
+ 0.2
1210
+ 0.4
1211
+ 0.6
1212
+ 0.8
1213
+ 1
1214
+ λ (%)
1215
+ n=11
1216
+ GM
1217
+ NBM
1218
+ WS
1219
+ TB
1220
+ Figure 5: Mean accuracy of the Goal Mirroring (GM) and Naive Bayes Model (NBM)
1221
+ approaches and the two hybrid approaches Weighted Sum (WS) and Tiebreaking (TB) on
1222
+ the CMU Dataset without artifical samples for different sizes of the training set n.
1223
+ 7.2 Hybrid Goal Recognition
1224
+ In this section, we assess the performance of the hybrid goal recognition models (i.e.,
1225
+ Weighted Sum (WS) and Tiebreaking (TB)) in comparison to the purely data-driven NBM
1226
+ approach and the purely planning-based GM method. Figure 5 shows the average, cross-
1227
+ validated goal recognition accuracies of these approaches for the CMU dataset.
1228
+ The results show that both hybrid approaches were at least as good as the GM and
1229
+ NBM approaches for small training set sizes. For larger training set sizes (i.e., n ≥ 3), the
1230
+ TB approach was increasingly outperformed by the NBM early in the recognition process
1231
+ (i.e., when only a small fraction of the observations were seen). The reason for this is that
1232
+ the TB approach relies strongly on the predictions of the GM approach, which also became
1233
+ increasingly outperformed by the NBM early in the observation sequence with increasing
1234
+ training set sizes. In contrast, the WS approach was not outperformed by the NBM, but
1235
+ reached at least similar performance as the NBM also when only a small fraction of the
1236
+ observations were seen. The WS approach was even able to substantially outperform both
1237
+ the NBM and the GM approaches early in the observation sequences when, depending on
1238
+ the training set size, between 3% and 30% of the observations were used. This effect was
1239
+ most prominent when training set sizes between n = 3 and n = 7 were used.
1240
+ The results show that for n ≥ 3, the planning-based and data-driven methods com-
1241
+ plemented each other well regarding recognition performance. While the NBM approach
1242
+ 17
1243
+
1244
+ 0 1 2 3 4 5 101520253035404550556065707580859095
1245
+ 0.2
1246
+ 0.4
1247
+ 0.6
1248
+ 0.8
1249
+ 1
1250
+ Acc(λ, ACMU)
1251
+ n=1
1252
+ 0 1 2 3 4 5 101520253035404550556065707580859095
1253
+ 0.2
1254
+ 0.4
1255
+ 0.6
1256
+ 0.8
1257
+ 1
1258
+ n=3
1259
+ 0 1 2 3 4 5 101520253035404550556065707580859095
1260
+ 0.2
1261
+ 0.4
1262
+ 0.6
1263
+ 0.8
1264
+ 1
1265
+ Acc(λ, ACMU)
1266
+ n=5
1267
+ 0 1 2 3 4 5 101520253035404550556065707580859095
1268
+ 0.2
1269
+ 0.4
1270
+ 0.6
1271
+ 0.8
1272
+ 1
1273
+ n=7
1274
+ 0 1 2 3 4 5 101520253035404550556065707580859095
1275
+ 0.2
1276
+ 0.4
1277
+ 0.6
1278
+ 0.8
1279
+ 1
1280
+ λ (%)
1281
+ Acc(λ, ACMU)
1282
+ n=9
1283
+ 0 1 2 3 4 5 101520253035404550556065707580859095
1284
+ 0.2
1285
+ 0.4
1286
+ 0.6
1287
+ 0.8
1288
+ 1
1289
+ λ (%)
1290
+ n=11
1291
+ GM
1292
+ NBM
1293
+ WS
1294
+ TB
1295
+ Figure 6: Mean accuracy of the Goal Mirroring (GM), Naive Bayes Model (NBM) ap-
1296
+ proaches and the two hybrid approaches Weighted Sum (WS) and Tiebreaking (TB) on the
1297
+ artificially extended CMU Dataset for different sizes of the training set n.
1298
+ achieved the best performances early in the observation sequences (i.e., less than 10% - 20%
1299
+ of the observations), the GM approach outperformed the NBM later in the observation
1300
+ sequences (i.e., more than 10% - 20% of the observations). The hybrid WS approach was
1301
+ able to leverage on the strengths of the two individual approaches, constantly performing
1302
+ as good or better as each of them.
1303
+ 7.3 Scalability of Hybrid Goal Recognition
1304
+ Evaluating Scalability on Extended Real-World Dataset
1305
+ Next, we investigate the
1306
+ scalability of the methods, by assessing goal recognition performance when the number of
1307
+ goals is increased. Figure 6 shows the cross-valiated mean accuracy of the GM, NBM, TB,
1308
+ and WS approaches for the ACMU dataset (i.e., with sampled observation sequences).
1309
+ Due to the doubled number of goals, the GM and the NBM approaches achieve a sig-
1310
+ nificantly lower recognition accuracy compared to the results for the CMU dataset that has
1311
+ not been extended with artificial data. Nevertheless, it can be observed that the recognition
1312
+ performance of the GM approach converges towards the GM performance on the not artifi-
1313
+ cially extended CMU dataset with an increasing fraction of observations that were used for
1314
+ recognition. The results also show that the NBM approach, even when only a small number
1315
+ of training examples were used (i.e., n = 3), is able to achieve a better goal recognition
1316
+ performance than the GM when less than 5% of the observation sequences were seen. In
1317
+ 18
1318
+
1319
+ 0 1 2 3 4 5 101520253035404550556065707580859095
1320
+ 0.2
1321
+ 0.4
1322
+ 0.6
1323
+ 0.8
1324
+ 1
1325
+ Acc(λ, LOG)
1326
+ n=1
1327
+ 0 1 2 3 4 5 101520253035404550556065707580859095
1328
+ 0.2
1329
+ 0.4
1330
+ 0.6
1331
+ 0.8
1332
+ 1
1333
+ n=3
1334
+ 0 1 2 3 4 5 101520253035404550556065707580859095
1335
+ 0.2
1336
+ 0.4
1337
+ 0.6
1338
+ 0.8
1339
+ 1
1340
+ Acc(λ, LOG)
1341
+ n=5
1342
+ 0 1 2 3 4 5 101520253035404550556065707580859095
1343
+ 0.2
1344
+ 0.4
1345
+ 0.6
1346
+ 0.8
1347
+ 1
1348
+ n=7
1349
+ 0 1 2 3 4 5 101520253035404550556065707580859095
1350
+ 0.2
1351
+ 0.4
1352
+ 0.6
1353
+ 0.8
1354
+ 1
1355
+ λ (%)
1356
+ Acc(λ, LOG)
1357
+ n=9
1358
+ 0 1 2 3 4 5 101520253035404550556065707580859095
1359
+ 0.2
1360
+ 0.4
1361
+ 0.6
1362
+ 0.8
1363
+ 1
1364
+ λ (%)
1365
+ n=11
1366
+ GM
1367
+ NBM
1368
+ WS
1369
+ TB
1370
+ Figure 7: Mean accuracy of the Goal Mirroring (GM), Naive Bayes Model (NBM) ap-
1371
+ proaches and the two hybrid approaches Weighted Sum (WS) and Tiebreaking (TB) on the
1372
+ logistics domain for different sizes of the training set n.
1373
+ addition, the results show that the WS approach again performs similarly well or better
1374
+ than the two individual approaches.
1375
+ The differences between the achieved recognition performances of the GM and NBM
1376
+ approaches are even larger early and late in the observation sequences than for the stan-
1377
+ dard CMU dataset. This indicates that increasing the number of possible goals makes the
1378
+ weaknesses of the individual approaches even more prominent and hence, using a hybrid
1379
+ approach that is able to compensate for them is even more favorable. Note that this obser-
1380
+ vation only holds when a limited number of training data is available as the performance
1381
+ of the NBM naturally will increase when more training data is available.
1382
+ Nevertheless,
1383
+ it is very common in practice that annotated training examples are scarce as manually
1384
+ annotating observation sequences is costly and error-prone.
1385
+ In summary, the results show that the hybrid recognition approach still achieves good
1386
+ goal recognition performance when the number of possible goals increases. Moreover, the
1387
+ results indicate that using a hybrid approach is even more beneficial when the number of
1388
+ goals increases, compared to purely data-driven or purely planning-based methods.
1389
+ Evaluating Scalability on an Artificial Dataset
1390
+ Finally, we further investigate the
1391
+ scalability of the methods by applying them to a benchmark plan recognition domain (which
1392
+ has simpler plans, but more possible goals than the real-world CMU domain). Figure 7
1393
+ shows the mean goal recognition accuracy of the GM, NBM, TB, and WS approaches for
1394
+ 19
1395
+
1396
+ the logistics planning domain. As for the CMU domain, the NBM performed better than
1397
+ the GM approach early in the observation sequences (i.e., when less than, depending on
1398
+ n, 5% - 20% of the observations were seen) and the GM performed better later in the
1399
+ observation sequences. However, for the logistics domain, the NBM only achieved slightly
1400
+ better performance than the GM approach.
1401
+ Interestingly, in contrast to the experiments with the CMU Dataset, the Tiebreaking
1402
+ (TB) approach also constantly performed as good or better than the two individual ap-
1403
+ proaches (in addition to WS, as for the CMU dataset). The main reason for this behavior
1404
+ is the fact that the assumptions underlying the TB approach hold more firmly for the LOG
1405
+ domain: TB assumes that the planning-based approach (GM, in this case) never predicts
1406
+ a wrong goal to be most probable, but only predicts multiple, equally likely goals (one of
1407
+ which is correct). This assumption only holds if the involved plans are optimal. The logis-
1408
+ tics domain, however, has substantially lower complexity than the CMU domain, such that
1409
+ the MetricFF planner was able to find more optimal plans in the given time limit. Thus,
1410
+ the assumptions of TB hold and TB could achieve better results than for the CMU and
1411
+ ACMU datasets. In summary, the results show that our hybrid goal recognition approach
1412
+ is also beneficial in artificial planning domains where the number of goals is substantially
1413
+ higher than in the investigated real-world domain.
1414
+ 8. Related Work
1415
+ Existing approaches to goal- and plan recognition can be divided into model-based and
1416
+ model-free approaches. Model-based approaches typically reason over handcrafted symbolic
1417
+ domain models to solve the recognition task. In contrast, model-free approaches treat the
1418
+ recognition problem as a classification problem and learn to predict the current user goal
1419
+ from data and, thus, are data-driven.
1420
+ Early model-based approaches to plan recognition relied on complete plan libraries that
1421
+ encode possible user behavior to recognize the current plan from observed user actions
1422
+ (Kautz & Allen, 1986; Charniak & Goldman, 1993). However, these approaches require a
1423
+ large manual modeling effort, which is infeasible in large domains. To overcome this issue, a
1424
+ new class of approaches to plan recognition that no longer required complete plan libraries,
1425
+ but only a domain model that defines possible states and actions, was proposed.
1426
+ The
1427
+ PRAP approaches considered in this work (Ram´ırez & Geffner, 2010; Pereira et al., 2020),
1428
+ (Vered et al., 2016) belong to this class. Another example approach that relies on the use
1429
+ of classical planning systems is the approach by Sohrabi et al. (Sohrabi, Riabov, & Udrea,
1430
+ 2016). They propose to use a top-k planner to generate the top-k plans for all possible
1431
+ goals in order to obtain which goal a user currently intents to achieve. Nevertheless, most
1432
+ of these approaches have, so far, only been evaluated on relatively small, artificial domains,
1433
+ and hence, it is not clear whether they are also applicable to real-world scenarios.
1434
+ We
1435
+ have shown that these PRAP approaches indeed show good performance in a real-world
1436
+ setting, but have problems in capturing relations between observations and user goals that
1437
+ cannot be properly modeled manually. Some other recent approaches to goal recognition in
1438
+ smart environments also belong to this class of approaches (Yordanova et al., 2017, 2019).
1439
+ Consequently, they have the same problems as the approaches considered in this work.
1440
+ 20
1441
+
1442
+ In contrast, model-free approaches learn to predict the most probable user goal directly
1443
+ from data. Hence, they have the potential to learn the relations between actions and user
1444
+ goals that are not properly captured by model-based approaches. In (Albrecht, Zukerman,
1445
+ Nicholson, & Bud, 1997), the authors propose to use a BN model to predict the current quest
1446
+ of an observed player of a computer game. Recently, approaches that applied deep learning
1447
+ methods to goal recognition problems have been proposed (Min, Mott, Rowe, Liu, & Lester,
1448
+ 2016; Amado, Aires, Pereira, Magnaguagno, Granada, & Meneguzzi, 2018). For example,
1449
+ Min et al. (Min et al., 2016) applied a LSTM for player goal recognition in digital games.
1450
+ However, model-free approaches usually require large amounts of training data to produce
1451
+ reasonable results. In the case of deep learning models, several thousands of annotated
1452
+ training examples are required to train the model adequately. Such amounts of training
1453
+ data are usually not easily available for real-world scenarios. Regarding this aspect, model-
1454
+ based approaches have a clear advantage because they can rely on handcrafted domain
1455
+ knowledge. Thus, to benefit from both paradigms’ strengths, we propose a hybrid approach
1456
+ that combines a model-based and a model-free method.
1457
+ 9. Conclusion and Future Work
1458
+ In this work, we investigated whether existing plan recognition as planning (PRAP) ap-
1459
+ proaches can be applied to solve the online goal recognition problem in a real-world kitchen
1460
+ scenario. More explicitly, we conducted several empirical goal recognition experiments on
1461
+ the basis of the well-known CMU Kitchen Dataset, which contains observation sequences
1462
+ for five possible goals of up to 36 different subjects. We found that such PRAP approaches
1463
+ can indeed be used to solve the online goal recognition problems in real-world scenarios.
1464
+ Nevertheless, we also revealed and analyzed some major limitations of PRAP approaches
1465
+ when applied to such scenarios. As a possible solution, we proposed a hybrid goal recog-
1466
+ nition method, which combines a symbolic PRAP approach and a data-driven model. We
1467
+ showed that the hybrid approach is able to recognize an agent’s true goal more reliably than
1468
+ the PRAP approaches, especially early in an observation sequence (i.e., when only a small
1469
+ fraction of the observations were seen). To investigate the scalability of the proposed hybrid
1470
+ approach in terms of the number of possible goals, we conducted an experiment based on an
1471
+ artificially extended version of the CMU Kitchen Dataset. The results of these experiments
1472
+ indicate that the advantages of using a hybrid approach are becoming even more prominent
1473
+ with an increasing number of possible goals.
1474
+ In summary, we showed that using a hybrid goal recognition method provides a valuable
1475
+ improvement compared to state-of-the-art purely symbolic and data-driven goal recognition
1476
+ methods. It was found that our proposed hybrid method is able to outperform purely sym-
1477
+ bolic and data-driven methods and recognize the correct goal more reliably based on a
1478
+ lower number of observations, although only a small number of training examples are used.
1479
+ This result substantially improves the usefulness of goal recognition for intelligent assistance
1480
+ systems, as recognizing a goal early opens much more possibilities for supportive reactions
1481
+ of the system. Furthermore, it is usually very expansive to obtain annotated training ex-
1482
+ amples for real-world application scenarios. Hence, being able to provide valuable results
1483
+ based on limited numbers of training examples is an important requirement for potential
1484
+ goal recognition methods that should be applied to real-world application scenarios. Nev-
1485
+ 21
1486
+
1487
+ ertheless, we still see some potential for improvements of the extended approach in future
1488
+ work. One direction is to optimize the procedure that is used to combine the results of the
1489
+ two individual approaches. Another direction that we plan to investigate in future work is
1490
+ to use more complex tractable probabilistic models, like Sum-Product Networks (Poon &
1491
+ Domingos, 2011).
1492
+ 10. Acknowledgements
1493
+ The data used in this paper was obtained from kitchen.cs.cmu.edu and the data collection
1494
+ was funded in part by the National Science Foundation [grant number EEEC-0540865]. This
1495
+ work was supported by the German Federal Ministry of Education and Research (BMBF)
1496
+ [grant number 01lS18079C].
1497
+ Appendix A. Sampling Artificial Observation Sequences
1498
+ Algorithm 1 summarizes the sampling procedure that is used in this work to sample artificial
1499
+ observation sequences. Here, pplanAction is a parameter that specifies the goal-directedness,
1500
+ i.e., the probability that the next action is taken from a precomputed optimal plan. When
1501
+ this is not the case, the next action is sampled out of the set of actions that are currently
1502
+ applicable in the current planning state. These actions are randomly drawn from all actions
1503
+ that are applicable in a certain state of the planning domain, following two predefined
1504
+ probability models that model the probability that an interaction with a certain object O is
1505
+ observed given that we want to reach a goal G (P(O|G)), and the probability that a certain
1506
+ kind of action A is observed given that we want to reach goal G (P(A|G)).
1507
+ The distribution P(A|G, S) that is used to sample an action at random is defined as
1508
+ follows:
1509
+ P(A = ai|g, s) ∝
1510
+
1511
+ wi
1512
+ if ai applicable in s
1513
+ 0
1514
+ otherwise
1515
+ (6)
1516
+ That is, only applicable actions can be selected. The weight wi of an action depends on the
1517
+ corresponding “action type” AT(ai) and the set of objects OB(ai) with that each action
1518
+ interacts. The underlying intuition is the observation that depending on the current goal,
1519
+ the agent will choose actions of different action types with higher probabilities than others
1520
+ and also interact with certain objects with higher probabilities. Based on this intuition, we
1521
+ use randomly initialized weight score distributions W(AT|G) and W(OB|G) to determine
1522
+ the weights wi via
1523
+ wi = W(AT(ai)|g)
1524
+
1525
+ x∈OB(ai)
1526
+ W(x|g),
1527
+ (7)
1528
+ We initialize the parameters of P(A|G) and P(O|G) randomly and use the MetricFF
1529
+ planner to compute the initial plan.
1530
+ Each time an action from the sampling model is
1531
+ selected, the optimal plan from the resulting state is recomputed.
1532
+ 22
1533
+
1534
+ Algorithm 1 Sample artificial observation sequence for goal g.
1535
+ sampledPlan ← ()
1536
+ cState ← initialPlanningState
1537
+ optPlan ← computeOptimalPlan(cState, g)
1538
+ i = 0
1539
+ while goal not reached do
1540
+ r ← random(0, 1)
1541
+ if r < pplanAction then
1542
+ sAction ← optPlan.getAction(i)
1543
+ cState ← cState.apply(sAction)
1544
+ i ← i + 1
1545
+ else
1546
+ sAction ← sampleActionFromApplicableActions(cState)
1547
+ cState ← cState.apply(sAction)
1548
+ optPlan ← computeOptimalPlan(cState, g)
1549
+ i = 0
1550
+ end if
1551
+ sampledPlan ← concat(sampledPlan, sAction)
1552
+ end while
1553
+ References
1554
+ Albrecht, D. W., Zukerman, I., Nicholson, A. E., & Bud, A. (1997). Towards a Bayesian
1555
+ Model for Keyhole Plan Recognition in Large Domains. In Jameson, A., Paris, C., &
1556
+ Tasso, C. (Eds.), User Modeling, pp. 365–376. Springer Vienna, Vienna.
1557
+ Amado, L., Aires, J. P., Pereira, R. F., Magnaguagno, M. C., Granada, R., & Meneguzzi,
1558
+ F. (2018).
1559
+ Lstm-based goal recognition in latent space.
1560
+ In arXiv preprint
1561
+ arXiv:1808.05249. arXiv.
1562
+ Borrajo, D., Gopalakrishnan, S., & Potluru, V. K. (2020). Goal recognition via model-based
1563
+ and model-free techniques. In arXiv preprint arXiv:2011.01832. arXiv.
1564
+ Charniak, E., & Goldman, R. P. (1993). A bayesian model of plan recognition. Artificial
1565
+ Intelligence, 64(1), 53––79.
1566
+ Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings
1567
+ of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
1568
+ Data Mining, KDD ’16, p. 785–794, New York, NY, USA. Association for Computing
1569
+ Machinery.
1570
+ De la Torre, F., Hodgins, J., Montano, J., Valcarcel, S., Forcada, R., & Macey, J. Carnegie
1571
+ mellon university multimodal activity (cmu-mmac) database. http://kitchen.cs.
1572
+ cmu.edu/index.php\#tech. Accessed: 2021-11-15.
1573
+ Helaoui, R., Riboni, D., & Stuckenschmidt, H. (2013). A probabilistic ontological framework
1574
+ for the recognition of multilevel human activities. In Proceedings of the 2013 ACM
1575
+ International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp
1576
+ ’13, p. 345–354, New York, NY, USA. Association for Computing Machinery.
1577
+ 23
1578
+
1579
+ Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation,
1580
+ 9(8), 1735–1780.
1581
+ Hoffmann, J. (2003). The Metric-FF planning system: Translating “ignoring delete lists”
1582
+ to numeric state variables. JAIR, 20, 291–341.
1583
+ Hoque, E., & Stankovic, J. (2012). Aalo: Activity recognition in smart homes using active
1584
+ learning in the presence of overlapped activities.
1585
+ In 2012 6th International Con-
1586
+ ference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and
1587
+ Workshops, pp. 139–146.
1588
+ Kautz, H. A., & Allen, J. F. (1986). Generalized plan recognition. In Proceedings of the
1589
+ Fifth AAAI National Conference on Artificial Intelligence, AAAI’86, p. 32–37. AAAI
1590
+ Press.
1591
+ Kr¨uger, F., Nyolt, M., Yordanova, K., Hein, A., & Kirste, T. (2014). Computational state
1592
+ space models for activity and intention recognition. a feasibility study.
1593
+ PloS one,
1594
+ 9(11), e109381.
1595
+ McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D., &
1596
+ Wilkins, D. (1998). Pddl-the planning domain definition language..
1597
+ Min, W., Mott, B., Rowe, J., Liu, B., & Lester, J. (2016). Player goal recognition in open-
1598
+ world digital games with long short-term memory networks. In Proceedings of the
1599
+ Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI’16, p.
1600
+ 2590–2596. AAAI Press.
1601
+ Pereira, R. F., Oren, N., & Meneguzzi, F. (2020). Landmark-based approaches for goal
1602
+ recognition as planning. Artificial Intelligence, 279, 103217.
1603
+ Poon, H., & Domingos, P. (2011). Sum-product networks: A new deep architecture. In Pro-
1604
+ ceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence,
1605
+ UAI’11, p. 337–346, Arlington, Virginia, USA. AUAI Press.
1606
+ Ram´ırez, M., & Geffner, H. (2009). Plan recognition as planning. In Proceedings of the 21st
1607
+ International Joint Conference on Artificial Intelligence, IJCAI’09, p. 1778–1783.
1608
+ Ram´ırez, M., & Geffner, H. (2010). Probabilistic plan recognition using off-the-shelf clas-
1609
+ sical planners. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial
1610
+ Intelligence, AAAI’10, p. 1121–1126. AAAI Press.
1611
+ Rashidi, P., Cook, D. J., Holder, L. B., & Schmitter-Edgecombe, M. (2010).
1612
+ Discover-
1613
+ ing activities to recognize and track in a smart environment. IEEE transactions on
1614
+ knowledge and data engineering, 23(4), 527–539.
1615
+ Richter, S., Helmert, M., & Westphal, M. (2008). Landmarks revisited. In Proceedings of the
1616
+ 23rd National Conference on Artificial Intelligence - Volume 2, AAAI’08, p. 975–982.
1617
+ AAAI Press.
1618
+ Russell, S. J. (2016). Artificial intelligence : a modern approach (Third edition, Global
1619
+ edition edition). Prentice Hall series in artificial intelligence. Boston Columbus Indi-
1620
+ anapolis.
1621
+ 24
1622
+
1623
+ Sohrabi, S., Riabov, A. V., & Udrea, O. (2016). Plan recognition as planning revisited. In
1624
+ Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelli-
1625
+ gence, IJCAI’16, p. 3258–3264. AAAI Press.
1626
+ Sztyler, T., & Stuckenschmidt, H. (2017). Online personalization of cross-subjects based ac-
1627
+ tivity recognition models on wearable devices. In 2017 IEEE International Conference
1628
+ on Pervasive Computing and Communications (PerCom), pp. 180–189.
1629
+ Vered, M., Kaminka, G., & Biham, S. (2016). Online goal recognition through mirroring:
1630
+ humans and agents. In Forbus, K., Hinrichs, T., & Ost, C. (Eds.), Fourth Annual
1631
+ Conference on Advances in Cognitive Systems, Advances in Cognitive Systems. Cog-
1632
+ nitive Systems Foundation. Annual Conference on Advances in Cognitive Systems
1633
+ 2016 ; Conference date: 23-06-2016 Through 26-06-2016.
1634
+ Yao, L., Nie, F., Sheng, Q. Z., Gu, T., Li, X., & Wang, S. (2016). Learning from less for
1635
+ better: Semi-supervised activity recognition via shared structure discovery. In Proceed-
1636
+ ings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous
1637
+ Computing, UbiComp ’16, p. 13–24, New York, NY, USA. Association for Computing
1638
+ Machinery.
1639
+ Yordanova, K., Kr¨uger, F., & Kirste, T. (2018). Semantic annotation for the cmu-mmac
1640
+ dataset (version 2). http://purl.uni-rostock.de/rosdok/id00002273. Accessed:
1641
+ 2021-11-15.
1642
+ Yordanova, K., L¨udtke, S., Whitehouse, S., Kr¨uger, F., Paiement, A., Mirmehdi, M., Crad-
1643
+ dock, I., & Kirste, T. (2019). Analysing cooking behaviour in home settings: Towards
1644
+ health monitoring. Sensors, 19(3), 646.
1645
+ Yordanova, K., Whitehouse, S., Paiement, A., Mirmehdi, M., Kirste, T., & Craddock, I.
1646
+ (2017). What’s cooking and why? behaviour recognition during unscripted cooking
1647
+ tasks for health monitoring. In 2017 IEEE International Conference on Pervasive
1648
+ Computing and Communications Workshops (PerCom Workshops), pp. 18–21.
1649
+ 25
1650
+
XtE5T4oBgHgl3EQfdA-T/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
ZtFPT4oBgHgl3EQfuzVj/content/tmp_files/2301.13157v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
ZtFPT4oBgHgl3EQfuzVj/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
_NE1T4oBgHgl3EQfUwPr/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15c54a4ea250dd6251f701042b6079d6d58def21c2ee38fbfd50338d5f67a428
3
+ size 74052
a9FQT4oBgHgl3EQfgTbF/content/tmp_files/2301.13343v1.pdf.txt ADDED
@@ -0,0 +1,1366 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Few-Shot Image-to-Semantics Translation for Policy
2
+ Transfer in Reinforcement Learning
3
+ Rei Sato∗‡, Kazuto Fukuchi†‡, Jun Sakuma†‡ and Youhei Akimoto†‡
4
+ ∗ Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
5
6
+ † Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba, Japan
7
8
+ ‡ RIKEN Center for Advanced Intelligence Project
9
+ Abstract—We
10
+ investigate
11
+ policy
12
+ transfer
13
+ using
14
+ image-to-
15
+ semantics translation to mitigate learning difficulties in vision-
16
+ based robotics control agents. This problem assumes two envi-
17
+ ronments: a simulator environment with semantics, that is, low-
18
+ dimensional and essential information, as the state space, and
19
+ a real-world environment with images as the state space. By
20
+ learning mapping from images to semantics, we can transfer a
21
+ policy, pre-trained in the simulator, to the real world, thereby
22
+ eliminating real-world on-policy agent interactions to learn,
23
+ which are costly and risky. In addition, using image-to-semantics
24
+ mapping is advantageous in terms of the computational efficiency
25
+ to train the policy and the interpretability of the obtained policy
26
+ over other types of sim-to-real transfer strategies. To tackle the
27
+ main difficulty in learning image-to-semantics mapping, namely
28
+ the human annotation cost for producing a training dataset, we
29
+ propose two techniques: pair augmentation with the transition
30
+ function in the simulator environment and active learning. We
31
+ observed a reduction in the annotation cost without a decline
32
+ in the performance of the transfer, and the proposed approach
33
+ outperformed the existing approach without annotation.
34
+ Index Terms—deep reinforcement learning, policy transfer,
35
+ sim-to-real
36
+ I. INTRODUCTION
37
+ Deep reinforcement learning (DRL) has been actively stud-
38
+ ied for robot control applications in real-world environments
39
+ because of its ability to train vision-based agents; that is, the
40
+ robot control actions are output directly from the observed
41
+ images [1]–[4]. One of the major advantages of vision-based
42
+ agents in robotics is that camera-captured images can be
43
+ incorporated into the decision-making of the agent without
44
+ using a handcrafted feature extractor.
45
+ However, allowing vision-based robot control agents to
46
+ learn by reinforcement learning in the real-world is challeng-
47
+ ing in terms of risk and cost because it requires a large amount
48
+ of real-world interactions with unstable robots. Reinforcement
49
+ learning involves a learning policy interacting with the envi-
50
+ ronment, and it is theoretically and empirically known that the
51
+ length of the interaction required for training increases with
52
+ the dimension of the state space [5], [6].
53
+ To address the difficulty associated with reinforcement
54
+ learning in a real-world environment, methods have been
55
+ proposed that pre-train a policy on a simulator environment
56
+ This research is partially supported by the JSPS KAKENHI Grant Number
57
+ 19H04179, and based on a project, JPNP18002, commissioned by NEDO.
58
+ and transfer it to the real-world environment [7]–[17]. In
59
+ this methodology, policies are learned in a simulator, that
60
+ is, a reinforcement learning environment on a computer that
61
+ mimics the real-world environment. The policy pre-trained in
62
+ the simulator is expected to be the optimal policy in the real-
63
+ world environment.
64
+ However, developing a simulator that imitates the real-world
65
+ environment is not always an easy task. Particularly, because
66
+ the real world provides image observations, a simulator en-
67
+ vironment requires a renderer to generate images as states.
68
+ However, producing a renderer that can generate photorealistic
69
+ images is fraught with financial and technical difficulties.
70
+ In the case that a photorealistic renderer cannot be produced,
71
+ another style of observations must be adopted as states during
72
+ the pre-training of the policy in a simulator environment. Most
73
+ existing approaches substitute photorealistic observations for
74
+ non-photorealistic ones using transfer techniques [7]–[17].
75
+ We investigated a type of transfer strategy called image-
76
+ to-semantics to deal with the absence of a photorealistic
77
+ renderer, which was created by [18]. In this approach, the
78
+ semantics—low-dimensional and essential information of a
79
+ state that represents an image—are employed as a form of state
80
+ observation instead of images in the simulator environment.
81
+ The transfer algorithm consists of two steps: pre-training a
82
+ policy on the simulator environment with semantics as its
83
+ observation, obtaining a mapping from photorealistic images
84
+ to their corresponding semantics, and using the image-to-
85
+ semantics mapping as a pre-processing component of the
86
+ policy in the real-world environment. A semantics-based pre-
87
+ trained policy can be operated in the real-world environment
88
+ using image observations. In addition to being a solution to
89
+ the case without a photorealistic renderer, image-to-semantics
90
+ mapping has advantages in terms of the computational cost
91
+ for policy pre-training in the simulator and the interpretability
92
+ of the acquired policy.
93
+ The crucial part of this approach is obtaining the image-to-
94
+ semantics translation mapping. To the best of our knowledge,
95
+ [18], [19] are the only studies that have dealt with learning
96
+ image-to-semantics translation. We highlight the remaining
97
+ problems of [18], [19]: (1) [19] used a paired dataset, that is,
98
+ multiple pairs of images and corresponding semantics, to train
99
+ the mapping. Considerable human effort is required to make
100
+ arXiv:2301.13343v1 [cs.LG] 31 Jan 2023
101
+
102
+ a paired dataset because human annotators provide seman-
103
+ tics that represent images. (2) Although the style translation
104
+ method without a paired dataset [18] aims at saving annotation
105
+ cost, its performance is not often satisfactory owing to the low
106
+ approximation quality of the image-to-semantics translation
107
+ mapping, as confirmed in our experiments.
108
+ In this study, we tackled learning image-to-semantics trans-
109
+ lation using a paired dataset; however, we reduced the cost of
110
+ creating a paired dataset using two strategies: pair augmenta-
111
+ tion and active learning. In our experiments, we confirmed the
112
+ following claims: first, compared to [19], we reduced the cost
113
+ of making a paired dataset while preserving the performance
114
+ of the policy transfer. Second, we achieved significantly higher
115
+ performance than [18], in which a paired dataset was not used,
116
+ by using a small paired dataset. For practicality, we conducted
117
+ experiments under the condition that only inaccurate paired
118
+ data can be obtained due to various errors, such as annotation
119
+ errors, and confirmed that the proposed method has a certain
120
+ robustness against errors.
121
+ Our
122
+ code
123
+ is
124
+ publicly
125
+ available
126
+ at
127
+ https://github.com/
128
+ madoibito80/im2sem.
129
+ II. PROBLEM FORMULATION
130
+ A. Markov Decision Process (MDP)
131
+ We defined a vision-based robotics task in the real world;
132
+ that is, the real-world environment is a target MDP: Mτ =
133
+ (Sτ, A, pτ, rτ, γ), where Sτ is a state space, A is an action
134
+ space, pτ : Sτ ×A×Sτ → R is a transition probability density,
135
+ rτ : Sτ × A × Sτ → R is a reward function, and γ ∈ [0, 1] is
136
+ a discount factor. Because we assumed that the target MDP is
137
+ a vision-based task, Sτ consists of images, and each s ∈ Sτ
138
+ contains single or multiple image frames. In standard model-
139
+ free reinforcement learning (RL) settings, agents can interact
140
+ with the environment: they observe st+1 ∼ pτ(· | at, st) and
141
+ reward rt = rτ(st+1, at, st) by performing action at at state
142
+ st, which is internally preserved in the environment at timestep
143
+ t; after the transition, st+1 is stored in the environment.
144
+ However, there are concerns in terms of the risk and cost
145
+ associated with learning a policy through extensive interaction
146
+ with Mτ.
147
+ To reduce the risk and cost of training a policy in the target
148
+ MDP, we pre-trained a policy on a simulator environment,
149
+ called the source MDP: Mσ = (Sσ, A, pσ, rσ, γ). Note that
150
+ the action space A is the same between the two MDPs.
151
+ In contrast, the state space Sσ, the transition probability
152
+ density pσ : Sσ × A × Sσ → R, and the reward function
153
+ rσ : Sσ × A × Sσ → R are different from those of the target
154
+ MDP. We assumed that because we considered robotics tasks,
155
+ the deterministic transition function Trσ(s, a) = s′ ∼ pσ(· |
156
+ a, s) could be defined in the simulator environment and pσ
157
+ resembled a Dirac delta distribution.
158
+ The source state space Sσ corresponded to a semantic space,
159
+ that is, each s ∈ Sσ was semantic information. For example,
160
+ consider a robot-arm grasp task; each s ∈ Sτ is a single or
161
+ multiple image frame showing a robot arm and objects to be
162
+ Action Space
163
+ State Space
164
+ Simulator Env
165
+ (Source MDP)
166
+ Policy
167
+ Action Space
168
+ State Space
169
+ Real-World Env
170
+ (Target MDP)
171
+ Semantic Space
172
+ Image Space
173
+ (Photorealistic)
174
+ Image-to-
175
+ Semantics
176
+ Fig. 1. Illustration of transfer via image-to-semantics. We approximated the
177
+ image-to-semantics translation mapping F as ˆF. Because the action space was
178
+ common to both MDPs, we operated the composite of the source policy πσ
179
+ and approximated image-to-semantics translation mapping ˆF, that is, πσ ◦ ˆF
180
+ in the target MDP.
181
+ grasped. Each s ∈ Sσ consists of semantics such as xyz-
182
+ coordinates of the end-effector and target objects and angles
183
+ of joints.
184
+ The source MDP and target MDP are expected to have some
185
+ structural correspondence. Here, we describe our assumptions
186
+ regarding the relations of the two MDPs. We assumed the
187
+ existence of a function F : Sτ → Sσ satisfying the following
188
+ conditions:
189
+ Transition Condition:
190
+ For all (s′, a, s) ∈ Sτ × A × Sτ,
191
+ pσ(F(s′) | a, F(s)) =
192
+
193
+ ¯s∈ ¯
194
+ S pτ(¯s | a, s)d¯s, where ¯S = {¯s ∈
195
+ Sτ | F(¯s) = F(s′)}.
196
+ Reward Condition:
197
+ For all (s′, a, s) ∈ Sτ × A × Sτ,
198
+ rσ(F(s′), a, F(s)) = rτ(s′, a, s).
199
+ In the above conditions, F is considered an oracle that takes
200
+ an image and outputs corresponding semantics; that is, F is the
201
+ true image-to-semantics translation mapping. In the transition
202
+ condition, ¯S is a set of images that has common semantics
203
+ F(s′). Imagine the transition from s ∈ Sτ to s′ ∈ Sτ with
204
+ action a ∈ A in the target MDP, the transition condition holds
205
+ F(s′) = Trσ(F(s), a). The reward condition indicates that
206
+ a reward for this transition rτ(s′, a, s) equals the one for a
207
+ transition from F(s) ∈ Sσ to F(s′) ∈ Sσ with the action a
208
+ in the source MDP.
209
+ B. Transfer via Image-to-Semantics
210
+ 1) Policy Transfer: The objective of RL is the expectation
211
+ of the discounted cumulative reward:
212
+ J(π; p, r, γ, p0) = Eπ,p,p0 [�∞
213
+ t=0 γtr(st+1, at, st)]
214
+ (1)
215
+ and maximizing it w.r.t. π. Here, π : S × A → R is a policy,
216
+ that is, a conditional distribution of at given st, and p0 is
217
+ the distribution of the initial state s0 over the state space.
218
+ Our objective was to obtain a well-trained policy on the target
219
+ MDP: πτ = arg max¯πτ J(¯πτ; pτ, rτ, γ, pτ
220
+ 0).
221
+ Under the situation in which the transition and reward
222
+ conditions mentioned above hold for some F, we can replace
223
+ πτ by πσ ◦ F, where πσ is a well-trained policy on the
224
+ source MDP, that is, πσ = arg max¯πσJ(¯πσ; pσ, rσ, γ, pσ
225
+ 0).
226
+ Solving this maximization by RL requires sole interaction
227
+ with Mσ instead of Mτ. As noted, interactions with Mτ
228
+
229
+ require real-world operations; however, interactions with Mσ
230
+ are performed on the simulator, which is cost-effective.
231
+ Based on this property, we studied the following transfer
232
+ procedure: pre-train πσ on Mσ, approximate F as ˆF, and out-
233
+ put the target agent πσ◦ ˆF. This procedure was investigated by
234
+ [18]. Figure 1 illustrates the transfer via image-to-semantics.
235
+ 2) Advantages: The above-mentioned transfer strategy, that
236
+ is, transfer via image-to-semantics, has the following three ad-
237
+ vantages over approaches using a renderer in the source MDP
238
+ shown in Table I. First, a renderer is not required. Existing
239
+ methods that use a renderer generally aim to transfer an agent
240
+ based on non-photorealistic images in a simulator to photoreal-
241
+ istic images in the real world [7]–[17]. Therefore, they require
242
+ the preparation of a renderer on the simulator to generate non-
243
+ photorealistic images as state observations. Transfer via image-
244
+ to-semantics performs similar transfer learning; however, it
245
+ does not require a renderer because the source MDP has
246
+ a semantic space as its state space. This can reduce the
247
+ development cost of the simulator for some tasks. Second,
248
+ because semantics are low-dimensional variables compared to
249
+ images, we can improve the sample efficiency required to train
250
+ the policy πσ on Mσ [5], [6]. Learning vision-based agents
251
+ are generally associated with large computational costs, even
252
+ on a simulator [20], but transfer via image-to-semantics is
253
+ relatively lightweight in this respect and occasionally allows
254
+ a human to design the policy. Third, using semantics as an
255
+ intermediate representation of the target agent contributes to
256
+ its high interpretability because of the low-dimensionality and
257
+ interpretability of semantics. Similar to [19], [21], because the
258
+ real-world agent πσ◦ ˆF can be separated into two components,
259
+ which are independently trained, it is easier to assess than one
260
+ trained in an end-to-end manner.
261
+ C. Resource Strategy
262
+ In this section, in addition to the two MDP environments,
263
+ we define resources that can be used to approximate F.
264
+ 1) Transition Function: In the target MDP, the state transi-
265
+ tion result st+1 due to the selected action at can be observed
266
+ only for state st stored inside the environment. In contrast, in
267
+ the source MDP, we assumed that the state transition result
268
+ for any s ∈ Sσ could be observed, replacing the st stored
269
+ inside the environment with s. This is because the actual
270
+ state transition probability pτ in the target MDP is a physical
271
+ phenomenon in the real world, but the state transition rule Trσ
272
+ in the source MDP is a black-box function on the computer.
273
+ 2) Offline Dataset: The offline dataset comprised observa-
274
+ tions of the target MDP, that is, T τ = {(st, at, 1end(st+1)) ∈
275
+ Sτ × A × {0, 1}}t, where 1end(st+1) = 1 represents that
276
+ st+1 corresponding to a terminal state; otherwise, 0. Note
277
+ that successive indices in the offline dataset shared the same
278
+ context of the episode, except at the end of the episode. T τ can
279
+ be obtained before training starts and is collected by a behavior
280
+ policy. Because the offline dataset can be reused for any trial
281
+ and be obtained by a safety-guaranteed behavior policy, we
282
+ assumed it could be created at a relatively low cost.
283
+ TABLE I
284
+ RELATED POLICY TRANSFER METHODS FOR OBSERVATION STYLE SHIFT.
285
+ EACH METHOD REQUIRES DIFFERENT RESOURCES: RENDERER, OFFLINE
286
+ DATASET (OFF), AND PAIRED DATASET (PAIR).
287
+ Method
288
+ Renderer
289
+ OFF
290
+ PAIR
291
+ Tobin et al. [7]
292
+
293
+ RCAN [8]
294
+
295
+ DARLA [9]
296
+
297
+ Pinto et al. [10]
298
+
299
+ MLVR [11]
300
+
301
+ Tzeng et al. [12]
302
+
303
+
304
+ GraspGAN [13]
305
+
306
+
307
+ RL-CycleGAN [14]
308
+
309
+
310
+ RetinaGAN [15]
311
+
312
+ ��
313
+ MDQN [16]
314
+
315
+
316
+
317
+ ADT [17]
318
+
319
+
320
+
321
+ Zhang et al. [18]
322
+
323
+ CRAR [19]
324
+
325
+
326
+ Ours
327
+
328
+
329
+ We solely used the offline dataset for supervised and unsu-
330
+ pervised learning purposes. If offline reinforcement learning
331
+ is executed, the vision-based agent can be trained directly
332
+ without approximating F. However, training a vision-based
333
+ agent using an offline dataset by reinforcement learning re-
334
+ quires large-scale trajectories in the scope of millions [22]. In
335
+ this study, we considered situations in which the total number
336
+ of timesteps in the offline dataset was limited, for example,
337
+ less than 100k timesteps.
338
+ We did not need to generate reward signals while collecting
339
+ the offline dataset. World models [23] have been studied for
340
+ the procedure: approximate MDP M as
341
+ ˆ
342
+ M using an offline
343
+ dataset of M; train a policy by reinforcement learning by
344
+ interacting with the approximated environment
345
+ ˆ
346
+ M instead
347
+ of interacting with the original environment M. One could
348
+ imagine that we could replace interactions with the target
349
+ MDP by interactions with the approximated one. However, to
350
+ accomplish this, we must observe signals regarding reward in
351
+ the real world while collecting the offline dataset, and we must
352
+ approximate a reward function that is often sparse; both of
353
+ these are not always easy [24]. Therefore, we did not consider
354
+ approximating the target MDP and did not assume the reward
355
+ was contained in T τ.
356
+ 3) Paired Dataset: The paired dataset P consisted of mul-
357
+ tiple pairs of target state observations and their corresponding
358
+ source state observations. Let I denote the set of indices
359
+ that indicate the position of the offline dataset. Using the
360
+ true image-to-semantics translation mapping F, we can denote
361
+ P = {(F(si), si) | (si, ai, ei) ∈ T τ, i ∈ I}. Under prac-
362
+ tical situations, querying F equals annotating corresponding
363
+ semantics to the images of the indices I in the offline dataset
364
+ T τ by human annotators. Because of its annotation cost, we
365
+ assumed the size of the paired dataset |I| to be significantly
366
+ smaller than that of the offline dataset, for example, |I| ≤ 100.
367
+ III. RELATED WORK
368
+ We introduced some existing sim-to-real transfer methods
369
+ that use a non-photorealistic renderer on the simulator. Table I
370
+
371
+ lists the transfer methods that do not require on-policy inter-
372
+ action in the target MDP, assuming vision-based agents. The
373
+ main difficulty tackled by these methods was the absence of
374
+ a photorealistic renderer on the simulator. In the real world,
375
+ images captured by a camera are input to the agent; however,
376
+ generating photorealistic images on the simulator is generally
377
+ difficult because it requires developing a high-quality renderer.
378
+ In [7]–[11], [25], the algorithms learned policies or interme-
379
+ diate representations that were robust to changes in image style
380
+ using a non-photorealistic renderer. Thus, these algorithms
381
+ were expected to perform well even when a photorealistic style
382
+ was applied in a real-world environment. In particular, the
383
+ domain randomization technique has been widely used [7]–
384
+ [10].
385
+ A. Transfer via Image-to-Image Translation
386
+ In contrast to the above methods, [12]–[19] aimed to
387
+ perform style translation mapping among specific styles. To
388
+ accomplish this, these methods required an offline dataset of
389
+ the target MDP. Because these methods followed the principle
390
+ of collection without execution of on-policy interaction, the
391
+ offline dataset could be collected by a safety-guaranteed pol-
392
+ icy. Unsupervised style translation, such as domain adaptation
393
+ [26] and CycleGAN [27], are often used to change the styles
394
+ for state-of-the-art methods [13]–[15], [17], [18], [24], [28].
395
+ Using this translation mapping as a pre-processing function of
396
+ the target agent, the pre-trained policy can determine actions
397
+ in the same image style as the source MDP in the target MDP.
398
+ However, domain adaptation and cycle-consistency [27]
399
+ only have a weak alignment ability [18], and some existing
400
+ methods use paired datasets to properly transfer styles [16],
401
+ [17], [19]. Therefore, these two datasets have been widely
402
+ employed in previous studies and can be assumed to be a
403
+ common setting.
404
+ The similarity of transfer via image-to-semantics and image-
405
+ to-image is that they train style translation mapping ˆF among
406
+ the source and target state spaces that preserves essential
407
+ information; furthermore, the agent is the composite π ◦ ˆF,
408
+ where π is a policy.
409
+ Again, the above methods use a non-photorealistic renderer
410
+ on the simulator. Thus, these methods cannot be compared
411
+ with transfer via image-to-semantics, as explained in Sec-
412
+ tion II-B2.
413
+ B. Learning Image-to-Semantics
414
+ Previous studies have used semantics in the source MDP
415
+ [10], [12], [16]–[18]. An important perspective on the appli-
416
+ cability of these methods to image-to-semantics is whether
417
+ they use a renderer on the simulator, as shown in Table I
418
+ and as discussed in Section II-B2. Because methods using a
419
+ renderer assume that the source state space is an image space,
420
+ image-to-semantics is beyond their scope, and it is not certain
421
+ that their mechanism will be successful in image-to-semantics.
422
+ For example, CycleGAN, which has been successfully used for
423
+ image-to-image learning, failed in image-to-semantics [18]. In
424
+ this regard, we refer to [18], an unpaired method that applies
425
+ the findings from image-to-image to image-to-semantics. In
426
+ addition, [19] is compared as a representative method that uses
427
+ a paired dataset as in this study.
428
+ 1) CRAR: We refer to Section 4.4 of CRAR [19] as a
429
+ baseline of image-to-semantics learning. They described the
430
+ following policy transfer strategy: pre-train a source state
431
+ encoder Eσ : Sσ → Z, where Z is a latent space of the
432
+ encoder; train the source policy πσ : Z → A; and train a
433
+ target state encoder Eτ : Sτ → Z with regularization term
434
+
435
+ (sσ,sτ )∈P∥Eσ(sσ)−Eτ(sτ)∥2
436
+ 2, where P is a paired dataset.
437
+ Then, the target agent is the composite πσ ◦ Eτ : Sτ → A.
438
+ Here, Eτ can be regarded as a style translation mapping. Note
439
+ that they only performed this experiment in the setting where
440
+ Sσ and Sτ are both image spaces; however, it can be applied
441
+ easily where Sσ is the semantic space.
442
+ 2) Zhang et al.: We referred to the cross-modality setting of
443
+ their experiment as our baseline for image-to-semantics [18].
444
+ This setting is the same as the transfer via image-to-semantics.
445
+ There remain some challenges in [18], [19]. For [18], the
446
+ human annotation cost was eliminated because they did not
447
+ use a paired dataset. However, the loss function defined by
448
+ [18] for unpaired image-to-semantics style translation will not
449
+ necessarily provide a well-approximated F. Therefore, we
450
+ decided to use a paired dataset to efficiently supervise the
451
+ loss function as performed in [19], but with a paired dataset
452
+ smaller than [19].
453
+ IV. METHODOLOGY
454
+ Our approach approximates the image-to-semantics transla-
455
+ tion F using an offline dataset T τ. Similar to [19], we used
456
+ a paired dataset P = {(F(si), si) | (si, ai, ei) ∈ T τ, i ∈ I},
457
+ which was constructed by querying F(si) to human annotators
458
+ for an image observation of target MDP si ∈ Sτ included in
459
+ T τ. We incorporated two main ideas to reduce the annotation
460
+ cost. Pair augmentation generates an augmented paired dataset
461
+ P′ using an offline dataset T τ. Active learning defines I, that
462
+ is, it selects a subset of T τ to be annotated to construct P
463
+ (Algorithm 2). We present an overall procedure of our method
464
+ in Algorithm 1.
465
+ We assumed that we have an offline dataset T τ, which
466
+ comprises multiple episodes in the target MDP. Let O denote
467
+ the set of indices corresponding to the beginning of an episode
468
+ in T τ, that is, O = {0} ∪ {i | 0 < i < |T τ| and ei−1 =
469
+ 1 for (sτ
470
+ i−1, ai−1, ei−1) ∈ T τ}, where ei is the indicator:
471
+ when timestep i is the end of an episode then ei = 1. For each
472
+ i ∈ O, let Ei = {t | 1 ≤ t ≤ min({k | k ≥ 1, ei+k = 1})}.
473
+ Then, for each i ∈ O, a subsequence of T τ starting from
474
+ timestep i and ending at i + |Ei| corresponds to an episode.
475
+ A. Pair Augmentation by Transition Function
476
+ The objective of pair augmentation is to construct artificial
477
+ paired data P′ such that sσ ≈ F(sτ) for (sσ, sτ) ∈ P′ and
478
+ sτ ∈ T τ. Using an augmented paired dataset, we aimed to
479
+ obtain ˆF that approximates F by minimizing the loss
480
+ L( ˆF, P ∪ P′) =
481
+ 1
482
+ |P ∪ P′|
483
+
484
+ (sσ,sτ )∈P∪P′
485
+ ∥sσ − ˆF(sτ)∥2
486
+ 2 . (2)
487
+
488
+ action
489
+ Semantics
490
+ Offline
491
+ Dataset
492
+ action
493
+ action
494
+ action
495
+ F
496
+ Fig. 2. Illustration of pair augmentation. Oracle F generates semantics corresponding to a particular image in the offline dataset. The next state in semantics is
497
+ computed using the transition function Trσ with the current semantics along with the action taken while collecting the offline dataset. This allows us to obtain
498
+ semantics corresponding to the image at the next timestep in the offline dataset without any annotation costs. Augmented pairs with green dual directional
499
+ arrows were stored in P′. In this figure, note that rendered (non-photorealistic) images are shown in the offline dataset, but in reality, camera-captured
500
+ (photorealistic) images are contained.
501
+ Algorithm 1 Overall Procedure
502
+ Require: Source MDP Mσ, Offline dataset T τ, Oracle F
503
+ 1: Train source MDP’s policy πσ on Mσ
504
+ 2: Train VAE encoder Eτ using T τ
505
+ 3: Determine indices I by active learning (Algorithm 2)
506
+ using Eτ, T τ
507
+ 4: Create P for I, T τ by oracle (human annotator) F
508
+ 5: Create augmented pairs P′ using P, T τ, Trσ ∈ Mσ
509
+ 6: Train ˆF by minimizing Equation (2)
510
+ Ensure: Target MDP’s agent πσ ◦ ˆF
511
+ Note that CRAR [19] adopts L( ˆF, P) instead of L( ˆF, P∪P′).
512
+ Our principle is as follows. Let I ⊆ O be a subset of
513
+ indices corresponding to the beginning of the episodes in T τ.
514
+ Suppose we have a paired dataset P constructed by querying
515
+ semantics sσ
516
+ i = F(sτ
517
+ i ) corresponding to images sτ
518
+ i in T τ for
519
+ time index i ∈ I. Although semantics sσ
520
+ i+1 representing an
521
+ image of the next timestep sτ
522
+ i+1 in T τ is unknown, because of
523
+ the transition condition given in Section II-A and deterministic
524
+ transition, it equals sσ
525
+ i+1 = Trσ(sσ
526
+ i , ai), where ai is the action
527
+ taken at timestep i when collecting the offline dataset T τ
528
+ and is included in T τ. In reality, because human annotations
529
+ and state transition contain errors as compared to the truth,
530
+ the generated semantics sσ
531
+ i+1 do not exactly represent the
532
+ image sτ
533
+ i+1. However, even with errors in F and Trσ, it
534
+ is expected that the generation of the above semantics is a
535
+ valuable approximation. By recursively applying the above
536
+ generation, we obtained the augmented paired dataset P′.
537
+ Formally, P′ was constructed as follows: For each index i ∈
538
+ I, we defined a sequence {�sσ
539
+ i+t}t∈Ei as �sσ
540
+ i = sσ
541
+ i (contained
542
+ in P) and �sσ
543
+ i+t = Trσ(�sσ
544
+ i+t−1, ai+t−1) for t ∈ Ei, where
545
+ ai+t−1 are contained in T τ. The augmented paired dataset is
546
+ then P′ = {(�sσ
547
+ i+t, sτ
548
+ i+t)}i∈I,t∈Ei, where sτ
549
+ i+t is contained in
550
+ T τ. Thus, we could construct an augmented paired dataset P′
551
+ of size |P′| = �
552
+ i∈I|Ei| from the paired dataset P of size
553
+ |P| = |I|.
554
+ Figure 2 illustrates the pair augmentation scheme.
555
+ The reason why I was a subset of episode start indices
556
+ O rather than I ⊆ {j | 0 ≤ j < |T τ|, j ∈ Z} was to
557
+ maximize the size of augmented pairs |Ei|. In other words,
558
+ because we could augment sσ
559
+ i = F(sτ
560
+ i ) until the end of the
561
+ episode including sτ
562
+ i , to maximize |P∪P′|, human annotations
563
+ should be conducted at the beginning of an episode of T τ.
564
+ B. Active Learning for Pair Augmentation
565
+ To select episodes for annotation, that is, decide I, we
566
+ incorporated the idea of diversity-based active learning (AL)
567
+ [29]–[31]. Their motivation was to select dissimilar samples
568
+ to effectively reduce the approximation error. Intuitively, if
569
+ P ∪ P′ has many similar pairs, they might have a similar
570
+ effect on training ˆF; this may lead to a waste in annotation
571
+ cost. Therefore, we attempted to select episodes (indexed by
572
+ I ⊂ O) to be annotated to ensure the inclusion of diverse
573
+ pairs.
574
+ We successively selected the episode to annotate, and we
575
+ called each selection step the n-th round. For i ∈ O, let Bi =
576
+ {sτ
577
+ i+t}t∈{0}∪Ei be a set of target state observations present in
578
+ the episode starting at timestep i ∈ O. We referred to it as
579
+ batch. Let In−1 be the set of selected indices before the n-th
580
+ round, and let Sn−1 = �
581
+ k∈In−1 Bk be a set of all the state
582
+ vectors in the episodes selected before the n-th round. Let
583
+ d : Sτ × Sτ → R be some appropriate distance measure. In
584
+ the n-th round, a batch was selected based on the following
585
+ two diversity measures: The inter batch diversity
586
+ finter(Bi, Sn−1) =
587
+
588
+ sτ ∈Bi
589
+ min
590
+
591
+ j ∈Sn−1 d(sτ, sτ
592
+ j )
593
+ (3)
594
+ can evaluate the dissimilarity of Bi and Sn−1. The batch with
595
+ the greatest finter was considered to be the most dissimilar
596
+
597
+ Algorithm 2 Active Learning
598
+ Require: Trained VAE encoder Eτ, Offline dataset T τ
599
+ 1: Initialize I0 = {c}|c∼Uniform(O)
600
+ 2: for 1 ≤ n < N do
601
+ ▷ n-th round
602
+ 3:
603
+ Set Sn−1 = �
604
+ k∈In−1 Bk
605
+ 4:
606
+ Measure finter(Bi, Sn−1) for all i ∈ O
607
+ 5:
608
+ Pick top b% of indices in terms of finter as Q
609
+ 6:
610
+ Measure fintra(Bi) for all i ∈ Q
611
+ 7:
612
+ Pick the index c from Q with the greatest fintra
613
+ 8:
614
+ Set In = {c} ∪ In−1
615
+ 9: end for
616
+ Ensure: Indices IN−1 (with the size of N) as I
617
+ batch against the pre-selected batches. The intra batch diver-
618
+ sity
619
+ fintra(Bi) =
620
+
621
+ sτp∈Bi
622
+
623
+ sτq ∈Bi
624
+ d(sτ
625
+ p, sτ
626
+ q)
627
+ (4)
628
+ can evaluate the dissimilarity of the states inside Bi. The batch
629
+ with the greatest fintra was considered to contain the most
630
+ diverse states.
631
+ We selected a batch that maximizes the above two diversity
632
+ measures; we performed a bi-objective optimization for selec-
633
+ tion. To avoid overemphasizing one measure over the other,
634
+ we employed two separate single-objective optimizations for
635
+ each measure. In each round, we picked up indices of batches
636
+ with finter in the top b% (b = 10 in our experiments) from
637
+ unselected episodes as Q, and subsequently, selected the batch
638
+ with the greatest fintra from Q. I0 was initialized with the
639
+ episode sampled from O uniformly at random.
640
+ C. Representation Learning Using Offline Dataset
641
+ For d : Sτ × Sτ → R to be a reasonable distance measure
642
+ in the image space, we employed a VAE encoder [32]: Eτ :
643
+ Sτ → Z. It stochastically outputs a latent vector z ∈ Z for
644
+ sτ ∈ Sτ. The distance between two states sτ
645
+ p ∈ Sτ and sτ
646
+ q ∈
647
+ Sτ was given by the Euclidean distance between the mean
648
+ vectors for their latent representations, that is, d(sτ
649
+ p, sτ
650
+ q) =
651
+ ∥E[Eτ(sτ
652
+ p)] − E[Eτ(sτ
653
+ q)]∥2. We trained Eτ using all states in
654
+ the offline dataset T τ before performing the active learning
655
+ procedure.
656
+ We used the states contained in �
657
+ i∈I Bi in training ˆF by
658
+ Equation (2); however, the remaining �
659
+ i∈O\I Bi were not
660
+ used. In order to use it, we included Eτ as a feature extractor
661
+ for ˆF by receiving the benefit of representation learning for
662
+ downstream tasks. We modeled ˆF = φ ◦ Eτ, and we trained
663
+ φ by Equation (2), whereas Eτ was fixed.
664
+ V. EXPERIMENTS
665
+ We aimed to verify the following two claims: (1) the
666
+ proposed paired augmentation and AL reduces the annotation
667
+ cost for approximating ˆF while maintaining its performance
668
+ level; and (2) the paradigm with the paired dataset performs
669
+ better than the method without paired datasets.
670
+ A. Evaluation Metrics
671
+ 1) Policy Performance (PP): The most important evalua-
672
+ tion metric for ˆF is the expected cumulative reward of the
673
+ target agent using Equation (1):
674
+ PP( ˆF; πσ, Mτ) = J(πσ ◦ ˆF; pτ, rτ, γ, pτ
675
+ 0) .
676
+ (5)
677
+ In our experiments, we approximated it by averaging the
678
+ cumulative reward of 50 episodes with γ = 1. This metric
679
+ was commonly used in [18], [19].
680
+ 2) Matching Distance (MD): Because our technical contri-
681
+ bution was mainly to approximate F, we used the following
682
+ empirical approximation error:
683
+ MD( ˆF; T , F) =
684
+ 1
685
+ |T |
686
+
687
+ (sτ ,a,e)∈T
688
+ ∥F(sτ) − ˆF(sτ)∥2
689
+ 2,
690
+ (6)
691
+ where T is a trajectory collected by a behavior policy in the
692
+ target MDP, which is not used for learning ˆF. Unfortunately, in
693
+ a real-world environment, evaluating Equation (6) for a large
694
+ size of T is challenging because F requires human annotation.
695
+ To enable MD in our experiment, we performed experiments
696
+ using the simulator for both the source MDP and target MDP.
697
+ We adopted the rendered image space as the state space of
698
+ the target MDP. Because both semantics and images were
699
+ generated in the simulator, F was freely available to calculate
700
+ Equation (6). A similar metric to Equation (6) was used in
701
+ [18].
702
+ B. Environment
703
+ We evaluated the proposed approach on three environments.
704
+ 1) ViZDoom Shooting (Shooting): ViZDoom Shooting [33]
705
+ is a first-person view shooter task, in which an agent obtains
706
+ 64×64 RGB images from the first-person perspective in the
707
+ target MDP. The agent can change its x-coordinate by moving
708
+ left and right in the room and attacking forward (|A| = 3). An
709
+ enemy spawns with a random x-coordinate on the other side
710
+ of the room at the start of the episode and does not move or
711
+ attack. The agent can destroy the enemy by moving to the front
712
+ of it and shooting it; time to destruction is directly related to
713
+ the reward. Semantics are the x-coordinates of the agent and
714
+ the enemy; hence, Sσ is a 2-dimensional space. The maximum
715
+ timesteps is 50 for each episode. The behavior policy to collect
716
+ the offline dataset T τ is a random policy, and T τ consists of
717
+ 200 episodes, that is, 10k timesteps in total.
718
+ 2) PyBullet KUKA Grasp (KUKA): This is a grasp task
719
+ using PyBullet’s KUKA iiwa robot arm [34]. Success is
720
+ achieved by manipulating the end-effector of the robot arm
721
+ and lifting a randomly placed cylinder. The semantics are the
722
+ xyz-coordinate and the 3-dimensional Euler angle of the end-
723
+ effector and the xyz-coordinate of the cylinder; hence, Sσ is a
724
+ 9-dimensional space. We used the rendered 64×64 RGB im-
725
+ ages captured from three different viewpoints simultaneously
726
+ as the state observations in the target MDP. The total timesteps
727
+ per episode is fixed to 40. The behavior policy to collect T τ
728
+ is a random policy, and T τ comprised 250 episodes, that is,
729
+ 10k timesteps in total.
730
+
731
+ TABLE II
732
+ RESULTS OF SHOOTING. MD VALUES WERE SCALED TO 102 FOR
733
+ CONVENIENCE. πσ HAS PP=45.99, AND THE BEHAVIOR POLICY HAS
734
+ PP=16.39.
735
+ Method
736
+ MD
737
+ PP
738
+ |I| = 0
739
+ Zhang et al.
740
+ 37.42 ± 6.23
741
+ 22.46 ± 4.99
742
+ |I| = 10
743
+ CRAR
744
+ 11.00 ± 1.72
745
+ 35.16 ± 4.31
746
+ Ours w/o AL
747
+ 3.44 ± 0.89
748
+ 43.99 ± 1.29
749
+ Ours
750
+ 0.16 ± 0.12
751
+ 44.73 ± 1.07
752
+ |I| = 50
753
+ CRAR
754
+ 2.80 ± 0.70
755
+ 42.29 ± 2.12
756
+ Ours w/o AL
757
+ 0.06 ± 0.02
758
+ 46.02 ± 0.31
759
+ Ours
760
+ 0.02 ± 0.00
761
+ 45.66 ± 0.34
762
+ 3) PyBullet HalfCheetah-v0 (HalfCheetah): This is a Py-
763
+ Bullet version of the HalfCheetah, that is, a task in which a
764
+ 2-dimensional cheetah is manipulated by continuous control
765
+ to run faster. The torque of the six joints can be controlled
766
+ (A = [−1, 1]6), and the semantic space is a 26-dimensional
767
+ space. We collected 64×64 images captured from three differ-
768
+ ent viewpoints for two consecutive timesteps and defined Sτ
769
+ as an image space containing a total of 6 frames. The total
770
+ timesteps per episode is fixed to 1000. The behavior policy
771
+ to collect T τ is a random policy, and T τ consists of 100
772
+ episodes, which is 100k timesteps in total.
773
+ In our experiments, information such as xyz-coordinates
774
+ and velocity can be recovered from a combination of multiple
775
+ images by capturing images from multiple viewpoints at
776
+ consecutive times, and such a setup is necessary in practice.
777
+ C. Setting
778
+ We used a 7-layer convolutional neural network and a 4-
779
+ layer fully connected neural network for the VAE encoders
780
+ Eτ and φ, respectively, for both the proposed and existing
781
+ methods. We trained them in gradients using Adam [35].
782
+ The dimensions of the latent space of VAE Z were set
783
+ to 32, 96, and 192 for Shooting, KUKA, and HalfCheetah,
784
+ respectively. For CRAR [19], we uniformly selected indices I
785
+ from {i | 0 ≤ i < |T τ|, i ∈ Z}. For our method, without an
786
+ AL setting, I was selected uniformly and randomly from O.
787
+ For Shooting and KUKA, we used a handcrafted policy instead
788
+ of one trained by RL as πσ. In HalfCheetah, we trained πσ
789
+ using PPO [36].
790
+ D. Results
791
+ Tables II to IV show the results of the image-to-semantics
792
+ learning in the three environments. These tables show the
793
+ results on average±std over five trials. |I| denotes the number
794
+ of paired data, which is the annotation cost. Because of the
795
+ transition and reward conditions, the PP of πσ ◦ F on Mτ
796
+ assimilate to that of πσ on Mσ.
797
+ Note that most image-to-image methods shown in Table I
798
+ cannot be compared with image-to-semantics methods be-
799
+ cause some assumptions cannot be satisfied under image-to-
800
+ semantics settings. One way to speculate on the performance
801
+ of the image-to-image techniques in an image-to-semantics
802
+ CRAR
803
+ Ours w/o AL
804
+ Ours
805
+ Fig. 3. Scatter of the obtained semantics on ViZDoom Shooting with |P| =
806
+ |I| = 10: {F(sτ) | (sσ, sτ) ∈ P} for CRAR, and {F(sτ) | (sσ, sτ) ∈ P∪
807
+ P′} for our method. Each square represents a 2-dimensional semantic space.
808
+ The semantic space shows that both pair augmentation and AL contribute to
809
+ expanding the coverage.
810
+ TABLE III
811
+ RESULTS OF KUKA. PP CORRESPONDS TO GRASP SUCCESS PROBABILITY.
812
+ πσ HAS PP=1.0, AND THE BEHAVIOR POLICY HAS PP=0.048.
813
+ Method
814
+ MD
815
+ PP
816
+ |I| = 0
817
+ Zhang et al.
818
+ 0.90 ± 0.12
819
+ 0.12 ± 0.08
820
+ |I| = 10
821
+ CRAR
822
+ 0.59 ± 0.07
823
+ 0.24 ± 0.22
824
+ Ours w/o AL
825
+ 0.35 ± 0.05
826
+ 0.52 ± 0.19
827
+ Ours
828
+ 0.37 ± 0.03
829
+ 0.65 ± 0.07
830
+ |I| = 100
831
+ CRAR
832
+ 0.32 ± 0.02
833
+ 0.52 ± 0.15
834
+ Ours w/o AL
835
+ 0.11 ± 0.01
836
+ 0.76 ± 0.09
837
+ Ours
838
+ 0.12 ± 0.01
839
+ 0.90 ± 0.04
840
+ setting is to see Zhang et al. [18]. Zhang et al. used do-
841
+ main adaptation [26], which is commonly used in image-to-
842
+ image learning; thus, their method can be interpreted as a
843
+ representative example in which the techniques cultivated in
844
+ image-to-image are imported to image-to-semantics. Although
845
+ CycleGAN [27] is also widely employed in image-to-image
846
+ learning, along with domain adaptation, they confirmed in their
847
+ experiments that this method did not outperform their method
848
+ in the image-to-semantics setting [18].
849
+ In all cases, compared with the approach of Zhang et al.
850
+ [18], our approaches with and without AL achieved a smaller
851
+ MD and a greater PP. Zhang et al.’s approach is designed to
852
+ learn ˆF without a paired dataset to eliminate the annotation
853
+ cost. However, learning without pairs does not necessarily
854
+ lead to the true image-to-semantics translation mapping, as
855
+ observed in the high MD and low PP in our results. This
856
+ result shows the effectiveness of the paradigm using paired
857
+ data when aiming for higher performance policy transfer while
858
+ compromising the annotation cost to prepare a small number
859
+ of paired data.
860
+ By comparing the results of our approaches with and
861
+ without AL and those of CRAR, we confirmed the efficacy
862
+ of pair augmentation in achieving a smaller MD and higher
863
+ PP. We achieved PP=44.73 ± 1.07 in Shooting with 10 pairs
864
+ using pair augmentation and AL, which is more than the
865
+ PP=42.29±2.12 achieved by CRAR with 50 pairs. In addition,
866
+ in KUKA, we achieved PP=0.65 ± 0.07 in 10 pairs, which
867
+ exceeds PP=0.52 ± 0.15 achieved by CRAR with 100 pairs.
868
+ This means that the annotation cost was reduced by more
869
+ than ×5 and ×10, respectively. This difference is even more
870
+
871
+ TABLE IV
872
+ RESULTS OF HALFCHEETAH. πσ HAS PP=2735.73, AND THE BEHAVIOR
873
+ POLICY HAS PP=−1230.01.
874
+ Method
875
+ MD
876
+ PP
877
+ |I| = 0
878
+ Zhang et al.
879
+ 3.71 ± 0.32
880
+ −1511.97 ± 192.51
881
+ |I| = 10
882
+ CRAR
883
+ 1.80 ± 0.09
884
+ −1411.83 ± 144.21
885
+ Ours w/o AL
886
+ 0.40 ± 0.04
887
+ 596.20 ± 121.43
888
+ Ours
889
+ 0.37 ± 0.05
890
+ 580.21 ± 71.95
891
+ |I| = 50
892
+ CRAR
893
+ 0.88 ± 0.05
894
+ −818.29 ± 300.08
895
+ Ours w/o AL
896
+ 0.12 ± 0.01
897
+ 878.79 ± 88.52
898
+ Ours
899
+ 0.07 ± 0.01
900
+ 968.49 ± 99.53
901
+ pronounced in HalfCheetah. This may be because the ratio
902
+ |P ∪ P′|/|P| is the greatest in this environment: CRAR uses
903
+ |P| = |I| paired data, whereas our proposed approach used an
904
+ additional |P′| = 999|I| augmented paired data because the
905
+ number of timesteps per episode was 1000 in this environment.
906
+ A tendency of reduced MD and increased PP was observed
907
+ in the proposed approach with AL compared to that without
908
+ AL. Specifically, AL reduced MD except in KUKA, and
909
+ clearly improved PP in KUKA, while achieving competitive
910
+ PP in the other two environments.
911
+ In Figure 3, we present the effectiveness of our approach
912
+ in Shooting. The proposed AL maximized the diversity in the
913
+ latent space that represents the image space, but the diversity
914
+ was also maximized when this result was visualized in the
915
+ semantic space.
916
+ E. Experiments with Errors
917
+ In this section, we verify the robustness of the proposed
918
+ method against errors in annotation and state transitions.
919
+ 1) Annotation Error: In our previous discussion and in
920
+ experiments of Section V-D, we assumed that we could query
921
+ oracle F, that is, true image-to-semantics mapping by human
922
+ annotations. However, because human annotation indicates the
923
+ process of assigning semantics to images by humans, errors
924
+ are expected to occur in the output semantics. Therefore, we
925
+ provided a new experimental setup here: for some sτ ∈ Sτ,
926
+ we can observe F(sτ) + ϵ instead of F(sτ) while creating
927
+ the paired dataset P, where ϵ ∈ Rdim(Sσ) is a random vector
928
+ representing the annotation error.
929
+ 2) Transition Error: In reality, the state transition function
930
+ on the simulator Trσ is expected to contain modeling errors.
931
+ For example, environment parameters such as friction coeffi-
932
+ cients and motor torques in the real world cannot be accurately
933
+ estimated in the simulator, and thus, state transitions in reality
934
+ cannot be correctly imitated. Therefore, we provided a new
935
+ experimental setup here: for some (s, a) ∈ Sσ × A, we could
936
+ obtain Trσ(s, a) + ϵ instead of Trσ(s, a) while augmenting
937
+ a paired dataset, where ϵ ∈ Rdim(Sσ) is a random vector
938
+ representing the transition error. Note that when training πσ,
939
+ we used the one without errors in our experiments.
940
+ 3) Error Generation: We generated two types of errors by
941
+ adding a random variable ϵ ∈ Rdim(Sσ). Here, we denoted a
942
+ TABLE V
943
+ RESULTS WITH ANNOTATION ERRORS.
944
+ Method
945
+ α
946
+ MD
947
+ PP
948
+ Shooting (|I| = 50)
949
+ CRAR
950
+ 0.0
951
+ 2.80 ± 0.70
952
+ 42.29 ± 2.12
953
+ Ours w/o AL
954
+ 0.06 ± 0.02
955
+ 46.02 ± 0.31
956
+ CRAR
957
+ 0.04
958
+ 2.99 ± 0.93
959
+ 42.91 ± 1.71
960
+ Ours w/o AL
961
+ 0.12 ± 0.05
962
+ 45.90 ± 0.54
963
+ CRAR
964
+ 0.15
965
+ 3.50 ± 1.21
966
+ 43.51 ± 2.04
967
+ Ours w/o AL
968
+ 0.47 ± 0.07
969
+ 44.56 ± 0.59
970
+ CRAR
971
+ 0.3
972
+ 4.90 ± 0.85
973
+ 40.83 ± 2.78
974
+ Ours w/o AL
975
+ 1.42 ± 0.15
976
+ 42.47 ± 1.74
977
+ KUKA (|I| = 100)
978
+ CRAR
979
+ 0.0
980
+ 0.32 ± 0.02
981
+ 0.52 ± 0.15
982
+ Ours w/o AL
983
+ 0.11 ± 0.01
984
+ 0.76 ± 0.09
985
+ CRAR
986
+ 0.04
987
+ 0.33 ± 0.03
988
+ 0.58 ± 0.11
989
+ Ours w/o AL
990
+ 0.12 ± 0.01
991
+ 0.76 ± 0.18
992
+ CRAR
993
+ 0.15
994
+ 0.32 ± 0.03
995
+ 0.53 ± 0.15
996
+ Ours w/o AL
997
+ 0.14 ± 0.01
998
+ 0.68 ± 0.15
999
+ HalfCheetah (|I| = 50)
1000
+ CRAR
1001
+ 0.0
1002
+ 0.88 ± 0.05
1003
+ −818.29 ± 300.08
1004
+ Ours w/o AL
1005
+ 0.12 ± 0.01
1006
+ 878.79 ± 88.52
1007
+ CRAR
1008
+ 0.04
1009
+ 0.91 ± 0.03
1010
+ −919.86 ± 328.14
1011
+ Ours w/o AL
1012
+ 0.12 ± 0.01
1013
+ 787.0 ± 230.32
1014
+ CRAR
1015
+ 0.15
1016
+ 0.99 ± 0.06
1017
+ −833.35 ± 464.76
1018
+ Ours w/o AL
1019
+ 0.15 ± 0.02
1020
+ 616.63 ± 260.73
1021
+ value of the h-th dimension of x ∈ RH as x(h) ∈ R. We sam-
1022
+ pled ϵ(h) ∼ N(h), where N(h) is a Gaussian distribution with
1023
+ mean µ = 0 and standard deviation σ = α · std[sσ
1024
+ (h)]sσ∈T σ.
1025
+ Here, std[sσ
1026
+ (h)]sσ∈T σ is the sample standard deviation of a
1027
+ source trajectory T σ collected by a behavior policy in source
1028
+ MDP, and α ≥ 0 is the noise scale.
1029
+ For the annotation error, using the semantics sequence
1030
+ of augmented pairs {�sσ
1031
+ i+t}t∈Ei provided without error, we
1032
+ provided the semantics as F(sτ
1033
+ i )+¯ϵi for P and {�sσ
1034
+ i+t+¯ϵi}t∈Ei
1035
+ for P′, where ¯ϵi is a realized random vector with α > 0.
1036
+ For the transition error, we defined {�sσ
1037
+ i+t + �t
1038
+ j=1 ¯ϵi,j}t∈Ei
1039
+ for P′, where ¯ϵi,j is the realized random vector. Note that,
1040
+ here, we approximated the error generation based on the
1041
+ following assumption: Trσ(s, a) = s + Trσ
1042
+ ∆(a), that is,
1043
+ Trσ(s+¯ϵ1, a)+¯ϵ2 = s+Trσ
1044
+ ∆(a)+¯ϵ1+¯ϵ2. This is an approxi-
1045
+ mation simplifying implementation; however, for Shooting and
1046
+ KUKA, the above assumption is actually satisfied for almost
1047
+ all states and actions.
1048
+ 4) Results: Here, we analyze the effect of two types of
1049
+ errors on P and P′, and understand how this affects the
1050
+ approximation of F. Therefore, we do not experiment with
1051
+ the method of Zhang et al., which does not utilize paired
1052
+ datasets. In addition, to eliminate the effect of the choice of
1053
+ I on the generation of P and P′ in the comparison between
1054
+ the proposed method and CRAR, we conducted experiments
1055
+ under the setting without AL.
1056
+ The results with annotation errors are shown in Table V.
1057
+ In both CRAR and the proposed method, the semantics of
1058
+ the paired data deviated from the true data as the scale of
1059
+ the annotation error α increased; thus, we observed that MD
1060
+ tends to increase for both methods. Although PP tended to
1061
+ decrease only for the proposed method, the proposed method
1062
+ achieved better MD and PP than CRAR for the same error
1063
+
1064
+ TABLE VI
1065
+ RESULTS WITH TRANSITION ERRORS.
1066
+ Method
1067
+ α
1068
+ MD
1069
+ PP
1070
+ Shooting (|I| = 50)
1071
+ CRAR
1072
+ 0.0
1073
+ 2.80 ± 0.70
1074
+ 42.29 ± 2.12
1075
+ Ours w/o AL
1076
+ 0.06 ± 0.02
1077
+ 46.02 ± 0.31
1078
+ Ours w/o AL
1079
+ 0.01
1080
+ 0.12 ± 0.04
1081
+ 45.90 ± 0.51
1082
+ Ours w/o AL
1083
+ 0.04
1084
+ 0.67 ± 0.12
1085
+ 44.78 ± 1.16
1086
+ Ours w/o AL
1087
+ 0.1
1088
+ 3.43 ± 1.00
1089
+ 43.44 ± 1.60
1090
+ KUKA (|I| = 100)
1091
+ CRAR
1092
+ 0.0
1093
+ 0.32 ± 0.02
1094
+ 0.52 ± 0.15
1095
+ Ours w/o AL
1096
+ 0.11 ± 0.01
1097
+ 0.76 ± 0.09
1098
+ Ours w/o AL
1099
+ 0.01
1100
+ 0.12 ± 0.01
1101
+ 0.80 ± 0.11
1102
+ Ours w/o AL
1103
+ 0.04
1104
+ 0.14 ± 0.00
1105
+ 0.67 ± 0.22
1106
+ HalfCheetah (|I| = 50)
1107
+ CRAR
1108
+ 0.0
1109
+ 0.88 ± 0.05
1110
+ −818.29 ± 300.08
1111
+ Ours w/o AL
1112
+ 0.12 ± 0.01
1113
+ 878.79 ± 88.52
1114
+ Ours w/o AL
1115
+ 0.01
1116
+ 0.18 ± 0.02
1117
+ 426.61 ± 221.12
1118
+ Ours w/o AL
1119
+ 0.04
1120
+ 1.21 ± 0.13
1121
+ −523.8 ± 336.51
1122
+ scale α. In addition, we confirmed that PP with an annotation
1123
+ error for our method remains comparable to the case without
1124
+ an annotation error for a certain degree of α. For example,
1125
+ in KUKA experiments, the proposed method achieved PP =
1126
+ 0.76 ± 0.18 with α = 0.04, which was close to PP = 0.76 ±
1127
+ 0.09 without annotation error. We conclude that the proposed
1128
+ pair augmentation is effective in image-to-semantics learning
1129
+ even in the presence of annotation errors.
1130
+ The results with transition errors are shown in Table VI.
1131
+ Note that CRAR does not use Trσ; thus, the result did not
1132
+ depend on transition error scale α; the result of CRAR with
1133
+ α > 0 matched the result of α = 0. Because the proposed
1134
+ pair augmentation scheme used Trσ to generate semantics,
1135
+ for larger t ∈ Ei, the variance of error was expected to be
1136
+ large; then, the augmented semantics in P′ were far from the
1137
+ actual semantics. In fact, we observed an increase in MD and
1138
+ a decrease in PP in the proposed method as the scale of α
1139
+ increased. In contrast, both MD and PP were better than CRAR
1140
+ up to α = 0.04 for Shooting and KUKA, and up to α =
1141
+ 0.01 for HalfCheetah. This indicates that the proposed pair
1142
+ augmentation is effective in reducing the annotation costs up
1143
+ to a certain level of transition errors.
1144
+ F. Effect of Behavior Policy
1145
+ To further reveal the behavior of image-to-semantics meth-
1146
+ ods, we evaluated them on HalfCheetah by adopting a low
1147
+ performance policy, rather than the random policy, as the
1148
+ behavior policy. We pre-trained the low performance policy
1149
+ with a small number of iterations using PPO.
1150
+ We observed that, compared with Table IV and Table VII,
1151
+ the performance of the behavior policy affected the PP of the
1152
+ resulting target agent. Here, the PP of the random policy was
1153
+ −1230.01 and that of the low performance policy was 822.39.
1154
+ Therefore, the PP of our proposed method was improved from
1155
+ 968.49 ± 99.53 to 1527.37 ± 133.19 when |I| = 50.
1156
+ These results indicate that owing to the low performance
1157
+ of the random policy, faster-running states, that is, states with
1158
+ high velocity, cannot be observed; in other words, the random
1159
+ TABLE VII
1160
+ RESULTS OF HALFCHEETAH WHEN T τ WAS COLLECTED BY THE LOW
1161
+ PERFORMANCE POLICY. THE BEHAVIOR POLICY HAS PP=822.39 AND πσ
1162
+ HAS PP=2735.73. THE TRAJECTORY FOR CALCULATING MD IS
1163
+ COLLECTED BY THE LOW PERFORMANCE POLICY.
1164
+ Method
1165
+ MD
1166
+ PP
1167
+ |I| = 0
1168
+ Zhang et al.
1169
+ 1.03 ± 0.19
1170
+ −1241.31 ± 523.06
1171
+ |I| = 10
1172
+ CRAR
1173
+ 0.74 ± 0.06
1174
+ −1549.82 ± 106.04
1175
+ Ours w/o AL
1176
+ 0.09 ± 0.02
1177
+ 1117.05 ± 127.93
1178
+ Ours
1179
+ 0.06 ± 0.00
1180
+ 1145.77 ± 110.29
1181
+ |I| = 50
1182
+ CRAR
1183
+ 0.37 ± 0.04
1184
+ −1416.37 ± 194.31
1185
+ Ours w/o AL
1186
+ 0.03 ± 0.00
1187
+ 1393.11 ± 226.39
1188
+ Ours
1189
+ 0.02 ± 0.00
1190
+ 1527.37 ± 133.19
1191
+ policy can only observe a limited state. This limitation could
1192
+ lead to an increase in the approximation error of ˆF. This
1193
+ implied that image-to-semantics is affected by the performance
1194
+ of the behavior policy in some tasks.
1195
+ A promising result for the image-to-semantics framework
1196
+ is that the target agents obtained by our approach outperform
1197
+ the behavior policy. In particular, in Table VII, the PP of
1198
+ the behavior policy is 822.39; furthermore, when image-to-
1199
+ semantics was performed with 50 annotations (|I| = 50),
1200
+ we obtained a PP of 1527.37 ± 133.19. In other words, we
1201
+ could achieve a higher performance compared with that of the
1202
+ behavior policy using a small number of annotations and the
1203
+ image-to-semantics protocol.
1204
+ In the previous discussion, we found that the PP achieved by
1205
+ the image-to-semantics framework is affected by the quantity
1206
+ and quality of paired data, and the region of state space
1207
+ comprising the dataset for training ˆF. In fact, as an extreme
1208
+ example, ˆF trained using |P|=100k with the trajectories col-
1209
+ lected by the optimal policy, achieved PP=2624.65 ± 29.09,
1210
+ which is almost identical to PP=2735.73, the performance of
1211
+ the optimal source policy. Note that such a near-complete
1212
+ policy transfer is already achieved in Shooting and KUKA,
1213
+ as shown in Tables II and III.
1214
+ VI. CONCLUSION
1215
+ In this study, we investigated the image-to-semantics prob-
1216
+ lem for vision-based agents in robotics. Using paired data for
1217
+ learning image-to-semantics mapping is favorable for achiev-
1218
+ ing high-performance policy transfer; however, the cost of
1219
+ creating paired data cannot be ignored. This study contributes
1220
+ to existing literature by reducing the annotation cost using
1221
+ two techniques: pair augmentation and active learning. We
1222
+ also confirmed the effectiveness of the proposed method in
1223
+ our experiments.
1224
+ In future work, we must address the following limitations:
1225
+ (1) Experiments have not been conducted using actual robots;
1226
+ therefore, it is not known how difficulties specific to actual
1227
+ robots will affect the image-to-semantics performance; (2)
1228
+ We cannot always freely query Trσ; therefore, it would be
1229
+ beneficial to know if we can substitute the one learned using
1230
+ source trajectory, similar to [18], [23]; (3) In some cases, the
1231
+
1232
+ transition error is too large, and we would like to be able
1233
+ to improve the approximation accuracy of ˆF by considering
1234
+ performing pair augmentation for {t | t ∈ Ei, t ≤ K} rather
1235
+ than Ei. This expectation is because augmented semantics with
1236
+ larger t ∈ Ei are inaccurate. Furthermore, we would like to find
1237
+ a way to automatically determine such a K.
1238
+ REFERENCES
1239
+ [1] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
1240
+ D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke, and S. Levine,
1241
+ “Qt-opt: Scalable deep reinforcement learning for vision-based robotic
1242
+ manipulation,” in Conference on Robot Learning (CoRL), 2018.
1243
+ [2] M. A. Riedmiller, R. Hafner, T. Lampe, M. Neunert, J. Degrave, T. V.
1244
+ de Wiele, V. Mnih, N. Heess, and J. T. Springenberg, “Learning by
1245
+ playing - solving sparse reward tasks from scratch,” in International
1246
+ Conference on Machine Learning (ICML), 2018, pp. 4344–4353.
1247
+ [3] S. Joshi, S. Kumra, and F. Sahin, “Robotic grasping using deep rein-
1248
+ forcement learning,” in IEEE International Conference on Automation
1249
+ Science and Engineering (CASE), 2020, pp. 1461–1466.
1250
+ [4] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning hand-
1251
+ eye coordination for robotic grasping with deep learning and large-scale
1252
+ data collection,” in International Symposium on Experimental Robotics
1253
+ (ISER), 2017.
1254
+ [5] S. S. Du, S. M. Kakade, R. Wang, and L. F. Yang, “Is a good
1255
+ representation sufficient for sample efficient reinforcement learning?”
1256
+ in International Conference on Learning Representations (ICLR), 2020.
1257
+ [6] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. de Las Casas, D. Bud-
1258
+ den, A. Abdolmaleki, J. Merel, A. Lefrancq, T. P. Lillicrap, and M. A.
1259
+ Riedmiller, “Deepmind control suite,” CoRR, vol. arXiv:1801.00690,
1260
+ 2018.
1261
+ [7] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
1262
+ “Domain randomization for transferring deep neural networks from
1263
+ simulation to the real world,” in IEEE/RSJ International Conference
1264
+ on Intelligent Robots and Systems (IROS), 2017, pp. 23–30.
1265
+ [8] S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan,
1266
+ J. Ibarz, S. Levine, R. Hadsell, and K. Bousmalis, “Sim-to-real via
1267
+ sim-to-sim: Data-efficient robotic grasping via randomized-to-canonical
1268
+ adaptation networks,” in IEEE/CVF Conference on Computer Vision and
1269
+ Pattern Recognition (CVPR), 2019, pp. 12 619–12 629.
1270
+ [9] I. Higgins, A. Pal, A. Rusu, L. Matthey, C. Burgess, A. Pritzel,
1271
+ M. Botvinick, C. Blundell, and A. Lerchner, “DARLA: Improving zero-
1272
+ shot transfer in reinforcement learning,” in International Conference on
1273
+ Machine Learning (ICML), 2017, pp. 1480–1490.
1274
+ [10] L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and P. Abbeel,
1275
+ “Asymmetric actor critic for image-based robot learning,” in Robotics:
1276
+ Science and Systems (RSS), 2018.
1277
+ [11] B. Chen, A. Sax, G. Lewis, I. Armeni, S. Savarese, A. Zamir, J. Malik,
1278
+ and L. Pinto, “Robust policies via mid-level visual representations: An
1279
+ experimental study in manipulation and navigation,” in Conference on
1280
+ Robot Learning (CoRL), 2020.
1281
+ [12] E. Tzeng, C. Devin, J. Hoffman, and C. Finn, “Adapting deep visuomotor
1282
+ representations with weak pairwise constraints,” Algorithmic Founda-
1283
+ tions of Robotics, pp. 688–703, 2020.
1284
+ [13] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakr-
1285
+ ishnan, L. Downs, J. Ibarz, P. Pastor, K. Konolige, S. Levine, and
1286
+ V. Vanhoucke, “Using simulation and domain adaptation to improve
1287
+ efficiency of deep robotic grasping,” in IEEE International Conference
1288
+ on Robotics and Automation (ICRA), 2018, pp. 4243–4250.
1289
+ [14] K. Rao, C. Harris, A. Irpan, S. Levine, J. Ibarz, and M. Khansari,
1290
+ “Rl-cyclegan: Reinforcement learning aware simulation-to-real,” in
1291
+ IEEE/CVF Conference on Computer Vision and Pattern Recognition
1292
+ (CVPR), 2020, pp. 11 154–11 163.
1293
+ [15] D. Ho, K. Rao, Z. Xu, E. Jang, M. Khansari, and Y. Bai, “Retinagan:
1294
+ An object-aware approach to sim-to-real transfer,” in IEEE International
1295
+ Conference on Robotics and Automation (ICRA), 2021, pp. 10 920–
1296
+ 10 926.
1297
+ [16] F. Zhang, J. Leitner, M. Milford, and P. Corke, “Modular deep q net-
1298
+ works for sim-to-real transfer of visuo-motor policies,” in Australasian
1299
+ Conference on Robotics and Automation (ACRA), 2017.
1300
+ [17] F. Zhang, J. Leitner, Z. Ge, M. Milford, and P. Corke, “Adversarial dis-
1301
+ criminative sim-to-real transfer of visuo-motor policies,” International
1302
+ Journal of Robotics Research (IJRR), pp. 1229–1245, 2019.
1303
+ [18] Q. Zhang, T. Xiao, A. A. Efros, L. Pinto, and X. Wang, “Learning cross-
1304
+ domain correspondence for control with dynamics cycle-consistency,” in
1305
+ International Conference on Learning Representations (ICLR), 2021.
1306
+ [19] V. Francois-Lavet, Y. Bengio, D. Precup, and J. Pineau, “Combined
1307
+ reinforcement learning via abstract representations,” in AAAI Conference
1308
+ on Artificial Intelligence (AAAI), vol. 33, 2019, pp. 3582–3589.
1309
+ [20] A. Srinivas, M. Laskin, and P. Abbeel, “CURL: contrastive unsupervised
1310
+ representations for reinforcement learning,” in International Conference
1311
+ on Machine Learning (ICML), 2020, pp. 5639–5650.
1312
+ [21] J. Yang, G. Lee, S. Chang, and N. Kwak, “Towards governing agent’s
1313
+ efficacy: Action-conditional beta-vae for deep transparent reinforcement
1314
+ learning,” in Asian Conference on Machine Learning (ACML), 2019, pp.
1315
+ 32–47.
1316
+ [22] R. Agarwal, D. Schuurmans, and M. Norouzi, “An optimistic perspec-
1317
+ tive on offline reinforcement learning,” in International Conference on
1318
+ Machine Learning (ICML), 2020, pp. 104–114.
1319
+ [23] D. Ha and J. Schmidhuber, “Recurrent world models facilitate policy
1320
+ evolution,” in Neural Information Processing Systems (NeurIPS), 2018,
1321
+ pp. 2451–2463.
1322
+ [24] G. Zhang, L. Zhong, Y. Lee, and J. J. Lim, “Policy transfer across visual
1323
+ and dynamics domain gaps via iterative grounding,” in Robotics: Science
1324
+ and Systems (RSS), 2021.
1325
+ [25] M. M¨uller, A. Dosovitskiy, B. Ghanem, and V. Koltun, “Driving pol-
1326
+ icy transfer via modularity and abstraction,” in Conference on Robot
1327
+ Learning (CoRL), 2018.
1328
+ [26] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial discrimi-
1329
+ native domain adaptation,” in IEEE Conference on Computer Vision and
1330
+ Pattern Recognition (CVPR), 2017, pp. 2962–2971.
1331
+ [27] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
1332
+ translation using cycle-consistent adversarial networks,” in IEEE/CVF
1333
+ International Conference on Computer Vision (ICCV), 2017, pp. 2242–
1334
+ 2251.
1335
+ [28] S. Gamrian and Y. Goldberg, “Transfer learning for related reinforce-
1336
+ ment learning tasks via image-to-image translation,” in International
1337
+ Conference on Machine Learning (ICML), 2019, pp. 2063–2072.
1338
+ [29] S. Sinha, S. Ebrahimi, and T. Darrell, “Variational adversarial active
1339
+ learning,” in IEEE/CVF International Conference on Computer Vision
1340
+ (ICCV), 2019, pp. 5971–5980.
1341
+ [30] D. Wu, C.-T. Lin, and J. Huang, “Active learning for regression using
1342
+ greedy sampling,” Information Sciences, vol. 474, pp. 90–105, 2019.
1343
+ [31] F.
1344
+ Zhdanov,
1345
+ “Diverse
1346
+ mini-batch
1347
+ active
1348
+ learning,”
1349
+ CoRR,
1350
+ vol.
1351
+ arXiv:1901.05954, 2019.
1352
+ [32] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in
1353
+ International Conference on Learning Representations (ICLR), 2014.
1354
+ [33] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaskowski,
1355
+ “Vizdoom: A doom-based AI research platform for visual reinforce-
1356
+ ment learning,” in IEEE Conference on Computational Intelligence and
1357
+ Games (CIG), 2016, pp. 1–8.
1358
+ [34] E. Coumans and Y. Bai, “Pybullet, a python module for physics
1359
+ simulation for games, robotics and machine learning,” 2016.
1360
+ [35] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
1361
+ tion,” in International Conference on Learning Representations (ICLR),
1362
+ Y. Bengio and Y. LeCun, Eds., 2015.
1363
+ [36] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
1364
+ imal policy optimization algorithms,” CoRR, vol. arXiv:1707.06347,
1365
+ 2017.
1366
+
a9FQT4oBgHgl3EQfgTbF/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
bNFJT4oBgHgl3EQf8y1j/content/tmp_files/2301.11685v1.pdf.txt ADDED
@@ -0,0 +1,2105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.11685v1 [math.FA] 27 Jan 2023
2
+ EIGENVALUE ESTIMATES FOR FOURIER CONCENTRATION
3
+ OPERATORS ON TWO DOMAINS
4
+ FELIPE MARCECA, JOSÉ LUIS ROMERO, AND MICHAEL SPECKBACHER
5
+ Abstract. We derive eigenvalue estimates for concentration operators asso-
6
+ ciated with the discrete Fourier transform and two concentration domains sat-
7
+ isfying certain regularity conditions. These conditions are met, for example,
8
+ when the discrete domain, contained in a lattice, is obtained by discretization
9
+ of a suitably regular domain in the Euclidean space. As a limit, we obtain
10
+ eigenvalue estimates for Fourier concentration operators associated with two
11
+ suitably regular domains in the Euclidean space. The proof builds on Israel’s
12
+ work on one dimensional intervals: arXiv:1502.04404v1.
13
+ 1. Introduction and results
14
+ Fourier concentration operators act by incorporating a spatial cut-off and a
15
+ subsequent frequency cut-off to the Fourier inversion formula. The chief example
16
+ concerns the Fourier transform on the Euclidean space F : L2(Rd) → L2(Rd), the
17
+ cut-offs are given by the indicator functions of two compact domains E, F ⊆ Rd,
18
+ and the concentration operator is
19
+ Sf = χFF −1χEFχFf,
20
+ f ∈ L2(Rd).
21
+ (1.1)
22
+ These operators, and their analogues defined with respect to the discrete Fourier
23
+ transform L2([−1/2, 1/2]d) → ℓ2(Zd) play a crucial role in many analysis problems
24
+ and fields of application [18, 13, 14, 7], such as imaging, where the shapes of E, F
25
+ are dictated by various acquisition constraints.
26
+ The basic intuition is that the concentration operator (1.1) is approximately a
27
+ projection with rank tr(S) = |E| · |F|. The error of such heuristic is encoded by
28
+ the so-called plunge region
29
+ Mε(S) = {λ ∈ σ(S) : ε < λ < 1 − ε},
30
+ ε ∈ (0, 1/2),
31
+ (1.2)
32
+ consisting of intermediate eigenvalues. Asymptotics for the cardinality of Mε(S)
33
+ go back to Landau and Widom [15, 12] for the case of one dimensional intervals
34
+ E = [−a, a], F = [−b, b] and read
35
+ #Mε(S) = c · log(ab) · log( 1−ε
36
+ ε ) + o(log(ab)),
37
+ as ab → ∞,
38
+ (1.3)
39
+ for an explicit constant c that depends on the normalization of the Fourier trans-
40
+ form. The modern spectral theory of Wiener-Hopf operators gives similar asymp-
41
+ totics for concentration operators associated to rather general multi-dimensional
42
+ domains subject to increasing isotropic dilations.
43
+ 2010 Mathematics Subject Classification. 47B35, 47A75, 42B35, 42C40.
44
+ Key words and phrases. Discrete Fourier transform, concentration operator, Hankel operator,
45
+ eigenvalue, spectrum.
46
+ The authors gratefully acknowledge support from the Austrian Science Fund (FWF): Y 1199.
47
+ 1
48
+
49
+ 2
50
+ FELIPE MARCECA, JOSÉ LUIS ROMERO, AND M. SPECKBACHER
51
+ While (1.3) precisely describes the cardinality of the set Mε(S) in the limit
52
+ ab → ∞, the asymptotic is often insufficient for many purposes because of the
53
+ quality of the error terms. Indeed, the error term in (1.3) depends in an unspecified
54
+ way on the spectral threshold ǫ, which precludes applications where ε is let to vary
55
+ with the domains E, F. Such limitations have motivated a great amount of work
56
+ aimed at deriving upper bounds for #Mε(S) that are threshold robust, that is,
57
+ bounds that are effective for concrete concentration domains and explicit in their
58
+ dependence on the spectral threshold [8, 10, 20, 11, 3, 17], significantly improving
59
+ on more classical results in this spirit [19].
60
+ With the exception of [8], the mentioned articles on threshold-robust spectral
61
+ bounds for Fourier concentration operators concern only the one dimensional case,
62
+ because they exploit a connection with a Sturm–Liouville equation which is spe-
63
+ cific of that setting. On the other hand, while [8] studies Fourier concentration
64
+ operators associated with one dimensional intervals, the technique introduced by
65
+ Israel is very general, as it relies on an explicit almost diagonalization of the
66
+ concentration operator. In fact, as we were finishing this work, the preprint [9]
67
+ provided an extension of [8] to higher dimensions (see Sections 1.1 and 1.5).
68
+ In this article we derive upper bounds for the number of intermediate eigen-
69
+ values (1.2) associated with either the continuous or discrete Fourier transforms.
70
+ We obtain estimates that apply to two suitably regular multi-dimensional spatial
71
+ and frequency domains. The proofs build on Israel’s technique [8] and combine it
72
+ with arguments from geometric measure theory and operator theory.
73
+ 1.1. The Euclidean space. Given two compact sets E, F ⊆ Rd, the Fourier
74
+ concentration operator S : L2(Rd) → L2(Rd) is defined by (1.1) where F denotes
75
+ the Fourier transform
76
+ Ff(ξ) =
77
+
78
+ Rd f(x)e−2πixξ dx.
79
+ (1.4)
80
+ A set E ⊆ Rd is said to have a maximally Ahlfors regular boundary if there exists
81
+ a constant κ∂E > 0 such that
82
+ Hd−1�
83
+ ∂E ∩ Br(x)
84
+
85
+ ≥ κ∂E · rd−1,
86
+ 0 < r ≤ Hd−1(∂E)1/(d−1),
87
+ x ∈ ∂E.
88
+ Here, Hd−1 denotes the (d−1)-dimensional Hausdorff measure. The term maximal
89
+ in the definition refers to the range of r for which the estimate is required to hold.
90
+ See Section 2 for more context on Ahlfors regularity. In what follows, we denote
91
+ for short |∂E| = Hd−1�
92
+ ∂E).
93
+ In this article we prove the following.
94
+ Theorem 1.1. Let E, F ⊆ Rd, d ≥ 2, be compact domains with maximally
95
+ Ahlfors regular boundaries with constants κ∂E, κ∂F respectively, and assume that
96
+ that |∂E||∂F| ≥ 1. Consider the concentration operator (1.1) and its eigenvalues
97
+ {λn : n ∈ N}.
98
+ Then for every α ∈ (0, 1/2), there exists Aα,d ≥ 1 such that for ε ∈ (0, 1/2):
99
+ #
100
+
101
+ n ∈ N : λn ∈ (ε, 1 − ε)
102
+
103
+ ≤ Aα,d · |∂E|
104
+ κ∂E
105
+ · |∂F|
106
+ κ∂F
107
+ · log
108
+ �|∂E||∂F|
109
+ κ∂E ε
110
+ �2d(1+α)+1
111
+ .
112
+
113
+ EIGENVALUE ESTIMATES FOR FOURIER CONCENTRATION OPERATORS
114
+ 3
115
+ A closely related result is presented in the recent preprint [9]. For F = [0, 1]d and
116
+ E = rK, where r > 0 is a dilation parameter and K ⊆ Rd is a convex, coordinate
117
+ symmetric domain [9, Theorem 1.1] gives the following bound for ε ∈ (0, 1/2):
118
+ #
119
+
120
+ n ∈ N : λn ∈ (ε, 1 − ε)
121
+
122
+ ≤ Cd · max{rd−1 log(r/ε)3, log(r/ε)3d}.
123
+ (1.5)
124
+ For large r, the right-hand side of (1.5) becomes Od
125
+
126
+ rd−1 log(r/ε)3) while Theo-
127
+ rem 1.1 gives the weaker bound Oα,d
128
+
129
+ rd−1 log(r/ε)2d(α+1)+1�
130
+ . On the other hand,
131
+ Theorem 1.1 applies to possibly non-convex, non-coordinate-symmetric and non-
132
+ dilated domains E, and other regular domains F besides cubes. (As pointed out
133
+ in [9], when E and F are both cubes, even slightly stronger estimates hold, c.f.
134
+ [9, Theorem 1.2].)
135
+ Our work is in great part motivated by applications where concentration do-
136
+ mains may be non-convex. For example, noise statistics are often estimated from
137
+ those pixels of a square image located outside a central disk, which is assumed to
138
+ contain the signal of interest (see, e.g., [2]). Thus, the need to sample pure noise
139
+ leads one to consider the complement of a disk within a two dimensional square
140
+ as concentration domain (or, more realistically, the set of grid points within that
141
+ domain; see below). Such a domain E is allowed by Theorem 1.1 (and Theorems
142
+ 1.2 and 1.3 below) and has moreover a favorable regularity constant κ∂E.
143
+ 1.2. Discretization of continuous domains. Theorem 1.1 is obtained by tak-
144
+ ing a limit on a more precise result concerning a discrete setting, which is our
145
+ main focus.
146
+ We consider a resolution parameter L > 0 and define the discrete Fourier
147
+ transform FL : L2((−L/2, L/2)d) → ℓ2(L−1Zd) by
148
+ FLf(k/L) =
149
+
150
+ (−L/2,L/2)d f(x)e−2πixk/Ldx,
151
+ k ∈ Zd.
152
+ (1.6)
153
+ We think of L as a discretization parameter for an underlying continuous problem.
154
+ Let us define the discretization at resolution L > 0 of a domain E ⊆ Rd by
155
+ EL = L−1Zd ∩ E.
156
+ Given two compact domains E ⊆ Rd and F ⊆ (−L/2, L/2)d, consider the dis-
157
+ cretized concentration operator T : L2(F) → L2(F) given by
158
+ T = χFF −1
159
+ L χELFL.
160
+ (1.7)
161
+ Our second result reads as follows.
162
+ Theorem 1.2. Let E, F ⊆ Rd, d ≥ 2, be compact domains with maximally
163
+ Ahlfors regular boundaries with constants κ∂E, κ∂F respectively, and assume that
164
+ that |∂E||∂F| ≥ 1.
165
+ Fix a discretization resolution L ≥ |∂E|−1/(d−1) such that F ⊆ (−L/2, L/2)d
166
+ and consider the discretized concentration operator (1.7) and its eigenvalues {λn :
167
+ n ∈ N}.
168
+ Then for every α ∈ (0, 1/2) there exists Aα,d ≥ 1 such that for ε ∈ (0, 1/2):
169
+ #
170
+
171
+ n ∈ N : λn ∈ (ε, 1 − ε)
172
+
173
+ ≤ Aα,d · |∂E|
174
+ κ∂E
175
+ · |∂F|
176
+ κ∂F
177
+ · log
178
+ �|∂E||∂F|
179
+ κ∂E ε
180
+ �2d(1+α)+1
181
+ .
182
+
183
+ 4
184
+ FELIPE MARCECA, JOSÉ LUIS ROMERO, AND M. SPECKBACHER
185
+ 1.3. The discrete Fourier transform. Finally, we consider a discrete concen-
186
+ tration problem associated with the usual discrete Fourier transform, denoted
187
+ F1 : L2((−1/2, 1/2)d) → ℓ2(Zd)
188
+ for consistency with (1.6).
189
+ Given a finite set Ω ⊆ Zd and F ⊆ (−1/2, 1/2)d, the discrete Fourier concen-
190
+ tration operator T : L2(F) → L2(F) is defined as
191
+ T = χFF −1
192
+ 1 χΩF1.
193
+ (1.8)
194
+ The discrete boundary of a set Ω ⊆ Zd is given by
195
+ ∂Ω = {k ∈ Ω : min{|j − k| : j ∈ Zd ∖ Ω} = 1}.
196
+ (1.9)
197
+ We say that Ω ⊆ Zd has a maximally Ahlfors regular boundary if there exists a
198
+ constant κ∂Ω such that
199
+ inf
200
+ k∈∂Ω #
201
+
202
+ ∂Ω ∩ k + [−n/2, n/2)d�
203
+ ≥ κ∂Ω · nd−1,
204
+ 1 ≤ n ≤ (#∂Ω)1/(d−1), k ∈ ∂Ω.
205
+ (Note the slight notational abuse: though Ω ⊆ Zd ⊆ Rd, the notions of boundary
206
+ and boundary regularity are to be understood in the discrete sense.)
207
+ Our last result reads as follows.
208
+ Theorem 1.3. Let d ≥ 2, Ω ⊆ Zd a finite set with maximally Ahlfors regular
209
+ boundary and constant κ∂Ω. Let F ⊆ (−1/2, 1/2)d be compact with maximally
210
+ Ahlfors regular boundary and constant κ∂F. Assume that #∂Ω · |∂F| ≥ 1, and
211
+ consider the concentration operator (1.8) and its eigenvalues {λn : n ∈ N}.
212
+ Then for every α ∈ (0, 1/2) there exists Aα,d ≥ 1 such that for ε ∈ (0, 1/2):
213
+ #
214
+
215
+ n ∈ N : λn ∈ (ε, 1 − ε)
216
+
217
+ ≤ Aα,d · #∂Ω
218
+ κ∂Ω
219
+ · |∂F|
220
+ κ∂F
221
+ · log
222
+ �#∂��� · |∂F|
223
+ κ∂Ω ε
224
+ �2d(1+α)+1
225
+ .
226
+ 1.4. One sided estimates. Finally, we remark that bounds on the number of
227
+ intermediate eigenvalues, as in Theorems 1.1, 1.2 and 1.3, can be equivalently
228
+ formulated in terms of the distribution function
229
+ Nε := {n ∈ N : λn > ε},
230
+ ε ∈ (0, 1).
231
+ Remark 1.4. For example, for ε ∈ (0, 1) under the assumptions of Theorem 1.1
232
+ we have
233
+ ��#Nε(S) − |E| · |F|
234
+ �� ≤ Cα,d · |∂E|
235
+ κ∂E
236
+ · |∂F|
237
+ κ∂F
238
+ · log
239
+
240
+ |∂E||∂F|
241
+ κ∂E min{ε, 1 − ε}
242
+ �2d(1+α)+1
243
+ .
244
+ (1.10)
245
+ See Section 8 for details.
246
+ 1.5. Methods and related literature. We work for the most part with the
247
+ discrete Fourier transform and then obtain consequences for the continuous one
248
+ by a limiting argument. Theorem 1.2 is proved in two steps. We first revisit Israel’s
249
+ argument [8] and adapt it to prove eigenvalue estimates when one of the domains
250
+ is a rectangle and the other is a general multi-dimensional domain (Theorem 4.1
251
+ below). These estimates are slightly stronger than those in Theorem 1.2, and
252
+
253
+ EIGENVALUE ESTIMATES FOR FOURIER CONCENTRATION OPERATORS
254
+ 5
255
+ the extra precision is exploited in the subsequent step. We follow the method of
256
+ almost diagonalization with wavepackets, which we achieve, unlike [8], through a
257
+ redundant system (frame) instead of an orthonormal basis.
258
+ The second step is a decomposition, rescaling, and dyadic approximation ar-
259
+ gument, implemented by means of p-Schatten norm estimates for certain Hankel
260
+ operators, and especially by quantifying those estimates as a function of p, as
261
+ p → 0+.
262
+ Our intermediate result, Theorem 4.1, is close in spirit to Theorem 1.2 in [9]
263
+ (which appeared as we were finishing this article). The estimates in [9], formulated
264
+ in the context of the continuous Fourier transform and concerning dilated convex
265
+ domains, are stronger than what follows from Theorem 4.1 in that regime, as
266
+ [9, Theorem 1.2] involves smaller powers of a certain logarithmic factor (see also
267
+ Section 1.1 and (1.5)).
268
+ On the other hand, Theorem 4.1 concerns sufficiently
269
+ regular, non-dilated and possibly non-convex domains, and covers the discrete
270
+ Fourier transform.
271
+ We also mention our recent work on concentration operators for the short-time
272
+ Fourier transform [16], that also makes use of Ahlfors regularity and Schatten
273
+ norm estimates. Though the goals and results are philosophically similar to those
274
+ in the present article, the settings are rather different from the technical point of
275
+ view. Indeed, the arguments used in [16] rely on the rapid off-diagonal decay of
276
+ the reproducing kernel of the range of the short-time Fourier transform, and do
277
+ not seem to be applicable to Fourier concentration operators.
278
+ The remainder of the article is organized as follows.
279
+ Section 2 sets up the
280
+ notation and provides background on boundary regularity. Section 3 revisits the
281
+ technique from [8] and implements certain adaptations. These are used in Section
282
+ 4 to prove Theorem 4.1. Theorem 1.2 is proved in Section 5, Theorem 1.1 is proved
283
+ in Section 6, and Theorem 1.3 is proved in Section 7. Remark 1.4 is proved in
284
+ Section 8.
285
+ 2. Preliminaries
286
+ 2.1. Notation. We shall focus on Theorem 1.2 and set up the notation accord-
287
+ ingly.
288
+ Theorems 1.1 and 1.3 will be obtained afterwards as an application of
289
+ Theorem 1.2.
290
+ We denote cubes by Qa = [−a/2, a/2)d. The Euclidean norm on Rd is denoted
291
+ | · |. For two non-negative functions f, g we write f ≲ g if there exist a constant
292
+ C such that f(x) ≤ Cg(x), and write f ≍ g is f ≲ g and g ≲ f. The implied
293
+ constant is allowed to depend on the dimension d and the parameter α from
294
+ Theorems 1.1, 1.2 and 1.3, but not on other parameters.
295
+ We enumerate the eigenvalues of a compact self adjoint operator L : H → H
296
+ acting on a Hilbert space H as follows:
297
+ λk = inf{∥L − S∥ : S ∈ L(L2(Rd)), dim(Range(S)) < k},
298
+ k ≥ 1.
299
+ (2.1)
300
+ Then {λk : k ≥ 1} ∖ {0} = σ(L) ∖ {0} as sets with multiplicities — see, e.g., [5,
301
+ Lemma 4.3].
302
+
303
+ 6
304
+ FELIPE MARCECA, JOSÉ LUIS ROMERO, AND M. SPECKBACHER
305
+ For a set E ⊆ Rd, we write
306
+ Ec
307
+ L = L−1Zd ∖ EL
308
+ and ∂EL for the points in EL which are at distance L−1 of Ec
309
+ L. For L = 1 this is
310
+ consistent with (1.9).
311
+ We will work with the discrete Fourier transform FL : L2((−L/2, L/2)d) →
312
+ ℓ2(L−1Zd) given by (1.6) and reserve the notation Ff or �f for the continuous
313
+ Fourier transform (1.4). Note that if supp(f) ⊆ (−L/2, L/2)d, then FLf(k/L) =
314
+ Ff(k/L) for every k ∈ Zd.
315
+ We also write PE,L = F −1
316
+ L χELFL. For F ⊆ (−L/2, L/2)d we define the operator
317
+ T = TE,F,L : L2(F) → L2(F) by
318
+ T = TE,F,L = χFPE,L
319
+ and let λn = λn(T) denote its eigenvalues as in (2.1). An easy computation shows
320
+ that
321
+ Tt−1E,tF,tL = Mt−1TE,F,LMt,
322
+ t > 0,
323
+ where Mt denotes the dilation operator
324
+ Mtf(x) = f(tx).
325
+ In particular,
326
+ λn(Tt−1E,tF,tL) = λn(TE,F,L),
327
+ n ∈ N.
328
+ (2.2)
329
+ 2.2. Boundary regularity. Let us introduce regularity of sets in more generality
330
+ and discuss a few properties.
331
+ An Hd−1-measurable set X ⊆ Rd is said to be lower Ahlfors (d − 1)-regular
332
+ (regular for short) at scale ηX > 0 if there exists a constant κX > 0 such that
333
+ Hd−1�
334
+ X ∩ Br(x)
335
+
336
+ ≥ κX · rd−1,
337
+ 0 < r ≤ ηX,
338
+ x ∈ X.
339
+ Note that if X ⊆ Rd is regular at scale ηX > 0 with constant κX > 0 and
340
+ t > 0, then tX ⊆ Rd is regular at scale ηtX = tηX with constant κtX = κX. By
341
+ differentiation around a point of positive Hd−1-density,
342
+ κX ≤ cd,
343
+ (2.3)
344
+ for any regular X of positive Hd−1-measure. We also mention that if X is regular
345
+ with parameters ηX and κX, then choosing an arbitrary x ∈ X gives
346
+ Hd−1�
347
+ X
348
+
349
+ ≥ Hd−1�
350
+ X ∩ BηX(x)
351
+
352
+ ≥ κX · ηd−1
353
+ X .
354
+ (2.4)
355
+ We shall use the following basic result, derived from [4].
356
+ Lemma 2.1. There exists a universal constant Cd > 0 such that for every compact
357
+ set X ⊆ Rd that is regular at scale ηX > 0 with constant κX and every s > 0,
358
+ |X + Bs(0)| ≤ Cd
359
+ κX
360
+ · Hd−1(X) · s ·
361
+
362
+ 1 + sd−1
363
+ ηd−1
364
+ X
365
+
366
+ .
367
+ Proof. From [4, Theorems 5 and 6] it follows that
368
+ Hd−1�
369
+ {x : d(x, X) = r}
370
+
371
+ ≤ Cd
372
+ κX
373
+ · Hd−1(X) ·
374
+
375
+ 1 + rd−1
376
+ ηd−1
377
+ X
378
+
379
+ ,
380
+
381
+ EIGENVALUE ESTIMATES FOR FOURIER CONCENTRATION OPERATORS
382
+ 7
383
+ for almost every r > 0, and in addition, |∇d(x, X)| = 1, for almost every x ∈ Rd.
384
+ From this and the coarea formula, it follows that
385
+ |X + Bs(0)| =
386
+
387
+ Rd χ[0,s)(d(x, X))dx =
388
+
389
+ Rd χ[0,s)(d(x, X))|∇d(x, X)|dx
390
+ =
391
+ � s
392
+ 0
393
+ Hd−1�
394
+ {x : d(x, X) = r}
395
+
396
+ dr ≤ Cd
397
+ κX
398
+ Hd−1(X)
399
+ � s
400
+ 0
401
+
402
+ 1 + rd−1
403
+ ηd−1
404
+ X
405
+
406
+ dr
407
+ ≤ Cd
408
+ κX
409
+ Hd−1(X)s
410
+
411
+ 1 + sd−1
412
+ ηd−1
413
+ X
414
+
415
+ .
416
+
417
+ Corollary 2.2. For E ⊆ Rd a compact domain with regular boundary at scale
418
+ η∂E ≥ 1 with constant κ∂E and a discretization resolution L ≥ 1, we have
419
+ L−d#EL ≲ |E| + |∂E|
420
+ κ∂EL.
421
+ In particular, for d ≥ 2
422
+ L−d#EL ≲ max{|∂E|d/(d−1), 1}
423
+ κ∂E
424
+ .
425
+ Proof. Recall that QL−1 = L−1[−1/2, 1/2)d and define E′
426
+ L = {m ∈ EL :
427
+ m +
428
+ QL−1 ⊆ E}. From Lemma 2.1, we get
429
+ L−d#EL =
430
+ ���
431
+
432
+ m∈E′
433
+ L
434
+ m + QL−1
435
+ ��� +
436
+ ���
437
+
438
+ m∈EL∖E′
439
+ L
440
+ m + QL−1
441
+ ��� ≤ |E| + |∂E + BL−1√
442
+ d(0)|
443
+ ≲ |E| + |∂E|
444
+ κ∂EL.
445
+ Finally, the second inequality follows from the isoperimetric inequality |E| ≲
446
+ |∂E|d/(d−1) and (2.3).
447
+
448
+ 3. Israel’s argument revisited
449
+ We now revisit the core argument of [8] and make a few adaptations.
450
+ 3.1. Israel’s lemma. We need a slight generalization of Lemma 1 in [8], phrasing
451
+ it in terms of frames rather than orthonormal bases. We include a proof for the
452
+ sake of completeness.
453
+ Recall that a frame for a Hilbert space H is a subset of vectors {φi}i∈I for which
454
+ the exist constants 0 < A, B < ∞ — called lower and upper frame bounds —
455
+ such that
456
+ A∥f∥2 ≤
457
+
458
+ i∈I
459
+ |⟨f, φi⟩|2 ≤ B∥f∥2,
460
+ f ∈ H.
461
+ Lemma 3.1. Let T : H → H be a positive, compact, self-adjoint operator on a
462
+ Hilbert space H with ∥T∥ ≤ 1 and eigendecomposition T = �
463
+ n≥1 λn⟨·, fn⟩fn.
464
+ Let {φi}i∈I be a frame of unit norm vectors for H with lower frame bound A.
465
+ If I = I1 ∪ I2 ∪ I3, and
466
+ (3.1)
467
+
468
+ i∈I1
469
+ ∥Tφi∥2 +
470
+
471
+ i∈I3
472
+ ∥(I − T)φi∥2 ≤ A
473
+ 2 ε2,
474
+
475
+ 8
476
+ FELIPE MARCECA, JOSÉ LUIS ROMERO, AND M. SPECKBACHER
477
+ then #Mε(T) ≤ 2
478
+ A#I2, where Mε(T) is defined as in (1.2).
479
+ Proof. Let Sε = span{fn :
480
+ λn ∈ (ε, 1 − ε)} and let Pε : H → Sε denote the
481
+ orthogonal projection onto Sε. For f ∈ Sε one has ∥f∥ − ∥(I − T)f∥ ≤ ∥Tf∥ ≤
482
+ (1 − ε)∥f∥, which shows
483
+ ε∥f∥ ≤ ∥Tf∥,
484
+ and
485
+ ε∥f∥ ≤ ∥(I − T)f∥,
486
+ f ∈ Sε.
487
+ Note that T and Pε commute since Sε is spanned by a collection of eigenvectors
488
+ of T. Therefore, by (3.1) we obtain
489
+
490
+ i∈I1∪I3
491
+ ε2∥Pεφi∥2 ≤
492
+
493
+ i∈I1
494
+ ∥TPεφi∥2 +
495
+
496
+ i∈I3
497
+ ∥(I − T)Pεφi∥2 ≤ A
498
+ 2 ε2,
499
+ which implies
500
+ (3.2)
501
+
502
+ i∈I1∪I3
503
+ ∥Pεφi∥2 ≤ A
504
+ 2 .
505
+ Using the frame property we get for f ∈ Sε:
506
+ A∥f∥2 ≤
507
+
508
+ i∈I
509
+ |⟨f, φi⟩|2 =
510
+
511
+ i∈I
512
+ |⟨f, Pεφi⟩|2.
513
+ Now assume that dim(Sε) ≥ 1 (otherwise the result is trivial), take an orthonormal
514
+ basis {ψk}dim(Sε)
515
+ k=1
516
+ of Sε, and sum the inequality above over all basis elements to
517
+ derive
518
+ A · #Mε(T) = A · dim(Sε) = A
519
+ dim(Sε)
520
+
521
+ k=1
522
+ ∥ψk∥2 ≤
523
+ dim(Sε)
524
+
525
+ k=1
526
+
527
+ i∈I
528
+ |⟨ψk, φi⟩|2
529
+ =
530
+
531
+ i∈I
532
+ ∥Pεφi∥2 ≤
533
+
534
+ i∈I2
535
+ ∥φi∥2 + A
536
+ 2 = #I2 + A
537
+ 2 ≤ #I2 + A
538
+ 2 #Mε(T),
539
+ where in the second line we used (3.2). This shows that #Mε(T) ≤ 2
540
+ A#I2.
541
+
542
+ 3.2. Local trigonometric frames. In this section, we construct a tight frame
543
+ that allows us to apply Lemma 3.1.
544
+ Let α > 0, and θ ∈ C∞(R) be such that
545
+ (i) θ(x) = 1, for x ≥ 1, and θ(x) = 0, for x ≤ −1,
546
+ (ii) θ(−x)2 + θ(x)2 = 1, for every x ∈ R,
547
+ (iii) |Dkθ(x)| ≤ Ck
548
+ αk(1+α)k, for all k ∈ N0, all x ∈ R, and a constant Cα > 0.
549
+ See, for example, [8, Proposition 1] or [6, Chapter 1] for the existence of such a
550
+ function.
551
+ Let W > 0. We decompose the interval
552
+
553
+ − W
554
+ 2 , W
555
+ 2
556
+
557
+ into disjoint intervals
558
+ Ij = xj +
559
+ W
560
+ 3 · 2|j|+1[−1, 1),
561
+ j ��� Z,
562
+ where
563
+ xj = sign(j)W
564
+ 2
565
+
566
+ 1 − 1
567
+ 2|j|
568
+
569
+ .
570
+
571
+ EIGENVALUE ESTIMATES FOR FOURIER CONCENTRATION OPERATORS
572
+ 9
573
+ Note that |Ij| = |I|j|| = 2|I|j|+1| for every j ∈ Z. We will also denote Dj = Ij∪Ij+1.
574
+ Now define
575
+ θj(x) = θ
576
+ �2(x − xj)
577
+ |Ij|
578
+
579
+ θ
580
+
581
+ −2(x − xj+1)
582
+ |Ij+1|
583
+
584
+ .
585
+ We have that θj(x) = 0 for x /∈ Dj, and furthermore by properties (i) and (ii)
586
+ ∥θj∥2
587
+ 2 =
588
+
589
+ Ij
590
+ θ
591
+ �2(x − xj)
592
+ |Ij|
593
+ �2
594
+ dx +
595
+
596
+ Ij+1
597
+ θ
598
+
599
+ −2(x − xj+1)
600
+ |Ij+1|
601
+ �2
602
+ dx
603
+ = |Ij|
604
+ 2
605
+ � 1
606
+ −1
607
+ θ(x)2dx + |Ij+1|
608
+ 2
609
+ � 1
610
+ −1
611
+ θ(x)2dx = |Dj|
612
+ 2 .
613
+ We define the set of vectors
614
+ (3.3)
615
+ φj,k(x) =
616
+
617
+ 2
618
+ |Dj| · θj(x) · exp
619
+
620
+ 2πi xk
621
+ |Dj|
622
+
623
+ ,
624
+ j, k ∈ Z,
625
+ and note that ∥φj,k∥2 = 1.
626
+ Lemma 3.2. The family {φj,k}j,k∈Z defined in (3.3) forms a tight frame for
627
+ L2(−W/2, W/2) with frame constants A = B = 2.
628
+ Proof. We write fj := f|Ij so that f = �
629
+ j∈Z fj. Since supp(θj) ⊆ Dj = Ij ∪ Ij+1,
630
+ we observe
631
+
632
+ j,k∈Z
633
+ |⟨f, φj,k⟩|2 =
634
+
635
+ j,k∈Z
636
+ |⟨fj + fj+1, φj,k⟩|2 .
637
+ As
638
+
639
+ |Dj|−1/2 exp (2πikx/|Dj|)
640
+
641
+ k∈Z is an orthonormal basis for L2(Dj), we find
642
+ that
643
+
644
+ k∈Z
645
+ |⟨fj + fj+1, φj,k⟩|2 = 2∥(fj + fj+1)θj∥2
646
+ 2 = 2∥fjθj∥2
647
+ 2 + 2∥fj+1θj∥2
648
+ 2.
649
+ Combining both identities and using property (ii), we conclude
650
+
651
+ j,k∈Z
652
+ |⟨f, φj,k⟩|2 = 2
653
+
654
+ j∈Z
655
+
656
+ ∥fjθj∥2
657
+ 2 + ∥fj+1θj∥2
658
+ 2
659
+
660
+ = 2
661
+
662
+ j∈Z
663
+
664
+ ∥fjθj∥2
665
+ 2 + ∥fjθj−1∥2
666
+ 2
667
+
668
+ = 2
669
+
670
+ j∈Z
671
+
672
+ Ij
673
+ |f(x)|2
674
+
675
+ θ
676
+ �2(x − xj)
677
+ |Ij|
678
+ �2
679
+ + θ
680
+
681
+ −2(x − xj)
682
+ |Ij|
683
+ �2�
684
+ dx
685
+ = 2
686
+
687
+ j∈Z
688
+ ∥fj∥2
689
+ 2 = 2∥f∥2
690
+ 2.
691
+
692
+ Let 0 < Wi ≤ L, i = 1, ..., d, and consider �d
693
+ i=1(−Wi/2, Wi/2). Set also
694
+ Wmax := max
695
+ i=1,...,dWi.
696
+ We define a frame for L2� �d
697
+ i=1(−Wi/2, Wi/2)
698
+
699
+ via the tensor product
700
+ Φj,k(x) = Φj1,...,jd,k1,...kd(x1, ..., xd) = φj1,k1(x1) · . . . · φjd,kd(xd),
701
+ where each family {φji,ki(xi)}ji,kk∈Z is the frame for L2(−Wi/2, Wi/2) given by
702
+ (3.3). This construction also yields a tight frame with frame bounds equal to 2d.
703
+
704
+ 10
705
+ FELIPE MARCECA, JOSÉ LUIS ROMERO, AND M. SPECKBACHER
706
+ 3.3. Energy estimates. Consider
707
+ ψj(x) = θj
708
+
709
+ |Dj|x + xj −
710
+ W
711
+ 3 · 2|j|+1
712
+
713
+ ,
714
+ x ∈ R, j ∈ Z.
715
+ A straightforward computation shows that ψj is supported on [0, 1] and satisfies
716
+ |Dkψj(x)| ≤ �
717
+
718
+ kk(1+α)k by property (iii). As shown in [8, Lemma 1] it thus follows
719
+ that |�
720
+ ψj(ξ)| ≤ Aα · exp
721
+
722
+ −aα|ξ|(1+α)−1�
723
+ . Since 1 − α ≤ (1 + α)−1, we derive that
724
+ t(1+α)−1 ≥ t1−α − 1 for t ≥ 0. Adjusting the constant Aα, we therefore get
725
+ (3.4)
726
+ |�θj(ξ)| ≤ Aα · |Dj| · exp
727
+
728
+ −aα(|Dj| · |ξ|)1−α�
729
+ ,
730
+ ξ ∈ R.
731
+ With this at hand, we estimate the decay of
732
+ F(Φj,k)(ξ) = 2d/2
733
+ d
734
+
735
+ i=1
736
+ |Dji|−1/2 · �
737
+ θji
738
+
739
+ ξi −
740
+ ki
741
+ |Dji|
742
+
743
+ ,
744
+ ξ ∈ Rd.
745
+ Define
746
+ Mj = diag(|Dj1|, ..., |Djd|) ∈ Rd×d.
747
+ By (3.4) (possibly enlarging Aα) and |ξ|1−α ≤ �d
748
+ i=1 |ξi|1−α, it follows
749
+ |F(Φj,k)(ξ)| ≤ Ad
750
+ α
751
+ d
752
+
753
+ i=1
754
+ |Dji|1/2 · exp
755
+
756
+ −aα
757
+ ��|Dji|ξi − ki
758
+ ��1−α�
759
+ ≤ Ad
760
+ α · det(Mj)1/2 · exp
761
+
762
+ −aα
763
+ ��Mj(ξ − ξj,k)
764
+ ��1−α�
765
+ ,
766
+ (3.5)
767
+ where (ξj,k)i = ki|Dji|−1.
768
+ Consider now a compact domain E ⊆ Rd. Let s ≥ 1 be a parameter that will be
769
+ determined later. For j ∈ Zd fixed, we cover the index set Zd with three subsets
770
+ as follows
771
+ Llow
772
+ j
773
+ :=
774
+
775
+ k ∈ Zd : dist(k, MjEc
776
+ L) ≥ s
777
+
778
+ ;
779
+ Lmed
780
+ j
781
+ :=
782
+
783
+ k ∈ Zd : dist(k, MjEL) < s, and dist(k, MjEc
784
+ L) < s};
785
+ Lhigh
786
+ j
787
+ :=
788
+
789
+ k ∈ Zd : dist(k, MjEL) ≥ s
790
+
791
+ .
792
+ (3.6)
793
+ (Here, dist is associated with the usual Euclidean distance.) We claim that
794
+ Lmed
795
+ j
796
+
797
+
798
+ k ∈ Zd : dist(k, Mj∂EL) < s
799
+
800
+ ;
801
+ (3.7)
802
+ let us briefly sketch an argument. Fix k ∈ Lmed
803
+ j
804
+ and let k0 ∈ MjL−1Zd minimize
805
+ the distance to k. For any point x ∈ MjL−1Zd with |k − x| < s we can build a
806
+ path of adjacent points in MjL−1Zd from x to k0 such that the distance to k is
807
+ decreasing. In particular, choosing x1 ∈ MjEL and x2 ∈ MjEc
808
+ L at distance less
809
+ than s from k, we can connect x1 and x2 through a path of adjacent points in
810
+ MjL−1Zd that stays at distance less than s from k. Necessarily, one of the points
811
+ in the path must belong to Mj∂EL, which proves (3.7).
812
+ The indices (j, k) with k ∈ Lmed
813
+ j
814
+ , and j satisfying a condition specified below
815
+ (see (3.10)) will play the role of I2 in Lemma 3.1, so we need to estimate #(Lmed
816
+ j
817
+ ).
818
+
819
+ EIGENVALUE ESTIMATES FOR FOURIER CONCENTRATION OPERATORS
820
+ 11
821
+ Lemma 3.3. Let E ⊆ Rd be a compact domain with regular boundary at scale
822
+ η∂E ≥ 1 and constant κ∂E. Let L ≥ Wmax and s ≥ 1. Then for all j ∈ Zd we have
823
+ #
824
+
825
+ k ∈ Zd : dist(k, Mj∂EL) < s
826
+
827
+ ≲ max{Wmax, 1/η∂E}d−1 · |∂E|
828
+ κ∂E
829
+ · sd.
830
+ Proof. Since for every x ∈ Rd the cube x + Q1 contains one point in Zd,
831
+ #
832
+
833
+ k ∈ Zd : dist(k, Mj∂EL) < s} ≲ sd · #
834
+
835
+ k ∈ Zd : k ∈ Mj∂EL + Q1}.
836
+ (3.8)
837
+ For x ∈ R, we denote the unique integer in x + [−1/2, 1/2) by x∗. For a set
838
+ X = {x1, ..., xN} ⊆ R and 0 < a ≤ 1, we write yi = axi. It is easy to check that if
839
+ x∗
840
+ i = x∗
841
+ i′, then |y∗
842
+ i − y∗
843
+ i′| ≤ 1. Using this, a straightforward argument shows that
844
+ #
845
+
846
+ k ∈ Z : k ∈ aX + [−1/2, 1/2)} ≤ 2#
847
+
848
+ k ∈ Z : k ∈ X + [−1/2, 1/2)}.
849
+ From (3.8), if we apply the inequality above componentwise (noting that (Mj)i,i ≤
850
+ Wmax), we obtain for s ≥ 1
851
+ #
852
+
853
+ k ∈ Zd : dist(k, Mj∂EL) < s}
854
+ ≲ sd · #
855
+
856
+ k ∈ Zd : k ∈ Wmax∂EL + Q1}.
857
+ Since for every x ∈ ∂EL there exists x′ ∈ ∂E such that |x − x′| ≤ L−1, and
858
+ Wmax/L ≤ 1, it follows that
859
+ #
860
+
861
+ k ∈ Zd : dist(k, Mj∂EL) < s} ≲ sd · #
862
+
863
+ k ∈ Zd : k ∈ Wmax∂E + Q3}
864
+ =: sd · #(KWmax).
865
+ (3.9)
866
+ Now let k ∈ KWmax.
867
+ There exists at least one point xk ∈ ∂E such that k ∈
868
+ Wmaxxk + Q3. In particular, we have that xk ∈ W −1
869
+ maxk + Q4/Wmax. Therefore, for
870
+ every k ∈ KWmax we get by regularity of ∂E
871
+ κ∂E · min{W −1
872
+ max, η∂E}d−1 ≤ Hd−1�
873
+ ∂E ∩ B1/Wmax(xk)
874
+
875
+ ≤ Hd−1�
876
+ ∂E ∩ xk + Q2/Wmax
877
+
878
+ ≤ Hd−1�
879
+ ∂E ∩ W −1
880
+ maxk + Q6/Wmax
881
+
882
+ .
883
+ So,
884
+ κ∂E · min
885
+
886
+ W −1
887
+ max, η∂E
888
+ �d−1 · #(KWmax) ≤
889
+
890
+ k∈KWmax
891
+ Hd−1�
892
+ ∂E ∩ W −1
893
+ maxk + Q6/Wmax
894
+
895
+
896
+
897
+ k∈Zd
898
+ Hd−1�
899
+ ∂E ∩ W −1
900
+ maxk + Q1/Wmax
901
+
902
+ = Hd−1(∂E).
903
+ Plugging this estimate into (3.9) completes the proof.
904
+
905
+ Next, for a compact domain E ⊆ Rd and a parameter s ≥ 1 we recall the sets
906
+ (3.6), introduce a second auxiliary parameter 0 < δ < 1, and define the following
907
+ covering of Z2d:
908
+ Γlow :=
909
+
910
+ (j, k) : min
911
+ i
912
+ |Dji| ≥ δ, k ∈ Llow
913
+ j
914
+
915
+ ;
916
+ Γmed :=
917
+
918
+ (j, k) : min
919
+ i
920
+ |Dji| ≥ δ, k ∈ Lmed
921
+ j
922
+
923
+ ;
924
+ Γhigh :=
925
+
926
+ (j, k) : min
927
+ i
928
+ |Dji| ≥ δ, k ∈ Lhigh
929
+ j
930
+
931
+
932
+
933
+ (j, k) : min
934
+ i
935
+ |Dji| < δ, k ∈ Zd�
936
+ .
937
+ (3.10)
938
+
939
+ 12
940
+ FELIPE MARCECA, JOSÉ LUIS ROMERO, AND M. SPECKBACHER
941
+ Lemma 3.4. Under the conditions of Lemma 3.3, let 0 < δ < 1 and consider the
942
+ set Γmed from (3.10). Then
943
+ #(Γmed) ≲ max{Wmax, 1/η∂E}d−1 · |∂E|
944
+ κ∂E
945
+ · max{log(Wmax/δ), 1}d · sd.
946
+ Proof. By (3.7) and Lemma 3.3 it follows
947
+ #(Γmed) =
948
+
949
+ j∈Zd
950
+ min |Dji|≥δ
951
+ #(Lmed
952
+ j
953
+ ) ≲
954
+
955
+ j∈Zd
956
+ min |Dji|≥δ
957
+ max{Wmax, 1/η∂E}d−1|∂E|
958
+ κ∂E
959
+ sd.
960
+ In each coordinate, we have that the number of intervals Dji for which |Dji| ≥ δ
961
+ is bounded by C max{log(Wmax/δ), 1}. Hence, we arrive at
962
+ #(Γmed) ≲ max{Wmax, 1/η∂E}d−1|∂E|
963
+ κ∂E
964
+ max{log(Wmax/δ), 1}dsd.
965
+
966
+ Lemma 3.5. Let d ≥ 2, L ≥ max{Wmax, 1}, and E ⊆ Rd be a compact domain
967
+ with regular boundary at scale η∂E ≥ 1 with constant κ∂E and such that |∂E| ≥ 1.
968
+ Let s ≥ 1 and δ ∈ (0, 1) be parameters and consider the sets from (3.10). Then
969
+ there exists a constant c = cα > 0 such that
970
+
971
+ (j,k)∈Γlow
972
+ L−d �
973
+ m∈Ec
974
+ L
975
+ |F(Φj,k)(m)|2
976
+ ≲ max{Wmax, 1/η∂E}d−1 · |∂E|
977
+ κ∂E
978
+ · exp
979
+
980
+ − cs1−α�
981
+ max{log(Wmax/δ), 1}d,
982
+ (3.11)
983
+ and
984
+
985
+ (j,k)∈Γhigh
986
+ L−d �
987
+ m∈EL
988
+ |F(Φj,k)(m)|2 ≲max{Wmax, 1/η∂E}d−1
989
+ κ∂E
990
+ ·
991
+
992
+ |∂E|
993
+ d
994
+ d−1 · δ
995
+ + |∂E| · exp
996
+
997
+ − cs1−α�
998
+ · max{log(Wmax/δ), 1}d�
999
+ .
1000
+ (3.12)
1001
+ Proof. For j ∈ Zd and l ∈ N0 we set
1002
+ Llow
1003
+ j,l =
1004
+
1005
+ k ∈ Zd : dist(k, MjEc
1006
+ L) ∈ [s2l, s2l+1)
1007
+
1008
+ ,
1009
+ and
1010
+ Lhigh
1011
+ j,l
1012
+ =
1013
+
1014
+ k ∈ Zd : dist(k, MjEL) ∈ [s2l, s2l+1)
1015
+
1016
+ .
1017
+ Notice that
1018
+ Llow
1019
+ j,l ∪ Lhigh
1020
+ j,l
1021
+
1022
+
1023
+ k ∈ Zd : dist(k, MjEL) < s2l+1, and dist(k, MjEc
1024
+ L) < s2l+1}
1025
+
1026
+
1027
+ k ∈ Zd : dist(k, Mj∂EL) < s2l+1},
1028
+ where the last step follows as in (3.7). From Lemma 3.3 we get
1029
+ (3.13)
1030
+ #(Llow
1031
+ j,l ), #(Lhigh
1032
+ j,l ) ≲ max{Wmax, 1/η∂E}d−1|∂E|
1033
+ κ∂E
1034
+ sd2dl.
1035
+ From (3.5) it follows that if k ∈ Llow
1036
+ j,l
1037
+ L−d �
1038
+ m∈Ec
1039
+ L
1040
+ |F(Φj,k)(m)|2 ≤ L−d �
1041
+ m∈Ec
1042
+ L
1043
+ A2d
1044
+ α det(Mj) exp
1045
+
1046
+ − 2aα|Mj(m − ξj,k)|1−α�
1047
+
1048
+ EIGENVALUE ESTIMATES FOR FOURIER CONCENTRATION OPERATORS
1049
+ 13
1050
+ ≤ A2d
1051
+ α L−d det(Mj)
1052
+
1053
+ m′∈MjEc
1054
+ L
1055
+ exp
1056
+
1057
+ − 2aα|m′ − k|1−α�
1058
+
1059
+
1060
+ {|x|≥s2l}
1061
+ exp
1062
+
1063
+ − 2aα|x|1−α�
1064
+ dx
1065
+ ≲ exp
1066
+
1067
+ − c(s2l)1−α�
1068
+ ,
1069
+ (3.14)
1070
+ where c can for example be chosen as aα. A similar argument also shows that for
1071
+ k ∈ Lhigh
1072
+ j,l ,
1073
+ L−d �
1074
+ m∈EL
1075
+ |F(Φj,k)(m)|2 ≲ exp
1076
+
1077
+ − c(s2l)1−α�
1078
+ .
1079
+ As Llow
1080
+ j
1081
+ = �
1082
+ l∈N0 Llow
1083
+ j,l , it follows from (3.13) and (3.14) that
1084
+
1085
+ (j,k)∈Γlow
1086
+ L−d �
1087
+ m∈Ec
1088
+ L
1089
+ |F(Φj,k)(m)|2 =
1090
+
1091
+ j∈Zd
1092
+ min |Dji|≥δ
1093
+
1094
+ l∈N0
1095
+
1096
+ k∈Llow
1097
+ j,l
1098
+ L−d �
1099
+ m∈Ec
1100
+ L
1101
+ |F(Φj,k)(m)|2
1102
+ ≲ max{Wmax, 1/η∂E}d−1|∂E|
1103
+ κ∂E
1104
+
1105
+ j∈Zd
1106
+ min |Dji|≥δ
1107
+
1108
+ l∈N0
1109
+ (s2l)d exp
1110
+
1111
+ − c(s2l)1−α�
1112
+ ≲ max{Wmax, 1/η∂E}d−1|∂E|
1113
+ κ∂E
1114
+
1115
+ j∈Zd
1116
+ min |Dji|≥δ
1117
+ exp
1118
+
1119
+ − c′s1−α�
1120
+ ≲ max{Wmax, 1/η∂E}d−1|∂E|
1121
+ κ∂E
1122
+ exp
1123
+
1124
+ − c′s1−α�
1125
+ max{log(Wmax/δ), 1}d,
1126
+ which completes the proof of (3.11). Again, we can use an analogous reasoning
1127
+ to show
1128
+
1129
+ j∈Zd
1130
+ min |Dji|≥δ
1131
+
1132
+ k∈Lhigh
1133
+ j
1134
+ L−d �
1135
+ m∈EL
1136
+ |F(Φj,k)(m)|2
1137
+ ≲ max{Wmax, 1/η∂E}d−1|∂E|
1138
+ κ∂E
1139
+ exp
1140
+
1141
+ − c′s1−α�
1142
+ max{log(Wmax/δ), 1}d.
1143
+ Now suppose that j ∈ Zd is such that min1≤i≤d |Dji| < δ. For every m ∈ Zd we
1144
+ can uniformly bound the subsequent series
1145
+
1146
+ k∈Zd
1147
+ exp
1148
+
1149
+ − 2aα|Mj(m − ξj,k)|1−α�
1150
+ =
1151
+
1152
+ k∈Zd
1153
+ exp
1154
+
1155
+ − 2aα|Mjm − k|1−α�
1156
+ ≤ C.
1157
+ Since det(Mj) = |Dj|, where Dj = Dj1 × ... × Djd, we thus get by (3.5)
1158
+
1159
+ j∈Zd
1160
+ min |Dji|<δ
1161
+
1162
+ k∈Zd
1163
+ L−d �
1164
+ m∈EL
1165
+ |F(Φj,k)(m)|2 ≤ C
1166
+
1167
+ j∈Zd
1168
+ min |Dji|<δ
1169
+ L−d �
1170
+ m∈EL
1171
+ det(Mj)
1172
+ ≤ CL−d#EL
1173
+
1174
+ j∈Zd
1175
+ min |Dji|<δ
1176
+ |Dj|
1177
+
1178
+ 14
1179
+ FELIPE MARCECA, JOSÉ LUIS ROMERO, AND M. SPECKBACHER
1180
+ ≲ |∂E|d/(d−1)
1181
+ κ∂E
1182
+
1183
+ j∈Zd
1184
+ min |Dji|<δ
1185
+ |Dj|,
1186
+ where in the last inequality we used Corollary 2.2. Finally,
1187
+
1188
+ j∈Zd
1189
+ min |Dji|<δ
1190
+ |Dj| ≤
1191
+ d
1192
+
1193
+ i=1
1194
+
1195
+ j∈Zd
1196
+ |Dji|<δ
1197
+ |Dj| ≤
1198
+ d
1199
+
1200
+ i=1
1201
+ W d−1
1202
+ max4δ
1203
+ ≲ max{Wmax, 1/η∂E}d−1δ,
1204
+ where we used that each interval Dji is at most at |Dji| < δ distance from the
1205
+ boundary of (−Wi/2, Wi/2). This concludes the proof of (3.12).
1206
+
1207
+ 4. General domain vs. rectangle
1208
+ In this section, we prove the following variant of Theorem 1.2 for F a rectangle.
1209
+ Theorem 4.1. Let L ≥ 1 be a discretization resolution, d ≥ 2, and E ⊆ Rd be
1210
+ a compact domain with regular boundary at scale η∂E ≥ 1 with constant κ∂E and
1211
+ such that |∂E| ≥ 1. For 0 < Wi ≤ L, i = 1, ..., d, take F = �d
1212
+ i=1(−Wi/2, Wi/2)
1213
+ and denote Wmax = maxi Wi. For every α ∈ (0, 1/2) there exists Aα,d ≥ 1 such
1214
+ that for ε ∈ (0, 1/2):
1215
+ #
1216
+
1217
+ n ∈ N : λn ∈ (ε, 1 − ε)
1218
+
1219
+ ≤ Aα,d · max{Wmax, 1/η∂E}d−1 · |∂E|
1220
+ κ∂E
1221
+ · log
1222
+ �max{Wmax, 1/η∂E}d−1|∂E|
1223
+ κ∂E ε
1224
+ �2d(1+α)
1225
+ .
1226
+ Proof. We adopt all the notation of Section 3. Fix parameters s ≥ 1, δ ∈ (0, 1)
1227
+ and consider the sets from (3.10).
1228
+ Observe that for f ∈ L2(F) one has
1229
+ ∥Tf∥2
1230
+ 2 = ∥χFPE,Lf∥2
1231
+ 2 ≤ ∥PE,Lf∥2
1232
+ 2 = L−d �
1233
+ m∈EL
1234
+ �� �f(m)
1235
+ ��2.
1236
+ and
1237
+ ∥f − Tf∥2
1238
+ 2 = ∥χFf − χFPE,Lf∥2
1239
+ 2 ≤ ∥(I − PE,L)f∥2
1240
+ 2 = L−d �
1241
+ m∈Ec
1242
+ L
1243
+ �� �f(m)
1244
+ ��2.
1245
+ By Lemma 3.5 it thus follows
1246
+
1247
+ (j,k)∈Γlow
1248
+ ∥(I − T)Φj,k∥2
1249
+ 2 +
1250
+
1251
+ (j,k)∈Γhigh
1252
+ ∥TΦj,k∥2
1253
+ 2
1254
+ (4.1)
1255
+ ≤ C max{Wmax, 1/η∂E}d−1
1256
+ κ∂E
1257
+
1258
+ |∂E| exp
1259
+
1260
+ − cs1−α�
1261
+ max{log(Wmax/δ), 1}d
1262
+ + |∂E|d/(d−1)δ
1263
+
1264
+ ,
1265
+ where the constants depend only on α and d.
1266
+
1267
+ EIGENVALUE ESTIMATES FOR FOURIER CONCENTRATION OPERATORS
1268
+ 15
1269
+ At last, we can now specify the parameters δ and s in order for the sets Γlow, Γmed
1270
+ and Γhigh to play the role of I1, I2 and I3 in Lemma 3.1. We take
1271
+ δ =
1272
+ κ∂E ε2
1273
+ C max{Wmax, 1/η∂E}d−1|∂E|d/(d−1) .
1274
+ This ensures that
1275
+ C max{Wmax, 1/η∂E}d−1|∂E|d/(d−1)
1276
+ κ∂E
1277
+ δ ≤ ε2.
1278
+ (4.2)
1279
+ Also, we select s such that
1280
+ C max{Wmax, 1/η∂E}d−1|∂E|
1281
+ κ∂E
1282
+ exp
1283
+
1284
+ − cs1−α�
1285
+ max{log(Wmax/δ), 1}d ≤ ε2.
1286
+ (4.3)
1287
+ This condition on s is equivalent to
1288
+ s ≥
1289
+ �1
1290
+ c log
1291
+ �C max{Wmax, 1/η∂E}d−1|∂E| max{log(Wmax/δ), 1}d
1292
+ κ∂E ε2
1293
+ ��1/(1−α)
1294
+ ,
1295
+ and is satisfied if
1296
+ s = Aα,d log
1297
+ �max{Wmax, 1/η∂E}d−1|∂E|
1298
+ κ∂E ε
1299
+ �1/(1−α)
1300
+ ,
1301
+ for an adequate constant Aα,d. Moreover, we can guarantee that s ≥ 1, since by
1302
+ (2.4), the term inside the logarithm is ≥ 2. From (4.1), (4.2), (4.3), Lemma 3.1
1303
+ and Lemma 3.4,
1304
+ #Mε(T) ≤ 21−d#(Γmed)
1305
+ ≲ max{Wmax, 1/η∂E}d−1|∂E|
1306
+ κ∂E
1307
+ max{log(Wmax/δ), 1}dsd
1308
+ ≲ max{Wmax, 1/η∂E}d−1|∂E|
1309
+ κ∂E
1310
+ log
1311
+ �max{Wmax, 1/η∂E}d−1|∂E|
1312
+ κ∂E ε
1313
+ �d/(1−α)+d
1314
+ ≲ max{Wmax, 1/η∂E}d−1|∂E|
1315
+ κ∂E
1316
+ log
1317
+ �max{Wmax, 1/η∂E}d−1|∂E|
1318
+ κ∂E ε
1319
+ �2d(1+α)
1320
+ . □
1321
+ 5. Eigenvalue estimates for two domains
1322
+ 5.1. Schatten quasi-norm estimates. For 0 < p ≤ 1, and ε > 0, define the
1323
+ auxiliary function g = gp,ε : [0, 1] → R given by
1324
+ g(t) =
1325
+ � t − t2
1326
+ ε − ε2
1327
+ �p
1328
+ .
1329
+ Note that since χ(ε,1−ε) ≤ g, for a positive operator 0 ≤ S ≤ 1,
1330
+ #Mε(S) = tr(χ(ε,1−ε)S) ≤ tr(g(S)) = ∥S − S2∥p
1331
+ p
1332
+ (ε − ε2)p ,
1333
+ where ∥ · ∥p, 0 < p ≤ 1, denotes the Schatten quasi-norm. The next lemma shows
1334
+ that upper bounds for the left-hand side of the last inequality can be transferred
1335
+ to the right-hand side without much loss.
1336
+
1337
+ 16
1338
+ FELIPE MARCECA, JOSÉ LUIS ROMERO, AND M. SPECKBACHER
1339
+ Lemma 5.1. Suppose that for a positive operator 0 ≤ S ≤ 1 there are constants
1340
+ C, D, a > 0 such that for every ε ∈ (0, 1/2),
1341
+ #Mε(S) ≤ C
1342
+
1343
+ D + log(ε−1)
1344
+ �a.
1345
+ Then, for every 0 < p ≤ 1 there is a constant Ca > 0 such that
1346
+ ∥S − S2∥p
1347
+ p ≤ CaC
1348
+
1349
+ D + p−1�a.
1350
+ Proof. By the symmetry of the function h(x) = x − x2 around 1/2, for 0 ≤ x ≤ 1,
1351
+ h(x)p =
1352
+ � min{x,1−x}
1353
+ 0
1354
+ (hp)′(t)dt =
1355
+ � 1/2
1356
+ 0
1357
+ χ(t,1−t)(x)php−1(t)h′(t)dt
1358
+
1359
+ � 1/2
1360
+ 0
1361
+ χ(t,1−t)(x)ptp−1dt.
1362
+ By a monotone convergence argument we get
1363
+ ∥S − S2∥p
1364
+ p ≤
1365
+ � 1/2
1366
+ 0
1367
+ Mt(S)ptp−1dt ≤ C
1368
+ � 1
1369
+ 0
1370
+ (D + log(t−1))aptp−1dt
1371
+ = C
1372
+ � ∞
1373
+ 0
1374
+ (D + u/p)ae−udu
1375
+ ≤ C(D + 1/p)a + C
1376
+ � ∞
1377
+ 1
1378
+ (D + u/p)ae−udu
1379
+ ≤ C(D + 1/p)a + C(D + 1/p)a
1380
+ � ∞
1381
+ 1
1382
+ uae−udu
1383
+ ≤ (1 + Γ(a + 1))C(D + 1/p)a.
1384
+
1385
+ 5.2. Decomposition of the domain and Hankel operators. In what follows,
1386
+ we let F ⊆ (−L/2, L/2)d be a compact domain with regular boundary at scale
1387
+ η∂F = |∂F|1/(d−1) ≥ 1 with constant κ∂F. We construct two auxiliary sets F − ⊆
1388
+ F ⊆ F + which will be dyadic approximations of F from above and below by cubes
1389
+ of length at least 1. More precisely, let
1390
+ F =
1391
+
1392
+ k∈Z
1393
+
1394
+ j∈Jk
1395
+ Qk,j
1396
+ be a dyadic decomposition of F in piecewise disjoint cubes of the form Qk,j =
1397
+ Q2k + 2kj with k ∈ Z and j ∈ Jk ⊆ Zd, that are maximal (they are not contained
1398
+ in a larger dyadic cube included in F). We define
1399
+ F − =
1400
+
1401
+ k≥0
1402
+
1403
+ j∈Jk
1404
+ Qk,j.
1405
+ For F + we add cubes of length 1 to fully cover F and intersect them with
1406
+ (−L/2, L/2)d. The result is a covering of F that combines the cubes from F −
1407
+ with rectangles of maximal side-length ≤ 1. More precisely, define
1408
+ V = {v ∈ Zd : (F ∖ F −) ∩ (Q1 + v) ̸= ∅},
1409
+ and
1410
+ F + = F − ∪
1411
+
1412
+ v∈V
1413
+
1414
+ (Q1 + v) ∩ (−L/2, L/2)d�
1415
+ =: F − ∪
1416
+
1417
+ v∈V
1418
+ Rv.
1419
+
1420
+ EIGENVALUE ESTIMATES FOR FOURIER CONCENTRATION OPERATORS
1421
+ 17
1422
+ Note that Theorem 4.1 can be applied to each rectangle in the decomposition
1423
+ of F − and F +. This follows from a translation argument and the fact that the
1424
+ boundaries of the rectangles have null measure, so we can replace them by their
1425
+ interior. We write T ± for TE,F ±,L.
1426
+ For a set K ⊆ (−L/2, L/2)d define the Hankel operator on L2((−L/2, L/2)d)
1427
+ by
1428
+ HK = (I − PE,L)χKPE,L
1429
+ and write H± = HF ±. Note that
1430
+ (HK)∗HK = PE,LχKPE,L − PE,LχKPE,LχKPE,L = PE,LχKPE,L − (PE,LχKPE,L)2.
1431
+ Since PE,LχKPE,L and TK share the same non-zero eigenvalues, for p > 0,
1432
+ ∥TK − (TK)2∥p
1433
+ p = ∥HK∥2p
1434
+ 2p.
1435
+ Recall that for two operators S1, S2 in the p-Schatten class, 0 < p ≤ 1, one has
1436
+ ∥S1 + S2∥p
1437
+ p ≤ ∥S1∥p
1438
+ p + ∥S2∥p
1439
+ p.
1440
+ Lemma 5.2. Let L ≥ 1, d ≥ 2, and E, F ⊆ Rd be compact domains with regular
1441
+ boundaries at scales η∂E ≥ 1, η∂F = |∂F|1/(d−1) ≥ 1, with constants κ∂E, κ∂F
1442
+ respectively. Assume also that |∂E| ≥ 1 and F ⊆ (−L/2, L/2)d. For ε ∈ (0, 1/2),
1443
+ we have
1444
+ #Mε(T ±) ≲ |∂E|
1445
+ κ∂E
1446
+ · |∂F|
1447
+ κ∂F
1448
+ · log
1449
+ �|∂E| max{|∂F|, 1}
1450
+ κ∂E ε
1451
+ �2d(1+α)+1
1452
+ .
1453
+ Proof. If k ∈ Z is such that Jk ̸= ∅, then there is a cube of length 2k included in
1454
+ F. In particular, the projection of ∂F onto the hyperplane {x1 = 0} contains a
1455
+ (d−1)-dimensional cube of length 2k and therefore 2k(d−1) ≤ |∂F|. The maximality
1456
+ of the dyadic decomposition of F implies that Qj,k ⊆ ∂F + B√
1457
+ d2k+1(0) for j ∈ Jk.
1458
+ From Lemma 2.1 and the fact that η∂F = |∂F|1/(d−1), we thus derive
1459
+ 2dk#Jk ≤ |∂F + B√
1460
+ d2k+1(0)| ≲ 2k |∂F|
1461
+ κ∂F
1462
+
1463
+ 1 + 2k(d−1)
1464
+ |∂F|
1465
+
1466
+ ≲ 2k |∂F|
1467
+ κ∂F
1468
+ .
1469
+ (5.1)
1470
+ Similarly,
1471
+ #V ≤ |∂F + B√
1472
+ d(0)| ≲ |∂F|
1473
+ κ∂F
1474
+ .
1475
+ (5.2)
1476
+ For 0 < 2p ≤ 1, and ε ∈ (0, 1/2), we thus get
1477
+ #Mε(T +) ≤ ∥T + − (T +)2∥p
1478
+ p
1479
+ (ε − ε2)p
1480
+ = ∥H+∥2p
1481
+ 2p
1482
+ (ε − ε2)p
1483
+ ≤ (2/ε)p �
1484
+ k≥0
1485
+
1486
+ j∈Jk
1487
+ ∥HQk,j∥2p
1488
+ 2p + (2/ε)p �
1489
+ v∈V
1490
+ ∥HRv∥2p
1491
+ 2p
1492
+ ≲ ε−p �
1493
+ k≥0
1494
+
1495
+ j∈Jk
1496
+ ∥TQk,j − T 2
1497
+ Qk,j∥p
1498
+ p + ε−p �
1499
+ v∈V
1500
+ ∥TRv − T 2
1501
+ Rv∥p
1502
+ p.
1503
+ Theorem 4.1 shows that when applying Lemma 5.1 to TQk,j one can take
1504
+ C ≲ 2k(d−1)|∂E|
1505
+ κ∂E
1506
+ ,
1507
+ and
1508
+ D = log
1509
+
1510
+ 2k(d−1)|∂E|
1511
+ κ∂E
1512
+
1513
+ .
1514
+
1515
+ 18
1516
+ FELIPE MARCECA, JOSÉ LUIS ROMERO, AND M. SPECKBACHER
1517
+ Similarly, the same holds for TRv with k = 1. Choosing p = log(2)
1518
+
1519
+ 2 log(ε−1)
1520
+ �−1
1521
+ (which ensures that 2p ≤ 1 for every ε ∈ (0, 1/2)) thus yields
1522
+ #Mε(T +) ≲ |∂E|
1523
+ κ∂E
1524
+ ��
1525
+ k≥0
1526
+
1527
+ j∈Jk
1528
+ 2k(d−1)log
1529
+ �|∂E|2k(d−1)
1530
+ κ∂E ε
1531
+ �2d(1+α)
1532
+ +#V ·log
1533
+ � |∂E|
1534
+ κ∂E ε
1535
+ �2d(1+α)�
1536
+ ≲ |∂E|
1537
+ κ∂E
1538
+ |∂F|
1539
+ κ∂F
1540
+
1541
+ k≥0
1542
+ 2k(d−1)≤max{|∂F |,1}
1543
+ log
1544
+ �|∂E|2k(d−1)
1545
+ κ∂E ε
1546
+ �2d(1+α)
1547
+ = |∂E|
1548
+ κ∂E
1549
+ |∂F|
1550
+ κ∂F
1551
+
1552
+ 0≤k≤⌊
1553
+ log(max{|∂F |,1})
1554
+ log(2)(d−1)
1555
+
1556
+
1557
+ log
1558
+ � |∂E|
1559
+ κ∂E ε
1560
+
1561
+ + (d − 1) log(2)k
1562
+ �2d(1+α)
1563
+ ,
1564
+ where in the second to last step we used (5.1), (5.2), and the fact that 2k(d−1) ≤
1565
+ |∂F| whenever Jk ̸= ∅. Finally, noting that for C, D, a > 0,
1566
+ N
1567
+
1568
+ k=0
1569
+ (C + Dk)a ≤
1570
+ � N+1
1571
+ 0
1572
+ (C + Dx)adx ≤ (C + D(N + 1))a+1
1573
+ D(a + 1)
1574
+ ,
1575
+ we get,
1576
+ #Mε(T +) ≲ |∂E|
1577
+ κ∂E
1578
+ |∂F|
1579
+ κ∂F
1580
+ log
1581
+ �|∂E| max{|∂F|, 1}
1582
+ κ∂E ε
1583
+ �2d(1+α)+1
1584
+ .
1585
+ The same argument works for #Mε(T −).
1586
+
1587
+ 5.3. The transition index. The following estimate is part of the proof of [1,
1588
+ Theorem 1.5] (see also [16, Lemma 4.3]) and allows us to find the index where
1589
+ eigenvalues cross the 1/2 threshold. We include a proof for the sake of complete-
1590
+ ness.
1591
+ Lemma 5.3. For any trace class operator 0 ≤ S ≤ 1,
1592
+ (i) λn ≤ 1
1593
+ 2, for every n ≥ ⌈tr(S)⌉ + max{2 tr(S − S2), 1};
1594
+ (ii) λn ≥ 1
1595
+ 2, for every 1 ≤ n ≤ ⌈tr(S)⌉ − max{2 tr(S − S2), 1}.
1596
+ Proof. First notice that if S is an orthogonal projection, then the result holds
1597
+ trivially, so we can assume otherwise. In particular, we have that tr(S − S2) > 0.
1598
+ Set K = ⌈tr(S)⌉ and write
1599
+ tr(S) − tr(S2) =
1600
+
1601
+
1602
+ n=1
1603
+ λn(1 − λn)
1604
+ =
1605
+ K
1606
+
1607
+ n=1
1608
+ λn(1 − λn) +
1609
+
1610
+
1611
+ n=K+1
1612
+ λn(1 − λn)
1613
+ ≥ λK
1614
+ K
1615
+
1616
+ n=1
1617
+ (1 − λn) + (1 − λK)
1618
+
1619
+
1620
+ n=K+1
1621
+ λn
1622
+
1623
+ EIGENVALUE ESTIMATES FOR FOURIER CONCENTRATION OPERATORS
1624
+ 19
1625
+ = λKK − λK
1626
+ K
1627
+
1628
+ n=1
1629
+ λn + (1 − λK)
1630
+
1631
+ tr(S) −
1632
+ K
1633
+
1634
+ n=1
1635
+ λn
1636
+
1637
+ = λKK + (1 − λK) tr(S) −
1638
+ K
1639
+
1640
+ n=1
1641
+ λn
1642
+ = tr(S) −
1643
+ K
1644
+
1645
+ n=1
1646
+ λn + λK(K − tr(S)).
1647
+ Hence
1648
+ (5.3)
1649
+
1650
+
1651
+ n=K+1
1652
+ λn = tr(S) −
1653
+ K
1654
+
1655
+ n=1
1656
+ λn ≤ tr(S) − tr(S2),
1657
+ and
1658
+ K−1
1659
+
1660
+ n=1
1661
+ (1 − λn) = tr(S) −
1662
+ K
1663
+
1664
+ n=1
1665
+ λn + λK(K − tr(S)) − (1 − λK)(1 + tr(S) − K)
1666
+ ≤ tr(S) −
1667
+ K
1668
+
1669
+ n=1
1670
+ λn + λK(K − tr(S)) ≤ tr(S) − tr(S2).
1671
+ (5.4)
1672
+ Now let j ∈ N such that j ≥ 2(tr(S) − tr(S2)) and consider k = K + j . It follows
1673
+ from (5.3) that
1674
+ 2(tr(S) − tr(S2)) · λk ≤ j · λK+j ≤
1675
+
1676
+
1677
+ n=K+1
1678
+ λn ≤ tr(S) − tr(S2),
1679
+ which shows λk ≤ 1/2 as 0 < tr(S) − tr(S2) < ∞; this proves part (i).
1680
+ For part (ii), if 1 ≤ k = K − j ≤ K − 2(tr(S) − tr(S2)) for j ∈ N, then (5.4)
1681
+ implies
1682
+ 2(tr(S) − tr(S2)) · (1 − λk) ≤ j · (1 − λK−j) ≤
1683
+ K−1
1684
+
1685
+ n=1
1686
+ (1 − λn) ≤ tr(S) − tr(S2),
1687
+ yielding λk ≥ 1/2. This completes the proof.
1688
+
1689
+ 5.4. Proof of the main result. With all the preparatory work at hand, we are
1690
+ ready to prove the main result.
1691
+ Proof of Theorem 1.2. Recall from (2.2) that the eigenvalues of the concentration
1692
+ operator remain the same if we replace E, F and L with t−1E, tF and tL respec-
1693
+ tively.
1694
+ We choose t = |∂E|1/(d−1) and notice that t−1E satisfies |∂t−1E| = 1,
1695
+ η∂t−1E = t−1η∂E = 1, and κ∂t−1E = κ∂E.
1696
+ Furthermore, we also have that tF
1697
+ has regular boundary at scale η∂tF = tη∂F = (|∂E||∂F|)1/(d−1) ≥ 1 with constant
1698
+ κ∂tF = κ∂F, and tL ≥ 1 by assumption on L.
1699
+ Note that for F ′ ⊆ (−tL/2, tL/2)d, the operator T has integral kernel
1700
+ K(x, y) = χF ′(x)χF ′(y)
1701
+ 1
1702
+ (tL)d
1703
+
1704
+ k∈(t−1E)tL
1705
+ e−2πik(x−y).
1706
+
1707
+ 20
1708
+ FELIPE MARCECA, JOSÉ LUIS ROMERO, AND M. SPECKBACHER
1709
+ Thus,
1710
+ tr(T) =
1711
+
1712
+ K(x, x)dx =
1713
+
1714
+ F ′
1715
+ 1
1716
+ (tL)d
1717
+
1718
+ k∈(t−1E)tL
1719
+ 1dx = #(t−1E)tL
1720
+ (tL)d
1721
+ |F ′|.
1722
+ On the other hand, from Lemmas 5.1 and 5.2 we have that
1723
+ tr
1724
+
1725
+ T ± − (T ±)2�
1726
+ ≲ |∂t−1E|
1727
+ κ∂t−1E
1728
+ |∂tF|
1729
+ κ∂tF
1730
+ log
1731
+ �e|∂t−1E||∂tF|
1732
+ κ∂t−1E
1733
+ �2d(1+α)+1
1734
+ = |∂E|
1735
+ κ∂E
1736
+ |∂F|
1737
+ κ∂F
1738
+ log
1739
+ �e|∂E||∂F|
1740
+ κ∂E
1741
+ �2d(1+α)+1
1742
+ =: CE,F.
1743
+ So from Lemma 5.3,
1744
+ λn(T +) ≤ 1
1745
+ 2,
1746
+ n ≥
1747
+ �#(t−1E)tL
1748
+ (tL)d
1749
+ |(tF)+|
1750
+
1751
+ + 2CE,F;
1752
+ λn(T −) ≥ 1
1753
+ 2,
1754
+ n ≤
1755
+ �#(t−1E)tL
1756
+ (tL)d
1757
+ |(tF)−|
1758
+
1759
+ − 2CE,F.
1760
+ By Corollary 2.2 and |∂t−1E| = 1,
1761
+ #{n ∈ N : λn(T −) < 1/2, λn(T +) > 1/2} ≲
1762
+ 1
1763
+ κ∂E
1764
+ |(tF)+ ∖ (tF)−| + CE,F
1765
+
1766
+ 1
1767
+ κ∂E
1768
+ |∂tF + B√
1769
+ d(0)| + CE,F
1770
+
1771
+ 1
1772
+ κ∂E
1773
+ td−1|∂F|
1774
+ κ∂F
1775
+ + CE,F ≲ CE,F,
1776
+ where in the second to last step we used Lemma 2.1. Since λn(T −) ≤ λn(T) ≤
1777
+ λn(T +) for every n ∈ N, again by Lemma 5.2,
1778
+ #Mε(T) ≤#{n ∈ N : 1/2 ≤ λn(T −) < 1 − ε} + #{n ∈ N : ε < λn(T +) ≤ 1/2}
1779
+ + #{n ∈ N : λn(T −) < 1/2, λn(T +) > 1/2}
1780
+ ≲#Mε(T −) + #Mε(T +) + #{n ∈ N : λn(T −) < 1/2, λn(T +) > 1/2}
1781
+ ≲|∂E|
1782
+ κ∂E
1783
+ |∂F|
1784
+ κ∂F
1785
+ log
1786
+ �|∂E||∂F|
1787
+ κ∂E ε
1788
+ �2d(1+α)+1
1789
+ .
1790
+
1791
+ 6. The continuous Fourier transform
1792
+ In this section we deduce Theorem 1.1 by taking L → ∞ in Theorem 1.2.
1793
+ Proof of Theorem 1.1. Fix E and F as in the statement of Theorem 1.1.
1794
+ We
1795
+ consider a sufficiently large resolution such that L ≥ |∂E|−1/(d−1) and F ⊆
1796
+ (−L/2, L/2)d.
1797
+ Let SL : L2(Rd) → L2(Rd) be the operator given by
1798
+ SLf = TE,F,L(χFf) = χFF −1
1799
+ L χELFLχFf,
1800
+ f ∈ L2(Rd).
1801
+ An easy computation shows that SL and TE,F,L share the same non-zero eigenval-
1802
+ ues. Also, recall the operator S from (1.1).
1803
+
1804
+ EIGENVALUE ESTIMATES FOR FOURIER CONCENTRATION OPERATORS
1805
+ 21
1806
+ Step 1. We show that
1807
+ lim
1808
+ L→∞ ∥SL − S∥ = 0.
1809
+ (6.1)
1810
+ Recall that QL−1 = L−1[−1/2, 1/2)d and define the auxiliary set
1811
+ ΓL =
1812
+
1813
+ m∈EL
1814
+ m + QL−1.
1815
+ Note that the symmetric difference E∆ΓL is included in ∂E + BL−1√
1816
+ d(0). From
1817
+ Lemma 2.1,
1818
+ |E∆ΓL| ≤ |∂E + BL−1√
1819
+ d(0)| ≲ |∂E|
1820
+ κL
1821
+
1822
+ 1 + (Lη∂E)−(d−1)� L→∞
1823
+ −−−→ 0.
1824
+ Using this and setting RL = χFF −1χΓLFχF, for f ∈ L2(Rd) we have
1825
+ ∥(RL − S)f∥2
1826
+ 2 ≤ ∥(χΓL − χE)F(χFf)∥2
1827
+ 2 ≤ |E∆ΓL|∥F(χFf)∥2
1828
+
1829
+ ≤ |E∆ΓL|∥χFf∥2
1830
+ 1 ≤ |E∆ΓL||F|∥f∥2
1831
+ 2
1832
+ L→∞
1833
+ −−−→ 0.
1834
+ To prove (6.1), it only remains to show that
1835
+ ∥RL − SL∥
1836
+ L→∞
1837
+ −−−→ 0.
1838
+ (6.2)
1839
+ To this end, let f ∈ L2(Rd) and estimate
1840
+ ∥SLf − RLf∥2
1841
+ 2 =
1842
+
1843
+ F
1844
+ ���
1845
+
1846
+ ΓL
1847
+ F(χFf)(w)e2πiwxdw − L−d �
1848
+ m∈EL
1849
+ F(χFf)(m)e2πimx���
1850
+ 2
1851
+ dx
1852
+ =
1853
+
1854
+ F
1855
+ ���
1856
+
1857
+ m∈EL
1858
+
1859
+ m+QL−1
1860
+ F(χFf)(w)e2πiwx − F(χFf)(m)e2πimxdw
1861
+ ���
1862
+ 2
1863
+ dx
1864
+ =
1865
+
1866
+ F
1867
+ ���
1868
+
1869
+ m∈EL
1870
+
1871
+ m+QL−1
1872
+
1873
+ F
1874
+ f(t)
1875
+
1876
+ e2πiw(x−t) − e2πim(x−t)�
1877
+ dtdw
1878
+ ���
1879
+ 2
1880
+ dx
1881
+
1882
+
1883
+ F
1884
+ � �
1885
+ m∈EL
1886
+
1887
+ m+QL−1
1888
+
1889
+ F
1890
+ |f(t)||w − m||x − t|dtdw
1891
+ �2
1892
+ dx
1893
+
1894
+
1895
+ F
1896
+ � �
1897
+ m∈EL
1898
+ L−(d+1)
1899
+
1900
+ F
1901
+ |f(t)||x − t|dt
1902
+ �2
1903
+ dx
1904
+ ≲ (#EL)2L−2(d+1)
1905
+
1906
+ F
1907
+ ∥f∥2
1908
+ 2
1909
+
1910
+ F
1911
+ |x − t|2dtdx
1912
+ ≲ L−2max{|∂E|2d/(d−1), 1}
1913
+ κ2
1914
+ ∂E
1915
+ |F|2 diam(F)2∥f∥2
1916
+ 2,
1917
+ where in the inequality step we used Corollary 2.2. Hence (6.2) holds.
1918
+ Step 2. Since SL and TE,F,L share the same non-zero eigenvalues, the estimates in
1919
+ Theorem 1.2 apply also to SL for all sufficiently large L. By the Fischer-Courant
1920
+ formula, operator convergence of positive compact operators implies convergence
1921
+ of their eigenvalues. Hence, by (6.1), the estimate satisfied by the spectrum of SL
1922
+ extends to the spectrum of S.
1923
+
1924
+
1925
+ 22
1926
+ FELIPE MARCECA, JOSÉ LUIS ROMERO, AND M. SPECKBACHER
1927
+ 7. The discrete Fourier transform
1928
+ Proof of Theorem 1.3. Let us define E := Ω + Q1. Then Ω = EL for L = 1. Let
1929
+ us apply Theorem 1.2 with L = 1 to E, F. We check the relevant hypotheses.
1930
+ For each point k ∈ ∂Ω, there exist at least one face and at most 2d faces of the
1931
+ cube k + Q1 that are contained in ∂E. Therefore,
1932
+ (7.1)
1933
+ #∂Ω ≤
1934
+ ��∂E
1935
+ �� ≤ 2d · #∂Ω,
1936
+ and consequently
1937
+ |∂E||∂F| ≥ #∂Ω · |∂F| ≥ 1.
1938
+ Moreover, (7.1) shows that the choice L = 1 satisfies L ≥ |∂E
1939
+ ��−1/(d−1) as ∂Ω
1940
+ contains at least one point.
1941
+ Now fix 0 < r ≤
1942
+
1943
+ d·(#∂Ω)1/(d−1) and let us show that ∂E is regular at maximal
1944
+ scale. If r < 2
1945
+
1946
+ d, and x ∈ ∂E we clearly have Hd−1�
1947
+ ∂E ∩ Br(x)
1948
+
1949
+ ≳ rd−1 as E is
1950
+ a union of cubes of length 1. If r ≥ 2
1951
+
1952
+ d, set n = ⌊r/
1953
+
1954
+ d⌋ and let x ∈ ∂E. There
1955
+ exist kx ∈ ∂Ω such that |kx − x| ≤
1956
+
1957
+ d/2. Note that for y ∈ kx + Qn,
1958
+ |y − x| ≤
1959
+
1960
+ dn
1961
+ 2
1962
+ +
1963
+
1964
+ d
1965
+ 2
1966
+ ≤ r
1967
+ 2 +
1968
+
1969
+ d
1970
+ 2
1971
+ < r.
1972
+ Hence, kx + Qn ⊆ Br(x) and therefore,
1973
+ Hd−1�
1974
+ ∂E ∩ Br(x)
1975
+
1976
+ ≥ Hd−1�
1977
+ ∂E ∩ kx + Qn
1978
+
1979
+ ≥ #
1980
+
1981
+ ∂Ω ∩ kx + Qn
1982
+
1983
+ ≥ κ∂Ωnd−1 ≳ κ∂Ωrd−1.
1984
+ This shows that ∂E is regular at scale
1985
+
1986
+ d · (#∂Ω)1/(d−1) with constant Cd · κ∂Ω.
1987
+ Note that if a set X is regular at scale ηX and constant κX, then it is also regular
1988
+ at scale αηX and constant min{1, α1−d}κX, for every α > 0. By (7.1) we therefore
1989
+ see that ∂E is regular at scale η∂E =
1990
+ ��∂E
1991
+ ��1/(d−1) and constant κ∂E ≍ κ∂Ω.
1992
+ The desired estimates now follow by applying Theorem 1.2 to E and F, with
1993
+ L = 1.
1994
+
1995
+ 8. Proof of Remark 1.4
1996
+ First we combine Lemma 5.3, Lemma 5.1 (for p = 1) and Theorem 1.1 to
1997
+ conclude that there exist a constant C = Cα,d > 0 such that if
1998
+ n ≥ ⌈|E| · |F|⌉ + C |∂E|
1999
+ κ∂E
2000
+ |∂F|
2001
+ κ∂F
2002
+ · log
2003
+ �e|∂E||∂F|
2004
+ κ∂E
2005
+ �2d(1+α)+1
2006
+ =: C1,
2007
+ then λn ≤ 1/2, and if
2008
+ n ≤ ⌈|E| · |F|⌉ − C |∂E|
2009
+ κ∂E
2010
+ |∂F|
2011
+ κ∂F
2012
+ · log
2013
+ �e|∂E||∂F|
2014
+ κ∂E
2015
+ �2d(1+α)+1
2016
+ =: C2,
2017
+ then λn ≥ 1/2.
2018
+ For ε ∈ (0, 1), define ε0 := min{ε, 1 − ε} ≤ 1/2 and let 0 < τ < ε0. Observe
2019
+ that
2020
+ {1, ..., ⌊C2⌋} ∖ Mτ(S) ⊆ N1−ε0(S) ⊆ Nε(S) ⊆ Nε0(S) ⊆ {1, ..., ⌈C1⌉} ∪ Mτ(S),
2021
+
2022
+ EIGENVALUE ESTIMATES FOR FOURIER CONCENTRATION OPERATORS
2023
+ 23
2024
+ where we understand {1, ..., ⌊C2⌋} to be ∅ if C2 < 1. Consequently,
2025
+ C2 − 1 − #Mτ(S) ≤ #Nε(S) ≤ C1 + 1 + #Mτ(S).
2026
+ Rearranging the last expression and using Theorem 1.1 for τ gives
2027
+ ��Nε(S) − |E| · |F|
2028
+ �� ≲ |∂E|
2029
+ κ∂E
2030
+ · |∂F|
2031
+ κ∂F
2032
+ · log
2033
+ �|∂E||∂F|
2034
+ κ∂E τ
2035
+ �2d(1+α)+1
2036
+ .
2037
+ Letting τ ր ε0 yields (1.10).
2038
+ References
2039
+ [1] L. D. Abreu, J. M. Pereira, and J. L. Romero. Sharp rates of convergence for accumulated
2040
+ spectrograms. Inverse Problems, 33(11):115008, 12, 2017.
2041
+ [2] J. Anden and J. L. Romero. Multitaper estimation on arbitrary domains. SIAM J. Imaging
2042
+ Sci., 13(3), 2021.
2043
+ [3] A. Bonami, P. Jaming, and A. Karoui. Non-asymptotic behavior of the spectrum of the
2044
+ sinc-kernel operator and related applications. J. Math. Phys., 62(3):Paper No. 033511, 20,
2045
+ 2021.
2046
+ [4] D. G. Caraballo. Areas of level sets of distance functions induced by asymmetric norms.
2047
+ Pacific J. Math., 218(1):37–52, 2005.
2048
+ [5] J. Diestel, H. Jarchow, and A. Tonge. Absolutely summing operators, volume 43 of Cam-
2049
+ bridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1995.
2050
+ [6] E. Hernández and G. Weiss. A first course on wavelets. Studies in Advanced Mathematics.
2051
+ CRC Press, Boca Raton, FL, 1996. With a foreword by Yves Meyer.
2052
+ [7] J. A. Hogan and J. D. Lakey. Duration and bandwidth limiting. Applied and Numerical
2053
+ Harmonic Analysis. Birkhäuser/Springer, New York, 2012. Prolate functions, sampling,
2054
+ and applications.
2055
+ [8] A.
2056
+ Israel.
2057
+ The
2058
+ eigenvalue
2059
+ distribution
2060
+ of
2061
+ time-frequency
2062
+ localization
2063
+ operators.
2064
+ arXiv:1502.04404v1, 2015.
2065
+ [9] A. Israel and A. Mayeli. On the eigenvalue distribution of spatio-spectral limiting operators
2066
+ in higher dimensions. arXiv:2301.09616v1, 2023.
2067
+ [10] S. Karnik, J. Romberg, and M. A. Davenport. Improved bounds for the eigenvalues of
2068
+ prolate spheroidal wave functions and discrete prolate spheroidal sequences. Appl. Comput.
2069
+ Harmon. Anal., 55:97–128, 2021.
2070
+ [11] S. Karnik, Z. Zhu, M. B. Wakin, J. Romberg, and M. A. Davenport. The fast Slepian
2071
+ transform. Appl. Comput. Harmon. Anal., 46(3):624–652, 2019.
2072
+ [12] H. J. Landau. On Szego’s eigenvalue distribution theorem and non-Hermitian kernels. J.
2073
+ Analyse Math., 28:335–357, 1975.
2074
+ [13] H. J. Landau and H. O. Pollak. Prolate spheroidal wave functions, Fourier analysis and
2075
+ uncertainty. II. Bell System Tech. J., 40:65–84, 1961.
2076
+ [14] H. J. Landau and H. O. Pollak. Prolate spheroidal wave functions, Fourier analysis and
2077
+ uncertainty. III. The dimension of the space of essentially time- and band-limited signals.
2078
+ Bell System Tech. J., 41:1295–1336, 1962.
2079
+ [15] H. J. Landau and H. Widom. Eigenvalue distribution of time and frequency limiting. J.
2080
+ Math. Anal. Appl., 77(2):469–481, 1980.
2081
+ [16] F. Marceca and J. L. Romero. Spectral deviation of concentration operators for the short-
2082
+ time Fourier transform. Studia Math. To appear. ArXiv:2104.06150, 2021.
2083
+ [17] A. Osipov. Certain upper bounds on the eigenvalues associated with prolate spheroidal
2084
+ wave functions. Appl. Comput. Harmon. Anal., 35(2):309–340, 2013.
2085
+ [18] D. Slepian and H. O. Pollak. Prolate spheroidal wave functions, Fourier analysis and un-
2086
+ certainty. I. Bell System Tech. J., 40:43–63, 1961.
2087
+ [19] H. Widom. Asymptotic behavior of the eigenvalues of certain integral equations. II. Arch.
2088
+ Rational Mech. Anal., 17:215–229, 1964.
2089
+
2090
+ 24
2091
+ FELIPE MARCECA, JOSÉ LUIS ROMERO, AND M. SPECKBACHER
2092
+ [20] Z. Zhu, S. Karnik, M. B. Wakin, M. A. Davenport, and J. Romberg. ROAST: Rapid
2093
+ orthogonal approximate Slepian transform. IEEE Trans. Signal Process., 66(22):5887–5901,
2094
+ 2018.
2095
+ Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1,
2096
+ A-1090 Vienna, Austria
2097
+ Email address: [email protected]
2098
+ Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1,
2099
+ A-1090 Vienna, Austria, and Acoustics Research Institute, Austrian Academy of
2100
+ Sciences, Wohllebengasse 12-14, Vienna, 1040, Austria
2101
+ Email address: [email protected]
2102
+ Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1,
2103
+ A-1090 Vienna, Austria
2104
+ Email address: [email protected]
2105
+